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Télécommunications et des Systèmes
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Résumé

Cette thèse porte sur l’analyse de la synchronisation des grands réseaux d’oscillateurs

non linéaires et hétérogènes à l’aide d’outils et de méthodes issues de la théorie du

contrôle. Nous considérons deux modèles de réseaux ; à savoir, le modèle de Kuramoto

qui considère seulement les coordonnées de phase des oscillateurs et des réseaux com-

posés d’oscillateurs non linéaires de Stuart-Landau connectés par un couplage linéaire.

Pour le modèle de Kuramoto nous construisons un système linéaire qui conserve les

informations sur les fréquences naturelles et sur les gains d’interconnexion du modèle

original de Kuramoto. Nous montrons en suite que l’existence de solutions à verrouillage

de phase du modèle de Kuramoto est équivalente à l’existence d’un tel système linéaire

avec certaines propriétés. Ce système est utilisé pour formuler les conditions d’existence

de solutions à verrouillage de phase et de leur stabilité pour des structures particulières

de l’interconnexion. Ensuite, cette analyse s’est étendue au cas où des interactions at-

tractives et répulsives sont présentes dans le réseau. Nous considérons cette situation

lorsque les gains d’interconnexion peuvent être à la fois positif et négatif.

Dans le cadre de réseaux d’oscillateurs de Stuart-Landau, nous présentons une nouvelle

transformation de coordonnées du réseau qui permet de réécrire le modèle du réseau en

deux parties : une décrivant le comportement de l’oscillateur « moyenne » du réseau et

la seconde partie présentant les dynamiques des erreurs de synchronisation par rapport

à cet oscillateur « moyenne ». Cette transformation nous permet de caractériser les

propriétés du réseau en termes de la stabilité des erreurs de synchronisation et du cycle

limite de l’oscillateur « moyenne ». Pour ce faire, nous reformulons ce problème en un

problème de stabilité de deux ensembles compacts et nous utilisons des outils issus de la

stabilité de Lyapunov pour montrer la stabilité pratique de ces derniers pour des valeurs

suffisamment grandes du gain d’interconnexion.

Mots clés : synchronisation, réseau d’oscillateurs non-linéaires, oscillateur à cycle li-

mite, graphe orienté, graphe signé, modèle de Kuramoto, équation de Stuart-Landau,

interactions attractives et répulsives, stabilité asymptotique, stabilité pratique.
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Abstract

This thesis is devoted to the analysis of synchronization in large networks of hetero-

geneous nonlinear oscillators using tools and methods issued from control theory. We

consider two models of networks ; namely, the Kuramoto model which takes into ac-

count only phase coordinates of the oscillators and networks composed of nonlinear

Stuart-Landau oscillators interconnected by linear coupling. For the Kuramoto model

we construct an auxiliary linear system that preserves information on the natural fre-

quencies and interconnection gains of the original Kuramoto model. We show next that

existence of phase locked solutions of the Kuramoto model is equivalent to the existence

of such a linear system with certain properties. This system is used to formulate condi-

tions that ensure existence of phase-locked solutions and their stability for particular

structures of network interconnections. Next, this analysis is extended to the case where

both attractive and repulsive interactions are present in the network that is we consider

the situation where some of the interconnection gains are allowed to be negative.

In the context of networks of Stuart-Landau oscillators, we present a new coordinate

transformation of the network which allows to split the network model into two parts,

one describing behaviour of an ”averaged” network oscillator and the second one, descri-

bing dynamics of the synchronization errors relative to this ”averaged” oscillator. This

transformation allows us to characterize properties of the network in terms of stability

of synchronization errors and limit cycle of the ”averaged” oscillator. To do so, we re-

cast this problem as a problem of stability of compact sets and use Lyapunov stability

tools to ensure practical stability of both sets for sufficiently large values of the coupling

strength.

Keywords : synchronization, network of nonlinear systems, limit-cycle oscillator, di-

graph, signed graphs, Kuramoto model, phase-locked solution, Stuart-Landau equation,

attractive and repulsive interactions, asymptotic stability, practical stability.





vi
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1. Introduction

Les travaux de cette thèse sont consacrés à l’analyse de la synchronisation des réseaux

à grand nombre d’oscillateurs non linéaires et hétérogènes, en utilisant des outils et des

méthodes issues de la théorie du contrôle. Deux modèles sont utilisés pour décrire les

réseaux d’oscillateurs : le modèle de Kuramoto et le modèle de Stuart-Landau. Notre

analyse se concentre sur l’effet des interactions entre les éléments du réseau sur la syn-

chronisation du système. La thèse contient des résultats d’analyse et leurs confirmations

à travers des exemples de simulation démonstratifs.

La première partie du travail porte sur l’étude du modèle de Kuramoto. Tout d’abord,

nous considérons un réseau complexe arbitraire des oscillateurs de Kuramoto. Pour ce

dernier, nous donnons les conditions d’existence de solutions à verrouillage de phase ainsi

que l’expression analytique de la fréquence de synchronisation. Ensuite, nous proposons

une nouvelle généralisation du modèle de Kuromoto avec des interactions plus hétéro-

gènes : nous supposons que chaque oscillateur est caractérisé par ses poids d’entrée et

de sortie outre sa fréquence naturelle. Pour ce modèle, nous présentons les solutions à

verrouillage de phase ainsi que leur analyse de stabilité. Notre étude s’est étendue au

cas où le réseau contient des pondérations négatives. Ceci permet de modéliser à la fois

les interactions attractives et répulsives entre les oscillateurs. Dans ce cas, les critères

d’existence de solutions à verrouillage de phase sont formulés et leur stabilité locale est

analysée.

Dans la seconde partie, nous étudions le problème de synchronisation d’un réseau hé-

térogène d’oscillateurs de Stuart-Landau. Ainsi, nous affirmons l’existence d’un com-

portement de synchronisation dans le cas d’une force du couplage suffisamment grande.

Ensuite, en se basant sur la notion de stabilité pratique, une analyse de la stabilité

du système a été fournie et une approximation de la variété de synchronisation a été

formulée.

xi
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2. Modèle de Kuramoto

2.1. Généralités

Le modèle de Kuramoto est un modèle standard pour l’étude des phénomènes de syn-

chronisation collective dans un grand réseau d’oscillateurs à cycle limite ([62], [109]).

Ce modèle et ses généralisations englobent une très large classe de phénomènes de syn-

chronisation allant de la physique [49] à la biologie [18], [63]. Le modèle de Kuramoto

décrit chaque oscillateur par une équation différentielle de phase où le couplage entre les

oscillateurs est modélisé par le sinus de différence de phases. Le modèle de Kuramoto

dans sa forme la plus générale est décrit comme suit :

θ̇i = ωi +
N

∑
j=1

ki j sin(θ j−θi) , i ∈ 1 . . .N, (0.1)

où les θi, θ̇i et ωi ∈ R représentent respectivement la phase instantanée, la fréquence

instantanée et la fréquence naturelle de chaque oscillateur i. N est le nombre d’oscillateurs

et la matrice K = [ki j] est la matrice d’interconnexion des oscillateurs, dont les éléments

ki j ∈R représentent la force du couplage entre les oscillateurs i et j. Dans sa présentation

la plus simple (Modèle de Kuramoto classique ou ”all-to-all”), le modèle a la forme

suivante :

θ̇i = ωi +
K
N

N

∑
j=1

sin(θ j−θi) , i ∈ 1 . . .N.

Ainsi, le graphe d’interconnexion est considéré complet et la force de couplage K est

identique entre tous les oscillateurs.

Synchronisation : définitions et notions

Le modèle de Kuramoto (0.1) décrit chaque oscillateur en fonction de la phase instan-

tanée et sa dérivée instantanée (fréquence instantanée). En conséquence, il y a deux

concepts de synchronisation : la synchronisation en fréquence et la synchronisation en

phase.

Définition 1 (Fréquence d’oscillation verrouillée) – Les oscillateurs définis par (0.1)

ont une solution à verrouillage de fréquence s’il existe une constante ωs ∈ R et si les

conditions initiales θ◦ ∈ RN sont telles que pour tout i ∈ {1, . . . ,N}

θ̇i(t,θ◦) = ωs, ∀ t > 0. (0.2)
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Définition 2 (Synchronisation en fréquence) – Les oscillateurs définis par (0.1) sont

synchronisés en fréquence s’il existe une solution à verrouillage de fréquence du système

et si toutes les fréquences θ̇i(t) convergent asymptotiquement vers cette solution, c’est-

à-dire :

lim
t→∞

θ̇i = ωs, ∀i ∈ {1, . . . ,N}. (0.3)

Définition 3 (Verrouillage de phase) Soit θ◦ ∈RN et θ(t,θ◦), t ≥ 0 la solution du modèle

de Kuramoto pour les conditions initiales θ◦. La solution θ(t,θ◦) est appelée solution à

verrouillage de phase si

θi(t,θ◦)−θ j(t,θ◦) = θi◦−θ j◦,

pour tout t ≥ 0 et tout i, j = 1, . . . ,N.

Définition 4 (Synchronisation en phase) – Les oscillateurs définis par (0.1) sont

synchronisés en phase s’il existe une solution à verrouillage de phase du système θ∗ ∈RN

et un ensemble Θ ⊂ RN sachant qu’asymptotiquement toutes les différences de phase

θi(t,θ◦)−θ j(t,θ◦) convergent vers cette solution pour toutes les conditions initiales θ◦ ∈
Θ, c’est-à-dire

lim
t→∞

θi(t,θ◦)−θ j(t,θ◦) = θ
∗
i −θ

∗
j , ∀i, j ∈ {1, . . . ,N}. (0.4)

2.2. Résultats

2.2.1. Synchronisation dans un réseau complexe des oscillateurs de Kuramoto

Cette section résume les résultats principaux du Chapitre 3. Dans ce dernier, nous consi-

dérons le système (0.1) des oscillateurs de Kuramoto dans un réseau complexe. Ces

oscillateurs sont couplés avec des gains hétérogènes. Nous caractérisons les conditions

d’existence de solutions à verrouillage de fréquence et de phase.

Le théorème suivant présente le problème d’existence de solutions à verrouillage de

fréquence sous la forme d’un problème d’existence de solutions pour un système non

linéaire des équations algébriques. Ces conditions sont formulées en termes des fréquences

naturelles d’oscillateurs et des éléménts de la matrice d’adjacence K = [ki j].
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Théorème 1 Consédirons les oscillateurs de Kuramoto (0.1) couplés via un graphe

oriénté G et une force de couplage γ > 0 :

θ̇i = ωi + γ

N

∑
j=1

ki jsin(θ j−θi) , i ∈ 1 . . .N. (0.5)

Soit ω̃i = ωs−ωi et ωs ∈ R une constante non définie. Le système a une solution à

verrouillage de fréquence si et seulement si les conditions suivantes sont satisfaites :

1. Le système d’équations algébriques suivant

∑
N−1
j, j 6=i±ki, j

(
ξi

√
1−ξ2

j −
√

1−ξ2
i ξ j

)
= ω̃i

γ , i = 1 . . .N−1

∑
N−1
j=1 kN, j ξ j = ω̃N

γ ,
(0.6)

a au moins une solution [ξ∗1, . . . ,ξ
∗
N−1,ω

∗
s ].

2. Pour tous i = 1 . . .N−1, les solutions ξ∗i satisfaissent | ξ∗i |≤ 1.

Dans le cas des graphes d’interconnexion symétriques, il est connu que la fréquence de

synchronisation est égale à la moyenne des fréquences naturelles. Toutefois, dans le cas

de réseaux complexes, la fréquence de synchronisation dépend de la topologie du graphe

d’interconnexion et de la force de couplage. Dans le théoreme suivant, nous donnons une

expression analytique de la fréquence de synchronisation limite dans le cas où la force

de couplage est suffisamment grande.

Théorème 2 Consédirons le système (0.5) avec un graphe d’interconnexion fortement

couplé et un gain de couplage γ. Si le système est synchronisé en fréquence, alors la

fréquence de synchronisation ωs converge vers
w>l Ω

w>l 1
si le gain de couplage γ est suffi-

samment grand, c’est-à-dire

lim
γ→∞

ωs(γ) =
w>l Ω

w>l 1
. (0.7)

Notons que wl est le vecteur propre gauche de la matrice Laplacienne du réseau L associé

à la valeur propore λ1(L) = 0 et Ω est le vecteur des frequences naturelles.

Dans [106] et [25], les auteurs introduisent un modèle linéaire à variables complexes

et ils prouvent que ce modèle linéaire possède les mêmes propriétés asymptotiques du

modèle classique de Kuramoto. Nous commençons notre analyse par la généralisation de

ces résultats pour le modèle de Kuramoto avec un réseau d’interconnexion complexe, et

nous montrons que le problème d’existence des solutions à verrouillage de phase pour le

modèle Kuramoto (0.1) avec une matrice d’interconnexion arbitraire K = [ki j], peut être

ramené à un problème d’existence d’un système linéaire à variables complexes satisfaisant

un ensemble de propriétés.
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L’idée sous-jacente de l’approche peut être résumée comme suit. Considérons un système

linéaire paramétré (en termes de µ) dans cette forme :

ẋi = (iωi−µi)xi +
N

∑
j=1

ki j x j , i = {1 . . .N}, (0.8)

où xi ∈ C, µi ∈ R et ki j sont les éléments de la matrice d’interconnexion K . On peut

également mettre l’équation (0.8) sous la forme matricielle suivante :

ẋ = (K + iΩ + M )x, (0.9)

où K = [Ki j] est la matrice des interconnexions du modèle de Kuramoto (0.1), Ω =

diag(ω1, . . . ,ωN) et M = diag(µ1, . . . ,µN) ∈ RN×N .

En utilisant les coordonnées polaires x j = R j eiθ j , nous pouvons mettre le système (0.8)

sous la forme suivante :

Ṙi

Ri
=−µi +

N

∑
j=1

ki j
R j

Ri
cos(θ j−θi),

θ̇i = ωi +
N

∑
j=1

ki j
R j

Ri
sin(θ j−θi).

Dans la dernière équation (parties imaginaires), il est possible de prouver l’existence

d’une constante R > 0 tel que limt→∞ Ri = R pour tout i ∈ {1, . . . ,N}. Ceci impliquerait

que asymptotiquement, la dynamique de θ peutt être décrite par le modèle de Kuramoto

(0.1).

En utilisant le modèle linéaire à variable complexe (0.8), nous proposons un cadre al-

ternatif cohérent à travers lequel nous pouvons résoudre analytiquement des problèmes

de synchronisation pour des nouveaux types d’interactions, à savoir des réseaux asymé-

triques, pondérés ou encore signés. Cette démarche nous permet d’étendre l’analyse du

modèle de Kuramoto classique proposé dans [4].

Dans le théorème ci-dessous, nous présentons les conditions sur la matrice A du système

linéaire (0.9) garantissant l’existence de solutions à verrouillage de phase pour le modèle

Kuramoto (0.1).

Théorème 3 Considérons le modèle de Kuramoto (0.1), soit la matrice d’intercon-

nexion K = [ki j] et soit Ω = diag(ω1, . . . ,ωN) la matrice des fréquences naturelles. Pour

ce système, les deux instructions suivantes sont équivalentes :

1) Il existe une constante ωs ∈R et une matrice M = diag(µ1, . . . ,µN) ∈RN×N tel que la

matrice A = K + iΩ + M a une valeur propre λ◦(A) = iωs d’ordre de multiplicité égal à
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un et son vecteur propre droit associé a la forme suivante :

v◦(A) = col(eξ1 , . . . ,eξN ). (0.10)

2) Le modèle Kuramoto (0.1) a une solution à verrouillage de phase.

2.2.2. Analyse du modèle de Kuramoto avec un graphe pondéré asymétrique

Cette section résume les résultats principaux du Chapitre 4. En premier lieu, nous pro-

posons une généralisation du modèle de Kuramoto avec plus d’hétérogénéité au niveau

des oscillateurs. Autrement dit, nous supposons que chaque élément est caractérisé à la

fois par sa fréquence naturelle et par ses poids d’entrée et de sortie. Contrairement à la

fréquence naturelle qui détermine la dynamique individuelle en l’absence de couplage,

les deux nouvelles pondérations affectent la façon dont chaque oscillateur interagit avec

l’ensemble. Ainsi, elles définissent l’hétérogénéité des interactions dans le réseau.

Avec ce choix particulier de couplage, le modèle Kuramoto (0.1) peut être écrit sous la

forme suivante :

θ̇i = ωi +
K
N

wi
out

N

∑
j=1

w j
in sin(θ j−θi) , i ∈ {1, . . . ,N}, (0.11)

où la force de couplage entre les paires d’oscillateurs connectés est définie par le gain

de couplage K > 0, les vecteurs de pondération d’entrée W>in = [w1
in, . . . ,w

N
in] ∈ RN

+, et de

pondération de sortie W>out = [w1
out , . . . ,w

N
out ] ∈ RN

+. En utilisant ces notations, la matrice

d’interconnexion K peut être représentée comme suit : K = Wout W>in .

L’analyse de la synchronisation du modèle de Kuramoto (0.11) détaillée dans le Chapitre

4 concerne les points suivants :

– Définir les conditions nécessaires et suffisantes d’existence de solutions à verrouillage

de phase.

– Donner la forme explicite des solutions à verrouillage de phase ainsi que l’expression

de la fréquence de synchronisation.

– Analyser les propriétés de stabilité locale des solutions à verrouillage de phase.

Solutions à verrouillage de phase

Dans un premier temps, nous introduisons une hypothèse reliant les fréquences naturelles

ω j, le gain de couplage K et la matrice d’interconnexion K = Wout W>in . Cette hypothèse

est déduite à partir des résultats du Théorème 3.
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Hypothèse 1 Il existe une valeur r∞ ∈ (0;1] telle que

r∞ =
1
N

N

∑
j=1
±w j

in

√√√√1−(
ω̃ j

K jr∞

)2, (0.12)

avec −1 ≤
ω̃ j

K jr∞

≤ 1 pour tous j = {1, . . . ,N}, où K j = K w j
out , ω̃ j = ω j −ωs et ωs =

∑
N
j=1

w j
in

w j
out

ω j

∑
N
j=1

w j
in

w j
out

.

Dans la littérature sur les systèmes de Kuramoto, l’expression (0.12) avec Win =Wout =1N

est connue par la condition de consistance sur r∞ des solutions à verrouillage de phase.

Elle est introduite dans [4] et dans [84], où ils ont montré que la condition de consistance

est une condition nécessaire et suffisante d’existence de solutions à verrouillage de phase.

Ainsi, l’Hypothèse 1 peut être considéré comme la condition pondérée analogue de la

condition de consistance utilisée pour le modèle de Kuramoto classique.

Dans le théorème suivant, nous montrons que l’Hypothèse 1 est une condition nécessaire

et suffisante d’existence de solutions à verrouillage de phase pour le modèle de Kuramoto

(0.11) et nous donnons la forme explicite des solutions à verrouillage de phase ainsi que

l’expression de la fréquence de synchronisation.

Théorème 4 Le modèle de Kuramoto (0.11) a une solution à verrouillage de phase si

et seulement si l’Hypothèse 1 est satisfaite.

En outre, la fréquence de synchronisation est définie par l’expression suivante

ωs =
W>in ΩW−1

out

W>in W−1
out

(0.13)

et les solutions à verrouillage de phase ont la forme θ(t,θ∗) = θ∗+ ωst1n + c1n, où c ∈R
est une constante arbitraire tandis que le vecteur θ∗ est défini par les équations suivantes :

cos(θ
∗
j) =±

√√√√1−(
ω̃ j

K jr∞

)2 ; sin(θ
∗
j) =

ω̃ j

K jr∞

. (0.14)

Le choix des signes dans les expressions des cos correspond au choix des signes dans

l’équation (0.12).

Analyse de stabilité

Dans cette section, nous analysons les propriétés de stabilité locale des solutions à ver-

rouillage de phase définis dans la section précédente. En particulier, nous montrons
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qu’une seule solution à verrouillage de phase est stable. Cette solution correspond à la

solution r∞ de l’équation (0.12) avec un choix des signes positifs. Nous résumons les

résultats de notre analyse ci-dessous.

Dans un premier temps, nous considerons le modèle de Kuramoto (0.11) avec un chan-

gement de coordonnées θi(t)→ θi(t) + ωst, le système (0.11) peut être réécrit sous la

forme :

θ̇i = fi(θ) = ω̃i +
K
N

wi
out

N

∑
j=1

w j
in sin(θ j−θi) , i ∈ {1 . . .N}, (0.15)

avec ω̃i = ωi−ωs et ωs est la fréquence de synchronisation.

Etant donné que dans ce nouveau cadre de coordonnées la fréquence de synchronisation

est égale à zéro, nous pouvons deduire donc que les solutions à verrouillage de phase du

modèle de Kuramoto (0.11) correspondent aux points d’équilibre du système (0.15).

Supposons que l’ensemble d’équation (0.12) a m solutions r∞k , k = {1, . . . ,m}, satisfaissent

l’Hypothèse 1. Notons θ∗k ∈ RN , k = {1, . . . ,m} l’ensemble de points d’équilibre qui défi-

nissent des solutions à verrouillage de phase du système (0.15).

Puisque le système (0.15) est invariant sous les transformations de phase θ→ θ + c1,

chaque point d’équilibre θ∗k ∈RN du système (0.15) appartient alors à une courbe D∗k de

points d’équilibre définie par D∗k = {θ ∈RN : θ = θ∗k +c1, c ∈R}. Nous rappelons ici que

chacune de ces courbes correspond à une solution à verrouillage de phase du système

(0.11).

Comme il a été mentionné dans [4], la synchronisation asymptotique de phase du système

(0.11) est vérifiée si les deux propriétés suivantes des solutions du système (0.15) sont

satisfaites :

– la stabilité locale de chaque point d’équilibre sur la courbe D∗k .

– la stabilité locale de l’ensemble D∗k .

Les points d’équilibre du système (0.15) sont definis par l’équation (0.14). En linéarisant

le système (0.15) autour de ces points d’équilibre, nous obtenons que les éléments hors-

diagonale de linéarisation sont définis comme suit :

d fi

θ
′
l
|θ=θ∗ =

K
N

wi
out wl

in cos(θ
∗
l −θi∗) (0.16)

=
K
N

wi
out wl

in[cos(θ
∗
l ) cos(θi∗)+ sin(θ

∗
l ) sin(θi∗)]

=
Kwi

out

N
[wl

in(±

√
1− (

ω̃l

wl
outKr∞

)2)(±

√
1− (

ω̃i

wi
outKr∞

)2)+
wl

inω̃lω̃i

wi
outwl

out(Kr∞)2
],
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tandis que les éléments diagonaux sont calculés comme suit :

d fi

θ
′
i
|θ=θ∗ =−K

N
wi

out

N

∑
j=1

w j
in cos(θ

∗
j −θi∗) (0.17)

=
wi

outK
N

[−Nr∞(±

√
1− (

ω̃i

wi
outKr∞

)2)+ wi
in

√
1− (

ω̃i

wi
outKr∞

)2

√
1− (

ω̃i

wi
outKr∞

)2+

wi
inω̃2

i

(wi
outKr∞)2 ].

Ainsi, la matrice jacobienne peut être écrite sous la forme suivante :

J =
K
N

Ψ ϒ
−1(ϒ A + bb>+ cc>) =

K
N

S J1 (0.18)

avec

J1 = ϒ A + bb>+ cc> ; S = Ψ ϒ
−1 (0.19)

Ψ = diag(w1
out , . . . ,w

N
out) ; ϒ = diag(w1

in, . . . ,w
N
in)

A =−diag(a1, . . . ,aN) , ai =±Nr∞

√
1− (

ω̃i

wi
outKr∞

)2

b =


±w1

in

√
1− (

ω̃1

w1
outKr∞

)2

...

±wN
in

√
1− (

ω̃N

wN
outKr∞

)2

 ;c =


w1

in
ω̃1

w1
outKr∞

...

wN
in

ω̃N

wN
outKr∞

.


(0.20)

En utilisant ces notations, le système linéarisé peut être écrit sous la forme :

θ̇ = J θ =
K
N

S J1 θ, (0.21)

où la matrice constante J ∈RN×N est définie par les expressions (0.18 - 0.20) et la matrice

J1 est symétrique.

Pour le système (0.21), nous considérons le changement de coordonnées y = S−1/2θ. Ainsi,

nous obtenons

ẏ = S−1/2
θ̇ =

K
N

S 1/2J1θ =
K
N

S 1/2J1S 1/2y =
K
N

J̃ y, (0.22)

où J̃ = S 1/2J1S 1/2.

En utilisant le fait que la matrice S est diagonale et non singulière (avec des éléments

positifs) et la symétrie de la matrice J1, nous déduisons que la matrice J̃ est symétrique.

En utilisant la loi de Sylvester d’inertie (voir l’annexe B), nous remarquons que les

matrices J̃ et J1 sont deux matrices congruentes. Donc, elles ont la même inertie. En
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conséquence, il suffit d’analyser les propriétés spectrales de la matrice J1 pour étudier les

propriétés de stabilité du système linéaire (0.22) ou encore le système linéarisé (0.21).

Ainsi, le reste de notre démarche est consacré à l’analyse des propriétés spectrales de la

matrice symétrique J1 d’une dimension arbitraire N.

Dans la suite, nous montrons qu’il n’y a qu’une seule solution qui est localement stable

parmi toutes les solutions à verrouillage de phase du modèle de Kuramoto (0.11).

Théorème 5 Soit l’Hypothèse 1 satisfaite et soit A = {θ∗k ∈ RN , k = {1, . . . ,M}} l’en-

semble de toutes les solutions à verrouillage de phase définies par les équations (0.12)-

(0.14). Alors, les assertions suivantes sont validées :

1) Au plus, il existe une seule solution à verrouillage de phase θ∗ ∈A qui est localement

stable.

2) Soit θ+ est la solution à verrouillage de phase définie par l’équation (0.14) et l’équa-

tion (0.12) prise avec tous les signes positifs, à savoir

r∞ =
1
N

N

∑
j=1

α j

√√√√1−(
ω̃ j

σ jKr∞

)2,

alors l’ensemble D+ = {θ∈RN : θ = θ+ +c1, c∈R} correspondant est localement asymp-

totiquement stable si et seulement si l’inégalité suivante est vérifiée :

N

∑
j=1

α j(1−2(
ω̃ j

σ jKr∞

)2)√
1− (

ω̃ j

σ jKr∞

)2

> 0. (0.23)

2.2.3. Analyse de la synchronisation du modèle de Kuramoto avec des inter-

actions attractives et répulsives

Dans le chapitre 4, nous considérons le problème de synchronisation de phase pour le

modèle de Kuramoto avec des gains de couplage positifs. Ainsi, seulement les interactions

attractives entre les oscillateurs ont été prises en compte. Néanmoins, l’existence des

interactions attractives et répulsives dans un réseau peut jouer un rôle important sur la

dynamique du système, comme c’est le cas par exemple, dans les circuits de synthèse

génétiques [41] et dans les réseaux neuronaux [45]. Récemment, l’utilisation des couplages

attractives et répulsives dans le modèle de Kuramoto a été étudiée, le plus souvent

numériquement, dans [48], [70], [71].



Résumé français xxi

Dans le chapitre 5, nous analysons la synchronisation de phase et de fréquence du modèle

de Kuramoto avec un graphe d’interconnexion pondéré et signé. La motivation de ce

travail est d’étudier l’effet des gains de couplage signés sur la dynamique du système et

sur la fréquence de synchronisation. Comme dans la section précédente, nous considérons

un scénario où les coefficients de couplage entre chaque paire d’oscillateurs peuvent être

séparés en deux facteurs : les poids d’entrée et de sortie. En plus, nous supposons que

ces pondérations peuvent avoir des valeurs négatives.

En particulier, nous montrons que dans le cas d’un graphe d’interconnexion signé symé-

triquement, l’existence de solutions à verrouillage de phase pour le modèle de Kuramoto

avec des interactions positives garantit l’existence de solutions à verrouillage de phase

pour une famille du modèle de Kuramoto avec des interactions signées. Leurs matrices

d’interconnexion sont générées à l’aide de transformations de jauge. Dans le cas des

graphes d’interconnexion signés d’une façon arbitraire, l’analyse du modèle de Kura-

moto n’est pas une tâche triviale ; c’est pourquoi nous nous concentrons sur le cas du

réseau structurellement équilibré (complet et signé symétriquement).

Dans cette section, nous commençons par généraliser les conditions d’existence de so-

lutions à verrouillage de phase pour le modèle de Kuramoto formulé dans la section

précédente avec des poids d’entrées-sorties mixtes (positifs et négatifs). Ainsi, nous consi-

dérons le système suivant :

θ̇i = ωi +
K
N

wi
out

N

∑
j=1

w j
in sin(θ j−θi) , i ∈ {1, . . . ,N}, (0.24)

La matrice d’interconnexion K =Wout W>in est signée symétriquement, c’est-à-dire ki jk ji >

0. La dernière inégalité peut être réécrite sous la forme ki jk ji = wi
inwi

out w j
inw j

out > 0 pour

tous i, j ∈ {1, . . . ,N}. Ceci peut être satisfait seulement si wi
in et wi

out ont le même signe

pour tout i ∈ {1, . . . ,N}.
Dans la suite de notre analyse, nous utilisons les propriétés du graphe signé structurel-

lement équilibré et l’invariance de jauge. L’ensemble des transformations de jauge dans

RN est notée par :

G = {G ∈ RN×N ,G = diag(δ),δ = [δ1 . . .δN ],δi ∈ {±1}}. (0.25)

Soit K = W inW>out la matrice d’adjacence avec des éléments positifs. On note aussi que

pour chaque graphe orienté avec des pondérations positives, il existe une famille de

graphes signés et structurellement équilibrés qui possèdent les mêmes pondérations mais

avec des signes différents. Toutes ces réalisations de graphes signés sont liées par les

transformations de jauge. Ainsi, nous définissions l’ensemble des matrices d’adjacence
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KG généré par les transformations de jauge comme suit :

KG = {Kg = GK G,G ∈ G}, (0.26)

où G est l’ensemble de toutes les transformations de jauge définies dans (0.25) et l’en-

semble KG contient 2N−1 matrices distinctes .

Le théorème suivant donne la forme de solutions à verrouillage de phase pour une famille

du modèle de Kuramoto avec des graphes d’interconnexion signés générés à l ?aide des

transformations de jauge.

Théorème 6 Soit G = {G = diag(δ1, . . . ,δN),δi ∈ {±1}} l’ensemble de toutes les trans-

formations de jauge dans RN. Alors, chaque modèle de Kuramoto (0.24) avec un graphe

d’interconnexion signé symétriquement défini par la matrice d’adjacence Kg = GK G, a

une solution à verrouillage de phase si et seulement si l’Hypothèse 1 est satisfaite. En

plus, la fréquence de synchronisation est définie par (0.13) et les solutions à verrouillage

de phase ont la forme suivante :

θg(t,θ∗g) = θ
∗
g + ωst1n + c1n, (0.27)

où c ∈ R est une constante arbitraire tandis que le vecteur θ∗g est défini par les relations

suivantes :

cos(θ
∗
g) = G cos(θ

∗) ; sin(θ
∗
g) = G sin(θ

∗), (0.28)

et le vecteur θ∗ est la solution à verrouillage de phase du modèle de Kuramoto (0.11),

definie dans (0.14).

Remarque 1 Le théorème ci-dessus stipule que tout modèle de Kuramoto défini par

la matrice d’adjacence Kg = GK G avec G ∈ G , a une solution à verrouillage de phase si

et seulement si le modèle de Kuramoto (0.11) avec seulement des pondérations positives

a une solution à verrouillage de phase. De plus, les angles θ∗g qui correspondent aux

entrées négatives de la matrice de jauge G, ont un décalage de π par rapport aux angles

du modèle (0.11), c’est à dire θ∗g j = θ∗j + π.

La deuxième partie de chapitre 5 est consacrée à l’étude de stabilité des solutions à

verrouillage de phase pour le modèle de Kuramoto avec des interactions attractives et

répulsives. Dans le théorème suivant, nous démontrons que parmi toutes les solutions à

verrouillage de phase pour le système (0.24), il n’y a qu’une solution localement asymp-

totiquement stable.

