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Résumé 
Les aciers ODS (Oxide Dispersed Strengthened Steels), renforcés par des dispersions de 
nano-oxydes métalliques (à base d'éléments Y, Ti et O), sont des matériaux prometteurs pour les 
réacteurs nucléaires de génération IV. La compréhension fine des mécanismes mis en jeu lors de 
la précipitation de ces nano-oxydes permettrait d’améliorer la fabrication et les propriétés 
mécaniques de ces aciers ODS, avec un fort impact économique en vue de leur industrialisation. 
Pour étudier expérimentalement ces mécanismes, une approche analytique par implantation 
ionique est utilisée dans cette étude, permettant de contrôler différents paramètres de synthèse de 
ces précipités comme la température et leur concentration. Ce projet a permis de démontrer la 
faisabilité de cette méthode et d'étudier le comportement d'alliages modèles (à base d’oxyde 
d’aluminium) sous recuit thermique. Des alliages Fe-10Cr de haute pureté ont été implantés avec 
des ions Al et O à température ambiante. Les observations de microscopie électronique en 
transmission ont montré que des nano-oxydes apparaissent dans la matrice de Fe-10Cr dès 
l’implantation à température ambiante, sans recuit subséquent. Les défauts créés lors de 
l’implantation ionique sont à l’origine de la mobilité des éléments introduits, permettant la 
nucléation de ces nanoparticules, de quelques nm de diamètre. Ces nanoparticules sont composées 
d’aluminium et d’oxygène, et également de chrome. Les examens en haute résolution montrent 
que leur structure cristallographique correspond à celle d’un composé hors équilibre de l’oxyde 
d’aluminium (de type γ-Al2O3). Les traitements thermiques effectués après implantation induisent 
une croissance de la taille de ces nano-oxydes, et un changement de phase qui tend vers la 
structure d’équilibre (de type α-Al2O3). Ces résultats sur des alliages modèles s’appliquent 
entièrement aux matériaux industriels : en effet l’implantation ionique reproduit les conditions du 
broyage, et les traitements thermiques sont à des températures équivalentes à celles des 
traitements d’élaboration thermo-mécaniques. Un mécanisme de la précipitation de nano-oxydes 
dispersés dans des alliages ODS est proposé dans ce manuscrit. 
 

Summary 
ODS (Oxide Dispersed Strengthened) steels, which are reinforced with metal dispersions of 
nano-oxides (based on Y, Ti and O elements), are promising materials for future nuclear reactors. 
The detailed understanding of the mechanisms involved in the precipitation of these nano-oxides 
would improve manufacturing and mechanical properties of these ODS steels, with a strong 
economic impact for their industrialization. To experimentally study these mechanisms, an 
analytical approach by ion implantation is used, to control various parameters of synthesis of 
these precipitates as the temperature and concentration. This study demonstrated the feasibility of 
this method and concerned the behavior of alloys models (based on aluminum oxide) under 
thermal annealing. High purity Fe-10Cr alloys were implanted with Al and O ions at room 
temperature. Transmission electron microscopy observations showed that the nano-oxides appear 
in the Fe-10Cr matrix upon ion implantation at room temperature without subsequent annealing. 
The mobility of implanted elements is caused by the defects created during ion implantation, 
allowing the nucleation of these nanoparticles, of a few nm in diameter. These nanoparticles are 
composed of aluminium and oxygen, and also chromium. The high-resolution experiments show 
that their crystallographic structure is that of a non-equilibrium compound of aluminum oxide 
(cubic γ-Al2O3 type). The heat treatment performed after implantation induces the growth of the 
nano-sized oxides, and a phase change that tends to balance to the equilibrium structure 
(hexagonal α-Al2O3 type). These results on model alloys are fully applicable to industrial 
materials: indeed ion implantation reproduces the conditions of milling and heat treatments are at 
equivalent temperatures to those of thermo-mechanical treatments. A mechanism involving the 
precipitation of nano-oxide dispersed in ODS alloys is proposed in this manuscript based on the 
obtained experimental results, and the existing literature. 
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Introduction 
 
 
While the worldwide growth of nuclear energy slowed during the 2008-2009 global economic 

recession and the aftermath of the Fukushima-Daiichi nuclear accident, the World Energy 

Outlook projects a minimum of 40% increase in nuclear electricity production by 2035. 

Taking into account the responsibilities of reducing carbon emission and preventing global 

warming, doubling of nuclear electricity would be required1. To respond the energy evolution 

requirement, the Generation IV international forum established initially by nine countries in 

January 2000, is now leading multinational collaboration on research and development for 

advanced nuclear energy systems2. Generation IV nuclear energy systems are expected to 

have good performance in four broad areas: sustainability, economics, safety & reliability and 

proliferation resistance & physical protection3. France government has chosen sodium-cooled 

fast neutron reactor (SFR) as the priority concept among six promising advanced reactor 

concepts due to the abundant experience already gained from the development of prototypes 

Phénix (1973-2009) and Super Phénix (1983-1997). This decision imposes to develop 

advanced materials that can stand up to extreme operation temperatures (i.e. from 400 to 

600°C) and high radiation fields (i.e. up to 200 displacements per atom) of SFR4. 

 
ODS (Oxide Dispersed Strengthened) steels, which are reinforced with metal dispersions of 

nano-oxides (based on Y, Ti and O elements), are promising candidates for not only the 

application of fuel cladding of SFR but also the structural materials (e.g. first wall) of fusion 

reactors. The presence of high densities of nano-oxide particles is known to significantly 

improve the mechanical properties of ODS steels5. ODS are also used in other applications 

such automotive industry thanks to these reinforced mechanical properties. However, the 

fabrication of ODS steels, currently based on a co-grinding of metallic powders and 

thermomechanical treatments, is not optimized. The detailed understanding of the 

mechanisms involved in the precipitation of these nano-oxide particles would improve 

manufacturing and mechanical properties of these ODS steels, with a strong economic impact 

for their industrialization. 

 

                                                 
1 World Energy Outlook 2012 International Energy Agency, IEA/OCED (2012) 
2 John E. Kelly, Progress in Nuclear Energy, 77 (2014), 240 
3 https://www.gen-4.org/gif/jcms/c_9502/generation-iv-goals 
4 J. G. Marques, energy conversion and management, 51 (2010) 1774 
5 P. Yvon, F. Carre, Journal of Nuclear Materials, 385 (2009) 217 
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The mechanisms involved in the precipitation of nano-oxide particles have recently been 

studied and suggested by numerous researchers. Marquis et al.6 and Murali et al.7 

demonstrated that nano-oxide particles formed preferentially a core/shell structure since the 

presence of a shell would decrease the interfacial energy, favoring the nucleation of the oxide 

particles. Fu et al.8 suggested yet a different mechanism obtained from first-principles studies: 

oxygen shows an exceptionally high affinity for vacancies. If vacancies preexist, the 

O-vacancy pair formation energy essentially vanishes. This O-vacancy mechanism enables 

the unusual high O solubility and the nucleation of O-enriched nanoclusters, which attract 

solutes with high O affinities (Ti and Y) in order to form Y, Ti-enriched nano-particles in 

ODS steels. Xu et al.9 confirmed the suggestion of Fu et al. by experiments of 

positron-lifetime spectroscopy. 

 
Face to this uncertainty, the main objective of this PhD study is to study experimentally the 

mechanisms involved in the precipitation of nano-oxide particles in high purity FeCr model 

alloys. An analytical approach by ion implantation and subsequent thermal annealing is used, 

to synthesize nano-oxide precipitates under well-controlled conditions. The morphology (e.g. 

size, density, distribution), crystal structure and chemical composition of precipitates before 

and after thermal annealing are characterized by conventional and analytical transmission 

electron microscopy (TEM) observations combining with atom probe tomography (APT) 

analyses. A mechanism involving the precipitation of nano-oxide dispersed in ODS alloys is 

proposed in this manuscript based on the obtained experimental results, and the existing 

literature. 

 
This manuscript includes four Chapters. Firstly, a summary of research background and 

review of typical results of ODS steels shown in the existing literature is given in Chapter 1. 

Experimental information including sample preparation, ion implantation, thermal annealing 

and characterization methods of TEM and APT are introduced in Chapter 2. The results 

described in Chapter 3 correspond to the morphology, chemical compositions and crystal 

structure of precipitates before and after thermal annealing. Finally, we discuss some 

non-evident features of the experimental observations and demonstrate how they contribute to 

the physical understanding of the oxide precipitation kinetics in Chapter 4. The conclusion & 

perspectives is given at the end, along with some annexes. 

 
6 E.A. Marquis, Applied Physics Letter, 93 (2008) 181904 
7 D. Murali, B.K. Panigrahi, M.C. Valsakumar, Sharat Chandra, C.S. Sundar, Journal of Nuclear Materials, 403 (2010) 113 
8 C.L. Fu, Maja Krčmar, G. S. Painter, Xing-Qiu Chen, Physical Review Letters, 99 (2007) 225502 
9 J. Xu, C.T. Liu, M.K. Miller, Hongmin Chen, Physical Review B, 79 (2009) 020204 
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1. Generation IV nuclear reactors 

While the worldwide growth of nuclear energy slowed during the 2008-2009 global economic 

recession and the aftermath of the Fukushima-Daiichi nuclear accident, the World Energy 

Outlook projects a minimum of 40% increase in nuclear electricity production by 2035 [world 

energy outlook, 2012]. With the responsibilities of reducing carbon emission and preventing 

global warming, doubling of nuclear electricity would be required. To respond the energy 

evolution requirement, the Generation IV international forum established initially by nine 

countries in January 2000, is now leading multinational collaboration on research and 

development for advanced nuclear energy systems [Kelly, 2014]. Technology goals have been 

defined for Generation IV systems in four broad areas [GIF, website link]: 

• Sustainability: Generation IV nuclear energy systems need provide long-term 

available energy generation and effective fuel utilization for worldwide energy production. 

The nuclear waste should also be minimized, thereby improving protection for the public 

health and the environment.  

• Economics: Generation IV nuclear systems will have a reduced life-cycle cost 

comparing to other energy sources. Their financial risk level is comparable to other energy 

projects. 

• Safety and reliability: Generation IV nuclear energy systems perform obligatorily at 

least as well in terms of safety and reliability as current nuclear reactors. In particular, 

these systems should have a very low degree of reactor core damage and eliminate the 

need for offsite emergency response. 

• Proliferation resistance and physical protection: Generation IV nuclear energy 

systems will increase the assurance that they are very unattractive and the least desirable 

route for diversion or theft of weapons-usable materials, and provide increased physical 

protection against acts of terrorism. 

Six promising advanced reactor concepts have been selected for development from among 

130 proposals [Kelly, 2014]:  

• Molten salt reactor (MSR) is a neutron reactor. In this concept, nuclear fuels dissolve 

into the molten fluoride that serves as a coolant. The mixed fluid arrives at critical 

condition in a graphite core, which serves also as moderator.  

• Supercritical-Water-Cooled Reactor (SCWR) is a thermal neutron reactor. It uses the 

supercritical water (water at a temperature and pressure above its critical point, 

containing both properties of the liquid and the gas) as moderator and coolant.  
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• Very-High-Temperature Reactor (VHTR) is also a thermal reactor that uses graphite 

as moderator. The outlet temperature reaches to ~ 1000°C according to the concept.  

• Gas-Cooled Fast Reactor (GFR) is a fast neutron helium-cooled reactor with outlet 

temperature of 850°C. Radiation to high doses does not make helium radioactive in 

comparison to other possible coolants.  

• Lead-Cooled Fast Reactor (LFR) is a fast neutron reactor with molten lead or lead 

bismuth eutectic coolant.  

• Sodium-cooled fast reactor (SFR) is fast neutron sodium-cooled reactor with closed 

fuel cycle for efficient management of actinides and conversion of fertile uranium.  

 
Schematic overview and relevant characteristics of above six reactors are shown in Fig. 1.1.  

 
Fig. 1.1 The six generation IV reactor systems and their characteristics [Kelly, 2014].  
 

The operating temperatures and the displacement damage doses of six promising Generation 

IV concepts are shown in Fig. 1.2. The values for Generation II-III concepts are given as a 

benchmark. To compete economically with Generation II-III concepts, Generation IV nuclear 
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energy systems all operate at higher temperatures that enable to improve the thermodynamic 

efficiency. In addition, higher displacement damage doses than in Generation II-III concepts, 

are expected for some of Generation IV systems (LFR, MSR, SFR). 

 
Fig. 1.2 Overview of operating temperatures and displacement damage dose regimes for structural 
materials in current (generation II) and proposed future (Generation IV) fission energy systems. The six 
Gen IV fission systems are Very High Temperature Reactor (VHTR), Super Critical Water Reactor 
(SCWR), Lead Fast Reactor (LFR), Gas Fast Reactor (GFR), Sodium Fast Reactor (SFR) and Molten Salt 
Reactor (MSR). [Marques, 2010]. 
 

Among six Generation IV concepts, SFR is chosen as a priority concept by France 

government because this concept benefits to its closed fuel cycle and excellent potential for 

actinide management, including resource extension [Capus, 2007]. Furthermore, significant 

experience was already gained from the development of SFR prototypes Phénix (1973-2009) 

and Super Phénix (1983-1997).  

The fuel cladding of SFR keeps fuel pins and products of fission reaction isolating from the 

coolant (liquid sodium), which is a strongly corrosive reactant to metals. In addition, the 

cladding is subjected to temperatures from 400 to 600°C and fast neutron-induced irradiation 

doses up to 200 dpa [Marques, 2010]. Therefore, developing advanced materials that can 

stand up to extreme temperature, high radiation fields, and repeated thermal shocks over 

periods of years to decades is a huge challenge for SFR. The three promising candidates for 

the fuel cladding of SFR are described in the following section.  

 

2. Promising candidates for the fuel cladding of SFR  

2.1. Austenitic steels 

304 and 316 austenitic steels were applied to for the first generation of fast reactors [Cheon, 

2009 and Shibahara, 1994]. The selection is based on their good corrosion and thermal creep 
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resistance. The high temperature mechanical strength, good fabrication technology and 

abundant experience are also among their advantages. However, they are subjected to 

significant void swelling induced by radiation [Garner, 2000]. This disadvantage has been 

improved by adding stabilizing elements, varying chemical composition and applying cold 

work.  

 
Fig. 1.3 Hoop deformation of different grades of austenitic Phénix claddings and ferritic/martensitic (F/M) 
materials versus dose at temperatures between 675 and 825 K after [Yvon, 2009]. 
 
As shown in Fig. 1.3, austenitic 15/15Ti steels exhibit better swelling resistance than 316 

steels. However, the use of austenitic 15/15Ti steels is limited in the range of relatively low 

doses. In addition, the depletion of Cr at grain boundaries under high doses irradiation is 

suspected to plat a role in irradiation-assisted stress corrosion cracking [Okamoto, 1979; 

Bruemmer, 1999]. 

 

2.2. Ferritic/Martensitic (F/M) steels 
Ferritic/Martensitic (F/M) steels offer more advantages and are potential candidates for fuel 

claddings of SFR as well as for other Gen IV designs [Cheon, 2009; Shibahara, 1994]. 

Commercial F/M steels based on 9-12%Cr exhibit the highest swelling resistance in 

comparison with austenitic steels (Fig. 1.3). The high void swelling resistance is a generic 

property of ferritic alloys [Little, 2006]. In addition these materials have high thermal 

conductivity and low thermal expansion [Little, 1979]. The limitation to the use of F/M steels 

is their creep resistance at temperatures (400-600°C) desired in the Gen IV systems. One 

approach to improve the creep resistance is reinforcing the F/M steels by stable dispersion of 

nano-particles. The reinforced steels are introduced below.  
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2.3. Oxide Dispersion Strengthened (ODS) steels 

Oxide Dispersion Strengthened (ODS) steels are F/M steels reinforced by a stable dispersion 

of nano-oxide particles. The thermally stable nano-oxide particles dispersed in the matrix 

improve the radiation resistance and creep resistance at high temperature. As a result, ODS 

steels are promising candidates for not only the application of fuel cladding of SFR but also 

the structural materials (e.g. first wall) of fusion reactors. In addition, ODS steels are also 

used in other applications such automotive industry thanks to these reinforced mechanical 

properties. 

The first ODS steels for nuclear applications, the ODS DY and DT were developed by CEN-

SCK Mol and fabricated by Dour Metal in Belgium [Bremaecker, 2012]. Meanwhile, the 

ODS steels MA956 were developed by International Nickel Company (INCO) in United 

Kingdom, and PM2000 alloys were developed by Metallwerk Plansee, a company from 

Austria [Klueh, 2005]. MA956 and PM2000 are 20% Cr-ODS steels containing 5% Al, which 

exhibit superior resistance than DY and DT to oxidation and corrosion in hot gases at high 

temperature. Products made from these alloys are commercially used in turbines, combustion 

chambers and so on. These commercialized alloys constitute the first group (also called 1st 

generation) of ODS steels.  

The second group is devoted to the application of fuel cladding for SFR reactors, anticipating 

its superior resistance to radiation, and its excellent creep strength and dimensional stability at 

an elevated temperature. The development of ODS steels in the R&D stage has been engaged 

since 1990 firstly in Japan then in United States and Europe. Numerous laboratories and 

research groups joined the workshop or collaboration project: fabrication and microstructure 

are again optimized, tested, examined and reported step by step up to the ideal properties [de 

Carlan, 2009].  

The design of ODS steels for the application of fuel cladding is based on either the martensitic 

or the ferritic steels, reinforced by dispersion of nano-oxides. Yttria is chosen as the 

dispersoid due to its good thermal stability. As an example, Y2O3 has the highest free energy 

of formation, in comparison to other oxides such as Al2O3, TiO2 and ZrO2 at a temperature 

until to 2500 K [Smithells Metals Reference Book, 2004]. In addition, iron and yttrium are 

immiscible, so it is also in favor of the stability of Y2O3 in iron chromium alloys [Li, 1993]. 

The dispersoid Y2O3 serves as a block for mobile dislocation to improve the high-temperature 

strength and as a sink of point defects induced by radiation displacement to maintain superior 

radiation resistance.  Presently, different ODS steels are being developed in Japan, in Europe 

and in United States. These ODS steels contain different amounts of Cr, and major part of 

them contains other alloying elements (Ti, W, Mo, Ni, Al, Mn, V, C…). Chemical 
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compositions of principal ODS steels are listed in the Table 1.1. The effect and function of 

each element is discussed below: 

ODS steels Y2O3 Cr Ti W Addition 
DY [Monnet, 2004] 0,5 13 2,2 - 1,5 Mo 
MA956 [Chao, 1998] 0,5 20 0,5 - 5 Al 
MA957 [Miller, 2004] 0,25 14 0,9 - 0,1 Al + 0,3 Mo 
PM 2000 [Sporer, 1992] 0,5 20 0,5 - 5,5 Al 
12YWT [Larson, 2001] 0,25 12 0,4 3 - 
14YWT [Miller, 2006] 0,25 14 0,4 3 - 
K1 [Kasada, 2007] 0,37 18 0,3 0,3 - 
K3 [Yutani, 2007] 0,3 16 0,3 2 4 Al 
K4 [Kasada, 2007] 0,37 19 0,3 1,8 4,6 Al 
M93 [Ukai, 2002] 0,35 9 0,2 2 0,12 C 
F94 [Ukai, 2000] 0,24 12 0,3 2 0,06 C 
F95 [Yamashita, 2004] 0,25 12 0,3 2 0,06 C 
1DK [Yamashita, 2002] 0,34 13 0,6 2,8 0,05 C 
1DS [Yamashita, 2002] 0,63 11 0,4 2,7 0,09 C 
ODS-Eurofer97 [Schaublin, 
2002] 0,3 9 - 1,1 0,5 Mn + 0,2 V + 

0,11 C 
Fe-14Cr-Y2O3 (J05 CEA) 
[Steckmeyer, 2010] 0,3 14 0,3 1,1 0,3 Mn + 0,3 Si + 

0,15 Ni 
Table 1.1: nominal chemical compositions (wt%) of principal ODS steels 
 

2.3.1 Effect of chromium  

Due to the content of Cr, ODS steels are distinguished into three categories: (i) martensitic 

ODS steels (e.g. M93 and ODS-Eurofer 97); (ii) ferritic ODS steels (e.g. MA957, 12YWT 

and 14YWT); (iii) high Cr content ferritic ODS steels (e.g. K1, K3, K4 and PM2000). 

Ferritic/martensitic ODS steels containing 9–12 wt.% chromium have been developed as the 

fuel cladding material of SFR because of their high creep strength at elevated temperatures 

and enough resistance to neutron irradiation embrittlement.  

However, the application of ferritic/martensitic ODS steels to the cladding in SCWR and LFR 

is limited because of insufficient corrosion resistance of the steel. Thus, high Cr content 

ferritic ODS steels are developed for the application to SCWR and LFR, of which the most 

critical issue is to improve their corrosion resistance.  

It is well known that the corrosion resistance of ODS steels increases with chromium 

concentration. However, the effect of Al on corrosion resistance depends on Cr concentration 

(e.g. it has been reported the addition of 4 wt.% Al did not remarkably influence the corrosion 

resistance. However, in 16Cr-ODS steel, the addition of Al improved corrosion resistance.). 

For this reason, high Cr (up to 22%) ODS steels with Al additives (up to 4.5%) have been 

considered for the application to structural materials used in the high corrosive environment 

[Kimura, 2011].  
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On the other hand, high Cr concentration is often subjected to increase aging embrittlement in 

the temperature region around 475 °C, through the formation of Cr-rich secondary phase. The 

demixion between Fe-rich phase and Cr-rich phase induces an increase of ductile-brittle 

transition temperature (DBTT) [Lee, 2007]. Kimura et al. [Kimura, 2009] have investigated 

the aging effects of ODS steels with different Cr content by measuring their impact fracture 

energy at RT after aging at 500 °C up to 10kh (Fig. 1.4). The results show that the fracture 

energy decreases with increasing Cr content before and also after aging. In addition, aging 

causes a significant reduction in the fracture energy. 

 
Fig. 1.4 Ageing embrittlement of high Cr-ODS steels with respect to Cr content [Kimura, 2009]. 
 
Moreover, ferrititc ODS steels have a strong strength anisotropy due to the extremely 

elongated “bamboo” structure grains (Fig. 1.5(a)) in the matrix. These grains, created during 

the manufacturing step (hot extrusion), are parallel to the rolling direction and lead to the 

strength degradation in other direction.  A possible approach to overcome this hurdle is to 

apply the recrystallization processing [Ukai, 1997; Ukai, 2002] for ferritic ODS steels. Fig. 

1.5(c) represents the TEM micrograph showing recrystallized grains: recrystallization 

heat-treatment was applied to break the “bamboo” structure elongated grains and to produce 

more equi-axed grains. The anisotropy of strength is thus reduced. Up to now, this issue is 

still being studied since the recrystallization processing is very difficult to achieve. 

 
Fig. 1.5 TEM micrographs of thin foils: (a) in cold-rolled cladding; (b) tempered martensitic structure of 
9Cr-ODS; (c) recrystallized structure of 12Cr-ODS [Ukai, 2002]. 
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From that point of view, martensitic ODS steels are more attractive since the structure would 

be composed of more equi-axed grains (see Fig. 1.5(b)) due to the reversible α-γ phase 

transformation in the hot-extrusion and the subsequent heat treatment [Ohtsuka, 2004]. 

Hence, the choice of Cr content is a compromise among the corrosion resistance, ductility 

property and strength isotropy. 

2.3.2 Effect of alloying elements  
A series of alloying elements are available to be introduced into ODS steels. Each of them has 

proper function. The general rule is to avoid formation of long life radioactive nuclides. So 

normally, low activation elements are preferably used. That is why Mo (high activation) is 

replaced by W (low activation) in some of ODS steels. In addition, W is a more effective 

solid solution strengthener than Mo. As a familiar element in steels, C with a relative low or 

high content is added into some ODS steels. The reason is to ensure ODS materials as 100% 

martensitic or 100% ferritic steels. Other minor elements in ODS steels are restricted strictly 

at low amounts. 

2.3.3 Effect of yttria  

Ukai et al. [Ukai, 1993] have investigated the effects of Y2O3 contents (up to 0,56 wt%) on 

tensile properties and creep rupture strength of ODS steels. As shown Fig. 1.6(a), the tensile 

strength along the extruded direction increases consistently with an increase in Y2O3 content, 

whereas the total elongation decreases. From Fig. 1.6(b), the creep rupture strength (resistance 

of creep) at 973 K is saturated at about 0,4 wt% content.  

 
 Fig. 1.6 Effect of addition of Y2O3 in 13Cr-3W-0,5Ti on tensile properties (a) and creep rupture strength 
(b) at 923 K (5 specimens) [Ukai, 1993]. 
 
In addition, Ukai et al. [Ukai, 1997] demonstrated the degree of recrystallization depends on 

the content of Y2O3. The content should be restricted below the appropriate amount (0,25 

wt%) for attaining the recrystallized structure in ODS steels. 
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Ohtsuka et al. [Ohtsuka, 2004] reported that 9Cr-ODS martensitic steels with Y2O3 shows a 

peculiar transformation behavior comparing with base steels without Y2O3. The presence of 

particles suppresses partially the reverse transformation from α to γ phase during hot 

extrusion, thereby forming not only equi-axed martensitic grains but also elongated residual-α 

phase grains. This phenomenon was also observed by Yamamoto et al. [Yamamoto, 2010] via 

dilametric measurement. It suggested that the possible mechanism of formation process of 

residual-α phase grains is a competition between the driving force (ΔG) and pinning force (F), 

where the driving force is evaluated in terms of Gibbs energy versus carbon content at each 

temperature, and the pinning force is due to the presence of oxide particles respectively. 

Residual-α phase grains contain ultra-fine oxide particles and close oxide particles 

distribution, which are responsible for apparent improvement of creep resistance at high 

temperature. The content of Y2O3 added in ODS steels, is thus a compromise between 

mechanical properties and creep resistance. 

2.3.4 Effect of titanium  
The effects of addition of elements such as Ti, Nb, V, Zr in ferritic ODS steels were 

investigated and are shown in Fig. 1.7(a). An addition of small amounts of Ti or Zr 

sufficiently reduces the size of oxide particles. But the effectiveness of Zr is weaker than that 

of Ti. Ukai et al. [Ukai, 1993] compared the efficiency of the addition of Ti and TiO2. He 

suggested that the formation of ultra-fine oxide particles is better achieved by the addition of 

Ti than by TiO2.  With adding Ti up to 0,55 wt%, the resistance of creep is also increased in 

ferritic ODS steels as shown in Fig. 1.7(b).  

 
Fig. 1.7: (a) Size distribution of oxide particles determined by TEM in 12Cr-ODS steels in various 
elements addition [S. Ukai, JNM, 2002]; (b) Effect of addition of Ti in 13Cr-3W-0,5Y2O3 ODS steels on 
creep rupture strength at 923K (5 specimens) [Ukai, 1993]. 
 
Further study of Ukai [Ukai, JNST, 2002] confirmed Ti plays an important role in reducing 

the oxide particle size and improving creep resistance. Based on TEM micrographs and EDX 

analyses, he revealed that Y2O3 particles are chemically changed to Y2Ti2O7 (Y2O3-2TiO2) or 
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Y2TiO5 (Y2O3-TiO2). The reduction of the average particle radius and the average inter-

distance between particles happen at the same time. The improvement of creep resistance is 

attributed to the drastic reduction of oxide particles size.  

Different works confirmed this result. Ramar et al. [Ramar, 2009] investigated the 

microstructure of ODS Eurofer 97 (with or without Ti) by TEM. After comparing the 

distribution of particles, he concluded that the addition of Ti results in the reduction of size of 

particles (about 20 nm and 7 nm, respectively without and with Ti). Klimiankou et al. [M. 

Klimiankou, 2004] characterized particles in ODS (Ti-containing) steels by HRTEM (High 

Resolution TEM) and EFTEM (Energy Filter TEM). The analysis of HRTEM picture 

combined with EFTEM results show definitely that there is not any formation of pure Y-O 

particles, and formed oxide particles have Y2Ti2O7 composition. Miller et al. [Miller, 2003], 

using APT, compared the distribution of oxide particles in as-processed 12YW and 12YWT 

(Ti-containing) ODS steels (see Fig. 1.8). The results indicated that the size of particles in 12 

YWT is slightly smaller than the one in 12YW (2 nm instead of 2,4 nm), but the number 

density of particles in 12YWT is higher than the one in 12YW (1,4 × 1024 m-3 instead of 3,9 × 

1023 m-3). It proves the effect of the addition of Ti in ODS steels. 

 
Fig. 1.8 Atom maps of the 12YW (without Ti) and 12YWT (with Ti) ODS steels showing the presence of 
fine Y+Ti+O-enriched particles. The number density of particles is higher in the 12YWT [Miller, 2003]. 
 
In addition, several analyses were carried out on powders of ODS steels after different milling 

conditions and heat treatment by Ratti et al. [Ratti, 2009] via SANS (small angle neutron 

scattering). This study shows Ti is available to refine the precipitation in ODS steels, and the 

nano-phases formed in ODS steels, which contain the element of Ti, are much more resistant 

to coarsening than the phases without Ti.  

The generation of elongated residual-α phase grains is enhanced due to the solute carbon 

shortage through increasing Ti contents and forming TiC precipitates [Ohtsuka, 2004]. If Ti is 

added to excess, however, it creates too much strength, which negatively impacts cold rolling 
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and cold workability. To achieve a balance between stength and workability, a compromised 

value of Ti should be selected.  

2.3.5 Effect of excess oxygen  
Excess oxygen is defined as subtracting oxygen contents in Y2O3 from total O contents in 

steel. Since it is easy to be mixed in steels during the manufacturing process, the 

contamination of excess oxygen should be studied. In 1993, Ukai et al. [Ukai, JNM, 1993] 

examined the effect of the excess oxygen content varying from 0,05 to 0,15 wt% in 13Cr-

0,5Ti-0,5Y2O3 steels. They concluded that ultra-fine (Y, Ti, O) oxide particles could not be 

formed without any excess oxygen. And the creep rupture strength of these steels increases 

with excess oxygen content and saturates at around 0,08 wt%. Their latter study [Ukai, ISIJ, 

2002] shown that the degradation of creep strength exists if excess oxygen content is too 

small.  

 
Fig. 1.9: (a) mechanical properties versus atomic ratio of Ex.O/Ti, x in TiOx; (b) EDX analysis result of 
oxide particles in transformed alpha-grain by extracted replica [Ohtsuka, 2004]. 
 
Ohtsuka et al. [Ohtsuka, 2004] studied the effect of excess oxygen content combining with 

the content of Ti. The excess oxygen and Ti contents were varied form 0,026 to 0,17 and from 

0,18 to 0,46 wt% respectively in the study. They revealed that when the atomic ratio between 

excess oxygen and Ti (x in TiOx) is around 1,0, the formation of elongated residual-α phase 

grains, which possess ultra-fine and close oxide particles distribution, are promoted. The 

number density of oxide particles in equi-axed grains would be maximum at the same time. 

Therefore, superior mechanical properties as shown in Fig. 1.9(a) are achieved, when x in 

TiOx is around 1,0. Higher excess oxygen-containing steels than 0,07 wt% have the Y/Ti ratio 
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close to 1,0 (see Fig. 1.9(b)) in oxide particles. It is inferred that oxide particles may be 

similar to Y2Ti2O7. The subsequent study [Ohtsuka, 2006] demonstrated that excess oxygen 

plays relatively a more important role than Ti for making fine and dense oxides particles as 

well as improving mechanical properties. 

In summary, the choice of chemical components of ODS steels results from a compromise 

among different properties (such as corrosion resistance, creep strength, ductility and 

workability). It is the reason why the chemical compositions of ODS steels vary from one to 

the other one. It should be noticed that the properties of ODS steels depend on also fabrication 

processes and conditions.  

 

3. The manufacture of ODS steels 

The first elaboration of ODS materials (nickel-base superalloy) was achieved by Benjamin in 

1970 [Benjamin, 1970] via mechanical alloying. This method, still being used to obtain a fine 

distribution of nano-oxide particles in the matrix until today, proves its absolute adaptability 

for the manufacture of ODS steels. The manufacture of ODS steels consist of a series of 

processes: mechanical alloying (MA), consolidation and additional heat treatment (Fig. 1.10).  

  
Fig. 1.10 Basic scheme of ODS production: mechanical alloying and subsequent heat treatment [Ukai, 
2000]. 
 

During MA, the element powders and yttria powder are mechanically alloyed in an argon gas 

atmosphere using either a planetary ball mill or an attrition type ball mill. The mechanically 

alloyed powders are sealed in hollow-shaped cabs and degassed in several hours. Then, the 

hollow shape of the bars is consolidated by powder metallurgical processes, such as Hot 

Isostatic Pressing (HIP) or Hot Extrusion (HE). In order to match the final dimension of fuel 

cladding, different recrystallization and cold/warm heat treatments are applied to produce 

final shape such as tube [Odette, 2008; Ukai, 2000]. 
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3.1. Conditions of synthesis 

The nature of nano-oxide structures highly depends on conditions of synthesis. For MA, the 

conditions of synthesis include: atmosphere, temperature, time of MA, the weight ratio of ball 

to powder and type of milling equipments, etc [Surgyanarayana, 2001]. For the consolidation, 

the key parameter is temperature. Although numerous of ODS steels were successfully 

synthesized by either planetary ball milling [Hsiung, 2011; Williams, 2010; Couvrat, 2011] or 

attrition type ball milling [Couvrat, 2011; Unifantowicz, 2011], the conditions of synthesis are 

still far away from being fully understood. 

Klimenkov et al. [Klimenkov, 2009] studied two lots of ODS steels named as UE and FZK, 

which are produced by the same processes. The presence of complex oxide particles was 

observed in the UE, whereas this was not the case in the FZK. In addition, Hoelzer et al. 

[Hoelzer, 2007] synthesized the 14 YWT ODS steels, of which the measured DBTT 

temperature is 81 °C. This value has a huge difference with the value obtained by McClintock 

et al. [McClintock, 2009], which is -188 °C for 14 YWT ODS steels. Therefore, 

understanding of mechanisms controlling the processes of synthesis becomes a major object 

for studies of ODS steels. 

 

3.2. Mechanisms of synthesis of nano-oxide particles 
The mechanism of synthesis of nano-oxide particles was widely proposed as the dissolution 

of Y2O3 during ball milling followed by precipitation of oxide during annealing [Miller, 

2006; Alinger, 2004]. This mechanism was supported by the study of Okuda et al. [Okuda, 

1995] who synthesized and characterized an ODS steel containing high content of Ti and 

Y2O3. The characterization after MA by XRD and TEM confirmed no any oxide existed. 

