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Abstract

The shock ignition concept in inertial confinement fusion uses an intense power spike at the
end of an assembly laser pulse. The key features of shock ignition are the generation of a
high ablation pressure, the shock pressure amplification by at least a factor of a hundred in
the cold fuel shell and the shock coupling to the hot-spot. In this thesis, new semi-analytical
hydrodynamic models are developed to describe the ignitor shock from its generation up to the
moment of fuel ignition.

A model is developed to describe a spherical converging shock wave in a pre-heated hot-
spot. The self-similar solution developed by Guderley is perturbed over the shock Mach number
Mg >> 1. The first order correction accounts for the effects of the shock strength. An analytical
ignition criterion is defined in terms of the shock strength and the hot-spot areal density. The
ignition threshold is higher when the initial Mach number of the shock is lower. A minimal
shock pressure of 20 Gbar is needed when it enters the hot-spot.

The shock dynamics in the imploding shell is then analyzed. The shock is propagating into
a non inertial medium with a high radial pressure gradient and an overall pressure increase with
time. The collision with a returning shock coming from the assembly phase enhances further
the ignitor shock pressure. The analytical theory allows to describe the shock pressure and
strength evolution in a typical shock ignition implosion. It is demonstrated that, in the case
of the HiPER target design, a generated shock pressure near the ablation zone of the order of
300-400 Mbar is needed.

An analysis of experiments on the strong shock generation performed on the OMEGA laser
facility is presented. It is shown that a shock pressure close to 300 Mbar near the ablation
zone has been reached with an absorbed laser intensity up to 2 x 10 W.cm™2 and a laser
wavelength of 351 nm. This value is two times higher than the one expected from collisional
laser absorption only. That significant pressure enhancement is explained by contribution of
hot-electrons generated by non-linear laser/plasma interaction in the corona.

The proposed analytical models allow to optimize the shock ignition scheme, including the
influence of the implosion parameters. Analytical, numerical and experimental results are mu-

tually consistent.

Keywords: shock ignition, inertial confinement fusion, spherical shock wave, self-similar

solution, perturbative approach, shock dynamics, ablation pressure, hot-electrons
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Résumé

Le schéma d’allumage par choc pour la fusion par confinement inertiel utilise une impulsion laser
intense a la fin d’'une phase d’assemblage du combustible. Les parametres clefs de ce schéma
sont la génération d’une haute pression d’ablation, ’amplification de la pression du choc généré
par un facteur supérieur a cent et le couplage du choc avec le point chaud de la cible. Dans cette
these, de nouveaux modeles semi-analytiques sont développés afin de décrire le choc d’allumage
depuis sa génération jusqu’a l'allumage du combustible.

Tout d’abord, un choc sphérique convergent dans le coeur pré-chaufté de la cible est décrit.
Le modele est obtenu par perturbation de la solution auto-semblable de Guderley en tenant
compte du nombre de Mach du choc élevé mais fini. La correction d’ordre un tient compte de
I’effet de la force du choc. Un critere d’allumage analytique est exprimé en fonction de la densité
surfacique du point chaud et de la pression du choc d’allumage. Le seuil d’allumage est plus
élevé pour un nombre de Mach faible. Il est montré que la pression minimale du choc, lorsqu’il
entre dans le cceur de la cible, est de 20 Gbar.

La dynamique du choc dans la coquille en implosion est ensuite analysée. Le choc se propage
dans un milieu non inertiel avec un fort gradient de pression et une augmentation temporelle
générale de la pression. La pression du choc est amplifiée plus encore durant la collision avec une
onde de choc divergente provenant de la phase d’assemblage. Les modeles analytiques développés
permettent une description de la pression et de la force du choc dans une simulation typique de
I’allumage par choc. Il est démontré que, dans le cas d’'une cible HiPER, une pression initiale
du choc de l'ordre de 300 Mbar dans la zone d’ablation est nécessaire.

Il est proposé une analyse des expériences sur la génération de chocs forts avec I'installation
laser OMEGA. 11 est montré qu’une pression du choc proche de 300 Mbar est atteinte pres
de la zone d’ablation avec une intensité laser absorbée de l'ordre de 2 x 10> W.cm™2 et une
longueur d’onde de 351 nm. Cette valeur de la pression est deux fois plus importante que la
valeur attendue en considérant une absorption collisionnelle de ’énergie laser. Cette impor-
tante différence est expliquée par la contribution d’élétrons supra-thermiques générés durant
I'interaction laser/plasma dans la couronne.

Les modeles analytiques proposés permettent une optimisation de I’allumage par choc lorsque
les parametres de la phase d’assemblage sont pris en compte. Les diverses approches analytiques,

numériques et expérimentales sont cohérentes entre-elles.

Mots clefs : allumage par choc, fusion par confinement inertiel, choc sphérique, solution

auto-semblable, dynamique du choc, pression d’ablation, éléctrons chauds
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Résumé détaillé

Lors de la fusion par confinement inertiel (FCI), une cible millimétrique contenant un mil-
ligramme de combustible deutérium - tritium est exposée a un rayonnement laser d’une dizaine
de nanosecondes avec une énergie de l'ordre du mégajoule. La cible, alors comprimée, subit
en son centre une augmentation de la densité puis une augmentation de la température lorsque
I’énergie cinétique est convertie en énergie interne. Des lors que les conditions d’allumage des
réactions de fusion sont atteintes au centre de la cible, des particules hélium 4 (particules al-
pha) ainsi que des neutrons de 14 MeV sont émis. Si la densité surfacique de la cible (pR)
est suffisamment élevée, les particules alpha sont ralenties et elles déposent leur énergie dans le
combustible. La température du combustible continue d’augmenter et les réactions sont alors
auto-entretenues. Les neutrons, plus énergétiques, sont arrétés plus loin dans l'installation. Leur
énergie est récupérée sous forme de chaleur. Le gain de I'implosion est le rapport de I’énergie
dégagée par les réactions de fusion avec I’énergie laser injectée.

L’onde de combustion thermonucléaire est limitée par I'expansion hydrodynamique de la
cible. Pour atteindre un gain de cible assez élevé, 'onde de combustion doit étre maintenue
pendant un temps suffisamment long. Cela est possible si I'inertie de la cible en implosion est
assez élevée pour confiner la matiere. La FCI peut étre envisagée pour un réacteur nucléaire si
le gain est supérieur a 100.

De grandes installations laser telles que le Laser Mégajoule (LMJ) en France ou le Na-
tional Ignition Facility (NIF) aux Etats-Unis sont construites afin de démontrer la faisabilité
de 'allumage de réactions de fusion en laboratoire. Le dimensionnement actuel des implosions
devrait permettre d’atteindre un gain de 15 ce qui est loin du gain nécessaire a 1’échelle d’une
centrale. Aujourd’hui, le chauffage auto-entretenu du combustible par les particules alpha a été
obtenu en laboratoire. Mais un gain dépassant I'unité n’a pas encore été atteint et la faisabilité
de l'allumage n’est pas encore démontrée. Le principal facteur limitant est la croissance des
instabilités hydrodynamiques qui dégradent I'implosion.

Le gain de la cible et le taux de croissance des instabilités hydrodynamiques dépendent de la
vitesse d’implosion. En réduisant cette vitesse, 'implosion est plus stable et des gains supérieurs
peuvent étre potentiellement atteints. Seulement la température dans le cceur de la cible dépend
également de cette vitesse d’implosion et si cette derniere est trop faible, aucune réaction n’a
lieu et le gain est nul. Dans le schéma d’implosion conventionnel, la compression et I'allumage
de la cible se font en méme temps. Des schémas d’implosion alternatifs proposent d’imploser
la cible a faible vitesse d’implosion puis d’allumer les réactions de fusion a l’aide d’une source
d’énergie supplémentaire en fin d’implosion. Dans le schéma d’allumage par choc, cette source

d’énergie est apportée par un choc convergeant généré par une impulsion laser d’intensité élevée.
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Ce schéma semble plus robuste vis a vis des instabilités hydrodynamiques et devrait permettre
d’atteindre des gains supérieurs a 100. De plus I’énergie et la puissance laser requises sont en-

visageables sur les installations laser actuelles (NIF ou LMJ).

L’allumage par choc

La cible est constituée d’une coquille de deutérium-tritium cryogénique remplie du méme
combustible a I’état gazeux. Le tout est compris dans un ablateur en plastique. La cible est tout
d’abord comprimée par une impulsion laser similaire a celle utilisée dans le schéma d’implosion
conventionnel. Durant cette premiere phase, deux parametres clefs de I'implosion sont imposés :
ladiabat de la coquille (il s’agit d’une mesure de I'entropie et donc de la compressibilité) et la
vitesse d’'implosion (vitesse maximale de la coquille). Un premier choc est généré, il converge
jusqu’au centre de la cible, rebondit, puis interagit avec la coquille encore en implosion. Un choc
est transmis dans la coquille - le choc retour — et un autre est réfléchi vers le centre de la cible.
A partir de ce temps tg la coquille commence a décélérer. Durant la phase de décélération, la
pression au centre de la cible augmente jusqu’a ce qu’un équilibre de pression se fasse dans la
cible au temps t;. La vitesse de la coquille est alors nulle et la cible est en phase de stagnation.
A ce moment, si aucun choc supplémentaire n’a été généré, la température au cceur de la cible
est inférieure & 4 keV et la densité surfacique de la cible est de I'ordre de 100-300 mg.cm 2. Ceci
est en dessous du seuil d’allumage. Pour atteindre 'allumage, un choc supplémentaire est généré
de maniere a ce qu’il pénetre dans le coeur de la cible un peu avant la phase de stagnation. Pour
cela une impulsion laser d’intensité élevée, appelée spike, est utilisée a la fin de I'impulsion laser
de compression. Ce choc se propage tout d’abord dans une coquille convergente en accélération.
Il entre en collision avec le choc retour et se propage ensuite dans un milieu décéléré toujours
en implosion. Le choc d’allumage entre ensuite dans le coeur préchauffé de la cible, rebondit en
son centre, puis diverge. Les conditions de température et de densité surfacique pour I’allumage
sont alors atteintes derriere le choc d’allumage.

L’objectif de cette theése est de décrire le choc d’allumage depuis sa génération jusqu’a
I’allumage des réactions de fusion. D’apres les simulations numériques, le choc d’allumage
est généré a 'aide d’une pression d’ablation de 'ordre de 300 Mbar avec une irradiation laser
d’intensité de 5 — 10 x10'® W/ecm?2. La pression du choc est ensuite amplifiée durant sa con-
vergence et atteint 3-5 Gbar lorsqu’il débouche dans le point chaud. La faisabilité de I'allumage
par choc repose sur la possibilité de générer une telle pression d’ablation, sur I’amplification de
la pression du choc d’un facteur supérieur a dix dans la coquille et sur le couplage du choc avec

le coeur de la cible.

Couplage du choc d’allumage avec le cceur de la cible

Dans I’écoulement généré par un choc convergent, le maximum de température et de densité
est obtenu derriere le choc apres son rebond au centre du systeme. Le produit pRT « pR croit
derriere le choc divergent et 'on s’attend a ce que l'allumage ait lieu au moment ou le choc

quitte le cceur chaud de la cible.
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L’écoulement mis en place par le choc durant sa phase de convergence et de divergence est
décrit de maniere semi-analytique. La température initiale du milieu de propagation n’est pas
négligeable et le nombre de Mach du choc Mg = Ugg/co est assez faible (avec U la vitesse du
choc et ¢y la vitesse du son amont). Le choc d’allumage est décrit dans le chapitre 4 & 1’aide
d’une extension de la solution auto-semblable de Guderley avec un terme correctif propositionnel
a I'inverse du nombre de Mach au carré Mgy 2. La correction obtenue pour un nombre de Mach
fini montre que l'efficacité du choc a chauffer le combustible est réduite lorsque le nombre de
Mach initial du choc est faible. Cela signifie que pour une vitesse de choc donnée, plus la
température dans le point chaud est importante avant ’arrivée du choc, moins la pression finale
dans le combustible sera élevée. Un critere d’allumage basé sur le gain en énergie par dépot
d’énergie des particules alpha et les pertes par conduction et rayonnement est exprimé dans la
section 4.3. Ce critere donne une valeur minimale pour la vitesse du choc (Us)ign et une densité
surfacique minimale du point chaud (pR);gn au moment ou le choc entre dans le cceur. I1 dépend
du nombre de Mach initial du choc d’allumage. Lorsque le nombre de Mach du choc est infini,
ign = 650 km.s~! et (pR)

lors d’'une implosion typique pour l'allumage par choc, la température dans le coeur est de 2-4

les conditions d’allumage sont : (Us) = 15 mg.cm~2. Cependant,

iwgn
keV lorsque le choc arrive. Le nombre de Mach du choc est alors M,y < 3. Le modele développé
dans cette these n’est valide que pour des nombres de Mach Mgy > 4. Dans la limite de ce
= 750 km.s~! et (pR)

prédictions analytiques sont confirmées par des simulations numériques. Pour un faible nombre

modele, les conditions d’allumage sont (Us) = 20 mg.cm2. Les

ign ign
de Mach du choc, les conditions d’allumage sont augmentées de plus de 20 %.

Il est intéressant d’exprimer les conditions d’allumage en termes de pression du choc. En
utilisant la relation ps o< poUsp?, une estimation de la pression minimale du choc, lorsqu’il entre
dans le coeur de la cible, est de 20 Gbar.

De nos jours, il n’est pas possible de générer une telle pression d’ablation. Ainsi une amplifi-
cation de la pression du choc avant qu’il n’entre dans le coeur de la cible est nécessaire. Il s’agit

du second point abordé dans cette these.

Amplification du choc dans la coquille en implosion

Nous faisons la distinction entre I’amplification de la pression du choc X, qui correspond a
la pression finale du choc divisée par sa pression initiale, et 'amplification de la force du choc
Z, ou la force est la pression du choc ps divisée par la pression dans le milieu amont pg.

Dans le chapitre 5, il est montré que les effets de convergence seuls ne permettent pas
d’expliquer I’amplification de la pression du choc d’un facteur supérieur a dix, comme on peut le
voir dans les simulations numériques. L’analyse théorique montre que I'amplification provient de
trois contributions : 1) amplification générale de la pression de la coquille en implosion Xy,
2) l'amplification du choc dans le repeére co-mobile de la coquille Xgpey et 3) Pamplification
au cours de la collision du choc convergeant avec un choc divergent provenant de la phase de
compression X.,;. Ainsi 'amplification de la pression du choc peut étre exprimée a 'aide de

trois facteurs : X = XjppXsheunXeon- En considérant une implosion homogene de la cible avec
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le coefficient polytropique v = 5/3, le rayon de la cible est décrit par un facteur d’échelle h(t),
la densité évolue comme h~3 et la pression comme h~°. L’amplification de la pression dans
la coquille est alors Xjmp = (h(t;)/h(tf))5. Avec un design de cible HIPER ce facteur peut
atteindre des valeurs proches de 20. Il est prédominant si le choc entre dans le coeur de la cible
a des temps tardifs.

La propagation du choc dans le repere co-mobile a la coquille en implosion est décrite en
négligeant 'influence de I’écoulement derriere le choc. En effet, il est considéré que le choc suit
une caractéristique C+ de I’écoulement. Les relations de Rankine-Hugoniot sont injectées dans
les équations de conservation de la quantité de mouvement, de I'énergie et de la masse sous
leur forme caractéristique. L’évolution de la force du choc dépend des effets de convergence
mais aussi du gradient de pression et de densité. Dans le cas d’une coquille en accélération,
le gradient de densité est positif et le choc se propage dans le sens décroissant de la densité et
de la pression. La pression du choc diminue également et Xgpep < 1. Au contraire, lorsque la
coquille est en décélération, le signe du gradient de densité est opposé au cas précédent et la
pression du choc est amplifiée. Proche du temps de stagnation, Xgpey est positif mais n’est pas
dominant en comparaison avec Xjnp. Sile choc se propage uniquement dans une coquille en
accélération, sa pression diminue dans le repere co-mobile a la coquille, et le facteur X;p,, n’est
pas assez important pour compenser la chute de pression. Le choc d’allumage dans le repere du
laboratoire n’est donc pas amplifié. Il apparait au vue de ces résultats que le choc d’allumage
doit entrer dans le coeur de la cible durant la phase de décélération afin d’étre amplifié dans la
coquille.

Dans ce cas, le choc rencontre le choc retour issu de la phase de compression. Le facteur
1

d’amplification du choc peut étre calculé a l'aide de la loi d’échelle X .. = (12-:%leer> 2 Z, ol
Z, est la force du choc retour et Z,.; est la force du choc d’allumage avant la collision (solution
approchée valide pour des forces de choc inférieures a 10). Dans les simulations typiques de
I’allumage par choc, la force du choc retour est inférieure a 3. L’amplification de pression dans
la collision est alors X.o; =~ 2.

Ces trois facteurs d’amplification ont été calculés de maniere analytique pour un design de
cible type de 'allumage par choc. L’amplification de pression derriere le choc d’allumage est
tres sensible au temps du spike. Il a été montré que 'amplification de la pression du choc par
un facteur supérieur a 100 est possible si le spike laser est suffisamment tardif. Un bon accord
entre la théorie et les résultats de simulations est obtenu.

Avec le facteur d’amplification X ~ 50 — 100 et la pression seuil du choc d’allumage apres
amplification de 20-30 Gbar, il apparait qu’une pression d’ablation de 300 Mbar est nécessaire
durant le spike pour atteindre ’allumage de la cible.

La troisieme partie de cette these considere la possibilité de générer une telle pression

d’ablation de maniere expérimentale.
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Génération d’un choc de 300 Mbar, role des éléctrons chauds

Un des points les plus critiques pour l’allumage par choc est la possibilité de générer une
pression de plus de 300 Mbar par irradiation laser dans un large pré-plasma (millimétrique). Le
régime d’intensité requis (5 & 10 x 1015W/cm2) est alors tel que les instabilités paramétriques
dominent la propagation et ’absorption laser. Sous ces conditions, des électrons supra-thermiques
sont produits dans la couronne et influencent la génération du choc d’allumage. Il faut alors
tenir compte de deux processus d’absorption de I’énergie laser et de deux processus de transport
associés :

— une absorption collisionelle classique par Bremsstrahlung inverse au niveau de la densité
critique et le transport thermique non local ;

— une absorption en volume en aval de la densité critique et le transport d’énergie par les
électrons chauds.

Ces processus de ’absorption, du transport de I’énergie par les électrons thermiques et supra-
thermiques dans la zone d’ablation et la génération du choc a I’échelle de 500 ps nécessitent une
description a la fois cinétique et hydrodynamique du phénomene. Cela rend les prévisions par
simulations difficiles et une question ouverte est de savoir si les électrons chauds renforcent le
choc d’allumage ou au contraire nuisent & sa formation par préchauffage.

Dans le chapitre 6, sont présentés et interprétés les résultats d’expériences de mesure de
pression d’ablation en géométrie sphérique réalisées sur l'installation OMEGA. Il s’agit des
premieres expériences de génération de choc dans un régime d’intensité pertinent pour I’allumage
par choc.

Un pré-pallier dans 'impulsion laser permet de générer un pré-plasma. L’impulsion princi-
pale génere un choc convergent. La cible solide est constituée de CH dopé au Titane (4 %). Sa
petite taille (D = 430 pm) permet d’atteindre une intensité laser sur cible I, ~ 6 x 101W. cm 2
durant 'impulsion principale. Pour certains tirs, le lissage SSD a été retiré afin d’augmenter
localement l'intensité sur cible. Lorsque le choc atteint le centre de la cible, la température
atteint quelques centaines d’eV et est telle que le titane émet un flash X. Une caméra a bal-
ayage de fente mesure le flux X. Des détecteurs permettent d’évaluer 1'énergie laser absorbée.
Les simulations numériques permettent de déduire la pression d’ablation en retrouvant le temps
d’émission du flash X et le taux d’absorption de I’énergie laser mesurés expérimentalement.

Un premier tir est réalisé avec une énergie laser de 17 kJ et un lissage SSD de la tache focale.
Avec un limiteur de flux & 5 %, la simulation permet de retrouver ’énergie absorbée et le temps
de convergence du choc. La pression du choc avant toute interaction avec une onde issue du
pré-palier est de 160 Mbar et la pression d’ablation maximale est de 180 Mbar.

Un second tir est réalisé avec une énergie supérieure (26 kJ) sans lissage SSD de la tache
focale. Alors que 'intensité sur cible est 30 % supérieure au cas précédent, I'intensité absorbée
estimée par les mesures expérimentales est sensiblement la méme. Ce tir ne peut pas étre
interprété en considérant une absorption collisionnelle de ’énergie seule. D’apres les évaluations
expérimentales, le taux de conversion en électrons chauds est plus élevé dans les tirs sans SSD.

Leur influence est alors considérée.
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Un modele simplifié de dépot d’énergie des électrons chauds est ajouté au code CHIC.
L’énergie des électrons chauds est déposée uniformément en volume dans leur zone de prop-
agation. Le temps de convergence du choc expérimental est retrouvé dans la simulation avec
une conversion de 20 % de I’énergie absorbée en électrons chauds et avec des énergies pour les
électrons chauds entre 50 et 100 keV. Ceci est en accord avec les mesures expérimentales.

Lors de I'impulsion principale, une structure a double fronts d’ablation se met en place. Le
choc généré par absorption collisionelle et conduction électronique thermique est renforcé par
le dépot d’énergie des électrons chauds alors qu’il se propage dans la cible. Un second front
d’ablation est créé par dépot d’énergie des électrons chauds.

Ceci génere un second choc de plus faible amplitude qui se propage vers l'intérieur de la
cible. Une onde de détente émerge également de ce front d’ablation < supra-thermique > et se
propage vers l'extérieur de la cible. L’interaction de cette onde de détente avec le choc principal
stoppe la montée en pression de ce dernier.

La pression maximale atteinte est de 280 Mbar. Ces résultats prometteurs montrent une voie
de recherche intéressante sur la génération de choc avec deux modes de dépot et de transport
de I’énergie laser incidente dans la cible.

Les différents outils d’analyse mis en place au cours de cette these mettent en évidence les
processus physiques mis en jeu lors de 'allumage par choc et les parametres clefs de I'implosion.
Ces travaux mettent a disposition des outils utiles pour la compréhension , 'optimisation et le

design d’implosion.
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Introduction

Mankind has a continuously increasing demand of energy. The future energy consumption
depends on technological, environmental and political issues. The population is increasing and
the energy demand in developing countries is rising. The global energy consumption in the
future can be estimated for three scenarios of growth which are represented in the figure 1.1.
The middle growth scenario is the more realistic one, it predicts a population increase by 20 %
from today to 2100.

Currently the most used source of energy is the burning of fossil fuels. However, the resources
are limited and the pollution is dramatically increasing, menacing our environment. The global
climate change is on its way and its seems unavoidable that countries will be forced to reduce the
fuel burning. Alternative sources of energy are renewable energies and fission. Replacing fuel
energy with renewable energy like wind turbine, hydro dam or solar panel would require a huge
amount of land impacting on the environment. Indeed, the problem with renewable energy is its
low energy density. To get enough energy, huge spaces and investments are needed. There will
be local opposition from the inhabitants to the building of those huge infrastructures. Thus for
environmental, and technological reasons renewable energy supply could not be the main source
of energy for humanity unless global consumption is strongly reduced. The nuclear fission is
a good candidate to supply the world energy. It has a high energy density and a low climate
impact. However, the radioactive waste is a main issue. Moreover, accidents like Chernobyl and

recently Fukushima make people scared.

Therefore, we need a new source of energy. The part of this new energy source in the
predicted energy supply estimates [McLean, 2005] is of 50 % in 2100 (see Figure 1.1). This
source must have a lot of resources, a high energy density, a low climate impact, a low level of
radioactive waste and a very low risk of accidents. This seems utopic but this source already
exists in the stars : the fusion. The only problem is that we have not yet succeeded in controlling

it on earth.

Fusion consists in assembling two light nuclei to form a nucleus. During this process, energy is

released in the form of gamma-rays and kinetic energy of particles. The fuel reactants considered
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for reactors on earth are the deuterium and the tritium, two isotopes of hydrogen. Deuterium
can be extracted from the ocean’s water. The reserve of deuterium on earth can supply energy
for billions of years. Tritium must be artificially created by bombarding lithium with neutrons.
It is unstable with a half life of twelve years. The energy produced by the fusion reactions
could be collected and converted into heat, transported by water which can drive a turbine to
generate electricity like in a conventional power plant. However, controlling fusion on earth is

very complex and the demonstration of a gain higher than unity has not been done yet.
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Figure 1.1: Energy supply and demand projection based on population growth, world energy
consumption and plausible political strategy assumption, adapted from Ref. [McLean, 2005]

1.1 Fusion as an energy source

1.1.1 Fusion reaction

E. Rutherford, in 1911, discovered that an atom is made of a dense positively charged core and
of negatively charged external electrons. The very dense region at the center of an atom, the
nucleus, contains the protons and the neutrons. The proton number Z, also called the atomic
number, is equal to the number of electrons surrounding the nucleus. The number of neutrons N
defines the isotope state of the element. The total number of the nucleus elements is A = N 4+ Z.
All the isotopes of the same element have the same proton number Z and have the same chemical

behavior, however their mass and stability are different. The hydrogen 1, with a single proton,



is the most common hydrogen isotope. The hydrogen 2, called deuterium, contains one proton
and one neutron. The hydrogen 3, known as tritium, contains one proton and two neutrons. The
latter is unstable and do not exist naturally. In the nucleus, protons and neutrons are bound
together by the nuclear force. With the mass-energy equivalence concept, originally developed
by Albert Einstein in 1905, the mass of the nucleus M is equal to the sum of the protons and

neutrons masses minus the mass of the binding energy F :
M = Nmy, + Zm,, — E/c, (1.1)

where m,, is the mass of a proton, m,, is the mass of a neutron and ¢y is the speed of light.
The figure 1.2 presents the bounding energy per nucleus E/A as a function of the mass
number A. A reaction leading to a mass decrease yield to an energy emission. The iron is the
most tightly bounded element. The fission of elements heavier than the iron and the fusion
of elements lighter than the iron yield energy. This energy is much higher than the classical
energy released by chemical reactions. Indeed the binging energy of the electrons involved in
chemical reactions is much smaller than the nuclear binding energy. For example, the hydrogen

oxidation in water releases an energy 2 x 107 lower than the fusion reaction between two isotopes

of hydrogen.
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Figure 1.2: Binding energy per nucleon depending on the number of nucleons, adapted from
Ref. [Atzeni and Meyer-Ter-Vehn, 2004]

To accomplish the fusion, the reactants involved have to overcome the Coulomb repulsive
force. Indeed, the two nucleus are both positively charged and thus subjected to the electric
repulsion. If the distance between the particles is low enough, the nuclear force dominates the
electric repulsion and the fusion takes place. The energy needed for one atom to fuse with

another atom at rest is of the order of 300 keV. This means that extremely high temperature
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is needed. However, the quantum mechanics tells that the probability for an atom to overcome
the Coulomb Barrier with a lower energy is not zero because of the tunneling effect.

The reactivity < ov > is the reaction probability per unit of time and unit of density
averaged over the distribution of reactants over the kinetic energy. The reactivities calculated
with the Maxwellian particle distribution of the most interesting fusion reactions depending on
the temperature are represented on the figure 1.3. The deuterium - tritium reaction shows

the higher reactivity for temperatures in the range 1 — 100 keV. This is why this reaction is

preferred.
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Figure 1.3: Fusion reactivity depending on the temperature, adapted from Ref. [Atzeni and
Meyer-Ter-Vehn, 2004]

In the deuterium - tritium fusion reaction, two particles are released with a given amount of

kinetic energy : a *H, particle called the a particle and a neutron (figure 1.4). It writes

D+ T — *H.(3.5 MeV) + n(14.1 MeV). (1.2)
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Figure 1.4: Fusion reaction between deuterium and tritium.

1.1.2 Lawson criterion

To get the maximal probability of reaction, all the reactants in the fuel must be heated to a
temperature of 10-20 keV during a sufficiently long time. At this temperature the matter is
under the state of plasma, where ions and electrons are dissociated. Maintaining the fuel at
such temperature with an external source of energy would be too much costly. The idea is then
to stop the alpha particles in the fuel an to use their energy to heat the fuel. This is called
the self-heating of the fuel. The neutrons which are more energetic are used for the energy
production.

However, to initiate the process, the temperature must be high enough to start the fusion
reactions and the density must be high enough to stop the alpha particles. This is called the
ignition. The ignition occurs if the fusion reaction energy production goes faster than the energy
losses as radiation, conduction or mechanical work.

Figure 1.5 represents the power density losses by photo emission pp,.e, and the heating power
density due to the alpha particles energy deposition p, as a function of the temperature. The
self-heating of the plasma occurs for the Post’s temperature Tpost = 4.3 keV at which pprem = pa-

Heating the plasma to temperatures higher T'p,s; is not sufficient. The plasma must stay con-
fined during a sufficiently long time. The characteristic time of a reaction is 7 = 1/(n; < ov >).
It depends on the ion density of the reacting nuclei n; and on the reactivity. A criterion on
the product n;7 was established by Lawson [Lawson, 1957] after a more detailed analysis of the

04 s.cm™3

energy gains and losses in the plasma. The well known Lawson criterion is n;7 > 2x 1
for a temperature T' = 20 keV.

In the stars, the confinement is due to the gravity. It requires very big masses and scales
to be operational. In laboratory, two main confinement schemes are considered. The magnetic

confinement fusion (MCF) scheme uses a strong magnetic field to confine the plasma with a



1. INTRODUCTION

4.3 keV

107 // —alpha particles deposition

==radiation losses

10’ 10'
Temperature (keV)

Figure 1.5: Temperature at which the self-heating by alpha particle energy deposition equals
the radiation losses.

relatively low density n; ~ 10 ¢cm™3 and a time scale of the order of a second. In the inertial
confinement scheme (ICF), a compressed and heated plasma stays confined during a finite time
defined by its own inertia before it disassembles. The density in this scheme is much higher

n; = 1026 cm™3 and the time scale is very low 7 ~ 107! s.

1.1.3 Fusion for energy production

The gain is the ratio between the output energy and the driver energy Ep. Here we consider

that the output energy is due to the fusion reactions Epy; :

_ Efus

G 0

(1.3)

The driver energy is converted from the input electric energy F;, with an efficiency coefficient
np = Ep/E;,. The energy produced by the fusion reactions are converted into heat, transported
by a fluid and converted into electric energy with a turbine with a conversion efficiency ny, =
Eout/Efys- A fraction fE,, of the output energy is used as the input electric energy to feed in
the driver and the other fraction (1 — f)FE,,; is the final output of the reactor. The factor f is
limited by the capital costs of the system. The latter depends on the cost of the installation, on
the cost of its maintenance and on the electricity price. To reduce the price of the electricity, f

must be small and it is usually assumed that f < 1/4. The systems is autonomous when

fnpninG = 1. (1.4)

In inertial confinement fusion, typically, f = 1/4, np ~ 10% and ny, ~ 40%, which means
that the gain G must be at least 100. With a driver energy of 3 MJ and a gain of 100, ten shot

per second is needed to produce 1 GW of electricity.



This thesis works is conducted in the context of the inertial confinement fusion. Before
focusing on this approach, let give few words on the magnetic confinement fusion in the next
section. The interested reader can refer to specialized books, for example [Braams and Stott,
2002, Hazeltine and Meiss, 2003].

1.2 Magnetic confinement fusion

An approach to ignite the Deuterium Tritium fusion reactions is the magnetic confinement
scheme. A strong magnetic field may confine the plasma in a steady state for a long time. In
an appropriately chosen magnetic configuration the charged particles of the plasma are trapped
by the magnetic field and kept away from the vessel walls. While heating this confined plasma
to ignition conditions, the alpha particles are also trapped by the magnetic field and transfer
their energy to the plasma. Therefore, once the ignition had occurred, the external heating can
be stopped and the plasma is self heated.

The most developed device for magnetic confinement fusion is the Tokamak.This is a theta-pinch
of a toroidal shape. It was first proposed and developed in Russia in 1951 [Tamm and Sakharov,
1959]. In this concept the plasma is confined in a toroidally shaped vessel (see Figure 1.6). A
toroidal magnetic field is generated by the external coils. However, the toroidal magnetic field
itself is insufficient for particle trapping. The curvature of magnetic field lines imposes opposed
drifts for the ions and the electrons leading to a charge separation and producing an electric field
and a loss of the confinement. To prevent the radial drift, an additional poloidal magnetic field
is induced in the plasma by generating a toroidal current with a special induction coil. Both
toroidal and poloidal magnetic fields lines form globally a set of closed magnetic flux surfaces
which confine the plasma inside. Thus, the Tokamak can be considered as a giant transformer.
That means that the plasma confinement is a transient phenomenon during a half period of
the induction current. However, in the advanced Tokamak the toroidal current is maintained
by other sources such as neutral particles or electromagnetic waves. That allows to extend the
plasma life time to several minutes in the present day machines and to expect a quasi-steady
operation of future reactors.

The current largest tokamak is the Joint European Torus (JET) located in United Kingdom.
This device has a volume of 80 cm?, however, it is not large enough to allow energy gain
because of the thermal diffusion losses across the magnetic surfaces and the plasma instabilities.
The machine of next generation will be the International Thermonuclear Experimental Reactor
(ITER). It should be operational in 2020 in France. The ITER device will have a plasma of 830
m? and will produce a fusion power of 500 MW with an energy gain of 10. The expected duration
of plasma discharge is 3000 s which is a significant step toward the steady state operation.
The ITER program born in 1985 by connecting European, Japanese, Russian and American
scientists. Later, China and South Korea, joined the project in 2003 and also India in 2005.
The place for the ITER construction was chosen to be Cadarach in 2005 and the construction

is currently taking place.
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Figure 1.6: Main features of the Tokamak device for magnetic confinement. (Scheme by
Abteilung Offentlichkeitsarbeit - Max-Planck Institut fiir Plasmaphysik)

An alternative for the Tokamak is the Stellarator proposed by Lyman Spitzer in the USA
in 1950. With this device, both the toroidal and the poloidal magnetic fields are generated by
the coils . This device has the advantage to provide a continuous confinement of a plasma.
However, the shape of the coils is much more complicated (see Figure 1.7). Currently, the
largest operational Stellarator is the TJ-II in Madrid [Alejaldre et al., 1990]. An larger one, the
Wendelstein 7-X [Wegener, 2009], will be operational soon in Greifswald in Germany. The aims
of those devices is to demonstrate the feasibility of steady operation and a control of plasma
instabilities. However the volumes (under 30 cubic meters) of those facilities will not allow to

reach an energy gain higher than unity.
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Figure 1.7: Stellarator device scheme. (Scheme by Abteilung Offentlichkeitsarbeit - Max-Planck
Institut fiir Plasmaphysik)

The very large size of toroidal fusion machines is explained by the fact that the maximal
magnetic field which can be generated with a supra-conducting cryogenically cooled coils is 17,6
Tesla [Durrell et al., 2014].



The most important challenges for the magnetic confinement fusion are the control of plasma
instabilities, the design of efficient methods of plasma heating, the removal of the reaction
products and impurities and the long operation time. But even if all of these physical and
technical problems may be resolved, the problem of resistant construction and plasma facing
materials remains the most difficult. Indeed, the plasma being a strong neutron source, the
structure must be neutron-resistant. The material must prevent the radioactive activation, the
erosion and the heating.

The current design consists in a first wall made of tungsten surrounded by a blanket in a
vacuum vessel. Then, superconducting magnets are enclosed in a cryostat in order to keep a low
temperature. The fuel of Deuterium Tritium is injected in the Tokamak in a form of cryogenic
solid pellet.

The plasma in magnetic confinement devices is unstable. The microscopic instabilities cor-
respond to the magnetic field fluctuations that destroy the magnetic surfaces and enhance the
energy and particle diffusion. However, the most dangerous instability is the large scale plasma
current oscillations leading to large current disruption and ejection of plasma. Strong forces are
then acting on the Tokamak structure.

Another magnetic plasma confinement scheme without external coils exists and is called Z-
pinch. We chose not to go through details is this manuscript, but we invit the interested reader
to look to the review paper [Haines, 2011]. Here, a strong current generated in the axial direction
(Z-pinch) produces a self generated magnetic field that compresses and heat the plasma. Z-pinch
is more unstable and the plasma life time is relatively short, less than a microsecond. However,
with a strong current, that time could be sufficiently long to induce the fusion reactions. The
fusion experiment which took place in 1958 in the Los Alamos National Laboratory was the
first to demonstrate the neutrons production [Anderson et al., 1958]. The largest Z pinch device
today is the Z machine at Sandia National Laboratories with the discharge current exceeding
20 MA. The current Z-pinches are the sources in hard X-rays, they allow to reach high energy
density states of matter with pressures of 5-100 Mbar. The X rays generated in Z-pinch can be
used as a source to drive the implosion of an ICF capsule [Haines, 2011]. The implosion scheme
and the target design are similar to the indirect drive of ICF. Typically, an imploded wire array
z-pinch generates up to 1.8 MJ of X-rays at power of 230 TW with an efficiency > 15%. The

radiation temperature in the hohlraum of 230 eV has been reached.

1.3 Inertial confinement fusion

1.3.1 Historical note

The research about nuclear reactions lasts for more than a century.
In the beginning of the 20th century, both physics and the world knew revolutions. Henry
Becquerel, noticed that uranium salt self-emits radiations [Becquerel, 1896]. Pierre and Marie

Curie [Curie, 1898] continued the research on those radiations and named the phenomenon as
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the radioactivity. The uranium atom could be broken down (fission) with a release of energy.
This reaction is spontaneous and a block of uranium ore spontaneously emits heat as fission
reactions continuously take place inside it.

The discovery of the neutron in 1932 by James Chadwick [Chadwick, 1932] allowed a new
conception of the atom nucleus constitution. Later, the possibility to break up a uranium nuclei
under neutron bombardment had been suggested by Ida Noddack in 1934 [Noddack, 1934]:

“When heavy nuclei are bombarded by neutrons, it is conceivable that the nucleus

breaks up into several large fragments”

Later, the German team in Berlin with Otto Hahn, Lise Meitner, Otto R. Frisch and Fritz
Strassmann was the first to demonstrate that the uranium nuclei can be split when bombarded
with neutrons [Meitner and Frisch, 1939, Hahn and Strassmann, 1939]. The reaction is named
as fission. It is evoked that the fission reaction releases energy. As the fission reaction emits
neutrons, the physicist Le6 Szilard proposed the idea that a chain reaction can be possible. Such
a process can be the source of an enormous amount energy. This was understood by Fermi and
Szilard who proposed a reactor for civilian energy (first operation in 1942). Arms based on the
fission chain reaction were developped during the second wold war.
With the discovery of the radioactivity, scientists wondered if it could be the source of the sun
energy [Clery, 2013]. However, the sun contains mainly hydrogen which can not be broken into
lighter elements. In 1920, Francis Aston [Aston, 1920] measured that the helium mass is slightly
less than four times the mass of hydrogen during his research on the existence of isotopes.
Arthur Eddington [Eddington, 1920] interpreted this measurement according to Einstein’s fa-
mous relation £ = mc? : if hydrogen atoms in the sun fuse in helium particles with a loss of
mass, then this can be the energy source of the sun. However, by this time, no one was able to
explain how fusion reactions can occur. In the same period, the quantum mechanics revolution
arrived. George Gamow in 1928 [Gamow, 1928] stated that according to quantum mechanics, it
exists a probability for two nuclei to overcome the Coulomb barrier and to fuse. Atkinson and
Houtermans published a paper [Atkinson and Houtermans, 1929] in 1929 explaining that the
sun’s conditions predicted by Eddington are compatible with the occurrence of fusion reactions.
The first experiments of fusion reactions were done by Mark Oliphant in 1932. He used a
particle accelerator to give a sufficient kinetic energy to the hydrogen particles and make them
fuse. It was then proved that energy was indeed released in the reaction. But at this time, only

1 over 100 million accelerated particles fused with another particle.

“The energy produced by the breaking down of the atom is a very poor kind of
thing. Anyone who expects a source of power from the transformation of these

atoms is talking moonshine.” Rutherford

It was then though that if the fuel is heated, the fusion reaction rate increases. Moreover,
if the temperature is high enough, a part of the energy released by the fusion reactions would

maintain the process and the other part can be used as a source of energy.
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Enrico Fermi has an idea to use the fission reaction to get the high density and temperature
needed to ignite the fusion reactions. This leads to the concept of the “super bomb” (or bomb
H) which was defended by Teller in 1942 in the Oppenheimer’s summer conference. In 1957,
Teller and other scientists in Livermore, presented a project of using the nuclear explosion for
civilian energy production [Nuckolls, 1998]. In this context they were also looking for another
possibility to get fusion reaction without the use of fission primary. Nuckolls proposed to implode
a milligram of deuterium-tritium to high density and temperature with radiation coming from
a gold cavity (called Hohlraum) energized by an external source. The indirect-drive inertial
confinement fusion was born. The DT is enclosed in a thin spherical and dense shell. The target
is first heated. The external matter is ablated which accelerate the shell toward the center. This
drives the implosion until the ignition occurs at the center.

Nuckolls considered several external sources of energy as pulsed power machines, charged
particle accelerators, plasma guns. When the first laser experiments were proceeded by T.
Maiman in late 1960 [Maiman, 1960], this technology appeared as a good candidate for the
external source of energy. This technical revolution allows to reproduce the state of matter and
the thermal radiation similar to those found in the bomb H.

At the end of 1960, the chosen compression scheme was already close to the current conven-
tional ICF scheme. The target shell is made of the fuel itself with cryogenic DT. The ignition
occurs at the center of the target and then a burning wave propagates into the resting fuel. This
allows to reach a higher gain. This scheme is called the hot-spot ignition.

In 1961-1962, Kidder considered the case where the laser beams ablate directly the pellet
outer surface. This is called the direct drive scheme. The advantage of this scheme is that
it avoids the energy losses through the Hohlraum. However, the laser irradiation uniformity
constraints are higher.

After a decade of laser plasma production feasibility experiments and progresses in generating
hight power/short pulse laser beam, inertial confinement fusion programs started. The aim was
to demonstrate the DT fusion ignition. At this time, the calculation predicted the need for a
laser power of a few kilo-Joules.

In URSS by the end of the 60’s, the Levedev Institute is a pioneer in the ICF experimental
research. The first neutrons from laser irradiated targets were announced in 1968. Then the most
advanced research lasers was Kalmar built in 1971 (300 J) [Basov et al., 1975]. In USA, the first
experiments took place on the 20 J laser Janus in 1974. To this laser followed the laser facility
Shiva (10 kJ) in the late 70’s and the laser facility Nova (100-150 kJ) in the 80’s. In France,
the first indirect drive experiments were performed in the early 80’s using the eight beams with
5 kJ of energy of the laser Octal. The French experiments for ICF were later performed on the
the Phébus laser of 20 kJ built in 1985 and on the Ligne d’'Intégration Laser (LIL) of 30 kJ
since 2002. In Japan, the Gekko XII laser was completed in 1983 capable of delivering 30 kJ of
energy.

The indirect drive was thought as the most feasible scheme. In this scheme the non uniform

laser beam irradiation is smoothed as it is converted into soft X-rays. It seemed unlikely that the
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single beam smoothing techniques and the multi beams overlap with a direct irradiation scheme
could lead to a sufficiently uniform irradiation on the target. Also, the laser plasma interaction
at high intensity leads to parametric instabilities. Those instabilities generate hot electrons
which could pre-heat the target leading to reduced compressibility. To limit the hot-electron
generation, and to increase the laser absorption and the ablation pressure, it was proposed to
triple the laser frequency with a wave-length of 351 nm instead of the infrared light at 1053 nm.
The development of laser performance and accuracy, of sophisticated diagnostics for experiments
and of computational simulation tools led to strong improvements in the next years. At the end
of the 90’s, hot electrons generation was reduced to acceptable level, and target conditions close
to those needed for ignition were reached with the Nova laser facility (40 kJ). Then, bigger
projects of Mega Joule lasers were put forward with the National Ignition facility (NIF) in
the United States and the Laser Mégajoule (LMJ) in France . Whereas the LMJ will be soon
operating, the NIF is the actual most powerful facility with 192 beams and an energy of 1.8 MJ.
For a direct-drive irradiation, the laser beams configuration is different than in the indirect
drive scheme. The OMEGA laser facility operates since 1995. It delivers 30 kJ with a 60 beams
spherically symmetric configuration. Other facilities which are not aimed to reach ignition allow
to study the physics of the target implosion at low scales. We mention the PALS laser (1.2 kJ)
in Czech Republic, Vulcan (2.6 kJ) and ORION (5 kJ) in United Kingdom, the PHELIX laser (1
kJ) at the GSI laboratory in Germany and the laser LULI 2000 (2 kJ) at the Ecole polytechnique
in France showing that Europe is strongly involved in ICF and high energy density physics. The
cooperation within Europe is promotted through projects like HIPER or COST. The aim of the
HiPER project is to coordinate research related to plasma physics, targets, laser and diagnostics
technologies and to develop future fusion reactor concepts.

The study of inertial confinement fusion has obviously an interest for fusion energy appli-
cation but it is also related to more large scientific questions. Indeed, it allows to reproduce
astrophysical processes in laboratory by means of scaling laws. It can also be related to fun-
damental physics as the laser experiments bring the plasma under extreme conditions. This
justifies more over the construction of the intermediate (kJ) facilities.

Table 1.1 shows the ICF facilities evolution since 1974. Even if the driver technology has
been continuously improved, the ignition demonstration has not been done yet. We will explain

in the next part the main limitations and present where we currently are on the path to ignition.

!These are the announcements for the partial LMJ opening to academic research in 2017.
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Year ‘ Name Location Energy (wavelength) ‘ Pulse duration | Beams

1971 | Kalmar Moscow (Russia) 300 J (1053 nm) 2 ns 9

1974 | Shiva Livermore (USA) 10 kJ (1053 nm) 0.5-1 ns 20

1978 | Octal Limeil (France) 5 kJ (1053 nm) 1 ns 2

1983 | Gekko XII | Osaka (Japan) 10 kJ (532 nm) 1-2 ns 12
30 kJ (1053 nm)

1985 | Nova Livermore(USA) 40 kJ (351 nm), 3 ns 10
100 kJ (1053 nm)

1985 | Phébus Limeil (France) 6 kJ (351 nm), 1 ns 2
20 kJ (1053 nm)

1995 | OMEGA | Rochester (USA) 30 kJ (351 nm) ns 60

2002 | LIL CEA CESTA (France) | 30 kJ (351 nm) ns 8

2009 | NIF Livermore (USA) 1.8 MJ (351 nm) ns 192

2017 | LMJ CEA CESTA (France) | 100kJ (351 nm) ns 16

Table 1.1: Main high power laser devices for inertial confinement fusion research since 1971

1.3.2 Status of the conventional ignition scheme in ICF

The current conventional ignition scheme consists in imploding a target with an outer shell in
plastic called the ablator, an inner shell made of cryogenic DT and a central part of DT gas.
The target can be irradiated directly in the direct-drive scheme (Figure 1.8), or indirectly in
the indirect drive scheme. In the latter, the target is enclosed in a gold cavity (the Hohlraum).
The laser is absorbed by the cavity and converted in the thermal bath of X-rays which drive the
implosion. The energy transfer to the target is less efficient in the indirect drive. However, this
scheme is less affected by symmetry and stability issues. The fusion reactions take place at the
center of the target at the end of the implosion when the kinetic energy of the shell is converted
into internal energy. The implosion velocity is directly related to the final hot-spot temperature
and therefore must be sufficiently high. The areal density must also be high enough to stop the

alpha particles which heat further the fuel and maintain the fusion reactions.

Hohlraum  target laser beams
\___/
\
(a)

Figure 1.8: Irradiation of the target. In the indirect drive scheme (panel a), the capsule is placed
inside a Hohlraum, the laser beams are arranged in two cone arrays. In the direct drive scheme
(panel b), the target is directly irradiated and the laser beams come from all directions.
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1.3.3 Limitations

Energy coupling to the target The direct drive scheme avoid losses of energy during the
conversion of the laser light to X-rays in the Hohlraum of the indirect drive scheme. However,
the current Mega-Joule laser facilities as the NIF or the LMJ are built for indirect drive, so
the laser beams are arranged into rings placed on opposite poles. A direct quasi symmetric
irradiation of the target with this beams configuration could be possible by re-pointing the
beams, shaping the focal-spot, and increasing the intensity of the equatorial beams. This is
called the polar direct drive. As the beams irradiate the target obliquely, the laser coupling
to the target is less efficient. During the interaction, non-linear processes induce deleterious
instabilities which generate hot electrons and reduce the absorbed energy. During the last years,
the beam uniformity has been improved with beam smoothing techniques. The cross beam
energy transfer coming from the overlapping of the beams reduces also the coupling efficiency
(the energy of one beam is transfered to another). A zooming technique where the beam spot

size is reduced during the implosion seems to have a positive effect.

Shell pre-heat During the compression the shell must be kept as cold as possible. Indeed
the back pressure of the shell resists the compression. The heating of the shell comes from
hot electrons energy deposition or from shock waves entropy deposition. The hot electrons are
generated in the laser-matter coupling instabilities. The shock waves are generated to drive the
implosion. The laser pulse shape must be well timed so that the shock waves do not merge in
the shell and stay with a low amplitude. A mis-timing of the shocks could be dramatic for the

implosion.

Implosion symmetry A non symmetric hot-spot reduces the ignition efficiency. The non
uniformities coming from the target surface roughness or the beams non uniformities must be

reduced.

Hydrodynamic instabilities During the implosion the shell surface perturbations are am-
plified by hydrodynamic instabilities. Techniques have been developed to mitigate those insta-
bilities growth but they still are the main limitation of the implosion.

All those limitation effects become more influent when the laser intensity is increased. Thus
even if huge progresses have been done on the driver power and energy, the ignition condition
still have not been fulfilled.

1.3.4 Progress toward ignition

After the building of the National Ignition Facility, a National Ignition Campaign was conducted
on the NIF in the US with the goal to demonstrate the feasibility of ignition. The first cryogenic
implosions was performed in September 2010. Since that time, the irradiation quality, the

laser pulse and the target design have been improved. To evaluate the implosion performance
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according to measured parameters, the Experiment Ignition Threshold Factor (ITFx) [Haan
et al., 2011] has been defined. It depends on the neutron yield and on the ratio of down-
scattered neutrons to unscattered neutrons which is proportional to the fuel areal density. The
ignition occur for ITFx higher than unity.

Figure 1.9 shows the progress toward ignition achieved in the NIC campaign. The progress
between the shot of 2010 and the shot of February 2011 is due to the laser energy increase.
The progress in 2011 was obtained by improving the shock timing, by increasing the implosion
velocity with Si-doped shell ablator, and by improving the symmetry and the laser beam qual-
ity. However, the cross beam energy transfer is a phenomenon too much non linear to be well
controled, and it was decided to improve the implosion by modifying the implosion hydrody-
namics. Therefore, in 2012, the pre-heat of the shell is lowered by modifying the laser pulse
(low-foot laser pulse). The target is more compressed but the hydrodynamic instabilities reduce
the yield leading to an I'TFx of 0.1. On the contrary, a high-foot laser pulse was chosen for the
shot of 2013. Hydrodynamic instabilities were reduced by increasing the ablation velocity but
then a higher pre-heat of the shell leads to a lower final compression. By the end of November
2013, the alpha particles self-heating has been achieved for the first time. This means that more
energy was released from the fusion reactions than energy was supplied to the hot-spot. This
shot reached the ITFx of 0.5. The neutron yield of 5 x 10'® was 75 % higher than any previous
shot. The fusion energy released was 17.3 kJ which remains far from the 1.9 MJ laser energy

input.
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Figure 1.9: Progress toward ignition with indirect drive on NIF. Adapted from Ref. [Landen
et al., 2012]. The point representing the shot of November 2013 is placed according to the data
in Ref. [Hurricane et al., 2014].

