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Collaborators

This presentation covers some aspects of my research at ISTerre since
2008. It involves several collaborators at ISTerre:

e PhD student Simon Cabanes (2011 — 2014)
e PhD student Jérémie Vidal (2014 -)
@ Post-doc Aldo Figueroa (2011)
e Post-doc Elliot Kaplan (2015 -)
@ 6 Master students,
@ The whole Geodynamo team,
e Ludovic Métivier (also at LJK);
and outside:
@ Alexandra Pais (Coimbra, Portugal),
@ Julien Monteux & Hagay Amit (Nantes),

@ Alexandre Fournier & Julien Aubert (Paris)
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Outline

© Introduction

© Columnar flow in the core

© Torsional Alfvén wave reflection

@ Turbulence in geodynamo simulations
© Turbulence in DTS

© Summary & Future directions
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Structure of the Earth

100 km | Atmosphere

71 km | Crust
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Geophysical introduction

@ The Earth is loosing heat since its
formation.

@ Plate tectonics linked to mantle
convection

@ Seismology and geodesy require a
liquid iron core

@ Earth's dynamic magnetic field
requires conducting fluid motion.

@ A self-sustained dynamo is at

work, as in many planets and
stars.

HDR N. Schaeffer (ISTerre) Earth’s core simulations 30 September 2015 5/ 46



Cool facts about the Earth's core
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Cool facts about the Earth's core

@ A broad range of time-scales
» from months (SV) to million years (reversals)
@ Viscosity of water
» very low Ekman number E ~ 10715
@ Large scale motions at the top of the core have speeds around
10 km/year (0.3 mm/sec, turnover time is about 200 years)
» Turbulent motion (very high Reynolds number Re > 10%).
» Magnetic Reynolds number Rm > 1000 (Pm ~ 1075)
» Very low Rossby number Ro ~ 3 x 1076,
@ Magnetic field is dominated by a tilted dipole.

@ Magnetic energy dominates kinetic energy by a factor 10* (4 mT
estimated in the core, 0.5 mT or 5 gauss at the surface).

» Very low Lehnert number (Rossby based on Alfvén speed) Le ~ 107%.
o Heat flux extracted by the mantle (~ 10TW, < 100mW/m?).
» Strong convection (very high Rayleigh number Ra > 10%° ? Probably
many times critical).
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Broad questions

@ Broad picture: how do planetary dynamos actually work?

» Magnetic field reversals?
» Is convection strong enough?
> Are other mechanisms possible? (precession, tides, ...)
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Broad questions

@ Broad picture: how do planetary dynamos actually work?
» Magnetic field reversals?
» Is convection strong enough?
> Are other mechanisms possible? (precession, tides, ...)
@ Turbulence: does it matter? How?
» What do the flow and magnetic field look like?
» What are the basic equilibriums?
» Can we build a reduced model?
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Broad questions

@ Broad picture: how do planetary dynamos actually work?
» Magnetic field reversals?
» Is convection strong enough?
> Are other mechanisms possible? (precession, tides, ...)
@ Turbulence: does it matter? How?
» What do the flow and magnetic field look like?
» What are the basic equilibriums?
» Can we build a reduced model?
@ Observations: short time-scales (a few years)
» Importance of waves?
» Length-of-day variations?
» Effect of a stable ocean at the top of the core?
@ Can the magnetic field be used to probe the Earth's deep interior?

> link to geochemistry and Earth's evolution
> link to seismology
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Basic rotating MHD in planetary cores

Navier-Stokes equation

Ou+(2Qe, +V xu) xu=—-Vp+vAut+ (Vxb)xb —agTr

Induction equation
Otb = V x (u x b) +nAb

Temperature equation
O: T +uVT =krgAT

E=v/D*Q~10"1 Ra=ATagD3/kv>1 (?)
Pm = vpugo ~ 107> Pr=v/k~1
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Basic rotating MHD in planetary cores

Navier-Stokes equation

acceleration = advection

Pressure gradient + Coriolis force
+ Magnetic force + Ao iseas dieg

Induction equation

magnetic field variations = Induction + ohmic losses

Temperature equation

= Advection + thermal conduction

E=v/D?Q~1071°
Pm = vjgo ~ 107>
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20 years of geodynamo simulations

@ 1995 : Glatzmaier & Roberts

> Chebychev, 64 x 32 x 49
> hyperviscosity
> Earth-like, reversals, and all the hype.
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20 years of geodynamo simulations

@ 1995 : Glatzmaier & Roberts

» Chebychev, 64 x 32 x 49
> hyperviscosity
> Earth-like, reversals, and all the hype.