Small Angle X-Ray Scattering (SAXS) revealed that most of objects after MA are 

nanoclusters smaller than 1 nm. On the contrary, nano-oxide particles precipitated in the ODS 

steel after the thermal annealing at 1000 °C. Studies by Larson et al. [Larson, 2001] and 

Miller et al. [Miller, 2006] are also in the same direction. It should be reminded that APT 

investigations in their studies are performed only in the final state of the manufacture of ODS 

steels. Therefore, APT investigations were not achieved in the state just after MA.  

 

However, Laurent-Brocq et al. [Laurent-Brocq, 2012] proposed a different mechanism based 

on the study in a Fe-Y2O3 model ODS alloy processed by reactive ball milling and annealing. 

According to their study, reactants are dissolved into the iron matrix until an oversaturated 

solid solution is formed, and the nucleation of nanoclusters can thus begin during MA. 
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Subsequent thermal annealing at 800 °C induces a great enhancement of NC nucleation which 

stops after few minutes without any coarsening occurring. The unexpected nucleation 

occurring at MA stage is owned to numerous vacancies created by MA. The relation between 

vacancies and nano-oxide particles in ODS steels will be talked later.  

 

3.3. Synthesis of ODS steels: alternative processes 

Several alternative processes replacing MA in the synthesis of ODS steels were reported: 

Laurent-Brocq et al. [Laurent-Brocq, 2010] adopted YFe3 and Fe2O3 as reactants, and applied 

them to the reactive ball milling since this method usually promotes the formation of 

nanoclusters [Legendre, 2007]. It was shown that reactive ball milling and thermal annealing 

were efficient in synthesizing a ODS steel.  Liu et al. [Liu, 2010] melted firstly some alloying 

elements (Fe, Cr, W, Fe-Ti and Fe-Y) to form a base alloy. Oxygen was then introduced by 

importing an atmosphere of Argon and Oxygen. The objective is forming a homogeneous 

Y-Ti-O dispersion in matrix only by heat treatments without MA. Both large (100 nm) Ti-rich 

and fine (10-20 nm) Y-Ti-rich oxides were observed after a thermal annealing at 1300 °C. 

Schneibel et al. [Schneibel, 2008] proposed an internal oxidation of intermetallics (Fe17Y2 or 

Fe11YTi) at 700 °C. Y-Fe-rich and Y-Ti-rich oxide particles (20-40 nm) were observed. 

Further thermal annealing at 1100 °C induced the coarsening of particles until to 200 nm. 

Finally, Sakuma et al. [Sakuma, 2004] replaced MA by a co-implantation of Y+ and O+ ions. 

The co-implantation into the ferritic steel induced an oversaturated solid solution of implanted 

ions. Then, subsequent thermal annealing induced Y-rich oxide precipitation and a 

homogeneous distribution of precipitates. The disadvantage about the cost cannot cover the 

importance of this method since it offers an experimental approach to better understand the 

mechanism of synthesis of ODS steels.    

 

4. Characterization of dispersed oxide particles 

4.1. The different families of identified nano-oxide particles 

Microstructure of ODS steel has been characterized mainly by TEM and APT. According to 

these characterizations, the smallest size of particles is about 1-2 nm, whereas the biggest size 

can reach 50 nm. Moreover, the chemical compositions are not uniform. In fact, the nature of 

oxide particles strongly depends on conditions of fabrication and components of alloys.   
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Fig. 1.11(a) shows a BF TEM image of extraction replica obtained from MA957 ODS steels 

[Sakasegawa, 2009]. Further analysis of XRD and EDX indicated that there are at least three 

types of phases (Fig. 1.11(b)): (1) non-stoichiometric Y-, Ti-, O-enriched clusters with a size 

of 2-10 nm; (2) stoichiometric Y2Ti2O7 that have a larger particle size of 10-35 nm; and (3) 

aggregated oxides (> 100 nm) such as Ti-enriched oxides and Al-enriched oxides. 

 

 
Fig. 1.11 Analysis of particles identified in the ODS MA957: (a) TEM image of extraction replica; (b) size 
distribution of oxides; (c) correlation between chemical composition and size of oxide particles 
[Sakasegawa, 2009]. 
  
The presence of TiO2 at grain boundaries in ODS steels was reported by Kasada et al. 

[Kasada, 2011]. The study shows the evidence that not all Ti atoms associate with Y atoms in 

order to form Y-, Ti-, O-enriched clusters. Complex carbide M23C6 were also observed in 

ODS steels with 9 at.% [Ramar, 2009], 14 at.% [Olier, 2012] and 19 at.% [Kasada, 2007] Cr. 

Precipitates of carbide M23C6 exist principally at grain boundaries of these ODS steels. The 

presence of carbon is believed to be the reason for the formation of these carbides. And 

carbon seems to come from the contamination during MA. Klimiankou et al. [Klimiankou, 

2007] demonstrated that the presence of carbide M23C6 can be eliminated if an adequate heat 

treatment is applied to ODS steels.  

The formation of aggregated Ti-enriched oxides and complex carbide M23C6 suppress the 

nucleation of nano-size Y-, Ti-, O-enriched particles and lead to the segregation of minor 

elements. They are thus considered as non-desirable nano-particles in ODS steels. So 

subsequent introduction will only focus on the nature of stoichiometric Y-, Ti-, O-enriched 

particles and non-stoichiometric Y-, Ti-, O-enriched clusters. 
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4.2. The nature of Y-, Ti-enriched nano-oxides 

4.2.1 Stoichiometric Y-, Ti-, O-enriched particles 
For stoichiometric Y-, Ti-, O-enriched particles, chemical compositions of particles were also 

investigated intensively by several different methods. According these studies, stoichiometric 

Y-, Ti-, O-enriched particles have not only Y2Ti2O7 as reported by Sakasegawa et al. 

[Sakasegawa, 2009], but also Y2TiO5 or even Y2O3 in both Ti-added ODS steels and ODS 

steels without Ti addition. The XRD analysis of extracted replica dissolved from the matrix of 

Ti-added ODS steels revealed the diffraction peaks corresponding to two crystallographic 

structures: Y2Ti2O7 and Y2TiO5 [Ukai, 1993; Okuda, 1995]. With applying EDX analysis to 

large size Y-, Ti-, O-enriched particles, Ohtsuka et al. [Ohtsuka, 2004] found two different 

ratios of Y/Ti, and thus distinguished to Y2Ti2O7 (Y/Ti = 1) and Y2TiO5 (Y/Ti = 2). The 

investigations of Small Angle X-ray Scattering (SAXS) combined with Small Angle Neutron 

Scattering (SANS) allowed Ohnuma et al. [Ohnuma, 2009] to identify the presence of 

Y2Ti2O7 particles in 9Cr-ODS steels. Alinger et al. [Alinger, 2009] confirmed the presence of 

Y2Ti2O7 particles in MA957 and 12YWT ODS steels with using the same technique. In 

addition, Alinger et al. also observed the presence of Y2TiO5.  

  
Fig. 1.12 Conventional bright field (a) and EFTEM images (b)–(e) of Y2Ti2O7 ODS particles in reduced-
activation ferritic–martensitic steel. The bright field image was taken slightly defocused in order to 
enhance the particle contrast. The EFTEM mapping images were acquired using Fe L2,3, Y M5,6, Ti L2,3, 
and O K EELS edges [Klimiankou, 2004]. 
 
Energy-Filtred TEM (EFTEM) and High-Resolution TEM (HRTEM) are also adequate 

techniques which allow us to identify chemical compositions of nano-particles, and determine 

their crystallographic structures.  

Klimiankou et al. [Klimiankou, 2004] investigated RAFM-ODS alloys by EFTEM and 

HRTEM. EFTEM mapping images acquired using Fe L2,3, Y M5,6, Ti L2,3, and O K edges are 

shown  in Fig. 1.12(b-e). The dark spots on the Fe L2,3 image (Fig. 1.12(b)) show the local Fe 

deficiency, whereas the bright spots on the Y M5,6, Ti L2,3, and O K images (Fig. 1.12(c-e)) 
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show the local Y, Ti, O enrichment. Moreover, bright spots are consistent with the contrasts 

shown in the BF image (Fig. 1.12(a)) and the dark spots shown in the Fe L2,3 image 

(Fig. 1.12(b)). This suggests that nano-particles have the Y-Ti-O compositions. 

Fig. 1.13(a) shows a HRTEM micrograph from an ODS particle in which two atomic planes 

are visible simultaneously. A combination of the interplanar distance and the angle between 

the systems of planes is given in Fig. 1.13(b) for the (0 0 4) and (2 -2 2) atomic planes of 

Y2Ti2O7 cubic phases with the [1 1 0] zone axis. Actually, the measured data are equal to the 

following data calculated from the Y2Ti2O7 structure. The analysis of HRTEM picture 

combined with above EFTEM results show definitely that ODS particles have Y2Ti2O7 

composition. 

 

 
Fig. 1.13 HRTEM micrograph of a Y2Ti2O7 particle (a) and FFT image of this micrograph (b). The 
diffraction spots from Y2Ti2O7 particle of {2 2 2} and {0 0 4} types are marked with circles [Klimiankou, 
2004]. 
  

 
Fig. 1.14 (a) HRTEM micrograph of a semi-coherent orthorhombic Y2TiO5 oxide and the surrounding 
matrix, (b) FFT diagram of the micrograph in (a), (c) FFT filtered image of the lattice image in (a), and 
(d) diffraction spots used to reconstruct the IFFT image (c) [Dou, 2014]. 
 
Dou et al. [Dou, 2014] characterized the nano-particles in an Al-alloyed high-Cr ODS alloy 

with Zr addition by HRTEM. Semi-coherent orthorhombic Y2TiO5 oxides were observed. 
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Fig. 1.14 shows the HRTEM image of an Y2TiO5 oxide (about 7.4 nm) and the surrounding 

matrix lattice. The measured interplanar distances and angles are consistent with the reference 

values. However, some authors [Bhattacharryya, 2012; Cayron, 2010] reported the 

observation of structures of nano-particles, which are quite similar to Y2TiO5 or Y2Ti2O7, but 

correspond not to any known Y-, Ti-enriched oxides. 

Klimiankou et al. [Klimiankou, 2003] observed the correlation of orientation between 

nano-particles of Y2O3 and the matrix lattice in the ODS Eurofer alloy without Ti addition. 

Ramar et al. [Ramar, 2009] confirmed that it exists the orientation relation between 

nano-particles of Y2O3 and the matrix in the ODS Eurofer alloy without Ti addition. But the 

relation is not fully coherent but semicoherent. On the contrary, Yamashita et al. [Yamashita, 

2004] suggested that there is no any particular coherence between nano-particles of Y2O3 and 

the matrix in the 12Cr ODS steel. 

Ribis et al. [Ribis, 2012] studied the interfacial strained structure and orientation relationships 

of the nano-particles in a Fe-14Cr-W-Ti after a thermal annealing at 1573 K and 1h. The 

thermal annealing induced the coarsening of nano-particles. Most of the coarsened phases 

found are Y2Ti2O7 particles, which have a cubical shape and embedded with a cube-on-cube 

orientation relationship with the matrix. The lattice misfit calculated is about 12.6% which 

suggests that particles are semicoherent. The interfacial structure revealed by using Moiré 

fringes concluded that 8

€ 

d 110{ }Fe equals to 9

€ 

d 440{ }Y2Ti2O7, there is thus common planes 

existing. And every 8

€ 

d 110{ }Fe a misfit dislocation is potentially introduced to relax the 

interfacial strain. 

It was reported that the recrystallization [Yazawa, 2004] and phase transformation 

[Yamamoto, 2011] induce the loss of interface coherence between nano-particles and the 

matrix in ODS steels. It means the interface coherence is susceptible to processes of the 

fabrication of ODS steels. 

4.2.2 Non-stoichiometric Y-, Ti-, O-enriched clusters 
The APT method is ideal to investigate the compositions of non-stoichiometric Y-, Ti-, O-

enriched clusters since their size is quite small (< 5 nm) for conventional TEM investigations. 

Several results of APT investigations are summarized in the Table 1.2. 
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Table 1.2: Nano-oxides (2-5 nm) compositions (at.%) and standard deviation of different ODS steels 
reported in the literature. 

 
The compositions reported in each study are highly sensitive to ODS steels chemistry, 

processing conditions, and choice of APT parameters. For same 14 YWT ODS, Miller et al. 

[Miller, 2006] reported T-, Ti-, O-enriched nanoclusters contain 5.5 at.% Fe and 1.2 Cr at.%. 

The ratio of Y/Ti and (Y+Ti)/O are 0.18 and 1.1, respectively. However, He et al. [He, 2014] 

reported the nnaoclusters contain huge amount of Fe (57.7 at.%) and Cr (19.5 at.%). In 

addition, the ratio of Y/Ti is 0.43, which is almost three times more than the value obtained by 

Miller et al. Even for the same 12 YWT ODS and the same research group, the compositions 

of nanoclusters reported in 2003 by Miller et al. [Miller, 2003] are not the same with the one 

reported in 2005 [Miller, 2005].  

The presence of elements belonging to matrix, such as Fe was suggested to be an artifact due 

to the lower evaporation field of oxygen-rich phases [Marquis, 2008]. The difference of 

evaporation field could induce local magnification effects and leads to aberrations at 

reconstructed interface over distances. Williams et al. [Williams, 2010] suggested an 

approach to reduce the contribution of this artifact, with the use of simple corrections to the 

APT data during the analysis. With applying this approach to the existing data, Miller et al. 

[Miller, 2011] reported the corrected compositions of nanoclusters in MA957 ODS, which are 

only contain the values of Y, Ti and O.  

Because the non-stoichiometric nanoclusters are very small (2-5 nm), embedded in the Fe 

matrix, and may have a coherent relation with the matrix, it is thus extremely difficult to 

obtain the structural information by conventional TEM, which is limited by a low spatial 

resolution and the lack of capability for atomic-scale chemical analysis. Thanks to the 

evolution of TEM instruments and techniques, the characterization of crystallographic 

structure for non-stoichiometric nanoclusters is feasible.  

ODS steels Fe Cr W Y Ti O Y/Ti (Y+Ti)/O 
MA957 

[Miller, 2004] 10.1 ± 4.1 1.7 ± 1.7 - 15.4 ± 7.3 32.9 ± 5.3 39.9 ± 6.9 0.5 1.2 

Ma957 
[Miller, 2011] - - - 9.1 ± 0.6 49.5 ± 1.4 37.5 ± 1.2 0.18 1.4 

14YWT 
[Miller, 2006] 

5.5 ± 4.6 1.2 ± 1.1 - 7.5 ± 4.3 42.2 ± 5.6 43.5 ± 5.3 0.18 1.1 

14YWT 
[He, 2014] 

57.7 ± 8.5	   19.5 ± 1.8	   0.53 3.7 ± 1.8 8.6 ± 4.3 9.8 ± 4.2 0.43 1.25 

12YWT 
[Miller, 2003] 

- 7.0 ± 4.3 0.21 9.22 ± 7.8 19.9 ± 8.7 23.6 ± 10.6 0.46 1.27 

12YWT 
[Miller, 2005] 

4.1 ± 4.1 0.8 ± 0.8 0.13 8.1 ± 5.2 42 ± 5.6 44.4 ± 8.2 0.19 1.13 

Fe18Cr-Y2O3 
[Ribis, 2014] 

63.6 ± 4.3 24.4 ± 3.1 0.43 2.8 ± 0.3 5.1 ± 1.3 1.6 ± 0.8 0.6 4.9 
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Bhattacharryya et al. [Bhattacharryya, 2012] confirmed that the crystallographic structure of 

non-stoichiometric nanoclusters conserve Y2Ti2O7 pyrochlore structure even if they are quite 

small than 4 nm. On the contrary, Brandes et al. [Brandes, 2012] indicated the 

crystallographic structure of non-stoichiometric nanoclusters is hard to identify since the 

structure is strongly disordered and looks to be amorphic.  

Recently, more and more TEM microscopes are equipped with double Cs-correctors. Double 

Cs-corrected TEM can attain a resolution below to 1 Å in STEM mode, which allows us to 

well understand the structure and chemical feature of the non-stoichiometric nanoclusters. 

Hirata et al. [Hirata, 2011] achieved the atomic scale characterization of the nanocusters with 

using Cs-corrected TEM. The experimental HAADF-STEM image of a nanocluster shown in 

Fig. 1.15(e) reveals the nanocluster has a NaCl structure with a lattice coherency with the 

bcc-Fe matrix. To understand the atomic structure of the nanoclusters, Hirata et al. 

constructed three possible structural models in which a Ti(Y, Fe, Cr)O nanocluster is 

embedded in the bcc-Fe matrix (Fig. 1.15(a)). 

 
Fig. 1.15 Structure modeling of the nanocluster from [110]bcc direction: (a). 3D external view of a structure 
model (Model 2) where a 3 nm (Ti, Y, Fe, Cr)O nanocluster is embedded in the bcc matrix. The 
projections of Model 1, Model 2 and Model 3 are depicted, respectively, in (b), (c) and (d), where green, 
red, blue, purple and orange circles denote Ti, Y, Fe, Cr and O atoms respectively. The corresponding 
simulated HAADF-STEM images from the three models are shown in the lower panels of (b)-(d). (e). The 
experimental HAADF-STEM image. Model 2 is the structure model which is most consistent with the 
experimental data [Hirata, 2011]. 
 
The nanocluster in ‘Model 1’ shown in Fig. 1.15(b) is an unrelaxed perfect NaCl structure 

that is coherent with the bcc matrix. The ‘Model 2’ (Fig. 1.15(c)) and ‘Model 3’ (Fig. 1.15(d)) 
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are relaxed defective NaCl structures that are coherent and incoherent with the bcc matrix, 

respectively. Both ‘Model 2’ and ‘Model 3’ are phenomenologically consistent with the 

experimental one in contrast variation of the atomic image (Fig. 1.15 (e)). However, the FFT 

analysis for ‘Model 3’ fails to explain the experimental data, provides compelling evidence 

that defective NaCl structure with a high lattice coherency with the bcc matrix (‘Model 2’) are 

the most dependable structure model of the nanoclusters. The defective NaCl structure is 

capable of accommodating a large number of vacancies, which seems to be the most 

important reasons for the unusual stability of the clusters at high temperature and in intensive 

neutron irradiation condition. 

4.3. Mechanisms of nucleation of nano-oxide particles 
Although field evaporation and reconstruction of the precipitates suffer from artefacts, a 

core/shell structure was still found for both small nanoclusters and large nano-particles in 

three ODS alloys: MA957 (Fig. 1.16(a)), ODS Fe-12 wt%Cr (Fig. 1.16(b)) and ODS 

Eurofer-97 (Fig. 1.16(c)) by APT investigations [Marquis, 2008]. The left column of Fig. 1.16 

illustrates the case of the nanoclusters with sizes less than 4 nm, while the right column of 

Fig. 1.16 illustrates the case for larger nano-particles (> 8 nm). The shell structure is visible 

all around the core. The compositions profiles corresponding to each nanoclusters and 

nano-particles reveal that cores are Y and O rich while shell regions are enriched in O, Ti, Cr 

or V depending on alloy compositions. 
 

 
Fig. 1.16 Slices though 3D reconstructions showing the evaporation structures of large oxide particles (left 
column) and small oxide nanoclusters (right column) in (a) MA957, (b) ODS Fe-12Cr alloy, and (c) ODS 
Eurofer 97 alloy. All samples were analyzed in laser pulsing mode [Marquis, 2008]. 
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Fig. 1.17 EDX elemental mapping of an area with two ODS particles: (a) HAADF image, (b)–(f) elemental 
maps obtained using Fe-Kα, Cr-Kα, Y–L, O–K, and V-Kα EDX lines, respectively [Klimenkov, 2009]. 
 
The core/shell structure was also identified by TEM. Klimenkov et al. [Klimenkov, 2009] 

observed the nano-particles in ODS Eurofer97 alloy have the core/shell structure. Two 

particles, 24 and 14 nm in diameter, show a darker contrast in the HAADF image (Fig. 

1.17(a)) as well as in Fe and Cr maps (Fig. 1.17(b)-(c)). A brighter contrast is shown in Y and 

O maps (Fig. 1.17 (d)-(e)). The V-rich shell around both particles is clearly visible in the V 

map (Fig. 1.17(f)). A slight increase of the Cr concentration around particles can be observed 

in the Cr map. These measurements reveal the formation of a thin V-Cr-O shell of 0.5-1.5 nm 

thickness around the core of particles containing Y and O. 

Both two experiments confirmed that the minor alloying elements contained in the matrix 

influence the chemical compositions of nano-particles in different types of ODS steels via 

forming a minor elements-rich shell. Therefore, Marquis et al. [Marquis, 2008] suggested a 

mechanism to explain the existence of the core/shell structure: the Y2O3 oxide, as the most 

stable of the Cr, V, Ti, Y oxides with the highest free energy of formation, may have a high 

nucleation barrier. The presence of a shell, however, would decrease the interfacial energy, 

favoring the nucleation of the oxide particles. Note that a similar mechanism was described 

for the formation of Cu-Mn-Ni rich precipitates in RPV steels [Liu, 1997]. D. Murali et al. 

[Murali, 2010] did atomistic simulations based on density functional theory (DFT). They 

found that both Y and Ti atoms show strong affinity towards oxygen in bcc Fe. In fact, 

binding energies increase when Ti or Y is added to the O-v cluster. In contrast, the negative 

binding energies of Cr with Y and Ti suggest that they interact repulsively in bcc Fe. The 

repulsive interaction of Cr with Y and Ti would suggest depletion of Cr in the core of the 

nanoclusters. In addition, it has been identified that the Cr atoms have a negligible interaction 
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with vacancy, O-V, Y-V-O and repulsive interaction with the Y-V-O-Ti clusters that suggest 

that the energetics of cluster formation least favors the presence of Cr atom in the core of the 

nanoclusters. Therefore, a core/shell structure is expected for the nanoclusters in ODS steels. 

 
Fu et al. [Fu, 2007] suggested yet a different mechanism obtained from first-principles 

studies: oxygen shows an exceptionally high affinity for vacancies. If vacancies preexist, the 

O-vacancy pair formation energy essentially vanishes. This O-vacancy mechanism enables 

the unusual high O solubility and the nucleation of O-enriched nanoclusters, which attract 

solutes with high O affinities (Ti and Y) in order to form Y, Ti-enriched nano-particles in 

ODS steels. Xu et al. [Xu, 2009] confirmed the suggestion of Fu et al. by an experimental 

approach: Poistron-lifetime spectroscopy. Xu et al. found vacancy clusters containing four to 

six vacancies coexisted with nanoclusters (2-4 nm in diameter) containing Ti, Y and O exist 

in a mechanically alloyed ferritic steel. In contrast, no vacancy clusters were detected in 

similar alloys containing no nanoclusters. They thus indicated that vacancies are a vital 

component of the nanoclusters in these alloys.  

As already mentioned, a great number of vacancies can be created by MA during the first 

stage of the synthesis of ODS steels. So the mechanism suggested by Fu et al. seems to be 

reasonable, and some authors [Laurent-Brocq, 2010; Laurent-Brocq, 2012; Hirata, 2011] 

adopted this mechanism to explain the nucleation of small nanoclusters and large nano-

particles observed in their study. 

5. Ion irradiation-induced defects: formation, diffusion and effects  

5.1. Principle of ion irradiation  
In this paragraph, we review effects of ion irradiation. As ion implantation is one of 

irradiation cases, we will take this case as an example to show general effects of irradiation. 

Ion implantation is a process by which ions of a material are accelerated in an electrical field 

and impacted into a solid. The interaction between ions and the solid are divided into two 

different parts:  

(1). the interaction between ions and atoms of solid (nuclear stopping power: 

€ 

(dE
dx
)n  );  

(2). the interaction between ions and electrons of solid (electron stopping power: 

€ 

(dE
dx
)e  ). 

The first interaction is considered as an elastic collision between ions and atoms of the solid, 

whereas the second one is considered as an inelastic collision between bound electrons in the 

solid and the ions moving through it. The inelastic collision may result both in excitations of 
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bound electrons of the solid, and in excitations of the electron cloud of the ion as well. The 

total stopping power is therefore the sum of two terms:  

€ 

dE
dx

= (dE
dx
)n + (dE

dx
)e  

 

Fig. 1.18 shows the evolution of nuclear stopping power as a function of incident energy of 

ions. If the incident energy of ions is low enough, the nuclear stopping power is dominant. 

This is the case for heavy ions with low energy. If the incident energy of ions is high enough, 

the electron stopping power becomes the dominant term. And this case is true for light ions 

with high energy.  

 
Fig. 1.18 Evolution of nuclear and electron stopping power as a function of incident energy of ions 

 

Coming back to the interaction between ions and the solid, Kinchin et al. [Kinchin, 1955] has 

summarized all possible relation conditions among incident energy of ions 

€ 

E0 and the 

threshold energy 

€ 

Ed , which is the minimum energy to displace an atom from its lattice site, 

leaving behind a vacant site or vacancy.  

• If 

€ 

E0 < Ed , the implanted ion can’t displace any atoms of the solid. It loses its kinetic 

energy by the vibration of matrix of the solid. Finally, it is stopped inside matrix and 

becomes an interstitial. 

• If 

€ 

Ed < E0 < 2Ed , the knocked atom leaves its lattice site, leaving behind a vacant site 

or a vacancy. The knocked atom becomes an interstitial or is recombined with a vacancy 

created by other atoms. 

• If 

€ 

2Ed < E0 , the kinetic energy transferred to the atom is sufficient, it travels through 

the crystal, colliding with its neighbors and displacing them from their sites. In return, they 

may repeat such events, leading to a collision cascade. 

• If 

€ 

2Ed << E0, the electron stopping power is dominant, so the loss of energy is 

achieved by inelastic collision. Therefore, there is no atomic displacement. 
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For collision cascade, every displaced atom leaves behind a vacancy, and every displaced 

atom will eventually be wedged into the interstices of the lattice. Frenkel pairs are thus 

formed since the number of interstitials is equal to the number of vacancies. Both vacancies 

and interstitials are belonging to irradiation-induced point defects, and they will be reviewed 

in the next paragraph. 

5.2. Properties of irradiation-induced defects 
Irradiation-induced defects existing in the crystalline lattice are various. They can be listed by 

the order of dimension: 

⇒ Point defects (0D): vacancies and interstitials 

⇒ Liner defects (1D): dislocation 

⇒ Planar defects (2D): dislocation loops 

⇒ Volume defects (3D): voids, bubbles, stacking fault 

Point defects (vacancies and interstitials) are essential for both physical and mechanical 

effects of irradiation in materials. Here, we only describe point defects in details. 

5.2.1 Interstitials and interstitial-impurity complexes 
An interstitial is an atom that is located in a position of a crystal that is not a regular lattice 

site. Typically, there are two possible interstitial sites in cubic crystal lattices: octahedral sites 

and tetrahedral sites. Considering the material studied in our case, a bcc FeCr alloy, we only 

briefly review interstitial in this case. 

 

 
Fig. 1.19 In the bcc unit cell: (a) octahedral sites for interstitials; (b) tetrahedral sites for interstitials; (c) 
dumbbell configuration of self-interstitial atoms (SIAs) [Was, 2007]. 
 
The bcc lattice is cubic with unit cell of length a (lattice constant) and with atoms located at 

the corners of the unit cell and the center of the cell. Each corner atom is shared by eight unit 

cells and the center atom is occupied only by one unit cell, so the total number of atoms per 

unit cell is two atoms per unit cell. 

Octahedral sites are interstitial positions that are surrounded by an octahedron where the 

lattice atoms make up the six vertices of an octahedron. In the bcc lattice, octahedral 
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interstitial sites are located on the faces and the edge of the unit cell giving 6 faces × ½ site 

per face + 12 edges × ¼ sites per edge = 6 sites per unit cell (Fig. 1.19(a)) [Was, 2007].   

Tetrahedral sites are interstitial positions in which the atom is located inside a tetrahedron 

formed by lattice atoms. Tetrahedral interstitial sites in the bcc lattice are located on the faces 

and in the corners of the faces. There are 6 faces × 4 locations per face × 1/1 sites per face = 

12 tetrahedral sites (Fig. 1.19(b)) [Was, 2007]. 

In fact, the stable configuration of self-interstitial atoms (SIAs) in metals is the dumbbell 

configuration where two atoms are associated with a single lattice site (Fig. 1.19(c)). The 

repulsion among the atom cores induces the atoms arrange themselves in the energy 

orientation, of which the <1 1 0> direction is the lowest for bcc metals.  

 

Impurity atoms in metals play a crucial role in the trapping for SIAs, and their trapping 

efficiency depends on the size of atoms (oversized or undersized). Undersized atoms and 

interstitials constitute stable interstitial-impurity complexes whose configuration is the mixed 

dumbbell where one of the dumbbell atoms is replaced by the impurity atom. The impurity 

can jump between the indicated positions of the central octahedron, forming a new mixed 

dumbbell with the adjacent host atom. The dumbbell interstitial mechanism for the diffusion 

will be introduced in the next chapter. 

5.2.2 Vacancies and solute/impurity-vacancies clusters 
The vacancy is the simplest point defect in metal lattices. The single vacancy structure is a 

missing lattice atom with the nearest neighbors relaxing toward the vacancy. Comparing to 

SIAs, vacancies have lower formation energies but higher migration energy. Therefore, they 

are much less mobile than SIAs [Ullmaier, 1980]. Even though multiple vacancies have small 

binding energies compared to interstitial clusters but are often observed in irradiated metals. 

Vacancies can bind to solute and impurity atoms in order to form solute/impurity-vacancies 

clusters. These solutes or impurities can act as efficient traps for vacancies in the lattice. 

Amara et al. [Amara, 2010] studied the interaction between Al atoms and vacancies (V) in α-

iron by the first-principle calculations. His study indicates that the formation of small VnAlm 

complexes (n, m = 0-4) is energetically favorable. Their stability is mainly driven by strong 

Al-V attractions whereas Al-Al interactions are repulsive. Fu et al. [Fu, 2007] reported the 

results of first-principle studies about the interaction between O atoms and vacancies in iron. 

Oxygen atoms confined as an interstitial, shows an exceptionally high affinity for vacancies. 

If vacancies preexist, the O-vacancy pair formation energy essentially vanishes. A two-steps 

O-vacancy mechanism is then given to explain the formation of Y-Ti-O enriched nanoclusters 
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in the ODS steels: firstly, the nucleation of O-enriched nanoclusters; secondly, O-enriched 

clusters attract other solutes with high O affinities (Ti and Y).  A similar result was also 

reported by Barouh et al. [Barouh, 2014], which shows the formation of small VnOm 

complexes is energetically favorable until to the 8th nm configuration. In addition, their study 

shows vacancies can weakly attract Cr atoms in iron. However, another study [Chen, 2010] 

reported that vacancies are transparent to Cr atoms. 

5.3. Diffusion of point defects 
Macroscopic description of diffusion is governed by two fundamental laws developed by Fick 

in 1880. The first law is about the relationship between the flux and the concentration 

gradient. For diffusion in one dimension, this law can be simplified to:   

€ 

J = −D∇C = −D∂C
∂x

 

where  is the flux,  is the diffusion coefficient and  is the composition concentration. 

The minus sign indicates that diffusion takes place toward the direction of decreasing 

concentration of the diffusion specie. 

The second law gives a relation between the concentration gradient and the rate of change of 

concentration caused by diffusion. In one dimension and if  is not a function of the 

concentration, the equation can be simplified to: 

€ 

∂C
∂t

= −∇ • J = −D∂
2C
∂x 2

 

 
Fick’s laws provide a description of diffusion on the macroscopic scale, while sometimes we 

prefer to obtain a description of diffusion on the microscopic level. The detailed 

demonstration of diffusion equation on the microscopic level can be found elsewhere. In 

general, the diffusion coefficient has a uniform expression:  

€ 

D = D0 exp(
−Q
kT
) 

 
where 

€ 

D0  is the temperature independent term, 

€ 

Q  is the activation energy,  is the 

Boltzmann constant and  is the temperature.  
 

The activation energy is not uniform and depends on mechanisms of diffusion. There are 

several mechanisms of lattice diffusion, some requiring the presence of defects, others not. 

The classification and description of all types of mechanisms can be found here [Mrowec, 

1980]. In next part, we only review the mechanisms requiring the presence of defects. 
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Fig. 1.20 Mechanisms of diffusion in one dimension: (a) Vacancy mechanism; (b) Interstitial mechanism; 
(c) Dumbbell interstitial mechanism [Was, 2007]. 
 
Vacancy mechanism: Diffusion occurs by the jump of an atom from its lattice site to a vacant 

site (Fig. 1.20(a)). The movement of the atom requires the presence of a neighboring vacancy. 

The vacancy mechanism is regarded as either a movement of the atom or the opposite 

movement of the vacancy. For pure vacancy diffusion, the activation energy 

€ 

QV = Em
V , where

€ 

Em
V  is the energy for vacancy migration. Therefore, the pure vacancy diffusion coefficient can 

be written as: 

€ 

D = D0 exp(
−Em

V

kT
)  

Before continuing, it should be pointed out that the pure vacancy diffusion is not equal to the 

atom diffusion via a vacancy mechanism (also called as vacancy self-diffusion). In the latter 

case, the energy that a vacancy can be created should be added into the activation energy, so 

€ 

QV = E f
V + Em

V , where 

€ 

E f
V  is the vacancy formation energy and 

€ 

Em
V  is the energy for vacancy 

migration. Therefore, the vacancy self-diffusion coefficient is given as: 

€ 

D = D0 exp(
−(Em

V + E f
V )

kT
) 

 

Interstitial mechanism: This mechanism involves the movement of an atom from one 

interstitial to another (Fig. 1.20(b)). Pushing an atom through the barrier atoms needs 

considerable energy, so this mechanism occurs more possibly when the diffused atom is 

smaller than the host lattice atoms. For interstitial diffusion, the activation energy 

€ 

QV = Em
i , 

where 

€ 

Em
i  is the energy for interstitials migration. Therefore, the pure interstitial diffusion 

coefficient can be written as: 
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€ 

D = D0 exp(
−Em

i

kT
)  

For the same reason, the interstitial self-diffusion (atom diffusion via an interstitial 

mechanism) coefficient is given as:  

€ 

D = D0 exp(
−(Em

i + E f
i )

kT
)  

where 

€ 

E f
i  is the interstitial formation energy and 

€ 

Em
i  is the energy for interstitials migration. 

 

Dumbbell interstitial mechanism: The dumbbell is consisted of an interstitial and a lattice 

atom. The mechanism involves the symmetrical placement of the interstitial and the lattice 

atom. In addition, the interstitial atom and the lattice atom share the same lattice site (Fig. 

