Exploring the physics of the Earth's core with numerical simulations

Nathanaël Schaeffer

ISTerre / CNRS / Université Grenoble Alpes

Grenoble, 30 September 2015

Collaborators

This presentation covers some aspects of my research at ISTerre since 2008. It involves several collaborators at ISTerre:

- PhD student Simon Cabanes (2011 2014)
- PhD student Jérémie Vidal (2014 –)
- Post-doc Aldo Figueroa (2011)
- Post-doc Elliot Kaplan (2015 –)
- 6 Master students,
- The whole Geodynamo team,
- Ludovic Métivier (also at LJK);

and outside:

- Alexandra Pais (Coimbra, Portugal),
- Julien Monteux & Hagay Amit (Nantes),
- Alexandre Fournier & Julien Aubert (Paris)

Outline

Introduction

- 2 Columnar flow in the core
- 3 Torsional Alfvén wave reflection
- 4 Turbulence in geodynamo simulations
- 5 Turbulence in DTS
- 6 Summary & Future directions

Structure of the Earth

HDR N. Schaeffer (ISTerre)

Geophysical introduction

- The Earth is loosing heat since its formation.
- Plate tectonics linked to mantle convection
- Seismology and geodesy require a liquid iron core
- Earth's dynamic magnetic field requires conducting fluid motion.
- A self-sustained dynamo is at work, as in many planets and stars.

Cool facts about the Earth's core

I FREAK OUT ABOUT FIFTEEN MINUTES INTO READING ANYTHING ABOUT THE EARTH'S CORE WHEN I SUDDENLY REALIZE IT'S RIGHT UNDER ME.

http://www.xkcd.com/913/

Cool facts about the Earth's core

- A broad range of time-scales
 - from months (SV) to million years (reversals)
- Viscosity of water
 - > very low Ekman number $E \sim 10^{-15}$
- Large scale motions at the top of the core have speeds around 10 km/year (0.3 mm/sec, turnover time is about 200 years)
 - Turbulent motion (very high Reynolds number $Re\gtrsim 10^8$).
 - Magnetic Reynolds number $Rm\gtrsim 1000~(Pm\sim 10^{-5})$
 - Very low Rossby number $Ro \sim 3 \times 10^{-6}$.
- Magnetic field is dominated by a tilted dipole.
- Magnetic energy dominates kinetic energy by a factor 10⁴ (4 mT estimated in the core, 0.5 mT or 5 gauss at the surface).
 - Very low Lehnert number (Rossby based on Alfvén speed) Le $\sim 10^{-4}$.
- Heat flux extracted by the mantle ($\sim 10 TW, < 100 mW/m^2).$
 - Strong convection (very high Rayleigh number $Ra \gg 10^{20}$? Probably many times critical).

- Broad picture: how do planetary dynamos actually work?
 - Magnetic field reversals?
 - Is convection strong enough?
 - Are other mechanisms possible? (precession, tides, ...)

- Broad picture: how do planetary dynamos actually work?
 - Magnetic field reversals?
 - Is convection strong enough?
 - Are other mechanisms possible? (precession, tides, ...)
- Turbulence: does it matter? How?
 - What do the flow and magnetic field look like?
 - What are the basic equilibriums?
 - Can we build a reduced model?

- Broad picture: how do planetary dynamos actually work?
 - Magnetic field reversals?
 - Is convection strong enough?
 - Are other mechanisms possible? (precession, tides, ...)
- Turbulence: does it matter? How?
 - What do the flow and magnetic field look like?
 - What are the basic equilibriums?
 - Can we build a reduced model?
- Observations: short time-scales (a few years)
 - Importance of waves?
 - Length-of-day variations?
 - Effect of a stable ocean at the top of the core?

- Broad picture: how do planetary dynamos actually work?
 - Magnetic field reversals?
 - Is convection strong enough?
 - Are other mechanisms possible? (precession, tides, ...)
- Turbulence: does it matter? How?
 - What do the flow and magnetic field look like?
 - What are the basic equilibriums?
 - Can we build a reduced model?
- Observations: short time-scales (a few years)
 - Importance of waves?
 - Length-of-day variations?
 - Effect of a stable ocean at the top of the core?
- Can the magnetic field be used to probe the Earth's deep interior?
 - link to geochemistry and Earth's evolution
 - link to seismology

