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RESUME 

 
Une distribution hétérogène des lipides est essentielle à l’identité et à la fonction des 

diverses organelles qui constituent les cellules eucaryotes. Néanmoins, l’échange incessant 

de matériel entre ces organelles, notamment par les processus de transport vésiculaire, tend 

à annuler ces différences de composition. Ainsi, il existe des mécanismes de synthèse et de 

transport de lipides qui assurent à tout instant le maintien de ces compositions lipidiques, 

autrement dit, qui garantissent l’homéostasie cellulaire des lipides.  

Alors que la plupart des lipides est synthétisée au réticulum endoplasmique (RE) et 

doit être transportée vers sa destination, certains sont métabolisés dans d’autres organelles, 

établissant un réservoir de lipides spécifiques à celles-ci. Cela est le cas, par exemple, des 

sphingolipides complexes, des phosphoinositides, ainsi que des lipides mitochondriaux (van 

Meer, Voelker et al. 2008). Les mécanismes de transport actif de lipides entre organelles 

peuvent être divisés en deux classes:  

- Le transport vésiculaire sélectif, permettant l’intégration ou l’exclusion de certains lipides 

dans les vésicules de transport naissantes afin d’en augmenter ou d’en diminuer le niveau. 

- Le transport non-vésiculaire, dépendant de protéines de transfert de lipides (lipid 

transfer proteins, LTPs), capables d’extraire un lipide d’une membrane pour le protéger 

du milieu aqueux et ce afin de le transporter vers une deuxième membrane et de l’y 

insérer.  

La participation des LTPs à la formation d’un gradient lipidique, nécessaire pour 

maintenir l’homéostasie lipidique, est un sujet particulièrement intéressant et méconnu. 

Forts de ce constat, nous avons cherché à comprendre comment des LTPs appartenant à la 

famille ORP/Osh peuvent contribuer à cette régulation, en nous attachant plus précisément à 

étudier comment ces protéines parviennent, par transport de lipides à travers le cytosol, à 

créer et à maintenir un gradient de concentration de certains lipides entre le RE et les 

membranes tardives de la voie sécrétoire.  

Les Oxysterol-Binding Protein (OSBP)-Related Proteins (ORP) chez les mammifères et 

les protéines Osh chez la levure à bourgeons Saccharomyces cerevisiae sont des 

transporteurs de lipides. L’accessibilité des protéines Osh ainsi que leur relative simplicité par 
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rapport à leurs homologues humains nous ont permis d’effectuer des analyses mécanistiques 

approfondies. Il a été décrit récemment que la protéine Osh4p peut, entre deux membranes, 

échanger de l’ergostérol (le stérol majoritaire chez la levure) contre un deuxième ligand 

lipidique, le phosphatidylinositol-4-phosphate (PI(4)P) présent sur la face trans de l’appareil 

de Golgi (de Saint-Jean, Delfosse et al. 2011). Le PI(4)P y est synthétisé par une des PI 4-

kinases et hydrolysé sur les membranes du RE par la PI(4)P phosphatase Sac1p, assurant ainsi 

un gradient de concentration du PI(4)P entres ces organelles (Manford, Xia et al. 2010).  

 

Modèle de travail.  
Le contre-échange entre l’ergostérol et du PI(4)P permettrait à Osh4p d’utiliser l’énergie du 

métabolisme des phosphoinositides pour transporter de l’ergostérol du réticulum endoplasmique (ER) 

au trans-Golgi en créant ainsi un gradient de stérol. 

 

Dans le but d’observer le transport lipidique, nous avons opté pour une approche 

reconstructive. L’utilisation de membranes artificielles, de protéines recombinantes purifiées 

à homogénéité ainsi que de lipides naturellement fluorescents et la création de sondes 

fluorescentes spécifiques à certains lipides, nous ont permis d’effectuer nos recherches dans 

des conditions de haute résolution temporelle, tout en évitant des influences extérieures.  

 

Pour optimiser l’analyse de l’activité de la protéine Osh4p, nous avons mis au point 

des outils de fluorescence permettant de mesurer avec une précision inégalée le mouvement 

du stérol et du PI(4)P entre des membranes lipidiques artificielles. Le domaine d’homologie 
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pleckstrin (PH) de la protéine humaine FAPP1 reconnaît spécifiquement le PI(4)P et insère 

une partie du domaine dans la membrane lors de cette reconnaissance. En partant de la 

structure cristallographique du domaine PH de FAPP1 (Lenoir, Coskun et al. 2010) remplacer 

un résidu par une cystéine (T13C), dans la partie insérée dans la membrane, permet 

d’attacher une sonde fluorescente NBD sensible à son environnement. Lors de la 

reconnaissance d’une molécule de PI(4)P par le NBD-PHFAPP, la partie du domaine marquée 

au NBD est insérée dans la membrane entraînant un décalage du spectre NBD et en une 

augmentation de sa fluorescence.  

A l’aide de cet outil nous démontrons que la protéine Osh4p peut échanger de 

l’ergostérol et du PI(4)P entre deux membranes par un mécanisme de contre-échange liant 

intimement le transport d’un des deux ligands au transport de l’autre. La protéine est 

capable de transporter du stérol contre son gradient de concentration en utilisant l’énergie 

d’un gradient de PI(4)P. L’intégration de la phosphatase Sac1 dans notre système reconstitué 

permet un maintien du transport de stérol grâce au maintien du gradient de PI(4)P. Le 

couplage entre le transport de stérol et le métabolisme des phosphoinositides dans la cellule 

permettrait à Osh4p d’alimenter la membrane du trans-Golgi avec du stérol synthétisé dans 

le RE. Il a été proposé que le transport de stérols soit maintenu par un gradient d’activité 

chimique entre les organelles. En utilisant des membranes artificielles à différentes activités 

chimiques, nous avons pu démontrer que la présence d’un tel gradient favorise le transport 

mais n’est pas suffisante pour un transport de stérol contre son gradient de concentration à 

l’échelle de temps cellulaire. Notre conclusion est qu’Osh4p possède la capacité de créer et 

de maintenir le gradient de stérol observé entre ces organelles grâce au métabolisme du 

PI(4)P. 

En parallèle nous avons prouvé que ce mécanisme de contre-échange est conservé 

dans la protéine humaine OSBP. Plus complexe que la protéine Osh4p, elle participe à la 

création de zones de jonction entre deux organelles, via sa capacité à connecter la 

membrane du RE à celle du trans-Golgi (Levine and Munro 2002). Nous avons aussi vérifié 

qu’elle utilise le PI(4)P pour transporter du cholestérol du RE au trans-Golgi et que la 

maintenance du gradient de concentration du PI(4)P par Sac1 favorise ce transport. 

L’activation d’OSBP par son partenaire d’interaction VAP-A, ancré sur le RE, est néanmoins 

requise pour cette activité de transport. Ce contre-échange stérol/PI(4)P permet également à 

OSBP d’autoréguler sa capacité à former des jonctions RE-Golgi grâce à son domaine PH 
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reconnaissant le PI(4)P. La capacité de certaines protéines ayant une structure globale 

similaire (type CERT ou FAPP2) à peupler les zones de jonction entre le RE et le Golgi, 

dépendrait donc également de l’activité d’OSBP et de Sac1. 

Enfin, la découverte de la phosphatidylsérine (PS) comme ligand de la protéine Osh6p 

(Maeda, Anand et al. 2013) nous a permis d’analyser la possibilité d’une extrapolation du 

mécanisme de contre-échange avec le PI(4)P. Osh6p est capable de transporter ce lipide 

entre membranes artificielles ainsi qu’entre le RE et la MP chez S. cerevisiae. En collaboration 

avec le Centre de Biologie Structurale de Montpellier, nous avons résolu la structure 

cristallographique de la protéine Osh6p en complexe avec du PI(4)P. La structure montre une 

géométrie globale conservée entre les protéines Osh, et en particulièrement celle de la 

liaison au PI(4)P. Utilisant notre outil fluorescent reconnaissant le PI(4)P, nous avons pu 

déterminer que la liaison du PI(4)P et son transport sont un aspect fonctionnel conservé des 

protéines Osh. Afin de mesurer le transport de la PS nous avons développé un autre outil 

fluorescent, selon le même principe que pour le NBD-PHFAPP, mais basé sur un domaine C2 

de la Lactadherin bovine (Yeung, Gilbert et al. 2008). Cet outil, le NBD-C2Lact, permet de 

suivre le transport de la PS et du PI(4)P entre membranes artificielles, dans les mêmes 

conditions en temps réel. Ainsi nous avons pu observer que le transport par Osh6p des deux 

ligands entre deux membranes artificielles est accéléré sous condition de leur contre-

échange et qu’il existe une sélectivité de la protéine par rapport au niveau de saturation des 

chaînes acyl de ses ligands. Ce contre-échange permettrait à Osh6p d’alimenter de PS, 

synthétisée au RE, la MP en consommant le réservoir de PI(4)P de la MP. Reste à démontrer 

l’effet du métabolisme du PI(4)P et la conservation de ce mécanisme de contre-échange sur 

le transport de PS in vivo. 

 

En conclusion, cette étude nous permet de suggérer que l’échange de PI(4)P avec 

divers lipides, via certaines protéines ORP/Osh, serait un mécanisme général par lequel les 

cellules maintiendraient des gradients de lipides entre le RE et les compartiments tardifs de 

la voie sécrétoire.  
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PREFACE: STUDYING BIOLOGICAL MEMBRANES 

 – WHY AND HOW? 

 

Life necessitates boundaries. 

Where does life begin? Where does it end? One particularly simple yet undoubtedly 

correct answer to these highly philosophical questions could be: at a membrane. Delimiting 

themselves from their environment with a membrane is a common feature for every living 

being. These membranes may vary significantly in their composition between life forms, but 

they are all based on the same class of molecules, the lipids. Lipid membranes not only allow 

cells to separate themselves from their environment, but also to accumulate nutrients, 

energy, ions and other cytosolic factors necessary for their proper function.  

 

Constant change and unchanged constants 

Within eukaryotic cells, at a smaller level, the sub-cellular organization into organelles 

is also defined by their respective membranes, and that separation is likewise mandatory for 

their functions. These organelles are highly dynamic and in perpetual contact with each other, 

exchanging material and signals. Notwithstanding these dynamics, they keep their organelles 

functionally separated and their membrane composition constant. The mechanisms of how 

this lipid homeostasis between membranes is created and sustained are not yet fully 

understood. Our scope is to demonstrate the implication of a family of lipid transfer proteins, 

the Osh proteins that are found in the baker’s yeast (or budding yeast) Saccharomyces 

cerevisiae, in lipid homeostasis, and to extrapolate our hypothesis to higher eukaryotes in 

order to ultimately understand how functional separation is maintained between organelles 

despite current exchange of membrane material. 

  



20 
 

Reducing the complexity of a biological system 

Trying to understand how cells conserve the properties of their membranes has been 

a challenge for biologists, as these processes are extremely rapid and it is particularly 

delicate to follow lipid transfer specifically and in real time. Our approach aims on identifying 

mechanisms of lipid transport between membranes by reducing the complexity of a cellular 

system by experimenting in vitro. Instead of using real cellular membranes, we use liposomes, 

artificial bilayers with a defined composition that mimic the cellular membranes. We also 

reduce the number of proteins implied in transport to a level where we can precisely follow 

their activity, giving a unique insight into the function of lipid transfer proteins without 

eventual interference of other cellular factors. We use fluorescence-based assays to measure 

the motion of various lipids in real-time. In our reduced system, no compensatory 

mechanisms or regulatory response can interfere with our measurements, even though they 

might in vivo, thus allowing us to do measure with an unprecedented precision the activity of 

lipid transfer proteins. Despite the advantages of this kind of approach, we are aware of its 

limitations, since our reconstituted system might lack so far unidentified key factors involved 

in lipid transfer. 
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LIPIDS AND BILAYERS: 

A PHYSICAL AND CHEMICAL POINT OF VIEW 

Definition and self-organization of lipids 

Lipids (their name derives from the greek λίπος (lipos), meaning fat) are organic 

molecules that are insoluble in water due to their long (>10), non-polar carbon chains. Lipids 

thus cannot be hydrated and form aggregates in an aqueous environment, like oil drops in 

water, for example. Some lipids dispose of a water insoluble part (often referred to as “tail”) 

as well as of a polar moiety (referred to as “head”) that, unlike the tail part, can be hydrated. 

This particular feature, called amphipathicity (or amphiphilicty), has an intriguing effect: 

amphipathic lipids do not aggregate into lipid drops, but rather form micelles or vesicles 

(Figure 1). 

 
Figure 1. Self-organization of amphipathic lipid molecules in different media.  

Amphipathic lipids in water (blue), forming (a) a micelle, (b) a lipid bilayer or (c) a liposome, a vesicle 

in which an inner aqueous phase is separated from the outer one by a lipid bilayer. (d) represents a 

soap bubble in air (white), an example for an inverted vesicle; (e) shows an inverted micelle in a non-

polar solvent (orange).  

In micelles, the tails of the lipids interact with each other allowing the heads to 

interact with the aqueous environment, forming spheres of a diameter approximately twice 

the length of one lipid molecule. In an apolar environment, amphiphilic lipids organize into 
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inverted micelles with inverted lipid geometry. In vesicles, the internal environment is 

separated from the external medium by a lipid bilayer i.e. two lipid sheets. In each sheet, the 

polar headgroups face the aqueous phase whereas the liposoluble tails of two layers face 

each other. With few exceptions, biological membranes are lipid bilayers. In some cases, 

inverted bilayers, analogous to inverted micelles, can be formed (Figure 1). 

Due to the low polarity of the membrane, polar molecules cannot cross such a bilayer. 

Pores and specialized transporters that are inserted in a membrane can allow or, on the 

contrary, prohibit exchange between the two compartments delimited by the membrane, 

and thus create concentration gradients between the inside and the outside.  

 

Thermodynamics in vesicle formation: 

The hydrophobic effect 

When dissolved in water, lipid molecules are surrounded by a “water cage”, in which 

the water molecules are ordered due to their restricted participation in the formation of a 

network of interactions between water molecules. The water molecules implied in this “cage” 

formation are limited in terms of their degrees of freedom. Association of multiple lipid 

molecules with each other reduces the surface accessible for the surrounding water and 

more water molecules hence gain their full degrees of freedom. This process is called 

spontaneous demixing. 

The criterion for spontaneity of a chemical reaction is the free enthalpy or Gibb’s free 

energy, defined by the enthalpy of the reaction and an entropic term:  

 
       

 
defines the free enthalpy for any system, in which G is the free enthalpy, H the enthalpy, T 

the temperature and S the entropy. The free enthalpy of any isothermal change (where the 

temperature does not change) of that system is 

 
          . 

 
By definition, chemical reactions are spontaneous for ΔG < 0. In the case of most 

amphipathic lipids, the enthalpy of association with other lipids is neglectably small 
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compared to the entropic term, mainly governed by the water “cage”. This makes the 

demixing a spontaneous process, yet in some cases spontaneous demixing occurs only above 

a critical temperature. Other physical factors facilitating spontaneous demixing of 

amphipaths in water such as water surface tension and dielectric constant shall be 

mentioned here, but not be detailed any further. 
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CLASSIFICATION OF BIOLOGICALLY RELEVANT LIPID SPECIES 

Different functions of lipid molecules in cells 

Considering functional biological membranes, the overall physical properties of lipids 

are no longer sufficient to understand the interactions between them and the functionality 

of a membrane. We thus have to take a closer look at the lipids existing in cells, particularly 

highlighting the fact that numerous lipid species serve as building blocks for biological 

membranes. 

In this work only eukaryotic cells are studied, hence the lipids described in the 

following chapters are those found in Eukaryotes. However, it is noteworthy that the three 

kingdoms of life (Eukaryotes, Archea and Bacteria) have different lipidomes, i.e. they use 

different lipid species to form their respective membranes. According to the endosymbiotic 

theory, (later to be eukaryotic) cells absorbed during evolution protobacteria that became 

cellular organelles, namely peroxisomes, mitochondria and, in plants, the plastids. These 

organelles therefore have a lipidome that varies significantly from the lipidome of the 

surrounding cell, and in order to preserve this difference, these organelles must 

independently produce their own lipids species. In mitochondria, phophatidylglycerol and 

cardiolipin are lipids that are very akin to the lipids of bacterial lipidome and indeed 

necessitate independent synthesis machineries.  

The eukaryotic lipids can be subdivided in two major subfamilies: The lipids based on 

fatty acids and those based on terpenoids (Figure 2). Fatty acid-based lipids are the major 

building blocks of cellular membranes, and their structure and function will be detailed 

below, but it is nonetheless noteworthy that fatty acids are not only used as membrane 

building blocks. They can serve as storage for lipids (triacylglycerols), as energy source, as 

signaling molecules, or as precursors for eicosanoid biosynthesis. The fatty acid-based 

membrane building blocks are the phospholipids, which can again be subdivided in the 

glycerophospholipids and the sphingolipids. 
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Figure 2. Cellular lipids and membrane building blocks 

Lipid classes in eukaryotic cells, the membrane building blocks are highlighted in orange. 

The only terpenoid lipids that serve as membrane building blocks are the sterols. 

Again, it must not be forgotten that other terpenoid molecules play major roles unrelated to 

their function as building blocks, such as sterol metabolites (bile acids, steroid hormones, 

vitamine D), retinoids (vitamin A), tocopherols (vitamin E), phylloquinones (vitamin K) and 

ubiquinone (coenzyme Q). 

 

Major building blocks of cellular membranes 

Inside the eukaryotic kingdom, differences in lipidomes exist between species. Our 

laboratory examines two types of eukaryotic model systems: human (Homo sapiens) and the 

budding yeast Saccharomyces cerevisiae (baker’s yeast); differences between these two 

species will be highlighted. 

Glycerophospholipids 

Glycerophospholipids (GPLs) are the most important building blocks of eukaryotic 

cellular membranes. The common basis of those GPLs is the hydrophobic moiety 

diacylglycerol (DAG) in wich two acyl chains are linked in sn-1 and sn-2 position by an ester 

bond (or ether bond in the case of plasmalogen) to a glycerol “backbone” that is further 

modified in order to yield phospholipids (Figure 3). Phosphatidic acid (PtdOH or PA) is DAG 

phosphorylated on its sn-3 hydroxyl function. Under physiological conditions, phosphate 

moieties bear a negative charge; they thus participate in the total charge of GPLs attributing 
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one negative charge. Esterification of the sn-3 phosphate with different headgroups gives the 

remaining four GPLs: phosphatidylcholine (PtdCho or PC), phosphatidylethanolamine (PtdEtn 

or PE), phosphatidylinositol (PtdIns or PI) and phosphatidyl-L-serine (PtdSer or PS; only the L-

form is found in eukaryotes). The first two, that are also the most abundant GPLs in higher 

eukaryotes, have a headgroup formed of choline and ethanolamine, respectively, bearing a 

positive charge; they are thus zwitterionic (no total net charge). In PI the headgroup is 

formed by a myo-inositol and in PS it is L-serine. Myo-inositol is neutral and serine 

zwitterionic, therefore PI and PS bear a total negative charge, just as PA. Phosphoinositides 

(PIPs) are PI species phosphorylated on one (or more) hydroxyl groups on the inositol ring 

and therefore bear additional negative charge on their headgroup. They do not serve as 

major building blocks, but despite their scarceness are key functional lipids for organelle 

identification and signaling events (van Meer, Voelker et al. 2008). In phospholipids, the 

headgroup can not only vary in terms of overall charge but also in terms of volume; the 

headgroup size is greatest in PI and decreases from PC, PE and PS to PA, with absence of 

headgroups in DAG.  

The tails of lipid molecules are formed by acyl chains, which can be fully saturated, 

mono- or polyunsaturated, that means they carry no, one or several double bonds. These 

double bonds can be in cis- or trans-configuration, but in lipid molecules the cis-

conformation is predominant. In phospholipids generally only one chain is unsaturated. The 

range of acyl chain lengths in eukaryotic cells is broad, ranging from 12 to 26; however only 

chain lengths are always even. Most phospholipids have chain lengths between 16 and 22 

carbon atoms, with C12 and C14 being minor fatty acids, and have zero to four double bonds 

(Schneiter, Brugger et al. 1999; Ejsing, Sampaio et al. 2009). Describing an acyl chain, the 

number of carbon atoms (20, for example) and double bonds (4, for example) are usually 

noted as C20:4.  

Under normal growth conditions, S. cerevisiae produces only saturated and 

monounsaturated fatty acids, narrowing down the variety of saturation levels. The most 

abundant acyl chain lengths are C16 and C18, overall palmitoleic acid (C16:1) and oleic acid 

(C18:1) are the most abundant fatty acids, followed by palmitic acid (C16:0) and stearic acid 

(C18:0) (Ejsing, Sampaio et al. 2009). 

It is noteworthy that polycarbon chains are flexible, however a double bond 

decreases the flexibility and particularly the kink induced by cis-double bonds also increases 
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the volume occupied by the chains. The number, length and saturation level of acyl chains 

thus define together with the headgroup size, the overall geometry of GPLs. Phospholipids 

can have a conical (bis-unsaturated DAG), cylindrical (saturated PC or saturated PS) or 

inversed-conical (lyso-GPLs) shape. This has important implication for the membrane 

properties (Figure 7). 

 

Figure 3. The five members of the GPL membrane building blocks. 

(a) Diacylglycerol (DAG), (b) Phosphatidic acid (PA), (c) Phosphatidyl-L-serine (PS), (d) 

Phosphatidylethanolamine (PE), (e) Phosphatidylcholine, (f) Phosphatidylinositol. In (b)-(f), acyl 

chains are shown as rest (R).  

 

Sphingolipids 

Sphingolipids are phospholipids in which the backbone is not a glycerol but derives 

from serine and palmitic acid, forming the long-chain base or sphingosine backbone (Figure 

4). Sphingosines can be N-acetylated with a very long chain fatty acid (VLCFA, C24:0 or C26:0) 
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to form ceramide. In yeast, the long chain base and acyl chains are saturated and can be 

hydroxylated in C4 of the long chain base (phytosphingosine) and/or in C2 of the VLCFA, 

increasing the amphiphilicity of sphingolipids compared to GPLs.  

 

Figure 4. Simple and complex sphingolipids of yeast and mammalian. 

Yeast sphingolipids (a)-(b): (a) Dihydroceramide, the yeast long-chain base dehydrosphingosine is 

highlighted in red. (b) inositol-phosphorylceramide (IPC). Complex mammalian sphingolipids (c)-(e): 

(c) ceramide, the mammalian long-chain base dehydrosphingosine is highlighted in red, (d) a sphingo-

myelin (SM), (e) a simple cerebroside. In (b), (d) and (e) acyl chains of the fatty acid and the sphingoid 

backbone are shown as rest (R).  

Like in GPLs, the ceramide backbone can be phosphorylated on its 1-OH function and 

headgroups can be added for formation of complex sphingolipids. In mammalian cells, 

addition of choline or ethanolamine yields sphingomyelins (SMs), whereas one or more 

glycosylations allow the formation of a variety of glycosphingolipids (cerebrosides and 

gangliosides). SMs are more abundant that cerebrosides and gangliosides. In yeast only three 

complex sphingolipids are synthesized, all of them with an inositol headgroup that can be 

glycosylated: inositol-phosphorylceramide (IPC), mannosyl-inositol-phosphorylceramide 
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(MIPC) and mannosyl-diinositol-phosphorylceramine (M(IP)2C). Complex sphingolipids have 

an important role in biological membranes, notably due to their affinity for sterols (Schneiter 

1999). 

As for GPLs, sphingolipids shape is controlled by acyl chain length and saturation and 

the headgroup size. Sphingolipids display the longest acyl chains, C24 and C26 (VLCFAs) are 

only found in sphingolipids, and are generally saturated. Ceramide displays a conical shape 

like DAG, whereas complex sphingolipids with their bulky headgroups display an inversed-

conical shape (Schneiter, Brugger et al. 1999; Ejsing, Sampaio et al. 2009). 

 

Sterols 

Sterols, lipids from the isoprenoid lipid family, are also major building blocks for 

membranes in eukaryotic cells. Though both are amphiphilic, but their particular shape 

varies significantly from the aforementioned phospholipid species: Their polar headgroup (3-

OH in cholesterol) is tiny and displays no charge; their hydrophobic moiety does not have a 

flexible and long shape but a planar four-ringed structure (the steroid backbone) with a short 

aliphatic “tail”. Their particular shape allows specific interactions with phospholipids, 

particularly saturated GPLs and sphingolipids, and these features make sterol an essential, 

yet unconventional membrane building block. Higher eukaryotes contain mainly cholesterol, 

whereas in budding yeast ergosterol (bis-unsaturated, methylated cholesterol) is the most 

abundant sterol (Mesmin, Antonny et al. 2013) (Figure 5). 

 

Ergosterol     Cholesterol  

Figure 5. Chemical structure of ergosterol and cholesterol. 

Ergosterol and cholesterol are the major sterol species found in budding yeast and mammalian 

membranes, respectively. 
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Oxidized metabolites of sterol, oxysterols, are precursors of steroid hormones and 

bile acids and implied in signaling (Massey 2006). 25-hydroxycholesterol (25-OH), for 

example, is a potent cholesterol biosynthesis inhibitor in concentrations in the nanomolar 

range (Olsen, Schlesinger et al. 2009). Sterol oxidation significantly alters its behavior 

towards membranes: Oxidation leads to more hydrophilic properties, and oxysterols in 

membranes are twisted into an orthogonal orientation compared to phospholipids (Olsen, 

Schlesinger et al. 2009). Cholesterol orientation is mainly governed by interaction between 

its 3-OH headgroup and surrounding phospholipid headgroups, it is inserted parallel to 

phospholipids. Due to their increased hydrophilicity, oxysterols diffuse more rapidly (102-fold 

increase compared to cholesterol) between membranes (van Amerongen, Demel et al. 1989) 
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LIPID DISTRIBUTION  

BETWEEN AND INSIDE CELL MEMBRANES 

Cellular lipidomics and lipid homeostasis 

Biological membranes are not at all as homogenous as they are often represented. 

Their composition varies significantly between species, tissues, cell types and their 

respective organelles. These variations can concern the protein/lipid ratio, membrane 

symmetry and overall lipid composition (ratio of charge and neutral GPL species, abundance 

of sterol and sphingolipids, acyl chain length and saturation), altogether governing 

membrane properties. The study of differences in lipid distribution and its dynamics has 

given rise to a new field in membrane biology: cellular lipidomics. This chapter will give 

insight into differences between of organellar membranes and the therefore emerging 

properties (van Meer, Voelker et al. 2008; Bigay and Antonny 2012; Holthuis and Menon 

2014). 

Some general features are conserved among all eukaryotic cells: The nuclear 

envelope is continuous with the endoplasmic reticulum (ER) and their lipid compositions are 

alike: > 40 % PC, 30 % PE, 10 % PI, 5 % PS, 5% sterol (Drin 2014) (Figure 6). ER and nuclear 

envelope are protein-rich membranes, with > 10 mg protein/mg phospholipid (Zinser, 

Sperka-Gottlieb et al. 1991). This ratio is only 3 mg/mg for the plasma membrane (PM), and 

anionic phospholipids (PS, PI) are enriched there as well as sphingolipids and sterols, and it is 

thicker (9.2 ± 0.4 nm for the PM and 7.5 ± 0.8 for the ER (Schneiter, Brugger et al. 1999)) and 

denser (Zinser, Sperka-Gottlieb et al. 1991; Schneiter, Brugger et al. 1999). The Golgi 

apparatus is at the crossroad between the ER and the PM, its composition changes from cis-

Golgi (whose membranes are like those of the ER) to more PM-resembling trans-Golgi 

membranes. Endosomal compartments have compositions comparable to those of the PM 

from which they originate, but are characterized by the presence of an specific endosomal 

GPL, lyso-bisphosphatidic acid (LBPA, also bis(monoacylglycero)phosphate BMP) (van Meer, 

Voelker et al. 2008). Budding yeast vacuolar membranes are rather loose and deprived of 

sterols and protein, but contain steryl esters (Schneiter, Brugger et al. 1999). Certain 
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organelles are labeled by minor pools of PIPs that have important functions. Mitochondria 

are surrounded by two lipid bilayers (Outer mitochondrial membrane OMM and inner 

mitochondrial membrane IMM) that show important differences in their lipid composition. 

The OMM is quite alike to the PM, but deprived of ionic phospholipids, whereas the IMM has 

a high protein/lipid ratio (7 mg protein / mg phospholipid), high amounts of unsaturated acyl 

chains and is rich in (≈ 10 mol%) a specific mitochondrial lipid, cardiolipin (Comte, 

Maisterrena et al. 1976; Schneiter, Brugger et al. 1999). Despite these general features, it is 

noteworthy that in all yeast membranes PI is more abundant at the expense of PC, 

particularly in the PM, which also has an elevated PS content compared to higher eukaryotes 

(McGee, Skinner et al. 1994; van Meer, Voelker et al. 2008). 