1.20(c)). The dumbbell is a very stable configuration for the interstitial, and it can move along 

the preferred directions.  

5.4. Radiation-enhanced diffusion (RED) 
In the absence of irradiation, the diffusion in a pure metal is driven by thermally activated 

motion of equilibrium concentration of vacancies. The thermal diffusion coefficient 

€ 

Dth  can 

be written as  

€ 

Dth = CV
0DV  

where 

€ 

CV
0  is equilibrium concentration of vacancies and 

€ 

DV  is their diffusion coefficient.  

 

Because the concentration of irradiation-induced point defects (interstitials and vacancies) are 

much greater than those produced thermally, the diffusion under irradiation is accelerated 

comparing to thermal diffusion [Picraux, 1978]. The diffusion coefficient under irradiation in 

a pure metal is thus given by: 
 

where 

€ 

DV  and 

€ 

Di are the vacancy and interstitial diffusion coefficient, respectively. 

€ 

CV  and 

€ 

Ci  are the vacancy and interstitial concentration, respectively. If 

€ 

CV >>CV
0  with high enough 

mobility, then RED will be the dominant process. So 

€ 

Drad >> Dth  is true, which indicates the 

diffusion is enhanced by irradiation. 

 

Irradiation creates excess point defects in materials, which can be eliminated by mutual 

recombination or by reaction with a defect sink, such as surfaces, grain boundaries, 

dislocations, dislocation loops or precipitates. So the concentration of point defects at any 

point and time of the solid is a balance between the production rate and the loss rate of point 
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defects, and is described by non-equilibrium thermodynamics diffusion equations: 

€ 

dCV

dt
= K0 − RCiCV −KVSCVCS                (1) 

€ 

dCi

dt
= K0 − RCiCV −KiSCiCS                  (2) 

where 

€ 

K0  is the point defect production rate proportional to the radiation flux,  is the 

vacancy-interstitial recombination rate, 

€ 

CS  is the sink concentration, and 

€ 

KVS  and 

€ 

KiS  are 

vacancy-sink and interstitial-sink reaction rate coefficients for all common sinks, respectively. 

 

Analytical solutions to these two equations have been developed and described for four 

different regimes [Was, 2007]. Briefly, the defect concentrations initially increase linearly 

with 

€ 

CV = Ci = K0t . Depending on the temperature and sink density, the evolution of defect 

concentrations will undergo different regimes, such as mutual recombination, interstitial 

annihilation contributed by sinks, vacancy annihilation also contributed by sinks. Finally, the 

defect concentrations become time independent constants at the steady state. The time 

independent property of solutions to Eq. (1) and (2) at the steady state provides an approach 

to simplify these two equations to:  

               (3) 

                 (4) 

 

where  and , and the  terms can be written as . 

The physic meaning of Eq. (3) and (4) is that vacancies and interstitials contribute to atom 

mobility to the same extent, so Eq. (3) and (4) at steady state is symmetric with regard to 

€ 

DVCV  and 

€ 

DiCi. If 

€ 

KVS
' ≈ KiS

' , then 

€ 

DVCV = DiCi , which is an approximation when vacancies 

and interstitials contribute equally to atom mobility. Moreover, Fortuna et al. [Fortuna, 2011] 

explored one-dimensional steady-state diffusion equation, and gave another approximation to 

estimate the value of 

€ 

DXCX  (  = i or v) under ion implantation case: 

 

where 

€ 

γ  is a numerical factor of the order of unity,  is the matrix atomic volume,  is the 

thickness of the implanted material,  is the flux of implanted ions and  is the average 

number of Frenkel pairs produced by an incident ion. 

5.5. Radiation-induced segregation (RIS) and radiation-induced precipitation (RIP) 
Radiation-enhanced diffusion (RED) clarifies how irradiation can increase the atomic 

mobility of atoms in the material. Here, radiation-induced segregation will show how the 
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coupling between the point defect and the solute or impurity atoms fluxes toward point defect 

sinks can lead to enrichment or depletion of solute atoms at these sinks. 

 
Fig. 1.21 Radiation-induced segregation mechanisms due to coupling between point defect and solute 
fluxes in a binary A-B alloy: (a) An enrichment of B occurs if 

€ 

dBV < dAV  and a depletion if 

€ 

dBV > dAV ; 
(b) When the vacancies drag the solute, en enrichment of B occurs; (c) An enrichment of B occurs when 

€ 

dBI > dAI  [Nastar, 2012]. 
 

Okamoto et al. [Okamoto, 1973] observed strain contrast around voids in an austenitic 

stainless steel during irradiation in a high voltage electron microscope. They attributed this 

contrast to the radiation-induced segregation (RIS). This is the first time the evidence of RIS 

was observed experimentally. Typically, RIS mechanisms due to coupling between point 

defect and solute fluxes in a binary A-B alloy are classified in three cases: 

In Fig. 1.21(a), both A and B fluxes are in the opposite direction to the vacancy flux, so if 

€ 

dBV < dAV , an enrichment of B is expected; in the opposite case (

€ 

dBV > dAV ), a depletion of B 

will occur. This mechanism is called as inverse Kirkendall (IK) effect, which was coined by 

Marwick et al. [Marwick, 1978]. The IK effect is often more useful to explain RIS in 

concentrated alloys. 

In Fig. 1.21(b), A and B fluxes are not necessarily in the same direction. If B solute atoms 

have a high binding energy with vacancies and if formed vacancy-solute clusters can drag B 

atoms toward to point defect sinks, the vacancy and solute fluxes can be in the same direction. 

In such a case, an enrichment of B will occur regardless the values of 

€ 

dAV  and 

€ 

dBV . In this 

case, RIS is owed to drag effects or migration of vacancy-solute clusters. The mechanism was 

proposed by Aust et al. [Aust, 1968]. 

In Fig. 1.21(c), both A and B fluxes are in exactly the same direction to the interstitial flux. If 

the A and B solute atoms are strongly bound to the interstitials and if 

€ 

dBI > dAI , an enrichment 

of B is expected due to the migration of interstitial-solute clusters. The mechanism was 

proposed by Rehn et al. [Rehn, 1979].  

 

More generally, these three mechanisms of RIS are not mutually exclusive. Each mechanism 

can either occur individually or combine with each other. Enrichment or depletion of elements 
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due to RIS is difficult to predict because RIS effects depend on various parameters, such as 

segregating elements, the sink structure, radiation particles does and temperature. The 

modeling of mechanisms relevant to RIS can be found in Wharry et al. [Wharry, 2014].  

When the local solute concentration in the vicinity of a point defect sink reaches the solubility 

limit, radiation-induced precipitation (RIP) will occur instead of RIS. Both RIS and RIP can 

be thought as a consequence of RED. 

As we mentioned before, the evolution of concentration profiles of point defects can be 

described by non-equilibrium thermodynamics diffusion equations. In the case of the problem 

of RIS, the concentration profile of chemical elements α need to be considered. Therefore, 

diffusion equations are given by: 

€ 

∂CV

∂t
= −divJα +K0 − RCiCV −KVSCVCS             (5) 

€ 

∂Ci

∂t
= −divJα + K0 − RCiCV − KiSCiCS              (6) 

€ 

∂Cα
∂t

= −divJα                                                    (7) 

where  is the concentration of element α, and  is the flux of element α. The solution of 

these equations requires the knowledge of how the flux  is related to the concentrations. 

This problem relies on the theory of thermodynamics of irreversible processes. The final 

description of  can be written in terms of the phenomenological coefficients of diffusion 

and the driving forces. 

5.6. Precipitation induced by irradiation 

Irradiation can induce the formation of precipitates in an alloy. The nucleation and growth of 

precipitates can be expressed as an effect of point defects (vacancies and interstitials) due to 

high levels of solute supersaturation under irradiation. The supersaturation then provides the 

driving force for the reaction. The nucleation of precipitates is divided into incoherent and 

coherent conditions. The distinction between these two cases lies in the behavior of point 

defects at the precipitate surface. Incoherent precipitates behave like voids in which defects 

can be absorbed and emitted. However, the interface of coherent precipitates acts as a defect 

trap so that the defect retains itself [Was, 2007]. 

In order to understand the incoherent nucleation of precipitates, Maydet et al. [Maydet, 1977] 

and Russel et al. [Russel, 1979] developed a model based on the number of solutes and the 

number of excess vacancies. In their opinion, precipitates with greater atomic volume than the 

matrix must have excess vacancies to relieve the strain energy. On the contrary, undersized 

precipitates should not contain excess vacancies since these vacancies destabilize the 
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undersized precipitate phase. Finally, Russel et al. [Russel, 1979] showed the effect of 

irradiation on the stability of incoherent precipitates by a schematic phase diagram (Fig. 1.22)  

 
Fig. 1.22 Schematic phase diagram showing the effect of irradiation on the stability of incoherent 
precipitates in the case where the precipitates is thermally stable (θ) and thermally unstable 
(metastable ψ) [Russel, 1979]. 
 
In this phase diagram, the θ phase is thermally stable and the ψ phase is not thermally stable 

(metastable) by the sign of δ, where 

€ 

δ =
(Ω−Ωm )
Ωm

,  and  are the atomic volume of the 

precipitate and the matrix, respectively. The stable θ phase has a lower free energy than the 

metastable ψ phase under thermal condition. Therefore, the precipitation of the θ phase is 

more favorable than the ψ phase. However, the order of stability is reversed by irradiation so 

that the θ phase would dissolve and the ψ phase would precipitate under irradiation condition. 

The precipitation of the metastable phase is an evidence that irradiation would induce 

precipitation in an undersaturated solid solution. 

 
 
 
 



Chapter 2  Experimental techniques 

43 

Chapter 2 Experimental techniques 
 
 
 
 
 
 
1. Transmission electron microscopy..............................................................................................44 

1.1. Conventional methods: SAED, BF, DF and WBDF..............................................................44 
1.1.1 Selection Area Electron Diffraction (SAED)....................................................................44 
1.1.2 Bright Field (BF) and Dark Field (DF) imaging...............................................................45 
1.1.3 Two-beam condition and Weak Beam Dark Field (WBDF) imaging ..............................45 

1.2. Analytical methods for chemical compositions: EDX, EELS and EFTEM........................46 
1.2.1 Energy Dispersive X-ray spectroscopy (EDX) .................................................................46 
1.2.2 Electron Energy Loss Spectrometry .................................................................................48 
1.2.3 Comparison between EDX and EELS ..............................................................................50 
1.2.4 Energy Filtered TEM (EFTEM): ......................................................................................51 

1.3. Analytical methods for crystallographic structure: HRTEM..............................................53 
1.4. TEM specimen preparation.....................................................................................................56 
1.5. Thermal annealing performed in TEM..................................................................................57 

 

2. Introduction of the as-received material: high-purity Fe10Cr alloy .......................................58 

 

3. Ion implantation ...........................................................................................................................61 
3.1. Instrument.................................................................................................................................61 
3.2. Two-stage ion implantation at RT: Al+ ions then O+ ions.....................................................62 

 

4. Atom probe tomography (APT) ..................................................................................................64 
4.1. APT specimen preparation......................................................................................................65 
4.2. Principle of APT .......................................................................................................................65 
4.3. APT measurements ..................................................................................................................67 
4.4. APT data treatment..................................................................................................................68 
4.5. Common artifacts: Trajectory aberrations & Local magnification effects ........................70 

 



Chapter 2  Experimental techniques 

44 

1. Transmission electron microscopy 

The characterizations of nano-particles in both as-implanted and annealed specimens were 

performed by Transmission Electron Microscopy (TEM). Three TEM microscopes used are: 

• FEI Tecnai G2 20 twin LaB6 filament operating at 200 kV, equipped with EDX 

spectrometer and Gatan Image Filter (GIF) at CSNSM/JANNuS Orsay, France 

[CSNSM/TEM, Website] 

• JEOL 2010F field emission gun (FEG) operating at 200 kV, equipped with EDX 

spectrometer and EEL spectrometry at CEA-SRMA, Saclay, France. 

• JEOL 2100 LaB6 filament operating at 200 kV, equipped with EDX spectrometer and 

Gatan Image Filter (GIF) at CEA-SRMA, Saclay, France. 

In the microscope FEI Tecnai G2 20 twin, both conventional and analytical methods (except 

HRTEM) were applied to the characterization. Analytical methods (except HRTEM) were 

also applied in the microscope JEOL 2100. High-resolution TEM (HRTEM) imaging was 

undertaken by the microscope JEOL 2010F. 

 

1.1. Conventional methods: SAED, BF, DF and WBDF 

1.1.1 Selection Area Electron Diffraction (SAED) 

When incident beam of electrons traverses TEM thin foils, the beam becomes either 

transmitted (direct) or diffracted (indirect). The spots corresponding to both transmitted and 

diffracted beams constitute diffraction pattern. To view the diffraction pattern from a 

specimen, the imaging-system lenses of the microscope are adjusted such that the back focal 

plane of the objective lens acts as the object plane for the intermediate lens. This causes the 

diffraction pattern to be projected onto the viewing screen. Selected area electron diffraction 

(SAED) patterns can be obtained by inserting a selected area aperture. The diffraction pattern 

is studied by using the Bragg equation: 

 

where 

€ 

dhkl  is the interplanar distance of the (h, k, l) plane,  is distance between the 

transmitted spot and the diffracted spot (

€ 

ghkl ),  is the wavelength of electron beam and  is 

the camera length.  is the camera length that depends on the configuration of TEM 

microscope. And  can be measured directly on the diffraction pattern. Therefore, the value 

of 

€ 

dhkl  can be obtained for any (h, k, l) plane. 

 

€ 

dhkl × D = λ × L

€ 

D

€ 

λ

€ 

L

€ 

λ × L

€ 

D
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Fig. 2.1 Schemes of conventional TEM methods: (a) Bright field imaging; (b) Dark field imaging; (c) Two-
beam condition: exact Bragg condition (left) and excitation error slightly positive condition (right); (d) (g, 
3g) weak beam dark field imaging.  
 

1.1.2 Bright Field (BF) and Dark Field (DF) imaging 
Bright field (BF) TEM images are formed, if we use an adequate objective aperture to select 

only the transmitted beam of electrons (Fig. 2.1(a)). In this case, the BF image results from a 

weakening of the direct beam by its interaction with the specimen. On the contrary, the direct 

beam is blocked by the aperture while only one diffracted beam is allow to pass the objective 

aperture. In order to avoid a deterioration of image by aberrations (particularly chromatic), we 

keep the objective aperture centered on the optical axis and tilt the incident beam so that the 

scattering angle between the incident beam and the diffracted beam is not changed 

(Fig. 2.1(b)). Since diffracted beams have strongly interacted with the specimen, very useful 

information is present in dark field (DF) images such as defects (dislocation, dislocation 

loops) or nano-particles. 

The size of nano-particles is defined by several criteria: the morphology of nano-particles, the 

histogram of the size distribution, the equivalent diameter 

€ 

deq  and the density 

€ 

ρ  (number of 

particles in the unit volume). The equivalent diameter 

€ 

deq  is given as:  

€ 

deq = 2 × s
π

 

where  is the surface of nano-particles measured in this study by the softwares Photoshop 

and Image J.  

 

1.1.3 Two-beam condition and Weak Beam Dark Field (WBDF) imaging 
For good image contrast, the specimen is normally tilted to get rid of almost all other 

diffraction beams with the exception of the transmitted beam and the chosen diffracted beam. 

Therefore, only the chosen diffraction beam is excited. This is referred to as a two-beam 

condition (exact Bragg condition without excitation error (s=0)). If the region is thick, 

Kikuchi lines are normally visible as the diffraction pattern at the same time. In this case, the 

€ 

S
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dark Kikuchi line intersects the transmitted spot and the corresponding bright Kikuchi line 

intersects the diffracted spot 

€ 

ghkl  (left case in Fig. 2.1(c)). In the real manipulation, we will tilt 

the specimen to approach the two-beam condition but having a slightly positive excitation 

error (right case in Fig. 2.1(c)). Two-beam condition is an efficient way to enhance the image 

contrast and is an essential step to achieve the weak beam dark field (WBDF) imaging. 

With increasing the value of excitation error, defects observed on the DF image are much 

sharper, whereas the contrast of the DF image is weaker. The weak beam dark field (WBDF) 

images are formed if we use a diffracted beam with large excitation error (s>>0). The whole 

manipulation for the WBDF imaging is: firstly, we tilt the specimen to approach two-beam 

condition. Then, the next step is tilting to the so-called (g, 3g) condition (Fig. 2.1(d)). The (g, 

3g) condition means, the g reflection we want to use for the WBDF image is in the optical 

axis, whereas the Bragg condition for the 3g reflection is exactly satisfied. Then we get a 

relatively large excitation error (s>>0) for the g reflection. With the help of WBDF method, 

the defect free specimen area appears dark because of the weak diffraction intensity. 

Moreover, dislocations and dislocation loops can be visualized as sharp bright line and bright 

loops, respectively. 
 

1.2. Analytical methods for chemical compositions: EDX, EELS and EFTEM 

1.2.1 Energy Dispersive X-ray spectroscopy (EDX)  

Energy Dispersive X-ray spectroscopy (EDX) is a qualitative and quantitative X-ray 

microanalytical technique that can provide information on the chemical composition of a 

specimen. When the beam of electrons penetrate the specimen and interact with the atoms of 

the specimen in TEM microscope, two types of X-rays result from these interactions: 

Bremasstrahlung X-rays, which are also referred to as background X-rays, and Characteristic 

X-rays.  

Bremasstrahlung X-rays: Bremasstrahlung X-rays are produced by slowing down of the 

incident beam by the electric field surrounding the nuclei of the atoms in the specimen. 

Electrons of the incident beam lose energy and change direction due to inelastic scattering in 

the specimen. Some of the lost energy is converted to Bremasstrahlung X-rays.  

 

Characteristic X-rays: Characteristic X-rays result from electron transition between inner 

orbits, which are normally full (Fig. 2.2(a)). The production of Characteristic X-rays is two-

stages process: Firstly, an electron is removed from one of the inner shells of the atom by 

inelastic scattering with an electron of the incident beam. Therefore, the atom losing an 
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electron is ionized and in an unstable state. Then, the atom regains stability when an electron 

from an outer shell fills the inner shell vacancy and an X-ray photon is emitted. The x-rays 

emitted are characteristic in energy, which is equal to the difference between the ionization 

energies of the electrons involved in the transition. As ionization energies for each shell of 

each element are specific, so each element has Characteristic X-ray lines that allow a 

specimen’s elemental composition to be identified by a nondestructive technique, while the 

intensities of the Characteristic X-ray peaks allow the concentration of the elements to be 

quantified. The spectrum displayed in the EDX systems (Fig. 2.2(b)) compromises 

Characteristic X-ray peaks superimposed on the continuum background (Bremsstrahlung X-

rays).  

 
Fig. 2.2(a) Specimen atom- Characteristic X-rays: the electron transition involved in generating the Kα, 
Kβ and Lα X-ray photons; (b) The X-ray spectrum displayed by the EDX system comprises Characteristic 
X-ray peaks superimposed on the continuum (Bremsstrahlung X-rays) [siteweb: ammrf.org]. 
 
The operating principle: The operating principle is the same for either Si(Li) or Si drift 

(SDD) EDX detector : the energy of incoming X-ray is dissipated by the creation of a series 

of electron-hole pairs in the semiconductor crystal inside the EDX detector. The number of 

pairs created is directly proportional to the energy of X-rays. A high bias voltage applied 

across the crystal causes electron-hole pairs to move to electrodes on opposite sides of the 

crystal, which forms a charge pulse. The charge pulse is then amplified by a sensitive 

preamplifier. Final output pulses proportional in height to the incoming X-ray energy.   

 

Qualitative and quantitative analysis: In performing qualitative analysis, the spectrum can be 

acquired in a short time (10-100s). The information of the specific energy of the 

Characteristic X-ray peaks for each element is available as detector database. This 

information allows us to identify elements belonging to the specimen. It is noted that the 

separation of the members of X-ray lines below 3 keV becomes so small that the peaks are 
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not easily resolved. Owing to the relatively poor resolution in this energy range, the O Kα 

peak usually overlaps the Cr Lα,β peak. It is thus hard to identify the presence of oxygen in our 

case by EDX qualitative analysis. Quantitative analysis can be performed in different 

approaches. One popular approach is to consider background in the spectrum as an 

undesirable signal. The effect of background is removed by mathematical filtering during the 

process of quantification. When background is removed from the spectrum, the intensities of 

remaining Characteristic X-ray peaks is compared in order to obtain the quantification of each 

element. 

1.2.2 Electron Energy Loss Spectrometry 
Electron Energy Loss Spectrometry (EELS) is the analysis of the energy distribution of the 

electrons that have passed through a thin specimen and interacted with it inelastically. It is a 

powerful tool capable of providing both compositional and chemical information of the 

specimen. 

Egerton [Egerton, 2009] described TEM-EELS as instrumentation based on the magnetic 

prism, in which a uniform magnetic field is generated by an electromagnet with shaped 

polepieces (Fig. 2.3(a)). 

 

Fig. 2.3 EEL spectrometer and EEL spectrum: (a) Dispersive and focusing properties of a magnetic prism 
in a plane perpendicular to the magnetic field. Solid lines represent zero-loss electrons (E), and dashed 
lines represent those that have lost energy (ΔE) during transmission through the specimen [Karlik]; (b) A 
typical EEL spectrum consist of zero-loss peak, low-loss region and high-loss region. 
 
Within this field, electron follow circular paths and are deflected through an angle of typically 

90° due to Lorentz force. The description of Lorentz force is given as: 

€ 

F = evB =
mv 2

R
 

where ,  and  are the electron charge, speed and relativistic mass, giving a bend radius 

that depends on speed and therefore on electron energy: 

€ 

R =
m
e
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If the entrance beam originates from a point object, electrons of a given energy are returned to 

a signal image point. Solid lines shown in Fig. 2.3(a) represent the trajectory of zero-loss 

electrons (with an energy E). And dashed lines represent those that have lost energy (ΔE) 

during transmission through the specimen. The existence of different electron energies results 

in a focused spectrum displayed in the dispersion plane. This spectrum is referred to as 

electron energy loss (EEL) spectrum, which can be divided into three parts that depend on 

various scattering processes that occur within the specimen (Fig. 2.3(b)): 

 
Zero-loss peak at 0 eV: The peak at 0 eV, known as the zero-loss peak, contains electrons 

that still have the original beam energy. These electrons only interacted elastically or not at all 

with the atomic nucleus of the specimen. The intensity of the zero-loss peak is so high that 

dominates the EEL spectrum if the specimen is reasonably thin thanks to the specimen 

preparation. The advantage of the zero-loss peak can be used to assess the local thickness of 

the specimen. The most common procedure is the log-ratio method, based on the 

measurement of the integrated intensity 

€ 

I0  of the zero-loss peak relative to the integral 

€ 

It  of 

the whole spectrum [Egerton, 2009]. The equation of log-ratio method is given as: 

€ 

t
λ

= ln( It
I0
) 

where  is the local thickness and  is the electron mean free path for the low energy loss. 

The log-ratio thickness 

€ 

t
λ

 can be converted to the absolute thickness if the exact value of  

is known. 

 
Low-loss region (< 100 eV): The electrons corresponding to this region interact inelastically 

with the atoms of the specimen under the form of Plasmon excitation. This phenomenon is a 

result of weakly bound valence electrons of the material in the specimen collectively 

interacting with the electron beam [Egerton, 1996]. Since the Plasmon generation is the most 

frequent inelastic interaction of electron with the specimen, the intensity in this region is 

relatively high but still quite lower than the zero-loss peak. Most of elements have their 

characteristic edges in the low-loss region, however, the element such as oxygen do not have 

the peak in this region.    

 
High-loss region (> 100 eV): During the inelastic scattering process, a specific minimum 

energy, also called as ionization threshold, must be transferred from the electrons of the 

incident beam to the inner-shell electron, which leads to ionization. These energy-loss 

electrons appear as an edge in the high-loss region of the EEL spectrum and are referred to as 

€ 

t

€ 

λ

€ 

λ
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the ionization edge (also called as core-loss edge) of the element in the specimen 

[Brydson, 2001]. Thus, EELS is complementary to EDX, and it can be utilized for qualitative 

and quantitative element analysis as well. In particular, the availability of detecting light 

elements is the main advantage of EELS. 

The amount of inelastically scattered electrons drastically decreases with increasing energy 

loss, thus small peaks are superimposed on a strongly decreasing background in the high-loss 

region. Therefore, the background to a particular core-loss edge needs to be extrapolated and 

subtracted before EELS quantification. After subtraction, the remaining intensity of core-loss 

edge provides a quantitative estimate of the concentration of the corresponding element. The 

elemental-ratio between two elements A and B is given as:  

 
where 

€ 

Ni  is the atomic concentration of the element ,  is the integrated intensity of 

core-loss edge of the element  after subtracting the extrapolated background over an energy 

range  and  is the partial cross section, calculated for core-loss scattering up to 

an angle  and energy range . 

For the EEL spectra in the range of [400 eV–1000 eV], the intensity has been collected inside 

an energy range of [507 eV–557 eV] for O, [573 eV–594 eV] for Cr and [705 eV–740 eV] for 

Fe with 0.3 eV/Channel. The intensity of Al has been collected inside energy ranges of 

[70 eV–85 eV] and [1540 eV–1575 eV]. The data has been collected inside a convergence 

semi-angle α (equal to 4.85 mrad) and a collection semi-angle β (equal to 11.81 mrad). All the 

ionization cross section have been calculated using a Hartree-Slater model. 

1.2.3  Comparison between EDX and EELS 

When the electron beam is incident on the specimen, the X-ray photons carrying the 

elemental information propagate along all directions in space. In practice, only a fraction of 

these X-ray photons are collected by the X-ray detector because of the difficulties in inserting 

a large detector in an electron beam column without affecting other capabilities of the TEM. 

The EEL spectrometer does not have this problem because it is introduced in the path of the 

electron beam that has gone through the specimen or it is attached to the bottom of the TEM 

column. A significantly high percentage of electrons carrying elemental information from the 

area of interest can be directed into the spectrometer. As a result, EELS offers better signal 

collection efficiency to detect elements from a very limited volume of material at the area of 

interest. The X-ray energy resolution achieved by standard X-ray detectors is approximately 2 
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orders of magnitude worse than the energy resolution of an EEL spectrometer [Subramanian, 

2011].  

1.2.4   Energy Filtered TEM (EFTEM): 
EELS method allows to form EEL spectra in the TEM. Alternatively, it is possible to insert a 

narrow slit at the spectrum plane, which can remove all electrons except those within a small 

chosen energy window and reform an Energy Filtered TEM (EFTEM) image. 

 
The benefit of EFTEM method comes from elemental mapping, using the energy loss 

electrons contributing to the characteristic edges of elements of interest in either the low-loss 

region or the high-loss region. Elemental map provides the information of elemental chemical 

composition, which is a very useful method for the characterization of nano-particles. 

 
As we mentioned in the description of high-loss region, the ionization edges (or core loss 

edges) are usually several orders of magnitude weaker than zero-loss or Plasmon peaks. For 

this reason, the background signal under the ionization edge of elements of interest in the EEL 

spectrum must be subtracted in order to achieve elemental mapping. The background will 

dominate the EEL spectrum and limit any meaningful extraction of element maps if the 

investigated region of the specimen is too thick. Therefore, it is very important to estimate the 

thickness of the region. The thickness map, which contains the information of log-ratio 

thickness 
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 of the region, is a useful way to estimate the feasibility of EFTEM elemental 

mapping. The measurement of thickness is also based on the log-ratio method already shown 

in the description of the zero-loss peak. In general, 
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λ

< 0.4  is the threshold for elemental 

mapping. 

In thin specimens, elemental mapping can be obtained by either the jump-ratio or three-

window methods [Brydson, 2001]. In the jump-ratio method, two images are recorded by 

selecting an energy window before and after characteristic edge of the element of interest. 

Dividing core loss intensity by that of the preceding background gives the ratio of these two 

images showing the elemental distribution in only a qualitative way but with a better 

signal/noise ratio than three-window method [Hofer, 1995; Crozier, 1995]. Furthermore, 

jump-ratio images are particularly susceptible to artifacts as a result of their sensitivity to 

changes in the preceding background arising from thickness change of the specimen or from 

preceding core loss edges [Ahn, 2006]. 
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In the three-window method (see Fig. 2.4), background is recorded in two pre-edge images by 

selecting two energy windows (pre-edge 1 and 2) simultaneously before the core loss edge of 

the element of interest. The core loss signal plus background is then recorded in a post-edge 

image by selecting an energy window (post-edge) after the core loss edge. Background after 

the core loss edge is extrapolated according to two pre-edge images. Finally, the elemental 

map is obtained by subtracting the extrapolated background from the post-edge image. The 

background subtraction algorithm should account for specimen drift that may occur during the 

collection process because the pre- and post- edge images are acquired sequentially 

[Subramanian, 2011]. This approach offers better background subtraction but may fail when 

the images are noisy.  

 

Fig. 2.4 Scheme of elemental maps by employing the three-window method [Ribis, 2010]. 

 
In our study, the energy-filtered images were recorded using a binning of 2 × 2 thus resulting 

in 512 × 512 pixels. Elemental maps were acquired by using both jump-ratio and three-

window methods. Elemental maps obtained by the jump-ratio method were compared with 

those obtained by the three-window method before being considered as real elemental maps 

due to the presence of artifacts.  

 
Energy windows of elements of interest for the jump-ratio method: For iron, the relevant 

peak in the low-loss region is 54 eV (Fe-M2,3). Correspondingly, the window for the pre-edge 

acquisition started at 44 eV, and the window for the post-edge acquisition started at 60 eV. 

The width of each window was 8 eV. For chromium, the relevant peak in the low-loss region 

is 42 eV (Cr-M2,3), so the window for the pre-edge acquisition started at 32 eV, while the 

window for the post-edge acquisition started at 48 eV. The width of each window was 8 eV. 

For aluminium, which has the peak at 73 eV (Al-L2,3), the window for the pre-edge 

acquisition started at 63 eV, while the window for the post-edge acquisition started at 78 eV. 
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The width of each window was 10 eV.  

 

Energy windows of elements of interest for the three-window method: For iron, the relevant 

edge energy threshold is 708 eV (Fe-L2,3). Correspondingly, two windows for the pre-edge 

acquisition started at 625 eV and 665 eV, respectively, and the window for the post-edge 

acquisition started at 720 eV. The width of each window was 30 eV. For chromium, the 

relevant edge energy threshold is 575 eV (Cr-L2,3), so two windows for the pre-edge 

acquisition started respectively at 522 eV and 547 eV, while the window for the post-edge 

acquisition started at 577 eV. The width of each window was 20 eV. For aluminium, which 

has the edge energy threshold at 1560 eV (Al-K), the windows for the pre-edge acquisition 

started respectively at 1445 eV and 1495 eV, while the window for the post-edge acquisition 

started at 1550 eV. The width of each window was 50 eV. Finally, for the oxygen edge energy 

threshold of 532 eV (O-K), the windows for the pre-edge acquisition started respectively at 

469 eV and 499 eV and the window chosen for the post-edge acquisition started at 532 eV. 

The width of each window was 30 eV. 

1.3. Analytical methods for crystallographic structure: HRTEM 
High-resolution TEM (HRTEM) images are formed by using a large objective aperture to 

select multiple beams (Fig. 2.5). Selected beams are reconstructed to yield contrast that can 

frequently be interpreted in terms of the projected crystal potential, which is directly related to 

the atomic structure of materials.  

 
Fig. 2.5 High-resolution TEM image showing the matrix FeCr. The inset is the diffraction pattern oriented 
along <100>. The shape of the large objective aperture is marked by the white circle.  
 
To obtain ideal high-resolution TEM images, the specimen should be thin enough, and 

crystals of the specimen need to be pre-aligned close a zone-axis orientation. The objective 

aperture should be large enough and be well centered. In very thin specimens, the amplitude 

of incoming electrons is unaffected, so there can be no amplitude contrast. However, the 
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phases of the transmitted electrons will change and these phase changes appear as differences 

in phase contrast. The contrast formation in HRTEM images is based on the weak phase-

object approximation if the specimen is very thin. The detailed description of this 

approximation can be found somewhere else [Williams, 2009]. Here we only focus on the 

influence of parameters relevant to the Contrast Transfer Function (CTF) because it decides 

which microscope can be applied to the HRTEM imaging. 

 
Contrast Transfer Function (CTF): It describes the imperfections in the TEM lens system 

that result in modifications of the amplitudes and phases of the electron beam (wave) as it 

passes through the lenses to the image plane. It is frequently used to evaluate and compare 

performances of TEM microscopes for HRTEM. The function can be described as:
  

 
where  is the spatial frequency ,  is the spherical aberration coefficient depending 

on the objective lens quality,  is the wavelength defined by accelerating voltage and  is 

the defocus value. The important features of the function CTF( ) are shown in Fig. 2.6.  

 

 
Fig. 2.6 Capabilities for high resolution TEM imaging of two different TEM microscopes: Two curves of 
the contrast transfer function (CTF) were drawn by the simulation software Contrast Transfer Function 
Explorer with with using Scherzer defocus (df = -86.7 nm and -61.3 nm for FEI and JEOL, respectively) 
and the same magnification.  Both two curves are modified by envelope functions: the temporal coherency 
envelope and the spatial coherency envelope. 
 
The function starts at 0 and decreases. Then it stays almost constant and constant and close 

to 1. After firstly crossing the spatial frequency -axis, it repeatedly crosses the -axis as 

increases.  

The function can continue forever but, in reality, it is modified by envelope functions and 

eventually dies off. The exact mathematical form of these envelope functions is complex. In 

general, the result is described by multiplying the function by both the temporal coherency 
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envelope and the spatial coherence envelope  to yield an effective transfer function 

: 

 
where the temporal coherency envelope  is caused by chromatic aberrations, focal and 

energy spread, instabilities in the high tension and objective lens current; the spatial 

coherence envelope  is caused by the finite incident beam convergence. 

 

Effect of the defocus : The presence of zeros in the function means that we have gaps in 

the output signal. Obviously, the best function is the one with the fewest zeros and with the 

broadest band of good transmittance (where CTF is close to -1). Back in 1949, Scherzer 

suggested an optimum defocus that occurs at:
  

 
At this optimum defocus (also called as Scherzer defocus), all the beams will have nearly 

constant phase out to the first crossover of the spatial frequency -axis. This crossover point 

is defined as the point resolution (marked in Fig. 2.6), which is expressed as: 

 

Up to the point resolution, phase-contrast images are directly interpretable. In other words, 

this is not the information limit but it is the limit where we can use nearly intuitive arguments 

to interpret what we see [Williams, 2009]. 