Théorème 7 Considérons les modèles de Kuramoto (0.11), (0.24). Soit K = W out W>out

et l’Hypothèse 1 est satisfaite. Soit KG = {Kg = GK G,G ∈ G} la famille des matrices
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d’adjacence générées par la transformation de jauge. Pour une matrice de jauge donnée

G, soit Ag = {θ∗gk ∈RN , k = {1, . . . ,M}} l’ensemble de toutes les solutions à verrouillage de

phase possibles pour le système (0.24) définies dans le Théorème 6. Alors les assertions

suivantes sont validées :

1) Au plus, il existe une seule solution à verrouillage de phase θ∗g ∈Ag qui est localement

stable.

2) Soit θ+ la solution à verrouillage de phase définie par l’équation (0.14) et l’équation

(0.12) prise avec tous les signes positifs. Soit θ+
g la solution à verrouillage de phase

correspondante au système (0.24) définie par (0.28). Alors, l’ensemble D+
g = {θ ∈ RN :

θ = θ+
g +c1, c ∈R} est localement asymptotiquement stable si et seulement si l’inégalité

suivante est vérifiée :

N

∑
j=1

|w j
in|(1−2(

ω̃ j

w j
outKr∞

)2)√
1− (

ω̃ j

w j
outKr∞

)2

> 0. (0.29)

3. Modèle de Stuart-Landau

Dans les chapitres précédents, nous avons utilisé un modèle de phase pour étudier le

phénomène de synchronisation engendré par les interactions entre des oscillateurs pério-

diques dans un réseau. En fait, les modèles de phase représentent une bonne approxima-

tion de dynamique des systèmes avec des orbites à cycle limite lorsque le couplage dans le

réseau est faible. Ceci est le cas du modèle de Kuramoto dans sa forme classique. Néan-

moins, lorsque le couplage est assez fort, cette approximation perd de sa consistance. Il

devient donc nécessaire de prendre en compte la dynamique entière de chaque élément

oscillant, y compris sa phase et son amplitude. L’interaction de ces deux variables dans

un réseau des oscillateurs à cycle limite permet d’analyser des nouveaux phénomènes

dans l’évolution collective. Par conséquent, nous proposons dans le chapitre 6 d’étudier

la synchronisation dans un réseau des oscillateurs de Stuart-Landau. Ce dernier permet

de prendre en compte la dynamique des amplitudes ainsi que celle des phases.

3.1. Généralités

Nous supposons que la dynamique de chaque oscillateur est décrite par l’équation Stuart-

Landau

żi =−|zi|2zi + µizi + ui = f (zi,µi)+ ui, i ∈ I (0.30)
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où zi,ui ∈ C sont respectivement l’état et l’entrée d’oscillateur i, µi = βi + iωi ∈ C est un

paramètre complexe qui définit le comportement asymptotique de l’oscillateur i.

Nous supposons que les oscillateurs sont connectés via un couplage diffusif qui repré-

sente une relation statique entre les entrées et les états des oscillateurs, à savoir pour

l’oscillateur i, le couplage est donné par la relation suivante :

ui =−γ

(
di1(zi− z1)+ di2(zi− z2) . . .+ diN(zi− zN)

)
, (0.31)

où γ > 0 est un paramètre scalaire qui correspond à la force de couplage entre les oscil-

lateurs.

Nous supposons que le graphe d’interconnexion est non orienté, connexe et pondéré par

des poids positifs. Ainsi, la matrice Laplacienne L de ce graphe a une seule valeur propre

égale à zéro et les autres sont strictement positives.

La dynamique d’ensemble du réseau peut être décrite par l’équation différentielle sui-

vante :

ż = F(z)− γ Lz, (0.32)

où γ ∈ R+ est le gain de couplage, la fonction F : CN → CN est donnée par

F(z) = [ f (zi,µi)]i∈I . (0.33)

et la matrice Laplacienne est définie comme suit :

L =


∑

N
i=2 d1i −d12 . . . −d1N

−d21 ∑
N
i=1,i6=2 d2i . . . −d2N

...
...

. . .
...

−dN1 −dN2 . . . ∑
N−1
i=1 dNi,

 (0.34)

Nous montrons d’abord que les trajectoires du réseau d’oscillateurs de Stuart-Landau

(0.32) sont ultimement bornées (ultimately bounded). Ceci signifie que toutes les so-

lutions vont finir dans un domaine borné. Précisément, nous prouvons la proposition

suivante :

Proposition 1 Considérons le système (0.32) et soit le graphe d’interconnexion connexe

et non orienté. Alors, les solutions du sytème (0.32) sont ultimement bornées et satis-

faissent la borne suivante :

|z(t,z◦)| ≤
√

2µN. (0.35)
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Dans le cas d’un réseau des oscillateurs identiques, la synchronisation est souvent décrite

en terme d’une évolution identique (asymptotique) aux éléments du réseau et par la suite

formulée comme la stabilité (asymptotique) d’une variété de synchronisation

S = {z ∈ CN : z1 = z2 = . . . = zN}. (0.36)

Le comportement des réseaux avec des unités non identiques est plus complexe. En

effet, la variété de synchronisation S n’existe pas toujours à cause des différences de

la dynamique des oscillateurs. Néanmoins, il est bien connu de la littérature que ces

réseaux hétérogènes peuvent présenter un certain type de synchronisation. Une des ap-

proches possibles est de considérer la synchronisation «pratique» du réseau ; lorsque les

différences entre l’évolution de la dynamique des différentes unités sont bornées et dé-

croissent infiniment en augmentant la valeur du gain de couplage γ. Cette approche est

adoptée dans notre travail. En particulier, nous montrons pour des grandes valeurs du

gain de couplage γ que le comportement du réseau peut être décomposé en deux parties :

une correspond à la dynamique d ?un certain oscillateur ” moyennisé ” (”mean-field”),

tandis que l’autre décrit la dynamique des unités du réseau par rapport à la dynamique

” moyennisée ”.

3.2. Reformulation de la dynamique du réseau

Pour une meilleure présentation de notre approche, nous avons ensuite réécrit ce système

dans un nouveau cadre de coordonnées. Ceci est plus pratique pour présenter notre

analyse. Tous d’abord, nous séparons la dynamique du réseau en deux parties, une

partie linéaire et l’autre non linéaire. Ainsi, le système est réécrit sous cette forme :

ż = Aγz−C(z) z, (0.37)

où

Aγ = M − γ L (0.38)

et les deux matrices diagonales C(z)et M sont définies comme suit :

C(z) =


|z1|2 0 . . . 0

0 |z2|2 . . . 0
...

. . .
. . .

...

0 0 . . . |zN |2

 et M =


µ1 0 . . . 0

0 µ2 . . . 0
...

. . .
. . .

...

0 . . . 0 µN


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Ensuite, nous remarquons que la matrice Aγ peut être écrite sous la forme Aγ = γ(−L + ε M )

où ε = 1/γ. Alors, pour des valeurs suffisament petites de ε (ou encore des valeurs suffi-

sament grandes du gain de couplage γ), la matrice Aγ peut être vue comme une matrice

Laplacienne avec des perturbations. En utilisant des résultats de la théorie de la per-

turbation des matrices, nous pouvons montrer que la matrice Aγ a une valeur propore

positive et les autres N−1 valeurs propores negatives. Précisément,

λ1(Aγ) = γ
(
−λ1(L)+ c1ε + o(ε)

)
=

1
N

N

∑
i=1

µi + O(ε),

et λ j(A) ( j = 2, . . . ,N) sont proportionnelles au γ : Real(λ j(A))→−∞ quand γ→ ∞.

Ainsi, nous assumons que la force de couplage γ est suffisamment grande. Donc, la matrice

Aγ est diagonalisable. Précisément, nous proposons l’hypothèse suivante :

Hypothèse 2 Il existe une γ∗ > 0 sachant que pour tout γ ≥ γ∗, la matrice Aγ définie

dans (0.38) peut être factorisée comme le suivant :

Aγ = Vγ Λγ V−1
γ , (0.39)

où Λγ ∈ CN×N est une matrice diagonale et ses éléments diagonaux sont les valeurs

propres de Aγ. La matrice Vγ ∈ CN×N est une matrice orthogonale (V−1
γ = V>γ ). En plus,

il existe k ∈ {1, . . . ,N} sachant que Re(λk) > max j∈{1,...,N}, j 6=k Re(λ j).

Nous assumons que les valeurs propres λ j de Aγ sont ordonées comme suit Re(λ1) >

Re(λ2) ≥ . . . ≥ Re(λN). Ensuite, nous décomposons la matrice Aγ de cette façon. Nous

écrivons d’abord la matrice Λγ sous cette forme :

Λ = λ1(Aγ)I+


0 0 0 0

0 λ2(Aγ)−λ1(Aγ) 0 0

0 0
. . . 0

0 0 0 λN(Aγ)−λ1(Aγ)

= Λ1 + Λ2. (0.40)

En utilisant cette notation, nous obtenons

A = V Λ1V>+V Λ2V> = λ1I+ D, (0.41)

où D = V Λ2V>. Notons que si l’Hypothèse 2 est satisfaite, les (N− 1) valeurs propres

non nulles de la matrice Λ2 ont une partie réelle négative : pour i = 2, . . .N nous avons

λi(Λ2)→−∞ quand γ→+∞. Donc, nous pouvons conclure que D≤ 0.
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En utilisant ces notations, nous pouvons écrire le système (0.37) sous cette forme :

ż = (λ1I−C(z)) z + D z, (0.42)

rappelons que l’équation (0.42) n’est qu’une autre forme d’écrire les équations du ré-

seau des oscillateurs (0.32). Ainsi, les transformations que nous avons présentées nous

permettent d’interpréter le réseau d’oscillateurs hétérogènes comme un réseau où tous

les éléments ont des dynamiques identiques. Aussi, ces éléments sont couplés via une

matrice d’interconnexion D possédant des propriétés similaires à la matrice Laplacienne

L. En utilisant le modèle (0.42) et les propriétes spéctrales des matrices Aγ et D, nous

sommes capable de décomposer explicitement la dynamique du réseau en deux parties

avec des rôles très différents : la première partie correspond à l’oscillateur ”moyennisé”

noté par zm, tandis que la deuxième partie reflète l’erreur de synchronisation entre les

oscillateurs dans le réseau notée e. Ces deux parties sont définies comme suit :

zm = ϑ
>
l1 z (0.43)

et

e = z−ϑr1zm = z−ϑr1ϑ
>
l1 z =

(
I−ϑr1ϑ

>
l1

)
z = Pz, (0.44)

où les vecteurs ϑr1 et ϑl1 sont les vecteurs propres à gauche et à droite de la matrice Aγ

associés à la valeur propre λ1(Aγ). La matrice P = I−ϑr1ϑ>l1 est une matrice de projection.

3.3. Analyse de stabilité

Dans la section précédente, nous avons vu que dans le cas d’un réseau hétérogène avec

un nombre arbitraire N d’oscillateurs et pour une valeur grande du gain de couplage γ,

le comportement du réseau peut être décomposé en deux parties :

– l’une d’elles décrit la dynamique de l’oscillateur ”moyennisé” zm.

– l’autre décrit la dynamique des oscillateurs du réseau par rapport à la dynamique

moyennisée.

C’est pourquoi nous caractérisons les propriétés de synchronisation du réseau en termes

de stabilité des deux ensembles compacts :

– la variété de la synchronisation S(γ) que nous définissons sous la forme

S(γ) = {e ∈ CN : e1 = e2 = . . . = eN = 0}. (0.45)

– l’ensemble invariant W qui correspond à l’oscillateur ”moyennisé”. Il contient l’origine

et le cycle limite de zm.

La dynamique de l’oscillateur moyennisé
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A partir de la définition d’oscillateur moyennisé zm et après un simple calcul mais assez

long, la dynamique żm peut être écrite en fonction de zm et e comme suit :

żm = (λ1− c|zm|2) zm + f2(zm,e), (0.46)

où c ∈ C est une constante sous la forme suivante :

c =
N

∑
i=1

ϑ
∗
li ϑ
∗
ri ϑ

2
ri (0.47)

et la fonction f2(zm,e) est donnée par l’expression suivante

f2(zm,e) =

−ϑ
∗
l1


|z1|2 + z∗1vr11zm 0 0

0
. . . 0

0 0 |zN |2 + z∗Nvr1N zm

e

−ϑ
∗
l1


(vr1zm)2 0 0

0
. . . 0

0 0 (vrNzm)2

 ē,

(0.48)

où vri j correspondent aux éléments i j− th de la matrice Vγ.

La dynamique des erreurs de synchronisation

A partir de la définition du vecteur des erreurs de synchronisation e et les propriétés des

matrices P et D, la dérivée ė peut être écrite sous cette forme :

ė = D e +(λ1e−P C(e,zm)(e + zm1)) . (0.49)

Ainsi, les équations (0.46) et (0.49) représentent les dynamiques du réseau dans les

nouvelles coordonnées, c’est-à-dire en termes de zm et e. Le système (0.32) peut être vu

sous la forme des deux sous-systèmes suivants :

żm = (λ1− c|zm|2) zm +f2(zm,e), (0.50)

ė = D e +(λ1e−P C(e,zm)(e + zm1)) . (0.51)

Dans la section suivante, nous présentons les résultats de notre analyse de stabilité du

réseau. En premier lieu, nous donnons les propriétés de stabilité du sous-système (0.51).

Puis, nous analysons la stabilité du sous-système (0.50).
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3.3.1. Synchronisation pratique d’un réseau diffusif d’oscillateurs Stuart-

Landau

Dans cette section, nous analysons le système (0.51) pour des grandes valeurs du gain

de couplage γ, c’est-à-dire, nous supposons que l’Hypothèse 2 est satisfaite. Nous présen-

tons une analyse de la stabilité de l’ensemble S(γ) et nous formulons les conditions qui

garantissent la stabilité asymptotique globale pratique de cet ensemble. Ceci implique la

synchronisation pratique du réseau. Précisément, nous montrons le théorème suivant :

Théorème 8 Considérons le système (0.32) et soit l’Hypothèse 2 satisfaite. Alors,

l’ensemble S(γ) est globalement pratiquement stable pour tout γ ≥ γ∗. En plus, il existe

T ∗ > 0 et une constante c > 0 indépendantes de γ sachant que l’erreur de synchronisation

e(t) satisfait la borne suivante pour tout t ≥ T ∗

|e(t)|2 ≤ 2c
|Real(λ2−λ1)|

. (0.52)

Stabilité pratique de l’ensemble invariant d’oscillateur moyennisé

Dans cette section, nous présentons l’étude du comportement de zm. Notons que la

dynamique de zm peut être vue comme un oscillateur de Stuart-Landau perturbé par

une entrée qui dépend linéairement de |e|, à savoir

żm = (λ1− c|zm|2) zm + u, (0.53)

où u = f2(zm,e).

C’est pourquoi, nous allons d’abord analyser les propriétés de stabilité et de robustesse

d’un oscillateur de Stuart-Landau généralisé. Ensuite, nous allons appliquer ces résultats

à l’analyse du système (0.53).

L’oscillateur de Stuart-Landau généralisé a la forme suivante :

ż =−ν|z|2z + µz + u (0.54)

où z,u ∈ C sont respectivement l’état et l’entrée de l’oscillateur. ν = ν1 + iν2 ∈ C et

µ = µ1 + iµ2 ∈ C sont des paramètres complexes et nous assumons que ν1 > 0.

L’ensemble invariant du système (0.54)
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Nous considérons d’abord le système sans perturbations, c’est-à-dire u ≡ 0. L’ensemble

invariant est composé de deux éléments : l’origine et le cycle limite d’amplitude
√

µ1/ν1,

à savoir

W = {z = 0}
⋃{

z ∈ C : z = 0 ||z||=
√

µ1

ν1

}
. (0.55)

Analyse de stabilité de l’ensemble invariant W

Nous prouvons le théorème suivant pour l’oscillateur de Stuart-Landau généralisé.

Théorème 9 Considérons l’oscillateur de Stuart-Landau (0.54) avec une entrée u≡ 0.

Les assertions suivantes sont validées :

(1) Si Re(ν) ≤ 0 alors l’origine z ≡ 0 est globalement asymptotiquement stable pour le

système (0.54).

(2) Si Re(ν) > 0 alors le cycle limite W1 = {z : |z| =
√

ν1/µ1} est presque globalement

asymptotiquement stable et l’origine est anti-stable pour le système (0.54).

En plus, la fréquence d’oscillation du cycle limite est définie comme suit :

ω = µ2−
ν2

ν1
µ1

Etude de robustesse d’oscillateur de Stuart-Landau : analyse de stabilité de

l’ensemble invariant W en présence de perturbations

En se basant sur les résultats de l’article [8], nous analysons les propriétés de stabilité et

de robustesse du système (0.54). Tout d’abord, nous définissons la norme | · |W comme

le suivant :

|z|W =

 |z| if |z| ≤ 1√
2

√
α√

|z|2− µ1
ν1

if |z| ≥ 1√
2

√
α

(0.56)

où µ1
ν1

= α.

Le théorème suivant assure que la propriété du gain asymptotique est verifée pour le

système (0.54). C’est-à-dire, asymptotiquement, la distance entre la trajectoire de l’os-

cillateur et l’ensemble W est proportionnelle à la taille des perturbations ||d||∞.
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Théorème 10 Considérons le système (0.54) avec des conditions initiales z0 et soit

l’ensemble W définie par (0.55). Alors, le système (0.54) a la propriété du gain asymp-

totique ; à savoir la borne supérieure suivante est satisfaite

limsup
t→+∞

|z(t,z0;u)|W ≤ η(||u||∞). (0.57)

Synchronisation pratique du réseau d’oscillateurs de Stuart-Landau

Considérant l’équation (0.53) qui décrit la dynamique de l’oscillateur ”moyennisé” avec

u = f2(zm,e) :

żm = (λ1− c|zm|2) zm + u,

En utilisant les résultats précédents sur la robustesse de l’ensemble invariant W (Théo-

rème 10) et sur la stabilité pratique des erreurs de synchronisation (Théorème 8), nous

obtenons le résultat suivant :

Théorème 11 Considérons le réseau des oscillateurs de Stuart-Landau décrit par les

équations (0.32), (0.33). Considérons aussi l’oscillateur ”moyennisé” du réseau défini

par (0.43) et sa dynamique donnée par l’equation (0.53). Soit l’Hypothèse 2 satisfaite.

Alors, le système (0.53) a la propriété du gain asymptotique. En plus, pour tout ε > 0,

il existe un gain γ≥ γ∗ sachant que la borne suivante est satisfaite

limsup
t→+∞

|zm(t,z◦)|W ≤ ε.
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Chapter 1

Introduction

Self-organization is a remarkable characteristic of nature, and it is also a base concept

in science. One can easily identify the ordered patterns in biological, physical, and

social systems. It is studied in the different branches of science and goes by various

names : (self)-synchronization, orderliness, synergy, and emergent behaviour to name

a few. Usually, it is viewed as a static aspect of structural organization ; nevertheless,

it can also be viewed as an attitude of collective dynamics. In a dynamically ordered

state, the individual components of a system are well coordinated ; therefore, the sys-

tem is qualified to display a coherent performance. A classic example of a dynamical

order are the systems of periodic nature. The repeated occurrence of events at regular

intervals can be found at all scales. The functioning of all living organisms seems to be

dependent on specified cycles. Periodic oscillations are also one of the most ubiquitous

types of dynamical behavior in the real world. The presence of persisting oscillations can

be understood in two different ways. One prevalent class of oscillations characterize the

Hamiltonian systems : in the conservative systems, oscillations are maintained due to the

conservation of energy (for example, the frictionless pendulum). The second interesting

type of periodic oscillations is self-sustained oscillations. In this case, oscillations can be

viewed as a result of instability of the static state, but also as the consequence of the

existence of a stable periodic attractor.

Moreover in various physical systems coordinated action of individual components can be

freely developed. In fact, emergence of collective organization is a fundamental problem

in the theory of complex systems, and collective dynamic organization is also closely

related to the network synchronization phenomena. Actually, the systems synchronize

when some components of such systems are connected and strong interactions among

their individual dynamics emerge. Synchronization can be generated by an external

force producing the entrainment of the system. Furthermore, synchronization can also

1
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be induced as a consequence of interaction among system elements only. This form of

self-organized synchronization plays a fundamental role in various complex systems of

several natures, i.e. especially in the field of life sciences [140] and it has been studied

via a variety of mathematical models [63], [77].

When analyzing collective dynamics of biological or physical systems, one of the first

questions to address is how to model dynamics of individual components in the po-

pulation. Even when such components represent just a single neuron, or a biological

cell, it is difficult to incorporate all their internal dynamics into a model ; since analysis

of the overall population model becomes intractable. Fortunately, investigations have

displayed that essentially the same models are repeated in different phenomena in biolo-

gical, neural, or social self-synchronization [82]. The prevalent use of canonical models of

oscillatory periodic dynamics in diverse research areas is an example of the methodology

that is dominant in the science of complex systems. The underlying perception is that

the validity of results found in a certain canonical model may extend to a specific real

system under some consideration [77].

The importance of these models lies in the fact that, while being simple, they capture

fundamental characteristics of many different systems with oscillatory periodic behavior.

For example, progressive wave activity can be observed inside simple biological cells

and meet themselves in the cell populations. They are of an essential importance for

the functioning of the heart and are also observed in the brain. Similar structures of

waves exist in ecological populations, such as the movement of schools of fish. Each

of these systems may be hard to describe mathematically, and this difficulty arises for

different reasons. In the case of neuronal activity, the generation of action potentials in a

neuron is the result of the collective action of millions of ion channels and transmissions

along the synaptic membranes. The numerical simulation of a small neural network

activity may require important computational power. The interactions between all the

molecules in the cell cannot be known, and experiments on a simple molecule to study

their behaviour with enough precision cannot be possible. Nevertheless, these kinds of

systems have clear characteristics in common, namely that all of them act by repeating a

functional cycle. Even though deviations in this cycle may exist from system to system,

what is important for the analysis is that their operation requires the periodic and

repeated execution of an ordered functional cycle. That is why in mathematical study of

these kinds of synchronization phenomena, attention is mostly focused on the analysis

of generic models describing self-synchronization processes.

Analysis of synchronization as collective behavior represents a large part of the study

of complex systems. In the last decades, numerous research groups have actively been
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working on these problems. There are many books devoted to the analysis of synchroni-

zation phenomena. The first mathematical formulation of the synchronization problem

for nonlinear oscillators belongs to A. A. Andronov [6]. The textbook by N. Wiener [137]

and A. T. Winfree [140] recognized its ubiquity in the natural world, and give a rele-

vant introduction into the collective behavior of biological oscillators and the generation

of characteristic rhythms in the brain. Based on the fact that a network of Andronov-

Hopf oscillators synchronizes for the large values of interconnection gains ; in the 1980s

Y. Kuramoto proposed a reduced order model which characterize limit case behaviour

of Andronov-Hopf oscillators [63]. More recently, an extensive monograph on collective

dynamics, including self-synchronization, has been published, see [77], [121], [124].

As previously mentioned, collective synchronization plays an important role in a wide

range of disciplines, such as physics [49], ecology [120], biology [131], chemical [136],

social [2], and technological applications [142]. Within this rich modelling of synchroni-

zation among interconnected oscillators, one can remark that various systems essentially

illustrate networks of coupled periodic elements. For this reason, our analysis is concen-

trated on the interactions among elements, more than the elements themselves, and this

thesis focuses on the canonical model of a continuous limit-cycle oscillator network with

directed, weighted, and signed interconnection graphs. Thus, we consider the functional

cycle of these systems as a circle and the dynamic of such oscillators can be described by

the radius and the velocity of rotation along this circle. The progress along this cycle can

also be illustrated by an angle variable that increases at a constant rate. In this view, the

oscillatory network model is often simplified by modelling each individual dynamic by

a simple phase oscillator such as the case of the Kuramoto model [63], [64]. This model

is often used to study the emergent collective behavior because it is conceptually simple

and easy to implement numerically.

In the scientific literature on coupled phase oscillators, many studies can be found which

focus on the existence conditions and the stability of the synchronization dynamic [3].

It is widely used in numerous applications in several domains such as biology [18], [61],

[114], [115], chemistry [63], [136], and physics [38], [72], [138]. More recently, it has also

attracted attention from the automatic control community, see e.g. [4], [24], [31], [86].

Y. Kuramoto in [63], was the first to derive phase equations for autonomous oscillators

with averaging techniques and perturbation approach. This phase equation is called

the Kuramoto oscillator and is coming by a reduction of limit cycle oscillators to the

dynamics of a single parameter, the phase of the system (see Chapter 2). Many extensions

of the Kuramoto model have been investigated, and its mathematical implications have

been explored. An excellent review about phase transitions, the Kuramoto model and
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its various generalizations has been published in [77], see also [11], [84], [133] for detailed

overview.

In this thesis, we start by investigating several kinds of synchronization behaviors (fre-

quency synchronization and phase synchronization) observed in systems of coupled phase

oscillators with various interaction configurations among oscillators. Our intention is to

establish the necessary and sufficient conditions for the existence of synchronized state

and to study its stability properties. In particular, the emphasis will be placed on the

effect of network structure (bidirectional, weighted, signed, and non-symmetric intercon-

nection graphs) on ordered states.

Organization and contributions

The contents of this thesis are organized into five main chapters, followed by a conclusion.

In the following paragraphs, we outline the contents of each chapter.

Chapter 2 serves as a reference where we give a generalized theoretical background and

concepts that will be used in this thesis. Theoretical definitions are introduced and a

mathematical framework is presented within which the work is developed. Moreover,

a basic review of some research results in this area is provided and previous pertinent

works are reported.

In Chapter 3, we study heterogeneous Kuramoto oscillator populations with distinct na-

tural frequencies and a nontrivial coupling topology. Therefore, we consider a system of

oscillators which interact through a network where each element is connected to a subset

of the elements in the entire system and with heterogeneous gains. Our emphasis will

be placed on the existence conditions of frequency synchronization in complex oscillator

networks. Additionally, we give an analytical expression for the limit of synchronization

frequency in the case when coupling strength is sufficiently large. In the case of symme-

tric graphs, it is always true that synchronization frequency is equal to the average of

natural frequencies. In Section 3 we show that is not true in the case of non-symmetric

interconnection graphs and for fixed natural frequencies and the given coupling struc-

ture, frequency of synchronization can also depend on the coupling strength. Finally, we

introduce a novel linear model that possesses properties similar to those of the Kuramoto

model and asymptotically it can be reduced to the Kuramoto model. Next we present

new necessary and sufficient conditions for the existence of phase locked solutions for

the Kuramoto model with a complex interconnection digraph.

In Chapter 4, we propose an original generalization of the Kuramoto phase equation by

incorporating an additional source of heterogeneity to the Kuramoto model. Thus, we
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assume that the individual contribution of each oscillator to the mean field is weighted by

two factors. These factors present the input and output weights of the oscillator. Conse-

quently, they define a heterogeneous interaction in the system. Therefore, we present the

necessary and sufficient conditions for the existence of phase locked solutions of the Ku-

ramoto model with a complete weighted asymmetric interconnection digraph. We also

give an exact expression of synchronization frequency as a function of the weights of the

interconnection graph and the natural frequencies. Finally, we present a local stability

analysis of the phase locked solutions and similarly to the classical Kuramoto model we

show that all phase locked solutions are unstable except for one.

In Chapter 5, we analyze phase and frequency synchronization of the Kuramoto model

with a directed signed weighted graph of interconnection. Motivation for this work is

to examine the effect of the signed coupling gains on the system’s dynamics and on

synchronization frequency. It turns out that the ideas behind stability analysis of phase-

locking for the input-output weighted Kuramoto model introduced in Chapter 4 carry

over to the case of weighted signed digraphs, although some results are different. We show

that in the case of sign-symmetric graphs of interconnection, existence and stability of

phase locked solutions for the Kuramoto model with positive weights guarantee the

existence of the whole family of Kuramoto models defined by the initial model and by

the family of gauge transformations. To the best of our knowledge, there are no similar

results for the Kuramoto model with with these types of interconnections. We also give

an exact expression for synchronization frequency and we present local stability analysis.

Dynamical systems with limit cycle orbits present a suitable model for the autonomous

elementary oscillators that give rise to averaged oscillatory rhythms through synchro-

nization. In the preceding chapters, we used the Kuramoto model as a model to study

the synchronization of interacting periodic oscillators. In fact, the Kuramoto model re-

presents an acceptable approximation to systems with limit-cycle orbits under certain

conditions, i.e. the coupling strength is weak [63]. However, in the case of stronger cou-

pling, it is required to take into account the full dynamics of each oscillator, including

its phase and its amplitude. Following the results of Andronov on limit-cycle oscillators,

more generalized versions of the coupled oscillators model, including both phase and

amplitude variations, have been published. Among these, the complex Stuart-Landau

equation displays the amplitude equation derived from a general ordinary differential

equation near an Andronov-Hopf bifurcation point –[29]. The Stuart-Landau oscillator

is used in a wide range of applications ; for instance, to describe chemical reaction diffu-

sion systems [52], semiconductor lasers [22] as well as in neurophysiology [10].

In Chapter 6, we analyze stability of a network of diffusive coupled Stuart-Landau oscilla-

tors, based on the notion of practical stability which allows the study of synchronization
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properties in cases when only approximations of the limit cycle and synchronization

frequency are available.

Summary of publications

This thesis is mostly based on published conference papers.

This section summarizes the relationship between the papers and the chapters in this

thesis. Notice that some papers are used in more than one chapter.

Chapter 3 contains results presented in :

– [34] : A. EL-ATI and E. PANTELEY, On frequency synchronization of Kuramoto

model with non-symmetric interconnection structure, IEEE Conference on Commu-

nications, Computing and Control Applications, Marseilles, France 2012.

– [35] : A. EL-ATI and E. PANTELEY, Asymptotic phase synchronization of Kuramoto

model with weighted non-symmetric interconnections : a case study, IEEE Conference

on Decision and Control, Florence, Italy 2013.

Chapter 4 contains results presented in :

– [35] : A. EL-ATI and E. PANTELEY, Asymptotic phase synchronization of Kuramoto

model with weighted non-symmetric interconnections : a case study, IEEE Conference

on Decision and Control, Florence, Italy 2013.

Chapter 5 contains results presented in :

– [37] : A. EL-ATI and E. PANTELEY, Synchronization of phase oscillators with at-

tractive and repulsive interconnections, IEEE Conference on Methods and Models in

Automation and Robotics, Miedzyzdroje, Poland 2013 .

– [36] : A. EL-ATI and E. PANTELEY, Phase locked synchronization for Kuramoto

model with attractive and repulsive interconnections, IEEE Conference on Systems,

Man, and Cybernetics, Manchester, UK 2013.

Chapter 6 contains results presented in :

– [98] : E. PANTELEY and A. EL-ATI, On practical stability of a network of coupled

non-linear limit cycle oscillators, IEEE Conference on Systems, Man, and Cybernetics,

Manchester, UK 2013.



Chapter 2

Synchronization of oscillators

network : Frameworks, tools and

definitions

Contents

2.1 Limit cycle oscillator models . . . . . . . . . . . . . . . . . . 7

2.1.1 Phase reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Kuramoto model . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Graph theory preliminaries . . . . . . . . . . . . . . . . . . . 13

2.2.1 Digraphs, associated matrices and properties . . . . . . . . . . 14

2.2.2 Weighted and signed digraphs properties . . . . . . . . . . . . . 15

2.3 Synchronization of dynamical systems : concept and notions 18

2.3.1 Consensus protocol . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1.1 Static networks of linear agents . . . . . . . . . . . . . 18

2.3.1.2 Identical oscillators network as nonlinear consensus

problem . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Synchronization for Kuramoto model . . . . . . . . . . . . . . . 21

2.3.3 Set stability notions . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 Limit cycle oscillator models

We start by introducing the Stuart-Landau equation,

dz
dt

= (α + i ω− c |z|2) z, (2.1)

7
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where z = x + i y �C, c = c1 + ic2 �C ; c1 �R>0, c2 �R+ and � �R is a parameter

specifying the distance from a the bifurcation.