@ 2006 : Christensen & Aubert Ll P

*
> Chebychev, 168 x 336 x 97 X ecveio®
» E=3x10"° Pm=0.06 Q Eoncy
> Extensive parameter study, scaling laws. O E=3x107*

10° 107 107 .10 0ead0° 10° 10
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20 years of geodynamo simulations

@ 1995 : Glatzmaier & Roberts

» Chebychev, 64 x 32 x 49

> hyperviscosity

> Earth-like, reversals, and all the hype.
@ 2006 : Christensen & Aubert

» Chebychev, 168 x 336 x 97

» E=3x10"° Pm=0.06

> Extensive parameter study, scaling laws.
@ 2008 : Kageyama et. al.

> Yin-Yang grid, 2048 x 1024 x 511

» E=10° Re=700, Pm=1

> convection sheets, zonal jets.
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20 years of geodynamo simulations

@ 1995 : Glatzmaier & Roberts

» Chebychev, 64 x 32 x 49

> hyperviscosity

> Earth-like, reversals, and all the hype.
@ 2006 : Christensen & Aubert

> Chebychev, 168 x 336 x 97

» E=3x10"° Pm=0.06

> Extensive parameter study, scaling laws.
@ 2008 : Kageyama et. al.

» Yin-Yang grid, 2048 x 1024 x 511
» E=107° Re=700, Pm=1
> convection sheets, zonal jets.

@ 2009 : Sakuraba & Roberts
» Chebychev, 768 x 384 x 160
» E=2x10"° Re=650, Pm=0.2
> Fixed heat flux leads to stronger
magnetic field.
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20 years of geodynamo simulations

@ 1995 : Glatzmaier & Roberts

> Chebychev, 64 x 32 x 49

> hyperviscosity

> Earth-like, reversals, and all the hype.
@ 2006 : Christensen & Aubert

» Chebychev, 168 x 336 x 97

» E=3x10"° Pm=0.06

> Extensive parameter study, scaling laws.
@ 2008 : Kageyama et. al.

> Yin-Yang grid, 2048 x 1024 x 511

» E=10° Re=700, Pm=1

> convection sheets, zonal jets.
@ 2009 : Sakuraba & Roberts

> Chebychev, 768 x 384 x 160

» E=2x10"° Re=650, Pm=0.2

> Fixed heat flux leads to stronger
magnetic field.

@ Many others

HDR N. Schaeffer (ISTerre) Earth’s core simulations 30 September 2015 10 / 46



20 years of geodynamo simulations
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20 years of geodynamo simulations
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20 years of geodynamo simulations
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Spherical MHD simulations with XSHELLS

. i Calyp;so
@ Spherical harmonics, c B
o LSD
o finite differences (radial), e Yener
@ versatile, g 1
.. B
o very efficient even on your 5
laptop, @ ]
I I \i
° Openl\/l.P a.nd/or. MPI 107 vs e e
paraIIellzatlon with gOOd number of cores
scaling,
@ about three times faster Figure 1: Performance of the 5 finite

difference + spherical harmonics
geodynamo codes in the CIG strong scaling
@ open source. test (Matsui et al in prep.) with spatial
resolution N, = 512, L. = 255.

than the second best,

https://bitbucket.org/nschaeff/xshells
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Outline

© Columnar flow in the core
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Taylor columns and Inertial waves

Q

> time

@ Localized forcing in the equatorial plane...
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Taylor columns and Inertial waves
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@ Localized forcing in the equatorial plane...
@ Propagation of inertial waves at ¢ = ¢S

> time
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Taylor columns and Inertial waves
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© Localized forcing in the equatorial plane...
@ Propagation of inertial waves at ¢ = ¢S

> time
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Taylor columns and Inertial waves
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© Localized forcing in the equatorial plane...
@ Propagation of inertial waves at ¢ = /2
© Formation of a Taylor column in 7 =Q71L/¢
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Columnar flow in the Core 7

A columnar flow can be described by its equatorial plane dynamics
(quasi-geostrophic model)

reduces a 3D problem to 2D

@ interesting for numerical simulations

e interesting for inversion (surface flow connected to bulk flow!)
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Columnar flow in the Core 7

A columnar flow can be described by its equatorial plane dynamics
(quasi-geostrophic model)

reduces a 3D problem to 2D
@ interesting for numerical simulations

e interesting for inversion (surface flow connected to bulk flow!)

