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Introduction et revue
bibliographique

Cette thèse commença avec l’arrivée à Grenoble INP d’une machine de Fabrication
Additive de technologie Electron Beam Melting (EBM). Dans ce manuscrit, les résultats
présentés ont été obtenus avec la machine EBM A1.

Comme ces technologies de fabrications additives permettent de fabriquer des géomé-
tries très complexes, une application visée a été la fabrication de structures architecturées
très difficiles à fabriquer de manière conventionnelle. En effet, depuis des années, il est
possible de concevoir des géométries optimisées. Ces modèles résultant d’optimisations
mécaniques sont maintenant fabricables par des technologies additives.

Structures treillis

Matériaux architecturés

Les matériaux monolithiques ne permettent plus de satisfaire des cahiers des charges
industriels de plus en plus complexes. Afin de répondre à ces demandes multi-fonctionnelles,
il est nécessaire d’architecturer les matériaux en combinant un matériau et de l’air ou
plusieurs matériaux ensemble. Selon Mike Ashby, les matériaux architecturés sont une
combinaison d’au moins deux matériaux ou d’un matériau et de l’air configurés afin d’avoir
des caractéristiques que ne peuvent offrir chaque matériau seul [1].

La figure 1 montre différentes classes de matériaux architecturés. Ce travail de thèse
se focalise sur les structures treillis (encadré en vert). Ces structures sont composées d’un
réseau inter-connecté de poutres.

Structures treillis

Ces architectures sont majoritairement utilisées pour des applications mécaniques. Elles
permettent de créer des pièces légères tout en gardant une rigidité élevée. Cette application
est celle visée dans la thèse. Certaines géométries de structures treillis sont aussi utilisées
pour des proriétés d’absorption d’énergie [2]. Elles peuvent aussi trouver leur place dans
des domaines d’applications thermiques [3–5] ou acoustiques [6].

Les propriétés mécaniques de ces structures sont très dépendantes de la topologie de
celle-ci. Le paramètre le plus important dans la topologie des structures treillis est la
connectivité nodale. En fonction de cette connectivité, on peut distinguer des structures
dont le mode de déformation est dominé par de la traction-compression et d’autres dont
le mode dominant est la flexion [7, 8].

3



Figure 1 Exemples de matériaux architecturés. Image provenant de [1].

Gibson et Ashby [9] ont proposé des lois d’échelles permettant de prédire la rigidité et
la limite d’élasticité de ces deux classes de structures (Tableau 1).

Traction-compression Flexion

Rigidité
E

ES

∝
(

ρ

ρS

)

E
ES

∝
(

ρ
ρS

)2

Limite d’élasticité
σpl

σy,s

∝
(

ρ

ρS

)3/2
σpl

σy,s

∝
(

ρ

ρS

)

Tableau 1 Lois d’échelles prédisant la rigidité et la limite d’élasticité de structures treillis.

Les structure se déformant par traction-compression sont, à densité égale, généralement
plus rigides que celles se déformant par flexion. Durant ce travail de thèse nous allons nous
intéresser à une structure se déformant par traction-compression (structure octet-truss,
qui sera présentée plus tard).

Pour fabriquer ces structures treillis, des techniques basées sur le pliage et le découpage
de tôles métalliques existent [3, 10–13]. En soudant les poutres entre elles, les structures
deviennent plus rigides. Cependant, ces techniques sont lourdes à mettre en place et ne
permettent pas de fabriquer toutes les géométries possibles.

La fabrication additive permet, elle, de créer des pièces avec une très grande liberté de
géométrie. Pour créer des pièces métalliques par fabrication additive, trois technologies
majeures existent. Les technologies Laser Beam Melting (LBM) et Electron Beam Melting
(EBM) permettent de fondre couche par couche un lit de poudre métallique en utilisant
un laser ou un faisceau d’électrons respectivement. La technologie de dépôt de matière
Direct Metal Deposition (DMD) dépose de la poudre de métal sur un substrat.

Dans le cadre de la thèse, la technique de fabrication Electron Beam Melting a été
utilisée.
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La technologie Electron Beam Melting

Description générale

La technologie de Fabrication Additive Electron Beam Melting est représentée à travers le
schéma de la figure 2. Elle permet de fondre de la poudre métallique couche par couche
grâce à un faisceau d’électrons. Les électrons sont créés par une anode en tungstène puis
accélérés grâce à une différence de potentiel de 60kV entre l’anode et la cathode. Dans le
canon à électrons, les électrons sont focalisés et défléchis par des lentilles électromagnétiques.
La lentille de déflection permet au faisceau de balayer la surface de fabrication.

La poudre est déposée par couches de 50 µm d’épaisseur grâce à un râteau. La
fabrication débute sur une plaque en acier inoxydable afin de supporter les premières
couches.

Faisceau d’électrons

Filament
Anode

Lentille de focalisation

Lentille de déflection

Réservoir de poudre

Pièce fondue et solidifiée

Plaque initiale

z

x

Figure 2 Schéma du procédé EBM.

Pour que les électrons arrivent à la surface, la chambre est maintenue sous vide
secondaire (10−4 mbar). La taille maximale de pièce réalisable avec la machine EBM A1 est
de 200 x 200 x 180 mm. Le faisceau d’électrons défléchi par une lentille électromagnétique
permet de fondre à une vitesse très rapide (jusqu’à 8000 m/s).

Le faisceau d’électrons fond localement la poudre selon la géométrie voulue. L’ensemble
de la surface de poudre déposée est chauffée avant sa fusion afin de créer des cous
entre les particules pour augmenter la conductivité thermique et électrique du lit de
poudre. Cette étape (appelée "Preheat") permet d’éviter des accumulations de charges
locales pouvant engendrer des explosions électrostatiques de poudre (expliquées en détail
dans la thèse de Tushar Mahale [14]). Cette étape de chauffage permet de maintenir
une température d’environ 700 C̊ à la surface de la couche, contrairement à d’autres
techniques de fabrication additive [15–17].
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A la fin de la fabrication, la zone de fabrication ressemble à un "gâteau" de poudre
consolidé dans lequel se trouve des pièces fondues et consolidées. Afin d’accéder à ces
pièces, il faut casser les cous entre les particules frittées. Pour cela, le gâteau est mis
dans une boite à gants dans laquelle il est sablé avec de la poudre de même composition
que celle utilisée pour la fabrication. Les pièces fondues sont extraites et la poudre est
réutilisée pour une prochaine fabrication.

Matière première : poudre métallique

La matière première pour la fabrication additive par EBM est de la poudre métallique
sphérique. Dans cette étude, l’alliage utilisé est le Ti-6Al-4V. C’est un alliage de titane
utilisé couramment dans l’industrie aéronautique et biomédicale. La microstructure et les
propriétés mécaniques de cet alliage fabriqué par EBM sont expliqués plus en détails dans
le chapitre 1.

Le diamètre médian des poudres est de 62 µm pour les poudres neuves et augmente
légèrement pour des poudres recyclées dû au fait que les petites poudres ne sont pas
recyclées lors de l’étape de sablage.

Pour que les poudres puissent s’étaler facilement, les particules sont sphériques. Elles
ont été obtenues par atomisation au gaz. Ce procédé d’obtention de poudre crée des
porosités internes qui se retrouvent dans les pièces fabriquées par EBM. Cela a été
largement étudié dans la littérature [18–21].

Problématique et point de départ du projet de thèse

Problématique

Ce sujet de thèse se focalise sur les structures treillis fabriquées par le procédé EBM. Bien
que ce procédé permette d’atteindre de nouvelles formes à fabriquer, il apporte aussi de
nouvelles contraintes de fabrication.

La stratégie de la thèse est résumée dans la figure 3.
Cette thèse va se focaliser sur les différences géométriques et mécaniques entre le

modèle et la pièce fabriquée pour des structures treillis. Afin de faire le lien entre les
propriétés "attendues" et les propriétés "réelles", un concept de "matière efficace" émerge.
Ce concept peut finalement être utilisé dans des simulations et optimisations mécaniques
qui prennent en compte les contraintes de fabrication. Les questions principales sont :

� Quel est l’écart entre la géométrie conçue et celle fabriquée (effet de l’orientation) ?

� Quel est l’impact des différences géométriques sur les propriétés mécaniques désirées ?

� Comment inclure ces contraintes de procédé dans les procédures d’optimisation et
simulation ?

� Quelles sont les pistes pour diminuer ces différence ?

Stratégie de la thèse

Pour répondre à ces questions, la stratégie suivante a été adoptée :
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Cahier des

charges
Optimisation,

Simulation EBM

Caractérisation

mécanique

Caractérisation

géométrique
Caractérisation

microstructurale

Facteur correctif

Structure modèle Procédé Structure réelle

Caractérisations

Figure 3 Problématique de la thèse

1. Caractérisation du Ti-6Al-4V produit par EBM : Avant de s’intéresser aux struc-
tures treillis, il a fallu caractériser la microstructure et les propriétés mécaniques de
pièces massives et fines fabriquées par EBM. L’influence de la taille des poutres sur
la microstructure et les propriétés mécaniques a été évaluée.

2. Méthode pour la prédiction de la rigidité de structures treillis : Connaissant
les propriétés mécaniques du matériau constituant les poutres, les structures treillis
fabriquées par EBM ont été caractérisées.

Des poutres unitaires de différentes tailles et orientations ont été caractérisées par
tomographie aux rayons X pour en extraire leur forme et leur taux de porosité. Un
concept général a été extrait : le diamètre mécaniquement équivalent.

Ce diamètre a été appliqué sur une structure treillis : l’Octet-truss. L’utilisation de
ce concept a été validée en comparant la simulation avec des données expérimentales.

3. Optimisation des structures treillis : Un code d’optimisation paramétrique de
structures treillis a été conçu et appliqué à la structure Octet-truss. Ce code permet
de prendre en compte les contraintes de fabrication par l’utilisation du diamètre
mécaniquement équivalent.

4. Amélioration de la précision géométrique et de la rugosité des poutres : Des
techniques d’électro-polissage et d’attaques chimiques ont été utilisées sur des struc-
tures treillis réalisées par EBM afin de réduire les irrégularités de surface. Ces études
ont été réalisées en collaboration avec l’Ecole de Technologie Supérieure de Montréal
(Canada) et l’Université Libre de Bruxelles (Belgique) respectivement.

Les paramètres du procédé ont été adaptés pour réduire le décalage géométrique
entre les structures conçues et celle réalisées.
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Chapitre 1

Caractérisation du Ti-6Al-4V
produit par EBM

1.1 Caractérisation microstructurale

1.1.1 Alliage Ti-6Al-4V conventionnel

L’alliage utilisé durant ce travail de thèse est l’alliage à base titane Ti-6Al-4V grade 5. Il
est composé majoritairement de titane avec 6 wt.% d’aluminium et 4 wt.% de vanadium.
Selon la norme ASTM F1108 (pour les matériaux fondus), son taux d’oxygène doit être
inférieur à 0.2 wt.%.

Cet alliage permet une coexistence des phase α et β à température ambiante. Le
diagramme de phase pseudo-binaire de l’alliage est présenté en figure 1.1.

Teneur en Vanadium

Température [̊ C]

Ti6Al

MS

MF

4%

α

β

α + β

Température de fusion (Solidus)1660

β transus980

Martensite Start (MS)
Température de "preheat"

575

Martensite Finish (MF )

700

Figure 1.1 Diagramme de phase pseudo-binaire de l’alliage Ti-6Al-4V.

Le solidus de cet alliage se trouve à 1660 C̊. En dessous de cette température et jusqu’à
la température du β transus, l’alliage est en phase β. En dessous de cette température,
il y a germination de la phase α. Comme mentionné dans l’introduction, une spécificité
du procédé EBM est un maintien du lit de poudre à une température de 700 C̊ environ
(température de "preheat"). De ce fait, la matière qui subit une fusion dans l’EBM voit
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1.1. Caractérisation microstructurale

un premier refroidissement rapide jusqu’à la température de 700 C̊ environ, puis un
refroidissement beaucoup plus lent de cette température jusqu’à la température ambiante.
Selon la vitesse de refroidissement lors de cette seconde étape, il peut y avoir formation
de martensite α′ et α + β ou seulement de α + β.

1.1.2 Alliage Ti-6Al-4V produit par EBM

Afin de connaitre la microstructure constituant la matière des poutres fines, nous avons
fait des analyses au Microscope Électronique à Balayage (MEB) sur des pièces massives
et fines. La figure 1.2 représente des micrographies de surfaces parallèles à la direction de
fabrication pour une pièces massive et pour une poutre de diamètre 1 mm.

αGB

(a) Massive. (b) 1 mm.

Figure 1.2 Micrographie MEB d’une coupe parallèle à la direction de fabrication pour
une pièce massive et pour une poutre de 1 mm de diamètre. La direction de fabrication est
représentée par des flèches blanches.

La phase α présente une structure lamellaire avec une microstructure très fine dans
les deux cas. Elle est composée de lamelles dans une matrice β. La largeur des lamelles α
est de l’ordre de 1 µm. Sur l’image représentant la pièce massive, on peut apercevoir la
couche de phase α retenue dans les joints de grains β à haute température (αGB).

Les grains parents β (à haute température) sont allongés et orientés selon la direction
de fabrication. Cette orientation préférentielle des grains β à haute température est due à
leur croissance épitaxiale tout au long de la fabrication [22–25]. La microstructure de la
phase β est donc très anisotrope.

D’après ces observations, la microstructure semble similaire dans le cas des poutres
fines et des pièces massives. Suite à des cartographies EBSD, il a été possible de remonter
à des informations sur les grains β à haute température. Ces informations ont montré une
légère diminution de la largeur de ces grains β de 150-200 µm pour les pièces massives à
70-100 µm pour des poutres fines.

La morphologie des pores rencontrés peut être divisée en deux catégories : sphérique
ou non-sphérique. Les pores sphériques proviennent de porosité piégée dans la poudre
initiale après le procédé d’atomisation à l’argon. Ce phénomène a été largement étudié
dans la littérature [18, 20, 26, 27]. Les pores non-sphériques proviennent quant à eux d’une
mauvaise fusion lors du procédé EBM.
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Chapitre 1. Caractérisation du Ti-6Al-4V produit par EBM

1.2 Caractérisation mécanique

1.2.1 Comparaison entre les propriétés mécaniques requises et
celles fabriquées

Afin de caractériser pleinement le matériau fabriqué par EBM, des essais de traction ont
été réalisés. Dans un premier temps ces essais ont été réalisés sur des éprouvettes de même
diamètre (6 mm) provenant de fabrications différentes afin d’évaluer la reproductibilité
du procédé EBM. La figure 1.3a montre les courbes de traction de six éprouvettes de
même géométrie.

Une très grande reproductibilité est visible. Les échantillons affichent un module
d’Young de 114 GPa, une limite élastique de 1045 MPa et une contrainte maximale de
1100 MPa. Leur allongement à rupture est de 2.3 % en moyenne.
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(a) Échantillons verticaux de diamètre 6 mm.
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(b) Échantillons verticaux de diamètre variable.

Figure 1.3 Courbes contrainte-déformation pour des éprouvette de 6 mm de diamètre et
pour des éprouvettes de diamètre variable

Des éprouvettes brutes de différents diamètres (2 à 6 mm) ont été testées en traction.
Les résultats (Figure 1.3b) montrent que la taille de l’éprouvette n’influe quasiment pas sur
les propriétés mécaniques. Cela concorde avec les résultats concernant les microstructures
présentés dans le paragraphe précédent.

En revanche, les valeurs d’allongement obtenues sont bien plus faibles que les valeurs
annoncées par le fournisseur ARCAM (15 %). De plus, la limite d’élasticité et la contrainte
maximale sont supérieures aux valeurs annoncées.

D’où proviennent ces changements ?

1.2.2 Vers la compréhension des différences de résistance à la
traction et de ductilité

Afin de comprendre ces différences de propriétés mécaniques entre les valeurs attendues et
celles obtenues, différents effets ont été analysés.

Le taux d’oxygène présent dans les poudres doit être inférieur à 0.2 % pour des poudres
neuves. Du fait du procédé, les poudres non-fondues sont réutilisées à chaque fabrication.
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1.2. Caractérisation mécanique

Ainsi des poudres peuvent être réutilisées des dizaines de fois avant d’être fondues. Lors
de ces étapes de chauffe-refroidissement, les poudres peuvent se charger en oxygène. Ainsi
on peut atteindre des teneurs en oxygène de l’ordre de 0.5-0.6%. L’oxygène se place sur
des sites interstitiels du réseau cristallin et restreint des plans de glissement [28,29]. Il en
résulte une augmentation de la résistance mécanique et une baisse de la ductilité (voir
figure 1.4). Cependant, cela ne permet pas d’expliquer la si faible ductilité.

σY [MPa]

A [%]

∼ 900

∼ 1100

2 6 11 15

Brut
Haut O%

Usiné
Haut O%

Brut
Faible O%

Usiné
Faible O%

Effect de l’usinage
Effect du taux d’oxygène
Dispersion d’allongement

Figure 1.4 Représentation schématique des effets de chaque paramètre sur les propriétés
mécaniques de pièces en Ti-6Al-4V fabriquéss par EBM. Représentation dans l’espace "limite
d’élasticité-allongement à rupture".

L’influence de l’usinage des échantillons sur la ductilité a ainsi été évaluée. Les échan-
tillons usinés présentent des limites d’élasticité et contraintes maximales similaires aux
échantillons bruts mais un allongement à rupture plus élevé. Ainsi pour retrouver les
propriétés annoncées par le fournisseur, il faut des échantillons sans irrégularités de surface
avec un taux d’oxygène inférieur à 0.2 %.

Les échantillons usinés présentent une dispersion d’élongation beaucoup plus grande que
pour des échantillons bruts. Des observation par tomographie aux rayons X et fractographie
post-mortem on été réalisées afin de caractériser la porosité en 3D dans l’échantillon et
pour déterminer les faciès de rupture. La dispersion d’allongement à rupture est liée à la
localisation (ou non) des pores proches de la circonférence de l’échantillon. Le changement
de mode de déformation des grains peut aussi jouer un rôle dans cette versatilité.
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Chapitre 2

Méthode pour la prédiction de la
rigidité de structures treillis
produites par EBM

Afin de caractériser les structures treillis produites par EBM, il a fallu dans un premier
temps s’intéresser à la géométrie à l’échelle des poutres.

2.1 Caractérisation structurale et mécanique de poutres

unitaires

2.1.1 Apparence générale et porosité

La forme générale d’une poutre d’un millimètre de diamètre fabriquée par EBM est
représentée sur la figure 2.1. La micrographie MEB (figure 2.1a) montre bien les irrégularités
de surface qui sont présentes sur les pièces fabriquées par EBM.

(a) Micrographie MEB. (b) Volume reconstruit en
3D de la poutre (vert) et des
pores (rouge).

Figure 2.1 Morphologie et répartition de la porosité pour une poutre verticale de diamètre
1 mm.

Cette rugosité est à deux échelles. Des poudres collées à la piscine de fusion créent
une première rugosité. Une structure en "pile d’assiettes" est visible et crée une rugosité à
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2.1. Caractérisation structurale et mécanique de poutres unitaires

plus grande échelle. Cette irrégularité provient d’un mauvais contrôle de la position et de
la taille de la piscine de fusion.

La porosité peut aussi être évaluée grâce aux résultats de tomographie aux rayons
X. En utilisant des paramètres standards pour la fusion, les pores observés sont tous
sphériques et la porosité totale est toujours inférieure à 0.1%. Les pores sont répartis de
manière aléatoire dans le volume des poutres comme le montre la figure 2.1b. La faible
porosité des poutres ne joue pas de rôle dans le comportement élastique de celles-ci.

La figure 2.2 montre les différences entre la géométrie conçue et celle fabriquée pour
des poutres de diamètre 1 mm fabriquées avec le jeu de paramètres standard "Net" de
Arcam. Les poutres produites sont systématiquement plus fines que celles conçues. A
l’échelle de la structure treillis, les densités produites seront inférieures aux densités du
design initial : ρ̄F AB ≤ ρ̄CAD.

Figure 2.2 Variation de la géométrie des poutres (vert) d’un millimètre de diamètre en
fonction de leur orientation. Comparaison avec le design initial (bleu) pour trois orientations :
verticale (i), oblique (ii) et horizontale (iii). La direction de fabrication est indiquée par la
flèche noire.

Des différences géométriques existent entre les poutres de différentes orientations. Ces
différences sont dues à des histoires thermiques différentes en fonction de l’orientation. En
effet, lors de l’élaboration de poutres horizontales, la zone qui repose sur de la poudre
subit une excès de fusion. Ceci est dû à des problèmes d’évacuation thermique dans la
poudre non fondue.

→ La différence de tailles entre les poutres conçues et fabriquées produit une
différence de densité de la structure et donc une différence de rigidité entre la structure
treillis initiale et celle fabriquée.

Comme montré dans la figure précédente (Figure 2.1a), une large irrégularité de
surface est observée. Cette irrégularité de surface a été quantifiée et représente une
rugosité arithmétique Ra ∼ 40µm et une hauteur maximum : Rt ∼ 200µm. Ces valeurs
fluctuent largement en fonction de l’orientation de la poutre analysée.

→ A cause de ces irrégularités de surfaces, une part importante de la matière de la
poutre ne transmet pas les charges efficacement. Il faut donc discriminer la matière
mécaniquement "efficace" et "inefficace".
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Chapitre 2. Méthode pour la prédiction de la rigidité de structures treillis produites par EBM

2.1.2 Concept pour relier les caractéristiques géométriques et
la prédiction mécanique

Afin de prendre en compte ces deux effet (différence de taille et matière "efficace ou
inefficace"), l’idée a été de remplacer la poutre fabriquée par un cylindre de diamètre
équivalent ayant la même rigidité que la poutre fabriquée (rouge sur la figure 2.3). Ce
cylindre est appelé "cylindre mécaniquement équivalent". Il est obtenu par une simulation
numérique sur la géométrie de la poutre fabriquée (calcul FFT effectué directement sur
l’image voxélisée d’une poutre).

DCAD

Poutre conçue

Fabrication
EBM

VFAB < VCAD

Poutre fabriquée

DNUM
EQ

Cylindre mécani-
quement équivalent

Simulation
FFT

Figure 2.3 Schéma résumant la méthodologie pour extraire le diamètres mécaniquement
équivalents.

Pour des poutres de diamètre initial de 1 mm (fabriquée avec le thème "Net" d’Arcam),
le diamètre mécaniquement équivalent varie entre 0.58 et 0.70 mm selon l’orientation de
la poutre. Il y a donc une différence de 40% sur les diamètres.

Ce concept de cylindre mécaniquement équivalent a besoin d’être validé par comparai-
son avec des données expérimentales.

2.2 Prédiction des propriétés élastiques de la struc-

ture Octet-truss

Afin de valider ce concept de diamètre équivalent, nous nous sommes focalisés sur une
structure treillis particulière : l’Octet-truss (voir figure 2.4a). Selon le critère de Maxwell [8],
cette structure est dominée par les efforts de traction-compression dans les poutres.

Une simulation par Éléments Finis des propriétés élastiques de cette structure a été
réalisée. Une méthodologie d’homogénéisation est appliquée pour simuler les propriétés
effectives d’un milieu infini composé de cellules unitaires d’Octet-truss. Des conditions
aux limites périodiques sont appliquées sur la cellule unitaire.

Une première simulation est réalisée avec des diamètres initiaux DCAD (en vert sur le
graphe de la figure 2.5).

Ces résultats de simulation sont comparés à des résultats obtenus par compression
uniaxiale sur des structures Octet-truss. La figure 2.4b montre le dispositif de compression
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2.2. Prédiction des propriétés élastiques de la structure Octet-truss

(a) Cellule unitaire de l’Octet-truss.
Les lignes pointillées représentent la
boite englobante.

(b) Compression de structure Octet-truss.

Figure 2.4 Cellule unitaire de l’Octet-truss et photo du dispositif de compression.

d’une structure Octet-truss. Des cycles de charges-décharges sont appliqués afin de
déterminer le module d’Young effectif de la structure. Ces tests ont été effectués sur des
structures de différentes densités. Les résultats sont reportés dans la figure 2.5 en noir.

0 0.05 0.1 0.15 0.2
0
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Expérimental

FEM with DNUM
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Figure 2.5 Module d’Young relatif en fonction de la densité relative pour une structure
Octet-truss. La courbe noire correspond à la simulation avec la géométrie initiale. Les valeurs
expérimentales sont indiquées en noir et comparées à la simulation incluant la correction de
diamètre équivalent DNUM

EQ (en rouge).

Une deuxième vague de simulation a été réalisée dans les mêmes condition mais en
remplaçant DCAD par DNUM

EQ . Les résultats de cette simulation sont représentés en rouge.
Les résultats expérimentaux sont bien moins rigides qu’attendu. Ceci est dû aux deux
effets listés précédemment (différence géométrique et matière "inefficace"). L’utilisation du
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Chapitre 2. Méthode pour la prédiction de la rigidité de structures treillis produites par EBM

diamètre mécaniquement équivalent dans la simulation éléments finis permet de simuler
des propriétés élastiques plus proches de celles réelles. Cependant, les propriétés simulées
avec ce diamètre équivalent sont légèrement inférieures à celle des structures fabriquées.
Cela est probablement dû au fait que le concept de diamètre équivalent est basé sur une
équivalence de rigidité au niveau des poutres mais ne permet pas de prendre en compte
l’état de contraintes au voisinage des noeuds.

2.3 Variation du diamètre mécaniquement équivalent

avec le diamètre nominal et l’orientation des poutres

L’application du diamètre mécaniquement équivalent a été faite sur des poutres d’un
millimètre de diamètre. Afin de pouvoir l’utiliser de manière plus globale, ce concept
doit être généralisé à des poutres de différents diamètres nominaux (DCAD) et différentes
orientations (α). Dans ce but, des poutres de diamètres DCAD=1, 1.5, 3, 5 mm et
orientations α=0̊ , 45̊ et 90̊ ont été fabriquées avec le thème standard "Melt" (Figure 2.6).

z

xy15
m

m

α = 90̊

α = 0̊

α = 45̊

Figure 2.6 Dessin CAD des poutres avant fabrication par EBM. La direction de fabrication
suit la direction z.

L’analyse par tomographie aux rayons X permet l’extraction du diamètre mécanique-
ment équivalent pour chaque orientation et diamètre. Une surface de réponse est appliquée
sur ces valeurs afin de produire un résultat analytique de variation du diamètre équivalent
en fonction de l’angle et du diamètre des poutres :

DNUM
EQ = (K1α + K2) DCAD + C1α + C2 (2.1)

où K1 = 1.02.10−3, K2 = 8.65.10−1, C1 = −3.37.10−3 et C2 = −1.1610−2.

Résumé

La figure 2.7 résume la méthodologie développée dans ce chapitre. La structure "idéale"
présente une densité ρ̄CAD et une rigidité ĒCAD. L’effet de la différence géométrique est
visible (1). Elle décroit la densité et donc le module d’Young (ĒC1

). Si on discrimine la
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2.3. Variation du diamètre mécaniquement équivalent avec le diamètre nominal et l’orientation des
poutres

matière inefficace (2), le module d’Young final est encore diminué (ĒC2
). Le diamètre

mécaniquement équivalent prend en compte ces deux effets (1+2).

ρ

ρs

E

Es

ρ̄F AB ρ̄CAD

ĒC1

ĒC2

ĒCAD

2

1

1+2

1 : Différence géométrique
2 : Discrimination de la matière "inefficace"
1+2 : Diamètre mécaniquement équivalent

Figure 2.7 Graphique résumant la méthodologie présentée dans ce chapitre.
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Chapitre 3

Optimisation des structures treillis

Ce chapitre a pour but d’utiliser le diamètre mécaniquement équivalent dans deux
exemples : l’optimisation de l’orientation de fabrication d’une structure treillis et l’optimi-
sation paramétrique de structures treillis.

3.1 Optimisation de l’orientation d’une structure treillis

pour sa fabrication par EBM

3.1.1 Démarche

L’utilisation du diamètre mécaniquement équivalent permet de prédire, pour une structure
treillis, sa position optimale (ϕ) dans l’enveloppe de fabrication. Cet optimum dépend
de la propriété finale souhaitée (module d’Young, module de cisaillement, coefficient de
Poisson...).

Notre étude se focalise sur la structure Octet-truss. Les simulations étant itératives,
la simulation est basée sur des éléments poutre avec le formalisme de Timoshenko. La
structure Octet-truss est représentée sur la figure 3.1.

x
y

z

Z

Y
X

ϕ

α1

α2

α3

α4

Figure 3.1 Orientation des poutres (αi) en fonction de l’orientation globale de la structure
treillis (ϕ). x, y, z représente le système de coordonnées global et X, Y, Z représente le
système de coordonnées local du treillis.
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3.1. Optimisation de l’orientation d’une structure treillis pour sa fabrication par EBM

La valeur analytique du diamètre équivalent développé dans le chapitre précédent
dépend de l’orientation de la poutre. Afin de l’appliquer à chaque poutre indépendamment,
il a fallu déterminer l’orientation de chaque poutre (αi) en fonction de l’orientation
de la structure (ϕ). Il existe pour cette structure quatre groupes de poutres ayant la
même orientation (rouge, vert, bleu noir sur la figure 3.1). Les relations suivantes ont été
déterminée :

• α1= |45 − ϕ|

• α2= 90 − |45 − ϕ|

• α3= sin−1
(

sin(ϕ)√
2

)

• α4 = sin−1
(

cos(ϕ)√
2

)

3.1.2 Résultats

En utilisant ces relations, il est possible d’extraire les positions optimales pour certaines
propriétés. On s’intéresse ici à une structure Octet-truss de densité 4.5 %. Quelques
résultats ont été tracés en figure 3.2.

0 45 90

414

416

418

420

E
Z

(M
P

a)

0 45 90

300

350

ϕ (̊ )

G
X

Y
(M

P
a)

0 45 90

290

295

300

G
Y

Z
(M

P
a)

Figure 3.2 Variation de modules d’Young et de cisaillement en fonction de l’angle de
fabrication de la structure treillis (ϕ).

La prise en compte des diamètres équivalents permet de prédire que pour l’optimisation
du module de cisaillement GXY , la position optimale sera proche de ϕ = 0̊ . Cette prise
en compte est essentielle car le module de cisaillement peut varier de 25 % . Pour ce qui
est du module d’Young selon la direction Z, bien que les variations soient faibles, la prise
en compte des diamètres équivalents permet de voir un optimum local pour ϕ = 45̊ .

Sachant que les positions ϕ = 0̊ , 90̊ sont des positions interdites (difficulté de sortir
la pièce après réalisation), il faudra donc privilégier une fabrication à 45 p̊our optimiser
cette propriété.
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Chapitre 3. Optimisation des structures treillis

3.2 Optimisation paramétrique de structures treillis

fabriquées par EBM

3.2.1 Démarche

L’utilisation des diamètres équivalents permet en outre la création de procédures d’opti-
misation paramétrique "réalistes" i.e. qui prennent en compte les défauts de fabrication.

L’optimisation paramétrique est basé sur un script de minimisation (de type quasi-
Newton) pour la détermination des nouveaux paramètres à chaque itération. Pour chaque
itération, le jeu de paramètres est testé pour voir s’il satisfait les contraintes d’optimisation.
Ensuite les diamètres sont changés en diamètres équivalents pour être utilisés dans une
simulation éléments finis. La fonction objectif est ensuite calculée à partir des propriétés
effectives simulées (E, G, ν). La convergence est atteinte lorsque la fonction objectif tend
à être constante.

Les paramètres de l’optimisation paramétrique (schématisés sur la figure 3.3) sont :

• DCAD : Le diamètre nominal des poutres.

• l : La longueur des poutres.

• θ : L’angle d’ouverture de la structure. L’Octet-truss régulier présente un angle
θ=90̊ .

• L’angle de fabrication de la structure treillis ϕ est soit fixé à 45 o̊u inclus dans le
jeu de paramètres.

Figure 3.3 Schéma représentant les paramètres pour la procédure d’optimisation.

Des contraintes sont affectées à ces paramètres. On retiendra que la densité ne peut
être supérieure à 5 %, le diamètre nominal doit être supérieur ou égale à 1 mm, les
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3.2. Optimisation paramétrique de structures treillis fabriquées par EBM

longueurs de poutres sont limitées (1mm ≤ l ≤ 3cm), l’angle d’ouverture ne peut pas
atteindre des positions extrêmes (10̊ ≤ θ ≤ 170̊ ) et l’angle de fabrication ne peut pas
atteindre les positions interdites (10̊ ≤ ϕ ≤ 80̊ ).