Basic rotating MHD in planetary cores

Navier-Stokes equation

 $\partial_t \mathbf{u} + (2\Omega \, \mathbf{e_z} + \nabla \times \mathbf{u}) \times \mathbf{u} = -\nabla \rho + \nu \Delta \mathbf{u} + (\nabla \times \mathbf{b}) \times \mathbf{b} - \alpha g \, T \, \vec{r}$

Induction equation

$$\partial_t \mathbf{b} = \nabla \times (\mathbf{u} \times \mathbf{b}) + \eta \Delta \mathbf{b}$$

Temperature equation

$$\partial_t T + \mathbf{u} \cdot \nabla T = \kappa \Delta T$$

 $E = \nu/D^2 \Omega \sim 10^{-15}$ $Pm = \nu \mu_0 \sigma \sim 10^{-5}$

 $Ra = \Delta T \alpha g D^3 / \kappa \nu \gg 1 \quad (?)$ $Pr = \nu / \kappa \sim 1$

HDR N. Schaeffer (ISTerre)

Basic rotating MHD in planetary cores

acceleration = advection Pressure gradient + Coriolis force

+ Magnetic force + Archimedes force + viscous drag

Induction equation

Navier-Stokes equation

magnetic field variations = Induction + ohmic losses

Temperature equation

temperature variations = Advection + thermal conduction

$$\begin{split} E &= \nu/D^2\Omega \sim 10^{-15} \\ Pm &= \nu\mu_0\sigma \sim 10^{-5} \end{split}$$

$$Ra = \Delta T \alpha g D^3 / \kappa \nu \gg 1 \quad (?)$$
$$Pr = \nu / \kappa \sim 1$$

HDR N. Schaeffer (ISTerre)

Earth's core simulations

- 1995 : Glatzmaier & Roberts
 - Chebychev, 64 × 32 × 49
 - hyperviscosity
 - Earth-like, reversals, and all the hype.

- 1995 : Glatzmaier & Roberts
 - Chebychev, 64 × 32 × 49
 - hyperviscosity
 - Earth-like, reversals, and all the hype.
- 2006 : Christensen & Aubert
 - Chebychev, 168 × 336 × 97
 - $E = 3 \times 10^{-6}$, Pm=0.06
 - Extensive parameter study, scaling laws.

- 1995 : Glatzmaier & Roberts
 - Chebychev, 64 × 32 × 49
 - hyperviscosity
 - Earth-like, reversals, and all the hype.
- 2006 : Christensen & Aubert
 - Chebychev, 168 × 336 × 97
 - $E = 3 \times 10^{-6}$, Pm=0.06
 - Extensive parameter study, scaling laws.
- 2008 : Kageyama et. al.
 - Yin-Yang grid, 2048 × 1024 × 511
 - $E = 10^{-6}$, Re=700, Pm=1
 - convection sheets, zonal jets.

- 1995 : Glatzmaier & Roberts
 - Chebychev, 64 × 32 × 49
 - hyperviscosity
 - Earth-like, reversals, and all the hype.
- 2006 : Christensen & Aubert
 - Chebychev, 168 × 336 × 97
 - $E = 3 \times 10^{-6}$, Pm=0.06
 - Extensive parameter study, scaling laws.
- 2008 : Kageyama et. al.
 - Yin-Yang grid, 2048 × 1024 × 511
 - $E = 10^{-6}$, Re=700, Pm=1
 - convection sheets, zonal jets.
- 2009 : Sakuraba & Roberts
 - Chebychev, 768 × 384 × 160
 - $E = 2 \times 10^{-6}$, Re=650, Pm=0.2
 - Fixed heat flux leads to stronger magnetic field.

- 1995 : Glatzmaier & Roberts
 - Chebychev, 64 × 32 × 49
 - hyperviscosity
 - Earth-like, reversals, and all the hype.
- 2006 : Christensen & Aubert
 - Chebychev, 168 × 336 × 97
 - $E = 3 \times 10^{-6}$, Pm=0.06
 - Extensive parameter study, scaling laws.
- 2008 : Kageyama et. al.
 - Yin-Yang grid, 2048 × 1024 × 511
 - $E = 10^{-6}$, Re=700, Pm=1
 - convection sheets, zonal jets.
- 2009 : Sakuraba & Roberts
 - Chebychev, 768 × 384 × 160
 - $E = 2 \times 10^{-6}$, Re=650, Pm=0.2
 - Fixed heat flux leads to stronger magnetic field.
- Many others

Spherical MHD simulations with XSHELLS

- Spherical harmonics,
- finite differences (radial),
- versatile,
- very efficient even on your laptop,
- OpenMP and/or MPI parallelization with good scaling,
- about three times faster than the second best,
- open source.