 

Figure 6. Lipid distribution in eukaryotic cells.  

The cellular organelles and their respective lipid composition with phospholipid concentrations 

expressed in percent of total phospholipid. Sterol abundance is described as ratio over total 

phospholipid for mammalian cells (CHOL/PL) and budding yeast (ERG/PL). Illustration from (van Meer, 

Voelker et al. 2008). 
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The uneven lipid distribution between and within organellar membranes allow each 

of them to optimize its function. Membrane composition, curvature, electrostatics and 

packing have to be considered as a whole in order to understand the functionalization of 

subcellular membranes (Bigay and Antonny 2012). It is thus important to describe how 

overall membrane properties arise from lipid composition.  

 

Biophysical aspects of lipid bilayers  

Effects of lipid shape and saturation levels 

Lipid shape governs different aspects of membranes. The archetypal cylindrical lipids 

will take a lamellar organization as shown in (Figure 1b). With lipids deviating from the ideal, 

cylindrical shape, interaction either between headgroups of between acyl chains is 

decreased, as the accessible volume for the headgroups and the acyl chains, respectively, 

increases. The volume and charge is thus no longer homogenously distributed on a 

membrane, but locally displays dynamic higher or lower density. These imperfections in 

headgroup distribution are called lipid packing defects (Vamparys, Gautier et al. 2013) 

(Figure 7). Locally, such packing defects can increase membrane fluidity and facilitate protein 

interaction with lipids, but on a larger scale will deform the membrane: Local accumulation 

of conical or inversed-conical lipids will bend membranes to optimize the interactions 

between lipids, and thus induce membrane curvature (Bigay and Antonny 2012) (Figure 7). 

Three phase states can be defined for a bilayer: a liquid-disordered phase (ld, low 

degree of order, fast diffusion), a solid gel phase (so, high degree of order, slow diffusion) and 

liquid-ordered phase (lo, high degree of order, fast diffusion). These phases depend on the 

composition of the membrane and on the temperature. In liquid-ordered membranes the 

interaction of lipids with each other is stronger; formation of these phases is thus favored by 

high acyl chain saturation levels: Saturated phospholipids with a cylindrical shape are not 

subject to steric hindrance as conical, unsaturated phospholipids are due to their kinked acyl 

chains; cylindrical lipids hence display larger surfaces for lipid-lipid interaction (van Meer, 

Voelker et al. 2008) (Figure 7). 
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Figure 7. Impact of lipid shape and saturation on membrane organization. 

See text for details. Illustration from (Holthuis and Menon 2014). 

Sterols play an intriguing role in membranes depending on their phase: Their 

particular shape allows upon insertion in a lipid bilayer the stabilization of the membrane: It 

decreases the interaction between phospholipids by interacting with their acyl chains, thus 

preventing formation of solid gel phases. This interaction is stronger when the acyl chains 

surrounding the sterol molecule are saturated; lipid saturation can therefore allow 

segregation of sterol and vice versa. On the other hand, fluid membranes are rigidified and 

thickened by sterol insertion by the “condensing effect”. The acyl chain length together with 

the saturation level also govern membrane thickness: longer and saturated acyl chains can 

interact with sterols in the core of the membrane. Saturated and sterol-rich membranes are 

thus thicker than unsaturated membranes deprived of sterol (Munro 2003) (Figure 7). 

Additionally, under certain circumstances one lipid bilayer can separate into two 

distinct coexisting phases (van Meer, Voelker et al. 2008). The microdomains formed by 

phase separation in one membrane, also referred to as ‘lipid rafts’, which are enriched in 

sterols and sphingolipids, have been analyzed, but whether they can play a physiological role 

is still discussed (Munro 2003; van Meer, Voelker et al. 2008; Toulmay and Prinz 2013). 

Despite the possibility of phase formation and separation in artificial membranes, the 

situation in biological membranes might not be so clear cut. 
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Transbilayer asymmetry and anionic lipids  

Biological membranes are lipid bilayers and therefore have one cytosolic and one 

lumenal (in the case of the PM: extracellular or exoplasmic) leaflet. In some membranes, the 

two leaflets do not share the same lipid composition, i. e. they display a transbilayer 

asymmetry (van Meer, Voelker et al. 2008). In the ER, anionic lipids, particularly PS, are 

mainly facing the ER lumen. In the PM the extracellular face is devoid of PS and highly 

enriched in sphingolipids, PC and sterols whereas its cytosolic face displays opposite pattern 

with an elevated PS concentration thus increasing PM surface charge on its cytoplasmic face 

(Leventis and Grinstein 2010) (Figure 15). 

Conservation of transbilayer asymmetry is mostly due to the inability of phospholipids 

to cross the membrane. Diffusion from one leaflet to another implies for a lipid molecule 

disruption of headgroup interaction and passage of the polar moiety through the 

hydrophobic core of the bilayer, which is the reason for the slow transbilayer movement of 

phospholipids, called flip-flop. GPLs and sphingolipids flip with t1/2 of hours (Holthuis and 

Levine 2005). Lipids without polar headgroup (such as DAG and ceramide) and neutral sterol 

molecules, on the other hand, can flip rapidly (t1/2 of seconds to minutes) between leaflets of 

one membrane (Holthuis and Levine 2005; Leventis and Grinstein 2010). The establishment 

of transbilayer asymmetry will be discussed below (See The origins of transbilayer 

asymmetry). 

 

Special lipids: Phosphoinositides 

Certain organelles are labeled by minor pools of PIPs that were initially seen as mere 

precursors for the formation of PI(4,5)P2 that is cleaved by phospholipase C (PLC) to yield 

Ins(1,4,5)P3 and DAG, two signaling molecules associated to G-protein coupled receptors at 

the PM. Moreover, a variety of functions of PIPs in multiple cellular processes have been 

unveiled. The PIPs are no major membrane constituents, but act, together with small G-

proteins, as specific organellar signposts to facilitate their recognition. For example, PI(4)P 

marks mainly the trans-Golgi region, but it should be noted that functionally distinct pools 

mark also the PM and endosomal fractions. One of the most common protein domains to 

interact with PI(4)P are Pleckstrin Homology (PH) domains that will be detailed below (PI(4)P 

detection by NBD-PHFAPP). Other PI(4)P-interacting protein domains are found in the 
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clathrin adaptor proteins, such as AP-1 and GGAs, that recognize both cargo protein and 

PI(4)P to mediate clathrin coat formation. The γ subunit of dimeric human AP-1 (Apl4p in 

budding yeast) allows PI(4)P recognition by a conserved binding site inferred from homology 

from the crystal structure of murine AP-2, but the detailed mechanism remains to be 

elucidated (Collins, McCoy et al. 2002). Golgi-localized, γ-ear-containing, ARF (ADP 

(adenosine diphosphate) ribosylation factor)-binding proteins (GGAs, Gga1p and Gga2p in 

yeast) are clathrin-adaptors required for Golgi-to-endosome traffic. They all contain a GAT 

domain that detects both PI(4)P and Arf1-GTP by coincidence detection. The binding site for 

PI(4)P has been identified in a solvent-exposed three helix bundle of that domain that shows 

no homology with other PI(4)P-binding domains (Wang, Sun et al. 2007; Lenoir and Overduin 

2013). 

PI(4,5)P2 in key for PLC signaling at the PM and it plays an important role in the 

interaction between PM and the cytoskeleton as well as for exocytotic and endocytotic 

events (Tan and Brill 2014). Intriguingly, in yeast, PI(4,5)P2 deficiency phenotypes differ 

depending on the PI(4)P pool used for PI(4,5)P2 synthesis, indicating that there are distinct 

pools of PI(4,5)P2 within the PM (Audhya, Foti et al. 2000); nevertheless, both of these pools 

can be recognized by PH domains. 

PI(3)P is mainly found on early endosomal compartments, and PI(3,5)P2 labels mainly 

late endosomal compartments (Behnia and Munro 2005; Mayinger 2012). PI(3)P is 

recognized by zinc finger motifs called FYVE (named after the proteins Fab1p, YOTB, Vac1p 

and EEA1 where it was first identified) domains and Phox homology (PX) domains that target 

proteins to the endolysosomal system. PI(3,5)P2 is synthesized from PI(3)P at the late 

endosomal/lysosomal system and epsin N-terminal homology (ENTH) domain containing 

proteins are recruited there by PI(3,5)P2 recognition (Mayinger 2012). 

Certain protein domains thus allow specific recognition of different subcellular 

membranes highlighted by different PIPs. 

 

Marking territories in eukaryotic cells 

Combining the general trends in membrane compositions and their biophysical 

implications, an overall tendency can be seen in lipid distribution: The ER is rich in 

unsaturated lipids and sterol is scarce and therefore mainly in a liquid-disordered phase. 
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Such fluidity is thought to be important for the folding of proteins with transmembrane-

spanning domains and the tabulated structure of the ER, implying high curvature. Anionic 

phospholipids are scarce, thus making the ER and early membranes of the secretory pathway 

a subcellular region mainly defined by high packing defects (Bigay and Antonny 2012). 

Continuing along the secretory pathway these characteristics are reversed, with the 

Golgi apparatus being and intermediate compartment crucial for this change. At the PM, the 

lipids there have higher saturation levels and the enrichment of sterol and complex 

sphingolipids allows a more liquid-ordered phase state, and packing defects are scarce. The 

cytoplasmic face of the PM additionally is enriched in the anionic phospholipid PS, together 

with PIPs making late membranes as the trans-Golgi and the PM mainly governed by 

electrostatics (Bigay and Antonny 2012) (Figure 8). 

 

Figure 8. Division of eukaryotic cells in two territories. 

Early regions of the secretory pathway such as the ER and cis-Golgi display a high level of unsaturated 

lipids and its biophysics is mainly governed by membrane packing defects. Late membranes such as 

trans-Golgi and the PM are densely packed and rich in anionic phospholipids, therefore making it the 

territory of electrostatics. Illustration from (Bigay and Antonny 2012).  
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CONCEPTS FOR ESTABLISHING AN UNEVEN  

LIPID DISTRIBUTION IN EUKARYOTIC CELLS 

 

Despite their different compositions, organelles perpetually exchange parts of their 

membrane by vesicular trafficking that allows transport of proteins and nutrients in cells. The 

constant arrival and departure of material necessitates mechanisms to regulate its lipid 

homeostasis, i.e. to keep its overall lipid composition and uneven distribution constant. 

The mechanisms implied in establishment differences in lipid compositions between 

subcellular compartments can be divided in three classes: The first class is lipid metabolism, 

i.e. lipids are produced or modified at different places inside the cell. The second class is lipid 

transport between bilayers of a single bilayer, which is required for establishing transbilayer 

asymmetry. The third class is vesicular or non-vesicular mechanisms that deliver lipid 

molecules specifically between membranes.  

 

Spatial differentiation through lipid metabolism 

Glycerophospholipid biosynthesis routes 

Synthesis of phosphatidic acid and diacylglycerol 

PA is synthesized on the cytosolic face of the ER from glycerol-3-phosphate by 

acylation of the free 1- and 2-hydroxyl groups with fatty acids activated in the form of acyl-

CoA (Coenzyme A). A single acylation yields lysoPA, a subsequent, second acylation yields PA. 

Dephosphorylation of PA produces DAG, the precursor for GPL biosynthesis via the Kennedy 

pathway (see below) and for biosynthesis of triacylglycerol (TAG), a storage lipid. PA can also 

be nucleotidylated with cytosine-triphosphate (CTP) by phosphatidate cytidylyltransferase 

yielding CDP-DAG, the precursor for GPL synthesis via the de novo-pathway (see below) and 

cardiolipin biosynthesis in mitochondria (Henry, Kohlwein et al. 2012). 
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Functionalization of different GPL species 

In order to obtain fully functional GPLs, a headgroup has to be added to the DAG 

precursors. In eukaryotic cells, there are two pathways of GPL synthesis: In the Kennedy 

pathway, the major GPL biosynthesis pathway in higher eukaryotes, PC is synthesized by the 

addition of CDP-choline to DAG and in a reaction catalyzed by CPT1 

(cholinephosphotransferase 1), whereas EPT1 (ethanolaminephosphotransferase 1) assures 

the synthesis of PE from DAG and CDP-ethanolamine. PS is subsequently synthesized from PC 

and PE, by swapping the headgroups for serine by PS synthases PSS1 and PSS2, respectively. 

Counter-reaction exist in which PS is decarboxylated, yielding PE, that can undergo 

subsequent tri-methylation, yielding PC. These reactions are catalyzed by PS decarboxylases 

(PSD) and PE-methyl transferases (PEMT), respectively. PI is synthesized following the so 

called de novo pathway from CDP-DAG and myo-inositol (Daum, Lees et al. 1998; Vance and 

Steenbergen 2005; Gibellini and Smith 2010) (Figure 9). 

 

Figure 9. GPL synthesis pathways 

All eukaryotes use the Kennedy pathway (orange boxes), but budding yeast can also produce PS via 

the de novo pathway (blue box) and PE and PC by decarboxylation and successive methylation. In 

Mammalia and yeast, PI is synthesized from CDP-DAG and myo-inositol, like PS in yeast (not shown). 

Illustration modified from (Leventis and Grinstein 2010) 
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The budding yeast S. cerevisiae possesses the same synthesis machinery, but 

additionally, it disposes of a de novo PS synthase, Pss1p (Cho1p), which synthesizes PS 

directly from CDP-DAG and L-serine. Despite the fact that the Kennedy pathway machinery is 

fully functional in yeast, it exploits mainly the de novo pathway and synthesizes most of its 

PC and PE by modifying the PS headgroup. The PS synthase Pss1p hence has to ensure the 

production of the majority of the total GPL in yeast, with PS thus being the key intermediate 

for bulk GPL synthesis. The syntheses of PS and PI share a common precursor, CDP-DAG, and 

its limited availability therefore restrains global GPL synthesis (Leventis and Grinstein 2010). 

For PE biosynthesis by decarboxylation S. cerevisiae encodes two PSDs (Psd1p and Psd2p) 

and two PEMTs, Cho2p and Opi3p. The former catalyzes the first and the latter catalyzing 

mainly the two other methylation steps. Both Kennedy pathway and de novo pathway 

enzymes are localized to the cytosolic face of the smooth ER in yeast and human (Daum, Lees 

et al. 1998; Vance and Steenbergen 2005; Leventis and Grinstein 2010) (Figure 9). 

Of the abovementioned enzymes, PS decarboxylases are the only not to be localized 

at the ER but at the IMM (mammalian PSID and yeast Psd1p) and Golgi/endosomes (yeast 

Psd2p) (Leventis and Grinstein 2010). It is noteworthy that for budding yeast, an efficient 

transfer of PS from the ER to mitochondria and Golgi/endosomes is essential, as 

decarboxylation of PS and methylation of PE are the major sources of PE and PC, respectively. 

The lipid export/import appears to be favored by the localization of the concerned enzymes: 

They are not homogenously distributed within the ER but are rather enriched at parts of the 

ER, called membrane contact sites (MCSs) that encounter other membrane-bound 

compartments (Helle, Kanfer et al. 2013). These particular sites and their importance in lipid 

transport will be discussed in detail later. Human PS synthases PSS1 and PSS2, for example, 

are enriched in mitochondria-associated membranes (MAM) (Stone and Vance 2000) as well 

as its yeast counterpart Pss1p which is additionally found in the PM-associated membrane 

(PAM), thus in proximity of another organelle requiring PS import (Gaigg, Simbeni et al. 1995; 

Pichler, Gaigg et al. 2001). 

Mammalian PI synthase activity has recently been localized to highly dynamic, ER-

derived structures termed PI-Producing ER-derived Organelles or PIPEROsomes that would 

directly supply other organellar membranes with PI by ample contacts (Kim, Guzman-

Hernandez et al. 2011). PI is an essential lipid for budding yeast that produces significantly 

more of this lipid than higher eukaryotes. The function of PI as a negatively charged building 
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block in membranes might be taken over by PS, thus the importance of PI in yeast might be 

linked to its function as a precursor for PIP and morevover, for sphingolipid synthesis or as 

basis of glycosylphosphatidylinositol (GPI)-anchored proteins (Daum, Lees et al. 1998). 

 

Phosphoinositide biosynthesis pathways 

Synthesis and localization of phosphoinositide species 

PIPs are synthesized from PI by different kinases (PIK) that allow the localized and 

specific creation of PIP pools (Figure 10). PI(3)P is synthesized by class II and class III PI3K in 

the early endosomal system and regulates its dynamics during endocytosis and autophagy. In 

yeast, both PI(3)P and PI(3,5)P2 are localized to the vacuole (the yeast counterpart of the 

endosomal/lysosomal compartment in higher eukaryotes) where they are synthesized by the 

class III PI3K Vps34 and the PI5K Fab1, respectively, two non-essential enzymes (Mayinger 

2012).  

In mammalian cells, PI(4)P is synthesized from PI by four PI4K (PI4KIIIα, PI4KIIIβ 

PI4KIIα and PI4KIIβ, also named, PI4KA, PI4KB, PI4K2A and PI4K2B respectively)and labels the 

Golgi as well as the PM. Golgi and PM-localized PI4K produce functionally distinct pools of 

PI(4)P: PI4KIIIβ (Pik1p in yeast) creates the most considerable pool in the Golgi apparatus and 

thus governs Golgi function in secretion via multiple PI(4)P effectors (Audhya, Foti et al. 2000; 

Tan and Brill 2014). Pik1p is localized to the Golgi by interaction with Frq1p, and is rapidly 

detached from Golgi membranes under glucose starvation conditions, leading to an arrest of 

vesicular trafficking (Faulhammer, Kanjilal-Kolar et al. 2007). PI4KIIIα (Stt4p in yeast) is 

targeted to the PM by interaction with Sfk1p and also with Efr3p via Ypp1p, which together 

regulates Stt4p localization and activity (Baird, Stefan et al. 2008; Wu, Chi et al. 2014). The 

endosomal/lysosomal PI(4)P pool synthesized by PI4KIIα and PI4KIIβ (only one homolog in 

yeast, Lsb6p) is minor and non-essential compared to the others, and regulates endosomal 

function (Han, Audhya et al. 2002; Shelton, Barylko et al. 2003; Jovic, Kean et al. 2014). 

Recently, a novel highly specific and sensitive probe for PI(4)P determination based on the 

P4M domain of the Legionella pneumophilia SidM protein has been developed. Utilization of 

this probe revealed a broader distribution of PI(4)P, promising a more detailed insight into 

dynamics of PI(4)P distribution (Del Campo, Mishra et al. 2014; Hammond, Machner et al. 

2014; Hubber, Arasaki et al. 2014).  
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PM localized PI(4)P serves as a precursor for synthesis of PI(4,5)P2 by PIP kinases 

(PIP5K, Mss4p in yeast), and PI(4)P for PI(4,5)P2 synthesis can originate from both the PI4KA 

(Stt4p) and PI4KB (Pik1p) pools. PI(4)P together with PI(4,5)P2 makes up to 90 % of cellular 

PIPs in yeast (Audhya, Foti et al. 2000; Audhya and Emr 2002; Tan and Brill 2014). 

Phosphorylation of PI(4)P and PI(4,5)P2 by class I PI3K yields PI(3,4)P2 and PI(3,4,5)P3, 

respectively, two short-lived regulators of cell survival and growth, which are not found in 

yeast due to the lack of a class I PI3K (Odorizzi, Babst et al. 2000; Mayinger 2012). 

 

Figure 10. PIP distribution in Mammalia 

PI(3)P is found on early endosomal compartments whereas PI(3,5)P2 is localized to late endosomes 

and lysosomes. Two different pools of PI(4)P highlight the Golgi and the PM which also displays 

PI(4,5)P2. PI(5)P and the short lived PI(3,4,5)P3 are found at the PM. Illustration from (Billcliff and 

Lowe 2014). 
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Phosphoinositide catabolism 

PIPs are hydrolyzed by more or less specific PIP phosphatases, allowing 

interconversion of PIP species and regulation of PIP controlled processes. Sac1p shall be the 

only PIP phosphatase detailed here due to its implication in PI(4)P hydrolysis; for details on 

other PIP phosphatases see (Billcliff and Lowe 2014). 

 

Figure 11. Crystal structure and model of the budding yeast PIP phosphatase Sac1p. 

Left: Ribbon diagram showing the structure of the cytosolic portion (residues 1-503) of Sac1p with 

numbered secondary structure elements. The N-terminal domain (1-182) is shown in blue and the 

catalytic domain (183-503) in yellow. The catalytic motif CX5R(T/S) in the P-loop of the catalytic 

domain is shown in red and protruding loops around the catalytic motif are green. Right: Surface 

representation of the cytosolic portion (yellow and blue) attached to its transmembrane domains 

(grey) by a flexible linker (spotted in orange). The catalytic site recognizes PI(4)P (green hexagon with 

phosphate as yellow sphere) and hydrolyses it to yield PI (green hexagon). Illustrations from (Manford, 

Xia et al. 2010). 

Sac1p is a double-spanning transmembrane protein that is localized to the ER, but can 

be shuttled to the Golgi under glucose starvation conditions where it is retained by 

interaction with Vps74 until reestablishment of normal growth conditions (Konrad, Schlecker 

et al. 2002; Wood, Hung et al. 2012; Cai, Deng et al. 2014). It is the major PIP phosphatase in 

budding yeast and controls mainly PI(4)P levels. The crystal structure of its cytosolic portion 

(1-503) has been solved and it displays two domains, the N-terminal SacN domain (1-182) 

and the catalytic phosphatase domain (183-503) (PDB entry: 3LWT) (Manford, Xia et al. 2010) 

(Figure 11). The phosphatase domain is localized in a loop (P-loop) and displays a CX5R(T/S) 
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motif around Cys392, its catalytic motif. Mutations of Cys392 yield a catalytically inactive 

Sac1p in which localization and shuttling is conserved. Just as deletion of Sac1p, this 

mutation leads to accumulation of PIPs (Konrad, Schlecker et al. 2002; Tahirovic, Schorr et al. 

2005; Manford, Xia et al. 2010). Sac1p in vitro hydrolyzes PIPs with relatively little specificity, 

but in vivo PI(4)P is the main substrate, and PI(4)P from both Stt4p and Pik1p are hydrolyzed 

(Tahirovic, Schorr et al. 2005; Faulhammer, Kanjilal-Kolar et al. 2007). Hydrolysis activity is 

increased by allosteric activation by anionic phospholipids, particularly PS (Zhong, Hsu et al. 

2012). 

It has been hypothesized that ER-resident Sac1p could hydrolyze the Stt4p PI(4)P pool 

at ER-PM contact sites. A 80 amino acid (aa) stretch at the C-terminus of the catalytic domain 

is unstructured, and initially it was thought that this stretch could serve as a linker allowing 

the catalytic domain to act in trans of its transmembrane anchor at ER-PM MCSs (Manford, 

Xia et al. 2010; Stefan, Manford et al. 2011). Recent findings showed however that this 

segment is essential for substrate recognition and catalytic activity, thus challenging the 

hypothesis of in trans activity (PDB entry: 4TU3) (Cai, Deng et al. 2014). Sac1p related 

phenotypes do not only concern vesicular trafficking; in ΔSac1 yeast strains the levels of 

complex sphingolipids are decreased, probably due to the importance of its substrate, PI, for 

complex sphingolipid synthesis (Brice, Alford et al. 2009). Additionally, ΔSac1 mutants 

accumulate PS in the ER at the expense of the PM in a manner independent of the de novo 

synthesis of PE and PC by PS decarboxylases, indicating an implication of Sac1p in ER-to-PM 

PS transport (Tani and Kuge 2014). Localized synthesis and hydrolysis by PI-/PIP-kinases and 

PIP-phosphatases, respectively, thus allow spatially controlled distribution of PIPs and 

maintenance of their gradients. 

 

Sphingolipid biosynthesis  

Long-chain base and ceramide synthesis 

Ceramide has the same role for sphingolipids that DAG has for GPLs in that it forms 

the backbone for sphingolipids. It induces the major difference between the two 

phospholipid subfamilies: DAG is based on a glycerol backbone with two acyl chains. 

Sphingolipids have only one acyl chain, attached to the 2-amine function of the sphingoid 

backbone. The sphingoid backbone (the long chain base LCB), takes over the role of both the 
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glycerol and one acyl chain in DAG (see Figure 4) (Schneiter 1999). This sphingoid backbone 

is synthesized from a common precursor for all phospholipids, acyl-CoA that in the case of 

sphingolipids is coupled to serine by the ER enzyme serine palmitoyltransferases (SPT in 

human, Lcb1p and Lcb2p in S. cerevisiae) yielding ketodehydrosphingosine that is further 

reduced to dehydrosphingosine. This molecule is in turn N-acylated by ceramide synthase 

(CerS in human, Sur2p in budding yeast) to yield ceramide in the ER (Dickson and Lester 1999; 

Tidhar and Futerman 2013). 

 

Metabolization of ceramide into sphingolipids 

The synthesis of complex sphingolipids in both mammalia and yeast takes place in the 

trans-Golgi lumen. Ceramide has a no polar headgroup; it is therefore rapidly flipped 

between membrane leaflets, allowing lumenal metabolization. Mammalia synthesize two 

classes of complex sphingolipids: SMs and glycosphingolipids (see Figure 4). SMs are 

synthesized from ceramide by SM synthase (SMS). Glycosphingolipid biosynthesis 

necessitates glucosylceramide as precursor that is synthesized in the cis-Golgi from ceramide 

by glucosylceramide synthase (GCS) and transported by FAPP2 (Four Phosphate Adaptor 

Protein 2, see 

 

Glycolipid transfer proteins and FAPP proteins: glycol(sphingo)lipid transporters) to 

the trans-Golgi, where glycosphingolipid synthesis occurs, mediated by multiple glycosyl-

transferases (Funato and Riezman 2001). 

In budding yeast, the number of complex sphingolipids is reduced to three, all of 

which have modified forms of inositol as their polar head group. For their synthesis ceramide 

is transported by both vesicular and non-vesicular pathways towards the Golgi apparatus. 

(Funato, Vallee et al. 2002) Transfer of inositol phosphate from phosphatidylinositol to 

ceramide for formation of inositol phosphorylceramide (IPC, see Figure 4) is catalyzed by the 

essential protein Aur1p and highly sensitive to the equilibrium between PI and PI(4)P, as 

perturbations lead to decreased synthesis of complex sphingolipids (Brice, Alford et al. 2009). 

Mannosylation to form mannosyl-inositol phosphorylceramide (MIPC) and further 

conversion from MIPC to mannosyl-diinositol phosphorylceramide (M(IP)2C) with PI also 

occur in the Golgi complex (Brice, Alford et al. 2009). Finally, complex sphingolipids are 
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transported to the PM, where they are most abundant and where they tightly associate with 

sterol.  

 

Sterol: biosynthetic and uptake routes 

Sterol biosynthesis in eukaryotic cells 

The biosynthesis pathway of sterols is complex and necessitates over 20 enzymes. 

Briefly, three molecules of acetyl-CoA are condensed in the mevalonate pathway by HMG-

CoA (3-Hydroxy-3-methylgutaryl-CoA) reductase, a key enzyme in the sterol biosynthesis 

pathway. Further decarboxylation and reduction yields 3-isopentenyl pyrophosphate. 

Geranyl transferases condense three molecules of 3-isopentenyl pyrophosphate into farnesyl 

pyrophosphate, and squalene synthase condenses two farnesyl pyrophosphates into 

squalene. After epoxidation, lanosterol synthase catalyzes the formation of lanosterol, the 

first molecule in the biosynthesis pathway with the characteristic four-ringed sterol structure. 

The further pathways differ slightly between mammalia and yeast, as cholesterol is the most 

important sterol species in mammalia, whereas yeast produces mainly ergosterol. 

Notwithstanding the differences in the synthesis pathways, both mammalian and yeast sterol 

biosynthesis take place in the ER, making efficient sterol sorting for functionalization of 

subcellular membranes (Henneberry and Sturley 2005) (Figure 12). However, whereas the 

syntheses of sphingolipids and different GPL species are tightly interconnected, sterol 

biosynthesis only shares its basic precursor acetyl-CoA with their respective biosynthesis 

pathways.  