Dans cet exemple, l’objectif est de maximiser le module d’Young selon la direction Z
(voir figure 3.3). Aucune sensibilité aux conditions initiales n’a été révélée.

3.2.2 Résultats

Deux procédures d’optimisation ont été réalisées. Dans la première, l’angle de fabrication
de la structure n’est pas un paramètre, il est fixé (ϕ = 45̊ ). Dans la seconde, il fait partie
des paramètres.

Les paramètres optimum sont similaires pour les procédures d’optimisation : DCAD =
1.04mm, l = 3cm, θ = 156̊ . Cependant, dans le cas de l’optimisation avec l’angle de
fabrication ϕ, l’optimum final est ϕ = 80̊ . La géométrie finale est représentée pour ces
deux cas dans la figure 3.4. On observe que les géométries finales sont similaires, seul
l’angle de fabrication change.

(a) ϕ = 45̊ (b) ϕ =paramètre

Figure 3.4 Géométrie résultant des deux procédures d’optimisation.

Les modules d’Young finaux sont 2.5 GPa pour la simulation où ϕ = 45̊ et 3.1 GPa
quand ϕ est un paramètre. La prise en compte de l’angle de fabrication de la
structure (ϕ) permet donc une augmentation de 20 % de la rigidité finale.

3.2.3 Développements futur

Dans cet exemple, nous avons choisi de nous focaliser sur l’optimisation du module d’Young
de la structure Octet-truss dans une direction. Le code présenté ici permet de représenter
les "vraies" propriétés des structures treillis fabriquées par EBM.

En ce sens, ses applications sont plus larges. On peut penser à une optimisation
avec des fonctions objectif multi-critères (Combinaison module d’Young et module de
cisaillement), multi-physiques (combinaison rigidité et conductivité thermique). Il est
aussi envisageable de faire varier le diamètre de chaque poutre indépendamment dans
l’optimisation.
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Chapitre 4

Amélioration de la précision
géométrique et de la rugosité des
poutres

4.1 Amélioration de la qualité de surface par des

post-traitements

Dans le manuscrit en anglais, deux post-traitements ont été étudiés : l’électro-polissage
et l’attaque chimique. Nous nous focaliserons ici sur l’attaque chimique (qui apparait
plus appropriée pour ce genre de structures). Les résultats sur l’étude d’électro-polissage
peuvent être trouvé dans la section 13.1 du manuscrit en anglais.

L’étude de l’attaque chimique résulte d’une collaboration avec l’Université libre de
Bruxelles1. Elle a pour but de retirer les particules qui ont collé aux poutres et de réduire
l’effet pile d’assiettes expliqué dans le chapitre 2.

4.1.1 Démarche

La solution d’attaque utilisée est composée de 3% HF and 13% HNO3. Les échantillons
sont trempés deux fois quatre heures. Les échantillons utilisés sont présentés dans la figure
4.1.

ρ̄ = 14%
ρ̄ = 7.3%

ρ̄ = 28.5%

Figure 4.1 Structures Octet-truss utilisées pour l’attaque.

1Collaboration avec Stéphane Godet et Charlotte de Formanoir. L’attaque chimique a été réalisée à
Bruxelles, la production et la caractérisation des structures ont été menées à Grenoble
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4.1. Amélioration de la qualité de surface par des post-traitements

Leur densité varie entre 7.3 % et 28.5 %. Les longueurs de poutres ont été modifiées
pour atteindre ces valeurs (0.8 mm, 1.1 mm et 1.7 mm).

4.1.2 Résultats

Après attaque, la structure présente une densité plus faible (28.5%→21%, 14%→7%,
7%→4%). Pour la caractérisation géométrique, nous nous sommes focalisés sur la structure
la plus dense qui présente une densité finale de 21 %. A partir de cette structure deux
poutres ont été extraites et comparées à une poutre initiale. Une poutre a été extraite du
bord de la structure ("externe") et une autre du centre de la structure ("interne") afin de
quantifier l’homogénéité de l’attaque.

Les géométries sont présentées en figure 4.2. L’attaque chimique permet l’amélioration
de la surface des poutres. Qualitativement, l’attaque chimique parait homogène. Elle
permet l’enlèvement des particules collées à la surface et la diminution de l’effet "pile
d’assiettes".

(a) Brute. (b) Interne. (c) Externe.

Figure 4.2 Image des poutres de 1.7 mm de diamètre brutes et à différents endroits de la
structures attaquée ("Interne" et "Externe"). Le cylindre bleu représente le diamètre nominal
DCAD = 1.7mm.

L’analyse quantitative de la rugosité a été réalisée suivant la méthode développée dans
le manuscrit en anglais (paragraphe 7.1.3). Les poutres attaquées présentent la même
rugosité Ra ≃ 25µm, contre une rugosité initiale Ra = 35µm. L’attaque chimique permet
donc une réduction notable de la rugosité.

Le module d’Young des structures avant et après attaque a été déterminé par com-
pression uniaxiale. Les résultats sont tracés sur la figure 4.3. Le module d’Young de la
structure "Brute" est inférieur à celui de référence (obtenu par simulation élément finis
dans la figure 2.5). Le module d’Young de la structure après attaque (rouge) est plus
proche de la valeur de référence (vert). Cette amélioration vient de la réduction du
volume de matière "inefficace" dans les poutres.

Ainsi, l’attaque chimique permet un traitement homogène pour réduire la rugosité et
augmenter la fraction de volume mécaniquement "efficace" dans les poutres fabriquées par
Electron Beam Melting.
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Chapitre 4. Amélioration de la précision géométrique et de la rugosité des poutres

0 0.05 0.1 0.15 0.2 0.25 0.3
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E E
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Attaqué

Figure 4.3 Module d’Young relatif en fonction de la densité relative pour des structures
treillis brutes (noir) et après attaque chimique (rouge). La courbe verte représente la courbe
de référence obtenue par simulation éléments finis.

4.2 Amélioration de la précision géométrique par chan-

gement des paramètres de fabrication

Le but de cette section est d’améliorer la taille des poutres en jouant sur les paramètres et
stratégies du procédé. Nous nous concentrerons sur le changement de stratégies de fusion
pour fondre des poutres de 1 mm avec un diamètre mécaniquement équivalent plus proche
du nominal.

4.2.1 Démarche

Comme mentionné dans le chapitre 2, les poutres de 1 mm produites par EBM sont plus
fines que celles conçues. L’idée a été de jouer sur les paramètres et stratégies de fusion
pour réduire cette différence de taille. Pour faire cela, il a fallu jouer sur le décalage entre
le premier contour et le contour du modèle CAD (figure 4.4). Le premier contour a été
modifié de CO1 = 0.3mm à COOP T

1 = 0.128mm.

La valeur du nouveau décalage de contour (COOP T
1 ) est le résultat d’une simulation

thermique réalisée à Grenoble2. Des simulations ont été lancées avec plusieurs valeurs
de décalage CO1 jusqu’à trouver la valeur permettant de fondre une poutre ayant des
dimensions proches du diamètre nominal.

La valeur du second décalage CO2 n’a pas été modifiée. Des contours internes ont été
rajoutés pour permettre la fusion de l’ensemble de la poutre.

2Réalisée par Nicolas Béraud (actuellement doctorant au laboratoire G-Scop, Université Grenoble
Alpes)
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4.2. Amélioration de la précision géométrique par changement des paramètres de fabrication

CO1

CO2

1 mm

Limite du CAD
1er contour
2ème contour

(a) "Net standard".

COOPT

1

CO2

1 mm

(b) "Net avec COOP T
1

".

Figure 4.4 Schéma du chemin de fusion pour un cylindre vertical de diamètre 1 mm en
utilisant différentes stratégies de fusion ("Net standard" et "Net avec COOP T

1 ").

4.2.2 Résultats

Une poutre verticale de 1 mm de diamètre a été fabriquée avec cette nouvelle stratégie de
fusion et analysée par tomographie aux rayons X. La géométrie finale est représentée dans
la figure 4.5b et comparée à la stratégie standard "Net" (figure 4.5a).

(a) "Net standard". (b) "Net avec COOP T
1

".

Figure 4.5 Vues verticales et de section pour des poutres verticales de diamètre 1 mm
produites avec les deux stratégies. La direction de fabrication est indiquée par la flèche noire.

La poutre fabriquée avec la nouvelle stratégie est plus large et se rapproche plus du
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Chapitre 4. Amélioration de la précision géométrique et de la rugosité des poutres

cylindre nominal (bleu). La rugosité de surface semble du même ordre de grandeur pour
les deux stratégies. L’analyse quantitative de la poutre produite avec la nouvelle stratégie
montre que le diamètre mécaniquement équivalent est passé de 0.46 mm à 0.84 mm. La
différence géométrique entre la dimension voulue et celle réalisée est donc drastiquement
réduite.

Cependant, cette modification de stratégie n’a pas modifié la rugosité de surface. L’effet
de la matière mécaniquement "inefficace" est toujours présent.

La variation du décalage du premier contour permet de réduire la différence de diamètre
entre la géométrie souhaité et celle réalisée. En revanche, elle ne permet pas une réduction
du volume de matière "inefficace".
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4.2. Amélioration de la précision géométrique par changement des paramètres de fabrication

28



Conclusion et perspectives

Conclusion

Objectifs et méthodes

Le but de cette thèse était de caractériser et optimiser les structures treillis créées par
Fabrication Additive en utilisant la technologie Electron Beam Melting. Il a fallu d’abord
caractériser la microstructure et les propriétés mécaniques du Ti-6Al-4V fabriqué par
EBM.

Suite à cela, nous avons caractérisé les structures treillis avec des poutres de 1 mm
grâce à la tomographie aux rayons X notamment. La caractérisation géométrique couplée
avec une simulation mécanique (de type FFT) a permis d’extraire la rigidité effective de
chaque poutre, et par extension le concept de diamètre mécaniquement équivalent.
Ce concept a été validé en l’appliquant sur une structure Octet-truss. Sa rigidité a été
mesurée par compression uniaxiale et comparée aux simulation éléments finis prenant en
compte le diamètre équivalent.

La nécessité d’utiliser ce concept de diamètre mécaniquement équivalent dans la
simulation et l’optimisation mécanique a été montrée. Elle permet de prendre en compte
les contraintes de fabrication du procédé EBM.

Enfin, la précision géométrique et de la qualité de surface des poutres fabriquées par
EBM a été améliorée grâce à des post-traitement de surface (attaque chimique) ou en
changeant des paramètres et stratégies de fusion.

Résultats principaux

Caractérisation du Ti-6Al-4V produit par EBM

La microstructure de pièces massives et de poutres fines a été étudiée. Dans les deux
cas, la microstructures est composée de fines lamelles α à l’intérieur d’une matrice β. Les
grains parents β sont orientés selon la direction de fabrication.

Les poutres fines présentent la même taille de lamelles mais des grains parents β plus
fins. Cela peut être l’explication de leur plus haute dureté.

Les mêmes propriétés mécaniques (essais de traction) ont été déterminées pour des
structures fines et massives. L’effet de la rugosité et du taux d’oxygène ont été mis en
évidence.
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4.2. Amélioration de la précision géométrique par changement des paramètres de fabrication

Méthode de prédiction de la rigidité de structures treillis

• En utilisant les paramètres standard de fusion, le taux de porosité des pièces reste
constamment inférieur à 0.1 %. Les pores sont sphériques et proviennent du procédé
d’atomisation des poudres.

• Les poutres produites sont systématiquement plus fines que celles conçues. Les
structures treillis fabriquées sont donc moins denses que celles désirées.

• Dû à une large irrégularité de surface, les poutres peuvent être séparées en matière
mécaniquement "efficace" et "inefficace". La rigidité de la poutre est portée par la
matière "efficace".

• En calculant la rigidité d’une poutre, il est possible de déterminer le cylindre
équivalent ayant la même rigidité que la poutre fabriquée. Ce cylindre a un diamètre
mécaniquement équivalent (DNUM

EQ ). Ce concept prend en compte les deux effets
précédents : la différence de taille et la matière "efficace".

• Ce concept a été validé en comparant des simulations éléments finis et des données
expérimentales sur une structure Octet-truss.

• Une relation analytique reliant ce diamètre équivalent avec l’orientation de la poutre
(α) et le diamètre nominal (DCAD) a été établie : DNUM

EQ = f(α, DCAD).

Optimisation mécanique de structures treillis

• La relation analytique précédente a été utilisée pour optimiser le placement d’une
structure Octet-truss dans l’enceinte de fabrication.

• La relation analytique a été implémentée dans une procédure d’optimisation paramé-
trique. Cette optimisation mécanique permet une amélioration de la distribution de
matière en prenant en compte les contraintes de fabrication dues au procédé EBM.

Amélioration de la précision géométrique et de la morphologie de surface

• Le post-traitement de structures treillis par attaque chimique permet une diminution
homogène de la rugosité de surface et donc une amélioration de la proportion de
matière mécaniquement "efficace".

• Le changement de paramètres et stratégies de fusion permet de réduire le déca-
lage géométrique entre la poutre conçue et celle fabriquée. L’optimisation de ces
paramètres et stratégies doit passer par une simulation thermique du procédé.

Perspectives

Généralisation du concept de diamètre mécaniquement équivalent

Le diamètre mécaniquement équivalent défini dans ce travail de thèse permet de prendre
en compte les différences géométriques et mécaniques entre le design initial et la pièce
fabriquée. A travers deux exemples, nous avons montré l’importance de la considération
des contraintes de fabrication dans la simulation mécanique.
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Chapitre 4. Amélioration de la précision géométrique et de la rugosité des poutres

Les règles définies dans ce travail ont des implications à plus large échelle. Il serait
intéressant d’introduire dans des codes commerciaux un concept similaire lié à un pro-
cédé particulier (EBM, LBM ou DMD). Il faudrait aussi déterminer précisément les
contraintes de chaque procédé : e.g. diamètre minimal de poutres, angles interdits pour la
fabrication, taille minimum de cellules, contraintes de dépoudrage, nécessité de support. . . .

Le concept de diamètre équivalent développé ici est valide pour des propriétés élastiques.
Pour certaines applications (biomédical ou aéronautique), les propriétés en fatigue sont
de grande importance. La rugosité de surface va jouer un rôle très important pour cette
propriété. Une étude préliminaire a été mené pour réduire ces irrégularités de surface
par attaque chimique. Cependant, il serait intéressant de voir l’impact de ces attaques
chimiques sur les propriétés en fatigue de structures treillis.

L’approche développée dans ce travail de thèse peut être un point de départ pour
l’étude des propriétés en fatigue de structures treillis.

Application des structures treillis

Les structures treillis sont intéressantes pour des application de légèreté. Elles peuvent être
introduites directement dans le processus de conception ou émerger d’une optimisation
topologique. Certaines méthodes (e.g. SIMP method [30,31]) définissent une répartition
optimale de la matière en niveaux de gris. Ces niveaux de gris correspondent à un niveau
donné de propriétés mécaniques [32]. Ces géométries en niveaux de gris peuvent être
remplacées par des zones "treillis" et des zones denses. Une génération conforme des
structures treillis sur les interfaces avec les zones denses est donc nécessaire.

Dans ce sens, nous avons développé un logiciel de génération de structures treillis
périodiques et aléatoires. Il permet la création de structures à gradient de densité qui
peuvent être utilisées comme structures d’interface (comme le montre la figure 4.6).

(a) Cube à gradient de
porosité.

(b) Cylindre à gradient
de porosité.

Figure 4.6 Exemple de structures à gradient de densité créées par le logiciel de génération
de structures treillis.

Structures treillis comme architecture d’accueil

L’ostéointégration des prothèses est essentielle pour améliorer la performance des
implants. L’utilisation de zones poreuses dans une prothèse permet de diminuer le module
d’Young effectif de la prothèse et donc ce réduire l’effet de "stress-shielding" qui provoque
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4.2. Amélioration de la précision géométrique par changement des paramètres de fabrication

une mauvaise distribution des concentrations autour de la prothèse et peut à terme
endommager l’os à l’interface avec l’implant.

Les zones poreuses peuvent être aussi utilisées comme structures d’accueil pour les
cellules osseuses. Afin d’optimiser l’ostéointégration, il faut contrôler la taille et distribution
des poutres et des pores. Les résultats de ce travail de thèse peuvent donner des pistes en
ce sens. Un exemple de cupule pour l’implant de hanche a été réalisé dans le cadre de la
thèse. On peut voir le modèle et sa réalisation en figure 4.7.

(a) Modèle 3D. (b) Structure produite.

Figure 4.7 Modèle et cupule produite. L’architecture de surface a été obtenue en générant
une structure aléatoire avec le code de génération de structures treillis.

Simulation thermique du procédé EBM

La nécessité d’avoir des outils prédictifs à propos de l’histoire thermique de la fabrication
EBM a été soulignée durant ces travaux de thèse. Elle a permis un meilleur contrôle
de la qualité dimensionnelle des pièces. Un tel outil peut être de différents niveaux de
complexité [33,34]. Nous avons pu comparés la géométrie d’une poutre fabriquée par EBM
avec la prédiction d’un modèle thermique simple actuellement développé à Grenoble [35].
C’est une première étape qu’il faudrait continuer de développer pour améliorer le contrôle
dimensionnel et microstructural des pièces fabriquées par EBM.
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General Introduction

Throughout time, monolithic materials fulfilled the expectations of engineers and re-
searchers. They managed to find ways of reaching the required properties by tuning the
composition and the microstructure of the material.

Nowadays applications have brought multifunctional sets of requirements which only
"architectured materials" can reach. Lattice and cellular structures are part of these
architectured materials where matter and void are combined in a desired way to reach the
requirements. Some examples are depicted in Fig. 8.

Figure 8 Examples of lattice structures manufactured by Electron Beam melting

The optimized lattice structures usually have very entangled and complicated shapes.
Hence it is extremely difficult to manufacture them by conventional techniques such as
casting, molding, forging or machining. Additive Manufacturing (AM) brings a new step
in the production of such parts. Indeed, it is possible to manufacture very complex shapes
with hardly any limitations.

If AM allows the freedom in shape for the production of parts, it also brings along
new limitations that have to be characterized in order to reduce them and to take them
into account in the steps of simulation and optimization.

Figure 9 The machine used in this study: Arcam A1

This thesis began with the arrival in Grenoble of an Electron Beam Melting c© (EBM)
machine (Fig.9). During this work the results presented are obtained using the EBM
technology, more precisely with an A1 machine.
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The aim of the PhD thesis is, first, the structural and mechanical characterization of
lattice structures produced by such technology. From the comparison between the design
and produced structures, a criterion is extracted. In a second step, "realistic" simulations
and optimizations are carried out using such a criterion. Finally, the improvement of the
strut’s geometry is investigated using post-treatments or by tuning process parameters
and strategies.
Thus, the manuscript is structured as follows:

� Part I: Generalities and overview: This part aims at giving some basic knowl-
edge on lattice structures and Additive Manufacturing processes. In the first chapter,
the necessity of using "architectured material" and more particularly lattice struc-
tures is explained. Properties and classical models for the elastic properties of
lattice structures are exposed. The second chapter deals with AM technologies and
particularly the Electron Beam Melting technology. In the last chapter, the starting
point of this PhD and the strategy used are presented.

� Part II: Characterization of the material properties: The second part is
focused on characterizing the constitutive material of the lattice structures. Mi-
crostructural and mechanical aspects of dense Ti6Al4V fabricated by EBM are
discussed and compared with conventional alloys. The microstructures of dense
parts and thin struts are compared.

Mechanical properties of as-built and machined tensile test samples with different
diameters are also compared to fully characterize the properties of the Ti6Al4V
alloy fabricated by EBM. Once the mechanical properties of the alloy known, it is
possible to investigate the properties of lattices structures.

� Part III: A methodology for the stiffness prediction of lattice structures
produced by EBM: In this part, the structural and mechanical behavior of 1
mm-diameter single struts are analyzed in a first chapter while a second chapter
aims at applying the notion obtained at the strut’s scale for the prediction of the
elastic behavior of a lattice structure.

After a review on geometrical variability of struts produced by AM, the second
chapter presents the developed tools and methods used for the structural characteri-
zation of single struts. The roughness and porosity of struts with different diameters
and build orientation are presented. Some tools are extracted to predict the stiffness
of the struts by discriminating the mechanically "efficient and inefficient" matter.
The struts can be replaced by a cylinder with a mechanical equivalent diameter.

The third chapter focuses on the validation of the tools developed on the analysis of
single struts for the stiffness prediction of global lattice structures. The periodic
octet-truss structure is considered as a representative structure. Homogenization
FEM methods are applied on this structure to simulate a global structure from
a unit-cell.The use of the concept of mechanical equivalent diameter allows the
simulation of the "true" properties of lattice structures manufactured by EBM.

The last chapter aims at generalizing the stiffness prediction of lattice structures
by establishing an analytical equation of the mechanical equivalent diameter as a
function of the nominal diameter and build orientation.

� Part IV: Simulation and mechanical optimization of lattice structures :
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The first chapter exposes the beam simulation that is used for the optimization of
lattice structures. The range of validation of such a simulation is defined.

Using the beam simulation and the analytic value of the mechanical equivalent
diameter, the optimal orientation of a lattice structure is assessed. Depending on
the desired properties and lattice architecture, an optimal placement can improve
its mechanical properties.

A parametric optimization has been developed. This optimization allows to take into
account the process constraints by simulating the "true" properties of the lattice.

� Part V: Towards the improvement of strut’s size and surface morphology:

This part exposes some preliminary results on the improvement of the strut’s size
and surface morphology.

Post-treatments such as Electro-Chemical Polishing and Chemical Etching are
applied on lattice structures made by EBM to assess the possibility of improvement
of the surface imperfections of the as-built structures.

Process parameters and strategies are also tuned to optimize the geometrical accuracy
of the produced struts.

� Conclusion and Future work

The main conclusions of this work focus on the understanding of the discrepancies
between designed and produced lattice structures for struts with a small diameter.

From this PhD work several ideas are emerging for future works. They focus mainly
on:

– The generalization of the concept of "mechanical equivalent diameter" into
commercial optimization codes and for more complex loading such as fatigue.

– The application of lattice structures (in terms of conformal implementation
within bulk parts).

– Using lattice as hosting architecture (osseointegration, lattice-polymer compos-
ite).

– The thermo-mechanical simulation of the AM process.
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Part I

Generalities and Overview

39





This part aims first to present some basic knowledge on architectured materials
and especially lattice structures. A second chapter focuses on the different Additive
Manufacturing (AM) processes and especially on the Electron Beam Melting (EBM)
technology. The third chapter displays the global issues that this thesis attempts to
answer.
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Chapter 1

Lattice structures

This chapter proposes a review on architectured materials. The benefit in terms of
mechanical, thermal properties and sound absorption of such structures is exposed. A
focus is made on lattice structures. Their manufacturing routes are described and the
contribution of Additive Manufacturing (AM) is highlighted.

1.1 Introduction

When looking at the nature, it is impressive to see how architectured it is. After centuries
of evolution, it presents a structure well adapted to its own environment. Wood is a good
example of such an adaptation. It is architectured at different scales to balance the high
stiffness of cellulose fibrils with some flexibility of the structure [36]. Researchers and
engineers are now trying to understand the mechanisms that occur in nature to apply
them in materials science and design.

The need for architecturing the materials comes from industrial set of requirements.
Such demands are more and more complex so that fully dense and monolithic material
cannot fulfill them.

1.1.1 Architectured materials

Architectured materials: Definitions

Several definition of "architectured" materials can be found in the literature:
According to Mike Ashby, "Architectured or ’hybrid’ materials are combinations of two

or more materials or of material and space, configured in such a way as to have attributes
not offered by any of one material alone" [1]. This definition focuses on the applications
that architectured material can offer.

Architectured materials are created at a certain scale. Bréchet et al. [37] have proposed
another definition of an architectured material based on the length scale. The strategy of
producing an architectured material is to distribute "matter at the level of the component".
It means that the creation of an architectured material is to develop "either geometries or
association of materials, or microstructure gradients, at scales which are comparable to
the scale of the component".

"Architectured material" gathers a lot of different structures. Figure 1.1 displays
different classes of architectured materials. Composites are composed of two or more
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1.1. Introduction

materials. Reinforcement inside a matrix can be unidirectional, multidirectional or
isotropic depending on the application. Usually, the reinforcement material allows an
increase of the stiffness or toughness of the structure. The reinforcement material can be
in the form of particles or fiber (short or long) [38].

Figure 1.1 Examples of architectured materials. Image from [1].

Strand materials are longitudinal composites allowing flexibility along with high tensile
strength in one direction. Within the architectured materials, sandwich structures are of
great interest since they exhibit a high flexural strength to density ratio.

The last part is composed of cellular structures, foams and lattices. Their partic-
ularity is that they are not a combination of two materials but an association of one
material and space. This category of architectured material is the one studied in this work.

1.1.2 Properties of architectured materials

Architectured materials as a solution to fill space in material science - Example
of lightweight structures

The need for architectured materials comes from the fact that monolithic materials are
not anymore sufficient for fulfilling the required properties. As an example, this section
focuses on producing parts with high stiffness-to-density ratio.

Figure 1.2 shows a Young’s modulus versus density map for bulk materials. Large
categories of materials are represented with the transparent surfaces whereas the white
ellipses depict each bulk material. What can be seen is that there are holes in the Young’s
modulus-density space. It means that for example a material with high elastic modulus
and low density is impossible to find in bulk form.

Architecturing the matter throughout the properties space allows to reach those regions
of properties where monolithic materials cannot.

In this work, we consider as cellular material every architectured material which is
composed of one material and space. It is composed of an assembly of cells (regular or
stochastic). The matter can be distributed in the faces or in the edges. Cellular structure
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Chapter 1. Lattice structures

Figure 1.2 Young’s modulus versus density space. From [1].

composed of matter within the faces are called "closed-cell" in opposite to "open-cell"
structures for which the matter is only in the edges. The term foams originally designates
cellular structures manufactured from the specific process of foaming. It has then been
generalized to every cellular material. This study will not treat such structures.

Lattices structures are composed of a connected network of struts [39]. The PhD
work is focused on such structures.

They can be classified according to its periodic or stochastic structure. Random or
stochastic lattice structures are composed of an assembly of cells without any symmetry
or periodicity. Periodic lattice structures are composed of a repetition of a unit-cell in
every directions. Such structures will be investigated in this study.

Another classification of lattice structures can be carried out according to their
deformation modes. They can either deform by bending or stretching of the cell wall.
This classification will be treated in the next paragraph.

1.2 Metallic lattice structures

Metallic lattice structures having open cells are widely used as heat exchanger media to
dissipate heat from a hot source [3, 4] . They are also used as heat transfer media for
phase change material (PCM). The lattice structure embedded in PCM material permits
a more homogeneous heat flux thus a more controlled phase change [5].

Acoustic properties of lattice structures have been less studied. A relatively new field
of research on metamaterials focuses on finding new properties for architectured materials.
For example, Körner et al. designed antichiral lattices that exhibit phononic band gap [6].
Using an Additive Manufacturing technique, they were able to produce such structures
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1.2. Metallic lattice structures

and optimize the unit cell to reach the needed eigenfrequencies.
In this section we focus on the elastic properties of lattice structures since it is the

main interest of the phD work.

1.2.1 Elastic properties of periodic lattice structures

Lattice solids can be gathered in categories according to their deformation mode. This
section tends to explain the differences in terms of elastic properties according to this
classification. We focus on periodic lattices.

Maxwell Criterion: stretching and bending-dominated structures

Deshpande et al. proposed a standard classification based on the nodal connectivity of the
lattice structure [7]. Their classification is based on early research of Maxwell [8] which
sets a topological rule for an assembly of pin-jointed struts to be rigid. They are classified
as a "mechanism’ if they don’t satisfy this rule and as a "structure" if they do.

Considering a 3D structure composed of b struts and j nodes the criteria is:

M = b − 3j + 6 (1.1)

If M ≥ 0, the structure is rigid in the sense of Maxwell. Using this criteria on
unit-cells made of non-rigid elements allows the discrimination of structures that are
"bending-dominated" or "stretching-dominated".

Table 1.1 shows the geometry and deformation mode of some unit cells. Some
represented unit cells are widely studied such as the hexahedron (cube) which is bending-
dominated. The tetrakaidecahedron has been analyzed in details because it is represen-
tative of the structure of an open-cell structure obtained by foaming [40]. The simplest
foam model from Gibson and Ashby [9] is depicted as a bending-dominated structure. It
is treated in the next paragraph 1.2.1.

The represented stretching-dominated structures are the tetrahedron (composed of 6
struts and 4 nodes), the icosahedron (b=30, j=12), and the octet-truss. The octet-truss is
the chosen structure for this study.

A more exotic set of lattices are the auxetic structures. They have undergone numerous
studies in the past years. These structures exhibit a negative Poisson’s ratio [43]. It means
that these structures expand laterally when stretched. These lattices possess large shear
moduli, high indentation resistance and high energy absorption [44]. An idea of different
auxetic geometries can be found in various papers [45,46]. Although these structures have
a growing importance, they will not be discussed later on.

Elastic behavior of bending-dominated structures

Taking as an example the simplest foam model for "bending-dominated" structures, the
elastic behavior of an open-cell foam has been analytically determined by Gibson and
Ashby [9]. The bending-dominated lattice is modeled as a cubic array of struts.

Considering that the structure deforms by cell wall bending, the Euler-Bernoulli beam
theory can be used. As a result, the scaling law of stiffness for such structures can be
derived:

E

ES

∝
(

ρ

ρS

)2

(1.2)
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Table 1.1 Examples of unit-cells with their corresponding failure mode.

Name of unit-cell Deformation mode Scheme

Tetrahedron Stretching-dominated

Hexahedron Bending-dominated

Dodecahedron Bending-dominated

Rhombic dodecahedron [41] Bending-dominated

Icosahedron Stretching-dominated

Tetrakaidecahedron [40] Bending-dominated

Simplest foam model [9] Bending-dominated

Octet-truss [42] Stretching-dominated

where E and ρ are the Young’s modulus and the density of the structure respectively. ES

and ρS are the Young’s modulus and density of the contitutive material.
=⇒ The relative Young’s modulus of a bending-dominated structure scales with the

square of the relative density.
It is also possible to determinate the plateau stress σpl from figure 1.3 considering that

the structure collapses by cell edges bending. The plastic plateau appears when the force
exerted on them exceeds their fully plastic moment. The plateau strength σpl normalized
by the yield strength of the solid material σy,s can be expressed as:

σpl

σy,s

∝
(

ρ

ρS

)3/2

(1.3)

In figure 1.3, the typical stress-strain curve of a bending dominated structure is plotted. A
first step of linear elastic regime is represented, followed by plastic plateau corresponding
to the cell edge bending of the structure. After a certain strain, the densification occurs.
It corresponds to the moment where the opposite edges of the cells are in contact.
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1.2. Metallic lattice structures

Figure 1.3 Stress-strain curve for a bending-dominated structure. Image from [39].

Elastic behaviour of stretching-dominated structures

Using the same approach as previous paragraph, and considering the tensile loading of the
struts, it is possible to derive the elastic properties as a function of the relative density
for a stretching-dominated structure. We consider here only the elastic stretching of the
struts. The relative Young’s modulus is then calculated as:

E

ES

∝
(

ρ

ρS

)

(1.4)

=⇒ The relative Young’s modulus of stretching-dominated structures scales linearly with
the relative density.

The elastic limit is supposed to be related to the first struts that yield plastically. If
so, the collapse stress is:

σpl

σy,s

∝
(

ρ

ρS

)

(1.5)

If the struts have a high slenderness ratio, the collapse mechanism will be rather buckling
of the struts than yielding. Then following Euler buckling criterion, the buckling strength
is:

σel

ES

∝
(

ρ

ρS

)2

(1.6)

The slenderness ratio of the strut manages the collapse mechanism of the structure. The
slenderness is related to the relative density. Low density lattices will then buckle before
yielding whereas high density structure will mainly collapse by stretching of the struts.