Figure 1: Performance of the 5 finite difference + spherical harmonics geodynamo codes in the CIG strong scaling test (Matsui *et al* in prep.) with spatial resolution $N_r = 512$, $L_{max} = 255$.

Outline

Introduction

2 Columnar flow in the core

Torsional Alfvén wave reflection

Turbulence in geodynamo simulations

5 Turbulence in DTS

Summary & Future directions

Localized forcing in the equatorial plane...

HDR N. Schaeffer (ISTerre)

- Localized forcing in the equatorial plane...
- 2 Propagation of inertial waves at $c = \ell \Omega$

- Localized forcing in the equatorial plane...
- 2 Propagation of inertial waves at $c = \ell \Omega$

HDR N. Schaeffer (ISTerre)

- Localized forcing in the equatorial plane...
- 2 Propagation of inertial waves at $c = \ell \Omega$
- **③** Formation of a Taylor column in $\tau = \Omega^{-1}L/\ell$

HDR N. Schaeffer (ISTerre)

Earth's core simulations

Columnar flow in the Core ?

A columnar flow can be described by its equatorial plane dynamics (quasi-geostrophic model)

reduces a 3D problem to 2D

- interesting for numerical simulations
- interesting for inversion (surface flow connected to bulk flow!)

Columnar flow in the Core ?

A columnar flow can be described by its equatorial plane dynamics (quasi-geostrophic model)

reduces a 3D problem to 2D

- interesting for numerical simulations
- interesting for inversion (surface flow connected to bulk flow!)

How useful is such a description ?

- valid only if Coriolis dominates...
- ... is it the case at all length scales ?
- ... at all time scales $\tau \gg \Omega^{-1} L/\ell$?

Influence of the magnetic field

Transients torsional waves within a strong magnetic field $\Lambda = 1.5$, Le = 0.0003 (Gillet, Schaeffer, and Jault, 2011)

Quasi-static flow influenced by magnetic field. Parameterization at $\Lambda = 0.9$ (Schaeffer, Lora Silva, and Pais, submitted)

Necessary conditions for columnar flows

- length-scale $\ell \gg \Omega^{-1} V_A$
- time-scale $\tau \ll ?$

Regime diagram of the Core

Nataf and Schaeffer (2015) Turbulence in the Core, in "Treatise on Geophysics"

HDR N. Schaeffer (ISTerre)

Regime diagram of the Core

Nataf and Schaeffer (2015) Turbulence in the Core, in "Treatise on Geophysics"

HDR N. Schaeffer (ISTerre)

Torsional Alfvén Waves

- Alfvén waves constrained by rotation can only propagate as geostrophic cylinders.
- Their speed is related to the integral over z and φ of B²_s.
- Measuring their speed gives information about the magnetic field inside the core.

Torsional Alfvén waves in the Core

Figure 2: Time versus cylindrical radius map of angular velocity in the Earth's core, filtered around a 6 year period, as obtained by Gillet, Jault, et al. (2010).

Influence of mantle conductivity

- Slightly damps the wave along their propagation
- Strong effect when hitting the equator
- No reflection for a magic mantle conductivity $\sigma_m^0(Pm)$
 - For Pm = 1, $\sigma_m^0 = 0$ (Schaeffer, Jault, et al., 2012).

Theory for 1D Alfvén wave reflection

Reflection coefficient in the thin layer approximation:

$$R \simeq \frac{1 - Q - \sqrt{Pm}}{1 + Q + \sqrt{Pm}}$$

with

$$Q = rac{V_A \epsilon}{\eta_W} = G B_0 \sqrt{rac{\mu_0}{
ho}}$$

and $G = \sigma_m \epsilon$ the conductance of the wall.
Theory for 1D Alfvén wave reflection

Reflection coefficient in the thin layer approximation:

$$R \simeq \frac{1 - Q - \sqrt{Pm}}{1 + Q + \sqrt{Pm}}$$

with

$$Q = rac{V_A \epsilon}{\eta_W} = G B_0 \sqrt{rac{\mu_0}{
ho}}$$

and $G = \sigma_m \epsilon$ the conductance of the wall.

Explains the spherical simulations:

Application to the Earth's Core

- Free propagation of torsional waves.
- Energy and momentum absorbed when hitting the equator, for $G \sim 2 \times 10^8$ Siemens.