How useful is such a description ?
@ valid only if Coriolis dominates...
@ ... is it the case at all length scales ?

o ... at all time scales 7> Q~1L/¢7?
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Influence of the magnetic field

—
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ol
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Transients torsional waves within a  Quasi-static flow influenced by mag-
strong magnetic field A = 1.5, Le =  netic field. Parameterization at A =
0.0003 (Gillet, Schaeffer, and Jault, 2011) 0.9 (Schaeffer, Lora Silva, and Pais, submitted)

Necessary conditions for columnar flows
o length-scale /> Q~1V,

@ time-scale 7«7
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Regime diagram of the Core
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Nataf and Schaeffer (2015) Turbulence in the Core, in " Treatise on Geophysics”
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Regime diagram of the Core
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Torsional Alfvén Waves

@ Alfvén waves constrained by
rotation can only propagate as
geostrophic cylinders.

@ Their speed is related to the
integral over z and ¢ of B2.

@ Measuring their speed gives
information about the magnetic
field inside the core.
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Torsional Alfvén waves in the Core

Cylindrical radius

1955 1960 1965 1970 1975 1980 1985
Time (years)

Figure 2: Time versus cylindrical radius map of angular velocity in the Earth's
core, filtered around a 6 year period, as obtained by Gillet, Jault, et al. (2010).
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Influence of mantle conductivity

Incoming energy Reflected energy
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3D axisymmetric simulations of a torsional pulse in a sphere
(E =1071° Pm =0.001, Le = 1073)

@ Slightly damps the wave along their propagation

@ Strong effect when hitting the equator
e No reflection for a magic mantle conductivity ¢ (Pm)
» For Pm =1, 6% = 0 (Schaeffer, Jault, et al., 2012).

HDR N. Schaeffer (ISTerre) Earth’s core simulations 30 September 2015

20 / 46



Theory for 1D Alfvén wave reflection

z
. —_—_— _kl
Reflection coefficient in the thin < |28l +k
layer approximation: \Q,f ‘:}?
conducting fluid BO
1-Q—+/Pm ®y (M T s
S — | |
1+ Q+ VPm —e 0 *

with

Vv
Q:AG:GBO [ Ho
nw P

and G = o¢ the conductance of
the wall.
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layer approximation:
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Application to the Earth's Core

@ Free propagation of

1.0 T T T T T .
torsional waves.
08 1 @ Energy and momentum
>
g 06l ] absorbed when hitting
2o
) I : the equator, for
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e —  §=100 km N VA
0.2 — iziokkm B U 2 Free propagation of Torsional
J— = m : : . .
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1 1 1 l
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Application to the Earth's Core

o
o
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@ Free propagation of
torsional waves.

@ Energy and momentum
absorbed when hitting
the equator, for
G ~ 2 x 108 Siemens.

Free propagation of Torsional
waves reconciled with strong
core-mantle coupling 7

Incidentally, numerical simulations at Pm ~ 1 mimic the effect of a
conducting layer at the bottom of the mantle at low Pm !
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Outline

@ Turbulence in geodynamo simulations
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The model

Earth's core geometry (Sphere)

@ thermochemical convection (codensity, 75% chemical driving, Aubert
et al 2009);

no-slip, and fixed flux homogeneous boundary conditions

high rotation rate, low viscosity
strong forcing (more than 4000 times critical)

with:
@ Ekman number E = v/D?Q
@ Rayleigh number Ra = ATagD?/kv
© Magnetic prandtl number Pm = vugo
© (Thermal) Prandtl number Pr = 1.
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The simulations

The idea
o Keep super-criticality and Rm = UD/n ~ 650 fixed.
@ go to more Earth-like A= U/B and Pm =v/n.

10" g ; o initial: £ =107,
SR Sy | Pm=04 Re= 610"
100 | @8 oversmoens @0. =A=15 F,=41%
10 P
102} @ 5
105 10° 10° 102 107 10° 10°

Pm
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The simulations

The idea

o Keep super-criticality and Rm = UD/n ~ 650 fixed.
@ go to more Earth-like A= U/B and Pm =v/n.

10t

Earth

: e initial: £ =105,
Soderlund et. al. 2012 1
Christensen & Aubert 2006 :k” Pm = 04 Ra =6 ]_010
Andrey Sheyko 2014 e !