 

Effect of the aberration coefficient : The value of  is proportional to the value of the 

point resolution . A smaller value of  means a better point resolution. Therefore, TEM 

microscopes equipped a high quality objective lens or a  corrector, have a better point 

resolution. 

 

Effect of the accelerating voltage: the wavelength is another parameter that contributes to the 

value of the point resolution. In TEM microscopes, the wavelength of electrons is decided by 

the accelerating voltage. A high accelerating voltage (ex: 300 kV rather than 200 kV) allows 

us to achieve a higher point resolution. 

 

Effect of the spatial coherence envelope : The effect of the envelope functions is to 

impose a virtual aperture in the back focal plane of the objective lens, regardless of the setting 

of focus. The presence of this virtual aperture means that high-order passbands are simply not 
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accessible. This cut-off thus imposes a new resolution limit on the microscope 

[Williams, 2009]. This is what we called the information limit (marked in Fig. 2.6).  

Between two envelope functions, the spatial coherence envelope  is one major factor that 

influences the information limit. The spatial coherency is defined by the convergence of the 

incoming electrons that can be expressed as: 

 
where 

 
is magnification;  is charge density;  is brightness and  is exposure time. For 

a given TEM microscope, the information limit can be improved by lowering magnification, 

increasing the exposure time, using smaller size and condenser aperture. The convergence 

also depends on the brightness of the electron source. At this point of view, TEM microscopes 

equipped Field Emission Gun (FEG) has a good advantage than those equipped LaB6 filament 

since the brightness of an FEG is at least 100 times higher than a LaB6 source 

[Williams, 2009]. This high brightness decreases the convergence angle, and increases the 

signal-to-noise ratio. In addition, FEG reduces the instrumental contribution to chromatic 

aberrations that also improves temporal coherency envelope .  

As shown in Fig. 2.6, Contrast transfer functions of JEOL2010F equipped FEG and 

FEI Tecnai G2 20 twin equipped LaB6 filament were drawn with using Scherzer defocus and 

the same magnification. Both microscopes are operated at 200 kV. The comparison shows the 

convergence angles obtained are 1 mrad and 0.1 mrad for FEI and JEOL, respectively. The 

smaller convergence angle of JEOL indicates it has not only a smaller information limit but 

also a better spatial coherency than FEI. This explains why we chosen to use JEOL2010F for 

HRTEM imaging. 

The information limit is usually beyond the point resolution, so full interpretation of high-

resolution images requires extensive computer simulation because the high-resolution image 

loses phase information when it is recorded. In our study, the evaluation of high-resolution 

TEM (HRTEM) images was performed by means of fast Fourier transformation (FFT). In 

addition, HRTEM images were simulated by JEMS program [Stadelmann, 1987] and 

compared with experimental images. The TEM operation energy of 200 kV, the spherical 

aberration constant of 1 mm, the chromatic aberration of 1.4 mm, the defocus of -63 nm-1, and 

0 – 0.1 mrad beam convergence angle were used as input parameters for the simulation. 

1.4.  TEM specimen preparation  
The as-received bulk material is a high-purity FeCr (10.54 at.% Cr) alloy supplied by Ecole 

Nationale Supérieure des Mines, Saint-Etienne, France. It has a shape as stick of 1.4 cm in 
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diameter. The stick was cut into a series of thin plates with a thickness of approximately 

1 mm. These plates were mechanically ground down to 60 ~ 100 µm with the help of abrasive 

papers containing carbide/diamond abrasives. The mechanically polished plates were punched 

into discs of 3 mm in diameter (Fig. 2.7(a)). 

To obtain as-received TEM thin foils, the punched discs were perforated by using a twin jet 

electro-polisher (Struers© Tenupol-5) with 10% perchloric acid and 90% ethanol solution at -

10°C. The perforated discs were rinsed by pure ethanol at -10°C then desiccated on the filter 

paper.  

 
Fig. 2.7 (a) Photo of the punched disc of 3mm in diameter taken by Nikon© digital camera; (b) Photo of 
the hole existing in centre of the as-received thin foil taken by Olympus© optical microscope; (c) BF TEM 
image of the as-received thin foil, showing the hole and the surrounding transparent area. 
 
The photo taken by Olympus© optical microscope (Fig. 7(b)) shows the perforation hole is 

quite small and irregular. The BF TEM image (Fig. 7(c)) reveals that only the edges near the 

hole are thin enough (< 150 nm) to electron transparency, which can thus be directly 

examined by TEM. The perforated discs, also called as-received TEM thin foils are ready for 

ion implantation. 

In order to facilitate TEM observations (eliminate the magnetism and limit the contribution of 

the matrix), the lamina was extracted from the as-implanted thin foil by an in-situ lift-out 

technique in an instrument called Focused Ion Beam (FIB). For the detail of this method, 

readers are invited to read Annexe A. The FIB lamina preparation has been performed by 

Benoît Arnal at CEA/DEN/DANS/DMN/SRMA. 

 

1.5. Thermal annealing performed in TEM 
Thermal annealing was carried out inside the microscope of FEI Tecnai G2 20 twin with using 

the FEI TEM heating specimen holder. The maximum allowed temperature for this specimen 

holder is about 700 °C. The annealing temperature was set at 500 °C with a duration ~3 hours.  

 
For each in-situ thermal annealing, one as-implanted TEM thin foil was mounted on the 

heating specimen holder. The holder was connected with the controller (see Fig. 2.8(a)) and 
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inserted into the microscope (Fig. 2.8(b)). The vacuum condition inside the column of TEM 

was 1.2 × 10-5 Pa.  

 

 
Fig. 2.8 (a) FEI heating TEM specimen holder (up) connecting with the controller (below). The pipes of 
cooling (in green color) water connect with the holder during thermal annealing; (b) TEM FEI Tecnai G2 
20 twin. 
 
The controller can display the actual temperature of the holder and allow us to adjust the 

electrical current passing through the heating holder. The temperature increases with the 

current density. To stabilize at 500 °C, the current intensity was set to 418 mA. The duration 

for reaching 500 °C was shorter than 5 minutes. Obviously, it is negligible comparing to the 

total duration of thermal annealing. 

Cooling water kept passing through the heating holder during and after thermal annealing. 

The holder was held inside the microscope until the actual temperature returned to room 

temperature. Annealed specimens are stocked under vacuum condition. 

2. Introduction of the as-received material: high-purity Fe10Cr alloy 

The as-received bulk material is a high-purity FeCr (10.54 at.% Cr) alloy supplied by Ecole 

Nationale Supérieure des Mines, Saint-Etienne, France. Fig. 2.9 shows a panorama of BF 

TEM images of the as-received TEM thin foil. The morphology of grains is non-equiaxial. 

The average lengths of grains measured by the software Image J are 3 µm and 4 µm along 

horizontal and vertical directions, respectively. 

Nominal compositions of the as-received material based on the supplier report are listed in 

Table 2.1. Concentrations of major elements were found to be 90.14 wt.% (89.46 at.%) for Fe 
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and 9.86 wt.% (10.54 at.%) for Cr, respectively. Minor impurities e.g. Carbon, Nitrogen, 

Oxygen and Sulfur, were found to be less than 0.001 wt.%.  
 
 
 

Table 2.1 Nominal compositions of high purity FeCr alloy, based on the supplier report. 

 

 
Fig. 2.9 Panorama of bright field (BF) TEM images of the as-received TEM thin foil: 3 zones encircled by 
white circles were selected for Energy Dispersion X-ray (EDX) investigations. Electron Energy Loss 
Spectrometry (EELS) investigation was also applied in the zone 1. Since the specimen was prepared by 
mechanical and electrolytic polishing, a hole could be seen on the upper right corner in the panorama. 
 
 

In order to verify chemical compositions of the as-received material, both Energy Dispersive 

X-ray spectroscopy (EDX) and Electron Energy Loss Spectrometry  (EELS) were applied to 

three different zones encircled in Fig. 2.9.  

The resulting EDX spectra are drawn in Fig. 2.10. Spectra are normalized with the Fe Kα 

peak. Major peaks (e.g. Cr Kα, Cr Kβ, Fe Kα and Fe Kβ) are clearly visible, whereas the O 

Kα peak overlaps the Cr Lα,β peak. No other potential impurities were observed from EDX 

spectra. The Cr concentration measured by EDX quantification is 8~9 at.%, which is less than 

the reference value (10.54 at.%) shown in Table 2.1.  

Elements Fe Cr C N O S 

wt.% 90.14 9.86 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001 

at.% 89.46 10.54 - - - - 
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Fig. 2.10 EDX spectra obtained from three zones marked in Fig. 2.9. Spectra are normalized with the Fe 
Kα peak. 
 
The resulting EEL spectrum in the range of [475 eV-900 eV] is shown in Fig. 2.11. Cr L2,3 

and Fe L2,3 edges are directly observed from the spectrum. Although O K edge is less visible, 

one can still confirm the presence of O K edge. The presence of oxygen in the as-received 

material is suggested due to oxidation on the material surface. 

Signal and background of Cr L2,3 and Fe L2,3 edges were obtained with selecting energy 

window to relevant ranges of energy loss. The Cr concentration measured by EELS 

quantification is ~10.9 at.%, which is more closer to the reference value (10.54 at.%) shown 

in Table 2.1.  

The comparison between measured concentrations of Cr reveals that the quantification 

effected by EELS is much more precise that effected by EDX. This result is consistent with 

the previous description (section 1.2.3 in Chapter 2). Furthermore, EDX and EELS analyses 

confirm that the as-received material examined is high-purity FeCr alloy (10.54 at.% Cr).  

 
Fig. 2.11 EEL spectrum obtained from the zone 1 marked in Fig. 2.9: signal and background spectra of Cr 
L2,3 and Fe L2,3 peaks are extracted and drawn in green and red colors, respectively.  
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The crystallographic structure of the matrix was also verified by high resolution TEM. 

Fig. 2.12(a) shows a high resolution TEM image taken in the as-received TEM thin foil. 

Corresponding FFT analysis shown in Fig. 2.12(b) reveals that the matrix has a bcc lattice 

structure oriented along <100>. The lattice structure and orientation are consistent with those 

identified in the diffraction pattern inserted in Fig. 2.12(a). The lattice parameter was found to 

be 2.85 Å and 2.9 Å according to the FFT analysis and the diffraction pattern using the Bragg 

equation, respectively. Both two values are quite close to the reference lattice parameter of 

bcc FeCr alloy (2.876 Å [Villars, 1985]). 

 
Fig. 2.12 Microstructure of the as-received TEM thin foil:  (a) High resolution TEM image of the matrix 
FeCr. The corresponding electron diffraction pattern (B =100) is inserted in (a); (b) FFT analysis showing 
a bcc structure oriented along <100>. FFT analysis correlates well with the inserted electron diffraction 
pattern. 

 
In conclusion, the examined material is high-purity FeCr (9.86 wt.%) alloy, which has a bcc 

lattice structure with the lattice parameter of ~2.876 Å. 

3. Ion implantation 

3.1. Instrument 

The ion implantation was carried out at Centre de Sciences Nucléaires et de Sciences de la 

Matière (CSNSM/JANNuS-Orsay, France) with JANNuS-Orsay facility [JANNuSOrsay, web 

site], where a 2 MV ARAMIS accelerator and 190 kV IRMA implanter are coupled with a 

200 kV FEI TECNAI G2 20 TWIN transmission electron microscope to allow simultaneous 

co-irradiation and in-situ observations (Fig. 2.13(a)). 

In this study, ex-situ ion implantation was carried out directly at 190 kV IRMA implanter 

(Fig. 2.13(b)) in order to obtain abundant as-implanted specimens at the beginning of this 

PhD study. 
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Fig. 2.13 (a) Scheme of JANNuS Orsay facilities: 2 MV ARAMIS accelerator and 190 kV IRMA implanter 
are coupled with a 200 kV FEI TECNAI G2 20 TWIN transmission electron microscope to allow 
simultaneous co-irradiation and in-situ observation; (b) Photo of 190 kV IRMA implanter of which the 
beam line is removed in order to insert the object stage for ex-situ ion implantation; (c) Photo of the 
specimen holder in which thin foils are embedded; (d) Photo of the object stage on which the specimen 
holder is mounted.  
 
Fig. 2.13(c) shows the specimen holder used for ex-situ ion implantation. It offers at most 43 

available positions for thin foils at the same time. Once most of the positions are occupied by 

specimens, the holder is then mounted on the object stage (Fig. 2.13(d)), which is inserted in 

the chamber of IRMA implanter during ion implantation.  

3.2. Two-stage ion implantation at RT: Al+ ions then O+ ions 

Al+ ions were chosen instead of Y+ or another metallic ions because: firstly, Al has a bigger 

diffusion coefficient (than Y or Ti in FeCr) [Hirvonen, 1982 ; Campbell, 1980], and we thus 

expect the oxide precipitates to form more easily, at lower temperature. Secondly, Al is 

known as one of important alloying elements. Its content can reach to 5.5 wt.% in several 

commercial ODS alloys such as MA956 [Chao, 1998], MA957 [Miller, 2004] and PM2000 

[Sporer, 1992]. Thirdly, it was recently reported that the Al-Cr-O system has a 

thermodynamically metastable phase, which has a NaCl-like structure with 33% vacancies on 

the metal sites [Khatibi, 2011]. This metastable (Al, Cr, O) solid solution was synthesized in 

films grown onto Si substrates using reactive radio frequency magnetron sputtering, which is 

a non-equilibrium technique as ion implantation. In total, it is moreover a model case to be 

able to better experimentally study the early stages of precipitation. Therefore, we choose to 
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implant 3 %wt Al2O3, ten times more than the industrial composition (0.3%wt of Y2O3), to be 

in the most probable conditions of precipitation. In order to observe by TEM, ions should be 

located at the position where the thicknesses are between 0 and 100 nm. So we chose the ion 

energy to obtain an ion distribution with a maximum implantation peak at 50 nm. 

Two-stage ion implantation was carried out at room temperature with firstly 70 keV Al+ ions 

to the fluence of 2×1016 cm-2 and then with 37 keV O+ ions to the fluence of 3×1016 cm-2. The 

ion flux was 6.8×1012 cm-2.s-1 for both Al+ and O+ implantations. The specimen holder was 

inclined perpendicularly to the ion beam. The interval between each implantation required in 

order to change the ion source lasted for ~2-3 hours; during this time the foils remained in 

vacuum. No deliberate heating of the specimens was applied during ion implantation, while 

the specimen temperature increase caused by the ion beam is estimated to be less than 50 K.  

 

The concentration profiles of implanted ions and created vacancies due to ion implantation 

were simulated using Monte Carlo code Stopping and Range of Ions in Matter (SRIM) 

[Ziegler, 1996], assuming the displacement energy of iron atoms of 40 eV [Juslin, 2007]. 

 
Fig. 2.14 Concentration profiles predicted by SRIM (displacement energy of 40 eV): (a) The concentration 
profiles of implanted ions. The concentration peak of both Al+ and O+ ions is predicted at 50 nm; (b) The 
concentration profile of vacancies created due to ion implantation. The concentration peak is predicted at 
25 nm rather than 50 nm. 
 
Fig. 2.14(a) shows that for both Al+ and O+ ions the concentration profile peaks are at 

approximately 50 nm from the specimen surface facing the beam. The nominal (i.e. without 

the account of the profile diffusional spreading) peak concentrations are 3.5 at.% for Al and 

6.4 at.% for O atoms. Fig. 2.14(b) shows that for vacancies created by both Al+ and O+ ion 

implantation. The concentration profile peaks are at approximately 25 nm rather than 50 nm. 

The nominal (without considering recombination) peak concentrations are 1.28 vacancies per 

incident ion per Angström (ion-1.Å-1) for Al+ ion implantation and 0.67 vacancies per incident 

ion per Angström (ion-1.Å-1) for O+ ion implantation. In terms of displacements per atom 
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(dpa), the value of dpa was derived from the concentration of vacancies per incident ion per 

Angström according to the equation: 

 

 

where  is the ion flux (cm-2.s-1),  is the number of vacancies created at a distance from the 

surface (ion-1.Å-1) and  is the atomic density (at.cm-3). 

The calculated numbers of atomic displacements are ~780 per incident Al+ ion and ~320 per 

O+ ion. The calculated damage production rates in the damage peak (at ~ 25 nm distance from 

the surface) are 1.027×10-2 and 5.35×10-3 dpa.s-1 for Al+ and O+ ions, respectively. 

 
Fig. 2.15 Damage profiles predicted by SRIM (displacement energy of 40 eV): Damage profiles of 70 keV 
Al+ (red color) and 37 keV O+ (blue color) ions for the flux 6.8×1012 cm-2s-1.  
 

In addition, damage profiles shown in Fig. 2.15 reveal that the damage due to both Al+ and O+ 

ion implantation is not homogeneous in the range of distance from the surface between 0 and 

150 nm. After ion implantation, all as-implanted specimens were examined immediately by 

TEM observations. Only the specimens that still retain electron transparent regions were 

stored under vacuum condition and characterized by TEM. 

4. Atom probe tomography (APT) 

The results of APT analyses were observed in close collaboration with Dr. Marion Descoins, 

Dr. Dominique Mangelinck (IM2NP, Marseille, France) and Dr. France Dalle 

(CEA/DEN/DANS/DMN/SRMA). The specimen preparation, APT measurements and data 

analysis were carried out at IM2NP through the support of METSA network (2014) and 

NEEDS-Matériaux (2013). Data analysis was also partially made at CEA, Saclay. 

€ 

dpa =
φ × n ×1.108

ρ

€ 

φ

€ 

n

€ 

ρ



Chapter 2  Experimental techniques 

65 

4.1. APT specimen preparation 

The bulk discs of 3 mm in diameter were obtained after mechanical polishing and punching. 

These processes are the same as those already introduced in TEM specimen preparation 

(section 1.4 in Chapter 2). The bulk discs were then jet-electropolished for a few seconds in a 

Tenupol-5 thinning device at -10 °C, to obtain dimpled discs. During electropolishing, one 

face of bulk discs was protected, resulting in a mirror-finished surface dimple (Fig. 2.16(a)) 

formed on the etched face of dimpled discs. The protected face shown in Fiugre. 2.16(b) is 

still coarse since it was not etched.  

 
Fig. 2.16 Photos of the as-implanted dimpled disc taken by Olympus© optical microscope: (a) The etched 
face showing a mirror-finished surface dimple; (b) The protected face showing coarse surface. 
 
Al+ and O+ ions were consecutively implanted into polished dimpled discs at room 

temperature. The parameters (energy, fluence, temperature…) used for dimpled discs are the 

same ones used for TEM thin foils. Implanted ions were projected perpendicularly toward the 

mirror-finished surface dimple during ion implantation. Subsequent thermal annealing was 

applied to some of as-implanted dimpled discs at 500 °C and 3 hours, to obtain annealed 

dimpled discs. 

The next step is use as-implanted and annealed dimpled discs to fabricate needle-shaped tips, 

which are ideal for APT analyses. The tips were produced by an in-situ lift-out method using 

a FEI Helios 600 NanoLab 2-30 kV focused ion beam (FIB) at IM2NP, Marseille, France. A 

detail description of the lift-out method can be found in Annexe A. 

4.2. Principle of APT 
Atom probe is described as a field ion microscope equipped with a time-of-flight mass 

spectrometer and position sensitive detector.  

In Fig. 2.17, a sharp cryogenically-cooled tip is introduced into an ultrahigh vacuum chamber. 

A positive voltage 

€ 

V0  (5-20 kV) is then applied to the tip. In the presence of such a high 

electric field, atoms at the surface of a tip are ionized.  
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The ions are then accelerated by the surrounding electric field towards the detector along the 

electric field lines. As each ion is detected, its time-of-flight is converted into a mass-to-

charge ratio by using a formula derived from simple potential and kinetic-energy 

considerations.  

 

 
Fig. 2.17 Schematic representation of Atom Probe Tomography (APT) [IM2NP, website].  
 

The mass-over-charge ratio  is deduced from the applied voltage,  (with  

and  standing electric and pulse voltages, respectively) and the measured time of flight,  

by using the energy balance relationship: 

 

 
where  is the ion mass;  is the ion charge state (1+, 2+…);  is the elementary charge and 

 is the length between the tip and the detector. 

 
The mass-to-charge ratios of the detected ions are generally represented in the form of a 

histogram, also called mass spectrum. The ability to distinguish the different isotopes, 

combined with the mass-to-charge ratio, enables unambiguous identification of the chemical 

nature of the ions associated with each mass peak. Therefore, The peaks appeared in the mass 

spectrum could be identified and associated to the corresponding element or its isotopes or 

even combination (molecular ions).  
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4.3. APT measurements 

APT measurements were carried out using an atom probe (LEAP 3000TM XHR, Imago 

Scientific Instruments) equipped with a pulsed laser (Pulse Width = 10 ps, wavelength = 532 

nm) at IM2NP in Marseille, France. This LEAP is equipped with a mass reflectron, which 

improves the mass resolution (Flight Path = 382 mm). In our measurements, the atom probe 

was operated in the laser-pulsing mode. Detail conditions of each run are listed in Table 2.2. 

 
During the analysis, the specimen base temperature was maintained between 53 and 87 K in 

ultra-high vacuum conditions (< 1.7 × 10-11 Torr). In addition, the laser energy varied from 

0.5 to 1.2 nJ under laser pulsing mode. Only runs collecting at least 10 millions ions were 

considered in order to reduce the statistical error.  
 

 N° run N° 

tip 

Laser 

energy 

(nJ) 

Pulse 

frequency 

(kHz) 

T 

(K) 

Pressure 

(Torr) 

Detection 

rate (%) 

Total 

ions 

(Million) 

As-

implanted 
R30_03984 M15 0.8 100 86.9 

9.5 × 

10-11 
0.8 – 1 20.8 

R30_05508 M20 0.8 100 86.1 10-11 0.7 – 1 11.8 

R30_05509 M13 0.8 100 86.5 9.7 × 

10-12 

0.5 – 1.2 53.9 

R30_05510 M21 0.6 – 

1.1 

100 54.1 9.6 × 

10-12 

0.5 5.3 

R30_05511 M22 0.8 100 53.2 9.2 × 

10-12 

0.5 – 1.2 48.8 

Annealed 

500°C & 

3hours 

R30_05514 M29 0.8 100 86.5 1.7 × 

10-11 

0.7 115.3 

Table 2.2 Conditions of APT analysis for both as-implanted and annealed tips (500 °C and 3h) 
 
The background, mass resolution and percentage of good hits of each run are listed in 

Table 2.3. Background of each run is negligible and do not influence the definition of 

characteristic peaks shown in mass spectrum. The quality of a mass spectrum is generally 

assessed by the mass resolution, which is defined as , where  is the width of the 

peak at 50% of peak height (full-width at half-maximum (FWHM)).  

 
€ 

M
ΔM

€ 
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In our study, all of runs have a mass resolution higher than 1000 FWHM in laser-pulsing 

mode, which reveal the high quality of APT measurements. In laser-pulsing mode, the 

threshold of good hits is 50 - 60% [Miller, 2014]. As can been seen in Table 2.3, the good hits 

percentage of all runs is over this threshold.  

In total, the run R30_03984 (as-implanted) and the run R30_05514 (annealed) have not only a 

good mass resolution but also excellent good hits. The cluster analysis was carried out in 

these two runs in order to characterize the nature (size, number density, distribution, chemical 

compositions) of precipitates prior and after thermal annealing. 

 N° run N° tip Background 

(ppm/nsec) 

Mass 

resolution 

FWHM 

(56Fe2+) 

Good hits 

(%) 

As-

implanted 

R30_03984 M15 2.4 1170 92.1 

R30_05508 M20 3.62 1103 84.3 

R30_05509 M13 12.50 1145 87.3 

R30_05510 M21 5.97 1060 80.0 

R30_05511 M22 5.57 1158 86.2 

Annealed 

500°C & 

3hours 

R30_05514 M29 9.67 1174 87.8 
Table 2.3 Quality of APT runs for both as-implanted and annealed tips (500 °C and 3h) 
 

4.4. APT data treatment 
The three-dimensional reconstruction of the sharp tip from APT data was done according to 

the methodology described in Refs. [Mangelinck, 2014; Gault, 2011], using a commercial 

software (IVASTM). Nano-clusters were identified using clustering algorithm approach based 

on the idea that nano-clusters are local regions enriched in solute atoms. This algorithm also 

known as maximum separation method depends on several parameters: 

• dmax (nm): The algorithm groups solute atoms separated by a distance dmax. If two 

solute atoms p and q have a distance d(p, q) between each other, and if d (p, q) is 

inferior or equal to dmax, solute atoms p and q are thus associated in the same 

nanocluster. 

• Nmin (number of atoms): In order to avoid the misinterpretation of occasional density 

fluctutations of random solid solution as clusters, all small clusters with the number of 

solute atoms below a threshold Nmin are taken out of consideration. 
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• Lenveloppe (nm): Nanoclusters are constructed on the remaining solute groups by adding 

all the atoms within some distance L ~ dmax from the solutes atoms in each group. 

• Derode (nm): The previous step induces an artificial layer existing on the surface of 

nanocluster, which the erosion method helps to eliminate. 

The principal parameters used in the maximum separation method are dmax and Nmin. They are 

determined for each particular set of APT data using statistic analysis of the nearest neighbor 

and clusters count distributions.  

Once nano-clusters are identified, they are subjected to further characterization in terms of 

size, number density and chemical compositions. 

 

Cluster size: the estimation of feature size is made from the radius of gyration ( ), that is 

the average distance between each cluster atom and the centre of mass of the cluster. The full 

description of the radius of gyration can be found in [Miller, 2014]. In APT experiments, the 

radius of gyration ( ) is normally determined for the 3-D from 

 

 

 

The radius of gyration provides a parameter that is slightly smaller than the actual size of the 

feature. Therefore, it is common to convert the radius of gyration to an alternative parameter, 

the Guinier radius, , which represents the actual size of the feature with the use of the 

following equation:  

 

The cluster size represented by the Guinier radius is comparable with the size estimated by 

other analysis techniques such as the TEM characterization [Williams, 2010].  

 

Cluster number density: the number density of a distribution of discrete clusters may be 

calculated form the number of clusters observed ( ) in the volume analyzed. In principle, 

the volume could be estimated from the products of the extents of the x, y and z directions of 

the analyzed volume. However, the extents of the x and y dimensions of these data generally 

increase during the analysis due to the blunting of the specimen, making a reliable estimate 

difficult [Miller, 2014]. 
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Alternatively, the volume may be estimated from the total number of atoms detected in the 

volume, 

€ 

Nvol , the average atomic volume, , and the detection efficiency of the single-ion 

detector , . Therefore, the number density is given by:
 

 

 
Chemical compositions of clusters: the concentration of an element , in the analyzed volume 

can be expressed as:  

 

where 

€ 

Ni  is the number of atoms of the element 

€ 

i  and 

€ 

Nt  is the total number of atoms in the 

volume. Considering only statistical variation, the precision of the composition measurement 

is given by:
 

 

 

4.5. Common artifacts: Trajectory aberrations & Local magnification effects 

Discrepancies between reconstructed atomic data and the original structure result not only 

from imperfections in the reconstruction procedure, but also from artifacts that induce 

deflections in the flight of the ions. The evaporation of multiphase materials is complicated 

due to the chemical dependence of the evaporation field. Phases with higher evaporation 

fields than the matrix will tend to protrude on the surface leading to a local higher curvature. 

According to the principle of APT data reconstruction, image magnification depends on tip 

radius, and local change in curvature of the tip induces variations in magnification 

[Rose, 1956]. A major consequence of the field difference is the trajectory overlap between 

precipitates and matrix atoms near the interface, which results in interface smearing and 

inaccurate concentration measurements [Marquis, 2010]. 

Gault et al. [Gault, 2012] illustrated this phenomenon in the cases of low field and high field 

precipitates. When the field required to field evaporate the precipitate is lower or higher than 

that required for the matrix, these are referred to as, respectively, low field or high field 

precipitates. In Fig. 2.18, the dashed lines correspond to the expected trajectories of the ions, 

and the solid lines to the actual trajectories.  
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Fig. 2.18 Trajectory aberrations and impact on the density due to a change in the surface curvature in the 
case of low- and high-field precipitate. The dashed lines correspond to the expected trajectories of the ion, 
and the solid lines to the actual trajectories [B. Gault, 2012].  
 
In the case of low field precipitates, the variation in the evaporation field leads to an apparent 

increase in the density of hits (left schema in Fig. 2.18). On the contrary, in the case of high 

field precipitates, the variation leads to an apparent decrease in the density of hits. 

 
This artifact was already observed by Williams et al. [Williams, 2010] and Marquis 

[Marquis, 2008] in the case of precipitates in ODS steels, leading to trajectory overlaps up to 

a few nanometers near the particle/matrix interface. In Chapter 3, we introduce a simple 

matrix-correction for APT data obtained by the cluster analysis. This simple correction helps 

us to better understand element contents in the clusters prior and after the thermal annealing.  
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1. Introduction of the as-implanted material 

The energy-dispersive X-ray (EDX) analysis applied on the as-implanted material confirms 

the presence of both Al and O atoms (see Fig. 3.1). In order to compare the spectra recorded 

on both as-received (blue line) and as-implanted (red line) thin foils, the spectra were 

normalized with the Fe Kα peak. The estimated content of aluminum (~1.85 ± 0.2 at.%) is in 

good agreement with the implanted number of Al+ ions (~1.91 at.%). The quantification of 

the amount of oxygen is, however, impossible because the O peak strongly overlaps with a 

nearby Cr peak in the EDX spectrum. 

 
Fig. 3.1 EDX spectra recorded on both as-received (blue line) and as-implanted (red line) Fe-Cr thin foils. 
The spectra are normalized with the Fe Kα peak. 
 
EEL spectrum with energy loss 475 to 800 eV has been obtained and drawn in Fig. 3.2(a). O 

K, Cr L2,3 and Fe L2,3 core loss edges are all evidently visible in the spectrum. In addition, the 

O K edge is much more comparable to the Cr L2,3 edge in the case of the as-implanted thin 

foil than that in the case of as-received thin foil. Signal (green) and background (red) spectra 

of these three edges were extracted from the spectrum (Fig. 3.2 (a)) in order to quantify 

elemental concentrations. The quantification of oxygen by EELS is easier than that by EDX 

since O K edge does not overlap with Cr L2,3 edge.  The estimated O content (~3.2 ± 0.15 

at.%) is slightly higher than the implanted number of O+ ions (~2.8 at.%). The difference is 

possibly due to the occurrence of the oxidation, which has already been reported in as-

received thin foils. 

For aluminum, it has two characteristic edges in the EEL spectrum: Al L2,3 (73 eV) edge in 

the low-loss region (Fig. 3.2(b)) and Al K (1560 eV) edge in the high-loss region (Fig. 

3.2(c)). The signals of Al edges extracted from the spectra confirm the presence of Al in as-

implanted thin foils. However, it is hard to achieve a precise quantification of Al content due 

to weak intensity of Al signals. 
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Fig. 3.2 EEL spectrum obtained from the as-implanted Fe-Cr thin foil:  (a) Spectrum in the range of 475 
to 800 eV for O K, Cr L2,3 and Fe L2,3 peaks; (b) Spectrum in the range of 65 to 100 eV for Al L2,3 edge; (c) 
Spectrum in the range of 1500 to 1650 eV for Al K edge. Both signal and background spectra of O K, Cr 
L2,3, Fe L2,3, Al L2,3 and Al K peaks are extracted and drawn in green and red colors, respectively.  
 
In total, EDX and EELS characterization confirm that both Al and O atoms were successfully 

introduced into the high purity FeCr thin foils by ion implantation at room temperature.  

Fig. 3.3 shows the bright field micrograph of the as-implanted FIB lamina and its 

corresponding high angular dark field (HAADF) micrograph obtained under scanning TEM 

(STEM) mode. 

 
Fig. 3.3 The microscope operated under scanning TEM (STEM) mode: (a) Bright Field (BF) micrograph; 
(b) Corresponding High Angular Dark Field (HAADF) micrograph.  
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HAADF images are also called as Z-contrast images because contrasts are proportional to Z2 

(Z is the atomic number). The white spots shown in Fig. 3.3(b) reveal that precipitates were 

synthesized in as-implanted samples due to ion implantation.  

Since all metallic elements (Fe, Cr and Al) Therefore, the precipitates observed in the 

HAADF-STEM image (Fig. 3.3(b)) are probably a mix of multiple nano-oxides.  

 
Fig. 3.4 (a) Selective Area Electron Diffraction (SAED) pattern oriented along <1 1 0> Fe-Cr lattice 
direction on a region of the as-implanted thin foil; (b) The colorful shapes represent different sets of 
diffraction spots. Each set of diffraction spots correspond to either the Fe-Cr matrix or one of nano-
oxides. 
 
The co-existence of multiple nano-oxides was identified in the diffraction pattern (Fig. 3.4(a)) 

oriented along <1 1 0> Fe-Cr lattice direction on a region of the as-implanted thin foil. The 

colorful shapes drawn in Fig. 3.4(b) represent different sets of diffraction spots that 

correspond to the Fe-Cr matrix and multiple nano-oxides. An overview of the crystallographic 

structure of multiple nano-oxides was listed below Fig. 3.4. The bcc structure (red 

rectangular) corresponds to the Fe-Cr matrix oriented along <1 1 0> direction. Beside this, the 

rest of structures correspond to multiple nano-oxides oriented in different direction. The 

nature (size, density, chemical composition and structure…) of different nano-oxides will be 

fully introduced later. Here, we only give simply a summary of results. In general, the 

rhombohedral structure (green hexagonal) and the fcc structure (yellow hexagonal) have been 

found to correspond to Cr-rich oxides and (Fe, Cr)-rich oxides, respectively. In contrast, 

another fcc structure (blue hexagonal) belongs to (Al, Cr)-rich oxides.  
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Obviously, the (Al, Cr)-rich oxides are the most interesting precipitates in our study, since the 

atoms implanted are Al and O. Thus, only the results relevant to (Al, Cr)-rich oxides are 

introduced in Chapter III. Other results corresponding to (Fe, Cr)-rich and Cr-rich oxides are 

put in Annexe B. 

2. Precipitate size and number density evolution 

2.1. Comparison between as-implanted thin foils and FIB lamina 

The diffraction spots were properly selected so that only precipitates corresponding to (Al, 

Cr)-rich oxides could be observed in DF TEM images. As described in the section 1.4 of 

Chapter 2, most of as-implanted samples are as-implanted thin foils prepared by mechanical 

and electrolytic polishing. Others were prepared by in-situ lift–out technique with the help of 

Focus Ion Beam (FIB). This kind of samples is thus called as as-implanted FIB lamina. 
 