Figure 1.4 shows a typical stress-strain curve of a stretching-dominated structure. The
behavior is slightly different than for a bending-dominated structure (Figure 1.3). Indeed,
such structures have higher Young’s modulus and yield strength than for a bending-
dominated one at a given relative density. Because of the mode of stretching of the struts
(tension or compression), the initial yield is followed by plastic buckling or brittle collapse
of the struts (depicted as "post-yield softening").

Summary

Figure 1.5 depicts the relative Young’s modulus as a function of the relative density for
different structures in log-log scale. Two lines are plotted representing the behavior of
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Figure 1.4 Stress-strain curve for a stretching-dominated structure. Image from [39].

stretching-dominated and bending-dominated structures. The slope of the curve is the
power-law exponent of the Young’s modulus versus density law. Foams mainly deform
by bending whereas honeycombs deform mainly by stretching when pulled along their
longitudinal axis.

⇒ Generally, a stretching-dominated structure is stiffer than a bending-dominated
one for the same density.

Figure 1.5 Young’s modulus versus density. Variations of scaling laws depending on the
deformation mode. Image from [39].

Limitation of Scaling laws The previous scaling laws for bending-dominated and
stretching-dominated structures are based on the Euler beam hypotheses. The consequence
is that a model to be valid should deal with a minimum slenderness ratio (l/t). As a
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consequence, the scaling laws have a limited range of validity of density.

1.2.2 Conventional manufacturing techniques

Conventional techniques have been mainly focused on the manufacturing of random
foams [47]. From a liquid metal, an injection of gas forms bubbles into the liquid and thus
a foam when cooled down.

Space holder techniques are based on the use of another material (which can be
removable or not) to build a highly porous structure. Removable space holder have been
widely used for metallic foams. In powder metallurgy, the space holder material is usually
a polymer or carbon particles. For casting, salt can be used as space holder or a preform
can be infiltrated by the liquid metal [48, 49]. Replication methods are also of great
interest to produce metallic lattice structures. As an example, Schaedler et al. [50] coated
a polymer lattice with a nickel alloy and then removed the polymer. This replication
allows the formation of ultralight metallic microllatices.

Producing lattice structures through conventional techniques has been a challenge
over the years. Most of the published work are concentrated on sandwich structures with
a lattice core [3, 10–12]. Three different techniques have emerged:

• Wadley presented a Kagome sandwich obtained by investment casting of a
preform. The result is satisfying but this process cannot be applied to tortuous or
large structures and only some metallic alloys with a high fluidity can be used.

• Another method is forming a lattice structure from a metallic wire assembly.
Queheillalt [13] used solid and hollow stainless steel wires and assembled them using
a tool to assemble the wire in colinear layers as shown in figure 1.6a. The assembly
undergo a final heating step to link the wires by brazing.

• Producing lattice structures from an expanded metal sheet is the most widely
used method. Kooistra et al. [11] explained in details how to form a tetrahedral core
for a sandwich panel from an aluminium sheet. Figure 1.6b explain the different
steps used in their study.

From the metal sheet, a first step of perforation allows the design of elongated
diamond which will be folded later on. The final structure is a pyramidal core. This
core can be used directly in a sandwich panel or stacked on top of each other to form
a lattice. Following the second method, Wadley formed an octet-truss structure by
stacking tetrahedral cores with interleaved planar hexagonal perforated layer [12].

These conventional manufacturing methods for lattice structures have many drawbacks.
For investment casting, the liquid metal should be fluid enough to flow inside the preform
depending on the size and tortuosity of the structure. Metallic wire assembly permits only
the formation of a limited amount of designs. Lattice manufacturing from an expanded
metal sheet allows the production of more various shape but produces a large amount of
waste. Moreover, the alloy used has to be ductile enough to be perforated and punched.
It limits the variety of alloy that can be processed.

Manufacturing lattice structure has always been a challenge for engineers.Additive
Manufacturing permits in the contrary a high degree of freedom of manufacturable shapes.

50



Chapter 1. Lattice structures

(a) Examples of structures fabricated by metallic
wire assembly. Image from [13].

(b) Sketch of the process of lattice manufacturing
from an expanded metal sheet. Image from [11].

Figure 1.6 Conventional manufacturing techniques for the production of metallic lattices.

For the past ten years, it has become a viable answer for the manufacturing of lattice
structures.
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Metallic Additive Manufacturing
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During this chapter, a short review on the current AM technologies is carried out. A
focus is made on the Electron Beam Melting technology.

2.1 Current technologies and challenges

For the last 25 years, important innovations have emerged in the Additive Manufac-
turing processes. They can be divided into the powder bed techniques (Electron Beam
Melting-EBM, Laser Beam Melting-LBM and Selective Laser Sintering-SLS) and the
Direct Deposition methods (Electron Beam Fabrication Freeform-EBF3, Direct Metal
Deposition-DMD, Wire Arc Additive Manufacturing-WAAM) [51–53].

The raw material of the AM techniques is either powder or metallic wire.
Within powder bed techniques, the EBM and LBM technologies melt powders layer

by layer with a heat source. The SLS technique uses a laser beam to melt polymer-based
binder containing metal powder. Then a step of sintering allows the removing of the
binder and the consolidation of the metal.
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The EBF3 uses an electron beam to melt a metallic wire onto a substrate whereas
DMD processes use a laser beam to melt metal powders that are projected on a substrate.
The WAAM process allows the production of large parts by melting a wire using a TIG
welding torch on a substrate.

In the next section the focus is made on two processes representative of both categories:
LBM and DMD.

2.1.1 Direct Metal Deposition

In the Direct Metal Deposition processes, the raw material is usually a metal powder but
can be wire or pellets [54, 55]. A laser beam is focused on a substrate. At the end of the
nozzle, the raw material carried by a carrier gas meets the laser beam and is projected
onto the substrate. Figure 2.1 depicts the process components. In some technologies, the
nozzle is moving while the substrate stays fixed. Other technologies prefer the nozzle to
stay fixed and the substrate to move.

Figure 2.1 Scheme of DMD processes. Image from [53].

This technique allows the production of large parts and does not require a confined
environment. The nozzle is usually fixed into a multi-axis robot to be able to deposit
material in any directions. The carried gas act as a protecting environment to limit
oxidation of the deposited material.

The benefit of such a device is that it can create large parts and be used as a re-
manufacturing process. Indeed, this technology is more suitable for the reparation of
damaged parts. Re-manufacturing is almost impossible for powder-bed techniques because
the part needs to be embedded in a powder-bed and the broken surface needs to be
flat enough to manufacture onto it. The raw material can be easily graded to produce
functionally graded or multimaterials structures.

A large range of alloys have been processed by DMD processes such as Ti-alloys,
Ni-based superalloys, Co alloys or stainless steels.
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2.1.2 Laser Beam Melting

The Laser Beam Melting process is a good representation of the powder bed AM processes.
It is also the most used nowadays. It relies on layer-by-layer addition of powder. As seen
in figure 2.2, the LBM technology is based on a high energy laser (around 0.2kW [15])
that produces a beam in direction of a mirror which allows its deflection.

Figure 2.2 Scheme of LBM processes. Image from [53].

The whole process operates in a protective atmosphere (Argon or Helium mainly).
Layers are of 20-100 µm high. The powder is kept in a reservoir that goes up at each
layer while a rake dispatches the powder onto a start plate. The laser beam melts the
selected surface of the layer and let the loose powder unmelted. Locally the temperature
increases but the whole build is kept at room temperature.

The problematic of overhanging surfaces is critical. The loose powder does not allow
a high dissipation of the heat and a mechanical support. Thus, melted supports are
critically needed for the fabrication of overhanging surfaces.

Each melted point undergo a rapid cooling from above melting temperature to the
room temperature thus resulting in a martensitic microstructure for titanium based
alloys [15,16]. The cooling behavior of a point melted by LBM is represented with the
blue curve in figure 2.4. The cooling is rapid from the melting temperature (TM) to the
room temperature (TR).

As a consequence of this high thermal gradient, the parts produced by LBM have
important residual stresses and need to undergo a specific heat treatment after production.

2.2 Electron Beam Melting (EBM)

The EBM technology is another additive manufacturing process. The ARCAM company
in Gothenburg (Sweden) is the only seller in the world for this technology. This section
explains the process in terms of components and parameters. This section describes the
basic parameters and process strategies since they affect the final properties.
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Table 2.1 Summary of the characteristics of the A1 EBM machine.

Power 50-3000W
Build Temperature ∼ 700̊ C

Deflection rate Up to 8000 m/s
Maximum build size 200x200x180 mm

Beam spot size 0.2 mm-1.0 mm
Chamber pressure 10−4 mbar

2.2.1 Description of the process

Global Description

The Electron Beam Melting technology is composed of an electron beam that selectively
melts metal powder layer by layer following a CAD file (Fig.2.3). The first material is
a metal powder that is held in two hoppers and spread onto the build plate layer by
layer using a rake. The layer height is kept at 50 µm for this study. At the end of the
fabrication, the melted powder creates the part and the unmelted one will be reused for
new fabrications.

Figure 2.3 Scheme of the EBM process using an A1 machine.

During the whole process, the chamber is held under vacuum (∼ 10−4 mbar) to prevent
the electrons to be stopped by air molecules. Using an electron beam as a heat source
allows a high power and high build rate. The beam can indeed move on the surface with a
speed up to 8000 m/s with a power varying from 50 to 3000 W. The global characteristics
of the A1 Electron Beam Melting machine are summed up in table 2.1.
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Preheating

A particularity of this process is that, at every layer, the beam scans the whole surface
before melting the part. A highly defocused electron beam scans the surface in two steps.
The first preheating scans the entire surface with a low energy whereas the second step of
preheating is located around the produced parts with a higher energy.

Tushar Mahale [14] explained in details the "smoke" mechanism and its reduction by
the preheating process. The smoke effect is a cloud of metal powder due to electrostatic
interactions between the metal powders and the electron beam.

To prevent this phenomenon, the preheating steps allow an increase of the electrical
and thermal conductivity of the powder stack by creating necks between particles. The
increase of the thermal conductivity allows also an efficient evacuation of the thermal flux
throughout the powder.

Time [s]

Temperature [̊ C]

TM

∼ 700

TR

Fast cooling

Slow cooling

EBM process
LBM process

Figure 2.4 Scheme of the cooling speed for a melted point during the EBM and LBM
manufacturing of Ti-6Al-4V.

The preheating steps allow a constant temperature of ∼ 700̊ C for the current layer.
Thus, each point that is melted undergo two cooling rates (c.f. red curve in figure 2.4): a
first rapid cooling rate from the melting state to the maintained temperature and a second
slow cooling from 700̊ C to the room temperature. As a result, a controlled microstructure
is produced (c.f. section 4.2.2). Those differences in cooling speed between the EBM and
LBM technologies result in differences of microstructure. Moreover, the slow cooling from
700 C̊ to the room temperature reduces the final residual stresses.

2.2.2 Description of the components

The machine used in this work is an A1 machine with a maximum build chamber of
210x210x180 mm.

Electron gun

The upper side of the machine is composed of an electron gun (upper part) where a
tungsten filament is heated up to 2600̊ C. A 60 kV accelerating electric field is applied
between the filament and the anode. The accelerated electrons pass then through different
electro-magnetic coils.
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First they undergo a field that reshape the electron beam in order to avoid astigmatism
artifacts (not included in Fig 2.3). Then, an electro-magnetic field is applied at the focus
coil to sharpen the beam at the build surface. The producer of the machine developed a
routine to modify the focusing according to the position of the beam spot to ensure a
constant focalization at each point. The minimum spot size with this machine is around
200 µm of diameter. The last coil produces a field that deviates the beam to reach the
CAD coordinates on the surface.

Build chamber

The build chamber is held under secondary vacuum (around 10−4 mbar) whereas the
vacuum in the electron gun is stronger (10−7 mbar). The vacuum prevents the oxidation
of the titanium with temperature and avoid the interaction of the air particles with
the electron beam. A constant flux of helium (10−3 mbar) is introduced to avoid beam
scattering to change the quality of the vacuum.

The start plate (or build plate) is a 316L stainless steel plate where the first layer
of powder will be spread. It aims at supporting the build parts and acts as a heat sink.
Squared plates with a size of 150mm, 170 mm 190 mm and 210 mm are available. The
start plate undergo a heating step before each fabrication to reach 700̊ C. The temperature
is controlled by a thermocouple under the plate. When it reaches this value, the build
starts.

Powder Recovery System (PRS c©)

The PRS is a cabinet where the powder block - consisting of melted and sintered powder-
is blasted under a pressure of 8 bars. The blasting material is the raw material of the
fabrication.

It allows to break the necks between sintered particles resulting from the preheating
and to take out the melted parts. The left particles are sieved and reused in the next
builds. The sieving allows the recycling of particles from 20 to 140 µm.

2.2.3 Description of the raw material

The raw material for this process is metal powder. In our case, the material is a Ti-6Al-4V
alloy. It is an α/β titanium alloy commonly used in aeronautics and bio-medical industries.
More information about this alloy can be found in section 4.1.

In order to be able to flow using the rake, the initial powder has to be spherical. To
do so, the powder used has been created by gas atomization. Due to the production
process, some internal pores are present in the initial powder. This initial porosity has
been widely reported in the literature [18–21]. These pores are due to the argon gas used
in the atomization. During the formation of the powder, this gas can be entrapped and
form pores.

Figure 2.5 (a) shows a X-ray tomography image of the initial powder. The spherical
shape is highlighted as well as the pores (in red). The size distribution (b) shows that the
pores are present only in large particles and that the porous particles can represent up to
50 % of the particles (for large diameters).

Figure 2.6 shows the shape of particles after their multiple use in the machine. Their
shape is purely spherical but some necks can be seen (white arrows). These necks have
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Figure 2.5 (a) X-ray tomography of initial powder used in the EBM machine. In red the
initial pores entrapped in the powder. (b) Size distribution of the powders and powder
containing pores. In blue, the fraction of porous powders is plotted. From [18].

been created during the preheating step during different builds and broken by the blasting
with the PRS.

Figure 2.6 SEM micrograph of recy-
cled Ti-6Al-4V powder. White arrows
pointing at necks.

Figure 2.7 Size distribution of new
and used Ti-6Al-4V powder.

The Particle Size Distribution (Figure 2.7) shows the influence of the recycling of the
powders on their size. The median diameter for the recycled powder (78 µm) is larger
than the one of the new powder (62 µm). The PSD gets narrower for reused powders.
This is consistent with the work of Tang et al. [56] that showed a slight increase of the
median diameter and a narrowing of the PSD with the number of reuse. The increase
of the particle size with the recycling steps could be related to the loss of satellites and
agglomeration of powders during recycling. It could also explain the narrowing of the
PSD.

2.2.4 Process parameters and strategies

This section aims at presenting the standard parameters and strategies that will be tuned
later on (chapter 14).

A "theme" is a set of process strategy and parameters. The standard themes from
ARCAM are called "Melt", "Net", "Point-net" and "Wafer". The first one is the most
used since it is applicable for melting any geometry. The "Net" theme is optimized for
thin structures (less than 1 mm diameter struts) as it follows only contour paths. The
"Point-net" theme gives process parameters for the fabrication of parts from wireframe
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geometries. Finally, the "Wafer" theme is made to melt supports. The supports are created
to support overhanging surfaces of dense parts. Their theme is customized for a partial
melting of the support [57]. The partial melted supports act as heat sink and mechanical
support but are relatively easy to remove.

In this section, the scan strategy and process parameters will be exposed and the
values from the "melt" theme will be described.

Standard scan strategy

The standard scan strategy will be explained using the scheme of a slice from a CAD file
(Figure 2.8).

The limits of the CAD file are represented by the dotted red line. The first path of
the beam (called first contour) is shifted from the CAD limit by a certain value called the
first contour offset (CO1). The beam scans a second contour at a distance CO2 (second
contour offset) from the first one. The inner surface is then melted by hatching. The
raster scan melts line by line following a snake strategy. The line distance between each
scan line is called line offset (LO).

CAD limit
1st contour
2nd contour
CO1

CO2

LO

Figure 2.8 Scheme of a slice of a CAD file. The dotted red line represent the CAD limits.
Black line: first contour, Blue line: 2nd contour. Orange: Hatching.

Every parameter is linked to the predicted size of the beam spot and resulting melt
pool. The parameters that can be changed in the scan strategy are:

• The first contour offset

• The second contour offset

• The number of contours having the same parameters as the second contour

• The line offset

• The hatching way (back and forth or always same way)

• The hatching direction (scan line change of 90̊ at every layer)

The values used in the "Melt" theme have been obtained by ARCAM after numerous
studies to minimize the porosity and control the produced microstructure and dimensions.
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Main process parameters

The process parameters are the parameters affected by the electron beam. They are
different for the 1st contour, the 2nd contour and the hatching. This section aims at
presenting the most relevant parameters:

• The beam current (I).

• The beam speed (V)

• The focusing of the beam : Focus Offset (FO)

Much more parameters are used in the standard themes. For hatching, an algorithm
calculates at each position the speed and current of the electron beam depending on its
distance to the end of a scan line and its distance to a overhanging surface. The algorithms
that finally produce the instructions to the beam are based on thermal considerations.
This algorithm is not tuned in this work. Changes will focus on the beam current, speed
and focus offset.

Combining the process parameters and the melting strategies described here, global
parameters can be defined.

Global calculated parameters

The beam power (P) is the accelerating voltage (60 kV) multiplied by the beam current
(I). From this definition, an energy can be calculated as:

E = P.t =
PL

V
(2.1)

where L is the length scanned by the electron beam and t is the time of melting.
The volume energy EV is defined as follows:

EV =
E

SCADhlayer

=
PL

V SCADhlayer

(2.2)

where hlayer is the height of a layer (50 µm in our case) and SCAD is the surface of the
designed part at the current layer. The parameter takes into account the melted surface
but do not include the time to melt. Another interesting parameter is the volume power:

PV =
P

SCADhlayer

(2.3)

These densities of energy and power will be used in chapter 14 to classify the changes in
the process strategies and parameters.

2.2.5 Manufacturing lattice structures by Electron Beam Melt-
ing

Manufacturing lattice structures using AM has been of great interest recently. The first
patent reporting lattice structures manufactured by additive manufacturing date from
2004 [58]. It shows the possibilities in terms of shapes of lattice structures that can be
manufactured. The lattice structure fabrication is highly related to biomedical applications
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and in-growth tissue.

In this section the manufacturing of lattice structures by EBM is investigated. However,
the Laser Beam Melting technology allows also the manufacturing of such structures [59–62].
Lattice structures produced by LBM can have thinner struts than for EBM. However, the
EBM technology allows more freedom for the manufacturing of lattice structure composed
of horizontal struts.

Ti-6Al-4V alloy

Heinl et al. showed in 2007 the feasibility of the EBM technology to produce freeform
open-cell structures [63]. They showed the possibility of varying locally the density of a
lattice structure.

The properties of hexagonal lattice structures produced by EBM was investigated in
2008 by Cansizoglu et al. [64].

In 2010, Murr et al. showed the possibility of bio-mimicking of the trabecular bone
using additive manufacturing [65]. They produced a knee implant with an inner dense
material and an outer lattice structure to promote the cell propagation onto the prosthesis
(see figure 2.9a)

Yang et al. [44] fabricated re-entrant lattice structure to investigate the properties of
auxetic structure produced by EBM.

Horn et al. [66] produced open-cells rhombic dodecahedron with several densities for
flexural properties analysis (see figure 2.9b. Li et al. analyzed the static mechanical
properties of three structures (Cubic, G7, rhombic dodecahedron) in compression [67].

A group from Sheffield University studied the metallic foams manufactured by the Elec-
tron Beam Melting technology [68]. They reproduced structures from X-ray tomography
images of randomly packed bed of glass beads.

To investigate the blast loading response of lattice structures made by additive man-
ufacturing, McKown et al. [69] produced octahedral lattice structures with various cell
topology.

A study on the fatigue of cellular structures manufactured by EBM has been carried
out by Jamshidinia et al [70, 71] on three different cell shapes (cross-A, Honeycomb
and Octahedral). In parallel, a study from [72] carried out on rhombic dodecahedra
manufactured by EBM focused on the deformation mode of such structure.

Other materials

Lattice structures have been manufactured by EBM with other materials than Ti-6Al-4V
although it is nowadays the most common alloy.

Ramirez et al. [73] have elaborated copper lattice structures (random and periodic)
(figure 2.9c). The final structures contained Cu2O precipitates formed during the EBM
manufacturing that participate to the hardening of the alloy. The production of such
architectured structures have a wide range of applications in the thermal management or
the heat exchange.

Lattice structures in Inconel 625 were manufactured and mechanically analyzed by
List et al. [74]. Structures based on a diamond unit cell were manufactured with different
process parameters (see figure 2.9d). The variation of those parameters showed a process
window to fabricate more controlled geometries and stiff structures.
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Murr et al. [75] fabricated lattice structures of Co-29Cr-6Mo and Ni-21Cr-9Mo-4Nb
alloys by Electron Beam Melting. The basic unit cell is a Dode-thin unit cell from the
software magics (Materialise).

(a) Knee implant in Ti-6Al-4V manu-
factured by EBM. Image from [65].

(b) Rhombic dodecahedron structures
produced by EBM. Image from [66].

(c) Stochastic and regular copper-based
lattices produced by EBM . Image from
[73].

(d) Nickel-based diamond lattice struc-
tures produced by EBM. Image from
[74].

Figure 2.9 Examples of lattice structures produced by EBM from the literature.

2.3 Limitations

The Electron Beam Melting technology and more generally the Additive Manufacturing
processes allow a nearly complete freedom in the design of the produced parts. But they
bring new limitations inherent to the process. Some limitations are listed here for the
EBM technology.
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Powder Removal At each layer, the whole surface of powder undergo a preheating
which creates necks between particles (c.f. 2.2.1). For the unmelted powder these
necks have to be broken in the PRS system. The 8 bar blasting is highly efficient
to this purpose if the structure is not too tortuous. A previous PhD student took
a look at this constraint [76]. For a 10 mm diameter cylinder hole, only 23 mm
in height can be blasted. The rest of the sintered powder cannot be removed by
blasting.

The powder removal from lattice structures has been investigated by Hasib et al. [77].
They tried a chemical etching process for removing the sintered powder. Their
results are promising but for larger structures, the etching affects the integrity of
the struts before removing all the sintered powder.

Spatial resolution The minimal beam spot is set by Arcam as 0.2 mm. Depending on
the resulting melt pool, a minimal resolution emerges. This minimal resolution will
be discussed in part III and considered as an important constraint to build very
thin struts.

Wafer Eventhough it is less critical than for the LBM technology, thick overhanging parts
cannot be produced by EBM without wafer supports. It results in curling/warping of
the part due to differential thermal expansion/contraction in the part. The supports
allow a mechanical reinforcement to avoid the buckling of the overhanging surface
as well as an increase of the evacuation of the heat. In this PhD work, no wafer
supports are employed for manufacturing lattice structures.

Accessible Materials A research group at El Paso developped several materials for the
EBM technology: Inconel 625 [78],Co-Cr-Mo super alloy [75], Rene 142, Nb, Fe [79].

Körner group at Erlangen, Germany developed also some alloys for a fabrication
with EBM. Inconel 718 [80], Ti-48Al-2Nb-2Cr [81]

At NCSU, a large development of new materials by EBM was carried out especially in
the PhD thesis of Tushar Mahale [14] TiAl alloys, GRCop-84, Aluminium 2024,6061,
7075 ...
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Problematic raised and starting
point of the work

3.1 Problematic of the PhD thesis

This work will focus on lattice structures made by the Electron Beam Melting technology.
This AM technology allows the production of almost every shape. It has much less
manufacturing constraints than conventional technologies. However new manufacturing
constraints have to be taken into account.

Set of re-

quirements
Optimization,

Simulation EBM

Mechanical

Characterization

Structural

Characterization

Criterion

for taking

into account

discrepancies

Ideal Structure Process Ideal Structure ?

Figure 3.1 Problematic of the PhD thesis.

For the production of lattice structures (especially structures with thin struts), the
manufactured structures will be different than the designed ones. Figure 3.1 shows the
global thoughts which gave birth to this PhD thesis. From an engineer perspective, lattice
structures can be a good answer to a complex set of requirements. After defining the
global requirements, a step of simulation and mechanical optimization is carried out to
create the ideal geometry that fulfills the required expectations.

The complex shape resulting from the optimization is manufactured with the electron
beam melting technology. However; the obtained lattice structure does not have the exact
designed geometry due to the process constraints. The main questions are:
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• How far from the design is the fabricated geometry?

• How the geometrical discrepancies will affect the desired mechanical
properties?

• How to include the process constraints into optimization/simulation pro-
cedures?

3.2 Strategy of the PhD

To answer this problematic, the following strategy has been followed:

Characterization of the produced parts

Characterization of the constitutive material made by EBM : Firstly, the prop-
erties of the constitutive material have been investigated. Microstructure analysis
and tensile tests have been carried out. The influence of roughness and strut size on
the mechanical properties has been assessed.

Characterization of lattices structures produced by EBM : When the properties
of the bulk material fabricated by EBM were known, the lattices structures produced
by EBM have been characterized.

A first structural characterization on single struts has been carried out using X-
ray tomography. The shape and porosity of the struts were characterized and a
global criterion related to the effective stiffness of the struts was extracted: the
mechanically equivalent diameter.

The concept of mechanically equivalent diameter was applied to an Octet-truss
lattice structure. The use of this concept for the prediction of the elastic properties
of such a structure was validated by comparison with experimental data.

Optimization of the produced lattice structures

Parametric optimization: A code has been created for the parametric optimization of
lattice structures. The particularity of this code is to take into account the process
constraints by using the mechanically equivalent diameter into the simulation step.
The code is based on a python minimization routine coupled with a Timoshenko
beam simulation using CAST3M software.

Optimization of the strut’s shape by tuning process parameters and strategies:
The process parameters were tuned to investigate their influence on the shape and
porosity of the produced struts. The help of a thermal simulation developed by
Nicolas Béraud [57] allowed a faster improvement of the process strategy.

Optimization by post-processing: In collaboration with the Ecole Technologique
Supérieure de Montréal (Canada) and Université Libre de Bruxelles (Belgium),
several attempts on post-processing of lattice structures have been tested. In
Canada, electro-chemical polishing was carried out whereas chemical etching was
experimented in Belgium.
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Part II

Characterization of the material
properties
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Before looking at the mechanical properties of lattice structures, the microstructural
and mechanical properties of bulk and thin parts have to be investigated.
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Chapter 4

Microstructural characterization
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4.1 Conventional Titanium alloys

In this section, conventional microstructures and crystallography of titanium alloys and
especially Ti-6Al-4V are discussed.

4.1.1 Metallurgy of Titanium alloys

Generalities on Titanium

Titanium was discovered more than 200 years ago but its commercial production started
in the 1950’s. Indeed, its extractive metallurgy is highly complex and requires a high
temperature carbochlorination of the natural titanium oxide (TiO2) [82]. The titanium
tetrachloride produced is then reduced by liquid magnesium or sodium to obtain pure
titanium.

Although the fabrication process is energy-consuming, titanium resource is virtually
unlimited since it is the ninth most abundant element on earth. It is a lightweight material
that can reach mechanical properties close to those of steel alloys even though it is two
times lighter. However, its price is higher: 9 $ per kg for titanium vs 1.9 $ per kg of
aluminum and 0.3 $ per kg of steel (in 2007) [83].

Table 4.1 shows typical properties of Ti, Fe, Ni and Al based alloys (from a very
schematic point of view). Titanium based alloys exhibit higher melting point and compa-
rable yield strength to Iron an Nickel based alloys. They have a high corrosion resistance
even if they are extremely reactive to oxygen content.

Titanium alloys are interesting for airframes and aeroengines because of their high
specific strength and high temperature workability. The use of titanium alloys in offshore
structures has become more and more common in recent years for their high corrosion
resistance to seawater, high mechanical strength and high flexibility. Their high resistance
to corrosion make this alloy suitable for petrochemical application.
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Figure 4.1 Typical properties of Titanium based alloys as compared to other structural
alloys based on Iron, Nickel and Aluminum. Image from [83].

Titanium alloys (Commercially Pure and Ti-6Al-4V alloys) are also used in the
bio-medical industry for their good bio-compatibility, in particular as implant material.

Crystallography and effect of alloying elements

Pure titanium exhibits two different crystallographic structures: the α phase with an
hexagonal closed-packed crystal (hcp) structure at room temperature and the β phase, a
body-centered cubic structure (bcc) at high temperature.

The allotropic transformation occurs at 882̊ C. Below this "β transus", the crystal
structure is in α phase (hcp) and above this temperature it is in β phase (bcc).

Figure 4.2 Effect on adding alphagene or betagene alloying element. Image from [83].

The addition of alloying elements changes the microstructure by substantially modifying
the thermodynamic equilibrium (shown in figure 4.2). Alloying elements such as Al, O,
N, C are considered as α-stabilizers since they promote the α domain by increasing
the transus temperature. V, Mo, Nb, Ta are β-stabilizers elements. They are called
isomorphous because they do not produce eutectoid but rather stabilize the β phase at
room temperature as shown in figure 4.2. Some alloying elements called β eutectoid-
stabilizers allow a creation of a two phase domain α+β above the eutectoid temperature.
Some other elements are neutral, i.e. with no predominant effect on the microstructure.
They are soluble in the α phase and do not modify the phase equilibrium.

Depending on the stabilizer content, the alloy is considered as a fully α alloy, a two
phase α + β alloy or fully β alloy. α alloys have a high creep resistance and are easy to
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weld whereas β alloys have a higher density and tensile strength.

The raw material for Electron Beam Melting is Ti-6Al-4V.

4.1.2 Ti-6Al-4V alloy

Generalities

Ti-6Al-4V alloy is the most common titanium alloy. The composition of the alloy is shown
in table 4.1.

Aluminum Vanadium Iron Carbon Oxygen Titanium
Content [wt%] 5.5-6.75 3.5-4.5 <0.3 <0.1 <0.2 Balance

Table 4.1 Composition of the Ti-6Al-4V alloy according to the standard ASTM F1108 (for
cast material).

The Ti-6Al-4V alloy is widely used for aerospace airframe and engine components
as well as implant material for biomedical applications. This alloy is considered for any
application requiring a combination of high strength at relatively low temperature, light
weight, high corrosion resistance and great biocompatibility [83]. The main applications
for the aerospace industry are aircraft structural parts (such as landing gear beams, ...),
aerospace attach devices (fasteners and fittings) or rotating parts in aero-engines (Fan
and compressor blades).

Classification of the Ti-6Al-4V alloy

Because of the addition of aluminum and vanadium, the resulting alloy is considered as
α + β.

Figure 4.3 shows a scheme of its pseudo-binary phase diagram as a function of the
addition of the β-stablilizer V. The red dashed line represents the composition of the
Ti-6Al-4V alloy. It presents a high temperature β phase from the melting temperature
(1660̊ C) to the β transus (∼ 980̊ C). At this temperature, a phase transformation occurs
either by diffusion controlled nucleation or diffusionless depending on the amount of β
stabilizers and the cooling rate. The resulting microstructure is α + β or α + α′.

If the cooling rate is high enough (>400̊ C/s), martensite α′ phase can be formed
between the martensite start temperature (MS) and the martensite finish temperature
(MF ). The martensite start is around 575̊ C [84].

The room temperature microstructure of such alloys will change depending on their
thermo-mechanical history. The temperature maintained during a build in the EBM
machine is shown in blue in the scheme (preheat temperature).

Microstructures of Ti-6Al-4V

Typical thermo-mechanical treatments for this alloy require a deformation and a recrys-
tallization step below or above the β transus [83]. Depending on the temperature of these
steps and depending on the cooling rate after the recrystallization step, three different
types of microstructures are observed in Ti-6Al-4V alloys: fully lamellar, fully equiaxed
or duplex microstructures (Figure 4.4).
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Figure 4.3 Schematic pseudo-binary phase diagram of the Ti-6Al-4V alloy.

The lamellar microstructure (see figure 4.4a) is obtained classically by a thermal
treatment in the β domain (II), 30-50̊ C above the β transus. The cooling rate is then
tuned to control several features of the α phase.

The processing route is similar for duplex (see 4.4b) and equiaxed (see 4.4c) microstruc-
tures. Deformation (II) and recrystallization (III) occur at temperatures below the β
transus. The cooling rate of the step III dictates the microstructural features of the α
phase leading to a duplex microstructure for high cooling rates and an equiaxed one for
slow cooling rates [83].