Using the following change of coordinates z = rei� and writing the system (2.1) in polar

coordinates, the equations for the radial amplitude r and the angular variable � can be

decoupled :

ṙ = � r� c1 r3; (2.2)

˙� = � � c2 r2 (2.3)

When � < 0, equation (2.2) has only one stable �xed point at r = 0. However, if � > 0, this

equation has a stable �xed point r =
�

�

c1
, while r = 0 becomes unstable. This implies,

in this case, that the trajectories of the system converge to a circle of radius r, starting

from initial conditions both inside and outside the circle. Thus, this circle represents an

attractor and the system (2.1) exhibits periodic oscillations. In this case, z represents

the position of the oscillator in the complex plane and z(t) has a stable limit cycle at the

amplitude | z| =
�

�

c1
on which it moves at its natural frequency. The bifurcation of the

limit cycle from the origin that appears at the value � = 0 is known in the literature as

the Andronov-Hopf bifurcation. The curves � � , represent this limit cycle of the system

as follows :

� � =

�
�

c1

�
cos(t)

sin(t)

�
(2.4)

An example of di�erent trajectories for both � < 0 and � > 0 can be seen in the following

�gure 2.1.

Figure 2.1 � (a) The �xed point is stable for negative values of � and all orbits spiral
towards it. (b) If � > 0 the origin is unstable, but all trajectories go towards a stable

limit cycle with radius r =
�

�

c1

The stability analysis of this limit cycle is usually done by using the Lyapunov exponent

tools (see [65], [99] for more details overview), or using the second Lyapunov method

(see e.g. [81], [101]).
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In the literature, the system (2.20) with α > 0, is known as the Stuart-Landau oscillator

[10], [58], [80]. It is also known as the Andronov-Hopf oscillator [99]. The Stuart-Landau

equation is a normal form, which means that the limit cycle dynamics of many other

oscillators can be transformed onto or can be approximated by the dynamics given by

equation (2.1), [51]. We cite, for example, the papers [44], [127] where the Van-der-Pol

oscillator and the Haken-Kelso-Bunz (HKB) model in the neurophysiological applications

are approximated by the equations (2.2) and (2.3).

Analysis of the synchronization behavior of coupled Stuart-Landau oscillators is more

involved than that of a single oscillator. Stability analysis for a small network of two or

three oscillators with different frequencies was done in e.g. [13], [16]. Numerical analysis

of a general network of such heterogeneous oscillators was considered in [81] ; however,

we were unable to find in the literature theoretical results on stability analysis of such a

network.

In Chapter 6, we analyze the synchronization behavior of networks consisting of many

limit cycle oscillators described with the following model :

dz j

dt
= (α−|z j|2 + i ω j) z j + γ

N

∑
i=1

a ji (zi− z j) j = 1 . . .N, (2.5)

where j− th oscillator is described by the complex variable z j and the oscillators are

coupled in a network specified by the adjacency matrix A = [ai j] and γ > 0 is the coupling

strength between pairs of connected oscillators.

2.1.1 Phase reduction

In his book ”Chemical Oscillations, Waves, and Turbulence”, Y. Kuramoto studied the

derivation of phase equations for systems, like coupled limit cycle oscillators or oscillatory

reaction diffusion systems, by means of a perturbation analysis. Since the analysis of

oscillatory systems is the main subject of this thesis, we roughly review, in this section,

the phase reduction of coupled limit cycle oscillators proposed in [63].

Consider N mutually coupled oscillators described by the following equation :

dxi

dt
= Fi(xi)−

N

∑
j=1

Vi, j(xi,x j), i = 1 . . .N, (2.6)

where xi is the state vector of the i− th oscillator, Fi(xi) is the autonomous dynamics

corresponding to i− th oscillator and Vi, j(xi,x j) is a function describing the coupling

between the i− th and j− th oscillators.

Additionally, assume that all oscillators have the similar dynamics that is Fi(xi) = F(xi)+
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∆Fi(xi), with ∆Fi(xi) small, and the coupling between the oscillators is weak, meaning

Vi, j is small.

Moreover, assume that an uncoupled oscillator with nominal dynamics
dx
dt

= F(x) has a

stable limit cycle C with an associated period T . Then, every state x◦ ∈ C on the orbit

C can be associated with a distinct scalar variable, namely its phase θ.

The mapping of the phase θ ∈ [0,T ) associates to state x ∈ C , x◦ : [0,T )→ C is defined

in such a way that the phase θ◦ of the nominal oscillator linearly increases with time

dθ◦
dt

= ω.

Next, in order to associate a phase with every state of the non-nominal oscillators,

Kuramoto proposed the following reduction method based on perturbation theory [77]

and considering that Vi, j and ∆Fi are small perturbations to the nominal dynamics F,

for more details see [63], [68], [109]. In this case, the phase θi of the oscillator (2.6) can

be approximated by :

dθi

dt
= ωi +O(θi)(∆Fi(x◦(θi))−

N

∑
j=1

Vi, j(x◦(θi),x◦(θ j))), i = 1 . . .N, (2.7)

with O(θi) = gradx θi |x=x◦(θi).

Since the coupling Vi, j are weak, it was proved in [63] that the effect of the small

perturbations on the oscillator phase θi can be averaged over one period T . Then, the

system (2.7) can be presented in the following form :

dθi

dt
= ωi + ∆ωi−

N

∑
j=1

Γi, j(θi−θ j), i = 1 . . .N, (2.8)

where Γi, j(.) are the coupling functions and ωi = ω+∆ωi is the natural frequency of the

i− th oscillator.

This description of the coupled limit cycle oscillators is still too complex to be analyzed

analytically ; therefore, Y. Kuramoto analysed a special case of (2.8), where the coupling

function has a particular form :

Γi, j(θi−θ j) =
K
N

sin(
θ j−θi

T
). (2.9)

This model is well known in the literature as the Kuramoto model.
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2.1.2 Kuramoto model

Like Winfree (1967) before him, Y. Kuramoto worked out a model to study the pheno-

menon of spontaneous collective synchronization that appears when a large number of

oscillators are coupled ([62], [109]). In Kuramoto’s original formulation, the only dyna-

mical variable is the phase of the oscillators. He started by studying of the most simple

case, a mean-field dynamic system resulting from a model of limit cycle coupled oscilla-

tors. The governing equations for the dynamics are given by the phase equations of the

following general form :

θ̇i = ωi +
1
N

N

∑
j=1

Γi, j(θ j−θi) , i ∈ 1 . . .N, (2.10)

where θi is the phase of the i− th oscillator, ωi its natural frequency and N is the

number of oscillators. The phase interaction functions Γi j can be computed as integrals

introducing certain terms from the original limit-cycle model (see [62], [122] for the

detailed overview). This function can also be thought of as the phase response of oscillator

i to input from oscillator j. However, these equations are too difficult to analyze since

the form of the phase response curve is not specified and the interaction functions could

have arbitrarily Fourier harmonics [63]. Moreover, the oscillators network could have

various connection topologies.

In order to simplify the analysis, Kuramoto identified that purely sinusoidal coupling

function (as a first-order approximation to the more general form (2.10)) should be the

most tractable. The classical Kuramoto model corresponds to the simplest possible case

when the network is supposed to be fully connected (all-to-all) with constant uniform

coupling weight :

θ̇i = ωi +
1
N

N

∑
j=1

ki jsin(θ j−θi) , i ∈ 1 . . .N, (2.11)

The matrix K = [ki j] represents the coupling matrix between the different oscillators,

whose elements are ki j. In the case of complex topologies of oscillators network, the

coupling matrix K = [ki j] can be considered as the adjacency matrix of the weighted di-

rected interconnection’s graph G = (V,E,W ) of the oscillators. For the classical Kuramoto

model, ki j = K for all i 6= j and kii = 0 for all i ∈ IN .

θ̇i = ωi +
K
N

N

∑
j=1

sin(θ j−θi) , i ∈ 1 . . .N, (2.12)

Roughly speaking, each oscillator attempts to oscillate independently with its natural fre-

quency ωi, while the phase coupling tends to synchronize it with all the others. When the
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coupling is weak, the oscillators run independently, whereas beyond a certain threshold

of coupling strength, collective synchronization emerges spontaneously. In his analysis,

Kuramoto used the complex order parameter as a measure of phase synchronization in

the network, defined as :

r eiψ =
1
N

N

∑
j=1

eiθ j , (2.13)

where r is the magnitude of the order parameter and ψ is the average phase.

The idea is to think of the phase θi of oscillator i as a vector eiθi ∈C. The order parameter

then corresponds to the geometric centroid of the set of all vectors. The magnitude of

the order parameter serves as a measure of the coherence in the system, in the sense that

when more vectors are being aligned, r is closer to its maximal value 1, while vectors

that are far from alignment will give rise to values of r significantly smaller than 1.

Figure 2.2 – Coupling and synchronisation of oscillators [125].

The classical Kuramoto model can be rewritten neatly in terms of the order parameter

as follows :

θ̇i = ωi + K r sin(ψ−θi) , i ∈ 1 . . .N, (2.14)

In this form, the mean-field character of the model becomes obvious. Each oscillator

appears to be uncoupled from all the others : of course they are interacting, but only

through the mean-field quantities r and ψ. The complex order parameter is used to find

the phase lock solutions of the classical Kuromoto model in [4].

Many extensions of this model have been investigated, and its mathematical implica-

tions have been explored extensively. Among others, issues related to dependency of the

synchronization on the strength of the coupling between the oscillators attracted parti-

cular attention during the last few decades, see [122] and [31] for a detailed overview. In

[4], the authors studied the local stability of phase locking behavior of uniform ”all-to-

all” interconnected Kuramoto oscillators, and they proved that there exists one unique

asymptotically stable phase locked solution. In [54], the authors use the symmetry of the
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graph to formulate the model in terms of incidence matrix and to study its stability pro-

perties. The case where oscillators are interconnected by undirected but not necessarily a

complete graph was considered, e.g. in [54],[87]. Among others, we also cite articles [31],

[54], [133] where an extension of the Kuramoto model with symmetric interconnection

graph was considered. In all these papers it was supposed that the interconnections are

symmetric and bidirectional, i.e the graph which defines the network interconnections

is undirected. To the best of our knowledge, only a few theoretical results are available

in the literature for the case of non-symmetric interconnection graphs. Mostly the case

of identical natural frequencies was considered in this framework, we cite here [12], [21],

[87].

In the case of an undirected network, the interconnection matrix K = [ki j] is symmetric,

i.e. ki j = k ji for all i, j = 1, . . . ,N. Consequently, the synchronization frequency of the

oscillators is always constant and equal to the average of the natural frequencies. In this

case, asymptotically the frequencies of all oscillators converge to the average frequency.

Indeed, let us define the average phase θm = 1
N ∑

N
j=1 θ j(t). Then,

θ̇m = 1
N ∑

N
j=1 θ̇ j(t)

= 1
N ∑

N
j=1 ω j + 1

N ∑
N
i=1 ∑

N
j=1 ai j sin(θ j−θi)

= 1
N ∑

N
j=1 ω j = ωm.

In the case of a non-symmetric adjacency matrix, frequency of synchronization does not

necessarily coincide with the average frequency, it was shown in [34] that for a non-

symmetric interconnection graph synchronization frequency ωs can depend on the gain

of the coupling strength ; see also [31] for frequency synchronization in a particular case

of weighted interconnection matrix.

2.2 Graph theory preliminaries

The network analysis plays an important role in a wide variety of disciplines, ranging

from communications and power systems engineering to molecular and population bio-

logy [79]. The algebraic graph theory is a link between matrix theory and network theory

and it is a powered tool for analysis of large-scale interconnected systems.

In this section, we introduce some notation and preliminary results from the algebraic

graph theory. We will use the standard terminology of graph theory and introduce the
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essential concepts necessary to develop the results of this thesis. Therefore, we are in-

terested mostly in directed graphs (digraphs) ; however, many basic properties proved

for undirected graphs cannot be useful. We introduce some basic definitions and facts

for directed graphs. A comprehensive survey on properties of matrix presentation of

undirected graphs can be found in [43]. More information is available in [85], [135].

2.2.1 Digraphs, associated matrices and properties

A digraph G = (V,E) consists of a non-empty set of vertices or nodes V = {v1, ...,vn} and

set of edges E(G)⊆V ×V . For notational convenience, we will often write ei j ∈ E(G) for

the edge connects the node vi to the node v j. An edge, ei j in a directed graph G is said

to be an edge starting at the vertices vi and the vertices v j is said to be adjacent to

vi. For the graph G we define adjacency matrix, A = [ai j] ∈ Rn×n, of G is defined in the

following way :

ai j =

{
1 if ei j ∈ E(G)

0 if ei j /∈ E(G).
(2.15)

For example, for the graph depicted on Figure 3.1, the adjacency matrix A has the form

A =


0 0 1 0

1 0 0 0

0 0 1 0

 .

It is easy to see that the adjacency matrix of an undirected graph is symmetric while

this not the case for a general directed graph.

Given a node v, we define its in-degree degin(v) and out-degree degout(v) as the number

of edges that start and terminate at this node, that is

degin(vi) =
n

∑
j=1

a ji , degout(vi) =
n

∑
j=1

ai j. (2.16)

The degree matrix of graph G is a diagonal matrix D = diag(di) ∈ Rn×n where di =

degout(vi).

Definition 1. A digraph G = (V,E) is called complete if the degree of every vertex is

equal to n−1. This type of graph is known also as an all-to-all connected graph.

Definition 2. A directed graph is called strongly connected if any two distinct nodes of

the graph can be connected via a path that follows the direction of the edges of the graph.

Definition 3. The node vi of a graph G = (V,E) is balanced if its in-degree degin and

out-degree degout are equal, i.e. degin(vi) = degout(vi). A graph G = (V,E) is called balanced
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if all of its nodes are balanced that is

∑
j

ai j = ∑
j

a ji, for all i. (2.17)

Any undirected graph is balanced. Furthermore, any directed balanced graph is strongly

connected.

Laplacian matrix

The Laplacian matrix of a graph and its spectral properties (vectors and eigenvalues) can

be used in several areas of mathematical research and have a physical interpretation in

various physical theories. The Laplacian matrix associated with the digraph G is defined

as the difference between the degree matrix and the adjacency matrix

L = D − A. (2.18)

From the definition of the Laplacian matrix it follows that every row sum is equal to

zero, and it always has an eigenvalue λ(L) = 0 and the corresponding right eigenvector

wr = 1. Notice that the multiplicity of zero as an eigenvalue of L(G) is equal to the

number of connected components of G, so for strongly connected graphs there is always

only one zero eigenvalue. Furthermore, the rank of the Laplacian matrix associates to a

strongly connected digraph G of order n satisfies : rank(L) = n−1. The second-smallest

eigenvalue is known as the algebraic connectivity of the graph [135]. The eigenvector

corresponding to that second-smallest eigenvalue is called the Fiedler vector, and has

been used successfully for analysis of consensus convergence speed problem [95].

Moreover, for a strongly connected digraph G with a Laplacian matrix L, the following

relations are valid for these vectors L wr = 0, w>l L = 0, w>l wr = 1 (see [97]).

2.2.2 Weighted and signed digraphs properties

If all the interactions in the network are alike, or in other words, when a link only esta-

blishes the presence of an interaction between two nodes, then the network is unweighted.

Otherwise, if there are different types of interactions, for example some more important,

then the links are weighted and so is the graph. Notice that the weighted graphs appear

as a model for numerous problems where the agents are linked with links of different

weights (distance, resistance, ...). In this case, in addition to giving the set of nodes and

links of the network, we also need to define the weight of every link in order to properly

define the graph. So now we have a pair (G,W ) where G = (V,E) is the directed graph
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and WE→R is a weight function, that are real numbers attached to the corresponding

links. Often, they will be positive numbers, so stronger links between the pair of nodes,

but negative links have also been used, describing the stronger of repulsive interaction

[132]. A weighted graph can be represented as a triplet G = (V,E,W ). Note that the

graph G = (V,E) can be viewed as a weighted graph where all edges have weight 1.

Weighted digraph

Let G = (V,E,W ) be an weighted directed graph. Where every edge ei j ∈ E(G),(i 6= j) (we

assume that the graph does not have loops) has a weight Wi j ∈ R and satisfies Wi j 6= 0 if

and only if ei j ∈ E(G). The graph G is undirected if Wi j = Wji for all i, j = 1 . . .N. In this

case, the adjacency matrix will be symmetric, and this is not the case for the directed

graph in general.

The graph is balanced if ∑
N
j=1Wi j = ∑

N
j=1Wji for all i = 1 . . .N. The adjacency matrix

A = [ai j] of the edge-weighted digraph is defined as :

ai j =

{
Wi j if ei j ∈ E(G)

0 if ei j /∈ E(G),
(2.19)

The degree matrix of the edge-weighted digraph is a diagonal matrix D = diag(A 1) =

diag(∑
N
j=1 a1 j, . . . ,∑

N
j=1 aN j)∈Rn×n. The Laplacian matrix associated with the edge-weighted

digraph G = (V,E,W ) is defined as the difference between the degree matrix and the ad-

jacency matrix L = D−A. The Laplacian matrix is a zero row-sum matrix. Properties

of weighted digraphs may be found in the comprehensive paper [135] see also [100] and

[15] for a detailed overview.

Signed digraph

A signed digraph is a graph in which each arc has a sign associated with it. A mathe-

matical model of a system can be represented by a signed directed graph in which the

nodes represent the system model and directed arcs show how systems affect each other.

The sign of a directed arc defines the effect of the interaction. Notice that interplay of

attractive and repulsive interactions can play an important role in the context of dyna-

mical networks, as it is the case in synthetic genetic circuits [41] and neuronal networks

[45].

A signed weighted digraph G = (V,E,A) where A ∈ Rn×n is the matrix of the signed

weights of G. This adjacency matrix alone completely specifies a signed digraph. In a

digraph, a pair of edges sharing the same nodes ei j,e ji ∈ E is called a digon.
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A directed path P of G is a concatenation of edges of E with respect to the direction and

in which all nodes are distinct. A directed cycle C of G is a directed path beginning and

ending with the same node. A directed cycle is positive if it contains an even number of

negative edge weights.

Definition 4. [144] A signed digraph G associated to the adjacency matrix A[ai j], is

called structurally balanced if it admits a bipartition of the nodes V1,V2 satisfying V1
⋃

V2 =

V ;V1
⋂

V2 = /0 such that ai j > 0 ∀vi,v j ∈ Vq (q ∈ {1,2}) and ai j 6 0 ∀vi ∈ Vq,v j ∈ Vr,q 6=
r (r,q ∈ {1,2}). More clearly, it is proved that a signed digraph G is structurally balanced

if all cycles of G(A) are positive. It is called structurally unbalanced otherwise.

The degree matrix D (the row connectivity matrix of A) is the diagonal matrix having

diagonal elements dii = ∑ j | ai j |, where v j are the nodes adjacent to vi in E. The signed

Laplacian matrix of a digraph G with adjacency matrix A is given by L = D−A.

The analogy can be made rigorous by observing that all structurally balanced networks

are equivalent, under a suitable change of orthant order, to nonnegative networks. By

adopting the terminology of [5], we call the change of orthant order gauge transformation.

Definition 5. [5] – A partial orthant order in RN is a vector δ = [δ1 . . .δN ], δi = ±1.

A gauge transformation is a change of orthant order in RN introduced by a matrix G =

diag(δ). The set of all gauge transformations in RN is denoted as G = {G ∈ RN×N ,G =

diag(δ),δ = [δ1 . . .δN ],δi ∈ {±1}}.

Given an adjacency matrix A ∈RN×N and a gauge transformation G, an equivalent adja-

cency matrix Ag is defined as Ag = G A G. A detailed analysis of gauge transformations

and signed directed graphs can be found in [5]. In the following propositions, we sum-

marize several results from [5] and [144], that will be used later in the proof.

Proposition 1. – Let A be an adjacency matrix for a directed graph. The family of all

gauge equivalent adjacency matrices AG = {Ag = G A G,G ∈ G} contains at most 2N−1

distinct matrices.

– Given a structurally balanced directed graph with its set of edge weights, there exists a

family of structurally balanced signed directed graphs characterized by the same weights

but with different signs. All these realizations of the signed graphs are related by gauge

transformations and all are isospectral.

– Any sign-symmetric complete directed graph is structurally balanced.



Synchronization of oscillators network : Frameworks, tools, and definitions 18

2.3 Synchronization of dynamical systems : concept and

notions

2.3.1 Consensus protocol

In this section, we present the basic concepts of consensus problems and a few important

results. In particular, we present some results and analysis methods for the consensus

problem for networks of integrators, and we present how these methods can be extended

to networks of identical oscillators. We refer to the textbook [19] for detailed treatments.

Similarly to the self-organizing systems, the consensus problem is a problem involving

multiple agents whom reached an agreement about a static state value over a network.

Agreement problems have a long history in the field of computer science, particularly in

distributed computation and automata theory [97]. Many applications involving multi-

agent systems need to agree upon certain quantities of interest. Areas of application of

consensus problems include formation control of mobile robots [145], sensory networks,

and flocking [96]. This problem has been studied by numerous methods and it can be

solved quite adequately using algebraic graph theory.

Among the numerous directions of research on consensus and averaging, we would like

to mention the following famous papers : consensus in small-world networks [93], [126],

continuous-time consensus algorithms [42], [95] consensus problems with switching topo-

logy [97], consensus on manifolds [110], [113], and bipartite consensus [5]. Some results

and methods presented in these papers will be used in our analysis of the synchronization

of nonlinear oscillator networks.

2.3.1.1 Static networks of linear agents

Consider a system network of N agents. In the simplest setting, the state of each agent

is characterized by a state variable xi ∈ R and the objective is to achieve a consensus

on a common state value. The interactions between the agents can be represented by

a weighted digraph G = (V,E,A), where V is the set of agents, E is the set of intercon-

nections between them and A ∈ Rn×n is the adjacency matrix describing the interaction

between agents.

The equations governing the network represented by the graph G are :

ẋi =
N

∑
i=1

ai j (x j− xi) , i ∈ {1, . . . ,N}, (2.20)
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Since xi ∈R, that is each agent evolves in a one-dimensional space, then in vector notation

the consensus protocol (2.20) can be rewritten as

ẋ =−L x, (2.21)

where x = (x1, . . . ,xN)> and L is the Laplacian matrix of G. The system 2.21 is linear and

time-invariant ; therefore, its stability properties are entirely defined by the eigenvalues

of the matrix −L. Let us assume that the digraph is strongly connected, then we have

that Ker(L) = 1N and by the Gersgorin disk theorem (see Appendix B) we have that L is

positive semi-definite ; therefore, the matrix −L is negative semi-definite. Additionally,

L has a simple zero eigenvalue associated to the eigenvector 1N . Thus, we have that the

system 2.21 is stable and that x will tend to the equilibrium-space of L asymptotically.

Notice that the consensus dynamics (2.21) are invariant by the translation x−→ x+c 1N

where c ∈ R , that is, 1N is an equilibrium subspace i.e. agreement subspace. In other

words, xi −→ α as t −→∞ with α∈R. The interpretation here is that all xi (i.e. the scalar

positions of all the agents) will tend to the same value α. Hence the consensus problem

is solved. In fact, it is easy to establish that if the digraph is symmetric, then α is equal

to the static averaged xavg =
1
N

N

∑
i=1

xi.

The essential results regarding convergence and decision value of consensus protocol for

directed networks with a fixed topology are summarized in the following theorem.

Theorem 1. (Consensus with linear protocol [95])

Consider a network of N agents with topology G applying the following consensus algo-

rithm :

ẋi =
N

∑
i=1

ai j (x j− xi) , i ∈ {1, . . . ,N},x(0) = z.

Suppose G is a strongly connected digraph. Let L be the Laplacian of G with a left

eigenvector wl = [wl1 , . . . ,wlN ]> satisfying w>l L = 0. Then

– a consensus is asymptotically reached for all initial states,

– the algorithm solves the consensus problem with the linear function f (z) =
w>l z
w>l 1

, i.e.

the group decision is α = ∑i wli zi with ∑i wli = 1,

– if the digraph is balanced, an average consensus is asymptotically reached and α = ∑i
zi

N
.

Moreover, it was shown in [95], [97] that the equilibrium subspace 1N is exponentially

stable and that the rate of convergence is given by

‖x(t)− xavg 1N‖ ≤ ‖x(0)− xavg 1N‖ e−λ2(L)t ,
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where λ2(L) is the second smallest eigenvalue of the Laplacian matrix.

The consensus protocol (2.20) is well-studied in the control literature [19], [73], [96], [104],

various extensions of this protocol are considered, in particular, consensus for digraphs

with time varying weighted ai j(t) was analysed in [42] while consensus for digraphs with

signed weights (positive and negative weighted) ai j(t) ∈ R was considered in [5].

2.3.1.2 Identical oscillators network as nonlinear consensus problem

Related to consensus protocols are synchronization phenomena arising in systems of

coupled nonlinear oscillator. It was shown in [88] that the analysis of identical oscillators

networks can be viewed as nonlinear extensions of the consensus system (2.20). Indeed,

consider a network of identical Kuromoto oscillators for communication digraph G =

(V,E,A) and equal natural frequencies. Actually without loss of generality, we can assume

that all oscillators have zero natural frequencies ω = 0. Then, the model of coupled

oscillator takes the form

θ̇i =
N

∑
j=1

ai j sin(θ j−θi) , i ∈ {1, . . . ,N}, (2.22)

where coefficients ai j are strictly positive.

If we assume that all angles lie in the interval (−π

2 ,
π

2 ), then as it was proposed in

[88], the dynamics (2.22) can be projected onto the real line via the local coordinates

(−π

2 ,
π

2 )→ R : θi 7→ xi = tan(θi).

In this case, the Kuramoto model (2.22) can be rewritten as a consensus model

ẋi =
N

∑
j=1

φi j(x) (x j− xi) , i ∈ {1, . . . ,N}, (2.23)

where φi j(x) = ai j

√
1 + x2

i

1 + x2
j

are positive scalar functions. In this formulation, the system

(2.23) can be viewed as a consensus algorithm (2.20) with strictly positive weights whose

values are state-dependent. Notice that a similar viewpoint and other types of projections

can be found in [54], [74], [116], [118].

The following theorem summarizes some results which follow from the analysis of non-

linear consensus protocols, (see [54], [74] and [88]).

Theorem 2. (Consensus with nonlinear protocol)

Consider the coupled oscillator model (2.22) with a weighted digraph G = (V ;E;A), and

assume that G is strongly connected. Then, for any given initial condition θ◦ ∈ R, the
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vector (θavg1N) is an asymptotically stable equilibrium solution and the synchronized state

is globally asymptotically stable over any compact subset of (−π

2 ,
π

2 )N.

Moreover, if the digraph G is symmetric, then the convergence is exponential and the

rate of approach to equilibrium is no worse than

‖θ(t)−θavg 1N‖ ≤ ‖θ(0)−θavg 1N‖ e−(2λ2(L)/π)t ,

where λ2(L) is the second smallest eigenvalue of the Laplacian matrix and θavg =
1
N

N

∑
i=1

θi(0)

is the average initial phases.

2.3.2 Synchronization for Kuramoto model

Within the framework of phase-reduction of limit cycle oscillators, the presentation of

the interactions between the oscillatory systems is remarkably simplified. In this way,

the Kuramoto model describes each oscillatory by an equation involving the derivative

of the instantaneous phases (instantaneous frequency) and the instantaneous phases.

For the oscillatory systems there are two concepts of synchronization which are widely

used in the literature : the phase synchronization and the f requency synchronization.

The main objects under study in most applications and theoretic analyses are phase-

locked and frequency-synchronized oscillation, where asymptotically all oscillators rotate

with the same frequency and all the pairwise phase differences are bounded and constant.

In what follows, we restrict our attention to this case and we call a solution synchronized

if it is frequency synchronized and phase locked. In what follows, we define these notions

in detail.

Frequency synchronization

First of all, we recall that all known notions of synchronized solutions have a common

property that the oscillator frequencies converge to a constant synchronization frequency.

Thus, we define frequency synchronization in two steps. First, we define frequency lo-

cked solutions, i.e. the solutions have the common frequency of oscillation for all t ≥ 0.

Roughly speaking, the frequency locked solution can be seen as an analogue of equili-

brium point.

Definition 6. (Frequency locked oscillation) – The oscillators defined by (2.12) are

frequency locked if there exists a constant ωs ∈ R and initial conditions θ◦ ∈ RN such
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that for all i ∈ {1, . . . ,N}
θ̇i(t,θ◦) = ωs, ∀ t > 0. (2.24)

Next, frequency synchronization is usually defined as existence and asymptotic stability

of the frequency locked solutions. Since the Kuramoto model is studied in many different

contexts and application domains, sometimes, terms ”frequency locking”, ”frequency syn-

chronization”, or also ”frequency entrainment” are used.

Definition 7. (Frequency synchronization) – The oscillators defined by (2.12) are fre-

quency synchronized if there exists a frequency locked solution of the system and asymp-

totically all the frequencies θ̇i(t) converge to this solution, i.e. :

lim
t→∞

θ̇i = ωs, ∀i ∈ {1, . . . ,N}. (2.25)

If the matrix K = [ki j] of the interconnection gains is symmetric, i.e. K = K >, then the

average frequency of the oscillators is constant and equals the average of the natural

frequencies. In the case where matrix K is non-symmetric, frequency of synchronization

does not necessarily coincide with the average frequency. We analyse this case in Chapter

3 and show that for a non-symmetric interconnection graph, synchronization frequency

can depend on the coupling strength ; see also [31], [35] for frequency synchronization in

a particular case of weighted interconnection matrix. Numerically this issue was studied

in [60], [75], [105].

The stability of the frequency synchronized solutions was analyzed, e.g. [24], [54] ; see

also [31] and [122] for a detailed overview. Nonetheless, the structure of the synchronized

solution was never addressed in these papers.

Phase synchronization

The definition of a frequency locking solution presented above allows for multiple pos-

sible phase configurations. That is why several terminologies are used in the literature

to describe phase synchronization, for example : full or perfect synchronization, phase

cohesiveness, and partial synchronization.

In what follows, we define phase synchronization in two steps. Similar to the frequency

synchronization, in the first step we define phase locked solutions and later define phase

synchronization as asymptotic stability of the phase locked solution.

Definition 8. (Phase locking) Let θ◦ ∈RN and θ(t,θ◦), t ≥ 0 be a solution of the Kuta-

moto model with initial conditions θ◦. Solution θ(t,θ◦) is called phase locked if

θi(t,θ◦)−θ j(t,θ◦) = θi◦−θ j◦,
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for all t ≥ 0 and all i, j = 1, . . . ,N.

We define phase synchronization as the asymptotic stability of the phase locked solution.

Definition 9. (Phase synchronization) – The oscillators defined by (2.12) are phase

synchronized if there exists a phase locked solution θ∗ ∈RNof the system and a set Θ⊂RN

such that asymptotically all phase differences θi(t,θ◦)−θ j(t,θ◦) converge to this solution

for all initial conditions θ◦ ∈Θ, i.e.,

lim
t→∞

θi(t,θ◦)−θ j(t,θ◦) = θ
∗
i −θ

∗
j , ∀i, j ∈ IN . (2.26)

Next we present some results existing in the literature on the existence of phase locked

solutions and synchronization for the Kuramoto model 2.12, with particular attention

paid to the role that coupling gain K plays in the existence of synchronized solutions in

the case of a complete (all-to-all) interconnection.

Synchronization results for the Kuramoto model with all-to-all uniform cou-

pling

Qualitative analysis of the Kuramoto model (2.12) has been an active field of research

during several decades and, in particular, analysis of the phase synchronization. Due to

the complexity of the problem in the case of general coupling matrix, the majority of the

theoretical results are concerned with a more simple particular case of all-to-all uniform

coupling, i.e. model (2.12). As we mentioned before, the problem of phase synchroni-

zation (see Definition ??) can be viewed as a problem of existence and (asymptotic)

stability of the phase locked solutions. Below we give a brief overview of the results in

this area which served as a basis for our research on the Kuramoto model.