The direct-drive scheme was not a part of the NIC ignition campaign. For that purpose,
the laser facility OMEGA allows a spherical direct irradiation of the target with a symmetric

repartition of the beams. However, its energy is limited to 30 kJ which is insufficient to reach
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ignition. To evaluate the implosion performance on this facility, scaling laws has been used to
extrapolate the experimental results to a future NIF direct drive implosion. A NIF equivalent
ignition criterion ITFx [Sangster et al., 2013] is defined. Figure 1.10 shows the extrapolated
results of direct drive implosion on OMEGA in the graph equivalent to the previous Figure 1.9.
The maximum ITFx obtained between 2009 and 2013 is 0.25. This is not so far from the
results obtained with the indirect drive scheme on the NIF. However, one must have in mind
that this ITFx is an extrapolation of the results from implosions performed on OMEGA at the
NIF scale. Uncertainties exist on this extrapolation. Indeed, the non-linear processes during
the laser-plasma interaction or the hydrodynamic instabilities growth cannot be scaled in a
straightforward manner from the OMEGA to NIF. Again we can see that more the target is
compressed, higher is the areal density but lower is the yield. This might be related to the

hydrodynamic instabilities.
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Figure 1.10: Progress toward ignition with the direct drive on OMEGA. Adapted from Ref.

[Sangster et al., 2013]. The red circles are placed according to the April 2014 workshop presen-
tation by Sangster.

1.4 Shock ignition as an alternative scheme

Faced with the conventional scheme limitations, alternative implosion schemes have been pro-
posed. In the conventional scheme the compression and the heating of the fuel are accomplished
at the same time.

Let us evaluate the energy needed for compression and for heating. We will see later that

the compression is performed in a nearly isentropic way which means that p = 2.15ap5/ 3 where
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«a is called the shell adiabat (see Section 2.3.1), p is the pressure in Mbar and p is the density
in g.cm™>. The energy needed for compression Emp = f&;o pdV reads

Eeomp[MJ] = 0.2aM / Yy~ 0.3aMop7 ", (1.5)
]

where My is the shell initial mass assumed constant in g, @ ~ 1 — 3 the dimensionless shell

adiabat,p; the compressed density in g.cm™2 and pg the initial density is neglected.

The energy needed to bring a volume V}, to the temperature T}, is Fpeqr = 3(Z + 1)n;TpVy /2 =

31, My /Am,, with M}, -the heated mass, A - the average atomic mass and m,, - the proton mass

and where a perfect gas state equation is assumed. For a DT mixture we have
Epeat[MJ] = ApMyTy, (1.6)

with A, = 110MJ/keV /g, M}, in g and T}, in keV.

To compress 1000 times 1 mg of cryogenic DT (initially with the density 0.25 g.cm™3) along
with a shell adiabat of 3 , the needed compression energy is E.omp = 36 kJ. Heating one tenth
of this mass to the ignition temperature 4.3 keV required an energy of Epeq; = 47 kJ. One can
notice that the compression is less energy demanding than heating.

Whereas the whole fuel must be compressed to stop the alpha particles and to allow the
thermonuclear burn wave propagation, only the hot-spot needs to be heated to ignite the target.
In the advanced schemes, the compression of the target and the heating of the hot-spot are
separated into two steps. Laser intensity and energy for the compression phase are lower than in
the conventional scheme. This relaxes the problem concerning the shell pre-heat, the coupling
efficiency and the symmetry. Then a supplementary source of energy is brought to ignite the
hot-spot. In the conventional scheme the pressure at the ignition time is equilibrated between
the shell and the hot-spot. In the alternative scheme the pressure is higher in the hot-spot. This
leads to a potentially higher gain. Also, the implosion velocity is reduced leading to less severe
hydrodynamic instabilities.

There are two major advanced ignition schemes. In the fast ignition scheme, the hot-spot
is created by means of energy deposition by hot electrons or energetic ions [Tabak et al., 1994].
The energetic particles are generated with a ultra-intense beam (I ~ 10** W.cm~2) and must
be focused in the hot-spot. In the shock ignition (SI) scheme, the ignition is triggered by a
converging shock wave. This “gnitor” shock is generated at the end of the implosion by a
laser spike with a high intensity (I ~ 10'® W.cm™2). When the shock converges at the center,
the central pressure is strongly increased and the hot-spot temperature and areal density are
raised to the ignition conditions. The advantage of this scheme is that the compression and the
shock launching can be done by using the same laser beams. Thus it can be experimented on
the already existing facilities as NIF or OMEGA with the same laser configuration as in the
direct-drive.

Figure 1.11 presents the typical laser pulse and target used for shock ignition. The target is
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Figure 1.11: Typical laser pulse and target for the shock ignition scheme with a HiPER target
design.

first imploded by the compression pulse. The implosion velocity depends on this pulse. Then
the laser spike generates the ignitor shock.

We propose here a brief, non-exhaustive, review of the research done on the shock ignition
topic. We recommend to the interested reader the more detailed review on the shock ignition
principles and modeling proposed in Ref. [Atzeni et al., 2014]. Also, the major issues related to
the shock ignition scheme, from both theoretical and experimental points of view, are summa-
rized in Ref. [Batani et al., 2014].

Principle The idea of igniting fusion reactions with a shock wave was first proposed by
Shcherbakov [Shcherbakov, 1983] in 1983.

“ First, a spherical fusion target is compressed to a comparatively high degree,
and then a focusing shock wave created by an intense laser pulse heats and ignites
the center of the target. [...] In this approach, the problem of achieving a high
compression is separated from that of heating the center of the target, and the two

problems can be addressed separately or in succession.”

He proposed to first implode a target of 0.4 mg of DT with a very low velocity 20 km.s™!
during 40 ns, to a uniform sphere of a radius 140 ym with a density of 40 g.cm™> and a tem-
perature of 0.1 keV. Then the shock brings the hot-spot to a temperature of 5 keV needed for
ignition. According to Shcherbakov, the velocity behind the shock must be ~ 150 km.s™! in or-
der to reach the ignition condition. This corresponds to an initial shock velocity of 230 km.s™!.
The initial pressure of the shock is then 15 Gbar. To generate such a pressure the absorbed
laser intensity must be at least 2 x 10® W.cm™2 (by using the collisional scaling given later in
(2.17)). This seems very challenging because at such intensities,the collisional laser absorption
and the non-relativistic scaling for the pressure generation is no more valid.

A new approach of the shock ignition has been proposed by Betti in 2007 [Betti et al., 2007].

The target is a cryogenic shell like in the conventional scheme. The implosion brings the fuel
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Figure 1.12: Shock ignition principle : a) The compression pulse generates a shock wave, b) this
shock converges and is reflected at the center, c) at the end of the compression, a laser spike
launches a shock whereas the first shock is diverging, d) the two shocks collide leading to a shock
pressure increase. The amplified imploding shock ignites the fusions reactions in the hot spot
(Figure from Ref. [Atzeni et al., 2013], with permission)

close to the ignition conditions and a small shock amplitude is needed. Moreover, the shock
pressure is amplified in the collision with a returning shock coming from the compression phase
(see Figure 1.12). Therefore, the shock ignition takes advantage of the compression phase to
enhance the ignitor shock effect.

It is estimated that such a shock can be launched with the laser intensity of 6 x 10> W.cm™2

which is much lower than in the Shcherbakov case. In the conventional ICF scheme of ignition,
the target configuration at the end of the implosion is isobaric (see profiles (a) in Figure 1.13).
In the shock ignition scheme, the ignitor shock enhance the pressure in the hot-spot and the
target configuration at ignition is not isobaric (see profiles (b) in Figure 1.13). In the Ref. [Betti
et al., 2007], an ignition criterion for the energy is expressed in the non isobaric case. It is

shown that the energy required for ignition is reduced by a factor ®2-5 where ® = p/pis, is the
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Figure 1.13: Density (dashed line) and pressure (solid line) profiles near the ignition time with
(a) a conventional ignition scheme and (b) a shock ignition scheme. (From Ref. [Ribeyre et al.,
2009])

ratio of the central pressure at ignition in the non isobaric case and in the isobaric case. This
is under the assumption that the final pressure is achieved through an adiabatic compression
which is not the case in the flow behind a converging shock. This demonstration explains why
a non isobaric configuration is more economic in energy but it does not take into account the
dynamics of the ignitor shock wave. It is also mentioned that hot electrons may be generated
during the spike irradiation due to the high laser intensity. However, since the pre-compressed
shell is dense enough, the hot electrons with energies lower than 100 keV are stopped near the
shell surface and can contribute to the drive of the ignitor shock.

The principle of shock ignition is studied in further detail in Ref. [Ribeyre et al., 2009] by
means of numerical simulations. The ignitor shock pressure amplification in the target shell is
attributed to convergence effects and appears to be of a factor three in typical simulations. After
the ignitor shock collides with the returning shock, a part of the shell has a higher pressure and
a high density. This part of the shell acts like a piston on the hot-spot. The compression of the
hot-spot is viewed as an adiabatic process because the ignitor strength is low when it enters the
hot-spot. However, the convergence effects should increase its strength as it converges toward
the origin. The flow behind a converging/diverging shock differs from the adiabatic flow driven

by a piston.

Hydrodynamic studies The propagation of the shock in the hot-spot is described with the
Guderley self-similar solution in the reference [Ribeyre et al., 2011]. It is used to express an
ignition criterion [Ribeyre et al., 2013b]. It appears that the shock velocity when it enters the
hot-spot must be higher than 600 km.s~! with a hot-spot areal density higher than 10 mg.cm 2
at this time. This corresponds to a shock pressure of 17 Gbar for a hot-spot of 50 um. According

to the numerical simulation, an initial shock pressure of 300 Mbar is sufficient. This means that
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Figure 1.14: Ablation pressure and absorbed intensity needed (with A = 351 nm) to ignite the
target with a shock depending on the implosion velocity (according to [Lafon et al., 2013])

the ignitor shock pressure is strongly amplified in the shell.

The shock pressure amplification in the shell is studied in detail in the reference [Lafon
et al., 2010]. It is modeled with the self-similar solution of Guderley. The shock pressure p;
evolves depending on the shock position Rg as o Rs_o'g. This model is valid for a strong shock
propagating in a uniform medium at rest. However, in the shock ignition scheme, the ignitor
shock propagates in an imploding target. The medium in front of the shock is not at rest and is
not uniform. Moreover, the shock strength Z (ratio of the shock downstream pressure and shock
upstream pressure) is low. We will see in Section 4.1, that the shock strength is around 3 as it
enters the hot-spot. This means that the shock Mach number M, (ratio of the shock relative
velocity and the upstream sound velocity) is also low as Z oc M2. In a later paper [Lafon et al.,
2013], the Guderley’s model is used to evaluate the initial shock pressure needed to ignite the
hot-spot. The analytical estimate of the ablation pressure versus the implosion velocity is plotted
in Figure 1.14. The ablation pressure varies between 100 and 900 Mbar. This corresponds to
intensities in the range 1 —20 x 101> W.cm™2. Tt is pointed out in Refs. [Lafon et al., 2010, Lafon
et al., 2013] that the Gurdeley model under estimates the shock pressure amplification compared
to the simulation. A deeper study is needed to understand the ignitor shock pressure evolution
in the shell.

In Ref. [Lafon et al., 2013] the final pressure at the ignition threshold is expressed as a
function of the implosion velocity. For a high implosion velocity, the fuel pressure at the time
of stagnation is expressed using the Kemp self-similar solution [Kemp et al., 2001]. The dense
shell part downstream the ignitor shock is considered as a hollow imploding shell. This launches
a shock inside the hot-spot. This shock rebounds at the center and interacts with the imploding
flow during its divergence. The pressure ratio of the fuel at the time of stagnation and the
time of void closure is ps/py ~ 3.63\/[8 where My is the Mach number of the shell My = V), /c;f
with V), the shell velocity and ¢;¢ the sound velocity in the shell. In the case of a low implosion
velocity, the shell material behind the ignitor shock is considered as a piston with a given mass
and velocity. The final fuel pressure is evaluated assuming that all the piston kinetic energy is

transfered to the fuel internal energy. This latter model does not take into account the dynamics
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of the ignitor shock in the hot-spot.

The shock pressure amplification in the collision with a returning shock coming from the
compression phase is studied in detail in Ref. [Lafon et al., 2013]. As no analytical solution
allows to predict the shock pressure after the collision, an approximate expression is proposed.
It is assumed that the density behind the converging (ignitor shock) and the diverging (returning
shock) shocks is the same. This is valid for incoming shocks with the same pressure or when
the pressure between the two shocks is negligible. In this paper the collision is assumed to take
place at the inner face of the shell. The pressure of the shocks before the collision is expressed
as a function of the implosion velocity. With the implosion velocity of 250 km.s™!, the two
shocks have almost the same pressure and the amplification factor through the collision is 6.
Depending on the ignitor shock timing, the collision position may not be at the inner face of the
shell. Moreover, the strength of the shocks is finite and may not be equal. Therefore, the shock
amplification in the collision needs a deeper analysis taking into account the shock timing and
the finite strengths of the shocks.

A study of the ignitor shock dynamics in a one dimensional planar model has been done
by Nora [Nora and Betti, 2011]. In the conventional scheme, the final internal energy in the
hot-spot is lower than the kinetic energy of the shell. This is due to a rarefaction wave created
in the shell which decompresses the target and reduces the final pressure of the hot-spot. The
ignitor shock, in addition to bring energy into the hot-spot, can mitigate the rarefaction wave.
Depending on the shock timing and pressure, the rarefaction can be simply suppressed. Then,
the maximal hot-spot pressure is increased by 80 %. Here the shock is viewed as a way to

improve the coupling of the shell kinetic energy to the hot-spot internal energy.

Proof of principle of SI scheme with experiments A proof of principle campaign of
experiments have been conducted on the OMEGA laser facility. In those experiments, spherical
targets with a warm plastic shell were considered.

In the first campaign [Theobald et al., 2008], the 60 available laser beams of OMEGA have
been used both for the shell compression and for the shock launch. The best shot with a laser
spike produced a neutron yield of 8 x 10° with 18.6 kJ of laser energy (with about 5 kJ in the
spike). This is four times higher than the yield obtained without spike at 19.4 kJ of laser energy.
It is shown that the implosion performance depends highly on the spike timing. Also, the results
suggest that the shock ignition scheme achieves a better stability and mitigates the mixing of
the cold shell into the hot-spot.

In those experiments, the spike intensity was 6.5x 10 W.cm~2 which is much lower than the
intensity expected in the SI implosion for ignition. To overcome this intensity limitation, a second
campaign used 40 beams for the compression and 20 beams for the shock launch [Theobald et al.,
2012]. The spike intensity reached 8 x 10'° W.cm 2. In this configuration, the spike enhanced
the neutron yield by a factor up to 2.3, which is less than in the 60 beams configuration. This
may be due to the higher laser irradiation non uniformity. Nevertheless, in this campaign the

laser-matter interaction at high intensity can be studied. Hot electrons of a moderate energy
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(30 keV) were generated. The backscattering of laser energy was up to 36 % at the highest
intensity. This population of hot-electrons can be deleterious for the compression of the target

unless they are stopped by the compressed shell.

Shock pressure generation The main question for shock ignition is : what maximum ab-
lation pressure the laser spike can create? Indeed, the laser-matter coupling in the intensity
regime of 5—10 x 10'® W.cm ™2 is not well known. As this regime of intensity was not envisaged
for the conventional scheme of implosion, there is a lack of experiments. It must be stressed
that in the shock ignition scheme, the laser spike interaction occurs in a large scale corona which
favors the occurrence of non-linear processes. Then, hot electrons can be generated and preheat
the target. The laser plasma interaction in the intensity range 1 — 10 x 10'® W.cm™2 has been
studied numerically by Klimo [Klimo et al., 2010]. It has been shown that the dominant process
of absorption changes completely in this regime. This is not included in the standard hydro-
dynamics simulations codes. With a kinetic approach, this paper shows that the laser spike
generates hot electrons of energies in the range 20-40 keV in agreement with the experimental
results presented above.

The simulation of a NIF implosion design of shock ignition [Anderson et al., 2013] shows
that the hot electrons have a positive effect if their temperature is lower than 150 keV and if
the conversion efficiency of the laser light is below 20 %.

Its seems that the hot electrons cannot preheat the hot-spot because the shell is enough
dense at the end of the implosion to stop them [Betti et al., 2008]. However, those hot electrons
energy is not well characterized and it is not obvious if they are deleterious or not for the
shock generation and amplification in the shell. The Refs. [Ribeyre et al., 2013a, Gus’kov et al.,
2012, Piriz et al., 2013] assess that the hot electrons can contribute to the shock generation.

We mention that during the spike irradiation, the crossbeam transfer of energy and the
nonlocal heat conduction must be important. Those two features need to be better understood

and their implementation in hydrodynamic codes need to be validated.

Design of implosion Since the first paper of Betti et al. [Betti et al., 2007], several authors
presented design and optimization studies. The design of a SI implosion for HIPER has been
studied [Ribeyre et al., 2009, Atzeni et al., 2011, Atzeni et al., 2009, Canaud and Temporal,
2010] in detail. The target is a spherical all DT cryogenic shell of external radius 1044 pum
and shell thickness 211 ym. The implosion velocity is about 300 km.s~!. A design for the NIF
facility with a polar direct drive scheme was proposed by Perkins [Perkins et al., 2009] and
Anderson [Anderson et al., 2013]. The target in the latter design is slightly larger with a radius
of 1080 um. The shell is constituted by an external plastic ablator layer of 31 ym and an internal
part of cryogenic DT with a thickness of 161 ym. The implosion velocity is 300 km.s ™.

It is shown that the gain is highly dependent on the time delay between the spike time and
the stagnation time [Ribeyre et al., 2009, Betti et al., 2008, Schmitt et al., 2010, Atzeni et al.,
2011, Atzeni et al., 2013]. If the shock is launched too early, the areal density is too low for
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Figure 1.15: Gain contours in the plane of the spike time and the spike power for the HIPER
target design [Ribeyre et al., 2009].

ignition. If the shock is launched too late, the target is already on the way to disassemble as the
shock creates the hot-spot and no gain is obtained. Figure 1.15 presents the gain depending on
the spike power and time. The windows of ignition seems not stringent with a width of 250 ps

for the spike time.

The implosion velocity is an important parameter for the compression phase. When it
exceeds a given threshold value, the target ignites without ignitor shock. Under this threshold,
the laser spike is needed for ignition to take place. Figure 1.16 shows the HIPER target gain map
depending the implosion velocity and on the spike power. For an implosion velocity higher than
360 km.s™!, the target self-ignites. The maximal gain is then 50. For lower implosion velocities,

a higher gain of 70 can be reached. For an implosion velocity under 250 km.s™!

, No gain is
obtain. It is clearly visible here that an optimal couple implosion velocity /spike power exists for
a given a target [Atzeni et al., 2011]. This has been confirmed in Ref. [Lafon et al., 2013] (see
Figure 1.17). The energy of the compression pulse has been varied in order to cover an implosion
velocity range from 200 to 400 km.s~!. Then the spike power is adjusted to reach the ignition
threshold. With the same HiPER target, no spike is needed for implosion velocities higher than
350 km.s~!. The total laser energy is minimal for an implosion velocity of 250 km.s~!. Under

this velocity, the energy needed in the spike for ignition grows quickly thus reducing the gain.

The condition for a marginal shock ignition has been studied for both the HiPER target
design and the LMJ target design in Ref. [Canaud and Temporal, 2010]. At the end of the
spike, a rarefaction wave is generated and can overtake the ignitor shock. The spike duration do
not seem to have any effects on the gain as far as it is long enough for the rarefaction wave not
to catch up with the ignitor shock. The temporal width of the ignition windows is again 200 ps
for the both targets. Designs are proposed to reach a gain of 100.
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Figure 1.16: Gain contours in the plane of Figure 1.17: Energies in the compression

the implosion velocity and the spike power pulse and in the spike depending on the im-
for the HiPER target design [Atzeni et al., plosion velocity for the HiPER target de-
2013]. sign [Lafon et al., 2013].

The reference [Atzeni et al., 2011] shows that the gain depends on the spike energy. It appears
that for the HiPER target design, a threshold spike energy is about 70 kJ, independently of the
spike power. Figure 1.18 presents the gain-spike energy curves for three spike powers. The three
curves are almost superposed. The gain does not vary much for the energies higher than the
threshold. Thus the spike duration is an important parameter near the energy threshold, its

minimal value depends on the spike power.

One target design can be scaled to various target sizes whereas the implosion parameters
such as the implosion velocity or the shell entropy are kept constant. This family of targets is
called an homothetic family. The energy required to implode the target increases with the target
size and so does the gain. For the full DT target, both Ref. [Canaud and Temporal, 2010] and
Ref. [Schmitt et al., 2010] predict a variation of the gain from 100 to 300 with a laser energy
varying from 0.1 to 2 MJ. Figure 1.19 shows the gain dependence on the laser energy. The
dashed lines were obtained by scaling the targets with a shock ignition scheme and the solid
line is obtained by scaling the targets without ignitor shock. With the conventional scheme,
reaching a gain of 100 requires an input energy higher than 1 MJ. The shock ignition scheme
allows to reach such a high gain with a lower laser energy. For the laser energies higher than 1

MJ, the two curves match. This is because no spike is needed in this range of input energy.

The robustness of an all-DT target imploded with a SI scheme with a short laser wavelength
(248 nm) laser was studied in Ref. [Schmitt et al., 2010]. The parameters used in this study are
the compression and ignition pulse power and the spike timing. The robustness increases as the
ignitor power increases. It is confirmed that the ignitor pulse couples more efficiently its energy

to the hot-spot internal energy than the compression pulse.
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Figure 1.18: Gain versus the spike energy
for three spike powers [Atzeni et al., 2011]
for the HiPER baseline target SI implo-
sions.

2D effects In the OMEGA experiments [Theobald et al., 2008], a saturation of the Rayleigh—
Taylor hydrodynamic instabilities (RTI) at a high convergence ratio is observed. It seems that
the shock mitigates the growth of these instabilities. In the numerical study of the SI scheme
for HIPER [Ribeyre et al., 2009] the RTI growth is stopped by an impulsive acceleration driven
by the shock wave and by the apparition of another stabilizing instability (Richtmyer—Meshkov
instability). Figure 1.20 shows the shell density distribution obtained in simulations without
spike (a) and with spike (b) at the stagnation time. The deformations are less important in the
second case. The reduction of the hot-spot deformation by the ignitor shock interaction has also
be seen with the DUED code [Atzeni et al., 2011]. While this effect was observed in numerical

simulations, no theoretical analysis has been conducted to explain it.

500 500
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Figure 1.20: Density in the simulation or the HIPER target design without spike (a) and with
spike (b) at the stagnation time [Ribeyre et al., 2009].
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The 2D effects on the target performance is evaluated in Ref. [Schmitt et al., 2010]. A short
laser wavelength allows to consider higher intensity in the compression pulse because the laser-
matter interaction is more stable with respect to the instabilities. Then the shell target thickness
can be higher which reduces the hydrodynamic instabilities growth. The 2D effects narrow the
operating space of the laser pulse parameters and therefore reduce the robustness of the design.
A better robustness can be recovered by increasing the laser spike power. But then the gain
is reduced. In the NIF design study [Anderson et al., 2013], the 1-D gain is reduced by 15%
by taking into account the laser non-uniformities. By taking into account all the uncertainties

(capsule roughness, misplacement, laser non uniformities), the gain is reduced by 35%.

The target mis-positioning leads to a strong asymmetry in the implosion. The simulations
of the HiPER SI implosion show a strong sensitivity to the target positioning which must be

controlled within a few per cent of the target initial radius [Atzeni et al., 2011].

The possibility to use a higher laser wavelength (527 nm) has been assessed in Ref. [Atzeni
et al., 2013]. The absorption efficiency and the ablation pressure are reduced hor higher laser
wavelength, however, the laser inhomogeneities are also reduced with the visible light. The
proposed design is scaled from the baseline HIPER design with the help of an analytical model.
The wavelength is modified, but the laser irradiance I, LA% is constrained to the value of the
reference design. It is shown that the targets with this design exhibit a lower in fligth aspect
ratio and a lower convergence. They should be then less sensitive to irradiation asymmetries

and hydrodynamic instabilities.

Conclusions This state of the art analysis provides a snapshot of research progresses on the
shock ignition scheme at the beginning of this phd study. It appears that the dynamics of the ig-
nitor shock is mostly described with numerical simulations or simplified analytical models. The
coupling of the shock with the hot-spot has been studied by neglecting the hot-spot pressure
which does not agree with the results of numerical simulations. The shock propagation in the
shell has been studied in a planar or a spherical geometry assuming a homogeneous upstream
medium which is not the case. Therefore, the theory concerning the ignitor shock hydrodynam-
ics needs to be developed to understand all the processes involved during the shock ignition.
Moreover the key issue of the shock ignition is the generation of the ignitor shock. Both analyt-
ical and numerical studies predict that an ablation pressure of 300 Mbar during the spike would
be needed. However, the generation of such a pressure had never been realized experimentally.
In the intensities regime considered for shock ignition, the interaction laser/matter is strongly
different from what is usually considered in the conventional scheme of ICF. We reach here the
limits of the conventional hydrodynamics simulation codes. Kinetic or hybrid simulation codes

are needed. Although a lack of experiments is clearly visible here.
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1.5 Thesis outline

We propose in this thesis to analyze in more detail the shock dynamics in the shell and the
shock coupling to the hot-spot. The approach will be mainly analytical to keep the implosion
parameters well visible in the description. A comparison with simulations is systematically
realized. The aim is to understand how the implosion parameters affect the shock efficiency. We
also interpret experiments on the ignitor shock generation in spherical geometry with a laser
intensity pertinent for shock ignition. We use both analytical and numerical tools to explain the
processes involved in the experiments.

The manuscript presentation is as follows:

Chapter 1 This is a general introduction which discusses the world energy needs and presents
the fusion reaction as a potential future source of energy on earth. The evolution of the
inertial confinement fusion concept and of the lasers facilities during the last half century
is presented. The chapter highlights the main limitations encountered in ICF and exposes
the current situation on the road toward ignition. A state of the art of the shock ignition

scheme is exposed.

Chapter 2 This chapter describes the main physical processes involved in the target implosion.
The aim of this chapter is to explain how the ignition conditions are reached and to
introduce the key implosion parameters. We take an opportunity to introduce here the
basic features of the hydrodynamic simulation code CHIC used in this work. In the light
of the ICF description given in this chapter, the advantages of the shock ignition scheme

are reminded.

Chapter 3 This chapter recalls the basic concepts of hydrodynamics description using a perfect
gas equation of state. The homogeneous compression of a target is described. Also the basic
relations describing a shock are given. An overview on the existing methods describing a

converging spherical shock is exposed.

Chapter 4 This chapter gives an analytical description of a spherical converging shock with
taking into account the upstream pressure. Scaling laws are given in the vicinity of singular
points in the flow. The solution is used to express a criterion for shock ignition. The

coupling efficiency of the ignitor shock with the hot-spot is discussed.

Chapter 5 This chapter provides a detailed description of the shock pressure evolution in the
imploding shell. Three amplification factors are identified and analyzed. The ignitor shock
pressure evolution in a typical HIPER implosion simulation is explained according to the

analytical theory.

Chapter 6 This chapter proposes an analysis of shock generation experiments relevant for the
shock ignition scheme conducted on the OMEGA laser facility. The potential effects of

the hot electrons are discussed.
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Chapter 7 This chapter summarizes the results presented in the thesis and suggests some

future research directions.
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2. PHYSICS OF INERTIAL CONFINEMENT FUSION

This chapter aims to present the physics of inertial confinement fusion. This will allow to
define the main implosion parameters. We will also introduce the main features of the simulation
code CHIC used in this work.

In Section 2.1, we introduce inertial confinement basic concepts such as the fusion reactions
ignition and target burn. We will see that the target areal-density and the hot-spot temperature
at the end of the implosion are key parameters. The possibility to use a laser for driving the
implosion, and the laser/plasma interaction issues are exposed in Section 2.2. The implosion
synopsis related to the laser pulse shape is discussed in Section 2.3. Section 2.4 gives an overview
on the hydrodynamic instabilities which are one of the most constraining issues in ICF. Sec-
tion 2.5, explains why the shock ignition scheme is an interesting approach for ICF by using the
concepts introduced in the sections stated above.

For a more detailed introduction to ICF, we refer the reader to the review papers Ref. [Brueck-
ner and Jorna, 1974] and Ref. [Lindl, 1995] and to the very good book [Atzeni and Meyer-Ter-
Vehn, 2004].

2.1 Inertial confinement

In the inertial confinement scheme, the fusion reactions must occur during a very short time in
a compressed and heated plasma confined under its own inertia. We present in this section the
conditions needed for fusion reactions to take place with a significant energy gain in an inertially

confined plasma.

2.1.1 Burn fraction

Let us consider that the fuel is assembled in an homogeneous sphere of radius Ry with a density
py and a temperature Ty high enough to allow the fusion reactions. The particle density is
expressed with the fluid density n; = py/Am, with A - the average atomic mass of a DT
mixture and m, - the proton mass. We assume that the particle densities of deuterium and
tritium are equal with np = ny = n;/2 = py/2Am,,. The maximal number of fusion reactions
in this sphere is Ny = 477R?ni /6. In reality, the number of reactions will be only a fraction of
this value. Indeed, the sphere initially at rest, expands with the sound velocity ¢ = \/W,
where T is the fuel temperature. The ignition conditions for the fusion reactions are valid only
in the sphere not perturbed by the rarefaction wave. Then, the reactions occur only during the
propagation time of the wave from the outer radius of the sphere to the center: t,q.. = Ry/c.
The number of reactions during this time, in the unperturbed sphere is
tmas gor 1 1 Rj
Nf:nDnT<Ul/>/ —(Ry —ct)*dt = —n? < ov > S (2.1)
0 3 4 3 ¢
where < ov > is the reactivity of the deuterium tritium reaction which depends on the temper-

ature (see Figure 1.3 in Chapter 1). In the range 1-100 keV, it could be approximated by the
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function [Atzeni and Meyer-Ter-Vehn, 2004]

T| keV]
64.2

< ov >pr [em®s7 =9.10 x 107 exp (—0.572'ln

2.13
) . (2.2)

Looking at the equation (2.1), the number of reactions in front of the rarefaction wave is
equivalent to the number of reactions that would appear in the initial sphere of radius Ry without
the rarefaction wave during the time t.,,f = Ry/4c. This time is called the time of confinement.

The burn fraction ®p = Ny /Ny is expressed as

Ry _ pyRy

1
(D = —MN _— =
B=gni < oV= o =T,

(2.3)

where Hp = 8,/m;Ty/ < ov > is the temperature dependent burn parameter which can be
evaluated using the reactivity law (2.2).
Up to here, we neglected the fuel depletion during the burn time, which is possible only if

® << 1. The variation of the particle density of a fuel specie ny is related to the reaction rate

as q
% =-n2<ov> (2.4)
which leads to 0)
n
ny(t) . (2.5)

- 14+ns0) <ov>t
with ns(0) = n;/2.
Combining the expressions (2.3) and (2.5), the burn fraction ®5 = 1 — nf(teonys)/ns(0) can

then be expressed as R
privy
B = m. (2.6)
The product p;Ry is called the areal density of the fuel. According to the temperature
dependence of Hp, the areal density must be higher than 3 g.cm™2 at the fuel temperature of
35 keV, in order to burn at least 30% of the fuel.
The energy produced by the mass mpr of deuterium-tritium is expressed with the burn

fraction
mpTr
FEre=
fus B 2Amp

where 17.6 MeV is the energy released in the fusion reaction and ® = 0.3 is assumed in the latter
relation. Thus, the specific reaction energy is 2 x 10''.J/g. Let us consider a sphere of a solid
DT at a cryogenic temperature with the density py = 0.25 g.cm~3. To reach the areal density of
3 g.cm™? the DT mass required is 1.8 kg. Then the energy released would be 400 x 10'2.J. This is
equivalent to a hundred kiloton of TNT which is not thinkable for a power station purpose. The
DT mass is limited by the resistance of the target chamber materials and only few milligrams
of fuel could be used. Then the cryogenic DT must be compressed by a factor of 1000 to reach

the needed areal density and the size of the compressed sphere is around 100 pm.
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2. PHYSICS OF INERTIAL CONFINEMENT FUSION

We remind that the minimum temperature to allow fusion reaction is Tpyst = 4.3 keV (see
Figure 1.5 in Chapter 1). This value is defined by the radiative losses. Compressing a target
by a factor of 1000 and heating such a small volume to more than 4 keV shows why ICF is
complicated.

Let us now evaluate the gain obtained by burning a DT sphere. The internal specific energy
required to heat the fuel to the temperature Tpyg is €, = 3:21”—”3: ~ 494 MJ.g_l. Let be n = 10%,
the conversion efficiency of the driver energy into the plasma internal energy. The gain is then
estimated as G = nEy,s/Ey = 36. However, a gain higher than 100 is needed for an energy
production purpose. A way to improve the gain, is to ignite only a part of the fuel referred to
as the hot-spot. To be efficient, the mass of the hot-spot must be small in comparison with the
mass of the surrounding cold compressed fuel. In this configuration, the fusion reactions start
to ignite in the hot-spot and heat the surrounding cold region. Then, more fusion reactions
occur and more energy is released thus providing the energy needed to heat the surrounded
fuel. A burn wave is generated and propagates into the whole fuel. The target configuration is
then a cold shell with a high density surrounding the hot-spot with a low density and a high

temperature.

2.1.2 Hot spot ignition

In the conventional ICF scheme, the target configuration is isobaric at the stagnation phase.
This means that the pressures in the shell and in the hot-spot are equilibrated. We consider a
hot-spot of radius R;, with a homogeneous density p, and a temperature T}, enclosed in a shell
of a higher density and a lower temperature. Once the fusion reactions are ignited, they can be
sustained only if the internal energy of the hot-spot is increasing. This condition of self-heating
means that the products of fusion reactions must deposit more energy in the hot-spot per unit
of time than the energy is lost by dissipative effects due to radiation and electron conduction.

The stopping range of the neutrons is ~ 4.7 g.cm™2.

This is much larger than the typical
hot-spot areal density at the ignition time. Thus, the neutrons do not deposit their energy
in the hot-spot. However, the alpha particles are less energetics and have a range comparable
with the hot-spot areal density (see Section 1.1.2) . The dissipative effects are due to the heat
transported by electrons and photons. When an electron is deflected by an ion (due to its
charge) it decelerates. The kinetic energy of the electron is converted into a photon. This is
called the electronic bremsstrahlung and this is the dominant radiative process as the photons
are escaping the hot-spot. Moreover, the temperature difference between the hot and the cold
fuel induces heat conduction losses. If the pressures in the cold and hot parts of the compressed
target are not equal, one needs to account also for a mechanical work produced by the hot-spot.
Adding all energy production and loss processes, the internal energy E variation with time
can be written
dE
G = Pa= Peona = Porem = Prech, (2.8)

with P, the power deposited by the alpha particles, P,,c.n the mechanical work, P,,,q the power
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lost by conduction and Py, the power lost by radiation.

For the self-heating to occur, the hot-spot must satisfy the condition dE/d¢t > 0 which means

Pa > Pcond + Pbrem + Pmech~ (29)

The energy deposited by the alpha particles depends on the reactivity < ov > of the DT
reaction, on the alpha particle energy release in the DT reaction W, = 3.5 MeV and on the
density of particles n; [Atzeni and Meyer-Ter-Vehn, 2004]:

1
P, = §7rWaRf’Ln? <ov>. (2.10)

The electronic heat flux at the outer surface of the hot-spot is [Spitzer and Hérm, 1953]

Qe = XeVTh, (2.11)

with x. = KeT,‘?/z/ In A the Spitzer—Hdrm thermal conductivity, K, = 9.5x10!? erg.s_l.(3111_1.keV_7/2

and In A ~ 6 the Coulomb logarithm. As the gradient in this simple model is infinite, we use the
approximate expression Q. = aexe% with «a, a coefficient close to unity [Atzeni and Meyer-

Ter-Vehn, 2004].

The power due to the electronic conduction reads

7

2

T
Piona = ATR2Q. = 4w K Ry, - (2.12)
In A
Let us now look to the radiation losses. As the stopping range of a photon in a typical
hot-spot of temperature 4 keV and density 30 g.cm™3 is ply = 60 g.cm™2, the photons are not
stopped in the hot-spot.

The radiation power is [Atzeni and Meyer-Ter-Vehn, 2004]

4

1
37rAbR§;piT; (2.13)

Pbrem =
with 4, = 3.05 x 102 erg.s~t.cm3.g2 keV /2.
In the isobaric configuration, the mechanical work at the outer radius of the hot-spot is zero
Prech = 0.
By substituting the expressions (2.10), (2.12) and (2.13) in the balance equation (2.8) we

obtain
3aeKe, I
h
(pnRp)? > A . (2.14)

1
(21:‘/0[)2 < ov > —/1[)7‘}_02
myp

As the reactivity of deuterium tritium is a function of the temperature (2.2), the ignition

criterion (2.14) is a relation between the areal density of the hot-spot pjRp and the hot-spot
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2. PHYSICS OF INERTIAL CONFINEMENT FUSION

temperature Tj,. The ignition threshold is represented in Figure 2.1. The asymptotic horizontal
line corresponds to the Post’s temperature Tp,ss = 4.3 keV where the alpha particles energy
deposition is faster than the radiation losses. Indeed, for a high areal density and a low temper-
ature, the losses are mainly due to the radiation.

The point A = (135 mg.cm~2,6.6 keV) on the threshold curve defines the condition where
Ep? o (pnRp)>T, is the lowest. By taking a margin of 20%, the hot-spot must reach the areal
density (pR)ign = 200 mg.cm 2 and the temperature Tign = 8 keV to achieve an ignition of the

fusion reactions.

12f  osses by
conduction
10f i
Ignition
—~ 8
>
E A
|_
| Teost e
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of radiation
0 100 200 300 400
pR (mg.cm'z)

Figure 2.1: Ignition threshold in the isobare configuration at stagnation

We explain in the following parts how those conditions are reached during the implosion.

2.2 Laser driver

We saw in Section 2.1 that the inertial confinement fusion relies on a strong compression of the
target and on the heating of a central hot-spot. A driver delivering an energy of the order of MJ
in a time of order 10 ns is required. We mention that Z-pinches or heavy-ion accelerators can be
considered but here we will only consider a laser driver. The target irradiation could be direct
of indirect. In the indirect drive configuration, the laser is absorbed on the inner surface of a
cylindrical gold cavity called “Hohlraum” and converted to X-rays which heat the ablator and
drive the target implosion. This configuration smoothes the laser beam non-uniformities and
thus reduce the hydrodynamic instabilities (see section 2.4). In a direct-drive implosion, the
laser irradiates directly the target. The advantage is that the coupling efficiency is higher.

In this thesis, we restrict the discussion to the direct irradiation of the target. We describe in
this part the coupling between the laser light and the target. When exposed to the irradiation
by a laser light with a high intensity (higher than 10° W.cm™2), the matter is ionized and

becomes a plasma. The light of wavelength A travels into the under dense plasma until the
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critical density nefem™3] = 102! (Ag [ um]) ™2 is attained, where the laser pulse frequency equals
the plasma frequency. In this absorption zone, the energy of the laser light is transformed in the
thermal energy of plasma electrons. The absorbed energy is transmitted to the matter with a

higher density by thermal electronic conduction.

The conduction provides the energy transport to a dense zone where the solid target material
is transformed in expanding plasma, which is called the ablation front. The pressure at this
position p, is the ablation pressure. At the beginning of the irradiation, the ablation front
velocity vqp is higher than the sound velocity ¢. When the laser intensity increases, the sound
velocity increases faster than the ablation front velocity. As soon as vg; = ¢ a shock wave is
generated. This time moment is called the hydrodynamic separation. From this time, the target
profile takes a quasi-stationary structure presented in Figure 2.2. In front of the shock wave the

matter is at rest. It can be pre-heated by radiation and supra-thermal electrons.

temperature

density

Laser

matter shocked: conduction ablation
at rest matter zone zone

A ™~

shock front / ablation front critical density

>

Figure 2.2: Laser energy absorption zone in the direct drive scheme. The energy is absorbed
in the ablation zone. It is then transported by electrons in the conduction zone. A shock
propagates upstream.

2.2.1 Absorption zone

Inverse Bremsstrahlung absorption At laser irradiance I L)\% < 10" W.cm™2. ym?, the
main absorption is the inverse bremsstrahlung due to the electron-ion collisions. In the laser
electric field, the electrons oscillate and are scattered by the ions. The oscillatory energy is con-

verted into thermal energy through the electron-ion collisions. The local absorption coefficient
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2. PHYSICS OF INERTIAL CONFINEMENT FUSION

depends on the plasma density n. and temperature T, [Atzeni and Meyer-Ter-Vehn, 2004]

257; ( ne ) 2
3 \n
A2T2 \7C
plem™1] = 21— (2.15)
1 ne
Ne
where n. is the critical density, Z; the number of free electrons per ion, Ay, the laser wavelength in

pm and T, in keV. The absorption diminishes when the temperature increases and it is maximal

at the critical density.

Ray-tracing simulation In the simulation code CHIC the energy deposition is calculated
using the ray tracing package (illustrated in Figure 2.3). The laser beam is sampled into several
rays which are propagated into the absorption zone according to geometrical optic laws. The
global absorption coefficient depends on the rays paths before and after their reflection and on

the local absorption coefficient given in (2.15).
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Figure 2.3: Illustration of the ray tracing simulation. The rays of one laser beam coming from
the right of the target are represented. Here, this beam is divided into 80 rays which propagate
in the underdense matter and are reflected at the critical density.(Personal communication A.
Colaitis)

Resonant absorption Another important process is the resonant absorption. When a p-

polarized light is incident obliquely in a plasma with a density gradient V?le, the electric field E
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Instability Condition Coupling density | Effects
Resonance absorption wo = Wpe ~ N Supra thermal electrons
SBS W = Wseatt + Wasi < N Reduced absorption efficiency
SRS Wo = Weatt + Wpe < n./4 Reduced absorption efficiency,
supra thermal electrons
TPD Wo = Wpe + Wpe ~ne/4 Supra thermal electrons

Table 2.1: Characteristics of the main process of light absorption by wave excitation processes

induces a charge separation ¢ & EVne/(1 — ne/n.) which is maximal near the critical density,
where the laser frequency wy is close to the plasma frequency wy,. This resonance corresponds to
the transfer of a part of laser energy to the plasma wave. If the collision frequency is sufficiently
large, the plasma wave transmits its energy to the ions. On the contrary, if the collision frequency
is too low, the absorbed energy is transfered to the resonant electrons. This generates supra

thermal electrons.

Parametric instabilities At high irradiance I L)\% > 10" W.cm~2. ym?, non-linear processes
can occur which result in enhanced scattering of laser light and generation of energetic parti-
cles in the plasma. The Stimulated Brillouin Scattering (SBS) corresponds to the splitting of
the incident laser wave into another electromagnetic wave of a smaller frequency and into an
ion acoustic wave. It leads to enhanced scattering of the laser pulse. The Stimulated Raman
Scattering (SRS) corresponds to the coupling of the incident laser light wave with a scattered
electromagnetic wave and an electron plasma wave. In addition to enhanced scattering, the SRS
could also be a source of energetic electrons. In those two instabilities, the scattered light wave
carries energy out of plasma. This could increase the laser irradiation non-uniformity and reduce
locally the collisional absorption. In the Two Plasmon Decay (TPD) the mother electromag-
netic wave decays in two plasma waves with a frequency of about the half of the laser frequency.
This process takes place near the quarter critical density. The damping of the electron plasma
waves in SRS and TPD transfers the energy from the waves to the particles. This increases the
population of electrons with high energy. Table 2.1 summarizes the non-linear processes in the

laser plasma interaction and their properties.

2.2.2 Conduction zone

The absorbed energy in the laser matter interaction zone is transported into the target. It is
essentially carried by the electrons.

In the conduction zone, the energy is transported by the electron heat flux. It depends on
the temperature gradient according to (2.11) Q. = —xV7e.

The electron flux maximal value Qim = neleVine can be estimated by assuming that all
electrons move in the direction opposite to the temperature gradient with their thermal velocity

Vthe. However, the expression (2.11) for the electron heat flux does not account for this limit.

39



2. PHYSICS OF INERTIAL CONFINEMENT FUSION

Moreover, the electron kinetic theory shows that the Spitzer-Harm formula is valid only if the
temperature gradient length is about 100 times larger than the electron mean free path. A simple
model to account for the limitation of the heat flux in the hydrodynamic code was proposed by
Malone et al. [Malone et al., 1975]. An arbitrary flux limiter f is introduced and the flux is

calculated as

Q = min(Q¢h, fQuim)- (2.16)

The numerical value of f is found from the comparison of the numerical simulation results
(essentially the absorption coefficient and the shell velocity) with experimental results. Typically
f is in the range 3%-10 % and the value f = 6% is often used.

More advanced methods take into account the non-local effects in the electron flux at the
kinetic level. The mean free path of an electron increases with its energy. Therefore, the
nonlocal effects are important for the supra-thermal electrons which transport the energy over
the distances comparable with the temperature gradient scale length. In the Spizer—-Harm
thermal conduction model, a weak anisotropy is assumed. The heat flux is computed from
the electron distribution function which is written as fe(p) = feo(P) + g Jfe1(P). In the Spitzer
model, the function fe((p) is assumed to be a Maxwellian function feq;,. The non-local theories
are accounting for the deviation of f., from the Maxwellian distribution for the supra-thermal
electrons. A corrected heat flux is computed by assuming that in the domain of high electron
velocities v >> vy the distribution function can be presented as feo(p) = feor (P) + Afo. The
correction function A fj is calculated by splitting the kinetic Fokker-Planck equation into several
energy groups. For more details about the non-local model implemented in the code CHIC one
can refers to Ref. [Schurtz et al., 2000].

2.2.3 Ablation pressure

The matter behind the ablation front expands in the outer region of the target. It is called the
ablated matter. The ablation pressure can be calculated from the conservation of momentum
and energy. Assuming that the conduction zone is stationary and that the absorption zone

is isothermal, the ablated mass rate m, and the ablation pressure can be expressed with the

(2) 27

(2) ew

We can notice that the coupling of the laser light to the target is more efficient for a shorter

following scaling laws [Dautray and Watteau, 1993]:

Wl
win

pa|Mbar] = 11.8 (Iabs[lO14 W.Cm_2]) (Ap[pm])™

ol
ol

1me[g.s ! .em™?] = 1.38 x 10° (Iabs[1014 W.cm™?])® (Ap[pm])~

wave length.
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Figure 2.4: Grid flow (a) and laser pulse profile (b) in the simulation of a typical ICF implosion.

2.3 Implosion and laser pulse shape

Let us consider first the conventional ICF scheme where a spherical hollow shell target is irra-
diated uniformly by a laser light. The implosion evolves in four steps: 1) During the ablation
phase the laser light is absorbed in the outer layer of the shell. The heating and ablation of the
target material generates an ablation pressure at the outer surface of the shell. 2) The work
made by this pressure is transformed into the shell kinetic energy which is further converted
into internal energy during the implosion. A hot-spot at the center of the target is created. 3)
The ignition conditions are attained in the hot-spot. 4) A self-sustaining burn wave propagates
outward and consumes the rest of the fuel.

Figure 2.4 (a) presents the grid evolution in a typical implosion simulation. As the CHIC
code is Lagrangian, the grid follows the flow. The four steps of the implosion are indicated on
the figure. Figure 2.4 (b) shows the laser pulse used in this simulation. The choice of its shape
will be justified in the following sections.

The implosion phase consists in an acceleration phase and a deceleration phase. The sketch

of the conventional implosion is presented in Figure 2.5.
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Figure 2.5: Implosion sketch of the conventional ICF scheme.

2.3.1 Ablation phase

According to the thermodynamics laws, the specific energy transmitted to the target de is related
to the heat transfer T'ds and to the work pdwv by the relation de = T'ds — pdv with s being the
specific entropy, T' being the temperature and v — the specific volume v = 1/p. To optimize the

compression with a given energy, the specific entropy increase ds must be as low as possible.

The specific entropy of the shell is measured with the adiabat parameter o = p/pr where pp
is the reference pressure of a Fermi-degenerate cold electron gas pp [Mbar| = 2.15p%/3 for a fully

ionized DT, and with p expressed in g.cm ™. The dimensionless adiabat parameter is therefore

p

= S5 (2.19)

with the pressure p in Mbar and the DT fuel density p in g.cm™3.

The adiabat must be minimized to optimize the target compression. This criterion justifies
the use of a cryogenic shell target. Indeed, the density must be sufficiently high to reduce the
adiabat of the shell. Thus the solid density of the DT is chosen and the initial temperature of
the shell must be below the hydrogen triple point 7' = 19.7 K.

An optimal compression of the shell would be an isentropic compression. As it will be
explained in Section 3.2, the ablation pressure in this case increases progressively following the
power low p,  p®/3. The compression time depends inversely on the sound velocity. As the
initial temperature is low, this time is far too long. Thus the shell must be preheated in order

to shorten the implosion time. For that the laser pulse starts by a pre-pulse of a power Fy. The
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ablation pressure p, created by this pre-pulse launches a shock wave through the shell with
a strength chosen to deposit an entropy at the level @ < 3. The matter behind the shock is

compressed by a factor of about 4.

The power increases in a transition phase in such a manner that the compression is isentropic.
Compression waves are generated. They must not merge into a shock as long as they are
propagating through the shell in order to limit the entropy increase. The proper timing of the
compression waves requires a special laser intensity profile known as the Kidder law [Kidder,
1976]. However, the laser pulse power cannot increase indefinitely because of the laser energy
available and of parametric instabilities which appear at a high intensity. Thus, the power
increases until a maximum value P,, and stays at this value during the main pulse. When the
primary shock reaches the shell inner surface, a rarefaction wave is reflected in the shell and a
shock wave is transmitted in the gas (see bullet 1 in Figure 2.5).We define t4,, the time moment
of the shock breakout at the inner surface of the shell. The compression waves, still propagating
in the shell, interacts with the flow behind the rarefaction wave. Due to the density and pressure
gradients in this flow, the compression waves turn faster in shock waves. Thus, to avoid any
entropy deposition in the shell, the compression waves must reach the inner face of the shell just
after the primary shock. When the rarefaction wave reaches the ablation front, the fast decrease
in density induces a local increase in pressure. A second shock wave is reflected back into the
shell. From this time the shell is accelerated and the acceleration phase begins. To reduce the
strength of this second shock (the entropy in the shell must still be kept low), the laser power
is kept constant at the level P, after this second shock is generated. The ablation pressure is

then pg,,-

Let us introduce the shell aspect ratio A = R/AR where R is the inner radius of the shell and
AR is its thickness. During the ablation phase the shell is compressed and the shell thickness
AR is reduced. The shell aspect ratio is thus increasing during the ablation phase. It reaches a

maximal value at the time t,.

Figure 2.6 shows the pressure gradient in the shell during the ablation phase of the reference

simulation. The compression and rarefaction waves trajectories are well visible.

In conclusion, during the ablation phase, a shock is launched by the foot of the laser pulse.
This shock sets the shell adiabat as

Pag

) (2.20)

o =

Then the compression of the shell is isentropic and the density evolves as p pi/ ®. At the shock

break-out time t4,, the shell density is thus

» 3/5
Psb = 4p0 < am> . (221)
Pag

The shell aspect ratio increases during the ablation phase. At the time tgy, it reaches its maximal
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Figure 2.6: Pressure gradient in the shell during the ablation phase.

value called the In-Flight-Aspect-Ratio [FAR.
A simple estimate of the IFAR is

IFAR = 2% 4,, (2.22)
Po

where A is the initial aspect ratio of the shell.

2.3.2 Acceleration phase

The generation of compression waves at the outer part of the shell and the reflection of rarefaction
waves at the inner face of the shell is repeated several times. For each shock generation at the
outer edge, the shell velocity is increased. If the shell is sufficiently thin, the acceleration can
be seen as a continuous process. First we express the hydrodynamic efficiency for the ablation
process to accelerate the shell by using a rocket model. We will see that it depends on the shell
mass variation. Then we evaluate the shell thickness and mass evolution during the acceleration.