100 sit;:‘;’::nulations 77777_7@!7%7‘77777 = A g 1.5 Fl/ = 47%
- o feOf e jump 1: E=107°5,
101 e Pm = 0.2, Ra=1.210'2

= A=0.61 F,=24%

10° 10° 10° 102 107 10° 10!
Pm
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The simulations

The idea
o Keep super-criticality and Rm = UD/n ~ 650 fixed.
@ go to more Earth-like A= U/B and Pm =v/n.

1
10 B ; e initial: £ =10"%,
e {8 Pm = 0.4, Ra = 6101
100 sit;:‘;’::nulations 77777_7@!7%7‘77777 = A g 1.5 Fl/ = 47%
- o® tof o jump l: E= 107,
Lot e Pm = 0.2, Ra=1.210%
| = A=0.61 F,=24%
| . . —7
, : @ jump 2: E=10"",
10°; @ ' Pm = 0.1, Ra = 2.410'3

10° 107 10° 102 107 10° 10
Pm =A=045 F,=17%
Extreme parameters, require 2688 x 1344 x 1024 points (3.7 billions)

7 months computation on 512 cores (10.5 sec/step)
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Energy vs Time

. /_A/\/*— E=10" Pm=0.1
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Jump 2 ran for 1.5% of a magnetic diffusion time, and it took about 7 months to

compute on 512 cores, spending 2.5 million core hours.
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Jump 2: spectra

10°p
i » ; E=10""
i : Ra = 2.410"3
i ; ; Rm = 600
w0l . _ A=0.45
| = Ekdeep : v A=12
10° | —  esurtace F, =17%
—  Emdeep :
10° F| — emsutoce | — NR = 1024
l(l)0 1(I)1 162 Lmax = 893

Lr

@ Magnetic field dominates deep in the core but not near the surface.

@ Velocity spectrum nearly flat at the surface but increasing deep down.
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Jump 2: regime diagram
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@ Correct ordering of
scales

@ Fair scale separation
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Snapshot: initial U, (E = 107>, Pm= 0.4, A= 1.5)
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Snapshot: jump 1 Uy (E =107°% Pm = 0.2, A= 0.62)

NR = 512, L = 479
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Snapshot: jump 2 U, (E =107, Pm=0.1, A= 0.43)
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Jump 2: z-averaged energy densities

z-averaged equatorial energy densities, left: < qu >, right: < Bf,q >.
E=10"7, Pm=0.1, Rm =600, A~ 0.45.
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Jump 2: Temperature field

Mean temperature of each shell has been removed.
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Averages of U and B
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Jump 2: Non-zonal mean flow

-3.2 -24 -16 -08 0.0 0.8 1.6 2.4 3.2

Homegeneous heat flux start to produce large scale flows at E = 10~/
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Jump 2: Space-time Fourier analysis

@ Fourier Transform in the two homogeneous directions: t and ¢.
@ Two different regions inside and outside the tangent cylinder.
e E=10"7, Pm=0.1

Uin U out
2
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—
E 101 103
10’
10°
B out
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10 10
~ 9
£ 100 10
10°
10° 10’
freq+1 freq+1
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Jump 1: Influence of the magnetic field
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Figure 3: Energies as a function of time (normalized by the viscous diffusion time)
for case jump 1 (E = 107%) and for the same parameters as jump 1, but without

magnetic field.
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Jump 1: Influence of the magnetic field
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With a strong dynamo magnetic field:
@ Zonal jets are suppressed, plumes extend further.
@ Larger plumes...

o ... but convection still starts at small length-scale | (E1/3).
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Outline

© Turbulence in DTS
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The DTS experiment

Magnetized liquid sodium spherical Couette experiment
Rmyps ~ 4 Reyms ~ 100

HDR N. Schaeffer (ISTerre) Earth’s core simulations 30 September 2015 40 / 46



Turbulence in non-rotating DTS

(< 106)
@ — doie D 5.80
102 N
e 00048
PR 00036
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! 0.0024
0.0012
10-2
[ "
o Energy density of fluctuations (kinetic and magnetlc).
" Pm = 1073, Re = 2611, /\—0.034.
10-% ; ;
@ Velocity fluctuations are stronger near the outer shell
J=00175 Hz (where the imposed magnetic field is weak).
10-8 L
10-! 100 10! @ Lorentz-Laplace force strongly damps the fluctuations
Non-dimensional frequency deeper
Surface magnetic probes. @ Magpnetic fluctuations are stronger in the bulk (where
the imposed field is stronger).
Figueroa et al. (2013) @ The turbulent fluctuations near the outer shell excite

global modes (bumps in the spectra).
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Turbulence in non-rotating DTS: negative

@ Plenty of measurements (Ultrasound Doppler Velocimetry, Surface
and bulk magnetic field, Surface electric potential).