Existence of solutions

Explicit expressions for the phased locked solutions of the Kuramoto model (2.12) were

given in [4] (see also [84] and [133]). It was shown that the following assumption on the

natural frequencies and the interconnection gain is both necessary and sufficient for the

existence of the phase locked solutions.

Assumption 1. (Consistency condition, [4])

There exists a r∞ ∈ (0;1] such that

r∞ =
1
N

N

∑
j=1
±

√
1−(

ω̃ j

Kr∞

)2, (2.27)
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and the following bounds are satisfied −1 ≤
ω̃ j

Kr∞

≤ 1, where ω̃ j = ω j− 1
N ∑

N
k=1 ωk for all

i = {1, . . . ,N}.

In particular, the authors of [4] showed that if r∞ is a solution of equation (2.27) then

the corresponding phase locked solution is given by θs(t) = θ∗+ωmt where ωm is a mean

of natural frequencies ωm = 1
N ∑

N
i=1 ωi and the phases θ∗ are defined as

sin(θ
∗
i ) =

ω̃i

Kr∞

; cos(θ
∗
i ) =±

√
1−(

ω̃i

Kr∞

)2∀i ∈ {1, . . . ,N}. (2.28)

We remark that the system (2.12) is invariant under the angular translation, that is the

oscillator network dynamics (2.12) remain invariant under a rotation of all oscillators

by the same constant angle. Therefore, any solution of the system (2.12) with the initial

conditions θ◦ = θ∗◦+ α1 will also be a phase locked solution. Actually, due to the inva-

riance of the system under translation, it is more correct to speak about stability of a

set of phase locked solutions.

Moreover, expression (2.27) represents a set of 2N equations : each term in the summation

can have a plus as well as a minus sign. Notice that given a choice of ± signs in (2.27),

every solution r∞ ∈ (0;1] corresponds to a different phase locked solution of (2.27). As

it was remarked in [4] and [84], not all 2N equations, represented by (2.27), would have

a solution for each fixed coupling gain K. On the other hand, some of the equations in

(2.27) can have multiple solutions.

Stability results

Analysis of synchronized state for the classical Kuramoto model (2.12) has been studied

using various control theoretic methods [4], [24], [30], [53], [54], [117], [134], to cite a few.

In [4], the authors proved that phase locked solutions can be asymptotically stable only

if the phases differences belong to the interval (−π

2 ,
π

2 ) and formulated conditions that

guarantee local asymptotic stability of phase locked solutions in this case. The following

theorem in [4] summarizes these results.

Theorem 3. Consider the system of oscillators described by (2.12). If the amplitude

r∞ satisfies (2.27) containing minus signs, the corresponding phase locking solution of

(2.12) is locally unstable in the variables θi, i∈ {1, . . . ,N}. Furthermore, the phase locking

solution of (2.12) with the amplitude r∞ satisfying (2.27) containing only plus signs is
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locally asymptotically stable if and only if the extra condition

N

∑
j=1

1−2(
ω̃ j

Kr∞

)2√
1− (

ω̃ j

Kr∞

)2
> 0. (2.29)

is satisfied.

In [54], control and algebraic graph theory methods were used to analyze Kuramoto

oscillators for a connected symmetric graph topology. The authors derived a threshold

gain Kc necessary for the existence of the phase-locked state in the all-to-all Kuramoto

model. The authors also show that there exists a large enough coupling gain K when the

vector of phase differences locally (−π

2 ,
π

2 ) converges to a unique constant. The following

theorem presents these results

Theorem 4. [54]

Consider the Kuramoto model for non-identical coupled oscillators and an interconnec-

tion graph G = (V ;E) corresponding to the Laplacian matrix L. For K ≥ Kc = 2
√

N‖ω‖
λ2(L)

,

there exist at least one fixed point for | θi |< π

4 . Moreover, for K ≥ π2

4
Nλmax(L)‖ω‖

λ2
2(L)

there

is only one stable fixed-point and the order parameter is strictly increasing.

More recently, almost global exponential frequency synchronization for the traditional

Kuramoto model has been studied in [24]. This result is presented in the following

theorem

Theorem 5. [24]

Consider the system of oscillators described by (2.12). If there exists T ≥ 0 such that

∀t ≥ T, | θi− θ j |< π

2 − ε ∀i, j, where 0 < ε < π

2 , then the oscillator frequencies θ̇i syn-

chronize exponentially to the mean frequency ωavg =
1
N

N

∑
i=1

ωi and satisfy | θ̇i−ωavg |≤

σT e−Ksin(ε)(t−T ), σT > 0∀i = 1, . . . ,N.

2.3.3 Set stability notions

Similar to local asymptotic stability of equilibrium point, wearer stability notions were

introduced in the literature, in particular, stability notions for sets [128]. In this section

we establish definitions, notation, and the key notions of sets stability used later in the

following chapters.

A continuous function α : R≥0→R≥0 is of class K (α∈K ), if it is strictly increasing and
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α(0) = 0 ; α∈K∞ if, in addition, α(s)→∞ as s→∞. A continuous function σ : R≥0→R≥0

is of class L (σ∈ L) if it is decreasing and tends to zero as its argument tends to infinity.

In the following section, we introduce stability definitions of closed, not necessarily com-

pact, set A ⊆ Rn for time-invariant differential equations

ẋ = f (x), (2.30)

where x ∈ Rn and f (·) is locally Lipschitz on x, that is, for each compact subset B ⊂ Rr

there is some constant c so that | f (x)− f (z) |≤ c | x−z | for all x, z∈B, where | | denotes

the usual Euclidian norm.

The system (2.30) is said to be forward complete if for each x ∈ Rn all elements of ẋ are

defined on [0,∞).

We define uniform forms of stability, where uniformity is with respect to initial conditions

that are at an arbitrary given distance from the set A . We define the distance of x from

A as | x |A= in fz∈A | x− z |. For the set A we define the following stability notions

Definition 10. For the system (2.30), the closed set A ⊂ Rn is uniformly stable if for

each ε > 0 there exists δ(ε) such that, for all x◦ ∈ Rn satisfying | x◦ |A≤ δ, we have :

| x(t,x◦) |A ≤ ε, ∀ t ≥ 0.

Definition 11. For the system (2.30), the closed set A is uniformly globally stable

(UGS) if the system (2.30) is forward complete and there exists ρ ∈K∞ such that for all

x◦ ∈ Rn

| x(t,x◦) |A ≤ ρ(| x◦ |A), ∀ t ≥ 0.

Definition 12. For the system (2.30), the closed set A is uniformly globally asympto-

tically stable (UGAS) if it is UGS and for each r > 0 and ε > 0 there exists T > 0 such

that, for all x◦ ∈ Rn

| x◦ |A ≤ r, t ≥ T ⇒ | x(t,x◦) |A ≤ ε.

In the case of a network where all nodes are identical (that is to say where fi(x) = f j(x)),

synchronization (asymptotic synchronization) is often described in terms of evolution of

the same elements. Therefore, it is formulated as stability (asymptotic stability) of the

variety synchronization

S = {x ∈ RN : x1 = x2 = · · ·= xN}.
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The stability of this variety can be derived using the results and methodologies deve-

loped for incremental input-output stable systems and also by the sets stability tools.

The general theory of stability contains many other definitions and notions of stable mo-

vement. In particular, we cite the concepts of orbital and structural stability. Roughly

speaking, orbital stability describes the behaviour of a closed trajectory under the ac-

tion of small external perturbations. Let the system (2.30) and the function ϕ(t) be a

periodic solution (the form of closed trajectory) of the given autonomous system. If for

any ε > 0 there is a constant δ = δ(ε) > 0 such that the trajectory of any solution x(t)

starting at the δ-neighbourhood of the trajectory ϕ(t) remains in the δ-neighbourhood

of the trajectory ϕ(t) for all t ≥ 0, then the trajectory ϕ(t) is called orbitally stable.

However, the behaviour of the networks of non-identical elements is more complex, that

is the variety synchronization S does not exist considering the difference between the

dynamic elements. However, a heterogeneous network can show a certain type of col-

lective behaviour. In this case, we can talk about practical synchronization for which

the differences between the dynamics of the different elements are bounded and become

small when the values of interconnection gain is large enough.

The network behaviour can be decomposed into two parts. One of these two parts cor-

responds to the averaged dynamic and the second part describes the dynamics of the

network elements with respect to the averaged dynamic element. For this purpose, we

introduce the following definition of practical stability of a set, which is similar to that

of practical stability of an equilibrium point –see [23, 129].

Consider a parametrized system of differential equations

ẋ = f (x,ε), (2.31)

where x ∈ Rn and the function f : Rn → Rn is locally Lipschitz and ε > 0 is a scalar

parameter. We assume that ε ∈ (0,ε◦]. For such a family, we introduce the notion of al-

most global practical uniform asymptotic stability with respect to closed, not necessarily

compact, sets A ∈ Rn.

Definition 13. For the system (2.31), the closed set A is practically almost globally

uniformly asymptotically stable (practical almost UGAS) if the system (2.31) is forward

complete and

(1) for any given r > 0 there exists R > 0 and ε∗ ∈ (0,ε◦] such that for all ε ∈ (0,ε∗]

|x◦| ≤ r =⇒ |x(t,x◦,ε)| ≤ R, ∀t ≥ 0
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(2) for any given (r,δ) with 0,δ < r, there exists ε∗ ∈ (0,ε◦] such that for all ε ∈ (0,ε∗]

|x◦|A 6 δ =⇒ |x(t,x◦,ε)|A ≤ r, ∀t ≥ 0

(3) for any given (r,δ) with 0,δ < r, there exists T = T (r,δ and ε∗ ∈ (0,ε◦] such that for

all ε ∈ (0,ε∗] and almost all x◦ ∈ Rn such that |x◦|A ≤ r, we have

|x(t,x◦,ε)|A ≤ δ ∀t ≥ T.

If the last inequality holds for all x◦ ∈Rn then the set A is practically globally uniformly

asymptotically stable.

Remark 1. Similarly to the definition of UGAS of a set, the definition of practical

almost UGAS includes three properties : uniform boundedness of the solutions with res-

pect to the set (part 1), uniform stability of the set (part 2), and and uniform practical

convergence to the set for almost all initial conditions x◦ ∈ Rn (part 3).
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3.1 Introduction

In the previous chapter, we presented a system of Kuramoto oscillators where each ele-

ment interacts with all other elements in a reciprocal way and with a homogeneous gain.

This type of interaction is a useful approximation for many physical and engineering sys-

tems (see [14], [63]). However, in many situations this type of ”all-to-all” interconnection

is not realistic, rather each element interacts with a given subset of elements. Further-

more, this interaction is not necessarily reciprocal. It is the case, i.e. for systems of such

29
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diverse nature as the synaptic neuronal networks [79], power networks [31], chemical

reactions [68], and many others.

This chapter considers the Kuramoto coupled oscillator model

θ̇i = ωi−
N

∑
j=1

ki j sin(θi−θ j) i = 1 . . .N, (3.1)

featuring dissimilar natural frequencies Ω> = [ω1 . . .ωN ] and the coupling gains ki j = γai j

through a graph G(V ;E;A) with a non-trivial topology defined by the adjacency matrix

A = [ai j]. The network science and physics communities coined the term complex for such

non-trivial topologies to distinguish them from particular topologies of graphs which

are usually symmetric. The interest of the control community in such complex oscillator

networks has been sparked by the study of consensus and its applications [73], [83], [94],

[104].

3.1.1 Motivation

Different aspects of the ”all-to-all” coupled Kuramoto model - including bounds on the

interconnection terms, explicit expressions for the asymptotic phase offset [4] and sta-

bility issues - were addressed during the last 30 years (see [31] and [122] for a detailed

overview). Much fewer theoretical results are available for a more general setting where

network topology differs from the ”classical” all-to-all interconnection and many funda-

mental questions still remain unanswered. We cite here the articles [31], [54], and [133],

where an extension of the Kuramoto model with a symmetric interconnection graph was

considered and asymptotic synchronization to the averaged frequency was proved.

However, the networks that appear in different applications are usually directed and

asymmetric. For example in biology, transcriptional regulatory networks and metabolic

network are usually modelled as weighted digraphs [79]. In the same way in neuroscience,

neuronal networks are typically modelled as directed graphs, where nodes represent

individual neurons and the edges represent synaptic connections between neurons [3],

[18], [28], [79].

With the growing interest in complex networks, several authors have become interested

in investigating the synchronization phenomena of the Kuramoto model in complex

wirings[122], [3]. In general, the results are known only for specific topologies such as the

complete graphs discussed in the previous chapter, ring graphs [107], tree graphs [30],

and complete bipartite graphs with uniform weights [134]. To the best of our knowledge,

for arbitrary network topologies and weights only few theoretical results are available in

the literature for the case of non-symmetric interconnection graphs. Mostly the case of
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identical natural frequencies was considered in this framework, we cite here [12], [21], [87].

The reference [89] has studied numerically the conditions for the onset of synchronization

in random scale-free networks. Soon afterwards, another author [69] used the mean-field

approach to investigate the same problem from a theoretical perspective, as well as with

numerical simulations. The results do not fully clarify whether or not the existence of

phase locked solutions. The main difficulty comes from the fact that there is no unique

consensus about what the order parameter should be.

In [105], the authors analyze the emergence of collective synchronization in directed

networks of Kuramoto oscillators by generalizing the mean-field approach and demons-

trating dependence of the critical coupling strength on the largest eigenvalue of the

adjacency matrix describing the network connectivity. Their results are supported by

numerical simulations ; however, their approach is based on the assumption that both

the size of the network and the number of connections into each node is large. This

assumption is crucial for approximation of the order parameter, and unfortunately, this

approach is not applicable for weakly connected networks, such as for example lattice

network or also small-word network.

For arbitrary network topologies, the literature contains only sufficient conditions for

frequency looking as well as statistical and numerical investigations for large random

networks. In the recent reference [32], the authors give the existence conditions of fre-

quency synchronization solutions. However, a complete analytic treatment is missing at

this time, and many fundamental questions still remain unanswered. In particular, the

analytical expression of the synchronization frequency and the conditions ensure the

existence of a stable phase locked solution.

3.1.2 Organization and contributions

The remainder of this chapter is organized as follows. In Section 2, we consider a system

of oscillators which interact through a network, where each element is connected to a

subset of the elements in the entire system and with heterogeneous gains. Our emphasis

will be placed on the existence conditions of frequency synchronization. We show that

the problem of frequency synchronization is equivalent to the problem of existence of

solutions for a non-linear system of algebraic equations.

In Section 3, we address a question which is rather common in the study of synchroni-

zation dynamic, namely what is the expression of the synchronization frequency ? In the

case of symmetric graphs, it is always true that synchronization frequency is equal to

the average of natural frequencies. However, in the case of complex networks, frequency

of synchronization can depend on the graph topology and the value of the coupling
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strength. In this section, we give an analytical expression for the limit of synchroniza-

tion frequency in the case when coupling strength is sufficiently large.

In Section 4, we introduce a novel linear model that possesses properties similar to

those of the Kuramoto model and asymptotically it can be reduced to the Kuramoto

model. Next we present necessary and sufficient conditions for the existence of phase

locking solutions of the Kuramoto model with a weighted interconnection digraph and

an arbitrary distribution of the natural frequencies.

3.2 Existence conditions for frequency synchronization

In this section, we present the necessary and sufficient conditions for frequency synchro-

nization of the coupled oscillators model (3.1).

θ̇i = ωi− γ

N

∑
j=1

ai j sin(θi−θ j) i = 1 . . .N, (3.2)

where the topology of the network G = (V,E) is defined by the elements of adjacency

matrix A = [ai j] and γ is the coupling strength between pairs of connected oscillators.

As a first result in this direction, we present a theorem where we formulate both necessary

and sufficient conditions for the existence of frequency locked solutions. We recall that

system (3.2) are frequency locked if there exists a constant ωs ∈R and initial conditions

θ◦ ∈RN such that θ̇i(t,θ◦) = ωs, ∀ t > 0 and for all i∈ {1, . . . ,N} (see Definition 6, Section

2.3.2).

These conditions are formulated in terms of natural frequencies of the oscillators and

properties of the adjacency matrix associated with underlying graph.

Theorem 6. Consider a system of N Kuramoto oscillators (3.2) coupled via a digraph

G with a given coupled strength γ > 0.

Let ω̃i = ωs−ωi and ai, j be the elements of adjacency matrix associated with the graph

G. The oscillators (3.2) have a frequency locked solution if and only if the following

conditions are satisfied :

1. The following system of algebraic equations

∑
N−1
j, j 6=i±ai, j

(
ξi

√
1−ξ2

j −
√

1−ξ2
i ξ j

)
= ω̃i

γ , i = 1 . . .N−1

∑
N−1
j=1 aN, j ξ j = ω̃N

γ ,
(3.3)

has at least one solution [ξ∗1, . . . ,ξ
∗
N−1,ω

∗
s ].

2. For all i = 1 . . .N−1, we have that | ξ∗i |≤ 1 .
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Proof.

Necessity : Let θ∗(t,θ∗◦) be a phase locked solution of the system (3.2). Then from

Definition 6 in Section 2.3.2, we have that all the oscillators have some constant common

frequency ωs. Similar to [4], let us define the change of variables :

ϕi = θi−ωst.

Using this change of coordinates and (3.2), we obtain that

ϕ̇i = ωi−ωs− γ

N

∑
j=1

ai j sin(ϕi−ϕ j), i ∈ {1, . . . ,N}. (3.4)

Moreover, it is easy to see that every frequency locked solution of the system (3.2)

corresponds to an equilibrium point of the system (3.4), that is, in new coordinates we

have that for all i ∈ {1, . . . ,N}
ϕ̇i(t,ϕ◦)≡ 0,

where ϕ◦ = θ∗◦. Thus, in new coordinates, the frequency locked solution is defined by the

following set of equations :

ω1−ωs + γ ∑
N
j=1 a1 j sin(ϕ1−ϕ j) = 0

...

ωN−ωs + γ ∑
N
j=1 aN j sin(ϕN−ϕ j) = 0

(3.5)

It is worth noting that the last system is a system of N equations depending on N + 1

unknown variables (ωs and ϕi for i = 1, . . . ,N).

Next, we consider a new change of variables

ξ1 = sin(ϕ1−ϕN)
...

ξ j = sin(ϕ j−ϕN)

(3.6)

Notice that for j = 1 . . .N−1, we have −1≤ ξ j ≤ 1.

Using these new variables, the differences sin(ϕi−ϕ j) can be defined as

sin(ϕi−ϕ j) =±ξi

√
1−ξ2

j ∓
√

1−ξ2
i ξ j (3.7)
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and we obtain the following set of systems which describes all the possible equilibrium

points of (3.4)

ω1−ωs + γ ∑
N−1
j=2 a1, j(±ξ1

√
1−ξ2

j ∓
√

1−ξ2
1ξ j)+ γ a1,Nξ1 = 0

...

ωi−ωs + γ ∑
N−1
j=1, j 6=i ai, j(±ξi

√
1−ξ2

j ∓
√

1−ξ2
i ξ j)+ γ ai,Nξi = 0

...

ωN−1−ωs + γ ∑
N−2
j=1 aN−1, j(±ξN−1

√
1−ξ2

j ∓
√

1−ξ2
N−1ξ j)+ γ aN−1,NξN−1 = 0

ωN−ωs− γ∑
N−1
j=1 aN, jξ j = 0

(3.8)

Sufficiency : To prove the sufficiency of these conditions, we assume that the system

(3.3) has a finite solution (ξ∗1, . . . ,ξ
∗
N−1,ω

∗
s ) with the property | ξ∗i |≤ 1 for all i = 1 . . .N−1.

Next, we define

sin(ϕ
∗
i −ϕ

∗
j) = ξ

∗
i

√
1−ξ∗2j −

√
1−ξ∗2i ξ

∗
j ,

that is we use the sign + in (3.7). Now, we consider the dynamics of our system (3.4)

evaluated at ϕ∗> = [ϕ∗1, . . . ,ϕ
∗
N ] and we obtain

ωi−ω
∗
s − γ

N

∑
j=1

ai j sin(ϕ
∗
i −ϕ

∗
j) = 0, i = 1 . . .N, (3.9)

that is we obtain that ϕ∗ is an equilibrium point of system (3.4) and this implies that

corresponding solutions of the system (3.2) are frequency locked.

Thus, we proved that the problem of existence of frequency locked solutions is equivalent

to the problem of existence of solutions for a non-linear system of algebraic equations

(3.3). �

3.3 Estimation of synchronization frequency in terms of

the coupling gain

In the case of undirected graph (i.e. symmetric topology), synchronization frequency

is always equal to the average of natural frequencies [24],[54]. However, in the case of

complex networks, numerical simulations show that synchronization frequency does not

necessarily coincide with the average frequency. In particular in [31], the authors showed

that the synchronization frequency is different from the average frequency for a particular

case of weighted interconnection matrix. We show next that, in general, synchronization

frequency ωs depends on the digraph topology. Moreover, we additionally demonstrate

that synchronization frequency can depend on the coupling strength.
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3.3.1 Network topology effect on the synchronization frequency

The following result gives an analytical expression for the limit of synchronization fre-

quency in the function of the coupling strength and underlying network topology.

Theorem 7. Consider a network of oscillators (3.2) with a topology of interconnections

defined by a strongly connected graph G and interconnection gain γ. If the system is syn-

chronized, then as the coupling strength γ is increasing, the frequency of synchronization

ωs converges to
w>l Ω

w>l 1
, where wl is the left eigenvector of the Laplacian L associated with

zero eigenvalue and Ω is the vector of natural frequencies, i.e.

lim
γ→∞

ωs(γ) =
w>l Ω

w>l 1
. (3.10)

That is, in the limit as γ→ ∞, synchronization frequency ωs is defined uniquely by the

distribution of natural frequencies Ω = [ω1 . . .ωN ]> and by the topology of the intercon-

nection graph.

Proof. We start by introducing rescaling of time τ = γ t which leads to the following

equation for θi

dθi

dτ
=−

N

∑
j=1

ai j sin(θi−θ j)+ εi , i = 1 . . .N. (3.11)

where εi = ωi
γ . Notice that εi → 0 as γ → ∞.

Assume that the system (3.11) is frequency synchronized. In this case, we have dθi
dτ

=

ωs ∀ i = 1 . . .N, where ωs is the frequency of synchronization to be defined later.

Using the following change of coordinates ϕi = θi−ωs τ ; system (3.11) has this form :

dϕi

dτ
=

N

∑
j=1

ai j sin(ϕ j−ϕi)+ ρi i = 1 . . .N, (3.12)

where ρi = εi− ωs
γ .

Since the system is frequency synchronized we have that
dϕi
dτ

= 0 ; therefore the system

(3.12) can be rewritten in the form

N

∑
j=1

ai j sin(ϕ j−ϕi) =−ρi i = 1 . . .N. (3.13)

In the limit, as γ→ ∞ we can approximate (3.13) by the system

N

∑
j=1

ai j sin(ϕ j−ϕi) = 0 i = 1 . . .N (3.14)
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and ϕ∗> = [0 . . .0] is a solution of (3.14). Hence, for γ sufficiently large it is possible to

analyze the system locally in the neighbourhood of the fixed point ϕ∗ = 0.

Let δ = ϕ−ϕ∗ be a small perturbation away from ϕ∗, so we can write (3.13) in the form

N

∑
j=1

ai j sin(δ j−δi)+ ρi = 0 i = 1 . . .N. (3.15)

Finally, linearizing the system we obtain

N

∑
j=1

ai j (δ j−δi)+ ρi + o(δ) = 0 i = 1 . . .N. (3.16)

Using the definition of the Laplacian matrix, we can rewrite the above equation as

−L Λ + Ψ + o(δ) = 0, (3.17)

where Λ> = [δ1, . . . ,δN ] and Ψ> = (ωs1−Ω)/γ.

Multiplying (3.17) from the left by the left eigenvector w>l of the Laplacian matrix L

associated with the zero eigenvalue, we obtain that

wT
l 1 ωs−w>l Ω = 0, (3.18)

therefore,

ωs =
w>l Ω

w>l 1
=

∑
N
j=1 wl j ω j

∑
N
j=1 wl j

. (3.19)

This limit frequency of synchronization corresponds to the solution of the system equa-

tion (3.4) with all positive signs. �

Corollary 1. If underlying graph G = (V,E) is balanced then the limit of synchronization

frequency ωs is equal to the average of natural frequencies of oscillators.

ωs =
1
N

N

∑
j=1

ω j (3.20)

Proof. Let A = [ai j] and D = diag[dii] the adjacency and degree matrix of balanced

graph G = (V,E). By definition of balanced graph, all node vi ∈V satisfies

degout(vi) = degin(vi) i = 1 . . .N (3.21)

It’s also known that

degout(vi) = dii ; degin(vi) =
N

∑
j; j 6=i

ai j i = 1 . . .N (3.22)



Synchronization in the complex Kuramoto oscillators network 37

Thus, every column sum of the Laplacian matrix L = [li j] is equal to zero :

�
j

li j = lii + �
j; j�=i

li j = degout(vi)�degin(vi) = 0 (3.23)

Consequently, we can conclude that 1�L = 0 for all balanced graphs. According to the

previous de�nition, the left eigenvector w�l of the Laplacian matrix L associated with

the zero eigenvalue satis�ed w�l L = 0. Then, we have wl = 1 for all balanced graphs G.

Using the equation (3.19), we thus obtain that the limit of synchronization frequency � s

is equal to the average of the natural frequency of oscillators. �

3.3.2 Simulation and validation of results : Examples of particular

graphs

In this section, we present two examples of the Kuramoto model with strongly connected

graphs, presented in Figure 3.1. In both cases the Laplacian matrix L is non symmetric,

however, in the second example the interconnection graph G is balanced.

Figure 3.1 � Two examples of a strongly connected graphs with four nodes, graph (b)
is also balanced.

Example 1. Consider the Kuramoto system with strongly connected interconnection

graphs G (see Figure 3.1(a)).

˙� i = � i� �

4

�
j=1

ai j sin(� i� � j) i = 1 . . . 4, (3.24)

where A = [ai j] is the adjacency matrix of G, and L is the corresponding Laplacian

matrix :

A =

}{{�
0 0 1 0

1 0 0 0

0 0 1 0

���� ; L =

}{{{{{�
2 �1 0 �1

0 1 �1 0

�1 0 1 0

0 0 �1 1

������� .
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We choose the vector of natural frequencies � as � T = [12 5 8 3]. Starting from arbitrary

initial conditions, each system quickly reaches a synchronization state as the coupling

strength is su�ciently large. The evolution of system (3.24) is given in Figure 3.2, with

the coupling strength � = 30.

Figure 3.2 � Synchronization of Kuramoto oscillators considered in Fig.3.1(a).

The resolution of the system� s equations (3.4) de�ned in Theorem 6 show that the value

of synchronization frequency ws is depending on coupling strength � . Using Theorem 7,

we can compute the limit of � s� where � is su�ciently large. In this example we have

ws� =
w�l �

w�l 1
= 7. 2, such that the left eigenvector of the Laplacian matrix L associated

with zero eigenvalue is w�l = [1
5

1
5

2
5

1
5 ]. As the value of coupling strength � increases, the

frequency � s converges to � s� given by theorem 2 (see Figure 3.3).

Figure 3.3 � Variation of synchronization frequency � s in function of the coupling
strength � for two vectors of natural frequency � T

1 = [10 8 7 2] and � T
2 = [12 5 8 3]. The

red lines correspond to the limit of synchronization frequency given in theorem 2.
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Example 2. Consider the Kuramoto system with a balanced interconnection graph G

(Figure 3.1(b)). Numerical simulation of this system� s dynamic is given in Figure 3.4 for

the coupling strength � = 20 and the vector of natural frequencies � T = [5 13 9 3].

Figure 3.4 � Synchronization of Kuramoto oscillators considered in Fig.3.1(b).

Evolution of synchronization frequency as a function of coupling strength � , for the

system with natural frequencies � T
1 = [5 13 9 3] and � T

2 = [5 10 18 7] is depicted in

Figure 3.4. Numerical simulation shows that in the balanced case the limit frequency of

synchronization coincides with the average of the oscillator� s natural frequency, which

agrees with the result of Corollary 1, while it is not the case in the �rst example.

3.4 Existence conditions of phase locked solutions

The above results give the existence� s conditions for frequency locking solutions. These

conditions are related to the adjacency matrix associated with the underlying graph.

However in general, the resolution of the algebraic equations of the system (3.3) is very

complex for a big dimension system. Several attempts were done to simplify the analysis.

For example, in [106] a linear model was introduced that asymptotically can be reduced

to the classical Kuramoto model (2.11). However, for a given structure of interconnec-

tions (all-to-all), the resulting reduced model obtained in [106] has a di�erent structure

of interconnections that can� t be imposed beforehand. Starting with the same idea, in

[25], the authors construct a family of auxiliary linear systems that preserve information

on the natural frequencies and interconnection gains of the original Kuramoto model. We

start our analysis by generalizing these results for the Kuramoto model with a complex

network, and we show that the problem of existence of the phased locked solutions for
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the Kuramoto model (3.2) with the arbitrary interconnection matrix K = [ki j], can be

recast as a problem of existence of a certain linear system of complex variables satisfying

certain proprieties.

3.4.1 Linear presentation of the Kuramoto model

The reformulation of the Kuramoto model in terms of linear dynamics can be done,

permitting its solution through an eigenvalue/eigenvector approach. The analysis in [106]

is restricted to solving for the critical point of the fully synchronization transition and

the order parameter beyond this transition for the classical Kuramoto model. Within this

regime, the authors in [25] show that the classical Kuramoto model can be considered

as an asymptotic projection of the linear system. In this section, we present the linear

model corresponding to the Kuramoto model with complex network :

θ̇i = ωi +
N

∑
j=1

ki j sin(θ j−θi) , i = 1 . . .N, (3.25)

where the topology of the network and the coupling strength between pairs of connected

oscillators are defined by the adjacency matrix K = [ki j].

The underlying idea of the approach can be summarized as follows. Consider a parame-

trized linear system (in terms of µ) in this form

ẋi = (iωi−µi)xi +
N

∑
j=1

ki j x j , i = 1 . . .N, (3.26)

where xi ∈C, µi ∈R and ki j are the elements of the interconnection matrix. Equivalently,

this system can be written in the matrix form

ẋ = (K + iΩ + M )x (3.27)

where K = [ki j] is the matrix of the interconnections of the Kuramoto model (3.25),

Ω = diag(ω1, . . . ,ωN) and M = diag(µ).

Using polar coordinates transformation x j = R jeiθ j , the system (3.26) can be rewritten

in the form

Ṙieiθi + iRieiθi θ̇i = (iωi−µi)Rieiθi +
N

∑
j=1

ki jR jeiθ j (3.28)

By multiplying both sides in the last equation by e−iθ j and separating the real and imagi-

nary parts, one obtains the following equations corresponding to the real and imaginary
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parts

Ṙi

Ri
=−µi +

N

∑
j=1

ki j
R j

Ri
cos(θ j−θi)

θ̇i = ωi +
N

∑
j=1

ki j
R j

Ri
sin(θ j−θi)

From the last equation (imaginary parts) it is easy to see that the existence of a constant

R > 0 such that limt→∞ Ri = R for all i ∈ {1, . . . ,N} would imply that asymptotically

dynamics of θ can be described by the Kuramoto model (3.25).

The reformulated linear model provides an alternative coherent framework through

which one can analytically solve synchronization problems that are not amenable with

the original Kuramoto analysis. In addition, in the original version of the Kuramoto mo-

del the synchronization order parameter is only solvable in the continuum limit and then

only implicitly. Using the linear formulation, we are able to find the explicit form of order

parameter and for any number of oscillators. Furthermore, the linearity of the reformula-

tion makes it possible to investigate the time evolution of a system’s self-synchronization

and allows itself to adapt to systems that exhibit asymmetric coupling between oscil-

lators. This point is explored in greater detail in the next chapter. In the next section,

we give the conditions on the matrix A that guarantee the existence of phase locked

solutions for the Kuramoto model (3.25).