 
Fig. 3.5 As-implanted thin foil: (a) Bright Field (BF) TEM image; (b) Corresponding Dark Field (DF) 
TEM image. As-implanted FIB lamina: (c) BF TEM image; (d) Corresponding DF TEM image. (e) 
Comparison of size (equivalent diameter) of the precipitates identified in (b) and (d); (f) Cumulative 
frequency as a function of size of precipitates corresponding to (e). 
 
Fig. 3.5(a) and (c) show BF TEM images taken on the as-implanted thin foil and FIB lamina, 

respectively. The corresponding DF TEM images are shown in Fig. 3.5(b) and (d). Bright 

spots corresponding to precipitates can be observed in both micrographs. Obviously, the 

distributions of precipitates are heterogeneous in both two kinds of as-implanted samples. 

Another spatial effect observed in our study – not detailed here - is the sensitivity of 

precipitation to the thickness of TEM samples (please see Annexe D). 
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The measurement of the surface of bright spots allows us to estimate the size of precipitates, 

which is defined by the equivalent diameter 

€ 

deq : 

€ 

deq = 2 × S
π

 

where 

€ 

S  is the surface of precipitates identified in the DF TEM image. 

Fig. 3.5(e) shows the corresponding histogram of precipitate size. The precipitate size 

(equivalent diameter) ranges from 2 to 10.5 nm centered on 4.3 nm and 4.4 nm for the 

as-implanted thin foil and FIB lamina, respectively. Obviously, the distribution of size of 

precipitates is independent to the sample preparation method. The cumulative frequency 

corresponding to Fig. 3.5(e) is drawn in Fig. 3.5(f) as a function of the equivalent diameter. In 

the range of 3 to 5 nm, the two curves drawn in Fig. 3.5(f) almost overlap each other, whereas 

the curve of the as-implanted FIB lamina is under the one of the as-implanted thin foil in the 

large size region. It means that most of precipitates are in the range of 3 to 5 nm. But the 

number of large size precipitates in the as-implanted FIB lamina is slightly higher than that in 

the as-implanted thin foil. The number density of precipitates has the same order of 

magnitude (~1022 m-3) for both two kinds of as-implanted samples. 

2.2. Comparison between as-implanted and annealed thin foils 

Comparing to the as-implanted state in Fig. 3.6(a) and (b), the microstructure of oxide 

precipitates after thermal annealing at 500 °C and 3 hours is presented in Fig. 3.6(d) and (e) 

for after 1 hour and in Fig. 3.6(g) and (h) for after 3hours. The precipitates have evolved 

during thermal annealing: their sizes become larger and larger. The histograms presented on 

Fig. 3.6 highlight this evolution of the size of precipitates from 0 to 3 hours at 500 °C. Before 

thermal annealing, the precipitate size ranges from 2 to 10.5 nm centered on 4.3 nm (see 

Fig. 3.6(c)). After 1 hour of thermal annealing, the center of the histogram shifts to 6.5 nm 

(see Fig. 3.6(f)). Finally, the histogram presents a wider distribution of precipitates, centered 

on 7.7 nm. The distributions of precipitates are still heterogeneous after thermal annealing. On 

the contrary, a decrease in the number density was measured with increasing the duration of 

thermal annealing. The number density is initially (1 ± 0.3) × 1022 m-3 in the as-implanted 

state, then decreases to (7 ± 2) × 1021 m-3 after the thermal annealing at 500 °C and 3 hours. 
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Fig. 3.6 As-implanted thin foil: (a) Bright Field (BF) TEM image; (b) Corresponding Dark Field (DF) 
TEM image; (c) Distribution of size (equivalent diameter) of the precipitates identified in (b). Annealed 
thin foil at 500 °C and 1 hour: (d) BF TEM image; (e) Corresponding DF TEM image; (f) Comparison of 
size (equivalent diameter) of the precipitates identified in (b) and (e). Annealed thin foil at 500 °C and 3 
hours: (g) BF TEM image; (h) Corresponding DF TEM image; (i) Comparison of size (equivalent 
diameter) of the precipitates identified in (b) and (h). 
 

 
Fig. 3.7 (a) Evolution of size (equivalent diameter) of precipitates: in the as-implanted thin foil, the 
annealed one at 500 °C and 1 hour and the annealed one at 500 °C and 3hours; (b) Cumulative frequency 
as a function of size of precipitates corresponding to (a). 
 
Fig. 3.7 summarizes the evolution of precipitate size during thermal annealing. Comparing to 

the average precipitate size of the annealed sample in 1 hour, the average precipitate size of 

the annealed sample in 3 hours still increases slightly. The curves of the cumulative frequency 

as a function of the equivalent diameter (see Fig. 3.7(b)) tend to shift toward high equivalent 

diameters, which also confirms the increase of precipitate size due to thermal annealing. 
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Beside TEM characterization, the precipitate size and number density were also studied by 

APT analysis. A comparison between results obtained by these two different methods can be 

found in the section of APT analysis. 

3. Chemical compositions of precipitates 

The chemical composition of the precipitates has been studied using Energy-Filtered TEM 

(paragraph 3.1) and using Atom Probe Tomography (paragraphs 3.2 and 3.3) in both as-

implanted and annealed samples. 

3.1. Chemical composition using EFTEM 
Precipitates chemical analyses have been performed using EFTEM imaging in both 

as-implanted and annealed samples. Before each EFTEM investigations, the foil thicknesses 

were calculated from EFTEM thickness maps (also known as 

€ 

L
λ

 maps, where 

€ 

L  is the local 

absolute specimen thickness and 

€ 

λ  is the inelastic electron mean free path) by using the log-

ratio method [Williams, 1996]. The inelastic mean free path was estimated from the equation 

derived by Malis et al. [Malis, 1988]. The EFTEM thickness map is an efficient tool to verify 

the feasibility of EFTEM analyses. All signal and background setup parameters for EFTEM 

elemental mapping can be found in the section 1.2.4 of Chapter 2). In addition, the resulting 

EFTEM elemental maps are superimposed with each other in order to form a false color 

image (color overlay), which reflects the spatial relationships and distributions of the 

elements investigated. This image processing method was firstly derived by Hofer et al. 

[Hofer, 1997]. However, the color image is not sufficient for ascribing quantitative 

information to intensity values, and can only offer qualitative information for the chemical 

composition. 

3.1.1 As-implanted thin foils and FIB lamina 
EFTEM analyses were firstly applied to as-implanted TEM thin foils. Four precipitates 

located in the zone where the thickness of the thin foil is approximately 50 nm (

€ 

L
λ

 ∼0.45 and  

€ 

λ  ∼110 nm). The resulting energy-filtered images are shown in Fig. 8(a)-(d). The dark 

contrasts in the Fe-L2,3 elemental map (Fig. 3.8(a)) indicates the local Fe depletion at four 

positions that, according to EFTEM observation, correspond to precipitated clusters. 

Contrariwise, the bright contrasts in the Al-K elemental map (Fig. 3.8(c)) and O-K elemental 

map (Fig. 3.8(d)) show the local Al and O enrichment at the same positions. The contrasts in 

the Cr-L2,3 elemental map are not sufficiently obvious to verify if these positions are locally 
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enriched or not. This issue may results from the thickness of the zone, which is not thin 

enough to achieve perfect EFTEM analyses. 

 
Fig. 3.8 Energy-filtered TEM (EFTEM) characterization of typical precipitates in the as-implanted thin 
foil: The panels show three-window EFTEM elemental maps of Fe-L2,3 edge (a), Cr-L2,3 edge (b), Al-K 
edge (c) and O-K edge (d). The colors indicate the elements as marked in the legend. 
 

 
Fig. 3.9 Energy-filtered TEM (EFTEM) characterization of typical precipitates in the as-implanted FIB 
lamina: (a) Bright Field (BF) TEM image of region of interest for EFTEM characterization. The panels 
show jump ratio images of Fe-M2,3 edge (b), Cr-M2,3 edge (c), Al-L2,3 edge (d) and three-window EFTEM 
elemental map of O-K edge (e). The colors indicate the elements as marked in the legend. 
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Comparing to TEM thin foils, the samples prepared by FIB (also called as FIB lamina) is 

usually much more thinner. The thickness advantage of the FIB lamina contributes to 

overcome the previous issue. The thickness of the FIB lamina equals to approximately 25 nm 

(

€ 

L
λ

 ∼0.22 and 

€ 

λ  ∼110 nm) regarding Fig. 3.9-3.10. As a consequence, the FIB lamina is well 

suitable for EFTEM investigations.  
 

 
Fig. 3.10 Energy-filtered TEM (EFTEM) characterization of typical precipitates in the as-implanted FIB 
lamina: (a) Bright Field (BF) TEM image of region of interest for EFTEM characterization. The panels 
show jump-ratio images of Fe-M2,3 edge (b), Cr-M2,3 edge (c), Al-L2,3 edge (d) and three-window EFTEM 
elemental map of O-K edge (e). The colors indicate the elements as marked in the legend. 
 
Fig. 3.9(a) is a BF TEM image of the FIB lamina, which shows a typical spatial distribution 

of precipitates in the matrix. The dark contrasts are supposed to be precipitates and 

highlighted by the arrows. Fig. 3.9(b) presents a Fe-M2,3 elemental map showing the local Fe 

depletion. The positions of the Fe depletion are consistent with those of the dark contrasts 

presented on Fig. 3.9(a). This confirms that the location of precipitates is inside the matrix. 

Fig. 3.9(c)-(e) present respectively the Cr-M2,3, Al-L2,3 and O-K elemental maps showing the 

local Cr, Al and O enrichment. The correlation between the Fe depletion and the (Cr, Al, O) 

enrichment reveals that the precipitates formed in as-implanted samples are (Al, Cr)-rich 

oxides, even if their quantitative chemical compositions are not yet possibly determined by 

EFTEM analyses.  

 
Fig. 3.10(a) shows another BF TEM image, in which precipitates are not clearly visible due to 
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the presence of defects and the low contrast between the matrix and precipitates. Combining 

Fe-M2,3 elemental map with Cr-M2,3, Al-L2,3 and O-K elemental maps, one can see that Fe 

depletion correlate to the enrichment of Cr, Al and O. This confirms again that the 

precipitates formed in the as-implanted samples are (Al, Cr)-rich oxides. Moreover, the 

signal–to-noise ratio of the energy-filtered TEM images is better than that on the BF image 

and thus allows the detection of precipitates, which are not clearly visible on the BF image.  

For the precipitates identified in Fig. 3.8-3.10, they have sizes ranging between 3 and 30 nm, 

although most of them are below 10 nm. The results are consistent with those obtained by the 

measurement on DF TEM images.  

Fig. 3.11 Energy-filtered TEM (EFTEM) series showing (Al, Cr, O) precipitates with homogeneous 
(not core-shell) structure in the as-implanted FIB lamina. (a) BF image; (b) Cr-M2,3 jump-ratio 
image and (c) Cr intensity profile across the precipitates along the direction of the white arrow; (d) 
O-K three-window EFTEM elemental map; (e) Al-L2,3 jump-ratio image and (f) Al intensity profile 
across the precipitates along the direction of the white arrow. 

 
Fig. 3.11(a) is a BF TEM image containing two precipitates, of which the shape is clearly 

visible due to the dark contrasts in the micrograph. The precipitate chemistry was investigated 

by EFTEM. Elemental maps of Cr, O and Al (Fig. 3.11 (b), (d) and (e)) show the studied 

precipitates are (Al, Cr)-rich oxides. Cr and Al intensity profiles across two precipitates along 

the arrow direction are drawn in Fig. 3.11(c) and (e), respectively. The intensity profiles 

reveal that Cr signal does not extend further than the Al signal. As a consequence, the 

precipitates prefer a homogeneous structure rather than the core-shell structure.  The sizes of 

precipitates measured from the intensity profiles are approximately 9 and 11 nm, respectively. 
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3.1.2 Annealed thin foils 

As mentioned above, thermal annealing at 500 °C and 3 hours induced the increase of 

precipitate size. In Fig. 3.12(a), a big size precipitate (

€ 

deq  ∼20 nm) is marked by the arrow 

and reflected by the BF micrograph of the annealed thin foil. The EFTEM investigation was 

applied to this precipitate located in the zone where the thickness of the thin foil was found to 

be approximately 35 nm (

€ 

L
λ

 ∼0.32 and 

€ 

λ  ∼110 nm). 

 

 
Fig. 3.12 Energy-filtered TEM (EFTEM) characterization of typical precipitates in the annealed thin foil 
at 500 °C and 3 hours: (a) Bright Field (BF) TEM image of region of interest for EFTEM 
characterization. The panels show jump-ratio images of Fe-M2,3 edge (b), Cr-M2,3 edge (c), Al- L2,3 edge (d) 
and three-window EFTEM elemental map of O-K edge (e). The colors indicate the elements as marked in 
the legend. 
 
The resulting energy-filtered images are presented in Fig. 3.12(b)-(e). The dark contrast on 

the Fe-M2,3 elemental map (Fig. 3.12(b)) show the local Fe deficiency. The Fe elemental map 

gives a clear view of this precipitate in the matrix. The other three elemental maps 

(Fig. 3.12(c)-(e)) acquired by the filtering of the Cr-M2,3, Al-L2,3 and O-K edges exhibit the 

same pattern of bright contrasts which correspond to the precipitate observed on the BF and 

Fe elemental map. This suggests that the precipitate has the same Al-Cr-O compositions after 

thermal annealing at 500 °C and 3 hours.   
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Fig. 3.13 Energy-filtered TEM (EFTEM) characterization of typical precipitates in the annealed thin foil 
at 500 °C and 3 hours: (a) Bright Field (BF) TEM image of region of interest for EFTEM 
characterization. The panels show jump-ratio images of Fe-M2,3 edge (b), Cr-M2,3 edge (c), Al-L2,3 edge (d) 
and three-window EFTEM elemental map of O-K edge (e). The colors indicate the elements as marked in 
the legend. 
 
The EFTEM investigation was also performed on another region of the annealed thin foil. 

Similar energy-filtered images are presented in Fig. 3.13(b)-(e). The Fe depletion combing 

with the Cr and O enrichment are consistent with the previous results of Fig. 3.12. However, 

two types of oxides instead of one uniform oxide can be distinguished in the Al elemental 

map (Fig. 3.13(d)): (Al, Cr)-rich oxides and Cr-rich oxides in accordance with the bright and 

dark contrasts appeared in the Al elemental map. The synthesis of Cr-rich oxides is probably 

owed to the oxidation. 

 

3.2. APT analyses of as-implanted samples 

3.2.1 Compositional measurements 
Fig. 3.14 shows 1-D elemental atomic concentration profiles along the z-axis of the 

reconstructed volume. The APT data used for the 3-D reconstruction was obtained from the 

as-implanted tip (R30_03984). The mass spectrum of sputtered atoms measured on the 

as-implanted tip demonstrated numerous peaks corresponding not only to single elements (Fe, 

Cr, Al and O) but also to small metal-oxygen fragments MxOy  (with x = 1 to 2 and y = 1 to 3) 

as well. Small metal-oxygen fragments MxOy were decomposed into two separate elements 
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during the count of elemental content. The overall elemental content of the studied volume 

was found to correspond to 86.41 ± 0.03 at.% Fe, 9.77 ± 0.09 at.% Cr, 0.56 ± 0.09 at.% Al 

and 2.71 ± 0.12 at.% O. The overall content of oxygen atoms in the studied volume 

corresponds to the amount of oxygen implanted in the volume (2.77 at.%), as estimated using 

SRIM code. However, the number of aluminum atoms is only 30 % of that implanted 

(1.91 at.%). 

 
Fig. 3.14 3-D reconstruction of the APT data obtained from the as-implanted tip (R30_03984) and 1-D 
elemental atomic concentration profiles along the z-axis of the reconstructed volume: The origin of the z-
axis for 1-D concentration profiles starts at the interface between the protective layer of Ni and the real 
matrix of the as-implanted tip. The left y-axis (0-14 at.%) is for profiles of Cr, Al and O, and the right one 
(0-100 at.%) is only for the profile of Fe. 
 
Significant content of Ni was detected on the top of the as-implanted tip. The presence of Ni 

in the as-implanted tip arises from the remaining protective layer of Ni after the APT tip 

preparation. Here, the origin of the z-axis for 1-D concentration profiles starts at the interface 

between the protective layer of Ni and the real matrix of the as-implanted tip. The profiles of 

Fe and Cr are almost independent of the depth along z-axis, whereas the profiles of Al and O 

depend on the depth. In the region near the surface of the tip (0-10 nm), a huge variation of 

the concentration of O indicates the oxidation occurred at the region near the surface of the 

as-implanted tip (without considering the protective layer). The maximum concentrations of 

Al and O in Fig. 3.14 were found to correspond to 0.91 at.% and 3.87 at.% at the depth of 46 

nm, respectively. The depth of maximum peaks corresponds well to the profiles of Al and O 

simulated using SRIM code. However, the maximum concentration values obtained from the 

concentration profiles are only 26 % and 60 % of that simulated for Al and O, respectively. 
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Fig. 3.15 Comparison of 1-D elemental atomic concentration profiles obtained from the APT analysis of 
the as-implanted tip (R30_03984) and the SRIM simulation: (a) the profiles of Al in the range of 100 to 
125 nm; (b) the profiles of O in the range of 100 to 125 nm. 
 
In the region ranged of 100 to 125 nm, the concentration of Al obtained from the APT 

analysis is slightly larger than the one obtained from the SRIM simulation (see Fig. 3.15(a)).  

On the contrary, the difference of concentration profiles of O is much more significant (see 

Fig. 3.15(b)). In total, the concentrations of Al and O obtained from the APT analysis are 

relatively larger than those obtained from the SRIM simulation in the deeper region.  This is 

the evidence for the high mobility of implanted Al and O ions. 

 
Fig. 3.16 3-D APT reconstruction from the as-implanted tip (R30_03984): the distributions of evaporated 
elements and molecular ions. 
A sub-volume (approximately 40 x 60 x 80 nm3) was selected from the 3-D reconstructed 

volume shown in Fig. 3.14. The top of sub-volume was chosen to start at 40 nm along the 

z-axis so that the influence of the oxidation near the surface was eliminated. Fig. 3.16 shows 
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the distributions of evaporated elemental species (Cr, Al, O) and molecular ions 

corresponding to oxides (CrxOy, FexOy, AlxOy) in this sub-volume. For elemental species, 

their distributions are almost homogeneous in the sub-volume, although the cases in Al and O 

are less homogeneous than that in Cr. For molecular ions, the distributions of chromium oxide 

and iron oxide are much more intense than that of aluminum oxide. As a consequence, the 

dispersion of nano-clusters can’t derive from the distributions of elemental species and 

molecular ions. 

 

3.2.2 Cluster analyses 

In order to get more information about nano-clusters, the cluster analysis algorithm (as 

described in the section 4.4 of Chapter 2) was applied to this sub-volume (approximately 

40 x 60 x 80 nm3). Both elemental species (Al, O) and molecular species corresponding to 

aluminum oxide contribution (Al2O, AlO2, AlO and O2) were selected to define the clusters. 

These species are called ‘core’ species. Core species were selected using a maximum 

separation distance dmax=1 nm. The value for dmax was determined from the nearest-neighbor 

distribution for all the selected species, which exhibits two distinct peaks, one at small 

distances for the clusters and one for the dilute matrix with larger average distances between 

the species. The local minimum between the two peaks was selected as a dmax value. Clusters 

were defined as a group of at least and Nmin= 20 core atoms within dmax. In addition, clusters 

smaller than a critical value of Nmin were considered as random clusters in the matrix solid 

solution and were removed from the analysis. The remaining atoms were included in a cluster 

if they are positioned within a surround distance L = dmax = 1 nm of a core atom defining the 

cluster. The atoms at the interface were then eroded if they are within 

derosion = 0.5dmax = 0.5 nm from a matrix atom. 

3.2.2.1 Number density, spatial distribution and size distribution of clusters 

The obtained three-dimensional atom map of extracted clusters is shown in Fig. 3.17(a)-(b). 

There were 151 clusters identified in the sub-volume, so the estimated density is 

9.45 × 1023 m-3 with using the number density equation described in the section 4.4 of 

Chapter 2. The number density estimated by APT has a higher order of magnitude with the 

number density obtained by TEM characterization (1 × 1022 m-3). 
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Fig. 3.17 (a) 3-D distribution of zones enriched in Al, O atoms and Al-O molecular ions in the selected 
sub-volume obtained by the application of cluster processing to the APT data. The depth direction is along 
the z-axis direction. (b) The projection of the sub-volume along the y-axis direction.  
 

 
Fig. 3.18 (a) The depth distribution histogram of cluster centre positions with taking the bin width as 10 
nm; (b) Cumulative frequency of the depth distribution histogram. The depth direction is along the z-axis. 
For the depth values written in black color, the origin of the depth is the same as the origin of the depth 
for the total reconstructed volume. The thickness of the protective layer of Ni was estimated as 25 nm 
according to the concentration profile of Ni. So the depth values written in blue color were obtained by 
subtracting the thickness of the layer.  
 
The number of clusters with respect to the depth coordinate of clusters is shown in Fig. 

3.18(a), and the cumulative frequency corresponding to Fig. 3.18(a) is shown in Fig. 3.18(b). 

The bin width of the histogram was set to 10 nm. For the depth values written in black color, 

the origin of the depth is the same as the origin of the depth for the total reconstructed 

volume. The thickness of the protective layer of Ni was estimated as 25 nm according to the 

concentration profile of Ni. So the depth values written in blue color were obtained by 

subtracting the thickness of the layer. With subtracting the thickness of the protective layer, 

the depth profile of the cluster number density became to be comparable with 1-D elemental 

atomic concentration profiles of Al and O. Obviously, The depth distribution of clusters is 

heterogeneous, and the depth coordinate (between 45-55 nm) corresponding to the maximum 

peak of the histogram is consistent with the one (~50 nm) corresponding to the profiles of 

implanted Al and O ions. 
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Fig. 3.19 (a) The size distribution histogram of clusters with taking the bin width as 0.1 nm; (b) 
Cumulative frequency of the size distribution histogram. The Guinier radius RG was adopted to represent 
the size of cluster.  
 
An estimation of feature size is made from the Guinier radius RG, which is related to the 

radius of gyration Rg by: 

 

The full description of the Guinier radius and the radius of gyration can be found in the 

section 4.4 of Chapter 2.  

Fig. 3.19 (a) shows the size distribution histogram of clusters as a function of the Guinier 

radius RG. The bin width of the histogram was set to 0.1 nm. For 151 clusters, the Guinier 

radius ranges from 0.8 to 2.2 nm centered on 1.4 nm. Furthermore, the curve of cumulative 

frequency shown in Fig. 3.19(b) reveals that 81.4% of clusters has the Guinier radius in the 

range of 1.1 to 1.6 nm.  

 
 

Fig. 3.20 The size distribution of clusters as a function of the depth coordinate of clusters: The Guinier 
radius RG described in the section 4.4 of Chapter 2 was adopted to represent the size of cluster. The depth 
direction is along the z-axis. For the depth values written in black color, the origin of the depth is the same 
as the origin of the depth for the total reconstructed volume. The depth values written in blue color were 
obtained by subtracting the thickness of the protective layer of Ni. 
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The size distribution was also drawn as a function of the depth coordinate of clusters (see Fig. 

3.20). In fact, Fig. 3.20 is considered as a combination of Fig. 3.18(a) and Fig. 3.19(a). It 

reveals that most of clusters are located in the range of 35 to 55 nm with the Guinier radius of 

1.1 to 1.6 nm. The distribution of clusters correlate with 1-D elemental atomic concentration 

profiles of Al and O (maximum peak at 46 nm). 

3.2.2.2 Chemical compositions of clusters 

Elemental compositions in each of 151 clusters obtained from cluster analysis were drawn in 

Fig. 3.21. Cross symbols with different colors represent atomic compositions of Fe, Cr, Al 

and O in the clusters. And elemental compositions in the matrix were represented by colorful 

lines. 

 
Fig. 3.21 (a) The evolution of elemental contents (including Fe) in the matrix and 151 clusters as a function 
of the depth coordinate of clusters; (b) The same evolution of elemental contents without Fe. The depth 
direction is along the z-axis direction. The depth direction is along the z-axis. For the depth values written 
in black color, the origin of the depth is the same as the origin of the depth for the total reconstructed 
volume. The depth values written in blue color were obtained by subtracting the thickness of the 
protective layer of Ni. 
 

In Fig. 3.21(a), all cross symbols in green is below the green line, which indicates the content 

of Fe in the clusters is lower than the one in the matrix. Fig. 3.21(b) gives a better view to 
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compare the content of Cr, Al and O in the clusters and in the matrix. The contents of Al and 

O in all the clusters are significantly higher than those in the matrix, whereas only 70% of the 

clusters have a higher content of Cr than the matrix.  

The enrichment of Al, Cr and O combining with the depletion of Fe shown in Fig. 3.21 are 

consistent with the results obtained by Energy-Filtered TEM in the as-implanted samples. In 

addition, the evolution of atomic compositions in the clusters seems to be independent of the 

depth since no significant increase/decrease of elemental contents as a function of the depth 

coordinate was observed from Fig. 3.21. 

The level of Fe measured in the clusters varies from 75% to 87%. While it is possible that 

clusters contain some Fe, it is thought this high level is mainly the result of trajectory 

aberrations known to occur with oxide particles (see Chapter 2, paragraph 4.5). Trajectory 

aberrations arise from precipitates that require different fields for evaporation. The oxide 

particles have been shown to image darkly during field ion evaporation [Marquis, 2008], so 

the field required to evaporate the oxide particles is lower than that required for the matrix. 

These oxide particles are thus referred to as low-field precipitates. The variation in the 

evaporation field leads to a flattening of the surface in the case of low-field precipitates, 

resulting in a lower field region that deflect the ion trajectories inwards, which causes an 

apparent increase in the density of hits [Gault, 2012]. This artifact was also reported in 

[Williams, 2010], which demonstrated that a reduced local magnification of precipitates in 

ODS steels compared to the surrounding matrix, leading to trajectory overlaps up to a few 

nanometers near the particle/matrix interface. Indeed, distortions induced by trajectory 

aberrations can lead to atoms as part of the matrix being reconstructed within a particle. In 

order to compare datasets, the amount of Fe was artificially set to zero and the matrix 

contribution was then corrected by calculating the likely proportion of alloying elements 

present together with Fe in the matrix, and removing this number of atoms from the raw 

cluster compositions. The corrected element content 

€ 

xi
Corr  is given by: 

€ 

xi
Corr = xi −

xFe ⋅ Xi
'

XFe
'
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where 

€ 

xi and 

€ 

xFe  are the uncorrected contents in the cluster, respectively; 

€ 

Xi
'  and 

€ 

XFe
'

 are the 

elemental contents in the matrix, respectively. The resulting compositions are quoted as 

matrix-corrected compositions. 

Compositions (at.%) in the matrix as well as uncorrected compositions (at.%) in the clusters 

are shown in Table 3.1(a-b). The standard deviation (σ) of each content value was calculated 

based on the equation described in the section 4.4 of Chapter 2. 
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Element Fe Cr Al O 
at.% 86.78 10.06 0.47 2.69 
σ 0.01 0.03 0.03 0.03 

Table 3.1 (a) Matrix compositions (at.%) and standard deviation (σ) in the sub-volume of the as-implanted 
tip (R30_03984).  
 

Element Fe Cr Al O Al/Cr (Al+Cr)/O 
at.% 82.64 10.25 2.10 5.01 
σ 0.11 0.24 0.25 0.25 0.21 2.43 

(b) Nanocluster uncorrected composition (at.%) and standard deviation (σ) in the sub-volume of the as-
implanted tip ((R30_03984).  
 

Element Fe Cr Al O Al/Cr (Al+Cr)/O 
at.% - 22.52 34.5 42.98 
σ - 0.35 0.57 0.59 1.53 1.20 

(c) Nanocluster matrix-corrected composition (at.%) and standard deviation (σ) in the sub-volume of the 
as-implanted tip (R30_03984).  
 
The overall elemental content in the matrix was found to correspond to 86.78 ± 0.03 at.% Fe, 

10.06 ± 0.09 at.% Cr, 0.47 ± 0.09 at.% Al and 2.69 ± 0.09 at.% O, whereas the overall 

uncorrected content in the 151 clusters was found to correspond to 82.64 ± 0.33 at.% Fe, 

10.25 ± 0.72 at.% Cr, 2.10 ± 0.75 at.% Al and 5.01 ± 0.75 at.% O. The concentrations of core 

elements Al and O are 4.5 and 1.9 times higher compared to that measured from the matrix, 

respectively. The concentration of Cr in the clusters is slightly higher than that measured from 

the matrix. These results confirm again that the clusters are rich in Al, Cr and O.  

 

Matrix-corrected compositions and the standard deviation (σ) in the clusters are listed in 

Table 3.1(c). The overall elemental content in the clusters was found to correspond to 

22.52 ± 1.05 at.% Cr, 34.5 ± 1.71 at.% Al and 42.98 ± 1.77 at.% O after the normalization.  

The clusters in the as-implanted tip were sorted by ascending order of the Guinier radius in 

the range of 0.8 to 2.2 nm with the bin width as 0.1 nm. The histograms of uncorrected and 

matrix-corrected elemental contents in the clusters are shown in Fig. 3.22(a)-(b) as a function 

of their Guinier radius. In these Fig.s, the cross signs with red color represent the average 

ratio of Al/Cr in each bin, and the dash line indicates the average ratio of Al/Cr based on all 

bins. Uncorrected compositions (Fig. 3.22(a)) show the total average ratio of Al/Cr and 

(Al+Cr)/O are approximately 0.21 and 2.43 in the clusters, respectively. With applying data 

correction, the ratios have evolved, showing Al/Cr = 1.53 and (Al+Cr)/O = 1.2. The ratio of 

Al/Cr is size independent before and after applying data correction. 
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Fig. 3.22 Comparison of the elemental content in 151 clusters (a) before and (b) after applying data 
correction. Histograms of elemental contents in the clusters were drawn as a function of the Guinier 
radius with taking the bin width as 0.1 nm. The cross signs with red color represent the average ratio of 
Al/Cr in each bin. And the dash line with blue color represents the average ratio of Al/Cr based on all 
bins. 
 
The APT-measured compositions deviates from the expected ratios of known stoichiometric 

(Al, Cr, O) oxides. Furthermore, the APT measurements show that these particles are still rich 

in Cr after applying a correction for the trajectory aberrations effect. The clusters are thus 

more likely to be Al-Cr-rich oxide.  

N° of cluster 
analysis CA15 CA16 CA17 CA18 

 dmax(nm) 1 1 1 1 

L (nm) 0.7 1 1 0.9 

Nmin 20 30 20 20 

 derosion (nm) 0.5 1 0.5 0.6 

Cluster count 151 48 151 151 
Table 3.2 List of analysis parameters (Nmin, L, derosion) used in each of the cluster analysis test CA15-18. 
The variation of parameters is highlighted. 
 
The variation of the flexible analysis parameters (L, Nmin, derosion) within reasonable limits has 

provided additional information about the (Al, O) enriched zones (see Table 3.2). The 

distance L is used to add the atoms in a cluster if they are positioned within a surround 

distance L of a core atom defining the cluster. In particular, the decrease of the distance L 

makes it possible to decrease the cluster surface shell that consists of non-solute atoms. 

Comparing the cluster analysis CA15 (L = 0.7 dmax) and CA17 (L = dmax), the resulting 

decrease of the average Guinier radius (down from 1.4 nm for L = dmax to 1.2 nm for L = 0.7 

dmax) is accompanied with the increase of the average uncorrected content of Al and O in 

clusters (up from 2.1 and 5.01 at.% for L = dmax to 11.3 and 9.14 at.% for L = 0.7 dmax). On the 

other hand, the strengthening of restrictions on the cluster identification in the cluster analysis 
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CA16 (Nmin = 30 and derosion = dmax rather than Nmin = 20  and derosion = 0.5dmax in CA17, 

respectively) results in the decrease of the cluster number density down to ~3 × 1023 m-3 and 

the average Guinier radius down to ~1.2 nm. The relative contents of Al and O in the 

identified clusters increase up to 17.46 and 16.69 at.%, respectively, mostly at the expense of 

iron, whose relative part falls down to 58.11 at.%. The Cr content in the clusters also 

decreases, but much less pronounced (down to 7.75 at.%). As can be seen, the adjustment of 

cluster analysis parameters changes the nature (size, density, compositions…) of identified 

clusters in the sub-volume. 

In conclusion, the APT analysis suggests that the clusters found in the as-implanted tip are 

more likely to be Al-Cr-rich oxides. Furthermore, the size of these clusters is too small (the 

Guinier radius ranges from 0.8 to 2.2 nm	  centered on 1.4 nm) to be observed easily by TEM 

techniques. Nonetheless, the results about chemical compositions of the nano-clusters 

obtained by APT are consistent with those obtained by Energy-filtered TEM. 

3.3. APT analyses of annealed samples 

3.3.1 Compositional measurements 

Thermal annealing was carried out inside the TEM microscope at 500 °C with 3 hours. Then 

the annealed APT tips were produced by the in-situ lift-out techniques as described in 

Annexe A. 

Fig. 3.23(a) shows the 3-D reconstruction of the APT data obtained from the annealed tip 

(R30_03984). The mass spectrum of sputtered atoms measured on the annealed tip 

demonstrated numerous peaks corresponding not only to single elements (Fe, Cr, Al and O) 

but also to small metal-oxygen fragments MxOy (FeO, Fe2O, CrO, CrO2, AlO, AlO2) as well. 

The metal-oxygen fragments MxOy appearing on the top region close to the surface of the tip 

(Fig. 3.23(a)) arise from the oxidation in this region. 

The profile of O in the range of 0 to 100 nm as shown in Fig. 3.23(b) confirmed also that the 

oxidation occurred. The overall elemental content of the studied volume was found to 

correspond to 87.41 ± 0.06 at.% Fe, 10.37 ± 0.09 at.% Cr, 0.59 ± 0.06 at.% Al and 

1.49 ± 0.09  at.% O. The overall contents of Al and O are only 31% and 54% of that 

implanted, as estimated using SRIM code, respectively. No significant content of Ni was 

detected on the top of the annealed tip, which indicates the protective layer of Ni had been 

eliminated during the APT tip preparation. Therefore, the origin of the profiles obtained by 

the APT analysis starts directly at the surface of the annealed tip.  
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Fig. 3.23 (a) 3-D reconstruction of the APT data obtained from the annealed tip (R30_05514): the 
reconstructed volume is described by single elements (Fe, Cr, Al, O) and associated metal-oxygen 
fragments MxOy (FeO, Fe2O, CrO, CrO2, AlO, AlO2); (b) 1-D elemental atomic concentration profiles 
along the z-axis of the reconstructed volume: The origin of the z-axis corresponds to the annealed sample 
surface. The left y-axis (0-18 at.%) is for profiles of Cr, Al and O, and the right one (0-100 at.%) is only 
for the profile of Fe. 
 