Morphologies of the α phase at room temperature The α phase nucleates pref-
erentially at the prior β grain boundaries to form a layer of αGB. Figure 4.5 represents
schematically the different morphologies of the α phase within a prior β grain. During
the cooling, α plates nucleate at the interface of the αGB and grow within the β grain as
parallel plates. The formed α phase is called αP . It grows following a special crystallo-
graphic relationship with the β phase in which it nucleates. This relation is called the
Burger relationship [83]. The αP plates are called colonies and belong to the same variant
of the Burger relationship.

For high cooling rates (typically >10̊ /s), the size of the α colonies and the thickness
of the single plates become smaller. The formed colonies cannot fill the prior β grain
and new colonies start nucleating at the interface of the α plates. This new α colonies in
combination with the previous ones form the so called "basket weave" or Widmanstätten
structure (αW ) [83].
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(a) Fully lamellar. Processing route adapted from [83]. Microstructure from [84].
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(b) Duplex. Processing route adapted from [83]. Microstructure from [85].
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(c) Fully equiaxed. Processing route adapted from [83]. Microstructure from [83].

Figure 4.4 Examples of the three types of microstructures observed in Ti-6Al-4V alloys.
The α phase is represented in white and the β phase in black.

The cooling rate from the β phase domain dictates several microstructural features.
The width of the α lamellae, the size of the α colonies and the thickness of the αGB

layers at prior β grain boundaries all decrease when increasing cooling rates. Thus, when
increasing the cooling rate, the number of variants within a prior β grain increases.

4.2 Ti-6Al-4V produced by EBM

The microstructural features of Ti-6Al-4V produced by EBM are reviewed. Microstructures
of bulk parts and struts are compared 1.

1The data presented in the subsequent paragraphs are coming from personal results on one hand and
from literature on the other hand. The results coming from the literature are referenced in the caption.
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Figure 4.5 Scheme of the microstructure of acicular Ti-6Al-4V alloys.

4.2.1 Materials and methods

This section deals with microstructural observation of Ti-6Al-4V samples fabricated
by EBM. Prior to the observation, the samples have been prepared with the following
protocol:

Polishing: The specificity of the polishing of titanium parts is that there is an ultimate
step of mechanical-chemical polishing using a solution consisting of 80 vol% silica
suspension (OPS) and 20 vol% hydrogen peroxide (H2O2). A large polishing time
(∼ 30 min) is required to obtain good surface quality.

Etching: The Kroll’s etching reagent has been used for revealing the microstructure. It
is composed of 100 ml H2O, 2 ml HF , 4 ml HNO3. Samples were etched for 10 s
and immediately rinsed with ethanol.

Optical Microscope (OM): An olympus upright microscope with an inner camera has
been used for imaging the etched samples.

Scanning Electron Microscope : SEM imaging and chemical analysis have been car-
ried out with a Zeiss Leo S440 SEM mounted with an EDX detector.

Electron BackScatter Diffraction: For EBSD mapping, a Field Emission Gun SEM
was used. The EBSD mapping allowed the identification of the crystallographic
orientations of α and β phases. A software developed by C. Cayron at CEA Grenoble
has been used to reconstruct the parent β phase [86]. The software uses the Burger
relationship between the bcc and hcp phases to reconstruct the most probable
orientations of the parent β phases.

4.2.2 Microstructures

Bulk parts

Figure 4.6 is a 3D reconstruction from OM images coming from three perpendicular planes.
The build direction is represented by the black arrow.

A strong anisotropy of the microstructure is observed between the face parallel and
perpendicular to the build direction. The microstructure is composed of prior β grains
delineated by αGB (represented in red). The prior β grains are aligned with the build
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αGB

Figure 4.6 3D Optical micrographs of a bulk sample fabricated with the standard "Melt"
theme.

direction. The width of each prior β grain is about 150-200 µm. This microstructure can
be seen on faces that are colinear to the build direction. Within the prior β grains, an
α + β phase has grown during cooling. The α phase exhibits a lamellar structure with a
fine microstructure.

In contrast, the micrograph perpendicular to the build direction depicts no anisotropy.
The lamellar α phase is embedded in β grains that appear equiaxed in this plane. This
difference between vertical and horizontal planes has been reported in various studies on
EBM produced parts, e.g. [22–25].

The orientation of the prior β grains along the build direction has been explained by
Antonysamy et al. and Al-Bermani et al. [87, 88]. During the fabrication, the columnar
grains grow upwards due to the re-melting of the previous layers. It provides the conditions
for an epitaxial growth of the β phase following the thermal gradient. Thus, in bulk parts,
the prior β grains can cross the whole sample [88].

The lamellar structure of the α phase seems to be consistent with a Widmanstätten
morphology. Figure 4.7 shows the microstructure of a plane perpendicular to the build
direction at higher magnification.

Three types of α lamellae are depicted: The α layer at β grain boundaries (αGB),
the α laths grown from the grain boundary (αP ) and the α laths nucleated at the αP

interface (αW ). The width of the α laths is roughly 1 µm and the size of the colonies is
approximately 10 µm.
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αGB
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Figure 4.7 SEM micrograph of a plane perpendicular to the build direction for a bulk part.

Gil et al. [89] showed that a cooling rate of 3.5 C̊/s results in α plates with a width
of 5 to 7 µm. Since the α lath are thinner in our case, the cooling rate during the EBM
process is much higher. As explained in paragraph 2.2.1, the cooling of a melted point with
the EBM process is in two steps. The first step is a rapid cooling from high temperature
to about 700̊ C which provide the fine α plates microstructure. On the other hand, the
second cooling from 700̊ C takes place much more slowly during the process. It is assumed
to have limited influence on the growth of the α laths since the diffusion coefficient is low
at this temperature.

EBSD analysis allows the analysis of the crystallographic orientation of such bulk parts.
Al-Bermani et al. [87] worked specifically on that topic. They produced EBSD maps of α
and β phase at room temperature and investigated the parent β phase orientation at high
temperature using the Burgers relationship of the bcc-to-hcp transformation.

Figure 4.8 shows the EBSD results on a vertical plane of a bulk part manufactured by
EBM. The black arrow shows the build direction.

Figure 4.8a depicts the crystallographic orientation of the α phase. Colonies with the
same crystallograhic orientation are observed.

Figure 4.8b shows the reconstructed parent β phases. As depicted in figure 4.6, the
parent β grains are oriented along the build direction and so along the thermal gradient.
The width of a parent β grain is about 150-200 µm. It is consistent with the β grain size
observed with the optical micrograph (Figure 4.6).

Figure 4.8c highlights the crystallographic orientation of the parent β grains along the
<001> direction. The beta grains have a strong fiber texture along the build direction.
Indeed, this preferential orientation results from the most favorable path for heat flow
and the epitaxial growth direction.

When melting a part by EBM, the first layers undergo the influence of the start plate.
That may significantly affect the microstructure. Figure 4.9a shows the SEM image of the
bottom of a part. The arrow indicates the build direction. A gradient of microstructure
appears from the bottom of the part.

To investigate the change in microstructure, three Energy-Dispersive X-ray analysis
have been carried out at the locations represented by black crosses. The resulting EDX
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(a) Inverse Pole
Figure (IPF) map
of the α phase.
From [87].

(b) IPF map of
the parent β phase.
From [88].

(c) Pole figure of the
prior β phase along
the <001> direction.
From [88].

Figure 4.8 EBSD maps showing the microstructure of the α phase at room temperature
and the reconstructed parent β phase at high temperature. Images from [87,88].

(a) SEM micrograph with EDX points.
black arrow: build direction.

(b) EDX spectrum at each
point.

Figure 4.9 BSE SEM micrograph with corresponding EDX analysis at three different
points.
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spectra are displayed in figure 4.9b. The point close to the start plate presents a high
concentration of Iron, Chromium, Nickel in addition to the alloying elements of the Ti-6Al-
4V alloy. Those elements are coming from the Stainless Steel start plate. They diffused
from the start plate through the fabricated part. Al-Bermani studied this phenomenon [87]
and explained that the alloying elements of the start plate act as β-stabilizers.

The second EDX spectrum shows less concentration of β stabilizers and the third
one is a typical EDX spectrum of a Ti-6Al-4V alloy. This means that the height of the
affected zone is less than 150 µm.

This affected zone has to be taken into account as it should affect the mechanical
properties. To get rid of this effect, parts should be fabricated 200 µm over the start
plate.

Thin struts

The main purpose of the PhD is to study lattice structures fabricated by EBM. Those
structures are composed of thin struts. The microstructure of those struts is now considered
and compared to the one of bulk samples.

Figure 4.10 shows SEM micrographs of struts with two different diameters (1 mm
and 3 mm) for two different planes (perpendicular and parallel to the build direction).
The observations reveal that the microstructure is similar between 1 mm and 3 mm
struts whatever the cross-section is (perpendicular or parallel to the build direction). The
microstructure of thin struts is still lamellar. The α lath width seems in the same range
for both strut diameters and bulk part (figure 4.7).

(a) SEM micrograph of a longitudinal
cut of a 1 mm diameter strut.

(b) SEM micrograph of a longitudinal
cut of a 3 mm diameter strut.

(c) SEM micrograph of a transversal
cut of a 1 mm diameter strut.

(d) SEM micrograph of a transversal
cut of a 3 mm diameter strut.

Figure 4.10 SEM micrographs of different sides of a 1mm and 3mm vertical struts. The
build direction is represented by the black arrows.
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From these SEM micrographs, the microstructure seems similar between bulk parts
and thin struts.

Micro-hardness test have been carried out on struts and bulk parts. Figure 4.11 tends
to show a difference of hardness between bulk parts and struts. Indeed, the micro-hardness
decreases as the strut size increases.
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Figure 4.11 Vickers microhardness of bulk part and struts with different diameters.

The results show that the struts have a slightly higher hardness (3.5-3.7 GPa) than
bulk material (3.25 GPa). One explanation of this difference could be a change of the prior
β grain size and crystallographic orientation. The size and cristallographic orientation of
the prior β grains have been obtained by EBSD. Figure 4.12 depicts the EBSD maps of a
1 mm strut.

(a) IPF map of the daughter
α phase.

(b) IPF map of the parent β
phase.

(c) Pole figure of the parent
β phase.

Figure 4.12 EBSD maps showing the orientation of the α phase at room temperature and
the reconstructed parent β phase at high temperature for thin strut manufactured at 45
.̊ Image obtained by C. De Formanoir at ULB [90] on struts manufactured at Grenoble

university.

The first image shows the α phase orientation map. A global orientation of the α
colonies along the build direction can be seen. Large α colonies are present in the strut

81
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with a preferred orientation along the {0001} direction (pink color). Figure 4.12b shows
the prior β grain elongated in the build direction with a mean width of roughly 70-100
µm. The prior β grains are indeed thinner for thin struts than for bulk parts (150-200
µm). This could be due to a faster cooling rate and the influence of radial thermal flux.

The last image shows the pole figure of the {001} direction of the parent β grain. It
is less textured than in bulk parts. This has also been demonstrated by Antonysamy et
al. [88]. They showed that, in thin struts, the parent β phase is no more oriented only
along the build direction but also in direction of the side of the part. This change of
crystallographic orientation is due to the thermal flux that is also oriented towards the
edges of the struts.

These changes in prior β grain size can explain the increase of hardness for small struts.

The microstructure of thin struts produced by EBM has been much less studied than
the one of bulk parts. The first to refer to the microstructure of such struts was Murr
et al [65] in 2010. They highlighted the production of acicular martensite (α′) for small
struts. However, for their study, they used a preheating step at 640̊ C which is closer to
the Martensite Start temperature.

From our preliminary observations made on struts, no evidence of martensite transfor-
mation has been found. This could be due to a higher temperature of preheating (about
700̊ C) compared to 640 C̊.

4.2.3 Porosity

The quantity and morphology of pores may strongly affect the mechanical performances
of the built parts. The EBM process tends to produce defects when melting layer by
layer if the process parameters are not optimized. For EBM produced parts, two types
of porosity have been revealed as shown in figure 4.13: spherical and non-spherical porosity.

(a) Pores coming from the initial pow-
der porosity.

(b) Defects due to a lack of fusion.

Figure 4.13 SEM micrographs of the two types of pores that can appear in EBM parts.
The build direction is represented by the black arrow and the circle.

As mentioned in the previous part (section 2.2.3) and shown by Tammas-Williams
et al [18], the initial powder presents an internal porosity due to Argon gas entrapped
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during solidification of the particle. This phenomenon has been widely reported in the
literature [18,20,26,27]. The internal pores within the initial powders do not totally close
when melting.

As shown in figure 2.5 (from the study of Tammas-Williams et al.), the larger the
particle, the higher is the probability to observe entrapped porosity. Their study showed
that pores can range from 5 µm to 120 µm with a median diameter of 12 µm. Figure
4.13a shows a typical SEM view of a polished surface. It exhibits some spherical pores
with a cross-section lower than 100 µm. They are shown in black. The build direction is
perpendicular to the plane.

The other category of porosity is the non spherical one. These pores result from a
lack of melting due to non-appropriate process parameters or melting strategy. They are
more damaging as they generate higher stress concentrations. The figure 4.13b is a SEM
micrograph of a surface fracture of an horizontal tensile specimen. The large pores result
in this case from a lack of fusion and especially a bad overlap of the melting from one
layer to another. It is usually the consequence of a overhanging surface produced with no
supports or bad process parameters.

In summary, in parts built with standard sets of process parameters, almost every pore
exhibits a spherical shape. When deteriorating the process parameters, large non-spherical
pores may appear.
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This chapter aims at characterizing the mechanical properties of the Ti-6Al-4V alloy
produced by Electron Beam Melting. The comparison between the obtained results and
the mechanical results claimed by the supplier Arcam is highlighted.

5.1 Mechanical properties of conventional Ti-6Al-4V

alloy

The typical values of mechanical properties of Ti-6Al-4V alloys depending on their
microstructure are depicted in table 5.1 as they appear in ASTM standards. The values
reported here are minimal values for satisfying the standards.

Duplex microstructures exhibit larger strength and ductility than fully lamellar mi-
crostructures. The duplex microstructures in wrought alloy have undergone a recrystal-
lization step. They are supposed to have better mechanical properties than the alloy
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Ti-6Al-4V cast Ti-6Al-4V wrought
widmanstätten duplex

(ASTM F 1108) (ASTM F 1472)

Yield strength (0.2 %) [MPa] 758 860
Ultimate Tensile Strength [MPa] 860 930
Elongation [%] >8 >10
Young’s modulus [GPa] 114 114

Table 5.1 Mechanical properties of Ti-6Al-4V alloys with lamellar and duplex microstruc-
tures.

resulting from casting since the low cooling rate in casting provides coarser microstructures.

The microstructure features of Ti-6Al-4V alloys defined in the previous chapter (chap
4) influence drastically their mechanical properties. For lamellar microstructures, the
cooling rate from the β phase region dictates the α colony size and influences the related
strength and ductility.

5.2 Samples and experiments

To investigate the mechanical properties of EBM-produced parts, tensile tests are carried
out. The static properties have been studied without considering fatigue or dynamic
mechanical properties.

5.2.1 Tensile test

The tensile test experiments have been carried out on a MTS 810 tensile test machine
with a 100 kN load sensor.

For the tensile test, a constant strain rate of 2.5.10−4s−1 has been used. An axial
extensometer with a gauge length of 25 mm has been attached to the sample to measure
the true strain of the sample and avoid the possible errors due to the elastic deformation
of the load frame and cross head.

5.2.2 Tensile samples

Geometries

The tensile samples have been designed to have a cross-section small enough to be able
to reach the failure with the 100 kN tensile machine. The produced sample is obtained
as-built from the EBM fabrication.

The designed tensile sample is shown in figure 5.1. The geometry satisfies the standard
ASTM E-08 [91].

Fabrication strategy

In this study, the influence of the build direction on the mechanical properties is not
treated even though literature showed that it may have a slight influence [92,93]. Hence,
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Figure 5.1 CAD models of the as-built tensile sample. The build direction is represented
by the black arrow. (dimensions are in mm)

due to the crystallographic anisotropy of the microstructure, the ductility is larger in
vertical samples than for samples built horizontally but the tensile strength is lower.

The tensile samples produced in this study were fabricated vertically.
All the tensile samples were built using the standard "Melt" set of parameters.

5.3 Mechanical properties of EBM-built Ti-6Al-4V

alloy

5.3.1 Main Results

As-built tensile test samples with a 6 mm diameter have been produced vertically by EBM
and tested to investigate their mechanical behavior. Comparison is made with values
announced by the supplier. A 6 mm-diameter tensile sample is considered as a bulk part.

Six samples were tested to investigate the reproducibility of the Electron Beam
Melting process. All the samples had the design of figure 5.1. They were manufactured
in the same build with the same parameters. They were mechanically tested without
machining.

The stress-strain curves of the tensile tests are shown in figure 5.2.
The samples exhibit almost the same mechanical behavior. They show an elastic regime

until a Yield strength (at 0.2 % in strain) of roughly 1050 MPa. No work-hardening
is observed. The inset is a zoom in the plastic regime. The mechanical behavior is
the same for the six samples. This shows that the EBM process allows a good
reproducibility.

The mean values of mechanical properties corresponding to the curves of figure 5.2 are
reported in table 5.2.

The 6 mm as-built samples exhibit a higher strength (Yield strength and Ultimate
Tensile Strength) than the ones certified by Arcam. Moreover, the as-built samples reveal
a drastically lower ductility.
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Figure 5.2 Stress-Strain curves for as-built 6mm vertical samples.

As-built 6mm diameter Arcam data
Mean value ± STD Claimed by supplier

Yield strength (0.2 %) [MPa] 1045 ± 9 950
UTS [MPa] 1100 ± 10 1020
Elongation [%] 2.3 ± 0.5 14
Young’s Modulus [GPa] 114 ± 1 120
Table 5.2 Mechanical properties of as-built 6mm samples produced by EBM compared
with the supplier data.

Size effect

To investigate the influence of a microstructural variation between thin struts and bulk
parts, tensile test have been carried out on as-built samples with diameters ranging from
two to six millimeters. Their geometry is depicted in figure 5.3.

For each diameter, two samples have been fabricated and tested. As shown earlier
on the 6 mm diameter samples, there is a good reproducibility for each diameter. Thus,
for an easier visualization, only one stress-strain curve per diameter has been plotted in
figure 5.4.

The samples show globally the same trend. When zooming in the plastic regime, some
discrepancies can be highlighted between the samples.

Samples with a 2 mm diameter exhibit a higher YS and UTS than other samples
whereas samples with a 5 mm diameter presents the lowest value.

The data have been reported in table 5.3.
A change of specimen size has a very limited effect on strength and ductility. It

confirms the fact that the microstructure is not very sensitive to the strut diameter (as
explained section 4.2.2).

As a summary:

• No clear change of mechanical properties was observed when varying the diameter
of the tensile specimen.
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Figure 5.3 CAD models of the as-built tensile samples with different diameters. The build
direction is represented by the black arrow.
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Figure 5.4 Stress-Strain curves for as-built vertical samples with samples varying from 2
to 6 mm. Correction with equivalent diameters.

Diameter of as-built sample 2 mm 3 mm 4mm 5mm 6mm δmax (%)
Mean value

Yield strength (0.2 %) [MPa] 1114 1076 1089 1075 1093 3.5
UTS [MPa] 1173 1139 1160 1140 1149 2.9
Elongation [%] 1.67 2.44 2.68 2.8 2.2 40.4
Young’s Modulus [GPa] 113 114 114 114 114 114
Table 5.3 Mechanical properties of as-built samples produced by EBM with a diameter
ranging from 2 to 6 mm.

• The Young’s modulus value is in the expected range (∼114 GPa).

• The strength (YS and UTS) is largely higher than the values claimed by the supplier.
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• The elongation to fracture is very low (<3%).

The origin of the high strength and low ductility is now investigated.

5.3.2 Origin of the high strength

As seen in the previous paragraph, there is no size effect on the strength of the produced
samples. The slight fluctuations observed between samples with different diameter cannot
explain the large difference of strength (YS and UTS) compared to the values claimed by
the supplier.

When the EBM machine has been received, a preliminary study was carried out for
the validation of the mechanical properties of produced parts. In the following, the results
coming from this work will be called "Preliminary study". On the contrary, the results
coming from a second mechanical study will be called "Final study".

The stress-strain curve resulting from this preliminary study is shown in red in figure
5.5. It is compared with one tensile test result from the final study (in black). The samples
are both as-built with a 6 mm diameter following the geometry of figure 5.1.
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Figure 5.5 Stress-Strain curves for as-built 6 mm vertical samples in the preliminary and
final study.

The results show a large difference in strength and ductility between both samples.
The values of mechanical properties are reported in table 5.4.

The tensile test samples of the preliminary study exhibit much lower strength and
larger ductility. The values of strength for the preliminary study are in the range of the
values claimed by the supplier (Table 5.2). A large decrease of ductility occurs between
the preliminary study and the final one (from 8% to 2 %).

The increase of the strength and decrease of the ductility is typical for a titanium alloy
when getting enriched by oxygen. A small literature review tends to explain the effects of
such interstitial element on the mechanical performance of the alloy.
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Preliminary study Final study
Yield strength (0.2 %) [MPa] 878 1045
UTS [MPa] 990 1100
Elongation [%] 8.0 2.3
Young’s Modulus [GPa] 114 114

Table 5.4 Mechanical properties of as-built 6mm samples from the preliminary and final
study.

Literature Review

Interstitial elements can impact drastically the mechanical properties of titanium alloys.
Among these elements, oxygen is the most influential one. Oxygen is an α-stabilizer
that acts as solid solution strengthener. Jaffee et al. [29] showed that increasing oxygen
concentration induces an increase of strength and hardness as well as a decrease of ductility
of the alloy.

Figure 5.6 Influence of the oxygen content on the mechanical properties of Ti-6Al-4V and
CP Ti alloys. From [28].

The influence of a variation of oxygen concentration on the mechanical properties of
Ti-6Al-4V was also reported by Oh et al [28] (Figure 5.6). The same trend is visible for
both alloys showing an increase of strength and decrease of ductility when increasing the
amount of oxygen. If a Ti-6Al-4V alloy contains 0.4 wt% of oxygen, the final UTS will
reach 900 MPa whereas its elongation will decrease to 6-7% instead of the standard value
of about 15 %.

The oxygen atoms modify the dislocation path within the hcp crystal. Oxygen atoms
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occupy the octahedral sites of the HCP crystal structure [28]. As a result, the critical
resolve shear stress increases. Thus, it increases the hardness and strength of the alloy.

Interstitial level investigation

The interstitial concentration of samples coming from the preliminary study and the final
study has been assessed. The chemical analysis has been carried out by the "Institut des
Sciences Analytiques" (ISA) from the CNRS lab at University of Lyon. High temperature
combustion and analysis of produced gas has been used for the elementary analysis of the
interstitials.

Table 5.5 shows the values obtained for the preliminary and final study as compared
with the specifications from the supplier. As mentioned earlier, the tensile samples of the
preliminary study has been produced just after the initiation of the machine at Grenoble
university (with new powders). On the contrary, the tensile samples of the final study
have been fabricated with powders that underwent numerous reuses.

Arcam Ti-6Al-4V Preliminary study Final study
Al [%] 6 5.73 6.37
V [%] 4 3.90 4.52
O [%] 0.15 0.27 0.53
N [%] 0.01 0.018 0.037
Fe [%] 0.1 0.18 0.22
C [%] 0.03 <0.01 0.01

Table 5.5 Table of interstitials concentrations from the supplier specification, the preliminary
study and the final one.

The tensile sample for the preliminary study exhibits interstitial concentrations close
to the one announced by the supplier except for the oxygen content which is much higher
(0.27% instead of 0.15%). The chemical analysis on samples of the final study shows a
large increase of the Oxygen (0.53%) and Nitrogen content.

Thus, the reuse of the Ti-6Al-4V powder throughout the builds can lead to an increase
of the interstitials content (especially oxygen). It can modify largely the mechanical
properties of the produced part (according to figure 5.5).

A study from Tang et al. [56] was focused on the effect of the reused times on the
size, shape, chemical and flowability of Ti-6Al-4V powder processed by EBM. They used
initial powder with an Extra Low Interstitial content (ELI). Their results showed an
increase from 0.08 % to 0.19% of oxygen content after 21 uses. The Al and V content
stayed generally identical. Their results have the same trend as ours but the range of
oxygen content is relatively different. Indeed, in their range, the increase in oxygen content
produces a increase of yield strength and ultimate tensile strength but no change in terms
of elongations. In our range of oxygen concentration, the ductility decreases largely.

⇒ In summary, oxygen pick-up occurs during the reuse of the powder and can lead to a
drastically reduction of the ductility and increase of the strength of the produced Ti-6Al-4V.

Recommendations for controlling oxygen pick-up of produced parts

Controlling the amount of oxygen of the Ti-6Al-4V produced part is of great importance.
This oxygen pick-up during recycling of the powder has been largely investigate internally
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by Arcam. Their study points out the steps when oxygen pick-up occurs within the
different steps of manufacturing by EBM.

The main pick-up of oxygen occurs during the melting within the EBM machine. Even
if the build chamber is pumped under secondary vacuum, some moisture can be trapped in
aluminum residues inside the machine and release oxygen during the manufacturing. The
titanium being very sensitive to oxygen at high temperature, this results in a significant
increase of oxygen in the melted and also in the sintered powder surrounding it. This
powder will be then reused multiple times before being melted. During those reuses, the
powder can accumulate oxygen.

Some recommendations can be listed:

• Use of Extra-low interstitial Ti-6Al-4V powder (ELI powder). It exhibits an initial
oxygen concentration ≤ 0.1%

• For each build, mixing new powder with reused one to keep a constant oxygen
content

• Clean carefully the inner surface of the EBM machine to avoid moisture to be
entrapped in aluminum residues.

5.3.3 Origin of the low elongation to failure

As studied in the previous paragraphs, the oxygen pick-up plays a role in the decrease
of the ductility of the produced parts. However, even when producing parts with a low
oxygen content, the ductility is lower than the value claimed by the supplier (8 % vs 15
%).

Other sources can be imagined. The reduction of the elongation to failure can be linked
to the surface irregularities (that can act as a crack initiator) or to internal porosities.The
aim of the next paragraphs is to estimate the degres of importance of each effect.

Effect of surface irregularities

The global standard for testing specimen fabricated by AM consist in producing oversized
parts and then machine them to fit the designed geometry (ASTM F2971-13) to be further
mechanically tested. However, the AM techniques are attractive to produced as-built parts.

To be able to see the influence of the roughness on the mechanical properties and
to compare with literature values obtained on machined samples, samples with a 6 mm
diameter (geometry of figure 5.1) have been produced by EBM and machined to different
diameters (5, 4, 3, 2 mm). The comparison between as-built and machined samples with
the same diameter have been carried out. The machined sample with a final diameter of
5 mm is shown in figure 5.7.

The mechanical properties of the machined sample are compared with an as-built
sample with a 5 mm diameter. However the same trend has been observed for machined
samples with any final diameter.

Figure 5.8 shows the stress-strain curve for as-built (dotted line) and machined (full
line) samples with a 5 mm diameter. The points in blue correspond to the elongation of
machined samples with a low ductility and the points in red delimit the large elongations.
The triangles correspond to the final elongation of 5 mm diameter samples as-built.
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Figure 5.7 5 mm diameter sample machined from an as-built sample with a 6 mm diameter.
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Figure 5.8 Stress-Strain curves of 5mm as-built and machined samples.

This figure highlights two effects:

• In terms of strength, as-built samples and machined samples have roughly the same
values.

• In terms of ductility, as-built samples exhibit always a low elongation (around 3%)
whereas machined samples have a much more complicated behavior. Some samples
fail at low elongation (blue points) and other fail at higher values (red points)
although they have been manufactured within the same build, with the same set
of process parameters and the same orientation. Machined samples with a large
elongation exhibit necking.

The results are summarized in table 5.6.
The roughness can be considered as a site of stress accumulation and the fracture can

thus initiate in early stage of the tensile test. The standard deviation of the elongation to
failure increases drastically from 0.8 % for as-built samples to 2.8 % for machined samples.
The variability of elongation of 50 % is therefore observed.

Such differences in terms of elongation for EBM parts have been already reported
by Karlsson et al. [21]. They carried out tensile tests on machined samples with Digital
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5 mm as-built 5 mm machined
Mean values ± STD Mean values

Yield strength (0.2 %) [MPa] 1075 ± 17 1110 ± 15
UTS [MPa] 1140 ± 17 1230 ± 27
Elongation [%] 2.8 ± 0.8 6.2 ± 2.8
Young’s Modulus [GPa] 114 ± 1 112 ± 1.4

Table 5.6 Mechanical properties of 5 mm-diameter samples as-built and machined.

Image Correlation (DIC). Their results showed large discrepancies in terms of ductility
(elongations between 4 and 7 %). Using the DIC, they showed that samples with larger
elongation have a more homogeneous strain field than samples with a short elongation.
From the fractography analysis, they attributed the difference of elongation to the location
of pores within the sample. For the samples that break early, the porosity was located
both at the surface and in the bulk whereas for samples with larger ductility, the pores
were located mainly in the bulk.

Towards the understanding of the elongation dispersion

From the previous considerations, machined samples with a 2 mm diameter have been
analyzed by tomography prior to tensile test and post-mortem to investigate the amount
and position of pores within the sample and correlate it with the failure zone. A sample
with a diameter of 2 mm has been chosen to simplify the X-ray tomography conditions. It
is reliable since the machined tensile test samples exhibit the same elongation dispersion
whatever their diameter is. The tomograph used was an EasyTom XL 150 from RX
Solutions R©. To map the entire volume, a stacked tomography mode has been used. The
voxel size for the analysis was 2.5 µm.

The fracture surface has been analyzed to investigate if microstructural features can
influence the mechanical properties.

The tensile sample exhibits a Yield strength of 1120 MPa, an ultimate Tensile Strength
of 1217 MPa and an elongation to failure of 4.1 %.

(a) Initial dense and
pore volumes.

(b) Post-mortem
and pore volumes.

Figure 5.9 3D views of the dense and pore volumes for initial and post-mortem samples.

The reconstructed volumes from X-ray tomography are shown in figure 5.9. The dense
volume is represented in green and the pores in red. The shape of the pores has changed
close to the zone of failure.
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5.3. Mechanical properties of EBM-built Ti-6Al-4V alloy

The pores have globally a spherical shape in the initial volume. As mentioned previously
(4.2.3), the pores are coming from the atomization process to form the titanium powder.
No irregular pores are observed which means that the melting during the manufacturing
process occurred efficiently.

Pore Analysis The aim was to be able to predict the zone of failure on the sample
prior to tensile test (figure 5.9a). The initial volume has been cut into circumferential
volumes to see the influence of pore close to the surface. The circumferencial volume kept
ranged from 0.1mm to 0.4 mm in radius.
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Figure 5.10 Analysis of pores area along the volume height for the entire volume (a), a
circumferential volume with a thickness of 0.4 mm (b), 0.2 mm (c) and 0.1 mm (d). The
failure zone is represented by the red rectangle.

For each 3D image, the area of pore at each stack is extracted. It allows to extract
the stack presenting the highest surface of pores. This analysis is carried out on the
three circumferencial volume and on the global volume. The pores area is plotted as a
function of the height in figure 5.10. The zone of failure is located around 1.5 mm and is
represented by a red rectangle in the x-axis. It has been identified by comparing the 3D
volume prior and after the tensile test. The correlation of the pores location allowed the
matching of the volumes.
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Chapter 5. Mechanical properties

The figure 5.10 (a) shows the pores surface at each height of the global sample. The
height of maximum porosity does not correspond to the height of failure. However, when
keeping a small circumferencial volume of 0.2 mm (c), the height of maximum surface
area of pores corresponds to the height of failure. For the circumferencial volume with a
thickness of 0.1 mm, the porosity is located only within the failure height (see figure 5.9).

These results highlight the correlation between porosity location and fail-
ure zone. The pores at the periphery of the struts are responsible to the
breaking of the sample. It can explain the elongation variability.

The broken part has been observed by SEM to investigate the fracture surface.

Fractography analysis The fracture surface has been observed by SEM. The images
are exposed in figure 5.11. The first image (at low magnification) shows the global
shape of the fracture surface. At this magnification, one can distinguish, the plane zone
(in the middle and delimited by the blue curve), the zones going up and down (in the
circumference).