3.4.2 Reformulation of the conditions of phase locked existence

In this section, we show that the problem of existence of phase locked solutions for

the model (3.25) can be recast as a problem of existence of a complex matrix A with

off-diagonal elements given by coefficients ki j and properties described below.

Namely, let parameter µ ∈RN and consider the following family of parametrized linear

systems of a complex variable x ∈ CN

ẋ = (K + iΩ + M )x = Ax, (3.29)

where K = [ki j] is the matrix of the interconnections of the Kuramoto model (3.25),

Ω = diag(ω1, . . . ,ωN) and M = diag(µ).

The structure of this system corresponds (up to the term M x) to the model (3.25). The

following theorem shows that the existence of the phase locked solutions of (3.25) is

equivalent to the existence of the matrix A, such that it has a pure imaginary eigenvalue

and all elements of the corresponding eigenvector have the same absolute value.
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Theorem 8. Consider the Kuramoto model (3.25), let K = [ki j] be the corresponding

adjacency matrix and Ω = diag(ω1, . . . ,ωN) be the matrix of the natural frequencies.

Proof. 1 ⇒ 2. Any complex matrix A can be presented in the Jordan form as

A = SJS−1, where S is a N×N matrix whose columns are eigenvectors and generalized

eigenvectors of A. Then for any initial conditions x◦, corresponding solution of this system

x◦ can be written as

x(t,x◦) = eAtx◦ = SeJtS−1x◦. (3.30)

Since by assumption multiplicity of the eigenvalue λ◦ is equal to one, matrix A can be

represented in the Jordan form as follows :

A = S

[
λ◦ 0

0 J1

]
S−1 = S

[
iωs 0

0 J1

]
S−1

where J1 ∈ R(N−1)×(N−1) is the other part of the Jordan form.

Now, for the particular choice of initial conditions x◦ = v◦(A) we have

x(t,x◦) = SeJtS−1x◦ = SeJtSv◦ = SeJt


1

0
...

0

= eiωstS


1

0
...

0


and since the first column of the matrix S is the vector v◦(A), we obtain that x(t,x◦) =

eiωstv◦. By assumption we have that v◦(A) = col(eξ1 , . . . ,eξN ) ; therefore,

x j(t,x◦) = ei(ξ j+ωst) = eiθ j(t,ξ j). (3.31)

Let θ(t,ξ) = col(θ1(t), . . . ,θN(t)) and define eiθ(t,ξ) = col(eθ1(t), . . . ,eθN(t)), for thus defined

vector eiθ(t,ξ) we have that

iθ̇eiθ(t,,ξ) =
d
dt

[eiθ(t)] = Aeiθ(t,,ξ).

By multiplying the last equation on both sides by the matrix Φ = diag(e−iθ(t)) and

considering the imaginary part of thus obtained equation, we get

θ̇ = Im
(

ΦA eiθ(t)
)

= Im
(

Φ(K + iΩ + M )eiθ
)

= ΦΩeiθ + Im
(

ΦK eiθ
)

= Ω1N + Im
(

ΦK eiθ
)
,
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where in the last line we used the fact that Ω is a diagonal matrix and the equality

Φ(t)eiθ = 1N . Writing explicitly expressions for the elements of Im
(
ΦK eiθ

)
we obtain

that θi(t,ξ) satisfies the following equation

θ̇i(t,ξ) = ωi +
N

∑
j=1

ki j sin(θ j(t)−θi(t)),

which implies that θ(t,ξ) is a solution of the Kuramoto model (3.25). From (3.31) it

follows that θ j(t) = ξ j + ωst, thus the equalities θi(t,ξ)− θ j(t,ξ) = ξi− ξ j are satisfied

that for all i, j = {1, . . . ,N} ; therefore, θ(t,ξ) is a phase locked solution of the Kuramoto

model (3.25).

2⇒ 1. Let θ◦ ∈ R be an initial condition corresponding to the phase locked solution

θ(t,θ◦) of the Kuramoto model (3.25). Then, it follows from the Definition 8 that there

exists a continuous function ψ : R+ → R and such that θi(t,θ◦) = θi◦+ ψ(t) for all i =

1, . . . ,N. Moreover, using contradiction arguments, it is easy to show that there exists a

constant ωs such that

θ̇i(t,θ◦) = ωi +
N

∑
j=1

ki j sin(θ j(t)−θi(t))

= ωi +
N

∑
j=1

ki j sin(θ j◦−θi◦) = ωs ∀ i = 1, . . . ,N,

hence the phased locked solutions θi(t,θ◦) are synchronized with the constant frequency,

i.e. ψ(t) = c+ωst, where c is an arbitrary constant. Therefore, we can conclude that the

phased locked solutions necessarily have the form θ(t,θ◦) = θ◦+ ωs1N + c1N .

Next, we define the vectors x◦ = eiθ◦ , x(t,x◦) = eiθ(t,θ◦ , constants µi = ∑
N
j=1 cos(θi◦−θ j◦),

and the matrices M = diag(µ1, . . . ,µN), K + iΩ+M . Reversing arguments of the first part

of the proof it is easy to show that the vector x(t,x◦) is a solution of a linear equation

ẋ = Ax, and moreover, the matrix A = K + iΩ+M has an eigenvalue λ◦= ωs and equality

(0.10) is satisfied. �
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4.1 Introduction

Dynamical systems with oscillatory motion are a basic component in the mathematical

modelling of a large class of physical and biological phenomena. As we mentioned before,

the Kuramoto model reproduces the main features of the emergence of coherent behavior

found in more elaborate models of interacting oscillators. The basic process assumed to

be the cause of the self-organization phenomenon is that a few elements in a network

of interacting oscillators may synchronize if they have similar frequencies and their cou-

pling is strong enough. Under suitable conditions, other oscillators may be attracted by

this averaged dynamic and contribute to form a macroscopic oscillating cluster. Then,

45
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the collective oscillations would appear as the result of coherent microscopic dynamics

through the process of phase transition [139]. The transition to the synchronized dynamic

results from the conflicting effect of two factors : the heterogeneity in the distribution of

natural frequencies favours incoherent behaviour, while coupling induces the emergence

of averaged dynamic [77]. Kuramoto oscillators provide a phenomenological description

of complex systems whose collective evolution is driven by these synchronization pro-

cesses. All real systems of coupled dynamical agents are characterized by a certain level

of diversity both in their interaction and in the properties of their components. Hete-

rogeneities are always present in macroscopic natural systems and, in particular, the

coupling intensity between any pair of elements vary from pair to pair. A well known

class of models with more complex interaction architectures is that of neural networks.

In connection with a more realistic modelization of both artificial and natural systems,

it is desirable to generalize standard models in order to envelop heterogeneity.

This situation differs from the globally coupled networks, considered in the case of the

classical Kuramoto model, where connections are uniform and all interacting pairs have

identical coupling strength. In the same spirit, coupled elements with heterogeneous

interactions can be thought of as occupying the nodes of a network where links are present

between those elements that may potentially interact with a particular intensity. In turn,

each link can be weighted by a different coupling strength. Numerous presentations of

the coupling parameters of the Kuramoto model have been proposed and studied, mostly

via numerical experiments in the literature. It is not possible to review the totality of

the existing articles, we refer to [3] for a global review on the subject.

In this chapter we analyze synchronization phenomena in networks of phase oscillators

with two sources of heterogeneity added to the Kuramoto model. That is, we consider

as in the previous chapter that natural frequencies of the oscillators are different, and

additionally, we assume that the individual contributions of the oscillators to the mean

field are weighted by two factors. These factors represent the input and output weights

of the oscillator. In contrast to natural frequencies which determine the individual dy-

namics in the absence of coupling, the two new coupling weights affect the way in which

each oscillator interacts with the ensemble. Consequently, they define a heterogeneous

interaction in the system.

Motivated by the previous work on the local stability of phase-locked solutions for the

”all-to-all” Kuramoto model with the uniform coupling [4] (see also [24] and [87]), we

examine the effects of the heterogeneous interaction on the synchronization properties of

the model. It turns out that the main ideas behind synchronization results of [4] can be
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generalized in the case of weighted directed graphs, although tools used to compute ex-

plicit expressions for phase locked solutions are quite different, as some of the techniques

used in the stability proofs.

4.2 Networks of oscillators with input-output weighted di-

graph

Consider the Kuramoto model (3.1). In this chapter, we consider the situation where

the coupling gain ki j is defined as a product of the input weight w j
in > 0 of the j− th

oscillator and it is over output weight wi
out > 0, i.e.

ki j = wi
outw

j
in.

Let us define the vectors of input and output weights Win, Wout ∈ RN
+ as

W>in = [w1
in, . . . ,w

N
in] (4.1)

W>out = [w1
out , . . . ,w

N
out ]. (4.2)

Using these notations, the interconnection matrix K = [ki j] can be represented as

K = Wout W>in . (4.3)

Evidently, in this case the interconnection matrix is not necessarily symmetric.

Notice that in this section heterogeneity of the Kuramoto model comes from two dif-

ferent sources : variations in the natural frequencies of the oscillators and variations

in the vectors of input and output weights. Such representation of the coupling matrix

can appear in various applications, for example, in neuronal networks, the input and

output weights can be associated with the conductivity of the dendrites and the axons

respectively.

With this particular choice of gains, the Kuramoto model (2.11) can be written as

θ̇i = ωi +
K
N

wi
out

N

∑
j=1

w j
in sin(θ j−θi) , i ∈ IN , (4.4)

where the coupling strength between pairs of connected oscillators is defined by the

coupling gain K > 0, the vectors of input weights Win, and of output weights Wout .
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In this chapter, we assume that all the interconnection gains are positive. In the next

chapter, we will analyse the case of a signed weighted network where this assumption

about positivity of the coupling gains will be relaxed.

4.3 Phase locked solutions

As we mentioned before, for some particular interconnection graphs conditions for the

existence of phase locked solutions were formulated in the literature. In particular, for

the Kuramoto model with the uniform all-to-all coupling explicit expressions for the

asymptotic phase offset and conditions for local asymptotic stability were given in [4],

where it was shown that the following assumption on the natural frequencies ω and the

interconnection gain K is both necessary and sufficient for the existence of the phase

locked solutions of the Kuramoto model (2.12) with uniform all-to-all coupling.

Assumption 1. There exists a r∞ ∈ (0;1] such that

r∞ =
1
N

N

∑
j=1
±

√
1−(

ω̃ j

Kr∞

)2, (4.5)

and for all i = 1, . . . ,N the following bounds are satisfied | ω̃ j |≤ Kr∞, where ω̃ j = ω j−ωm

and ωm is the average of the natural frequencies.

The expression (4.5) is known in the literature as the consistency condition on r∞ of the

phase locked solutions. Similar results for the model with the ring interconnection struc-

ture were presented in [107], while for the case of the complete bipartite graph analysis

of the Kuramoto model was presented in [134].

Also, we remark that the problem of frequency synchronization for the weighted Kura-

moto model was considered in [24], and [54] ; see also [31] and [122] for a detailed over-

view. However, neither the explicit structure of the synchronized solutions for weighted

network were addressed in these papers.

4.3.1 Necessary and sufficient conditions

In this chapter, in the first step we consider the question of existence of phase locked

solutions for the Kuramoto model (4.4).

In the previous chapter (Theorem 8), we proved that for the general case of the Kuramoto

model (3.1) existence of the phase locked solutions is equivalent to the existence of a

complex matrix with certain properties. Therefore, we start by finding such a matrix for
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the particular choice of the matrix of interconnection gains K given by (4.3).

With a slight abuse of notation, we can write the linear model (3.29) corresponding to

the system (4.4) as

ẋ = (
K
N

Wout W>in −M + iΩ) x = A x. (4.6)

where we recall that Ω = diag(ω1, . . . ,ωN) is the diagonal matrix of natural frequencies,

vectors Win, Wout were defined in (4.1), and (4.2) and as in the previous chapter, M ∈
RN×N is a diagonal matrix of unknown parameters, M = diag(µ1, . . . ,µN).

In the first step, we formulate conditions on the matrix M ensuring that the matrix A

defined in (4.6) has an imaginary eigenvalue λ1 = iωs and the corresponding eigenvector

v1(A) has the form v1(A) = [eiφ1 , . . . ,eiφN ]> ; that is we look for the diagonal matrix M ,

constant ωs ∈ R and vector v1 ∈ CN such that

A v1 =
K
N

Wout W>in v1− (M − iΩ)v1 = iωsv1. (4.7)

From the last equation it is easy to see (4.7) that the vector v1 has to satisfy the following

equality
K
N

Wout W>in v1 = diag(µ1− iω̃1, . . . ,µN− iω̃N)v1 = diag(ξ)v1, (4.8)

where ω̃ j = ω j−ωs and the vector ξ ∈ CN with

ξ j = µ j− iω̃ j. (4.9)

Notice that until now exact value of ωs is not specified, it will be defined later.

Next, we introduce a scalar quantity γ as follows

γ = W>in v1 =
N

∑
j=1

w j
in eiφ j . (4.10)

By using this notation we can rewrite the expression on the right hand side of (4.10) as

K
N

Wout W>in v1 =
K
N

Wout γ, (4.11)

and then equation (4.8) can be rewritten as follows :

γ
K
N

Wout = diag(ξ)v1. (4.12)

If v1 is an eigenvector of A then, evidently, any vector v = ηv1 (where η ∈ C) is also an

eigenvector of A ; therefore, without loss of generality we can assume that γ ∈ R, i.e.

γ =
N

∑
j=1

w j
in eiφ j =

N

∑
j=1

w j
in cos(φ j). (4.13)
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Since γ ∈R then from (4.12) it follows that necessarily ξ j has the form

ξ j = γ
K
N

w j
out e−iφ j . (4.14)

By denoting K j = K w j
out and using (4.9) we can rewrite the last equation as

µ j− iω̃ j =
γ K j

N
(cos(φ j)− i sin(φ j)). (4.15)

Since γ ∈ R, it trivially follows that

sin(φ j) =
N

γ K j
ω̃ j, (4.16)

while cos(φ j) can be defined as

cos(φ j) =
N

γ K j
µ j =±

√
1−

ω̃2
j

(K j)2( γ

N )2 , (4.17)

therefore, the eigenvector v1 = col(eiφ1 , . . . ,eiφN ) is completely defined.

Notice that the equations (4.16) yield a solution if and only if

−1≤ N
γ K j

ω̃ j ≤ 1. (4.18)

Combining equations (4.13) and (4.17), we obtain that

γ =
N

∑
j=1

w j
incos(φ j) =

N

∑
j=1
±w j

in

√
1−

ω̃2
j

(K j)2( γ

N )2 . (4.19)

By defining r∞ = γ/N we obtain that r∞ has to satisfy the following equation

r∞ =
1
N

N

∑
j=1
±w j

in

√√√√1−(
ω̃ j

K jr∞

)2. (4.20)

Thus, as in the case of the Kuramoto model with uniform all-to-all coupling, we obtained

a transcendental equation in r∞ which plays a key role in defining our matrix A. The

important difference, however, is that up to now the synchronization frequency, or the

parameter ωs, is still not defined. Next, we show that ωs is defined by the following

expression

ωs =
W>in ΩW−1

out

W>in W−1
out

(4.21)
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Indeed, since γ is real, then from (4.19) it follows that

N

∑
j=1

w j
insin(φ j) = 0, (4.22)

and by substituting in this equation expressions for sin(φ j) given in (4.16) we obtain

that
N

∑
j=1

w j
insin(φ j) =

1
Kr∞

N

∑
j=1

w j
in

w j
out

ω̃ j = 0 (4.23)

Recalling that ω̃ j = ω j−ωs, we can rewrite the last equation as

1
Kr∞

(
N

∑
j=1

w j
in

w j
out

ω j−ωs

N

∑
j=1

w j
in

w j
out

) = 0

from which we obtain that the synchronization frequency is defined by the following

expression

ωs =

∑
N
j=1

w j
in

w j
out

ω j

∑
N
j=1

w j
in

w j
out

=
W>in ΩW−1

out

W>in W−1
out

.

where the matrix Ω = diag(ω1, . . . ,ωN) and for simplicity of notations we denote by W−1
out

the following vector W−1
out = [ 1

w1
out
, . . . , 1

wN
out

].

Next, similar to Assumption 1 used for the uniformly coupled Kuramoto model, let us

introduce the following assumption :

Assumption 2. There exists at least one solution r∞ > 0 of the equations (4.20) such

that for all j = {1, . . . ,N} the following bounds are satisfied −1≤
ω̃ j

K jr∞

≤ 1, where K j =

K w j
out , ω̃ j = ω j−ωs and ωs =

∑
N
j=1

w j
in

w j
out

ω j

∑
N
j=1

w j
in

w j
out

.

If this assumption is satisfied, then using equation (4.17) and the relation γ = Nr∞, we

can define the diagonal elements of matrix M as

µ j =±K jr∞

√
1−

ω̃2
j

(K jr∞)2 . (4.24)

Notice that in the case of uniform coupling, i.e. when Win = Wout = 1N , Assumption 2

reduces to Assumption 1 ; therefore, it can be seen as a weighted analog of Assumption

1 used for the Kuramoto model with uniform coupling.
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Let Assumption 2 be satisfied then with elements of the matrix M given by (4.24), we

obtain that matrix A defined in (4.6) has the requested properties ; namely, it has an

imaginary eigenvalue

λ1 = iωs = i
W>in ΩW−1

out

W>in W−1
out

and the corresponding eigenvector v1(A) = col(eiφ1 , . . . ,eiφN ) is defined by (4.16), (4.17).

Then, Theorem 8 ensures the existence of phase locked solutions for the Kuramoto model

(4.4) and we proved the sufficiency part of the following theorem

Theorem 9. The Kuramoto model (4.4) has a phase locked solution if and only if

Assumption 2 is satisfied.

Furthermore, frequency of synchronization is defined by the following expression

ωs =
W>in ΩW−1

out

W>in W−1
out

(4.25)

and the phase locked solutions have the form θ(t,θ∗) = θ∗+ ωst1n + c1n, where c ∈ R is

an arbitrary constant while the vector θ∗ is defined by the equations

cos(θ
∗
j) =±

√√√√1−(
ω̃ j

K jr∞

)2 ; sin(θ
∗
j) =

ω̃ j

K jr∞

. (4.26)

The choice of the signs in the expressions for the cos corresponds to the choice of the

signs in equation (4.20).

To prove necessity, it is enough to show that v1 defined by (4.16)-(4.17) is an eigenvector

of the matrix A corresponding to the eigenvalue λ1 = i ωs. Direct computations show

that this is indeed the case.

Av1 = K
N WoutW>in v1−diag(µ1− iω̃1, . . . ,µN− iω̃N)v1 + iωsv1

= K r∞Wout −Kr∞ diag(w1
out e−iφ1 , . . . ,wN

out e−iφN )v1 + i ωsv1

= iωsv1.

Remark 2. Notice that given a choice of ± signs in (4.20), every solution r∞ > 0 cor-

responds to a different phase locked solution of (4.4). As it was remarked in [4] and

[84], not all of 2N equations, represented by (4.20), would have a solution for each fixed

coupling gain K. On the other hand, some of the equations in (4.20) can have multiple

solutions.



Analysis of Kuramoto oscillators with asymmetric weighted digraph 53

In the following section, we will show that similarly to the classical Kuramoto model

with uniform coupling, the only stable phase locked solution corresponds to all positive

signs in the equation (4.20).

4.4 Stability analysis of the phase locking solutions

In this section, we analyse local stability properties of the phase locked solutions defined

in the previous section. Let us consider dynamics of the Kuramoto model in the frame

of coordinates rotating with the synchronization frequency ωs. It is easy to see that in

these new coordinates, the system (4.4) can be rewritten as follows

θ̇i = fi(θ) = ω̃i +
K
N

wi
out

N

∑
j=1

w j
in sin(θ j−θi) , i ∈ {1 . . .N}, (4.27)

where ω̃i = ωi−ωs.

Since the new synchronization frequency is equal to zero, we have that in the new frame

of coordinates the phase locked solutions of the Kuramoto model correspond to the

equilibrium points of the system (4.27) .

Assume that the set of equation (4.20) has M solutions r∞k , k = {1, . . . ,M}, satisfying

Assumption 2. Notice that there is a set of equilibrium points θ∗k ∈ RN , k = {1, . . . ,M},
which define phase locked solutions of the system (4.27).

Since the system (4.27) is invariant under the phase transformations θ→ θ + c1, then

we have that each equilibrium point θ∗k ∈RN of the system (4.27) belongs to a curve D∗k
of equilibrium points defined by D∗k = {θ ∈ RN : θ = θ∗k + c1, c ∈ R}. We remark here

that every of these curves corresponds to a phase locked solution of (4.4).

As it was mentioned in [4], asymptotic phase synchronization of solutions of (4.4), as

define in definition 9, follows from the following two properties of the solutions of the

system (4.27) :

– local stability of every equilibrium point on the curve D∗k .

– local asymptotic stability of the set D∗k .

4.4.1 Linearisation around an equilibrium point

The equilibrium points of (4.27) (or equivalently phase locked solutions of the Kuromoto

model (4.4)) are defined by (4.26). Linearizing the system (4.27) around these equilibrium

points and using the equations(4.20) and (4.23), we obtain that the off-diagonal elements
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of the linearization are defined as

d fi

θ
′
l
|θ=θ∗ =

K
N

wi
out wl

in cos(θ
∗
l −θi∗) (4.28)

=
K
N

wi
out wl

in[cos(θ
∗
l ) cos(θi∗)+ sin(θ

∗
l ) sin(θi∗)]

=
Kwi

out

N
[wl

in(±

√
1− (

ω̃l

wl
outKr∞

)2)(±

√
1− (

ω̃i

wi
outKr∞

)2)+
wl

inω̃lω̃i

wi
outwl

out(Kr∞)2
],

while the diagonal elements are computed as follows

d fi

θ
′
i
|θ=θ∗ =−K

N
wi

out

N

∑
j=1

w j
in cos(θ

∗
j −θi∗) (4.29)

=
wi

outK
N

[−Nr∞(±

√
1− (

ω̃i

wi
outKr∞

)2)+ wi
in

√
1− (

ω̃i

wi
outKr∞

)2

√
1− (

ω̃i

wi
outKr∞

)2+

wi
inω̃2

i

(wi
outKr∞)2 ].

Therefore, the Jacobian matrix J can be written in this form

J =
K
N

Ψ ϒ
−1(ϒ A + bb>+ cc>) =

K
N

S J1 (4.30)

where

J1 = ϒ A + bb>+ cc> ; S = Ψ ϒ
−1 (4.31)

Ψ = diag(w1
out , . . . ,w

N
out) ; ϒ = diag(w1

in, . . . ,w
N
in)

A =−diag(a1, . . . ,aN) , ai =±Nr∞

√
1− (

ω̃i

wi
outKr∞

)2

b =


±w1

in

√
1− (

ω̃1

w1
outKr∞

)2

...

±wN
in

√
1− (

ω̃N

wN
outKr∞

)2

 ;c =


w1

in
ω̃1

w1
outKr∞

...

wN
in

ω̃N

wN
outKr∞

.


(4.32)

Notice that matrix J1 defined in (4.31) is symmetric.

Using these notations, the linearized system can be written as follows

θ̇ = J θ =
K
N

S J1 θ, (4.33)

where the constant matrix J ∈ RN×N is given by expressions (4.30 - 4.32).
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For the linear system (4.33), let us consider the following change of coordinates

y = S−1/2
θ.

With this change of coordinates, we obtain

ẏ = S−1/2
θ̇ =

K
N

S 1/2J1θ =
K
N

S 1/2J1S 1/2y =
K
N

J̃ y, (4.34)

where J̃ = S 1/2J1S 1/2.

Using the fact that matrix S is diagonal non-singular (with positive elements) and sym-

metry of the matrix J1 we obtain that matrix J̃ define above is symmetric and therefore

stability properties of system (4.34) are defined by the properties of the matrix J̃.

Using Sylvester’s law of inertia (see Appendix B), one can state that the matrices J̃ and J1

are congruent and therefore, they have the same inertia In(J̃) = In(J1). We recall that the

inertia of a symmetric matrix J̃ is the triplet of nonnegative integers In(J̃) := (np,nn,nz),

where np, nn, and nz are the number of positive, negative, and zero eigenvalues of J̃.

For that reason, it is enough to analyse the spectral properties of the matrix J1 to study

the stability properties of the linear system (4.34) or also the linearized system (4.33).

The next section is devoted to the spectral analysis of the matrix J1.

4.4.2 Stability results

Analysis of the matrix J1 that we propose in this section is similar to analysis of linearized

model of uniform ”all-to-all”Kuramoto model done in [4], [84], and follows the same steps

as in those articles.

In order to simplify the stability analysis, we restrict our attention the case where

|ω̃i|
wi

outkr∞

< 1, ∀i ∈ {1, . . . ,N}. (4.35)

This implies that all eigenvalues of A are different from zero and that bi 6= 0, ∀i ∈
{1, . . . ,N}.

First we show that matrix J1 has al least one zero eigenvalue.

Lemma 1. The matrix J1 has an eigenvalue zero with the corresponding eigenvector

v = 1N.
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Proof. Let v = 1N , then the i− th component of J1 1 can be calculated as follows

(J1 v)i =
K
N

[−wi
inNr∞(±

√
1− (

ω̃i

wi
outKr∞

)2)+ wi
in(±

√
1− (

ω̃i

wi
outKr∞

)2)

×
N

∑
j=1
±w j

in

√
1− (

ω̃ j

w j
outKr∞

)2 +
wi

inω̃i

wi
out(Kr∞)2

N

∑
j=1

w j
in

w j
out

ω̃ j]

Using the following relations in the last sum,

N

∑
j=1
±w j

in

√
1− (

ω̃ j

w j
outKr∞

)2 = Nr∞ ;
N

∑
j=1

w j
in

w j
out

ω̃ j = 0,

we obtain that Jv = 0. �

We show next that for the system (4.33) all, except one, equilibrium point are unstable.

Therefore, if the linearization at an equilibrium point has at least one positive eigenvalue,

then this equilibrium point is locally unstable for the system (4.27) and, therefore the

corresponding phase locked solution is unstable as well. On the other hand, if J1 contains

one zero eigenvalue and all the other eigenvalues are negative, then the corresponding

set D∗ of equilibrium points is locally stable [4], [84]. As we show in the following

results, these two cases are linked with the choice of signs in the equation (4.20). Namely,

solutions of (4.20) with at least one negative sign in the expression on the right-hand

side correspond to locally unstable solutions while case of all positive signs in (4.20)

corresponds to stable phase locking.

Theorem 10. Fixed the coupling gain K > 0 and assume that Assumption 2 is satisfied.

Let A = {θ∗k ∈RN , k = {1, . . . ,M}} be the set of all possible phase locked solutions defined

by equations (4.20)-(4.26). The following statements are true :

1) There is at most one phase locked solution θ∗ ∈ A that is locally stable.

2) Let θ+ be the phase locked solution defined by equation (4.26) and equation (4.20)

taken with all positive signs, i.e

r∞ =
1
N

N

∑
j=1

w j
in

√√√√1−(
ω̃ j

w j
outKr∞

)2,
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then, the corresponding set D+ = {θ ∈RN : θ = θ+ +c1, c ∈R} is locally asymptotically

stable if and only if the following inequality holds

N

∑
j=1

w j
in(1−2(

ω̃ j

w j
outKr∞

)2)√
1− (

ω̃ j

w j
outKr∞

)2

> 0. (4.36)

Proof. Let us define the matrix A1 = ϒ A. The matrices bb> , cc> are positive

semi-definite and A1 is symmetric matrix. Applying Lemma 3 (See Appendix B) with

Ã = A1 + bb> and B̃ = cc>, we obtain that

λi(J1)≥ λi(
K
N

(A1 + bb>)), ∀i ∈ {1, . . . ,N}. (4.37)

In the same way, we have that

λi(A1 + bb>)≥ λi(A1), ∀i ∈ {1, . . . ,N}. (4.38)

Therefore,

λi(J1)≥ λi(
K
N

A1), ∀i ∈ {1, . . . ,N}. (4.39)

If the equilibrium point corresponds to a phase locked solution that satisfies the equation

(4.5) with at least one minus sign present in its expression, at least one eigenvalue of A1

is positive, and by (4.39), J1 possesses also at least one positive eigenvalue.

From now on, we restrict our attention to studying the stability analysis of the phase

locked solutions satisfying (4.5) with positive signs. The Jacobian corresponding to these

phase locking solutions is given by equations (4.30 - 4.32) and matrix A = diag(a1, . . . ,aN)

is negative definite, in this case :

ai =−Nr∞

√
1− (

ω̃i

wi
outKr∞

)2, ∀i ∈ {1, . . . ,N}. (4.40)

Using Lemma 4 (See Appendix B), we can prove that the matrices bb> and cc> each

have one eigenvalue different from zero and positive. This implies that (bb>+ cc>) has,

at most, two non-zero eigenvalue. Applying Lemma 3 with Ã = −K
N (bb> + cc>) and

B̃ =−K
N A1, we can prove that the matrix J1 has at least N−2 negative eigenvalues.

We know that the matrix J1 has at least N− 2 eigenvalue smaller than zero and one

eigenvalue equal to zero. Denote the zero-eigenvalue of J1 by λN and the N−2 eigenvalue

smaller than zero by λ2 . . .λN−1. Moreover, the eigenvalues of J1 are the roots of det(A1−
λI + bb>+ cc>). Using the same approach as used in the proof of Theorem 3 in [4], we
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have
det(A

′
+ bb>+ cc>) = det(A

′
)((1 + b>A

′−1b)(1 + c>A
′−1c)

−(c>A
′−1b)2),

(4.41)

with A
′
= A1−λI.

The determinant det(A
′
+ bb> + cc>) is a polynomial in λ and since J1 has a zero-

eigenvalue, the coefficients belonging to the zero-th order term is zero and the one

belonging to the first order term are the product of all non-zero eigenvalues. Thus,

we have

det(A
′
+ bb>+ cc>) =−(λ1λ2 . . .λN−1)λ + O(λ

2). (4.42)

By computing the Taylor series expansion in λ of (4.41) and replacing the expression of

A, b and c, we obtain

det(A
′
+ bb>+ cc>) = (det(A1)+ O(λ))(( 1

Nr2
∞

λ + O(λ2))

(1 + c>A−1
1 c + O(λ))−O(λ2)).

(4.43)

and therefore,

det(A
′
+ bb>+ cc>) = (1 + c>A−1

1 c)
det(A1)

Nr2
∞

λ + O(λ
2). (4.44)

Since (4.42) and (4.44) are equal, we have

− (λ1λ2 . . .λN−1) = (1 + c>A−1
1 c)

det(A1)

Nr2
∞

. (4.45)

We know that J1 has N−2 negative eigenvalues. Denote these eigenvalues by λ2, . . . ,λN−1.

The sign of the product of these eigenvalues is equal to the sign of (−1)N−2. We also

know that the sign of det(A1) is equal to (−1)N . Therefore, we have

sgn((−1)N−1
λ1) = sgn((−1)N(1 + c>A−1

1 c)), (4.46)

hence,

sgn(λ1) =−sgn((1 + c>A−1
1 c)). (4.47)
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Using the expression of A and c, we obtain

(1 + c>A−1
1 c) = 1−

N

∑
j=1

w j
in(

ω̃ j

w j
out Kr∞

)2

Nr∞

√
1− (

ω̃ j

w j
out Kr∞

)2

=
1

Nr∞

N

∑
j=1

w j
in(1−2(

ω̃ j

w j
out Kr∞

)2)√
1− (

ω̃ j

w j
out Kr∞

)2

(4.48)

and, therefore, from the last equation we obtain that λ1(J1)< 0 if and only if the following

condition is satisfied
N

∑
j=1

w j
in(1−2(

ω̃ j

w j
out Kr∞

)2)√
1− (

ω̃ j

w j
out Kr∞

)2
> 0. (4.49)

If condition (4.49) is satisfied, then the phase locked solution corresponding to this

equilibrium point is locally asymptotically stable. �

4.5 Illustrative examples : numeric simulations

Consider Kuramoto system (4.4) of 10 oscillators with complete interconnection digraph

and the following properties :

– vector of natural frequencies ΩT = (20, 31, 27, 24, 33, 39, 21, 26, 34, 37) ;

– vector of input weights W>in = (1.5, 3, 2, 0.5, 1.7, 2, 2.5, 1, 0.5, 3.5) ;

– vector of output weights W>out = (0.5, 0.1, 0.7, 1, 0.7, 0.5, 0.4, 0.9, 1.2, 1.5).