Free propagation of Torsional waves reconciled with strong core-mantle coupling ?

Application to the Earth's Core

- Free propagation of torsional waves.
- Energy and momentum absorbed when hitting the equator, for $G\sim 2\times 10^8$ Siemens.

Free propagation of Torsional waves reconciled with strong core-mantle coupling ?

Incidentally, numerical simulations at $Pm \sim 1$ mimic the effect of a conducting layer at the bottom of the mantle at low Pm !

Outline

Introduction

- 2 Columnar flow in the core
- 3 Torsional Alfvén wave reflection
- 4 Turbulence in geodynamo simulations
 - 5 Turbulence in DTS
 - 6 Summary & Future directions

The model

- Earth's core geometry (Sphere)
- thermochemical convection (codensity, 75% chemical driving, Aubert *et al* 2009);
- no-slip, and fixed flux homogeneous boundary conditions
- high rotation rate, low viscosity
- strong forcing (more than 4000 times critical)

with:

- Ekman number $E = \nu / D^2 \Omega$
- 2 Rayleigh number $Ra = \Delta T \alpha g D^3 / \kappa v$
- Solution Magnetic prandtl number $Pm = \nu \mu_0 \sigma$
- (Thermal) Prandtl number Pr = 1.

The simulations

The idea

- Keep super-criticality and $\textit{Rm} = \textit{UD}/\eta \simeq 650$ fixed.
- go to more Earth-like A = U/B and $Pm = \nu/\eta$.

• initial: $E = 10^{-5}$, Pm = 0.4, $Ra = 6 \, 10^{10}$ $\Rightarrow A = 1.5$ $F_{\nu} = 47\%$

The simulations

The idea

- Keep super-criticality and $\textit{Rm} = \textit{UD}/\eta \simeq 650$ fixed.
- go to more Earth-like A = U/B and $Pm = \nu/\eta$.

• initial: $E = 10^{-5}$, Pm = 0.4, $Ra = 6 \ 10^{10}$ $\Rightarrow A = 1.5$ $F_{\nu} = 47\%$ • jump 1: $E = 10^{-6}$, Pm = 0.2, $Ra = 1.2 \ 10^{12}$ $\Rightarrow A = 0.61$ $F_{\nu} = 24\%$

The simulations

The idea

- Keep super-criticality and $\textit{Rm} = \textit{UD}/\eta \simeq 650$ fixed.
- go to more Earth-like A = U/B and $Pm = \nu/\eta$.

Extreme parameters, require $2688 \times 1344 \times 1024$ points (3.7 billions) 7 months computation on 512 cores (10.5 sec/step)

HDR N. Schaeffer (ISTerre)

Earth's core simulations

Energy vs Time

Jump 2 ran for 1.5% of a magnetic diffusion time, and it took about 7 months to compute on 512 cores, spending 2.5 million core hours.

HDR N. Schaeffer (ISTerre)

Earth's core simulations

Jump 2: spectra

- Magnetic field dominates deep in the core but not near the surface.
- Velocity spectrum nearly flat at the surface but increasing deep down.

Jump 2: regime diagram

Spectra translated into $\tau - \ell$ space ($E = 10^{-7}, Pm = 0.1$)

- Correct ordering of scales
- Fair scale separation

Snapshot: initial U_{ϕ} ($E = 10^{-5}$, Pm = 0.4, A = 1.5)

 $NR = 224, L_{max} = 191$ HDR N. Schaeffer (ISTerre)

Snapshot: jump 1 U_{ϕ} ($E=10^{-6}$, Pm=0.2, A=0.62)

 $NR = 512, L_{max} = 479$ HDR N. Schaeffer (ISTerre)

Snapshot: jump 2 U_{ϕ} ($E = 10^{-7}$, Pm = 0.1, A = 0.43)

 $NR = 1024, L_{max} = 893$ HDR N. Schaeffer (ISTerre)

Jump 2: z-averaged energy densities

z-averaged equatorial energy densities, left: $\langle U_{eq}^2 \rangle$, right: $\langle B_{eq}^2 \rangle$. $E = 10^{-7}$, Pm = 0.1, Rm = 600, $A \sim 0.45$.

HDR N. Schaeffer (ISTerre)

Jump 2: Temperature field

Mean temperature of each shell has been removed.