A part of the plane zone reaches the surface at the bottom right corner. This is the
part where the fracture started.

(a) Fractography of the 2 mm sample. (b) Fractography of the 2 mm sample. Zoom
at the zone of initiation of rupture.

Figure 5.11 Fracture surface observation by SEM. Global images at low magnification (a)
and zoom at the initiation of rupture (b).

The figure 5.11b shows a zoom on this zone. Pores are pointed out by a red circle. As
seen in the tomography analysis, some pores are located close to the surface. They have
been identified as critical pores.

The fracture surface is globally composed of dimples representative of a ductile failure.
However, some black area are observed especially in the zone where the failure started.
These areas are plane and do not exhibit a dimple shape. Chemical analysis of such area
has been carried out using Energy Dispersive X-ray Spectroscopy. Their composition
is the same as the composition of the dimples. Thus, they do not result from pollution
during the manufacturing.

Lütjering found the same observation on conventional Ti-6Al-4V alloy [83]. It corre-
sponds to a zone of intergranular type of fracture. At a given cooling rate, the fracture
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5.3. Mechanical properties of EBM-built Ti-6Al-4V alloy

mode changes from transgranular to intergranular. It could be an explanation because
the size of the black area corresponds to the size of a prior β grain (100-200 µm).

The mode of fracture is indeed hybrid composed mainly of dimples resulting from a
transgranular fracture. However some grains exhibited a more brittle mode of fracture
since intergranular fracture occurred.

The location and amount of such brittle mode of fracture can influence
largely the ductility of the produced samples and play a significant role in the
elongation dispersion.
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Summary

Microstructural characterization:

• Some microstructural features of Ti-6Al-4V produced by EBM are similar for
small struts and bulk parts:

– A strong anisotropy exists between the build direction and other directions.
Due to epitaxial growth during the directional cooling, the prior β grains
are oriented along the build direction.

– Both small struts and bulk parts present a lamellar microstructure with
an α lath width of roughly 1 µm.

• However, the β grain size is slightly smaller (70-100 µm) for thin struts than
for bulk samples (150-200 µm).

• Two types of porosity can be observed: spherical and non-spherical ones. The
first one comes from the powder production process and the second one results
only from bad melting.
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5.3. Mechanical properties of EBM-built Ti-6Al-4V alloy

Mechanical characterization:

As-built samples manufactured by EBM presented a much larger strength and
drastically lower ductility than the values announced by the supplier ARCAM. To
understand this difference of mechanical properties,several effects have been analyzed
separately. The influence of each effect has been summarized in figure 5.12.

• The increase of oxygen content during the multiple reuse of the Ti-6Al-4V
powders lead to a higher strength and a lower elongation to failure (black arrows
in the figure).

• Tensile samples with different diameter have been tested. No size effect has been
observed in terms of mechanical properties. It is consistent with the previous
microstructural observations.

• Machined samples exhibit the same strength as as-built ones but can have larger
elongation to failure (blue arrows in figure 5.12). A large versatility of ductility
has been found for machined samples (dashed arrow in the figure 5.12).

• X-ray tomography and fracture surface analysis helped to understand this
versatility in elongation. The dispersion of elongation to failure is mainly due to
the presence and amount of pores on the periphery of the strut. It can be also
influenced by a change in the deformation mode. This versatility has been only
investigated on machined samples with a high oxygen content but we suppose
that it occurs also for machined samples with a low oxygen content.
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As-Built
High O

Machined
High O

As-Built
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Machined
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Effect of Machining
Effect of Oxygen pick-up
Elongation dispersion

Figure 5.12 schematic representation of the effects of each parameters on the mechanical
properties of Ti-6Al-4V parts built by EBM. Representation in the Yield strength-Elongation
to failure space.
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Part III

A methodology for the stiffness
prediction of lattice structures

produced by EBM
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In this part, a precise methodology for determining effective geometry and mechanical
properties of lattice structures produced by EBM is presented. A well-know triangulated
structure is used as a reference structure. The methodology presented here aims at being
general and could be applied to any geometry and AM process.
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Review on geometrical and
mechanical variability in AM of
lattice structures
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This section aims at setting a point of reference of the literature that shows a vari-
ability in terms of shape and/or mechanical response for lattice structures produced by
Additive Manufacturing technologies. Few studies focused on the geometrical and mechan-
ical characterization of the produced struts and their comparison to the designed geometry.
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6.1. Electron Beam Melting

6.1 Electron Beam Melting

One of the first attempt to characterize the geometrical variability of struts has been
made in 2008 by Cansizoglu et al. [64]. They reported the properties of periodic lattices
(consisting of hexagonal unit-cells) under compression and three-points bending. They
showed that geometrical discrepancies can appear between the designed structure and the
fabricated one depending on the strut angle. Their explanation is based on geometrical
considerations (see figure 6.1). Depending on the strut angle, layer thickness and melt
pool depth, the overlapping zone can be reduced for struts with a low orientation angle
(so-called staircase effect). They forbid the strut to have an angle lower than 20 t̊o prevent
the phenomenon.

Figure 6.1 Scheme showing the problems of bad overlapping between each layer for low
strut angles. Image from [64].

However, their study was based on struts produced by EBM with a layer height of
100 µm. As explained in chapter 2, the layer thickness in our study is 50 µm. From
image 6.1, when decreasing the layer thickness, the overlapping becomes larger. Thus,
this phenomenon will not be predominant anymore. Moreover, their study focused on the
theoretical analysis of the overlapping zone but did not take into account that at each
layer re-melting occurs leading to a better structural integrity of the struts.

Yang et al. focused on a re-entrant structure produced by EBM [94]. They reported a
high variability in strut size and roughness. As an outlook, they suggested an effective
strut size from a 2D scheme of a strut (Figure 6.2).

(a) Surface of a strut. (b) Evaluation of the effective size.

Figure 6.2 Strut size of an EBM part. Image from [94].

From the 2D observation of a strut (figure 6.2a), they proposed to take into account
only the internal section (d in figure 6.2b) that falls entirely within the strut. However,
no link between this effective size and the effective mechanical properties was carried
out. They highlighted that "to accurately determine the actual strut sizes is therefore a
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challenge".

More recently, a group from Sheffield University studied metallic foams manufactured
by Electron Beam Melting [68]. They used a tomographic image from a replicated foam
as the basis of their CAD model. Their aim was to reproduce isostructural foams and
compare it to a recent model.

In their work, they also focused on the produced struts. They carried out X-ray
tomography on struts ranging from 0.58 to 1.8 mm of diameter with a voxel size of
approximately 20 µm3 (see figure 6.3). The internal porosity fraction was quantified as
less than 0.1 % for any strut diameter and no clear evolution of the porosity content with
the strut diameter was observed.

Figure 6.3 3D view of the produced strut from tomographic images. Image from [68].

From figure 6.3, they qualitatively explained that the scale of the surface roughness
seems constant whatever the diameter of the strut. Thus the effect of the surface
roughness become predominant for small struts. In their study, they suggested to keep a
strut diameter larger than 1 mm to control the mechanical properties of the produced
lattice.

6.2 Other AM processes

6.2.1 Laser Beam Melting

X-ray tomography is a largely used tool in the characterization of Laser Beam Melting
struts.

A study from Van Bael et al. [61] focused on the characterization and improvement
of the geometrical and mechanical controllability of porous structures manufactured by
LBM. Their methodology involves an optimization loop.

The first loop is the "experimental" run where lattice structures are produced, charac-
terized by X-ray tomography and mechanically tested. From the tomography analysis
several features are extracted: strut thickness,lattice density, surface area and structure
volume. The initial design is then adjusted according to these results and manufactured
in a second step.

Focusing on a particular geometry, they succeeded in reducing the geometrical and me-
chanical mismatch between the designed and fabricated structures. One major observation
is that they could not melt struts with a diameter lower than 200 µm.

This methodology is interesting since it relies on a fully 3D geometrical investigation
and allows to reduce the geometrical and mechanical mismatch between designed and
produced porous structures. However, their protocol requires a first step of "experimental"
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6.2. Other AM processes

run before the "production" run for each produced design. There is a need for a more
general tool that can be applied to any geometry for an AM process.

Other studies deal with the structural characterization of lattice structures produced
by LBM. Hasan et al. [95] produced lattice structures made of BCC unit-cells. They
characterized the struts using SEM and EDX showing that the struts with a diameter of
around 380 µm present micro-voids and a dendritic microstructure due to contamination.

Yan et al. [96] evaluated the manufacturability of lattice structures by LBM. The
lattice structures are composed of gyroid unit-cells. X-ray tomography characterization
revealed that the lattice structures were manufacture without defects.

6.2.2 Direct Metal Deposition

Recently, Park et al. [97, 98] worked on the way of taking into account the versatility of
the deposition of the DMD process into the mechanical properties of lattice structures
manufactured by such technology.

From the DMD process, they assumed a random distribution of the deposited radius
(r in figure 6.4) centered on the desired value. They used a normal distribution based
on already known fluctuations. A strut is then constructed by pilling melted layers. An
effective radius is extracted from the strut (r’). For a designed strut diameter of 1.5 mm,
the effective strut diameter is calculated between 1.36 mm and 1.42 mm depending on
the normal distribution parameters and the angle of fabrication.

Figure 6.4 Overall methodology of effective radius from a distribution of deposited radius .
Image from [98].

Then this effective radius is implemented into numerical simulation and compared
with experimental values. The statistical parameters of the distribution are then tuned to
obtain good agreement with the experimental data.

Their study is interesting since it allows the prediction of the mechanical properties of
the produced structures. Their methodology was however based on a deposition variability
but do not rely on 3D characterizations on produced struts.
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Conclusion

Little amount of studies on the geometrical and mechanical characterization of produced
struts are available in the literature. For the EBM process, some studies reached the
conclusion that it would be challenging to fully characterize the internal and external
geometry of struts. This is the aim of the following chapters.
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Structural and mechanical
characterization of single struts
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The structural and mechanical characterization of single struts is the main attention
of this PhD thesis. As previously mentioned, the difference between the expected and
produced struts is larger when producing struts in the range of the spatial resolution of
the process. For the Electron Beam Melting process, we choose to expose the methodology
that follows on 1 mm diameter struts. In a following chapter, the same methodology will
be generalized on struts with different diameters.

In a first section, the methodology and tools used will be exposed. Then, struts with
a 1 mm diameter and different orientations will be characterized. The last section aims at
defining geometrical tools that link the geometrical features and the mechanical properties
of such struts.

7.1 Materials and methods

7.1.1 Fabrication of 1 mm struts

Single struts with a circular cross-section having a 1 mm diameter and a height of 15
mm were manufactured by the Electron Beam Melting process. The figure 7.1 shows the
manufactured struts.

In order to investigate the variation of the geometry with the build direction, struts
with different orientations (α) have been elaborated. Horizontal struts have a build
orientation α = 0̊ whereas vertical struts exhibit α = 90̊ . This study focuses on three
orientations: vertical (α = 90̊ ), oblique (α = 45̊ ) and horizontal (α = 0̊ ) struts. No
support were used to create the struts for any orientation.
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Figure 7.1 Scheme of the designed struts before manufacturing by EBM. The build direction
is represented by the white arrow.

As mentioned earlier, the process parameters and strategies are gathered into "themes".
Basic themes are given by the supplier (Arcam R©). The standard theme for bulk part is
the "Melt" theme. However, for very thin struts they recommend using the "Net" theme.
In this part, 1 mm struts are manufactured using the "Net" set of process parameters and
strategies.

The strategy for manufacturing vertical struts with a 1 mm diameter can be explained
using the scheme of figure 7.2. It represents the melting path of the electron beam at a

CO1 CO2

Limit of the CAD file
1st contour
2nd contour

Figure 7.2 Scheme of the melting path at a given height for a 1 mm circular vertical strut
when using the "Net" theme.

given height for a vertical strut with a 1 mm diameter.
The limit of the CAD file is represented by the dashed red line. The electron beam

scans a first path (1st contour in black) with special process parameters and a second one
(2nd contour in blue) with other process parameters. The first contour offset (CO1) is the
distance between the CAD limit and the first contour. It is set to 0.3 mm. The second
contour offset (CO2) is set to 0.1 mm.

The values of the beam speed and current are reported in table 7.1.

1st contour 2 nd contour
Offset [mm] 0.3 0.1
Speed [mm/s] 470 470
Current [mA] 2.4 2

Global
Volume Energy [J/m3] (14.1) 2.1 1010

Table 7.1 Values of the process parameters for the "Net" theme when melting vertical struts
with a 1 mm diameter.

Both contours have the same speed but their current is slightly different. The outer
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contour exhibits a larger current to be able to melt until the limit of the CAD file. The
volume energy is calculated using the equation (14.1).

For horizontal and oblique struts with a 1 mm diameter, the same parameters were
used.

7.1.2 X-Ray Tomography

The struts were characterized by X-ray tomography to investigate their inner volume and
their outer surface.

The working principle of the X-ray tomography is shown in figure 7.3. A sample (here
a grey cylinder) is placed on a rotating platen. A diverging beam of X-ray goes through
the sample until it reaches the CCD camera. A radiograph is taken at each rotation of the
sample. The radiograph is a grayscale image that represents the absorption of the sample.

X-Rays

Sample

360̊

CCD Camera Radiographs 3D Image

R
econstructuction

algorithm

Figure 7.3 Scheme of the principle of the X-ray tomography.

From the greyscale radiographs at each rotation (several hundreds commonly), a 3D
image is computed using a reconstruction algorithm. This 3D image is the image used for
image analysis.1

In this study, the voxel size is (2.5 µm)3. The tomography conditions are as follows:
a voltage of 80 kV and 600 projections. To reduce the noise, at each rotation, the
radiographic image was taken as an average of three images. The height of visualization
with such a resolution is about 2 mm.

Strut visualization

The visualization of the 3D image was carried out using the open-source software Paraview.
In the following, the produced struts will systematically be depicted in green whereas

the designed ones in blue. The internal pores will be shown in red.

1X-ray tomography has been mainly carried out at INSA-Lyon, in the laboratory MATEIS, under the
responsibility of Jérôme Adrien. The machine used for tomography is a v|tome|x from GE Sensing &
Inspection Technologies Phoenix X|ray. The X-ray tube allows a voltage up to 160 kV. The detector is a
Varian Paxscan with a matrix of 1920 x 1536 pixels.
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7.1.3 Image Analysis

The 3D images coming from the tomography have plenty of information that needs to
be extracted by image analysis. The image analysis was carried out using the software
ImageJ. In-house plugins and macros were used to compute several features on the image.

Porosity measurement

To investigate the porosity, the volume of solid and pores has to be quantified. To do
so, a plugin developed by P. Lhuissier, L. Salvo and V. Boulos [99] was used. It allows
a labeling of objects connected in 3D. From this labeled image, it can calculate several
3D parameters such as the coordinates of the center of gravity, the volume of the objects,
their surface, their sphericity, their moment of inertia ...

Using this methodology, the volume of the dense part (Vdense) and the volume of the
pores (Vpores) can be extracted. The porosity level is defined as:

Po =
Vpores

Vdense + Vpores

(7.1)

Moreover, information on each pore is available. From this information, one can
discriminate the amount of spherical and non-spherical pores, the size distribution...

Roughness measurement

The surface roughness has been quantified using 3D images of the struts. The contour of
the strut has been extracted following the methodology of figure 7.4. The 3D image is
rotated every 10̊ along its longitudinal axis. For each rotation, the plane corresponding
to the center of the strut is extracted. From this 2D cut, the coordinates of the upper
contour are extracted.

Every 10˚

r

l

36 images 36 profiles

Figure 7.4 Principle of working of the ImageJ macro for extracting the contours of a strut.

A first step allows to shift the profiles in r so that their mean value is zero. The
arithmetic roughness (Ra) and the maximum roughness height (Rt) are calculated using
the equations that follows:

Ra =
1
L

∫ L

0
|r(l)|dl (7.2)

Rt = rmax − rmin (7.3)

The values of roughness are calculated for each profile. It allows to distinguish a
difference in roughness between different sides of the strut. No high-pass and low-pass
filters are applied to the profile in order to cut off the short and long order wave profile
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part. Moreover, the length of analysis for our study is about 3 mm. However, the EN
ISO 4288:1998 standard require a minimal length of 8 mm.

That’s why the arithmetic roughness calculated with this method does not corresponds
to the arithmetic roughness commonly defined.

Such differences cannot allow the comparison of roughness values with other mea-
surement methods but permits the comparison of struts analyzed with this particular
method.

7.2 Structural characterization of struts

3D geometrical characterization at the scale of a strut provides interesting insights to
understand the mechanical behavior of lattice structures produced by EBM.

7.2.1 General Appearance

The general shape of a vertical 1 mm diameter strut produced by EBM is shown in
figure 7.5. A large surface irregularity is observed in the SEM micrograph of figure 7.5a.

(a) SEM micrograph of the strut. (b) 3D reconstructed volume
of the strut (green) and pores
(red).

Figure 7.5 Morphology and porosity of vertical 1 mm strut.

Non-melted initial powders are stuck on the surface of the strut. A "plate-pile" like
stacking structure is also observed on the surface of the strut.

7.2.2 Porosity

Figure 7.5b shows a reconstructed volume of a 1mm-diameter vertical strut (green)
containing few pores (red). The size and morphology of the pores throughout the struts
are quantified.

The porosity level within the struts remains really low (<0.1%) for any strut orientation
as mentioned in table 7.2. It fluctuates between 0.02 and 0.05 %.

From the volume (V) and the surface (S) of each pore, a sphericity parameter has
been determined. It gives information on the shape of the pore. It is calculated using this
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formula:
Sphericity = 6V

√
π

S
(7.4)

The sphericity parameter is equal to one for a sphere and less for any other shape.
The mean values of sphericity are reported in table 7.2. Pores have generally a spherical
shape. It consistent with the observation of figure 7.6.

Vertical Oblique Horizontal
Porosity [%] 0.035 0.039 0.048
Mean pore diameter [µm] 16.4 25.4 24.7
Mean sphericity 0.80 0.81 0.84

Table 7.2 Porosity level, mean pore diameter and mean sphericity of the pores for three
orientations of struts with a 1 mm diameter.

Figure 7.6 highlights the distribution of pores within the strut for three strut orienta-
tions. No real trend has been observed in the repartition of pores. Indeed, as mentioned
in section 4.2.3, the spherical porosity is present in the initial powder and comes from its
forming process. Thus, the porosity is distributed randomly within the part.

(a) Vertical. (b) Oblique (45 )̊. (c) Horizontal.

Figure 7.6 Projected visualization of the pore for 1 mm struts with different orientations.

The mean size of the pores is exposed in table 7.2. Because the spherical shape doesn’t
come from the EBM process, the orientation of the strut has not much influence on the
mean pore diameter (around 20 µm). The range of pore diameter is consistent with the
values found by Tammas-Williams et al. [18].

The porosity content is lower than 0.1% for struts manufactured by EBM. Therefore
the elastic properties of the struts won’t be affected by this porosity level. In the following,
the struts will be considered as a constitutive material with a Young’s modulus of 114
GPa (value determined in chapter 5). On the contrary, such a porosity content could be
of crucial importance if fatigue properties are considered.

7.2.3 Shape and size

Figure 7.7a highlights the geometrical discrepancies between the designed geometry (blue)
and the manufactured one (green). The produced struts are systematically thinner than
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the CAD geometry, in particular for vertical and oblique struts. As a consequence, the
fabricated volume (VF AB) is smaller than the designed one (VCAD). Thus, for a lattice
structure, the manufactured density (ρ̄F AB) is lower than the designed one (ρ̄CAD).

(a) Difference between designed and produced strut.

(b) Aspect ratio of the cross-section of strut.

Figure 7.7 Geometry variation with orientation for struts with a 1 mm diameter (green).
Comparison with the designed strut (blue) for three orientations: vertical (i), oblique (ii)
and horizontal (iii). The build direction is indicated by the black arrow.

Figure 7.7b shows the variation of the cross-section shape of the struts as a function of
their orientation. The shape varies widely with respect to the strut angle. For vertical and
oblique struts, the cross-section is rather equiaxed whereas for horizontally built struts,
the cross-section is clearly elongated along the build direction.

These shape differences with respect to the build orientation can be discussed using
thermal considerations. Figure 7.8 shows a schematic view of the EBM fabrication of three
struts with specific orientations: α= 90 ,̊ 45 ånd 0 .̊ The electron beam is represented in
red, the resulting melt pool is shown in a yellow-to-red color and the red arrows illustrate
the thermal flux. Struts are surrounded by sintered powder.

The thermal conductivity of the sintered powder is lower than the thermal conductivity
of the bulk. As a result, the heat flux is more likely to go through the melted part. The
start plate (bottom plate) is considered as a heat sink.

For vertical and oblique struts, as the thermal flux is well dissipated through the
strut, the equiaxal shape of the cross-section is rather well respected (Figure 7.7b).
For horizontal struts, the thermal flux is accumulated on the down-facing side. As a
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Z+

(i) (ii) (iii)

Figure 7.8 Schematic view of the thermal behavior during EBM process for different
orientations: (i) vertical, (ii) oblique and (iii) horizontal. Red arrows indicate the thermal
flux density and direction.

result, over-melting takes place and the section becomes distorted along the build direction.

– The difference in size between the designed and manufactured strut produces a difference
of density between the designed lattice structure and the designed one. This results
in a difference of stiffness between the designed structure and the produced
one.

– Horizontal struts have a different bending response compared to the vertical ones
since their cross-section is elongated. In this study, because of the lattice structure
considered (octet-truss), only uniaxial loadings are treated. As a result, the shape of the
cross-section is not considered as a relevant parameter. The cross-section area remains
the most important parameter for tensile loading of the struts which is considered for
the present study.

7.2.4 Surface irregularities

The thermal history during the EBM process not only influences the strut’s shape but
also its surface irregularity. The over-melting zones of the struts exhibit a high roughness
whereas the top-facing zone of the struts exhibits a rather low roughness.

The surface irregularities are qualitatively analyzed from the 3D images. As explained
in figure 7.8, the roughness depends on the build orientation. For a vertical strut, (Figure
7.7a), the roughness is similar all around the circumference of the strut. However, for
oblique and horizontal struts (green in (b) and (c)), a significant difference in terms of
roughness was observed between the top-facing side and the down-facing one.

The roughness can be observed at two scales. Firstly, the "plate-pile" like stacking
irregularity is caused by the versatility of the beam to melt the required surface at each
layer. At a finer scale, figure 7.5a shows spherical powder particles that increase the
roughness. These powder particles are stuck to the melt pool but are not fully melted.

The roughness was quantitatively analyzed for a 1 mm diameter strut with various
build orientations (figure 7.9). Graphs display the arithmetic roughness (Ra) and the
maximum height (Rt) for 36 profiles taken from the circumference of the strut, as explained
in 7.1.3.
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Figure 7.9 Arithmetic and maximum roughness calculated from the 3D images of singles
struts with a 1 mm diameter. Three orientations: vertical (i), oblique (ii) and horizontal
(iii).

The data presented in figure 7.9 allow to compare the surface irregularities of struts
depending on their orientation. As explained in section 7.1.3, the length of roughness
measurement is shorter than the one recommended by the standard. Thus, the given
values are indicatives but allow to discriminate the different configurations.

For a vertical sample (figure 7.9 (i)), the roughness (Ra or Rt) does not fluctuate
significantly along the circumference of the strut. On the contrary, for oblique and
horizontal struts, the roughness fluctuates significantly for angles around 90̊ to 250̊ . This
corresponds to the over-melted zone where more particles are stuck to the melting pool.

The arithmetic roughness (Ra) for the vertical sample exhibits an average value
of about 40 µm with a standard deviation of 5 µm. The arithmetic roughness of the
horizontal strut presents a similar average value of 46 µm with a standard deviation of 10
µm.

The mean value of the maximum height of the profile for a vertical strut (Rt) is 212
µm with a standard deviation of 26 µm. For a horizontal sample (figure 7.9 (iii)), the
mean value is 247 µm with a standard deviation of 55 µm.

Thus, there is an increase of the surface irregularities when producing struts with a
low angle (<90 )̊.

Summary:

→ The difference between the nominal volume (VCAD) and the fabricated one (VF AB)
has been highlighted in figure 7.7a. This geometry discrepancy is important regarding the
design of cellular structures. It will widely impact the desired mechanical properties of
the lattice structure, especially the elastic ones.
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→ Moreover, due to the highlighted irregularities, a significant part of the strut does
not transmit loads efficiently. A concept is needed to discriminate the "mechanically
efficient matter" and the "mechanically inefficient matter".

Two approaches are suggested in the next section to define a parameter that will help
to take into account the "true" elastic response of single strut.

7.3 Concepts to link geometrical features and me-

chanical prediction

In this section two approaches are proposed to predict the effective stiffness of struts
produced by EBM. Both concepts aimed at replacing the produced strut by a circular
cylinder having the same stiffness. The first approach is based only on geometrical
considerations and the second one results from a numerical simulation at the scale of the
strut.

Thus, the shape of the cross-section is not considered even if it fluctuates largely. It is
supposed to be valid for stretching-dominated structures. However, for the prediction of
bending-dominated structures, the concepts should be refined to take into account the
moment of inertia of the cross-section.

7.3.1 Geometrical equivalent diameter DGEOM
EQ

The first approach is purely geometrical and is based on the inscribed cylinder of a
produced strut.

Inscribed cylinder assessment

Figure 7.10 summarizes the different steps to evaluate the diameter of the inscribed
cylinder (DGEOM

EQ ).

Initial image Aligned image Proj Min Inscribed surface Inscribed cylinder

z

DGEOM
EQ

Figure 7.10 Summary of the steps to find the inscribed and circumscribed diameters.

The methodology to assess the inscribed cylinder is as follows:

Alignment of the strut with the z-axis of the image During tomography, the strut
can be misaligned with the z-direction of the image. A procedure has been developed
to tilt the image and find the optimal position.
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Projection of the minimum surface The tilted image has now its neutral fiber aligned
with the z-axis of the image.

Figure 7.11 Stacks projections for the inscribed surface evaluation.

Figure 7.11 depicts the method to evaluate the inscribed surface. Every stack is
projected onto a perpendicular plane (red in figure 7.11). The inscribed surface
(Sins) is defined as the area common to all the projected surfaces (in black).

Inscribed cylinder diameter The inscribed cylinder is defined as the circular cylinder
having a section equal to the inscribed surface. Its diameter is then given by:

DGEOM
EQ =

√

4Sins

π
(7.5)

The inscribed cylinder is represented in orange in figure 7.10.

The inscribed cylinder will be denoted geometrical equivalent cylinder and its diameter
is the geometrical equivalent diameter.

Figure 7.12 illustrates the nominal geometry of a 1 mm diameter strut (in blue) and
compares it with the manufactured one (in green). The inscribed cylinder (or geometrical
equivalent cylinder) is highlighted in orange. The mechanical elastic response of the strut
is assumed to be carried by the inscribed cylinder. This hypothesis can be justified in
particular when axial stresses are predominant as in stretching-dominated structures, like
the octet-truss one.

7.3.2 Numerical equivalent diameter DNUM
EQ

In a refined approach, the mechanical behavior of the struts can be estimated from a
numerical calculation performed directly on the voxelized image resulting from X-ray
tomography.
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Nominal cylinder (CAD)

Numerical equivalent cylinder

Geometrical equivalent cylinder

Produced strut

Figure 7.12 Pie chart representation of the developed tools for a 1 mm strut built vertically.
Nominal diameter (blue), produced strut (green), numerical equivalent cylinder (red) and
geometrical equivalent cylinder (orange).

Fast Fourier Transform (FFT)

The elastic behavior of a strut is determined through a numerical approach relying on a
Fast Fourier Transform (FFT) calculation using the software CraFT [100]2.

The interest of such a technique comes from the fact that it does not require a meshing
step before analysis as for Finite Element calculations. The FFT analysis can be computed
directly on voxelized volumes. Meshing such irregular geometries would have been indeed
a real challenge.

How does it work? The software is an iterative numerical method based on FFT to
investigate the effective properties of heterogeneous materials composed of two phases.
The FFT analysis allows a simulation of the homogenized elastic response of such a
composite. A more precise explanation of the theoretical and computational method is
presented in appendix A.

The input of the software are :

• The 3D image (voxels) of the microstructure.

• A description of each phase of the microstructure. The two phases are dense Ti-6Al-
4V and void. The constitutive laws can be chosen between isotropic linear elasticity,
elastic perfectly plastic behavior or anisotropic linear elasticity.

• The loading conditions.

• The accuracy for the convergence conditions (see appendix A).

The outputs of the software are the global stress and strain tensors.

2CraFT has been developed in the french laboratory "Laboratoire de Mécanique et d’Acoustique"
(LMA) in Marseille.
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Methodology We present here the methodology used to prepare the image for the FFT
simulation and to extract the numerical equivalent diameter (c.f. figure 7.13).

Tilted image Periodic image

lx
ly

lz

σzz, ǫzz DNUM
EQ

F
F

T
A

nalysis

Figure 7.13 Summary of the steps to obtain the numerical equivalent diameter.

Since the FFT software relies on Periodic Boundary Conditions, the tilted image of
figure 7.10 is duplicated. The copy is flipped along the z direction and concatenated to
the initial image.

The loading conditions are a prescribed load along the z direction. The Ti-6Al-4V is
isotropic with a Young’s Modulus of 114 GPa and a Poisson ratio of 0.345. The value
of the Young’s modulus comes from the study of chapter 5 and the value of the Poisson
ratio comes from an ASM handbook [101]. The void is represented with a zero Young’s
modulus and Poisson ratio.

As said earlier, the output of the FFT software are the stress and strain tensors. From
the stress and strain along the z direction, the "Young’s Modulus of the image" along this
direction can be extracted using the Hooke’s law :

Eimage
z =

σzz

εzz

(7.6)

Extraction of the geometrical equivalent diameter: The expression "Young’s
modulus of the image" is an abusive terminology. It represents the global stiffness of the
heterogeneous material composed of Ti-6Al-4V and void contained in the box [lx ly lz]. If
the box is full Ti-6Al-4V is will be Eimage

z = ET A6V = 114GPa. We define the numerical
equivalent diameter as the diameter of a Ti-6Al-4V cylinder leading to the same value as
Eimage

z (see figure 7.14). So that :

ET A6V π(DNUM
EQ )2

4
= Eimage

z .lx.ly

=⇒ DNUM
EQ = 2

√

Eimage
z .lx.ly

πET A6V

(7.7)
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Figure 7.14 Identification of the numerical equivalent diameter DNUM
EQ .

The numerical equivalent cylinder is represented in red in figure 7.12.

7.3.3 Representative Volume Element

The height of the image to be analyzed is a major parameter. In order to find the RVE of
analysis for the numerical and geometrical equivalent diameters, the variation of these
parameters with the height of the image has been plotted in figure 7.15.
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Figure 7.15 Influence of the height of the analyzed image on the final value obtained for
the equivalent diameters.

For the FFT simulation, the numerical equivalent diameter is constant when computing
the FFT simulation on images from 0.5 to 2 mm of height. The RVE is thus 0.5 mm in
height. Since a layer in the EBM process is 50 µm, a simulation of an image with a height
of 0.5 mm means looking at 10 layers. It is statistically enough for the FFT simulation.

However, no plateau was found for the geometrical equivalent diameter. An analysis
on a higher image is impossible to keep a resolution of 2.5 µm in the x-ray tomography.
Thus, the geometrical equivalent diameter will be assessed on struts with a height of 2
mm.
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7.3.4 Comparison

The values of geometrical and numerical equivalent diameters are reported in table 7.3
as a function of the strut’s orientation. They are compared with the nominal diameter.
Both equivalent diameters are significantly thinner than the nominal one.

Moreover, the geometrical equivalent diameter (DGEOM
EQ ) is thinner than the numerical

one (DNUM
EQ ). It is consistent with the underlying hypothesis for the geometrical equivalent

diameter (only axial stresses considered).
The numerical equivalent diameter (DNUM

EQ ) is similar for vertical and oblique struts
but larger for horizontal one. As mentioned in section 7.2.3, for a horizontal strut, the
cross-section is elongated along the build direction and the surface is larger due to an
over-melting of the overhanging side. This results in a larger "mechanically efficient"
volume and thus a larger numerical equivalent diameter.