This allows to express the hydrodynamic efficiency as a function of the implosion parameters.

Rocket model The shell acceleration can be described by the rocket model. We considerer
that the shell is a rigid body with a variable mass due to the ablation. Let M(t) be the shell

mass and U(t) = dR/ dt its velocity. The conservation of the momentum gives

AM(H)U ()

T 4w R%(t)1ng (u — U), (2.23)
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where u is the velocity of the ejected matter due to ablation assumed to be constant, 1, is the

ablation rate and R the position of the ablation front.

The change in mass is

dM(t
dt( ) _ —47R%m,. (2.24)
By combining (2.23) and (2.24)
dM
=y 2.2
dU U (2.25)

which leads to

U(t) =uln (%) =uln (1 - Mﬁ?)) : (2.26)

with My the initial mass and M, () = My — M(¢) the ablated mass.

From the Newton’s law, the ablation pressure at the outer edge of the shell is pg, =
MU /4w R?. Using (2.25) and (2.24), the pressure due to the rocket effect is

Damn = UMMg. (2.27)

The kinetic energy of the shell writes

1 1 M, \ 12
Ep=-MU?=>(My—-My)u? |In[1-=2 ) 2.2
=07 = 0= (1 5 ) (229

The exhaust energy is E., = Mgu?/2. Thus the hydrodynamic efficiency n = Ei/Ee;
is [Atzeni and Meyer-Ter-Vehn, 2004]

2
Mideal) = =X [1;1((1 — X)) (2.29)

with X = M,/My = (1 - MMO) The plot of the function (2.29) is shown in Figure 2.7. We
notice that 7 cannot exceed 60 %. In typical ICF implosion, the ratio M—g does not exceed 50-60
%. In this regime we can approximate n with n ~ (%ﬁ—g)

In this simplified discussion, the flux of the enthalpy and the energy flux needed to maintain a
constant temperature in the corona are neglected. Numerical simulations [Rosen, 1999] including
more detailed physics show that the overall hydrodynamic efficiency is approximately one third
of the expression (2.29) 1 = 7 idecal)/3-

Here we see that the acceleration of a shell by ablation is a low efficiency process. In the direct

drive the maximal efficiency is of about 20 %.

Shell aspect ratio and implosion velocity We will now express the relation between the
shell aspect ratio, the ablated mass and the implosion velocity. We assume that the shell
thickness is small.

The rate of mass ablation in the left hand side of (2.24) can be presented as dM/dt = U dM/ dR.
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Figure 2.7: Hydrodynamic efficiency depending on the ratio of ablated mass.

Then we find M "
UdM = — / 4ming R? dR. (2.30)
Mo Ro

At the same time, by integrating the expression for the shell velocity (2.26) over the mass we

(oo (- on -2 (Cu ()] e

The initial mass of the shell is My = 47rp0R(2)AR0. Then Equation (2.30) becomes

have

M M € R\?
1——(1-1 — =—|1—-( = 2.32
My < ! (Mo>> 3 [ (Ro) ’ (252
where . R
mg 0
= 2.
€ NS (2.33)

is the implosion parameter [Atzeni and Meyer-Ter-Vehn, 2004].

The dependence of the ablated mass on the shell radius can be seen in Figure 2.8 (a). The
ablated mass increases during the shell convergence and reaches its maximal value for R = 0.
The dependence of the ablated mass at R = 0 on the shell parameter ¢ is presented in 2.8 (b).
The range of practically interesting values is € < 3. Otherwise, the shell is entirely vaporized

before the collapse. For € < 3 one can approximate the maximal ablated mass for R < Ry by

max (ﬁz) ~ (;)1/3. (2.34)
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Figure 2.8: Evolution of the ablated mass M,/My = 1 — M/M during the shell convergence
(panel a) and dependence of the maximal ablated mass on the implosion parameter € (panel b).
The approximate relation (2.34) is represented with a dashed line in panel (b).

Let us now find a relation between the shell velocity at the end of ablation phase tiyp, = —U
and the aspect ratio IFAR = R/AR. The ablation rate depends on the ablation pressure and
the exhaust velocity (2.27) as g = po/u. Therefore, using (2.22), the implosion parameter is

proportional to IFAR:
Pa

S SIPAR. (2.35)
sb

E =

At the end of the acceleration phase, the shell radius is small compared to the initial radius
(R/Ro)* << 1, the shell velocity is U = —ujpp and , according to (2.26), the remaining shell
mass is related to its velocity as M/Mg = exp(—uimp/u). Then (2.32) reads

! (%) = g (2.36)

where the function f(z) =1 — exp(—x)(1 + z) is represented in Figure 2.9.

In the domain of practical interest, for z < 1, the function f can be approximated by f(z) ~ 0.3x22.
An implosion velocity lower than the exhaust velocity applies to direct drive for typical laser
intensities of 10 — 10'6 W.cm™2 [Lindl, 1995]. Then, the IFAR can be expressed as a function

of the implosion velocity:

Ui
IFAR =0.9 £ . (2.37)
Pa/Psb

The sound velocity at the outer edge of the compressed shell assuming the polytropic index

v=5/31is c?f >~ 5pam/3psp- Then the dependence of IFAR on the shell maximal Mach number
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Figure 2.9: Function f(z) = 1 — exp(—2)(1 + ) and the approximate y = 0.322.

Mo = Uimp/cif can be expressed as:

IFAR ~ 1.5M2. (2.38)

The in-flight adiabat is ;¢ = pam/ pil{g. Using the expression of the ablation pressure (2.17) the

implosion velocity is expressed as

I 2/15
Uimp o o)} CTF AR (f) . (2.39)
L

The implosion velocity can be increased by increasing the IFAR and the shell adiabat. However,
increasing the adiabat would reduce the target compressibility and increasing the IFAR may
reduce the implosion efficiency due to hydrodynamic instabilities (see Section 2.4 below).

The mass of the shell depends on the shell aspect ratio as

M = 4rpR3/A. (2.40)

Therefore, the shell aspect ratio evolves in time as

() ()
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Figure 2.10: Evolution of the shell aspect ratio A/IF AR as a function of the shell radius R/Ry
for several values of the implosion parameter .

If the acceleration is nearly isentropic, the shell density p o ai}s/ 5p2{{? does not vary much and

psb/p ~ 1. Then by inserting (2.41) into (2.32) we obtain a relation between the shell aspect
ratio and the shell radius. The shell aspect ratio decreases during the target acceleration as it

can be seen in Figure 2.10.

Hydrodynamic efficiency According to relations (2.34), (2.35) and (2.38), the ablated mass
scales as

M 2/3 . _
Mo e/ 3p, /3 (2.42)

Expressing the mass ablation rate and the ablation pressure through the laser intensity according
to (2.17) and (2.18), the hydrodynamic efficiency n ~ (M—g) scales as

2/3I —2/9)\ —4/9 A 2/9 (2 43)
N X ulmp abs L 2Z . .

For a given laser irradiation, the implosion velocity increases for a higher hydrodynamic ef-
ficiency. The most influencing parameter here is the laser wavelength. The hydrodynamic

efficiency is reduced for higher laser wavelength.

2.3.3 Deceleration and stagnation phases

The primary shock generated by the pre-pulse is partially transmitted to the fuel gas at the end
of the ablation phase. During the acceleration phase, this shock converges in the gas, rebounds at

the center of the target and diverges. When the shock interacts with the incoming shell inner face
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it is reflected back toward the center and the shell is in turn impulsively decelerated. This time
moment t4 is the beginning of the deceleration phase. The shock rebounds again at the center
and is reflected a second time from the shell. This process is repeated several times leading to an
impulsive deceleration of the shell. At each reflection the shock becomes weaker. After several
reflections the central gas pressure becomes uniform and the shell is decelerated continuously.
The shell acts then like a piston on the hot-spot until its velocity comes to zero which is the
stagnation point. During this deceleration phase the pressure, density and temperature of the
hot-spot increase. The implosion is to be designed in such a way that the hot-spot reaches the

ignition conditions at the stagnation time.

Let us write Ry, the radius of the hot-spot at the end of the acceleration phase t; and
Vi = 4wR3/3 being its volume. The shell velocity U = dR/ dt is at its maximum value Uim, at
that moment. When the shell stops, the final radius of the hot-spot is Rj,. We define Cy = R/ Ry,
to be the convergence ratio during the deceleration phase. Assuming an adiabatic compression
of the gas inside the piston, the pressure is linked to the density by the relation p o p°/3 for an

ideal gas. The mass conservation in the hot-spot gives p occ R~3. Therefore we have

P ="pa <]]%;)5 : (2.44)

Then the pressure and density at the stagnation time can be expressed as pp = png and
pr = paCy.

During the deceleration, the shell trajectory can be integrated from the Newton’s law

M%{ = 47rpR2. (2.45)

Using the relation (2.44), the shell velocity is expressed as a function of its radius

ApaR3 Ry\?
2 2 d
U?=u? _+ 1— (== ) 2.4

At the stagnation time, the shell velocity U = 0 and the shell radius R = Rj. Then the

convergence ratio can be expressed as

Ca=/1+ (2.47)

Ea

with E = %Mu-2 the kinetic energy of the shell and E; = %pdVd the internal energy of the

imp

hot-spot at the end of the acceleration phase.

At the beginning of the deceleration phase, the internal energy of the hot-spot is negligible
compared to the kinetic energy of the shell [LLE, 2006].

Then we can write Cy = \/EL/E; < Uimp. The maximal hot-spot pressure at the stagnation

20



is
P = paCl = py " M2V P (2.48)

imp*

To reach a high pressure in the hot-spot, the volume of the hot-spot and its pressure at the
beginning of the deceleration phase must be low.

The temperature for an ideal monoatomic gas is proportional to the square of the sound
velocity T o ¢? and ¢ = 5p/3p. Thus the hot-spot temperature scales as

Tjy o Uhy - (2.49)

The final pressure (2.48) and temperature (2.49) in the hot-spot are highly dependent on
the implosion velocity. Here we used a rough estimate of the hot-spot pressure at the stagnation
time, assuming that the shell acts on the hot-spot as a rigid piston with a given mass. In reality
the electron heat conduction leads to the ablation of the shell inner part. The mass of the shell
decreases as the mass in the hot-spot increases. Therefore, the hot-spot at the stagnation is
denser but cooler. The pressure p o T'p is less sensitive to this phenomenon.

If the hot-spot pressure is high enough, the ignition occurs and the hot-spot generates a
burning wave propagating in the shell.

Figure 2.11 presents a zoom of the reference simulation grid flow during the deceleration
phase, ignition and burn. From the time 10.6 ns, the temperature in the hot-spot is higher than
4 keV. The hot-spot is close to the ignition conditions. The ignition starts at 10.75 ns. A burn

wave is generated at 10.8 ns. It propagates in the shell in few ps.
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Figure 2.11: Grid flow during the deceleration phase, ignition and burn of the fuel. The dashed

red line represents the trajectory of the first shock wave. The temperature is plotted when its
value exceeds 4 keV.
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2. PHYSICS OF INERTIAL CONFINEMENT FUSION

2.4 Hydrodynamic instabilities

To reach the ignition criterion the target must be strongly compressed and the final hot-spot
radius Ry, is typically 20 — 30 times smaller than its initial radius Ry. To conserve a spherical
shape of the hot-spot the non-uniformities must be controlled. There are two kind of non-
uniformities: the initial roughness of the shell and the laser irradiation non-uniformity. Even
if these non-uniformities are very low, hydrodynamic instabilities during the implosion may
amplify the small perturbations. This leads to dramatically asymmetric implosions with a
low efficiency. Thus the non-uniformities must be controlled and the hydrodynamic instability

growth mitigated.

2.4.1 Rayleigh—Taylor instability

The interface between two fluids of different densities (p2 > p1) is unstable when it is accelerated
from the light fluid toward the heavy fluid. This is called the Rayleigh—Taylor instability. A
small perturbation h(t) of the interface growths exponentially with time h(t) = hoexp(yt). The

growth rate v depends on the perturbation wave number £ and is usually expressed as

v =/ Aikg (2.50)

where ¢ is the acceleration, and A; = (p2 — p1)/(p2 + p1) is the Atwood number [Atzeni and
Meyer-Ter-Vehn, 2004]. Here we see that small wavelength perturbations are most amplified.

In the ICF context, the density profile is continuous and the density gradient length L, = p/(dp/ dr)
is finite at the boundary between the two fluids. The perturbations growth is reduced for wave-
lengths A smaller than L,. The ablation is another phenomenon which reduces the growth
rate of short wavelength perturbations. Indeed, the ablation of the heavy fluid at the interface
smoothes the non-uniformities. Taking those phenomena into account, Takabe et al. [Takabe
et al., 1985] proposed an empirical expression for the growth rate of the ablative Rayleigh-Taylor
instability:

v = 0.9\/kg — Bkvay (2.51)

where v,p = 14/ p is the ablation velocity and (3, a numerical constant of the order of 1 which
depends on the target material.

The instability evolution is qualified as linear when the perturbation amplitude is growing
exponentially and is much smaller than the perturbation wavelength. When the perturbation
amplitude becomes comparable to the perturbation wavelength, the perturbation profile becomes
asymmetric: spikes and bubbles appear at the interface. The amplitude of the spikes and bubbles
grows as a quadratic function of time h(t) o t2. In that non-linear regime, the velocity difference
at the interface between the spikes and the surrounding fluid induces the Kelvin-Helmholtz
instability. Its development leads to the creation of "mushrooms”. Multiple scales appear and

finally the flow becomes turbulent.
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During the implosion, the Rayleigh—Taylor instability occurs during the acceleration phase
at the outer surface of the shell where the ablated mass is accelerated toward the dense shell,
and during the deceleration phase at the inner surface of the shell where the pressure from the
low density hot-spot is decelerating the shell. During the deceleration phase, the spike of dense
cold matter penetrate into the hot-spot. They are reducing the effective volume of the hot-spot
and compromise the ignition. Moreover, the distortion of the shell inner surface increases the
surface area between the hot-spot and the cold shell and thus enhances the heat losses by heat

conduction and the mass increase by ablation.

2.4.2 Kelvin—Helmholtz instability

The Kelvin—-Helmholtz instability appears at the interface between two fluids in transversal
relative motion. Initially this instability grows exponentially in time h(t) = hgexp(~t). The

growth rate v depends on the relative velocity v
v = k|v| (2.52)

where the wave number k corresponds to a perturbation parallel to the interface. When the
perturbation amplitude becomes comparable with the wavelength, the interface rolls up pushed

by the fluid flow. This occurs at different scales and leads to a mix between the two fluids.

2.4.3 Richtmyer—Meshkov instability

The passage of a shock through a perturbed interface amplifies the perturbation. This instability
is known as the Richtmyer—Meshkov instability. The perturbation amplitude growths linearly
in time A(t) = ho(1 + ~vt). The growth rate v depends on the interface velocity change Au as
the shock passes through

v = AikAu. (2.53)

Even if the growth of the RM instability is slower than the growth of the RT instability,
it can be dangerous for ICF. Indeed, it amplifies the initial perturbations of the shell surface

before the shell is accelerated and the RT instability sets in.

2.4.4 Most dangerous mode

According to (2.51), the growth of RT instability can be reduced by increasing the ablation
velocity. This however, requires a higher adiabat. It is possible to use a series of well timed shocks
in such a way that only the adiabat at the outer part of the shell is increased. In this case, the
ablation velocity is higher whereas the shell adiabat is kept low for the effective compression. This
is called the adiabat shaping method [Anderson and Betti, 2004]. Another method uses a double
ablation fronts scheme (thermal and radiative ablation fronts) with a higher Z ablator [Fujioka
et al., 2004, Yanez et al., 2011]. The use of low density foams [Depierreux et al., 2009] at the
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2. PHYSICS OF INERTIAL CONFINEMENT FUSION

outer shell surface is also considered for mitigation of the RT instability.
The RT instability can reduce the efficiency of the com-
pression and of the ignition by reducing the symmetry and

(a)
the effective hot-spot volume. However, the most critical

V/\\ scenario would be that the shell breaks during the implo-

sion. The mode with a wavelength comparable to the shell
(b)

U2 Ve VYAV

thickness kAR ~ 1 is the most dangerous. Indeed, the am-
plitude of the shell decays in space as h(z) = h(0)e~**. If
kAR < 1, the distortion of the rear side of the target follows
(© the perturbation of the front side (panel (a) in figure 2.12). If
\/\/\/\/ kAR > 1, the perturbations do not reach the rear side of the
- shell (panel (b) in figure 2.12). If kAR ~ 1, the distortion at

the rear side of the shell is low and the perturbation at the

Figure 2.12: Shell perturbations

scenarios: (a) kAR < 1, (b) ) _ _ )
kAR > 1, (c) kAR ~ 1. front side has an amplitude of the size of the shell. In this

case, the shell can be broken easily (panel (c) in figure 2.12).

We remind that the maximal value of the aspect ratio,

the IFAR, is achieved as the first shock breaks out the shell at the time t4. In the spherical

geometry the mode number [ is defined as | = kR = kARIFAR. The most dangerous mode
occurs for kAR = 1 thus for [ = IFAR.

2.5 Separating compression and ignition

In the conventional scheme the compression and the heating of the hot-spot are achieved in the
same time. It requires a large driver energy and a high implosion velocity. The idea of alternative
schemes, is to separate the compression and the ignition phases [Tabak et al., 2014, Atzeni, 2013].
First, the target is isentropically compressed at a low implosion velocity in the same way as in
the conventional scheme. The hot-spot is then created by a supplementary source of energy. In
the fast ignition scheme, the hot-spot is created with a beam of relativistic electrons or high
energy ions [Tabak et al., 1994]. In the shock ignition scheme [Betti et al., 2007], the hot-spot
is created at the center of the target by a converging shock wave.

In those schemes, the final configuration is not isobaric. The pressure in the hot-spot is
higher than the pressure in shell. Figure 2.13 presents schematically the thermodynamic path
of the hot-spot and of the DT shell during the implosion in the conventional scheme (a) and in

the shock ignition scheme (b).
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Figure 2.13: Trajectories in the (p,T) plane of an element in the hot-spot (red line) and of an
element in the shell (green line). The moment of ignition is indicated with circles. The dashed
lines indicate isentropic and isobaric lines.

2.5.1 Discussion on the implosion velocity

The implosion velocity is an important parameter of the implosion. We analyze here how the
implosion velocity is related to the ignition criterion, its influence on the gain of the target and
on the RT instabilities. This allows us to explain the interest of the alternative schemes of

ignition where the implosion velocity is lower than in the conventional ignition scheme.

Path to ignition During the implosion, the increase of internal energy in the hot-spot is
dominated by the mechanical work whereas the fusion reactions are negligible. The mechanical
power must be taken into account in the balance equation (2.8) [Lindl, 1995]. The shell is
considered as a piston of velocity uimp, = dR/ dt acting on a gas with the pressure p;. The work
done is Ppecn, = —pp, AV / dt where dVj, = 477]%,2Z dRy,. Then we have

Prech = _47Tth}21uimp- (254)

The implosion velocity appears as a parameter in this equation. The mechanical work is
injected in the power balance equation (2.8). When ujm, = 0 we recover the hot-spot ignition
criterion expressed in (2.14). The ignition threshold for several implosion velocities are plotted in
Figure 2.14. For implosion velocities below wipm, = 120 km.s™! the domain (pnRp, Tp) is divided
into two distinct zones where the power balance is positive. In this case, during the implosion,
the hydrodynamic path of the hot-spot must necessarily pass trough a negative power balance
zone. Then the energy brought for compression is dissipated too quickly and the internal energy
of the hot-spot cannot increase. This means that the implosion velocity must be higher than
the threshold wy;y,. It is usually said that ujmp > 200 km.s~! by taking a security margin into

account.
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Figure 2.14: Curves where the power balance is zero (2.8). Each curve corresponds to an
implosion velocity: 0 km/s in red, 100 km/s in blue, 120 km/s in purple, 200 km/s in black .

Ignition velocity Kemp [Kemp et al., 2001] expresses the stagnation pressure py, as a function

of the maximal Mach number of the imploding shell My and p,, the maximal ablation pressure:

Pn = pammg‘ (2.55)

The maximal shell Mach number is My = uimp/cif where ¢;7 is the sound velocity at the shock

break-out time tg.

We saw in Section 2.1.2 that the ignition criterion relies on the areal density and on the
temperature. We consider that the ignition occurs when the product py R}, exceeds a limit value

(PR)ign ¢ (pR)ignTign. The hot-spot internal energy is

3 Ry)?
Eh = §pth = Qﬂi(ph 2h) . (256)
Dy,

At the ignition threshold, as the product (pR)ign takes a fixed value, the hot-spot internal energy
scales as Ejgn o< pf. The entropy is assumed to be constant in the shell. Thus the density in
the shell is related to the pressure as p/p” = oy, where v = 5/3 for the shell considered as an
ideal monoatomic gas. The sound velocity ¢ = \/W can be related to the adiabat «;y and
to the external pressure py,, by the relation czzf x piﬁa?ﬁ. Then, using (2.55) and (2.56), the
hot-spot energy at ignition scales as

Eign o i/ P15,0,071°. (2.57)

Let us now express the minimum implosion velocity uign needed for ignition. About 84 %

of the shell kinetic energy goes to the shell compression and 16 % to the hot-spot. We consider
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that the internal energy in the hot-spot is proportional to the kinetic energy of the shell at the

2

end of the acceleration phase Fig, %Mulgn.

The ignition velocity scales then as
_ 40 r—
Ujgn X pm}/ma”{ M8, (2.58)

We can see that the ignition velocity is mostly affected by the shell adiabat. It is reduced
for a lower shell adiabat which leads to a better compression. The shell mass and the ablation

pressure should be increased to reduce the ignition velocity but their influences are weak.

Gain and implosion velocity We saw in Section 2.3.2 that the hydrodynamic efficiency
scales as n M—g x u?rﬁilabsfz/g)%_‘l/g (2.43). Then the gain G = nEy,s/E) 77‘11;12;) scaling is
given by the relation

G ocu PP 2ON 0 (2.59)

imp “abs

This estimate gives an idea of the implosion velocity influence on the target energy gain if

ignited. It is close to the scaling from the simulation data fit given in Ref. [Zhou and Betti,

2007]:
| 73 3x107 "7 /o 0.35 \*°
(EE)" ew
18.3155 —— (uimp[ om.s—1] ) 0.2 )\[“m}

—1.25

imp

If ignited, the target gain G « u is higher for a lower implosion velocity. Thus the goal of

an efficient target design is to achieve ignition at the minimum possible implosion velocity.

Hydrodynamic instabilities The efficiency of the shell implosion is limited by the hydro-
dynamic instabilities. We consider here the ablative RT instability growth dependence on the

shell parameters. According to (2.51), the amplification factor reads

t2
vt = 0.9v/kgt? — Bkvant = 0.9 %A&wi%——BwAR@
sb

Vabll
ARy’

(2.61)

where ARy, is the shell thickness at the shock breakout time tgp.
We consider the mean acceleration B = g = u?mp /Rgp. Then the time at the end of the
acceleration phase is linked to the shell velocity as tq = Wimp/g. Also, we consider the most

dangerous mode where kAR, ~ 1 at the maximal shell velocity ujmp. Then,

Aty = 0.9VIFAR — S 9L IFAR. (2.62)

Uimp

The ablation velocity reads vgy = Mg /p X M6 (Qout/ pa)l/ 7 and the IFAR o u?mpa;fg/ Sp; 2/5
(according to (2.39)). Here we assume that the shell has a uniform adiabat a;¢ except from its

outer region where the adiabat ay,y, can be higher thanks to an adiabat shaping method [An-
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derson and Betti, 2004]. The growth of the RT instability becomes

3/5
ta = Wimp (0-9@3/ Opg 210 — Bringp, ! (O”) ) : (2.63)

in

The growth is directly proportional to the implosion velocity. We can also notice that the
adiabat shaping of the shell increases the ablative stabilization of the instability through the

second term on the right hand side.

2.5.2 Shock ignition principle

In the conventional scheme the choice of the implosion velocity is limited by two conditions. Dur-
ing the acceleration phase the shell surface perturbation amplitude h(t) scales as In(h(t)/ho) o Uimp.-
The implosion velocity is thus limited from the top by the RT instability. On the other side, the
implosion velocity must be higher than the ignition threshold u;4,, otherwise the temperature

of the hot-spot T}, oc uZ_ is too low. This criterion defines the lower limit for the implosion

P
velocity.

The idea of the advanced ignition schemes is to work with the implosion velocity lower than
the ignition limit g, (2.58). According to (2.59), reducing the implosion velocity allows to
reach higher gains. Also it relaxes the hydrodynamic instability issues (2.63). The compression
of the target is more efficient at a lower implosion velocity. Indeed, it requires a lower laser
intensity which means that the laser-matter coupling is more efficient. Also, less danger from
the parametric instabilities and less preheat is expected at a low implosion velocity. However,
if Wimp < Uign, the hot-spot pressure at the stagnation is too low. Then, an additional source of
energy is needed at the end of the implosion to raise the temperature in the hot-spot and to reach
the ignition conditions. In the shock ignition scheme, this energy is brought by a converging
shock driven by an intense laser spike at the end of the implosion. The laser intensity is expected
to be at least one order of magnitude higher than the intensity of the compression pulse.

Figure 2.15 summarizes the implosion synopsis in the shock ignition scheme. It has to be
compared to the conventional implosion scheme presented in Figure 2.5. At the beginning of
the implosion, the laser radiation ablates the outer layer of the spherical target. A high pressure
is created at the ablation front and a strong shock is launched inside the shell. The laser pulse
intensity increases slowly at a 10 ns time scale, to generate a sequence of compression waves
which compress the shell isentropically. The shock and the compression waves merge at the inner
side of the shell as pointed by the bullet 1 in Figure 2.15. The entropy deposited per unit of mass
in a homogeneous shell by a strong shock is constant. Thus, the shell adiabat is approximately
uniform. The shock is transmitted partially into the D-T gas and a rarefaction wave is reflected
into the shell. The rarefaction wave is again reflected at the ablation front and converted into a
compression wave. This sequence of processes starts the acceleration phase of the shell. In the
same time, the primary shock transmitted in the D-T gas converges and reflects at the center

of the target. The acceleration phase is ended when the diverging primary shock collides with
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Figure 2.15: Implosion sketch of the shock ignition scheme

the shell as it shown by the bullet 2 in Figure 2.15. At this time the shell attains the maximum
implosion velocity ujmp and starts to decelerate. The deceleration is mainly due to the increase
of the pressure in the shell and in the compressed central D-T gas. The stagnation phase starts
when the shell velocity comes to zero. This moment of the maximum compression is the most
appropriate for ignition of the fuel in the hot-spot. However, in the shock ignition scheme, the
shell implosion velocity is not sufficient to raise the compressed fuel temperature in the ignition
domain. An additional energy is brought with the ignitor shock (bullet 3 in Figure 2.15). It is
launched during the acceleration phase in such a way that it collides (bullet 4 in Figure 2.15)
with the reflected primary shock into the shell at the beginning of the deceleration phase. It
enters into the fuel (bullet 5 in Figure 2.15) and increases the fuel temperature above the ignition

threshold after one or few reflections from the center.

2.6 Conclusion

In this chapter the ignition of fusion reactions by the implosion of a shell target filled with a DT
fuel is presented.

To reach the ignition conditions and to obtain a sufficient energy gain, the fuel temperature and
areal density must be high enough. These conditions require a strong compression of the target
which is limited by the target pre-heat and the hydrodynamic instabilities.

The shock ignition scheme allows to reach a higher gain with an implosion less subjected to the
hydrodynamic instability issues. In this ignition scheme, the energy used for the target compres-

sion is reduced and a shock is launched at the end of the implosion to bring the supplementary
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2. PHYSICS OF INERTIAL CONFINEMENT FUSION

source of energy needed for ignition.

To understand the physics of the ignitor shock, it is important to characterize the medium
where it propagates. This chapter was devoted to the presentation of the conventional implo-
sion scheme.

The implosion is characterized by the following important parameters:

Shell adiabat It is set by a shock wave launched during the pre-pulse. Lower is this parameter,

higher can be the compression.

Shell IFAR This is the maximum shell aspect ratio at the time tg. This parameter must not
be too high in order to limit the Rayleigh—Taylor hydrodynamic instability growth.

Implosion velocity It is the maximal velocity of the shell. The final temperature and density
in the hot-spot strongly depend on this parameter which must be high to reach the ignition
conditions. However, the gain is reduced as the implosion velocity is increased. The
implosion is also more subjected to the hydrodynamic instability issues at high implosion

velocity.
The ignitor shock depends on two parameters:
Spike time It defines the shell and the hot-spot conditions where the ignitor shock propagates.

Spike intensity It defines the initial strength and velocity of the ignitor shock. Depending on

its value, strong non-linear effects can appear in the laser-matter interaction.

The interaction laser-plasma was also presented in this chapter. The laser spike intensity used
to generate the ignitor shock is much higher than the laser intensity used for the compression
of the target. The laser-matter interaction in this regime of intensity is strongly non-linear. It
may generate a lot of hot-electrons which can pre-heat the target or enhance the shock strength
if they are stopped. This issue will be assessed in the last chapter of this thesis.

In the following chapter we present the hydrodynamic tools that will be employed to describe
the flow of the imploding shell and of the ignitor shock wave.
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3. HYDRODYNAMIC MODELING

In a hydrodynamic description, the temporal and the spatial evolution of a plasma are
described by averaged quantities such as the density, pressure and temperature in a small volume
called the fluid particle. This gives a macroscopic description of the flow which is assumed to
be continuous. This approach is valid if the plasma mean free path [ and mean time between
collisions 7 are much shorter than the characteristic dimensions of the flow L and ¢. During
the implosion, this is verified in the dense region of the target but not in the corona where
the density is very low and the temperature is high. The hydrodynamic description is neither
valid during the burning phase. In those two regions a kinetic description would provide better
results. Here we are interested by the implosion physics in the target, before ignition. This is

why the hydrodynamic description is chosen.

In this chapter, we present the theoretical background required for the following chapters.
First the basic hydrodynamic equations are introduced in Section 3.1. They are used, in Section
3.2, to describe the homogeneous isentropic compression of a shell target. This model will
be used in Chapter 5. The basic equations which describe a shock wave are given in Section
3.3. Lastly, a brief review of the mathematical methods to describe a converging shock wave is

proposed in Section 3.4.

3.1 Basic equations

3.1.1 Conservation equations

Starting from conservation principles, one can derive general governing equations for a flow

properties.

We write p the density, p the pressure and u the velocity. Those variables depend on time ¢

and space.

The mass variation in a volume V is equal to the mass flux at its surface

5‘15/ pdV = —j{ pu.dsS. (3.1)
v v

Using the Green—Ostrogradski theorem the conservation of mass reads
Op + div(pu) = 0. (3.2)

Two kind of forces apply to a fluid particle. The long range forces affect all the fluid particles.
They are usually proportional to the volume and called volume forces. It can be for example
the gravity or the Laplace force. The second kind of forces are short range forces. The relative
motion of particles generates internal forces which are called stress. We write f the force acting

on a unit volume of fluid and X the stress tensor.
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The resultant force acting on a volume V is

F:/ fdv+7{ 5. dS. (3.3)
1% ov

Using the local form of the force, the Newton’s law gives

pdiu = £ + div(X). (3.4)

For an ideal fluid, the stress tensor is diagonal ¥ = —pl. Then the momentum conservation
equation reads

pdiu=—-Vp+f. (3.5)

The total energy of a unit volume e is the sum of the specific internal energy ¢ and the
kinetic energy e = € + u?/2.

The variation of energy is expressed as

o[y (pe)dV = — [, peu.ds, energy transport
+ fV 3dV, source term (3.6)
— J5y Q. dS, heat fluz
—f—fv fudV + fav 3.u.dS. work done by the external forces
The local form of the energy conservation equation is
Ope +div ((pe + plu+ Q) =8 + f.u. (3.7)

3.1.2 1Ideal gas equation of state

If we consider an ideal gas without any interaction between the particles, the Boltzmann statistics

leads to the famous relation between the pressure p and the temperature T'
p=nTl (3.8)

with n being the particle density and T being the temperature in energy unit.

In a plasma totally ionized, the particles density is the sum of the ions density and the
electrons density. If the plasma is neutral, n, = Zn; then n = n. +n; = (Z + 1)n;. The fluid
density is related to the particle density by the relation p = n;Am, where A is the average

atomic mass of the ions and m,, the proton mass.

The pressure can then be expressed as a function of the density
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There is also a relation between the pressure and the internal energy

p=(v—1)pe, (3.10)

where 7 is the adiabatic index which depends on the number of freedom degrees of each particle.

For an monoatomic gas v = 5/3.

We introduce the specific entropy s which is by definition (according to the first and second

laws of thermodynamics)
T'ds = de + pdo, (3.11)

where v = 1/p is the specific volume.

By combining the equations (3.9) and (3.10) we have

A
ds = po— <p fyp). (3.12)

By integrating, the entropy has the form

Z+1 v
NN SO (p’)ﬂ> + so, (3.13)
v—1 p7 po

with pg and pg being the density and pressure of the refrence state of specific entropy sq.

The first law of thermodynamics says that
d@ = de + pdo, (3.14)

with d@ the heat flux variation, de the change in internal energy and p dv the work done by the
pressure. If a process is adiabatic, d@ = 0 and then ds = 0 according to (3.11). Thus for an

adiabatic transformation in an ideal gas, we have

d <p’;> —0. (3.15)

Let us consider the propagation of an acoustic wave in the one dimensional flow along the
direction . A homogeneous medium of density pg and pressure py at rest is perturbed. The
perturbed density reads p = pg + dp, the perturbed pressure is p = pg + dp and the velocity of

the perturbed medium is du.

The conservation of mass (3.2) gives

po +0p)  O(po + 9p)ou)

ot 5 =0 (3.16)
and the conservation of momentum (3.5) gives
Odu odu d(po + 0
(0 +09) 0+ (po + ppu = ~OPOEOD) g (3.17)

ot or or
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At the first order, we obtain

o0du o0du

POE‘FPOW =0 (3.18)
déu  0ép
wor = (349)

Then by taking the time derivative of equation (3.18) and the spatial derivative of equation

(3.19), we obtain
d%6p  9%p

= _ 3.20
ot2 or? (3.20)
We assume that the process is adiabatic and define the sound velocity as
dp
=4/ 3.21
=1\, (3.21)
S
Then the equation (3.20) becomes
0%5p  ,0%p
= : 3.22
a2~ or2 (3.22)
We recognize the equation of a wave, propagating at the velocity c.
Then according to (3.15), the adiabatic sound velocity is
op _ p
2
dp p )

This will be considered as the equation of state for an ideal gas.

3.1.3 Forms of the Euler’s equations

To simplify the conservation equations, we consider here a one dimensional flow without energy
source nor heat flux (8 =0 and Q = 0).

Eulerian form The simplified conservation laws of mass, momentum and energy are :

Op + 0 (pu) = —%, (3.24a)
Oru + ulru + ;87«(1)) =/, (3.24b)
Osp + u0pp — CQ(GTp + udrp) =0, (3.24c¢)

where the right hand side in the mass conservation equation accounts for the symmetry of the

flow ( = 0,1 or 2 in a plane, cylindrical or spherical case respectively).
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3. HYDRODYNAMIC MODELING

Lagrangian form The Lagrangian description of a flow follows the particle movement. Let
us write Ry(r0,t) the trajectory of a fluid particle initially at the position ry at the time t = 0.

The Lagrangian coordinate rg is thus defined as

ro = Rp(T’o, 0) (325)
The equations (3.24) become
1 1 ,
Op— = ——0r, (R{,g) , (3.26a)
p ,007’6
R
O (1) = ——"50r,p, (3.26b)
pory
1
Ore + ]38,5; =0. (3.26¢)

where the underline denotes a physical quantity expressed in the Lagrangian formalism. The
last equation shows that if no source is considered and if the heat flux is zero, the entropy is

constant along a particle path.

Characteristic form By combining the equations in (3.24), we get the characteristic form of

the system :
dp du pc | juc dx
= D= = 2
P +p dx+u+c[ } 0on Cy g7 u+c, (3.27a)
dp du pc | juc dx
— — pc— L —=u— .27b
. pdx+ [ } 0onC i Ay (3.27b)
dp dp dz
_ — P . ——=uq. 2
e d =0 on 3 =Y (3.27¢)

The flow in a general case is governed by the propagation and interaction of three wave fam-
ilies. The advancing and receding waves Cy and C_ bring the pressure and velocity variations.

The particle path P transports the entropy.

3.1.4 Compression waves - rarefaction waves

Riemann invariants We look at the characteristic form of the Euler’s equation. By neglecting

the volume force f, we define the two quantities J; and J_ as
1
dJy =du+ —dp=0, (3.28)
pc

1
dJ_=du——dp=0. (3.29)
pc
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By integration we have

Jy=u+ /08;, (3.30)
J_=u— /céi)p (3.31)

Those quantities J, and J_ are well known as the Riemann invariants. The form given here
is valid only for an isentropic flow. The particularity of the quantities Ji is that they remain
constant on the characteristics C4..

For an ideal gas, the Riemann invariants read

2
=ux . .32
Jr=u 5 7€ (3.32)

Compression wave Let us consider a simple wave propagating into a uniform medium at
rest from the left to the right. On the characteristic C_ coming from the unperturbed medium,

the Riemann invariant is J_ = —2¢y/(y — 1) which leads to the relation

(-1

c(x) =co+ 5

u(z). (3.33)

The velocity and the sound velocity have qualitatively the same profile. Figure 3.1 shows
the evolution of a simple wave. The C'y characteristics passing through the points A, B and C
where u = 0 and ¢ = ¢g are parallel lines. The C characteristics emerging from the minimum
and maximum points D and E have different slopes dx/dt = u + ¢. The profile of the wave
is thus steepened. After some time, the characteristics cross each other. This situation is not
physical as the flow quantities should be single valued. At this point the behavior of the wave
becomes non-linear and the wave is transformed in a shock wave. The theory of shock waves

will be developed later.

Rarefaction wave Let us consider a semi-infinite medium at rest. At the right boundary, a
piston initially at x = 0 starts to move with a constant positive velocity w at the time ¢ = 0.
Figure 3.2 shows the characteristics C; and C_ in the (x,t) plane. Every C. characteristic
comes from the initial flow (x < zg,¢ = 0). The Riemann invariant Jy is the same on all those

characteristics and we have

c(x,t) =co— 7 u(z,t). (3.34)

As the piston pulls the gas, the sound velocity decreases which means that the gas cools down.

The last C_ characteristic coming from the initial state (z < 0,¢ = 0) is called the trailing
edge and represented with a thick line on Figure 3.2. In the region to the left from this line, the

flow stays unperturbed and the C'_ characteristics are parallel.

On the piston position the relation (3.34) applies. The C_ characteristics emerging from the
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b

X
t >t

X
X

L>t
X
X

>t
X

Figure 3.1: Tllustration of a simple wave steepening into a non-linear wave. At the time t3
the wave form is not physical, the dashed dots indicates discontinuities corresponding to shock
waves.

piston bring therefore the Riemann invariant
J_ =2w—2¢/(y—1). (3.35)

The first characteristic emerging from the piston is called the leading edge (see figure 3.2). It
delimits a zone where the Cy and the C_ characteristics are strait lines and where the flow

quantities are constants u = w and ¢ = ¢ — w(y — 1) /2.

In the region between the trailing edge and the leading edge, the C'_ characteristics are strait
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lines with increasing slopes
dz v+1
— =u—c=
dt 2

They are forming a fan. As they are coming from one common point, the wave is qualified as

u — . (3.36)

centered. By integrating equation (3.36) we obtain the expression of u :

w= 72+1 (co v %) . (3.37)

Then the other flow quantities are given by:

£ _ (2 _ 7—11‘) ’ (3.38)

co y+1 ~v+1cot
2
p_<2_’y—1$>71 (3.39)
Po vy+1 y+1lcot ’ )
2y
P:<2_’Y—1$>7—1 (3.40)
Do y+1 v+ 1leopt ’ '

for —cot < 2 < (VTHw — co) t < %cot.

Between the leading and the trailing edge, the velocity evolves linearly between 0 and w.
The pressure and density are power laws of the position for a given instant. The density and

velocity profiles are represented in Figure 3.2 (b).

=9, u=w
Trailing edge Leading edge Q
. t>0
u u=0
_(;Ot (%w — Cg) t X
?:?0
1
t=0
u=0
u
x=0 X

Figure 3.2: Characteristic trajectories in the problem of a centered rarefaction wave (panel a)
and sketch of the density and the velocity profiles (panel b).
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3. HYDRODYNAMIC MODELING

3.2 Homogeneous isentropic compression

Let us apply the basic hydrodynamic equations derived in Section 3.1 to the case of inertial
confinement. During the implosion, the compression of the target is nearly isentropic. Therefore,
the ideal case of a homogeneous isentropic compression of a shell target is of particular interest

to understand the implosion.

3.2.1 Lagrangian description of the flow

Let us use in this section a Lagrangian description of the flow. We write R, (ro,t) the position
at the time ¢ of the fluid particle initially at the position rg when ¢ = 0.
We consider a homogeneous (or uniform) compression of the shell. This means that every

elementary volume scales in the same way with time. Therefore,
Ry(ro,t) = h(t)ro, (3.41)

where h(t) is a time dependent dimensionless factor. This kind of assumption is often made in
astrophysics to describe the expansion or the contraction of a star [Chandrasekhar, 1957].

We denote with an underscore g(ro,t) the Lagrangian expression of a dependent variable
q(r,t). We also write with a subscript zero qo(rg) the profile of the dependent variable ¢ at the
time ¢t = 0. We have ¢(rg,0) = ¢(r0,0) = qo(r0)-

According to (3.41), the particle velocity is proportional to the radius

u(ro, t) = 8 Ry(ro,t) = h(t)ro. (3.42)

The hydrodynamic equations in the Lagrangian formalism are given in (3.26).
The conservation of energy (3.26¢) is fulfilled under the assumption that the flow is isentropic

for each fluid element :
p(ro,t)  po(ro)

p(ro,t)Y — po(ro)?’

(3.43)

Injecting (3.41) and (3.42) into (3.26a) we obtain the density expression

plro,t) = }f(ot():‘fl . (3.44)

Then using relation (3.43) we write the pressure as

p(ro,?) = hég((:ﬁ)v'

(3.45)
Now the equation of conservation of the momentum (3.26b) reads

1 dpo
poro dro

KU ()i (t) = (3.46)
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As the variables ¢ and 79 are independent, the two sides of the equation (3.46) must be

constant.

3.2.2 Time evolution of the flow

The left hand side of (3.46) gives

Bt () = =

72’

(3.47)

with 7 an arbitrary constant time and the right hand sign determines if the flow is accelerating

h(t) < 0 or decelerating h(t) > 0.

Expression of the scale factor h(t) The equation (3.47) can be written
. 1 R
h(t)h(t) = £5h(t) "I VR(). (3.48)
T

Then considering that 2(0) = 1 and A(0) = 0 we obtain by integrating (3.48)

.2 2
") = TG ),

- [h(t)j“‘”(j“) - 1] , (3.49)

which gives
,u,
n h2 dt
————dh=——, 3.50
2 \/E£(h* —1) T (3.50)
where p= (j+1)(yv —1).
This expression is easily integrable if ;1/2 = 1 — 1 which gives the condition v = J% +1. In
a spherical case j = 2, the condition is v = 5/3. This corresponds to the equation of state of a
fully ionized plasma.
For simplicity, we assume that j = 2 and v = 5/3 in the following sections. The integral of
(3.50) gives
t

h(t) =4 /1+ ()2 (3.51)

T

Acceleration case The sign minus corresponds to an accelerating flow toward the center.
When ¢t = 7 the target collapses and attains an infinite density and pressure. This is called
a cumulative flow. Of course, near the collapse time, the flow is unrealistic. But for earlier
times, this solution is close to the flow in ICF targets. The parameter 7 represents the time of
the implosion. It can be approximated by 7 = Rg/Uimp where Ujmp is the maximal implosion
velocity and Ry, is the radius of the shell at the beginning of the acceleration phase ¢t = 0. This

time moment corresponds to the first shock breakout time ¢4 (see Section 2.3.1).
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Figure 3.3: Particle position evolution in an accelerating shell (a) and a decelerating shell (b).

Deceleration case The sign plus corresponds to a decelerated flow, converging if t < 0 and
diverging if ¢ > 0. At t = 0 the velocity is zero. This can be used to describe the deceleration
and stagnation phase of the target. The time ¢ = 0 corresponds thus to the stagnation time
tstag- One can set T = Rgqg/Uimp With Rgqg the shell radius at the stagnation time ¢t = 0. Then

the initial velocity of the shell for ¢ = —00 is Uimp.

Figure 3.3 presents the shell radius position as a function of time r/rg = h(t) for the two

cases.

3.2.3 Density and pressure profiles

The radial profiles of density and pressure are conserved with time. They obey to the relation
issued from the right hand side of (3.46) :
1 dpo(ro) 1

_ =+ .52
po(ro)ro dro 72 (8:52)

If the shell is accelerated, then the sign of the right hand side is negative and the pressure
is increasing with the radius. On the contrary, if the shell is decelerated, the pressure decreases
with the radius.

To solve this equation, one more assumption is needed. We consider that the flow is radially
isentropic,

Po(ro)
A4 —_— = 3.53
To, pQ(T0)5/3 Qp, ( )

where ag is a constant, called the adiabat of the shell.
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Then by integrating (3.52) we get the expression

1/ rout 2 70 2\1%
1+ - 2 1— .54
3<Cout7—) ( (Tout> )] (35 )

where poy: and cyyy are respectively the external pressure and sound velocity at the radius 7.

We express 7 depending on the pressure p;, at the inner radius of the shell r;,

1 2y Di : Bout
) =4+ < n > -1 %, (355)
T v+1 Pout Tout — Tin

The expression of the pressure becomes

1+ (pin )
Pout

ol

Po (TO) = Pout

(S]]
|
—_
~—
Y
=
S Sto
|
< |3

2
g“) , (3.56)
— Tout

the density pressure is then

(SIS

po(T0) = pout (3.57)

1N
|
—_
~
7 N\
=3
= Sto
|
< |3
)

() ()
Pout — Tout

and the sound speed reads

Co (TO) = Cout

14 [ (Gn Cg) (e 1m (3.58)
Cout Tzzn - r?)ut ‘ ‘

Density, pressure and entropy profiles represented in Figure 3.4.

In the case of an accelerated flow, one can assume that the pressure is zero at the inner radius
pin, = 0. This hollow shell solution was first proposed by Kidder [Kidder, 1976]. It has been
studied in the early ICF research to understand the relation between an isentropic compression
and the laser pulse shaping. Indeed, one can calculate the mechanical power at the outer surface
of the target Ppech = p(Tout,t) dV/dt with dV = 47 R? dR being the volume variation and using
(3.51):

~—

R(?;pout (%
T (1 —(

Pmech = 47T(R0h)2(pouth_5)Roh =47 (359)

)2)?

A

This gives the laser pulse power law for the ramp between the pre-pulse and the main pulse
allowing to maintain a constant entropy in the shell (see Section 2.3.1). This mathematical

model will be used in Chapter 5 to describe the ignitor shock propagation in the imploding
shell.
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Figure 3.4: Radial profiles of pressure (purple line), density (blue line) and entropy (orange line)
in the isentropic case for an accelerating shell (a) and a decelerating shell (b).

3.3 Basic physics of shock waves

A shock wave is the propagation of a discontinuity of pressure, density and velocity. It appears
when a compression wave breaks down as it was illustrated in Section 3.1.4. The shock velocity

relative to the upstream medium velocity is then higher than the upstream sound velocity c,.

3.3.1 Rankine-Hugoniot relations

The shock induces an increase of the pressure, the density and the velocity downstream its
front. We write U, the shock velocity in the laboratory frame. The link between the upstream
quantities (subscript u) and the downstream quantities (subscript d) are obtained with the

conservation laws for the mass, the impulsion and the energy:

PAWd = PuWuy, (3.60a)
P+ pawg = pu + puwi, (3.60D)
1 1
palea + 5w3) + Pa = puleu + Fwy) + pu, (3.60c)

where w is the flow velocity relative to the shock velocity wy, /g = ty/q — Us.

This system of equation is known as the Rankine—Hugoniot relations.
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In the ideal gas case, € = ﬁ. The Rankine-Hugoniot relations can then be expressed as

pi _ wa (v + 1M

Pd _ = N )Ts .61
pu  wg (y—1)M2+2’ (3.61a)
Pd 2y 2
— =14+ —(M;-1), 3.61b
Pore Loy (3.61b)
where the shock Mach number is defined as
US u
M, = = “ (3.62)

As the Mach number tends to infinity the pressure ratio also tends to infinity. On the

contrary, the ratio of densities tends to a finite limit lim 24 = 2+

= Thus the compression of
-1
Ms—o0 Pu v

the fluid with a shock wave is limited. For v = 5/3, it is not possible to compress more than
four times a medium with a shock wave.
3.3.2 Hugoniot adiabat - entropy deposition

Combining equations (3.61a) and (3.61b), we express the shock strength

pa _ (v 4+ Dvu = (v = Dvg
pu (v +Dva— (v —Dovu

(3.63)

with v = 1/p the specific volume. The curve of this equation in the plane (p,v) is called the
Hugoniot adiabat. Tt is the locus of all possibles states (pg,v4) behind the shock depending on
the upstream state of the gas (py,v,). The transformation through a shock wave is strongly
irreversible and this leads to an entropy increase. In an isentropic transformation the state
of the flow evolves on the Poisson adiabat pv” = pyv,. In the same figure (Figure 3.5) the
Hugoniot curve (H,) is plotted along with the isentropic curve (S,) for compression. These
curves originate from the same point A.

In the neighborhood of the initial state (py,v,) the two curves are close to each other. This
means that a weak shock generates a small entropy. The state after several shocks is different
from the state achieved with a single shock. Figure 3.5 shows an example of the path in the
(p,v) plane with three weak shocks. We can see that it is possible to follow a quasi-isentropic
compression in this way. At same final pressure, the compression is higher with several shocks

than with one single shock.
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(Hp) (Ho)  (Hy)

In(p)

In(v)

Figure 3.5: In the (p, v) plane : isentropic transformation from A to B (S,) and Hugoniot curves
starting from A, C and D (respectively (H4), (He) and (Hp)).
3.3.3 Shock polar curve

After some algebraic manipulations with (3.61a) and (3.61b) it can be useful to express the

Rankine-Hugoniot relations as a relation between the flow Mach numbers and the shock strength

1
2(Bd —1)? 2
Ud _ Uu +s< Gy — 1) 1)> , (3.64a)

PE 1) + (B -

where the sign of s = +1 is the sign of the shock velocity.

The curve defined by this equation in the plane (p,u) is called a shock polar. It passes
through the point representing the upstream state of the flow (p,,u,) and depends on the
upstream sound velocity ¢,. This representation of the shock transformation is useful to study

the interaction of a shock wave with a discontinuity as we will see in the next section.

3.3.4 Interaction of a shock with a discontinuity

In this section, we discuss various interactions between a shock wave and a discontinuity.

3.3.4.1 Shocks collision

A collision between two shocks with opposite velocities generates two new shocks propagating
in the opposite directions. The flow resulting from the shocks collision has a higher pressure
and a lower velocity than the flow behind the two incoming shocks. The collision converts the
kinetic energy of the incoming shocks into internal energy and thus enhances the transmitted

shock pressure.
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Figure 3.6: Shock pressure profiles : 1- before the collision, 2- after the collision

To simplify the problem, we assume that the two shocks propagate in a medium at rest. The
theory presented below could be easily extended to the case of a moving medium by changing
the reference frame. The states just before and after the collision are represented in figure 3.6.
We call A the state behind the shock with the pressure p,, the density p, and the positive flow
velocity u, and B the state behind the shock with the pressure py, the density p, and the negative
flow velocity u;. Between the two shocks, the pressure pg and density pg are uniform and the
velocity is assumed to be zero. We introduce the dimensionless pressures z,p . = Dap.c/Po and
velocities Mg p e = Uq p.c/Co-

By using the Rankine-Hugoniot relations (3.64), the state in front and behind a shock wave

must be on the polar curve in the plane (z,m). The polar H, of the two shocks before the

N 2(z — 1) 2
Hoim= (’72(Z+1)+7(Z—1)> ’ (3:65)

collision is given by

where s equals to 1 or —1 depending on the velocity sign of the shock.
The curve Hy shown in figure 3.7 goes through the point O = (1,0) which corresponds to the
state between the shocks. The state A = (z4, M) and B = (zp, my,) are placed on both branches

of the curve depending on the incident shock strengths (z,, 25) and on the shock velocity signs
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Figure 3.7: Polar curves of the collision of the shocks A and B propagating into the state O with
v =5/3. The flow after the collision is in the state C.