HDR N. Schaeffer (ISTerre)

Earth's core simulations

Averages of U and B

U

В

HDR N. Schaeffer (ISTerre)

Earth's core simulations

30 September 2015 34 / 46

Jump 2: Non-zonal mean flow

Homegeneous heat flux start to produce large scale flows at $E = 10^{-7}$

HDR N. Schaeffer (ISTerre)

Earth's core simulations

Jump 2: Space-time Fourier analysis

- Fourier Transform in the two homogeneous directions: t and φ.
 Two different regions inside and outside the tangent cylinder.
- $E = 10^{-7}$, Pm = 0.1

HDR N. Schaeffer (ISTerre)

Jump 1: Influence of the magnetic field

Figure 3: Energies as a function of time (normalized by the viscous diffusion time) for case jump 1 ($E = 10^{-6}$) and for the same parameters as jump 1, but without magnetic field.

HDR N. Schaeffer (ISTerre)

Earth's core simulations

Jump 1: Influence of the magnetic field

With a strong dynamo magnetic field:

- Zonal jets are suppressed, plumes extend further.
- Larger plumes...
- ... but convection still starts at small length-scale ! $(E^{1/3})$.

Outline

Introduction

- 2 Columnar flow in the core
- 3 Torsional Alfvén wave reflection
- Turbulence in geodynamo simulations

5 Turbulence in DTS

6 Summary & Future directions

The DTS experiment

 $\begin{array}{ll} \mbox{Magnetized liquid sodium spherical Couette experiment} \\ Rm_{rms} \sim 4 & Re_{rms} \sim 10^6 \end{array}$

Turbulence in non-rotating DTS

Surface magnetic probes.

Figueroa et al. (2013)

Energy density of fluctuations (kinetic and magnetic). $Pm = 10^{-3}$, Re = 2611, $\Lambda = 0.034$.

- Velocity fluctuations are stronger near the outer shell (where the imposed magnetic field is weak).
- Lorentz-Laplace force strongly damps the fluctuations deeper.
- Magnetic fluctuations are stronger in the bulk (where the imposed field is stronger).
- The turbulent fluctuations near the outer shell excite global modes (bumps in the spectra).

HDR N. Schaeffer (ISTerre)

Turbulence in non-rotating DTS: negative β

- Plenty of measurements (Ultrasound Doppler Velocimetry, Surface and bulk magnetic field, Surface electric potential).
- Use them to constrain the mean flow + turbulent EMF

$$EMF = \alpha(r)B + \beta(r)\nabla \times B$$

 $\label{eq:basic} \begin{array}{l} \beta \text{ can be seen as a magnetic} \\ \text{eddy diffusivity: } \eta_{\textit{eff}} = \eta + \beta. \end{array} \end{array}$

- To explain our data, negative β is really needed.
- Supported by EMF computed from DNS at lower *Re*.

Cabanes, Schaeffer, and Nataf (2014) PRL

Turbulence in non-rotating DTS: negative β

- Plenty of measurements (Ultrasound Doppler Velocimetry, Surface and bulk magnetic field, Surface electric potential).
- Use them to constrain the mean flow + turbulent EMF

$$EMF = \alpha(r)B - \beta(r)\nabla \times B$$

 $\label{eq:basic} \begin{array}{l} \beta \text{ can be seen as a magnetic} \\ \text{eddy diffusivity: } \eta_{\textit{eff}} = \eta + \beta. \end{array} \end{array}$

- To explain our data, negative β is really needed.
- EMF computed from DNS at lower *Re* give rather positive β...

Cabanes, Schaeffer, and Nataf (2014) PRL [erratum submitted]

Turbulence in rotating DTS

Elliot Kaplan: realistic DTS simulations using hyperviscosity in the last 20% of the spectrum ($E < 10^{-6}$).

- Outer boundary layer turbulence.
- Large scale modes in the bulk (*Ro* < 0).
- Quick decay for m ≥ 10, except in outer region.

• Columnar flow in the core

- relevant for short time-scale,
- length-scale limit controlled by $Le = B/\ell\Omega$,
- magnetic pumping at longer time-scale?

- Columnar flow in the core
 - relevant for short time-scale,
 - length-scale limit controlled by $Le = B/\ell\Omega$,
 - magnetic pumping at longer time-scale?
- Torsional Alfvén reflection at the equator
 - solved with conducting mantle,
 - can strongly couple core to mantle.