Degrella et al. showed that in the case of newly synthesized sterols in mammalian 

cells, the transport of sterol is independent of vesicular trafficking and is energy-dependent 

(DeGrella and Simoni 1982). Menon and coworkers were able to show that in yeast, just as in 

mammalian cells, newly synthesized sterols are transported by non-vesicular, energy-

dependent trafficking pathways towards the PM (Baumann, Sullivan et al. 2005). 
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Figure 12. Short overview of the sterol biosynthetic pathway 

Summarized sterol biosynthesis pathway: (1) Acetoacetyl-CoA (b) is synthesized from two molecules 

of acetyl-CoA (a), addition of another acetyl-CoA (2) leads to formation of mevalonic acid (c). The last 

step is rate limiting and catalyzed by HMG-CoA reductase, hence a key enzyme for sterol. Isopentenyl 

pyrophosphate (IPP) (d) formation requires three steps (3). It is then dimerized (4) to yield geranyl 

pyrophosphate (e), condensation of another IPP molecule (5) gives farnesyl pyrophosphate (f). 

Squalene (g) is formed from two farnesyl pyrophosphate molecules (6). After squalene epoxidation, 

lanosterol synthase catalyzes the cycle formation (7) to yield lanotsterol (h), the first intermediate in 

the biosynthesis with a steroid backbone. Biosyntheses of ergosterol and cholesterol (Figure 5) 

diverge starting from lanosterol and are not further detailed here. For precise descriptions of the 

pathways see (Nes 2011). 

 

Uptake of exogenous sterol 

All eukaryotic cells are capable of both synthesizing their own sterols and taking them 

up from their environment. In mammalia, the major sterol source is receptor-mediated 

uptake of VLDL (Very-Low Density Lipoprotein) and LDL (Low-Density Lipoprotein). The steryl 

ester containing lipoproteins bind to LDL receptor (LDLR) and are then internalized by 

endocytosis in clathrin-coated pits and further transported to the late endosome 

(LE)/lysosome (LY) where sterol esters are hydrolyzed by an acidic lipase (Mesmin and 

Maxfield 2009). In a subtype of lysosomal storage disorders, the Niemann-Pick type C disease, 

mutations in two proteins (Niemann-Pick type C (NPC) 1 and 2) have been identified as the 

origin of the disease. NPC1 and NPC2 are structurally unrelated and play a role in desorption 
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of endogenous sterol from multivesicular body vesicles in the late endosomal/lysosomal 

(LE/LY) system (Ikonen and Holtta-Vuori 2004). NPC1 is an integral LE/LY protein with a 

putative transmembrane sterol sensing domain (SSD) and an N-terminal lumenal domain 

(NTD) that is capable of transporting sterol in vitro, as is the shorter NPC2 (Kwon, Abi-Mosleh 

et al. 2009). Transport of sterol by NPC2 is accelerated in presence of the endosomal lipid 

LBPA, and NPC2 also accelerates the transport of sterol by NPC1 (Infante, Wang et al. 2008; 

Xu, Farver et al. 2008). Structural insights on both proteins indicate a “hand-off” of a single 

sterol molecule between NPC2 and NPC1 by direct interaction, but efforts to structurally 

elucidate this mechanism have failed so far (Wang, Motamed et al. 2010). Their activity 

might be to make endogenous sterol accessible for other sterol transfer proteins for 

distribution from the LE/LY system, necessary for distributing sterol to its subcellular 

localization (Mesmin, Antonny et al. 2013).  

 

Figure 13. Mechanism of the uptake of exogenous cholesterol in mammalian cells. 

Cholesterol-ester laden LDL particles are taken up by receptor-mediated endocytosis in clathrin-

coated pits. The coat and the receptor are recycled via the recylcling endosome, highlighted by Rab8 

and Rab11. Endocytotic vesicles then fuse to multivesicular bodies (MVBs) that maturate into late 

endosomes, where sterol esters are hydrolyzed and sterol is sorted by not yet fully elucidated 

mechanisms. However the sorting is dependent on NPC1 and NPC2 and mediated by MLN64/STARD3 

ORP1L and the Rab GTPases Rab7 and Rab9. Illustration from (Ikonen 2008). 
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In budding yeast, sterol uptake is not receptor mediated, but sterols are absorbed 

directly from the medium. The ATP (adenosine triphosphate)-binding cassette (ABC) 

transporters Aus1p and Pdr11p are implied in sterol uptake, but their mechanism of action 

remains to be identified (Wilcox, Balderes et al. 2002). Under normal conditions the amount 

of sterol absorbed from the medium is negligible. It is only when yeast cells are grown under 

hypoxic conditions that the lack of molecular oxygen necessary for sterol biosynthesis 

induces a dependency on sterol uptake from the medium, making them conditional sterol 

auxotrophs (Jacquier and Schneiter 2012). 

 

Uptake or biosynthesis? – The feedback regulation of sterol metabolism 

As mammalian cells can use both intrinsic and exogenous cholesterol, the 

biosynthetic route needs to be slowed down when cholesterol uptake is high and vice versa. 

In higher eukaryotes, this regulation occurs through a transcriptional feedback on cholesterol 

levels by SREBP (Sterol Regulatory Element Binding Protein) in mechanisms that have been 

discovered and comprehensively described by the Brown and Goldstein lab (Brown and 

Goldstein 2009). Briefly, when ER cholesterol levels are normal (5% of total lipid), SREBP is 

localized to the ER by interaction with cholesterol-binding Scap (SREBP Cleaving Activation 

Protein). When cholesterol concentration in the ER decreases below 5%, Scap undergoes a 

conformational change, releasing the SREBP-Scap complex from the ER and it is subsequently 

transported to the Golgi by COPII-dependent vesicular transport. In the Golgi apparatus the 

N-terminal transcriptional domain of SREBP is cleaved and transported to the nucleus. The 

SREBP transcriptional factor there activates the transcription of both cholesterol biosynthetic 

enzymes and LDL-receptors, which ultimately leads to increasing cellular cholesterol levels 

(Brown and Goldstein 2009; Raychaudhuri, Young et al. 2012). 
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The origins of transbilayer asymmetry 

Phospholipid synthesis is per se asymmetric as the lipid synthesizing enzymes are 

necessarily located on either the lumenal or the cytoplasmic side of an organellar membrane. 

Sterols, DAG and ceramide do not have a polar headgroup and therefore can equilibrate 

rapidly between membrane leaflets (see Transbilayer asymmetry and anionic lipids). This is 

not the case for sphingolipids and GPLs; their localization is therefore fixed to the side of the 

membrane where they are synthesized, unless they are transported. 

Due to the lumenal localization of their biosynthesis, complex sphingolipids are 

trapped at the lumenal face of the Golgi, as their headgroups reduce flipping. Upon transport 

to the PM by vesicular trafficking, they are thus accumulated on the exoplasmic face. The 

mostly saturated sphingolipids segregate sterols, hence explaining one aspect of PM 

transbilayer asymmetry (Funato, Vallee et al. 2002; Holthuis and Menon 2014). 

Biosynthesis of GPLs on the cytoplasmic side of the Golgi confers PE, PI and PS to the 

face they are ultimately enriched in at the PM. Yet newly synthesized GPLs at the ER are 

rapidly equilibrated between membrane leaflets to prevent excessive curving. This is 

mediated by scramblases that are capable of equilibrating bidirectionally the two leaflets 

without energy consumption and without ligand specificity (Holthuis and Menon 2014). 

However, the ER scramblase has not yet been identified, but its presence inferred from the 

absence of membrane deformation upon synthesis of new phospholipids (Devaux, Herrmann 

et al. 2008). 

Intriguingly, PS displays a pronounced asymmetric distribution, with an ER lumenal 

leaflet concentration higher than at the cytosolic face. How exactly PS is sequestered there is 

not fully elucidated. Interestingly, PS makes its way back to the surface at the trans-Golgi 

apparatus (Fairn, Schieber et al. 2011) (Figure 14). Transbilayer movement of PS in the trans-

Golgi is mediated by type IV P-type ATPases (P4-ATPases), flippases that catalyze movement 

from the lumenal to the cytoplasmic face of a bilayer. Movement in the opposite direction is 

mediated by floppases from the ABC transporter family. Both flippases and floppases require 

energy in the form of ATP for function (Daleke 2003; Hankins, Baldridge et al. 2014). 
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Figure 14. PS flipping on the trans-Golgi. 

Thin section electron micrographs of BHK cells expressing GFP-C2Lact stained with anti-GFP gold 

particles. Golgi cisternae show hardly any labeling, whereas tubulated and vesicular structures close 

to it, putative TGN elements, display PS on the cytoplasmic face (arrow). Scale bar 200 nm. Illustration 

from (Fairn, Schieber et al. 2011). 

The best studied P4-ATPase is S. cerevisiae’s Drs2p. It is implied in vesicle formation 

on the trans-Golgi and has therefore revealed an interesting link between vesicular 

trafficking and transbilayer asymmetry. Drs2p is a transmembrane protein translocating PS 

and, to a lesser extent, PE. Its flipping activity is dependent on its glycosylated partner 

Cdc50p and increased by binding of PI(4)P from the Pik1p trans-Golgi network (TGN) pool 

(Natarajan, Liu et al. 2009; Jacquot, Montigny et al. 2012). This PI(4)P-binding is mediated by 

a C-terminal domain showing similarity to Vps36p split PH domain (Natarajan, Liu et al. 2009). 

Drs2p is capable of creating a transbilayer PS gradient, ultimately leading to membrane 

deformation, as shown recently by Xu et al. using a +ALPS (modified amphipathic lipid 

packing sensor) motif of the ArfGAP (GTPase-activating protein) Gcs1p (Xu, Baldridge et al. 

2013). Further findings suggest that the curvature induced rather than just presence of PS 

are required for vesicle formation on the TGN (Takeda, Yamagami et al. 2014). Despite these 

detailed findings on the function of Drs2p-mediated PS flipping, the molecular mechanism of 

its ATPase activity is not yet fully elucidated (Hankins, Baldridge et al. 2014). Yet, it has been 

hypothesized that the PS headgroup would be specifically recognized by transmembrane 

domains whose conformation is changed upon ATP hydrolysis pulling the PS headgroup 
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between the transmembrane domains towards the opposite face of the membrane 

(Baldridge and Graham 2012; Baldridge and Graham 2013). However, PS ultimately reaches 

PM where its asymmetric accumulation on the cytoplasmic face (Figure 15) is conserved. In 

mammalian cells, the PM scramblase is activated upon Ca2+-binding, leading to presentation 

of PS at the extracellular face as an apoptotic ‘eat me’ signal (Bratton, Fadok et al. 1997). 

Regardless, as for the ER scramblase, the identity of the PM scramblase is not yet confirmed 

(Hankins, Baldridge et al. 2014). 

 

Figure 15. Transbilayer asymmetry at the plasma membrane. 

The two leaflets of the PM have fundamentally different lipid compositions: Cholesterol (orange 

ovals), SM (grey), glycerosphingolipids (green) and PC (blue) are enriched on the exoplasmic face, 

whereas the cytoplasmic face is rich in PS (red) and PE (yellow) and contains little sterol and PC. 

Illustration modified from (Holthuis and Levine 2005). 

Transbilayer asymmetry of organellar membranes can thus originate from lipid 

metabolism and thermodynamic trapping or lipid translocation by energy-dependent 

transporters. Another possibility to create asymmetric membranes by soluble lipid 

transporters will be described below. (See Hypotheses on the mechanisms of non-vesicular 

lipid transfer)  
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Lipid transport between membranes 

Lipid transport by vesicular trafficking 

The secretory pathway 

The archetypal function of the secretory pathway is the sorting and modification of 

proteins synthesized in the ER. Transmembrane (TM) proteins are embedded in the 

membrane by the translocon during the translation process. If they do not bear an ER-

retention signal, they are sorted towards the Golgi for post-translational modification and 

eventually further towards the PM. The recruitment of COPII coat proteins to adaptors on ER 

exit sites (ERES) allows formation of vesicles containing protein cargo either in the vesicles 

membrane (TM proteins) or inside the vesicles (soluble cargo). The vesicle bud off the 

membrane and the vesicles are uncoated before SNARE (SNAP (Soluble N-ethylmaleimide-

sensitive factor Adaptor Protein) Receptor)-mediated fusion with ER-Golgi Intermediate 

Complex (ERGIC). 

 

Figure 16. The secretory pathway.  

Vesicles traffic between organelles depending on their protein coat. COPII-coated vesicles transport 

protein cargo from the ER to the Golgi and COPI-coated vesicles in the opposite direction; Clathrin-

coated vesicles shuttle between Golgi, PM and endosomal compartments. Secretory vesicles are 

devoid of protein coats. Illustration from (Bonifacino and Glick 2004). 

Sorted proteins required for vesicle formation and missorted proteins are targeted 

back to the ER in retrograde transport in COPI-coated vesicles for recycling. Cargo destined 

for anterograde transport is targeted to the Golgi apparatus. Two models exist to describe 



61 
 

transport in the Golgi: The first model predicts anterograde vesicular transport of cargo to a 

static cis-Golgi; the second model predicts fusion of vesicles with the ERGIC to form a new 

cis-Golgi whereas the cis-Golgi maturates into medial-Golgi, etc., a process termed cisternal 

maturation. These models can be extrapolated to the entire Golgi apparatus whose protein 

and lipid composition varies significantly between cis- and trans-side. Both models require 

vesicular trafficking, anterograde trafficking of cargo in the case of a static Golgi or 

retrograde trafficking of Golgi-resident proteins in the dynamic Golgi. Ultimately, cargo 

reaches the trans-Golgi and the tubular network structure of the TGN from where it can be 

sorted to different loci of the cell. Cargo can be sorted in vesicles coated with clathrin 

towards endosomes and further towards lysosomes. Cargo destined to the PM is sorted in 

uncoated secretory vesicles that bud off the Golgi and finally reach the PM to which they are 

fused by SNARE-mediation. Soluble cargo is secreted into the exoplasmic space upon fusion 

of secretory vesicles with the PM. Clathrin-mediated endocytosis (CME) allows retrieval of 

wrongfully sorted proteins and uptake of exogenous molecules into the cell. CME vesicles are 

targeted to the TGN from which they are sorted to different cellular loci (Figure 16) 

(Bonifacino and Glick 2004; Johansen, Ramanathan et al. 2012; Faini, Beck et al. 2013; 

Kienzle and von Blume 2014). 

 

Lipid selectivity in vesicular trafficking 

Vesicular trafficking exchanges large amounts of membrane material between 

organelles and is thus essential for bulk lipid transport. One hypothesis for explaining the 

conservation of organellar membrane integrity is lipid selectivity in vesicular trafficking: 

Vesicles are enriched in or depleted of, respectively, lipids, that are more or less abundant, 

respectively, in the target membrane, during vesicle formation (van Meer, Voelker et al. 2008; 

Diaz-Rohrer, Levental et al. 2014). Preferential interaction of secreted or resident proteins 

with lipids or lipid microdomains would allow such accumulation or depletion, respectively, 

of lipids in vesicles budding off an organelle. This mechanism would increase the 

directionality of vesicle trafficking from a lipid point of view; however, only in few cases lipids 

were shown to accumulate in transport vesicles.  
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Figure 17. Lipidomic analysis of immunoisolated Golgi-derived vesicles. 

Comparison of the overall lipid composition of total cell extracts (grey), immunoisolated Golgi vesicles 

(FusMidp-vesicles, red) and TGN/Endosomes extract (blue). Values are represented as mol% of total 

lipid. The FusMidp-vesicles are enriched in PA, ergosterol and sphingolipids and depleted of DAG, PS, 

PE and PC. Illustation from(Klemm, Ejsing et al. 2009). 

Klemm et al. found that vesicles originating from the budding yeast TGN, 

immunoprecipitated with a chimeric FusMidp protein containing a 9x myc-tag, are enriched 

in ergosterol and complex sphingolipids and are in a higher state of order compared to the 

extracted TGN fractions, as determined by lipidomics (Figure 17) and C-Laurdan 

spectrophotometry, respectively. Notwithstanding the clear difference between the two 

isolates, the authors were limited by the absence of yeast TGN markers and used Gap1p for 

immunoisolation, a protein that is known to shuttle between the TGN and endosomal 

compartments. Whether the observed differences between the two isolates are therefore 

biased could not be fully excluded by the authors (Klemm, Ejsing et al. 2009). Similar 

observations have been made on COPI-coated vesicle that were found to be enriched in one 

particular SM species by specific interaction with the transmembrane domain of a COPI 

machinery protein, a feature that appears to be conserved among certain transmembrane 

proteins (Contreras, Ernst et al. 2012). The ability of sterol and sphingolipids to segregate 

into microdomains has been proposed as a mean to use recognition of either sterol or 

sphingolipids to accumulate the other in turn (Brugger, Sandhoff et al. 2000). As a matter of 

fact, introducing sphingolipids not capable of segregation into microdomains affected Golgi 

secretion (Duran, Campelo et al. 2012). Whether this is actually due to the absence of 

microdomain formation or overall Golgi lipid perturbation awaits further elucidation.  
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Mioka et al. observed using a fluorescent PS probe (mRFP-C2Lact) in S. cerevisiae that 

PS accumulates on secretory vesicles budding off the TGN. However, no major perturbation 

of PM PS was observed under these conditions (Mioka, Fujimura-Kamada et al. 2014). 

Intriguingly, the secretory vesicles originating from the TGN immunoisolated by Klemm et al. 

were depleted of rather than enriched in PS, challenging these hypotheses; though two 

distinct populations of secretory vesicles might exist for delivering ergosterol and PS (Klemm, 

Ejsing et al. 2009; Mioka, Fujimura-Kamada et al. 2014). 

However, there are membranes that are not connected to the endomembrane system, 

such as peroxisomes and particularly mitochondria. Their lipid homeostasis during growth 

can thus not only be explained by vesicular trafficking events. Additionally, lipid transfer 

towards other subcellular compartments still occurs in conditions where vesicular trafficking 

is blocked. Non-vesicular transport mechanism are therefore required for maintaining lipid 

homeostasis (Lev 2010) (see below). 

 

Non-vesicular lipid transfer between organelles 

Hypotheses on the mechanisms of non-vesicular lipid transfer 

Non-vesicular lipid transfer can occur via passive and active pathways. Free diffusion 

of lipids between membranes across the aqueous phase can be neglected for lipid 

homeostasis as it is a very slow process (See Transbilayer asymmetry and anionic lipids). Such 

passive lipid transfer could occur when it is collision-mediated; i.e. two membranes come 

close enough to bypass the aqueous diffusion barrier, eventually activated by protrusion of a 

lipid from one membrane (Lev 2010). 

Alternatively, lipid transfer proteins (LTPs) could ensure the maintenance of lipid 

homeostasis by actively shuttling lipids between membranes, eventually facilitated by their 

close apposition (Helle, Kanfer et al. 2013). LTPs would extract lipids from one membrane, 

shield it from the aqueous environment, target an acceptor membrane and deliver lipids, and 

therefore impact lipid distribution in cells. The existence of these protein-mediated, non-

vesicular mechanisms is undoubted, as lipid transfer still occurs under conditions in which 

vesicular trafficking is blocked (Kaplan and Simoni 1985; Vance, Aasman et al. 1991). 

However, only a small number of LTPs have been clearly identified so far. They all share an 
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overall structural arrangement with a lipid-binding pocket that shields the ligand and that is 

closed by a flexible “lid” region allowing loading and unloading of its lipid cargo (Lev 2010) 

(Figure 18).  

 

Figure 18. Mechanism of non-vesicular lipid transport. 

Schematic representation of non-vesicular lipid transfer mechanisms. Spontaneous diffusion of lipids 

between organellar membranes is a very slow process that accounts only for neglectable amounts of 

transfer (left). LTPs extract lipids from one membrane and insert it into another, shielding the lipid in 

pocket while crossing the cytosol; they might work as lipid exchangers (right). Illustration modified 

from (Lev 2010) 

For virtually all organellar membranes, close appositions (intermembrane distance 

10-30 nm) with the ER have been observed. These appositions are probably not tight enough 

to allow (hemi-) fusion or monomeric spontaneous lipid transfer, but are hypothesized to 

kinetically favor transport of lipid molecules by LTPs due to decreased diffusion distances 

(Lev 2010). Those regions of the ER are particularly enriched in proteins implied in lipid 

biosynthesis and, additionally, multiple LTPs or putative LTPs preferentially localize to these 

MCSs. These contacts are relatively stable, whereas their surface can vary upon recruitment 

of additional tethers or depending on the cell cycle. MCSs are induced by tethering factors 

able to bind two membranes at the same time, directly or indirectly. These tethering factors 

have been identified for a large number of contact sites (Helle, Kanfer et al. 2013). 
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Generally, LTP activity will always be subject to a lipid concentration gradient, i.e. they could 

equilibrate lipid concentration between membranes, but not transport lipids against a 

concentration gradient. As such gradients exist, for example for sterol, sphingolipids and PS, 

that are synthesized at the ER but accumulate at the TGN and PM, there must be a way to 

provide energy to the transporters allowing transport up the concentration gradient. There 

are several hypotheses and explanations for lipid transport against a concentration gradient: 

In order to allow lipid transport against a lipid concentration gradient, lipid 

biosynthesis could thus be restricted to sites of LTP activity. The lipid concentration would 

thus be sufficiently elevated locally, reversing the overall gradient between organellar 

membranes. Such elevated lipid synthase activity has been shown for certain MCSs (Pichler, 

Gaigg et al. 2001; Maeda, Anand et al. 2013).  

Metabolization of transported ligands also sustains a lipid gradient by substrate 

consumption. This is the case, for example, for the CERT-mediated transport of ceramide that 

is metabolized into SM in the Golgi targeted by CERT (Hanada, Kumagai et al. 2003) (See 

StAR-related lipid transfer (START) proteins) and would be the case for transport of PS to sites 

of decarboxylation by PSDs. 

 

Figure 19. High and low activity sterol pools in the ER and the PM. 

Two pools of sterols exist in membranes, one with a high (empty sterol, red) and one with a low 

(filled sterol, red) chemical activity γ. The portion of the low γ pool at the PM is greater as compared 

to the ER due to their different lipid saturation levels. This allows sterol transfer proteins (STPs) 

equilibration between the high γ pools of ER and PM, at MCSs or by diffusion across the cytosol, thus 

increasing the net sterol at the PM despite the concentration gradient. Illustration from (Beh, 

McMaster et al. 2012). 
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For sterol transport, a long-standing hypothesis is that LTPs convey this lipid in a 

bidirectional manner between the ER and late membranes. Sterol forms condensed 

complexes with sphingolipids and saturated GPLs (Figure 7) and these condensed complexes 

have a lower chemical activity compared to ‘free’ sterol in a membrane. Chemical activity α is 

defined by α = γ · c, with c being the concentration and γ the chemical activity coefficient. 

Therefore two sterol pools would exist in membranes, one with a low (low γ, in condensed 

complexes, low extractability) and one with a high (high γ, ‘free’ sterol, high extractability) 

activity. Sterol would be equilibrated between the low and high activity pools in ratios 

defined by the saturation level. The portion of the low activity pool in the TGN and PM would 

be greater as compared to the ER because of the late membranes’ higher acyl chain 

saturation levels. It is considered that LTPs transport sterol in a bidirectional manner 

between the high activity pools of the ER and late membranes. However, this would not 

result in a simple equilibration between membranes but would allow a net sterol transport 

towards TGN and PM against the sterol concentration gradient. This is due to the fact that 

the sterol gradient is being outweighed by the chemical affinity gradient. In other words, the 

low γ pool act as a trap for sterol coming from the ER, resulting in the creation of a sterol 

gradient (Sullivan, Ohvo-Rekila et al. 2006; Georgiev, Sullivan et al. 2011; Beh, McMaster et al. 

2012; Mesmin, Antonny et al. 2013) (Figure 19). 

Alternatively, non-vesicular lipid transport could be targeted in a vectorial manner; 

i. e. be driven by a coupling to another event giving the transport directionality independent 

of the concentration gradient. Such coupling could be obtained by counterexchange of lipids, 

in which one molecule’s concentration gradient provides directionality for another lipid’s 

transport (de Saint-Jean, Delfosse et al. 2011; Mesmin, Antonny et al. 2013). 

The following chapter shall give an overview of some of the so far identified lipid 

transfer proteins and their implication in or activity at MCSs. The great importance of these 

membrane junctions in Ca2+ homeostasis will not be detailed; for a review see (Helle, Kanfer 

et al. 2013). 
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Lipid transport by cytosolic carriers: Lipid transfer proteins 

StAR-related lipid transfer (START) proteins: cholesterol and ceramide transporters 

The START protein family regroups 15 proteins in human (Figure 20), its founding 

member StAR (Steroidogenic Acute Regulatory Protein, STARD1) is a mitochondrial 

cholesterol transporter essential for steroidogenesis. Its ≈ 210 aa StAR-related lipid transfer 

(START) domain is the common feature of all START domain containing proteins (STARD1-

STARD15); intriguingly, this conserved domain binds a plethora of different lipids. STARD1, D3, 

D4, D5, D6 bind to cholesterol, whereas STARD2, D7 and D10 bind GPLs (PC and/or PE); 

STARD11/CERT is a ceramide transporter, and there is still some uncertainty concerning the 

ligands of STARD8, D9, D12, D13, D14 and D15. Interestingly, budding yeast has no homologs 

of START proteins, their role must therefore be compensated by other lipid transport 

proteins (Alpy and Tomasetto 2014).  

 

Figure 20. Phylogenetic analysis of the human START proteins. 

The START proteins can be divided into six subfamilies based on their sequence alignments. All START 

proteins display a START domain (green). Other domains found are Mt (mitochondrial targeting 

sequence), MENTAL (MLN64 N-terminal), PH (pleckstrin homology), FFAT (two phenylalanines in an 

acidic tract), SAM (sterile alpha motif), RHOGAP (Rho GTPase activation) and THIO (Acyl-CoA 

thioesterase). Illustration modified from (Alpy, Legueux et al. 2009). 
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STARD11/CERT (Ceramide transfer protein), the best studied START protein and the 

first described genuine LTP, localizes to the membrane contact site between the ER and the 

TGN (ER-TGN contact sites) (Hanada, Kumagai et al. 2003) (Figure 21). Despite the fact that 

the ER and the Golgi apparatus are linked to another by vesicular trafficking, the reticulated 

network of the ER also displays direct connection with the trans-Golgi compartment in 

mammalian cells (Peretti, Dahan et al. 2008) and have been shown to harbor LTPs: The 

phosphatidylinositol transport protein (PITP) Nir2 localizes there, as well as the 

glycosylceramide transporter FAPP2 (Four-phosphate [PI(4)P] adaptor protein), the START 

family ceramide transporter CERT, and the Oxysterol-Binding Protein OSBP (Litvak, Dahan et 

al. 2005; Perry and Ridgway 2006; D'Angelo, Polishchuk et al. 2007) (See below). Even 

though they are members of different protein families, the latter three share a common 

architecture: In addition to their lipid-binding domain, they bear a FFAT (two phenylalanines 

in an acidic tract) motif that mediates binding to the type II ER-resident VAMP-associated 

protein A (VAP-A) and a PH domain that binds PI(4)P to target the trans-Golgi membrane 

(Peretti, Dahan et al. 2008).  

 

Figure 21. Membrane tethering and lipid transport by START protein 

Both STARD11/CERT (A) and STARD3/MLN64 (B) are capable of tethering the ER to a second organelle. 

STARD11/CERT binds ER and Golgi membranes by VAP-recognition via its FFAT motif and PI(4)P-

recognition via its PH domain, respectively. Its START domain shuttles ceramide from the ER to the 

Golgi where it is metabolized into SM. STARD3/MLN64 is a late endosomal transmembrane protein 

that additionally binds to ER membranes by recognition of VAP via its FFAT motif and hence allows 

tethering of these membranes. Cholesterol transport by its START domain is currently studied in our 

lab. llustration from (Alpy and Tomasetto 2014). 
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CERT can thus serve as an ER-trans-Golgi tether and transports ceramide molecules 

inside its START domain from its site of biosynthesis in the ER to the trans-Golgi where 

ceramide is metabolized to form SM and glucosylceramide (Figure 21). In cells, ceramide 

transport would thus be sustained by a thermodynamic trap as ceramide metabolization into 

SM and glucosylceramide allows maintenance of a ceramide gradient between the ER and 

trans-Golgi (Hanada, Kumagai et al. 2003). In vivo, CERT transports ceramide with a rate of 

about 4 lipids/protein per minute (Kudo, Kumagai et al. 2008) and this transport is regulated 

by phosphorylation of CERT. Different phosphorylation sites have been identified which upon 

protein kinase activity can induce increased membrane tethering or autoinhibition of CERT 

(Kumagai, Kawano et al. 2007; Kumagai, Kawano-Kawada et al. 2014). Complete disruption of 

its function either in tethering or in transport leads to accumulation of ceramide in the ER 

and a depletion of cellular SM that can be compensated by expression of a wild type (WT) 

form of CERT (Hanada, Kumagai et al. 2003) (Figure 22). 

 

Figure 22. CERT control sphingolipids homeostasis in mammalian cells. 