(Sa, Sb)-

After the collision, a discontinuity interface is created. Across this discontinuity the pressure
and the velocity is continuous, whereas the density can be discontinuous. Therefore, the pres-
sures and velocities downstream each shock after the collision must be equal. In the (z,m) plane,
the states behind the two shocks after the collision are placed on the same point C. However,
those shocks must rely on their own polar curves emerging from the points A and B. The state
C after the collision is at the intersection of the polar curves H, and Hp starting respectively

from A and B given by the equations

(3.66)

)

[\)
N——
ol
+
3
IS}
&

with mg, the abscissa given by (3.65) of A and B

1
2(zap — 1)° >
o 7 3.67
ab = Sab <72(2a,b + 1) +v(zap — 1) oo

and cqp the sound velocity calculated from (5.23) and ¢ = \/yp/p

R CES R RN
co_<a7(za+1)+(za—1)> ' (3.68)

The equation H, = H; where z is the unknown is of the fifth degree and is not solvable
analytically. However, it can be solved graphically. An example of the graphical solution of this

problem is illustrated in figure 3.7.
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Figure 3.8: Pressure after the collision between two shocks with v = 5/3

The calculated post collision dimensionless pressure z. = p./pp depends on the incoming
shock strengths (zg, 2p) is represented in Figure 3.8. The most effective enhancement (requiring
lower z, + z) is obtained for z, = z,. Then, all the kinetic energy is converted into internal
energy and the flow velocity between the shocks just after the collision is the same as before.

In this case z. is given by

Zc 2 %
( 2(zb 1) 1)) _ my (369)

Y(EA4D) (2 - cy/co’

We note that the largest gain in this case can be obtained in the limit z, = 2z, — oco. It
corresponds to z./z, = (37 —1)/(v — 1) which is equal to 6 if v = 5/3.

The shock pressure amplification X oy = 2¢/z, is represented on Figure 3.9.
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Figure 3.9: Pressure amplification in the collision X oy = 2¢/z, with v = 5/3. One can notice
that the amplification factor tends to the limit X.,; = 6 at the upper right corner of the figure
where 2z, = 24 > 1

3.3.4.2 Surface discontinuity

We now consider a unique shock traveling from the left to the right interacting with a contact
discontinuity (CD). Before the interaction, the interaction zone is divided in three parts. The

non shocked medium has a pressure pg and we assume that the velocity is zero.

On the left of the discontinuity the density pg 1 is different from the density pg 2 on the right

of the discontinuity. We write
T = po,1/po,2 (3.70)

the density ratio across the interface.

The polytropic index + is assumed to be the same in the two media. Here again, we will use
the dimensionless pressures z,, = pq/pPo and velocities mgqp = uqp/co1. We would like to draw
the reader attention to the fact that here, the reference velocity cy; is the sound speed in the left
medium. The point O = (1,0) represents the initial state in the plane (z,m). The downstream
state of the incoming shock is given by the pressure p,, the density p, and the velocity u, and

is represented by the point A = (p,/po, uq/co1) in the plane (z,m).

After the interaction, two final states are possible : a) a reflected and a transmitted shock
waves, b) a reflected rarefaction wave and a transmitted shock wave. Figure 3.10 shows schemat-
ically the pressure profiles before and after the interaction. In any case, a shock is transmitted.
At the discontinuity interface, the velocity u; and the pressure p, are continuous but the den-
sities on both sides can be different (py; # ppy). We write B = (py/po, up/co1) the state just
behind the transmitted shock.
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Figure 3.10: Shocks pressure profiles in the interaction of a shock wave with a contact discon-
tinuity: 1- before the interaction , 2- after the interaction with a) the case of a reflected shock
wave and b) the case of a reflected rarefaction wave.

The polar curve of the incoming shock is

How2m = <v2<z+2(1z>_+17)<2z—1>>2‘

As the sound velocity is not the same across the discontinuity , the polar curve of the transmitted

(3.71)

shock is

2z — 1) :
Ho =i o) (3:72)

The polar curves of the incoming shock and of the transmitted shock pass both through the
point O. However, the slopes of those curves differ by a factor of \/z. One polar curve is over
the other polar curve. If the density of the right medium is higher than the density of the left
medium z < 1, the point A is on the lower polar curve and the point B must fit on the upper
curve. In this case, the reflected wave is a shock wave and the two points A and B are linked by

a third polar curve. The equation of the reflected shock polar curve (H,) is (3.66) with s, = 1.
The point B is at the intersection of the curve H, and the curve H,s.

Now if x > 1, the point A is on the upper polar curve and the point B is on the lower
curve. A reflected shock propagating into the medium A would be represented by a polar curve

emerging from A that would never reach the point B. In this case, the transmitted wave is a
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Figure 3.11: Polar curves of the interaction of a shock A propagating into the state O with a
contact discontinuity surface. The transmitted shock is in the state B. The reflected wave may
be a shock or a rarefaction wave depending on the density ratio x.

rarefaction wave. According to (3.34) we have

2 2
y— 1Ca, =Uu— ﬁc. (373)

Ug —

As the rarefaction wave is an isentropic transformation ¢/c, = (p/ps)0~1/?7.

Then using the dimensionless quantities, all the possible states along the rarefaction wave

y—1
Ra:m:ii (Z)Q’Y—l
601’)’_1 Za

The state B in this case is at the intersection of the curve R, and the curve H,,. Figure

fulfill the equation

+ myg. (3.74)

3.11 shows two examples of the graphical resolution of the problem, one in the case x < 1 and
one in the case z > 1.

We calculated the shock pressure amplification Xcop = 2p/2, depending on the density ratio
x and on the incoming shock strength z,. The results are presented in Figure 3.12.

The transmitted shock pressure is lower than the incident shock pressure if x > 1 and
higher than the incident shock pressure is x < 1. For a high density ratio at the interface and
a low incident shock strength, the shock pressure amplification factor depends mainly on the
incident shock strength. On the contrary, for a high incident shock strength, the shock pressure

amplification factor depends only on the density ratio at the interface.
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Figure 3.12: Shock pressure amplification Xcp = z/2, through the interaction with a contact
discontinuity surface with v = 5/3

3.3.4.3 Overtaking shocks

The case of a shock overtaking another shock results in a transmitted shock wave. For v < 5/3
the reflected wave is always a rarefaction wave. For v > 5/3 the reflected wave may be a shock
wave or a rarefaction wave. Figure 3.13 shows schematically the pressure profiles before and
after the interaction between the two shocks.

The initial medium is again represented by the point O = (1, 0) is the plane (z,m). The point
A representing the state behind the first shock is placed on the polar curve (H,) of equation
(3.65). The point B representing the state behind the second shock is placed on the polar curve
emerging from A of equation (3.66) with s, = 1.

When the two shocks coalesce, a contact discontinuity surface is created. Again the pressure
and velocity must be continuous. The states behind the transmitted wave and the reflected
wave rely on the same point C in the plane (z,m). The transmitted shock is propagating in
the unperturbed medium, the point C must be on the polar curve (Hy). The reflected wave
propagates in the medium B, thus the point C must also be on a shock polar curve or an
isentropic rarefaction transformation curve emerging from the point B. If the (H,) curve is over

the point B (case (a) in Figure 3.14) the point C is linked to the point B by a rarefaction wave

transformation of equation
9 =1
2
R=_ % % <<Z> T 1) g (3.75)
coy—1 2p
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Figure 3.13: Shock pressure profiles in the coalescence of two shock waves : 1- before the
interaction , 2- after the interaction with a) the case of a reflected rarefaction wave and b) the
case of a reflected shock wave .
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Figure 3.14: Polar curves of a shock A propagating into the state O overtaken by a faster shock
B. The transmitted shock is in the state C. The reflected wave may be a shock or a rarefaction
wave depending on the polytropic coefficient ~.

with .
24 1) — (-1 2
& _ Ca QV(ZZG ) (Zz” ) (3.76)
co  co\Za YL+ +(2-1)
and
my = —S2(2 _ 1) 2 Cm (3.77)
T a'a \FEFDE-p) T |

If the (H,) curve is below the point B (case (b) in Figure 3.14), the point C is linked to the

point B by a polar shock curve of equation

N Y 2 : m
Hy - m=—=( 1)(72(;“”7(;_1)) + myp. (3.78)

The configuration depends on 7, z, and z,. Figure 3.15 and Figure 3.16 show the shock pres-
sure amplification factor when it overtakes a first shock for v = 5/3 and v = 3 receptively. For
~v = 5/3, the reflected wave is a rarefaction wave and the pressure is lower after the coalescence.
In the case of v = 3, there is a region where the reflected wave is a shock wave (for z;/z, < 4).
In this region, the amplification factor is higher than unity. For z,/z, > 8 the reflected wave
is a rarefaction wave. For 4 < z,/z, < 8, the reflected wave is either a shock or a rarefaction
wave depending on z,. In the case of high first shock strength z, > 1, the amplification factor
depends only on the second shock strength and ~.
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Figure 3.15: Shock pressure amplification X oq; = 2¢/2p when the shock overtakes another shock
in a medium with v = 5/3. It depends on the first shock strength z, and on the second shock
strength zp/z,.
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Figure 3.16: Shock pressure amplification Xoq; = 2¢/2, when the shock overtakes another shock
in a medium with v = 3. It depends on the first shock strength z, and on the second shock
strength z,/z,.

86



3.3.4.4 Interaction with a rarefaction wave

Let us consider a shock of a given strength, propagating from the left to the right. It encounters a
rarefaction wave also of a given strength propagating from the right to the left. The transmitted
wave is a shock wave and the reflected wave is a rarefaction wave. Figure 3.17 sketches the
interaction process.

Both incoming waves propagate in the initial flow represented by the point O = (1,0) in
the plane (z,m). The state A of the shock wave relies on the polar curve (H,) of equation
(3.65). The state behind the rarefaction wave relies on the isentropic transformation curve R,
of equation

2 =1
R, : mzi(z% —1). (3.79)
v—1
The locus of all the possible states for the transmitted shock (Hy) is defined by the equation

. _ G 2 2 2 "
Hy, : m=—(— 1)(72(;+1)+7(;b_1)) + myp, (3.80)

a,b

2 —
my = —— (zbv%fl - 1) (3.81)
Y

and the sound velocity ¢, is expressed according to (3.73)

(=1)
Cb 2y
— = . 3.82
co Zp ( )

All possible states behind the reflected rarefaction wave (R,) are defined by the equation
(3.74). The velocities and pressures behind the two generated waves after the interaction are
the same and represented by the point C in the plane (z,m). The point C is the intersection of
(Hp) and (R,) (see figure 3.18).

The resulting shock pressure amplification factor Xr = 2./z, is plotted in Figure 3.19. For
a given rarefaction wave, higher is the strength of the incident shock, lower is the amplification
factor.

In this section, the basic equations describing a shock wave are given. They allow to describe
the flow quantities jump at the shock front. The description of the flow behind a shock wave is
done by coupling the hydrodynamic equation presented in the previous section with the Rankine-
Hugoniot relations at the shock front. In most of the cases, the problem is hard to solve and
simplifications are needed. The next section gives several approaches for the description of
a shock wave in a spherical geometry which is of a particular interest for the shock ignition

analysis.
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®

Figure 3.17: Pressure profiles in the interaction of a shock wave and a rarefaction wave:

before the interaction , 2- after the interaction.
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Figure 3.18: Polar curves of a shock A interacting with a rarefaction wave B. The transmitted
shock is in the state C. The reflected wave is a rarefaction wave.
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Figure 3.19: Shock strengthening in the interaction with a rarefaction wave for v =5/3

3.4 Spherical shock wave

Spherical converging shock waves have been a subject of interest since a long time. The very
high density and temperature at the moment of the collapse could be used to ignite nuclear or
chemical reactions. A lot of papers have been published on this subject. We propose here a
short review of the main results on this topic.

As the converging shock wave is a strongly non-linear phenomenon, it is difficult to describe
it with an analytical solution. One may simplify the problem by making strong assumptions. It
is possible for example to assume that the problem is invariant under a defined transformation.
Such solutions are called self-similar solutions and they may exist under specific boundary and
initial conditions. It is also possible to neglect the flow behind the shock. Then the quantities
can be described along the shock front. Some authors prescribe a specific form of the solution to
simplify the problem. In any case, there is no analytical solution describing a converging shock

in a general case. We present in this section some of the methods stated above.

3.4.1 Self-similar solution

A set of equations could present symmetry properties and be invariant under particular trans-
formations [Sédov, 1977, Coggeshall and Axford, 1986, Hydon, 2000]. Transformation examples
with a physical meaning are translation, stretching, rotation or projection. A basic example is
the equation of a circle, which is invariant under a rotation around its center. By considering
solutions invariant under a set of transformations, one could make an assumption concerning
form of the solutions and simplify the set of equations. Basically, the set of partial differential
equations (3.24) could be reduced to a system of ordinary differential equations.

The solutions of the hydrodynamic equations (3.24) could be represented in a 5 dimensional

space : r,t,p,c and u. An infinitesimal transformation generator is a linear combination of the
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partial derivatives in this space. Finding the transformations for which a set of equations is
invariant is considered in the Lie group theory. Here we expose only the transformation leading

to the scale invariant solutions [Atzeni and Meyer-Ter-Vehn, 2004]
U=Us+asUs + aspUsp7 (383)

which is a combination of the time stretching

Ust = t@t - u@u — 086, (384)
space stretching
Usr = 10, +u0y + c0: — (j + 1)p0,, (3.85)
and density stretching
Usp = p0,. (3.86)

The form of the self-similar solution under the transformation of the generator U = &,.0, +

§t0r + £u0y + £:0: + £,0, is found by integrating the characteristic equations

dr dt du dc dp

e e e e o 3.87
fr ft éu gc gp ( )
Using the generator (3.83), the characteristic equations become
dr dt du de dp
asr  t (asr — Du  (ag — 1)e (asp— (j + Dasy)p’ (3.88)
This leads to the solutions in the form :
_ (r/r0)
€ - (t/T)om (389&)
p(rt) = po(r/ro) G (&), (3.89b)
r/T
u(r,t) = uot//TOU(f), (3.89¢)
e(ryt) = uomC(ﬁ). (3.89d)

t/T

The new functions U, C' and G depend on only one independent variable £ called the self-
similar coordinate. The parameters a and k should be found to fulfill the boundary conditions.
The parameters rg , 7, up and py are characteristic problem values in unit of length, time,

velocity and density respectively.

In this way the set of partial differential equations (4.1) could be transformed into a set of

ordinary differential equations. The function G(&) has an analytical expression. The functions
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U and C' can be integrated from two equations of the form

AU A(U,Ca)  dlné  A(U,0)
dC ~ A (U,Coa)’  dC ~ AU, Ca)

(3.90)

with A, A; and As non-linear functions.

The boundary conditions must be invariant under the similarity transformation. After the
transformation, the boundary conditions become initial conditions and apply for constant values
of €. Thus shock position or material boundary positions follow lines of a constant &.

As the shock front corresponds to a fixed value of £, the relation (3.89a) gives the converging

shock front position

Ry(t) = Ro(r) () (3.91)

with R,(7) the shock position at a given time 7. The shock pressure p = ypc?, can be expressed
using (3.89)

2(1-1/c)
RS) , (3.92)

po(R) = ps(Ro) <RO

with ps(Rp) the shock pressure at a given position Rj.

The equations become singular where A, A; and As vanish or become infinite. The plane
(U,C) is divided in two parts by the sonic line of equation U + C' = 1 where A = 0. If the
solution crosses this line, it must pass through a singular point where the three functions A, Ay
and Ag vanish in order to have dIn¢/dC # 0. Otherwise the solution is double valuated for
one value of £ which is not physical.

It exists an infinity of solutions depending on the value of the parameter o [Oppenheim et al.,
1972]. Figure 3.20 shows the solutions (U, C') obtained for several values of « with v = 5/3. The
unique solution of a given problem depends on the initial and boundary conditions. When o = 1
the shock has a constant velocity. The Taylor—Sedov explosion [Taylor, 1946, Sédov, 1946] from
a point-like source with a given energy is described with a = 0.4. The curves in the zone (1) are
attracted by the singular point (U = 1,C = o). The arrows indicate the direction of increasing
&. In this zone the coordinate £ is increasing toward the shock position. This means that the
solution corresponds to an explosion. Also, the limit C' +— oo corresponds to an infinitely high
temperature, thus it corresponds to the explosion driven by a hot piston. In the same way we
can see that the curves in the zone (2) describe a shock driven by a cold piston (C + 0). The
curves in the zone (3) stop at singular points where U and C' are finite. As ¢ tends to infinity in
those points, those implosions are driven from infinity by an infinite temperature and an infinite
velocity. In the zone (4), the curves go toward the point P; = (0,0) which corresponds to a
finite boundary conditions far from the origin. They cross the sonic line where the solutions
become singular. Thus those solutions are not physical, except from the particular solution with
a = 0.69 which is the Guderley’s solution.

Guderley [Guderley, 1942] was the first to use this self-similar solution to describe a converg-

ing shock. He assumed that the shock strength is high and that the upstream sound velocity is
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Figure 3.20: Physical meaning of the solution depending on the parameter a. The point A
represent the state behind a shock. The arrows indicate the direction of increasing &.

negligible. Moreover, he considered that the upstream density is homogeneous with kK = 0. He

obtained the boundary conditions represented by the point A in Figure 3.20:

2y(y - 1) _o+1 _1l-9
ICESC G(&) = oy L U(&s) = o (3.93)

with &5 being the value of £ at the shock front.

C(és) =

In the problem of Guderley, the shock is generated by a piston having a finite velocity and
a finite temperature far from the origin. The solution links the point A to the point Py = (0,0)
in Figure 3.20. It must cross the sonic line where the equations are singular. This is possible
only through one point, where the both numerator and denominator vanish in the equations.
The exponent « cannot be determined by the dimensional considerations alone. It must be
iteratively calculated so that the solution does not undergo any singular behavior apart from
the shock position. The problem consists then to solve a non-linear eigenvalue problem, and the
solution is qualified as a self-similar solution of the second kind. For v = 5/3, the value of the

parameter « is o = 0.688.

The parameter « value was calculated with an increasing accuracy by several authors [Lazarus
and Richtmyer, 1977, Lazarus, 1981, Butler, 1954, Brushlinskii and Kazhdan, 1963, Stanyukovich,
1960]. In particular, Lazarus [Lazarus, 1981] gives a complete analysis of the self-similar solu-
tions describing a strong convergent shock or of a cavity implosion in cylindrical and spherical
geometries. He describes each singular point and explores several values of the parameter «

depending on 7. He also describes more exotic problems like several shock fronts or problems
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including a free surface.

The solution of Guderley has been extended to more general problems. For instance, the
propagation of a shock wave in a non uniform medium was studied in Refs. [Yousaf, 1985, Ramu
and Rao, 1993, Toqué, 2001] and the vibrational relaxation of a diatomic gas - in Ref. [Sharma
and Radha, 1995].

Other authors tried to evaluate the parameter a by using physical or mathematical assump-
tion. Mishkin and Fujimoto [Fujimoto and Mishkin, 1978] assumed that it exists a pressure
maximum behind the converging shock and used this argument to find a value for a. Chis-
nell [Chisnell, 1997], proposed an approximate analytical solution based on a simple trial func-
tion of the form Cp = f(U,«,~). This function is defined to keep the limit behavior of the
Guderley solution in the vicinity of Py and to avoid the singularity in P;. He also imposed a

positive gradient of the solution C'(U) in P53 and the boundary conditions in A.

A phenomenological method was used by Chisnell [Chisnell, 1957] and Chester [Chester,
1954] to study the dynamics of a converging shock wave. They consider that the shock is
propagating into a channel divided into infinitesimal layers of varying area section or density.
The incident shock refracts at the discontinuity surfaces. The conservation laws across the
shocks and contact discontinuities give a relation between the shock Mach number and the
cross-section area or the density variation. The results obtained with this method were also
found by Whitham [Whitham, 1958] but with another approach. The author approximated
the shock dynamics by using conservation equations in the characteristic form and by assuming
that the shock follows a characteristic path. The main limitation of these methods is that the
influence of the flow behind the shock is neglected. This approximation is called the “freely
propagating shock wave” or the “CCW” (Chester - Chisnell - Whitham) approximation and will

be expanded on below.

3.4.2 Freely propagating shock wave

Whitham considers a shock propagating into a tube of a varying cross-section area A(zx) initially
at rest and homogeneous. He uses the characteristic form of the conservation equations (3.24).

The CT characteristic reads
pc? dA _0

d d - =
p + pc u+u+c 2

(3.94)

ondx/dt =u+ec.

Whitham assumes that the shock position is close to the CT characteristic. The Rankine—
Hugoniot relations (3.61) are injected into the characteristic equation (3.94). This leads to an

equation for My as a function of the tube area A

i = —g(M;) (3.95)
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where g(Mj) is the following function

M, 21— 1
M) = 1 1420+ — 3.96
g(M:) M3—1<+’v+1 f ><+M+M3> (3.96)

(y=1)M2+2
2yMZ—(v-1)

This function can be integrated numerically a first time to obtain the shock velocity as a

with p = the downstream relative shock Mach number.
function of the position and a second time to obtain the shock position as a function of time.
Once this is known, the flow quantities just behind the shock are evaluated with the Rankine—

Hugoniot relations.

In the freely propagating shock wave approximation, the interaction of the shock with the
downstream flow is neglected. This assumption is better suited for imploding shock waves than
for the expanding ones. Chisnell, in a more accurate model, evaluated the influence of the
geometrical effects on the downstream flow and the influence of the downstream flow on the
shock. He found out that for the imploding shock wave, the Witham model is quite accurate
and that the correction could be neglected. However, the CCW approximation is not sufficiently
accurate in the case of a varying density in front of the shock. Indeed, Hayes [Hayes, 1968] found a
discrepancy of 15% between the computed shock dynamics equation and the self-similar solution
in the case of a diverging spherical shock in an exponential density profile. Similarly, Sakurai
[Sakurai, 1960] found an error of about 10% in the case of a power-law initial density profile.
By using the Guderley’s self-similar solution, Yousaf [Yousaf, 1978] included the overtaking
disturbance behind the shock in the CCW approximation. He also calculated a correction to
the shock dynamics equation for an exponential and a power-low density profiles in front of the
shock citeYousaf85.

Whatever the initial conditions of a converging shock wave are, the flow approaches asymp-
totically the self-similar solution in the neighborhood of the collapse point. To describe a flow
with specific boundary conditions in a domain larger than the vicinity of the center of implosion

one needs to consider non self-similar solutions.

3.4.3 Quasi-self similar solutions

Van Dyke et al. [Dyke and Guttmann, 1982] described a converging shock driven by a piston
by using analytical series. The zeroth order term corresponds to a plane problem and the high
order terms account for the spherical effects. In the same way, the counter pressure upstream
the shock appears through the Mach number in the boundary conditions and deviates the flow
from the self-similar solution. Oshima [Oshima, 1960] described a diverging shock wave with
three approximations depending on the Mach number : strong, intermediate and weak shock.
For intermediate Mach numbers, the author used successive instantaneous self-similar solutions
of a constant Mach number and obtained a “quasi—self-similar” solution. The parameter « is

calculated for each instantaneous step for a given Mach number. The similarity relations are
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also modified. For example, the function G is expressed as the product of two functions
G(§, M) = X(§)Y (M) (3.97)

By implementing this separation of variables, the Euler’s partial differential equations were

transformed into a system of ordinary differential equations where the shock Mach number

appears as a parameter. Oshima defined \ = ilﬁgj as the amplification factor which depends

on the shock Mach number. For a given Mach number, the equations are integrated in the same
way as the self-similar solutions presented above (Section 3.4.1). The parameter A plays the
same role as the parameter « in the Gudelrey’s solution. It is calculated iteratively for a given
Mach number. As the Mach number varies with time, the time is discretized. At each step, the
problem is solved, the shock trajectory is found and the Mach number of the next time step is
computed.

Lee [Lee, 1967] applied the same method for a converging shock and Axford [Axford and

Holm, 1981] extended this method to a more general equation of state.

3.4.4 Series form solutions

Sakurai [Sakurai, 1953] proposed another method to describe a diverging shock wave with a finite
upstream pressure. He expressed the solution in a power series of the shock Mach number M 2.
The zeroth order term of his solution corresponds to the self-similar solution of Taylor—Sedov for a
point-like explosion. The mathematical proof of existence of this solution has been demonstrated
by Takahashi [Takahashi, 2009]. The series form generalization of the Guderley imploding shock
problem was suggested by Hunter [Hunter, 1960] and performed later by Welsh [Welsh, 1967]
in the context of a cavity collapse. However, in the Welsh work, only the converging phase was
studied.

In a same way, Ponchaut [Ponchaut et al., 2006] extended the self-similar Guderley’s solution
by using the solutions in a series form. Higher order terms allowed him to describe a shock of
intermediate Mach number. He also calculated the solution for a small Mach number and by
merging these two solutions with the characteristic method, obtained an “universal” solution

[Hornung et al., 2008] for imploding shock waves.

3.5 Conclusion

In this chapter, we gave a number of basic results which are useful for the development of the
theory in subsequent chapters. We stated the governing equations for an ideal compressible gas
flow which are the conservation of mass, of momentum and of energy. They are expressed in
several useful forms : Eulerian, Lagrangian, and characteristics form. Also the particular case
of a homogeneous isentropic implosion is presented. This ideal case can be used to describe the
shell implosion and will be employed in Chapter 5.

Basic equations governing shock waves were next presented. The most important are the
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Rankine-Hugoniot relations which are the starting point for many analysis in this thesis. The
compression behind a shock is limited. A better compression of the matter is achieved by several
weak shock waves. Then, the compression is nearly isentropic. In ICF implosion, the entropy
in the target must be minimized (see Section 2.3.1). The optimal laser pulse would generate an
ablation pressure that follows the Kidder law (3.59) given in Section 3.2. However, for technical
reasons, this isentropic compression is often approached with several shock waves. The laser
pulse consists then in three or four “pickets” instead of the continuous ramp described in 2.3.1.
Nevertheless, in this thesis, the ideal case of a homogeneous isentropic compression will be con-
sidered.

The interaction of a shock wave with a discontinuity cannot be described analytically (except
for specific cases). However it can be solved graphically. We presented maps where the shock
pressure amplification through the interaction with a discontinuity can be read. This will be
useful in Chapter 5 and in Chapter 6 where such interactions are analyzed.

Lastly, the mathematical methods that can be used to describe the shock wave propagation in a
spherical geometry were outlined. The series extension of a self-similar solution and the “CCW”

shock dynamics approaches will both be revisited in the next two chapters.
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In this chapter we focus on the propagation of the ignitor shock in the target hot-spot at the
end of the implosion. The shell is considered as a piston and we assume that the inner radius
of the shell follows a particle trajectory. The aim is to define the ignition conditions for shock
ignition.

We describe the flow in the hot-spot as the ignitor shock converges and diverges in it (Sec-
tion 4.1). The final state of the hot-spot is related to the initial conditions when the shock just
enters in the hot-spot. The initial shock Mach number is shown to be an important parameter.
The effect of the initial shock Mach number on the shock coupling to the hot-spot is analyzed in
Section 4.2. By requesting ignition conditions at the exit time of the shock, an ignition criterion

based on the initial conditions of the shock and of the hot-spot are expressed in Section 4.3.

4.1 Spherical shock wave with a finite Mach number

It is possible to use the self-similar solution of Guderley to describe the converging and the
diverging phase of a spherical shock. However, as it is explained in Section 3.4.1 the bound-
ary conditions have to remain invariant under the self-similar transformation. The boundary
condition in the present problem are the Rankine-Hugoniot relations at the front shock. The
self-similar solution of Guderley applies only for an infinite Mach number. This means that
the upstream sound velocity is neglected compared to the shock velocity. Figure 4.1 shows the
evolution of the pressure ratio at the shock front as it propagates in a typical imploded target.
We can see that it remains moderate in the shell and fall to about 1.5 when the shock enters
the hot-spot. Then it increases due to the convergence effects at the very center of the hot-spot.
This means that while describing the shock propagation through the whole hot-spot, the initial
pressure, and therefore the initial sound velocity, cannot be neglected. We present in this Sec-
tion a description of the flow induced by a shock wave of a finite initial Mach number My, in a
homogeneous gas sphere. Our approach is based on the method developed by Sakurai [Sakurai,
1953] and Ponchaut [Ponchaut et al., 2006]. We calculate a linear correction of the Guderley’s

solution and analyze the physical meaning of the finite Mach number correction terms.
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Figure 4.1:

Pressure gradient evolution during the deceleration phase of the shell (left panel)

and evolution of the pressure ratio along the ignitor path (right panel).

4.1.1 Basic equations

In this study we consider the converging phase, the rebound and the diverging phase of a shock
wave in a homogeneous sphere at rest. We use a 1D spherical formalism. The independent
variables are the radius r and the time ¢. The flow is characterized by the density p(r,t), the
fluid velocity u(r,t) and the local sound speed c(r, t) related to the pressure p(r,t) by the ideal
gas equation of state 2 = yp/p, where v is the specific heat ratio. The specific entropy is defined
as s =p/p.

The conservation laws of mass, momentum and energy are expressed by the Euler’s equations
(3.24) without dissipative effects:

2
Bp + O, (pu) + % — 0, (4.1a)
1
pOru + pudyu + ;876(02;)) =0, (4.1b)
e + udrc + 1= 108Tu + (v - 1)% = 0. (4.1c)

We consider a shock traveling into a medium initially at rest with a uniform density pg and
a sound speed cg.

The shock trajectory Rg(t) is a unknown of the problem. The reference time ¢t = 0 is chosen
at the collapse, thus Rs(0) = 0. At this time the shock velocity is infinite. The initial shock
velocity Usg, at the reference position Ry and the time —t.on, defines the initial shock Mach
number Mgy = Ugq/co.

The flow is driven by a piston of trajectory R, (t) which coincides with a particle path starting
at the position Ry. We consider R)(t) as the trajectory of the imploding shell. We define Ry, (t4;,)
the position of the shock when it exits from the compressed sphere and collides with the piston.

The entire domain (r,t) is divided into four sub-domains (D, D7, Drrr, Dry) represented
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in Figure 4.2. In the following, we indicate the number of the domain with a subscript in the

flow quantities if a relation is valid on only one domain, otherwise the function has no subscript.

r

_tCOHV

t=0 tdiv t

Figure 4.2: Sub-domains, shock path and particle path in the (r,t) plane: D - upstream in
the converging phase, D;r-downstream in the converging phase, Dyrr-upstream in the diverging
phase, Dy -downstream in the diverging phase.

The domain D; corresponds to the upstream flow ahead the converging shock. The gas in

this domain is unperturbed and

ur(r,t) =0, (4.2a)
pr(r;t) = po, (4.2b)
cr(r,t) = co (4.2c)

The domain Dy; corresponds to the gas downstream the converging shock. It is accelerated

toward the origin (ur; < 0). The discontinuities of the flow quantities at the shock front are
described by the Rankine-Hugoniot relations (3.61)

R -1
PIr _ 7+1[1+ 2 1MS_2] , (4.3a)
pPI Y- Y=

N 2 _

DI1 2y 2 1=,

— = —M |14+ —M, 4.3
= Lt )

where the hat signifies that the functions are evaluated on the shock position R4(t).

The domain Dy corresponds to the region upstream the diverging shock. This is the

same imploding flow driven by the converging shock as in the domain Dj;. Thus, we impose

a continuity condition on the flow quantities at the boundary between Dj;; and Djrr at the

collapse time t = 0O:

pr1(r,0) = prr1(r,0), (4.4a)
urr(r,0) = urrr(r, 0), (4.4b)
CH(?“, 0) = C]H(T‘, O). (4.40)
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The domain Djy is downstream the diverging shock. The matter is moving away from the
origin (urrr > 0). The post-shock density, velocity and pressure are again expressed with the

Rankine-Hugoniot jump relations

1
. ) 5 . 2
prv. _ vl N < Crrt ) 7 (4.50)
prrir - Y —1 v —1\Us —tygs

ury —Us vy —1 2 Crrr 2 (4.5b)

urrr —Us v+ 1 v+ 1\Us =g '
prv. _ 2y (Us—amr oyt (4.5¢)
prir v +1 CIIT y+1 '

Finally, we add the condition of a spherical symmetry at the center, requiring the fluid
velocity to vanish there, thus
u(0,t) = 0. (4.6)

The expressions given above provide a mathematical formulation of the problem. We proceed
in the next section with the construction of a solution in a series form to obtain ordinary
differential equations (ODE).

4.1.2 Transformation into a system of ordinary differential equations

In this part we proceed in a change of variables and give a form to the solution. The partial
differential are transformed into ordinary differential equation and can be integrated easily.

4.1.2.1 Change of variables

Independant variables Following the work performed by Sakurai [Sakurai, 1953], we intro-

duce new independent variables defined by

x(r,t) = R y(t) = : (4.7)
The variable x represents the relative position with respect to the shock front. It varies

from 0 at the center to infinity and is equal to 1 at the shock position. The variable y relates

the inverse of the shock velocity normalized by the initial sound speed. During the converging

phase, it is equal to the inverse of the shock Mach number Mj(¢). Therefore |y(¢)| < 1 for ¢ < 0.
The domain (r,t) transformed into the domain (z,y) is then represented in Figure 4.3.

By using the relations

1
0 = -0 (4.8)
R, R,
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y

Figure 4.3: Sub-domains, shock path and particle path in the (z,y) plane.

the hydrodynamic equations (4.1) read

2pu .

Oz (pu) + = R(x0, + Ay0y)p, (4.10a)
pudyu + a“(fp) = Ry(x0; + Ayd,)u, (4.10b)
ubye+ O 5 b, <8xu + 2;‘) = Ry(28, + Aydy)c, (4.10¢)
with )
Ay) = Tt _ dlnjy (4.11)

2 dhnR,
usually referred to as the self-amplification factor of the shock wave. Note that A(y) o dUs/dRs

accounts for the acceleration of the shock and depends only on y, that is, on time.

Dependant variables New dimensionless dependent variables are also defined:

u(z,y) = cOgu(x, Y), (4.12a)

c(z,y) = CO%G(QJ, Y), (4.12D)

p(@,y) = poS(x,y), (4.12¢)
2

p(e.) = po (y)sz(x,y), (1124)

s(z,y) = SO(Z> S(z,y), (4.12¢)

with po = c§po/7, s0 = po/pg, P = €2G and 8§ = 2§17
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The system of equations becomes:

—((1 = W2, + Ayd,)S + Sxd,U + 35U = 0, (4.13a)
(A = (1= U)GU — G((1 — W)z, + Ayd, U + i@ +20,)6€2 = 0, (4.13b)
(1= Wd, + Ayd,)C + (A — 1)E + 'VT_lcxaxu + P " e (4.13¢)

Boundary conditions The boundaries between the four domains are shown as straight lines
in Figure 4.3. The conditions of symmetry apply for = 0, the conditions of continuity for y = 0
and the shock jumps appear for x = 1. Concerning the converging shock wave, the jump

relations (4.3) depend only on y and can be expressed as series assuming y < 1 :

1t +1 )
1y) = — 21 i 1— 22 4 4.14
9]1( 7?/) 1+%y2 ’Y—l|: 7_1y +0(y) ) ( a)
2
Ur(l,y) = ——(1 — 92 4.14b
rr(1,y) 7+1( yo), ( )

¥ + o(y*)

2 _ <2fy -1 2>:2’y(’y—l) [1_47—(7—1)2
Sr(lLy) \v+1 ~y+1 (v +1)? 2v(y—1)
(4.14c¢)

In the case where the shock Mach number M is infinite, the variable y is zero and the
boundary conditions on the converging shock front are constant. Then the system of equations
could be invariant under similarity transformations and the Guderley’s solution applies. Now,
we assume that the initial shock Mach number My is finite but sufficiently high, yo = M, <.
Then the upstream pressure affects the flow through the y dependent terms in the Rankine—
Hugoniot relations (4.14). As only even powers of y are present, the series converge quickly
and the major influence of the shock Mach number is contained in the first order term. The
dependence of the density and the entropy on the shock Mach number is shown in Figure 4.4.
The first order correction agrees well with the full Rankine-Hugoniot expression for the shock
Mach number higher than 5.

The condition on the velocity in the center (4.6) means that U(0,y) has to be finite.

The condition of continuity (4.4a) between the domains Dy and D7 becomes:

lim  Gr(x,y) = lm  Grrr(x,y), (4.15a)
xr—r00,y—0 r—00,y—0
lim fUn(ac,y) = lim gu][[(fv,y), (4.15b)
z—00,y—0 Y z—00,y—0 Y
. T . T
R aeff(xv y) = oo ;6111(967 y). (4.15¢)
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= fu|l Rankine—Hugoniot
45 : 09 zeroth order
== first order

Figure 4.4: Effect of the shock Mach number on the downstream density (a) and entropy (b) at
the shock front for a gas with v = 5/3.

Finally the boundary conditions between the domains Dj;; and Dy are given by:

y+1
1 — 1 -1 , 4.16
Srv(1,y) = Gr11( My)l—i— 2 e a) )2 (4.16a)
1\ T (Ly)

v—1 2 Crrr(l,y) |2
u 1LLy) =1+ (U 1,y)—1 , 4.16b
() =1+ Q) - DO+ SO o)

Srrr(Ly) , 2y 1 —=Ur(1,y) 2 41
Crv(l,y)? = Crr(l,y)? — . 4.16¢
IV( y) III( y) SIV(LZ/) (,Y+1 6[[](17y) ) '7_1_1) ( )

We can notice that the unknown shock velocity do not appear anymore in the boundary

conditions.

4.1.2.2 Series form solution

Form of the solution Using the perturbative approach as proposed by Ponchaut [Ponchaut
et al., 2006] and Sakurai [Sakurai, 1953], we account for the first order correction to the Guder-

ley’s solution

S(xz,y) = G(z)[1+y*G1(x) + o(y")], (4.17a)
U(z,y) = U(x)[1+y*Ur(z) + o(y*)], (4.17b)
C(z,y) = C(z)[1 4+ y*Ci(x) + o(y")], (4.17¢)
P(x,y) = P(x)[1+ y*Pi(z) + o(y")], (4.17d)
S(z,y) = S(x)[1 +y*S1(z) + o(y")], (4.17¢)

where P(z) = C%(z)*G(z), S(z) = C*(x)G(x)"~7), Pi(z) = 201 (x) + Gi(z) and S;(z) =
201(.%) + (1 — ’y)Gl.
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We also express the shock amplification factor in a series form :

Aly) = A[L+ 9227 + o(yh)].

(4.18)

The constant A has a unique value because the equations must be continuous at the time of

the shock rebound. On the contrary, the factor Ali has no reason to be the same before and after

the shock rebound. Here, the superscript — denotes the converging phase and the superscript

+ denotes the diverging phase.

The series form solution is valid in the domain y € [0, yo] with yo the inverse of the initial

shock Mach number yg < 1.

Zeroth order equations By injecting the expressions (4.17) into the hydrodynamic equations

(4.1), we obtain two systems of ordinary differential equations (ODE) by term-wise subtraction.

The zeroth order part gives a nonlinear system of equations

AoY' =Fo(Y, ),

with
G
Y=|U]|,
C
U-—1 G 0
C? C
_ 0 U-1 2=
Ao = ’Yl(U_l) ¥
y—
R —1
0 5 C U
and
—3GU
> 3U
Fo= | UA+U -1+ (5 +2)
—1
o1 - 1ye

The prime [.]" denotes the differentiation with respect to Inz.

The first equation can be integrated independently using the relation

2

I (S(@) = == ~2
then we get
=77
G = GO xl_AC(x) o
(1-U(x))3

with g =2/(y — 1) and Gy a constant which must be determined in each domain.
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The last two equations can be expressed as ratios of the determinants using the Cramer’s

rule :
U A(U,CA)  dlnz  A(UC) (4.24)
AC ~ AU, G0 dC  Ao(U,C,N) ‘
with
A A
A(U,C)=det |2 2% =(1-U)*-C?, (4.25)
Aso Asgs
_ Fy Axs) 3 2 2 2
AL(U,C) = det = U+ (2= MU+ (A +3C% — 1)U + 202\ /7, (4.26)
F3 Az
Asy Fy [ 2< < /\> 3> 9 C3\
Ao (U, C') = det ' =C|—U"+(1+(1+ 2 — A U+A-1)+C* + 7
2(U,C) = de ( s F3> gl 5)7 5 (A=1) T—1)n
(4.27)

First order equations Hereafter, the first order linear system can be written in the matrix

form : )
G1 G
Ay |U | +B1 | Uy | +2fDy =0, (4.28)
Cy Cy
with
U-1 U 0
A= & vw-1n 22 |, (4.29)
0 Locu oU-1)
—2\ U +3U/(1-U) 0
Bi=| 0 (1-2AU+QU-1)U+U") 2((1-U)U+U")—\U) (4.30)
0 C'—C(\—1) —2\C
and
0
D= | \U|. (4.31)
AC

This system can be decoupled by using the variables
Z, = (X1,W1,Z1)" = M(G1, Uy, C)Y, (4.32)

where the transfer matrix is

—(U-1) Uwv-1) vu(U -1)
M = 0 1 0 , (4.33)
0 -U —uw(U —1)
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with v = (2XA — 3)/(1 — pA(y — 2)).
We obtain then a first independent equation

2+ U
U-1

X{ X1 - )\1MV)\, (434)

which can be integrated using Eq. (4.22) :

X1=U-1) (9610(965)2 + )\12y,u> , (4.35)
with z19 a constant.
The two other equations
Wi Z% [[1X1 + oW1 + f3Z1 + fahi], (4.36)
Z4 :y?(/}_—?;)UWl + 2()}+_(1]/Zl + AL pA, (4.37)

with

f1=—2XC?

fo=fUFH=1)+1)+C*BU+U") —~(U - 1)*(\U — (U +U)(2U — 1))
—(C'"+C)U —-1)+gU

fs=filv=1+7)+g

fa=XU-1)(U +2(1-0))

g=7U-1)AU+ U +U)(U - 1)y~ 1)

D=~U-1)(C? - (U-1)*U

must be integrated numerically.

Boundary conditions The boundary condition (4.14) on the domain Dy; is expressed for

each order:

Zeroth order solution:

Gr(l) = 31—1, (4.38a)
2

Un (1) = o (4.38b)

(1) = m (4.380)
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First order solution:

Gy (1) = 1_27 (4.390)
Upir(1) = -1, (4.39b)
Cri(l) = (Vz(z E’ny;_’yl) (4.39c¢)
The boundary conditions (4.16) on the shock front after the rebound are:
Zeroth order solution:
_ (v +1) Ui (1) = 1)°
Grv(1) = Grr(1) (1) Ui (1) -1+ 262, (1)’ (4.40a)
_ (U () =D (v =) Urrr(1) +2) + 267 (1)
Urv(1) = (v+1) (U (1) = 1) 7 (4.400)
N GG D= Gt 0 =) (0= D Win@) - 1 +26,1)) 100

(Urrr(1) = 1)* (y + 1)

First order solution:

e 2l C?
Giv(l) = U 1) s puc? Cr,rrr(1) + -1+ MCQ)ULHI(:[) + G (1),
(4.41a)
U ((U —1)? - MC2> Urrrr(1) +2uC? (U = 1) Cy (1)
Do) = T DU+ +uC? ’ (4415)
_ o2 p(C*(y = 1) —py(U = 1)*) = (U — 1)°
B (e e [ R T VT L

B 2uU(y(U = 1)* + CY)
(U =D(U =12+ pC?)(C*y — 1) = py(U = 1)?)

Ui (1) — Gigrr(1)

When the shock rebounds at the origin at ¢ = 0, the slope of R,(t) is not symmetric. It can

be proven that
Rs([t])

50 Ry (—t])
with 3 a constant (See section 4.1.5.1).

=8 (4.42)

Then, for any radius, we have

i YD g 20 I
=0 y(|t]) =0 x(r|t])

= 8. (4.43)
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The continuity condition(4.15) becomes :

Il;ngo Grr(x) = xlingo Grrr(x) (4.44a)
xlggo Uri(x) = mlggo Urri(x) (4.44b)
zlgrolo Cri(z) = Ill)rgo Crrr(x) (4.44c¢)
and
xh_}rgo Gr(z) = 52 xlglgo G1.11(z) (4.45a)
xlggo Urrr(z) = 52 Ilggo Uy r(x) (4.45b)
lim Cy1i(x) = 32 lim Cyy1(2). (4.45¢)

4.1.3 Analysis of the singular points

Let us first describe the trajectory of the zeroth order solution U(C'). We remind that this is the
solution of Guderley, that is to say the curve with a = 0.68 in the Figure 3.20, presented in the
previous Chapter. The point A in Figure 4.5 is the point representing the initial downstream
state just behind the incoming shock wave. It is given by the zeroth order of the Rankine—
Hugoniot relations (4.14).

Far from the origin the solution must be finite thus U and C' must tend to zero when x tends
to infinity. Then the solution curve links the point A to the point Py = (0,0). However the
subsonic flow near Py is separated from the super-sonic flow in A by the sonic line of equation
A =0 (see red dashed line in Figure 4.5). In this case (C) admits an extremum in this point
which signifies that the physical quantities are double valued there, which is not acceptable.
There is only one value A = —0.45 that allows the solution to intersect the sonic line without
any singular behavior of the flow quantities. The intersection then takes place in the singular
point P3 where Ay = A=A =0.

With this value of A the solution in the domain Dj; is described by the curve (A, Py)
intersecting the sonic line in P3. As the solution must be continuous at the collapse time, the
solution for ¢ > 0 is integrated from Py. We get the curve (Py, S1) which corresponds to the flow
in the domain Dj;;. The state at the center is described by the point Py where U = Uy is finite
and C infinite. This leads to a flow velocity u(0,¢) = 0 consistent with the symmetry condition
and an infinite temperature. The solution is integrated from this point to the point S3. This
branch of the curve corresponds to the solution in the domain D;y. The unique set of points Sy
and Sy is chosen to fulfill the Rankine-Hugoniot jump conditions at the diverging shock front.
The path of the zeroth order solution in the plane (U, C) is presented in Figure 4.5.

The equations of the first order solution are singular where
D=~(U-1) (02 (U - 1)2) U =o. (4.46)
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05b N\ ................... \ ,,,,,,,,,,,,,,,,,

s

Figure 4.5: Zeroth order solution in the (U,C) plane: the black line shows the solution path, the
red dashed line is the sonic line, the dashed blue line represents the diverging shock jump in the
solution, the blue dots are given by the Rankine Hugoniot shock jump relations, the cyan dots
represent the attractive singular points and the red dot—the repulsive singular point.

This condition is fulfilled in the points P3 and P;. The equations are also singular in the point
Ps where C' tends to infinity.
Here, we describe in detail the solution near each singular point presented above and explain

how the parameters )\iE are constrained.

4.1.3.1 Converging shock jump relation

The zeroth order values of the flow quantities at the converging shock front are given by the
relations (4.38) and (4.39). Theses boundary conditions depend only on the polytropic coeffi-
cient ~y.

The values of the flow quantities at the front shock position can be expressed in the form

14y {al (R];it)>_% - bl}

The values of the coefficients for the case of v = 5/3 are given in Table 4.1.

(1) > N (4.47)

(R0 0) = o

90 ay by N —2)
p(R (t)’ t)/po 4 -3 0 0
w(Rs(t),t)/Us 0.75 | -0.3112 | -0.689 | -0.4527
c(Rs(t),1)/Uso 0.56 | 2.089 |-0.689 | -0.4527 | 0.9054
p(R (t),t)/(ngso) 0.75 | 118 |-1.378 | -0.9054
s(Ro(),)/ (0 VU2) || 0.072 | 618 | -1.378 | -0.9054

Table 4.1: Series coefficients in the expression for the flow quantities on the converging shock
trajectory in the case of v = 5/3.
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For the case of 7 = 5/3, the maximal compression ratio is 4 in the converging phase if
the shock Mach number is infinite. The finite shock Mach number correction decreases the
downstream density, velocity and pressure. In contrast, the signs of the sound velocity and
entropy corrections are not defined. They are positive at the beginning of the converging phase
and they become negative as the shock approaches the center. The upstream pressure affects
mainly the density and the entropy with changes of respectively 3% and 4.8% at the reference
position Ry , if the initial shock Mach number is Mgy = 10.

4.1.3.2 Sonic line

The sonic line is defined by the equation A = 0 which leads to C' = (U — 1). By requesting

that A; and As vanish simultaneously, we obtain a quadratic equation
—29U? 4+ U (2y — (2= 7)A) + 21 =0, (4.48)

which is fulfilled in the point P3; with the coordinates

X — 2y — 2\ + \/)\2(7—2)2+47(2+7))\+472

Us=1-C3, C3=-— .

(4.49)

The choice of the parameter A is limited. First, the point Ps should be real. That is possible in
the following range of A:

_HWI VP T - V2P

A €] — o0 =2 JUJ =22 ; 00[ if v # 2, (4.50)
A>—% if y = 2. (4.51)

Another restriction on A follows from the request that the internal energy E; contained in a

given sphere of radius 7 = @ at t = 0 is finite. As

342

a P a/Rs(t)
E; = 471'/ 17“2 dr oc a’t T / G (x)C*(x)z*da (4.52)
07— 0

we impose A > —3/2.
Moreover, A must be negative because the shock is accelerating in the converging phase.

Finally, for v # 2 we obtain the following restricted region of the parameter A:

3 (/A - V2)?

T2y ) <A<O. (4.53)

max(—

In particular, for v = 5/3 this gives A € [—0.455, 0].
The slope of the integral curve U(C') in the point P; is obtained by means of the I’'Hopital
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4. COUPLING OF THE IGNITOR SHOCK WITH THE HOT-SPOT

rule, given by

8A2 dC 8A2
dC Gt lus,cs + G0 ot us.cs
94, dC 0A, :
du U U505 + du aC |Us,C5

(4.54)

The numerical integration is started from Pj using this analytic value of the derivative.
Then, the parameter A is calculated iteratively by requesting the solution to pass through the
point A (see Figure 4.5).

The correction terms must be finite in the point P3. We impose a relation between Wy and
Z1 in Py (see Section 4.1.2.2 for the definition of the functions W; and Z;) so that W/ stays

finite.
_ LX+ f34 4 fadae

f2

The parameter | is calculated iteratively to fulfill this relation.

Wi

|U=Us5,C=C5- (4.55)

The derivative W/ can be expressed analytically in the limit of Ps

(Us —1)

Wiz=(y-1) s

213, (4.56)

and is used for numerical integration of Wi from the point Ps.
The comparison of the values of A and A\ with the values found in the literature is given in
Table 4.2.

q || Present study Lazarus Ponchaut Welsh
B 0.74095 0.74026 0.7453564 -

A -0.4526927 | -0.45269273 | -0.452693 | -0.452692
AL -1.3776 - -1.38846 -1.3884
A -6.6048 — -6.58806 —

Table 4.2: Solution parameters values and comparison with the literature data [Lazarus, 1981,
Ponchaut et al., 2006, Welsh, 1967].