α 90̊ 45̊ 0̊
DCAD(mm) 1 1 1
DNUM

EQ (mm) 0.58 0.58 0.70
DGEOM

EQ (mm) 0.46 0.42 0.52
Table 7.3 Values of geometrical and numerical equivalent diameters for different strut’s
orientations.

The variation of the inscribed diameter (DGEOM
EQ ) with the strut’s orientation is a bit

surprising. As mentioned earlier, this diameter results from an intersection of projections
throughout the strut. By doing so, the volume located within the surface irregularities
are not taken into account. As shown in figure 7.9 a strut oriented at 45̊ presents a larger
variation of roughness than a vertical one. However, as depicted in figure 7.7b, their
cross-section is similar. It is the reason why the geometrical equivalent diameter is smaller
for an oblique strut than for a vertical one. For the same reasons as for the numerical
equivalent diameter, a horizontal strut exhibits a larger geometrical equivalent diameter
than for other orientations.

7.3.5 Summary

Figure 7.16 sums up the methodology developed in this chapter.
A designed strut (blue) with a diameter DCAD is produced by the EBM process. The

produced strut (green) is smaller and presents roughness. Its mechanical response is
approximated using geometrical or numerical tools. The geometrical equivalent diameter
is represented in orange with its diameter DGEOM

EQ . It is the larger cylinder inscribed in
the strut. The FFT analysis on the strut provides a numerical equivalent diameter (in
red) with a diameter DNUM

EQ .

The next chapter aims at taking these equivalent diameters in the simulation of the
stiffness of lattice structures produced by EBM
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Figure 7.16 Summary scheme of the methodology of to extract the geometrical and
numerical equivalent diameter.
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8.1. The Octet-truss lattice

8.1 The Octet-truss lattice

8.1.1 Generalities

The structure of interest is the octet-truss lattice [42,102]. It consists of 36 struts forming
8 tetrahedral cells (in blue) around a central octahedral one (red) as shown in figure 8.1.

x
y

z L

l

Figure 8.1 Octet-truss unit cell composed of 36 struts. The dashed lines represent the
bounding box.

Following Maxwell’s criterion, it has been shown that its mechanical behavior is
governed by stretching of the struts [7]. Such a stretching-dominated structure is expected
to be stiffer than a bending dominated one, for a same relative density since their variation
of Young’s modulus is linear with their relative density (see section 1.2.1). The octet-truss
lattice is commonly used as an example of a stiff and light structure.

Considering only the central octahedral cell with struts having high aspect ratios
and deformed by stretching, Desphande et al. [42] suggested a prediction of its stiffness.
However, their model is only valid for large strut aspect ratio.

In the following, a Finite Element approach is carried out to predict the effective
stiffness of such a structure.

8.1.2 Manufacturing by the EBM technology

Figure 8.2 shows the designed octet-truss structures that were manufactured and tested
under uniaxial compression.

All the four samples are composed of struts with a 1mm diameter. They have been
manufactured using the same set of parameters as for the single struts analysis 7.1.1 ("Net"
theme). The length of the struts (l) is adjusted to reach four different densities (between
11 and 25 %).

The global structure is composed of five unit-cells per side. The problem of represen-
tativity of such an assembly arises. Due to the spatial limitations of the build envelope
(210x210x180 mm) within the EBM machine, a structure with more unit-cells could not be
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ρ̄CAD = 11%

ρ̄CAD = 15%
ρ̄CAD = 18%

ρ̄CAD = 25%

10mm
45̊

Figure 8.2 Designed octet truss with 4 different densities.

manufactured for this range of densities. An analysis of the minimal number of unit-cells
is presented in a following paragraph (8.1.3).

The EBM process brings limitations in terms of reachable density. As said in the
previous paragraph, the struts diameters are set to 1 mm and the length of the struts
are modified to change the density. This limits the minimal density that can be reached
for a structure with five unit cells per side. On the other side, high density octet-truss
cannot be produced by EBM since they prevent sintered powder to be removed from the
structures. That’s why we focused on the range [10% 25%], sufficently interesting in terms
of weight saving.

In figure 8.2, the nominal density was denoted (ρ̄CAD). It is the density calculated on
the designed structure. The length of the struts vary from 4.5 mm to 7.1 mm (see table
8.1).

ρ̄CAD [%] 25 18 15 11
l [mm] 4.5 5.5 5.9 7.1

Table 8.1 Geometry of the designed octet-truss structures.

For each density, two samples were fabricated to investigate the reproducibility of the
process and consistency of the measurement methods except for the octet-truss structure
with a density of 25% for which four samples were manufactured. Samples were manufac-
tured at 45̊ with respect to the horizontal start plate. This is done to simplify its removal
from the start plate. For this configuration, the struts of the structure have three different
strut angles (α=0̊ , 45̊ and 90̊ ). In this case, the unit-cell of the structure is composed of
six vertical and six horizontal struts along with 24 struts oriented at 45̊ (oblique).

The relative density was assessed after the manufacturing of the octet-truss structures
by measuring the size and mass of the lattice. The fabricated density (ρ̄F AB) was compared
to the designed one (ρ̄CAD). As mentioned in 7.2.3, there is a large difference in size
between the produced struts and the designed ones (Figure 7.7a). This difference in size
results in a difference in density which was calculated as:

ρ̄F AB = 0.63 ρ̄CAD (8.1)
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In this chapter when comparing simulation with experimental data, the relative density
used will be the fabricated one: ρ̄F AB.

8.1.3 RVE analysis

The number of unit-cells in a lattice structure is of major importance. A lattice structure
with low amount of unit-cell will be subjected to boundary effects and the measured
mechanical properties will be affected.

A simulation of the uniaxial compression of such octet-truss using Mixed Boundary
Conditions (MBC) has been carried out. A uniaxial displacement is imposed on the
horizontal faces whereas vertical faces are imposed free of load. These boundary conditions
are representative of the experimental conditions for uniaxial compression of lattice
structures. The results are shown in figure 8.3.
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Figure 8.3 RVE analysis for determining the minimal number of unit-cells having the same
Young’s modulus of an infinite repetition of octet-truss.

The Young’s modulus is overestimated for structures composed of a low number of
unit-cells per side. It stabilizes when increasing the number of unit cells.

The value of five unit cells per side chosen for the produced octet-truss structures can
be validated using these results since it limits the size effect.

8.2 Compression Test

8.2.1 Testing configuration

The compression testing has been carried out on the same machine as the tensile testing
of previous part. It is a MTS 810 testing machine with a 100 kN load sensor. However
some modifications have been developed to adapt this machine for compression testing of
lattice structures.

The compression of lattice structures has to be carried out carefully. Indeed, some
challenges are inherent with such measurement:

• Avoiding indentation of compression platens by the higher density titanium lattice
structures
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• Measurement of the true strain of the structure

To overcome these challenges, the following modifications have been developed:

Compression Platens Case-hardened steel alloy compression platens were bought to
avoid indentation of the platens by the structure. The platens have a 150 mm
diameter. The bottom one is fixed whereas the one from the top is spherical seated
to ensure even pressure across the entire surface of the specimen. The compression
platens are shown in the figure 8.4.

Extensometer An extensometer was bought to obtain the true strain of the lattice
structure and to avoid the errors due to the deformation of the load frame and
cross head. The extensometer has a displacement range of 25 mm and a linearity
precision lower than 0.1 %.

In order to measure the true displacement, the extensometer has to be fixed to the
compression platens. A special support has been developed to allow this fixation. It
can be seen in figure 8.4.

Compression Platens

Extensometer

Extensometer support

Figure 8.4 Compression device showing the modifications brought to the testing machine.
The hardened steel compression platens on which special part have been created and fixed
to support the extensometer.

8.2.2 Young’s Modulus determination

To be able to calculate the Young’s modulus of the structure, a special cycle composed of
loadings-unloadings is applied on each lattice structure. It is represented as an example in
figure 8.5 (left graph). It consists of loadings and unloadings at the speed of 1 mm/min.
At each 0.2% of strain, an unloading occurs until 60 % of the maximal load.

The Young’s modulus is calculated at each unloading as the slope of the curve at the
early stage of the unloading. The Young’s modulus as a function of the strain is plotted
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Figure 8.5 Typical stress-strain cycle applied to a lattice structure for determining its
Young’s modulus (left). Ubloading slopes as a function of the strain (right). Example for an
octet truss with a 25% density.

in right graph of figure 8.5. Using both graphs, the compression of such structures can be
divided into three stages:

Region 1 The first region corresponds to the positioning of the sample between the
platens. If the opposite sides of the sample are not fully parallel and because
roughness is present on the top and bottom surfaces, the first measurement of the
force is not fully related to the elastic regime of the structure. The measured force
is lower than the expected one. There is a rapid increase of the slope at unloading.

Region 2 After the first stage, the structure deforms in an elastic manner until the first
strut becomes plastically loaded. The slope at unloading still increases in this region
until it reaches a plateau. It means that at the early stages of elasticity, some struts
are not fully loaded and do not act in the stiffness of the structure. In the plateau,
the structure acts fully elastically.

Region 3 After a given strain, the first local damage occurs. It decreases the calculated
unloading slope. The global structure reacts plastically.

We chose the Young’s modulus of the structure as the maximum of the calculated
unloading slopes. It corresponds to the value of the fully elastic plateau. In some structures,
the elastic plateau doesn’t exist. Indeed, the structure is not fully elastically loaded when
the first local plastic deformation occurs. Thus, the Young’s modulus is taken as the
maximum value. The results of stiffness on lattice structures are investigated in section
8.3.3.

8.3 Numerical Simulation

8.3.1 Homogenization and boundary conditions

When simulating the effective mechanical properties of an infinite media composed of a
periodic repetition of a unit cell, the simulation can be reduced to the unit cell.
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Such a unit-cell is represented in figure 8.6. The length of the unit cell is L, and its
volume V = L3. It is represented in volume instead of wireframe because it will be the
base of a FEM simulation using volume elements.

L

Figure 8.6 Unit cell for the numerical simulation of Octet-truss structure using FEM
simulation.

The unit cell is composed of cylinders with a half circular cross-section at its contour.
The aim of the homogenization is to calculate the microscopic fields (ε and σ) induced

by macroscopic loadings E or Σ. The global strain and stress are the mean values of
microscopic fields in the RVE.

E = 〈ε〉V

Σ = 〈σ〉V

(8.2)

In order to simulate the effective properties of such a structure, Periodic Boundary
Conditions (PBC) were applied to the unit cell.

Periodic Boundary Conditions (PBC)

Let E0
ij be a macroscopic strain, j+ is the face of the unit cell perpendicular to the j

direction (x, y or z) and oriented towards the increasing values of j. For any point M+
j ∈ j+

and its opposite point M−
j ∈ j−, the PBC consist in applying a relative displacement

along every direction of nodes of opposite faces [103,104]:

ui(M+
j ) − ui(M−

j ) = L〈ε〉

Using the strain averaging relation (8.2), the PBC can be written as

ui(M+
j ) − ui(M−

j ) = LE0
ij (8.3)

These PBC conditions will be applied on the RVE (Fig. 8.6) to investigate the effective
elastic properties of such a structure.

8.3.2 Finite Element Modeling

The numerical simulation presented here is based on a FEM simulation using volume
element. This simulation is more precise than a beam simulation since it does not rely on
beam assumptions.
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8.3. Numerical Simulation

Loading conditions and engineering constant extraction

The Finite Element Analysis was carried out using the software COMSOL and volume
elements. Due to the symmetry of the octet-truss, the stiffness matrix is cubic [42] and
the Hooke’s law becomes :
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This is true for an octet-truss for which all the struts have the same diameter. However,
the aim of this chapter is to use in the numerical simulation the equivalent diameters
developed in the previous chapter (section 7.3). Therefore, the struts will have different
diameters according to their orientation during the EBM process. In this case, the behavior
is no more cubic but orthotropic:
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(8.5)

The stiffness matrix is thus composed of 9 independent coefficients: C11, C22, C33, C12,
C13, C23, C44, C55, C66.

The stiffness coefficients are calculated using the strain energy (U). It is defined as:

U =
1
2

∫

V
σ : ε =

1
2

CijklE
0
klE

0
ijV ⇒ Cijkl =

2U

E0
klE

0
ijV

(8.6)

The conversion from 4-indices coefficients to 2-indices coefficients is related to the Voigt’s
notation. For example C11 = C1111, C12 = C1122 and C44 = C2323.

To obtain the 9 coefficient of the stiffness matrix, 9 different types of loading are
applied:

• Uniaxial loading

Example along x direction:

E0 =






E0
xx 0 0
0 0 0
0 0 0






The stiffness coefficient is then calculated as: C11 =
2U

(E0
xx)2

. The coefficient C22 and

C33 are obtained similarly:

C22 =
2U

(E0
yy)2

1The strength and strain matrices are represented in their vector form using Voigt’s Notation
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C33 =
2U

(E0
zz)2

.

• Shear strain

Example between x and y directions:

E0 =







0 E0
xy

2
0

E0
xy

2
0 0

0 0 0







The stiffness coefficient is then calculated as: C66 =
2U

(E0
xy)2

. The coefficients C44

and C55 are obtained similarly:

C55 =
2U

(E0
xz)2

C44 =
2U

(E0
yz)2

• Biaxial loading

Example with biaxial loading in the x and y directions:

E0 =






E0
xx 0 0
0 E0

yy 0
0 0 0






The stiffness coefficient is then calculated as: C12 =
1
2

(

U

(E0
xx)2

+
U

(E0
yy)2

− C11 − C22

)

.

The coefficients C13 and C23 are obtained similarly:

C13 =
1
2

(

U

(E0
xx)2

+
U

(E0
zz)2

− C11 − C33

)

C23 =
1
2

(

U

(E0
yy)2

+
U

(E0
zz)2

− C22 − C33

)

When the stiffness matrix is fully known, the compliance matrix is then calculated by
inverting the stiffness one:

S = inv
(

C
)

=













S11 S12 S13 0 0 0
S21 S22 S23 0 0 0
S31 S32 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66
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G31

0
0 0 0 0 0 1

G12














(8.7)
The twelve engineering coefficients are extracted from the compliance as shown in

equation 8.7.
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8.4. Validation of the equivalent diameter

8.3.3 Comparison between experiments and simulations

The octet-trusses produced by EBM have been mechanically tested using the protocol
explained earlier (section 8.2). Figure 8.7 represents the relative Young’s modulus (Effective
Young’s modulus of the structure divided by the Young’s modulus of the dense Ti-6Al-4V)
as a function of the relative density. The green curve represents the results of the FEM
simulation using volume elements.

The errors due to the measurement of the density and of the Young’s modulus have been
quantified. The error in terms of density is mainly due to the accuracy of measurement
of the length of the structure. On the other hand, the error of Young’s modulus comes
mainly from the accuracy of the linear regression during unloading.

0 0.05 0.1 0.15 0.2
0

0.01

0.02

0.03

0.04

ρF AB

ρs

E E
s

FEM
Experimental data

Figure 8.7 Relative Young’s modulus variation as a function of the relative density using
the FEM simulation. Comparison with the experimental data.

The experimental values are much lower than the simulated ones. It validates the
concept of "unefficient" matter seen in the previous chapter.

8.4 Validation of the equivalent diameter

8.4.1 FEM with equivalent diameters

As mentioned earlier the octet-truss structures were manufactured at 45̊ to allow an
easier removal from the start plate. As a conclusion, the structure is then composed of 6
horizontal, 6 vertical and 24 oblique struts as shown in figure 8.8.

For the FEM simulation, each strut is assigned a different equivalent diameter depend-
ing on its orientation. The protocol for the determination of the elastic constants is based
on section 8.3.2.

8.4.2 Comparison with the experimental data

The results of these simulations are compared to the experimental values in figure 8.9. As
seen before, the green curve represents the FEM simulation of the octet-truss structure
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x

z
y

BD

horizontal strut

vertical strut

oblique strut

Figure 8.8 Octet-truss unit cell as fabricated at 45̊ . Representation of the vertical,
horizontal and oblique struts.

with (DCAD). The black points sketch the experimental values of Young’s modulus.
The red curve (dashed) depicts the results of the simulation using the numerical

equivalent diameters (DNUM
EQ ), whereas the orange one (dotted) is obtained using simulation

with the geometrical ones (DGEOM
EQ ).
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Figure 8.9 Relative Young’s modulus as a function of relative density for the designed
geometry (in green), including the correction of DNUM

EQ using FFT calculation (in red) and
a correction of DGEOM

EQ using the inscribed cylinder (in orange). Experimental values are
depicted in black.

From figure 8.9, it appears that the use of the geometrical equivalent diameter under-
estimates the mechanical properties. The numerical equivalent diameter derived from
FFT simulation gives results closer to the experimental ones. Indeed, the geometrical
equivalent diameter defined in section 7.3.1 is based on a minimal common projected
surface. It leads thus to a lower bound for the stiffness prediction.
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8.4. Validation of the equivalent diameter

The equivalent diameter deduced from a numerical estimation of the strut’s stiffness
provides a better prediction of the stiffness because it takes into account the stress field
in the strut. Young’s modulus values obtained by FEM simulation with DNUM

EQ are close
to the experimental ones though slightly lower.

This underestimation is probably due to the fact that the equivalent diameters are
based on 3D measurements made on struts only. The complexity of the stress state in
the vicinity of the strut intersections (nodes of the lattice) is probably not fully captured.
Moreover, the experimental use of an octet-truss with only five unit cells per side can lead
to a slight error in the comparison with simulations results based on a periodic calculation.

As a result, the numerical equivalent diameter simulation enables to take into account
the manufacturing constraints with an implicit safety coefficient since the stiffness is
slightly underestimated.

This numerical equivalent diameter will be considered as a mechanical equivalent
diameter in the following chapters.
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Variation of the mechanical
equivalent diameter with strut size
and orientation angle
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This chapter aims at obtaining an analytical value of the variation of the mechanical
equivalent diameter for struts with different nominal diameters and build orientations.
This analytical value can then be used in any "realistic" simulation and mechanical
optimization.

9.1 Fabricated struts

In order to obtain an analytical value of the mechanical equivalent diameter, struts with
different diameters and orientations were designed according to figure 9.1.
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9.1. Fabricated struts

z

xy15
m

m

α = 90̊

α = 0̊

α = 45̊

Figure 9.1 Designed struts prior to manufacturing by EBM. The build direction is along
the z direction. Struts with different diameter (1, 1.5, 3, 5 mm) and build orientation (α=0̊ ,
45̊ and 90̊ ) have been manufactured.

The struts have four different diameters (1, 1.5, 3, 5 mm) and three different orienta-
tions (0̊ , 45 ånd 90̊ ). The twelve struts are manufactured using the "Melt" set of process
parameters (ARCAM theme) and are analyzed by X-Ray tomography to investigate the
porosity content, roughness and to find the mechanical equivalent diameter of each strut
(same methodology as the previous chapter 7.1).

In the previous study on single struts (chapter 7), the "Net" theme was used to build 1
mm struts. It is the theme recommended for very thin parts. However, struts larger than
1 mm produced with the "Net" theme exhibit a larger porosity. Figure 9.2 represents a
longitudinal cut of a 1.5 mm diameter strut manufactured with the "Net" theme. Large
pores are observed in the core of the struts. These pores result from a lack of melting in
the center of the strut. Thus the hatching of the "Net" theme is not optimized and leads
to porosity. It can only be used to produce very thin struts (DCAD ≤ 1mm).

Figure 9.2 longitudinal cut of a vertical 1.5 mm diameter strut manufactured with the
"Net" theme. Large porosity is observed in the center of the strut.

That’s the reason why, in this part the "Melt" theme is used to melt struts ranging
from 1 to 5 mm. Moreover, it allows us to compare the two themes for 1 mm struts.

The strategy of the "Melt" theme is depicted in figure 9.3 for melting a 1.5 and a 5
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Chapter 9. Variation of the mechanical equivalent diameter with strut size and orientation angle

mm diameter strut. The melting strategy is always the same. The electron beam starts
to melt a first contour followed if possible by a second one. If the CAD is large enough,
the beam scans the surface line by line in the hatching step.

CO1CO2

Limit of the CAD file
1st contour
2nd contour

(a) melting strategy for a 1.5
mm vertical strut using the
"Melt" theme.

CO1CO2

LO

Limit of the CAD file
1st contour
2nd contour
Hatching

(b) melting strategy for a 5 mm vertical strut using the
"Melt" theme.

Figure 9.3 Scheme of the melting path at a random layer for a 1.5 mm and a 5 mm circular
vertical strut when using the "Melt" set of parameters.

The values of beam current, speed and offsets are summarized in table 9.1.

MELT 1st contour 2 nd contour Hatching
Offset [mm] CO1=0.29 CO2=0.25 LO=0.1
Speed [mm/s] 340 800 -
Current [mA] 4 10 -

Table 9.1 Values of the process parameters for the "Melt" theme for vertical struts with
different nominal diameters (1 mm, 1.5 mm, 3 mm, 5 mm).

The parameters are constant for the 1st and 2nd contour whatever the geometry of the
strut. The speed and current of the beam during hatching fluctuates depending on the
geometry and the thermal history of the previous layers. These fluctuations are based on
thermal balance consideration. They result from years of improvement by Arcam.
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9.2. Structural analysis of the struts

9.2 Structural analysis of the struts

A special attention is paid to the case of 1 mm diameter struts for which both themes
("Net" and "Melt") can be used.

9.2.1 Comparison between "Net" and "Melt" themes for 1 mm
diameter struts

Figure 9.4 shows the difference in terms of beam strategy between a "Melt" theme and
a "Net" theme for a 1 mm diameter strut built vertically. For a 1 mm diameter vertical
strut built with the "Melt" theme , the beam scans only the 1st contour whereas for "Net"
theme the beam scans two contours.

CO1

Limit of the CAD file
1st contour

(a) Beam strategy for a 1 mm
vertical strut using the "Melt"
theme.

CO1

Limit of the CAD file
1st contour
2nd contour

(b) Beam strategy for a 1 mm
vertical strut using the "Net"
theme.

Figure 9.4 Scheme of the melting path at a random layer for a 1 mm using the "Melt" or
"Net" set of parameters.

As mentioned in table 9.2, the first contour offset (CO1) is similar for "Net" and "Melt"
theme. For the "Net" theme, a second beam path is carried out with an offset of 0.1 mm
from the 1st contour.

However, for both contours of the "Net" theme, the beam speed is two times higher
and the beam current is much lower than the "Melt" theme. As a consequence, the volume
energy is lower in the case of the "Net" theme (2.1 1010 J/m3) even if there are two beam
paths. The volume energy of the "Melt" theme has been calculated as 3.27 1010 J/m3.

"Net" theme "Melt" theme
1st contour 2 nd contour 1st contour

Offset [mm] 0.3 0.1 0.29
Speed [mm/s] 470 470 340
Current [mA] 2.4 2 4
Volume energy (14.1) [J/m3] 2.1 1010 3.27 1010

Table 9.2 Values of the process parameters for a 1 mm diameter vertical strut. Difference
between the "Net" theme and the "Melt" theme.

As a consequence the melted volume is different and the mechanical equivalent diameter
too. Indeed, figure 9.5, shows the produced struts (in green) and the designed ones (in
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blue) for struts produced by the "Net" theme (a) or by the "Melt" theme (b). Different
orientations were produced.

Generally, the produced struts using the "Net" theme are smaller than the ones
produced using the "Melt" theme. The 1 mm struts produced with the "Melt" theme have
a size closer to the nominal diameter.

BD(a)

(b)

Figure 9.5 1 mm struts produced using the "Net" (a) and "Melt" (b) themes. Vertical,
oblique and horizontal struts are compared. The build direction (BD) is represented with a
black arrow.

However, because of the large energy input for the "Melt" theme, the horizontal struts
exhibit a larger anisotropy of the cross-section. It is due to over-melting taking place for
the first layers of melting of the horizontal strut. Indeed, for the first layers, the beam
melts directly on sintered powder with a low thermal conductivity. The high energy beam
over-melts multiple layers due to heat accumulation. This over-melting is larger in the
case of the "Melt" theme than for the "Net" one.

The porosity content was also investigated using the same methodology as 7.1.3. The
porosity content was found to be very similar for struts manufactured with the "Melt"
theme and with the "Net" theme for any strut orientation. The porosity content was
always lower than 0.1 %.

The roughness was calculated on struts produced with the "Net" and "Melt" themes
using the methodology developed in 7.1.3. For any strut orientation and any type of
roughness (Ra and Rt), the roughness is in the same range for struts produced with the
"Melt" and "Net" themes with an arithmetic roughness around 40 µm.

Since they exhibit the same roughness and a diameter closer to the nominal one, struts
produced by the "Melt" theme have a mechanical equivalent diameter closer to DCAD.
Table 9.3 depicts the values of DNUM

EQ for 1 mm struts with different orientations and
themes.
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9.2. Structural analysis of the struts

α (̊ ) 90 45 0
"Melt" theme 0.68 0.78 0.92
"Net" theme 0.58 0.58 0.71
Ratio (M-N)/M [%] 16 25 25

Table 9.3 Values of DNUM
EQ (in mm) for 1 mm struts produced with different orientation

and different themes.

The mechanical equivalent diameters are larger for struts produced with the "Melt"
theme. The produced struts have a larger stiffness than struts produced using the "Net"
theme.

The "Melt" theme is therefore more efficient to produce controlled geometries whereas
the "Net" theme allows the production of thin struts without a complete control of the
produced geometry.

9.2.2 Analytical equation of DNUM
EQ

For the rests of the chapter, struts fabricated with the "Melt" theme are analyzed.

This section aims at finding an analytical value of the mechanical equivalent diameter
as a function of the nominal diameter and the orientation angle:DNUM

EQ = f(DCAD, α).
This knowledge will be further used into a "realistic" simulation of lattice structures.

The struts with different build orientations and nominal diameters were manufactured
with the "Melt" theme as shown in the section 9.1. Using the methodology developed
in the last part 7.3.2, the mechanical equivalent diameter (DNUM

EQ ) of each strut was
calculated.

The values of the normalized equivalent diameter (DNUM
EQ /DCAD) have been plotted as

a function of the nominal diameter DCAD in figure 9.6 for the three different orientations.
The green line represents the values DNUM

EQ =DCAD. It confirms that for any strut size
and orientation, the mechanical equivalent diameter is lower than the nominal diameter.
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Figure 9.6 Normalized equivalent diameter (DNUM
EQ /DCAD) as a function of the nominal

diameter (DCAD) for struts with different orientations (α=0̊ , 45̊ , 90̊ ) and nominal diameters
(DCAD=1, 1.5, 3, 5 mm). In green: the line representing the values DNUM

EQ =DCAD.

From this figure, two regimes can be identified:
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Small size regime (1 in figure 9.6): For the small struts size, the horizontal struts
present larger mechanical equivalent diameter than the oblique ones which are also
stiffer than the vertical one. This has been explained in the previous part (7.3).

For a horizontal strut, over-melting takes place when melting the first layers of
the strut. This over-melting leads to a large and elongated cross-section for the
manufactured strut.

When melting an oblique strut, the down-facing side is undergoing a slight over-
melting (especially when melting with the "Melt" theme which brings more energy).
As a consequence the melted surface is slightly larger than for a vertical strut and
so is the mechanical equivalent diameter.

large size regime (2 in figure 9.6): When melting larger struts (e.g. 2 mm diameter),
the mechanical equivalent diameter is almost constant for any strut orientation. The
phenomenon of over-melting still takes place but is less critical since the dimensions
of the struts are larger.

As a result, the mechanical equivalent diameter is similar for any orientation.

From figure 9.6, the variation of mechanical equivalent diameter is assumed to be
linear with the nominal diameter. Thus the following equation can be used:

DNUM
EQ = K(α)DCAD + C(α) (9.1)

The variation of K(α) and C(α) is fitted by a linear regression as represented (in red)
in figure 9.7. The coefficients of the polynomial are listed in table 9.4.
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Figure 9.7 Variation of the coefficient K and C as a function of the orientation angle α.

1 2
K 1.0210−3 8.6510−1

C -3.3710−3 -1.1610−2

Table 9.4 Table with the values of coefficients of K(α) and C(α).
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The analytical value can be thus written as (using the coefficient of table 9.4):

DNUM
EQ = (K1α + K2) DCAD + C1α + C2 (9.2)

This analytical response surface has been plotted in figure 9.8. The response surface
fits well with the values obtained by FFT simulation.
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Figure 9.8 Response surface of the analytical values of the variation of DNUM
EQ with DCAD

and α. Comparison with the simulated values (in black).

The maximal error between the measured values and the response surface has been
quantified as 5 %. This is an acceptable range of error.

Thus, the analytical values obtained in equation 9.2 will be used to take into account
the "effective" stiffness of the produced struts within the simulation of lattice structures
(see next part IV).
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Summary

This part aimed at presenting a methodology to predict the elastic properties of lattice
structures produced by EBM from the structural characterization at the scale of the strut.

The results presented here are valid for this particular configuration but the methodol-
ogy can be applied on any AM process to evaluate the "true" properties of lattice structures
composed of struts with any diameter and process parameters.

Figure 9.9 sums up the procedure presented here.
The designed octet-truss has a relative density ρ̄CAD and is composed of struts with a

diameter DCAD (in blue) 0©.
The produced octet-truss exhibits a lower relative density (ρ̄F AB). The difference of

density is due to a difference of size between the designed strut (blue) and the produced
one (green).

This difference in density decreases the relative Young’s modulus from ĒCAD to ĒC1
1©.

However, the effective properties of the produced octet-truss is lower than this value 2©.
This is due to the high surface irregularities that represents a significant part of the volume.
Some volume of the strut is not "mechanically efficient". A mechanical equivalent cylinder
has been extracted from numerical simulations on the strut. This mechanical equivalent
diameter having a diameter DNUM

EQ has been validated by comparing the experimental
data and FEM simulations using this DNUM

EQ .
The results show that FEM simulation with the mechanical equivalent diameter allows

a refinement of the prediction of the mechanical properties of lattice structures produced
by EBM.

A generalization of the mechanical equivalent diameter DNUM
EQ has been studied. The

DNUM
EQ was investigated for diameters ranging from 1 mm to 5 mm and with different

build orientations (α=0̊ , 45̊ and 90̊ ). An analytical value of DNUM
EQ = f(α, DCAD) has

been extracted. This analytical value will be further used in numerical simulation and
optimization of lattice structures produced by EBM (part IV).
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Figure 9.9 Summary graph of the part. It highlights the influence of the geometrical
difference between the designed struts and the manufactured one (shape and roughness) on
the mechanical properties of a lattice structure.
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Optimization of lattice structures
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The aim of this part is to use the previous methodology to simulate and optimize the
stiffness of lattice structures produced by EBM.

The FEM simulation using volume elements has been carried out on an octet-truss
unit cell in a previous chapter (section 8.3). However for simulating larger structures or
when using a repetitive amount of simulations, the use of beam elements is required. It
allows a fast simulation but has a limited range of application. To determine this range of
application, volume FEM and beam simulation are performed on the octet-truss unit-cell.

A direct application of the analytical equation of the mechanical equivalent diameter
is investigated. The optimal orientation of a lattice structure is found depending on the
properties that one wants to maximize.

A parametric optimization using the mechanical equivalent diameter is also explained.
It allows the optimization of lattice structures by taking into account the manufacturing
constraints.
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Chapter 10

Beam Simulation for the octet-truss
structure
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eter struts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.2.2 Analytical equation of DNUM
EQ . . . . . . . . . . . . . . . . . . 144

As mentioned earlier, the FEM simulation using volume elements is not suitable when
simulating large structures or when a large number of simulations is needed (for example,
an iterative procedure of optimization). A FEM simulation using beam elements is then
suggested.

The software used for the FEM simulation using Timoshenko beams is CAST3M1.

10.1 Methodology

10.1.1 Materials properties and cross-section parameters

The structure of interest for the beam simulation is the octet-truss structure (see figure
10.1). The aim is to simulate a periodic media composed of a repetition of octet-truss
structures. For that purpose, a periodic simulation on an octet-truss unit-cell is performed.

The structure is composed of purely circular cylinders except for the struts in the
contour of the unit cell which have to be represented by cylinders with a half circular
cross-section to respect the periodicity of the cell (see figure 10.1).

To define the properties of the structure for the simulation, several parameters are
used:

• Material properties : Young’s Modulus of the constitutive material (Es) and its
Poisson ratio (νs).

• Geometrical properties: the cross-section area (A) and the moments of Inertia (Iy

and Iz) and moment of torsion (Ig).