TLC analysis of total lipids after metabolic labeling of sphingolipids with [3H]sphingosine in Chinese 

hamster ovary (CHO) cells. CERT-depleted cells (LY-A2, black) have decreased SM levels, compared to 

WT (CHO-K1, white) whereas its precursor ceramide is accumulated, just as glucosylceramide (GlcCer), 

N-acetyl neuraminyl lactosylceramide (GM3) and sphingosine (So). Expression of human CERT 

restores wild-type levels (LY-A2/hCERT, grey). Illustration from (Hanada, Kumagai et al. 2003) 
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Another STARTD protein, STARD3/MLN64 (Metastatic Lymph Node 64) is anchored to 

endosomal membranes via its N-terminal MENTAL domain (Zhang, Liu et al. 2002), whereas 

its C-terminal cytosolic START domain can extract and bind a single cholesterol molecule and 

transport sterol between membranes in vitro (Tsujishita and Hurley 2000). STARD3NL is 

identical to STARD3, except that it lacks the START domain (Alpy, Wendling et al. 2002). Their 

common part regulates the localization of these two proteins: MENTAL anchors the protein 

to endosomal membranes and a short FFAT motif allows interaction with the ER-resident 

VAP-A and VAP-B. Simultaneous targeting of two membranes is a prerequisite for tethering 

two organelles and STARD3 and MENTAL thus allow the formation of junctions between the 

ER and endosomes (Figure 21, Figure 31). The FFAT motif is not canonical as the FFAT found 

in STARD11/CERT or OSBP but was nonetheless able to bind VAP proteins in vivo. 

Overexpression of STARD3 or STARD3NL significantly increases the surface of ER-endosome 

contact sites in HeLa cells (Zhang, Liu et al. 2002; Alpy, Rousseau et al. 2013). Whether the 

START domain allows active sterol transport by STARD3 at ER-endosome contact sites from 

ER to endosomes or vice versa is currently examined by our lab.  

STARD4 is a cholesterol-binding START protein that, in contrast to the 

abovementioned START proteins and, like STARD5 and STARD6, features only the START 

domain. The crystal structure shows that the fold of the START domain between STARD3 and 

STARD4 is conserved and that both display a hydrophobic tunnel for accommodating a single 

cholesterol molecule (PDB entry: 1JSS) (Tsujishita and Hurley 2000; Romanowski, Soccio et al. 

2002). In vitro the STARD4 has been shown to extract sterol from artificial membranes, bind 

sterol with a 1:1 stoichiometry and rapidly equilibrates sterol between membranes (Mesmin, 

Pipalia et al. 2011). In cells, cytosolic STARD4 equilibrates cholesterol between the 

endosomal recycling compartment (ERC) and the ER. Whether this is due to a specific ER-

targeting or to the cholesterol gradient between the two compartments is not clear, as 

STARD4 overexpression can be phenocopied by the microinjection of methyl-β-cyclodextrin 

(β-MCD), an unspecific sterol transporter, albeit at higher concentrations than STARD4. In the 

case of a targeted transport, STARD4 would allow feedback to SREBP-2 on exogenous 

cholesterol uptake and, in fact, STARD4 depletion leads to an SREBP-2 dependent increase in 

free cholesterol levels in cells (Figure 23). Further experimental evidence is required for 

proving this hypothesis (Mesmin, Pipalia et al. 2011). 
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Figure 23. STARD4 equilibrates cholesterol between organelles as cytosolic transporter. 

STARD4 rapidly equilibrates cholesterol concentration gradients between the endocytic recycling 

compartment (ERC) and the ER. Its activity as soluble cholesterol transporter could allow rapid 

feedback on cellular cholesterol levels to regulate sterol biosynthesis via the SCAP/SREBP-2 system 

and cholesterol esterification via ACAT in lipid droplets (LD). Illustration from (Mesmin, Antonny et al. 

2013). 

 

Glycolipid transfer proteins and FAPP proteins: glycol(sphingo)lipid transporters 

Glycolipid transfer protein (GLTP), a small human protein conserved in higher 

eukaryotes, was among the first LTPs identified for their activity in glycolipid transport in 

vitro (Metz and Radin 1982). The in vitro transport activity is influenced by the lipid packing 

of membranes, glycolipids were found to be preferentially transported toward densely 

packed membranes, alike those towards which the ligand is transported in vivo. However, the 

function of this protein in vivo is not clearly assessed due to its low abundance and the low 

level of glycolipids (Nylund, Kjellberg et al. 2006; Tuuf and Mattjus 2014). Nevertheless, its 

homolog GLTP domain-containing protein 1 (GLTPD1 or ceramide-1-phosphate transfer 

protein CPTP) showed selective transport of ceramide-1-phosphate (C1P), and no inhibition 

by ceramide or sphingosine-1-phosphate was observed. Ceramide is phosphorylated by 

ceramide kinase CERK at the TGN, and CPTP was found to localize there, it could thus 

regulate the TGN C1P pool and the inflammatory response induced by C1P (Simanshu, 

Kamlekar et al. 2013).  
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Figure 24. Working model for FAPP2 glucosylceramide transport. 

FAPP2 transports glucosylceramide from the cis- to the trans-Golgi region, where FAPP2 is targeted by 

its PH domain and where glucsylceramide is metabolized to form glycosphingolipids. Two hypotheses 

are shown for transport by FAPP2: Transport independent of (a) or in concert with other LTPs (CERT, 

OSBP) at ER-Golgi contact sites (b). Illustration from (D'Angelo, Polishchuk et al. 2007). 

Human FAPP1 and FAPP2 (Four-phosphate [PI(4)P] adaptor proteins 1 and 2) were 

initially identified owing to their PH domain that interacts with PI(4)P and the small GTPase 

Arf1 (in a GTP-bound state), but a detailed analysis revealed a GLTP-like domain at the C-

terminus of FAPP2. It also displays a FFAT motif, yet the sequence is unconventional resulting 

in weaker VAP-binding (Godi, Di Campli et al. 2004; Mikitova and Levine 2012). Nevertheless, 

the overall geometry would thus be shared with STARD11/CERT, allowing an activity at ER-

Golgi contact sites, even though experimental evidence for such localization is lacking (Figure 

21). FAPP2 has been shown to bind glucosylceramide, the precursor of glycosphingolipid 
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biosynthesis, and transport it in vitro between artificial membranes and in vivo between cis-

Golgi and trans-Golgi (D'Angelo, Polishchuk et al. 2007). This transport activity was revealed 

to be essential for glycosphingolipid biosynthesis, which is surprising as the vesicular 

trafficking between cis- and trans-Golgi is important, but apparently not sufficiently efficient 

for glucosylceramide transport. The authors of the study also assayed the effect of PI(4)P 

metabolism on FAPP2 activity and showed that PI(4)P recognition by FAPP2 was vital for its 

function, thus revealing a control of PIP metabolism on sphingolipid homeostasis (D'Angelo, 

Polishchuk et al. 2007) (Figure 24). 

 

Sec14p, the Sec14-homology (Sfh) proteins: PI transporters 

Sec14 is a budding yeast lipid-binding protein that was first identified in a screening 

for secretion-deficient mutants (Novick, Field et al. 1980) and for its capacity of transferring 

PI and PC between membranes in vitro (Bankaitis, Malehorn et al. 1989; Gnamusch, Kalaus et 

al. 1992). Several homologous proteins have since been identified in multiple different 

eukaryotic species and crystal structures have given insight into ligand binding via their 

conserved CRAL_TRIO domain. These homologous proteins were named Sfh proteins (Sec 

Fourteen homologs), yet it is important to emphasize that not all Sfh proteins are also PI/PC 

exchange proteins (Bankaitis, Mousley et al. 2010). 

Sec14p is an essential protein in yeast. Its depletion leads to the accumulation of PC 

and depletion of PI, PI(4)P and PS in Golgi membranes and to post-Golgi secretory defects 

(McGee, Skinner et al. 1994; Hama, Schnieders et al. 1999). Interestingly, deletion of specific 

proteins can bypass the essential requirement for Sec14p, amongst which three are implied 

in Kennedy pathway PC biosynthesis (Cpt1, Cct1p and Cki1p) and two in PI(4)P metabolism 

(Sac1p, Pik1p when overexpressed). The Sec14-bypass phenotype of Osh4p will be described 

below (McGee, Skinner et al. 1994; Fang, Kearns et al. 1996; Hama, Schnieders et al. 1999; 

Xie, Fang et al. 2001; Fairn, Curwin et al. 2007). Thus, the control of Golgi lipid homeostasis, 

particularly of PI(4)P, seems to be an essential function of Sec14p, but whether this is based 

on active lipid transfer is yet to be proven and the hypothesis has been challenged. It is 

nevertheless clear that Sec14p teams with Pik1p to maintain a proper Golgi PI(4)P level (Fairn, 

Curwin et al. 2007).  
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The lipid-binding capacity of Sec14p and Sfh proteins has been clearly established 

(Figure 25). Yet, it has not been proven whether all or only subsets are genuine lipid transfer 

proteins. The Sfh proteins in budding yeast and human have been found to influence most 

PIP signaling pathways, linking PIP metabolism with lipid droplet regulation in the case of 

Sfh3 or PS decarboxylation pathway for PC synthesis in the case of Sfh4 (Wu, Routt et al. 

2000; Ren, Pei-Chen Lin et al. 2014). As an alternative hypothesis for their function, a 

“nanoreactor” role in regulating PIK activity by controlling its substrate accessibility has been 

proposed for the founding member Sec14p, a hypothesis that needs to be clarified and might 

be extrapolated to the whole protein family (Bankaitis, Ile et al. 2012).  

 

Figure 25. Lipid-binding in Sfh proteins 

Sfh1p, the closest homolog of Sec14p, binds both PI and PC in a lipid-binding pocket closed by a 

helical gate that is opened in the apo-form (not shown). The two lipid ligands are recognized by 

different residues of the binding pocket, making binding both ligand impossible. Illustration from 

(Drin 2014). 

A similar function has been proposed for human Nir2 as it also regulates Golgi PI 

levels at ER-TGN junctions and post-Golgi secretion similar to Sec14p, despite the fact that 

Nir2 does not belong to the Sec14 superfamily (Litvak, Dahan et al. 2005; Kim, Kedan et al. 

2013). Interestingly, Nir2 is anchored via an interaction of its FFAT motif with VAP to the ER, 

not unlike CERT and OSBP, thus necessitating a close membrane contact for ensuring its 

function (Peretti, Dahan et al. 2008) (Figure 54). 
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The TULIP superfamily and SMPs: Infrastructure without lipid transport? 

The Tubular Lipid-binding (TULIP) superfamily encompasses proteins that are not 

characterized by sequence conservation but rather by a general geometric feature: A long 

hydrophobic tunnel capable of binding and transporting various lipids (Kopec, Alva et al. 

2010). The functions of these proteins are diverse: Human CETP and PLTP for example are 

capable of transporting cholesteryl esters and phospholipids, respectively, between 

lipoproteins, thus in the extracellular medium (Albers, Vuletic et al. 2012; Pirillo, Norata et al. 

2013). A screen of full genomes for TULIP revealed homology of certain intracellular proteins 

that were called Synaptotagmin-like, Mitochondrial and Lipid-binding Proteins (SMPs) (Lee 

and Hong 2006; Kopec, Alva et al. 2010). Intriguingly, numerous SMPs (all of them in budding 

yeast) localize via their SMP domain to membrane contact sites that have been proposed to 

facilitate non-vesicular lipid transfer. Additionally, SMPs can recognize lipids and are essential, 

yet not sufficient for MCS formation, and their TULIP homologs are capable of lipid transfer, 

but nonetheless there is currently no evidence of the implication of SMPs in active lipid 

transfer (Toulmay and Prinz 2013; Schauder, Wu et al. 2014). 

The first subgroup of SMPs is constituted by the synaptotagmin-like proteins. These 

proteins all possess Ca2+-dependent lipid-binding C2 domains like synaptotagmin, but are 

additionally equipped with a SMP domain, such as the extended synaptotagmins E-Syt1, 2, 3 

and their yeast homologs the tricalbins Tcb1, 2, 3 (Manford, Stefan et al. 2012; Giordano, 

Saheki et al. 2013). Interestingly, both the E-Syts and the tricalbins have been implied in the 

formation of membrane contact sites between the ER and the PM (ER-PM MCS). In budding 

yeast, large parts of the PM have an underlying network of ER called or cortical ER (cER) that 

copurifies with the PM as PAM (Manford, Stefan et al. 2012). Analysis of the PAM fraction of 

the ER revealed a high abundance of enzymes implied in GPL biosynthesis such as Pss1p and 

Pis1p, but also sterol biosynthetic enzymes such as Erg9p (Pichler, Gaigg et al. 2001). In most 

higher eukaryotes, the ratio of ER associated with the PM is significantly lower than in yeast. 

Yet some cell types display equally elevated ratios such as muscle cells and neurons (Henkart, 

Landis et al. 1976). In all eukaryotes, the products (PS, PI and squalene (when further 

metabolized into ergosterol)) of all of the abovementioned enzymes are enriched in the PM 

compared to the ER, indicating an implication of these regions of the ER in transport of lipids 

towards the PM (Pichler, Gaigg et al. 2001).  
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Figure 26. Tethering cortical ER and PM to form ER-PM MCSs. 

Top: Three tricalbins (Tsbs), Ist2p and Scs2p are essential for ER-PM tethering and contact site 

formation. These ER-transmembrane proteins are capable of binding the PM: Tricalbins via its 

multiple lipids-binding C2 domains and Ist2p via a polybasic tails. The VAP Scs2p does not directly 

bind the PM but can serve as anchor for proteins interacting with the PM. Bottom: Large parts of the 

yeast ER are cortical, i.e. closely apposed to the PM. Deletion of the abovementioned proteins leads 

to a complete loss of the contacts. Illustration from (Manford, Stefan et al. 2012). 

Manford et al. have identified several conserved ER-PM tethering factors whose 

deletion leads to collapsing of the ER and loss of contact site-dependent activities (Figure 26). 

All these tethers (Ist2p, the VAP proteins Scs2p and Scs22p, and the tricalbins Tcb1p, Tcb2p, 

and Tcb3p) are ER-resident proteins and a subset of them are bifunctional, i. e. they directly 

interact with the PM via multiple lipid-binding C2 domains (Tcb1-3p) or a polybasic motif 

(Ist2p) (Manford, Stefan et al. 2012). Deleting the human E-Syts leads to loss of ER-PM 

contact sites, which implies that these proteins have the same function as the tricalbins in 

yeast; regardless the fact that the E-Syts are no transmembrane proteins but anchored to the 

ER via insertion of a hairpin motif (Schauder, Wu et al. 2014). Interestingly, deletion of the 

SMP domain in Tcb2p leads to loss of MCS localization, indicating its role in tethering, even 
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though its precise function remains unknown (Manford, Stefan et al. 2012). VAP proteins do 

not interact directly with the PM but displays a binding site for a FFAT motif an could thus 

mediate indirect membrane tethering via FFAT-containing proteins (Mikitova and Levine 

2012). 

The multitude and conservation of ER-PM tethering factors highlights the diversity of 

this contact site as well as its importance for cell function that is assured by this redundancy. 

Notwithstanding their lipid-binding features and the importance of SMPs in ER-PM tethering, 

evidence on lipid transport by the SMP domains is still lacking (Toulmay and Prinz 2012); 

though recent findings of the De Camilli lab allowed them to posit two possible mechanisms: 

Either could SMP dimers form a tunnel for lipids or the tunnel could serve as lipid-binding 

pocket shuttling between membranes (Schauder, Wu et al. 2014). 

The second subgroup of SMPs is formed by mitochondrial proteins as three 

mitochondrial yeast proteins were identified in the screen: Mmm1p, Mdm12 and Mdm34, 

implied in ER-mitochondria contact sites (ER-mito MCSs). 

Membrane contacts between the ER and mitochondria were the first contact sites 

identified by electron microscopy. Upon isolation of mitochondria, parts of the ER are co-

purified that were named mitochondria associated membranes (MAM) (Tatsuta, Scharwey et 

al. 2014). These MAM fractions are, not unlike the PAM fractions, enriched in lipid 

biosynthesizing enzymes, which indicated an implication of these contacts in lipid transport 

(Stone and Vance 2000). Mitochondria are only partially capable of synthesizing the lipids 

necessary for their growth and are not connected via vesicular trafficking to the 

endomembrane system. Additionally, as mentioned before, the inner IMM is one of the two 

loci of PS decarboxylation for PE and PC biosynthesis in the Kennedy pathway and 

mitochondrial PS import depends on non-vesicular mechanisms. (Leventis and Grinstein 

2010) Altogether, these findings indicate in implication of ER-mitochondria contact sites in 

lipid transport. Besides, Ca2+ homeostasis in mitochondria is essential for mitochondrial ATP 

synthesis, and given the low affinity of the mitochondrial Ca2+-uptake system, membrane 

contact with the ER would allow a local increase of Ca2+ concentration upon ER Ca2+ release, 

thus increase the signaling efficiency; the Ca2+-related findings will not be further discussed 

here. For a recent review see (Helle, Kanfer et al. 2013). 

Several ER-resident proteins interact physically with mitochondrial proteins and have 

thus been proposed as ER-mitochondria tethers, but the nature of the key tethering complex 
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has not yet clearly been defined. The ER-Mitochondria Encounter Structure (ERMES) (Figure 

27) is a potential candidate: ERMES is a heterotetrameric complex of soluble Mdm12p, two 

OMM proteins Mdm10p and Mdm34p and ER-resident Mmm1p (Kornmann, Currie et al. 

2009). Three of these four proteins (Mmm1p, Mdm12p and Mdm34p) bear a SMP domain, 

but it has been impossible so far to show their direct effect on lipid transport. Intriguingly, 

deleting the SMP domain of Mmm1p leads to loss of ER-mitochondrion MCS localization, and 

deleting any of the ERMES subunits affects mitochondrial function in PC synthesis by PS 

decarboxylation, but phenotypes can be rescued by expression of an artificial construct that 

has only tethering activity (ChiMERA) (Kornmann, Currie et al. 2009). Nguyen et al., however, 

showed that deletion of ERMES subunits did not affect mitochondrial PS decarboxylation 

(Nguyen, Lewandowska et al. 2012). These findings lead to the conclusion that contact of the 

mitochondria with the endomembrane system is essential and SMP-mediated, but ERMES 

does not directly intervene in lipid trafficking towards mitochondria (Kornmann, Currie et al. 

2009; Toulmay and Prinz 2012). 

 

Figure 27. The ERMES complex between the ER and the outer mitochondrial membrane. 

(A) Molecular architecture of the ERMES complex and its four subunits Mdm10p, Mdm12p, Mmm1p 

and Mmm2p. (B) GFP labeled mitochondria upon deletion of ERMES subunits show loss of the 

tubular structure found in WT mitochondria. (C) Colocalization of mitotracker (RFP, red) and Mmm1p-

GFP shows punctuate structures, presumably ER-mitochondria contact sites. Illustration from (Tamura, 

Sesaki et al. 2014). 

Mitochondria are not only connected to the ER but also display contacts with 

vacuoles in yeast. This interaction is mediated by vCLAMP (vacuole and mitochondria patch), 

a protein complex containing the non-essential HOPS (homotypic fusion and protein sorting) 

tethering complex subunit Vps39 (Honscher, Mari et al. 2014). Recent findings on ERMES 

indicate an important role of this complex in tethering: Deletion of ERMES components does 

not lead to loss of mitochondrial PC synthesis activity, but deletion of both ERMES and 



79 
 

vCLAMP subunits is lethal. These results indicate that a mitochondrial connection to the 

vacuole can compensate loss of an ER connection and vice versa, thus underlining the 

importance of ERMES for ER-mitochondria tethering (Elbaz-Alon, Rosenfeld-Gur et al. 2014). 

 

A third subgroup is just emerging as Toulmay and Prinz identified and characterized 

another yeast SMP, Nvj2p, that is localized to sites of contact between the nucleus and the 

vacuole called nucleus-vacuole junction (NVJ) (Toulmay and Prinz 2012) (Figure 28).  

 

Figure 28. Comparison of yeast NVJ and mammalian ER-late endosome contact site. 

Both late endosomes and vacuoles, the yeast equivalent of late endosomes/lysosomes, interact with 

the ER. The interaction between ORPs and VAPs appears to be conserved, whereas other tethering 

factors remain to be identified. Illustration from (Honscher and Ungermann 2014). 

The vacuole, the equivalent in budding yeast of the higher eukaryote lysosomes, is 

connected to the nuclear envelope, which is continuous with the ER and the inner nuclear 

membrane. In stationary growth phase, this Nucleus-Vacuole junction (NVJ) becomes 

enlarged in order to perform an autophagic event called piecemeal microautophagy of the 

nucleus (PMN), in which small portions of the nucleus are digested in the vacuole (Kvam and 

Goldfarb 2004). The architecture of this contact site is surprisingly simple as only two 

proteins are required for its formation: Nucleus-vacuole junction 1 (Nvj1p) – that binds the 

inner nuclear membrane, spans the perinuclear space and the nuclear envelope – binds via 

its cytosolic domain to Vac8, a soluble protein that is anchored to the vacuole by N-terminal 

myristoylation and palmitoylation. The interaction of these two proteins is sufficient for 
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tethering and deletion of either one leads to complete dissociation of the MCSs (Kvam and 

Goldfarb 2004). Other proteins are targeted to the NVJ by interaction with Nvj1p such as 

Tsc13p and Osh1p, but are not required for its formation. Tsc13p is an essential very long 

chain fatty acid (VLCFA) synthase, required for efficient PMN, eventually by locally modifying 

the membrane composition with VLCFA. Osh1p was the first Osh protein to be localized to a 

MCS, although its NVJ-localization is transient for PMN and it is otherwise Golgi-localized 

(Levine and Munro 2001). The human ORP1 displays geometry similar to Osh1p and seems to 

be implied in contact sites between the ER and late endosomes, a contact site that might be 

functionally equivalent to the NVJ (Johansson, Lehto et al. 2005) (See Mammalian Oxysterol-

Binding Protein and OSBP-related proteins: Only sterol transporters? and The long Osh 

proteins: Osh1p, Osh2p and Osh3p). The SMP domain-containing Nvj2p is targeted to the 

NVJ by its SMP domain, but its deletion does not seem to affect NVJ formation or PMN, nor 

could a lipid transfer activity be identified for Nvj2p (Toulmay and Prinz 2012).  
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Mammalian Oxysterol-Binding Protein and OSBP-related proteins: Only sterol transporters? 

On the quest for events regulating cholesterol biosynthesis, oxidized sterol 

metabolites (oxysterols, precursors of steroid hormones and bile acids) were identified as 

potent inhibitors. 25-OH blocks HMG-CoA reductase activity in nanomolar concentrations in 

cells (Taylor and Kandutsch 1985). Interaction with this inhibitor allowed the isolation of the 

first oxysterol-binding protein from hamster liver cytosol, as well as the identification of the 

human Oxysterol-Binding Protein (OSBP) (Taylor and Kandutsch 1985; Dawson, Ridgway et al. 

1989; Levanon, Hsieh et al. 1990).  

 

Figure 29. Localization of human ORPs. 

ORPs identified at MCS are labeled in red, green ORPs have not been assigned to any MCS so far. 

Abbreviations are: E for endosomes, ER for endoplasmic reticulum, G for Golgi apparatus, L for 

lysosomes, LD for lipid droplets, M for mitochondria, MT for microtubules, P for peroxisomes 

(Olkkonen and Li 2013). 

Screening eukaryotic genomes for sequence homologs of OSBP revealed that the 

OSBP-related protein (ORP) family is conserved among eukaryotic species, from higher 

eukaryotes (human, mouse, zebrafish) (Lehto, Laitinen et al. 2001; Anniss, Apostolopoulos et 

al. 2002; Liu, Boukhelifa et al. 2008; Zhou, Wohlfahrt et al. 2014) to yeast (Beh, Cool et al. 

2001) (See S. cerevisiae OSBP homologs: The Osh protein family). 

In human cells, twelve ORP genes code for 16 splicing variants and only a subset of 

the proteins’ functions has been detailed so far (Figure 29, Figure 30). All ORPs share a C-

terminal, ≈ 350 aa long OSBP-related domain (ORD) with a highly conserved fingerprint 

motif (EQVSHHPP) and most of them also display N-terminal domains. In these additional 

parts membrane- and protein interacting domains have been identified, such as PH domains 
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and Ankyrin repeats. ORP5 and ORP8 are particular as they are anchored with a C-terminal 

transmembrane segment to the ER (Olkkonen and Li 2013) (Figure 30). Most of the ORPs 

were found to bind oxysterols or sterols, yet with dramatically varying affinities (Suchanek, 

Hynynen et al. 2007).  

 

Figure 30. Overall domain structure of human OSBP-related proteins. 

The sixteen splicing variants of the twelve human OSBP-related proteins classified in six subfamilies 

based on sequence homology. PH domains are represented in blue, FFAT motifs in red, ankyrin 

repeats in green, transmembrane segments in purple and the OSBP-related domain (ORD) in which 

the “fingerprint motif” (EQVSHHPP, yellow) is highlighted, in grey. 

The founding member OSBP displays a PH domain in addition to its ORD, as well as a 

short FFAT motif to interacts with the ER-resident VAP-A (Levine and Munro 2002; Mikitova 

and Levine 2012). Dual targeting of PI(4)P-containing membranes by the PH domain and 

binding of an ER-resident protein with the FFAT motif allows OSBP to populate the ER-TGN 

junction (Perry and Ridgway 2006). The activity of OSBP for formation of such contact sites is 

higher compared to two other proteins with the same domain geometry (CERT and FAPP2, 

see StAR-related lipid transfer (START) proteins and Glycolipid transfer proteins and FAPP 

proteins: glycol(sphingo)lipid transporters), as OSBP helps to recruit them to the ER-Golgi 

contact sites. Interestingly, OSBP is found exclusively on the Golgi when cells are treated with 

25-OH (Ridgway, Dawson et al. 1992). Binding of oxysterols was the leitmotif for ORP 

identification, yet binding of other sterols was hypothesized and OSBP also binds cholesterol 

with varying affinities depending on its phosphorylation state (Wang, Weng et al. 2005; Goto, 
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Liu et al. 2012). Ngo and Ridgway were able to demonstrate that OSBP is also capable of 

transporting cholesterol between artificial membranes in vitro (Ngo and Ridgway 2009). 

Finally, it was not clear whether OSBP was a sterol LTP or a 25-OH sensor. 

Human ORP1 is found in cells in two different splicing variants, ORP1S and ORP1L, the 

latter, longer version displaying N-terminal extensions comprising ankyrin repeats, a FFAT 

motif and a PH domain that are lacking in ORP1S. Both short and long versions of ORP1 bind 

sterols, but their localizations are distinct, as ORP1S is mainly cytosolic whereas ORP1L 

associated with endosomal compartments through interaction of its ankyrin repeats with the 

small GTPase Rab7 (Johansson, Bocher et al. 2003; Johansson, Lehto et al. 2005; Suchanek, 

Hynynen et al. 2007). Rab7 is bound to its effector RILP (Rab7-interacting lysosomal protein) 

and the dynein motor p150Glued. Tethering of late endosomes to the ER through ORP1L by 

binding both membranes is controlled by endosomal cholesterol levels sensed by ORP1L 

(Figure 28, Figure 31). Increasing endosomal cholesterol levels increase the tethering, 

allowing dissociation of the Rab7-RILP-p150Glued complex and movement of endosomes 

along microtubules for LE repositioning (Rocha, Kuijl et al. 2009; van der Kant, Fish et al. 

2013). Interestingly, the LE population bound by ORP1L also contains the sterol exporter 

NPC1 (See Uptake of exogenous sterol), whereas the LE population bound by STARD3 is 

distinct from the first since it does not contain NPC1 but the ABC3 sterol exporter (Alpy, 

Rousseau et al. 2013; van der Kant, Zondervan et al. 2013). Therefore, two different 

populations of LE can encounter the ER by different mechanisms, which would allow 

cholesterol transport at different levels of the endocytic pathway (van der Kant, Zondervan et 

al. 2013). Yet for both putative sterol export proteins, STARD3 and ORP1L, their lipid 

transport activity has been shown only indirectly. 

ORP5 might be another player in the endosomal cholesterol efflux, as it physically 

interacts with NPC1 on late endosomes and thus at LE-ER contact sites as ORP5 displays a C-

terminal transmembrane domain that is anchored into the ER membrane (Figure 31) 

Knockdown of ORP5 affects the cholesterol distribution in NPC fibroblasts leading to 

endosomal cholesterol accumulation, whereas knockdown of both NPC1 and ORP5 induces a 

diffuse sterol distribution (Du, Kumar et al. 2011). ORP5 binds oxysterols and cholesterol, yet 

recent findings suggested that ORP5 transports PS rather than cholesterol, challenging the 

hypothesis that ORP5 is a sterol transporter (Suchanek, Hynynen et al. 2007; Du, Kumar et al. 