4.1.3.3 Solution at the collapse time

The collapse takes place in the point Py where U =0, C = 0 and = — oo. In the vicinity of Py
we have U = —sign(t)MoC, U = u(j)Efol and G = gg. The coefficient Méﬁ represents the zeroth
order Mach number of the flow. The coefficient u§ is different in the domain Dj; and Dyyy.
The continuity equation (4.44) gives
. — A1 _ 4+ A1
xli)rglo ug Ty = xlg](r)lo Uy Ty - (4.57)
This is fullfilled if uj = ug A1
The numerical integration of the equations gives u, = 0.5148, My = 0.9563 and go = 9.55.
The first order solutions G, U; and C; are all proportional to z—2* with respectively the
factors gs.1 = —10.959, us1 = —1.8542 and c41 = 3.889. The first order functions diverge as x
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tends to oo, but any singular behavior of the global solution is avoided since y — 0 when t — 0.
Using those values, the flow quantities can be expressed in the laboratory frame in the limit

t < 1. For 0 < r < Ry, the flow quantities at the collapse time are of the form

Ny —2X
r 2 r
) =qo — 1 — b
q(r, ) q0<R0> +y0 {CL1<RO> + 1}

The values of the constants for v = 5/3 are given in Table 4.3.

(4.58)

q q0 ay b1 ny -2\
p(r,0)/po 955 | -10 | 0 0
u(r,0)/(Usp) 0.51 [-1.9 [-0.689 | -0.4527 | o
c(r,0)/(Uso) 0.53 | 3.8 | -0.689 | -0.4527 |
M(r,0) = u(r,0)/c(r,0) || 0.9564 | -5.7 0 0

Table 4.3: Series coefficients in the expression for the flow quantities at the collapse time in the
case of v =5/3.

Whereas the self-similar solution is characterized by a uniform density p = 9.55p9 and a
constant Mach number of the flow M = My at the collapse time, the linear corrections imply a
density decreasing with the radius and a variable flow Mach number. These quantities are both
the most affected by the initial shock Mach number. The correction at the radius Ry is of 10%
for the density and of 5.7% for the flow Mach number, when the initial shock Mach number is
10. Also, the corrections increase the speed of sound for radius near Ry but decrease it near the

center.

4.1.3.4 State of the flow near the center after the collapse

The flow near the center is described by the solution U(C') near the point Ps = (Us, 00). Its
coordinate Us cancels the derivative dU/dC as C tends to co and its value is Us = —2\/37.
Then G = ggz™ and C = cgz™ with n = —6A/(2\ + 3y) and m = (=3y + ) /(2 + 3v). Making
use of the validity domain for A given in (4.53) we find that n > 0 and m < —1, which means
that C tends to oo, as expected, when x tends to zero and G tends to zero. In the case of
v =5/3, Us = 0.1811, ¢g = 1.0528 and gg = 29.04.

To fulfill the symmetry condition u(0,t) = 0 the correction U; must be finite in the point
Ps. This is possible if the derivatives W] and Z] tend to zero at this point. This allows us to

express a relation between W7 and 71 in P

2 Wi A
Zi=(Z+1) |— . 4.59
' <3v+ >[ +v—1] (4.59)

14

The parameter )\f is then constrained by this relation and can be calculated iteratively. Its
value is reported in Table 4.2. The first order functions G1, U1,C7 tend to constant values in
Ps, which are respectively gs1 = —4.008, ug,1 = 5.47and cg1 = —4.028 (with v =5/3).
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4. COUPLING OF THE IGNITOR SHOCK WITH THE HOT-SPOT

The flow quantities in the limit  — 0 and ¢ > 0 can be expressed in the form

22
r\"" t ”t t AT
£ = — 1492 b
q(r,t) qo<R0> <R0/U50> +y°{a1(Ro/U30> + 1}

(4.60)

q qo aq b Ny ng 20/(A—1)
p(r,t)/po 20.8 | -11.4 | 0.3145 | 0.6633 | -0.4566
u(r,t)/(Us) 125 | 154 0 1 -1 0.6232
c(r,t)/(Usy) || 0.6763 | -8.42 | -0.631 | -33.17 | -0.0833 '
p(r,t)/(Usdpo) || 13.64 | -15.3 | -0.9483 0 -0.623

Table 4.4: Series coefficients in the expression for the flow quantities near the center after the
collapse in the case of v =5/3.

The first order corrections do not modify the radial profiles but only affect the dependence on
time. In the center, both the density and the velocity vanish whereas the temperature (T" o c¢?)
becomes infinite. This divergence is due to the fact that the heat conductivity was neglected in
the present study. This does not undermine the physical meaning of the solution as the pressure
stays finite. Moreover, the sound speed depends mainly on the radius with the power n, = —33
whereas its dependence on the time is to the power n; = —0.08. Conversely, the pressure at the
neighborhood of the center does not depend on the radius (n, = 0). The pressure at the center
falls down faster with time if the initial shock Mach number decreases. With the initial shock
Mach number Mg = 10 and at the time ¢t = Ry/3Uyq, its correction is of 8.6%.

4.1.3.5 Diverging shock position

The diverging shock discontinuities fulfill the full Rankine-Hugoniot relations (4.5).

The zeroth order condition in z = 1 is given by the relations in equation (4.40). The positions
of points S7 and Sy in the plane (U, C') are determined according to these relations.

The computation of x along the curve S; — Py allows then to calculate the parameter (3

according to (4.24) and knowing that z =1 in Sy :

- S1OA(U,0)
B8 =exp (— . AQ(U,C,)\)dC> ) (4.61)

Adding the first order term, the quantities just behind the shock have the form

) sl )

Rs(t),t) =
(R0, 0) = o
The state just behind the diverging shock depends only on time. The first order correction

(4.62)

gives a dependence on the initial Mach number. If the shock Mach number is infinite, the
compression behind the diverging shock is constant, and in particular for v = 5/3, its value is

32. In the case of a finite initial shock Mach number the density behind the diverging shock

114



q q0 ay b1 ny —2X
p(Rs(t),1)/po 323 | -20 0 0
w(Rs(t),t)/Uso 0.142 | 18.45 | -0.689 | -0.4527
c(Rs(t),t)/Usg 0.705 | 3.993 | -0.689 | -0.4527 | 0.9054

p(Rs(t), 1)/ (poUs2) 9.61 | -12 | -1.38 | -0.9054
s(Ro(1),1)/(p{" U2) || 0.029 | 21.3 | -1.38 | -0.9054

Table 4.5: Series coefficients in the expression for the flow quantities on the diverging shock
trajectory in the case of v = 5/3.

decreases with time and the correction when Mgy = 10 and Ry = Ry/3 is 7.4%. In the same
conditions the velocity, the speed of sound and the entropy are increased by 6.1%, 0.7% and
6.5% whereas the pressure is decreased by 5.8%.

4.1.4 Results in the frame (z,y)

The solution U(C') is obtained by integrating numerically dU/dC between the singular points
analyzed in the last section. The analytical values of the derivative are used in the vicinity of
the singular points to help the numerical resolution. We use the ODE/5 function resolution
proposed by Matlab with the accuracy € = 107% and € = 107> respectively for the zeroth order
solution and for the first order solution. This function uses a Runge—Kutta scheme of the fourth
order. To find iteratively the parameters A, A\ and )\;r we used the function fzero which allows
to find the zero of an error function. We defined this error function as the quadratic distance
between the numerical value of the solution near the singular point and the analytical solution
at the singular point.

The zeroth and first order solutions as functions of = are represented in Figure 4.6. The
function Cry tends to infinity whereas the function Gy tends to zero when x tends to zero
meaning that the temperature is infinite and that the density vanishes in the center during the
diverging phase. This is because the dissipative effects have been neglected. Also the first order
corrections are infinite when x tends to infinity. We will see in the next section that it is not

inconsistent as y tends to zero in this limit. Thus the flow quantities stay finite.
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Figure 4.6: Reduced functions of the zeroth order (a-c) and the first order (d-f) solutions for
v=5/3.

4.1.5 Results in the frame (r,t)

To express the solution in the (r,¢) frame, the shock pass must be expressed. We first express

the shock trajectory in the (r,¢) frame then present an overview of the flow in the laboratory
frame.

4.1.5.1 Shock path

We are looking for the trajectory of the shock in the plane (r,t) using the series form expression
of the shock amplification factor A (4.18).

The relation between the shock position and the amplification factor A is given by

1
dlnR; = A dln|y|. (4.63)
by using the serie form (4.18) we obtain
11 9 4
dlnRs = _X§(1 —Ay” +o(y")) dy. (4.64)
the integration gives
Ry -+ Af 2 4
In(—%) = In(jy|™>) + 5yy" + o), (4.65)
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with k* an integration constant a priori different for y < 0 and y > 0.

Then the position of the shock can be expressed as a function of y:

+

Ro(y) = w3 (1 Shi7 + ofy")). (4.66)

It can be seen here that A must be negative so that the position of the shock vanishes when
y=0.

By inversion of the series, we express y as a function of Ry:

] Rs -\ 1 Rs —2A Rs —4\
y(R) = sy " D) o) ) (1.67)
Then by integrating ddTés = % we get:
t Ry '™ M1-X R, R,
’TTE| = (RTE) (1+ ?m(lg) + 0((;) ) (4.68)
: ot
with Ti = (m)

A last series inversion gives

Ry t =, M 1 .t ~Tx t —Tox
— = |—= 1——=—|— — . 4.69
2= T - 2l T el ) (469)
By writing A = O‘Tfl the last expression becomes
t o A\ a t 2(1-a) t Al-o)
Ry(t) = kF|—| 1+ % — — : 4.70
=5 0+ 2t e ) (4.70)

The zeroth order expression corresponds to the shock position given by Guderley and the first
order expression is the one proposed by Ponchaut.

The contraction of the shock surface leads to an increasing shock velocity as the shock radius
decreases. The factor A o< dUs/ dR;s is negative and numerical resolution of the problem gives
A= —0.45, \] = —1.38 and \{ = —6.6 (see Table 4.2). This means that the shock amplification
factor is smaller for a finite shock Mach number. It increases and tends to A when the shock
converges to the center. After the shock rebound, it decreases with the increasing shock radius.

Here the constants k* and 7% are series in power of y%. The constant x~ is determined by
using the initial condition Ug(ty) = Usg, Rs(to) = Rso in the expression (4.67) :

1
k- = Royg [1 — o5y - (4.71)

The value of the constant % depends on the numerical evaluation of U(z). We can notice
that

o t—0 Rs(_‘t‘) - U1£n>0 1'][[(U)

-y (4.72)

K

<H+>Ail = limM li z11(U)
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+ + bl

constant ag ay 22

1
I—X =X

converging phase || 1.29 | 0.369

diverging phase 0.956 | 3.23 -0.476 | 0.688 | 0.623

Table 4.6: Series coefficients in the expression for the shock trajectory.

where 3 is a constant.

This ratio is also linked to the variable y with

y(=It])
=0 y(Jt])

(4.73)

We note k¥ = §+x~ with 6~ =1 and 9T = g1/,
By replacing ¥ and 7% in (4.70) and neglecting the high order term we obtain R, in the

form 1 22
Ry (t) = o
]‘; = ay |77 L+yh Q ot |7 +b1 o, (4.74)
0 UsO USO
1 + 22 -
. + gt/ 1-M\T—>x .+ A 1-A\71=Xx - M
with a5 =0 (gT)l Y ay = _ﬁ(GT) = and by = 2(1i)\)'

Numerical values of the constants in this expression are given in Table 4.6 for the case of
v=5/3.

The shock velocity is lower after the collapse (aar < ag ) because it propagates inside a
moving inward material. The effect of the initial shock Mach number on the collapse time is
relatively weak for the case of v = 5/3. It is barely visible during the converging phase as the
correction coefficient a; is low (see Figure 4.7), but during the diverging phase the correction

coeflicient af is ten times larger.
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Figure 4.7: Shock and particle trajectories (respectively in red and blue) for the case of the
initial shock Mach number My, = 7 (solid lines) and the infinite shock Mach number (dashed
lines). Results from numerical simulations are represented in black dots.

4.1.5.2 Overview of the flow in Eulerian form

The effect of the initial shock Mach number on the radial profiles of fluid and sound speed,
pressure and density is demonstrated in Figure 4.8. The profiles for v = 5/3 are given at two
time moments during the imploding phase and at two time moments during the diverging phase.
The time dependencies of the density, pressure and velocity are given for two radial positions in
Figure 4.9.

During the implosion phase, the absolute value of the flow velocity is decreasing monotonously
with radius (Figure 4.8(c)) and the pressure admits a maximum behind the shock (Figure 4.8(b)).
The downstream flow, perturbed by the imploding shock has a negative velocity. The density is
increasing monotonously behind the shock as the flow converges for large shock Mach numbers,
but it admits a maximum for lower shock Mach numbers. The convergence effect on the shock
pressure manifests itself in the increasing shock amplitude near the center (Figure 4.8(b)). Dur-
ing the diverging phase, the velocity downstream the diverging shock is positive whereas the
upstream velocity is still negative. The effect of the shock Mach number on the density and
pressure amplitudes is rather visible. The pressure is almost constant in the entire zone behind
the diverging shock. In general, the initial upstream pressure makes the incoming shock less
efficient. The final density and pressure are then lower than those predicted by the Guderley’s

solution. It also induces a delay in the diverging phase as it can be seen in Figure 4.9.
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Figure 4.8: Flow profiles of the density (a), pressure (b), fluid (c¢) and sound (d) velocities during
the converging (blue curves) and the diverging (red curves) phases for v = 5/3. The results are
presented for the initial shock Mach numbers Mgy = co and M,y = 10 respectively in dashed

and solid lines. Results of numerical simulations are presented with black dots.
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Figure 4.9: Flow density (a) and pressure (b) at a given radius r = (2/3)Ry and r = (1/3)Ry
as functions of time for v = 5/3. The results are presented for the initial shock Mach number

Mo = oo and My = 10 respectively in dashed and solid lines. Results of numerical simulations
are presented with black dots.

4.1.6 Results in the Lagrangian frame

The quantities can be expressed along a particle path. In a first part we express analytically
the particle path using the entropy conservervation along the particle path. Then we present
the flow in the Lagragian form.

4.1.6.1 Particle path

We consider a particle initially at the position R;. We note y = g(z) the relation between = and

y along the particle path R,(t). Then we express the position of the particle as a function of z :

Ry(z) = K5 Rpo () [1 + §(2)* Ry (2)] - (4.75)

Knowing that R,(t) = Rp(t)/x and using (4.67) we get the expression

. (R,,;(:c))A . <Rp?n($)>2x\{)\1; —)\Rpl(x)}] . (4.76)

As the fluid is adiabatically compressed, the entropy s(z,y) (4.17¢) is constant along the

particle path in the domains D and Dyrr. This gives the equation srr(x) = srrr(z) = srr(1),

that is
T

251~25—12511251 4.77
(y@;)) (@) [ + () 1<x>]—(,) [+ 2510 (0], (4.77)

Yi

valid in the domains Dj; and Dy, where y; is the value of y when the shock is at the initial
particle position R; (4.67).
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By solving the equation (4.77) we obtain the expression for Ryo(z) and R,i(x) :

Ryo(z) = ]};;:cl_kyo‘l/A [Séél))} ﬁ’ (478)
1 +
Ry (x) :ﬁ()‘l — Si(x)
_9511(1) - R; 2> (4.79)
+x M[ll’l()_l+1}2() })

When x = 1, the particle is at the shock position. It is then possible to express the launching
time of the converging shock t..ny, the time t4;,, when the diverging shock collides with the piston
and the final radius R, as series of the form ¢ = go(1+y3q1). The coefficients values are presented
in Table 4.7 for the case of v =5/3.

q qo q1
tcom;/(RO/Usg) 0.688 0.264
taivn/(Ro/Usy) || 0.224 | 2.13
Ri/Ry 0.342 | 2.26

Table 4.7: Series coefficients in the expression for the collapse time tony, the diverging time tg;,
and the final radius Ry.

For the case of an infinite shock Mach number, the diverging time t4;, and the final radius
R, are about a third of the converging time t.,,, and the initial radius Ry. The corrections of
first order for a finite initial shock Mach number are mainly visible in the diverging time and
the final radius. For instance, tg;, and Ry are modified by 2 % whereas the collapse time is
modified by only 0.3 % for the initial shock Mach number of 10. The effect of the initial shock
Mach number on the particle path is illustrated in Figure 4.7.

4.1.6.2 Overview of the flow in Lagrangian form

The flow quantities are represented along a particle path of the initial radius Ry in Figure
4.10. The time moment when the particle crosses the converging and the diverging shocks are
considered as the same for the infinite Mach number and for the initial Mach number of 5. They
are represented with blue vertical lines. The entropy is constant along the particle path. The

Mach number effect is the most visible for the density and the pressure.
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Figure 4.10: Flow profiles of the density (a), pressure (b), fluid velocity (c) and entropy(d)
along a particle path for v = 5/3. The results are presented for the initial shock Mach numbers
Mo = oo and M,y = 5 respectively with dashed and solid lines. The vertical blue lines represent
the time moments when the particle interacts with the converging and the diverging shocks.
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4.1.7 Discussion

Our simplified approach highlights the isolated effect of the converging shock upstream pressure
on the entire flow both during the converging and the diverging phase of the shock. As the
solution is in a series form on the parameter Mgy 2, it is valid only for the shock Mach number
sufficiently high.

The semi-analytical results are compared with numerical simulations using the hydrodynamic
Lagrangian code CHIC [Maire et al., 2007] in a 1-D spherical configuration. The self-similar
Guderley’s problem corresponds to an infinitely weak perturbation at an infinite radius. A
possible way to simulate this problem, in a finite size simulation domain, is to impose the
piston pressure and trajectory found with the model as a boundary condition. However, this
implies a characteristic length to the simulation and thus invalidates the hypothesis of self-
similar solution. Instead, we excite a converging shock with a piston having a constant velocity
at a very large radius compressing a gas with a non zero initial pressure pg. The shock starts
with a low Mach number M = 1.5, converges and is amplified by the geometrical effect. Then,
it tends asymptotically to the Guderley’s solution and “forgets” the boundary conditions for a
sufficiently small radius r < Ry. We expect the present model to agree with the simulation for

the distances where the shock Mach number is sufficiently high.

The results obtained in the numerical simulations are represented with black dots and com-
pared with the semi-analytical results in Figures 4.8 and 4.9 with the initial shock Mach number
Mo = 10. The semi-analytical solution agrees rather well with the simulations. Discrepancies
appear mainly in the density profile. This can be explained by the difference in the boundary
condition and by the absence of higher order terms in the semi-analytical model. In general
terms, the effects of the initial pressure predicted by the theory are consistent with simulations.

We now would like to apply this model to analyze the coupling of the ignitor shock with the
pre-heated hot-spot. In this case, we assume that the shell follows a fluid particle trajectory.
However, in the shock ignition scheme, the piston (imploding shell) trajectory does not necessar-
ily coincide with the trajectory of a fluid particle. That difference can be evaluated by detailed
comparison between numerical simulations and the analytical solutions. The perturbation path
into the main flow due to a modification of the piston velocity follows a characteristic line of
equation dr/dt = u — ¢. Several characteristics starting from different points are represented
in Figure 4.11. The characteristic line plotted with a thicker green line reaches the center at
t = 0. It divides the flow into two domains: the domain where the perturbations may affect the
incoming shock and the domain where the perturbations affect only the diverging shock. This
characteristic corresponds to the sonic line singularity described in Section 4.1.3. The pertur-
bations which appear on the piston path after ¢ = 0 reach the diverging shock at a time close to
the exit time and have a small effect on the compressed fuel. Thus the piston trajectory should
be well controlled only until the time of collapse.

According to Figure 4.10, during the shock converging time, the velocity on a particle path is

approximately constant and the pressure is increasing slowly. These conditions are compatible
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with the velocity and pressure profiles obtained in the typical numerical simulations of shock
ignited inertial fusion targets. For example, the time t.,,, needed to apply this pressure law
with the spike laser pulse is t.ony & 140 ps with Ry = 100 um and Usg = 500 km.s L.
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Figure 4.11: Shock and particle trajectories (respectively in red and blue) for the case of the
initial shock Mach number Mgy = 7 (solid lines) and the infinite shock Mach number (dashed
lines). The characteristics dr/dt = u — ¢ are represented in green dot lines.

These observations justify the use of our simplified model to express an ignition criterion for
shock ignition of a compressed target.

The solution here has been constructed neglecting the heat transfer and viscosity. These
phenomena dissipate energy and should further decrease the expected values of the density,
pressure and temperature of the fuel behind the diverging shock. On the contrary, we expect
to be near the ignition conditions during the diverging phase. Accounting for nuclear reactions
will have a positive effect on the areal pressure as the fusion energy production increases the
temperature of the fuel. There might be a compensation effect. Those processes are important

for the study of ignition and will be accounted for in the next section.

4.2 Influence of the shock Mach number on the coupling with
the hot-spot

We are interested by the state of the compressed fuel at the time moment when the diverging
shock collides with the converging shell. The fusion reactions rate is proportional to the product
of the fuel areal density and the temperature which corresponds to the product pR. We can
assume that the fusion reactions take place only behind the diverging shock where the pressure
is the highest. After the shock collapse, the pressure is almost homogeneous in the center and

scales as p oc t70623 The diverging shock radius scales as R, o t688. Therefore, even if the
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4. COUPLING OF THE IGNITOR SHOCK WITH THE HOT-SPOT

pressure behind the diverging shock decreases with time, the product pRs increases. One may
expect that the nuclear reactions ignite when the shock exits the hot-spot, that is to say, for the

maximal value of the areal pressure in the hot-spot.

4.2.1 Conversion of the kinetic energy into the internal energy

The ignition efficiency is defined by the fraction of the shock kinetic energy converted into the
internal energy that defines the fusion reaction rate. The temporal evolution of the internal fuel
energy F; and kinetic energy Ej in the sphere delimited by the piston are shown along with the

piston work energy E, in Figure 4.12. These quantities are defined as follows:

Ei(t) = 4n /0 o Z; (itl) 2 dr, (4.80)
Rp(t)

E(t) = 277/0 p(r, tyu(r, t)?r? dr, (4.81)

By(0) =t [ DU (6),6)Ryle) (T (5).6) s (482)

The energy balance is respected here, that is, E;+Ey, = E,+ E;o, with E;q = dnpoR3/3(v—1)
being the initial internal energy. The work done by the piston is converted into the flow kinetic
energy during the converging phase and then it is converted into the internal energy during the
diverging phase after the collapse. At the shock exit time t4,, the kinetic energy becomes small

(few percents of the total energy).

6r

t/(RyU

sO)

Figure 4.12: Temporal evolution of the kinetic energy Ej, (blue), the work done by the piston E,
added to the initial internal energy Ejq (black) and the internal energy E; (red) of the fluid inside
the piston of the radius R,(t). Results are given for an infinite shock Mach number (dashed)
and for Myg = 10 (solid lines).

126



At the exit time ty;,, the internal and kinetic energies can be expressed analytically:

2 P(z)Py(x)z* dx
PoCH 3, -2 4 QfDIV 1
Ei(tgiw) = dr—————R3°y / Plx)z*dx |1 +y , 4.83a
(o) Yy —1) Dy (@) d Jp,, P(@)ztdz ( )
Jp - G(z)U?(z)z* (G1(x) + 2U1 (x)) dz
E t iv) = 2 2 3,—2 2 4d 1 2JDry .
kfain) = 2mpocRa"yg Dy C@)U(e)a"de |1+ g Jp,, G@)U?(z)zt dz

(4.83D)

Using the data from Table 4.7 and numerical evaluation of the integrals we obtain the

following expressions for v = 5/3:

Ei(tdiv) = 5'9p0Us(2)Rg[l - 1'3y8]7 (4.84&)
Er(taiw) = 0.06poU2R3[1 + 113/3]. (4.84b)

We can notice in Figure 4.12 that the internal energy of a pre-heated hot-spot stays higher
than the internal energy of an initially cold hot-spot until the shock collapse time t = 0. After
that time, the internal energy in the hot-spot is lower in the pre-heated case. The finite shock
Mach number decreases the deposited internal energy. A smaller amount of energy is converted
into the flow kinetic energy during the converging phase. Moreover, during the diverging shock
phase, a smaller amount of the kinetic energy is transferred into internal energy. This can be
seen in Figure 4.12: at the moment of the shock exit time, more kinetic energy remains in the
flow in the finite Mach number case.

Equation (4.83a) can be presented in a convenient form showing that the maximum internal
energy of the compressed fuel is approximately twice the initial internal energy times a square

of the initial shock Mach number:

4
Bi(tan) = 1.6§7rp701R3M58 [1-1.3M;2], (4.85)
o~

with pg being the initial pressure. The correction term reduces the deposited energy by a factor
of the order of MSSQ.

4.2.2 Influence of the Mach number on the Lawson criterion

The fuel ignition criterion is affected by the finite Mach number correction in a more significant
way. The rate of fusion reactions is proportional to the fuel areal pressure < pr >= [pdr.
This quantity has to be higher that a certain threshold defined by the fusion cross section. For

~v = 5/3, the areal pressure reads

2 f@w P($)P1($)x2 dx

_9 2
- Pz dx |1
< paRa > = poRay; wodr 14y [, P@)a? dz (4.86)

Drv

= T.6p0RoUsj [1 — 615] -

127



4. COUPLING OF THE IGNITOR SHOCK WITH THE HOT-SPOT

We compared the scaling law for the areal pressure (4.86) with simulation results and ob-

tained a good agreement (see Figure 4.13).

7

2
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<PgRs>1aw/ (PoRoY
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<de

Figure 4.13: Comparison between the scaling law (4.86) and simulations results for the < pgRg >
value.

The ignition criterion can be assessed from the condition < pgRg > > (pr)ign = (pR)ignTign-
Using Tign = 8 keV and (pR)ign = 200 mg.cm ™2 (see Section 2.1.2 ), the areal pressure ignition
threshold is (pr)ign = 1.2 Gbar.cm.

By requiring that < pgRq >= (pr)ign in (4.86), we obtain the expression of the minimum

initial shock velocity as a function of the initial hot-spot areal density for ignition:

1
. 2
(Us)ign = 0.36(%) [1+3y3] . (4.87)
The ignition threshold in the plane (Usg, poRp) is represented in Figure 4.14. When the initial
temperature of the hot-spot increases, the initial shock Mach number decreases, reducing the
shock efficiency. The threshold is thus affected by the initial hot-spot temperature. For example,
with the initial areal density of 50 mg.cm™2 the minimum shock velocity needed to ignite the
fuel is 600 km.s™ !, if the fuel is initially cold, and 800 km.s™! if the initial shock Mach number
is Mgg = 3.

This ignition condition can be expressed in terms of the initial ignitor shock pressure. Ac-
cording Table 4.1, the initial shock pressure at R = Ry is

Pso = 0.75pU,5 [1 — 0.2y3] . (4.88)

Therefore, the minimal initial shock pressure to reach ignition is given by the following expres-

sion:

(Ps)ignRo = 0.13(pr)ign [1 + 5.8y - (4.89)
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If the hot-spot is initially cold, the minimal shock pressure for ignition depends only on the
hot-spot radius. For a typical hot-spot radius of 50 um, the ignitor shock initial pressure must

be greater than (ps), = 31 Gbar. We consider now that the same hot-spot is initially hot.

ign
Assuming an initial shock Mach number M,y = 4, the minimal initial shock pressure for ignition
i8 (Ps)ign = 43 Gbar.

12007
1000}

800

1 '

0 50 100 , 150
po Ry (Mg/em®)

Figure 4.14: Influence of the initial temperature of the deuterium-tritium fuel on the ignition
threshold according to (4.86): black dotted line - infinite initial shock Mach number, blue dashed
line - initial shock Mach number of 6, red line - initial shock Mach number of 3.

Let us compare our prediction with the results given by Scherbakov [Shcherbakov, 1983].
In his study, a solid spherical DT target is first compressed to the density of 40 g.cm™ with a

2

radius of 140 um which corresponds to the areal density of 560 mg.cm™. The temperature of

the compressed target is 0.1 keV, which corresponds to an initial sound spreed ¢g = 113 km.s™*
and an initial shock pressure pg = 3 Gbar. According to (4.87), the initial velocity must be
(Us)ign ~ 250 km.s~! with an initial shock Mach number of 2.5. This is close to the 230 km.s™*
announced by Shcherbakov. Figure 4.14 provides a qualitative estimate of the effect of the Mach
number on the ignition threshold for shock ignition. However, it can not be considered as the
quantitative criterion. For that purpose, we consider in the next section the balance between

the fusion energy production and the dissipative effects.

4.3 Ignition criterion

We consider that the fusion reactions start to ignite when the diverging shock exits the hot-spot.
To express the ignition criterion, we use the same development as in the section 2.1.2 for the

conventional ignition scheme. However, in the present case, the hot-spot is created by the ignitor
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4. COUPLING OF THE IGNITOR SHOCK WITH THE HOT-SPOT

shock. The fusion reactions will be maintained if the self-heating of the hot-spot coming from
alpha-particles energy deposition is larger than the hot-spot cooling due to the radiation and

the electron conduction losses. Thus the ignition criterion is expressed with the relation:
Pa > Pbrem + Pcond (490)

where P, is the power deposition by the alpha-particles, Py, is the radiative losses mainly due
to the bremsstrahlung and P,,,q is the conduction losses.

The term P,,c.;, due to the mechanical work introduced in Section 2.1.2 is neglected here.
This is because our estimate is made at the moment when the shock just exits the hot-spot, the
pressure in the inner part of the shell and in the hotspot are almost equal.

We express each power contribution to the balance using the extension of the self-similar
solution of Guderley. As the balance is computed at the shock exit time t4,, the power losses

and the power gain are evaluated inside the sphere of radius Ry.

4.3.1 Alpha particle energy deposition
The fusion power carried out with the alpha-particles is integrated behind the diverging shock

Ry 2 ,
P, = 47rWa/ (5) <ov>rodr, (4.91)
0
with W, = 5.6 x 1076 erg.
The particle density is expressed with the fluid density as n = p/Am, with A = 2.5 the
average atomic mass of DT and m,, the mass of a proton. The reactivity of Deuterium Tritium

depends on the temperature (2.2). It can be approximated by a power law

Thevi \?
<ov>(T)=<ov > (3:“) , (4.92)
10

3 571 is the reactivity at the reference temperature Tjo = 10 keV

where < ov >19= 1.15x10"%cm
and o = 2 or 3 respectively for T" > Tyg and T < Ty .
Figure 4.15 presents the DT reactivity and the two power law approximations.

The temperature of an ideal gas is related to the sound velocity by

Tkev)

c=c , 4.93
100/ (4.93)
where ¢19 = 1130 km.s™! is the acoustic velocity of DT at T19 = 10 keV.
The alpha-particle power reads then:
7TWa<O'I/ >10 Ra 2 92 9
P, = 22/ rep“c®? dr. (4.94)
c1§ (Amy) 0
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Figure 4.15: Deuterium-Tritium reactivity.

It is shown in Section 4.1.5.2 that the pressure p = pc? /v is almost homogeneous behind the

diverging shock. Thus the pressure can be taken out of the integral and its value is chosen at

the shock front:

W, < > Ry
— 775;—01/21070]00(Rd7 tdiv)/ 7“2p2_0 dr. (4‘95)
cif (Amy) 0

In the frame (x,y) and accounting for the finite Mach number corrections, this expression

«

reads

Wa 20
Pazwz%f*pg(%) Po(1) / 2027 4
e (Amy) Yd Drv
Jo 222G G dx
1+y2((2—- v Piv(D)]]|.
+ Ya (( 0) f@lv 22G2-7 dx to 17IV( )

(4.96)

According to (4.67) and Table 4.7

Ry = RapRo (1 + y3Ra1) . (4.97)

Ya = Yaoyo (1 + ygydl) ;

with Rgqg = 0.342, R4y = 2.26, ygqo = 0.951 and y4; = —1.28.
By using the numerical value of the intergal in (4.96) and the expressions of Ry and y, in

(4.97), one can express the alpha-particles power as

_ W, < ov > Uso\ 2° o -
PaltoTw] = e ST 20 g (V) g 1k i) (4.98)
(Amyp) €10
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4. COUPLING OF THE IGNITOR SHOCK WITH THE HOT-SPOT

with the dimensional quantities W, mp, po, Ro, Usg in CGS unit.
The coefficients P,y and P, in (4.98) are given in Table 4.8

o 2 3
P.3 75 | 134
P [ -92 ] -11

Table 4.8: Series coefficients in the expression of the alpha-particles power.

The alpha-particles are deposited in the hot-spot if the areal density is higher than their
stopping range, which depends on the temperature [Atzeni and Meyer-Ter-Vehn, 2004]

5

TZ
pla( g.em™?) = 0.025——*kV (4.99)
1+ 0.008T}%,,

The fraction of the alpha-particles stopped in the hot-spot can be expressed as [Krokhin and
Rozanov, 1973]

3 4, < 1

537a =T Ta > 5
fa=2 50 2 (4.100)

1_17—514_@(;3, Ta>§

where 7, =< pR >4 /pla.
The hot-spot areal density is
2f91v GG1 dz
< pR >4 = poRg Gdx |1+ Ya ad (4.101)
DIV f'D[V x

=6.2p0Ro [1 — y33.8] . (4.102)

To evaluate the fraction of the alpha-particles energy deposited in the hot-spot one needs to
evaluate the temperature of the fuel as the shock exits the hot-spot.

In the frame (z,y), the temperature reads

T(z.y) _ (C%) <~”U)202 (14243C1) . (4.103)

Tho c10 Y

According to the corrected self-similar solution, the temperature is infinite in the center of
the sphere. However, it is not important for calculation of the energy production as the fuel
density is zero in the center and the mass increases with the radius. We use the value of the
temperature at the shock front (at z = 1) which corresponds to the largest part of the fuel. By
using the expression of y at the shock exit time (4.97), the temperature at the shock front Ry

at the time t4;, is
U\ 2
Tikev) = T10To <Cf§> (1+yTh) , (4.104)

with Tp = 1.3 and 77 = —0.4.
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As the correction term 77 is small, the temperature is taken at the zeroth order when
calculating the alpha-particle stopping range pl, with the expression (4.99).

Then 7, =< pR >4 /pls is expressed in a series form by using (4.101). By injecting this
expression in (4.100), the fraction of the alpha-particles stopped in the hot-spot is also expressed
with a series form. It depends on the shock initial velocity Usg, on the initial areal density poRo
and on the shock Mach number M, (see Figure 4.16). As the final density in the hot-spot is
lower for a finite Mach number, the fraction of alpha-particles stopped in the final hot-spot is

also small for a finite Mach number. The power of the alpha-particle is corrected as P, — fo Py

0 20 40 60 80 100
p, R, (Mg/cm?)

Figure 4.16: Alpha particles fraction stopped in the hot-spot: with Mgy = oo - dashed lines -
and Mgg = 4 - solid line.

4.3.2 Conduction losses

The electron conduction losses across the surface of the hot-spot are calculated using the heat-
flux given by Spitzer
K.T?
In A
with K, = 9.5 x 1019 erg.s_l.(:]m_l.keV_7/2 and In A ~ 6 the Coulomb logarithm.

The power of conduction losses is then expressed as

Qe:

VT, (4.105)

Prona = 47 R%Q... (4.106)
In the frame (z,y), the gradient of the temperature (4.103) at the shock front writes

OTl,_p =Ry 0.7 (4.107)

rz=1"
with oc!
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4. COUPLING OF THE IGNITOR SHOCK WITH THE HOT-SPOT

At the shock exit time, the temperature gradient (4.107) is calculated by replacing x = 1
and y =y (4.97) in (4.108):

Ny, r=R, [keV.cm™1]

T (L
Ry \ cio

2
> DTy [1+ y3DTy], (4.109)

with DTy = —1.9 and DTy = —13.4.
By inserting the series form of Rs (4.97), Ty (4.104) and VT (4.109) in the conduction power

(4.106) we obtain

Uso

€10

7
7
Prona[1077W] = TIQOKeR()( ) Py [1+ ygpcl] (4.110)

with PCO = 0.9 and Pcl = -9.9.

4.3.3 Radiative losses

Assuming that the hot-spot is transparent for the thermal radiation, the radiation power is

expressed using (2.13):
Rq
Phrem = Am A, / r2p2T2 dr (4.111)
0

with A4, = 3.05 x 10?3 erg.s_l.cm‘%.g_Q.keV_l/?‘
In the frame (z,y), this gives

2(7,.2
1 ¢ —1p3 2 2 2f'D (2G1 +01)G Cx*dzx
Pyrem = 4n Appg T —y; 'R G*Cx*da |1 w 4.112
b TApPoL 10 10 Yaq 114 D rodr |1 +yy szv 2022 dx ( )
Using (4.97) and the numerical value of the integrals in (4.112) we obtain
Us 1
Porem[107"W] = Ayp3 R} (CO> T2 Pro 1+ y3Pr] (4.113)
10

with P, =178 and P,y = —7.2.

It is convenient to divide the expressions (4.98),(4.113) and (4.110) by the initial radius Ry.
Then the corresponding powers per unit of length depend on the initial shock velocity Usg, the
initial hot-spot areal density pg Ry and the initial shock Mach number My,. Figure 4.17 presents
the powers per unit of length for a fixed value of pg Ry and two different values of the initial shock
Mach number. At high initial shock velocities, the final hot-spot temperature is high and the
conduction losses dominate. The dots represent the threshold (Us); gn Were the gain and losses
are equilibrated. One can see that the finite Mach number reduces both gain and losses and

increases the value of (Us) Therefore, higher is the initial hot-spot temperature, higher is

ign*
the ignition shock velocity (Us) Interestingly, the radiation losses dominate near the ignition

threshold for the chosen value of the areal density 50 mg.cm™2.

wgn’
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Figure 4.17: Powers of losses and gain in the hot-spot divided by the initial hot-spot radius.
The initial areal density is pgRo = 50 mg.cm™2. The results for My, = oo are represented with
dashed line, and for Mgy = 5 with full lines.

4.3.4 Ignition Threshold

The ignition threshold is defined as the limiting curve where
Po = Pyrem + Peona- (4114)

According to (4.98), (4.110) and (4.113) the ignition shock velocity (Us),,,, depends on the
initial areal density of the hot-spot pgRy, the initial shock velocity Usy and the initial shock
Mach number M.

Figure 4.18 presents the ignition threshold curves calculated under different assumptions.

iwgn

The ignition domain is in the top right corner of a considered threshold curve. The basic case
(curve (1)) neglects the initial temperature of the hot-spot (Mg = 00), uses the power law of
reactivity with ¢ = 2 and assumes that f, = 1. This choice of parameters corresponds to the
results given in Ref. [Ribeyre et al., 2011]. We see that the minimum shock velocity needed
to ignite the fuel is less than 500 km.s~! for a minimum initial hot-spot areal density of less
than 10 mg.cm~2. The temperature behind the diverging shock front is according to (4.104)
T = 2.6 keV. This temperature is much below the domain of validity of the reaction rate power
low (4.92) with o = 2. Thus the ignition conditions are strongly underestimated. The threshold
curve (2) uses the reactivity power law with ¢ = 3. The minimum shock velocity is then about
600 km.s~! and the fuel temperature 7' = 4.3 keV is in the range of validity of the reactivity
law used.

However this curve still underestimates the ignition threshold as it does not account for

the finite Mach number of the shock and the alpha-particle losses. The curve (3) presents the
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4. COUPLING OF THE IGNITOR SHOCK WITH THE HOT-SPOT

ignition threshold which accounts for the fraction of alpha-particles escaping the hot-spot. For a
low areal density, the alpha-particles are not stopped. This increases the minimum initial areal
density to approximately 15 mg.cm~2. The curve (4) presents the ignition threshold for a finite
initial shock Mach number of 4 by using the corrected solution of Guderley established in this
chapter. A combination of the alpha-particle losses and the hot-spot initial temperature leads

to the increase of the minimum shock velocity Usg = 750 km.s~! and a minimal hot-spot areal

density poRg = 20 mg.cm™2.

The ignition thresholds are compared to numerical simulations with a realistic equation of
state, conduction, radiation and alpha-particles transport. The black markers represent cases
where the fuel was ignited. The white markers represent cases where the fuel does not ignite
after one rebound of the ignitor shock. The hot-spot areal density and the shock velocity were
measured when the ignitor shock enters into the fuel. Also the strength of the shock at this
time was measured. The diamond markers represent the cases where intial shock strength is
very low Zy < 1.5. The circle markers represent the cases where the initial shock strength is
higher Zy > 3. The square markers represent the intermediate cases. One can see that for
the highest shock strengths, the simulation results agree with the ignition threshold calculated
for an infinite Mach number. The simulation with very low strengths are closer to the ignition
threshold calculated with an initial shock Mach number of 4. The simulations indicate a higher
threshold than the curve (4). This must be due to their corresponding shock Mach number
M ~ 1.2 which is out of the present model domain of validity.

1000F T
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90 !
Q) 800'?
€ HE
= 700\
3 i\
600 b
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Py R, (Mg/cm?)
(1) =aues < ov>x T? (3) mimvi £, =f(pR, T) CHIC simulations
fa=1 @ " m With ignition
Mg, =00 — Vso=4 O Without ignition
(2) === <ov>x T3 0 Z,>3 OZ,<15

Figure 4.18: Ignition threshold in the plane (Usg, poRo).-
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Figure 4.19: Ignition threshold in the plane (psqRo, poRo).

The ignition criterion can also be expressed with the initial shock pressure. By inserting the
ignition shock velocity in the relation (4.88), the ignition shock pressure (ps)ign is expressed as
a function of the initial hot-spot areal density and radius. The product (ps)ignRo as a function
of poRy is represented in Figure 4.19.

In the previous section, the product (ps)ignRo (4.89) was defined as a function of the initial
shock Mach number only. In the present approach, it depends on the initial hot-spot areal
density: higher is the hot-spot density for a given hot-spot radius, higher must be the initial
shock pressure for ignition. Here again we obtain a good agreement with the simulations. The
circle markers, corresponding to the higher shock strengths, are closer to the infinite Mach
number threshold. The diamond markers, corresponding to smaller shock strengths, are closer
to the finite Mach number threshold.

According to 4.19, for a typical hot-spot radius of 50 um, the minimal initial shock pressure is
(ps)ign = 10 Gbar with pgRg = 15 mg.cm 2 for an infinite shock Mach number, and (Ps)ign = 20
Gbar with pgRp = 20 mg.cm~2 for an initial shock Mach number of 4.

4.3.5 Discussion

Throughout the present study, a sufficiently high shock Mach number is assumed in order to
stay within the domain of validity of the solution with only one correction term. The effective
expansion parameter is Mgy 2 5o even for M,y = 4, the value of this parameter ~ 0.06 is

sufficiently small to justify the validity of our approach. Nevertheless, in the power expressions
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(4.98), (4.110), and (4.113), the large coefficients in front of this small parameter indicate that
significant effects are expected for lower Mach numbers. This is the case of shock ignition where
numerical simulations show a shock Mach number below 3 when it enters the fuel. Although the
present solution might not be sufficiently accurate in this case, it provides important qualitative
trends.

One may choose to add one or two more correction terms to the Guderley solution in order
to obtain a more accurate model. Another way would be to study numerically the ignition of a
hot-spot with a very low initial shock Mach number. Then, the theory developed here can be
used as a tool to understand the results qualitatively.

This simple model is useful for getting a physical insight on the shock ignition conditions
and the possibilities for optimization. However, there are some more physical effects that need
to be considered. In particular, the heat flux leaving the hot-spot induce ablation at the shell
inner face surface. This feeds the hot-spot with more fuel and increases its areal density. A

model taking into account the shell should be more accurate.

4.4 Conclusions

In the first part of this chapter, we analyzed the effects of the initial Mach number of a converging
spherical shock wave propagating through a hot-spot at a finite pressure at rest. The Guderley’s
solution has been generalized to a finite shock Mach number using a first order correction over
a small parameter M, 2. The shock amplification factor that was constant for an infinite shock
Mach number now varies in time (and with the shock position) as A = A(1 + A\ M,(t)~2). The
factors A\, A] and )\f are the solutions of a non linear eigen-value problem. They are calculated
iteratively so that the solution does not undergo any singular behavior apart from the position
of the shock. The values obtained for the correction terms are consistent with those found
in the literature [Ponchaut et al., 2006, Welsh, 1967]. We recover the expression of the shock
wave position given by Ponchaut [Ponchaut et al., 2006] by integrating the shock amplification
factor. In this study, we consider that the flow is driven by a piston following a particle path.
The conservation of entropy on the particle path, except across the shock, allows to express the
particle trajectory analytically. It is then possible to write the expression of the radius and the
time where the diverging shock encounters the piston. This time corresponds to the moment
when the ignition is expected. Scaling laws are expressed in that time and are a straightforward
way to evaluate the finite shock Mach number effect on the final hot-spot conditions.

It appears that the self-similar solution overestimates the density and pressure at the ignition
threshold. The initial temperature decreases significantly the compressibility of the fluid. The
flow quantities are more affected by the finite shock Mach number during the diverging phase.
This is explained by the fact that the shock wave encounters a flow that is already perturbed
by the finite Mach number. Therefore, the small changes in the boundary condition during
the converging phase are amplified during the diverging phase. This is clearly visible in the

Lagrangian representation of the solution in Figure 4.10.
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This analytical solution gives us a possibility to evaluate the effect of a fuel preheating during
the compression phase on the efficiency of the ignitior shock wave for the shock ignition scheme.

We used the corrected solution of Guderley to define an analytical criterion for SI which takes
into account the initial temperature of the hot-spot. The ignition criterion P, > Pyrem + Prond,
with the expressions (4.98),(4.113) and (4.110) is obtained by taking into account the radiative
and thermal energy losses from the hot-spot and the alpha-particle energy deposition. We
obtain a relation between the initial areal density of the hot-spot and the initial shock velocity
depending on the initial shock Mach number. The shock velocity must be higher than Ugy =
750 km.s~* with < pR >o= 20 mg.cm~? to ignite the fuel. If we consider a hot-spot of 50 um
= 20 Gbar.

This may seem counter-intuitive that a pre-heated hot-spot which contains more internal

this corresponds to a minimal shock pressure (py), on
energy initially is harder to ignite. Figure 4.12 shows that for a given initial shock velocity, the
final internal energy is lower if the initial hot-spot is preheated. The shock Mach number as it
enters the hot-spot is therefore a dominant parameter for shock ignition.

We demonstrated that the preheat of the hot-spot leads to a modification of more than 20%
in the ignition criterion. Such a strong variation may have strong effect on the driver energy

and the target energy gain, that are crucial parameters for the inertial fusion power plant.
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Ignitor shock amplification in the shell
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In a typical HIPER implosion, the hot-spot radius near stagnation is of about 50 yum. Then
the ignition criterion presented in Chapter 4 requires a minimal ignitor shock pressure of 20 Gbar
as it enters the hot-spot. Generating such an ablation pressure is very challenging and not real-
istically feasible nowadays. Therefore, the amplification of the shock pressure in the imploding
shell is a key element for shock ignition.

The converging shock description developed in the previous chapter applies for an initial
medium at rest. It cannot be applied for the shock propagation through an imploding shell.
Indeed, as the shell is accelerated or decelerated, the shock is propagating in a non-inertial
frame. Moreover, the upstream density and pressure gradients must be accounted for. The shell
is imploding as the shock propagates through it and an overall pressure increase contributes to
the shock pressure amplification. Lastly, the collision of the shock with the diverging first shock
plays an important role [Lafon et al., 2013] in the current shock ignition scenario.

We propose a quantitative theoretical description of the shock propagation in the imploding
shell in Section 5.1. Also, the role of the various physical effects in the ignitor shock pressure

amplification and strengthening are analyzed in Section 5.2.

5.1 Shock amplification mechanisms

In this section, we present the physical processes influencing the ignitor shock pressure ps and
strength Z as it propagates through an accelerated or decelerated spherical shell. We assume
in this study a one dimensional spherical flow depending on the radius r and time ¢. The shock
is generated at the outer radius of the shell ry,; at the time ¢; with an initial pressure ps;.
The function Rg(t) defines its position. The shock propagates first into an accelerated medium.
It eventually collides with the returning primary shock coming from the assembly phase. We
define p.; and pqo respectively the ignitor shock pressure before and after the collision. After
the collision, the shock propagates into a decelerating medium until it reaches the inner face of
the shell 7;;, at the time ¢y with the final pressure ps;. Figure 5.1 presents the shell profile and
the ignitor shock position at its generation (a), before the collision (b), after the collision (c)
and at the inner face of the shell (d).

The shock strength Z is defined as the ratio of the upstream pressure and the downstream
pressure at the shock front Z = p(R{,t)/p(R; ,t). The strengthening factor of the shock is the
ratio of the final strength of the shock Z and its initial strength Z;. We define the amplification
factor of the shock X as the final shock pressure at the inner face of the shell over the initial

shock pressure near the ablation front X = ps /Ds;-
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Figure 5.1: Pressure profiles at four different steps in the ignitor shock propagation : (a) the
ignitor shock is generated as the returning shock diverges, (b) state before the shocks collision,
(c) state after the shocks collision, (d) the ignitor shock reaches the shell inner surface

During the shell implosion, the shell pressure increases with time. We describe in a first part
the shell implosion in order to express this overall pressure amplification X;;,,. Then we study
the shock pressure amplification in the shell comoving frame X in a second part. Finally we
describe the shock pressure amplification in the collision X..;. The total shock amplification

factor is X = XjmpXsneur Xcotr-

5.1.1 Shell implosion

A simple model is introduced to describe the shell during the ignitor shock propagation. This
allows to define a reference frame comoving with the shell. The relation between the shell
comoving frame and the laboratory frame gives the overall time dependent pressure amplification

factor Xpmp.

5.1.1.1 Shell description

We write X = {r,t} the inertial Cartesian frame which corresponds to the laboratory frame.
We consider the compression of a medium - called the shell - included between the radius r;,
and 7y, at the reference time t = 0.

Let R,(ro,t) be the position at the time ¢ of the fluid particle initially at the position ry €
[7in, Tout) @t t = 0. The spatial domain of the shell is D(t) = {Rp(rin,t) <1 < Rp(Tout, t),t € R}
with D(0) = [Fin, Tour). The aim of this section is to express the shell quantities p(r,t), p(r,t)
and wu(r,t) for all couples (r,t) included in D(t) x R.

By following the approach of Kidder [Kidder, 1976], we consider a homogeneous compression

of the shell. This particular flow has been presented in Section 3.2.
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5. IGNITOR SHOCK AMPLIFICATION IN THE SHELL

We remind that every elementary volume scales in the same way with time
d*R, = h3(t) d®ro, (5.1)

where h(t) is a time dependent dimensionless factor, with h(0) = 1.

It is also assumed that the flow is isentropic,

=20 — o, (5.2)

where «aq is the shell adiabat, pg and pg are the initial pressure and density.
The density, velocity and pressure can be expressed in the Cartesian frame X using the time

scaling function h(t) as follows

V(r,t) € D(t) x R, p(r,t) =h(t) >py (h(t) 1), (5.3a)
p(r,t) = h(t)_?"ypo (h(t)_lr) , (5.3b)
u(r,t) = h(t)h(t) " r. (5.3c)

The temporal function h(t) is obtained by integrating the equation

1

—h3772h — :l:727
T

(5.4)

with 7 an arbitrary constant in units of time. The right hand side sign determines if the
imploding flow is accelerating h(t) < 0 or decelerating A(t) > 0.
The spatial profiles po(r), po(r) and co(r) fulfill the equation

1 dp(] 1
_ =4+ 5.5
poro drg T2 (5:5)

By integrating (5.5) we get the initial spatial profiles of the shell

- ol

1 2\ 171
Vro € D(0), po(ro) = Pout |1 — %K (1 - < L ) ) ; (5.6a)

Tout

_ N1
po(T0) = pout |1 — %_1% (1 - < 10 ) ) ) (5.6b)

Tout

co(ro) = Cout [1 - VT_lfJC (1 _ (r:3t>2>] : | (5.6¢)

with Pout, Pout = (Pout/ ao)l/ 7 and cgut = YPout/ Pout the pressure, density and sound velocity at

the external radius r,,; and initial time ¢ = 0.

The shell parameter K = +(7out/CousT)? defines how sharp are the shell density and pressure
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profiles. The smaller this parameter is, the longer is the implosion and the lower are the density
and pressure gradients. The sign of K is positive in the accelerating case and negative in the
decelerating case.