The comparison between 1-D concentration profiles of Al and O obtained by the APT 

analysis and those estimated using SRIM code is shown in Fig. 3.24. The real profiles are 

obviously broader than that estimated using SRIM code. The depth corresponding to the 

maximum contents of Al and O is the same for both real and simulated profiles. However, the 

maximum values of the real profiles are lower than that of the simulated profiles. 
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Fig. 3.24 Comparison of 1-D elemental atomic concentration profiles obtained by the APT analysis of the 
annealed tip (R30_05514) and the SRIM simulation of projected ions. The inset shows the profiles of Al 
and O in the range of 300 to 400 nm 
 
According to the SRIM simulation, the contents of Al and O become to be negligible if the 

depth is more than 150 nm. On the contrary, the real contents of Al and O are still ~0.08 and 

0.35 at.% in the range of 300 to 400 nm, respectively. The broader profiles of Al and O with 

low concentration peaks indicate that thermal annealing may enhance the diffusion of 

implanted Al and O atoms, which induced the implanted atoms to be diffused to much deeper 

region. 

 

at.% R30_05508 
(z = 50-55 nm) 

R30_05509 
(z = 50-55 nm) 

R30_05511 
(z = 50-55 nm) 

R30_05514 
(z = 40-46 nm) 

Al 2.26 2.26 2.31 2.47 
O 4.02 3.89 4.02 4.08 
Fe 83.19 83.47 83.29 83.3 
Cr 10.14 10.08 10.07 10.1 

Table 3.3 Maximum compositions (at.%) and corresponding depths in four different annealed APT tips.  
 
The maximum concentrations of Al and O obtained in different annealed APT tips by the 

APT analysis are listed in Table 3.3. The maximum concentrations in four different annealed 

APT tips were found to be similar: ~ 2.3 at.% for Al and 4 at.% for O. In addition, the depth 

where concentrations reach maximum values corresponds well to the depth obtained by the 

SRIM simulation.  

A sub-volume (approximately 40 x 40 x 140 nm3) was selected from the whole reconstructed 

volume of the annealed tip (R30_05514). The range of the z-axis for the sub-volume is 

between 90 and 230 nm. Therefore, the large metallic oxide fragments near the surface of the 

tip were excluded. 
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Fig. 3.25 3-D APT reconstruction from the annealed tip (R30_05514): the distributions of evaporated 
elements and molecular ions. 
 
Fig. 3.25 shows the distributions of evaporated elemental species (Fe, Cr, Al, O) and 

molecular ions corresponding to oxides (CrO, AlO) in this sub-volume. The distributions of 

Fe and Cr in the sub-volume of the annealed tip are similar to the cases observed in the 

as-implanted tip, which are almost homogeneous. In contrast, the distributions of Al and O 

are evidently heterogeneous at this time. For molecular ions, the distributions of CrO and AlO 

are heterogeneous too. Precipitates can be observed clearly in the distribution of CrO as well 

as Al+O+AlO. 

3.3.2   Cluster analysis 

The cluster analysis algorithm was applied to the sub-volume (approximately 

40 x 40 x 110 nm3). Both elemental species (Al, O) and molecular species corresponding to 

aluminum oxide contribution (Al2O, AlO and O2) were selected to define the clusters. These 

species are called ‘core’ species. Core species were selected using a maximum separation 

distance dmax = 1.25 nm. The value for dmax was determined from the nearest-neighbor 

distribution for all the selected species, which exhibits two distinct peaks, one at small 

distances for the clusters and one for the dilute matrix with larger average distances between 

the species. The local minimum between the two peaks was selected as a dmax value. Clusters 

were defined as a group of at least and Nmin = 30 core atoms within dmax. In addition, clusters 
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smaller than a critical value of Nmin were considered as random clusters in the matrix solid 

solution and were removed from the analysis. The remaining atoms were included in a cluster 

if they are positioned within a surround distance L = dmax = 1.25 nm of a core atom defining 

the cluster. The atoms at the interface were then eroded if they are within derosion = 1 nm from 

a matrix atom. 

3.3.2.1 Number density, spatial distribution and size distribution of clusters 

 
Fig. 3.26 (a) 3-D distribution of zones enriched in Al, O atoms and Al-O molecular ions in the selected 
sub-volume obtained by the application of cluster processing to the APT data. The depth direction is along 
the z-axis direction. (b) The projection of the sub-volume along the x-axis direction.  
 
The obtained three-dimensional atom map of extracted clusters is shown in Fig. 3.26(a)-(b). 

165 clusters were identified in the sub-volume, and the estimated density is 4.85 × 1023 m-3. 

 
Fig. 3.27 (a) The depth distribution histogram of cluster centre positions with taking the bin width as 10 
nm; (b) Cumulative frequency of the depth distribution histogram. The depth direction is along the z-axis.  
 
The number of clusters with respect to the depth coordinate of clusters is shown in Fig. 

3.27(a), and the cumulative frequency is shown in Fig. 3.27(b). The bin width of the 

histogram was set to 10 nm. The depth distribution of clusters is heterogeneous, and the 

number of clusters is much more intense at the depth of 130 nm. 
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Fig. 3.28 The size distribution of clusters as a function of the depth coordinate of clusters: The Guinier 
radius RG described in the section V.4 of Chapter II was adopted to represent the size of cluster.  
 
An estimation of feature size is made from the Guinier radius RG, which is related to the 

radius of gyration Rg by:        

 
The size distribution was drawn as a function of the depth coordinate of clusters (see 

Fig. 3.28). It reveals that most of clusters are located in the depth between 110 and 180 nm, 

and the Guinier radius of these clusters ranges from 0.9 to 3 nm. In particular, we found that 

there is one cluster that is extremely bigger than others. 

 
Fig. 3.29 Cluster n° 40: the biggest one in 165 clusters with the Guinier radius of 6.2 nm. 
 
The cluster is illustrated in Fig. 3.29, and the its Guinier radius is ~ 6.2 nm. Such an unusual 

cluster is possibly the consequence of the agglomeration of several small clusters that are 

quite close to each other. Although the parameters are optimized for the cluster analysis 

algorithm, it is still difficult to distinguish them. So these small clusters are considered as a 

big cluster. Since the uncertainty of this cluster, such big cluster will not be considered for 

latter discussion. 
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Fig. 3.30 (a) The size distribution histogram of clusters with taking the bin width as 0.1 nm; (b) 
Cumulative frequency of the size distribution histogram. The Guinier radius RG was adopted to represent 
the size of cluster.  
 
Fig. 3.30(a) shows the size distribution histogram of clusters as a function of the Guinier 

radius RG. The bin width of the histogram was set to 0.1 nm. For 165 clusters, the Guinier 

radius varies ranges from 0.8 to 3.6 nm, centered on 1.7 nm. Furthermore, the curve of 

cumulative frequency shown in Fig. 3.30(b) reveals that 90% of clusters has the Guinier 

radius in the range of 1 to 3 nm.  

The precipitate size and the number density of the clusters obtained by TEM characterizations 

and APT analyses are summarized in Table 3.4. The Guinier radius obtained by APT analyses 

are multiplied by two in order to compare with the equivalent diameters obtained by TEM 

characterizations. 

 
 
 
 

As-implanted Annealed 500°C 3 hours 

 by TEM by APT by TEM by APT 

Size ranges 
(nm) 2-10.5 1.6-4.4 3.5-14 1.6-7.2 

Centered on 
(nm) 4.3 2.8 7.7 3.4 

Number density 
(m-3) (1 ± 0.3) × 1022 (9.5 ± 2) × 1023 (7 ± 2) × 1021 (5.9 ± 1) × 1023 

Table 3.4 The size in diameter (nm) and the number density of clusters in as-implanted and annealed 
samples measured by the TEM characterization and the APT analysis. 
 
The average size measured by TEM is bigger than that measured by APT for both 

as-implanted and annealed samples. It is may due to a worse resolution of dark field (DF) 

TEM imaging comparing to APT cluster analysis, which makes it difficult to count really 

small particles in DF TEM micrographs. However, this case is not true for the number 

density. In fact, the average size increases, whereas the number density decreases before and 
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after thermal annealing. These results indicate that clusters tend to coarsen due to thermal 

annealing. 

3.3.2.2 Chemical compositions of clusters 

Elemental compositions in each of 165 clusters obtained from cluster analysis were drawn in 

Fig. 3.31. Cross symbols with different colors represent atomic compositions of Fe, Cr, Al 

and O in the clusters. Elemental compositions in the matrix were represented by colorful 

lines. In Fig. 3.31(a), all cross symbols in green is below the green line, which reveals the 

content of Fe in the clusters is lower than that in the matrix. Fig. 3.31(b) gives a better view to 

compare the content of Cr, Al and O in the clusters and in the matrix.  

 
Fig. 3.31 (a) The evolution of elemental contents (including Fe) in the matrix and 151 clusters as a function 
of the depth coordinate of clusters; (b) The same evolution of elemental contents without Fe. The depth 
direction is along the z-axis direction. For the depth values written in black color, the origin of the depth 
corresponds to the surface of the protective layer of Ni. The depth values written in blue color were 
obtained by subtracting the thickness of the protective layer. 
 
The contents of Al and O in all the clusters are significantly higher than those in the matrix. 

However, this is not the case for Cr content in the clusters. Only 90% of the clusters have a 

higher content of Cr than the matrix. The Cr content in the clusters seems to be dependent on 

the depth. The Cr content increases as a function of the depth. Finally, the Cr content can 

attain 20 at.% at the depth of 200 nm. In total, the results obtained from Fig. 3.31 reveal the 
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clusters are still rich in Al, Cr and O after thermal annealing. These results are consistent with 

the results obtained by Energy-Filtered TEM in annealed thin foils. 

The level of Fe measured in the clusters varies from 70% to 87%. As we described in the 

section 3.2.2.2, a large portion of matrix elements observed in the oxide clusters can be 

attributed to trajectory aberrations associated with low evaporation field particles embedded 

in a higher-field matrix. Distortions induced by trajectory aberrations can lead to atoms as 

part of the matrix being reconstructed within a particle. In this work the exact quantity of Fe 

in the clusters was not addressed, the amount of Fe was artificially set to zero and used to 

subtract the other alloying elements introduced by trajectory aberrations. The corrected 

element content 
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'

 are the 

elemental contents in the matrix, respectively. 
 

Element Fe Cr Al O 
at.% 88.94 10.51 0.17 0.38 
σ 0.01 0.03 0.02 0.02 

Table 3.5 (a) Matrix composition (at.%) and standard deviation (σ) in the sub-volume of the annealed 
sample (R30_05514-v03).  
 

Element Fe Cr Al O Al/Cr (Al+Cr)/O 
at.% 80.15 12.44 3.98 3.43 
σ 0.09 0.19 0.20 0.20 0.32 4.79 

(b) Nanocluster uncorrected composition (at.%) and standard deviation (σ) in the sub-volume of the 
annealed sample (R30_05514-v03).  
 

Element Fe Cr Al O Al/Cr (Al+Cr)/O 
at.% - 28.00 41.06 30.93 
σ - 0.30 0.32 0.31 1.47 2.23 

(c) Nanocluster matrix-corrected composition (at.%) and standard deviation (σ) in the sub-volume of the 
annealed sample (R30_05514-v03).  
 
Compositions (at.%) in the matrix as well as uncorrected compositions (at.%) in the clusters 

are shown in Table 3.5(a-b). The stand deviation (σ) of each content value was calculated 

based on the equation described in the section 4.4 of Chapter 2. The overall elemental content 

in the matrix was found to correspond to 88.94 ± 0.03 at.% Fe, 10.51 ± 0.09 at.% Cr, 

0.17 ± 0.06 at.% Al and 0.38 ± 0.06 at.% O, whereas the overall uncorrected content in the 

165 clusters was found to correspond to 80.15 ± 0.27 at.% Fe, 12.44 ± 0.57 at.% Cr, 

3.98 ± 0.6 at.% Al and 3.43 ± 0.6 at.% O. The concentrations of core elements Al and O are 

23.5 and 9 times higher compared to that measured from the matrix, respectively. The 
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concentration of Cr in the clusters is 20% higher than that measured from the matrix. These 

results confirm that the clusters are rich in Al, Cr and O.  

The clusters in the as-implanted tip were sorted by ascending order of the Guinier radius in 

the range of 0.8 to 2.2 nm with the bin width as 0.1 nm. For the same reason, the clusters in 

the annealed tip were sorted by ascending order of the Guinier radius in the range of 0.8 to 

3.3 nm with the bin width as 0.1 nm. 

 
Fig. 3.32 Comparison of the uncorrected elemental contents in the clusters of the as-implanted tip (a) and 
the annealed tip (b). Histograms of elemental contents in the clusters were drawn as a function of the 
Guinier radius with taking the bin width as 0.1 nm. The cross signs with red color represent the average 
ratio of Al/Cr in each bin. And the dash line with blue color represents the average ratio of Al/Cr based on 
all bins. 
 
The histograms of uncorrected elemental contents of the clusters in the as-implanted tip and 

the annealed tip are shown in Fig. 3.32 as a function of the Guinier radius. In both two 

histograms, the cross signs with red color represent the average ratio of Al/Cr in each bin, and 

the dash line indicates the average ratio of Al/Cr based on all bins. Fig. 3.32 compares the 

uncorrected Al/Cr and (Al+Cr)/Cr ratios before and after thermal annealing. The Al/Cr ratio is 

roughly size independent before and after thermal annealing. But the values of Al/Cr and 

(Al+Cr)/O ratios increase from 0.21 and 2.43 to 0.32 and 4.79, respectively.   

 
Fig. 3.33 Comparison of the matrix-corrected elemental contents in the clusters of the as-implanted tip (a) 
and the annealed tip (b). Histograms of elemental contents in the clusters were drawn as a function of the 
Guinier radius with taking the bin width as 0.1 nm. The cross signs with red color represent the average 



Chapter 3  Results 

105 

ratio of Al/Cr in each bin. And the dash line with blue color represents the average ratio of Al/Cr based on 
all bins. 
The histograms of matrix-corrected elemental contents of the clusters in the as-implanted tip 

and the annealed tip are shown in Fig. 3.33(a)-(b) as a function of the Guinier radius. 

Fig. 3.33 also compares the Al/Cr ratio before and after thermal annealing as a function of the 

cluster size. Prior to thermal annealing (Fig. 3.33(a)), the ratio of Al/Cr is size independent, 

showing the average ratio ~ 1.53. While after thermal annealing (Fig. 3.33(b)), the larger the 

clusters, the higher the ratio of Al/Cr. The ratio of Al/Cr varies between 0.8 and 3.27. But the 

total average ratio of Al/Cr is ~1.47, which is even slightly lower than the one obtained from 

the as-implanted tip. This unusual low value of Al/Cr is because the smaller clusters are 

predominant in the population of the clusters. The ratio of Al/Cr becomes to be size 

dependent after thermal annealing, suggesting that the large clusters have gathered 

preferentially Al with respect to Cr. 

 

In conclusion, as suggested by comparing Fig. 3.19 and Fig. 3.30, the clusters tend to grow 

under thermal annealing. Further, a decrease in the number density is measured and 

summarized in Table 3.4. With comparing Fig. 3.33 (a)-(b), the clusters are still Al-Cr-rich 

oxides after thermal annealing. The ratio of Al/Cr is size independent prior to thermal 

annealing, whereas it becomes to be size dependent after thermal annealing. The larger the 

clusters, the higher the ratio, suggesting that the large clusters have gathered preferentially Al 

with respect to Cr. 

 

4. Crystallographic structure of precipitates  

4.1. Measurements of SAED and HRTEM obtained in as-implanted samples 

 

Fig. 3.34(a) shows a bright field image on a region of the as-implanted thin foil. Precipitates 

are hard to see directly in Fig. 3.34(a) due to the presence of the low contrast difference 

between the matrix and the particles. Fig. 3.34(b) is the SAED pattern along the <111> zone 

axis of FeCr matrix corresponding to Fig. 3.34(a).  
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Fig. 3.34: Crystal structure analysis of as-implanted FeCr thin foil: (a) BF TEM image. (b) Diffraction 
pattern(negative level) for the region corresponding to Fig. 34(a). (c) DF TEM image corresponding to the 
selected spot (encircled by a red circle) on the diffraction pattern (normal level) inserted inside Fig. 34(a). 
 

The diffraction pattern demonstrates the presence of two sets of diffraction spots. The spots 

corresponding to the body-centred-cubic (bcc) Fe-Cr matrix are marked in the Fig. 3.34 (b) 

with blue lines. The intersection angle of the matrix lattice (parallelogram) pattern is about 

60° and the ratio of the lengths between adjacent sides is 1, as appropriate for the diffraction 

pattern of bcc structure viewed along <1 1 1> zone axis [Jouffrey, 1972]. The average lattice 

parameter of the matrix calculated using the Bragg equation is about 2.9 Å, which is in 

agreement with the reference value of 2.876 Å for Fe-10Cr alloy [Villars, 1985].  

 

Another set of spots (connected with red lines) does not belong to the matrix lattice and 

constitutes a rectangle pattern. These spots are due to precipitated particles created by the ion 

implantation. The rectangle pattern (with the intersection angle of 90° and the length ratio of 

1.63) corresponds to face-centred cubic (fcc) lattice oriented along <112> zone axis 

[Jouffrey, 1972] and the average value of lattice parameter is 3.82 ± 0.03 Å.  

 

Fig. 3.34(c) shows a dark field (DF) image corresponding to one selected diffracted spot, 

which is encircled by the red circle in the diffraction pattern inserted in Fig. 3.34(b). It shows 

exactly the same region of the as-implanted thin foil as in Fig. 3.34(a). The precipitated 

particles, having the bright contrast, are clearly visible in Fig. 3.34(c). Their diameter varies 

from 3 nm to 12 nm, and the mean size is 5 nm. Only a part of precipitates is bright in the 

selected spot, while others remain relatively dark, indicating that not all precipitates are 

oriented along the same direction with respect to the matrix orientation.  

 

It should be kept in mind, however, that a single SAED pattern is insufficient to identify the 

lattice structure. Therefore, our identification of the particle lattice structure as fcc remains 
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preliminary until verified more rigorously. 

 

With repeating the same processes, we have measured another diffraction pattern 

(Fig. 3.35(a)) along a different FeCr lattice direction (<110>) on a region with significant 

number of visible precipitates (see Fig. 3.35(b)). Two sets of diffraction spots can be 

identified in Fig. 3.35(a). A set of peaks corresponding to the body-centered-cubic (bcc) FeCr 

matrix is marked in the Fig. with blue lines. As appropriate to the bcc diffraction pattern along 

<110> zone axis, the intersection angle of the rectangular lattice is about 90° and the ratio of 

the lengths between two sides is about 1.41. The lattice parameter determined from the 

diffraction pattern using the Bragg equation is about a ≈ 2.9 Å, which agrees with the 

reference value for Fe-10Cr alloy (2.876 Å [Villars, 1985]).  

 

 
Fig. 3.35: Crystalline structure analysis showing the coexistence of the FeCr matrix and the precipitated 
particles in the as-implanted material. (a) Diffraction pattern (negative level) for the region corresponding 
to Fig. 35(b). The particular zone axis orientation adopted for indexing the diffraction spots is specified in 
the legend. (b) Bright field TEM image of the implanted material. (c) Dark field TEM image 
corresponding to spot S1 (common matrix-precipitate spot) in Fig. 35(a). (d) Dark field TEM image 
corresponding to spot S2 (single precipitate spot) in Fig. 35(a). 
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The second set of spots (connected with red lines in Fig. 3.35(a)) does not correspond to the 

FeCr matrix lattice and is interpreted as being due to the nano-precipitates created by Al and 

O ion implantation. Including into this set also the spots superimposed over the matrix ones, 

one easily recognizes the diffraction pattern corresponding to face-centered cubic (fcc) lattice 

oriented along <110> zone axis [Jouffrey, 1972]. As appropriate for the pattern, the lattice 

drawn in red in Fig. 3.35(a) has the line intersection angle of about 71° and the ratio of the 

lengths of adjacent sides of about 1. The estimated average value of the lattice parameter is 

a = 4.29 ± 0.22 Å.  

 

In order to confirm that the second set of diffraction spots is indeed related to the observed 

particles, the dark field (DF) images on two selected diffraction spots labeled S1 and S2 in 

Fig. 3.35(a) were obtained and can be seen in Figs. 3.35(c) and 3.35(d), respectively. Bright 

spots corresponding to precipitates can be observed in both micrographs. This confirms our 

assumption that S1 is a common diffraction spot to both the FeCr matrix and the fcc particles. 

The presence of common directions and spots for the matrix and the precipitates in the 

diffraction pattern implies the presence of orientation relationships between the particles and 

the matrix. In particular,  || ,  ||  and  || .  

 
 

HRTEM images were taken on different particles in the as-implanted FIB lamina. We 

obtained tens of HRTEM images, which are adequate to identify the crystallographic structure 

of particles. And six of them are drawn in Fig. 3.36 (a-f). Statistically, most of particles 

observed in the HRTEM images present a cubic symmetry. The lattice structure of the 

particles is assumed to be fcc with a lattice parameter ranging from 3.8 to 4.2 Å. In addition, 

the particle size ranges from 3 to 15 nm. In conclusion, these results relevant to particle 

structure are consistent with previous results reported by diffraction pattern analyses.  
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Fig. 3.36: High resolution TEM of six particles in the as-implanted FIB lamina: (a) oriented along <110>; 
(b) oriented along <110>; (c) oriented along <001>; (d) oriented along <110>; (e) oriented along <111> 
and (f) oriented along <110>. The upper inset on the right shows the Fourier transform of the square 
selected on the image, and the lower inset shows a zoom of this part. The indicated values of distances and 
lattice parameters are measured from the images. 
 
 
 
 
Fig. 3.37 shows HRTEM images taken on two different particles in as-implanted thin foils. 

Both of two particles present cubic symmetry. The HRTEM resolution being about 2 Å, we 

can observe clearly a particle without seeing the matrix, even if there is a special orientation 

with the matrix. The lattice of the particle observed in Fig. 3.37(a) is oriented along 

<100> axis and, assuming it to be fcc, corresponds to the lattice parameter of 4.2 Å (or a 
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multiple), very similar to the value suggested by the diffraction pattern (Fig. 3.35(a)). The 

particle in Fig 3.37(b), which has definitely fcc symmetry and is <110>-oriented, has its 

lattice parameter equal to only 3.83 Å (or a multiple), yet very similar to the value suggested 

by the diffraction pattern (Fig. 3.34 (b)).  

 

 
Fig. 3.37: High resolution TEM of two particles, (a) oriented along <100> and (b) oriented along <110>. 
The upper inset on the right shows the Fourier transform of the square selected on the image, and the 
lower inset shows a zoom of this part. The indicated values of distances and lattice parameters are 
measured from the image. 
 
 

According to EFTEM and APT measurements, the precipitates are enriched with Al, Cr and 

O. Furthermore, both diffraction pattern and HRTEM analyses revealed that the precipitates 

have a cubic symmetry, more precisely, a fcc structure with the lattice parameter ranging from 

3.8 to 4.2 Å. There are few studies reported the observation of (Al, Cr)-rich oxides having 

such a fcc structure. Khatibi et al. [Khatibi, 2011] reported the discovery of a (Al1-xCrx)2O3 

solid solution (0.6<x<0.7) in films grown onto Si substrates using reactive radio frequency 

magnetron sputtering from Al and Cr targets at 400 °C. According to their X-ray diffraction 
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(XRD) and EDX in STEM mode measurements, the lattice parameter is about 4.04 Å and the 

stoichiometry ratio of Cr and Al is between 0.6 and 0.7. Therefore, they proposed a NaCl-like 

crystal structure in which the introduction of vacancies on the one third metal sites. 

Furthermore, the metal-oxygen ratio is set to the chemically preferred 2:3. A typical unit cell 

of the NaCl-like structure (Al1-xCrx)2O3 (0.6<x<0.7) can be found in Fig. 3.38(e). 

 

 
Fig. 3.38: (a) Zoom of the selected square from the particle shown in Fig. 37(a); (b) Zoom of the selected 
square from the particle shown in Fig. 37(b); (c) Simulated HRTEM image based on the crystallographic 
structure of NaCl-like structure (Al1-xCrx)2O3 corresponding to (a); (d) Simulated HRTEM image based 
on the crystallographic structure of NaCl-like structure (Al1-xCrx)2O3 corresponding to (b); (e) unit cell of 
fcc (Al1-xCrx)2O3 reported by Khatibi et al. [Khatibi, 2011]. 
 
The simplest guess that particles are this NaCl-like structure (Al1-xCrx)2O3 (0.6<x<0.7) does 

not seem improbable, at least for a part of the particles. In order to justify this assumption, 

Figs. 3.38(a)-(c) show the zoom of experimental HRTEM image of the particle shown in 

Fig. 3.37(a) and the simulated HRTEM image based on the crystallographic structure of 

NaCl-like structure (Al1-xCrx)2O3 reported by Khatibi et al. [Khatibi, 2011]. There is an 

excellent match between the simulated and the experimental images in terms of spacing and 

angle of the same contrast patterns. On the other hand, the lattice parameter of 3.87 Å, as 

measured in Fig. 3.37(b), is too different from that of NaCl-like structure (Al1-xCrx)2O3 

reported by Khatibi et al. [Khatibi, 2011]. However, the zoom of experimental HRTEM 
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image for the particle shown in Fig. 3.37(b) and the simulated HRTEM image of NaCl-like 

structure (Al1-xCrx)2O3 look very similar (see Figs. 3.38(b) and (d)).  

Presumably, the observed particle contains in addition to Al some amount of Cr, which is 

known to easily replace Al in aluminum oxides. The HRTEM-based observation of lattice 

parameter variation in precipitated particles is thus indicative of the variability of elemental 

contents in precipitated particles, especially for the ratio of Al/Cr. 

  
Fig. 3.39: High resolution TEM of the particle oriented along <110> The upper inset on the right shows 
the Fourier transform of the square selected on the image, and the lower inset shows a zoom of this part. 
The indicated values of distances and lattice parameters are measured from the image. Here, the spots 
corresponding to the matrix. 
 

The orientation relationship between the particle and the matrix can be inferred from 

Fig. 3.36(a), which allows comparing FFT image from the particle with the diffraction pattern 

from the matrix. The matrix of the Fe-10Cr alloy is oriented along <0 0 1> direction, as 

identified from the SAED pattern. Both the particle and the matrix share zone axis <0 0 1> 

and appear to display a ‘cube on cube’ orientation relationship. 

Fig. 3.39 shows the HRTEM image of the particle, which shares zone axis <1 1 0> with the 

matrix. The information of the zone axis of the matrix and the particle derived from the FFT 

pattern (the upper inset of Fig. 3.37). The values and directions of distances drawn in the 

lower inset of Fig. 3.39 indicate that 

€ 

[002] fcc  || 

€ 

[11 0]bcc  and 

€ 

[22 0] fcc  || 

€ 

[002 ]bcc . Furthermore, 

the interplanar distances of the particle lattice are equal to those of the matrix in these 

directions. 
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The orientation relationship implies that particle structure is strongly influenced by the 

surrounding host lattice. The fact that the particle ‘remembers’ the host lattice orientation 

suggests that the particle nucleation occurs through the correlated agglomeration of aluminum 

and oxygen atoms ‘on top’ of the existing iron lattice. In addition, the growing clusters should 

efficiently consume vacancies to free space for the oxide because the atomic density of oxides 

is notably less than that of the bulk iron (the latter is evidenced, in particular, by the strong 

iron depletion in the particle volume visible in Fe EFTEM elemental maps. Overall, the oxide 

lattice orientation with respect to the host lattice is very similar to that observed for yttrium 

oxide particles in ODS steels [Klimiankou, 2004; Ramar, 2009; Ribis, 2012], which are 

believed to precipitate by agglomeration of Y and O atoms dissolved in ferritic matrix 

[Ukai, 2012], and possibly suggests a qualitative similarity in the precipitation mechanisms. 

4.2. Measurements of SAED obtained in annealed samples 
Fig. 3.40(a) is the bright field image of the annealed thin foil, of which the matrix is oriented 

along the axis <110>. Besides the spots belonging to the matrix, two sets of diffraction spots 

can be identified in the diffraction pattern (negative level) corresponding to Fig. 3.40(a) (see 

Fig. 3.40(b)).  

 
Fig. 3.40: Crystalline structure and EFTEM analyses showing the correlation between the 
crystallographic structure and chemical composition of the precipitated particle in the annealed thin foil: 
(a) Bright field TEM image of the annealed thin foil. A visible particle is encircled; (b) Diffraction pattern 
(negative level) for the region corresponding to (a); (c) Dark field TEM image corresponding to spot 

€ 

[1 1 0]hcp ; The panels show jump ratio EFTEM elemental maps of Fe-M2,3 edge (d), Cr-M2,3 edge (e), 
Al-L2,3 edge (f) and three-window EFTEM elemental map of O-K edge (g). The colors indicate the 
elements as marked in the legend. 
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The first set of spots (connected with red lines in Fig. 3.40(b)) shows a shape like the 

rectangle. This rectangle pattern (with the intersection angle of 90° and the length ratio of 

1.64) corresponds to face-centred cubic (fcc) lattice oriented along <112> zone axis 

[Jouffrey, 1972] and the average value of lattice parameter is 8.35 ± 0.05 Å. Obviously, this 

measured value is larger than that of fcc (Al, Cr, O) particles (3.8-4.2 Å) either suggested by 

A. Khatibi et al. [Khatibi, 2011] or measured in our as-implanted thin foils. In contrasts, the 

measured lattice parameter is consistent with the reference value of stoichiometric 

fcc-FeCr2O4. In conclusion, the fcc structure corresponds to FeCr2O4, and is interpreted as 

being due to the oxidation occurring in the material (see Annex B). 

 

The second set of spots (connected with blue lines in Fig. 3.40(b)) looks like a hexagon. 

Including into this set also the spots superimposed over the red ones, one easily recognizes the 

diffraction pattern corresponding to hexagonal (hcp) lattice oriented along <0001> zone axis 

[Jouffrey, 1972]. As appropriate for the pattern, the lattice drawn in blue in Fig. 3.40(b) has 

the line intersection angle of about 60° and the ratio of the lengths of adjacent sides of 

about 1. The estimated average value of the lattice parameter is a = 4.87 ± 0.05 Å and 

c = 13.30 ± 0.06 Å.  

 

The dark field image on the selected diffraction spot labeled  was obtained and can 

be seen in Fig. 3.40(c). The particle encircled in the BF micrograph (Fig. 3.40(a)) shows the 

bright contrast and is clearly visible in the DF micrograph (Fig. 3.40(c)). The estimated 

particle size is about 28 nm. This confirms that the hcp structure corresponds to the particle.  

The EFTEM thickness map (not shown here) demonstrated the feasibility of the EFTEM 

investigation in the region shown in Fig. 3.40(a) since the estimated thickness is ∼ 36 nm   

(

€ 

L
λ

 ∼0.32 and 

€ 

λ  ∼110 nm). Considering the EFTEM elemental maps (Fig. 3.40 (d)-(g)) of 

Fe-M2,3, Cr-M2,3, Al-L2,3 and O-K, one can see evidently the Fe depletion matches with the 

accumulation of Al, Cr and O at the position of the particle encircled in both BF and DF 

micrographs. Combing the resulting EFTEM results with the diffraction pattern analysis, we 

can thus conclude that the particle observed in the annealed thin foil is (Al, Cr)-rich oxide 

having a hcp structure. Obviously, the crystallographic structure of precipitates is not the 

same before and after thermal annealing. 
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It is remarkable that NaCl-type-(Al1-xCrx)2O3 solid solution is a thermodynamically 

metastable phase comparing to the well studied corundum-structure α-(Al1-xCrx)2O3 solid 

solution since the reactive radio frequency magnetron is a thermodynamically 

non-equilibrium  process as the same as ion implantation [Ramm, 2007; Diechle, 2010]. In 

addition, Khatibi et al. [Khatibi, 2012; Khatibi, 2013] reported the transformation of 

NaCl-like (Al1-xCrx)2O3 metastable phase to corundum phase during annealing temperature of 

900 degrees Celsius and above. The similar phase transition was also reported by Najafi et al. 

[Najafi, 2013], which claimed a synthesis of cubic (Al,Cr)2O3 films and its dynamic transition 

to corundum phase during the evaporation.  It should be reminded that the diffraction pattern 

of the corundum structure along the <0001> direction has the same shape with that of the 

hexagonal structure. Furthermore, the lattice parameter reported in Najafi et al. [Najafi, 2013] 

is consistent with that measured in our study. These correlations indicate that the (Al, Cr)-rich 

oxide particles in annealed thin foils are probable to be corundum-(Al, Cr, O). In conclusion, 

we consider that a structure transformation from fcc to corundum occurred in (Al, Cr)-rich 

oxide particles due to thermal annealing. 

 

5. Preferential precipitation in point defects sinks 

5.1. Elements enrichment at grain boundaries 

 

Point defect sinks (e.g. grain boundaries) in as-implanted specimens have been characterized 

by EFTEM. The resulting EFTEM elemental maps are presented in Fig. 3.41.  

 

The dark contrast on Fe-L2,3 edge elemental maps (Fig. 3.41 (a) & (d)) show the local Fe 

deficiency at grain boundaries. Cr-L2,3 edge and Al-K edge elemental maps (Fig. 3.41(b-c)) 

reveal the enrichment of Cr and Al at the same grain boundary. Oxygen atoms are found to 

agglomerate at other grain boundary according to the O-K elemental map (Fig. 3.41(e)). 

Enrichment of implanted impurities (Al, O) and minor alloy component atoms (Cr) in point 

defect sinks (e.g. grain boundaries) are suggested to be radiation-induced segregation (RIS). 
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Fig. 3.41 Energy-filtered TEM series showing (Al, Cr, O) enrichment at grain boundaries in the 
as-implanted TEM thin foil: Fe-L2,3 (a)-(d),Cr-L2,3 edge (b), Al-K edge (c) and O-K (e) three-window 
EFTEM elemental maps. The colors indicate the elements as marked in the legend. 
 
 

5.2. Precipitation on dislocation lines and loops 

 

Conventional TEM observations were applied to point defect sinks (e.g. dislocation lines and 

loops) in as-implanted specimens. Fig. 3.42(a) shows a BF TEM micrograph where large 

portion of dislocation lines are clearly visible. 