2011; Maeda, Anand et al. 2013). 
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Figure 31. Working hypothesis for the interplay of ORP1L and ORP5 on late endosomes 

Inside late endosomes, LDL particles are hydrolyzed by an acidic lipase (1) and release free 

cholesterol that is bound by NPC2 (2) and handed off to NPC1 that exports cholesterol from late 

endosomes (3). ORP5 would then shuttle cholesterol to the ER (4), just as ORP1L (5) that additionally 

relocalizes the LEs via the Rab7-RILP-p150Glued (not shown) complex. Figure modified from (Neefjes 

and van der Kant 2014). 

ORP2, an ORP displaying only an ORD, which also binds oxysterols or cholesterol has 

been found localized to lipid droplets (LD), and its depletion affected neutral lipid 

metabolism, implicating a role in LD homeostasis (Suchanek, Hynynen et al. 2007; Hynynen, 

Suchanek et al. 2009). Previous findings on ORP2 by overexpression had associated it with 

efflux of cholesterol from the ER without any change of PM cholesterol, findings that could 

be reconciled by a hypothesis on cholesterol efflux from the ER towards LD (Hynynen, 

Laitinen et al. 2005; Hynynen, Suchanek et al. 2009). 

A short and a long version exist for ORP9: the long version ORP9L displays a PH 

domain, a FFAT motif and the ORD, thus sharing the OSBP domain structure, whereas the 

shorter ORP9S lacks the PH domain (Ngo and Ridgway 2009). Cholesterol transport activity 

has been shown in vitro and in vivo for ORP9L and ORP9S, which is increased in presence of 

PI(4)P. ORP9L localizes to ER-TGN contact sites in a VAP-A dependent manner, where ORP9L 

would transport cholesterol from the ER to the TGN. On the contrary, the short variant 

ORP9S is mainly cytosolic and affects vesicular trafficking (Ngo and Ridgway 2009; Ling, 

Hayano et al. 2014; Liu and Ridgway 2014). 
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S. cerevisiae OSBP homologs: The Osh protein family 

Common features of the Osh proteins 

In a hallmark publication, Beh et al. screened the entire yeast genome for homologs 

of OSBP and identified seven proteins (some of which had already been identified previously) 

that were named Osh1-7p. They all share an OSBP-related domain (ORD) that is well 

conserved from human to yeast, including the “fingerprint” signature motif EQVSHHPP. 

Based on the sequence similarity of Osh proteins, they can be divided into four subfamilies, 

pairing Osh1p and Osh2p; Osh3p; Osh4p and Osh5p; Osh6p and Osh7p. An alternative 

subdivision is the classification into “long” (Osh1-3p, integrating a C-terminal ORD and 

additional domains) and “short” (Osh4-7p, no domains other than the ORD) Osh proteins 

(Figure 32, Figure 33).  

 

Figure 32. Overall domain structure of Osh proteins. 

The seven yeast Osh proteins divided in long and short Osh proteins (Osh1p-3p) and in sequence 

similarity-based subfamilies (Osh1p-2p; Osh3p; Osh4p-5p; Osh6p-7p). The long Osh proteins display 

pleckstrin homology (PH, blue) domains and an FFAT (two phenylalanines in an acidic tract, red) motif. 

Osh1p and Osh2p additionally dispose of N-terminal Ankyrin repeats (green) and Osh3p of a Golgi 

dynamics (GOLD) domain. Osh4p-7p are devoid of these N-terminal extensions and only have an 

OSBP-related domain (ORD, cyan) in which the “fingerprint motif” (EQVSHHPP, yellow) is highlighted. 

Based on early findings on OSBP, they analyzed every possible combination of 

deletion of Osh proteins, mainly to identify sterol-related phenotypes. In certain Osh 

deletion strains they identified resistance to nystatin, a drug specifically permeabilizing the 

PM in the presence of ergosterol. Nystatin resistance thus indicates absence of ergosterol 

from the PM. Yet total sterol levels of the Osh deletion strains were increased rather than 

decreased, indicating deficiencies in the transport of sterol towards the PM, resulting in 

intracellular accumulation of sterol. This lead the authors to the hypothesis that certain Osh 

proteins play an important role in PM sterol supply. Intriguingly, single deletion of one of the 
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seven Osh proteins had no effect on viability under normal growth conditions, and only 

multiple deletions impaired growth. Interestingly, any Osh protein (except Osh1p) is capable 

of restoring viability in a yeast strain depleted of all other Osh proteins, indicating that they 

share a common, essential function. These experiments were the cornerstone for all 

subsequent research on Osh proteins that is detailed in the following chapter (Beh, Cool et al. 

2001).  

 

Figure 33. Localization of the Osh proteins in S. cerevisiae 

Osh1p localizes to the nucleus vacuole junction (NVJ) and to the Golgi, Osh2p, Osh3p, Osh6p and 

Osh7p are found in the cell periphery, at putative ER-PM contact sites. Osh4p and Osh5p (not shown) 

localize to puncta, most probably secretory vesicles and the TGN or endosomal compartments. 

Illustration from (Olkkonen and Li 2013). 

Further results of the same authors found an implication for the Osh protein family in 

cell polarization and polarized secretion and in secretory events in general. As explanation, 

they postulated sterol-dependent alterations of membrane composition (Beh and Rine 2004; 

Kozminski, Alfaro et al. 2006). Following experiments to prove the importance of the entire 

Osh family in sterol transport in cells produced contradictory results: Raychaudhuri et al. 

analyzed Osh function using a yeast strain capable of sterol uptake under normoxic (aerobic) 

conditions (upc2-1) and exogenous cholesterol. They found that functional Osh proteins are 

required for efficient sterol transport from the PM to the ER and sterol esterification, 

contradictory to the abovementioned findings (Raychaudhuri, Im et al. 2006). However, 

Georgiev and coworkers initially found that PM-to-ER sterol transport was affected after Osh 

deletion (Sullivan, Ohvo-Rekila et al. 2006),yet later revised their first communication and 

showed that PM-to-ER and ER-to-PM transport was unaffected by the absence of all Osh 

proteins (Georgiev, Sullivan et al. 2011). 
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The long Osh proteins: Osh1p, Osh2p and Osh3p 

Osh1p and Osh2p are the Osh proteins sharing the highest sequence homology with 

OSBP. Despite the high sequence homology between the two proteins (55% identity, 71% 

similarity), the initial study were distinct, as Osh1p was identified as the only cold-sensitive 

Osh deletion mutant on minimal medium lacking tryptophan. Second, it has been found that 

any Osh protein except Osh1p is sufficient for yeast viability (Beh, Cool et al. 2001). 

Analyzing the sequences of Osh1p and Osh2p revealed that in addition to their C-

terminal ORD, they also integrate a PI(4)P-binding PH domain, a FFAT motif and three N-

terminal ankyrin repeats, which are implied in protein-protein interactions, thus making 

them part of the “long” Osh proteins (1188 aa for Osh1p, 1283 aa for Osh2p) (Schmalix and 

Bandlow 1994; Beh, Cool et al. 2001). A study by Levine and Munro analyzed the 

localizations of Osh1p and Osh2p by fluorescence microscopy and revealed a peripheral 

localization of Osh2p in buds and at the bud neck, whereas Osh1p was located to central 

puncta. They subsequently identified the localization of Osh1p more precisely, showing that 

Osh1p is targeted to both the Golgi compartment by its PH domain and to the NJV by 

interaction between its ankyrin repeats and Nvj1 (Figure 28). Intriguingly, the ankyrin repeats 

of Osh2p do not target the NVJ, even as chimera with the Osh1p-ORD (Levine and Munro 

2001). Kvam and Goldfarb showed that Osh1p is not required for PMN at NVJs, but that 

deletion of the entire Osh family perturbs PMN, underlining again the functional redundancy 

of Osh proteins (Kvam and Goldfarb 2004). Interestingly, the localization of the N-terminal 

extensions of Osh1p and Osh2p were distinct from the full-length proteins, indicating a role 

for the ORD in localization. The GFP-fused PH domains of Osh1p and Osh2p target spatially 

distinct PI(4)P pools in vivo: PH-Osh1p labels the Pik1p-derived Golgi pool whereas Osh2p-PH 

binds both Pik1p-derived Golgi and Stt4p-derived PM pools of PI(4)P, making it a valuable 

tool for following PI(4)P in vivo (Levine and Munro 2001; Roy and Levine 2004). 

Osh3p is the third “long” (996 aa) Osh protein that forms a proper subfamily. Its 

sequence displays an N-terminal Golgi dynamics domain (GOLD), a FFAT motif, a PH domain 

and the C-terminal ORD (Levine and Munro 2001). Stefan et al. found that Osh3p localizes to 

cortical patches of the cell, which have been identified as ER-PM contact sites, by 

preferential interaction between its PH domain and the PM-localized Stt4p PI(4)P pool and by 

physical interaction with the VAP proteins Scs2p and Scs22p (Stefan, Manford et al. 2011). 

This discovery might partially explain the importance of Scs2p for ER-PM membrane 



88 
 

tethering (Stefan, Manford et al. 2013) (Figure 26). The authors hypothesized that Osh3p 

might through this tethering activity allow the ER-resident PI(4)P phosphatase Sac1 to act in 

trans on the PM and hydrolyze PI(4)P (Manford, Xia et al. 2010; Stefan, Manford et al. 2011), 

but recent findings challenge this hypothesis: The linker that would allow Sac1 to act in trans 

is implied in substrate recognition and would thus be shorter than assumed by the authors 

and not long enough to reach the PM (Cai, Deng et al. 2014). Besides, the authors gave no 

explanation on the necessity to down-regulate PI(4)P directly at the PM where it is 

synthesized. The crystal structure of Osh3p-ORD has recently been solved (PDB entry: 4INQ) 

(Tong, Yang et al. 2013). Unlike in Osh4p, a sterol molecule cannot be accommodated inside 

the lipid-binding pocket of Osh3p, explaining the previous finding that Osh3p is not capable 

of transferring sterols. Yet, Osh3p alike Osh4p is capable of binding PI(4)P in a conserved 

binding site (Tong, Yang et al. 2013). 

This finding further clarifies the link between Osh3p and Sac1p reported by Stefan et 

al. (Stefan, Manford et al. 2011). Another intriguing hypothesis for the function of Osh3p was 

presented by Tavassoli et al., who found that ER-PM tethering by the Osh3p-interacting VAP 

Scs2p is required for the function of the PEMT Opi3p, an effect alleviated by Osh3p 

overexpression, and that Osh3p would thus present PE or phosphatidyl methyl-ethanolamine 

(PME) to Opi3p, or ultimately transport PC to prevent its accumulation in the ER (Tavassoli, 

Chao et al. 2013). 

 

The short Osh proteins: Osh4p, Osh5p, Osh6p and Osh7p 

Osh4p was the first Osh protein identified, yet under its alias Kes1 (Kre11 supressor), 

and Osh5p was subsequently identified as homolog of Kes1 (Hes1). The products of the 

Osh4p and Osh5p genes are surprisingly alike, sharing a sequence identity of 70% and over 

80% similarity. They are “short” Osh proteins, meaning that they have no clearly identified 

domain other than the ORD. Deletion of both Osh4p and Osh5p lead to a resistance to the 

ergosterol specific drug nystatin leaving the total amount of ergosterol unaffected, indicating 

a role of these proteins in PM ergosterol supply or organization (Jiang, Brown et al. 1994) . 

Intriguingly, Osh4p was found by Bankaitis and colleagues to rescue the effect of 

Sec14p-deletion. As mentioned before, Sec14p is a PC/PI exchanger that regulates the lipid 

composition at the Golgi level and downstream secretory processes. Its deletion is lethal 
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unless other proteins are simultaneously deleted. Among these protein deletions resulting in 

a Sec14p-bypass phenotype they identified Osh4p, whereas, intriguingly, Osh5p had no such 

effect despite its high sequence similarity with Osh4p, even at higher expression rates (Fang, 

Kearns et al. 1996).  

The authors further characterized Osh4p and found it to be cytosolic, but also 

localized it at the Golgi complex. It has been suggested that Osh4p binds to the Golgi-

localized Pik1p-derived PI(4)P pool and that this targeting is perturbed if either synthesis or 

hydrolysis (by Sac1p) of Golgi-PI(4)P is perturbed (Li, Rivas et al. 2002; Fairn, Curwin et al. 

2007). A partial explanation for the Sec14-bypass phenotype caused by Osh4p deletion has 

been provided: Silencing Sec14p lead to a decrease of the availability of PI(4)P at the Golgi, 

mainly because Sec14p works with Pik1p to yield PI(4)P at this organelle. It was therefore 

suggested that Osh4p is lethal in Sec14p-deficient strains, because, due to its high 

endogenous expression, it monopolizes all the remaining Golgi PI(4)P molecules at the 

expense of other PI(4)P-binding proteins essential for post-Golgi vesicle biogenesis (Fairn, 

Curwin et al. 2007; LeBlanc and McMaster 2010). However, it was not understood how 

Osh4p binds PI(4)P. As shown later by structural analysis, Osh4p does not have any known 

PIP-binding domain such as a PH domain as suggested by Bankaitis and co-workers (Li, Rivas 

et al. 2002). Beside this, in vitro binding assays failed to prove that Osh4p could distinguish a 

PI(4)P- from a PI(4,5)P2-containing membrane (Li, Rivas et al. 2002; Fairn and McMaster 2005; 

Schulz, Choi et al. 2009). More intriguingly, overexpressing Osh4p was observed to merely 

reduce the cellular level of PI(4)P (Fairn, Curwin et al. 2007). Altogether, these data 

suggested a strong link between Osh4p and PI(4)P metabolism. 

Yet these data remain difficult to reconcile with other observations suggesting that 

Osh4p was a sterol transporter (Fairn, Curwin et al. 2007). First, in 2005, the group of James 

Hurley solved the crystal structure of Osh4p in complex with different sterols and oxysterols 

(Im, Raychaudhuri et al. 2005). This was naturally considered to be an important leap 

towards the understanding of Osh proteins function. The three-dimensional structure 

revealed a novel fold that was subsequently shown to be conserved in other Osh proteins 

(Figure 34). Osh4p displays a near-complete β-barrel of 19 sheets surrounding a hydrophobic 

cavity inside that accommodates a single sterol molecule in a head-down conformation. 

Osh4p was crystallized in complex with different sterols (cholesterol, ergosterol and 

oxysterols) with a 1:1 stoichiometry. The sterol 3-OH moiety makes direct and water-
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mediated contacts with polar residues (Q96, Y97) at the bottom of the pocket. The sterol-

binding site is locked by a flexible N-terminal lid region of 29 amino-acids (PDB entry: 1ZHZ) 

(Im, Raychaudhuri et al. 2005). When Osh4p is empty, the lid is unfolded and leaves the 

pocket accessible.  

 

Figure 34. Crystal structure of Osh4p and analysis of mutations in ΔOsh and Sec14-ts backgrounds 

(a) The overall structure of Osh4. The N-terminal lid (1–29) is red, the central helices (30–116) orange, 

the β-barrel (117–307) green, and the C-terminal sub-domain (308–434) cyan. (b) Superposition of 

five sterols in the binding site. 7-HC is colored grey, 20-HC cyan, 25-HC red, cholesterol green and 

ergosterol blue. Hydroxyl groups in the sterols are shown in spheres. Hydrogen bonds are shown in 

dashed lines. (c) Plasmids encoding Osh4 mutants were introduced into CBY926 (4) (ΔOsh) and 

NDY93 (Sec14-ts). The strains were grown at permissive temperature (23 °C) and dilution series were 

incubated at 37 °C. Illustration modified from (Im, Raychaudhuri et al. 2005). 

These results suggested that Osh proteins adopt two distinct conformations: an 

empty form that might target a donor membrane to extract sterol and a sterol-bound form 

that recognizes an acceptor membrane to supply it with sterol. Further results from the same 
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group showed that Osh4p transports radioactively labeled cholesterol, albeit at slow speed, 

between artificial membranes in vitro, and that this activity was slightly accelerated by 

charged phospholipids such as PS and PI(4,5)P2 (Raychaudhuri, Im et al. 2006). Interestingly, 

we found that the lid of Osh4p could alternatively fold into an ALPS motif that senses lipid-

packing defect, suggesting ability for Osh4p to extract sterol from curved membranes (Drin, 

Casella et al. 2007). 

Yeast complementation assays showed that Osh4p rescues ΔOsh strains lacking the 

entire Osh family (Beh, Cool et al. 2001; Beh and Rine 2004) likely by restoring proper 

ergosterol levels in the PM. This suggested that Osh4p transfers sterol to the PM. However, 

as mentioned above, the exact role of Osh4p and other Osh proteins in sterol distribution 

was rapidly disputed (See above). Nevertheless, Im and coworkers identified mutants shown 

to be unable to bind radioactive cholesterol in vitro (Y97F and R100M) to phenocopy the WT 

form of Osh4p in ΔOsh strains, thus suggesting that Osh4p acts as a sterol transporter. 

However, mutation of a neighboring residue (Q96A), that shows even stronger interaction 

with the ergosterol molecule in Osh4p was found to bind  to sterol in vitro and to behaves 

like WT Osh4p in ΔOsh strains, questioning notably the results obtained with the Y97F 

mutant (Im, Raychaudhuri et al. 2005; Singh, Brooks et al. 2009). Moreover, subsequent 

results showed that the Y97F mutant is not a loss-of-function mutant of Osh4p in a study 

observing the repressive role of Osh4p function on exocytosis leading the authors to the 

conclusion that sterol transport is not an essential function of Osh4p (Alfaro, Johansen et al. 

2011; Beh, McMaster et al. 2012). However, these studies aimed to examine mainly the 

impact of Osh4p on PI(4)P metabolism at the Golgi level.  

Hurley and coworkers were intrigued by residues that are not directly implied in 

sterol recognition but that are strictly conserved in ORP/Osh proteins (Im, Raychaudhuri et al. 

2005) such as H143A/H144A residues that belong to the ORD signature “EQVSHHPP“ and 

other residues, strictly conserved among the ORP/Osh protein such as K109 and K336. 

Intriguingly, the H143/H144AA double mutant, the K109A or K336A mutant do not have, 

unlike WT Osh4p, any lethal effect in Sec14p-deficient strains and, inversely, do not restore 

the viability of Osh strains as Osh4p WT does (Figure 34). No clear explanation was given 

for these observations because most of these mutants were found to bind cholesterol as 

efficiently as the WT form.  
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Figure 35. Structural aspects of Osh4p PI(4)P recognition and PI(4)P transport assay 

(a) Close-up view of the PI(4)P binding site. PI(4)P is shown in grey with oxygen in red and 

phosphorus in orange. The residues that interact with the polar-head are represented in stick with 

oxygen in red and nitrogen in blue. The H-bonds are represented by cyan dashed lines, the water 

molecules are represented as red dots. The lid is colored with the B factor of C. (b) Structure of 

Osh4p bound to ergosterol. (c) Superposition of PI(4)P (colored in orange) and ergosterol (blue) 

molecules in Osh4p. The backbone of Osh4p is shown in light grey (d). Sucrose-loaded DOPC/DHE 

liposomes (98:2 mol/mol, 0.5 mM lipids, labeled with 0.1% mol NBD-PE) were incubated with 

DOPC/PI(4)P liposomes doped with [32P]PI(4)P (98:2 mol/mol, 0.5 mM lipids, labeled with 0.1 mol% 

Rho-PE). After centrifugation on a sucrose gradient, a bottom and top fraction were collected. The 

fluorescence of NBD-PE, Rho-PE, and DHE was measured and PI(4)P radioactivity was counted for 

each fraction. (B, bottom) The relative amount of donor and acceptor liposomes in each fraction is 

shown. (B, top) The gain or loss of DHE and PI(4)P (in percentages) for each liposome population. 

Data are represented as mean ± SEM (n = 2) Illustration in (d) modified from (de Saint-Jean, Delfosse 

et al. 2011). 
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Using novel real-time assays based on the use of dehydroergosterol (DHE), a close 

fluorescence analogue of ergosterol, our group addressed the influence of membrane 

composition on the ability of Osh4p to extract, deliver or transport sterol. Our major result 

was to unveil that PI(4)P specifically inhibits sterol extraction because PI(4)P is itself 

efficiently extracted by Osh4p (de Saint-Jean, Delfosse et al. 2011). We solved the structure 

of the Osh4p-PI(4)P complex and revealed how sterol and PI(4)P molecules, whose chemistry 

is unrelated, compete with each other (Figure 35a, b). This competition is explained by the 

fact that one PI(4)P acyl chain occupies the same pocket that sterol is bound to (Figure 35a, 

b). The polar head of PI(4)P lies in an adjacent shallow pocket: The phosphate groups at 

position 1 and 4 of the inositol ring contact exposed residues, notably K109, N112, K336, 

E340 and R344 residue and the H143/H144 pair. Compared to the sterol-bound form, the lid 

adopts a slightly different conformation to shield the PI(4)P molecule (Figure 35a, b). 

Importantly, we show that Osh4p exchanges DHE for PI(4)P and, thereby, can transport these 

two lipids between two distinct membranes along opposite routes (de Saint-Jean, Delfosse et 

al. 2011).  

These findings lead us to the development of our current working model (Figure 36) 

We suggest that Osh4p uses the PI(4)P gradient at the ER/Golgi interface maintained by 

Pik1p and Sac1p to supply the trans-Golgi with sterol. In our model, Osh4p extracts sterol 

from the ER, then releases it by counterexchange with PI(4)P at the Golgi, and transports 

PI(4)P from the Golgi to the ER. The ATP-dependant production of PI(4)P by Pik1p would 

energetically drive sterol/PI(4)P cycles by Osh4p, thereby promoting the active release of 

sterol into the trans-Golgi and the creation of a sterol gradient. More generally, we propose 

for the first time a model to explain how lipids can be transported along an one-way route 

between organelles against their concentration gradient, and, as PI(4)P synthesis depends on 

ATP, why non-vesicular sterol transport processes were found to rely on energy (de Saint-

Jean, Delfosse et al. 2011).  

This model could explain why Osh4p expression is lethal in Sec14p-deficient yeast 

(Fang, Kearns et al. 1996; Fairn, Curwin et al. 2007). Osh4p does not reduce the availability of 

Golgi PI(4)P by solely binding this lipid but by extracting and transferring PI(4)P from the 

Golgi to the ER where Sac1p resides. This also easily explains why the overexpression of 

Osh4p reduces cellular PI(4)P levels and why, on the contrary, silencing Osh4p provokes a 

notable increase in cellular PI(4)P level similar to what is observed for Sac1p-deficient yeast 
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(Stefan, Manford et al. 2011) (Figure 34). Strikingly, we observed in vitro that the mutants 

K109A, H143A/H144A and K336A were unable to bind to PI(4)P. As mentioned above, these 

exact same mutants are those that are not lethal in Sec14p-deficient yeasts. We thus 

propose that these mutants lost their ability to extract PI(4)P from the Golgi and to convey 

this lipid to the ER. In line with this, a report by LeBlanc and McMaster (LeBlanc and 

McMaster 2010) showed that the K109A mutant does not lower the amount of PI(4)P in 

yeast as WT Osh4p does. Eventually, we could explain why the H143/H144AA, the K109A or 

K336A mutants do not restore viability of Osh strains: Unable to bind PI(4)P, they would not 

exchange sterol for PI(4)P on the Golgi surface and, thus, would not properly release sterol 

into late membranes.  

 

Figure 36. Working model for the lipid exchange function of Osh4p. 

Our working model is based on the findings of (de Saint-Jean, Delfosse et al. 2011); Figure 1 of the 

submitted manuscript “A phosphatidylinositol 4-phosphate-powered exchange mechanism to create 

a lipid gradient between membranes”. Ergosterol is synthesized at the ER. Osh4p transports 

ergosterol from the ER to the trans-Golgi and PI(4)P in the opposite direction. ATP-dependent 

phosphorylation of PI into PI(4)P by Pik1p and the hydrolysis of PI(4)P by Sac1p allow multiple 

sterol/PI(4)P transport cycles by Osh4p. The maintenance of the PI(4)P gradient would allow in turn 

the vectorial transport of sterol and, thereby, the creation and maintenance of a sterol gradient 

between the ER and the Golgi by Osh4p. 
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Interestingly, our model might also explain further interesting observations: The 

control of Golgi PI and PI(4)P is essential for post-Golgi secretion. The ability of Osh4p to 

transfer PI(4)P from the Golgi to the ER might explain why Osh4p has been defined as a 

repressor of the biogenesis of exocytotic vesicles, relying on PI(4)P (Audhya, Foti et al. 2000). 

However, Osh4p was found to interact genetically and physically with the Rho GTPases Rho1 

and Cdc42 as well as with the Rab GTPase Sec4p, regulators of polarized exocytosis 

(Kozminski, Alfaro et al. 2006). Additionally, Osh4p colocalizes in a PI(4)P-dependent manner 

to proteins of the exocyst complex and was found to be required for the Cas1-mediated 

removal of Golgi-derived PI(4)P from secretory vesicles (Alfaro, Johansen et al. 2011). PI(4)P 

is required on secretory vesicles budding off the Golgi for interaction of Ypt31/32p with 

Sec2p, which in turn activates Sec4p, controlling delivery and tethering of secretory vesicles 

via the exocyst complex. For this tethering the exocyst subunit Sec15p is required to bind to 

Sec2p in a site that overlaps with the Sec2p Ypt31/32p-binding site; in order to allow 

tethering with the PM Ypt31/32p thus needs to be dissociated from Sec2p (Mizuno-Yamasaki, 

Medkova et al. 2010). Osh4p controls this switch of Sec2p between Ypt31/32p and Sec15p by 

removing PI(4)P from secretory vesicles and thus promotes dissociation of Ypt31/32p from 

Sec2p (Ling, Hayano et al. 2014). PI(4)P hydrolysis by Sac1p is required for this activity, 

indicating that Osh4p therefore would not only remove PI(4)P from secretory vesicles but 

also make it available for the phosphatase (Ling, Hayano et al. 2014).  

To sum up, we propose that Osh4p ensures sterol/PI(4)P exchange cycles at the 

ER/late membrane interface and that any deregulation of this activity has subtle effects on 

the exocytosis process. The sterol/PI(4)P exchange activity, in context where Golgi PI(4)P is 

lacking, might promote even more severe reduction of PI(4)P level in this compartment 

resulting in an blockade of exocytotic vesicle biogenesis. On the contrary, any arrest of the 

sterol/PI(4)P exchange through the silencing of Osh4p, would block the tethering of 

exocytotic vesicles with the PM. Interestingly, recent evidence also suggests that the 

deregulation of Sac1p, Pik1p or Osh4p has an effect on cellular sphingolipid levels (Brice, 

Alford et al. 2009; LeBlanc and McMaster 2010; Mayinger 2012). A likely hypothesis is that 

the PI/PI(4)P balance, at the ER level, depends on the activity of these three proteins and 

that this balance is crucial for sphingolipids synthesis as such a process directly relies on the 

availability of PI coming from the ER. 
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The two other short Osh proteins Osh6p and Osh7p have a sequence identity alike 

Osh4p and Osh5p (70% identity, 80% similarity), yet the conservation level between the two 

subfamilies is lower (Beh, Cool et al. 2001). Most research effort has been intended for 

Osh6p, neglecting Osh7p due to its high sequence similarity and thus functional conservation, 

but considering the differences in Osh4p- and Osh5p-related phenotypes, more detailed 

analysis of Osh7p could reveal functional differentiation between Osh6p and Osh7p.  

Osh6p and Osh7p are cytosolic proteins that are also enriched at cortical patches of 

the ER, presumably ER-PM contact sites, as determined by fluorescence microscopy. Wang et 

al. found Osh6p to be a major regulator of cellular ergosterol, as its deletion lead to increase 

and its overexpression to decrease of total ergosterol (Wang, Duan et al. 2005; Wang, Zhang 

et al. 2005). This was underlined by findings showing both Osh6p and Osh7p interacting with 

the vacuolar yeast NPC1 homolog Ncr1p in an Arv1p-dependent manner, yet the impact on 

Arv1p on sterol homeostasis appears to be minor as recently reported (Du, Kumar et al. 2011; 

Georgiev, Johansen et al. 2013).  

 

Figure 37. Osh6/7p are PS transporters 

Left: Yeast strains without Osh6p and Osh7p (Osh6-/Osh7-) show decreased PS levels at the PM 

compared to WT (Osh6+/Osh7+) as observed using a genetically encoded PS probe (GFP-C2Lact). PS 

levels are decreased by 30 % whereas they are in increased in the ER, highlighted by Rtn1-mCherry. 