In case of the accelerating shell, the parameter X has a maximum value for which the flow

quantities are zero at the shell inner surface :

-1
2 in 2
et e (1 (22)) o0
'7_1 Tout

5.1.1.2 Shell comoving frame

Let us consider the non-inertial reference frame X = {7,t} introduced by Martel and Shapiro
[Martel and Shapiro, 1998] which homogeneously contracts. It is defined by the transformation
A (r,t) = (7,1) with

()~ ae, (5.8b)

St
Il
S

d

with a(t) a function of time positive and twice differentiable and ¥ a constant parameter.
Hereafter, we denote with a tilde a quantity expressed in the non-inertial reference frame X.
The transformation A stretches the time and the length. The density is also stretched in the

reference frame X as
p=al(t)’p, (5.9)

with § another free parameter.

The pressure is then transformed according to dimensional arguments with the relation
= a(t)*’*p (5.10)

and the velocity in X is
@ =a(t)"Y (au — ar). (5.11)

We consider that in the laboratory frame, no external volume force acts on the flow (that is
to say f =0). The conservative equations (3.24) in the Cartesian frame X are expressed in the

non-inertial frame X by

-
0 + 05 (pit) = — g“ + (5 —3)a’ap, (5.12a)
Ot + U0l + iaf(p) = a’au(9 — 1) — ra®*a, (5.12b)
P
O + w5 + pe2 (Ot + 2%) = a’ap(6 + 20 — 39). (5.12¢)

This new reference frame possesses free parameters which could be chosen to fit a contracting
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Figure 5.2: Transformation A from the laboratory frame to the shell comoving frame

flow. In our case we impose that a(t) = h(t), v =5/3, 9 = 1 and § = 3 to follow the imploding
shell. This case corresponds to a spherical fully ionized plasma, which is compatible with the
ICF imploding shell problem.

The set of equations (5.12) becomes

251

Oy + 0r(pt) = — ==, (5.13a)
1 ~
o7l + u0FU + E@f(ﬁ) = f, (5.13b)
O + W= — & (0pp + Udsp) = 0, (5.13¢)

where the equation of state ¢ = vyp/p applies. These equations are the same as in the Cartesian
frame X except from the source term in the momentum equation f — —7h3h. This non-inertial
term, is a volume force in the reference frame X due to the acceleration of the flow in the
laboratory frame X.

By inserting (5.3) into (5.9)-(5.11), we express the shell density pressure and velocity in the

reference frame X:

V(F,1) € D0) x R, p(F,1) = po(F), (5.14a)
(7, t) = po(F), (5.14b)
a(F,t) = 0. (5.14c)

The shell flow in the laboratory frame becomes stationary in the non-inertial frame X (figure

5.2). Hereafter we call X the shell comoving frame.

5.1.1.3 Pressure amplification factor due to the implosion X;,,,

We now consider an imploding shock of pressure p; at the position Rs(t) moving with the negative
velocity —U,(t) into the imploding shell. It is generated at ¢t = t; at the outer shell position
Ry (Tout, ti). We limit our study to the shock propagation into the shell, thus for R4(t) € D(t).
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The shock position and velocity in the comoving frame are

(t) "1 R4(2), (5.15a)
o(f) = hUs(t) + h(t) Ry(t). (5.15b)

In the comoving frame, the shock is propagating into a stationary medium of pressure pg

and density pg. Indeed, for all 7 € [r;y, Rs(t)] the conditions (5.14) apply.

Shock strengthening and shock pressure amplification The strength of the shock in the
comoving frame Z is equal to the strength of the shock in the laboratory frame Z. Indeed by

definition
7 p(RT,t) _ h(t)_513<Rs+7t~) _ ﬁs(R:s) _ 7 (5.16)
p(Rs.t)  h(t)-5p(Rs ,i) po(Rs)

where R} is the position just downstream the shock front and R is the position just upstream
the shock front.

For this reason, the strengthening of the shock between r;, and 7, in the shell comov-
ing frame X is the shock strengthening in the laboratory frame X between its generation at
R, (rout, t;) and its exit of the shell at Ry, (7, ty).

Concerning the shock pressure amplification between the initial time t; and the final time

tr, we have

Psy  plrity)  hTO(n)B(R Er) [ h(ts) ) Psy
:X: — — T = —F ~ - . (517)
Psi P(rousti)  hTO(t)D(Tous, ti) h(ty)) ps;

We call the implosion amplification factor X;,,, the amplification due to the overall pressure

v~ () =

and Xgpey the shock amplification due to the shock dynamics in the shell comoving frame

amplification in time

P
Lshet1 = =L

£l

(5.19)

The amplification factor X;,,, cannot be expressed easily. It depends on the shock time of
propagation in the shell and on the overall shell pressure evolution. Nevertheless, we give two

estimates of this factor depending on the implosion phase in which the shock propagates.

Factor X;,, estimation in the accelerating shell case If the shock reaches the shell inner
surface at a time ¢y smaller than the deceleration time ¢4, the shock propagates in an accelerated
medium only. Let us assume that the scale factor h(t) follows the law (3.51) h(t) = /1 — (t/7)2.
The constant 7 is the time of implosion and can be estimated by 7 = Rg,/Uimp where R, is
the shell radius at the beginning of the acceleration phase and ujmp is the implosion velocity.
If the shock is launched at mid-time of the implosion t; = 7/2 we have h(ts) = 1/3/4. The

147



5. IGNITOR SHOCK AMPLIFICATION IN THE SHELL

shock time of propagation in the shell is about At ~ ARg,/(Usi — Wimp) with ARg, the shell
thickness and Ug; the initial shock velocity. Under the assumption of a strong shock (3.61),
(Ugi — uimp)2 ~ 3psi/4p; with p; being the shell density at the shock launch time t5. The scale

factor when the shock reaches the shell inner surface is

1\ 2
h(ts +At) =41 — ( = > P =1 = =P - 5.20
( ! ) \/ <2+ (USi_uimp) Rsb> <2+IFAR <3psi ’ ( )

where TFFAR = Ry, /ARy, is the maximal shell aspect ratio (see Section 2.3.2).
The shell density p; at the time ¢4, depends on the density at the beginning of the acceleration

phase pg, and on the scale factor at the spike time h(ts) : p; = psph(ts) 3.

As a numerical example, let us consider pg = 5 g.cm™3. Then the shell density when the
ignitor shock is launched is p; = 8 g.cm™3. If the initial shock pressure is pg; = 300 Mbar, the
relative velocity (Us; — Wimp) is 70 km.s~!. We take a shell thickness ARy = 20 ym and a shell
inner radius Ry, = 800 pm which gives an IFAR = 40.

Now taking an implosion velocity ujmp = 280 km.s !, we find that the shock pressure amplifi-
cation Ximp = [h(ts + At) /(L)) > = 1.5.
During the approximate time of propagation At = 290 ps, the pressure amplification in the

accelerated shell X, is around 1.5.

Factor Xijy,p estimation in the decelerating shell case If ¢y > ¢4, the shock collides with
the returning shock and then propagates in a decelerated medium downstream the returning
shock. The pressure in this inner part of the shell follows the hot-spot pressure increase during
the deceleration phase. The scale factor h(t) is now h(t) = /1 + ((t — tstag)/7)? and the con-

stant 7 is estimated by T = Rgtqg/Uimp Where Rgq is the shell radius at stagnation. Let us

choose that Rsiag ~ Rs/20 and t5 = tsqq. In this case, the scale factor h when the shock reaches
the shell radius r; is h(ty — tstag) = h(0) = 1. The shock time of propagation At in the deceler-
ated part of the shell depends on the relative velocity of the shock and on the shell thickness.
We evaluate the shock velocity when it reaches the shell inner surface by Usy ~ \/W
The shell density at stagnation is around py = 1000 g.cm™? and the shock velocity as it reaches
the inner shell surface must be around p,y = 20 Gbar (see Section 4.4). Then the relative shock
velocity is Usy = 50 km.s~!. The shock time of propagation in the decelerated part of the shell
depends also on the distance traveled. This is a small fraction of the thickness ARy, let say
ARg,/4. Then the time of propagation is At = AR, /4Us¢ = 100 ps.

The scale factor at the time At is

AR p 20U5m 2 1 uiQm Pf
h(=At) =4 /1 — 2 P ) — 14— P 5.21
(=A¢) \/ + (4(Usf) Ra ) \/ T IFAR? by, (5.21)

Using the same implosion parameter as in the previous part we have X, = [h(ts + At)/h(ts)]° ~ 15.
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Even if the shock propagates a short time in the decelerated part of the shell, the overall pressure
amplification near the stagnation time is significant and Xy, is ten times higher than in the

previous case.

We develop in the next section a shock dynamics model in the shell comoving frame to

express the factor Xgpey-

5.1.2 Shock dynamics in the shell comoving frame

Several phenomena could contribute to the change in the shock strength. A piston with a
constant velocity pushing a homogeneous planar medium launches a shock with a constant
strength. In a cylindrical or spherical geometry, the mass and the momentum conservation leads
to the shock strengthening as it propagates toward the origin. This is referred to the geometrical
effect. If the shock strength is not constant, the downstream flow is not homogeneous leading
to the propagation of compression waves toward the shock. This interaction between the shock
and the flow behind it affects the shock dynamics. Lastly, the shock strength depends on the
upstream flow profile. The combination of all these contributions induces a non-linear behavior

of the shock and explains the difficulty to describe it analytically.

A review of the methods existing to describe a converging shock is given in Section 3.4.
Whitham [Whitham, 1958] proposed an approximate expression for the shock strength using
the conservation equations in the characteristic form and by assuming that the shock follows a
characteristic path. The main limitation of this method is that the influence of the flow behind
the shock is neglected. This approximation is called the “freely propagating shock wave” or the
“CCW?” (Chester - Chisnell - Whitham) approximation.

In this section we use the characteristics approach to derive the shock dynamics equation
in the shell comoving frame valid in a spherical geometry with the upstream isentropic profiles
po and pg. We show that in our case, the CCW approximation applies as the advancing waves

behind the shock have a weak influence on the shock dynamics.

5.1.2.1 Shock dynamics equation in a general case of an inhomogeneous upstream

flow

Shock dynamics equation The flow unperturbed by the shock is at rest with the monotonous
profiles of density and pressure defined previously (5.14). As the initial quantities are at an

equilibrium state, we have the condition:

;Oaf@o) - (5.22)

At the shock front R, the Rankine-Hugoniot relations (3.61) apply. These relations are
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invariant with respect to the choice of the reference frame and read
—|-_s =2, (5.23a)

u _ 27 —1)? 2
%‘F:RS _5<’Y2(Z+1)+’7(Z—1)) ) (5.23b)

E‘ _Z+)+(Z2-1)
polr=Re T N(Z 1) = (Z-1)

(5.23¢)

where s is the sign of the shock velocity.

Using the same approximation as Whitham [Whitham, 1958], we assume that the charac-
teristic C; path is close to the shock path Ry(t). We remind that the characteristic C'y. of the
Euler’s equation (3.27) reads

5 d -
- —f}—OonCUr.(f—U-FC- (5.24)

The pressure and velocity variations dp and du along C are calculated using the Rankine—

Hugoniot relations (5.23). This gives the approximate shock dynamics equation :

dp dé dz dR, .
AL L BEO L oS24 DS Ei2 dR, =0, (5.25)
Do Co Z R, c§
where
A=1Z, (5.26)
B= %(z ~1), (5.27)
1m 27
c=z1+-"(1+ : 5.28
+3% ()] 2%
2
ym*(Z — 1)
D= : 5.29
Y(Z —-1+mn)+(Z—-1) (5.29)
1 Z +1 Z —1
2 ny(Z-14+mn)+(Z-1)
m = [Z(y+1)]'/?, (5.31)
2 2 . 1/2
" Iy i+ +2y—-Z+1 (5.32)
2y
Using the equilibrium relation (5.22) and deg/co = (dpo/po — dpo/po) /2 we have
dInZ = 8,dInpg + 8,dIn jy — 58, dIn R,. (5.33)
with 9F — (24 + B) B D
- + )
S — S, ==, 8 =|iZ]. 5.34
o B B L I S 634
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Correction of the equation In the freely
propagating shock wave approximation, the in-
teraction of the shock with the downstream
flow is neglected.

The hydrodynamic code CHIC has been
used to evaluate the accuracy of the shock dy-

namics equation (5.36). The density and pres-

sure are initialized with various initial pro-

files and a zero initial velocity. The volume
force needed to keep an equilibrium with the Figure 5.3: Shock strength evolution for various
initial pressure profile is taken into account. upstream flows : (a) homogeneous spherical ge-
ometry, (b) pressure gradient and volume force,
(¢) pressure gradient and volume force in spher-

ical geometry, (d) density gradient. The circles
boundary condition. We integrated the shock represent the CHIC simulation results.

The shock is launched by applying a constant
velocity at the outer edge of the shell as a

dynamics equation (5.33) and compared the
results with numerical simulations. Figure 5.3 presents the CHIC simulation results (circles)
and the numerical integration of the equation (5.33) (lines). In the case (a), the shock propa-
gates into a homogeneous sphere. Only the third term in the right hand side of (5.33) is present.
In the case (b) a constant volume force f is considered. The density is kept homogeneous. The
pressure gradient is constant Oy, (po) = fpo and the geometry is planar (j = 0). Only the first
term in the right hand side of equation (5.33) is present. The case (c) is the same as the case
(b) but in a spherical geometry. In the case (d), the shock is propagating in a constant density
gradient, without a pressure gradient. Only the second term of the right hand side of equation
(5.33) is present. The CHIC simulation results are superposed to the numerical integration of
(5.33) for all the cases except the case (d). It appears that only the density gradient term needs
to be corrected. Yousaf [Yousaf, 1978, Yousaf, 1985] calculated its corrections by using the exact
self-similar solution in specific density and pressure profiles. To stay general, we add an arbitrary
correction term w to the density term 8§, — (1 4+ w)8, in the shock dynamics equation. This
parameter must be adjusted depending on the initial medium profile considered. It has been
adjusted to the value 0.1 in the particular case of the shell profiles (5.6). Figure 5.4 presents
comparison between the simulation results and the numerical solution of (5.33) with w = 0.1
for various shell thicknesses and parameters XK.

This validates the equation (5.33), with the correction 8, — (1 4 0.1)8,,, for studies of the

ignitor shock dynamics in the imploding shell.
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Figure 5.4: Comparison between the CHIC simulation results and the numerical integration of
the shock dynamics equation for various imploding shell parameters. The correction factor value
here is w = 0.1.

5.1.2.2 Shock dynamics in the shell

Shock dynamics equation in the shell comoving frame : We apply the shock dynam-
ics equation to the shell profile expressed previously (5.14) in the spherical geometry j = 2.
According to (5.5) and (5.6) we have

syl (o ()] e

’Izdﬁo_l’lzdp[)

e .35b
po dr vy po dr (5.35b)
The shock dynamics equation in the shell is then
g2
dlnZ (”Dut)
—=—(18 1 S - 3. 5.36
Ain(7frgm) ~ 8+ L+ w)S)) (5.36)

(- G2)

In the right hand side, the first term is the accelerated shell profile contribution to the shock
strengthening and the second term is the contribution of the converging effect. The solution of
this equation depends on three parameters : the shell parameter X, the final radius reached by
the shock r;, and the initial shock strength Z;.

Convergence effect : The contribution of the geometrical effect to the shock strengthening
in the shock dynamics equation (5.36) is plotted in Figure 5.5. It depends mainly on the
shell parameter X and on the radius 7/ryy. In the case of X = 0, the acceleration is zero

and the density and pressure profiles are flat, thus only the convergence effect contributes to
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Figure 5.5: Contribution of the geometrical effect in the shock strengthening:

18, dIn Ry|/(|8, d1n po) + 8, dIn )| + |8, dIn Ry)|.

the shock strengthening. The geometrical effect is predominant for |X| < 1 and near the center
(7/rout < 0.2). This confirms that one can neglect the downstream density and pressure gradients
in the hot-spot. However in the shell, we expect 7/ry,; < 0.7 and the effects of pressure and

density profiles are not negligible.

Analytical asymptotic equation for high Z : In the limit Z > 1, the analytical solution

of the shock dynamics equation is

Fe (e () ) (2

with p = <2(1+‘”)—7> /(y—=1) = —=1.6 for y=5/3 and v = —4~/ (24—7—1—7 %) =

y—1
3 Tl

—0.9 for v = 5/3. We recover the Guderley’s law Z o (7/7out) ™% when K = 0 or 7/ru < 1.

Shock strengthening dependence on rj, /rout, X and Z; : The numerical solutions to the
shock dynamics equation (5.36) for several values of parameters X and Z; are shown in Figure
5.6. The analytical solution valid for a high Z is represented with dashed line. The results from
the numerical simulations CHIC with a volume force are represented with crosses in Figure 5.6
(a). We observe a very good agreement.

The influence of the shell parameter X is shown in Figure 5.6 (a) where the shock initial
strength is Z; = 100. The analytical solution (5.37) is superposable with the numerical integra-
tion of the shock dynamics equation (5.36). The shock strength increases as the shock reaches

the inner face of the shell if K is positive and it decreases if K is negative. At 7, /7Tout = 0.85,
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0.85 09 0.95 1 0.5 59 055 1

Figure 5.6: Shock strengthening Z/Z; dependence on the radius for several values of the shell
parameter K (a) and the initial shock strength Z; (b). The analytical solution (5.37) is rep-
resented with dashed lines. The results from hydrodynamic simulations CHIC are represented
with crosses (a).
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Figure 5.7: Shock strengthening Z;/Z; dependence on (X, Z;) with a fixed value 7, /7ou = 0.8.

the shock strength is 80 times higher with K = 10 than with I = 0.

Figure 5.6 (b - ¢) demonstrates the influence of positive (b) and negative X (c) on the
shock strength amplification. For Z; close to 1, the shock initial strength is weak and the shock
strength amplification is also weak. When Z; increases, the change in the shock strength become
more noticeable and tends to the solution (5.37) valid for Z > 1. The approximation (5.37)
seems to be valid for Z; higher than 8. Then the strength evolution depends only on the shell
parameter X and on the radius ratio 7, /7out-

This is rather convenient to plot the map of the shock strengthening Z¢/Z; in the plane
(K, Z;) for a given radius ratio of the shell 7, /7oyt (Figure 5.7). The important result here is
that the shock strength increases as it propagates in an accelerated medium and decreases as it

propagates in a decelerated medium.

5.1.2.3 Pressure amplification factor in the shell Xg,on

The shock pressure amplification factor as it propagates through the shell, in the comoving

1—7 rin \ 2 T
I+ —X[|1- (= . .
+ 2 < (Tout> )] (5 38)

Figures 5.8, 5.9 and 5.10 show the shock pressure amplification Xge in the shell comoving

frame, reads

xhnzﬁs]v _ ﬁpO(rz’n) Zy
e ﬁsi Z; pO(Tout) Z;

frame, as a function of Z;, rip/rour and K. Figure 5.8 shows that the shock pressure remains
constant on the isocontour X, = 1. This isocontour corresponds to a shell parameter K ~ 1
and has a weak dependence on the initial shock strength Z;. Above this isocontour, Xgpen
is below unity. Thus in an accelerated shell, if X > 1 the shock pressure decreases. For a

small shell parameter |K| ~ 0 the shock pressure increases slowly by convergence effect. In the
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l‘/l‘e=0.8

Xshell

8

Figure 5.8: Shock pressure amplification Xspen = Ps; /Ds; in the shell comoving frame as a
function of (X, Z;) for a fixed value 74y, /7out = 0.8.

decelerating case X < 0, the shock pressure is amplified. This amplification increases with the
depth traveled by the shock and is higher for a small initial shock strength Z; (figure 5.9 (b)).
For a short propagation distance 7y, /rou: > 0.8 and for the initial strength Z; > 2, there is a
weak influence of Z; on the shock pressure amplification.

We demonstrated that the shell pressure and density profiles have an effect on the shock
pressure amplification in the shell. Assuming an isentropic compression of the shell and radius
ratio of about r;,/reut = 0.8, the shock pressure increases in the case of a decelerating shell,
remains almost constant in a stationary shell and decreases in an accelerated shell. On the
contrary, the strength of the shock Z = p,/pg increases in an accelerated medium and decreases
in a decelerated medium.

In the shock ignition scheme, the ignitor shock encounters a diverging shock coming from
the target center which modifies its pressure and strength. This effect is analyzed in the next

section.
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Figure 5.10: Shock pressure amplification Xshen = Ps, /Ds; in the shell comoving frame as a
function of (X, 7, /rout) for Z; = 8 (a) and Z; = 1.1 (b).
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5. IGNITOR SHOCK AMPLIFICATION IN THE SHELL

5.1.3 Shock pressure amplification and strengthening in a shock collision

A collision between two shocks with opposite velocities generates two new shocks propagating
in opposite directions. The flow behind the two transmitted shocks has a higher pressure and a
lower velocity than the flows behind the two incoming shocks. The collision converts the kinetic
energy of the incoming shocks into the internal energy and thus enhances the transmitted shock
pressure. A graphical method to calculate the transmitted shock pressure is presented in Section
3.3.4.1.

Let us now apply these results to the ignitor shock with the pressure p.; colliding with the
returning shock of a pressure p,.. The converging shock just after the collision has the pressure
Dey. We assume that the collision is instantaneous, thus the amplification factor is the same in

the shell comoving frame as in the laboratory frame

Xpont = 222 = Lez. (5.39)
Pc1 Per

We calculate the shock amplification factor X.o; = pea/per and the shock strengthening
Zea/Ze1 with the method explained in 3.3.4.1. The results are presented in Figure 5.11.

If the returning shock has a strength Z, < 3, the amplification of the shock pressure in the
collision is below 2 and it depends weakly on the ignitor shock strength Z.;. On the contrary, for
a strong returning shock with Z, > 5, the shock pressure amplification depends strongly on the
incoming shock strength Z.;. The shock pressure amplification is higher for weaker incoming
shocks.

Concerning the change in the shock strength, it is decreasing. This effect is more significant
if both shocks have high strengths.

With Z, and Z.; below 10, the following analytical formula approximates well the shock

amplification :

1
ch + Zr 2
X =~ | =2} Z,. 5.40

. <1+chzr> (5.40)

In the limit of strong shocks, two approximate expressions were proposed: in [Lafon et al.,
2013] the post collision shock pressure is given by pey = 3(peq+0.9p,) and in [Schurtz et al., 2010]
another relation pey = (pes + p2 + 10pe1pr)/ (Pey + pr) was proposed. With both approximations,
if p.1 = pr, the amplification is equal to 6. This is in agreement with the results given in Section
3.3.4.1 in the strong shocks limit and with v = 5/3.

We compare in figure 5.12 the shock pressure amplification in collision obtained from the
exact Rankine-Hugoniot relations, from the hydrodynamic code CHIC simulations and from the
three analytical approximations. Theses results concern the collision of two shocks with strengths
varying from 2 to 10. The asymptotic approximations for strong shocks are less accurate than
the analytical approximation (5.40). However, this latter is not valid in the limit of very strong

shocks.
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Figure 5.11: Shock pressure amplification (a) and strengthening (b) in the shock collision with
v = 5/3. The dashed lines represent the isocontours of the approximate analytical solution
(5.40).

A -
19.00 1:1 .,
’
17.00 Rl
’
15.00 et
’
T 13.00 u et
= ’
S 1100 o e
< ’
o 9.00 n P ® approx 1
3 "y 7
S 7.00 P ¢ approx 2
x (ARSI ‘
5.00 e M approx 3
3.00 X CHIC
»
1.00kZ >
1.00 6.00 11.00 16.00

Xcoll from Rankine Hugoniot

Figure 5.12: Plot of the calculated shock pressure amplification through collision versus the
exact Rankine-Hugoniot results. The dashed line represents the ratio 1:1. The simulation
results are represented with crosses. The approximation 1 (red dots) is based on (5.40). The
approximation 2 (green triangles) uses p.y = 3(peq +0.9p,). The approximation 3 (blue squares)

uses pey = (pet + p2 + 10pe1pr)/ (Pe1 + pr)-
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5. IGNITOR SHOCK AMPLIFICATION IN THE SHELL

5.1.4 Partial conclusions

We defined in this section three amplification factors which apply to a converging shock when

it propagates into an imploding shell. The total amplification is written as:

X = ximpxshellxcoll- (541)

The amplification factor X, accounts for the overall shell pressure amplification during
the shock propagation. It depends on the assembly phase of the target, on the time of shock
launching and on the shock velocity. A rough estimate of this factor indicates an overall pressure
amplification during the shock propagation Xy, ~ 1.5 for typical implosion parameters in the
shell acceleration phase. However, this factor could be higher if the shock collides with the
reflected first shock and propagates after that through a decelerating shell near the stagnation
time. Then, even if the shock traveling time in the decelerated shell is short, the overall pressure

amplification factor is X;y,, ~ 15 for typical implosion parameters.

The factor Xgpey accounts for the shock pressure amplification in the shell comoving frame.
It depends on the shell spatial profile, on the initial shock strength and on the shell aspect ratio.
The shell spatial profile is characterized by the parameter K. If the shell is accelerated, X is
positive and the pressure and density gradients are positive. If the shell is decelerated, X is
negative and the pressure and density profiles are negative. For |K| < 1, the shock pressure
is mainly amplified due to the convergence effect and follows the self-similar solution (3.92).
If |X| > 1, the shell spatial profile effect is significant. The shock pressure decreases in an

accelerated shell whereas it increases in a decelerated shell.

The shell starts to decelerate when the returning shock is entering in the shell. Therefore, if
the ignitor shock enters the hot spot during the deceleration phase, it collides with the returning
shock. The shock pressure amplification through this collision is X.;. If the returning shock
is weak, the amplification factor is about X.,;=2. For a stronger returning shock, the collision

amplification factor is more significant.

The ignitor shock pressure evolution in the shell depends thus on several processes. We
presented in this section maps of the amplification factors depending on the shell parameters
(X, Tin/Tout), on the initial strength of the ignitor shock Z; and on the strength of the returning
shock Z,. The results obtained here, in the context of shock ignition, could be applied to any

shock propagating into an isentropic homogeneously imploded medium.

We analyze in the next section the effect of the assembly phase parameters and the ignitor

shock initial strength on the shock amplification in the case of a HIPER shock ignition target.
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Figure 5.13: HiPER baseline target (a) and laser pulse temporal shape (b)

5.2 Shock pressure amplification and strengthening in shock ig-

nition scheme

The shock dynamics theory is applied here for the analysis of the shock amplification in the
hydrodynamic simulations of a shock ignition implosion. The simulations are performed with
the hydrodynamic code CHIC in spherical geometry. The domain is discretized with 280 meshes
in the radial direction. The laser energy deposition is described by one ray and its energy is
totally deposited at the critical density n.. The hydrodynamic simulations are performed with
an ideal gas equation of state.

We use the HiPER target baseline [Atzeni et al., 2008, Ribeyre et al., 2009] implosion design.
The target of an outer radius Ry = 1044 pm is composed by a shell of cryogenic D-T with a
thickness ARy = 211 um and a central part filled with gas of D-T (figure 5.13). The initial
density of the shell is peryo = 0.25 g.cm~? and the initial density of the gas is Pgas = 1 mg.cm ™3,
The initial aspect ratio of the target is Ag = (Ry — ARy)/ARy = 4. The laser pulse has
the shape presented in figure 5.13. The power in the prepulse Py = 0.5 TW is chosen to
produce a shell adiabat ay = 0.7 at the beginning of the acceleration phase. The power in the
main pulse P, = 10 TW is chosen to obtain the implosion velocity uimp = 280 km.s~!. At
the time t; = 10.5 ns a laser spike with the power P; = 80 TW launches the ignitor shock.

2 on the target surface. The shock

This power involves a laser intensity I, = 7 x 10 W.cm™
pressure amplification depends on the initial shock strength and on the shell radial profile. These
implosion parameters can modify the shock pressure amplification. In a first part we analyze
the influence of the spike parameters t; and I, in a second part we analyze the influence of the

main implosion parameters.

5.2.1 Analysis of the shock pressure amplification factor

We consider the time interval of the shock launch 9.9 ns < t5 < 10.8 ns and the spike intensity
range 2.10® W.em™2 < I, < 8.10" W.cm™2. These intervals are chosen according to the

ignition window of the HiPER target [Ribeyre et al., 2009]. To evaluate the shock amplification,
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5. IGNITOR SHOCK AMPLIFICATION IN THE SHELL

one needs to know the shell parameters K and 7, /7o as well as the initial shock strength Z;.

5.2.1.1 Shock initial strength and shell parameters

Initial shock strength The initial strength of the shock depends on the outer pressure of
the shell pe(ts) and on the absorbed spike intensity Is. The outer pressure is measured in a
simulation without laser spike. Then, the initial strength is evaluated by using the ablation

pressure law (2.17) for DT and a laser wavelength Ay = 351 nm :

wln

~ 119(Z,[10'5 W.cm™?])

Zini(ts) - pe(ts) (542)

The initial shock strength evaluation is represented in figure 5.14. As p.(t) increases with
time, the strength of the launched shock with a given laser intensity decreases while the time

increases.

Shell profile The shock pressure amplification depends strongly on the shell profile which
evolves with time. Figure 5.15 presents the evolution of the pressure gradient over density and
the acceleration evolution in a simulation without laser spike. Those two quantities compensate
each other and the equilibrium condition (5.22) is clearly visible here. At the time t; = 11.1 ns,
the returning shock enters the shell. For ¢ < t; the shell is accelerated with positive pressure
and density gradients. This corresponds to a positive shell parameter K. For ¢t > t4, the shell is
decelerated and the shell parameter X is negative. The shell is divided into two parts: the part
Sacc at the outer side of the returning shock with a positive pressure gradient, and the part Sge.
at the inner side of the returning shock with a negative pressure gradient.

The ignitor shock is generated at the outer radius location at the time 5. It collides eventually
with the returning shock at the time t.. Then, it reaches the inner face of the shell at the time
ty. We calculate the shock amplification through the two zones.

The ignitor shock initial pressure ps; is first amplified in the zone 8,... It reaches the pressure
Psy at the inner radius of the shell 7, if no collision occurs, or it attains the pressure p.; before
the collision at the time Z.. The shock pressure amplification in Sacc is X1 = psy /ps; in the first
case and X1 = pc/ps; in the second case. If t; > ¢4, the collision amplifies the shock pressure
by a factor Xeoy = Dea/Per, With pey being the shock pressure after the collision. The shock
is further amplified in the decelerating zone Sge by the factor Xo = ps; /Deo.  If the ignitor
shock reaches the inner shell face before the time tg4, there is no returning shock and we set

Pc2 = Pe1 = Psg, tf = tc in order to have X.op =1 and Xo = 1.
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Figure 5.15: HiPER shell pressure gradient over density (a) and acceleration (b) evolution at
the end of the compression phase
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5. IGNITOR SHOCK AMPLIFICATION IN THE SHELL

5.2.1.2 Pressure amplification factors

Implosion amplification factor X;,,, The amplification factors X; and Xy are partially due
to the overall pressure increase in both zones 8, and S, of the shell. The mean pressures in Sqc.
and 84, are measured in the simulation without spike (figure 5.16 (a)). The slope of the curves
gets steeper at a later time and is steeper in Sge. than in 8,... The overall pressure amplification
factor is evaluated as a ratio of pressures averaged on the shell thickness at the time ¢; and ¢
Ximp =< p(ts) >shet / < p(ts) >shen- The factor Xy, is higher if the shock propagation time
is longer - which corresponds to a low shock velocity - and close to the stagnation time when
the mean pressure < p(t) > increases rapidly. Figure 5.16 (b) shows the shell overall pressure
amplification X;;,, during the shock path, depending on the shock initial strength and time.
The dashed line in panel (b) delimits the zone where the shock undergoes a collision. Below
this curve, the amplification factor X, is lower than 5. As soon as the shock enters in the
decelerating part of the shell (in the upper part of the graph), Xy, increases quickly and reaches
100. For a given spike time, X;,,, is higher for a lower intensity as the shock velocity is lower.

We notice a good agreement with the estimates of Xy, given in Section 5.1.1.3.

Shell amplification factor Xgnen The shock amplification in the shell comoving frame de-
pends on the initial strength of the shock, on the shell parameters X and on the shell radius
ratio 7;/7e in 8gee and Sgee. The whole shell implosion does not follow a fully isentropic homo-
geneous compression. However, this assumption can be applied for shorter time intervals. We
assume here that the isentropic model is describing the imploding shell during the ignitor shock
propagation time.

The shell parameter X is calculated to fit the outer and inner pressure of each part S,.. and
Sdec in the simulation without spike. Its evolution with time is plotted in the figure 5.17(a). Its
mean value during shock propagation time is calculated for several spike time ts and intensity
I;. It depends mainly on the spike time t;.

In the same way, the inner radius of the shell r;,, the outer radius of the shell r,,:, and the
position of the returning shock R, are measured in a simulation without spike and are represented
in the figure 5.17(b). The mean dimensionless ratio r;/r. during the shock propagation is
calculated in 84 and 84ee. The curve (X, r;/re) is plotted in figure 5.18 (a).

In the accelerated shell part S,.., the shell parameter X is positive. According to Figure 5.10
(a), Xspey varies from 0.2 to 1 as the radius r;/r. varies from 0.9 to 0.6 and as the shell parameter
X varies from 20 to 0. Thus the shock pressure decreases in S4c.. In the decelerated part of
the shell, Figure 5.8 indicates that the maximal amplification factor is Xgpe;; = 2.5 considering
a shell parameter X = —8 at the radius 7;/r. = 0.8. By combining the amplifications in 8.
and 84, the total amplification factor in the shell comoving frame Xgpe; varies from 0.2 to 2 as
it is presented in figure 5.18 (b). We observe a weak dependence of Xy on the initial shock
strength Z; as the spike intensity influence is low. The amplification in the shell comoving frame

Xshenr has a positive effect only for a very late spike time ;.
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Figure 5.16: Mean pressure in the shell in a HiPER simulation without spike (a) and ignitor
shock pressure amplification due to the shell compression (b).
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Figure 5.18: Evolution of the shell parameter X and r;/r. in a HIPER simulation without spike
(a) and ignitor shock pressure amplification due to the shell profile (b).
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Figure 5.19: Evolution of the returning shock strength in the HiPER simulation without spike
(a) and ignitor shock amplification due to the shock collision (b).

Collision amplification factor X.,; The amplification factor due to the shock collision is
calculated from the ignitor shock strength and the returning shock strength before the collision.
The strength of the returning shock is measured in a simulation without spike and represented
in Figure 5.19 (a). In the spike parameters domain considered here, the time of collision is
in the range [11.1 ns,11.43 ns|. In this range of interest, the strength of the returning shock
is around 2 until 11.4 ns and then increases quickly up to 25. The shock strength before the
collision is evaluated using the shock dynamics model in the same way it was done for Xgpey (see
Section 5.2.2.1). As the returning shock strength is known (Figure 5.19 (a)), the shock pressure
amplification in the collision X,y is calculated with the method explained in Section 3.3.4.1.
The theoretical shock pressure amplification in the collision is presented in Figure 5.19 (b).
The comparison with the simulation results is not straightforward because the collision in the
simulation is not instantaneous. The shock amplification in simulation is calculated with the
ratio of the shock pressure after and before the collision divided by the overall pressure enhance-
ment factor X;,,, during the time of collision. The comparison of the model and the simulation
results presented in Figure 5.19 (b) shows a good agreement. If the collision takes place before
11.4 ns - when the returning shock strength is weak Z, ~ 2 - Figure 5.11 indicates that the
shock amplification is below a factor of 2. It becomes significant only for a very late time as the

strength of the returning shock increases. It reaches the maximum value of 6.

Total pressure amplification factor The total pressure amplification of the shock is given
by X = ps; /Dsi = XimpXsheurXcon- It is represented in figure 5.20 where the white dots represent
the shock amplification measured in simulations with spike. We obtain a very good agreement
between the theory and the simulations results.

The unity isocontour is close to the dashed line delimiting the domain where the ignitor shock

undergoes a collision with the returning shock. For earlier spike times, the shock propagates only
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Figure 5.20: Shock pressure amplification dependence on the spike time ¢ and the spike intensity
I;. The white dots represent simulation results.

in an accelerating medium. The positive pressure gradient, which compensate the acceleration
force in the shell comoving frame, induces a decrease of the shock pressure. Moreover, in this
zone, the shell overall pressure is increasing slowly which is not sufficient to compensate the
shock pressure decrease in the shell comoving frame. Therefore, the total amplification factor is
below unity when t; < t4.

For time later than the isocontour of unity, the shock pressure amplification increases quickly
and reaches a value of 500. This huge modification of the amplification factor X is visible on
a variation of 400 ps of the spike time ¢s from 10.4 ns to 10.8 ns. In this domain, the shock
collides with the returning shock. The collision factor is of about 2-6 and does not explain the
high value of the total amplification factor. After the collision, the shock propagates into a
decelerated medium with a sharp negative pressure gradient. This increases the shock pressure
by a factor 2 for very late times. The main reason of such a high total shock amplification factor
is the quick increase of the overall shell pressure near the stagnation time. Indeed, close to the
stagnation time, several shocks and compression waves coming from the hot-spot enters into the
shell and increase its mean pressure. This explains the pressure amplification in the range of
50-80.

5.2.1.3 Conclusion

The theoretical analysis and the numerical simulations show that the higher shock pressure
amplification is obtained for later spike times. As the pressure amplification is higher for late
time, a shock with a low initial velocity can be better amplified. This means that an initially

weak shock is more amplified than a strong shock. However, the initial shock strength has a
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weak influence in comparison with the shock timing.

In practice the shock cannot be launched too late. The target needs to be confined during a
time long enough for the fusion reactions to ignite and for the burn wave to propagates in the
fuel. So a late spike time results in a lower fusion gain (see Section 2.1.1). Moreover, the shock
is less efficient if it enters into a hot-spot with a high pressure. Indeed, as we demonstrated in
Chapter 4, the ignitor shock strength is another critical parameter for the shock ignition. We

analyze this quantity in the next section.

5.2.2 Analysis of the shock strengthening

The shock strength does not depend on the overall pressure amplification. It is affected by the

shock dynamics in the shell comoving frame and by the shock collision.

5.2.2.1 Spike parameters influence on the shock strength

Dependence of the ignitor shock strengthening on the laser intensity and the spike launch time
is presented in Figure 5.21. The main amplification of the shock strength takes place in the
accelerated shell part Syc. (panel (a)). The shock strength is lowered in the collision with the
returning shock (panel (b)). The shock strength decreases further more in the shell decelerated
part Sge. (panel (c)). The total shock strengthening as a function of the spike parameters (ts, I5)
is obtained by combining the previous maps (panel (d)).

We represented also the total shock strengthening in the plane (¢, I5), where t; is the time
when the shock enters in the hot spot in Figure 5.22. It appears that the shock strengthening
depends mainly on the time ¢; when the shock reaches the shell inner surface. The results from
simulations with spike are represented with white dots. The later the shock arrives at the shell

inner surface, the lower is its final strength.

Even if the shock pressure amplification is stronger for late spike times, the final strength of the

shock is weaker.
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(b), in the decelerated part of the shell (c) and total shock strengthening (d).
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intensity Is. The white dots represent simulation results.

5.2.2.2 Assembly phase parameters influence on the shock strength

To quantify the shock strengthening in the shell accelerated part S,.., one needs to evaluate
the shell parameter X which is time dependent. Indeed, the target implosion does not follow a
homogeneous compression as it is assumed in the simplified model. Here, we assume that the
shell is compressed homogeneously during the shock propagation time in the shell. The shell

parameter K and the radius ratio ry, /rou: will be evaluated at the time ¢.

Relation between the shell parameter and the shell aspect ratio According to the
shell profile description (Section 5.1.1.1), the shell parameter during the acceleration phase is

K = (Tout/CoutT)? wWhere 7 is defined by

1 dpo . j:’r’o

po dro T2’

(5.43)

In this expression, 7 may be related to the acceleration #,,; of the shell. Let us estimate 7 as

T = \/Tout/Tout. We have

K = Tm‘fwt. (5.44)
Cout

The shell mass is related to the shell aspect ratio as M = 4rpR?/A3. Using the Newton’s
law MR = —47pR? we have
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Figure 5.23: Shell parameter X and shell aspect ratio A in the reference simulation without
spike

The expression of the shell parameter K and shell aspect ratio A during the acceleration
phase are similar. According to the section 2.3.2, they decrease during the acceleration phase.
In the reference simulation without spike we measured the shell aspect ratio and the shell
parameter of the accelerated part of the shell. Their evolution with time is shown in Figure
5.23. It appears that indeed those two quantities are almost proportional to each other. The
factor of proportionality is ~ 0.7.

Based on this observation, we present in Figure 5.24 (a) the shock strengthening dependence
on the initial shock strength and the shell parameter K. The radius ratio i, /roue = A/(A + 1)
is related to the shell parameter with A = 0.7K. This plot can be compared with the shock
strengthening calculated directly with the shell parameters. The Figure 5.21 (a) is reproduced
in Figure 5.24 (b) in the plane (ts, Z;). We can notice the similarity between those two maps in
Figure 5.24 panel (a) and (b).

In conclusion, the shell parameter X is almost proportional to the shell aspect ratio A during
the acceleration phase. This fact allows us to establish a relation between the shock time of

launch and the shock strengthening.

Relation between the shell parameter and the shell Mach number To confirm the
relation between the shell parameter and the shell aspect ratio, we performed a set of simulations
where the laser pre-pulse power Py is varied between 0.4 and 0.7 TW and the laser main pulse
power P, is varied between 10 and 40 TW. This allowed us to vary the shell adiabat et accel-
eration and to cover a maximal shell Mach number My in the range from 7 to 11. We remind
here that the shell maximal Mach number is defined as My = timp/ciy (see Section 2.3.2).

For each simulation, the shell parameter X, the shell aspect ratio A and the shell Mach number
M are measured from the beginning of the acceleration phase to the stagnation. Figure 5.25 (a)
presents the evolution those quantities as a function of the shell radius obtained from a typical

run. The position corresponding to the beginning and the end of the acceleration phase are
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Figure 5.24: Estimate of the shock strengthening by assuming A = 0.7K (a) and calculation of
the shock strengthening using the shell parameters in the simulation without spike (b).

indicated with dashed lines.

In each simulation, the maximum shell Mach number My and the shell parameter Xy, at the
radius Rg, are measured. Their values are reported in Figure 5.25 (b). It appears that K
scales as the square of the maximal shell Mach number K, oc M2 as does the IFAR (2.38).

As the shell converges, the shell aspect ratio decreases and the shell Mach number increases.
At some point, A ~ M. We conclude from observation of Figure 5.25 (a), that the assumption
X o« A is valid only before this moment.

At the end of acceleration phase (time t4), the first shock enters in the shell at the radius R,
and the shell starts to decelerate. The parameter X is equal to zero at this point.

According to this analysis, the shell parameter X evolves monotonically with the shell radius
from Kgp o M(Q) at Ry to 0 at Ry. Therefore, the shock strengthening in the shell accelerated
part can be enhanced by increasing the shell Mach number. However, the strength of the shock is
decreased after the collision with the returning shock. The returning shock strength dependance
on the shell Mach number should be known to estimated the overall shock strenghening as a

function of M.
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Figure 5.25: Evolution of the shell parameter X, aspect ratio A and Mach number M as a
function of the shell position R in a simulation without spike (a) and relation between the shell
parameter K, at the beginning of the acceleration phase t4 and the maximal shell Mach number
Moy (b). The dashed line in panel (b) follows the relation K, oc M3

5.3 Conclusions

In order to ignite the fusion reactions in a hot-spot with an areal density higher than 20 mg.cm ™2,
the ignitor shock pressure ps; must attain a level of tens of Gbar at the shell/fuel interface and
have a sufficiently high strength Z (see Chapter 4). It is therefore desirable that both the
ignitor shock pressure amplification and the shock strength are maximized. For that, one needs

to understand the shock dynamics in the imploding shell.

The shock dynamics depends on the medium where the shock propagates. The shell is
described with a Kidder like model where the compression is assumed to be homogeneous. This
allows to define a non-inertial reference frame which follows the shell flow. Then the shock
amplification factor can be expressed as X = XjympXsnenr Where Xgpen corresponds to the shock
pressure amplification in the shell comoving frame and X;,,;, is the pressure amplification in the
imploding shell itself. The ignitor shock must enter in the hotspot close the stagnation phase
where its areal density is sufficiently large for ignition to be possible. It must therefore at some
point propagate through a decelerated medium. The deceleration phase starts as a diverging
shock wave coming from the assembly phase enters in the shell. The ignitor shock collides with
this returning shock. This process leads to a third amplification factor X.,; which is the pressure

amplification in the collision with the returning shock.

The factor X;,;, accounts for the overall pressure amplification in the shell due to its implo-
sion. This overall pressure raise is faster near the stagnation phase. The influence of the factor
Ximp on the ignitor shock pressure is therefore dominant near the stagnation. It can reach high
values of order 100. Also, the amplification factor X, is higher if the shock propagation time
in the shell At ~ ARg,/(Usi — Wimp) is longer. For that one can either reduce the initial shock
velocity Ug; o \/]T/pz (by increasing the shell density p; at the spike time moment) or increase
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the shell thickness at the spike time or increase the implosion velocity. On the other side, the
shock must have time to propagate in the shell. If the implosion velocity is too high, the shock
relative velocity (Us; — Uimp) might be small. Then the spike time t5 can be too close to the
beginning of the acceleration phase tg. In this case, the laser pulse is the same as in the con-
ventional scheme and there is no shock ignition anymore. The maximal shock propagation time
in the shell may also be limited by the laser energy available. This point should be analyzed
deeper from a design point of view.

The factor Xspe;; depends on the shell density pg and pressure pg profiles and on converging
effects. The shock dynamics equation in the shell comoving frame can be written in the form
dInZ =8,dInpy+ (1 +w)8,dInpy — j8,dIn R,, where Ry is the position of the shock. We
verified the validity of this equation for a converging shock and for various pressure and density
profiles. Only the density gradient term must be corrected through the coefficient w depending
on the shell profile considered. The third term represents convergence effect. It is predominant
if the pressure and density gradient are low (in a homogeneous non accelerated medium) or for
radius 5 times lower than the outer radius. This justifies the assumption of a homogeneous
initial hot-spot in the chapter 4 dedicated to the shock propagation in the hot spot. However,
in the shell, a spatial variation of the density and pressure profiles must be accounted for.

The profile of the shell is characterized by the parameter K, which is positive in the acceler-
ated part of the shell and negative in the decelerated part of the shell. The factor Xy depends
on the shell parameter X, on the ratio of its inner and outer radius 7, /ro,: and on the initial
shock strength Z;. In an accelerated shell (X > 0) the pressure decreases whereas the shock
strength increases and in a decelerated shell (X < 0) the opposite behavior occurs. Higher are
Tin/Tout and Z;, more influent is the parameter Xgpey;.

The amplification factor X.,; depends on the strength of the ignitor shock Z.; and on the
strength of the returning shock Z, before the collision. No exact analytical expression exists but
it can be evaluated by using a graphical resolution or with an approximate expression. For Z.;
and Z, below 10, we propose the expression (5.40) which is sufficiently accurate in the domain
of interest.

The theoretical model of shock propagation through a converging shell is applied to a typical
HiPER implosion. The shock pressure amplification is predicted using parameters measured in
a simulation without spike. Then, the predicted shock pressure amplification is compared to
the results from simulations with spike. A good agreement between the simulation results and
the shock dynamics model is obtained. This means that the theory developed here includes
all important processes influencing the shock dynamics. In the HiPER implosion, the pressure
amplification factor varies from 0.1 to 500 if the spike time varies within 1 ns. The shock pressure
amplification is very sensitive to the shock timing. It is maximal when the shock enters in the
hot-spot at the stagnation time.

The strength of the shock need also to be maximized. It can be calculated in the shell
comoving frame. The shock strength is mostly affected by two steps: (a) the accelerated shell

pressure and density profiles upstream the returning shock and (b) the shock collision. In the
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step (a) the shock strength increases. The strengthening depends strongly on the spike time. It
is minimal when the ignitor shock enters in the hot-spot at the stagnation time. This lower limit
can be increased if the density and pressure gradients in the accelerated shell are significant.
For that one can increase the implosion velocity or reduce the shell adiabat. In the step (b),
the shock strength is reduced in the collision with the returning shock. Increasing the implosion
velocity would increase the returning shock strength and the two effects in (a) and (b) might
compensate each other.

Further studies are needed to link the assembly phase parameters to the shock pressure
amplification and strengthening. However, our analysis based on the assembly parameters of a
typical HIPER implosion showed that the shock pressure amplification can be higher than 50 if
the shock is launched sufficiently late. The ignition conditions expressed in Chapter 4 indicate
that the shock pressure when it enters in the hot-spot must be of the order 20 Gbar. Therefore,
to reach ignition, an initial shock pressure of more than 400 Mbar is needed. This is in agreement
with the literature. The question now is: is it possible to generate such a pressure? The next
chapter is devoted to the analysis of an experimental campaign where the ablation pressure is

measured in SI relevant conditions.
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6. SHOCK GENERATION AND EXPERIMENTS

In this chapter, we discuss experimental results concerning the ablation pressure and the
shock generation in shock ignition relevant conditions. We review briefly the past experimental
studies on this topic in Section 6.1. In Section 6.2, we expose the experimental setup considered
in this study. In Section 6.3, we explain how the ablation and the shock pressure can be inferred
from the experimental data. In Section 6.4, we analyze two representative shots. The influence
of the hot electrons in the shock generation is discussed in 6.5.

The results exposed in this chapter are obtained in the framework of a collaboration between
the american team (LLE Rochester,USA) and the CELIA team.

6.1 Experiments of shock generation

The crucial issue of the shock ignition scheme is the possibility of generating an ablation pressure
higher than 300 Mbar in a large pre-plasma with a laser pulse in the intensity regime where
the parametric instabilities dominate. In Section 2.2.3, we saw that the ablation pressure in the

classical collisional absorption regime, can be expressed as [Dautray and Watteau, 1993]

(&) 1)

with I being is the absorbed laser intensity and A\, being the laser wavelength.

Wl
wln

pa( Mbar) = 11~8(Iabs[1014 W.cm_Q]) (A[pm])™

According to this law, the absorbed intensity needed to generate 300 Mbar pressure in the
plastic ablator is 4.7 x 10" W.cm™2. Assuming an absorption coefficient of 60 % means that
the incident intensity must be higher than 7.8 x 10'® W.cm~2. Considering a laser wavelength
of 351 nm, this gives an irradiance of I;A\2 = 10'® W.cm™2. ym?. This is above the threshold of
non-linear processes (see Section 2.2.1). In this regime, the reflectivity will increase due to the
Stimulated Raman Scattering (SRS) and the Stimulated Brillouin Scattering (SBS). Moreover
the SRS along with the laser beam filamentation (FI) and two plasmon decay (TPD) are the
sources of hot electrons.

A direct measurement [Fratanduono et al., 2011] of the ablation pressure during a ramp
compression of carbon has been accomplished at laser intensities up to 7 x 103 W.cm™2 with a

351 nm light. The ablation pressure scaling law found is

Pa(Mbar) = 42(£3) (Ips[10*® W.cm=2]) 7D, (6.2)

In 1980 [Drake et al., 1984], experiments showed that the yield of hot electrons generated
by SRS instability increases strongly with the laser intensity approaching 10> W.cm=2. Klimo
[Klimo et al., 2010] performed PIC simulations of the laser interaction with intensities in the
range 10'° — 100 W.cm ™2 with a plasma of temperature 5 keV and a density gradient length
of 300 yum mimicking the shock ignition conditions. The overall absorption coefficient remains

at the level of 60-70 % in this intensity domain. However, the non-linear processes become
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important for high intensity. The dominant mechanism is the SRS. The energy is transported
to the dense plasma by hot electrons with energy in the range of 20 — 40 keV.