1Developed by the French Alternative Energies and Atomic Energy Commission (CEA).
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x
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z L

l

Cross-sections

Figure 10.1 Octet-truss unit cell composed of 36 struts. The dashed lines represent the
bounding box. The red struts represent the strut having a cross section of a half-circle.

The Periodic Boundary Conditions (PBC) are applied to the unit cell as explained
in the previous part (section 8.3). A detailed example of the PBC implementation for a
uniaxial compression is shown in appendix B.

The elastic strain energy is calculated to determine the nine independent coefficients of
the stiffness matrix (see section 8.3). The engineering constants are then extracted using
the compliance matrix. This whole methodology was explained in details for the FEM
simulation using volume element but is similar in the case of beam elements simulation.

10.2 Range of application

The values of relative Young’s modulus obtained on a regular octet-truss using beam
elements are compared to the values obtained using volume elements in figure 10.2.

The values obtained using beam elements are lower than the one obtained with volume
elements, especially for large density where the assumptions of the beam theory are not
fulfilled anymore (stress states within the struts cannot be captured by the beam theory).

The beam simulation is valid for relative density lower than about 5%. Further beam
simulations will be limited to this range of relative density. 2

2In this range of density (<5%), the first order density can be used since it is close to the true relative
density (more details are available in appendix C)
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Figure 10.2 Relative Young’s modulus of a regular octet-truss as a function of its relative
density. Values from the FEM simulations with beams are compared to volume elements.
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This chapter aims at giving an example of the use of the concept of equivalent diameters
within an elastic simulation of lattice structure. It is focused on a regular octet-truss
lattice. The lattice can be built with different orientations during the build. The aim here
is to find the optimum fabrication angle of the lattice that maximizes some properties
(EX , EY , EZ , GXY , GXZ , GY Z . . . ). The beam simulation is used to compute the objective
functions.

11.1 From lattice orientation to struts orientation

The position of the octet-truss during the EBM fabrication can be of great importance
regarding its final stiffness. In this chapter, a regular octet-truss composed of struts with
a 1 mm nominal diameter (DCAD) and with a strut length (l) of 11 mm is studied.

The unit-cell orientation can change by a rotation along the y axis (see figure 11.1).
The fabrication angle of the global structure is denoted ϕ whereas the orientation of the
struts is denoted α. The structure is composed of 36 struts. Those struts can be divided
into four groups depending on their angle α.

Geometrical relations give the struts angle αi as a function of the fabrication angle of
the lattice ϕ:

• α1= |45 − ϕ|

• α2= 90 − |45 − ϕ|

• α3= sin−1
(

sin(ϕ)√
2

)

• α4 = sin−1
(

cos(ϕ)√
2

)
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The determination of the different struts angles allows the assignment of equivalent
diameter of each strut depending on its orientation following the analytical value extracted
previously (see DNUM

EQ = f(DCAD, α) in section 9.2.2).

x
y

z

Z

Y
X

ϕ

α1

α2

α3

α4

Figure 11.1 Orientation of the struts as a function of the orientation of the structure
within the build. x, y, z represents the global coordinate system. X, Y, Z represents the local
coordinate system of the lattice.

Within the simulation, each beam with a strut’s orientation αi has a mechanical
equivalent diameter Di

EQ.
The figure 11.2 shows the variation of the strut’s orientation (αi) as a function of the

fabrication angle of the structure ϕ. The angle ϕ ranges between 0̊ and 90̊ . When ϕ = 0̊ ,
the blue, red and black struts have an orientation angle of 45̊ whereas the green struts are
horizontal.

When ϕ = 90̊ , blue, red and green struts have a 45̊ orientation and the black struts
have a 0̊ orientation.

The resulting mechanical equivalent diameters have been taken into account. They
fluctuate between 0.65 mm and 0.85 mm depending on the struts orientation. As mentioned
earlier (paragraph 9.2.2), the maximum equivalent diameter corresponds to horizontal
struts (α= 0̊ ) whereas the minimum corresponds to struts fabricated vertically.

11.2 Results of the simulation

For every degree of fabrication angle (ϕ), a beam simulation has been carried out to
extract the engineering constants. The simulation is based on the method explained in
the previous chapter (chap. 10) but takes into account the orientation angle of each struts
and replace its diameter by the equivalent diameter.

Now that each strut is represented by a different diameter, the octet-truss structure is
no more isotropic. The Young’s moduli along the three local direction X,Y ,Z (shown in
figure 11.1) have been calculated for each fabrication angle of the lattice. It is plotted in
figure 11.3.

The Young’s moduli along the three orientations show the same trend: when varying
the fabrication angle, they exhibit a maximum either in 0̊ or in 90̊ . They also exhibit a
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Figure 11.2 Variation of the orientation angle of the struts (αi) as a function of the
fabrication angle of the lattice (ϕ).
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Figure 11.3 Variation of the Young’s moduli as a function of the fabrication angle of the
lattice (ϕ).

local maximum for ϕ = 45̊ .
The maximum at ϕ=0̊ or 90̊ corresponds to a maximum number of horizontal struts

aligned with the loading direction (see figure 11.1). It corresponds to either the green or
the black struts. At ϕ = 45̊ , the blue struts are built horizontally. Thus, the Young’s
modulus increase slightly and exhibits a local maxima.

However, when structures are built with an angle of ϕ=0 or 90 ,̊ their removal from
the start plate is highly complicated and can lead to the damage of the lattice. As a
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11.2. Results of the simulation

consequence, when maximizing the Young’s modulus of such structure one will prefer a
fabrication of the lattice with an angle of 10̊ of 80̊ rather than 0̊ or 90̊ .

Although the variation of Young’s modulus is small in the case of a regular octet-truss
(∼ 2%), this methodology can be applied on structures for which the fabrication orienta-
tions can largely influence the resulting stiffness.

For the regular octet-truss, the shear modulus G is more impacted by a modification
of the fabrication angle ϕ. Figure 11.4 depicts the variation of the shear moduli as a
function of the fabrication angle.
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Figure 11.4 Variation of the shear moduli as a function of the fabrication angle of the
lattice (ϕ).

The shear modulus along the xy plane decreases as the fabrication angle increases
since the load is mainly carried by the green struts that are horizontal for ϕ = 0̊ and
vertical for ϕ = 90̊ . Similarly, the shear modulus GY Z increases with the fabrication
angle since the black diameter increases. The shear modulus GXZ exhibits a maximum at
ϕ = 45̊ . It corresponds to the position where the diameter of the blue struts is maximal
(horizontal struts).

In the case of the regular octet-truss lattice, the variation of shear modulus can be up
to 25% in particular for GXY and GY Z . It is then important to tune the lattice orientation
depending on its loading conditions.

Summary: The use of the equivalent diameter allows the prediction of the stiffness of
a lattice structure depending on its orientation within the build. Depending on the lattice
geometry, the variation of stiffness with the build orientation can be of critical importance.
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In the previous chapter, a first application of the concept of the mechanical equivalent
diameter has been performed. A single-parameter (fabrication angle of the lattice)
optimization was performed.

Here, a multi-parameters optimization is performed. The general topology of the lattice
is constant but the dimensions of some parameters can vary. The topology optimization
is not used since it allows a shape variation of the matter. It is therefore impossible to
directly use the equivalent diameters developed earlier.

12.1 Methodology and validation of the code

12.1.1 Scheme of the code

The aim of the parametric optimization is to define a set of parameters to adjust (strut
diameter, length, angle between struts...) in order to maximize an objective function
(EX , EY , EZ , GXY , GXZ , GY Z . . . ). The optimization is ruled by optimization constraints
(maximum density, forbidden values for parameters...).

The specificity of this "realistic" optimization is that the objective function is cal-
culated by taking into account the mechanical equivalent diameter (DNUM

EQ = f(DCAD, α)).

An in-house procedure has been developed using a minimization code coupled with
a FEM simulation using beam elements (CAST3M). The minimization script has been
written in Python using the scipy library and the minimization algorithm called "Sequen-
tial Least Squared Programming" (SLSQP). It is an optimizer that allows a constraint
minimization relying on the Han-Powell BFGS quasi-Newton method [105,106].

The global architecture of the code is represented in figure 12.1:
The steps written in Python are shown in pink whereas the step of FEM simulation

with CAST3M is shown in blue.
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Figure 12.1 Schematic representation of the parametric optimization code architecture.

A set of initial parameters (P 1st) is given to the SLSQP code to estimate the gradient
and Hessian along each parameters. According to the direction of descent, a new set of
parameters is proposed (P new). If they satisfy the minimization constraints, they will be
further used, if not, a new set of parameters has to be given.

Within the parameters P i, the nominal diameter is modified into different mechanical
equivalent diameters Di

EQ for each strut depending on the orientation. The modified set
of parameters is called P i

real.
A FEM simulation with beam elements is then computed using the equivalent diameters.
The output is the stiffness matrix (C) from which the objective function (O) is

calculated. If the difference in objective function is less than the convergence criterion
(ξ), the algorithm stops. If not, the value of the objective function is given to the
quasi-Newton method code for a new iteration. The objective function is composed of
engineering constants coming from the stiffness matrix (EZ for example). For example:

O = O(i) =
EZ(init)

EZ(i)
.

12.1.2 Validation of the code using the cantilever shape

To validate the code, an optimization of a cantilever composed of octet-truss unit-cells
is carried out. The cantilever is composed of 18 octet-truss unit cells (six in x, one in y,
three in z). It is rigidly fixed at its left end and loaded by a point force of 1kN at the
center of the right surface (see figure 12.2).

For the purpose of validation of the code, no consideration of the manufacturing
constraints are taken into account in the optimization. It could have been possible but
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F = 1kN

Fixed-end

Figure 12.2 Cantilever composed of 18 octet-truss unit-cells. Loading conditions: Fixed-end
at the left side and a point load of 1kN at the right end.

would require 72 parameters. In the optimization, the same diameter is affected for each
unit-cell leading to 18 parameters (Di).

The objective is to minimize the deflection at the point where the load is applied.
The manufacturing constraints are set as follows:

• The relative density of the cantilever cannot be higher than 5%.

• The strut diameters cannot be lower than 400 µm (minimal resolution of the EBM
process) and larger than 4 mm. 0.4 mm <Di<4 mm

The initial diameters are set to 0.6 mm.
The algorithm takes 46 iterations to reach the convergence. The final geometry is

shown in figure 12.3a. The colors corresponds to the size of the struts: a red strut exhibit
a larger diameter than a blue one.

(a) Final geometry of the cantilever us-
ing the parametric optimization code
with 18 diameters.

(b) Final geometry of the cantilever us-
ing the same diameter for all the strut.

Figure 12.3 Final geometry of the cantilever made of octet-truss unit cells when using one
diameter or 18 parameters.

The geometry resulting from this optimization is compared to the 5 % density cantilever
having the same diameter for every struts (figure 12.3b). Both results have the same final
density of 5 %. When the struts have the same diameter, the final deflection is of 2.18
mm whereas the parametric optimization results in a deflection of 1.55 mm (improvement
of 30 %).

The final geometry in the case of the parametric optimization (12.3a) showed a specific
distribution of the diameters. Unit-cells of larger density are distributed up and down
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on the left side. It is really close to the optimal result of a topology optimization of a
cantilever using the SIMP method developed by Sigmund [31] as shown in figure 12.4.

Figure 12.4 Final geometry of a cantilever using the SIMP method of topology optimization
[31].

The comparison of shapes between the results with the parametric optimization and the
topology optimization using the SIMP method allows the validation of the minimization
code explained earlier 12.1.1.

12.2 "Realistic" Parametric Optimization of an octet-

truss unit-cell

In this section, a parametric optimization that takes into account the mechanical equivalent
diameters is developed. The optimization is based on the minimization detailed earlier
(section 12.1.1). At each iteration, the objective function is calculated on an octet-truss
unit-cell. The methodology developed in chapter 10 is used for the beam simulation of
the structure with Periodic Boundary Conditions.

12.2.1 Parameters

The parameters for this parametric optimization are described in figure 12.5:

• DCAD: The nominal strut diameter of the structure.

• l : The length of the struts.

• θ: The angle of opening of the structure. The regular octet-truss structure exhibits
an angle θ=90̊ . For θ>90̊ , the octet-truss structure is elongated. On the contrary,
octet-truss structures with an angle θ<90̊ are flattened.

• The fabrication angle of the lattice ϕ is either set to 45 o̊r include in the set of
parameters.

12.2.2 Constraints

The optimization constraints are:

• ρ̄ < 5%. The maximum density of the structure is set to 5 % to respect the
limitations of the beam simulation.

• DCAD ≥ 1mm. The minimum nominal diameter is set to 1 mm.
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Figure 12.5 Scheme of the parameters for the parametric optimization procedures.

• 1mm ≤ l ≤ 3cm. The produced lattice structures are composed of several unit-cells
per sides. In order to be able to fit the dimensions of the build chamber of the EBM
machine, the maximum strut length is set to 3 cm.

• 10̊ ≤ θ ≤ 170̊ . The opening angle can fluctuate largely but extreme positions are
forbidden to avoid too flat structures.

• 10̊ ≤ ϕ ≤ 80̊ . The constraints on this parameter have been highlighted in the
previous chapter (chap 11). The forbidden position are for ϕ close to 0̊ and close to
90̊ where the removal of the srtucture from the start plate is difficult.

12.2.3 Objective function and initial parameters

The aim of this optimization is to maximize the Young’s modulus along the Z direction (in
the local coordinate system of the lattice): EZ . Since the optimization is a minimization,
the objective function is defined as:

O(i) =
EZ(init)

EZ(i)
(12.1)

where EZ(0) is the initial value of Young’s modulus
The initial parameters are set as : DCAD = 1.6mm, l = 2cm, θ = 50̊ , ϕ = 60̊ . For

helping the numerical convergence of the algorithm, the parameters were normalized
between 0 and 1.

→ The sensitivity of the initial conditions was assessed. The initial parameters were
modified within their possible range leading to the same optimal parameters and final
objective function value. Changing the initial parameters only led to a change in the
number of iterations.
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12.2.4 Results of optimization

Parametric optimization with parameters DCAD, l, θ

For this optimization, the fabrication angle of the structure is set to ϕ = 45̊ .
After 14 iterations, the convergence was achieved. Figure 12.6 shows the variation of

the Young’s modulus and parameters for each iteration. The Young’s modulus converges
to 2.5 GPa.
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Figure 12.6 Variation of the parameters and objective function during the iterations of
the optimization procedure.

The optimal parameters are: DCAD = 1.04mm, l = 3cm, θ = 156̊ . The geometry is
depicted in figure 12.7a.

Parametric optimization with parameters DCAD, l, θ, ϕ

For this optimization, the fabrication angle of the structure (ϕ) is a parameter.
After 17 iterations, the algorithm converges to the optimal geometry depicted in figure

12.7b. The optimal parameters are: DCAD = 1mm, l = 3cm, θ = 157̊ , ϕ = 80̊ .

The optimal Young’s modulus is of 3.1 GPa compared to 2.5 GPa for the previous
optimization. Hence, taking into account the lattice orientation angle (ϕ) within
the optimization allows an improvement of 20 % in the final stiffness.

12.2.5 Further development

We choose to focus here on the optimization of the Young’s modulus along the Z direction
by tuning a certain set of parameters.

The optimization code presented has the particularity of simulating the "true" proper-
ties of lattice structures fabricated by EBM. It can also easily be applied to other objective
functions and parameters.
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(a) ϕ = 45̊ (b) ϕ =parameter

Figure 12.7 Geometry of the unit-cells that results from both parametric optimization
procedures.

Some examples of other parametric optimizations are listed below:

Multi-diameters optimization The parametric optimization can take into account as
parameters each strut diameter of the unit-cell. Depending on the objective function
(E, G, ν . . .), some struts will be enlarged whereas other will disappear. However,
depending on the size of the simulated lattice, the numerical convergence can be
difficult to achieve since there could be a large number of parameters.

Multi-criteria optimization The objective function is a combination of different en-
gineering constants. For example one can minimize the weighted product of the
Young’s modulus along the Z direction and the shear modulus in the XY plane:

J = Eκ
ZG1−κ

XY (12.2)

Multi-physics optimization The objective function is a combination of stiffness and
thermal conductivity. For examples one could need to minimize the weighted product
J:

J = Eκ
Zλ1−κ

Z (12.3)

where λZ is the thermal conductivity along the Z direction. The thermal conductivity
is also affected by the "efficient matter" within the struts.

167



12.2. "Realistic" Parametric Optimization of an octet-truss unit-cell

168



Summary

Realistic mechanical optimization of lattice structures:
In this part, a methodology using an analytical equation of the equivalent diameters

in a beam simulation has been presented. It was then applied to the optimization
of orientation of an octet-truss lattice structure within the EBM chamber. This
methodology was also used coupled to a parametric optimization based on a unit-cell
simulation.

Beam simulation A FEM simulation using beam elements has been developed
to allow a fast simulation of large structures or when a large repetitions of
simulations are needed.

• The simulation was carried out on Timoshenko beams.

• The range of validity of this simulation was set to density less than five
percent by comparing the Young’s modulus results of simulation using
volume element and beams.

Optimal orientation of lattice structures To validate the use of the equivalent
diameters to simulate the "true" properties of lattice structures produced by
EBM, the variation of the octet-truss orientation within the build has been
investigated.

• Using the equivalent diameters, an optimal fabrication angle was extracted
to maximize either a Young’s modulus or a shear modulus.

• Depending on the architecture and on the mechanical properties to maxi-
mize, the optimal placement can improve the properties up to 30%.

Parametric optimization The analytical equation of DNUM
EQ = f(α, DCAD) was

used within a parametric optimization. At each step of the optimization the
"true" properties are calculated.

• The parametric optimization relies on a quasi-Newton minimizer coupled
with a beam simulation on the Octet-truss unit-cell.

• The contribution of the mechanical equivalent diameter is highlighted by
comparing two parametric optimizations. When using the lattice orien-
tation angle as a parameter of the optimization, it is possible to improve
the resulting Young’s modulus by 20 % using the concept of mechanical
equivalent diameter.
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Towards the improvement of strut’s
size and surface geometry
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The previous parts focused on the mechanical characterization of lattice structures
produced by EBM using standard process strategy. Struts size accuracy and surface
irregularity were taken into account through the concept of mechanical equivalent diameter.
The present part aims at improving this strut size accuracy and these surface irregularities.
For that purpose, two methodologies were used:

• Using post-treatment. Electro-Chemical Polishing (ECP) and Chemical Etching
(CE) treatments were used on lattice structures produced by EBM. The aim of these
post-treatments is to decrease the surface irregularities, thus decrease the proportion
of "inefficient" matter.

• Tuning the process strategy. The beam parameters and scan strategies were tuned
to produce struts with a size closer to the nominal diameter.

Both studies should be considered as preliminary but give interesting insights to be further
investigated.
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Improvement of the surface
roughness through post-treatments
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When considering the fatigue properties of lattice structures produced by EBM, the
surface roughness becomes critical since it acts as crack initiator. Reducing this roughness
by a post-treatment becomes a necessary step. Furthermore, reducing the roughness can
lead to improve the efficient matter within the strut (as seen in chapter 7).

In this chapter, two types of post-treatments are investigated. The experiences of
Electro-Chemical Polishing (ECP) have been conducted during a one month visit at the
LAMSI laboratory of "École de Technologie Superieure", Montreal, Canada 1. The study
of the Chemical Etching (CE) was conducted within the frame of a collaboration with the
laboratory 4MAT at "Université Libre de Bruxelles", Belgium.

Some studies have been carried out in the literature on the reduction of the surface
roughness of lattice structures made by AM. Most of the studies have been released by
Pika et al. [107–109] on lattice structures produced by LBM. They developed several
image analysis tools to be able to extract the strut diameter, total pore size, closed pores
size and surface roughness of struts.

1 Under the supervision of V. Brailowski
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They used Chemical Etching (CE) and Electro-Chemical Polishing (ECP) to improve
the surface roughness of struts produced by LBM. CE and ECP on as-built struts allowed
a decrease of the arithmetic roughness from 12 µm to 6 µm. They used an aqueous
solution composed of 1 %vol of hydrofluoric acid (HF) for the CE and an electrolyte
composed of acetic acid, HF and sulfuric acid for the ECP. The ECP was carried out with
a current density of 120 mA/cm2.

13.1 Electro-Chemical Polishing

13.1.1 Parameters and methodology

The structures used for this study are octet-truss lattices with different densities and
nominal strut diameters. We focus here on the results obtained on an octet-truss lattice
with a relative density of 6% and struts with a nominal diameter of 1 mm since it is
representative of the possibilities and limitations of the ECP. Lattice structures with
different densities exhibited the same trends when undergoing ECP.

The electrolyte used for the ECP was composed of vol10% of perchloric acid and
vol90% of acetic acid. From the results of previous studies on the ECP of bulk parts2, the
passivation current density (value to form a passivation oxide layer) was found to be in
the range of 10 mA/cm2 for this electrolyte. The current density was set to this value for
the whole study.

A scheme of the set-up is represented in figure 13.1a. The lattice structures were
manufactured with a supplementary part at the top to fix the electrode on it (see top of
lattice in figure 13.1b). They were immersed into the acid electrolyte for 20 min for half
the volume of the lattice. A picture of a polished structure is represented in figure 13.1b.

The cathode was composed of five 316L stainless steel plates equidistant from the
lattice. Since the reaction of ECP is exothermic, the electrolyte was cooled down using
water at the border.

(a) Scheme of the set-up for
Electro-Chemical Polishing of lat-
tice structures made by EBM.

(b) Octet-truss lattice after
ECP during 20 min.

Figure 13.1 Scheme of the set-up and polished structure.

From figure 13.1b, a large difference of surface roughness is observed between the ECP

2Internship of Anthony Desenfant at LAMSI
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zone (bottom) and the raw zone (top). The effect of this process on the roughness is
investigated in the next section.

13.1.2 Results

SEM characterization

SEM analysis of the external struts of the lattice allowed a qualitative investigation of
the effect of the ECP on the surface roughness of the struts. Figure 13.2 shows the
micrographies of three struts of the same lattice after ECP.

Figure 13.2a depicts a strut in the non-immersed zone where no ECP occurred. It
represents the raw surface of a 1 mm strut produced by EBM. The roughness characterized
in 7.2.4 is observed. The black spots correspond to some pollution of the sample that
could not be removed.

Figure 13.2b shows the surface of a strut in the center of a face of the lattice structure.
The strut was directly in front of a plane of the electrode. Its surface seems smoother
than for a raw strut. The powders stuck to the strut have been removed.

Figure 13.2c represents a strut at the bottom corner of the lattice. This strut faced
three planes of the electrode. The polishing was therefore more efficient in this zone.
The powders that stuck to the strut were removed by the ECP and only some wavy
irregularities remain.

(a) Non-polished zone. (b) Center of a face. (c) bottom corner.

Figure 13.2 SEM micrographs of the external struts of the octet-truss lattice with a density
of 6% after 20 min of ECP.

A grey surface seems to appear on the ECP struts. This phenomenon is not observed
in raw struts. When zooming at this zone, it seems to be a layer of small platelets (Figure
13.3a). This zone has been analyzed using Energy-Dispersive X-Ray Spectroscopy (EDX).

The results of the EDX analysis on the yellow line in figure 13.3a are represented in
figure 13.3b. They showed a decrease of the titanium concentration and an increase of
the oxygen one, suggesting a presence of a Ti oxide layer.

Some studies have shown that ion-immersion on titanium surface can lead to an
titanium oxide layer [110–113]. For example, Gong et al. [112] used the anodic oxidation
to form an oxide layer in pure titanium sheets. They immersed the pure titanium sheet
into an aqueous solution containing hydrofluoric acid. The morphology of the oxide layer
that they obtained is very similar to the one of figure 13.3a. The titanium oxide layer is
formed by applying the passivation current. It is employed often to an oxide layer with a
controlled thickness and morphology. It can then be used in a corrosive environment.
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13.1. Electro-Chemical Polishing

(a) SEM micrograph of the zone
where the EDX longitudinal anal-
ysis was carried out.

(b) Results of the EDX on the yellow line. In red,
green and blue: oxygen, vanadium and titanium
content (respectively).

Figure 13.3 EDX analysis of the ECP octet-truss lattice structure.

X-Ray tomography characterization

X-Ray tomography was carried out on the ECP struts at different zones using the same
methodology as paragraph 7.1.2. Struts built with the same orientation (α = 45̊ ) are
analyzed. Figure 13.4 shows the position of the struts that were structurally characterized
by X-ray tomography.

Internal

Bottom
Bottom corner

Figure 13.4 Position of the analyzed struts within the lattice. The lattice was fabricated
with an angle ϕ = 45̊ .

Four different struts with a 1-mm nominal diameter are compared. Struts that did
not undergo ECP are denoted "Raw". From figure 13.4, struts that underwent ECP are
denoted "Internal", "Bottom" and "Bottom Corner" depending on their position within
the structure.

The geometry of the struts is shown in figure 13.5. The ECP effects are largely
inhomogeneous. It confirms the observations made by SEM. The strut inside the lattice
("Internal") exhibits almost the same surface as the raw strut.

On the contrary, struts on the edges of the lattice underwent a larger ECP. The strut
at the bottom corner of the lattice is largely polished and do not exhibit the two-scales
roughness typical from the EBM process. However, when decreasing the roughness, the
volume of the strut decreased drastically.

Using the methodology developed earlier (paragraph 7.1.3), the roughness was com-
puted along the circumference of the four struts of figure 13.5. The results are plotted in
figure 13.6.

The raw strut and the internal one exhibit the same trend of arithmetic roughness.
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Chapter 13. Improvement of the surface roughness through post-treatments

(a) Raw. (b) Internal. (c) Bottom. (d) Bottom
Corner.

Figure 13.5 3D image of 1 mm struts as-built ("Raw") and at different locations within the
lattice after ECP ("Internal", "Bottom" and "Bottom Corner"). The struts were fabricated
with the same build angle of 45̊ . The scale bar represents 500 µm.
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(d) Bottom Corner.

Figure 13.6 Variation of the arithmetic roughness for raw struts and struts undergoing
ECP at different locations of the lattice structure.

The mean arithmetic roughness is the same for both struts (Ra=44µm). Thus, the internal
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strut did not undergo any polishing.
On the contrary, a reduction of roughness is observed for the "Bottom" and "Bottom

Corner" struts. The mean roughness for the bottom strut has been calculated as 27 µm
and 22 µm for the "Bottom Corner" one.

The Electro-Chemical Polishing is thus very inhomogeneous for lattice structures. The
polishing occurs preferentially in the struts that directly face the cathode plates. Struts
inside the lattice structure undergo almost no polishing. Such a treatment does not seem
adequate for lattice structures. Another post-processing process is presented in the next
section: the Chemical Etching.

13.2 Chemical Etching

Chemical Etching on lattice structures produced by Laser Beam Melting has been studied
by Pyka et al. [108]. They immersed a titanium structure in an aqueous solution composed
of HF with a concentration ranging from 0.5wt% to 1.1wt%. Their aim was to remove
the particles that stuck to the struts. They find an optimum when immersing structures
for 12 min in a solution containing 0.6 wt% HF. In our case the aim is not only to remove
the particles that stuck to the melt pool but also to decrease the "plate-pile" stacking
effect. Different acid concentration and time of etching are used.

13.2.1 Parameters and methodology

As mentioned in the introduction, the results presented in this section are coming from a
collaboration with the Université Libre de Bruxelles (ULB) 3.

The etching solution was composed of 3% HF and 13% HNO3. The samples were
etched two times for two hours. The samples used for the Chemical Etching are presented
in figure 13.7.

ρ̄ = 14%
ρ̄ = 7.3%

ρ̄ = 28.5%

Figure 13.7 Octet-truss lattices used for CE.

They are composed of three unit-cells per side. The width and height of the structures
are kept constant. The variation of density is carried out by a variation of struts diameters,
set to 0.8 mm, 1.1 mm, 1.7 mm for a density of 7.3%, 14% and 28.5% respectively.

3Collaboration with Stéphane Godet and Charlotte de Formanoir. The chemical etching has been
carried out at their laboratory and the production and structural characterization was conducted at
Grenoble.
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Chapter 13. Improvement of the surface roughness through post-treatments

13.2.2 Results

Structural characterization

After CE, the lattice structures exhibit a smaller density (28.5%→21%, 14%→7%,
7%→4%). For the structural characterization, a focus has been made on the higher
density structure which exhibits a final density of 21% (as-built 28.5%). From this struc-
ture, two struts were extracted and compared with an "as-built" one. One strut was
extracted from the border of the lattice and is denoted "external" and another one came
from the inside of the lattice and is denoted "internal".

The same X-ray tomography method has been used as for the ECP. The shape of the
struts before and after CE are represented in figure 13.8. The Chemical Etching allows an
improvement of the surface geometry of the struts. From a qualitative point of view, the
etching seems homogeneous since the external and internal struts exhibit a similar surface.

(a) Raw. (b) Internal. (c) External.

Figure 13.8 3D image of 1.7 mm struts as-built ("Raw") and at different locations within
the lattice after CE ("Internal" and "External"). The blue cylinder represents the designed
cylinder having a diameter DCAD = 1.7mm.

The CE treatment allows the removal of the particles that stuck in the strut as well as
a reduction of the plate-pile like stacking structure of the surface irregularities.

The arithmetic roughness of the struts is extracted using the same methodology as
paragraph 7.1.3. The variation of the arithmetic roughness as a function of the angle
of the extracted contour is plotted in figure 13.9 for the raw strut and for the internal
and external struts after EC treatment. The mean roughness of the "as-built" strut
is calculated as 35 µm whereas the mean roughness for the internal strut after EC is
calculated as 26 µm and 24 µm for the external one.

Mechanical characterization

The mechanical equivalent cylinder was computed for each struts (following the methodol-
ogy of paragraph 7.3.2). The percentage of inefficient matter can be computed using this
formula:

∆NUM
EQ =

V EQ
Cyl − Vstrut

Vstrut

(13.1)

where Vstrut is the volume of the strut and V EQ
Cyl is the volume of the mechanical equivalent

cylinder. For the "as-built" strut, there is 7% of inefficient matter which is reduced to 3%
after CE treatment.
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(c) External

Figure 13.9 Variation of the arithmetic roughness for raw struts and struts undergoing
CE at different locations of the lattice structure.

The Young’s modulus of the structure before and after CE treatment was assessed
by uniaxial compression following the same methodology as section 8.2. The results are
plotted in figure 13.10.

The Young’s modulus of the "raw" structure is lower than the reference one (obtained
by FEM simulation in figure 8.9). The Young’s modulus of the structures after CE is
closer to the reference value of the simulation (green). This improvement comes from
the decreasing of the inefficient matter within the struts.
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Figure 13.10 Relative Young’s modulus as a function of the relative density for "as-built
lattice (black) and treated lattices (red) compared to the FEM simulation (green).

Thus, the Chemical Etching (CE) allows an homogeneous treatment to decrease drasti-
cally the roughness and increase the percentage of efficient volume within lattice structures
manufactured by Electron Beam Melting.
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Improvement of the strut’s size
through the EBM process
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The aim of this chapter is to improve the strut size and shape by tuning the process
parameters and strategies. Two main approaches are studied.

The first one is to change the process strategies to produce struts that exhibit a
mechanical equivalent diameter having the same size as the nominal diameter.

The second one is to allow concentric circle beam path for melting vertical struts with
larger diameters (e.g. 5 mm) instead of a hatching strategy.

14.1 Improvement of the size accuracy for a 1 mm

vertical strut

14.1.1 Methodology

As mentioned earlier (paragraph 7.2.3), when producing 1 mm struts with the "Net" theme,
the produced struts are thinner than the designed ones. In order to be closer to the CAD
diameter, the process parameters have to be changed. In this study we focus on vertical
struts. The standard "Net" strategy for melting a vertical 1 mm-diameter strut is shown
in figure 14.1a. The idea for producing larger struts is to decrease the first contour offset
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14.1. Improvement of the size accuracy for a 1 mm vertical strut

(CO1) but using the same process parameters (see paragraph 7.1.1). The internal contours
have been added to fully melt the strut.

To do that, we have used a thermal Finite Element simulation 1. This FEM simulation
takes as input a Gaussian heat source that follows a path on a surface having the density
and thermal conductivity of the sintered powder. Although the simulation of few layers is
time-consuming, it allows a prediction of the optimal first contour offset to fully melt a
cylinder with a 1 mm diameter.