Right: Model showing different PS transport pathways that are Osh6/7p-dependent (red) or -

independent (green). Illustration modified from (Maeda, Anand et al. 2013). 
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However, a recent study and our own results will show that Osh6p is clearly not 

capable of interaction with ergosterol (Maeda, Anand et al. 2013) (Figure 46). Osh6p rather 

binds PS in its conserved hydrophobic pocket and transports newly synthesized PS from the 

ER towards the PM (Maeda, Anand et al. 2013) (Figure 37). Deletion of both Osh6p and 

Osh7p is necessary for affecting PS transport, indicating a functional redundancy between 

the two proteins (Maeda, Anand et al. 2013). PS transport towards sites of polarized growth 

is also mediated by vesicular trafficking, whether these vesicular and non-vesicular transport 

pathways are coupled awaits further elucidation (Fairn, Hermansson et al. 2011; Mioka, 

Fujimura-Kamada et al. 2014). The Osh protein family is not implied in PS transport towards 

Psd1p or Psd2p for PE and PC synthesis and yet total PS levels in Osh deletion mutants are 

significantly decreased favoring PE and PC synthesis, underlining the importance of Osh 

proteins in alternative PS trafficking routes like those shown by Maeda et al. (Raychaudhuri, 

Im et al. 2006; Maeda, Anand et al. 2013). Albeit the clear effect of Osh6p and Osh7p on ER-

PM PS transport, this is not an essential function as ablation of both proteins is not lethal. 

Also, both proteins can restore cell growth in mutants lacking all other Osh proteins, whereas 

Osh7p bearing mutations in residues not affecting PS binding (HH159/160AA) fails to do so, 

indicating further essential functions for Osh6p and Osh7p (Tong, Yang et al. 2013). 

 

Recent Structural aspects of Osh protein lipid binding 

 The intriguing finding that Osh4p does not only bind sterols (Im, Raychaudhuri et al. 

2005) but also PI(4)P (de Saint-Jean, Delfosse et al. 2011) represented a paradigm shift in 

ORP/Osh research as for the first time a non-sterol lipid ligand was found to bind to an Osh 

protein. Crystal structures of Osh3p-ORD (PDB entry: 4IC4), the Osh3p-ORD-PI(4)P complex 

(PDB entry: 4INQ) (Tong, Yang et al. 2013) and the Osh6p-PS complex (PDB entry: 4B2Z) 

(Maeda, Anand et al. 2013) showed that the overall fold of Osh proteins is well conserved, as 

well as the PI(4)P-binding site (de Saint-Jean, Delfosse et al. 2011; Tong, Yang et al. 2013). 

The second GPL ligand found to bind to an Osh protein was PS in Osh6p, but whether PS-

binding is structurally conserved in Osh proteins has not been shown so far (Maeda, Anand 

et al. 2013). Intriguingly, the ORP/Osh fingerprint motif found to be implied in PI(4)P binding 

in Osh4p and Osh3p, but does not interact with the PS molecule in the Osh6p structure nor 

with sterol in the Osh4p structure (Im, Raychaudhuri et al. 2005; de Saint-Jean, Delfosse et al. 
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2011; Maeda, Anand et al. 2013). As the geometry of the PI(4)P binding site is conserved in 

Osh6p, this leads to the intriguing question whether Osh6p can also bind PI(4)P. Moreover, 

does it bind PS and PI(4)P in the same mutually exclusive manner than for ergosterol and 

PI(4)P in Osh4p? 
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Hypothesis for ORP/Osh protein function and objectives 

Sterols are unevenly distributed in eukaryotic cells: Sterols are scarce at the ER, where 

they are synthesized, whereas they are enriched at the TGN and PM. In yeast and human 

cells, the uneven distribution of sterols, ergosterol in yeast and cholesterol in human, plays a 

key role as sterols render membranes more rigid in presence of saturated phospholipids. The 

accumulation of sterol species at the PM thus allows formation of a rigid barrier shielding the 

cell from external influence (van Meer, Voelker et al. 2008). Early studies from the Simoni 

group suggested that sterol is rapidly transferred (t1/2 ≈10 min) from the ER to PM mostly 

along non-vesicular routes in an energy-dependent manner (DeGrella and Simoni 1982). 

Likewise, ER-to-PM transfer of ergosterol, the major sterol in yeast, takes place along non-

vesicular routes (Baumann, Sullivan et al. 2005). Whereas the trafficking in the secretory 

pathway is well established and defined, little is known about the non-vesicular trafficking of 

lipids and sterols inparticular (Drin 2014). Among the LTPs that could be able to serve as 

sterol transporters are the ORP/Osh proteins (Beh, Cool et al. 2001; Lehto, Laitinen et al. 

2001). Whether ORP/Osh proteins participate in active sterol transport in vivo and how their 

activity is regulated is largely unknown (Raychaudhuri, Im et al. 2006; Alfaro, Johansen et al. 

2011; Georgiev, Sullivan et al. 2011). Yet the current opinion on sterol transport proteins 

considers the chemical potential gradient sufficiently powerful for the establishment of sterol 

concentration gradient by random shuttling (Sullivan, Ohvo-Rekila et al. 2006; Beh, 

McMaster et al. 2012) (Figure 19). 

Our group has proposed an alternative hypothesis: We posit that Osh4p exchanges 

newly synthesized sterols from the ER for PI(4)P at the trans-Golgi. Anterograde sterol 

transport is fueled by retrograde PI(4)P transport and PI(4)P hydrolysis (de Saint-Jean, 

Delfosse et al. 2011) (See our working model (Figure 36)). We therefore wanted to test this 

model by very precise quantitative analysis. One of our goals was to measure whether 

Osh4p acts as an efficient sterol/PI(4)P counterexchanger, i.e. by coupling intimately the 

transport of its two lipid ligands in opposite directions between two membranes. We 

further aimed to define whether the maintenance of a PI(4)P gradient by PI(4)P hydrolysis 

provides additional energy for sterol transport to Osh4p. Ultimately we wanted to provide 

evidence that this mechanism allows Osh4p to transport sterol against its concentration 

gradient.  
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MCSs are specialized zones in which the ER membrane is closely apposed to the 

membrane of a second organelle (10‒20 nm apart), and are increasingly considered as 

essential hubs for the transport of lipids. In higher eukaryotes, MCSs between the ER and 

trans-Golgi are notable because they host various LTPs, including OSBP, CERT and Nir2, which 

play major roles for the remodelling of the Golgi membrane. OSBP has been shown to bind 

and/or transport oxysterols and cholesterol with varying affinities (Wang, Weng et al. 2005). 

Besides, it targets both the ER and the trans-Golgi network by interaction of its FFAT motif 

with VAP-A and by coincidence detection of both PI(4)P and Arf1 with its PH domain (Levine 

and Munro 2002; Mikitova and Levine 2012). OSBP is mostly cytosolic, but binding to its high 

affinity ligand 25-OH rapidly targets the protein to the Golgi (Ridgway, Dawson et al. 1992). 

Our lab was interested in determining the actual function of OSBP. At one point, we aimed to 

demonstrate that OSBP is also capable of counterexchanging PI(4)P for cholesterol and that 

this activity determines its function at ER-Golgi contact sites.  

Recent structural insight gave proof that sterol binding is not a common feature of the 

ORP/Osh proteins (Maeda, Anand et al. 2013; Tong, Yang et al. 2013). The recognition of 

PI(4)P, however, might be better conserved (de Saint-Jean, Delfosse et al. 2011; Tong, Yang et 

al. 2013). The demonstration of a conserved PI(4)P-binding mode in ORP/Osh proteins could 

thus help to identify a common mechanism of function, and be (possibly related to) the 

common essential function of Osh proteins in budding yeast (Beh, Cool et al. 2001). 

PS has been identified as ligand for Osh6/7p and potentially for ORP5 and ORP10; 

Osh6/7p have additionally been shown to transport PS from the ER to the PM (Maeda, 

Anand et al. 2013). We wanted to study whether Osh6/7p are capable of binding PI(4)P and 

counterexchanging it for PS between membranes, and whether this transport is favored by 

PI(4)P metabolism, in the same manner as for sterol/PI(4)P counterexchange by Osh4p, 

allowing Osh6/7p to create a PS gradient between the ER and PM. 

Using fluorescence-based lipid transfer assays in a reconstituted system of reduced 

complexity we aimed to follow the effects of ORP/Osh proteins on transport of lipid species. 

We developed, in addition of using well-established techniques, novel fluorescence-based 

lipid transport assays in vitro, to examine with a high temporal resolution the ability of 

ORP/Osh proteins to transport sterol and PI(4)P in opposition direction between two distinct 

membranes. Such reconstituted system allows the observation of a strictly controlled 

variable under constant control of all factors, excluding unwanted compensatory effects.  
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We provide insight in the conservation of the proposed mechanism between budding yeast 

and human as well as proof for the capability of Osh4p to transport sterol against its 

concentration gradient using PIP metabolism as energy source.  
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MATERIALS AND METHODS 
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RECONSTITUTIVE APPROACH:  

ASSAYING LIPID TRANSFER IN VITRO 

 

Lipid homeostasis is very rapid and highly dynamic. Qualitative detection of the lipid 

transport activity of protein in vivo is usually based on fluorescence-labeled, specific lipid-

interacting protein domains (GFP-Annexin V, GFP-C2Lact, GFP-PHFAPP) or naturally fluorescent 

lipids (DHE), but quantification of lipid transport remains difficult, so that kinetics and 

interplay in the case of lipid exchange cannot be easily assayed. Fluorescence-labeled lipid 

molecules are to be used with caution as the presence of a fluorescent moiety might 

influence the physical-chemical properties of lipids in both membrane insertion and 

recognition by LTPs. Isotope labeling allows quantification of lipid transport by membrane 

fractionation, lipid extraction and autoradiography, but the low time resolution prevents 

detailed insight into the kinetics of lipid transport mechanisms.  

Therefore, to fully understand the biochemistry of ORP/Osh proteins, it is necessary 

to use a pure in vitro approach. We use artificial membranes of defined composition, small 

fluorescence-labeled lipid probes and recombinant proteins to follow lipid transport by 

fluorescence measurement under controlled conditions. Despite the fact that our system 

does not perfectly mimic a cellular context, it allows us to measure with an unprecedented 

precision the lipid transport activity of proteins. This precision is required to detect kinetic 

coupling in lipid counterexchange, as compensatory or regulatory events possibly occurring 

in vivo might prevent us from detecting such coupling. Once biochemically demonstrated, 

proof from in vivo experiments is however required to ascertain the validity of the hypothesis 

in living cells. This validation has been achieved for certain findings (see Results) or is 

currently ongoing. 
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Liposomes 

In order to measure transport of lipids between lipid membranes we need to control 

the lipid composition of those membranes. We use spherical vesicles with a defined 

diameter (liposomes) and of defined composition that are produced from lipid films by 

suspension in buffer and extrusion. Lipids were purchased from Avanti Polar Lipids, except 

DHE, which was purchased from Sigma-Aldrich. The lipids solubilized in an organic solvent 

(chloroform, methanol or more complex mixtures) were mixed in the desired molar ratios 

and the organic solvent was evaporated under reduced pressure in a rotative evaporator. The 

dried films were hydrated in buffer (120 mM K acetate, 50 mM Hepes, pH = 7.2) with small 

glass beads under rigorous agitation and the suspension subsequently underwent five 

freeze-thaw cycles (flash freezing in liquid nitrogen and thawing in a water bath at 37 °C) in 

order to obtain multilamellar vesicles (MLVs). MLVs were then extruded into small 

unilamellar vesicles (SUVs) by passing them 21-times through a polycarbonate filter with 

pores of defined size (usually 0.2 µm) using a mini-extruder (Avanti Polar Lipids). To produce 

liposome of varying diameter liposomes were sequentially extruded through filters with 

decreasing pore size (0.4 µm, 0.2 µm, 0.1 µm, 0.05 µm and 0.03 µm). Dynamic light 

scattering (DLS) was used to define the size distribution and average size of these unilamellar 

vesicles. 

 

Protein purification 

In order to obtain high grade recombinant protein for our measurements, we used 

isopropyl β-D-1-thiogalactopyranoside (IPTG)-induced overexpression from pET-24b (+) 

(Sac1p) or pGEX-4-T3 (all other proteins) plasmids in BL21 Gold cells (Escherichia coli). 

Mammalian protein (PHFAPP, C2Lact) overexpression was induced with 1 mM IPTG for 4 h at 

37 °C, whereas yeast proteins were induced with 1 mM IPTG over night at 30 °C. Cells were 

harvested by centrifugation, washed with phosphate buffered saline (PBS) and again 

sedimented. Bacteria pellets were stored at -20 °C prior to purification. For purification, cells 

were suspended in lysis buffer (150 mM NaCl, 50 mM Tris.HCl pH = 7.4) and lysed in a French 

Press in the presence of a protease inhibitor cocktail (EDTA-free protease inhibitor tablets 

(Roche), pepstatin, bestatin, phosphoramidon and PMSF) and 2 mM dithiothreitol (DTT) to 
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prevent oxidation. The lysate was treated with DNase I to remove longer DNA strands prior 

to ultracentrifugation. For GST-tagged proteins, the supernatant was applied to Glutathione 

sepharose beads (GE Life Sciences) and bound protein washed three times with lysis buffer 

containing DTT. The GST-tag was cleaved by thrombine (Roche) treatment over night. Eluted 

fractions were concentrated and further purified by on size exclusion chromatography 

(Sephacryl S-300, GE Life Sciences). For His6-tagged proteins, the supernatant was applied to 

Ni-NTA Agarose (Qiagen), the beads washed, protein eluted with 20 mM, 50 mM imidazole 

and the concentrated eluate further purified by size exclusion chromatography (Sephacryl S-

300, GE Life Sciences) to remove imidazole. All proteins were assayed by Bradford assay, 

absorbance at λ = 280 nm and gel assay using SyproOrange (Life technologies). 

 

Flotation assays 

Binding of protein on membranes and its lipid specificity were assayed by flotation 

assays that have been described previously. Briefly, proteins (750 nM) were incubated with 

NBD-PE containing liposomes (750 μM total lipids) in 150 μl HKM buffer at room 

temperature for 5 min. The suspension was adjusted to 30% sucrose by mixing 100 μl of a 75% 

(w/v) sucrose solution in HKM buffer and overlaid with 200 μl HKM containing 25% (w/v) 

sucrose and 50 μl sucrose-free HKM. The sample was centrifuged at 240,000 g in a swing 

rotor (TLS 55 Beckmann) for 1 h. The bottom (250 μl), middle (150 μl) and top (100 μl) 

fractions were collected. The top fractions were analyzed by SDS-PAGE using Sypro-Orange 

staining and a FUJI LAS-3000 fluorescence imaging system (Bigay and Antonny 2005). 

 

Fluorescence and FRET 

PI(4)P detection by NBD-PHFAPP 

Multiple proteins are specifically localized to PI(4)P containing membrane 

compartments via PI(4)P-interacting domains and have been described above (See Synthesis 

and localization of phosphoinositide species). The approximately 100 aa long pleckstrin 

homology (PH) domains can simultaneously bind PIPs and/or small G proteins. PH domains 

are abundant and found in LTPs, such as FAPP1, FAPP2, CERT and ORPs, but also in 
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phospholipase Cδ (PLCδ), and have been used extensively to study localizations of PIPs in 

vivo. GFP-labeled PH domains of PLCδ identifies PM PI(4,5)P2, whereas PH domains of FAPP1, 

OSBP and CERT target Golgi PI(4)P and GFP-PHOsh2p highlights both Golgi and PM PI(4)P (Roy 

and Levine 2004; Lemmon 2008; Lenoir and Overduin 2013).  

Crystal and NMR structures of several PH domains have been solved, yet the data for 

FAPP1 is most complete. A first solution NMR structure (PDB entry: 2KCJ) solved by Lenoir et 

al. revealed a seven-stranded β-barrel capped by an α-helix with a hydrophobic wedge 

between the first two β-stands (Lenoir, Coskun et al. 2010), confirmed by a crystal structure 

(PBD entry 3RCP) (He, Scott et al. 2011). Incubation of PHFAPP1 with lipid/detergent micelles 

showed a resonance shift for the residues of the loop, and molecular docking of PHFAPP1 

showed a deep insertion of this wedge into a model membrane (Lenoir, Coskun et al. 2010). 

They also identified the PI(4)P-interacting residues by molecular docking, and this 

identification was confirmed by the resolution of the structure of PHFAPP1 bound to soluble di-

C6 PI(4)P (Lenoir, Coskun et al. 2010; He, Scott et al. 2011). Arf1-binding depends on the 

bound nucleotide as only Arf1-GTP is bound on the outside of the β-barrel as determined by 

resonance shift and molecular docking (He, Scott et al. 2011). Recently the structure of the 

ternary complex PHFAPP1/PI(4)P/Arf1 bound to a small bicelle surface has been presented by 

Liu et al., resuming and confirming the previous findings (Figure 38) (Liu, Kahn et al. 2014). 

 

Figure 38. Ternary complex PHFAPP1/PI(4)P/Arf1 on a small bicelle. 

Haddock molecular docking model illustrating the interactions of PHFAPP1 (blue), PI(4)P (sticks in the 

bicelle) and Arf1 (green) with GTPγS (sticks in Arf1). PHFAPP1/PI(4)P models and PHFAPP1/Arf models are 

superimposed for the ternary complex and combined with an Arf1/bicelle model. The deep insertion 

of the wedge into the bicelle is well illustrated in the right representation. Illustration from (Liu, Kahn 

et al. 2014). 
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We wanted to develop a fluorescent tool that would recognize PI(4)P-containing 

membranes and reflect binding by a change in fluorescence. We thus mutated the solvent-

exposed T13 residue localized in the hydrophobic wedge of PHFAPP into a cysteine and 

replaced other solvent-exposed cysteines to serine (mutations C37S and C94S). This series of 

mutations allowed us to chemically label specifically the C13 residue with an environment 

sensitive probe, nitrobenz-2-oxa-1,3-diazole (NBD). N-((2-(iodoacetoxy)ethyl)-N-

Methyl)amino-7-Nitrobenz-2-Oxa-1,3-Diazole (IANBD, Molecular Probes®, Life Technologies) 

is a reagent which rapidly condenses with thiols attaching the NBD moiety (Figure 39a). 

Insertion of this moiety into a lipid bilayer modifies the emission wavelength and intensity of 

its fluorescence (Figure 39d).  

 

Figure 39. Characterization of lipid recognition and fluorescence of NBD-PHFAPP 

See text and figure legend for figure S2 of the submitted manuscript for details. 

We used IPTG-induced overexpression from a pGEX-4-T3 plasmid in E. coli to produce 

a GST-PHFAPP construct bearing the abovementioned mutations and purified it using 

glutathione sepharose beads (GE healthcare), as described above, but in presence of 2 mM 

DTT in order to prevent cysteine oxidation. DTT was removed by gel filtration on a NAP-10 
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column (GE healthcare) before incubating the protein with a 10-fold excess of IANBD (life 

technologies) dissolved in N,N-dimethylformamide (DMF). After quenching with L-cysteine 

(10-fold excess over IANBD incubation) and intensive washing in DTT-containing buffer to 

remove unbound probe, the NBD-PHFAPP was further purified on size exclusion 

chromatography (Sephacryl S-200, GE Life Sciences) and assayed, revealing a complete 

labeling of PHFAPP by comparing its absorbance at 280 nm over 480 nm (Figure 39b,c). 

Incubating NBD-PHFAPP with liposomes containing 4 mol% of PI(4)P induced a blue-shift (542-

529 nm) of the emission maximum and increased its fluorescence intensity six fold compared 

to liposomes devoid of PI(4)P (Figure 39d,e). 

 

Recognition of phosphatidyl-L-serine with NBD-C2Lact 

The function of PS, the most abundant negatively charged phospholipid, is strictly 

dependent on its localization, thus multiple strategies have been developed to analyze its 

distribution. First insight came from subcellular fractionation and detection of PS by thin 

layer chromatography (TLC). Notwithstanding the importance of this technique, organelle 

isolation always bears the risk of cross-contamination. Additionally, this technique does not 

give any information on the sidedness of PS and the temporal resolution is reduced. Different 

fluorescent probes have thus been developed for PS detection in vivo. Headgroup or side-

chain fluorescence-labeled PS derivatives can mimic endogenous PS in membranes, but 

protein interaction with PS might be affected by chemical lipid modification. The C2 domain 

of Annexin V recognizes PS and can easily be tagged and genetically expressed, but its 

binding is not specific for PS as it also recognizes other anionic phospholipids (PI, PA) and 

requires high Ca2+ concentrations, thus making it an adequate tool for measuring 

extracellular PS (an apoptotic signal), but limiting its application for intracellular 

measurements (Leventis and Grinstein 2010; Kay, Koivusalo et al. 2012). 

 Lactadherin is a glycoprotein secreted into milk by mammalian mammary epithelial 

cells. It bears a discoidin-like C2 domain that stereospecifically recognizes phosphatidyl-L-

serine independent of Ca2+. Lactadherin C2 domains with fluorescent tags have recently been 

used to detect PS in vivo (Yeung, Gilbert et al. 2008; Fairn, Schieber et al. 2011). The crystal 

structure of the C2 domain of bovine Lactadherin has been solved by Gilbert and coworkers 

(PDB entry: 3BN6), showing a β-barrel core as found in other discoidin-like C2 domains, but 
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the Lactadherin C2 domain has particular membrane-interacting spikes. The PS-binding site 

was determined by molecular modeling, and these findings were confirmed by a recent 13C- 

and 15N-NMR structure of human Lactadherin in complex with soluble di-C6:0 PS (Shao, 

Novakovic et al. 2008; Yeung, Gilbert et al. 2008; Kay, Koivusalo et al. 2012; Ye, Li et al. 2013). 

 

Figure 40. Characteristization of lipid recognition and fluorescence of NBD-C2Lact 

(a) Tridimensional model of the NBD-labeled C2Lact based on the NMR structure of the crystal 

structure of the C2 domain of bovine Lactadherin (PDB entry: 3BN6). The solvent-exposed cysteines 

C240 and C427 are mutated for alanines, histidine H352 is replaced by a cysteine. An N,N’-dimethyl-

N-(thioacetyl)-N’-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine moiety (in stick, with carbon in 

grey, nitrogen in blue and oxygen in red), built manually and energetically minimized, is grafted to the 

thiol function of C352. The figure is prepared with PyMOL (http://pymol.org/). (b) SDS-PAGE of 

purified NBD-C2Lact. The gel was directly visualized in a fluorescence imaging system to identify 

labeled proteins (right picture) and then stained with Sypro Orange to visualize all proteins and 

molecular weight markers (left picture). Unrelated bands have been excised. (c) UV-visible absorption 

spectrum of NBD-C2Lact. Considering a purity grade of 100% for the protein, the optical density value 

at 280 nm (Trp) and 495 nm (IANBD) indicate that the C2 domain was labeled with the probe at a 1:1 

ratio. (d) Flotation assays showing binding of C2Lact (1µM) to extruded 0.2 µm liposomes (1 mM total 

lipid) depending on their lipid composition. Values are the means two independent experiments ± 

SEM. (e) NBD fluorescence intensity measured at 525 nm as function of total lipids concentration and 

for different membrane compositions (in mol/mol). NBD-C2Lact only binds to PS -containing liposomes 

and this interaction is not impaired when membrane contains PI(4)P.  
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The identification of PS- and membrane-interacting residues allowed us to modify the 

C2 domain (residues 270-427) of bovine Lactadherin for our purposes as PS probe. Solvent 

exposed cysteines were mutated by Quikchange mutagenesis (Agilent) into alanines 

(mutations C270A and C427A) and a histidine residue in the membrane-interacting third 

spike was mutated to cysteine (H352C) in order to allow chemical labeling with an NBD probe 

to yield NBD-C2Lact. The overexpression, purification and labeling protocols for NBD-C2Lact are 

identical with those for NBD-PHFAPP. Binding and fluorescent properties were assayed as 

described for NBD-PHFAPP (Figure 40). 

 

FRET-based lipid transfer assays 

DNS-PE-based DHE transport assay 

The assay has been described elsewhere (de Saint-Jean, Delfosse et al. 2011). In brief, 

FRET (Förster Resonance Energy Transfer) is measured between DHE and Dansyl-labeled 

lipids (DNS-PE) at λ = 510 nm (emission slid width = 10 nm) upon excitation of DHE at λ = 310 

nm (excitation slid width = 1.5 nm) using a 0.6 neutral filter. At 30 °C, 200 µM liposomes (0.2 

µm extrusion) containing 2.5 mol% DNS-PE and 5 mol% DHE were incubated with 200 µM of 

a population of liposomes without DNS-PE (0.2 µm extrusion), containing or not 4 mol% 

PI(4)P and FRET is measured after addition of 200 nM protein in a stirred quartz cuvette 

(Figure 41). Loss of FRET mirrors DHE extraction, and owing to the excess of DHE over Osh 

proteins extraction is equivalent to transport. For every experimental condition (different 

DHE gradients, GPL and sphingolipid composition), the obtained kinetics were normalized 

compared to liposomes of the same overall composition but depleted of DHE as zero.  

 

Figure 41. Schematic representation of DHE transport assay with DNS-PE. 
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NBD-PHFAPP-based PI(4)P transport assay 

NBD fluorescence of our NBD-PHFAPP probe upon PI(4)P recognition is quenched by 

FRET when the liposomes also contain Lissamine Rhodamine B headgroup labeled lipids 

(Rhod-PE, Avanti Polar Lipids). Two liposome populations were used and only one initially 

contained PI(4)P and Rhod-PE. We chose to follow the NBD fluorescence increase as it 

directly mirrors transported PI(4)P. NBD-fluorescence was measured at λ = 530 nm (emission 

slid width = 10 nm) upon excitation at λ = 460 nm (excitation slid width = 1.5 nm). 

For PI(4)P transfer assays, 250 nM NBD-PHFAPP and 200 µM liposomes containing both 

PI(4)P (4 mol%) and Rhod-PE (2 mol%) (0.2 µm extrusion) were mixed with 200 µM 

liposomes deprived of PI(4)P and Rhod-PE containing or not 5 mol% DHE (0.2 µm extrusion) 

at 30 °C in a stirred quartz cuvette. NBD fluorescence was measured after injection of 200 

nM Osh proteins (Figure 42). For every experimental condition, kinetics were normalized 

compared to the signal measured with liposomes with the same overall lipid composition, 

containing equal amounts of PI(4)P, mimicking full equilibration of PI(4)P (2 mol%), but only 

one of them containing Rhod-PE. 

 

Figure 42. Schematic representation of NBD-PHFAPP-based PI(4)P transport assay. 

 

NBD-PHFAPP-based PI(4)P extraction assay 

For PI(4)P extraction assays, 250 nM NBD-PHFAPP and 300 µM liposomes containing 2 

mol% (3 µM accessible) PI(4)P were incubated with a stoichiometric amount of Osh protein 

(3 µM) for 5 min at room temperature and NBD fluorescence spectra emission spectra were 

measured (500 nm < λ < 650 nm (emission slid width = 10 nm) upon excitation at λ = 460 nm 

(excitation slid width = 1.5 nm)). A blue-shift was observed upon liposome binding of NBD-

PHFAPP (Figure 39). Emission maxima before and after incubation with Osh protein were 

substracted and normalized to a control with liposomes devoid of PI(4)P. 
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NBD-C2Lact-based PS transport assay 

 
As for NBD-PHFAPP, NBD fluorescence of the NBD-C2Lact probe upon PS recognition is 

quenched by FRET when the liposomes also contain Rhod-PE. Two liposome populations 

were used and only one initially contained PS and Rhod-PE. NBD-C2Lact equilibrates more 

slowly than NBD-PHFAPP, but equilibration is nonetheless faster than transport by Osh 

proteins (not shown). NBD fluorescence increase thus directly mirrors PS transport. NBD-

fluorescence was measured at λ = 530 nm (emission slid width = 10 nm) upon excitation at λ 

= 460 nm (excitation slid width = 1.5 nm). 

For lipid transfer assays, 250 nM NBD-C2Lact and 200 µM liposomes containing both PS 

(5 mol%) and Rhod-PE (2 mol%) (0.2 µm extrusion) were mixed with 200 µM liposomes 

deprived of PS and Rhod-PE containing or not 5 mol% PI(4)P (0.2 µm extrusion) at 30 °C in a 

stirred quartz cuvette. NBD fluorescence was measured after injection of 200 nM Osh 

proteins (Figure 43). For every experimental condition, kinetics were normalized compared 

to liposomes with the same overall lipid composition, containing equal amounts of PS, 

mimicking full equilibration of PS (2.5 mol%), but only one of them containing 2 mol% Rhod-

PE. 