In 2011 and 2012 a series of planar experiments have been performed on the laser facilities
LULI [Baton et al., 2012], PALS [Koester et al., 2013] and OMEGA [Hohenberger et al., 2014].
Recent experiments have been repeated on LIL facility also. The principle was to first irradiate
the target with a low intensity pre-pulse to generate a pre-plasma. This generates a first shock
in the target. Then, a high intensity pulse launches a second shock in the target. The shock
breakout time at the rear side of the target is measured and is compared to the results of 2D
simulations. This allows to infer the ablation pressure. The target (see Figure 6.1) is constituted
of a layer of plastic (on the laser side), a layer of high Z material and a layer of a-quartz (LULI
and OMEGA) or aluminum (PALS). The first layer is the ablator material in which the ablation
pressure is evaluated. The second layer stops the X-rays (which are undesirable for the shock
diagnostics) and gives information about the hot electrons population via the K, X-ray emission.
The third layer allows to measure the shock velocity with the optical interferometry setup VISAR
(LULI and OMEGA) or the thermal emission with the SOP (PALS).

Visar,SOP

Hard X-rays Mo K,

Figure 6.1: Schematic of the planar experimental setup for ablation pressure measure-
ment(adapted from [Theobald et al., 2013]).

The maximal ablation pressures obtained in those experiments is 70 Mbar on OMEGA, 40
Mbar on LULI and 90 Mbar on PALS. The data corresponding to these results are presented in
Table 6.1. The ablation pressures inferred in the experiments are below the law (6.1) prediction
(see Figure 6.2). The ablation pressure for intensities near 10> W.cm ™2 is closer to the pressure
predicted by the experimental scaling (6.2). However, the results from the PALS experiment
with the intensity of 9 x 10" W.cm ™2 is still too low (see Figure 6.2).

This may be due to 2D effects, where the energy is dissipated in the lateral direction, and
to non-linear effects which lead to back scattering. Theses experiments show a reflectivity at
the level of 10 % dominated by the SBS mechanism and reflection from the critical surface.
The conversion efficiency in hot electrons is low. As predicted by Klimo, the energy of the hot
electrons is below 100 keV but their number is lower than expected.

Experimental data are lacking in the shock ignition intensity regime. To overcome the 2D

effects, a spherical geometry is needed. We present in this chapter the results of the experimental
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Figure 6.2: Ablation pressure versus the incident intensity in the planar experiments done on
OMEGA (circle), LULI (square) and PALS (triangle). The scaling law (6.1) is represented in
blue dashed line and the experimental scaling (6.2) is represented in magenta dot dashed line.

Pre-pulse Pre-plasma
I, (W.em™) | A (nm) | @(pm) |t (ns) | T (eV) | Lujn,ja (pm) | Lujn, /10 (pm)
PALS 7 x 1013 1315 900 | 0.250 175 4-25 20 - 65
LULI 7 x 1013 530 400 2
OMEGA 20 x 1013 351 900 1.5
Spike-pulse Results
I (W.em™2) | A\ (nm) | @(pum) |t (ns) || Py (Mbar) | BSL (%) | he (%) | he (keV)
PALS 9 x 101° 438 100 0.250 60-100 <10 1 50
LULI 101° 530 100 2 40 10-15 - 50
OMEGA 1.49 x 10® 351 600 0.5 75 <3 <2 20-70

Table 6.1: Condition of planar experiments on laser plasma interaction in the shock ignition
relevant regime.

campaign conducted on the OMEGA laser facility to measure the ablation pressure in the

spherical geometry with an intensity of ~ 5 x 10" W.cm™2.

6.2 The “Strong Spherical Shock” experiments objectives and

setup

A campaign of experiments called the “Strong Spherical Shock” has been performed since 2013

on the OMEGA laser. The aim of this campaign is to measure the ablation pressure with a peak

laser intensity pertinent for shock ignition and in a target covered with a pre-plasma [Theobald

et al., 2013].
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6.2.1 OMEGA laser facility

The OMEGA laser facility at the Laboratory for Laser Energetics (LLE) in Rochester (USA)
is a 60 beams neodynium:glass laser with a wavelength of 351 nm. It allows to conduct ICF
experiments in a direct drive scheme with a total energy of 30 kJ with a peak power up to
45 TW. The 60 laser beams are distributed symmetrically around a spherical target chamber as
it is shown in Figure 6.3. The target chamber is equipped with target diagnostics ports which
are also represented in Figure 6.3. The system repetition rate is of one shot every 45 minutes

which allows a productive program of experiments in one day.
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Figure 6.3: Schematic location of the laser beam ports (in gray) and diagnostics ports on the
target chamber

6.2.2 Target and laser pulse

In this campaign the target used is a solid ball of CH doped with 5% of titanium covered with
a CH ablator of 50 pm thickness (see Figure 6.4(a)). In order to obtain the highest achievable
intensity, the target diameter is small 430 yum. The target is irradiated by the 60 beams of
OMEGA with the laser pulse shape illustrated in Figure 6.4(b). A pre-pulse of about 800 ps
duration is used to create a pre-plasma. Then a 1 ns spike pulse with 22-27 kJ of energy is used

to generate a shock.

181



6. SHOCK GENERATION AND EXPERIMENTS

304
A shock generation
X ray Ti emission

430 um =
[a

pre-plasma

generation

Y 50 um
>
(a) Target 0 ; 2
time (ns)

(b) Laser pulse shape

Figure 6.4: Target (a) and laser pulse (b) sketches used in the SSS campaign

6.2.3 Laser beams

The beam spot on the target can be smoothed with three smoothing techniques. The Smoothing
by Spectral Dispersion (SSD) moves the speckles positions in the beam spot during the time of
irradiation. A polarization smoothing is done with a Distributed Phase Rotator (DPR) optics.
This is coupled to the Distributed Phase Plates (DPP) which produce multiple speckle pattern in
the focal spots on the target. The phase-plates designs have an irradiance envelope with a super
Gaussian profile I,(r) o< exp(—r/r9)™ where rg is the radius of the beam focal spot. The “SG4”
phase plates combined with the SSD and polarization smoothing produce an intensity profile
with n = 4. This currently allows to obtain the most uniform spherical irradiation (uniformity
better than 2 % on the target). There are also other phase plates with 100, 200, 300 and 800
pm diameter spots.

For the SSS campaign, small phase-plates (elliptic of radii 105 um and 145 pym and circular
of radius 150 um) where chosen to increase the on-target intensity up to 6 x 10> W.cm™2. For

several shots in the SSS campaign, the SSD was removed to increase the laser on target intensity.

6.2.4 Shock timing measurement

The shock generated by the main pulse converges and reaches a high pressure in the center
(see section 4.1). It rebounds from the target center and the matter behind the diverging shock
reaches a temperature of hundred of eV. The excited titanium atoms emit a flash of X-rays when
the shock collapse.

The X-ray framing camera (XRFC) [Bradley et al., 1992] detects and amplifies the X-ray
light and converts it to visible light which is recorded. A set of typically 16 pinholes (10 pum
diameter) provides a sequence of 16 images of the target with a given spatial (~ 12 ym) and an
absolute timing error of 50 ps. The images are recorded with a microchannel plates (MCPs)
covered with a gold film to convert the photons into electrons. The electron signal is amplified

in the channels in an electric potential and converted in optical photons in a phosphor plate at
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the rear side of the MCP. Finally, the optical signal is recorded with a film or a CCD camera.

Filters can be added in front of the detector to select the range of recorded X-ray energies.

Another diagnostic is the streaked X-ray spectrometer (SXS) [Millecchia et al., 2012] which

allows to measure the signal with a 35 picoseconds temporal resolution.

In the SSS campaign, the X-ray emission is detected with a spatial, temporal and spectral
resolution with the X-ray framing camera (XRFC) and the streaked X-ray spectrometer (SXS).

The time of convergence of shock convergence is deduced from the time delay of the X-ray flash.

6.2.5 Laser-plasma interaction analysis

The Full-Aperture Backscatter Stations (FABS) are used to characterize the backscattered light
from the target. There are two FABS installed in the ports of the beams 25 and 30. They
measure the backscattered light energy and temporally resolved spectra in the domains of SRS
(A =400 — 700 nm) and SBS (A = 350 — 352 nm). Knowing the incident and the backscattered
laser power, the laser power absorbed in the target is evaluated with the temporal resolution
of 100 ps. The temporally resolved spectra provide the information of non-linear processes
occurring during the laser plasma interaction. In particular, the SRS and TPD signals are

related to the acceleration of electrons.

The most reliable method of characterization of the hot electrons population is to measure the
K, line emission from a layer where the hot electrons deposit their energy. However, this requires
a specific layered target. This makes the shock dynamics more complex and is not employed
in this experiment. Another signal related to hot electrons in a plasma is the Bremsstrahlung
emission produced in scattering of hot electrons with ions. This radiation is characterized by
a continuous spectrum of X-ray which contains informations about hot electrons number and

energies. This does not require any specific target design.

In the SSS campaign, the hot electron temperature is inferred from the imaging diagnos-
tics HERIE (High Energy Radiography Imager on EP) and the X-ray spectrometer BMXS
(Bremsstrahlung MeV X-ray Spectrometer) [Chen et al., 2008]. The measurements are com-
pleted by the time resolved four-channel hard X-ray detector (HXRD) [Stoeckl et al., 2001].

6.3 Ablation and shock pressure evaluation

It is not possible to measure directly the pressure in the laser plasma interaction experiments.
However, the pressure can be inferred from the shock time of convergence, as the shock initial
velocity depends on its initial pressure (see Chapter 5). Here, we first give a rough analytical
estimate of the initial shock pressure. Then we explain how this pressure can be inferred more

precisely from the simulation.
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6.3.1 Estimate of the initial shock pressure

Let us use the previous analytical work to predict the initial shock pressure as a function of the
flash time. We define R,,; the radius of the outer part of the ablator and R;, the radius of the
inner part of the ablator at the initial time.

The first shock launched by the pre-pulse has a very high Mach number as the upstream
medium is cold. Considering the ablator as an ideal mono-molecular gas, it is compressed in
the shock by a factor of about 4. The shock generated by the spike pulse first propagates in
the pre-compressed CH of density pou+ = 4pcp. During the time interval of ~ 1 ns between
pre-pulse and the main pulse, the first shock has already crossed the ablator. Therefore, the
second shock is generated at the radius R = Rj, + (Rout — Rin)/4. As the velocity of the second
shock is much higher, we may consider that the two shocks merge near the CH/CHT!1 interface.
Assuming that the shock velocity is approximately constant because the converging effects are
small in this part of the target, the second shock velocity is Us,, = \/m, with ps; the
initial pressure of the spike shock. Then the propagation time of the spike shock in the CH is
Atcg = (Rout — Rin)4Usout, which in the dimensional units reads:

Rou - Rin
Atcp(ns) = ( t40 )1 /3201?. (6.3)

where the radius is in pm, the density is in g.cm™3 and the pressure is in Mbar.

The spike shock pressure is modified by the convergence effect, the interaction with the
interface CH/ CHTi and the coalescence with the first shock. We can expect from the self-
similar solution (3.92) that the shock pressure amplification due to converging effects in the CH
is Xeonw = (Rin/Rout) " = 1.07. The first shock strength is infinite and the expected second
shock strength is below 5. Thus according to Figure 3.15, the amplification factor in the shock
coalescence X.,q is between 0.8 and 1 . The density ratio between CH and CHTi is z = 0.7.
Again assuming that the strength of the shock is below 5, Figure 3.12 predicts a pressure
amplification through the contact discontinuity X¢op between 1 and 1.2. All together those
effects might compensate each other and we assume that the shock pressure is constant in the
CH.

The propagation time of the shock from the CH/CHTI] interface to the target center is
calculated using the Guderley’s solution. One can refer to the zeroth order expression of the

converging time in Table 4.7. In the dimensional units have

Atcpri(ns) = 115\ chg;ﬂ' (6.4)

Adding these two time intervals 6.3 and 6.4, the initial shock pressure can be expressed using

the formula

OIS RIUSEYE

R; 2
AP 0 VPcHTi + £\/PCHT¢] : (6.5)
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where At (in ns) is the duration between the spike time and the flash time.

6.3.2 Estimate of the initial shock pressure with simulations

The initial shock pressure and the ablation pressure can be inferred by constraining radiative
hydrodynamic simulations with the experimental observables: the X-ray flash time and the
absorbed laser energy. In the hydrodynamic code, the electron heat flux is limited and the value
of the flux limiter is constrained by the experimental evaluation of the absorbed energy. A good
agreement between the simulated and the experimental time of shock collapse gives confidence
in the simulation. Then, the ablation pressure and the initial shock pressure are inferred from
the simulation results.

To interpret the experiments we used the radiative hydrodynamic code CHIC [Maire et al.,
2007]. The laser beam irradiation on the target is calculated using the experimental laser pulse
and a 3D ray-tracing package (Section 2.2.1). The focal spots have a super-Gaussian profile with
the radius of 150 um. The laser absorption is calculated assuming the inverse Bremsstrahlung
process (Section 2.2.1). Then the shock evolution was simulated in the spherical geometry
including the radiative effects. The electron heat-flux is treated in the flux limited Spitzer—
Héarm approximation. We used a SESAME equation of state, a Thomas—Fermi ionization and
multi-group radiative diffusion with LTE opacities. The details about the simulation parameters

are given in Appendix A.

6.4 Analysis of two representative shots

We consider here in details the results and analysis of two representative shots with and without

SSD beam smoothing.

6.4.1 Shot with the laser beam Smoothing by Spectral Dispersion
6.4.1.1 Experimental results

The shot # 69133 was performed with the temporal beam smoothing SSD. The external target
radius is Ry = 215 um and the radius of the interface CH/CHTi is R;y, = 165 um. The incident
and absorbed laser power is presented in Figure 6.5. The total incident energy is 17 kJ. The
measured absorption coefficient is 52 %.

The X-ray flash time is measured with the XRFC diagnostics. Figure 6.6 shows the results of
the shot # 69133. For early times, the X-rays emitted from the hot corona when the laser is on
is visible. At the end of the laser pulse the temperature of the corona decreases and the signal
disappears. After some time, a small bright spot appears in the center. This is the titanium
flash which occurs at tfj,s, ~ 1.62 ns. The size of the emitting zone is of about 15 um. The

duration of the flash is less than 50 ps.
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Figure 6.5: Experimental temporal profiles of the incident power (solid line) and absorbed
power (dashed line) in the shot # 69133.
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Figure 6.6: XRFC records in the shot # 69133. The arrow indicates the titanium X-ray flash
from the center of the target.
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6.4.1.2 Analytical estimate of the shock pressure

According to Figure 6.5 the spike time is t; = 600 ps, therefore the experimental time of
collapse is At = tjqsn — ts = 1.02 ns. Using equation (6.5), the analytical estimate gives a first
approximation of the ablation pressure ps; = 172 Mbar.

During the spike pulse, the absorbed power is P; = 12 TW. The absorbed intensity is
evaluated by Inps = Ps/4mR%,, = 2 x 10> W.cm™2. The theoretical ablation (6.1) pressure is

170 Mbar. This is in agreement with the initial shock pressure inferred from the shock collapse

time.

6.4.1.3 Simulations

We conduct a more detailed analysis with numerical simulations.

Variation of the flux limiter Figure 6.7 presents the absorbed power and Table 6.2 shows
the absorption and the time of shock collapse obtained in the simulations with several values
of the flux limiter f. We also performed a simulation with the non local model of electron

conduction. The absorption is of 75 % and the shock collapse time is 1.45 ns.

25(
20 noh local
f= 6%
=19 f=5 %
|_ :
o - =4% £(%) | n (%) | te (ns)
10r } =3% 6 69 | 1.58
| 5 62 | 1.67
S | 4 |52 |1
_ | | | 3 43 | 1.89
95 0 0.5 1 1.5 2

time (ns)

Figure 6.7: Laser incident power at the target surface ~ Table 6.2: Time of the shock collapse
(solid line), experimental absorbed power (dashed  t.and total absorption coefficient 1 de-

line) and simulated absorbed power (blue lines) de-  pending on the flux limiter f.
pending on the flux limiter.

We can see that the simulation with the flux limiter of 5 % recovers the experimental shock

time of collapse and shows an absorption coefficient in agreement with the experiment.

Hydrodynamic analysis Figure 6.8 shows the pressure evolution in time and mass coordinate

of the simulation with the flux limiter of 5 %.
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Shocks pressure A first shock is generated in the CH during the pre-pulse @. The spike
shock is generated at 600 ps @. During this time the first shock has reached the CH-Ti interface
@. As the density of the CH-Ti is higher than the density of the CH, a shock is reflected. This
shock interacts with the spike shock at 700 ps @. Thus, the spike shock is unperturbed by the
upstream flow for only 100 ps. It reaches the CH/CHTi interface in @ and merges with the
first shock in @. A shock is transmitted with a lower pressure and a shock is reflected. This

one reaches the outer radius of the target at 1.1 ns and interferes with the ablation pressure.
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Figure 6.8: Simulated pressure gradient depending on time and mass coordinate for the shot
69133.

Figure 6.9 shows the pressure at the shock fronts and at the ablation front. The pressure
evolution can be interpreted using the shock theory presented in Section 3.3. We reported in
Table 6.3 the shock pressure at some particular points in the simulation and the corresponding
theoretical pressure amplification.

We give somes detail about how the theoretical values are obtained.

The first shock is propagating in a cold matter, thus we assume that it has an infinite strength
Z > 1.

The pressure amplification factor Xcon, is due to the convergence effect. It depends on the
shock position and is calculated using the self-similar law (3.92) with o = 0.688: ps o< R; %Y.

The pressure amplification factor X.,; is due to the collision with a counter-propagating
shock. It can be evaluated using the relation (5.40) Xeon = Zp(Ze1 + ZT)l/Z(l + chZr)*l/2
where Z,; is the strength of the shock and Z, is the strength of the counter-propagating shock.

The pressure amplification factor X..q is due to the coalescence of the shock with an up-
stream shock. It depends on the strength of both shocks and can be read in Figure 3.15.

The pressure amplification factor X¢p is due to the interaction of the shock with a contact

discontinuity surface. It depends on the density ratio at the contact discontinuity surface and on
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Figure 6.9: Pressure evolution at the shock fronts in the simulation of the shot 69133. Panel (a)
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Figure 6.10: Density profile before (left panel) and after (right panel) the interaction of the
first shock with the contact discontinuity.

the shock strength. The initial densities of the CH and the CHTi are respectively 1.05 g.cm ™3
and 1.47 g.cm™3. The density ratio x = 0.7 is used for the calculation of the first shock pressure

amplification through the CD interaction. The value of this amplification factor can be read in
Figure 3.12.

The density profile near the CH/CHT] interface before and after the shock interaction is
presented in Figure 6.10. The density p; = 1.05 mg.cm™3 is the CH density and the density
p2 = 1.47 mg.cm 3 is the CHTi density. The density factor at the interface before the interaction
is x = p1/p2 = 0.7. The strength of the incoming shock is infinite. The density in A is therefore
pa = 4p1. After the collision, the transmitted shock strength is also infinite and pp; = 4ps.
The reflected shock strength is according to Figure 3.12 z,/z, = 1.2. Then, according to
(5.23¢), pp2 =~ 1.1p4. Therefore, the density ratio at the interface after the shock interaction is
x = pp1/pp2 = 1.1 X 4p1/4p2 = 0.8.

The pressure amplification of the spike shock at the CD interface is read in Figure 3.12 with

the value x = 0.8.
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’ Points ‘ Event Pressure in simulation (Mbar) | Theory
A Generation 0 Py =55 P4 ~ ablation pressure
A-B Convergence Pp =1.15P4 = 63 Xeonw = (Re/Ra)™%% = 1.15
B-C CD interaction 9 Pc=12Pg =176 Xep(x=0.7,Z>1)=1.2
C-D Convergence Pp=11Pc=83 Xeonv = (Re/Rp)™%% = 1.1
A Generation @ Py =162 P4r ~ ablation pressure
A-B’ | Collision @ Py =1.2P4 = 178 Xeot(Zer = AL, Zn = £2) = 1.15
B-C’ | CD interaction @ Por =11 Pgr =195 Xep(z=08,Z=42) =11
C-D’ Convergence Ppr = 1.05 Por = 205 Xeonv = (RC//RD/)_O‘9 =1.1
D-E’ Shock coalescence @ Pr = 0.9 Ppr = 189 Xeoat(Za > 1,2y = };,%') =0.9

Table 6.3: Comparison of the shocks pressure evolution in the simulation of the shot # 66133
with the theory.

Ablation pressure Concerning the evolution of the ablation pressure, it is directly linked
to the laser power. The measured absorbed power of the pre-pulse is 2.5 TW. The position of the
critical density during the pre-pulse is around R,. = 220 gm in the simulation. The absorbed
intensity is thus I, = 4.1 x 10" W.cm™2. If we apply the scaling law (6.1), the expected
ablation pressure is 60 Mbar. During the spike pulse, the measured absorbed power is 12 TW and
the critical density position in the simulation is 210 pm which gives Ips = 2.16 x 10® W.cm™2.
The expected ablation pressure is 180 Mbar. We can see in Figure 6.9(b) that the pressure at
the ablation front follows well the scaling law. In the point F the ablation pressure raises. This

is due to the second reflected shock perturbation.

Conclusion The simulation with a 5 % flux limiter recovers both the experimental absorbed
energy and the shock collapse time. The ablation pressure during the spike is 180 Mbar with an
absorbed intensity of 2.16 x 10> W.cm 2. The generated shock pressure before any perturbation
coming from the upstream flow is 162 Mbar. This result is close to the analytic prediction (6.5).
The discrepancy can be explained by the shock pressure perturbation by the reflected shock
wave at the CH/CHT1 interface. The maximal shock pressure before the coalescence of the first
and second shock is 205 Mbar. It comes from an amplification through the collision with the
reflected shock, through the interaction with the CH/CHT! interface and with the convergence
effect.
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6.4.2 Shot without laser beam Smoothing by Spectral Dispersion
6.4.2.1 Experimental results

In the shot # 71597, the SSD smoothing was removed. This increases the level of the intensity
fluctuations on the target surface, but also increases the average incident intensity. This is
in order to explore possibilities of further increased ablation pressure. The external radius is
Royt = 2152 um and the radius of the interface CH/CHTi is Ry, = 169 um. The incident
and absorbed laser power are presented in Figure 6.5. The total incident energy is 26 kJ. The
absorption coefficient is 36.3 %. The titanium flash occurs at ¢, ~ 1.98 ns as it can be seen

in Figure 6.12.

0 0.5 1 15
time (ns)

Figure 6.11: Experimental incident power (solid line) and absorbed power (dashed line) of the
shot # 71597.

The spike time is t5 = 1.1 ns, therefore the experimental time of shock collapse is At = . —
tf1ash = 0.88 ns. The analytical formula (6.5) predicts the initial shock pressure py; = 249 Mbar.
The mean absorbed power during the spike is Ps = 9.5 TW. The absorbed intensity during
the spike is evaluated by I = Ps/4nR2,, = 1.6 x 10" W.cm™2. The scaling law (6.1) predicts

the ablation pressure of 147 Mbar which is not consistent with the measured shock collapse time.
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Figure 6.12: XRFC record of the shot # 71597. The arrow indicates the titanium X-ray flash
from the center of the target.

6.4.2.2 Simulations

The estimated initial shock pressure is too high compared to the predicted ablation pressure
with the scaling laws (6.5) and (6.1) assuming the collisional laser absorption. Let us see what

are the results of numerical simulations.

Variation of the flux limiter and non local model Figure 6.13 presents the time evolution
of the absorbed power and Table 6.4 shows the time of shock collapse obtained in the simulations
with several values of the flux limiter f.

For any value of the flux limiter, the simulated time of collapse is larger than the experimen-
tal value. Moreover, the flux limiter value of 3 % which fits the experimental absorbed energy
corresponds to the largest time of collapse. Here, the simulations do not agree with the experi-
mental results. In this shot, the incident laser intensity on the target is 40 % higher than in the
previous shot while the experimental absorbed intensity is lower. Thus collisional absorption
alone is not consistent with the experiment and the non-linear processes must be considered.
The latter enhances reflection and possibly leads to the generation of supra-thermal electrons.
If the mean free path of the hot electrons is larger than the size of the conduction zone, a non

local model should be better suited to simulate this experiment than the flux limited model (see
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Section 2.2.2). Indeed, the simulation performed with the non-local model [Schurtz et al., 2000]
implemented in the CHIC code gives a time of shock collapse closer to the experimental result:
1.9 ns. However, this is achieved due to the absorption coefficient of 70 % which is much too
high (see red line on Figure 6.13) compared to the experiment. As the heat conduction is larger
with the nonlocal model, the corona temperature is lower. Then inverse Bremsstrahlung ab-
sorption coefficient (2.15) is higher. Thus the non local model alone does not allow to interpret

the experimental results as it does not accounts to the parametric processes in the laser-plasma

interaction.
35
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10 / PO St 4 41 2.26
5 3 42 2.39
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Figure 6.13: Laser incident power (solid line), exper- Table 6.4: Time of the shock collapse
imental absorbed power (dashed line) and simulated ¢, and total absorption coefficient 7 de-
absorbed power (dotted lines) depending on the flux =~ pending on the flux limiter f.

limiter.

Artificial increase of the ablation pressure The ablation pressure in the experiment seems
to be higher than the ablation pressure obtained in the simulation with the same amount of
absorbed energy.

In order to evaluate the ablation pres-

sure leading to the experimental shock time of 50

collapse, we increase artificially the absorbed

40 <P>=40TW
laser power in the spike. Figure 6.14 shows =
the input laser laws generated from the exper- '0:_’30
imental absorbed power with a mean power 20
. . <P>=10TW 2\
in the spike from 10 TW to 40 TW. As we 10} <P> exp = 8.70 TW| j== -

want to impose the absorbed energy in this set

05 1 15 2

of simulations, we do not use the ray-tracing. time(ns)

Only one ray is used and all input energy is )
Figure 6.14: Rescale of the experimental ab-

o sorbed power of the shot # 71597. The mean
a flux limiter of 5 %. spike power is varied from 10 TW to 40 TW.

In each run with a given value of the laser

deposited at the critical density n.. We choose

spike mean power, the pressure at the ablation front and its position as well as the pressure and

position of the spike shock front are measured. Then the pressure as a function of position is
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Figure 6.15: Pressure at the ablation front (a) and at the shock front (b) obtained in the
simulations with increasing mean spike power from 10 TW to 22 TW.

plotted in Figure 6.15 where the time is considered as a parameter. Each curve corresponds to
one run. The shock and ablation fronts propagate from higher radii to lower radii. Therefore, the
pressures evolution at the fronts can be read from the right to the left. In panel (b) the shock
generation phase corresponds to the zone where the second derivative of ps(Rs) at the right
from the straight black line. During this phase, the shock pressure is coupled to the ablation
pressure. When the shock is launched in the target, the pressure increases by the converging
effects ps oc R;%? and the second derivative of ps(Rs) is positive. Therefore, we define the
initial shock pressure as the pressure at the inflection point. The maximal ablation pressures
and initial shock pressures at the inflection point p(R;s) curves are indicated with black lines.

Figure 6.16 presents the relation between the measured maximal ablation pressure (black
diamonds), the initial shock pressure (black circles) and the time of shock collapse. In the same
plot, the corresponding mean absorbed power in the spike used in the simulation is represented
with red squares. The experimental shock time of collapse 1.98 ns corresponds to an ablation
pressure of 300 Mbar and a initial shock pressure of 225 Mbar. In this case the mean spike
power absorbed is 19 TW. The analytical formula (6.5) is represented with the black dashed
line. It underestimates the initial shock pressure for a short time of collapse. This is explained
by the fact that we neglected the shock pressure modification at the CH/CHTi interface and
the collision with the reflected shock. This approximation is valid only for a weak spike shock
strength. Nevertheless, the pressure estimate is in satisfactory agreement with the simulation
results. The experimental error in measuring the shock collapse time is 50 ps. According to
Figure 6.16 that corresponds to an uncertainty of 50 Mbar in the ablation pressure and of 25
Mbar in the initial shock strength.

According to the simulation, the experimental shock collapse time is recovered with the
ablation pressure of 300 Mbar. This pressure will be called the apparent ablation pressure,

that is to say, the ablation pressure needed to recover the experimental shock timing in the
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Figure 6.16: Maximal ablation pressure (black diamonds), initial shock pressure (black circles)
and mean spike power (red squares) depending on the shock collapse time. The analytical
relation between the shock collapse time and the initial shock pressure (6.5) is represented with
the black dashed line. The experimental time of collapse is indicated with the blue line. The
experimental error bar is represented by the blue zone.

hydro-radiative simulation code with the thermal electron flux limited at 5 %.

The current model of laser energy absorption by inverse Bremsstrahlung process implemented
in our code does not allow to recover both the apparent ablation pressure and the experimental
absorption coefficient. The PIC simulations of Klimo [Klimo et al., 2010] indicates that the laser
energy absorption process is dominated by the stimulated Raman scattering but not the inverse
Bremsstrahlung at such incident laser intensity. In this case, a part of the absorbed energy
is carried by the hot electrons. We will show in the next section that both the experimental
absorbed energy and the shock collapse time can be recovered in the simulations by taking into

account the hot electron energy deposition.

Hot-electron energy deposition Let us now revise the model of absorption. We use as input
the experimental absorbed laser power. However, we assume that a part np. of the absorbed
energy is converted into hot electrons. For the sake of simplicity, let us consider that those
hot electrons are mono-energetic. They deposit their energy behind the critical density on the
distance defined by the stopping range plp. which depends on their energy. Thus we combine
two processes of energy deposition: 1-a local deposition at the position of critical density R,
and 2- a volume deposition from R, to R, where [ ;; ’;Ze pdR = plp.. We suppose that the
hot electron energy per unit of mass is homogeneously deposited along the stopping range. In
this model, there are two free parameters: the fraction of energy carried by hot electrons np,
and their stopping range plpe.

Such a simple model of hot electron energy deposition is introduced to the code CHIC. At

each time step a fraction 7. of the absorbed energy is distributed homogeneously over the
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distance defined by the hot electron stopping range. In the simulations, we measured the shock
collapse time in different set of parameters (plpe,ne). The map obtained is represented in
Figure 6.17. The area where the simulations fit the experiment, taking a 50 ps margin of error
on the shock collapse time, is hatched. The experimental value of the shock collapse time can
be recovered by converting 15-20 % of the absorbed energy into hot electrons with the stopping
range of 6 — 10 mg.cm~2 which corresponds to the electron energy from 60 to 100 keV in a
CH [Ribeyre et al., 2013a]. As we will show in Section 6.5, these parameters are in agreement

with the experimental data.
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Figure 6.17: Shock collapse time dependence on the hot electron conversion efficiency and on
their stopping range.

6.4.2.3 Hydrodynamic analysis

To understand how the shock collapse time can be decreased by the hot electrons whereas the
absorbed energy remains fixed, we compare the results of two simulations: one without hot
electrons and one with 15 % of absorbed energy converted into hot electrons with a stopping

range of 10 mg.cm™?

corresponding to the energy of 100 keV (see Figure 6.23).

Figure 6.18 presents the pressure gradient evolution in the two simulations. In the case with
hot electrons, 85 % of the absorbed energy is deposited at the critical density and transported
to the ablation front by thermal electrons and the remaining 15 % of the absorbed energy is
deposited in volume in the hot electron stopping range. A discontinuity surface is created at the
limit of the hot electron stopping range Rp.. Two shocks are generated during the spike: one at
the ablation front and another one deeper in the target at this contact discontinuity. Figure 6.19
shows the density, pressure and temperature profiles near the contact discontinuity position Rp.

at the end of the spike raise. The temperature and density profiles are similar to the profiles at
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Figure 6.18: Maps of the pressure gradient in the simulations of the shot # 71597 with and
without hot electrons. The absorbed energy of 9.4 kJ is taken from the experiment. In the
simulation with hot electrons conversion efficiency is np. = 15% and stopping range is plp. =

10 mg.cm™2.

the ablation front. We will call this discontinuity surface “the hot electron ablation front”.
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Figure 6.19: Density, temperature and pressure profiles near the hot electron ablation front at
t=1.08 ns. The hot electrons parameters are: 1. = 15% and plj. = 10 mg.cm™2.

Case without hot electrons The case without hot electrons is similar to the shot # 69133.
The pressure at the ablation front and at the shock front are represented in Figure 6.20. We
reported in Table 6.5 the shock pressure at some particular points in the simulation and the
corresponding theoretical pressure amplification. A first shock is generated @ during the pre-
pulse. Its pressure increases with the ablation pressure and reaches 20 Mbar. It propagates in
the CH and interacts with the CH/CHTi interface @. A shock wave is reflected with a low
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Figure 6.20: Pressure evolution at the shock fronts and at the ablation front in a simulation of

the shot # 71597 without hot electrons. Panel (a) - evolution in space, panel (b) - evolution in
time.

strength Z = 1.2. The second shock is generated by the laser spike @. Its initial pressure in
the point A’ is 120 Mbar. It interacts with the first reflected shock wave @. Then, the shock
pressure is still alimented by the ablation pressure raise: it increases between the points B’ and

C’. The shock interacts with the interface CH/CHTi @. Lastly, the spike shock overtakes the
first shock @.
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’ Points ‘ Event Pressure in simulation (Mbar) | Theory

A Generation 0 Py =21 P4 ~ ablation pressure

A-B Convergence Pp=1.19P4 =25 Xeonw = (Re/Ra)™% = 1.2

B-C CD interaction @ Pc =1.2Pg =30 Xep(r=0.7,Z>1)=1.2

C-D Convergence Pp=1P-=30 Xeonw = (Rc/Rp) %2 =1.1

A Generation @ Py =120 P4r ~ ablation pressure

A-B’ | Collision @ Py = 1.17P4 = 140 Xeott(Zer = HAL, Zyp = £2) = 1.13
C’ Generation P =160 Pcr ~ ablation pressure

C-D’ | CD interaction @ Per =1.13 Py = 180 Xep(z=07,Z=42) =11
D-F’ Convergence Pgs = 1.06 Pps = 190 Xeonv = (Rpr/Rpr) ™% = 1.06
BE-F’ Shock coalescence @ | Pps = 0.8 P = 155 Xeoat(Za > 1,7y = %) =0.8

Table 6.5: Shocks pressure evolution in the simulation of the shot # 71597 without hot electrons
and the corresponding theoretical estimates.

Case with hot electrons The pressure evolution in the case with hot electrons is much more

complicated. It is represented in Figure 6.18 (b) and 6.21.

Shocks pressure The first shock is generated in @. Its pressure follows the ablation
pressure until it reaches the pressure ps = 22 Mbar in the point A. The pressure increases
slowly by convergence effects before the interaction with the interface CH/CHTi @. There, a
low strength shock is reflected back.

The spike shock is generated near the ablation front @) and reaches the pressure py =
98 Mbar in the point A’. The hot electrons deposit their energy in the CH and also partially
in the CHTi over the distance from r = 180 um to » = 140 um. This increases the first shock
pressure between the points D and E. A second ablation front is created in the CHTi at the
distance Rp. ~ 140 um, where the hot electrons are stopped. It is clearly visible on Figure 6.18
(b). A rarefaction wave is generated outward and a shock wave is launched inward.

From the time 1.1 ns corresponding to the bullet @), three shocks are propagating into the
target. The first one is the pre-pulse shock, the second one is the spike shock generated at the
laser ablation front and the third one is generated at the hot electron ablation front in the CHTi.

During the laser spike the pressures of the first and the spike shocks increase quickly due to
the target heating by the hot electrons. The interaction between the second shock with the first
reflected shock in bullet @ and with the interface CH/CHTi in bullet @ have a weak influence
on the spike shock pressure compared to the high pressure increase between the points A’ and
C’ due to the hot electron energy deposition. The impact of the rarefaction wave generated at
the hot electron ablation front, with the first shock in bullet @ and the spike shock in bullet
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Figure 6.21: Pressure evolution at the shocks fronts in the simulation of the shot 71597 wit hot
electrons (npe = 15%, plpe = 10 mg.cm™2).

© is well visible in Figure 6.21. This corresponds to the pressure drops between the points C’
and D’ for the spike shock and between E and F for the first shock.

The first shock encounters the ablation front in the CHTi at Rn. @. A shock wave is
reflected backward, it interacts with the second shock in bullet @.

The third shock pressure follows initially the pressure at the hot electron ablation front up
to 25 Mbar between the points A” and B”. It is then overtaken by the first shock in bullet @
A rarefaction wave is reflected during this process. This rarefaction wave interferes with the
second shock and reduces its pressure in F’.

The spike shock passes through the hot electron ablation surface in @ Its pressure increases
between the points F’ and H' to level of pgr = 287 Mbar before it overtakes the first shock in
the point T’ (bullet @) After the coalescence the shock pressure is pr, = 240 Mbar.

The spike shock pressure in this case is highly sensitive to four processes: (1) the hot electron
energy deposition (pressure amplification between A’ and C’), (2) the rarefaction wave created
at the hot electron ablation surface (@ pressure decrease between C’ and D’), (3) the shock
interaction with the hot electron ablation front (@ pressure increase between F’ and G’) and
(4) the shock coalescence (@) pressure decrease between H’ and T').

Table 6.6 summarizes the processes acting on the shocks pressure and compares the simu-
lation pressure amplification to the theoretical amplification factors. The role of hot electrons
processes in the pressure evolution is not theoretically characterized. In order to predict the
spike pressure evolution, one needs to characterize the jump in density at the hot electron ab-
lation front and the pressure ratio of the generated rarefaction wave. The quantities related to
the hot electrons and not explained by a theory are written in red in Table 6.6. Their values
are measured in the simulation.

While the target heating by hot electrons plays a significant role, the influence of the shock

generated at the hot electron ablation front is not dominant. If Pg» would be higher, the first
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’ Points ‘ Event Pressure in simulation (Mbar) Theory

A Generation 0 Py =21 P4 ~ ablation pressure

A-B Convergence P =1.19x Py =25 Xeconw = (RB/RA)fo'9 =12

B-C CD interaction @ Pc =12 x Pp =30 Xep(xr=0.7,Z > 1) =12

C-D Convergence Pp=1xPs=30 Xeconv = (RC/RD)fo'9 =1.04

D-E HE heating @ Pp =133 Mbar Zg = 1.5 -

E-F R interaction @ Pp =0.58 x Pg =77 Xrare(Z = 0.2, ZE)

F-G HE heating Pg =110 Mbar Zg = 3.5 -

G-H CD interaction @ Py = 1.48 x P = 163 Xcep(z =0.2,Zg) = 1.5

H-T - Pr = 148 Mbar -

1-J shocks coalescence @ P; =0.78 x Pr =148 Xeoat(za > 1,Z; = Pr/Ppr) =0.8

J-K convergence Pr = x P; =135 Xconv(RK/RJ)fo'g =1.07

A’ Generation @ Py =098 P,/ ~ ablation pressure

A-C HE heating Por =276 Mbar Zer = 2.6 -

C’-D’ | R interaction @ Ppr = 0.63 x Por = 174 Xrare(Za = 0.3, Z¢)

D’-F’ Collision/R interaction Q Prr =1.1 x Ppr =190 Xeot1(1.5,1.5) = 1.5,
Xrare(1.5,0.8) = 0.8

-G’ CD interaction @ Pgr =1.42 X Ppr =270 Xep(x=02,Z=15)=1.3

G-H’ - P = 287 -

H-T’ Shocks coalescence @ Ppo= X Py = 240 Xecoat(za > 1, Py /Px = 2) = 0.95

A”-B” Hot electrons shock generation @ | Pp = 25 follows the “ablation” pressure

Table 6.6: Shocks pressure evolution in the simulation of the shot # 71597 with hot electrons
and the corresponding theoretical estimates.
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and spike pressure drops in coalescence would be less important. The quantities affected by the
hot electron driven shock are denoted in blue in Table 6.6.

The values written in green in Table 6.6 are not well explained theoretically. This process of
interaction of three coalescing shocks needs further theoretical analysis.

Nevertheless, one can say that at a given absorbed energy, the shock generation is more
efficient with an energy deposition both at the critical density and over the hot electron stopping
range. In this case, less internal and kinetic energy is wasted in the ablated matter. Also, the
density is higher behind the shock, so the hot electron energy deposition increases just behind
the shock. Therefore, the shock amplitude is enhanced due to the hot electron energy deposition.

Both the measured shock collapse and absorbed energy can be recovered if one takes into
account the hot electrons. The hot electron stopping range is varying from 6 to 10 mg.cm 2
and they are carrying from 10% to 20% of the absorbed energy. The maximal shock pressure

before its interaction with the rarefaction wave is 275 Mbar.

Ablation pressure Both the energy deposition and the hydrodynamic during the shock
generation are strongly affected by the hot electrons. Effectively, they create a second ablation
front in the target. Figure 6.22 presents the pressure evolution at the two ablation fronts. Here
the ablation front is defined as the location of the density gradient length local minimum. The
pressure at the thermal ablation front reaches a maximum value of 150 Mbar. The suprathermal
ablation pressure due to the hot electron energy deposition increases slowly to the value of 25
Mbar. It is perturbed by the shock generated during the pre-pulse @ and by the shock generated
at the ablation front during the spike @ The ablation pressure is then raised up to 300 Mbar.
This value is in agreement with the analysis presented in the previous section (Section 6.4.2.2).
Indeed, Figure 6.16 shows that the apparent ablation pressure should be at the level of 300 Mbar
to recover the experimental shock collapse time, leading to an initial shock pressure of 240 Mbar

in a simulation without hot electrons.
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Figure 6.22: Pressure evolution at the laser driven and hot electron driven ablation fronts. The

hot electrons parameters in this simulation are n,. = 15% and plp. = 10 mg.cm ™ 2.
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6.5 Discussion on the hot electron influence

We demonstrated in this chapter that the SSS shock timing measurements can be recovered in
simulations with the hydro-radiative code CHIC if the laser beams are temporally and spatially
smoothed. However, if the temporal smoothing is removed, the apparent ablation pressure
needed to infer the experimental shock timing cannot be recovered using the collision absorption
process (inverse Bremsstrahlung). In this case, one possibility to recover the experimental data is
to include an energy deposition by hot electrons with the adjusted energy and range. According
to this interpretation the hot electrons influence is negligible in the shot with SSD whereas it is

more important without SSD.

6.5.1 Hot electron characterization in the experiments

Let us compare the energy carried by the hot electrons to the absorbed energy in these two
shots.

In the shot # 69133, the total supra-thermal electrons energy measured is 500 J. The incident
energy is 17 kJ with the experimental absorption coefficient of 52 % which means that the
absorbed energy is 8.8 kJ. The hot electron energy represent 5.6 % of the absorbed energy.
According to Figure 6.17, it is expected that the shock timing in the simulation would be
modified by less than 60 ps if the hot electrons where accounted for. This is comparable to the
experimental margin error and the hot electrons can be neglected in the simulation.

In the shot # 71597, the total measured supra-thermal electron energy measured is 2000 J.
The incident energy is 26 kJ with the experimental absorption coefficient of 36.3 % which means
that the absorbed energy is 9.4 kJ. The hot electrons carry 21 % of the absorbed energy. This is
in agreement with the value needed in the simulations to recover the experimental shock timing.

The other free parameter adjusted in the simulation is the stopping range of the hot electrons.
In the experiments, the energy distribution of hot electrons can be fitted by a Maxwellian
distribution with central temperatures in the range 50-100 keV. In the CH this corresponds to a
stopping range of the hot electrons between 2.7 mg.cm™2 and 10 mg.cm~2 [Ribeyre et al., 2013a]
(see Figure 6.23). According to Figure 6.17, the experimental shock collapse time is recovered
in the simulations with a hot electron stopping range between 5 mg.cm™2 and 9 mg.cm ™2 if the
energy conversion efficiency in hot electrons is 20 %. The parameters used in the simulation to
interpret the experiment results are therefore consistent with the experimental data.

In this experimental campaign the observed yield of hot electrons seems to be strongly depen-

dent on the laser beam smoothing. Both parametric instabilities TPD and SRS are dominant.
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Figure 6.23: Hot electron stopping range in CH as a function of their energy [Ribeyre et al.,
2013a).

6.5.2 Role of the hot electrons in shock dynamics

Let us consider how the shock dynamics is affected by the hot electrons. Figure 6.24 presents the
evolution of spike pressure when varying the energy carried by the hot electrons (panel (a)) and
the hot electron stopping range (panel (b)). The slope of the shock pressure at the beginning is
steeper for a higher . and for a lower plp.. The influence of the total electron energy shown
in panel (a) is obvious. The shock pressure increases with the quantity of energy deposited by
hot electrons. The dependence of the electron stopping range is shown in panel (b). As the
hot electron energy is deposited homogeneously per unit of mass, the specific energy deposited
decreases as the range increases. The shock pressure increase stops as soon as the rarefaction
wave interacts with it. The interaction with the rarefaction wave occurs at the same radius
when the total energy is varied (R = 150um). If the stopping range of hot electrons is shorter,
the rarefaction wave is generated at a larger radius leading to an earlier interaction. Therefore,
the maximal shock pressure before the interaction is higher when 7. or plj. increase. Later the
shock pressure is affected by the interaction with the interface and by the coalescence with the
first shock. Those processes seem to compensate each other and the shock pressure at the radius

100 pm is almost the same as the shock pressure before the interaction with the rarefaction wave.
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Figure 6.24: Pressure evolution at the spike shock front. In panel (a) the percentage of the
absorbed energy carried by the hot electrons varies from 7 % to 13 % with a constant stop-
ping range plp. = 10 mg.cm~2. In panel (b) the hot electron stopping range varies from 4 to
7 mg.cm~? with a constant conversion efficiency of 1, = 15% .

6.6 Conclusion

In this experimental campaign, the ablation and shock pressures during the spike where studied
in the spherical geometry for the shock ignition relevant laser intensity. With a temporal laser
beam smoothing and an absorbed intensity of 1.7 x 10'® W.cm™2, less than 5% of the absorbed
energy was carried by the hot electrons. When the smoothing is removed and the laser spike
power increased, the absorbed intensity remains at the same level even though the incident laser
intensity is higher. The un-smoothed speckled structure of the laser beams leads to excitation
of parametric instabilities and to the generation of a bigger quantity of hot electrons. With
an absorbed intensity of 1.9 x 10'® W.cm™2, 20% of the absorbed energy is carried by the hot
electrons.

The apparent ablation pressure of these experiments evaluated in this chapter is presented in
Figure 6.25. In the case where the hot electrons are not dominant, the ablation pressure follows
the standard scaling law (6.1) corresponding to the collisional laser absorption. However, in
the case of un-smoothed laser beams, the apparent ablation pressure is much higher than it is

expected from the collisional absorption.

The real ablation pressure is lower than the apparent pressure, but the laser energy coupling
to the shock is more efficient due to the presence of hot electrons, leading to a higher shock

pressure than the ablation pressure.

When the hot electrons are taken into account, two shocks are generated during the spike.
One is generated at the ablation front, due to the inverse Bremsstrahlung absorption. A second
one is generated deeper in the target, near a second ablation front created by the hot electrons.

Behind this second ablation front, a rarefaction wave is also generated and propagates outward.
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Figure 6.25: Apparent ablation pressure versus absorbed intensity for the shots # 69133 and
# T1597.

The interaction between the first shock wave of gradually increasing pressure and the rarefaction
wave seems to be the key point to determine the shock maximal pressure. Before the interac-
tion, the shock pressure amplification is due to hot electron energy deposition. The pressure
amplification is higher for low hot electron range and for high total hot electron energy. The
time of the interaction between the rarefaction wave and the shock determines the time moment
when the shock pressure amplification is stopped. This time depends on the range of the hot
electrons. Larger is the range, longer is the time before the interaction.

The shock pressure is further perturbed by the interaction with the ablation front created
by the hot electrons. Lastly it overtakes the hot electron driven shock. In addition to the hot
electrons heating rate, the final shock pressure depends on three quantities: the strength of the
rarefaction wave, the density ratio at the hot electron ablation front and on the strength of the
two shocks before the coalescence.

The pressure of the shock generated by the hot electrons has been studied in References
[Gus’kov et al., 2012, Ribeyre et al., 2013a, Piriz et al., 2013]. In our case, with 20 % of hot
electron conversion efficiency, the dominant shock is still the shock created at the thermal
ablation surface and not the shock created by the hot electrons. What is important in this case
is the influence of the hot electrons on the dynamics of the spike shock.

The processes involved in the shock generation with two ablation fronts need to be analyzed
more deeply, either numerically or analytically. To describe the spike shock dynamics, we suggest
to use a shock dynamics equation like in Section 5.1.2 and to add a term accounting for the
heating rate of the hot electrons.

In this Chapter, we assumed a homogeneous hot electron energy deposition. The shock
dynamics could be different with a more realistic hot electron energy deposition and by taking
into account the hot electron energy distribution. Also, we assumed that the hot electrons carry

a fixed percentage of the absorbed energy during the whole spike duration. In reality, the hot
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electrons may be generated only at the end of the spike pulse, where the pre-plasma temperature
is high enough. This may change the shock dynamic analysis proposed here.

Moreover, the shell density profile may affect the hydrodynamic processes presented here.
Let us consider the influence of the density value. If the shell density is higher, the same hot
electron energy is deposited in a smaller volume, thus leading to a higher pressure increase.
However, the ablation front created by the hot electrons in that case would be closer to the laser
driven ablation front where the main shock is generated. Therefore, the interaction between
the shock and the rarefaction wave occurs after a shorter time interval and the shock pressure
amplification would be smaller. It is not obvious whether the shell density increase (like in SI
conditions) would lead to the generation of a stronger shock.

The density gradient length at the quarter critical density measured in the simulations is
~ 72 ym and 52 ym and the mean electron temperature in the corona is 1.8 keV and 720 eV,
respectively, in the first and the second shot. This is rather different from the expected shock
ignition conditions where the density gradient scale is 300 um and the temperature is 3 keV in
the corona.

It was demonstrated for the first time in the SSS experiments that an apparent ablation
pressure close to 300 Mbar can be reached experimentally with an incident laser intensity of

7 x 10 W.cm™2. The hot electron had an important role in the getting of this result.
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Conclusions and perspectives

The purpose of this thesis is to describe the evolution of the ignitor shock from its generation to
the ignition of the fusion reactions. We summarize the work presented in this manuscript and

discuss some possible future research directions relevant to this work.

Shock coupling to the hot-spot The ignitor shock must increase the hot-spot areal density
and temperature up to the ignition conditions. In the flow created by a converging shock, the
highest temperature and density appear behind the shock after its reflection at the center. Then,
the product pRT « pR increases as the shock diverges. The fusion reactions rate is proportional
to the areal pressure pR. Therefore, the ignition is expected at the time when the ignitor shock
exits the hot-spot. This time moment must occur before the target stagnation time. Otherwise,

the fuel is no more confined and the ignition will not be followed by the combustion of cold fuel.

Condition A : The time of ignition, when the ignitor shock exits the hot-spot, must occur

before the stagnation time.

To express the shock ignition conditions, one needs to describe the entire flow in the hot-spot
during the convergence and the divergence phase of the ignitor shock. The hot-spot is already
compressed and pre-heated when the ignitor shock enters in it. The upstream temperature
Tp is not negligible and the shock Mach number My, = Usgq/co is relatively low. The ignitor
shock propagation in the hot-spot is described in Chapter 4 with an extension of the self-similar

solution of Guderley by adding a correction term proportional to M, 2.
The finite Mach number correction shows that the ignitor shock coupling efficiency to the
hot-spot is reduced for a low initial shock Mach number.
This means that, for a given initial shock velocity, the higher the temperature is in the hot-

spot, before the ignitor shock-arrival, the lower the final hot-spot pressure will be. An ignition
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criterion based on the alpha-particle power gain as well as the conduction and the radiation

losses is expressed in Section 4.3. This criterion gives the minimal shock velocity (Us),,,, and

ign

the minimal hot-spot areal density (pR);gn depending on the shock Mach number Mj.

Condition B : For a given initial shock Mach number Mg, the ignition conditions are
Uso > (Us)ygn, and poRo > (pR),,, (Figure 4.18).