@ Use them to constrain the mean flow + turbulent EMF

15

EMF = o(r)B + B(r)V x B

B/n

(B can be seen as a magnetic
eddy diffusivity: nesr = 1+ 5.
@ To explain our data,
negative 3 is really needed.

@ Supported by EMF
computed from DNS at
lower Re.

-0.5
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Turbulence in non-rotating DTS: negative

@ Plenty of measurements (Ultrasound Doppler Velocimetry, Surface
and bulk magnetic field, Surface electric potential).

@ Use them to constrain the mean flow + turbulent EMF

EMF = o(r)B—B(r)V x B

B can be seen as a magnetic
eddy diffusivity: neg =1+ 5.

@ To explain our data,

negative (3 is really needed.

o EMF computed from DNS
at lower Re give rather
positive (...

15| |l Rm=28

B/n

0.5

Cabanes, Schaeffer, and Nataf (2014) PRL
[erratum submitted]
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Turbulence in rotating DTS
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Elliot Kaplan: realistic DTS
simulations using hyperviscosity in the
last 20% of the spectrum (E < 107°).

@ Outer boundary layer turbulence.

@ Large scale modes in the bulk
(Ro < 0).

@ Quick decay for m 2 10, except
in outer region.
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Summary

@ Columnar flow in the core

» relevant for short time-scale,
> length-scale limit controlled by Le = B/{%2,
» magnetic pumping at longer time-scale?
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Summary

@ Columnar flow in the core
» relevant for short time-scale,
> length-scale limit controlled by Le = B/{%2,
» magnetic pumping at longer time-scale?

@ Torsional Alfvén reflection at the equator

» solved with conducting mantle,
» can strongly couple core to mantle.

@ Turbulence in extreme geodynamo simulations

» small scale forcing by convection,
» strong influence of the magnetic field,
» importance of the tangent cylinder.

@ Turbulence in DTS experiment
» negative eddy diffusivity spotted (why?),
» boundary layer turbulence vs Bulk waves.

HDR N. Schaeffer (ISTerre) Earth's core simulations 30 September 2015

44 / 46



Future directions

@ Turbulence in the core

» Force balance, energy transfers, correlations in extreme simulations:
dealing with Tb of data.
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Future directions

@ Turbulence in the core

» Force balance, energy transfers, correlations in extreme simulations:

dealing with Tb of data.
@ Maglune: Understand the peculiar dynamo of the moon

» Very strong early on; then weak; then shutdown.
» Core crystallization? Precession?  [David]

@ ZoRo: ZOnal jet formation in ROtating convection.

» simulate the experiment  [Elliot, post-doc]
» influence of Pr on developed convection. [Philippe]

@ Improving numerical methods

» work on better time integration schemes  [Ludovic]
» deformations (spheroids, ellipsoids)  [Jérémie, PhD]

@ Back to first love: Quasi-Geostrophic models ! [many]

HDR N. Schaeffer (ISTerre) Earth's core simulations 30 September 2015

45 / 46



Thank you all for listening!

Vi o
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Some numbers

definition initial  jump 1 jump 2 Earth’s core
N, 224 512 1024
L max 191 479 893
Ek v/D%*Q 107° 10°° 10-7 31071
Ra  ATagD3/kvy 610 1210 24101 10%0 ?
Pm v/n 0.4 0.2 0.1 310°°
Pr v/K 1 1 1 0.1-10
Rm UD/n 710 660 585 2000 7
A VipU/B 1.48 0.62 0.43 0.01
Re Ub/v 1770 3300 5850 2108
Ro U/DQ 0.018 3.3107% 5910°* 310
Le B//mpDQ 0012 53107* 1.3510° 10~
A B2 /nQ 5.8 5.7 1.8 1-10
F, D,/(D,+D,) 47% 24% 17% ?
F, D,/(D,+D,) 53%  76% 83% ?

Table 1: Various input and output parameters of our simulations, where D is the
shell thickness, U the rms velocity and B the rms magnetic field.
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