 

Figure 43. Schematic representation of NBD-C2Lact-based PS transport assay. 
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“A phosphatidylinositol 4-phosphate-powered 

exchange mechanism to create a lipid gradient 

between membranes” 

 

Based on previous findings on the counterexchange of sterol with PI(4)P by Osh4p we 

aimed to use a reconstituted system to follow transport of the two lipids in real time. We 

therefore developed a tool that would allow us to follow transport of PI(4)P under the same 

conditions as sterol transport and opted for a fluorescence-labeled PH domain. The 

development and characterization of the NBD-PHFAPP PI(4)P probe is described in detail. (See 

PI(4)P detection by NBD-PHFAPP and Figure 36 in the Materials and Methods section and 

Article Figure S2). For the transport assays, we used two distinct populations of DOPC-based 

liposomes, one population containing 10 µM accessible DHE, mimicking the ER (LE) and one 

population containing or not 4 µM accessible PI(4)P, mimicking the trans-Golgi (LG). In order 

to distinguish the two populations, LE liposomes contained Dansyl-labeled lipids (DNS-PE) for 

DHE transport assays and LG liposomes contained Rhodamine Lissamine A-labeled lipids 

(Rhod-PE) for PI(4)P transport assays. 

Measuring transport kinetics for both DHE and PI(4)P under identical conditions 

allowed us to reveal a tight coupling of the transport in opposite directions of the two lipids. 

The initial transport velocity for each ligand is increased by one order of magnitude under 

conditions where counterexchange is possible (from 1-2 lipids/min to ≈20 lipids/min per 

Osh4p, Article Figure 2a,b). The initial transport velocities were similar for both lipids, thus 

endorsing the hypothesis of a counterexchange. Importantly, altering the affinity of Osh4p 

for one ligand affected the transport velocities for both ligands in the same manner, another 

affirmation of an exchange process (Figure 2c). 

In our assays, we used a molar excess of DHE over PI(4)P. We observed that the DHE 

transport is slowed down significantly once PI(4)P is equilibrated between the two liposome 

populations. In cells, PI(4)P is produced by PI4Ks on trans-Golgi membranes and the PM and 

hydrolyzed by the ER-resident PI(4)P phosphatase Sac1p (Tahirovic, Schorr et al. 2005; 

Faulhammer, Kanjilal-Kolar et al. 2007), thus creating and maintaining a PI(4)P gradient 

between early and late membranes. We therefore sought to attach Sac1p to the ER-
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mimicking liposome population to hydrolyze delivered PI(4)P into PI and hence maintain the 

PI(4)P gradient between the ER-like and the Golgi-like populations. Attachment was achieved 

by integrating Ni2+-displaying lipids (DOGS-NTA-Ni2+) into the ER-like liposomes that interact 

with a C-terminal His6-tag on Sac1p. Sac1p attached to liposomes efficiently hydrolyzed 

PI(4)P and allowed continuing accelerated transport of sterol through maintenance of the 

PI(4)P gradient (Article Figure 3).  

In cells, a sterol transporter would have to transport sterol against its concentration 

gradient to create and maintain this sterol gradient at the ER/Golgi interface. We therefore 

assayed whether Osh4p could transport DHE between two liposome populations that initially 

contained the same amount of DHE or even against a preexisting DHE gradient (Article Figure 

4). In the absence of PI(4)P, transport was slow and followed the gradient, yet 

counterexchanging DHE for PI(4)P allowed Osh4p to create or even increase the DHE gradient. 

The effect was transient as, after equilibration of PI(4)P, sterol was transferred back along its 

gradient. However, the transport of DHE up its gradient was maintained by sustaining the 

PI(4)P gradient via Sac1p. It has long been thought that the creation of sterol gradient could 

be obtained simply by random transport of sterol and sequestration of transported sterols in 

membrane rich in saturated GPLs and sphingolipids (Sullivan, Ohvo-Rekila et al. 2006; Beh, 

McMaster et al. 2012) We were able to show that the presence of more saturated lipids or 

SM in Golgi-like membrane favors the accumulation of sterol by Osh4p, against its 

concentration gradient, but the counterexchange for PI(4)P was essential to observe this 

(Article Figure 5).  

We furthermore showed that packing defects induced by phospholipid unsaturation 

or membrane curvature facilitates DHE extraction from ER-like liposomes. This suggests that 

the transport of sterols from the ER towards better packed trans-Golgi membranes is favored 

rather than in the opposite direction. Another aspect for this directionality is the dynamics of 

the lid segment (Article Figure 6). Molecular dynamics simulations suggest that in the sterol-

bound form, the lid of Osh4p is tightly closed whereas it remains flexible when Osh4p is 

bound to PI(4)P. We show that on ER-like membranes, i.e. neutral membranes, Osh4p is 

more prone to deliver PI(4)P rather than DHE, favoring transport of PI(4)P towards these 

membranes rather than sterol (Article Figure 7). This might prevent the back delivery of 

sterol from the Golgi to the ER. 
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Our results show that Osh4p disposes of different features that allow it to rapidly exchange 

two different lipid ligands in opposite directions. Similar affinities for both ligands allow a 

rapid exchange between them, whereas directionality is provided for the transport by 

packing defect-favored extraction and delivery as well as by coupling the transport to PIP 

metabolism. The maintenance of the cellular PI(4)P gradient by kinases and phosphatases 

can therefore provide both energy and directionality to the anterograde sterol transport. This 

feature is necessary for efficient transfer of sterol as the chemical affinity gradient alone is 

not sufficient. Hence, we show that Osh4p displays all the features required for a genuine 

sterol transporter in cells. The velocities of transport are compatible with a role of Osh4p in 

providing sterol to late membrane during yeast growth phase. We will demonstrate in a near 

future how sterol transport activity of Osh4p is coupled in vivo to PI(4)P turnover and will 

help to further elucidate the function and molecular mechanism of other ORP/Osh proteins. 
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“A Four-Step Cycle Driven by PI(4)P Hydrolysis Directs 

Sterol/PI(4)P Exchange by the ER-Golgi Tether OSBP” 

 

Analyzing the architecture of OSBP, we were able to show that the N-terminal region, 

containing the PH domain and the FFAT motif are responsible for the targeting to these 

perinuclear structures that we identified to be ER-Golgi contact sites by thin-section electron 

microscopy. For the full length protein, this targeting is however controlled by binding of 25-

OH (Article Figure 1). Using giant unilamellar vesicles, bead-supported bilayers and small 

liposomes we showed by transmission electron microscopy, fluorescence microscopy and 

dynamic light scattering that the PH-FFAT tandem efficiently aggregated functionalized 

bilayers containing VAP-A or Arf1-GTP and PI(4)P, respectively. (Article Figure 2) Interestingly, 

OSBP was capable of tethering artificial membranes in the absence of 25-OH in vitro. Trying 

to link this relocalization to a molecular function, we observed the Golgi PI(4)P level with a 

tagged version of the PH domain of OSBP, and we found that the levels were significantly 

decreased when OSBP was overexpressed. This decrease was found to be dependent on 25-

OH binding and mutation of residues in OSBP corresponding to residues that are implied in 

PI(4)P binding in Osh4p, as well as deletion of the ORD. These findings imply that OSBP like 

Osh4p is capable of extracting and transport PI(4)P from Golgi membranes. Following the 

movement of DHE we observed that OSBP overexpression prevented retrograde movement 

of exogenous sterol to lipid droplets. (Article Figure 3) Jointly, these results suggested that 

OSBP transports cholesterol towards Golgi membranes in a PI(4)P-dependent manner. 

We therefore assayed the sterol transport activity in vitro using the abovementioned 

FRET-based assay for following DHE transfer between artificial membranes. We observed 

little transfer by the full length OSBP, but proteolysis with trypsin produced fragments of 

different lengths that were capable of transporting DHE efficiently between liposomes. The 

active fragments all comprised the ORD of OSBP, whereas the PH-FFAT-containing fragments 

had little activity. (Article Figure 4) We thus tried to integrate the tethering activity of the PH-

FFAT into the transport by the ORD by functionalizing the liposomes: DHE-containing, ER-

mimicking liposomes were covered with VAP-A (by interaction of the VAP-A His6-tag with 

Ni2+-displaying lipids) and Golgi-mimicking liposomes were decorated with myristoylated 
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Arf1-GTP. DHE transport by OSBP was activated by both VAP-A and Arf1-GTP, though 

activation by VAP-A was a prerequisite for Arf1-GTP activation. (Article Figure 5) 

Intrigued by the question whether PI(4)P could stimulate the transfer of DHE by OSBP 

in the same manner as for Osh4p, we replaced myristoylated Arf1-GTP by PI(4)P. The 

observed effect was complex: whereas PI(4)P increased the initial transport velocity of DHE 

transport by OSBP it became inhibitory after several transport cycles, decreasing the overall 

transport velocity. Integrating PI(4)P and control PIPs in the DHE-containing liposomes, only 

PI(4)P competed with DHE for extraction and reduced the DHE transport activity. This 

indicated a mutually exclusive DHE- and PI(4)P-binding as shown for Osh4p. Importantly, we 

showed using the NBD-PHFAPP PI(4)P probe that OSBP is able to of extract and transports 

PI(4)P between artificial membranes. (Article Figure 6) 

If OSBP transports both DHE and PI(4)P in opposite directions, why is 

counterexchange slowed after a certain number of exchange cycles? As PI(4)P is delivered to 

the DHE-containing membranes, it would compete with DHE for extraction by OSBP and thus 

block the DHE transport. In cells, PI(4)P is hydrolyzed by the ER-resident phosphatase Sac1. 

Hence we attached Sac1p-His6 to Ni2+-displaying lipids in addition to VAP-A and hydrolysis of 

PI(4)P in cis on the DHE-containing liposomes actually relieved the competition between the 

two lipids. To make sure that Sac1p would not act in trans on PI(4)P on the Golgi-mimicking 

liposomes we tested the phosphatase activity in absence of tethering between liposomes 

and with liposomes tethered by the PH-FFAT tandem that was shown not to transport PI(4)P. 

Sac1p was not capable of hydrolyzing PI(4)P in trans, contradictory to previous findings 

(Stefan, Manford et al. 2011). (Article Figure 7) 

We have shown how OSBP uses retrograde transport of PI(4)P for anterograde 

transport of sterols both in vivo and in vitro. Maintenance of a PI(4)P gradient between 

membranes is a prerequisite for continuous sterol transport, as demonstrated in presence of 

the PI(4)P phosphatase Sac1p in vitro. Presence of PI(4)P also controls transport by another 

mechanism: The PH domain’s PI(4)P recognition and Arf1-GTP-binding, together with VAP-A-

recognition, allows OSBP to target both ER and TGN membranes and thus serve as a 

tethering factor to create a MCS. This would also explain why blocking OSBP with its high-

affinity ligand 25-OH triggers its relocalization on the Golgi, as PI(4)P levels there are 

increased in absence of OSBP PI(4)P/cholesterol counterexchange. With PI(4)P providing both 

targeting to membranes and transport activity, kinase and phosphatase activity regulation 
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would allow regulation of sterol transport towards late membranes.  

This could additionally affect transport of other lipids as OSBP regulates the 

recruitment of CERT and FAPP2 at ER-Golgi junctions. CERT transfers ceramide from the ER to 

trans-Golgi, in which ceramide is converted into SM, whereas FAPP2 is a glucosylceramide 

transporter at the same site. CERT and FAPP2 share a common domain organization with 

OSBP, comprising both a PI(4)P-specific PH domain and a FFAT motif. By modulating the Golgi 

PI(4)P pool, OSBP likely controls the presence of CERT and FAPP2 in ER-Golgi junctions. Such 

a mechanism would synchronize fluxes of sterol, ceramide and glucosylceramide, and 

eventually other lipids by controlling Nir2, thereby allowing co-enrichment of several lipids at 

the trans-Golgi, essential for the proper function of the secretory pathway (Drin 2014) 

(Figure 44). 

 

Figure 44. Function of OSBP at ER-Golgi contact sites.  

(a) OSBP interacts through its FFAT motif with the ER-resident VAP receptors and, via its PH domain, 

with Arf1 (in the GTP-bound state) and PI(4)P. (b) As such, OSBP tethers the ER and the Golgi 

membrane and operates cycles of cholesterol/PI(4)P exchange, thereby creating a cholesterol 

gradient. This tethering activity could facilitate the recruitment of CERT by PI(4)P and VAP and allows 

synchronizing cholesterol and ceramide fluxes, thus guarantying the co-enrichment of sterol and SM 

in the trans-Golgi. (c) The consumption of PI(4)P would eventually trigger the disassembly of ER-Golgi 

contact sites and stop lipid transfer. 25-OH block the transport of sterol and would block the OSBP 

function, thereby increasing PI(4)P levels at the Golgi surface and a stable recruitment of OSBP in ER-

Golgi contact sites. SM: sphingomyelin; SMS: sphingomyelin synthase. See also Figure 7F. 
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Introduction 

Phosphatidylserine (PS) is an anionic GPL that serves multiple functions in eukaryotic 

cells. In budding yeast, PS is a key intermediate for GPL biosynthesis as the role of the 

Kennedy pathway enzymes is reduced there (Leventis and Grinstein 2010). Its synthesis from 

CDP-DAG and serine is catalyzed by the PS synthase Pss1p that is localized to the ER: It is 

particularly enriched at MCSs, such as ER-mitochondria and most importantly ER-PM contact 

sites (Gaigg, Simbeni et al. 1995; Pichler, Gaigg et al. 2001). However, PS concentration of the 

ER is low, whereas it is higher at the PM (van Meer, Voelker et al. 2008). Most of the GPLs at 

the PM have higher saturation levels compared to other compartments of the cell to allow a 

denser packing of the membrane, and this is also the case for PS (Schneiter, Brugger et al. 

1999). Of particular importance is that PS displays a pronounced transmembrane asymmetry 

as it is almost completely excluded from the exoplasmic face of the PM and present at > 50 

mol% in its cytosolic leaflet (estimation based on total PS at the PM and its absence (< 10 %) 

on the exoplasmic face) (Zinser, Sperka-Gottlieb et al. 1991; Schneiter, Brugger et al. 1999; 

van Meer, Voelker et al. 2008).  

Recently, two members of the Osh protein family, Osh6p and Osh7p have been 

identified as cytosolic PS transporters between cortical ER and the PM in budding yeast, 

possibly at a MCS. Depletion of Osh6/7p reduced the accumulation of a fluorescent PS probe 

(C2Lact-GFP) on the PM by ≈ 30 % and increased its signal at the ER and vacuoles. The authors 

showed Osh6p/Osh7p-dependent PS transport between artificial membranes in vitro, and 

targeting of Osh6p to vacuoles lead to increasing PS levels there, in the absence of Osh7p. 

The reported crystal structure of an Osh6p-PS complex showed an overall fold similar to 

other Osh3p and Osh4p, with PS acyl chains bound in the slightly deeper lipid-binding pocket. 

Residues Leu64, Ile67, Leu69, Lys126, Asn129 and Ser183 make specific polar contacts with 

the carboxyl group of PS. These residues are not conserved in Osh4p, explaining why Osh4p 

is not capable of efficient PS binding. Based on their findings the authors proposed that 

Osh6p and Osh7p would transport PS at ER-PM contact sites towards the PM. They also posit 

that this transport is driven by local, very high ER PS levels due to specific recruitment of the 

PS synthase Pss1p to ER-PM contact sites (Pichler, Gaigg et al. 2001). Locally elevated PS 

levels in the ER would thus permit transport along a PS concentration gradient towards the 

PM (Maeda, Anand et al. 2013). 
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Interestingly, another article recently linked PS distribution with PIP metabolism. Total 

PS levels are reduced despite constant Pss1p expression by deletion of Sac1p. The reduction 

was found to be independent of the decarboxylation pathway and Kennedy pathway, but 

dependent on the phosphatase activity of Sac1p. Levels were further decreased by 

suppression of PIK deletions (PI4K Stt4p and PI3K Vps34p), blocking the syntheses of Sac1p 

substrates. Deletion of Sac1p lead to depletion of PS in the PM, monitored using a GFP-C2Lact 

PS probe (Tani and Kuge 2014). Intriguingly, the phenotype is similar to that observed upon 

deletion of Osh6/7p (Maeda, Anand et al. 2013). A last and other intriguing observation is 

that the deletion of PS synthase Pss1p leads to an accumulation of PI(4)P, particularly the 

Stt4p-derived PM PI(4)P pool (Zhong, Hsu et al. 2012). 

 

Figure 45. Our hypothesis on the function of Osh6p in yeast  

See main text for description.  
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Based on these findings, initial data we obtained on Osh6p/Osh7p and our previous 

work on Osh4p, we currently aim to demonstrate that PI(4)P metabolism provides the energy 

for Osh6/7p-dependent non-vesicular PS traffic. The PM PI4K Stt4p would produce a pool of 

PI(4)P that is exchanged for PS by Osh6p/7p, which in turn would exchange PI(4)P for newly 

synthesized PS at the ER. Phosphatase activity of Sac1p in the ER would sustain the PI(4)P 

gradient between the ER and the PM, allowing continuous transport of PS by Osh6p/7p 

(Figure 45). As proposed for sterol, this mechanism could beautifully explain how the 

accumulation of PS in the PM is driven. This study would also explain better why PS is mostly 

found in the lumen side of the ER membrane and mostly in the cytosolic side of the PM 

(Fairn, Schieber et al. 2011): As a cytosolic carrier, Osh6p/Osh7p extracts newly synthesized 

PS from the cytosolic side of the ER and delivers PS exclusively in the cytoplasmic face of the 

PM. This mechanism might particularly explain how the transversal asymmetry of PS is 

inverted from the ER to the PM. 

 

Results 

A brief overview of our efforts studying the Osh proteins 

We started with the project to demonstrate that all Osh proteins are sterol/PI(4)P 

exchangers and we end up with the idea that Osh proteins (and also ORPs) are proteins that 

use a PI(4)P-exchange mechanism to convey various lipids in cells to create lipid gradient 

between the ER and late membranes. Some of our findings and anticipations on the Osh 

proteins have been published during this project by our competitors; nevertheless they will 

be described here in chronological order as to confirm the similarity between our data and 

the published data and to demonstrate the reasoning of our approach.  

 

Osh3p-ORD, Osh6p and Osh7p do not bind or transport sterol, unlike Osh4p 

and Osh5p 

Based on the findings on sterol- and PI(4)P-binding by Osh4p (Im, Raychaudhuri et al. 

2005; de Saint-Jean, Delfosse et al. 2011), we were curious to find whether other Osh 

proteins also had the capacities to bind these lipids in a mutually exclusive manner and to 
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exchange them between membranes. Because the short Osh proteins (Osh5p, Osh6p, Osh7p) 

were easily purified from bacterial overexpression, they were the first to be tested in PI(4)P 

and DHE extraction assays. After a preliminary paper about the crystallization procedure of 

the ORD and PH domain of Osh3p by Tong et al. and of their protein purification protocol, we 

were able to optimize a protocol to obtain the Osh3p-ORD (residues 632-996) (Tong, Yang et 

al. 2012). Comparing Osh3p-ORD, Osh4p, Osh5p, Osh6p and Osh7p revealed that only Osh4p 

and Osh5p were capable of extracting sterol from artificial membranes, as well as of 

transporting DHE, and for both proteins DHE transport was accelerated by counterexchange 

with PI(4)P. The two proteins showed comparable affinities, which was not surprising as they 

display a very high sequence similarity (Figure 46). 

 

Figure 46. Osh6p and Osh7p do neither extract nor transport DHE  

(a) DHE extraction (2 mol%) from 150 µM liposomes was quantified by measuring the decrease in 

FRET between DHE and DNS-PE (2.5 mol%) 5 min after the addition of 3 μM Osh protein. Data were 

normalized in comparison to extraction of 10 mM M-β-CD. (b) DHE transport was measured between 

100 µM liposomes containing 10 mol% DHE and 2.5 mol% DNS-PE and 900 µM liposomes containing 

(blue curves) or not (black curves) 2 mol% PI(4)P after addition of 100 nM Osh protein. Buffer control 

is shown in grey. Osh6p displayed transport kinetics very similar to Osh7p (data not shown). 

Osh6p and Osh7p were found to transport of DHE very slowly, corroborating previous 

results based on a radioactive cholesterol transport assay (Schulz, Choi et al. 2009). 

Importantly, we were able to indicate for the first time that these proteins were unable to 

extract sterol from liposomes, suggesting that they do not recognize this type of molecule. 

Interestingly, we also note that the very slow transport activity of Osh6p and Osh7p was 

blocked completely by the presence of PI(4)P in the system. Similar results were found for 

Osh3p-ORD (data not shown). Jointly, these results suggested that these proteins were 

unable to recognize sterol, are not sterol/PI(4)P exchanger but can extract PI(4)P (Figure 46). 
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PI(4)P-binding is a conserved feature of Osh proteins 

At this point we made some attempts to analyze the structural aspects of Osh 

proteins: We compared the sequences of Osh4-7p and sequence conservation levels, finding 

that the residues interacting with PI(4)P in the crystal structure of Osh4p are highly 

conserved between Osh proteins. The residues implied in PI(4)P recognition form the core of 

the ORP/Osh protein fingerprint motif EQVSHHPP that is strictly conserved in ORP/Osh 

proteins from yeast to human (Figure 30, Figure 32, Figure 47a). Importantly, we built an 

homology model of Osh7p based on the crystal structure of Osh4p-PI(4)P and identified a 

steric hindrance that would exclude sterol from the lipid-binding pocket, results that 

anticipated those reported later by Maeda et al. in the crystal structure of Osh6p-PS (Maeda, 

Anand et al. 2013). These structural features of Osh lipid binding lead us to study the binding 

of PI(4)P in Osh proteins (Figure 47a).  

We therefore sought different ways of proving PI(4)P extraction, and finally opted for 

the NBD-PHFAPP PI(4)P probe we developed to test Osh3p-ORD, Osh5p, Osh6p and Osh7p. 

Using this fluorescent tool, we found that all of the tested Osh proteins are capable of 

extracting PI(4)P, but that this extraction was inhibited by ergosterol only for Osh4p and 

Osh5p, whereas Osh3-ORD (data not shown), Osh6p and Osh7p extracted PI(4)P to the same 

extent from membranes whether they contained ergosterol or not. All Osh proteins 

transported PI(4)P between liposomes, yet at a slower rate compared to Osh4p, except for 

Osh5p. Activation of PI(4)P transport by sterol was only observed for Osh4p and Osh5p 

(Figure 47b,c).  

These results were important because they suggested that all the Osh proteins tested 

extract PI(4)P but that only some of them efficiently bind to sterol. In other words, the 

common function of the ORP/Osh proteins would not be binding to and extracting sterol as 

initially thought (Beh, Cool et al. 2001) but to bind to and extract PI(4)P. Few months later, Im 

and co-workers published the structure of the Osh3p-ORD in complex with one PI(4)P 

molecule confirming the ability of another Osh protein to bind and extract PI(4)P, thus 

revealing the conserved binding mode of PI(4)P between Osh3p and Osh4p (Tong, Yang et al. 

2013). Moreover, they demonstrate with Trp-based assays we had developed for Osh4p (de 

Saint-Jean, Delfosse et al. 2011) that Osh3p-ORD does not extract DHE. Structural analysis 

indicated that a steric hindrance in the lipid-binding pocket prevents Osh3p from binding 
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 sterol (Tong, Yang et al. 2013). Thus, they provided the first demonstration that the common 

function of ORP/Osh proteins is not to bind sterol but likely to interact with and extract PI(4)P 

molecules. 

 

Figure 47. PI(4)P extraction and competition with ergosterol.  

(a) Residues that mediate the interaction between Osh4p and PI(4)P are strictly conserved in the 

other ORP/Osh proteins. (b) DOPC liposomes (300 µM) containing PI(4)P and doped or not with 10 

mol% DHE  were incubated with Osh protein (3 µM) at 30°C in the presence of NBD-PHFAPP (250 nM). 

The signal was normalized to estimate the amount of PI(4)P that is extracted by using the signal 

measured with similar liposomes but devoid of PI(4)P as a reference. The values are mean ± S.E.M. of 

three independent experiments. (c) PI(4)P transport assay. DOPC/PI(4)P/Rhod-PE liposomes (96/2/2 

mol/mol, 300 µM lipids, LB) were incubated with NBD-PHFAPP (250 nM). Then DOPC liposomes (300 

µM lipids, LA) containing or not 5 mol% DHE were added. After 3 min, Osh6p or Osh4p (500 nM) was 

injected. The dashed line corresponds to full equilibration of PI(4)P between liposomes. Osh5p has an 

activity similar to that Osh4p whereas Osh7p has an activity similar to that of Osh6p.  

  



208 
 

Identification of novel lipid ligands for Osh proteins 

In an interesting comment on the crystal structures of Osh3p, Levine and Menon 

raised a question we had been asking ourselves for quite some time then: If Osh4p binds 

PI(4)P and sterol, and Osh3p binds PI(4)P by the same mode, but not sterols, what is then the 

sterol-equivalent for Osh3p (Levine and Menon 2013)? 

Our first strategy for the identification of an alternative ligand for Osh6p was to co-

crystallize Osh6p empty or with PI(4)P and solve its three-dimensional structure. This could 

allow us to define how PI(4)P is bound to Osh6p but also to use docking tools with the empty 

Osh6p to identify potential ligands. The GST-tagged Osh6p was purified on an affinity column 

(glutathione sepharose beads) and the GST was cleaved by thrombin. Next the protein was 

incubated with DOPC liposomes doped with 10 mol% PI(4)P and loaded with 220 mM 

Sucrose, 50 mM K-Acetate, pH=7.2. The sample after incubation undergoes an 

ultracentrifugation to pellet the liposomes and to recover the supernatant which contain the 

soluble Osh6p, loaded with PI(4)P. The complex was next purified to homogeneity by size 

exclusion chromatography. The details of the crystal structure solved by Vanessa Delfosse at 

the CBS, Montpellier, will be described below. 

 

Figure 48. Screening strategies to identify a second lipid ligand for Osh proteins.  

(a) One possible strategy would have been to use the transport assay based on the NBD-PHFAPP to see 

whether Osh6p or Osh7p transport PI(4)P between two populations of liposomes more efficiently in 

the presence of a second lipid ligand (other than ergosterol, in blue). For this, we would have 

produced large set of DOPC liposomes incorporating each a few amount of one particular lipid 

species (marked) to see if the proteins transport PI(4)p faster. (b) Another strategy was to see 

whether Osh6p or Osh7p transports more efficiently PI(4)P into liposomes incorporating yeast total 

lipid extract and to analyze which lipid is bound to the Osh proteins (by TLC, mass spectrometry, 

electrophoretic mobility shift assay) and/or which lipid is removed from liposome that contains TYE.  

At the same time, as an alternative for identifying unknown interaction partners we 

tried to use a total membrane extract of yeast cells (Yeast Total Extract, YTE, Avanti Polar 

Lipids). We wanted to see whether incorporation of YTE in trans of PI(4)P would accelerate 
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transport of the latter in vitro. In order words, in a PI(4)P transport assay, one population of 

liposome contains PI(4)P, the second populations contain or nor YTE. If in this latter case, an 

acceleration of PI(4)P was seen, this could indicate that YTE contains a lipids that is efficiently 

counterexchanged with PI(4)P. (Figure 48b) We found significant activation of PI(4)P 

transport by Osh4p, which was not surprising as ergosterol is the most abundant lipid species 

in yeast and thus in YTE (Ejsing, Sampaio et al. 2009). The transport of PI(4)P by Osh6p was 

increased, but only when higher amounts of YTE were incorporated in liposomes (> 10 mol%) 

(data not shown).  

We also tried to look at the loading of Osh protein by electrophoretic mobility shift 

assay on native PAGE. We used Osh4p as a control and found that it displayed varying 

migration distances on Native-PAGE depending on its loading and the nature of the loaded 

ligand. We also tried to see differences in migration with Osh6p and could detect them for 

Osh6p incubated with PI(4)P, but not for the YTE (data not shown). We thus wanted to 

identify the lipid species that accelerated the PI(4)P transport by thin layer chromatography 

(TLC), but our efforts were anticipated by the abovementioned publication of the crystal 

structure of Osh6p in complex with PS by the Gavin group (Maeda, Anand et al. 2013). Based 

on their results demonstrating the ability of Osh6p and Osh7p to transport PS, we modified 

our scope towards the identification of a PS/PI(4)P exchange activity for these proteins.  