For an infinite shock Mach number, the ignition conditions are (Us),,,, = 650 km.s™! and
(pR)ign = 15 mg.cm~2. However, in a typical SI simulation, the hot-spot temperature when the
ignitor shock arrives is around 2 — 4 keV. The ignitor shock Mach number is therefore Mgy < 3.
Our model is valid only for a shock Mach number Mgy > 4. In the limit of our model domain of
= 750 km.s ™! and (pR)g, = 20 mg.cm 2.

Both the hot-spot areal density and initial shock velocity threshold values are increased when

validity Mo = 4, the ignition conditions are (Us)

ign

the initial shock Mach number is finite.

Let us consider the limit case of condition (A), where the ignitor shock exits the hot-spot
at the radius Rgqg at the stagnation time. According to condition (B), the ignition is possible

only if the hot-spot areal density is higher than (pR), = when the shock enters in the hot-spot.

wgn
According to Table 4.7 the radius of the shell at the shock entrance is Ry ~ 3Rstqq. Another
way to express condition (B) is that the hot-spot areal density must be higher than (pR)

when the shell radius is Ry ~ 3Rstag-

ign

Now let us consider that no shock is launched and that the target follows a homogeneous isen-
tropic compression during the deceleration phase (Section 3.2). If the condition (B) is fulfilled,
the hot-spot areal density at the stagnation time is (pR)?fj;OCk = (Ro/Rstag)*(pR)ign ~ I(pR)ign-

Condition C : The ignition with a shock is possible only if the areal density at the

stagnation time without shock is (pR)Zf;;"Ck > 9(pR)ign.-

According to [Zhou and Betti, 2007], the hot-spot areal density at stagnation, without ignitor

shock can be estimated as

(pR)o5ho g o] o 031 (uimp[ cm.sl])0'62 (EL[kJ]>O'27 ( 0.35 >°'5. 1)

stag o a%ﬁf’ 3 X 107 100 )\[Hm}

For a fixed in flight shell adiabat and compression pulse energy, the minimal implosion

noshock

velocity wig, for shock ignition to be possible is determined by the threshold (pR) stag

For example, with the HiPER baseline target design ;5 ~ 1.3, E, ~ 100 kJ, A\, = 351 nm

[Atzeni et al., 2011], the minimal implosion velocity is ug, = 200 km.s 1.

This value has to

be compared to the limit value 250 km.s~! under which no gain is observed in the simulations
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[Atzeni et al., 2011, Lafon et al., 2013] (see Figure 1.16 in Section 1.4).

The condition C defines the assembly phase for the shock ignition to be possible. However,
the ignitor shock must also have the minimum velocity needed. It is more significant to express
condition B in terms of the minimal shock pressure when it enters the hot-spot (Figure 4.19).
The condition on the shock pressure depends on the hot-spot areal density and on the hot-spot
radius. For an initial shock Mach number M,y = 4, the minimal shock pressure is given by

(PsR)min = 100 Mbar.cm at the minimal hot-spot areal density pRin = 20 mg.cm ™2,

For a
higher initial hot-spot areal density, the ignition threshold (Ps)ign R is proportional to the areal

density poRp.

Condition D : For a given initial shock Mach number Mg, the ignition conditions are
PRy > (PsR),,.,(PoRo/(pR)ign), poRo > (pR)ign (Figure 4.19).

noshock __
stag -

9(pR)ign- The minimal shock pressure in this limit case is (ps)o = (PsR)min/Ro, where Ry is

Let us consider the limit case where the hot-spot areal density at stagnation is (pR)

the shell radius when poRo = (pR)ign -

If we increase the arcal density at stagnation (pR)25°* > 9(pR);g, without changing the
convergence ratio. Then, the ignitor shock can enter the hot-spot at the shell radius R > Ry
where the hot-spot areal density is pyR{, = (pR)ign. In this case, the minimal ignitor shock

pressure required for the ignition is reduced to (PsR)min/ Ry

If we take Ry = 50 um as a reasonable value of the hot-spot radius when poRo = (pR)ign,
an estimate of the ignition shock pressure when it enters the hot-spot is (ps)ign = 20 Gbar
with a shock Mach number M,y = 4.

Nowadays, it is not possible to generate directly such a pressure, so the amplification of the
shock pressure in the shell is a key process for shock ignition. It has been described in Chapter
5 of this thesis.

Shock pressure amplification in the shell We make a distinction between the shock pres-
sure amplification X - which relates to the final pressure of the shock to its initial pressure - and
the shock strengthening - which accounts for the change in the shock strength Z = ps/pg where
ps is the shock pressure and pg is the upstream pressure.

We have demonstrated in Chapter 5, that the shock pressure amplification is not only due

to the convergence effect as it is often said in the literature.

The shock pressure amplification in the shell X depends on three factors X = XiyupXshenn Xeoir-

The factor X;,,, corresponds to the overall pressure amplification in the shell during its
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implosion. If the shock enters in the hot-spot close to the stagnation time, this factor is dominant
and can reach values of order 50. The final pressure in the hot-spot (2.48) - without an ignitor
shock - is pZOShOCk o MP/ Qu?mp. Therefore, we expect the overall pressure amplification to be
more significant for a higher implosion velocity and a bigger shell mass.

The factor Xgpe is calculated in the shell comoving frame. It depends on the shell density and
pressure profiles, on the shell aspect ratio and on the shock initial strength. A shell parameter X

has been defined to characterize the shell pressure gradient which is related to its acceleration.

When the shell is accelerated X is positive and the shock pressure decreases in the shell co-
moving frame. When the shell is decelerated X is negative and the shock pressure increases

in the shell comoving frame.

Close to the stagnation time, X pe;; has a positive effect on the shock pressure but it is not
dominant compared to Xjy,. On the contrary, if the shock propagates only in an accelerated
shell, t; < tg4, the factor is Xgpey < 1. In this case, if the factor X;,, is not high enough
to compensate the pressure decrease in the comoving frame, the ignitor shock pressure in the

laboratory frame is not amplified.

The ignitor shock must enter the hot-spot during the shell deceleration phase.

Then, the shock collides with a diverging shock coming from the assembly phase. The
amplification factor X, describes the shock pressure amplification through the collision. During
almost all the deceleration phase, the returning shock strength is almost constant and below 3 in
a typical HIPER implosion. Then the shock pressure amplification in the collision is Xoy ~ 2.

These three amplification factors were computed with the implosion parameters of a typical
SI implosion. It was demonstrated that an amplification of the shock pressure by a factor higher
than 100 is possible.

The shock pressure amplification is very sensitive to the shock timing. It increases for later

spike times.

The shock strength Z is another important parameter considered for the ignition. It depends
on the shock Mach number as Z o« M2 and is therefore important for the shock coupling
efficiency to the hot-spot according to Chapter 4.

The shock strengthening depends on : (1) the initial shock strength Z;; (2) the shell pressure
profile; (3) the shell aspect ratio A.

The shock strengthening depends on the shock dynamics in the shell comoving frame. There

is no dependency on the shock propagation time in the shell.
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The shell pressure profile is characterized by the parameter X. The shock strength increases
only in the accelerated part of the shell where I > 0. The shell parameter X is time dependent.
Its value at the beginning of the acceleration phase tg is proportional to the square of the
shell maximal Mach number K, o M2 in typical implosion simulations. After that time, its
value decreases. The earlier is launched the shock, the higher will be its strengthening. The
strengthening can be improved by increasing the shell Mach number M2 o u?mppa*Q/ 5315,
One can either choose to increase the implosion velocity or to reduce the ablation pressure
during the main pulse or to reduce the shell adiabat.

The shock strength is reduced in the collision with the returning shock. Therefore, if the
strength of the returning shock is too high, it can inhibit the ignition. According to Ref. [Lafon
et al., 2013], the returning shock strength scales as the square of the implosion velocity similarly
to the scaling of the shell parameter K. So we expect that modifying the implosion velocity

would not change the shock strengthening in the shell.

If the shock is launched too early, its pressure is weakly amplified and can even decrease. If
the shock is launched too late, its strength when it enters the hot-spot is too low, increasing

the ignition conditions.

The time window where both the final shock strength and pressure are high enough defines
the ignition window for shock ignition.

In Chapter 5, we proposed a theory that predicts quantitatively the shock strengthening
and the shock pressure amplification in the shell. By using the parameters values measured
in typical implosion simulations, we have obtained a good agreement with simulation results.
Therefore, the proposed theory can be used to interpret simulations. To have a fully predictive
model, further research is needed to express the model parameters with the assembly phase
parameters. Then, one should be able to couple the theory of the shock strengthening and
pressure amplification of Chapter 5 with the ignition criterion theory given in Chapter 4.

With the shell parameters considered in our analysis, the ignitor shock pressure can be
amplified by a factor greater than 50 in the shell. Knowing the minimal shock pressure in order
to reach ignition ((ps);,, = 20 Gbar), we estimate the minimal shock pressure to be 400 Mbar
at its generation at the outer edge of the shell. This is in agreement with the values given in the
literature. This brings us to the point assessed in Chapter 6 : the experimental shock generation

with SI relevant conditions.

Shock pressure generation In Chapter 6, the ablation and shock pressures are analyzed for
the shock ignition relevant experimental conditions where the laser intensities are higher than
the parametric instabilities threshold. We show that generation of fast electrons may explain
the high shock pressures observed in experiments.

We analyzed two shots of the Strong Spherical Shock campaign performed on the OMEGA

laser facility [Theobald et al., 2013]. The ablation and shock pressures were estimated from the
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delay time of the X-ray flash coming from the target center corresponding to the shock collapse.
The numerical simulations are constrained by both the experimental absorption energy and the
shock collapse time.

A first shot performed with an incident laser energy of 17 kJ with SSD smoothed beams
can be explained by the classical Bremsstrahlung absorption. The inferred maximal ablation
pressure during the spike is 180 Mbar and the initial shock pressure is 162 Mbar.

A second shot performed at higher energy (26 kJ) and without SSD showed a higher generated
shock pressure. Whereas the incident laser intensity is 30 % higher than in the previous case,
the absorbed intensity remained almost the same. This shot cannot be interpreted with a
simulation accounting for the collisional laser energy absorption only. The experimental data
can be recovered if the hot electron energy deposition is taken into account. We implemented
a basic model of hot electrons in the simulation code CHIC where a mono-energetic source of
hot electrons deposits homogeneously a part of the absorbed laser energy in the hot electron
stopping range. The experimental shock timing is recovered with 20% of the laser absorbed

energy carried by the hot electrons with energies in the range 50-100 keV.

The hot electrons must be taken into account to recover the experimental data if their

energy is > 50 keV and if they carry about 20% of the laser absorbed energy.

It is shown that hot electrons produce significant changes in the shock formation dynamics.

In a simulation with hot electrons, two shocks are generated during the spike : one at the

laser ablation front and one at the hot electron ablation front.

The dominant shock is generated at the thermal ablation front and is driven by both the
collisional absorption and the hot electron energy deposition. Its pressure increases quickly
up to 275 Mbar. The shock pressure increase is stopped by the interaction with a diverging
rarefaction wave created at the hot electron ablation front. This time moment depends on the
distance between the two ablation fronts, therefore on the stopping range of the hot electrons.
Furthermore, the shock pressure is affected by the interaction with the hot electron ablation

front and with the coalescence with the hot electron driven shock wave.

The shock pressure generation phase is highly sensitive to four processes : (1) the hot
electron energy deposition, (2) the rarefaction wave created at the hot electron ablation
surface, (3) the shock interaction with the hot electron ablation front and (4) the shock

coalescence with the hot electron driven shock.

We discussed the experimental results assuming a homogeneous hot electron energy deposi-
tion. The shock dynamics could be different with a more realistic hot electron energy deposition

and that may change the shock dynamic analysis proposed here. Moreover, the shell density
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profile in an imploding shell is different from the density profile in the experiments considered
here. Also, the laser/plasma interaction in the present experiments is not completely relevant
to the shock ignition implosion (lower temperature and density gradient length). Therefore, the
results of the SSS campaign cannot be extrapolated to the real shock ignition conditions in a
straightforward manner.

In the case where the hot electron energy deposition is important, one can express the
minimum shock pressure needed for ignition at the position where the laser driven shock and
the hot electron shock coalesce. Then, the relevant metric for shock ignition is the apparent
ablation pressure. It corresponds to the ablation pressure in a simulation without hot electrons

to have the same shock pressure at the same position.

For the first time, it has been shown that an apparent ablation pressure of 300 Mbar can

be reached experimentally.

This is close to the ignition condition of 400 Mbar evaluated by combining the results of
Chapter 4 and 5. Here, more theoretical studies are needed to quantify the shock dynamics before
the coalescence of the laser driven shock and the hot electron driven shock. Both hydrodynamic
and kinetic approaches may be required. Also more experiments are needed to explore the
analysis given here. For example the influence of the shell density may be seen by using different
ablators. The hot electrons stopping range and energy should be experimentally controlled. The
influence of the beam smoothing and the pre-plasma density gradient length on the hot electron

generation should be understood more accurately.

More general perspectives In this thesis, we proposed two simplified analytical theories
to describe the shock propagation in the hot-spot and in the shell. Those theories depend on
the assembly phase through: the hot-spot areal density and temperature at the ignitor shock
entrance, the shell pressure gradient and aspect ratio at the spike time, the returning shock
strength. Those quantities should be expressed depending on the assembly phase parameter.
Then, by coupling the two theories proposed here, one may be able to express the energy gain
of the target and to optimize the target design. This should be compared to the work done in
Refs. [Lafon et al., 2013, Atzeni et al., 2011, Atzeni et al., 2013].

On the NIF or LMJ facilities, the shock ignition scheme would require a depointing of
the laser beams which are initially designed for indirect drive. The global laser irradiation
non-uniformity as well as the focal spots non-uniformities may lead to a high hot electrons
yield. This justifies the need to investigate better the shock generation in the presence of hot
electrons. Also, as the shock would be non uniform, the 3D effects should be analyzed. A recent
paper [Davie et al., 2014] indicates that the shock is stable even under strong perturbations.

One can consider the extreme case where the ignitor shock is generated by only two beams.
According to numerical simulations [Ribeyre et al., 2009] the ignition can be reached in this

case. Both analytical and numerical studies should be interesting on that topic.
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7. CONCLUSIONS AND PERSPECTIVES

We remark that in the case of a strongly non uniform laser irradiation, a self-generated
magnetic fields may be advected by the ignitor shock and be amplified by the convergence
effect. This may have an influence on the ignition conditions, for example by confining the
alpha-particles in the hot-spot [Hohenberger et al., 2012].

The brief overview of potential future research presented in this chapter, while not exhaustive,

gives an indication of non answered questions remaining in the field of shock ignition.
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Appendix A

The simulation setup for the SSS campaign.

Laser beams
e wave length : 351 nm
e rays number : 500
e power law : experimental data

e focal spot : n=4 super-Gaussian of diameter 300 pm.

Mesh grid
e symmetry : cylindrical
e zone 1 dimension : 165 um
e zone 2 dimension : 50 pm

zone 1 meshes number : 300

e zone 2 meshes number : 200

Materials

e zone 1 : CHTi SESAME
composition C : 27.6 %, H: 42.8 %, O : 24.3 %, Ti : 0.53 %

e zone 1 initial density : 1.47 g.cm™>

e zone 2 : CH SESAME
composition C : 50 %, H : 50 %

e zone 2 initial density : 1.05 g.cm™>

Radiation
e number of groups : 30

e maximal energy : 30 keV

Flux limiter on
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. APPENDIX A

e value : input parameter
Bi temperature on

Conduction on

218



References

[LLE, 2006] (2006). Basic principles of direct-drive ignition target design. LLE review, 106:83—
89. 50

[Alejaldre et al., 1990] Alejaldre, C., Gozalo, J. J. A., Perez, J. B., Magana, F. C., Diaz, J.
R. C., Perez, J. G., Lopez-Fraguas, A., Garcia, L., Krivenski, V. I., Martin, R., et al. (1990).
Tj-ii project: a flexible heliac stellarator. Fusion Science and Technology, 17(1):131-139. 8

[Anderson and Betti, 2004] Anderson, K. and Betti, R. (2004). Laser-induced adiabat shaping
by relaxation in inertial fusion implosions. Physics of Plasmas (1994-present), 11(1):5-8. 53,
Y

[Anderson et al., 2013] Anderson, K., Betti, R., McKenty, P., Collins, T., Hohenberger, M.,
Theobald, W., Craxton, R., Delettrez, J., Lafon, M., Marozas, J., et al. (2013). A polar-drive
shock-ignition design for the national ignition facilitya). Physics of Plasmas (1994-present),
20(5):056312. 23, 27

[Anderson et al., 1958] Anderson, O. A., Baker, W. R., Colgate, S. A., Ise, J., and Pyle, R. V.
(1958). Neutron Production in Linear Deuterium Pinches. Physical Review, 110:1375-1387.
9

[Aston, 1920] Aston (1920). The mass-spectra of chemical elements. Philosophical Magazine
and Journal of Science, 39:611-625. 10

[Atkinson and Houtermans, 1929] Atkinson, R. D. E. and Houtermans, F. G. (1929). Zur frage
der aufbaumoglichkeit der elements in sternen. Zeitschrift fiir Physik, 54:656. 10

[Atzeni, 2013] Atzeni, S. (2013). Inertial Confinement Fusion with Advanced Ignition Schemes:
Fast Ignition and Shock Ignition. Springer. 54

219



REFERENCES

[Atzeni et al., 2008] Atzeni, S., Bellei, C., Davies, J., Evans, R., Honrubia, J., Nicolai, P.,
Ribeyre, X., Schurtz, G., Schiavi, A., Badziak, J., et al. (2008). Fast ignitor target stud-
ies for hiper. Journal of Physics: Conference Series, 112(2):022062. 161

[Atzeni et al., 2009] Atzeni, S., Davies, J., Hallo, L., Honrubia, J., Maire, P., Olazabal-Loumé,
M., Feugeas, J., Ribeyre, X., Schiavi, A., Schurtz, G., et al. (2009). Studies on targets for
inertial fusion ignition demonstration at the hiper facility. Nuclear Fusion, 49(5):055008. 23

[Atzeni et al., 2013] Atzeni, S., Marocchino, A., Schiavi, A., and Schurtz, G. (2013). Energy
and wavelength scaling of shock-ignited inertial fusion targets. New Journal of Physics,
15(4):045004. 19, 23, 25, 27, 215

[Atzeni and Meyer-Ter-Vehn, 2004] Atzeni, S. and Meyer-Ter-Vehn, J. (2004). The Physics of
Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter. Oxford science
publications, international series of monographs on physics edition. 3, 4, 32, 33, 35, 38, 45,
46, 52, 90, 132

[Atzeni et al., 2014] Atzeni, S., Ribeyre, X., Schurtz, G., Schmitt, A., Canaud, B., Betti, R., and
Perkins, L. (2014). Shock ignition of thermonuclear fuel: principles and modelling. Nuclear
Fusion, 54(5):054008. 18

[Atzeni et al., 2011] Atzeni, S., Schiavi, A., and Marocchino, A. (2011). Studies on the robust-
ness of shock-ignited laser fusion targets. Plasma Physics and Controlled Fusion, 53(3):035010.
23, 24, 25, 26, 27, 210, 211, 215

[Axford and Holm, 1981] Axford, R. and Holm, D. (1981). Converging finite-strength shocks.
Physica D: Nonlinear Phenomena, 2(1):194 — 202. 95

[Basov et al., 1975] Basov, N., Krokhin, O., Pustovalov, V., Rupasov, A., Silin, V., Sklizkov,
G., Tikhonchuk, V., and Shikanov, A. (1975). Anomalous interaction of strong laser radiation
with dense plasma. JETP, 40:61. 11

[Batani et al., 2014] Batani, D., Baton, S., Casner, A., Depierreux, S., Hohenberger, M., Klimo,
O., Koenig, M., Labaune, C., Ribeyre, X., Rousseaux, C., Schurtz, G., Theobald, W., and
Tikhonchuk, V. (2014). Physics issues for shock ignition. Nuclear Fusion, 54(5):054009. 18

[Baton et al., 2012] Baton, S., Koenig, M., Brambrink, E., Schlenvoigt, H., Rousseaux, C., De-
bras, G., Laffite, S., Loiseau, P., Philippe, F., Ribeyre, X., et al. (2012). Experiment in planar
geometry for shock ignition studies. Physical review letters, 108(19):195002. 179

[Becquerel, 1896] Becquerel, H. (1896). Sur les radiations émises par phosphorescence. Comptes
rendus de I’ Académie des Sciences Paris, 122:420. 9

[Betti et al., 2008] Betti, R., Theobald, W., Zhou, C. D., Anderson, K. S., McKenty, P. W,
Skupsky, S., Shvarts, D., Goncharov, V. N., Delettrez, J. A., Radha, P. B., Sangster, T. C.,

220



REFERENCES

Stoeckl, C., and Meyerhofer, D. D. (2008). Shock ignition of thermonuclear fuel with high
areal densities. Journal of Physics: Conference Series, 112(2):022024. 23

[Betti et al., 2007] Betti, R., Zhou, C., Anderson, K., L.J., P., Theobald, W., and Solodov,
A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys Rev Lett.,
98(15):155001. 18, 19, 23, 54

[Braams and Stott, 2002] Braams, C. and Stott, P. (2002). Nuclear Fusion , Half a century of

magnetic confinement fusion research. Institute of Physics Publising, Bristol. 7

[Bradley et al., 1992] Bradley, D., Bell, P., Kilkenny, J., Hanks, R., Landen, O., Jaanimagi, P.,
McKenty, P., and Verdon, C. (1992). High-speed gated x-ray imaging for icf target experi-
ments. Review of scientific instruments, 63(10):4813-4817. 182

[Brueckner and Jorna, 1974] Brueckner, K. A. and Jorna, S. (1974). Laser-driven fusion. Rev.
Mod. Phys., 46:325-367. 32

[Brushlinskii and Kazhdan, 1963] Brushlinskii, K. V. and Kazhdan, J. M. (1963). On auto-

models in the solution of certain problems of gaz dynamics. Russ. Math. Surv., 18(1). 92

[Butler, 1954] Butler, D. (1954). Converging spherical and cylindrical shocks. Technical Re-
port 54, UK Armament Res. Estab. 92

[Canaud and Temporal, 2010] Canaud, B. and Temporal, M. (2010). High-gain shock ignition
of direct-drive icf targets for the laser mégajoule. New Journal of Physics, 12(4):043037. 23,
24, 25, 26

[Chadwick, 1932] Chadwick, J. (1932). Possible existence of a neutron. Nature, 129(3252):312.
10

[Chandrasekhar, 1957] Chandrasekhar, S. (1957). An Introduction to the Study of Stellar Struc-

ture. Dover publications, dover books in physics,engineering edition. 70

[Chen et al., 2008] Chen, C., King, J., Key, M., Akli, K., Beg, F., Chen, H., Freeman, R., Link,
A., Mackinnon, A., MacPhee, A., et al. (2008). A bremsstrahlung spectrometer using k-
edge and differential filters with image plate dosimetersa). Review of Scientific Instruments,
79(10):10E305. 183

[Chester, 1954] Chester, W. (1954). The quasi-cylindrical shock tube. Phil. Mag., 45(7):1293—
1301. 93

[Chisnell, 1957] Chisnell, R. (1957). The motion of a shock wave in a channel, with applications
to cylindrical and spherical shock waves. Journal of Fluid Mechanics, 2(03):286-298. 93

[Chisnell, 1997] Chisnell, R. F. (1997). An analytic description of converging shock waves.
Journal of Fluid Mechanics, 354:357-375. 93

221



REFERENCES

[Clery, 2013] Clery, D. (2013). A Piece of the Sun: The Quest for Fusion Energy. Overlook
Duckworth. 10

[Coggeshall and Axford, 1986] Coggeshall, S. V. and Axford, R. A. (1986). Lie group invariance
properties of radiation hydrodequations and their associated similarity solutions. Physics of
Fluids, 29(8):1986-2420. 89

[Curie, 1898] Curie, M. (1898). Rayons émis par les composes de I'uranium et du thorium.
Comptes rendus de I’ Académie des Sciences Paris, 126:1101-1103. 9

[Dautray and Watteau, 1993] Dautray, R. and Watteau, J.-P. (1993). La fusion thermonucléaire

inertielle par laser. Eyrolles, la fusion par confinement inertiel edition. 40, 178

[Davie et al., 2014] Davie, C. J., Bush, I. A., and Evans, R. G. (2014). Stability of shocks relating
to the shock ignition inertial fusion energy scheme. Physics of Plasmas (1994-present), 21(8):—.
215

[Depierreux et al., 2009] Depierreux, S., Labaune, C., Michel, D., Stenz, C., Nicolai, P., Grech,
M., Riazuelo, G., Weber, S., Riconda, C., Tikhonchuk, V., et al. (2009). Laser smoothing

and imprint reduction with a foam layer in the multikilojoule regime. Physical review letters,
102(19):195005. 53

[Drake et al., 1984] Drake, R. P., Turner, R. E., Lasinski, B. F., Estabrook, K. G., Campbell,
E. M., Wang, C. L., Phillion, D. W., Williams, E. A., and Kruer, W. L. (1984). Efficient
raman sidescatter and hot-electron production in laser-plasma interaction experiments. Phys.
Rev. Lett., 53:1739-1742. 178

[Durrell et al., 2014] Durrell, J. H., Dennis, A. R., Jaroszynski, J., Ainslie, M. D., Palmer, K.
G. B., Shi, Y.-H., Campbell, A. M., Hull, J., Strasik, M., Hellstrom, E. E., and Cardwell,
D. A. (2014). A trapped field of 17.6 t in melt-processed, bulk gd-ba-cu-o reinforced with
shrink-fit steel. Superconductor Science and Technology, 27(8):082001. 8

[Dyke and Guttmann, 1982] Dyke, M. and Guttmann, A. J. (1982). The converging shock wave
from a spherical or cylindrical piston. Journal of Fluid Mechanics, 120:451-462. 94

[Eddington, 1920] Eddington, A. S. (1920). The internal constitution of the stars. Observatory,
43:353. 10

[Fratanduono et al., 2011] Fratanduono, D., Boehly, T., Celliers, P., Barrios, M., Eggert, J.,
Smith, R., Hicks, D., Collins, G., and Meyerhofer, D. (2011). The direct measurement of
ablation pressure driven by 351-nm laser radiation. Journal of Applied Physics, 110(7):073110.
178

[Fujimoto and Mishkin, 1978] Fujimoto, Y. and Mishkin, E. A. (1978). Analysis of spherically
imploding shocks. Physics of Fluids, 21(11):1933-1938. 93

222



REFERENCES

[Fujioka et al., 2004] Fujioka, S., Sunahara, A., Ohnishi, N., Tamari, Y., Nishihara, K., Azechi,
H., Shiraga, H., Nakai, M., Shigemori, K., Sakaiya, T., et al. (2004). Suppression of rayleigh-
taylor instability due to radiative ablation in brominated plastic targets. Physics of Plasmas
(1994-present), 11(5):2814-2822. 53

[Gamow, 1928] Gamow, G. (1928). Zur quantentheorie der atomzertrimmerung. Zeitschrift fir
Physik, 52:510. 10

[Guderley, 1942] Guderley, V. G. (1942). Strake kugelige und zylindrische verdichtungsstoe in
der ndhe des kugelmittelpunktes bzw. des zylinderachse. Luftfahrtforschung, 19:302-312. 91

[Gus’kov et al., 2012] Gus’kov, S., Ribeyre, X., Touati, M., Feugeas, J.-L., Nicolai, P., and
Tikhonchuk, V. (2012). Ablation pressure driven by an energetic electron beam in a dense
plasma. Physical review letters, 109(25):255004. 23, 206

[Haan et al., 2011] Haan, S., Lindl, J., Callahan, D., Clark, D., Salmonson, J., Hammel, B.,
Atherton, L., Cook, R., Edwards, M., Glenzer, S., et al. (2011). Point design targets, spec-
ifications, and requirements for the 2010 ignition campaign on the national ignition facility.
Physics of Plasmas, 18(5):051001. 15

[Hahn and Strassmann, 1939] Hahn, O. and Strassmann, F. (1939). Concerning the existence of
alkaline earth metals resulting from neutron irradiation of uranium. Die Naturwissenschaften,
27:11-15. 10

[Haines, 2011] Haines, M. G. (2011). A review of the dense z -pinch. Plasma Physics and
Controlled Fusion, 53(9):093001. 9

[Hayes, 1968] Hayes, W. D. (1968). Self-similar strong shocks in an exponential medium. Journal
of Fluid Mechanics, 32(02):305-315. 94

[Hazeltine and Meiss, 2003] Hazeltine, R. D. and Meiss, J. (2003). Plasma Confinement. Dover

Books on Physics. Dover Publications. 7

[Hohenberger et al., 2012] Hohenberger, M., Chang, P.-Y., Fiksel, G., Knauer, J., Betti, R.,
Marshall, F., Meyerhofer, D., Séguin, F., and Petrasso, R. (2012). Inertial confinement fusion
implosions with imposed magnetic field compression using the omega lasera). Physics of
Plasmas (1994-present), 19(5):056306. 216

[Hohenberger et al., 2014] Hohenberger, M., Theobald, W., Hu, S., Anderson, K., Betti, R.,
Boehly, T., Casner, A., Fratanduono, D., Lafon, M., Meyerhofer, D., et al. (2014). Shock-
ignition relevant experiments with planar targets on omega. Physics of Plasmas (1994-
present), 21(2):022702. 179

[Hornung et al., 2008] Hornung, H. G., Pullin, D. 1., and Ponchaut, N. F. (2008). On the
question of universality of imploding shock waves. Acta Mechanica, 201(1-4):31-35. 95

223



REFERENCES

[Hunter, 1960] Hunter, C. (1960). On the collapse of an empty cavity in water. Journal of Fluid
Mechanics, 8:241-263. 95

[Hurricane et al., 2014] Hurricane, O., Callahan, D., Casey, D., Celliers, P., Cerjan, C., Dewald,
E., Dittrich, T., Déppner, T., Hinkel, D., Hopkins, L. B., et al. (2014). Fuel gain exceeding

unity in an inertially confined fusion implosion. Nature. 15

[Hydon, 2000] Hydon, P. (2000). Symmetry Methods for Differential Equations. Cambridge

University press, cambridge texts in applied mathematics edition. 89

[Kemp et al., 2001] Kemp, A., Meyer-ter Vehn, J., and Atzeni, S. (2001). Stagnation pressure
of imploding shells and ignition energy scaling of inertial confinement fusion targets. Physical
review letters, 86(15):3336. 21, 56

[Kidder, 1976] Kidder, R. (1976). Laser-driven compression of hollow shells: power requirements
and stability limitations. Nuclear Fusion, 16(1):3. 43, 73, 143

[Klimo et al., 2010] Klimo, O., Weber, S., Tikhonchuk, V. T., and Limpouch, J. (2010). Particle-
in-cell simulations of laser—plasma interaction for the shock ignition scenario. Plasma Physics
and Controlled Fusion, 52(5):055013. 23, 178, 195

[Koester et al., 2013] Koester, P., Antonelli, L., Atzeni, S., Badziak, J., Baffigi, F., Batani, D.,
Cecchetti, C., Chodukowski, T., Consoli, F., Cristoforetti, G., et al. (2013). Recent results
from experimental studies on laser-plasma coupling in a shock ignition relevant regime. Plasma
Physics and Controlled Fusion, 55(12):124045. 179

[Krokhin and Rozanov, 1973] Krokhin, O. N. and Rozanov, V. B. (1973). Escape of alpha
particles from a laser-pulse-initiated thermonuclear reaction. Soviet Journal of Quantum
FElectronics, 2(4):393. 132

[Lafon et al., 2010] Lafon, M., Ribeyre, X., and Schurtz, G. (2010). Gain curves and hydrody-
namic modeling for shock ignition. Physics of Plasmas (1994-present), 17(5):052704. 21

[Lafon et al., 2013] Lafon, M., Ribeyre, X., and Schurtz, G. (2013). Optimal conditions for shock
ignition of scaled cryogenic deuterium-tritium targets. Physics of Plasmas (1994-present),
20(2):022708. 21, 22, 24, 25, 142, 158, 211, 213, 215

[Landen et al., 2012] Landen, O., Benedetti, R., Bleuel, D., Boehly, T., Bradley, D., Caggiano,
J., Callahan, D., Celliers, P., Cerjan, C., Clark, D., et al. (2012). Progress in the indirect-drive
national ignition campaign. Plasma Physics and Controlled Fusion, 54(12):124026. 15

[Lawson, 1957] Lawson, J. D. (1957). Some criteria for a power producing thermonuclear reactor.
Proceedings of the Physical Society. Section B, 70(1):6. 5

[Lazarus, 1981] Lazarus, R. B. (1981). Self-similar solutions for converging shocks and collapsing
cavities. Society for Industrial and Applied Mathematics J. Numer. Anal., 18(2). 92, 112

224



REFERENCES

[Lazarus and Richtmyer, 1977] Lazarus, R. B. and Richtmyer, R. D. (1977). Similarity solutions

for converging shocks. 92

[Lee, 1967] Lee, B. H. K. (1967). Nonuniform propagation of imploding shocks and detonations.
AIAA Journal, 5(11). 95

[Lindl, 1995] Lindl, J. (1995). Development of the indirect-drive approach to inertial confine-
ment fusion and the target physics basis for ignition and gain. Physics of Plasmas, 2(11):3933—
4024. 32, 47, 55

[Maiman, 1960] Maiman, T. H. (1960). Stimulated optical radiation in ruby.  Nature,
187(4736):493-494. 11

[Maire et al., 2007] Maire, P., Abgrall, R., Breil, J., and Ovadia, J. (2007). A lagrangian scheme
for multidimensional compressible flow problems. SIAM Journal on Scientific Computing, 29.
124, 185

[Malone et al., 1975] Malone, R. C., McCrory, R. L., and Morse, R. L. (1975). Indications
of strongly flux-limited electron thermal conduction in laser-target experiments. Phys. Rewv.
Lett., 34:721-724. 40

[Martel and Shapiro, 1998] Martel, H. and Shapiro, P. R. (1998). A convenient set of comoving
cosmological variables and their application. mnras, 297:467-485. 145

[McLean, 2005] McLean, A. (2005). The iter fusion reactor and its role in the development of a
fusion power plant. Radiation Protection Management, 22(5):27. 1, 2

[Meitner and Frisch, 1939] Meitner, L. and Frisch, O. R. (1939). Disintegration of uranium by
neutrons: A new type of nuclear reaction. Nature, 143:239-240. 10

[Millecchia et al., 2012] Millecchia, M., Regan, S., Bahr, R. E., Romanofsky, M., and Sorce, C.
(2012). Streaked x-ray spectrometer having a discrete selection of bragg geometries for omega.
Review of Scientific Instruments, 83(10):10E107-10E107-3. 183

[Noddack, 1934] Noddack, I. (1934). iiber das element 93. Angewandte Chemie, 47(37):653-655.
10

[Nora and Betti, 2011] Nora, R. and Betti, R. (2011). One-dimensional planar hydrodynamic
theory of shock ignition. Physics of Plasmas (1994-present), 18(8):082710. 22

[Nuckolls, 1998] Nuckolls, J. H. (1998). Early steps toward inertial fusion energy (ife) (1952 to
1962). Technical report, Lawrence Livermore National Lab., CA (United States). 11

[Oppenheim et al., 1972] Oppenheim, A. K., Kuhl, A. L., Lundstrom, E., and Kamel, M. (1972).
A parametric study of self-similar blast waves. Journal of Fluid Mechanics, 52:657-682. 91

225



REFERENCES

[Oshima, 1960] Oshima, K. (1960). Blast waves produced by exploding wire. Technical Report

358, Aeronautical research institute, University of Tokyo. 94

[Perkins et al., 2009] Perkins, L., Betti, R., LaFortune, K., and Williams, W. (2009). Shock
ignition: a new approach to high gain inertial confinement fusion on the national ignition
facility. Physical review letters, 103(4):045004. 23

[Piriz et al., 2013] Piriz, A., Piriz, S., and Tahir, N. (2013). High pressure generation by hot
electrons driven ablation. Physics of Plasmas (1994-present), 20(11):112704. 23, 206

[Ponchaut et al., 2006] Ponchaut, N. F., Hornung, H., Pullin, D. I., and Mouton, C. A. (2006).
On imploding cylindrical and spherical shock waves in a perfect gas. Journal of Fluid Me-
chanics, 560(3):103. 95, 98, 104, 112, 138

[Ramu and Rao, 1993] Ramu, A. and Rao, M. P. R. (1993). Converging spherical and cylindrical
shock waves. Journal of Engineering Mathematics, 27(4):411-417. 93

[Ribeyre et al., 2013a] Ribeyre, X., Guskov, S., Feugeas, J.-L., Nicolai, P., and Tikhonchuk,
V. T. (2013a). Dense plasma heating and gbar shock formation by a high intensity flux of
energetic electrons. Physics of Plasmas (1994-present), 20(6):—. 23, 196, 203, 204, 206

[Ribeyre et al., 2009] Ribeyre, X., Schurtz, G., Lafon, M., Galera, S., and Weber, S. (2009).
Shock ignition: an alternative scheme for hiper. Plasma Physics and Controlled Fusion,
51(1):015013. 20, 23, 24, 26, 161, 215

[Ribeyre et al., 2011] Ribeyre, X., Tikhonchuk, V., Breil, J., Lafon, M., , and Le Bel, E. (2011).
Analytical criterion for shock ignition of fusion reaction in hot spot. Physics of Plasma,
18:102702. 20, 135

[Ribeyre et al., 2013b] Ribeyre, X., Tikhonchuk, V., Breil, J., Lafon, M., Vallet, A., and Le Bel,
E. (2013b). Analytical criterion for shock ignition of fusion reaction in hot spot. In EPJ Web
of Conferences, volume 59, page 03005. EDP Sciences. 20

[Rosen, 1999] Rosen, M. D. (1999). The physics issues that determine inertial confinement
fusion target gain and driver requirements: a tutorial. Physics of Plasmas (1994-present),
6(5):1690-1699. 45

[Sakurai, 1953] Sakurai, A. (1953). On the propagation and structure of the blast wave, i and
ii. Journal of the Physical Society of Japan, 8(5):662. 95, 98, 101, 104

[Sakurai, 1960] Sakurai, A. (1960). On the problem of a shock wave arriving at the edge of a
gas. Communications on Pure and Applied Mathematics, 13(3):353-370. 94

[Sangster et al., 2013] Sangster, T., Goncharov, V., Betti, R., Radha, P., Boehly, T., Casey,
D., Collins, T., Craxton, R., Delettrez, J., Edgell, D., et al. (2013). Improving cryogenic

226



REFERENCES

deuterium-tritium implosion performance on omegaa). Physics of Plasmas (1994-present),
20(5):056317. 16

[Schmitt et al., 2010] Schmitt, A. J., Bates, J. W., Obenschain, S. P., Zalesak, S. T., and Fyfe,
D. E. (2010). Shock ignition target design for inertial fusion energy. Physics of Plasmas
(1994-present), 17(4):042701. 23, 25, 27

[Schurtz et al., 2010] Schurtz, G., Ribeyre, X., and Lafon, M. (2010). Target design for shock
ignition. Journal of Physics: Conference Series, 244(2):022013. 158

[Schurtz et al., 2000] Schurtz, G. P., Nicolai, P. D., and Busquet, M. (2000). A nonlocal electron
conduction model for multidimensional radiation hydrodynamics codes. Physics of Plasmas
(1994-present), 7(10):4238-4249. 40, 193

[Sédov, 1946] Sédov, L. (1946). Propagation of strong blast waves. Prikl. Mat. Mech., 10:241—
250. 91

[Sédov, 1977] Sédov, L. (1977). Similitude et dimensions en mécanique. Editions MIR. 89

[Sharma and Radha, 1995] Sharma, V. D. and Radha, C. (1995). Similarity solutions for con-
verging shocks in a relaxing gas. Int. J. Engng. Sci., 33(4):535-553. 93

[Shcherbakov, 1983] Shcherbakov, V. (1983). Ignition of a laser-fusion target by a focusing shock
wave. Soviet Journal of Plasma Physics, 9:240-241. 18, 129

[Spitzer and Hérm, 1953] Spitzer, L. and Harm, R. (1953). Transport phenomena in a com-
pletely ionized gas. Phys. Rev., 89:977-981. 35

[Stanyukovich, 1960] Stanyukovich, S. (1960). Unsteady Motion of Continuous Media. Perga-

mon. 92

[Stoeckl et al., 2001] Stoeckl, C., Glebov, V. Y., Meyerhofer, D., Seka, W., Yaakobi, B., Town,
R., and Zuegel, J. (2001). Hard x-ray detectors for omega and nif. Review of Scientific
Instruments, 72(1):1197-1200. 183

[Tabak et al., 1994] Tabak, M., Hammer, J., Glinsky, M. E., Kruer, W. L., Wilks, S. C., Wood-
worth, J., Campbell, E. M., Perry, M. D., and Mason, R. J. (1994). Ignition and high gain
with ultrapowerful lasers. Physics of Plasmas (1994-present), 1(5):1626-1634. 17, 54

[Tabak et al., 2014] Tabak, M., Norreys, P., Tikhonchuk, V., and Tanaka, K. (2014). Alternative

ignition schemes in inertial confinement fusion. Nuclear Fusion, 54(5):054001. 54

[Takabe et al., 1985] Takabe, H., Mima, K., Montierth, L., and Morse, R. L. (1985). Self-
consistent growth rate of the rayleigh—taylor instability in an ablatively accelerating plasma.
Physics of Fluids (1958-1988), 28(12):3676-3682. 52

227



REFERENCES

[Takahashi, 2009] Takahashi, S. (2009). An existence theorem for the point source blast wave

equation. Communications in Partial Differential Equations, 34(1):1-23. 95

[Tamm and Sakharov, 1959] Tamm, I. E. and Sakharov, A. D. (1959). Plasma Physics and the

Problem of Controlled Thermonuclear Reactions (transl). Pergamon. 7

[Taylor, 1946] Taylor, G. (1946). The air wave surrounding an expanding sphere. Proc. Roy.
Soc. A., 186:273-292. 91

[Theobald et al., 2008] Theobald, W., Betti, R., Stoeckl, C., Anderson, K., Delettrez, J., Gle-
bov, V. Y., Goncharov, V., Marshall, F., Maywar, D., McCrory, R., et al. (2008). Initial
experiments on the shock-ignition inertial confinement fusion concept. Physics of Plasmas
(1994-present), 15(5):056306. 22, 26

[Theobald et al., 2013] Theobald, W., Nora, R., Lafon, M., Anderson, K., Davies, J., Hohen-
berger, M., Sangster, T., Seka, W., Solodov, A., Stoeckl, C., et al. (2013). Demonstration of

200-Mbar ablation pressure for shock ignition. Bulletin of the American Physical Society, 58.
179, 180, 213

[Theobald et al., 2012] Theobald, W., Nora, R., Lafon, M., Casner, A., Ribeyre, X., Anderson,
K., Betti, R., Delettrez, J., Frenje, J., Glebov, V. Y., et al. (2012). Spherical shock-ignition ex-
periments with the 40+ 20-beam configuration on omega. Physics of Plasmas (1994-present),
19(10):102706. 22

[Toqué, 2001] Toqué, N. (2001). Self-similar implosion of a continuous stratified medium. Shock
Waves, 11(3):157-165. 93

[Wegener, 2009] Wegener, L. (2009). Status of wendelstein 7-x construction. Fusion Engineering
and Design, 84(2):106-112. 8

[Welsh, 1967] Welsh, R. L. (1967). Imploding shocks and detonations. Journal of Fluid Me-
chanics, pages 61-79. 95, 112, 138

[Whitham, 1958] Whitham, G. B. (1958). On the propagation of shock waves through regions
of non-uniform area or flow. Journal of Fluid Mechanics, 4:337-360. 93, 149, 150

[Yanez et al., 2011] Yanez, C., Sanz, J., Olazabal-Loumé, M., and Ibanez, L. (2011). Linear
stability analysis of double ablation fronts in direct-drive inertial confinement fusion. Physics
of Plasmas (1994-present), 18(5):052701. 53

[Yousaf, 1978] Yousaf, M. (1978). Motion of a strong shock wave in a medium of nonuniform
density. Physics of Fluids, 21:217-220. 94, 151

[Yousaf, 1985] Yousaf, M. (1985). Motion of a strong shock wave in an exponential medium.
Physics of Fluids, 28(6):1659-1664. 93, 151

228



REFERENCES

[Zhou and Betti, 2007] Zhou, C. and Betti, R. (2007). Hydrodynamic relations for direct-drive
fast-ignition and conventional inertial confinement fusion implosions. Physics of Plasmas
(1994-present), 14(7):072703. 57, 210

229



REFERENCES

230



Publications and communications

List of publications

In preparation

e A Vallet, X Ribeyre, A Casner, R Nora, W Theobald, R Betti and V Tikhonchuk.
Hydrodynamic analysis of strong spherical shock generation experiments on OMEGA, In

preparation.

e A Vallet, X Ribeyre, and V Tikhonchuk. Shock dynamics in an imploding shell, appli-

cation to shock ignition, In preparation.

Submitted

e R Nora, W Theobald, F Marshall, D T Michel, W Seka, B Yaakobi, M Lafon, C Stoeckl,
J Delettrez, A A Solodov, A Casner, C Reverdin, X Ribeyre, A Vallet, J Peebles, M S
Wei and R Betti. Gigabar Spherical Shock Generation on the OMEGA Laser. Submitted
to Physical Review Letters, 2014

Published

e X Ribeyre, E Llor Aisa, A Vallet, P Nicolai and V Tikhonchuk. Shock Ignition Theoretical
Studies: From Hot Electrons Pressure Generation To Converging Amplification Effects,
Bulletin of the American Physical Society, 59, 2014

e W Theobald, R Nora, M Lafon, KS Anderson, JR Davies, M Hohenberger, TC Sangster,
W Seka, AA Solodov, C Stoeckl, B Yaakobi, R Betti, A Casner, C Reverdin, X Ribeyre,

231



REFERENCES

and A Vallet. Demonstration of 200-Mbar ablation pressure for shock ignition. Bulletin
of the American Physical Society, 58, 2013.

e A Vallet, X Ribeyre, and V Tikhonchuk. Finite mach number spherical shock wave,
application to shock ignition. Physics of Plasmas, 20:082702, 2013.

e X Ribeyre, V Tikhonchuk, J Breil, M Lafon, A Vallet, and E Le Bel. Analytical criterion
for shock ignition of fusion reaction in hot spot. EPJ Web of Conferences, 59:03005, 2013.

List of conference presentations

e International Congress On Plasma Physics, Lisbonne - Portugal, September 2014, Oral,

Hydrodynamic modeling of shock ignition.

e 41st EPS Conference on Plasma Physics, Berlin - Allemagne , June 2014, Poster,Semi-

analytic modeling of shock ignition. (Best poster award)

e Guest talk DPTA/DCSA, CEA-DIF, June 2014, Oral, Modéles hydrodynamiques et expériences

dans le contexte du schéma d’allumage par choc pour la fusion par confinement inertiel.

e LMJ-PETAL and Action COST MP1208, Bordeaux - France, March 2014, Poster, Shock

strengthening in the imploding shell for shock ignition.

e HEDP summer school, Columbus - USA (Ohio state), July 2013, Poster, Finite Mach
number spherical shock wave - analytical criterion for shock ignition. (Fusion Science

Center Award for Excellence in Poster Presentation)

e SPIE - Laser Energy Workshop , Prague - Czech Republic , April 2013, Poster, Study of

converging spherical shock wave with a finite Mach number in the context of shock ignition.

e Forum Lasers et Plasmas, Ile de Ré - France, September 2012 , Poster, Study of a spherical

converging shock with finite Mach number.

232



	Abstract
	Résumé
	Résumé détaillé
	Contents
	1 Introduction
	1.1 Fusion as an energy source
	1.1.1 Fusion reaction
	1.1.2 Lawson criterion
	1.1.3 Fusion for energy production

	1.2 Magnetic confinement fusion
	1.3 Inertial confinement fusion
	1.3.1 Historical note
	1.3.2 Status of the conventional ignition scheme in ICF
	1.3.3 Limitations
	1.3.4 Progress toward ignition

	1.4 Shock ignition as an alternative scheme
	1.5 Thesis outline

	2 Physics of inertial confinement fusion
	2.1 Inertial confinement
	2.1.1 Burn fraction
	2.1.2 Hot spot ignition

	2.2 Laser driver
	2.2.1 Absorption zone
	2.2.2 Conduction zone
	2.2.3 Ablation pressure

	2.3 Implosion and laser pulse shape
	2.3.1 Ablation phase
	2.3.2 Acceleration phase
	2.3.3 Deceleration and stagnation phases

	2.4 Hydrodynamic instabilities
	2.4.1 Rayleigh–Taylor instability
	2.4.2 Kelvin–Helmholtz instability
	2.4.3 Richtmyer–Meshkov instability
	2.4.4 Most dangerous mode

	2.5 Separating compression and ignition
	2.5.1 Discussion on the implosion velocity
	2.5.2 Shock ignition principle

	2.6 Conclusion

	3 Hydrodynamic modeling
	3.1 Basic equations
	3.1.1 Conservation equations
	3.1.2 Ideal gas equation of state
	3.1.3 Forms of the Euler's equations
	3.1.4 Compression waves - rarefaction waves

	3.2 Homogeneous isentropic compression
	3.2.1 Lagrangian description of the flow
	3.2.2 Time evolution of the flow
	3.2.3 Density and pressure profiles

	3.3 Basic physics of shock waves
	3.3.1 Rankine–Hugoniot relations
	3.3.2 Hugoniot adiabat - entropy deposition
	3.3.3 Shock polar curve
	3.3.4 Interaction of a shock with a discontinuity

	3.4 Spherical shock wave
	3.4.1 Self-similar solution
	3.4.2 Freely propagating shock wave
	3.4.3 Quasi-self similar solutions
	3.4.4 Series form solutions

	3.5 Conclusion

	4 Coupling of the ignitor shock with the hot-spot
	4.1 Spherical shock wave with a finite Mach number
	4.1.1 Basic equations
	4.1.2 Transformation into a system of ordinary differential equations
	4.1.3 Analysis of the singular points
	4.1.4 Results in the frame (x,y)
	4.1.5 Results in the frame (r,t)
	4.1.6 Results in the Lagrangian frame
	4.1.7 Discussion

	4.2 Influence of the shock Mach number on the coupling with the hot-spot
	4.2.1 Conversion of the kinetic energy into the internal energy
	4.2.2 Influence of the Mach number on the Lawson criterion

	4.3 Ignition criterion
	4.3.1 Alpha particle energy deposition
	4.3.2 Conduction losses
	4.3.3 Radiative losses
	4.3.4 Ignition Threshold
	4.3.5 Discussion

	4.4 Conclusions

	5 Ignitor shock amplification in the shell
	5.1 Shock amplification mechanisms
	5.1.1 Shell implosion
	5.1.2 Shock dynamics in the shell comoving frame 
	5.1.3 Shock pressure amplification and strengthening in a shock collision
	5.1.4 Partial conclusions

	5.2 Shock pressure amplification and strengthening in shock ignition scheme 
	5.2.1 Analysis of the shock pressure amplification factor
	5.2.2 Analysis of the shock strengthening

	5.3 Conclusions

	6 Shock generation and experiments
	6.1 Experiments of shock generation
	6.2 The ``Strong Spherical Shock'' experiments objectives and setup
	6.2.1  OMEGA laser facility
	6.2.2 Target and laser pulse
	6.2.3 Laser beams
	6.2.4 Shock timing measurement
	6.2.5 Laser-plasma interaction analysis

	6.3 Ablation and shock pressure evaluation
	6.3.1 Estimate of the initial shock pressure
	6.3.2 Estimate of the initial shock pressure with simulations

	6.4 Analysis of two representative shots
	6.4.1 Shot with the laser beam Smoothing by Spectral Dispersion
	6.4.2 Shot without laser beam Smoothing by Spectral Dispersion

	6.5 Discussion on the hot electron influence
	6.5.1 Hot electron characterization in the experiments
	6.5.2 Role of the hot electrons in shock dynamics

	6.6 Conclusion

	7 Conclusions and perspectives
	Appendix A
	References
	Publications and communications