 
Fig. 3.42 TEM micrographs showing the precipitation on large portion of dislocation lines: (a) BF TEM 
micrograph: some of dislocations are clearly visible in this micrograph. (b) Corresponding DF TEM 
micrograph: precipitates agglomeration on the dislocations. 
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The corresponding DF TEM micrograph (Fig. 3.42(b)) shows exactly the same region of the 

as-implanted TEM thin foil as in Fig. 3.42(a). The precipitates, having the bright contrast, are 

clearly visible in Fig. 3.12(b). Their diameter varies from 3 nm to 15 nm, and the mean size is 

5.5 nm. More interestingly, the precipitates are found to locate in or around the dislocation 

lines.  

In order to obtain better contrast for dislocation loops, the specimen was tilted to satisfy 

two-beam condition. 

 
 Fig. 3.43 TEM micrographs showing the precipitation on dislocation loops. The upper line from left to 
right: BF TEM micrographs of the whole region and zoom views of four different regions. The lower 
line from left to right:  Corresponding DF TEM micrographs of the whole region and zoom views of four 
different regions. The diffraction pattern inserted in the BF TEM micrograph showing the TEM 
specimen was tilted to satisfy two beams condition (s≈0).  

 
Fig. 3.43(a) shows a BF TEM micrograph in which numerous dislocation loops seem to be 

enriched. The inserted diffraction reveals the matrix is oriented along <111> direction, and 

two-beam condition is reached at this time. Thanks to two-beam condition, the white contrast 

shown in the corresponding DF TEM micrograph is clearly visible. Zoom views have been 

applied to four typical regions marked in the BF TEM micrograph.  One clearly sees that the 

dislocation loops are decorated with very small precipitates (< 5 nm) with several slightly 

larger. The size of dislocation loops observed in these four regions is quite different. It can be 

as large as 150 nm (regions 1, 2 and 3), or as small as 20 nm (region 4). 

The observation was achieved in as-implanted FIB lamina with using weak beam dark field 

(WBDF) method. The resulting BF and WBDF TEM micrographs are presented in Fig. 3.44. 
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Fig. 3.44: TEM micrographs showing the precipitation on dislocation loops. (a) BF TEM micrograph of 
the whole region. (b) Corresponding weak beam dark field (WBDF) TEM micrograph. (c)-(f): Zoom views 
of BF and WBDF taken on 4 different regions as marked in (a). The diffraction inserted in (a) showing the 
sample was tilted to satisfy (g, 3g) weak beam condition. 
 

In Fig. 3.44, we chosen also four typical regions to give zoom views for both BF and WBDF 

TEM micrographs. The specimen was tilted in order to reach weak beam condition. The 

inserted diffraction pattern indicates the matrix is oriented along <100> direction, and the 

(g, 3g) weak beam condition is reached. The precipitates, having the dark contrast in BF TEM 

micrographs, are already clearly visible. The bright contrast shown in DF micrographs reveals 

that precipitates accompany well with dislocation loops. The observed phenomenon is 

consistent with that observed under two-beam condition. 

 
Similar results were also observed in annealed TEM thin foils. The detail of these results is 

given in Annexe C. 
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The main result of this study shown in Chapter 3 is a clear demonstration of the feasibility of 

(Al, O) nano-size clusters precipitation in Fe-Cr alloy by introducing Al+ and O+ ions via ion 

implantation. The study provides also an ample body of information concerning the kinetics, 

crystal structure and chemical composition of cluster ensemble evolving as a result of ion 

beam synthesis, which included both room temperature ion implantation and subsequent 

high-temperature thermal annealing. In contrast to conventional ion beam synthesis technique, 

the post-implantation thermal treatment was not a prerequisite to start the precipitation. In this 

section we discuss some non-evident features of the experimental observations and 

demonstrate how they contribute to the physical understanding of the oxide precipitation 

kinetics. Room temperature material transport is discussed in the first section. Physical 

mechanisms involved in precipitate synthesis are proposed in the second section, based on the 

obtained experimental results. 

 

1.  Room temperature material transport 

Temperature is a key parameter in the formation of precipitates by ion implantation. 

Implanted atoms are introduced in a statistically dispersed fashion and typically are immobile 

at room temperature. Thus, subsequent thermal annealing is usually required after ion 

implantation in order to promote the nucleation and growth of precipitates. Heating increases 

the mobility of implanted impurities so that they could agglomerate to form precipitates 

within reasonable time (minutes to hours) [Picraux, 1978]. Since in our case precipitation 

occurred without any subsequent annealing after implantation, we have to assume that the 

mass transfer of both Al and O atoms took place at room temperature. 

 

An experimental proof of the high mobility of Al and O atoms results from the comparison of 

concentration profiles of Al and O measured by APT analysis and those simulated by SRIM 

(see Fig. 3.15 in Chapter 3). The difference of measured and simulated concentration profiles 

in the depth range of 100 to 125 nm indicates that both implanted Al and O impurities went 

farther than predicted by SRIM simulation. 

According to experimental evidence, the implanted atoms were able to migrate for at least 

several tens of nanometers within the time of ion implantation (~ 1 to 3 hours). As a rough 

estimate, this gives us the lower estimate for the diffusion coefficient of 10-14 cm2.s-1. For 

purely thermally driven diffusion this value is far too high for either O, or Al. The estimated 

mobility of oxygen at 300 K is only 6×10-19 cm2.s-1 [Takada, 1986], while that of aluminum is 
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virtually zero [Hirvonen, 1982].  

 

On the other hand, it is known that irradiation is able to increase the mobility of solute atoms 

because the concentrations of point defects (vacancies and interstitials) under irradiation are 

much larger than the thermal ones [Was, 2007] for both oxygen [Lapuerta, 2006] and 

aluminium [Campbell, 1980]. Let us demonstrate that in our implantation conditions 

sufficient amounts of point defects were produced to provide the required diffusion mobility.  

 

Let us start with aluminium, a substitutional impurity whose diffusion in iron-based alloys is 

mediated by available point defects. While during the high temperature annealing the 

transport of aluminium is mediated by thermal vacancies [Hirvonen, 1982], under irradiation 

both vacancies and interstitials produced by irradiation contribute to the aluminium diffusion 

coefficient, DAl, that is 

 DAl = DVCV + DICI,  

where DV and DI are diffusion coefficients of vacancies and interstitials and CV, CI - their 

concentrations.  

In section V.4 of Chapter I, we introduced an approximation of non-equilibrium 

thermodynamics diffusion equations, that is 

€ 

DVCV ≈ DICI , which means that vacancies and 

interstitials contribute equally to atom mobility. A rough estimate for the average point defect 

concentrations created in a thin film by ion irradiation with the flux  was given as [Fortuna, 

2011]: 

 

€ 

DVCV ≈ DICI = γΩLφvF   

where  is a numerical factor (of the order of unity) that takes into account the particular 

shape of the defect production profile,  is the matrix atomic volume (~12 Å3), L is the 

implanted foil thickness and  is the average number of Frenkel pairs produced by an 

incident ion. For the parameters of aluminium implantation (  = 6.8×1012 cm-2.s-1,  = 780 

vacancies per Al ion, and L = 50 - 100 nm) this gives us 

€ 

DAl  ~5×10-13 cm2.s-1, a value well 

above the estimated mobility threshold of 10-14 cm2.s-1.  

 

For oxygen the above estimate is inapplicable because oxygen in iron (as well as in Fe-10Cr) 

is an interstitial impurity. The experimental estimates of O migration energy give quite high 

values, 0.93 eV [Takada, 1986] or even 1.73 eV [Barlow, 1969]. However, these estimates are 

based on the interpretation of iron oxidation data at temperatures above 1000 K and are not 

necessarily applicable in the implantation conditions. According to the first-principles density 
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functional theory estimates [Fu, 2007], the migration energy of interstitial oxygen in pure iron 

is only ~0.6 eV. With this migration barrier, the oxygen diffusion coefficient at room 

temperature would be ~10-10 cm2.s-1 (assuming the prefactor of 1 cm2.s-1), well above the 

required mobility threshold.  

The origin for the difference between the simulation and experiment based values for oxygen 

mobility is not reliably ascertained. It seems reasonable, however, to ascribe it to the effect of 

oxygen capture by vacancies, which were abundant in both cited measurements (performed at 

~ 1000-1100 K). According to Ref. [Fu, 2007], the vacancy-oxygen binding energy in iron is 

sensitive to the magnetic order of the lattice, being equal to 0.35 eV in non-magnetic and 1.45 

eV in ferromagnetic iron state. This means that above the Curie point (1043 K for iron) the 

effective barrier for oxygen diffusion includes a contribution from oxygen-vacancy pair 

dissociation, being equal to ~0.95 eV. On the other hand, below the Curie temperature the 

thermal dissociation would cost prohibitively much energy; an oxygen-vacancy pair moves 

instead as an entity with the migration barrier of 1.55 eV [Fu, 2007]. The two values are very 

different, but suspiciously close to that or other experimental number.  

While ion implantation also creates large numbers of vacancies capable to capture oxygen 

atoms, the concentration of free vacancies in the matrix is relatively low because of the 

presence of nearby free surface that is an efficient vacancy sink. Correspondingly, the 

efficiency of oxygen capture by vacancies should be noticeably lower than during the 

high temperature measurements. Moreover, high-energy recoils created by implanted ions are 

able to break vacancy-oxygen pairs, preventing complete oxygen immobilization. For these 

reasons, the concentration of mobile interstitial oxygen atoms in ion implantation conditions 

can be much larger than in the thermal equilibrium environment used for the determination of 

high temperature mobility of oxygen.  

 

One more indication of the relatively high diffusion rate of Al and O atoms is their observed 

enrichment at extended structural defects, such as grain boundaries and dislocations. This 

enrichment was directly measured at grain boundaries. The accumulation of implanted atoms 

at dislocations is more indirect and follows from the fact that oxide precipitates after the 

implantation are observed preferentially at dislocations. Indeed, without Al segregation to 

dislocations it is hard to expect the precipitation because the concentration of implanted Al in 

the bulk is noticeably below the solubility of Al in Fe, which is relatively high (somewhat less 

than 20 %, see the Fe-Al phase diagram in Fig. 4.1).  
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Fig. 4.1 The Fe-Al phase diagram [Massalski, 1986] 
 

Radiation-induced segregation (RIS) and radiation-induced precipitation (RIP) are considered 

as a consequence of radiation-enhanced diffusion (RED). RIS and RIP mechanisms occur in 

materials in the presence of point defect (vacancy or interstitial) fluxes [Nastar, 2012]. The 

irradiation induces point defect fluxes towards point defect sinks: grain boundaries (GBs), 

dislocation lines, dislocation loops or free surfaces, where the recombination rate is higher 

than in the matrix [Cauvin, 1981]. The coupling between the point defect and the solute or 

impurity atoms fluxes toward point defect sinks leads to solute enrichment or depletion at 

these sinks. Therefore, RIS of implanted impurities (Al and O) and minor alloy component 

atoms (Cr) at grain boundaries in as-implanted samples (Fig. 3.41) may be due to these 

mechanisms.  

In our experiments, oxide precipitation was observed on large portion of dislocation lines 

(Fig. 3.42) as well as dislocation loops (Fig. 3.43-3.44). One clearly sees that the dislocation 

lines and loops are decorated with very small precipitates (< 5 nm) with only several slightly 

larger. We suppose that this is a direct indication that both implanted Al and O (and possibly 

Cr) precipitate at the dislocation cores. Due to the increased concentration of solute atoms, 

dislocation lines and loops serve as nucleation place for oxide precipitates. Such effect of 

enhanced clustering on dislocation lines or loops is well known in irradiated metals and 

alloys. 
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2.  Physical mechanisms involved in precipitate synthesis  

In our study, Al and O atoms were introduced sequentially into high purity Fe-10Cr alloy by a 

two-stage ion implantation at room temperature. In order to understand at which implantation 

stage starts the precipitation, conventional and analytical TEM characterizations were carried 

out in TEM thin foils implanted by Al+ ions only. These TEM thin foils were prepared and 

implanted following the same processes as described in Chapter II. Since only Al+ ions were 

introduced, the TEM thin foils are referred below as single Al implanted samples. The full 

description of TEM characterization results can be found in Annexe E. 

 

The most important result for these samples is the observation of Al-rich precipitates 

nucleated by the end of the implantation stage. It indicates that the precipitate nucleation 

requires no oxygen in order to start, at least at room temperature.  

 

The second interesting feature revealed by the Al implantation experiment is that the 

formation of precipitates was observed to occur at grain boundaries. This observation 

correlates well with the results of two-stage experiment, where oxide particles were found to 

be associated with extended defects (grain boundaries and dislocations). It can thus be 

assumed that oxide particles are obtained via oxidation of Al-containing precipitates that 

nucleated already during the first implantation run. 

 

Finally, the diffraction pattern analysis indicates that the Al-containing precipitates have a 

fcc-structure with the lattice parameter of ~4.1 ± 0.1 Å or ~5.79 ± 0.1 Å. The simplest guess 

that precipitates are pure Al does not seem improbable. In fact, the pure Al has fcc lattice with 

the lattice parameter of 4.05 Å [P. Villars, 1985], so the lattice structure of pure Al is 

consistent with the experimental observation. The reference lattice parameter (4.05 Å) is also 

quite close to one of experimental values (~4.1 ± 0.1 Å). However, the EFTEM elemental 

maps reveal that Al and Fe matrix tend to form localized zones that are enriched in both Fe 

and Al, but depleted with Cr. 

 

Based on the EFTEM observations, one might consider a possibility that the precipitation of 

Al starts in the form of intermetallic Fe3Al phase, which is the most stable Fe-Al phase in the 

Al concentration region just above the solubility limit (see Fig. 4.1). Having in mind that 

precipitates tend to nucleate at extended defects that are able to accumulate solute atoms, one 

can assume that local Al content exceeds the solubility limit at room temperature. So these 
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Al-rich zones transform into Al-rich clusters. Fe3Al phase can give spots in the diffraction 

pattern, which are characteristic for fcc lattice, due to the fact that the Al sublattice in the D03 

structure of Fe3Al is fcc. In addition, the lattice parameter of this fcc sublattice is comparable 

to the double lattice parameter of iron, i.e. ~5.7 Å (cf. the lattice parameter 5.792 Å for 

unconstrained D03 structure of Fe3Al [Villars, 1985]). The reference lattice parameter 

(~5.7 Å) is consistent with one of experimental values (~5.79 ± 0.1 Å). So it seems also 

probable that at least some experimentally observed particles are Fe3Al. The most probable 

seems to be a hypothesis that the precipitation starts as Fe3Al, but subsequently precipitates 

transform into a more Al-rich phase due to both the accumulation of more Al atoms and the 

capture of radiation produced vacancies that eliminate Fe from the precipitates.  

 

Combining the results of single-beam and two-beam implantation experiments, the following 

sequence of events would give a consistent explanation of the Al2O3 particle synthesis in our 

experimental setup (see also Fig. 4.2 illustrating the physical mechanisms involved). 

 

The first step is the Al precipitation during the Al implantation stage at room temperature.  

Thanks to radiation-enhanced diffusion, Al atoms can diffuse towards point defect sinks 

(ex: GBs, dislocation lines, dislocation loops…) and segregate in their vicinity. Due to the 

local increase of the Al content near point defect sinks, the concentration of Al seems to 

exceed locally the solubility limit and thus precipitation starts. The precipitates contain both 

Fe and Al and their diffraction pattern contains features appropriate for the fcc-structure.   

 

Assuming that the precipitation starts in the form of Fe3Al intermetallics, one can expect that 

these precipitates are attractive sinks for vacancies created during the implantation. Indeed, 

the formation energy of vacancies on the iron sublattices of Fe3Al [Besson, 2008] is 

noticeably lower than that in the Fe bulk (~1.6-2 eV [Matter, 1979; de Schepper, 1983; 

Schaefer, 1987]). Vacancies are expected to replace preferably Fe atoms rather than Al atoms. 

As a consequence, Al atoms still stay within precipitates, whereas Fe atoms are removed from 

them into the surrounding lattice. In addition, the capture of vacancies in precipitates leads to 

the accumulation of empty sites within the precipitates. Cr atoms may also be removed by 

vacancies. However, it seems that they are removed slower than Fe atoms since both EFTEM 

and APT analyses indicate that the resulting precipitates after two-stages irradiation contain 

both Al and Cr in as-implanted state.  
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Fig. 4.2 A schema of physical mechanisms involved in precipitate synthesis 
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The second step takes place at the stage of O implantation at room temperature. Oxygen is an 

interstitial impurity, which requires no other point defects to assist the diffusion. But oxygen 

atoms can be captured by the lattice vacancies, including both freely migrating vacancies and 

those captured within precipitates. Oxidation occurs at each precipitate whatever metallic 

elements are enriched in, because of their good affinity to oxygen. As a result, oxygen atoms 

captured in free vacancies can serve as nucleation sites for such precipitins as (Fe, Cr)-rich or 

Cr-rich oxides. On the other hands, oxygen atoms captured on empty sites of Al-containing 

precipitates promotes the formation of (Al, Cr, Fe) oxides. Having in mind that vacancies in 

(Al, Cr, Fe) precipitates tend to eliminate preferentially iron atoms, the relative content of Al 

and Cr tends to increase, leading eventually to iron-free (Al, Cr) oxide particles. The increase 

of Al content in the oxide particles and particle growth can be due to the Al atoms that remain 

in the matrix after the Al implantation stage and continue to move during the O implantation 

stage and during the annealing stage. 

 

The observation of the orientation relationship between the precipitate lattice and the lattice of 

the host alloy implies that particle structure is strongly influenced by the surrounding host 

lattice. The fact that the particle ‘remembers’ the host lattice orientation confirms our 

assumption that the particle nucleation occurs through the correlated agglomeration of 

aluminium and oxygen atoms ‘on top’ of the existing iron lattice. The coherency existing 

between particle and matrix lattices forces the formed (Al, Cr)-rich oxide particles to keep a 

cubic symmetry. Overall, the oxide lattice orientation with respect to the host lattice is very 

similar to that observed for yttrium oxide particles in ODS steels [Klimiankou, 2004; Ramar, 

2009; Ribis, 2012], which are believed to precipitate by agglomeration of Y and O atoms 

dissolved in ferritic matrix [Ukai, 2012].  

 

Finally, we observe that thermal annealing results in the noticeable particle coarsening. The 

particle size evolution obtained experimentally by TEM (see Fig. 3.7 in Chapter 3) confirmes 

this suggestion. The Al and O contents in the matrix and in the identified clusters measured 

by APT (see Table 3.1 in Chapter 3) revealed that only a relatively small part of implanted Al 

and O atoms are involved in the precipitate nucleation during the implantation. This indicates 

thermal annealing at 500 °C strongly accelerates the diffusion of oxygen and aluminum 

atoms, which continue to be captured by oxide particles.  

 

In addition to the particle growth, one observes that high temperature annealing promotes 

phase transformation within the particles. While at the early stages of particle growth they 
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have the cubic lattice structure, at high temperature the structure transforms into the 

hexagonal one, which is appropriate to the ground-state structure of Al-Cr oxide (corundum). 

This kind of high-temperature phase transformation is well known and is not unexpected. For 

example, Khatibi et al. [Khatibi, 2012; Khatibi, 2013] reported the phase transformation from 

cubic to corundum (Al1-xCrx)2O3 in the temperature range of 900-1100 °C. Our observation is 

consistent also with the results of Najafi et al. [Najafi, 2011; Najafi, 2013] who used similar 

methods to synthesize (Al1-xCrx)2O3  and applied thermal annealing to induce a phase 

transformation. 
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Conclusion and perspectives 

 
 
 
Oxide Dispersed Strengthened (ODS) steels, which are reinforced with metal dispersions of 

nano-oxides (based on Y, Ti and O elements), are promising candidates for not only the 

application of fuel cladding of SFR but also the structural materials (e.g. first wall) of fusion 

reactors. The dispersoid serves as a block for mobile dislocation to improve the creep 

resistance at high-temperature and as a sink of point defects induced by radiation 

displacement to maintain superior radiation resistance. However, there are only few 

systematic studies that are dedicated to well understand the precipitation behavior of 

nano-oxide particles. The detailed understanding of the mechanisms involved in the 

precipitation of these nano-oxide particles would improve manufacturing and mechanical 

properties of these ODS steels, with a strong economic impact for their industrialization. 

 

The main objective of this PhD study was to study experimentally the mechanisms involved 

in the precipitation of nano-oxide particles in high purity FeCr model alloys. An analytical 

approach by ion implantation and subsequent thermal annealing was used: high purity 

Fe-10Cr model alloys were implanted with Al and O ions at room temperature. Subsequent 

thermal annealing was effected in as-implanted samples at 500 °C and 3 hours. The 

morphology, crystal structure and chemical composition of precipitates before and after 

thermal annealing were characterized by conventional and analytical transmission electron 

microscopy (TEM) observations combining with atom probe tomography (APT) analyses.  

 

• The main result of this study is a clear demonstration of the feasibility of (Al, Cr)–rich 

oxides precipitation in Fe-Cr alloy by introducing Al+ and O+ ions via ion implantation 

since TEM observations (Fig. 3.5) showed that the nano-oxides appear in the Fe-10Cr 

matrix upon ion implantation at room temperature without subsequent annealing. 

 
• In contrast to conventional ion beam synthesis technique, the post-implantation 

thermal treatment was not a prerequisite to start the precipitation. The observed 

enrichment of implanted elements at extended structural defects, such as grain 

boundaries and dislocations (Fig. 3.41-3.44) indicated the relatively high diffusion rate 

of Al and O atoms in the high purity Fe10Cr alloy. The mobility estimation revealed 

that the diffusion of implanted Al and O atoms at room temperature was enhanced by 
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point defects created during ion implantation. Furthermore, the estimated mobility of 

implanted Al and O atoms was found to be well above the required mobility threshold. 

 
• The results of single-beam implantation experiment (see Annexe E) showed that 

(Fe,Al)-rich precipitates nucleated by the end of the implantation stage. In addition, 

the formation of precipitates was observed to occur at grain boundaries. This 

observation correlates well with the results of two-beam implantation experiment, 

where oxide particles were found to be associated with extended defects (grain 

boundaries and dislocations). It indicates that the precipitate nucleation requires no 

oxygen in order to start, at least at room temperature. Al-rich precipitates are assumed 

to be formed during the Al implantation stage. The capture of vacancies in precipitates 

leads to the accumulation of empty sites within the precipitates. 

 
• Combining the results of single-beam and two-beam implantation experiments, we 

assume that oxide particles are obtained via oxidation of Al-containing precipitates 

that nucleated already during the Al implantation run. Oxygen atoms can be captured 

by the lattice vacancies, including both freely migrating vacancies and those captured 

within precipitates. As a result, oxygen atoms captured in free vacancies can serve as 

nucleation sites for such precipitins as (Fe, Cr)-rich or Cr-rich oxides. On the other 

hand, oxygen atoms captured on empty sites of Al-containing precipitates promotes 

the formation of (Al, Cr) oxides. 

 
• TEM observations after thermal annealing show the noticeable particle coarsening 

(Fig. 3.6-3.7). The resulting EFTEM elemental maps (Fig. 3.8-3.13) as well as APT 

cluster analyses (Fig. 3.33) revealed that precipitates are always (Al, Cr)-rich oxides 

before and after thermal annealing. The high-resolution TEM experiments and 

diffraction pattern analyses observed the high temperature annealing promotes phase 

transformation within the particles. While at the early stages of particle growth they 

have a cubic lattice structure, at high temperature the structure transforms into the 

hexagonal one, which is appropriate to the ground-state structure of Al-Cr oxide 

(corundum). 

 

In conclusion, we studied experimentally the synthesis of nano-oxide precipitates in high 

purity FeCr model alloys by ion implantation and subsequent thermal annealing. A 

mechanism involved in the precipitation of nano-oxide particles in FeCr model alloys is 
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proposed in this manuscript, based on the obtained experimental results and the existing 

literature. The results obtained on high purity FeCr model alloys are fully applicable to 

industrial materials: indeed ion implantation reproduces the conditions of milling and heat 

treatments are at equivalent temperatures to those of thermo-mechanical treatments.  

 

 

Several researches can be proposed for the continuity of this study: 

 

• The high-resolution TEM observations were carried out in annealed conventional 

TEM thin foils. However, the hexagonal phase crystal structure was hard to be 

identified and further precise characterizations are required. An annealed FIB lamina 

is thus expected to facilitate the high-resolution TEM observations.  

• The results obtained in single-beam Al ion implantation experiment are preliminary. 

Further TEM observations and other analyses need to undertake in order to obtain 

more information about chemical compositions and crystal structure of Al-rich 

precipitates formed at this implantation stage. 

• A new (Y, Ti, O) system in high purity FeCr model alloys is proposed to be studied in 

order to match perfectly industrial materials’ elements and understand the appearance 

of these nano-particles during grinding, based on the same experimental approach as 

shown in this manuscript. 

• A tight coupling between experimental and modeling studies will help to understand 

better the first early stages of the nano-oxide precipitation in ODS alloys. 
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Annexe A: APT and TEM sample preparation by Focused Ion Beam 
 
 
A.1 APT specimen preparation by FIB 

APT specimen preparation was carried out at IM2NP in Marseille, France in close 

collaboration with the group “Réactivité et Diffusion aux Interfaces” (staff: Dr Marion 

Descoins and Dr Dominique Mangelinck). Both as-implanted and annealed dimpled discs 

were firstly prepared at CSNSM/JANNuS Orsay, France, and then sent to IM2NP, Marseille 

for further as-implanted and annealed APT specimen fabrication. 

 

In most case, APT specimens are needle-shaped tips, which are suitable to APT analysis 

since: (1) they are sharp enough to allow field evaporation; (2) they are robust enough to 

allow for significant evaporation events to occur.  

While electrolytic polishing has been widely used for fabricating needle-shaped tips, it is still 

difficult to fabricate the tip from a highly specific site, which may contains interesting 

features of the materials. Moreover, not all materials have sufficient electrical conductivity to 

enable electropolishing. Recently, scanning electron microscope-focused ion beam (SEM-

FIB) instruments have been well developed so that it enables specimens to be fabricated from 

any solid material with a local precision of approximately 10 nm. Different FIB-based 

methods were summarized in [Gault, 2012]. Among these FIB-based methods, we chose 

in-situ lift-out method to fabricate APT tips with using a FEI Helio 600 NanoLab 2-30 kV 

focused ion beam (FIB).  

 

A lift-out method published by Thompson et al. [Thompson, 2007] has been widely adopted 

by the atom probe community. Prior to inserting the specimen in the FIB, a thin capping layer 

of sputter-coated nickel was applied to protect the top edge of the specimen from ion-beam 

damage. Once that was done, the specimen was mounted on the stage and inserted into the 

FIB. The in-situ lift-out process started. 

 

Fig. A.1 illustrates the general steps of the lift-out procedure. A region of interest (ROI) was 

firstly selected. Secondly, a FIB-deposited platinum (Pt) strip was added to protect the surface 

and to mark the region to be extracted (arrowed in Fig. A.1(a)). The platinum layer is 

typically 2-3 µm wide and ~100 nm thick.  
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A triangle-shaped bar of the material, often referred to as a wedge, was then prepared by 

milling trenches from normal to the surface. Ga+ ions beam was used as a tool to achieve 

milling and cutting. In this case, trench 1 (arrow 1 in Fig. A.1(b)) was created by tilting the 

stage to 22° (with respect to the electron beam) and milling with ion current in a rectangular 

pattern. The ion beam is scanned parallel to the long axis of the wedge starting far from the 

platinum strip and proceeding to the near edge. Trench 2 (arrow 2 in Fig. A.2(b)) was then 

created using the same procedure after rotating the stage through 180°. Milling was completed 

when trenches 1 and 2 meet beneath the ROI. Once the angled cuts were complete, a cut 

(arrow 3 in Fig. A.1(b)) was made at one end of the bar to release it from the specimen. The 

cut used a long rectangular pattern to cut across the entire wedge leaving behind a 

cantilevered wedge. 

 
Fig. A.1 Images showing the initial steps of the in-situ lift-out process: (a) After deposing a protective strip 
over the region of interest (ROI) by FIB. (b) After the two angled cuts (arrows 1 and 2), and one end of the 
bar has been cut free (arrow 3). (c-d) Wedge cut-free and lifted out from the sample. (e) The wedge is 
positioned above the carrier microtip. The wedge is attached to the carrier tip with FIB-deposited 
platinum (left arrow) and then cut free from the carrier tip (right arrow). (f) Wedge is welded by deposing 
platinum on the opposite side of the carrier tip. 

 

After returning the FIB stage to 0° tilt, an in-situ micromanipulator was then positioned 

adjacent to the free end of the bar. Pt deposition was used to attach the needle to the free end 

of the bar (Fig. A.1(c-d)). The Ga+ ions were then used to cut free the other end of the 

specimen (Fig. A.1(c)), so that the bar was no longer attached to the original specimen. 
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The wedge was then removed from the original specimen by carefully lowering the FIB stage, 

and the micromanipulator was used to transfer the specimen onto the pre-fabricated arrays or 

coupons (Microtip coupons [Larson, 2001]). The presence of many microtips per coupon 

makes it easier to collect a significant number of specimens in a short amount of time under 

very similar processing conditions. The end of the wedge was welded to the microtip with Pt 

and the slice was cut free by using Ga+ ions (Fig. A.1(e)). Another side of the wedge was also 

welded to the microtip with Pt (Fig. A.1(f)). The last two steps were repeated several times 

until the wedge was exhausted. As a result, we obtained a series of small wedge pieces. 

The process of converting a lift-out wedge into a sub-20 nm diameter sharp needle is 

accomplished through a series of annular milling steps [Larson, 1999] followed by a 

low-energy FIB cleanup step [Thompson, 2007].  

 
Fig. A.2 Milling of a tip by using annular milling pattern in a FIB. The inner annulus is progressively 
decreased in size from (a) to (c), while the beam current is decreased in order to improve resolution. 

 

Tip shaping was accomplished by applying an annular milling pattern with constant outer 

diameter and a decreasing inner diameter (Fig. A. 2(a-c)). The milling proceeded from the 

outer diameter of the pattern to the inner diameter of the pattern to best control any potential 

for redeposition of removed material. Each pattern was applied for a length of time sufficient 

to achieve the desired tip diameter. The final tip shaping was accomplished with the 

low-energy (2-5 keV) FIB cleanup step. The goal of the low-energy milling step is to remove 

the damaged region created by high-energy milling. 

 

A.2 TEM specimen preparation by FIB 

TEM specimen preparation by FIB has been performed at CEA/DEN/DANS/DMN/SRMA by 

Benoît Arnal. The FIB-based lift-out procedure for TEM lamina preparation is quite similar to 

that for APT specimen preparation. In most case, the TEM lamina preparation consists of mill 

a thin slice of the material perpendicularly to the specimen surface, to glue it on a TEM 
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sample holder and to finish the thinning using low-voltage focused ion-beams 

[Giannuzzi, 1999; Jublot, 2014]. However, TEM FIB lamina should be transparent to 

electrons and the final size of the cross-section can be as large as 150 µm2, to as small 

as 45 µm2. This specialized requirement imposes to modify several steps in the lift-out 

procedure.  

The first difference is that the FIB-deposited capping layer was a layer of tungsten instead of 

platinum and nickel. The second difference is that only two trenches were milled on either 

side of the tungsten that has been deposited above the ROI. The trenches have been milled so 

as to just touch the tungsten on either side, leaving a wall of material in the centre that is 

typically two microns thick. 

The third difference is the shape of milling pattern applied during precise polishing. Instead of 

using annular milling in APT specimen preparation, rectangular milling pattern was applied 

directly to the surfaces of the membrane. The beam current reduced progressively when the 

thickness of membrane reduced. The low beam current would limit the creation of damage in 

the specimen. The last polishing step, again with reduced beam current, brought the 

membrane to a thickness of between 50 and 120 µm. At this thickness, the membrane is 

electron transparent, and will clearly display the cross-section of the ROI in a TEM. 

The final step involves the use of micromanipulator, which is capable of moving the 

extremely thin membrane to the sample holder through exceptionally fine motions. With the 

use of this item, FIB lamina was attracted to the micromanipulator and adhered to it when 

they came into contact with it. Finally, the lamina was transported and welded to the sample 

holder. 
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Annexe B: (Fe,Cr)- and Cr-rich oxides 
 

• (Fe,Cr)-rich oxides 
 
The proxigram algorithms have been applied to cluster analysis during APT measurements. In 

the first step of this technique, a 50% Cr iso-concentration surface (green color) was applied 

to the reconstruction, as shown in Fig. B.1. A specific isosurface  (pink color) identifying a 

precipitate was isolated, and the local atomic neighborhood adjacent to the interface was then 

examined. Atomic positions are correlated with respect to their distance to the local normal of 

the isosurface, making the algorithm independent of the interface geometry.  As a result, a 

concentration distribution profile for any of the constituent elements can be generated 

characterizing the nature of the interface and its local environment. 

 

 
Fig. B.1 Proxigram analysis in annealed tip. Upper: A 50% Cr iso-concentration surface (green color). 
The surface selected for analysis is drawn in pink color. Lower: The resulting proxigram composition 
profiles. 
 
As shown in Fig. B.1, the composition profiles of Fe, Cr and O pass trough the interface 

between the matrix and the identified particle. The concentration of Fe decreases, whereas 

those of Cr and O increases from the matrix to the particle. The concentration of Al is 

negligible comparing to other elements. The resulting proxigram composition profiles 

indicate that the identified particle is (Fe, Cr)-rich oxides. This result confirms the synthesis 

of other oxide particles. 
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High resolution TEM observation was performed in (Fe, Cr)-rich oxide particles. The results 

are presented in Fig. B.2. 

 
Fig. B.2 (a) High resolution TEM image of the particle oriented along <411>; (b) The Fourier transform of 
the square marked in (a); (c) The simulated diffraction pattern of FeCr2O4 oriented along the <411> axis; 
(d) Detailed view of the square marked in (a); (e) Simulated HR-TEM image of FeCr2O4 oriented along the 
<411> axis. 

 

The particle shown in Fig. B.2(a) presents cubic symmetry. The Fourier transform analysis 

(Fig. B.2(b)) shows that the particle lattice is oriented along <411> zone axis of presumably 

fcc structure and has the lattice parameter of 8.35 ± 0.15 Å, which correlates well with the 

reference lattice parameter of FeCr2O4 (~8.28 Å [Villars, 1985]). The simulated diffraction 

pattern of FeCr2O4 oriented along <411> is consistent with the Fourier transform pattern. In 

addition, the zoom view of the particle (Fig. B. 2(d)) is very similar with the HRTEM image 

(Fig. B.2(e)) simulated by JEMS software. However, the structure and chemical composition 

of oxide in nanometer-size particles should not necessarily coincide with those of any known 

large-scale mineral. 