 

Molecular characterization of the lipid transport activity of Osh6p 

Structural basis of the PI(4)P recognition by Osh6p 

As we had previously shown that Osh6p and Osh7p are capable of binding PI(4)P we 

aimed to determine whether the binding mode for PI(4)P is the same as for Osh4p. We 

restricted our efforts to Osh6p due to the very high sequence homology between Osh6p and 

Osh7p. The group of William Bourguet at the CBS, Montpellier, were able to solve the crystal 

structure of the Osh6p-PI(4)P complex at a 2.55 Å resolution (PBD entry 4PH7). The electron 

density of the ligand matched perfectly well with a C18:0-C20:4 PI(4)P, the major species 

found in the porcine brain PI(4)P (Avanti Polar Lipids) we used to obtain the Osh6p-PI(4)P 

complex. The overall structure of Osh6p-PI(4)P displays a fold similar to Osh6p-PS (PDB entry: 

4B2Z) (Maeda, Anand et al. 2013) (Figure 49b) with a hydrophobic lipid-binding tunnel 
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defined by an incomplete β-barrel (residues 133-317), completed by a C-terminal region 

(residues 318-435) and flanked by a N-terminal domain (70-128) (Figure 49a). With an RMSD 

of 0.363 Å for 403 residues, the structure of the PI(4)P and PS-bound form of Osh6p are very 

similar (Table 1).  

 

Table 1. Data collection and refinement statistics. 
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Figure 49. Structure of Osh6p in complex with PI(4)P 

(a) Overall structure. The short lid region is shown in blue (residues 35-69), the N-terminal domain in 

blue-green (70-128), the β-barrel in green (133-317) and the C-terminal domain in red-orange (318-

435). PI(4)P is represented as sticks with carbon atoms colored in grey, oxygen atoms in red and 

phosphorus in orange. (b) Structure superposition of Osh6p in complex with brain PI(4)P (in orange, 

PDB entry: 4PH7) or PS (in purple; PDB entry: 4B2Z). (c) Conformation of the PI(4)P molecule bound 

to Osh6p. The position of the two acyl chains and the polar head of the lipid (InsP2) are indicated. 

Water molecule are represented (d) Close-up view of the PI(4)P binding site. PI(4)P is shown in black 

with oxygen atoms colored in red and phosphorus atoms in orange. Water molecules contacting 

PI(4)P and the protein are displayed (red dot). The key residues involved in the recognition of the 

PI(4)P polar head are in stick, with carbon atom in cyan, oxygen atoms in red and nitrogen atom in 

blue. H-bonds are represented by black dashed line. (e) Superposition of PI(4)P (colored in orange) 

and DOPS (colored in purple) molecules in Osh6p. The backbone of the protein is shown in light-grey. 
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The lid segment (residues 35-69) adopts a similar conformation to shield the PS or 

PI(4)P molecule. The sn-1 oleate (C18:0) chain of PI(4)P is inserted deep in the hydrophobic 

ligand binding pocket whereas the sn-2 arachidonate (C20:4) chain is twisted towards the lid 

(Figure 49c). The 4-phosphate group of PI(4)P makes direct hydrogen-bonds with the side-

chains of H157, H158 (β4-β5) and R359 (α7) and water-mediated interaction with the side-

chain of R359, the main chain oxygen atom of R66 (lid) and E355 (α7). The 1-phosphate 

group joining the inositol ring and the glycerol moiety makes direct contact with K126 (β2), 

K351 (α7) and the backbone amide of L69 in the lid (Figure 49d) and a water-mediated 

interaction with the backbone amide of N129. Finally, the hydroxyl groups of the inositol ring 

are engaged in direct or water-mediated hydrogen bonds with the main chain oxygen atoms 

of R66, T68 (lid) and N129 (loop connecting β2 and β3) and with the side chain of E355 (α7). 

 

Figure 50. MD simulations of Osh6p in complex with PS or PI(4)P.  

(a) Electrostatic and van der Waals contribution in the binding of PS or PI(4)P to Osh4p. (b) Dynamic 

behavior of PS (left) and PI(4)P (right) inside the binding pocket of Osh4p. The RMSD of two 

independent trajectories of PS or PI(4)P polar head and acyl chains are represented. (c) RMSF of 

residues 39-69, indicative of the motion of the ORD lid during 1 µs MD simulation of Osh6p bound to 

PS or PI(4)P, determined for each case from two independent trajectories.  

Not only the headgroups of PI(4)P and PS interact with different residues, but also the 

glycerol backbones of PI(4)P and PS that are chemically identical in both ligands. We were 

therefore interested in the dynamics of the two ligands in their binding site and performed 

molecular dynamics simulation of the two ligands bound to Osh6p (Experiments performed 

by Stefano Vanni). Two important facts must be noted: First, both ligands display similar 
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restricted mobility inside the binding pocket: The lid remains tightly closed and the heads are 

tightly bound, whereas the acyl chains are more mobile. However, the binding energy of 

PI(4)P is significantly higher than for PS, mainly due to increased electrostatic interactions 

between the polar head and the Osh6p protein. (Figure 50) 

We furthermore compared the PI(4)P-binding mode by Osh4p (PBD entry 3SPW) and 

Osh6p. Intriguingly, PI(4)P binding energy to Osh6p is higher for both Coulomb and van der 

Waals-interactions. Mobility of the protein lid and the lipid acyl chains are increased in 

Osh4p compared to Osh6p. Overall, these data suggest that the stability of PI(4)P is higher 

when this lipid is bound to Osh6p than bound to Osh4p. (Figure 51) 

 

Figure 51. Comparison between the dynamic behavior of PI(4)P in Osh4p and Osh6p. 

 (a) Electrostatic and Van der Waals contribution in the binding of PI(4)P to Osh4p and Osh6p. (b) 

Dynamic behavior of PI(4)P inside the binding pocket of Osh4p (left, one trajectory) or Osh6p (right, 

two independent trajectories). The RMSD of PI(4)P polar head and acyl chains is represented. (c) 

RMSF of residues that constitute the lid of Osh4p ORD (one trajectory) or Osh6p ORD (two 

trajectories) during 1 µs MD simulation.  

 

PS competes with saturated PI(4)P for binding Osh6p.  

In a first step toward demonstrating that Osh6p exchange PS with PI(4)P, we 

examined the ability of sterol or PS to compete with PI(4)P for binding Osh6p. As expected, 

the presence of an excess (10 mol%) of DHE in liposomes prevents Osh4p but not Osh6p 
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from extracting PI(4)P. (Figure 52a) Surprisingly, the presence of 10 mol% of dioleyl-

phosphatidylserine (DOPS) had also no clear inhibitory effect on the extraction of PI(4)P by 

Osh6p. (Figure 52a) Thus, whereas DHE prevents the extraction of PI(4)P by Osh4p, DOPS 

fails to efficiently compete with PI(4)P for occupying Osh6p.  

It is noteworthy that budding yeast does not synthesize polyunsaturated fatty acids 

such as found in the PI(4)P we used for our experiments. We therefore prepared liposome 

containing saturated PI(4)P, namely di-C16:0 PI(4)P that is chemically closer to the PI(4)P 

species found in yeast. Control experiments with Osh4p showed that 10 mol% DOPS has a 

mild inhibitory effect on its ability to extract di-C16:0 PI(4)P (Figure 52). Contrastingly, the 

extraction of di-C16:0 PI(4)P by Osh6p was half-inhibited by 5 mol% of DOPS and almost fully 

abolished by 10 mol% DOPS. Jointly, these data suggested that saturated PI(4)P was more 

prone to be substituted by PS. Di-C16:0 PI(4)P is structurally closer to the PI(4)P species 

found in yeast, and we pursued further experiments mainly with the fully saturated PI(4)P.  

 

Figure 52. PI(4)P extraction assay. 

(a) DOPC liposomes (300 µM) containing 4% brain PI(4)P and doped or not with 10% mol of a second 

lipid ligand (DOPS or DHE) were mixed with Osh4p or Osh6p (3 µM) at 30 °C in the presence of NBD-

PHFAPP (250 nM). The NBD spectrum was recorded from 505 to 650 nm (λex=490 nm) before and after 

the addition of Osh proteins. Each value is a mean ± SEM of three independent experiments. (b) 

DOPC liposomes (300 µM) containing di-C16:0 PI(4)P and increasing amount of DOPS (0, 5 or 10 

mol%) were incubated with Osh4p or Osh6p (3 µM) at 30 °C in the presence of NBD-PHFAPP (250 nM). 

The signal was normalized to estimate the amount of PI(4)P that is extracted by using the signal 

measured with similar liposomes but devoid of PI(4)P as a reference.  
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Osh6p exchanges PI(4)P for PS between two distinct membranes.  

We then examined whether Osh6p exchanged PS with PI(4)P between two distinct 

membranes. In order to follow the transport of PS we have developed a tool to detect PS 

movement quantitatively in real-time. This tool is based on the discoidin-like C2 domain of 

lactadherin that had previously been used as GST-fusion for PS sensing in vivo (Yeung, Gilbert 

et al. 2008; Fairn, Schieber et al. 2011). Probe design and characterization is detailed in the 

Materials and Methods section: Recognition of phosphatidyl-L-serine with NBD-C2Lact. 

Ultimately we developed a fluorescence-based lipid transfer assay for PS with the NBD-C2Lact 

probe similar to the assay used for PI(4)P transport with the NBD-PHFAPP probe. 

 

Figure 53. Transport of PS and PI(4)P between liposomes by Osh6p. 

(a) PS transport assay. DOPC/DOPS/Rhod-PE liposomes (93/5/2 mol/mol, 200 µM total lipids, LA) 

were mixed with NBD-C2Lact (250 nM) at 30°C. After one minute, DOPC liposomes (200 µM lipids, LB) 

containing or not 4 mol% di-C16:0 PI(4)P were added. After 2 min, Osh6p or Osh4p (200 nM) was 

injected. The NBD signal increases since PS is transported to the LB liposomes and the NBD-C2Lact 

translocates from LA to LB liposomes. The signal was converted into amount of PS present in LB 

liposome (in µM). The dashed line corresponds to a condition where DOPS is fully equilibrated 

between liposomes. (b) PI(4)P transport assay. DOPC/PI(4)P/Rhod-PE liposomes (94/4/2 mol/mol, 

200 µM lipids, LB) were incubated with NBD-PHFAPP (250 nM). Then DOPC liposomes (200 µM lipids, LA) 

containing or not 5 mol% DOPS were added. After 2 min, Osh6p or Osh4p (200 nM) was injected. The 

dashed line corresponds to full equilibration of PI(4)P between liposomes.  
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Briefly, NBD-C2Lact (250 nM) was mixed with liposome LA containing both 5 mol% PS 

and 2 mol% Rhod-PE and liposome LB solely made of DOPC. The fluorescence of NBD-C2Lact 

was quenched due to a FRET process with Rhod-PE as the construct binds to PS-containing 

liposomes. Adding Osh6p (200 nM) caused a dequenching of the NBD signal, mirroring the 

transport of PS from liposome LA to LB and the translocation of NBD-C2Lact (Figure 53a). We 

determined the amount of PS transported by Osh6p by normalizing the NBD signal. To do so, 

we measured the NBD signal (Feq) that corresponds to a situation where DOPS was fully 

equilibrated between liposomes, i.e. with LA and LB liposomes each containing 2.5 mol% PS. 

The initial transport rate was 1.2 PS/min per Osh6p. In comparison, Osh4p had a very slow 

initial PS transport rate (0.09 PS/min). In the presence of di-C16:0 PI(4)P, the rate of PS 

transport by Osh6p increased 3.5-fold (3.8 PS/min) whereas it was completely inhibited in 

the case of Osh4p.  

We also measured the transport of PI(4)P in the reverse direction from liposome LB 

containing 4 mol% PI(4)P to liposome LA doped or not with 5 mol% DOPS. In the absence of 

DOPS, Osh6p transported PI(4)P with an initial velocity of 13.6 ± 2 PI(4)P/min (n=2). In the 

presence of DOPS, the rate (64 ± 5 PI(4)P/min (n=2)) was almost five-time higher (Figure 53b ) 

and PI(4)P was equilibrated between liposomes within one minute. With Osh4p, a slight 

acceleration of the PI(4)P transport rate was seen (from 3 to 12 PI(4)P/min) but is not related 

to a counterexchange process, as PS transport was abolished. Jointly, our assays indicated 

that Osh6p transports more efficiently lipids when PS and PI(4)P are initially present in 

distinct membranes, suggesting that Osh6p can act as PS/PI(4)P exchanger. 

PS and PI(4)P transport experiments were repeated by substituting di-C16:0 PI(4)P 

with brain PI(4)P. The transport of DOPS from LA to LB liposome (1.41 molecules/min per 

Osh6p) did not increase when liposomes LB contained brain PI(4)P. The transport of brain 

PI(4)P in the absence of PS was very slow (0.27 PI(4)P/min per Osh6p) and was ten-time 

faster when LA liposome contained DOPS (3 ± 0.25 PI(4)P/min (n=2)) but remained 

dramatically slower than in similar experiments done with di-C16:0 PI(4)P.  

It is important to mention that Osh4p transports di-C16:0 PI(4)P and C18:0-C20:4 

PI(4)P with the same efficiency (2.45 and 1.9 PI(4)P/min, respectively, data not shown) and 

also exchanges these two PI(4)P species with DHE at the same speed (23.91 and 22.2 

PI(4)P/min, respectively).  
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Discussion 

Our data, together with previous findings, shows that Osh6p transports PS in vitro 

(Maeda, Anand et al. 2013). In conditions where PS and PI(4)P are in distinct membranes, the 

transport of both lipids is stimulated. However, unlike for sterol transport by 

counterexchange with PI(4)P for Osh4p, the transport rates are not identical for PI(4)P and PS, 

indicating a lesser extent of coupling between the two transport kinetics In addition, PS 

transport by Osh6p is blocked after a certain number of exchange cycles (Figure 53a), 

eventually by competition between PI(4)P and PS for Osh6p-binding.  

We suggest that Osh6p has a higher affinity for PI(4)P than for PS. As we have 

structural data of the protein bound to PS or PI(4)P, it is possible to provide quantitative 

evidence of that. MD simulation indicate that the interaction energy between Osh6p and a 

molecule of PI(4)P is higher than between Osh6p and PS. This is mainly due to the fact that 

the polar head of PI(4)P makes numerous and specific electrostatic interaction with charged 

residues of Osh6p that the polar head of PS do not. It appears to us that the presence of 

PI(4)P in the ER might inhibit the ability of Osh6p to extract PS from the ER and to convey it 

to the PM. This might explain why yeast lacking Sac1p presents a defect in PS distribution, 

with PS accumulating in the ER membrane (Tani and Kuge 2014). 

We also observed for OSBP that the transport of sterol is blocked after a few rounds 

of sterol/PI(4)P exchange as PI(4)P accumulates in the ER-like liposomes and competes with 

sterol for occupying the lipid-binding site of the OSBP ORD. This blockage could be overcome 

by removing PI(4)P through hydrolysis by its phosphatase Sac1p (Mesmin, Bigay et al. 2013). 

In a near future, we will carry out PS/PI(4)P exchange experiments with ER-like liposome 

decorated by Sac1p and containing PS to test whether the transport of PS to Golgi-like 

liposomes (doped with saturated PI(4)P) is rapid and sustained over time. Likewise, in 

collaboration with Alenka Copic, IJM, Paris, we will examine in yeast how PI(4)P regulates the 

PS transport ability of Osh6p, notably by examining whether an Osh6p mutant, deficient in 

binding PI(4)P, still transports PS in an unregulated manner in the absence of Sac1p.  

It will furthermore be interesting to see whether Osh6p can use the metabolic energy 

of PIPs like Osh4p to transport PS against a concentration gradient. We are able to purify an 

active fragment of PI4KIIα. An interesting idea would be to anchor Sac1p and this PI4KIIα-

fragment to ER- and Golgi-like liposomes, respectively, in order to generate from PI, 
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contained in Golgi-like membrane, in the presence of ATP, a PI(4)P gradient between these 

two liposome populations’ membranes, which will be self-maintained by the two enzymes 

for several minutes. In this model system, we will test the ability of Osh6p to create a PS 

gradient by PS/PI(4)P exchange.  

Intriguingly, in eukaryotic cells, PS at the PM has a higher saturation level than at the 

ER (Schneiter, Brugger et al. 1999). We have observed an important effect of acyl chain 

saturation on the transport of PI(4)P by Osh6p. It would be interesting to see whether acyl 

chain saturation also affects transport of PS by this LTP. Owing to its acyl chain specific PS 

transport Osh6p could participate in the accumulation of saturated PS at the PM, and thus in 

the formation of a saturation gradient at the ER/PM interface.  

To sum up, we aim to fully demonstrate that Osh6p uses PI(4)P to participate in the 

accumulation of PS at the PM. Further characterization of the effect of kinetic coupling, 

PI(4)P hydrolysis and PS saturation levels on the transport of PS by Osh6p is therefore 

required. This work will allow us to propose a general model: ORP/Osh proteins use PI(4)P 

gradients to convey sterol or other lipid species for creating, in turn, various other lipid 

gradients in eukaryotic cells.  
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A major feature of eukaryotic cells is their uneven lipid distribution. Organellar 

membranes have different lipid compositions to ensure their functionality. Accumulation of 

certain lipid species in organelles at the expense of other ones leads to lipid concentration 

gradients within the cells. Such gradient are particularly pronounced for sterols, sphingolipids 

and PS that are enriched at the TGN and PM but are ,paradoxically, scarce at the ER where 

they are synthesized; these lipids thus need to be transported from the ER to other 

organellar membranes (van Meer, Voelker et al. 2008). Vesicular trafficking exchanges large 

amounts of lipid material between organelles, but does not appear to be the major route for 

the transfer of sterol and PS. More generally, lipid homeostasis does not seem to solely 

depend on vesicular trafficking. It is rather and widely assumed that non-vesicular lipid 

transfer mechanisms exist to maintain lipid homeostasis in cells, guaranteed by LTPs (Lev 

2010). 

Proteins from the ORP/Osh family are among the proteins that could mediate non-

vesicular lipid traffic. Some of them have been initially found to bind and transport sterols 

between membranes. Three years ago, our group has identified that one ORP/Osh protein, 

the yeast Osh4p, has a striking feature and a unique ability among all the other LTPs: the 

capacity to extract and transport a very singular lipid of the Golgi, PI(4)P, and to exchange 

this lipid with sterol (de Saint-Jean, Delfosse et al. 2011). These findings allow proposing a 

new model to explain how sterol is transported in a vectorial manner from the ER to late 

membranes. One goal of my thesis was to detail in a very accurate manner the biochemical 

properties of Osh4p. I established to which extent Osh4p is capable of intimately coupling 

transport of both its ligands in opposite directions. Moreover, we established that the rapid 

sterol/PI(4)P counterexchange allows transport of sterol against its concentration gradient. In 

addition we showed that the lipid saturation gradient, as found at the ER/Golgi interface 

facilitates sterol transport by Osh4p, but cannot bypass the requirement for PI(4)P. 

Maintenance of the PI(4)P gradient by PI(4)P hydrolysis sustains sterol transport. These 

findings show that Osh4p has the intrinsic ability to use the energy of a PI(4)P gradient 

controlled by PI4K and PI(4)P phosphatase that exist at the ER/late membrane to create and 

maintain in turn a sterol gradient between these compartments. This is the first 

demonstration that a lipid transport protein can create de novo a lipid gradient between two 

distinct membranes.  
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We next tested whether other Osh proteins can bind sterols and/or PI(4)P and 

showed that not all of them bind sterols, but that the majority of Osh proteins (all of the 

tested) are capable of binding PI(4)P. The high conservation of the residues interacting with 

PI(4)P among ORP/Osh proteins in addition to recent findings (Tong, Yang et al. 2013) implies 

that this is also the case for the ORP/Osh proteins we did not test. Osh6p has been shown to 

extract PS from membrane and transport it in vitro and in vivo (Maeda, Anand et al. 2013). In 

collaboration with the Bourguet’s lab we have solved the crystal structure of the 

Osh6p/PI(4)P complex, showing mutually exclusive binding of PS and PI(4)P as observed for 

sterol and PI(4)P in Osh4p. Our preliminary experiments suggest that Osh6p ensures a 

vectorial transport of PS, driven by PI(4)P in a manner similar to Osh4p, i.e. Osh6p likely 

function as a PS/PI(4)P counterexchanger. Further aspects of this mechanism need to be 

elucidated, such as the effect of PI(4)P gradient maintenance, the transport of PS against a 

concentration gradient and the effect of lipid saturation on transport activity. Determination 

for the role of this mechanism in transport activity in vivo is currently ongoing.  

Connecting sterol transport by the Osh proteins to PIP metabolism can also explain 

certain findings linking Osh deletions to other PIP-dependent processes, such as post-Golgi 

secretion (Alfaro, Johansen et al. 2011), PS translocase activity by Drs2p (Muthusamy, 

Raychaudhuri et al. 2009) or sphingolipids biosynthesis (LeBlanc, Fairn et al. 2013). 

Numerous data suggest that Osh4p counteracts two enzymes Sec14p and Pik1p, responsible 

for producing the Golgi PI(4)P pool that is mandatory for vesicle genesis but also regulates 

Drs2p, likewise involved in this process by creating curvature. The sterol/PI(4)P exchange 

model that we propose for Osh4p might well explain these findings as PI(4)P is exploited by 

this protein to convey sterol. In certain conditions, this resource becomes rare (as in Sec14p-

deficient yeast) and its exploitation by Osh4p blocks vesicle formation. It is however not clear 

whether the use of a common lipid, PI(4)P, by lipid transport and the genesis of post-Golgi 

vesicles is a proof of a necessary synchronization between these two processes.  

The link between Osh proteins and PI(4)P might also explain observations about the 

common essential function of this class of proteins: Deletion of all Osh proteins is lethal, but 

any single Osh protein (except Osh1p) restores viability (Beh, Cool et al. 2001). Which is the 

master switch for Osh-related viability in yeast? All Osh proteins capable of restoring viability 

of a yeast strain deprived of Osh proteins are found in the region between the TGN and the 

PM (only Osh1p localizes to the NVJ). One hypothesis is that Osh proteins with the exception 
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of Osh1p play a major role in the remodeling of the trans-Golgi, as proposed for Osh4p, and 

of post-Gogi traffic vesicles en route to the PM. The use of PI(4)P might allow Osh protein to 

remodel the lipid composition of these compartments by supplying sterol and PS in exchange 

with PI(4)P. Such membrane remodeling processes, as they depend on PI(4)P, would be 

intimately linked with a second event in the life of secretory vesicles: docking with the PM. 

Recently, PI(4)P extraction by Osh4p has been shown to be required in post-Golgi secretion 

(Ling, Hayano et al. 2014). An appealing idea is that the disappearance of PI(4)P from 

secretory vesicles is a consequence of an exchange process mediated by Osh protein and 

thus signals a full remodeling of the lipid composition of these vesicles. The absence of PI(4)P 

could then also act as an “on” signal for docking processes at a stage when the secretory 

vesicles have a lipid composition similar or close to that of the PM, with a high density of PS 

and sterol. Such a hypothesis might well explain why in Osh-strains sterols are wrongfully 

distributed to internal membranes at the expense of the PM (Beh, Cool et al. 2001) and why 

docking processes are blocked (Beh and Rine 2004). 

Another important result has been to establish that the sterol/PI(4)P 

counterexchange is conserved from yeast to human by demonstrating the PI(4)P-dependent 

cholesterol transport of OSBP. In addition, OSBP uses PI(4)P not only for cholesterol 

counterexchange but also for tethering of ER and Golgi membranes to form a MCS. 

Cholesterol/PI(4)P counterexchange and PIP metabolism hence also influence OSBP’s 

tethering activity. Availability of PI(4)P on the Golgi would hence control recruitment of OSBP, 

and its tethering activity would facilitate the recruitment of other LTPs such as CERT, Nir2 and 

possibly FAPP2. Recruitment of CERT could be mutually beneficial, as SM, synthesized from 

the CERT cargo ceramide, has a positive effect on sterol transport as shown for Osh4p; CERT 

recruitment could thus favor sterol transport by OSBP. These findings are resumed in Figure 

54. Recent findings demonstrating that ORP9L also extracts cholesterol and PI(4)P and is 

capable of transporting each ligand (Liu and Ridgway 2014) further endorse our hypothesis 

of PI(4)P-binding as common feature of ORP/Osh proteins. 
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Figure 54. Interplay of LTPs at the ER-Golgi contact site 

OSBP and CERT both bind ER and Golgi membranes simultaneously in a PI(4)P-dependent manner, 

allowing transport of cholesterol by OSBP and ceramide by CERT. Ceramide is metabolized on the 

lumenal face of the Golgi into SM, and formation of condensed sphingolipid/cholesterol complexes 

favors cholesterol transport. Retrograde PI(4)P transport by OSBP and anterograde PI transport by 

Nir2, coupled to PI4K and PI(4)P phosphatases allows to provide energy for the cholesterol transport 

of OSBP and control life-time of MCSs through PI(4)P degradation. Illustration from (Drin 2014). 

There are now general interesting questions. First, what other ligands can be 

transported by the ORP/Osh protein family? For example, one interesting aim would be to 

provide an explanation for findings on Osh3p in its requirement for Opi3p PEMT activity at 

ER-PM MCSs (Tavassoli, Chao et al. 2013). Sac1p hydrolyzes the PM Stt4p-derived PI(4)P pool 

in a Osh3p-dependent manner (Stefan, Manford et al. 2011). Rather than tethering ER and 

PM to allow in trans-hydrolysis by Sac1p (Stefan, Manford et al. 2011), Osh3p could transport 

PE or PME, the substrates of Opi3p towards the enzyme by PI(4)P counterexchange. We aim 

also to define, on the basis of our preliminary results on Osh6p, whether or not ORP/Osh 

proteins create not only lipid concentration gradients, depending on the polar headgroup, 

but also lipid saturation gradients, by selecting lipid with a specific degree of acyl chain 

saturation between cellular regions. How does PI(4)P-mediated membrane tethering by 

ORP/Osh proteins affect transport by other proteins at MCSs? How is the regulator, PI(4)P, 

regulated in response to ORP/Osh proteins activity?  

Coupling transport of one lipid ligand to the back-transport of PI(4)P also couples it to 

chemical energy in the form of ATP: In cell, a PI(4)P gradient is maintained by the activity of 

ATP-consuming PI4K and PI(4)P phosphatases. The intimate kinetic coupling of sterol transfer 

to PI(4)P provides directionality to transport and PI(4)P metabolism provides energy required 

to build up a sterol concentration gradient. Though chemical activity gradients favor 

transport of sterol by Osh4p, it cannot account for the directionality and rapidity of its 

transport. STARD4 has been proposed to rapidly equilibrate cholesterol between organellar 
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membranes along concentration gradients in vivo without specific targeting (Mesmin, Pipalia 

et al. 2011). It would be interesting to assess whether or not such a sterol transporter is 

capable of creating sterol gradients along a steep chemical activity gradient at rates 

compatible with the cellular time scale.  

 

However, one of our favorite hypotheses is that the principle of lipid counterexchange 

is a general feature of LTP activity (Drin 2014). Sec14p and Sfh1p both bind two lipid ligands 

in a mutually exclusive manner and transport them between membranes, although kinetic 

coupling by counterexchange has not been observed yet (Gnamusch, Kalaus et al. 1992). Also, 

the Sec14-like human α-tocopherol (vitamin E) transport protein transports α-tocopherol. 

Recent findings by Kono et al. revealed that it recognizes a second lipid ligand, PI(4,5)P2, and 

the extraction and stoichiometric, mutually exclusive binding of both ligands is a prerequisite 

for α-TTP function. In fact, α-TTP exchanges its two ligands by replacing one with the other 

between endosomes and the PM (Figure 55) (Min, Kovall et al. 2003; Kono, Ohto et al. 2013). 

 

Figure 55. Lipid counterexchange as general feature of LTPs? 

Proposed counterexchange mechanism for PI(4,5)P2 and α-tocopherol by α-TTP. (Kono, Ohto et al. 

2013) Illustration from (Mesmin and Antonny 2013). 
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A large number of the abovementioned issues and challenges are well known to 

biologists, yet in a different context: Membraneous ion pumps transport ions across 

membranes, such as the Na+K+-ATPase, a Na+K+ antiporter (Jorgensen 1982). Even though the 

challenge is the opposite (transporting polar cargo across an apolar territory for ion channels 

versus transporting apolar cargo across a polar territory for LTPs), many features are shared 

between these two. Transport must be specific to prevent perturbation of intra- and 

extracellular ion concentration and lipid homeostasis, respectively. The transport cannot 

simply follow the concentration gradient but needs directionality to create membrane 

potential and lipid asymmetry, respectively. Counterexchange is a frequent mechanism for 

ion homeostasis, and it may also be for lipid transport. Additionally, proteins are required for 

transport as they can have domains for interacting with both polar and apolar cargo and 

environment, respectively. And finally, both processes require chemical energy in the form of 

ATP that is converted into physical activity: Whereas ATP-consuming protein phosphorylation 

provides energy for protein pump activity, PI4K-mediated PI phosphorylation could provide it 

for LTP activity. 
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