The result of this simulation shows that the optimal first contour offset is 0.128 mm
instead of 0.3 mm for the standard one. This optimal first contour offset is denoted
COOP T

1 (as shown in figure 14.1b).

CO1

CO2

1 mm

Limit of the CAD file
1st contour
2nd contour

(a) "Standard Net".

COOPT

1

CO2

1 mm
(b) "Net with COOP T

1
".

Figure 14.1 Scheme of the melting path at a random layer for a 1 mm circular vertical
strut when using different set of parameters (standard "Net" theme and modified "Net"
theme with the optimal first contour offset).

Figure 14.1 shows the difference of the process strategies between the standard "Net"
theme (14.1a) and the process strategy using the optimal first contour offset(14.1b). The
optimized theme exhibits 3 inner contours with the same process parameters to fully melt
the area of the strut.

The volume energy has been calculated for both process parameters and strategies
using the formula explained in the first part:

EV =
E

SCADhlayer

(14.1)

where E is the beam energy, SCAD is the surface of the CAD file and hlayer is the height
of the layer of the process.

1Performed by Nicolas Béraud (Currently PhD student at G-Scop laboratory in Grenoble)
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Chapter 14. Improvement of the strut’s size through the EBM process

The "Net" theme has a volume energy of 2.1 1010 J/m3. For the modified "Net" theme
with a first contour offset of 0.128 mm, the volume energy was calculated as 3.8 1010

J/m3. The new process theme ("Net with COOP T
1 ") is then supposed to melt larger volume.

1 mm-diameter struts were produced vertically with the process parameter of the
theme "Net with COOP T

1 " and further analyzed by X-ray tomography.

14.1.2 Results

The structural analysis of vertical struts produced either with the "Net" theme or with the
"Net with COOP T

1 " theme is represented in figure 14.2. One can observe that the modified
theme produces larger strut than with the standard "Net" theme. The roughness seems to
be in the same order of magnitude.

(a) "Net". (b) "Net with COOP T
1

".

Figure 14.2 Vertical and cross-section views of the 1 mm-diameter vertical struts produced
with both themes. The build direction is represented with the black arrows.

A quantitative analysis of the produced struts is carried out following the same
methodology as in section 7.1. From this analysis, the porosity content, the mechanical
equivalent diameter and the mean surface roughness are extracted. The values are reported
in table 14.1.

Results show that the change of process parameters allowed a large increase of the
mechanical equivalent diameter. Although it does not reach the nominal diameter (1 mm),
the mechanical equivalent diameter is almost twice larger when optimizing the process
parameters. Thus, the effect of size difference on the stiffness of the struts is reduced.

DNUM
EQ [mm] Porosity [%] Ra [µm] Rt [µm]

"Net" 0.46 0.035 40.7 213.3
"Net with COOP T

1 " 0.84 0.025 47.9 265
Table 14.1 Results of mechanical equivalent diameter, porosity level, and roughness of 1
mm-diameter vertical struts manufactured with two different process parameters.
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However, the roughness does not decrease when using the "Net with COOP T
1 " theme.

On the contrary it increases slightly. This increase can be attributed to the larger volume
energy for melting that can lead to remelting of the contour of the strut. This change of
roughness increases the "inefficient" matter within the strut.

The porosity level remains really low (<0.1%) for both themes.

The variation of first contour offset allowed to create struts with a diameter closer to
the nominal one, but did not allow a reduction of the "inefficient" volume within the strut.

14.2 Variation of the scan strategy for 5 mm-diameter

struts

This section presents a preliminary study which aims at changing the beam path strategy
for large struts. The results presented here are focused on vertical 5 mm-diameter struts.
The changes presented in this section are not based on a thermal FEM simulation but
rely on a trial-and-error procedure.

14.2.1 Methodology

The standard methodology to manufacture large struts is to use the standard "Melt"
theme. Figure 14.3a presents the strategy to melt a vertical 5 mm-diameter strut with
this strategy. To melt a layer, the beam scans two circular contours and then follows a
hatching path following a snake approach. Since the designed strut exhibits a circular
cross-section, a change of the beam path strategy from a rectangular beam path to a
circular one was investigated. Instead of having a rectangular hatching, the beam scans
concentric contours from the outside to inside (14.3b).

The beam parameters for the "Melt" theme are sum up in the following table (14.2).
The values in red are reference values that can fluctuate during the hatching step. Two
different themes have been developed following the path of figure 14.3b. They are based
on the concentric contours.

For the first one, the beam parameters have been tuned to finally have the same
volume energy as the "Melt" theme. This theme is called CC SE for "Concentric Contours
with Same Energy". However it needs much more time to melt a layer.

The theme "CC SESP" follows the concentric contours path with different parameters.
The new parameters allow a melting with the same volume energy and the same volume
power than the "Melt" theme. This theme is called CC SESP for "Concentric Contours
with Same Energy Same Power".

14.2.2 Results

Vertical struts have been created with the three different themes. Their geometry can be
observed in figure 14.4. For each strut, a longitudinal view allows the visualization of the
size of the strut and the comparison with the designed one. The other view is a top view
that shows the projection of the pores (in red).

Qualitatively, the theme CC SE seems to lead to largely porous parts (figure 14.4b).
The pores are no longer spherical but exhibit an elongated shape. Some of the pores are

186



Chapter 14. Improvement of the strut’s size through the EBM process

5 mm

Limit of the CAD file
1st contour
2nd contour
Hatching

(a) Standard Melt.

5 mm
(b) Concentric contours.

Figure 14.3 Scheme of the melting path at a random layer for a vertical 5 mm-diameter
strut with the standard "Melt" theme and the modified one.

Melt CC SE CC SESP

1st Contour

Offset [mm] 0.29 0.3 0.3
Speed [mm/s] 340 470 2100
Current [mA] 4 2.4 7.9

2nd Contour

Offset [mm] 0.25 0.1 0.1
Speed [mm/s] 800 470 2050
Current [mA] 10 2 8.35

Hatching

Offset [mm] 0.1
Speed [mm/s] 4530
Current [mA] 15

Global
Volume Energy [J/m3] (14.1) 4.2 1010 4.3 1010 4.2 1010

Time for a layer [s] 8.3 10−2 3.6 10−1 8.3 10−2

Volume Power [W/m3] (2.3) 5.1 1011 1.2 1011 5.1 1011

Table 14.2 Parameters values for melting a vertical strut with a 5 mm-diameter for different
themes. Red values correspond to reference values that fluctuate during the fabrication
depending on Arcam algorithm.

spread in the whole height of the strut. When a pore is created at a given height, it will
not be filled at the next layer and the pore will grow as the strut keeps on fabricating.

For the "Melt" theme and the CC SESP, the pores are mainly spherical and the porosity
level seems low.

The size accuracy between the manufactured strut and the designed one can be assessed
for the different themes. It can be seen that the theme CC SE produces thinner struts.
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(a) "Melt". (b) Concentric contours SE.

(c) Concentric contours SESP.

Figure 14.4 Vertical and cross-section views of the 5 mm-diameter vertical struts produced
with different themes. The build direction is represented with the black arrows.

This is due to a lower melting power associated to the large pores.
The quantitative results from the 3D images are represented in the table 14.3.
The theme CC SE is largely "porous" (>3%) and exhibits a mechanical equivalent

diameter lower than for the "Melt" theme. It can be understood by looking at the process
parameters. The fabrication using this theme allows the same volume energy than the
"Melt" theme. However it takes a longer time to melt the same surface. Therefore the
energy is much more dissipated and do not allow an efficient melting. The necessity to
melt with the same energy and same power is highlighted.

Indeed, when melting using the CC SESP theme, the porosity level remains lower than
0.1% and the mechanical equivalent diameter is similar to the one of the "Melt" theme.

DNUM
EQ [mm] Porosity [%] Ra [µm] Rt [µm]

"Melt" 4.54 0.047 31.4 199.2
Concentric Contours SE 4 3.38 48.6 276.5
Concentric Contours SE SP 4.58 0.031 32.8 235.5

Table 14.3 Results of mechanical equivalent diameter, porosity level, and roughness of 5
mm-diameter vertical struts manufactured with three different process strategies.

In terms of roughness, there is no clear improvement between the "Melt" theme and
the "CC SESP" theme. Both themes exhibit a mean arithmetic roughness of 32 µm and a
maximum roughness of around 200 µm.

The methodology developed here leads to the same geometry than the standard "Melt"
theme.

There is a real need of a thermal simulation of the EBM process that can predict the
melted volume and surface irregularities depending on the beam path and parameters. in
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this case, the trial-error methodology is not efficient to improve the strut quality.
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Summary

In this part, two ways of improving the strut’s geometry and surface roughness were
investigated:

Improvement through post-treatment:

Two different types of post-treatment were used for improving the surface irregu-
larities of the EBM-processed lattices:

Electro-chemical polishing (ECP) • A solution containing 10 %vol of perchlo-
ric acid and 90 %vol of acetic acid was used as an electrolyte for the
ECP.

• The current density used for this study was set as the passivation current
of 10 mA/cm2.

• The ECP was very inhomogeneous within the lattice structure. Internal
struts exhibit almost no polishing whereas struts of the external faces of
the lattice structures are much more polished.

• The final arithmetic roughness can reach less than 20 µm (starting from a
mean roughness of around 40 µm).

• An oxide layer can be formed due to the reaction between the titanium
and the acid ions.

Chemical Etching (CE) • The solution for CE consists of 3 %vol HF and 13
%vol HNO3. Samples were etched for four hours.

• The CE is much more homogeneous through the lattice structures. The
mean roughness of the struts after CE was calculated as 24-26 µm.

• The mechanical properties of lattice structures after CE was assessed
and compared with the "raw" properties. The CE reduces the volume of
"inefficient" matter. Thus the final Young’s Modulus of the etched lattice
is similar to the reference Young’s modulus for such structure.
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Improvement through EBM process strategy:

The process parameters and beam path were tuned to optimize the melting of
vertical 1 mm-diameter and 5-mm diameters struts. The aim is to reduce the difference
in size between designed struts and fabricated ones.

1 mm-diameter struts The size of a 1 mm-diameter vertical strut was optimized
by changing the process strategy.

• Using a thermal simulation, a new contour offset has been set to enlarge
the produced strut.

• The produced strut exhibits a mechanical equivalent diameter of 0.84 µm
versus 0.46 µm when melting with the "Net" theme.

5 mm-diameter struts The beam path of a vertical 5 mm-diameter was adjusted
using concentric contours instead of squared beam lines.

• For 5 mm-diameter struts, the beam path has been changed using only
concentric contours.

• When melting with the same energy as for the "Melt" theme, large pores
appear. They results from a lack of melting due to a large time to melt a
layer.

• When melting with the same energy and same power as for the "Melt"
theme, the porosity level remains low (<0.1%) but no improvement has
been observed compared to the standard "Melt" theme.

• A thermal simulation of the beam path is highly needed to improve the
EBM process.
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Conclusions

Aim and strategy

The aim of this PhD was to characterize and optimize lattice structures manufactured by
Additive Manufacturing using the Electron Beam Melting technology. The problematic has
been split into different parts. Firstly, a microstructural and mechanical characterization
of the constitutive material allowed the understanding of the inner properties of the struts.

Then, the characterization of struts was focused on 1 mm-diameter struts. The use
of X-ray tomography and image analysis was crucial to fully characterize the inner and
outer structure of the struts. FFT simulation on the struts images allowed the stiffness
prediction of single struts. The produced lattice structures were characterized by uniaxial
compression.

A mechanical equivalent diameter was assessed for different strut diameters and
orientations. The introduction of this equivalent diameter allows us to take into account the
constraints of the EBM process into simulations and mechanical optimization procedures.

Lastly, two ways of improving the strut geometry were investigated: either by post-
treatment or by tuning the EBM process strategy.

Main results

Characterization of the constitutive material

The microstructure of thin struts and bulk parts was assessed:

• Both microstructures exhibit a lamellar morphology of the α phase and a preferential
orientation of the parent β grains along the build direction.

• Thin struts show a slightly finer parent β grain size than bulk parts. This could
lead to a higher hardness for such thin parts.

The same mechanical properties were observed between small struts and larger ones.
However, the roughness has a large impact on the ductility of the produced parts.

Oxygen pick up during reuses of the initial powder has been highlighted by elementary
analysis. It influences drastically the mechanical properties by reducing the elongation to
failure and increasing the yield strength.

An influence of the pore distribution and mode of failure on the ductility of EBM-
produced tensile samples has been shown.

Stiffness prediction of lattice structures produced by EBM

• When using standard process parameters, the porosity level remains lower than
0.1%. Pores are spherical and mainly come from the atomization process of the
powders.

• The produced struts are systematically thinner than the designed ones. Thus, the
produced lattice structures have a lower density than the designed ones.

• Due to large surface irregularities, the struts can be separated into "efficient" and
"inefficient" matter. The stiffness of the strut is carried by the "efficient" matter.
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• By computing the elastic stiffness of the strut, a mechanical equivalent diameter
was proposed (DNUM

EQ ). It is the diameter of a circular cylinder having the stiffness
of the strut. It allows to take into account both phenomena: the size discrepancy
and the efficient matter.

• This mechanical equivalent diameter was validated by comparing numerical predic-
tion and experimental data on an octet-truss lattice structure.

• An analytic value of the mechanical equivalent diameters as a function of the strut
orientation (α) and nominal diameter (DCAD) was assessed: DNUM

EQ = f(α, DCAD).

Mechanical optimization

• The analytic value of mechanical equivalent diameters was used in a FEM simulation
to find the optimal orientation of a lattice structure within the process. This
optimization of orientation may lead to significant improvements of elastic properties.

• The analytic value of DNUM
EQ was also used in a parametric optimization. This

"realistic" optimization compute the "true" properties of the lattice at each iteration.
It allows to largely improve the distribution of matter by taking into account the
manufacturing constraints.

Improvement of strut size and surface morphology

• Electro-Chemical Polishing (ECP) and Chemical Etching (CE) post-treatments were
applied on lattice structures. The ECP treatment is not efficient because it exhibits
a large inhomogeneity of polishing between the external struts and the struts inside
the lattice structure.

On the other side, CE treatment allows an homogeneous reduction of the surface
irregularities. It allows a decrease of the "inefficient" matter.

• The use of a thermal simulation of the EBM process has been highlighted for the
optimization of process strategies to melt struts with a diameter closer to the nominal
one. A trial-and-error methodology did not allow improvement of size or surface
roughness.

Future work

Generalization of the concept of "mechanical equivalent diame-
ter"

The mechanical equivalent diameter defined in this work allows us to take into account
differences between the input design and the fabricated part for lattice structures: not
only differences in size but also differences in mechanical response (concept of inefficient
matter).

Through two examples, we have shown the ability to use this equivalent diameter in
"in-house" parametric optimization procedures. The developed rules have larger implica-
tions. It would indeed be interesting to introduce into commercial codes, similar "response
surface" linked to a specific process (Laser or Electron Beam Melting). Some process
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constraints should also be introduced: e.g. a minimum thickness for trusses, forbidden
angles of fabrication, minimum size of cell (for powder removal purpose) etc. When not
only stiffness properties are concerned, the influence of the orientation of the struts on
the microstructure and texture should also be investigated.

The mechanical equivalent diameter defined here refers only to stiffness properties. It
is sufficient for some applications (launcher for example). For many others (bio-medical,
aeronautics. . . ), fatigue properties are of crucial importance. The surface roughness of
lattice structures produced by EBM can be critical in this context. A preliminary study
on the reduction of the roughness was assessed in this PhD using post-treatments such as
Chemical Etching. However, it would be interesting to see the impact of such reduction
of roughness on the fatigue characteristics of the structures. The presence of few bulk
porosity would lead also to poor properties in fatigue.

A question arises: does exist a critical thickness, a critical bulk porosity under which
it is not possible to use lattice structures for parts submitted to cyclic loading?

The approach proposed in this work could be a starting point for such a study.

Application of lattice structures

Lattice structures are of interest for a purpose of weight saving. They can be directly
introduced in a design process. They can also emerge from a topological optimization
procedure. Some methods (e.g. SIMP method [30, 31]) define an optimal distribution
of matter in terms of "grey levels". These grey levels may correspond, locally, to a
given level of mechanical properties (as discussed in the work of Brackett et al. [32]).
That means that light-but-stiff structures resulting from topological optimization could
be divided into fully dense zones and "lattice" zones [114]. For such configurations, a
conformal implementation of lattice structures has to be optimized to improve the
interface between zones of different density, and especially, between dense zones and
"lattice" zones.

In that sense, we developed a software "lattice-creator" that allows one to produce
random and periodic lattice structures. The description of the possibilities of the software
is detailed in appendix D. It gives the user the possibility to create graded structures as
shown in figure 14.5. It is possible to produce a porosity gradient and to fix the bulk part
on the dense side of the lattice.

Here again, numerical predictions of the mechanical properties of such structures
should take into account the mechanical equivalent diameter, as defined in this work.

When dealing with such "lattice" zones, one has to allow the powder to be removed after
the fabrication process. This manufacturing constraint can limit the range of application
of "lattice" zones. Anyway, it requires a systematic study. Such a study has been carried
out for bulk parts [76], but lacks for lattice structures.

Lattice structures as hosting architecture

The osseointegration of prosthesis is critical for improving the performances of the
implant. The use of porous zones within a prothesis can reduce the Young’s modulus of
the prosthesis and avoid the "stress-shielding" effect which induce an unfavorable stress
distribution at the bone-implant interface. This phenomena is due to a large difference of
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(a) Cube with porosity
gradient.

(b) Top view of a cylin-
der with porosity gradi-
ent.

Figure 14.5 Example of structures with porosity gradient obtained using the "lattice-creator"
(see appendix D).

stiffness between the prosthesis and the bone. It can damage the bone at the interface
with the implant.

Porous zones are also hosting structures for osseous cells. Numerous questions are still
open: what is the role of the pore size? what is the role of the surface roughness? do
we need monomodal or bimodal distribution of pores? [115]. For sure, to optimize the
osseointegration, one need to control perfectly the strut size and pores dimensions. From
the results of this PhD, it would be interesting to dig further in this direction.

(a) 3D model. (b) Picture of the produced
structure.

Figure 14.6 Model and produced acetabular cups. The trabecular surface has been obtained
using the "lattice-creator" program (appendix D).

An example of an acetabular cup with the surface designed using the "lattice-creator"
software is shown in figure 14.6a. The produced cup is shown in 14.6b.

Another way to imagine lattice structures as hosting structures is to use it as one of
the constituent of a composite material. More precisely, it is possible to create composites
composed of two co-continuous phases. The metal lattice structure would be a skeleton
embedded in a "matrix phase" in such a way we can combine the properties of the stiff,
rigid lattice structure with the properties of a more deformable "matrix" phase, for example
a polymer. A first example will focus on the fabrication of a composite "metal lattice"
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filled by a polymeric foam, in order to create a damping structure (Collaborative work
with R. Rinaldi, INSA Lyon).

Thermal simulation of the EBM process

The need for predictive tools of the thermal history of the build is an essential milestone
towards a better control of the dimensional quality and properties of fabricated parts.
Such modeling approach may be of different level of complexity [33,34]. In section 14.1, we
have compared a strut fabricated by EBM with the prediction of a simple model currently
developed at Grenoble [35].

It is for sure a first step to be continued, at least at the level of small and simple parts
such as elementary trusses of different size and orientation, and then at the scale of their
assembly. Such development requires alternatively two steps of validation: An "a posteriori"
validation, similar to the one done in this work, using for example tomographic analysis or
fine roughness calculation, but also (and more complex), an "in situ" validation [116,117].
It is the price to pay to validate numerical simulation, predicting, as a function of the
scan strategies, the occurrence of "bad melting", "defects", "porosity" . . .
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Appendix A

FFT simulation of heterogenous
media

Introduction

In this work, the use of a fast-Fourier transform software allows the direct use of pixelized
3D images as input for the mechanical properties computation of single struts built by
EBM.

This appendix aims at presenting some theoretical aspects of the FFT using CraFT.
The theory presented here comes mainly from publications by Suquet, Moulinec and
Michel [100,118,119]

local problem

From a 3D image composed of two phases x1 and x2 , the aim of the homogenization
procedure is to compute the overall stress and strain Σ, E and thus the effective behavior
from the local constitutive relations of each phases:

σ(x) = C(x) : ε(x) Constitutive relations
ε(x) = 1

2
(∇u(x) + ∇tu(x)) Compatibility

div(σ) = 0 Equilibrium
〈ε〉 = E,〈σ〉 = Σ

u∗ = u − E.x periodic, σ.n anti-periodic Boundary Conditions

where C is the stiffness tensor, E is the macroscopic strain and σ, ǫ, u are the local stress,
strain and displacement fields. The symbol 〈.〉 denotes a mean value.

Iteration scheme

To compute the homogeneous properties of a reference medium, Moulinec and Suquet
( [119]) introduced an iterative scheme to solve the local problem. The aim is to establishes
the relation between the local strain at iteration i+1 and the local strain at iteration i. To
simplify the calculations, the relation is computed in the Fourier space. The constitutive
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law are obtained in the real space and the strain field is calculated in the Fourier space.
Both are computed iteratively until convergence of fields.

Convergence criterion. Convergence is reached when both criteria are fulfilled:

1. The modulus of the divergence of the stress field is lower than a given value
(equilibrium is fulfilled):

‖div(σ)‖ =
√
∑

ξ

|ξ.σ̂(ξ)|2 < ζ (A.1)

2. The loading conditions are verified at each step:

In the case of prescribed macroscopic stress (our case), the iterative scheme is:

Ei+1 = Ei + C0 : (Σ − 〈σi〉) (A.2)

The criterion is :
‖Σ − 〈σi〉‖

‖Σ‖ < η.

Choice of the accuracy for the convergence criterion

The choice of the accuracy value for the convergence of the FFT simulation can largely
influence the result of the simulation and the time to convergence. A study has been
made on the vertical strut with a 1 mm diameter to investigate this parameter. It has
been chosen that the accuracy for the divergence of stress and loading conditions will be
equal: ζ = η.

Figure A.1 shows the variation of the time to convergence and the numerical equivalent
diameter as a function of the accuracy value. For poor accuracy value, the computational
time is low (<1 min) but the value of the computed diameter fluctuates. For values
lower than 10−3, the results of the FFT calculation converges (black rectangle). However,
computational time keeps on increasing.
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Figure A.1 Influence of the desired accuracy of convergence on the simulation time and
numerical result

For that purpose, the value for the accuracy parameter is set as 10−3.
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Appendix B

Detailed example of Periodic
Boundary Conditions for the beam
simulation

The PBC relies on applying kinematic conditions to corresponding points from opposite
sides. We detail here how to apply such PBC on the octet-truss unit cell for a Timoshenko
beam simulation of the uniaxial tensile test along the x direction. The formalization of
the FEM code CAST3M is used.

Generalities on PBC

As mentioned in the manuscript, the PBC are formulated by applying a displacement
field u on the border δV such as :

u(x) = E0.x + u′(x) ∀x ∈ δV, (B.1)

where E0 is a macroscopic deformation tensor and u′(x) is a periodic displacement field.
Its period is equal to the length of the unit-cell (L in figure B.1). For two opposite points
(x+ and x−) separated by the period L, the following relation can be established:

u(x+) − u(x−) =E0.(x+ − x−) +
(

u′(x+) − u′(x−)
)

︸ ︷︷ ︸

=0

=E0.L. (B.2)

Application on the octet-truss structure

The structure of interest is the octet-truss structure (see figure B.1).
The macroscopic strain corresponds to an unixial tensile test. The macroscopic strain

tensor can be written in the form:





E0
x 0 0

0 0 0
0 0 0




 (B.3)

If F −
X ={P1;P2;P3;P4;P5} and F +

X ={P1B;P2B,P3B;P4B;P5B}, the kinematic relations
for opposite points in the x direction are computed as:
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Figure B.1 Octet-truss unit cell composed of 36 struts. The dashed lines represent the
bounding box.

ux(F +
X ) − ux(F −

X ) = E0
x.L

uy(F +
X ) − uy(F −

X ) = 0

uz(F +
X ) − uz(F −

X ) = 0.

Similarly to the F +
X and F −

X sides, the kinematic relations for the other sides are:

ux(F +
Y ) − ux(F −

Y ) = 0

uy(F +
Y ) − uy(F −

Y ) = 0

uz(F +
Y ) − uz(F −

Y ) = 0.

ux(F +
Z ) − ux(F −

Z ) = 0

uy(F +
Z ) − uy(F −

Z ) = 0

uz(F +
Z ) − uz(F −

Z ) = 0.

Within the CAST3M code, the relative displacements are fixed using the "RELA" and
"DEPI" operators:

RIG1=’RELA’ ’UX’ FXP -’UX’ FXM ;
RIG2=’RELA’ ’UY’ FXP -’UY’ FXM ;
RIG3=’RELA’ ’UZ’ FXP -’UZ’ FXM ;
RIG4=’RELA’ ’UX’ FYP -’UX’ FYM ;
RIG5=’RELA’ ’UY’ FYP -’UY’ FYM ;
RIG6=’RELA’ ’UZ’ FYP -’UZ’ FYM ;
RIG7=’RELA’ ’UX’ FZP -’UX’ FZM ;
RIG8=’RELA’ ’UY’ FZP -’UY’ FZM ;
RIG9=’RELA’ ’UZ’ FZP -’UZ’ FZM ;

216



Appendix B. Detailed example of Periodic Boundary Conditions for the beam simulation

DEP1=’DEPI’ RIG1 (E0
X ∗ L) ;

DEP2=’DEPI’ RIG2 0. ;
DEP3=’DEPI’ RIG3 0. ;
DEP4=’DEPI’ RIG4 0. ;
DEP5=’DEPI’ RIG5 0. ;
DEP6=’DEPI’ RIG6 0. ;
DEP7=’DEPI’ RIG7 0. ;
DEP8=’DEPI’ RIG8 0. ;
DEP9=’DEPI’ RIG9 0. ;

To suppress the rigid body motions, one node of the unit-cell is fixed.
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Appendix C

Comments on the relative density
calculation

The relative density of a regular octet-truss lattice can be computed easily by considering
the volume of the struts divided by the volume of the bounding box. For a unit-cell
composed of struts with a length l and a radius r, the first order relative density is
expressed as (from [42]):

ρ̄1st

= 6π
√

2
(

r

l

)2

(C.1)

This density is an over-estimation of the true density since it counts multiple times
the volume of the intersections of beams.

In section 8.3, the relative density used was the "true" relative density (ρ̄true) since
the calculations were done on an octet-truss composed of volume element. The relative
density was then calculated by integration of the volume.

The difference between the first order and true relative density is plotted for a regular
octet-truss in figure C.1.
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Figure C.1 First order relative density as a function of the true relative density. The red
line represents the isovalue.

The first order relative density is really close to the true relative density until 5-10%.
For larger densities, the difference between the first order and second order is large since
the volume of the node is not anymore secondary.
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For 1 mm circular struts, the true density is calculated as :

ρ̄true = 6π
√

2
(

r

l

)2

− 55
(

r

l

)3

(C.2)

In this work, the range of density is lower than 5 % so that the first order density
can be used in optimization and simulation procedures. However, when simulating larger
densities, the true relative density value should be calculated.
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Appendix D

Description of the lattice creator
program

The program allows the creation of lattice structures in the wireframe format. This format
is composed of points coordinates and connectivity table between the points. It has been
written in C and fortran.

A thickness is then assigned to each segment at the end of the procedure.
This program allows the manufacturing of unit-cells for creating periodic structures.

It can create also random structures based on the Voronoi tessellation. The third type of
structures that can be created is structures with graded porosity.

Periodic structures

Different periodic structures can be created. The unit cells of the structures are represented
in figure D.1.

(a) Cubic (b)
Tetrakaideca-
hedron

(c) Rhombodo-
decahedron

(d) Octet-truss (e) Diamond

Figure D.1 Example of unit-cell that can be designed.

The program can produce either the unit cells or a repetition of then in a 3D bounding
box.

Stochastic structures

The fabrication of stochastic structures relies on the Voronoi tesselation. A set of points
(seeds) is specified in space. For each seed there is a corresponding region consisting of all
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points closer to that seed than to any other. These regions are called Voronoi cells. The
final geometry corresponds to the edges of the Voronoi cells.

It is possible to design monomodal, bimodal or multi-modal random lattices by
restraining a particular distance between the seeds. Some examples of monomodal and
bimodal distribution of cells are represented in figure D.2.

(a) Monomodal (b) Bimodal

Figure D.2 Example of stochastic lattice structures that can be produced.

Graded structures

For the integration of lattice structures within bulk parts, the density of the lattice should
evolve depending on the stress intensity of the zone. For that purpose, graded random
lattice structures are promising geometries to fulfill such an application.

Some examples are represented in figure D.3. The graded lattices can be produced
either within a cube, a cylinder or a sphere. When looking at the cylinder with a large
density at the shell and low density in the core, it looks like human bone. Such a structure
could indeed be used in osseointegration.

Output

The ouput of the program is a VTK file containing the coordinates of the nodes and the
connectivity between them. This file can then be processed with a visualization software
such as Paraviewr. Within this software, one can give a desired diameter to the wireframe
structure. The file is saved as a STL file for its manufacturing by the EBM process.

Moreover, the program outputs a file describing the geometry of the produced structure
in the CAST3M and COMSOL formats for further beam simulation using these FEM
software products.
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Appendix D. Description of the lattice creator program

Figure D.3 Example of graded lattice structures that can be produced.
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Appendix D. Description of the lattice creator program

Résumé

Le récent développement de la Fabrication Additive de pièces métalliques permet d’éla-
borer directement des structures à partir de modèles 3D. En particulier, la technologie
"Electron Beam Melting" (EBM) permet la fusion sélective, couche par couche, de poudres
métalliques. Elle autorise la réalisation de géométries très complexes mais apporte de
nouvelles contraintes de fabrication.

Ce travail se concentre sur la caractérisation géométrique et mécanique de structures treillis
produites par cette méthode. Les pièces fabriquées sont comparées au design initial à
travers des caractérisations par tomographie aux rayons X. Les propriétés mécaniques sont
testées en compression uni-axiale. Pour les poutres de faibles épaisseur, la différence entre
la structure numérique et celle fabriquée devient significative. Les écarts au design initial
se traduisent pour chaque poutre par un concept de matière mécaniquement efficace. D’un
point de vue modélisation, ce concept est pris en compte en remplaçant la poutre fabriquée
par un cylindre avec un diamètre mécaniquement équivalent. Ce diamètre équivalent est
utilisé dans des simulations et optimisations "réalistes" intégrant ainsi les contraintes de
fabrication de la technologie EBM.

Différentes stratégies sont aussi proposées pour réduire la proportion de volume "inefficace"
et améliorer le contrôle de la taille des poutres, soit en jouant sur les paramètres procédé
et les stratégies de fusion, soit en effectuant des post-traitements.

Mots clés : Electron Beam Melting ; Fabrication Additive ; Structures Treillis ; Tomogra-
phie aux rayons X ; Simulation Eléments Finis.

Abstract

The recent development of Additive Manufacturing for the fabrication of metallic parts
allows structures to be directly manufactured from 3D models. In particular, the "Electron
Beam Melting" (EBM) technology is a suitable process which selectively melts a powder
bed layer by layer. It can build very complex geometries but brings new limitations that
have to be quantified.

This work focuses on the structural and mechanical characterization of lattice structures
produced by such technology. The structural characterization mainly rely on X-ray
tomography whereas mechanical properties are assessed by uni-axial compression. The
geometry and related properties of the fabricated structures are compared with the designed
ones. For small strut size, the difference between the designed structure and the produced
one is large enough to impact the desired mechanical properties. The concept of mechanical
efficient volume is introduced. For the purpose of simulation, this concept is taken into
account by replacing the struts by a cylinder with a mechanical equivalent diameter. After
validation, it has been used into "realistic" simulation and optimization procedures, thus
taking into account the process constraints.

Post-treatments (Chemical Etching and Electro-Chemical Polishing) were applied on lattice
structures to get rid of the inefficient matter by decreasing the surface roughness. The
control of the size of the fabricated struts was improved by tuning the process strategies
and parameters.

Keywords: Electron Beam Melting; Additive Manufacturing; Lattice structures; X-ray
tomography; Finite Element simulation.
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