The evolution of the system is given in Fig.4.1.

Figure 4.1 – Synchronization of angular frequencies of Kuramoto oscillators with the
coupling strength K = 100.
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From (4.25), we obtain that in this example synchronization frequency is equal to ωs =

30.26, which corresponds well with the simulation results presented in the Figure 4.1.

In chapter 3, we show that the limit value (as K→ ∞) of synchronization frequency is

given by the following expression

lim
K→∞

ωs∞
(K) =

w>l Ω

w>l 1
, (4.50)

where wl is the left eigenvector of the Laplacian matrix of the interconnection graph

associated with a zero eigenvalue. Direct calculations show that this limit value coincides

with the expression for ωs given in (4.25).

For K = 100, the phase locked solution corresponding to system (4.4) with N = 10 is

depicted in Fig.4.2(a). The phase differences of this solution are presented in Fig.4.2(b).

Figure 4.2 – (a) Phase locked solution of the system (4.4) with the coupling strength
K = 100. (b) The evolution in time of the nine phase differences (θi−θ10), i = 1, . . . ,9.
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5.1 Introduction

In the previous chapter, we considered the problem of phase synchronization for Ku-

ramoto model with positive interconnection gains, that is only attractive interactions

between oscillators were considered. However, the interplay of attractive and repulsive

interactions can play an important role in the context of dynamical networks, as is the

case, for example, in synthetic genetic circuits [41] and neuronal networks [45]. The cru-

cial role of repulsive interactions in synchronization phenomena was studied analytically

in [92] and confirmed experimentally in [141]. Recently, the combined action of attractive

and repulsive couplings of Kuramoto oscillators was considered, mostly numerically, in

[48], [70], [71]. In [47] and [143], the authors studied the influence of repulsive couplings

61
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on the stability of full synchronization. Their results, however, are restricted only to case

of identical oscillators.

In comparison with the classical Kuramoto model, little attention has been paid to

stability analysis of the Kuramoto model with signed coupling strength, and the cor-

responding problem of the existence of phase locked solutions is still open. Still the

inherent difference between activator and repressor interactions is clearly visible in the

phase oscillator models. This particularly refers to anti-phase synchronization, where the

oscillators gather in two groups having the opposite phases, i.e. towards being synchro-

nized with a fixed phase difference π. Similar dynamics were observed in the case of a

consensus problem with signed graph [5] (mostly called bipartite consensus), where all

agents converge to a value which is the same for all in modulus but opposite in the sign.

In this chapter, we analyze phase and frequency synchronization of the Kuramoto model

with a directed signed weighted graph of interconnection. The motivation for this work is

to examine the effect of the heterogeneous coupling gains on the system’s dynamics and

on synchronization frequency. As in the previous chapter, we consider a scenario when the

coupling coefficients of each pair can be separated into two different factors, or input-

output weights. That is, we consider the case where interconnection matrix K = [ki j]

can be represented as K = Wout W>in , where the vectors Wout , Win ∈ RN . However unlike

Chapter 4, here we do not assume that interconnection gains are necessarily positive ;

that is, some of the weights wi
in and wi

out can be negative. Such a representation of the

coupling matrix can appear in various applications. For example, in neuroscience this

could relate to the degree of excitation/inhibition that is going through the dendrites

from neighbouring neurons to stimulate a neuron to fire.

It turns out that the ideas behind stability analysis of phase-locking for the classical

Kuramoto model in [4] and [133] carry over to the case of weighted signed digraphs,

although the actual evidence is different, as are some of the results. We show that in

the case of weighted sign-symmetric graph of interconnection, existence and stability

of phase locked solutions for the Kuramoto model with positive weights guarantees

the existence of the whole family of Kuramoto models defined by the corresponding

model with positive weights and by the family of gauge transformations. To the best

of our knowledge, there are no similar results for the Kuramoto model with signed

interconnections. We also give an exact expression for synchronization frequency which

appears to be the same as in the case of the Kuramoto model with positive weights.
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5.2 Phase locked solutions in the case of signed networks

Despite active research in the area of Kuramoto model synchronization (see e.g. recent

review [31]), there are only few theoretical results on the stability of the Kuramoto mo-

del with mixed interaction. Even through synchronization for other models with mixed

attractive and repulsive interactions has been explored by several authors [47], [48], [92].

In particular, for linear systems, a notion of consensus in presence of negative weights

(repulsive links) was introduced in [5] and it was shown that under suitable conditions,

a linear system ẋ = L x, where L is the Laplacian, can achieve a bipartite consensus if

and only if the signed graph of the network is structurally balanced.

In the case of general signed digraphs, analysis of the Kuramoto model and is not a trivial

task ; that is why we concentrate on the case of structurally balanced (complete and sign-

symmetric) network for which it appears possible to define phase locked solutions and

analyze their stability properties.

In this section, we start by generalizing the conditions of existence of phase locked

solutions for the Kuramoto model formulated in the previous chapter to the case of mixed

(positive and negative) input-output weights. Therefore, in what follows, we consider the

system

θ̇i = ωi +
K
N

wi
out

N

∑
j=1

w j
in sin(θ j−θi) , i ∈ IN , (5.1)

and we assume that the interconnection gains are not necessarily positive ; i.e. some of

the coefficients wi
in and wi

out can be negative.

However, we assume that the interconnection matrix K = Wout W>in is sign-symmetric,

i.e. ki jk ji > 0. The last inequality can be rewritten as ki jk ji = wi
inwi

out w j
inw j

out > 0 for all

i, j ∈ IN , which can be satisfied only if wi
in and wi

out have the same sign for all i ∈ IN .

5.2.1 Existence of phase locked solutions for the Kuramoto model with

signed weighted digraph

Similar to the study of the Kuramoto model with input-output weighs, the following sec-

tion we exploit the link between properties of the Kuramoto model and those of a linear

system defined (up to a parameter) by the matrix of interconnections K . Moreover, we

use the proprieties of the structurally balanced signed digraph and the effect of a gauge

transformation. We briefly recall here that a gauge transformation is a change of orthant

order in RN introduced by a matrix G = diag(δ). The set of all gauge transformations in
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RN is denoted as

G = {G ∈ RN×N ,G = diag(δ),δ = [δ1 . . .δN ],δi ∈ {±1}}. (5.2)

Detailed information on gauge transformations and their properties was presented in

Chapter 2, Section 2.2.

As in the previous chapter, we start with the analysis of phase locked solutions and

formulate the conditions that ensure existence. Namely, we have proved the following

theorem :

Theorem 11. (Phase locked solutions)

The Kuramoto model (5.1) has a phase locked solution if and only if there exists a positive

solution r∞ > 0 of the following set of equations

r∞ =
1
N

N

∑
j=1
±w j

in

√√√√1−(
ω̃ j

K jr∞

)2, (5.3)

and for all j = {1, . . . ,N} the following bounds are satisfied −1 ≤
ω̃ j

K jr∞

≤ 1, where K j =

K w j
in, ω̃ j = ω j−ωs and frequency of synchronization ωs is defined by

ωs =
W>in ΩW−1

out

W>in W−1
out

. (5.4)

Furthermore, the phase locked solutions have the θ(t,θ∗) = θ∗+ ωst1n + c1n form, where

c ∈ R is an arbitrary constant, while the vector θ∗ is defined by the equations

cos(θ
∗
j) =±

√√√√1−(
ω̃ j

K jr∞

)2 ; sin(θ
∗
j) =

ω̃ j

K jr∞

(5.5)

and the choice of signs in the expressions for the cos corresponds to the choice of signs

in the equation (5.3).

Proof : We recall the results of Chapter 3 (Theorem 8), it was shown that for the

Kuramoto model, the problem of the existence of phase locked solutions is equivalent to

the problem of the existence of a complex matrix A with off-diagonal elements given by

coefficients ki j and properties described below.

Namely, let parameter µ ∈RN and consider the following family of parametrized linear

systems of a complex variable x ∈ CN

ẋ = (K + iΩ + M )x = Ax, (5.6)
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where Ω = diag(ω1, . . . ,ωN), M = diag(µ) and K = [ki j] is the coupling matrix of the

Kuramoto model (2.15), i.e. the structure of this system corresponds (up to the term

M x) to the model (2.15). It was shown that existence of the phase locked solutions

of (2.15) is equivalent to existence of a matrix A with a pure imaginary eigenvalue

λ(A) = iωs and all elements of the corresponding eigenvector have the same absolute

value, i.e. v(A) = col(eiφ1 , . . . ,eiφN ).

In Chapter 4 (Theorem 9), we proved that for the Kuramoto model with positive in-

put/output weights (4.4), the elements of M are defined as

µ j =±K jr∞

√
1−

ω̃2
j

(K jr∞)2 (5.7)

and the eigenvector v(A) corresponding to λ(A) = iωs is defined by the equations (5.4)-

(5.5).

Let us denote by K the coupling matrix corresponding to the Kuramoto model with only

positive weights, i.e. ki j = |ki j| for all i, j = 1, . . . ,N. Since the digraph corresponding to the

model (5.1) is sign balanced, then according to Definition 4 (Chapter 2) of structurally

balanced digraph, it is always possible to represent the coupling matrix K as K = GK G =

GWoutW>in G where all elements of K non-negative and G = diag(δ1, . . . ,δN) is the matrix

of gauge transformation with δi = 1 if wi
in > 0 and δi =−1 if wi

in < 0.

Now, for the system (5.1), let us consider the matrix A = K −M + iΩ, where K is defined

as K = GK G. Thus defined matrix A can be written as follows :

A = G(K −M + iΩ)G = GAG.

It is easy to see that if matrix A has an imaginary eigenvalue λ1 = iωs and the corres-

ponding eigenvector v1(A) has the form v1(A) = col(eiφ1 , . . . ,eiφN ), then the matrix A has

an eigenvalue λ(A) = iωs and the corresponding eigenvector is defined as v = Gv1(A).

The existence of phase locked solutions follows then from Theorem 9, Chapter 4. �

5.2.2 Family of structurally balanced signed digraphs : intrinsic rela-

tionships between corresponding phase locked solutions

We show next that in the case of a weighted sign-symmetric graph of interconnections,

existence of phase locked solutions for the Kuramoto model with positive weights gua-

rantees existence of the whole family of Kuramoto models defined by the initial model

and the family of gauge transformations. Consider the Kuramoto model with positive
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weight only

θ̇i = ωi +
K
N

wi
out

N

∑
j=1

w j
in sin(θ j−θi) , i ∈ IN , (5.8)

where wi
in and wi

out present the positive input and output weights respectively.

Let, as in the previous section, K = W inW>out be the adjacency matrix with positive

elements. Notice that for each structurally balanced directed graph with positive weights

there exists a family of structurally balanced signed directed graphs characterized by

the same weights but with different signs. All these realizations of the signed graphs are

related by gauge transformations. Let us define the set of all gauge equivalent adjacency

matrices which contain at most 2N−1 distinct matrices, in the sequel we will denote this

set as

KG = {Kg = GK G,G ∈ G}, (5.9)

where G is the set of all gauge transformations defined in (5.2).

In order to distinguish phase locked solutions of the system (5.8) and the phase locked

solutions of the family of Kuramoto models defined by the interconnection matrices Kg ∈
KG , we will denote by θ∗ and θ∗g respectively the phase locked solutions of the Kuramoto

model (5.8) and the Kuramoto model (5.1) with vectors of weights Win, Wout ∈RN defined

by relationships

Win = G W in Wout = G W out (5.10)

Notice in this case the adjacency matrix Kg is defined by the following relationship

Kg = WoutW>in = G W outW
>
inG = G K G.

Theorem 12. Let G = {G = diag(δ1, . . . ,δN),δi ∈ {±1}} be the set of all gauge transfor-

mations in RN. Then, any Kuramoto model (5.1) with a sign-symmetric interconnections

defined by the adjacency matrix Kg = GK G has a phase locked solution if and only if

Assumption 2 is satisfied. Moreover, the synchronization frequency is defined by (5.4)

and the phase locked solutions of (5.1) have the form

θg(t,θ∗g) = θ
∗
g + ωst1n + c1n, (5.11)

where c ∈ R is an arbitrary constant while the vector θ∗g is defined by the relations :

cos(θ
∗
g) = G cos(θ

∗) ; sin(θ
∗
g) = G sin(θ

∗), (5.12)

and the vector θ∗ is the phase locked solution of the Kuramoto model (5.8), defined in

(4.26).
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Remark 3. The theorem above states that any Kuramoto model defined by the adjacency

matrix Kg = GK G with G ∈ G , has a phase locked solution if and only if the Kuramoto

model (5.8), i.e. model with only positive weights, has a phase locked solution. Moreover,

the angles θ∗g, which correspond to negative entries of the gauge matrix G, have a π-shift

with respect to corresponding angles of the model (5.8), i.e. θ∗g j = θ∗j + π.

Proof : We recall the results of Chapter 3 (Theorem 8) where it was shown that

for the Kuramoto model, the problem of the existence of phase locked solutions can be

recast as a problem of the existence of a complex matrix A with off-diagonal elements

given by coefficients ki j and properties described below.

Let µ ∈ RN be a parameter and consider the following family of parametrized linear

systems of a complex variable x ∈ CN

ẋ = (K + iΩ + M )x = Ax, (5.13)

where Ω = diag(ω1, . . . ,ωN), M = diag(µ) and K = [ki j] is the coupling matrix of the

Kuramoto model (2.15), i.e. the structure of this system corresponds (up to the term

M x) to the model (2.15). It was shown that the existence of the phase locked solutions

of (2.15) is equivalent to existence of a matrix A , such that it has a pure imaginary

eigenvalue λ(A) = iωs and all elements of the corresponding eigenvector have the same

absolute value, i.e. v(A) = col(eiφ1 , . . . ,eiφN ).

In particular, we proved that for the model (4.4) that the elements of M are defined by

µ j =±K jr∞

√
1−

ω̃2
j

(K jr∞)2 (5.14)

and the eigenvector v(A) corresponding to λ(A) = iωs is defined by the equations (5.4)-

(5.5).

Now, for the system (5.1), let us consider the matrix Ag = Kg−M + iΩ, where Kg is

defined as Kg = GK G. Thus the defined matrix Ag can be written as follows :

Ag = G(K −M + iΩ)G = GAG.

It is easy to see that matrix A has an imaginary eigenvalue λ1 = iωs and the corresponding

eigenvector v1(A) has the form v1(A) = col(eiφ1 , . . . ,eiφN ). Since the transformation A →
GAG is a similarity transformation and as such it preserves the spectrum. Thus, matrix

Ag has an eigenvalue λ(Ag) = iωs and the corresponding eigenvector is defined as v =

Gv1(A) and the existence of the phase locked solutions follows from Theorem 9, Chapter

4. �
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5.3 Stability analysis of the phase locked solutions

In Section 5.2, we demonstrated that the Kuramoto model (5.1) can have one or multiple

phase locked solutions if Assumption 2 is satisfied. In this section, we will analyse local

stability properties of these phase locked solutions. Similar to the procedure used in

Chapter 4, we start by changing the coordinate frame and consider the Kuramoto model

(5.1) in the coordinate frame rotating with the frequency ωs, where ωs is defined by (5.4).

In the new coordinates, the system (5.1) can be written as follows

θ̇i = fi(θ) = ω̃i +
K
N

wi
out

N

∑
j=1

w j
in sin(θ j−θi), i ∈ IN , (5.15)

where ω̃i = ωi−ωs.

Notice that in the new coordinates, the fixed points (i.e. points where θ̇eq = 0) turn out

to be just the values of θ∗g, defined in Theorem 12.

Let Assumption 2 be satisfied, then linearizing the system (5.15) around the equilibrium

point θ∗g, we obtain the linearized system as follows

θ̇ = J θ, (5.16)

where θ> = [θ1, . . . ,θN ] and J is the Jacobian matrix, whose off-diagonal elements are

defined as
d fi

dθl
|θ=θ∗g=

K
N

wi
outw

l
in cos(θl−θi) =

K
N

wi
outw

l
in cos(θ

∗
gl−θ

∗
gi). (5.17)

From Theorem 12 it follows that cos(θ∗g j) = δ j cos(θ∗j) and sin(θ∗g j) = δ j sin(θ∗j), at the

same time we have that w j
in = δ jw

j
in and wi

out = δiwi
out .

Substituting this equalities in (5.19) we obtain that

d fi

dθl
|θ=θ∗g=

K
N

wi
outw

l
in cos(θ

∗
l −θ

∗
i ). (5.18)

In the same way, the diagonal elements of the matrix J can be calculated as follows

d fi

dθi
|θ=θ∗g=−

K
N

wi
out

N

∑
j=1, j 6=i

w j
in cos(θ

∗
g j−θ

∗
gi). (5.19)

Since the interconnection digraph is sign-symmetric, we have wi
outw

j
in = δiwi

outδ jw
j
in =

wi
outw

j
in for all i, j = {1, . . . ,N} and then we can equivalently write

d fi

dθi
|θ=θ∗g=−

K
N

wi
out

N

∑
j=1, j 6=i

w j
in

(
cos(θ

∗
j)cos(θ

∗
i )+ sin(θ

∗
j)sin(θ

∗
i )
)
. (5.20)
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Let us introduce the following notations :

Ψ =


w1

out 0 0

0
. . . 0

0 0 wN
out

 ; ϒ =


w1

in 0 0

0
. . . 0

0 0 wN
in

 (5.21)

that is Ψ and ϒ are diagonal matrices with output and input weights on the diagonal.

Using these notations and explicit expressions of θ∗ given by (5.5), we can write Jacobian

matrix J in the form :

J =
K
N

Ψϒ
−1(ϒ A + bb>+ cc>) ==

K
N

S J1, (5.22)

where

J1 = ϒ A + bb>+ cc> ; S = Ψ ϒ
−1 (5.23)

A =−diag(a1, . . . ,aN), ai =±Nr∞

√
1− (

ω̃i

Kir∞

)2,

b =


±w1

in

√
1− (

ω̃1

K1r∞

)2

...

±wN
in

√
1− (

ω̃N

KNr∞

)2

 ;c =


w1

in
ω̃1

K1r∞
...

wN
in

ω̃N

KNr∞

 .
(5.24)

As in the case of Kuramoto model with attractive interactions (see Chapter 4) and

in order to simplify the stability analysis, we restrict our attention to the case where

|ω̃ j|<K jr∞ for all j ∈ IN . This last inequality implies that all eigenvalues of A are different

from zero and bi 6= 0 for all i ∈ IN .

Next, to analyse local stability of the linearized system (5.16), we use the following

change of coordinates

y = S−1/2
θ.

Therefore, in new coordinates we obtain

ẏ = S−1/2
θ̇ =

K
N

S 1/2J1θ =
K
N

S 1/2J1S 1/2y, (5.25)

As it was shown in the Chapter 4 (4.4.1), stability properties of the systems (5.25) and

(5.16) are defined by the spectral properties of the symmetric matrix J1.

First, we show that the matrix J1 has a zero eigenvalue. Namely, the following result is

valid.

Lemma 2. The matrix J1 has an eigenvalue zero with corresponding eigenvector v = 1N.
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Proof. Let v = 1N , then the i− th component of J1v can be calculated as follows

K
N

[−wi
inNr∞(±

√
1− (

ω̃i

wi
outKr∞

)2)+ wi
in(±

√
1− (

ω̃i

wi
outKr∞

)2)

N

∑
j=1
±w j

in

√
1− (

ω̃ j

w j
outKr∞

)2 +
wi

inω̃i

wi
out(Kr∞)2

N

∑
j=1

w j
in

w j
out

ω̃ j] = 0,

where in the last line we used the following relations

N

∑
j=1
±w j

in

√
1− (

ω̃ j

w j
outKr∞

)2 = Nr∞ ;
N

∑
j=1

w j
in

w j
out

ω̃ j = 0.

This implies that J1v = 0. �

Similar to the results presented in Chapter 4, section 4.4 on stability of phase locked so-

lution, here we formulate the following theorem which shows that among all the possible

phased locked solutions of the system (5.1) there is only one which is asymptotically

stable.

Theorem 13. Consider the Kuramoto models (4.4), (5.1). Let K = W out W>out and

Assumption 2 be satisfied. Define the family of gauge equivalent adjacency matrices as

KG = {Kg = GK G,G ∈G}. Given G, let Ag = {θ∗gk ∈RN , k = {1, . . . ,M}} be the set of all

possible phase locked solutions for the system (5.1) defined in Theorem 12 . The following

statements are true :

1) There is, at most one phase locked solution θ∗g ∈ Ag which is stable.

2) Let θ+ be a phase locked solution of the Kuramoto model with positive weights (4.4)

defined by equations (4.20)-(4.26) taken with all positive signs and let θ+
g be the corres-

ponding phase locked solution of (5.1) defined by (5.12). Then the set D+
g = {θ ∈ RN :

θ = θ+
g +c1, c ∈R} is locally asymptotically stable if and only if the following inequality

holds

N

∑
j=1

|w j
in|(1−2(

ω̃ j

w j
outKr∞

)2)√
1− (

ω̃ j

w j
outKr∞

)2

> 0. (5.26)

Proof. Let us define the matrix A1 = ϒ A = −diag(w1
ina1, . . . ,wN

inaN), where ϒ =

diag(w1
in, . . . ,w

N
in). By construction, A1 is a symmetric matrix and matrices bb>, cc> are

symmetric and positive semi-definite. Applying Theorem 3 in [17](Chapter 7, page 117)

with Ã = A1 + bb> and B̃ = cc> we obtain that

λi(J1)≥ λi(
K
N

(A1 + bb>)), ∀i ∈ {1, . . . ,N} (5.27)
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and similarly,

λi(A1 + bb>)≥ λi(A1), ∀i ∈ {1, . . . ,N}. (5.28)

Therefore,

λi(J1)≥ λi(
K
N

A1), ∀i ∈ {1, . . . ,N}. (5.29)

Then it is easy to see that if the equilibrium point θ∗g corresponds to a phase locked

solution θ∗g of (4.4) that satisfies equation (4.20) with at least one minus sign, then

matrices A1 and J1 have at least one positive eigenvalue. Hence any equilibrium point,

which corresponds to a phase locked solution with at least one negative sign in the

equation for r∞, is locally unstable. Finally, using arguments similar to those of [35], we

can show that the matrix J1 has N−1 negative eigenvalues if and only if the following

condition is satisfied :
N

∑
j=1

| w j
in | (1−2(

ω̃ j

w j
out Kr∞

)2)√
1− (

ω̃ j

w j
out Kr∞

)2
> 0, (5.30)

therefore, if (5.30) is satisfied, the corresponding phase locked solution is locally asymp-

totically stable. �

Remark 4. Notice that the synchronization frequency ωs defined by (5.4) depends on

W in, W out and ω, and is independent of the signs of interconnection.

5.4 Simulation results

We illustrate the results presented in this chapter by means of a numerical example.

Consider 8 complete coupled Kuramoto oscillators with the following parameters :

– vector of natural frequencies ω> = (25,31,20,24,33,35,21,28) ;

– vector of input weights W>in = (0.5,0.7,0.6,1,2,1.2,0.4,0.9) ;

– vector of output weights W>out = (2,1.5,1.2,0.5,0.7,2,2.5,0.4).

To emphasize the effect of attractive and repulsive connections on the synchronization

frequency and the phase differences, we consider three different scenarios of intercon-

nection. The corresponding graphs for the three networks are presented in Figure 5.1.

In the first case, all of the interaction weights are positive and there are three and four

oscillators with different negative weights in the other two scenarios. The corresponding
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gauge matrices G1, G2 and G3 are given as follows

G1 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


; G2 =



−1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



G3 =



−1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1


and the interconnection gain is chosen as K = 50.

In order to make clear the apparent links between the phase locked solutions of three

different Kuramoto models, we do numerical simulations for three models in the same

time interval, just switching from the first model to the second and then to the third

one. In particular, we switch from one interconnection structure to another at the time

instants T1 = 0.5 and T2 = 1. The corresponding graphs of the three networks are pre-

sented in Figure 5.1. Figures 5.2 and 5.3 presented below, represent frequencies of the

Figure 5.1 – Three networks of a set of eight oscillators corresponding respectively to
the interconnection matrices inferred by the gauge matrices G1, G2 and G3. Attractive
and repulsive interactions are respectively represented by red and blue connections
between nodes. The open and filled nodes represent oscillators with respectively negative

and positive input weights.

oscillators and phase differences.
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It is easy to see from Figure 5.2 that the frequencies of all 8 oscillators converge after a

small transient to the common value ws = 28,66. After both switches of network structure

the oscillators synchronize once again to the same frequency ws = 28,66, as it is ensured

by Theorem 11. At the same time, a direct calculation of the synchronization frequency

using expression (5.4), given as :

ωs =
W>in ΩW−1

out

W>in W−1
out

= 28,66.

Indeed, for all presentations of the interconnection matrix inferred by a gauge transfor-

mation, the Kuramoto model (5.1) has the same synchronization frequency.

Figure 5.2 – Evolution of the angular frequencies θ̇i corresponding to the three inter-
connection graphs inferred by the gauge matrices G1, G2, and G3.

It is interesting to remark that this value of synchronization frequency coincides with

the expression of synchronization frequency of the Kuramoto model with non-symmetric

interconnection structure given in Chapter 3, Section 3.3.1 (see also [34]).

lim
K→∞

ωs∞
(K) =

w>l Ω

w>l 1
,

where wl is the left eigenvector of the Laplacian matrix of interconnection graph asso-

ciated with zero eigenvalue. Direct calculations show that this limit value coincides with

the expression for ωs given in (5.4).

The phase differences of phase locked solution are presented in Figure 5.3 for the three

interconnection matrices inferred by the gauge matrices G1, G2 and G3.

A situation with the behaviour of phase differences presented in the Figure 5.3 is in

accordance with the results of Theorem 13. Also, it should be remarked the similarity of

the behaviour of the Kuramoto model with the case of consensus on networks with anta-

gonistic interactions [5] where the agents converge to bipartite consensus. In particular,
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when both attractive and repulsive interconnections are present, our system presents

tow sets of phase differences. Indeed, the positive coupling tends to pull the phases of

the oscillators together, thus favouring the phase difference zero. However, the negative

coupling pushes the phases apart and thus favours a phase difference of π.

Figure 5.3 – (b) The time evolution of the seven phase differences (θi−θ8), i = 1, . . . ,7
correspond respectively to the three networks (I, II, III) presented in Fig.5.1. (a) The
instant positions of phase oscillators on unit circle illustrate the anti-phase synchroni-

zation.
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6.1 Introduction

One of the key issues in synchronization analysis in networks of heterogeneous systems

pertains to the emergence of new collective phenomena and the manner how individual

dynamics, as well as the coupling architecture, affect the arising synchronized dyna-

mics. For instance, the collective behavior of a network of coupled nonlinear oscillators

is important to understand the complex dynamics of engineering and physical systems.

Beyond engineering, problems of collective synchronization are of profound interest wi-

thin a wide range of research disciplines such as physics, ecology, economics, biology

etc. Particular examples include the synchronization of circadian rhythms, of heart cells

as well as of neuronal activity [46], [131]. The latter are motivated by the recognized

cause-effect of synchronization in neural disorders –see [90], [33], particularly Parkin-

son’s disease [76], [20]. The societal impact of the latter is one of the driving forces for

the recent large-scale interest in the analysis and control of synchronization of complex

interconnected systems.

In the preceding chapters, we have used coupled phase oscillators as a phenomenolo-

gical approach to ensembles of interacting periodic elements. In fact, phase oscillators

represent a good approximation to systems with limit-cycle orbits when the strength of

coupling is small. This is the case of the classical Kuramoto model. On the other hand,

as the coupling is strong enough, the phase approximation breaks down and it becomes

necessary to take into account the full dynamics of each oscillatory element, including

both its phase and its amplitude. The interplay of these two variables in ensembles of

coupled limit-cycle oscillators gives rise to new phenomena in the collective evolution.

Hence a more comprehensive model is required, where the dynamics of the amplitudes

besides that of the phases is included.

Following the results of Andronov on limit-cycle oscillators, more generalized versions of

the coupled oscillators model, including both phase and amplitude variations, have been

published. Among these, the complex Stuart-Landau equation displays the amplitude

equation derived from a general ordinary differential equation near an Andronov-Hopf

bifurcation point –[29]. The Stuart-Landau oscillator is used in a wide range of applica-

tions ; for instance, to describe chemical reaction diffusion systems [52], semiconductor

lasers [22] as well as in neurophysiology [10]. In the case of finite gain and non-identical

individual dynamics, the coupled Stuart-Landau oscillators are only frequency synchro-

nized that is, the amplitudes of their oscillations do not coincide. Different tools, such

as Dula’s theorem and Lyapunov exponents, have been used in the literature to study
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stability properties of the limit cycle for a single Stuart-Landau oscillator [6], [65], [99]

and for networks of such oscillators, see e.g. , [57], [130], Lyapunov type techniques

were used to study stability for a network of identical oscillators [101]. However, in the

general case of heterogeneous networks of Stuart-Landau oscillations, finding the syn-

chronization frequency is a challenging and, to the best of our knowledge, is a open

problem. In this chapter we give an approximate expression for this frequency which

depends on the natural frequencies of the individual oscillators and on the matrix of the

interconnections.

The remainder of this chapter is organized as follows. First, we introduce the general

framework of our synchronization analysis and we present the model of interconnected

Landau-Stuart oscillators and review its general properties. Next, transformation of the

system in terms of interconnection matrix is given as well as approximate synchronization

manifold. Afterwards, we analyze the stability of a network of diffusive coupled Stuart-

Landau oscillators, based on the notion of practical stability which allows to study

synchronization properties in case when only approximations of the limit cycle and

synchronization frequency are available. The technical tools that support our findings

are inspired by the work of [66], see also [23], [78], [129].

6.2 Model description and problem statement

In this chapter we consider a network composed of N heterogeneous diffusively coupled

oscillators. In order to simplify the notations, in the sequel we will use the set I =

{1, . . . ,N} to index the oscillators in the network.

Dynamics of individual oscillator

We assume that taken separately dynamics of each oscillator is described by Stuart-

Landau equation

żi =−|zi|2zi + µizi + ui = f (zi,µi)+ ui, i ∈ I (6.1)

where zi,ui ∈ C are respectively the state and input of i− th oscillator, µi = βi + iωi ∈ C
is a complex parameter which defines asymptotic behavior of the i− th oscillator, as it

was discussed in chapter 2, section 2.1. Later we introduce heterogeneity in the network

by allowing parameters µi ∈ C to be different for different oscillators.
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Network structure and interconnections between the nodes

We assume that the graph of the network is connected and undirected, in this case

interconnections between the nodes are defined by the adjacency matrix D = [di j]i, j∈IN and

moreover, di j = d ji for all i, j ∈ IN . For the simplicity we assume that the interconnections

weights are positive. i.e. di j ∈ R+ for all i ∈ IN . In this case the corresponding Laplacian

matrix is defined as

L =


∑

N
i=2 d1i −d12 . . . −d1N

−d21 ∑
N
i=1,i6=2 d2i . . . −d2N

...
...

. . .
...

−dN1 −dN2 . . . ∑
N−1
i=1 dNi,

 (6.2)

where all row sums are equal to zero. Since the network is connected and undirected

we have that matrix −L has exactly one eigenvalue (λ1) equal to zero, while others are

negative, 0 = λ1 > λ2 ≥ . . .≥ λN .