- Columnar flow in the core
 - relevant for short time-scale,
 - length-scale limit controlled by $Le = B/\ell\Omega$,
 - magnetic pumping at longer time-scale?
- Torsional Alfvén reflection at the equator
 - solved with conducting mantle,
 - can strongly couple core to mantle.
- Turbulence in extreme geodynamo simulations
 - small scale forcing by convection,
 - strong influence of the magnetic field,
 - importance of the tangent cylinder.

- Columnar flow in the core
 - relevant for short time-scale,
 - length-scale limit controlled by $Le = B/\ell\Omega$,
 - magnetic pumping at longer time-scale?
- Torsional Alfvén reflection at the equator
 - solved with conducting mantle,
 - can strongly couple core to mantle.
- Turbulence in extreme geodynamo simulations
 - small scale forcing by convection,
 - strong influence of the magnetic field,
 - importance of the tangent cylinder.
- Turbulence in DTS experiment
 - negative eddy diffusivity spotted (why?),
 - boundary layer turbulence vs Bulk waves.

• Turbulence in the core

 Force balance, energy transfers, correlations in extreme simulations: dealing with Tb of data.

- Turbulence in the core
 - Force balance, energy transfers, correlations in extreme simulations: dealing with Tb of data.
- MagLune: Understand the peculiar dynamo of the moon
 - Very strong early on; then weak; then shutdown.
 - Core crystallization? Precession? [David]

- Turbulence in the core
 - Force balance, energy transfers, correlations in extreme simulations: dealing with Tb of data.
- MagLune: Understand the peculiar dynamo of the moon
 - Very strong early on; then weak; then shutdown.
 - Core crystallization? Precession? [David]
- ZoRo: ZOnal jet formation in ROtating convection.
 - simulate the experiment [Elliot, post-doc]
 - ▶ influence of *Pr* on developed convection. [Philippe]

- Turbulence in the core
 - Force balance, energy transfers, correlations in extreme simulations: dealing with Tb of data.
- MagLune: Understand the peculiar dynamo of the moon
 - Very strong early on; then weak; then shutdown.
 - Core crystallization? Precession? [David]
- ZoRo: ZOnal jet formation in ROtating convection.
 - simulate the experiment [Elliot, post-doc]
 - ▶ influence of *Pr* on developed convection. [Philippe]
- Improving numerical methods
 - work on better time integration schemes [Ludovic]
 - deformations (spheroids, ellipsoids) [Jérémie, PhD]

- Turbulence in the core
 - Force balance, energy transfers, correlations in extreme simulations: dealing with Tb of data.
- MagLune: Understand the peculiar dynamo of the moon
 - Very strong early on; then weak; then shutdown.
 - Core crystallization? Precession? [David]
- ZoRo: ZOnal jet formation in ROtating convection.
 - simulate the experiment [Elliot, post-doc]
 - ▶ influence of *Pr* on developed convection. [Philippe]
- Improving numerical methods
 - work on better time integration schemes [Ludovic]
 - deformations (spheroids, ellipsoids) [Jérémie, PhD]
- Back to first love: Quasi-Geostrophic models ! [many]
Thank you all for listening!

HDR N. Schaeffer (ISTerre)

Some numbers

	definition	initial	jump 1	jump 2	Earth's core
N _r		224	512	1024	
L _{max}		191	479	893	
Ek	$ u/D^2\Omega $	10^{-5}	10^{-6}	10^{-7}	310^{-15}
Ra	$\Delta T lpha g D^3 / \kappa u$	610^{10}	1.210^{12}	2.410^{13}	10 ³⁰ ?
Рm	$ u/\eta$	0.4	0.2	0.1	310^{-5}
Pr	$ u/\kappa$	1	1	1	0.1 - 10
Rm	UD/η	710	660	585	2000 ?
Α	$\sqrt{\mu ho} U/B$	1.48	0.62	0.43	0.01
Re	UD/ν	1770	3300	5850	2 10 ⁸
Ro	$U/D\Omega$	0.018	3.310^{-3}	5.910^{-4}	310^{-6}
Le	$B/\sqrt{\mu\rho}D\Omega$	0.012	5.310^{-3}	1.3510^{-3}	10^{-4}
Λ	$\dot{B^2}/\eta\Omega$	5.8	5.7	1.8	1 - 10
F_{ν}	$D_ u/(D_\eta+D_ u)$	47%	24%	17%	?
F_η	$D_\eta/(D_\eta+D_ u)$	53%	76%	83%	?

Table 1: Various input and output parameters of our simulations, where D is the shell thickness, U the rms velocity and B the rms magnetic field.

HDR N. Schaeffer (ISTerre)