 
• Cr-rich oxides 

 
The resulting energy-filtered images are presented in Fig. B.3. The dark contrast on the 

Fe-M2,3 elemental map (Fig. B.3(b)) show the local Fe deficiency. The Fe elemental map 

gives a clear view of this precipitate in the matrix.  The local Al deficiency is also observed in 

the Al elemental map (Fiugre B.3(d)). The other three elemental maps acquired by the 

filtering of the Cr-M2,3 and O-K edges exhibit the same pattern of bright contrasts which 

correspond to the precipitate observed on Fe and Al elemental maps. This suggests that the 

precipitate are Cr-rich oxides. 
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Fig. B.3 Energy-filtered TEM (EFTEM) characterization of typical precipitates in the annealed thin foil at 
500 °C and 3 hours: (a) Bright Field (BF) TEM image of region of interest for EFTEM characterization. 
The panels show jump-ratio EFTEM elemental maps of Fe-M2,3 edge (b), Cr-M2,3 edge (c), Al- L2,3 edge (d) 
and three-window EFTEM elemental map of O-K edge (e). The colors indicate the elements as marked in 
the legend. 
 
Fig. B.4 shows HRTEM images taken on two different particles in as-implanted thin foils. 

both of two particles present hexagonal symmetry. The HRTEM resolution being about 2 Å, 

we can observe clearly a particle without seeing the matrix, even if there is a special 

orientation with the matrix. The lattice of the particle observed in Fig. B.4(a) is oriented along 

<0001>-axis and, assuming it to be hcp, corresponds to the lattice parameter of  a=4.96 Å and 

c =13 Å, very similar to the reference value of Cr2O3 [Villars, 1985]. 

The lattice of the particle observed in Fig. B.4(b) is also oriented along <0001>-axis and 

corresponds to the lattice parameter of a=4.97 Å and c =13.1 Å. Theses results are consistent 

with that identified in the previous particle. However, the structure and chemical composition 

of oxide in nanometer-size particles should not necessarily coincide with those of any known 

large-scale mineral. 
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Fig. B.4 Energy-filtered TEM (EFTEM) characterization of typical precipitates in the annealed thin foil at 
500 °C and 3 hours: (a) Bright Field (BF) TEM image of region of interest for EFTEM characterization. 
The panels show jump-ratio EFTEM elemental maps of Fe-M2,3 edge (b), Cr-M2,3 edge (c), Al- L2,3 edge (d) 
and three-window EFTEM elemental map of O-K edge (e). The colors indicate the elements as marked in 
the legend. 
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Annexe C: Precipitation in dislocation loops in annealed specimens 
 
Thermal annealing was carried out inside the microscope FEI Tecnai G2 20 twin with using 

the FEI TEM heating sample holder. The annealing temperature was set at 500 °C with a 

duration about 3 hours. The vacuum condition in the column of the TEM was 1.2 × 10-5 Pa. 

Annealed TEM thin foils were observed by conventional TEM methods as shown in 

Chapter 3. Here some pictures show the precipitation in dislocation loops in an annealed 

specimen. 

Fig. C.1 TEM micrographs showing the precipitation in dislocation loops after thermal annealing in two 
different regions: (a) BF TEM micrograph; (b) Corresponding DF TEM micrograph; (c) BF TEM 
micrograph; (d) Corresponding DF TEM micrograph. 
 

Fig. C.1(a) & (c) shows BF TEM images taken in two regions near the hole. The 

corresponding DF TEM images (Fig. C.1(b) & (d)) indicate that dislocation loops are 

decorated with precipitates. The size of precipitates in dislocation loops increases 

significantly comparing to those in as-implanted specimens. Conventional TEM observation 

effected in annealed TEM thin foils confirms again the precipitation occurred in dislocation 

loops (see section 5, Chapter 3).  
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Annexe D: The effect of sample thickness on particle precipitation 
 
 
A surprising effect observed in our study is the sensitivity of precipitation to the thickness of 

TEM samples. 

 

Fig. D.1(a) is the bright field (BF) TEM image of the as-implanted TEM thin foil. The 

diffraction pattern inserted in Fig. D.1 shows the matrix is oriented along <111> direction. 

The corresponding dark field (DF) TEM image shown in Fig. D.1(b) indicates the distribution 

of precipitates is heterogeneous. More precisely, precipitates were only observed in the region 

which looks like a ribbon. Zoom views of the selected square marked in BF and DF TEM 

images are given in Fig. D.1 (c, d). The numerous bright spots observed in Fig. D.1(d) 

correspond to the precipitates synthesized due to ion implantation of Al and O. 

 
Fig. D.1 (a) BF TEM image of the as-implanted thin-foil sample oriented along <111> zone axis; (b) 
Corresponding DF TEM image showing the distribution of precipitates as a function of sample thickness; 
(c) Zoom view of the selected square marked in (a); (d) Zoom view of the selected square marked in (b).  
 

In fact, the distribution of precipitates as a function of sample thickness is not observed 

occasionally. The same phenomenon was observed in the DF TEM image (Fig. D.2(a)) taken 
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from another as-implanted TEM thin foil. The local thickness in this region was estimated by 

energy-filtered TEM thickness map and added in Fig. D.2(a).  

 
Fig. D.2 (a) DF TEM image showing the distribution of precipitates as a function of sample thickness. The 
direction of the ion beams with respect to the thin foil is perpendicular to the image; (b) A schema that 
illustrates the ion beam direction with respect to the TEM thin foil and the spatial distribution of 
precipitates inside the specimen. 
 

A suppressed precipitation in thin sample parts, i.e. close to the hole (see Fig. 2(a)), is not 

unexpected; it was observed e.g. in [Ruault, 2008] and explained by the combined action of 

relatively low concentration of implanted ions (the majority being transmitted through the 

sample) and the proximity of free surfaces that act as efficient sinks of point defects and 

suppress defect-mediated diffusion of implanted impurity.  

  

However, the absence of visible precipitates in the foil regions thicker than ~ 60-80 nm seems 

quite unusual and still requires an explanation. One possibility is that the sample in these 

regions is simply too thick to observe the precipitates. On the other hand, the results of APT 

measurements suggest that the precipitation in the thicker foil parts can be really delayed or 

suppressed because of a redistribution of Al atoms during ion implantation with the 

accompanying decrease of the average aluminum concentration. Indeed, as demonstrated in 

section 4.1 of Chapter 4, there are reasons to believe that aluminum atoms were able to move 

up to tens of nanometers at the oxygen implantation stage. This must be equally true for the 

Al+ implantation run, where the displacement generation efficiency is more than twice higher. 

In order to demonstrate this in more quantitative terms, let us apply a simple rate theory 

model described in detail in Ref. [Fortuna, 2012]. 

 

The rate of redistribution of Al atoms is determined by the diffusion coefficient defined with 
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equation DAl =DvCv +DICI, which is sensitive to the local concentration of 

implantation-induced point defects in the foil. The spatial distribution of the product wα = DαCα 

(where α=V or I for vacancies and interstitials, respectively) can be found from a standard 

diffusion equation 

 , (1) 

where G is the depth dependent rate of point defect generation (practically identical for 

vacancies and interstitials) and  is the efficiency of α-type defect capture by internal sinks 

(first of all – dislocations). All parameters in the equation are assumed to vary as a function of 

only one coordinate - the depth from the sample surface, z. The depth dependence of the 

point-defect generation rate is described as 

€ 

G(z) = ζΩφg(z) ,                                                         (2) 

where ζ is the cascade efficiency (a factor that accounts for the intra-cascade point defect 

annealing [Averback, 1978; Jung, 1983]) and the function g(z), as determined by SRIM 

calculations, is shown in Fig. D.3(a). At the free sample surfaces (z = 0 and z = L) the point-

defect concentrations are assumed vanishing.  

 
 
Fig. D.3 (a) Depth profiles of Al ion distribution and vacancy distribution due to 70 keV Al ion 
implantation into Fe-10Cr, as predicted by SRIM code. Curves are marked in the legend and are 
normalized per projectile; (b) Steady-state distribution of the product DVCV over the foil depth for 
different foil thicknesses (as indicated in the legend); (c) The dependence of the average concentration Cav 
of Al atoms in a thin foil after the Al+ implantation run as a function of the foil thickness. 
 

In writing down equation (2) several reasonable simplifications are introduced. First of all, the 

time derivative of concentrations is omitted because the typical time of point defect 

equilibrium establishment, ~ , is much less than the typical implantation time. Indeed, 

even for the slowest moving defect, vacancy, the diffusion coefficient at ~ 50ºC is 

DV ~ 3×10-9 cm2/s (assuming the vacancy migration energy of 0.55 eV [Vehanen, 1982] and 

the prefactor of 1 cm2/s), giving τV ≈ 3 µs for L ≈ 100 nm. Second, the recombination of 

interstitials and vacancies is not included in equation (1) because point defect concentrations 
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in TEM films are very low due to the efficient loss at free sample surfaces and only the intra-

cascade recombination of point defects is important [Fortuna, 2012]. Finally, we do not take 

into account the possible interaction of point defects with Al and other solute atoms, which 

affects point defect concentrations only marginally due to the low solute concentrations. 

 

The solution of equation (1) is found numerically and is shown in Fig. D.3(b) for several 

relevant foil thicknesses. The curves are for the product DVCV and are obtained assuming 

kV
2 ≈ 1010 cm-2 (a typical dislocation density in ferritic-martensitic steels) and ζ = 0.2, while 

other parameters are those used in the current experiment. The curves for DICI are similar 

because the sink strengths for vacancies and interstitials are usually nearly the same, while 

other parameters are insensitive to the point defect type. Hence, the Al diffusion coefficient is 

approximately twice the value shown in Fig. D.3(b). 

 

Several conclusions can be drawn from Fig. D.3(b). First of all, the value of the diffusion 

coefficient is such that the mean free path for Al diffusion during the implantation time of 1 

hour is ~ 30 nm or even more (up to 100 nm, when the dislocation density is below 109 cm-2 

and the main point defect loss is at the foil boundaries). This justifies our statement above. 

Second, the profile of the Al diffusion coefficient is parabolic in shape, which means that in 

addition to the pure diffusion there is a drift of Al atoms, which is against the vacancy 

gradient. This means that the Al atoms should drift towards the position of point defect profile 

maximum. This is especially important for achieving Al distribution homogeneity in the thin 

foil parts (with L <60 nm), where the rate of Al deposition grows nearly linearly with the 

depth. Finally, the mobility of Al increases by nearly an order of magnitude when the foil 

thickness increases from 40 to 100 nm. It means that in the foil parts that have thickness of 

the order of 100 nm the implanted aluminum should be distributed relatively uniformly over 

the sample thickness by the end of the implantation run, in spite of the essentially Gaussian 

ion stopping range profile.  

 

Fig. D.3(c) shows the averaged over the sample thickness concentration of implanted Al 

atoms, Cav, as a function of sample thickness; the dependence is calculated using the SRIM 

profile for the Al projected range (see Fig. D.3(a)) and the total fluence by the end of Al+ 

implantation run. It can be noticed that Cav has a peak at sample thicknesses of 40-80 nm. In 

thinner regions a noticeable part of the incoming flux is transmitted through the sample, while 

in thicker parts the implanted ions are redistributed over larger sample volume. Due to the 

decreased aluminum concentration, the oxide particles formed during subsequent O+ 
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implantation can be too small to be visible in TEM, or possibly not form at all. However, 

further studies (e.g. depth profile TEM characterizations of as-implanted samples prepared as 

cross section shape) need to be done in order to justify this assumption. 
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Annexe E: TEM characterizations of single Al implanted samples 
 
 
The TEM thin foils were prepared following conventional processes as described in 

Chapter 2. In contrast to two-stage ion implantation, the TEM thin foils were implanted by 

Al+ ions only at room temperature in this case. The same setup (ion energy, fluence, 

temperature…) was maintained for this single Al+ ion implantation. No subsequent thermal 

annealing was applied. Since only Al+ ions were introduced, the TEM thin foils are referred in 

the following as single Al implanted samples. Both conventional and analytical TEM 

characterizations were carried out in these single Al implanted samples. The results are 

described below. 

 

Fig. E.1(a) shows a bright field (BF) TEM micrograph of the single Al implanted sample, of 

which the matrix is oriented along <113>. A grain boundary can be observed in this 

micrograph. 

 
Fig. E.1 (a) Bright field (BF) TEM micrograph of the single Al implanted material oriented along <113>; 
(b) Corresponding dark field (DF) TEM micrograph showing the presence of precipitates at the grain 
boundary. 
 
The corresponding dark field (DF) TEM micrograph of this region is shown in Fig. E.1(b). 

The white spots observed in Fig. E.1 (b) correspond to precipitates. The distribution of 

precipitates is heterogeneous. The precipitate size ranges from 3 to 25 nm centered on 

6 ± 1.5  nm. In addition, the segregation of precipitates was observed at the grain boundary. 

This observation correlates well with the results of two-stages experiment, where oxide 

precipitates were found to be associated with the extended defect sinks (grain boundaries and 

dislocations). The precipitate number density was found to be (3.2 ± 0.6) × 107 m-1 at grain 

boundary and (3.74 ± 0.8) × 1020 m-3 in the total volume. Comparing to the number density 
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measured in Al and O implanted samples ((1 ± 0.3) × 1022 m-3), the values measured in single 

Al implanted samples has a lower order of magnitude. 

The crystallographic structure of precipitates was identified by the diffraction pattern analysis. 

We measured the diffraction pattern (Fig. E.2(a)) on the region where precipitates are hard to 

be seen directly (Fig. E.2(b)). 

 
Fig. E.2 Crystalline structure analysis showing the coexistence of the FeCr matrix and the precipitated 
particles in the single Al implanted material. (a) Diffraction pattern (negative level) for the region 
corresponding to (b); (b) Bright field (BF) TEM micrograph of the single Al implanted material; (c) Dark 
field (DF) TEM micrograph corresponding to the spot S1 showing the presence of precipitates; (d) Dark 
field (DF) TEM micrograph corresponding to the spot S2 showing the presence of precipitates. 
 
Two sets of diffraction spots can be identified in Fig. E.2(a). For the set of diffraction spots 

marked with blue lines, the intersection angle of the square pattern is ~90° and the ratio of the 

length between two sides is ~1. This set of diffraction spots corresponds to the cubic lattice 

(either bcc or fcc) oriented along <100> zone axis. The lattice parameter determined from the 

diffraction pattern using the Bragg equation is about a ≈ 2.91 ± 0.1 Å in the case of bcc 

structure and a ≈ 4.1 ± 0.1 Å in the case of fcc structure, respectively. The lattice parameter 

obtained in the case of bcc structure agrees with the reference value for FeCr alloy (2.876 Å 
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[P. Villars, 1985]). On the other hand, the precipitates, if they are related to this set of 

diffraction spots, are supposed to be fcc lattice with the determined lattice parameter of 

a ≈ 4.1 ± 0.1 Å. 

In order to confirm the set of diffraction spots is related to the precipitates, the dark field (DF) 

TEM micrograph on the selected spot S1 in Fig. E.2(a) was obtained and can be seen in 

Fig. E.2(c). Bright spots corresponding to precipitates can be observed in the DF micrograph. 

This confirms our assumption that S1 is a common diffraction spot to both the bcc FeCr 

matrix and the fcc precipitates. The simplest guess that precipitates are pure Al ones does not 

seem improbable. In fact, the pure Al has fcc lattice with a lattice parameter of 4.05 Å 

[Villars, 1985], so the lattice structure of pure Al is consistent with the experimental 

observation. 

 

For the other set of diffraction spots, the lattice drawn in red in Fig. E.2(a) has the line 

intersection angle of ~60° and the ratio of the lengths of adjacent sides of ~1. As a 

consequence, the set of diffraction spots corresponds also to the cubic lattice (either bcc or 

fcc) oriented along <111> zone axis. The estimated value of the lattice parameter is 

a ≈ 2.87 ± 0.1 Å in the case of bcc structure and a ≈ 5.79 ± 0.1 Å in the case of fcc structure, 

respectively. The lattice parameter obtained in the case of bcc structure still agrees with the 

reference value for FeCr alloy (2.876 Å [P. Villars, 1985]). And we suppose again that the 

precipitates are fcc lattice with a lattice parameter of a ≈ 5.79 ± 0.1 Å if they are related to this 

set of diffraction spots. For the same reason as the blue lattice set of diffraction spots, the dark 

field (DF) TEM micrograph on the selected spot S2 in Fig. E.2(a) was obtained and can be 

seen in Fig. E.2(d). Similarly, bright spots corresponding to precipitates can be observed in 

the DF micrograph. This confirms our assumption that S2 is also a common diffraction spot to 

both the bcc FeCr matrix and the fcc precipitates. In this time, with such a lattice parameter of 

5.79 Å, the precipitates are probably the intermetallic Fe3Al phase, whose diffraction pattern 

is characteristic for fcc lattice and the lattice parameter ~5.7 Å [P. Villars, 1985]. Evidently, 

the reference value of lattice parameter correlates with the experimental observation. 

 

So, given this diffraction pattern analysis, the precipitates we observed are probably pure Al 

or the intermetallic Fe3Al phase. 
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The EFTEM investigation was applied to single Al implanted TEM thin foils. The region 

selected for the investigation has the thickness found to be approximately 30 nm ( ~0.28 and 

~110 nm).  

 
Fig. E.3 Energy-filtered TEM (EFTEM) characterization showing Al and Fe matrix tend to form localized 
zones that are enriched in both Fe and Al, but depleted with Cr: Three-window EFTEM elemental maps 
of Fe-L2,3 edge (a) and O-K edge (d). Jump ratio EFTEM elemental maps of Cr-M2,3 edge (b) and Al-L2,3 
edge (c).  
 
The resulting energy-filtered images are presented in Fig. E.3. White and dark contrasts seen 

on the EFTEM elemental maps represent enrichment and depletion of elements in these 

zones, respectively. The white contrast observed on the Fe-L2,3 elemental map (Fig. E.3(a)) 

correlates well with those on the Al-L2,3 elemental map (Fig. E.3(c)). On the contrary, the 

opposite contrast appears on the Cr-M2,3 elemental map (Fig. E.3(b)). The O-K elemental map 

(Fig. E.3(d)) seems to be homogeneous, which indicates no significant enrichment of oxygen 

in single Al implanted samples. The EFTEM elemental maps reveal that implanted Al atoms 

and Fe matrix tend to form localized zones that are enriched in both Fe and Al, but depleted 

with Cr. 

 

In conclusion, ion implantation of Al+ ions only was performed in high purity FeCr at room 

temperature. Conventional and analytical TEM characterizations were performed in these 

single Al ion implanted TEM thin foils. The most important result revealed by this Al ion 

implantation experiment (without a subsequent O ion implantation) is the observation of 
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precipitates nucleated by the end of the implantation stage. In addition, the formation of 

precipitates was observed to occur at the grain boundary. These interesting features indicate 

that the precipitate nucleation requires no oxygen in order to start, at least at room 

temperature. Secondly, the diffraction pattern analysis indicates that the precipitates have a 

fcc-structure with the lattice parameter of ~4.1 ± 0.1 Å or ~5.79 ± 0.1 Å. Comparing 

experimental values of the lattice parameter with the reference values, precipitates are 

suggested to be pure Al or intermetallic Fe3Al phase. Finally, the EFTEM characterization 

reveals that Al and Fe matrix tend to form localized zones that are enriched in both Fe and Al, 

but depleted with Cr. 
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Annexe F: Scientific communications 
 
 
 
 
Publications 

• A manuscript in preparation 
 

• C. Zheng, A. Gentils. J. Ribis, V. A. Borodin, L. Delauche, B. Arnal, Nano-size 
metallic oxide particle synthesis in FeCr alloys by ion implantation, Proceedings in 
IOP Conference Series: Materials Science and Engineering (MSE), submitted (2015) 

 
• Ce Zheng, Aurélie Gentils, Joël Ribis, Vladimir A. Borodin, Nano-size oxide particle 

nucleation in high purity Fe-10%Cr alloy by ion implantation, Proceedings of the 
International Conference on Solid-Solid Phase Transformations in Inorganic Materials 
(PTM2015), edited by Matthias Militzer, Gianluigi Botton, Long-Qing Chen, James 
Howe, Chadwick Sinclair, Hatem Zurob, ISBN 978-0-692-43736-0 (TMS), 2015 

 
• C. Zheng, A. Gentils. J. Ribis, V. A. Borodin, Odile Kaïtasov, Metal-Oxide 

nanoclusters in Fe-10%Cr alloy by Ion implantation, Proceedings of IBMM2014 
conference, Nucl. Inst. Meth B 365 (2015) 319 

 
• C. Zheng, A. Gentils. J. Ribis, Odile Kaïtasov, V. A. Borodin, M. Descoins, D. 

Mangelinck, The feasibility of Al-based oxide precipitation in Fe-10%Cr alloy by ion 
implantation, Philosophical Magazine 94 (2014) 2937 

 
 
 
Attended Conferences 

April 2015  Materials Research Society (MRS) 2015 Spring meeting, San 
Francisco, United States of America, Symposium XX: multiscale 
modeling and experiments on microstructural evolution in nuclear 
materials, Contributed oral presentation 

 
September 2014 19th International Conference on Ion Beam Modification of Materials 

(IBMM 2014), Leuven, Belgium, poster presentation 
 
September 2014 XIVes Journées Nationales de Radiochimie et de Chimie Nucléaire 

(JNR 2014), Orsay, France, poster presentation 
 

June 2013  3M workshop Materials for Nuclear Energy, INSTN, CEA, Saclay, 
France, poster presentation 
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Annexe G: Résumé en français de la thèse   
 
 

Synthèse de nano-amas d’oxyde métallique par implantation ionique 

dans un alliage Fe10Cr de haute pureté 
 
Le développement des centrales nucléaires du futur a pour objectif de répondre à un certain 

nombre de défis énergétiques soulevés par la demande mondiale croissante en énergie, la 

diminution des ressources en énergie fossile et la consommation durable des ressources en 

combustibles. Ces réacteurs du futur seront soit basés sur le phénomène de fission (réacteurs 

de génération IV1), soit sur la fusion (réacteur ITER). Parmi les six concepts de réacteurs à 

fission retenus par le forum international de génération IV, la France a fait le choix de 

s’impliquer notamment sur les réacteurs à neutrons rapides refroidis au sodium (RNR-Na), et 

consacre une grande partie de ses efforts de recherche au développement de ce type de 

réacteur. Les conditions de fonctionnement envisagées pour les gainages combustibles 

appliqués dans les RNR-Na consistent en une température de 650 °C, un taux d’irradiation qui 

peut dépasser 200 dpa en fin de cycle2. Les conditions envisagées pour  la fusion nécessitent 

également des matériaux résistants à de fortes températures et taux d’endommagement. 

Malheureusement, aucun des matériaux actuellement utilisés dans l’industrie électronucléaire 

ne s’adapte parfaitement à ces conditions. C’est pourquoi il est nécessaire de développer de 

nouvelles gammes de matériaux. 

Les aciers ODS (Oxide Dispersed Strengthened Steels), renforcés par des dispersions de 

nano-oxydes métalliques (à base d'éléments Y, Ti et O), sont des matériaux prometteurs pour 

les réacteurs nucléaires du futur. Ces aciers, élaborés par métallurgie de poudres, présentent 

en effet de bonnes propriétés mécaniques à haute température et une bonne résistance à 

l’irradiation sous flux neutronique. Le procédé de synthèse des aciers ODS se décompose en 

plusieurs étapes3,4. Afin d’obtenir la fine précipitation désirée, l’oxyde d’yttrium est mis en 

solution solide dans la matrice métallique par une opération de broyage mécanique. La poudre 

est mise en gaine et ensuite consolidée. Pour finir, des traitements thermomécaniques sont 

réalisés afin de mettre le matériau en forme. 
 

 

1 https://www.gen-4.org/gif/jcms/c_9502/generation-iv-goals 
2 J. G. Marques, Energy Conversion and Management, 51 (2010) 1774 
3 S. Ukai, S. Mizuta, T. Yoshitake, T. Okuda, M. Fujiwara, S. Hagi and T. Kobayashi, Journal of Nuclear Materials, 283 
(2000) 702 
4 G. R. Odette, M. J. Alinger and B. D. Wirth, Annual Review of Materials Research 38 (2008) 471	  
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 La compréhension fine des mécanismes mis en jeu lors de la précipitation de ces 

nano-oxydes permettrait d’améliorer la fabrication et les propriétés mécaniques de ces aciers 

ODS, avec un fort impact économique en vue de leur industrialisation. 

Des résultats obtenus par différentes approches indiquent que la nature (taille, composition et 

structure) des nano-oxydes est très dépendante des conditions d’élaboration et de la 

composition des alliages5,6,7. Fu et al.8 mettent en avant un mécanisme de germination des 

amas basé sur les lacunes. D'après des calculs ab initio dans le fer, l'oxygène en position 

interstitielle a une très forte affinité pour les lacunes, à tel point que, lorsque les lacunes 

pré-existent, l'énergie de formation d'une paire oxygène-lacune est quasiment nulle. De plus, 

il existe autour de cette paire oxygène-lacune des sites énergétiquement favorables aux 

atomes ayant une forte affinité pour O, tels que Ti ou Y. Lors du broyage, de nombreuses 

lacunes sont formées. Il y a donc formation de paires oxygène-lacune vers lesquels Ti et Y 

sont attirés, entraînant la germination d'amas enrichis en Ti, Y et O. Cette prédiction théorique 

a été vérifiée expérimentalement par analyse d’annihilation de positons9 et microscopie 

électronique en transmission10, confirmant l'importance des lacunes dans les mécanismes de 

formation des nano-amas. 

Afin de déterminer le chemin cinétique de formation de ces nano-oxydes, nous proposons 

dans ce travail de thèse une alternative originale à la mécano-synthèse: l’implantation ionique, 

une technique qui reproduit parfaitement les conditions du broyage. En effet, cette technique 

permet d’introduire de façon contrôlée (température, concentration) les éléments dans la 

matrice métallique, formant ainsi une solution sursaturée hors-équilibre, tout en créant des 

lacunes comme le broyage. Un seul essai a été reporté dans la littérature par Sakuma et al.11 

dans lequel l’étape de broyage a été remplacée par une co-implantation d’ions Y+ et O+ dans 

un acier ferritique créant ainsi une solution solide sursaturée. Leurs observations par 

microscopie électronique en transmission montrent que la précipitation d’oxydes d’yttrium est 

induite à cause d’un recuit thermique à 1300 K après l’implantation, mais la nature des 

nano-précipités formés n’est pas détaillée. 

Cette étude a permis de démontrer la faisabilité de cette méthode et d'étudier le comportement 

d'alliages modèles (à base d’oxyde d’aluminium) sous recuit thermique. Des alliages Fe-10Cr 

de haute pureté ont été implantés avec des ions Al et O à température ambiante. 
 

 

5 M. Alinger, G. R. Odette and D. T. Hoelzer, Acta Materialia, 57 (2009) 392 
6 E. A. Marquis, Applied Physics Letter, 93 (2008) 181904	  
7 M. Klimenkov, R. Lindau and A. Möslang, Journal of nuclear Materials, 386 (2009) 553 
8 C. L. Fu, M. Krcmar, G. S. Painter and X. Q. Chen, Physical Review Letters, 99 (2007) 225502 
9 J. Xu, C. T. Liu, M. K. Miller and H. M. Chen, Physical Review B, 79 (2009) 020204 
10 A. Hirata, T. Fujita, Y.R. Wen, J.H. Schneibel, C.T. Liu, M.W. Chen, Nature Materials, 10 (2011) 922 
11 D. Sakuma, S. Yamashita, K. Oka, S. Ohnuki, L. E. Rehn and E. Wakai, Journal of Nuclear Materials, 329 (2004) 392 
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Les observations de microscopie électronique en transmission ont montré que des 

nano-oxydes apparaissent dans la matrice de Fe-10Cr dès l’implantation à température 

ambiante, sans recuit subséquent12. Les défauts créés lors de l’implantation ionique sont à 

l’origine de la mobilité des éléments introduits, permettant la nucléation de ces 

nanoparticules, de quelques nm de diamètre. Ces nanoparticules sont composées d’aluminium 

et d’oxygène, et également de chrome. Les examens en haute résolution montrent que leur 

structure cristallographique correspond à celle d’un composé hors équilibre de l’oxyde 

d’aluminium (de type γ-Al2O3)13. Les traitements thermiques effectués après implantation 

induisent une croissance de la taille de ces nano-oxydes, et un changement de phase qui tend 

vers la structure d’équilibre (de type α-Al2O3)14. 

Ces résultats sur des alliages modèles s’appliquent entièrement aux matériaux industriels : en 

effet l’implantation ionique reproduit les conditions du broyage, et les traitements thermiques 

sont à des températures équivalentes à celles des traitements d’élaboration 

thermo-mécaniques. Ainsi des études récentes sur des matériaux industriels (à base Y, Ti, O) 

montrent les mêmes résultats que les nôtres, à savoir une apparition des nano-oxydes dès la 

phase de broyage15,16. Il est montré également que ces nano-oxydes sont de structure hors 

équilibre17, et subissent un changement de phase lors du traitement thermo-mécanique18. Un 

mécanisme de la précipitation de nano-oxydes est proposé dans ce manuscrit de thèse. 

 

 

 

 

 

 

 

 

 

 

 
 

 
12 C. Zheng, A. Gentils, J. Ribis, O. Kaïtasov, V.A. Borodin, M. Descoins, D. Mangelinck, Philosophical Magazine, 94 
(2014) 2937 
13 C. Zheng, A. Gentils, J. Ribis, V.A. Borodin, O. Kaïtasov, F. Garrido, Nucl. Instrum. Method. B, 365 (2015) 319 
14 C. Zheng et al., en préparation 
15 Thèse de Marie Loyer-Prost, CEA/DEN/DMN/SRMP, 2014 
16 C.A. Williams, P. Unifantowicz, N. Baluc, G. D. W. Smith, E. A. Marquis, Acta Materialia, 61 (2013) 2219-2235 
17 J. Ribis, E. Bordas Nucl. Instrum. Method. B, 365 (2015) 22  
18 J. Ribis et al, en préparation  
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Titre : Synthèse de nano-amas d’oxyde métallique par implantation ionique dans un alliage Fe10Cr de haute 
pureté 

Mots clés : Implantation ionique, Recuit thermique, Précipitation, Sonde atomique tomographique, Microscopie 
électronique en transmission, Oxyde d’aluminium, Alliage métallique 

Résumé : Les aciers ODS (Oxide Dispersed 
Strengthened Steels), renforcés par des dispersions de 
nano-oxydes métalliques (à base d'éléments Y, Ti et 
O), sont des matériaux prometteurs pour les réacteurs 
nucléaires de génération IV. La compréhension fine 
des mécanismes mis en jeu lors de la précipitation de 
ces nano-oxydes permettrait d’améliorer la 
fabrication et les propriétés mécaniques de ces aciers 
ODS, avec un fort impact économique en vue de leur 
industrialisation. Pour étudier expérimentalement ces 
mécanismes, une approche analytique par 
implantation ionique est utilisée dans cette étude, 
permettant de contrôler différents paramètres de 
synthèse de ces précipités comme la température et 
leur concentration. Ce projet a permis de démontrer 
la faisabilité de cette méthode et d'étudier le 
comportement d'alliages modèles (à base d’oxyde 
d’aluminium) sous recuit thermique. Des alliages Fe-
10Cr de haute pureté ont été implantés avec des ions 
Al et O à température ambiante. Les observations de 
microscopie électronique en transmission ont montré 
que des nano-oxydes apparaissent dans la matrice de  

Fe-10Cr dès l’implantation à température ambiante, 
sans recuit subséquent. Les défauts créés lors de 
l’implantation ionique sont à l’origine de la mobilité 
des éléments introduits, permettant la nucléation de 
ces nanoparticules, de quelques nm de diamètre. Ces 
nanoparticules sont composées d’aluminium et 
d’oxygène, et également de chrome. Les examens en 
haute résolution montrent que leur structure 
cristallographique correspond à celle d’un composé 
hors équilibre de l’oxyde d’aluminium (de type γ-
Al2O3). Les traitements thermiques effectués après 
implantation induisent une croissance de la taille de 
ces nano-oxydes, et un changement de phase qui 
tend vers la structure d’équilibre (de type α-Al2O3). 
Ces résultats sur des alliages modèles s’appliquent 
entièrement aux matériaux industriels : en effet 
l’implantation ionique reproduit les conditions du 
broyage, et les traitements thermiques sont à des 
températures équivalentes à celles des traitements 
d’élaboration thermo-mécaniques. Un mécanisme de 
la précipitation de nano-oxydes dispersés dans des 
alliages ODS est proposé dans ce manuscrit. 
  

 

Title: Metallic nano-oxide clusters synthesis by ion implantation in high purity Fe10Cr alloy 

Keywords: Ion implantation, Thermal annealing, Precipitation, Atom probe tomography, Transmission electron 
microscopy, Aluminum oxide, Metallic alloy 

Abstract: ODS (Oxide Dispersed Strengthened) 
steels, which are reinforced with metal dispersions of 
nano-oxides (based on Y, Ti and O elements), are 
promising materials for future nuclear reactors. The 
detailed understanding of the mechanisms involved 
in the precipitation of these nano-oxides would 
improve manufacturing and mechanical properties of 
these ODS steels, with a strong economic impact for 
their industrialization. To experimentally study these 
mechanisms, an analytical approach by ion 
implantation is used, to control various parameters of 
synthesis of these precipitates as the temperature and 
concentration. This study demonstrated the feasibility 
of this method and concerned the behavior of alloys 
models (based on aluminum oxide) under thermal 
annealing. High purity Fe-10Cr alloys were 
implanted with Al and O ions at room temperature. 
Transmission electron microscopy observations 
showed that the nano-oxides appear in the Fe-10Cr 
matrix upon ion implantation at room temperature 
without subsequent annealing. 

The mobility of implanted elements is caused by 
the defects created during ion implantation, 
allowing the nucleation of these nanoparticles, of a 
few nm in diameter. These nanoparticles are 
composed of aluminum and oxygen, and also 
chromium. The high-resolution experiments show 
that their crystallographic structure is that of a non-
equilibrium compound of aluminum oxide (cubic γ-
Al2O3 type). The heat treatment performed after 
implantation induces the growth of the nano-sized 
oxides, and a phase change that tends to balance to 
the equilibrium structure (hexagonal α-Al2O3 type). 
These results on model alloys are fully applicable to 
industrial materials: indeed ion implantation 
reproduces the conditions of milling and heat 
treatments are at equivalent temperatures to those 
of thermo-mechanical treatments. A mechanism 
involving the precipitation of nano-oxide dispersed 
in ODS alloys is proposed in this manuscript based 
on the obtained experimental results, and the 
existing literature.  