We assume that oscillators of the network are connected using diffusive coupling which

represents a static relation between inputs and states of the oscillators, namely for the

i-th oscillator the coupling is given by the following relation

ui =−γ

(
di1(zi− z1)+ di2(zi− z2) . . .+ diN(zi− zN)

)
, (6.3)

where the scalar parameter γ > 0 corresponds to the coupling strength between the

oscillators.

Dynamics of the overall network

Let us denote by z ∈ CN the overall network’s state, that is z = [z1, . . . ,zN ]> ∈ CN .

From (6.1) and expression for diffusive coupling (6.3), the overall network dynamics can

be described by the following differential equation

ż = F(z)− γ Lz, (6.4)

where we recall that γ ∈ R+ is the coupling gain, the matrix L ∈ RN×N is a Laplacian

matrix defined in (6.2) and the function F : CN → CN is given by

F(z) = [ f (zi,µi)]i∈I . (6.5)



Emergence of limit cycle oscillators network 79

As a first step in the analysis of the behavior of the diffusively couple network we

formulate conditions that ensure that trajectories of the network of coupled Andronov-

Hopf oscillators described by (6.4) are ultimately bounded, which, roughly speaking,

means that all solutions eventually end up within some bounded domain. More precisely,

following [59], we define ultimate boundedness of solutions in the following way.

Definition 14. The solutions of the system ẋ = f (x) are said to be ultimately bounded

if there exist positive constants ∆◦ and c such that for every ∆ ∈ (0,∆◦), there exists a

positive constant T (∆) such that, for all x◦ B∆ = {x ∈ Rn : |x| ≤ ∆} they satisfy

|x(t,x◦| ≤ c ∀t ≥ T.

If this bound holds for arbitrary large ∆, then the solutions are globally ultimately boun-

ded.

Using simple Lyapunov arguments, similar to those of [101] and [80], one can establish

that all trajectories of the network (6.4) are ultimately bounded for any interconnection

gain γ > 0. To ensure ultimate boundedness of network trajectories we will use the

following theorem which is a special case of Theorem 4.18 in [59].

Theorem 14. Consider a system ẋ = f (x), where x∈Rn and f (·) is a continuous, locally

Lipschitz function. Assume that the system is forward complete, there exists a closed

set A ⊂ Rn and a C1 function V : Rn → R+, functions α1, α2 ∈ K ∞, continuous and

positive definite function W (x) and a constant c > 0 such that the following inequalities

are satisfied

α1(|x|)≤V (x)≤ α2(|x|) (6.6)

∂V
∂t

f (x)≤−W (x) for all |x| ≥ c > 0 (6.7)

Then, for every initial state x(0) = x◦ there exists a T ≥ 0 (dependent on x◦ and c) such

that for all t ≥ T the following inequality holds

|x(t,x◦)| ≤ α
−1
1 (α2(c)).

Using this theorem we can prove the following result.

Proposition 2. Consider the system (6.4), (6.5) and let the graph of the network in-

terconnections be undirected and connected, then solutions of the system (6.4), (6.5) are

ultimately bounded and satisfy the following bound

|z(t,z◦)| ≤
√

2µN. (6.8)
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Proof.

Consider the following Lyapunov function for the system (6.4), (6.5)

V (z) =
1
2

z∗z,

It is easy to see that thus defined Lyapunov function is positive definite and radially

unbounded. Moreover, this Lyapunov function satisfies inequalities (6.6) with α1(s) =

α2(s) = 1
2 s2.

Taking the derivative of V (z) along trajectories of the system (6.4), (6.5) we obtain that

V̇ (z) =
1
2

z∗ (F(z)− γ Lz)+
1
2

(F∗(z)− γz∗L)z.

Since the matrix L is symmetric, we have

V̇ (z) =
1
2

(z∗F(z)+ F∗(z)z)− γ z∗Lz.

Next we use the fact that matrix L is a Laplacian matrix and therefore all eigenvalues

of −L are non-positive. Therefore we have

V̇ (z)≤ 1
2

(z∗F(z)+ F∗(z)z)

Next, using (6.1), (6.5) and notations C(z) = diag(|z1|2, . . . , |zN |2) and M = diag(µ1, . . . ,µN)

we can write the terms F(z) and F∗(z) as

F(z) =−C(z)z + Mz, F∗(z) =−z∗C(z)+ z∗M.

Using these notations we rewrite V̇ as

V̇ (z)≤−z∗C(z)z +
1
2

(z∗Mz + z∗M∗z) =−
N

∑
i=1
|zi|4 + µ

N

∑
i=1
|zi|2 =−

N

∑
i=1
|zi|4 + µ|z|2, (6.9)

where in the last line we used the notation µ = maxi∈IN{Re(µi), 0} for the largest real

part of the elements of the matrix M = diag(µ1, . . . ,µN).

Next we use the triangular inequality to upperbound the term ∑
N
i=1 |zi|4, we have

|z|4 =
( N

∑
i=1
|zi|2

)2
=

N

∑
j=1

N

∑
i=1
|zi|2|z j|2 ≤

1
2

N

∑
j=1

N

∑
i=1

(
|zi|4 + |z j|4

)
=

1
2

N

∑
j=1

N

∑
i=1
|zi|4 +

1
2

N

∑
j=1

N

∑
i=1
|z j|4 = N

N

∑
j=1
|zi|4
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and therefore
N

∑
j=1
|zi|4 ≥

1
N
|z|4.

Substituting this last bound in (6.9) we obtain

V̇ (z)≤− 1
N
|z|4 + µ|z|2 =−

( 1
N
|z|2−µ

)
|z|2 =− 1

2N
|z|4− 1

2N

(
|z|2−2 µ N

)
|z|2

From the last inequality we obtain that V̇ (z) < − 1
2N |z|

4 for all z such that |z| >
√

2µN.

Then from theorem 14 we obtain that solutions are ultimately bounded and for any

R > 0 there exists a T (R) such that for all t ≥ T and all initial conditions |z◦| ≤ R system

trajectories satisfy the following bound

|z(t,z◦)| ≤
√

2µN. �

Problem statement - First iteration

In case of a network of identical oscillators (i.e. in the case when µi = µ j for all i, j ∈ I )

synchronization is often described in terms of (asymptotic) identical evolution of the

units and hence formulated as (asymptotic) stability of the synchronization manifold

S = {z ∈ CN : z1 = z2 = . . . = zN}, (6.10)

which can be deduced using results and tools developed for semi-passive, incrementally

passive or incrementally input-output stable systems [1], [101], [102], [103], [111], [112].

Behavior of the networks with non-identical units is more complex due to the fact that

synchronization manifold S does not necessarily exist due to the differences in the dy-

namics of the oscillators. Still it is well know from the literature on dynamical systems

that such heterogeneous networks can exhibit some type of synchronization and collective

behavior.

One of the possible approaches to this problem is to consider some kind of ”practical”

synchronization, when differences between the dynamical evolution of the different units

are bounded and become smaller for larger values of interconnection gain γ. That is the

approach that we will persist in this chapter.

In particular we will show that in the case of general heterogeneous network of oscilla-

tors, we can characterize evolution of the networks dynamics in terms of two different

separate properties : synchronization and emergent dynamics of the network. To do so we

first show that for large values of the gain γ the network behavior can be decomposed in
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two parts, one of them corresponds to dynamics of some ”averaged” (”mean-field”) oscil-

lator, while the other describes dynamics of the network units relative to the ”averaged”

dynamics.

Before formulating the synchronization problem in more precise terms, in the next sec-

tion we define coordinate transformation that will allow us the network decomposition

described above.

6.3 Coordinate transformation and model reformulation in

new coordinates

To clarify our approach to the synchronization of the nonlinear network, we next rewrite

this system in a new coordinate frame which is convenient for our purposes. To that end,

first let us split the network dynamics into linear and nonlinear parts.

We introduce the following diagonal matrices

C(z) =


|z1|2 0 . . . 0

0 |z2|2 . . . 0
...

. . .
. . .

...

0 0 . . . |zN |2

 and M =


µ1 0 . . . 0

0 µ2 . . . 0
...

. . .
. . .

...

0 . . . 0 µN



Using these notations we can rewrite the system (6.4) as

ż = (M − γ L)z−C(z) z = Aγz−C(z) z, (6.11)

where

Aγ = M − γ L. (6.12)

6.3.1 Properties of the matrix Aγ

Notice that Aγ ∈CN×N is a complex symmetric matrix, Aγ = A>γ . It is well known, see e.g.

[27], [50], that for any symmetric matrix C there exists a complex orthogonal matrix Q

(Q−1 = Q>) such that matrix Q>CQ is of bloc diagonal form
B1 0 0 . . .

0 B2 0 . . .

0 0 B3 . . .

. . . . . . . . . . . .


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where each block is either

(i) a 1×1 submatrix

or

(ii) B = λI + M, where M is a q×q matrix with all zero eigenvalues (for more details on

the structure of the matrix M we refer to the theorem 4 [27].

Next we remark that matrix Aγ can be viewed as

Aγ = γ(−L + ε M )

where ε = 1/γ.

Thus for sufficiently small values of ε (or equivalently for sufficiently large values of γ)

we can see matrix Aγ as a scaled by ε-perturbation of the Laplacian matrix −L and

therefore we can use results from the perturbation theory for matrices (see e.g. [50],

[91]) to characterize the eigenvalues and eigenvectors of the matrix Aγ in terms of ε and

eigenvalues and eigenvectors of the matrix L.

Using [91, Theorem 2.1], [50], [67] we can estimate the eigenvalues of the matrix Aγ in

terms of those of L, M and ε.

In the general case let us define a small perturbation of a generic matrix A as

Aε = A0 + εA1, ε→ 0.

If we denote with λ1 a simple eigenvalue of A0 and with λε its induced perturbation,

then for sufficiently small ε there exists the convergent power series representation

λε = λ1 + c1ε + o(ε), (6.13)

where the first order term c1 can be characterized as

c1 =
w>A1v

w>v
(6.14)

where w, v are the left and right eigenvectors of the unperturbed matrix A0 associated

to λ1, normalized with unitary norm, i.e. ||w|| = ||v|| = 1. This result is also applicable

if the multiplicity of λ1 is larger than one, provided that there exists a complete set of

eigenvectors for the associated eigenspace [91].

Since in our case Laplacian matrix L is symmetric and corresponds to a connected graph,

then it follows from the standard results [50] that it is diagonalizable and there exists a
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real orthogonal matrix U such that

L = U


λ1(L) = 0

. . .

λN(L)

U>.

Moreover, left and right eigenvectors of the matrix L which correspond to λ1(L) = 0

coincide and have the following form : w = v = 1√
N

[1, . . . ,1]> = 1√
N

1. Then from (6.14)

we have that in our case

c1 =
w>A1v

w>v
=

1
N

1>M 1 =
1
N

N

∑
i=1

µi.

Then using (6.13) and the fact that ε = 1
γ

we can approximate λ1(Aγ) as

λ1(Aγ) = γ
(
−λ1(L)+ c1ε + o(ε)

)
= γ
(
c1

1
γ

+ o(
1
γ

)
)

= c1 + O(ε) =
1
N

N

∑
i=1

µi + O(ε),

thus we have that λ1(Aγ) is bounded and converges to 1
N ∑

N
i=1 µi as the coupling strength

γ→ ∞. Moreover, we can show that all λ j(A) ( j = 2, . . . ,N) are proportional to γ and

Real(λ j(A))→−∞ as γ→ ∞.

In the following we will just assume that γ is sufficiently large so that matrix Aγ is

diagonalizable, i.e. we impose the following assumption.

Assumption 3. There exists a γ∗ > 0 such that for all γ≥ γ∗ matrix Aγ defined in (6.12)

can be factorized as

Aγ = Vγ Λγ V−1
γ , (6.15)

where Λγ ∈CN×N is a diagonal matrix whose diagonal elements are the eigenvalues of Aγ

and Vγ ∈ CN×N is a complex orthogonal matrix, that is V−1
γ = V>γ and there exists k ∈ IN

such that Re(λk) > max j∈{1,...,N}, j 6=k Re(λ j).

Notice that matrix Vγ that we defined in (6.17) is a square matrix whose ith column is

the right eigenvector ϑri of Aγ.

Without loss of generality, in what follows we assume that the eigenvalues of Aγ are

ordered in decreasing order, that is, λ1(Aγ) has the largest real part and Re(λ1)>Re(λ2)≥
. . .≥ Re(λN).
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6.3.2 Decomposition of the matrix Aγ

We next decompose matrix Aγ in the following way. First we split matrix Λγ in two parts

as follows

Λ = λ1(Aγ)I+


0 0 0 0

0 λ2(Aγ)−λ1(Aγ) 0 0

0 0
. . . 0

0 0 0 λN(Aγ)−λ1(Aγ)

= Λ1 + Λ2. (6.16)

Notice that if γ > γ∗, where γ∗ satisfies assumption 3 then (N−1) non-zero eigenvalues

of the matrix Λ2 have negative real parts and moreover we have that for i = 2, . . .N

eigenvalues λi(Λ2)→−∞ as γ→+∞.

Using these notations we can write matrix Aγ as

A = V Λ1V>+V Λ2V> = λ1I+ D, (6.17)

where D = V Λ2V>. Notice that due to the properties of the matrix Λ2 we have that D≤ 0

and moreover N− 1 eigenvalues of this matrix have negative real parts and as for the

matrix Λ2 we have that for i = 2, . . .N

λi(Λ2)→−∞ as γ→+∞.

Using these notations we can write the system (6.11) in the form

ż = (λ1I−C(z)) z + D z. (6.18)

Since by assumption, the matrix Aγ is diagonalizable then from [50, Theorem 4.4.13] (see

also [27] ), it follows that matrix Vγ is complex orthogonal, i.e.

V>γ Vγ = IN . (6.19)

Let ϑr and ϑl be the first columns of the matrices Vγ and V>γ , i.e the right and left

eigenvectors of the matrices Aγ and D corresponding to the largest eigenvalues λ1(Aγ)

and λ1(D) = 0. Then we have

Aγϑr = λ1(Aγ)ϑr,

ϑ
∗
l Aγ = λ1(Aγ)ϑl

∗
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and

Dϑr = 0, ϑl
∗D = 0.

Moreover, due to the orthogonality of Vγ in the sense of equation (6.19) we have

[ϑr]
2 = ϑ

>
r ϑr = [ϑl]

2 = ϑ
>
l ϑl = 1. (6.20)

Since ϑr and ϑl are eigenvectors corresponding to the same eigenvalue we have that

ϑ∗l ϑr=1. Combining (6.20) and the last equality we obtain that

ϑl = (ϑ
∗
r )>.

Notice that equation (6.18) is just another form of writing the equations of the oscillators

network (6.4). Thus the transformations that we presented in this section allow us to

interpret the original network of heterogeneous oscillators as a network where all the

nodes have identical dynamics and the interconnection matrix D has properties similar

to a Laplacian matrix since its largest eigenvalue is equal to zero.

6.3.3 Coordinate transformation depending on the matrix Aγ

To clarify our approach to the synchronization of the oscillators network (6.4), or equi-

valently (6.18), we next rewrite the system (6.18) in a new coordinate frame which is

convenient for our purposes.

We recall that the matrix D can be presented in the form

D = VγΛ2Vγ
> = Vγ


0

λ2(D) 0
. . .

0 λN(D)

Vγ
>, (6.21)

where λi (i = 2, . . . ,N) are the eigenvalues of the matrix D and i-th column of the matrix

Vγ is an eigenvector of D corresponding to the i-th eigenvalue λi(D).

Denoting the first right eigenvector corresponding to λ1(D) = 0 by ϑ1(D) 1, we can de-

compose the matrix Vγ in the following way

Vγ =
[
ϑ1(D),Vγ1

]
, (6.22)

1. When it is clear from the context, here and afterwards we will use notation ϑ for the right eigen-
vector of a matrix instead of ϑr
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where Vγ1 ∈ C(N−1)×N is a matrix composed of N−1 eigenvectors of D corresponding to

λ2, . . . ,λN . From (6.19) we have that

ϑ
>
1 (D)Vγ1 = 0, Vγ

>
1 Vγ1 = IN−1.

Based on the orthogonal matrix Vγ we introduce the following change of coordinates. Let

z̄ = Vγ
>z. (6.23)

Using (6.22) we can decompose new coordinates in two parts as follows :

z̄ =

[
ϑ>1

Vγ
>
1

]
z =

[
z̄1

z̄2

]
, (6.24)

where z̄1 ∈ C and z̄2 ∈ CN−1.

From the previous section it is clear that in the limit, as γ→ ∞, we have that

ϑ
>
1 (D)


1
...

1


and therefore, in the limit (as γ→ ∞) coordinate z̄1 converges to

za =
1
N

N

∑
i=1

zi

which, in the literature on nonlinear oscillators, is known as averaged or mean-field

oscillator.

Thus we can see z̄1 as a type of weighted average of zi and that is why we use the term

”average oscillator” for z̄1.

We now consider the vector z̄2 and equality z̄2 = 0 in particular. From (6.19) we have

that

Vγ1Vγ
>
1 = IN−ϑ1ϑ

>
1 . (6.25)

Then, multiplying z̄2 by Vγ1 from the left and using (6.25) we obtain that z̄2 is equal to

zero if and only if

z = ϑ1ϑ
>
1 z = ϑ1z̄1,

or equivalently, if

e = z−ϑ1z̄1 = 0,
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where e ∈ CN .

Therefore we can see both z̄2 and e as a measure of synchrony between the oscillators in

the network and the ”averaged” oscillator.

Combining representations of z̄1 and z̄2 we see that this coordinate transformation allows

to explicitly decompose the network behaviour in two parts with very different roles : co-

ordinate z̄1 corresponds to the ”averaged” oscillator, while z̄2 reflects the synchronization

error between the oscillators in the network.

In order to simplify the notations, in the rest of this chapter for the stability analysis of

the system (6.18) we will use the following notations

zm = z̄1 = ϑ
>
1 z (6.26)

and

e = z−ϑ1z̄1 = z−ϑ1zm (6.27)

or equivalently

e = z−ϑ1z̄1 = z−ϑ1ϑ
>
1 z =

(
I−ϑ1ϑ

>
1

)
z = Pz, (6.28)

where P = I−ϑr1ϑ∗l1 is a projection matrix.

Notice that the vector e can be considered as a vector of errors between the oscillator

z j and the scaled and rotated averaged oscillator zm. In general, vector ϑr1 does not

necessarily have only rotational components since some of ϑr1i can have an amplitude

not equal to one. However, in the limit as γ→∞, we have that ϑr1 → 1 and it is possible

to show that for sufficiently large value of γ, components of vector ϑr1 converge to eiϕ j

for some ϕ j ∈ R. Then for sufficiently large values of γ, the right eigenvector ϑr1 ∈C can

be considered as a vector of rotations which correspond to the phase difference between

the oscillators and the average oscillator.

6.4 Problem formulation

In the particular case when oscillators are completely decoupled (i.e. γ = 0), all oscillators

in the network rotate at their individual (natural) frequencies. Actually, it was shown

in [39] that this individual behavior persists in the case of weak coupling (i.e. for small

values of γ). The effect of network synchronization, which appears in the case of strong

coupling, is well documented in the literature.

– Frequency synchronization ; for sufficiently large values of γ all the units tend asymp-

totically to oscillate at the same frequency, see e.g. [80].
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– Phase locking : in addition to frequency synchronization we have that the phase dif-

ferences between the oscillators tend to be constant and independent of initial condi-

tions.

In the case of a network of identical oscillators (µi = µ for all i ∈ I ), all of the latter tend

to oscillate at the same frequency and with zero phase differences. This effect, which is

called complete network synchronization, can be analyzed using stability theory on the

synchronization manifold

S◦ =
{

z ∈ CN : z1 = z2 = . . . = zN
}
.

Indeed, stability of this manifold can be deduced in a straightforward manner from

the synchronization results for semi-passive, incrementally passive or incremental input-

output systems, as it is done e.g., in [101].

In the previous section we saw that in the case of general heterogeneous network with

arbitrary N and large values of the parameter γ the network behavior can be decomposed

in two parts :

– one of them describes dynamic behavior of an ”averaged” oscillator zm

– another part describes dynamics of the network oscillators relative to the dynamics of

the averaged one.

That is why we characterize synchronization properties of the network in terms of sta-

bility of two compact sets :

– the synchronization manifold S(γ) which we define in the following way

S(γ) = {e ∈ CN : e1 = e2 = . . . = eN = 0}. (6.29)

– a compact invariant set W corresponding to the averaged oscillator. It is composed

of the origin and the limit cycle of zm.

To analyse stability properties of the set S(γ) we introduce the following definition of

practical stability of a set, which is similar to that of practical stability of an equilibrium

point –see [129].

Consider a parametrized system of differential equations

ẋ = f (x,ε), (6.30)

where x ∈ Rn and the function f : Rn → Rn is locally Lipschitz and ε > 0 is a scalar

parameter. We assume that ε∈ (0,ε◦]. For such a family we introduce the notion of global

practical uniform asymptotic stability with respect to closed, not necessarily compact,

sets. Given a closed set A ∈ Rn and x ∈ Rn, we define |x|A := in fy∈A |x− y|.
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Definition 15. For the system (6.30), the closed set A is practically globally uniformly

asymptotically stable (practical UGAS) if the system (6.30) is forward complete and

(1) for any given r > 0 there exists R > 0 and ε∗ ∈ (0,ε◦] such that for all ε ∈ (0,ε∗]

|x◦| ≤ r =⇒ |x(t,x◦,ε)| ≤ R, ∀t ≥ 0

(2) for any given (r,δ) with 0,δ < r, there exists ε∗ ∈ (0,ε◦] such that for all ε ∈ (0,ε∗]

|x◦|A 6 δ =⇒ |x(t,x◦,ε)|A ≤ r, ∀t ≥ 0

(3) for any given (r,δ) with 0,δ < r, there exists T = T (r,δ) and ε∗ ∈ (0,ε◦] such that for

all ε ∈ (0,ε∗] and all x◦ ∈ Rn such that |x◦|A ≤ r, we have

|x(t,x◦,ε)|A ≤ δ ∀t ≥ T.

If the last inequality holds for all x◦ ∈Rn then the set A is practically globally uniformly

asymptotically stable .

Remark 5. Similarly to the definition of UGAS of a set, the definition of practical

UGAS include three properties : uniform boundedness of the solutions with respect to the

set (part 1), uniform stability of the set (part 2) and and uniform practical convergence

to the set for all initial conditions x◦ ∈ Rn (part 3).

Notice that in new coordinates synchronization problem that we formulated in the sec-

tion 6.2 can be recast as a (practical) stability problem for the sets S(γ) and W .

6.5 Network dynamics in new coordinates

In this section we reformulate dynamics of system (6.18) in terms of coordinates zm and

e, later in this chapter it will be used for stability analysis of the network.

6.5.1 Dynamics of the averaged oscillator

From the definition of the averaged unit zm = ϑ>1 z and network dynamics (6.18) we

obtain that
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The derivative of zm is given as follows

żm = ϑ∗l1 ż = ϑ∗l1(Az−C(z)z)

= λ1ϑ>r1z−ϑ>r1 C(z)z
= λ1zm−ϑ>r1 C(z)z.

(6.31)

Some simple but tedious calculations presented in Appendix A, show that dynamics of

zm can be rewritten in terms of coordinates e and zm as follows

żm = (λ1− c|zm|2) zm + f2(zm,e), (6.32)

where c ∈ C is a constant defined as

c =
N

∑
i=1

ϑ
∗
li ϑ
∗
ri ϑ

2
ri (6.33)

and the function f2(zm,e) is given by the following expression

f2(zm,e) =

−ϑ
∗
l1


|z1|2 + z∗1vr11zm 0 0

0
. . . 0

0 0 |zN |2 + z∗Nvr1N zm

e

−ϑ
∗
l1


(vr1zm)2 0 0

0
. . . 0

0 0 (vrNzm)2

 ē,

(6.34)

where vri j corresponds to the i j− th element of the matrix Vγ.

It is important to note here that dynamics of thus defined average unit is linearly inde-

pendent of the gain of interconnections γ in the sense that parameter γ does not appear

explicitly in the equation (6.31) even though eigenvalue λ1(D) and corresponding eigen-

vector ϑr1 do depend on the gain γ implicitly. However, it easy to see from (6.13) that

dependence of λ1 on γ is inverse proportional, roughly speaking, λ1(D) = c+O(1
γ
), where

constant c depends only on the matrix M . The same type of relationship is also valid

for the eigenvector ϑr1.



Emergence of limit cycle oscillators network 92

6.5.2 Dynamics of synchronization errors

From the definition of the synchronization error (see section 6.4)

e = z−ϑ1z̄m =
(
I−ϑ1ϑ

>
1

)
z = Pz

and network dynamics (6.18) we obtain that the error dynamics of e as follows

ė = P ż = (I−ϑr1ϑ∗l1) ż,

= P Dz +(λ1I−P C(z))z,

(6.35)

where we recall that matrix D is a complex analog of a Laplacian matrix it was defined

in (6.17) as D = V Λ2V>, Λ2 = diag(0,λ2−λ1, . . . ,λN−λ1).

Next we need the following properties of the left and right eigenvectors of D associated

with the eigenvalue λ1(D) = 0

DP = D PD = D (6.36)

which can be easily deduced recalling that matrix P is a projection matrix.

Indeed,

D P = D (I−ϑr1 ϑ∗l1) = D−λD1D ϑ∗l1 = D

P D = (I−ϑr1 ϑ∗l1) D = D−λD1ϑr1D = D.

Then using the properties (6.36) equation (6.35) can be rewritten as

ė = P D e +(λ1e−PC(z)z)

= D e +(λ1e−PC(e,zm)(e + zm1)) . (6.37)

Thus, equations (6.32) and (6.37) represent dynamics of the network in new coordinates,

namely in terms of the averaged oscillator zm and synchronization errors e between each

of the individual oscillators and zm.

The next section will be devoted to the stability analysis of the network and we will

actively use it’s representation in new coordinates e and zm. For further convenience, we
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regroup here equations describing dynamics of the network in new coordinates

żm = (λ1− c|zm|2) zm +f2(zm,e), (6.38)

ė = D e +(λ1e−P C(e,zm)(e + zm1)) . (6.39)

In the following section two types of properties of the networked system (6.38) and (6.39)

will be investigated. The first aims to show how the coupling gain affects synchroniza-

tion of the network, while the second how network synchronization can contribute to

appearance of common, emergent behavior. In the first case we’ll be interested in the

analysis of the subsystem (6.39), while in the second case, we’ll analyse the subsystem

(6.38).

6.6 Practical synchronization of a diffusively coupled net-

work of Stuart-Landau oscillators

In this section we analyze the system (6.39) for the large values of the coupling gain γ,

that is we suppose that assumption 3 is satisfied. Here we present stability analysis of

the set S(γ) and formulate conditions that ensure practical global asymptotic stability

of this set, which imply practical synchronization of the network.

The following result, which can be deduced from [26], will be one of the key tools in our

subsequent analysis.

Theorem 15. Consider a system ẋ = f (x), where x∈Rn and f (·) is a continuous, locally

Lipschitz function. Assume that the system is forward complete, there exists a closed set

A ⊂ Rn and a C1 function V : Rn→ R+, functions α1,α2 ∈ K ∞, α3 ∈ K and a constant

c > 0 such that the following inequalities are satisfied

α1(|x|)A)≤V (x)≤ α2(|x|A)

V̇ ≤−α3(|x|A)+ c.

Then for any R,ε > 0 there exists a T = T (R,ε) such that for all t ≥ T and all x◦ such

that |x◦|A ≤ R

|x(t,x◦)|A ≤ r + ε,

where r = α
−1
1 ◦α2 ◦α

−1
3 (c).

Notice that even though the set S(γ) is not invariant for the oscillators network, we show

next that it appears to be practically stable for the system (6.38) and (6.39). That is,
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for the large values of γ the norm of error e(t) will be small and inversely proportional

to γ.

Let z◦ be initial conditions of the system with the property |z◦| ≤ R, where constant

R > 0 is arbitrary.

We introduce next the following change of coordinates

ev = V>γ e, (6.40)

where we recall that matrix Vγ is complex orthogonal and satisfies (6.19).

From the definition of the synchronization error e we obtain that the vector ev has the

following form

ev = V>γ e = V>γ (z−ϑr1zm) = V>γ z−V>γ ϑr1zm =


ϑ>r1

z
...
...

ϑ>rN
z

−


zm

0

0
...

0


=

(
0

ẽv

)

where ẽv = (ϑ∗l2z, . . . ,ϑ∗lNz)> ∈ CN−1 and we used the property

V>γ ϑr1 =


1

0
...

0

 .

Actually, vector ẽv coincides with the vector z̄2 introduced in section 6.3.3.

Using equation (6.37) for the dynamics of e we obtain that derivative of ev is given as

follows

ėv = Λ2 ev + λ1ev−V>γ P C(z) z, (6.41)

where matrix Λ2 was defined in (6.16) as

Λ2 =


0 0 0 0

0 λ2(Aγ)−λ1(Aγ) 0 0

0 0
. . . 0

0 0 0 λN(Aγ)−λ1(Aγ).


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To prove practical stability of the set S(γ), we define the following Lyapunov function

in terms of synchronization errors

V (ev) =
1
2

e∗v ev =
1
2

ẽ∗v ẽv (6.42)

Notice that thus defined Lyapunov function is positive definite in terms of ẽv since

V (ev) = 1
2 |ẽv|2. Calculating derivative of the function V (ev) along trajectories of the

system (6.41) we obtain

V̇ =
1
2

e∗v
(

Λ2 ev + λ1ev−V>γ P C(z) z
)

+
1
2

(
ev
∗Λ∗2 + ev

∗
λ
∗
1− z∗C∗(z)P∗(V>γ )∗

)
ev

=
1
2

e∗v (Λ2 + Λ∗2) ev +
1
2

e∗v (λ1 + λ
∗
1)ev−

1
2

(
e∗vV>γ P C(z) z +(V>γ P C(z) z)∗ ev

)
= e∗v Real(Λ2) ev +Real(λ1)|ev|2−g(ev,z), (6.43)

where g(ev,z) = e∗vV>γ P C(z) z +(V>γ P C(z) z)∗ ev.

In the section 6.2 we proved that solutions of the system (6.38) are ultimately bounded

and for any initial conditions |z◦| ≤ R there exists a time instant T (R) > 0 such that the

following bound holds for all t ≥ T .

|z(t,z◦)| ≤
√

2µN.

Ultimate boundedness of trajectories z(t) implies ultimate boundedness of zm(t) and

synchronization errors e(t), ev(t).

Using ultimate boundedness property we can also bound the term g(ev,z) as follows

| g(ev,z) |≤ c1 |ev|2 +c|z|4 ≤ c1|ev|2 +c2,

where the constants c1,c2 ∈R+ depend on µ and are independent of γ.

Using thus obtained bounds we have that for all t ≥ T

V̇ ≤ Real(λ2−λ1)|ev|2 +Real(λ1)|ev|2+ | g(ev,z) |

Since ev is ultimately bounded we have that there exists constant c = c(µ) such that for

all t ≥ T

Real(λ1)|ev|2 + c1|ev|2+ | g(ev,z) |≤ c
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and therefore

V̇ ≤ Real(λ2)|ev |2 +λ1|ev|2 +c1 |ev|2 +c2 = (Real(λ2−λ1)|ev|2 + c

≤ 1
2

(Real(λ2−λ1)|ev|2 +
1
2

(Real(λ2−λ1)

(
|ev|2 +

2
Real(λ2−λ1)

c
)

Since by construction we have that for all γ ≥ γ∗ matrix Λ2 is non-positive, that is

Re(λ2−λ1) < 0, then from theorem 15 it follows that there exists T ∗ such that

|ev(t)|2 ≤ 2c
|Real(λ2−λ1)|

for all t≥ T∗.

From (6.40) and complex orthogonality of the matrix Vγ we have that e = Vγev and

therefore for all t ≥ T ∗ we have that

|e(t)|= |Vγ| |ev(t)| ≤ 2c
|Real(λ2−λ1)|

.

Finally, we note that limγ→∞ Re(λ2) =−∞ and therefore we obtain practical stability of

the set S(γ).

Theorem 16. Consider the system (6.4), (6.5) and let assumption 3 be satisfied. Then

the set S(γ) is globally practically stable for all γ≥ γ∗. Moreover, there exists T ∗ > 0 and

constant c> 0 independent of γ such that synchronization errors e(t) satisfy the following

bound for all t ≥ T ∗

|e(t)|2 ≤ 2c
|Real(λ2−λ1)|

. (6.44)

From the proof of the theorem we see that the synchronization result is mostly based

on only two properties of the networked system, namely, negative definiteness of the

second smallest eigenvalue of the Laplacian matrix L and uniform boundedness of the

trajectories of the network.

Theorem 16 implies that for given arbitrary large ball of initial conditions Br = {z ∈
CN : |z| ≤ R} and arbitrary small constant δ > 0, we can always find constants γ(R,δ)

and t∗(R,δ) such that for the network of the Stuart-Landau oscillators with the coupling

gain γ synchronization errors e(t,z(0)) satisfy the following bound

|e(t,z◦)| ≤ δ for all t ≥ t∗.
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6.7 On practical stability of the invariant set for the ave-

raged oscillator

Next, we consider behavior of zm. To that end we first note that, from (6.32), (6.34), the

dynamics of zm may be seen as a perturbation of an Stuart-Landau oscillator with an

input that linearly depends on |e| that is,

żm = (λ1− c|zm|2) zm + u, (6.45)

where u = f2(zm,e).

We remark here that this term is locally Lipschitz in terms of synchronization errors

e, while zm(t) is ultimately bounded. Therefore we can consider equation (6.26) as a

perturbation of a Stuart-Landau oscillator by bounded (and inverse proportional to γ)

disturbances. That is why in the following next sections we will first analyse stability

and robustness properties of a generalized Stuart-Landau oscillator and in the end will

apply these results to the analysis of the system (6.45).

6.7.1 Dynamics of a generalized Stuart-Landau oscillator

Later in the chapter we would need to analyze behavior and robustness of a generalized

Stuart-Landau oscillator, that is an oscillator whose dynamics is given by the following

equation

ż =−ν|z|2z + µz + u (6.46)

where z,u ∈C are respectively the state and input of the oscillator, ν = ν1 + iν2 ∈C and

µ = µ1 + iµ2 ∈ C are complex parameters and we assume that ν1 > 0, since otherwise

either solutions of the system will expose in finite time for ν1 > 0 or the oscillator will

be just a linear system for ν1 > 0.

As it was mentioned in the chapter 2, analysis of such oscillators (with u ≡ 0) is well

documented in the literature using both Lyapunov second method and Lyapunov ex-

ponents for the oscillators for the case ν1 = 1, however we were unable to find neither

analysis of the system (6.46) using second Lyapunov method with ν1 6= 1 nor analysis of

(6.46) in the presence of disturbances, i.e. case u 6= 0. That is why we start this chapter

with the analysis of a generalized Stuart-Landau oscillator (6.46).



Emergence of limit cycle oscillators network 98

Invariant set for the system (6.46)

Let us consider first the case when no perturbations affect the oscillator, i.e. when u≡ 0.

As it was mentioned in the chapter 2, invariant set W ∈C of the unperturbed oscillator

(6.46) depends on the sign of µ1. Namely, if µ1 ≤ 0, then the invariant set W is just the

origin, i.e. W = {z = 0}, in case µ1 > 0, this invariant set is composed of two elements :

origin and limit cycle of amplitude
√

µ1/ν1, that is

W = {z = 0}
⋃{

z ∈ C : z = 0 ||z||=
√

µ1

ν1

}
. (6.47)

Stability analysis of the invariant set W

Similar to analysis done in [101] for the case of ν1=1 and ν2 = 0, we can prove the

following result for the general case of Stuart-Landau oscillator (6.46).

Theorem 17. Consider a Stuart-Landau oscillator (6.46) with input u ≡ 0. The follo-

wing statements hold for this system

(1) if Re(ν) ≤ 0 then the origin z ≡ 0 is globally asymptotically stable for the system

(6.46).

(2) If Re(ν) > 0 then the limit cycle W1 = {z : |z|=
√

ν1/µ1} is almost globally asympto-

tically stable and the origin z = 0 is antistable for the system (6.46).

Moreover, in this case frequency ω of oscillations on the limit cycle is defined by the

following equation

ω = µ2−
ν2

ν1
µ1

Proof.

Part (i).

Proof of GAS of the origin z = 0 follows easily using Lyapunov function V (z) = 1
2 z∗z = |z|2.

Indeed, taking the derivative of V (z) along trajectories of (6.46) we obtain

V̇ (z) =
1
2

d
dt

z∗z =
1
2

(ż∗z + z∗ż)

=
(
(−ν̄|z|2z∗+ µ̄z∗)z + z∗(−ν|z|2z + µz)

)
= −(ν + ν̄)|z|4 +(µ + µ̄)|z|2

= −ν1|z|4 + µ1|z|2.
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Since in this case we have that µ1 ≤ 0, then trivially V̇ (z) < 0 for all z 6= 0 and GAS of

the origin follows.

Part (ii).

First we note that antistability of the origin follows trivially using the same Lyapunov

function V (z) = 1
2 z∗z = |z|2 and linearization of the system (6.46) around the origin.

Next, to analyze stability properties of the limit cycle for the system (6.46) with µ1 > 0

we introduce the following Lyapunov function

V (z) =
1

4ν1
(z∗z−α)2 , (6.48)

where α = µ1/ν1 = Re(µ)/Re(ν).

Notice that V (z) = 0 for all z belonging to the limit cycle.

Taking derivative of this Lyapunov function along solutions of the system (6.46) we

obtain

V̇ (z) =
1

2ν1
(z∗z−α)

d
dt

z∗z

=
1

2ν1
(z∗z−α)(ż∗z + z∗ż)

=
1

2ν1
(z∗z−α)

(
(−ν̄|z|2z∗+ µ̄z∗)z + z∗(−ν|z|2z + µz)

)
.

Regrouping the terms in the last bracket we obtain that

V̇ (z) =
1

2ν1
(z∗z−α)

(
(−(ν + ν̄)|z|4 +(µ + µ̄)|z|2

)
=

1
ν1

(
|z|2−α

)(
−ν1|z|4 + µ1|z|2

)
=

1
ν1

(
|z|2−α

)(
−ν1|z|2 + µ1

)
|z|2

= −
(
|z|2−α

)2 |z|2,

where in the last lines we used the definition of the constant α.

It is easy to see that derivative of this Lyapunov function is negative definite for all z

except those belonging to the set W , since the origin is antistable, almost GAS of the

limit cycle follows. �

Analysis of the invariant set W in the presence of disturbances

In case of µ1 > 0 we just proved that Landau-Stuart oscillator with no external distur-

bances has a limit cycle which is almost globally asymptotically stable. Next we analyse
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robustness of this system with respect to disturbances. Usually Input-to-state stability

is an adequate tool for robustness analysis of nonlinear systems.

However, in our case in this classical input to state stability theory is inapplicable because

for a single Stuart-Landau oscillator (see equation (6.1)), stability is ensured only for

almost all initial conditions. Thus standard ISS tools can’t be applied to analysis of the

system (6.46) as they only apply in the case when attractor of the system is globally

asymptotically stable.

Several results in the literature deal with this situation, in particular notion of almost

Input-to-State Stability was introduced in [7], see also [9].

In order to analyze system (6.46) in the presence of disturbance we use the recently

developed tools for Input-to-State Stability analysis of decomposable invariant sets [8].

Main advantage of this approach is that it allows to analyze robustness properties of

the complex invariant sets without use of tools involving manifolds and dimensionality

arguments and it is applicable when invariant set is compact and allows finite decom-

position without cycles (see [8], section II) as it is the case for a single Stuart-Landau

oscillator.

We briefly summarize below the definitions and tools from [8] required for the robustness

analysis of the system (6.46).

Input-to-State Stability with respect to decomposable invariant sets

Consider a nonlinear system

ẋ(t) = f (x(t),d(t)), (6.49)

where the map

f (x,d) : M×D→ TxM

is assumed to be of class C 1, M is an n dimensional C 2 connected and orientable Rie-

mannian manifold without boundary and D is a closed subset of Rm containing the

origin.

Let W be a compact invariant set containing all α and ω limit sets of the system

ẋ(t) = f (x(t),0).

The following assumption is imposed on W :
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Assumption 4. [8]. The set W admits a finite decomposition without cycles, W =⋃k
i=1 Wi, for some non-empty disjoint compact sets Wi, which form a filtration ordering

of W , as detailed in definitions 4 and 5 of [8] 2.

Definition 16. [8]. We say that system (6.49) has the asymptotic gain (AG) property

if there exist η∈K∞ such that for all x∈M and all measurable essentially bounded inputs

d(∆) solutions are defined for all t ≥ 0 and the following holds :

limsup
t→+∞

|X(t,x;d)|W ≤ η(||d||∞). (6.50)

Definition 17. [8]. We say that a C 1 function V : M→ R is an ISS-Lyapunov function

for (6.49) if there exists K∞ functions α1, [α2], α and γ, and a non-negative real [c] such

that :

α1(|x|W )≤V (x)≤ [α2(|x|W )+ c

the function V is constant on each Wi and the following dissipation holds :

DV (x) f (x,d)≤−α(|x|W )+ γ(|d|).

As the authors of [8] remark, α1 and c are in brackets since their existence follows

(without any additional assumptions) by standard continuity arguments.

Another important issue underlined in [8] is that existence of an ISS Lyapunov function

from the last definition is possible for a set W admitting a decomposition without cycles

only. Thus existence of such ISS Lyapunov function implies that assumption 4 is satisfied.

The following theorem (Theorem 1 from [8]) will be the main tool for robustness analysis

of (6.46).

Theorem 18. [8] Consider a nonlinear system as in (6.49) and let W be a compact

invariant set containing all α and ω and limit sets of as in Assumption 1. Let W be a

compact invariant set containing all and limit sets of ẋ(t) = f (x(t),0) as in Assumption

4. Then the following facts are equivalent :

– The system (6.49) enjoys the AG property ;

– The system(6.49) admits an ISS Lyapunov function.

2. We don’t present here these definitions because, as we will see below, in case of Stuart-Landau
oscillator this assumption is satisfied due to existence of an ISS-Lyapunov function
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6.7.1.1 Robustness analysis of Stuart-Landau oscillator

Next we apply results presented above to analysis of the system (6.46). In this case the

invariant set W given by (6.47) is composed of two elements : the (antistable) origin

and (almost GAS) limit cycle.

In this case norm | · |W is defined as follows

|z|W =

 |z| if |z| ≤ 1√
2

√
α√

|z|2− µ1
ν1

if |z| ≥ 1√
2

√
α

(6.51)

where we recall that µ1
ν1

= α.

The following result ensures that the system (6.46) enjoys the AG property, that is

asymptotically the distance between the oscillator’s trajectory and set W is proportional

to the size of perturbations ||d||∞.

Theorem 19. Consider the system (6.46) with initial conditions z0 and let the set W
be defined by (6.47). Then the system (6.46) has the asymptotic gain property, i.e. the

following upperbound holds

limsup
t→+∞

|z(t,z0;u)|W ≤ η(||u||∞). (6.52)

Proof.

For the system (6.46) consider the following candidate for the ISS Lyapunov function

V (z) = 1
4ν1

(z∗z−α)2, which we used previously to prove almost GAS property for the

system (6.46) – see (6.48).

Taking derivative of V (z) along trajectories of the system (6.46) we obtain

V̇ (z) =
1

2ν1
(z∗z−α)

d
dt

z∗z =
1

2ν1
(z∗z−α)(ż∗z + z∗ż)

=
1

2ν1
(z∗z−α)

(
(−ν̄|z|2z∗+ µ̄z∗+ u∗)z + z∗(−ν|z|2z + µz + u)

)
=

1
2ν1

(z∗z−α)
(
(−ν̄|z|2z∗+ µ̄z∗)z + z∗(−ν|z|2z + µz)

)
+

1
2ν1

(z∗z−α)(u∗z + z∗u)) .
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Using the derivations from the theorem 17 we obtain that

V̇ (z) = −
(
|z|2−α

)2 |z|2 +
1

2ν1
(z∗z−α)(u∗z + z∗u)

≤ −
(
|z|2−α

)2 |z|2 +
1
ν1

(z∗z−α) |z| |u|

≤ −1
2
(
|z|2−α

)2 |z|2 +
1

2ν1
||u|2,

where we used triangular inequality ab≤ 1
2(a2 + b2) in the last line.

Next we bound derivative of V (z) in terms of |z|W . To bound the term
(
|z|2−α

)2 |z|2 let

us use (6.51) and consider two cases separately.

Case 1. Let |z| ≤ 1√
2

√
α or equivalently |z|2 ≤ 1

2 α,then we have that |z|W = |z| and

−
(
|z|2−α

)2 ≤−
(

1
2

α−α

)2

|z|2 ≤−1
4

α
2|z|2 ≤−1

4
α

2|z|2W

Case 2. Let |z| ≥ 1√
2

√
α or equivalently |z|2 ≥ 1

2 α, then we have that |z|W =
√
|z|2−α

and

−
(
|z|2−α

)2 |z|2 ≤−1
2

α
(
|z|2−α

)2
=−1

2
α|z|2W

Combining the two cases together and denoting c3 = min{1
4 α2, 1

2 α} we obtain that

V̇ (z)≤−c3|z|2W

This proves that V (z) is an ISS-Lyapunov function and by Theorem 18 the system enjoys

AG property. �

6.7.2 Practical stability of the invariant set

Finally let us again consider equation (6.45) which describes dynamics of the averaged

oscillator

żm = (λ1− c|zm|2) zm + u,

where u = f2(zm,e). Combining previous results on the robustness of the invariant set

W (theorem 19) and practical stability of synchronization errors (theorem 16) we obtain

the following result

Theorem 20. Consider the network of Stuart-Landau oscillators described by equations

(6.4), (6.5) and averaged oscillator of the network defined by (6.26), whose dynamics is

given by equation (6.45). Let assumption 3 be satisfied. Then the system (6.45) has an
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asymptotic gain property and moreover for any ε > 0 there exists a gain γ≥ γ∗ such that

the following bound is satisfied

limsup
t→+∞

|zm(t,z◦)|W ≤ ε.

Proof.

Let γ≥ γ∗ and R > 0 be arbitrary and consider system (6.4), (6.5) with initial conditions

z◦ such that |z◦| ≤ R.

From theorem 2 we have that solutions of the system (6.4), (6.5) are ultimately bounded

and hence there exists a T = T (R) such that bound (6.8) is satisfied for all t ≥ T .

Now let us consider dynamics of the averaged oscillator (6.45) given by

żm = (λ1− c|zm|2) zm + f2(zm,e),

where function f2(zm,e) was defined in (6.34).

From the expression (6.34) we have that function f2(zm,e) is locally Lipschitz in e
and moreover due to the ultimate boundedness of solutions we have that there exists a

constant c3 > 0 such that for all t ≥ T we have that

| f2(zm(t),e(t))| ≤ c3|e(t)|.

Thus applying theorem 19 with u(t) = f2(zm(t),e(t)) and t ≥ T we have that solutions

of equation (6.45) satisfy the asymptotical bound

limsup
t→+∞

|zm(t,z◦)|W ≤ η(||e||∞).

At the same time, from theorem 16 we have that there exist a T ∗ > T and a constant

c > 0 independent of γ such that for all t ≥ T ∗ synchronization errors e(t) satisfy the

following bound

|e(t)|2 ≤ 2c
|Real(λ2−λ1)|

.

Combining the last two bounds we obtain that for all t ≥ T ∗

limsup
t→+∞

|zm(t,z◦)|W ≤ η(
2c

|Real(λ2−λ1)|
).
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Repeating the same argument as before that

lim
γ→∞

Real(λ2−λ1 =−∞

and using the fact that η ∈ K ∞ we obtain that for any ε > 0 there exists a γ > γ∗ such

that

η(
2c

|Real(λ2−λ1)|
)≤ ε

and therefore

limsup
t→+∞

|zm(t,z◦)|W ≤ ε.

Thus we obtained that for the system (6.45) the invariant set W is practically stable

in the sense that increasing the interconnection gain γ we can make solutions zm(t,z◦)

converge arbitrary close to the set W . �

Combining this result with theorem 16 we conclude that all solutions of the system (6.4),

(6.5) practically converge to the set W .

6.8 Example : network of four Stuart-Landau oscillators

For illustration, we consider a Stuart-Landau model with symmetric connected graph,

as illustrated in Figure 6.1. The dynamics of the interconnected oscillators, for α = 4, is

given by
dz j

dt
= (α−|z j|2 + i ω j) z j + γ

N

∑
i=1

a ji (zi− z j) j = 1 . . .4, (6.53)

where the Laplacian matrix L = [li j] is

L =


3 −1 −1 −1

−1 2 −1 0

−1 −1 3 −1

−1 0 −1 2



Firstly, we re-write the system’s equations (5.15) in polar coordinates with z j = R jeiθ j ,

thus we have

Ṙ j = (α−R2
j)R j + γ

N

∑
i=1

a ji (Ri cos(θi−θ j)−R j), j = 1 . . .4, (6.54)

θ̇ j = ω jR j + γ

N

∑
i=1

a ji Ri sin(θi−θ j), j = 1 . . .4. (6.55)
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Figure 6.1 – Symmetrically connected graph with four nodes

Numerical simulations show that each oscillator rapidly reaches a common limit cycle

when the coupling strength is sufficiently large. The phase portrait of the system is

depicted in Fig.6.2 for four coupling strengths γ ∈ {2, 8, 20, 70}.

In Fig. 6.3, we can see clearly the full synchronization of the system (6.53) for a strong

coupling strength (γ = 70) i.e. the limit-cycle oscillators (6.53) synchronize their ampli-

tudes and also their frequencies and phases (phase locked). Fig. 6.3(b) represent the

evolution of the radius of oscillators defined in (6.54). Fig. 6.3(c) display the temporal

evolution of all individual phase values θ j. Fig. 6.3(d) present the evolution of angular

frequency of the oscillators defined via (6.55).
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Figure 6.2 � The phase portrait of the system (6.53) for four coupling strengths. For
� weak. Fig.(a) illustrates the incoherence of oscillators, when � grow su�ciently we

remark, from Fig.(d) the apparition of perfect synchronous limit cycle.
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Figure 6.3 – Full synchronization of system (6.53) with the vector of natural frequen-
cies w> = [5 12 18 7] for strong coupling strength (γ = 70).
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As it is proved in the previous sections, the synchronization frequency and the amplitude

of synchronous limit cycle is completely defined by the first eigenvalue λ1 of A = αI−
γ L + iΩ and its corresponding eigenvectors. The synchronous limit cycle is defined by

the Landau-Stuart equation

żm = (λ1− c|zm|2) zm (6.56)

with c = ∑
N
i=1 v∗l1i

v∗r1i
v2

r1i
.

Therefore, the radius of the limit cycle is R =
√

Real(λ1)Real(c)
|c| and the frequency of oscil-

lation ωm = Img(λ1). In Fig. 6.4(a) we present the evolution of angular frequency of the

oscillators defined via (6.53) with the vector of natural frequencies w> = [5 12 18 7] and

the coupling strength γ = 70.

In Fig. 6.4(b), we present the evolution of Img(λ1(A)) in function of the coupling strength.

Figure 6.4 – Synchronization of angular frequencies for the system (6.53) (a) and the
comparison of the synchronization frequency ωm with the value of Img(λ1(A)) (b).
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In Fig. 6.5 we compare the evolution of the radial component of the system (5.15) –Fig.

6.5 (a) against the evolution of the radius of the synchronous limit cycle R –Fig. 6.5(b).

Figure 6.5 – The evolution of the radial component of the system (6.53) (a) and the
radius of the averaged limit cycle R (b).



Chapter 7

Conclusions and perspectives

Contents

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Synchronization phenomena in large populations of coupled oscillatory systems are the

subject of research in different domains and appear in physical, biological, chemical,

and social systems. One approaches to analysing this phenomena consists of modelling

each element of the population by a canonical model with few parameters. The most

important benefit of using canonical models to study the synchronization phenomena in

large oscillator networks is their simplicity. In this thesis, synchronization is analyzed

for two of the most representative models of coupled oscillators, the Kuramoto model

as phase oscillator model and Landau-Stuart model as limit-cycle oscillator model. The

choice of models is motivated by two reasons. First, these models are not too complicated

and are still tractable ; and second, these models are rich enough to present a large variety

of synchronization patterns which allows us to represent large classes of systems with

very few assumptions and parameters.

By avoiding the complications generated by particular details of a given system, we

also keep away from conjectural or specious results that may be caused by the specific

features of the chosen model. Throughout this thesis we have studied a few systems of

coupled heterogeneous oscillators and with various types of interactions. In particular,

we studied heterogeneous phase oscillator networks with complete or complex interaction

topologies. We have done this with the hope that the choice of the coupling parameters

may help to advance the analysis of more general forms of system interactions.

In the following two sections, we summarize the contributions of this thesis and suggest

few directions for future research.
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7.1 Summary

In Chapter 1, we gave a general presentation of self-synchronization phenomena and

a motivation for the study of complex oscillator networks. We emphasized the impor-

tance of the synchronization in various applications, and we outlined the contents and

contributions of this thesis.

In Chapter 2, we reviewed the main features of the Kuramoto model and we roughly

presented the phase reduction of coupled limit cycle oscillators. Additionally, we dis-

cussed different synchronization notions and introduced some definitions and results

from algebraic graph theory and consensus protocols, which proved to be valuable tools

throughout this thesis.

In Chapter 3, we analyzed heterogeneous oscillators interacting through a complex net-

work ; namely, a network of Kuramoto oscillators with a strongly connected intercon-

nection graph was considered. Conditions for frequency synchronization were presented

and it was shown that the synchronization frequency depends on the coupling strengths

and the analytical expression for the limit of synchronization frequency was given for

the case when coupling strength is sufficiently large. Additionally, we showed that the

problem of existence of the phased locked solutions for the Kuramoto model with an

arbitrary interconnection topology can be recast as a problem of existence of a linear

system with certain properties, and defined the corresponding linear system of complex

variables. Moreover, necessary and sufficient conditions for the existence of phased locked

solutions were formulated.

In Chapter 4, a network of Kuramoto oscillators with non-uniform weights of inter-

connection was considered, and necessary and sufficient conditions for the existence of

phase locked solutions were presented. In fact, we analyzed synchronization phenomena

in networks of phase oscillators with two sources of heterogeneity. We have considered,

as in the previous chapter, that natural frequencies of the oscillators are different and

additionally, we have assumed that the individual contribution of oscillators to the mean

field is weighted by two factors. These factors represent the input and output weight of

the oscillators. For this particular input-output weight model, it was shown that the

synchronization frequency depends on the interconnection weights and an analytical ex-

pression for the synchronization frequency was given. Local asymptotic stability of one

phase locked solution was proven as well as instability of other phase locked solutions.

In the previous chapters, we considered the problem of phase synchronization of phase

and frequency synchronization for the Kuramoto model with positive gains ; that is, only
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attractive interactions between oscillators were considered. However, interplay of attrac-

tive and repulsive interactions can play an important role in the context of dynamical

networks. The crucial role of repulsive interactions in synchronization phenomena was

studied analytically in [92] and confirmed experimentally in [141].

In Chapter 5, also as in Chapter 4, we considered a scenario when the coupling coefficient

of each pair can be separated into two different factors, input-output weights. Thus, we

have analysed phase and frequency synchronization of the Kuramoto model with a si-

gned weighted digraph of interconnection. Motivation for this work has been to examine

the effect of the repulsive coupling on the system’s dynamics and on synchronization

frequency. We have showed that in the case of a weighted sign-symmetric graph of in-

terconnection, existence and stability of phase locked solutions for the Kuramoto model

with positive weights guarantees the existence of the whole family of Kuramoto models

defined by the initial model and a family of gauge transformations of interconnection

matrix. We also gave an exact expression for synchronization frequency and presented

local stability analysis.

Chapter 6 was devoted to the analysis of collective behaviour in populations of periodic

oscillators. We considered a network of diffusively coupled Stuart-Landau oscillators with

a directed interconnection graph. To analyse the stability of such a network we proposed

using results on practical stability which allows the study of stability or synchronization

properties in cases when only approximations of the limit cycle and synchronization

frequency are available. Therefore, we have shown that if the coupling strength is suf-

ficiently large, the networked system practically synchronizes to a common limit cycle.

We also provided an analytical expression for the approximate synchronized dynamics

and analysed its stability properties.

7.2 Future research

Despite the vast literature on applications, numerical and theoretical analysis of synchro-

nization of oscillators networks, many interesting problems still remain. In the following

section, we present few directions for future research which stem from the results of this

thesis.

Kuromato model

– All stability results that were presented in Chapters 4-5 are local of nature. The

extension of these results for, at least, some bounded domain of initial conditions

similar to the results of [24], seems to be possible.



Conclusions and perspectives 114

– Extension of the results of chapters 4 and 5 on input-output weighted complete interac-

tion digraph to other cases of network interconnection topology, such as, for example,

ring network [108] and small word network [56], [123].

– Robustness analysis of frequency and phase synchronization vis-a-vis bounded per-

turbations including particular cases of white and colored noise also represents an

interesting direction of research.

– Control of the Kuramoto model, using pining strategies or mean-field control can be

done using the same framework as proposed in chapter 3-5. In both cases, the control

objective can be either synchronization of initially non-synchronized model, as it is

done in [119], or desynchronization of a synchronized Kuramoto model, similar to [39].

Landau-Stuart model

In Chapter 6 we analysed the synchronization properties of a network of Landau-Stuart

oscillators under the following assumption that interconnections among the oscillators

are linear and could be presented in the form of a symmetric Laplacian matrix with

non-negative coefficients.

In the future, we plan to relax these assumptions in several directions. In particular,

– Extension of the stability results for the network of Landau-Stuart oscillators to the

case where digraph of interconnections is signed can be done combining tools proposed

in Chapter 6 with the approach proposed in [5] and used in Chapter 5.

– In a similar way, the extension of the results of Chapter 6 to the case of a non-

symmetric Laplacian matrix seems possible, but will require more defined tools from

linear algebra and theory of perturbation for eigenvalues in particular.

– Only the case of linear interconnections was considered in Chapter 6 ; an extension of

these results to the case of more realistic non-linear interconnections seems to be a

challenging but necessary step in the analysis of oscillatory networks.

– Finally, an analysis of this chapter was done for large values of interconnection gain

with the objective to ensure a practical synchronization oscillators network. It is well

known that for smaller gains synchronization of Landau-Stuart oscillators is not pos-

sible and network exhibits other types of behaviour, see [40]. It would be interesting

to analyse such a situation using the tools developed in Chapter 6.
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Annexe A

Derivation of the average

oscillator model
Consider the function F(z) = C(z) z, where we recall that C(z) = diag(|z1|2, . . . , |zN)|2),

Z = diag(z1, . . . ,zN) and Z∗ = diag(z∗1, . . . ,z
∗
N). We can write the derivative of zm as follows

żm = λ1 zm−ϑ∗l1 F(z),

= λ1 zm−ϑ∗l1 C(z) e−ϑ∗l1


z∗1vr11zm 0 0

0
. . . 0

0 0 z∗Nvr1N zm

 e

−ϑ∗l1


(vr11zm)2 0 0

0
. . . 0

0 0 (vr1N zm)2

e∗
>−α|zm|2 zm,

= λ1 zm−α|zm|2 zm−ϑ∗l1


|z1|2 + z∗1vr11zm 0 0

0
. . . 0

0 0 |zN |2 + z∗Nvr1N zm

 e

−ϑ∗l1


(vr11zm)2 0 0

0
. . . 0

0 0 (vr1N zm)2

 ē,

= fm(zm)−ϑ∗l1


|z1|2 + z∗1vr11zm 0 0

0
. . . 0

0 0 |zN |2 + z∗Nvr1N zm

 e

−ϑ∗l1


(vr11zm)2 0 0

0
. . . 0

0 0 (vr1N zm)2

 ē,
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Using the definition of the synchronization error e = z−ϑrzm we can express F(z) as a

function of zm and e as follows

F(Z) = C(z) z,

= C(z) (z−ϑr1 ϑ
∗
l1 z)+C(z) ϑr1 ϑ

∗
l1 z,

= C(z) e+C(z) ϑr1 zm,

= C(z) e+ Z∗ Z ϑr1 zm,

= C(z) e+ Z∗


z1− vr11zm 0 0

0
. . . 0

0 0 zN− vr1N zm

ϑr1zm+

Z∗


vr11zm 0 0

0
. . . 0

0 0 vr1N zm

ϑr1 zm,

= C(z) e+ Z∗


e1 0 0

0
. . . 0

0 0 eN

ϑr1 zm+

Z∗


vr11zm 0 0

0
. . . 0

0 0 vr1N zm

ϑr1 zm,

= C(z) e+ Z∗


vr11zm 0 0

0
. . . 0

0 0 vr1N zm

 e+


z∗1− v∗r11

z∗m 0 0

0
. . . 0

0 0 z∗N− v∗r1N
z∗m




vr11zm 0 0

0
. . . 0

0 0 vr1N zm

ϑr1 zm

+


v∗r11

z∗m 0 0

0
. . . 0

0 0 v∗r1N
z∗m




vr11zm 0 0

0
. . . 0

0 0 vr1N zm

ϑr1 zm,

(A.1)
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= C(z) e+ Z∗


vr11zm 0 0

0
. . . 0

0 0 vr1N zm

 e+


e∗1 0 0

0
. . . 0

0 0 e∗N




vr11zm 0 0

0
. . . 0

0 0 vr1N zm

ϑr1 zm+


v∗r11

0 0

0
. . . 0

0 0 v∗r1N




vr11 0 0

0
. . . 0

0 0 vr1N

ϑr1 |zm|2 zm.

Let us define the constant α ∈ C in this form

α = ϑ
∗
l1


v∗r11

0 0

0
. . . 0

0 0 v∗r1N




vr11 0 0

0
. . . 0

0 0 vr1N

ϑr1 ,

=
N

∑
i=1

v∗l1i
v∗r1i

vr1i vr1i =
N

∑
i=1

v∗l1i
v∗r1i

v2
r1i
.

Therefore, we have

żm = (λ1−α|zm|2) zm + f2(zm,e),

with

f2(zm,e) =−ϑ
∗
l1


|z1|2 + z∗1vr11zm 0 0

0
. . . 0

0 0 |zN |2 + z∗Nvr1N zm

 e−ϑ
∗
l1


(vr11zm)2 0 0

0
. . . 0

0 0 (vr1N zm)2

 ē.





Annexe B

Matrix properties

Lemma 3. Let Ã and B̃ be symmetric matrices in RN×N, with B̃ positive semi-definite.

Then

λi(Ã + B̃)≥ λi(Ã), ∀i ∈ {1, . . . ,N}.

If B̃ is positive definite then

λi(Ã + B̃) > λi(Ã), ∀i ∈ {1, . . . ,N}.

Lemma 4. Suppose that A ∈ Mm,n and B ∈ Mn,m with m ≤ n. then BA has the same

eigenvalues as AB, counting multiplicity, together with an additional n−m eigenvalues

equal to zero.

Theorem 21. (Gershgorin Circle Theorem [50]) Let A be a complex (n×n) matrix, with

entries ai j. For i ∈ {1, . . . ,n}, let Ri = ∑ j 6=i |ai j| be the sum of the absolute values of the

non-diagonal entries in the i− th row. Let D(aii,Ri) be the closed disc centred at aii with

radius Ri. Such a disk is called a Gershgorin disk. Then, each eigenvalue of A is in at

least one of the disks {z : |z−ai j| ≤ Ri}.

Theorem 22. (Sylvester’s Law of Inertia [55]) Let A, B∈Mn be Hermitian. Then A and

B are congruent if and only if they have the same inertia.
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