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Introduction

Recently, numerical simulation has been playing an increasingly important role in
science and engineering because of the need to describe realistic scenarios and derive
tools to facilitate the virtual design of new structures. The aim of this simulation
is to reduce the use of real prototypes and assist the design phase. The ingre-
dients of a model are the physical features of the problem and its mathematical
description. Mathematically, many systems and processes in nature, applied sci-
ence and engineering are modelled by partial differential equations (PDEs) that
translate into mathematical language the physical phenomena. Often, the most
important is not the description of the model in each point of the considered do-
main, but rather certain selected quantities called outputs in some particular zones
of the field. These quantities, in the engineering area, can be energies, forces, critical
stresses or strains, pressure drops, temperature, and flux. These outputs are func-
tions of system parameters, called inputs, that identify a particular configuration of
the model; typically, geometry, properties, or boundary conditions and loads. The
inputs-outputs relationship incorporates the description and the behaviour of the
considered model. The evaluation of the outputs needs the solution of the under-
lying PDE. This solution requires a computational cost that, in some engineering
fields, such as aeronautics, can be very high, especially when the simulations con-
cern nonlinear analyses of complex high-fidelity models. Moreover the engineering
design and optimization could require thousands of this evaluation, sometimes, in
real-time.

A possible answer to this issue is to provide to engineers a Chart (that, in this
conditions, would be a Virtual Chart). This one is constructed in an off-line stage
that can be CPU intensive. Once it is built, it enables one to have all the solutions
for the considered model in an on-line stage, in order to solve real-time or many
queries simulations.

Despite of the continuing progress in computer speeds and hardware capabili-
ties, the construction of those charts would be still unsuitable for all the classical
numerical approaches e.g., the finite element method (FEM), the boundary element
method (BEM) or the finite volumes (FV) despite the fact that in the off-line part
the time expenditure is not the priority, these techniques involve huge approxima-
tion subspaces for the underlying PDE and that leads to systems so large that direct
techniques are inappropriate for the computational efforts that could be unreason-
able.
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Model reduction techniques constitute one of the tools to circumvent this obstacle
by seeking the solution of a problem in a reduced-order basis (ROB), whose dimen-
sion is much smaller than the original vector space. These techniques take advantage
of the redundancy of information that is usually used to describe the solution. In
applied mathematics, the first proposed model reduction technique has been the
Proper Orthogonal Decomposition (introduced as Singular Values Decomposition in
[Beltrami, 1873] and then in [Jordan, 1874] also known as Principal Components
Analysis [Wu et al., 2003] and Karhunen-Loeve Decomposition [Karhunen, 1943]).
It is vastly used in different domains ([Chatterjee, 2000, Atwell and Kings, 2001, Ku-
nish and Xie, 2005, Carlberg et al., 2010], see this review [Kerschen et al., 2005] for
more examples). In order to solve a given problem, techniques based on POD in-
volve a learning phase which consists in selecting, arbitrarily, some particular time
instants and/or parameter values of the discretized domain and the full order model
in space. At each of these particular values, the solution of the full order model is
computed. These solutions are called snapshots and can be CPU-expensive. Then,
a ROB is formed considering only the most relevant POD modes of these snapshots.
The reduced-order model (ROM) is generated by projection on the ROB and solved
for the entire time and/or parameter domain. The strong point of this technique
is the fact that the number of the most relevant POD modes is much lower than
the size of the full order model in space, but, on the other hand, it is case sensi-
tive [Glüsmann and Kreuzer, 2009]: changes in the dynamic system behavior (e.g.
changes in boundary conditions) can decisively affect the POD accuracy and the
number of required snapshots can increase [Glüsmann and Kreuzer, 2009, Boucinha
et al., 2014]. Since the 80’s, another model reduction technique based on the pro-
jection has been developed for nonlinear analysis of structures: it is the Reduced
Basis (RB) [Prud’homme et al., 2002, Maday and Ronquist., 2004, Veroy and Pat-
era, 2005, Nguyen et al., 2005, Rozza, 2004, Grepl et al., 2007, Rozza and Patera,
2008, Nguyen, 2008, Buffa et al., 2012, Galvis and Kang, 2014]. The idea of this
technique is to select the required snapshots by a greedy algorithm in the way that
the new (n+1)th snapshot minimizes the residue, defined by the chosen norm, of the
solution achieved solving the original problem projected onto the n−order reduced
basis. This ensures the quality of the basis for the construction of the ROM but, on
the other hand, in order to select a new snapshot it requires the resolutions of linear
systems related to the reduced-order model over the whole parametric domain. This
method palliates the case-sensitivity of the POD but, it is more CPU-intensive in
the construction of the ROB.

In this work, Proper Generalized Decomposition (PGD) is considered. This tech-
nique does not need to solve the full order model because it does not need snapshots
to build up the ROB. Basically, PGD consists in seeking the solution of a prob-
lem in a relevant ROB which is generated automatically and on-the-fly by a greedy
algorithm. Firstly introduced in [Ladevèze, 1985] under the name radial loading
approximation, it consisted in the separation of time and space variables. In that
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period, the radial loading approximation was introduced as a part of the LaTIn
(Large Time Increment) method [Ladevèze, 1999]. This is a non-incremental solver
introduced for complex nonlinear problems which generates the approximations of
the solution over the entire time-space domain by successive enrichments. Since
its introduction in [Ladevèze, 1985, Ladevèze, 1989], the LaTIn method has been
applied for various types of problems: elasto-plasticity [Boisse et al., 1990], elasto-
viscoplastic problems [Boisse et al., 1990, Cognard and Ladevèze, 1993, Champaney
et al., 1997], finite displacements [Michel-Ponnelle, 2001], contact problems [Roulet
et al., 2011, Champaney et al., 1999, Giacoma et al., 2014, Giacoma et al., 2015],
thermo-mechanical problems [Cognard et al., 1999, Ryckelynck, 2002], delamina-
tion and damage mechanics for composite materials [Allix et al., 1989, Allix and
Ladevèze, 1992, Aubard et al., 2000], mesh adaptivity for visco-plastic problems
[Pelle and Ryckelynck, 2000], post-buckling [Boucard et al., 1997], multiparamet-
ric problems [Boucard and Ladevèze, 1999] and multiphysics problems [Dureisseix
et al., 2003, Néron and Dureisseix, 2008, Néron and Ladevèze, 2010]. The LaTIn
method is also the numerical framework of a multiscale computational strategy for
mechanical structures decomposed by a mixed domain decomposition developed at
LMT Cachan [Ladevèze and Lorong, 1991, Blanze et al., 1996, Champaney et al.,
1997, Dureisseix and Ladevèze, 1998, Ladevèze et al., 2001, Ladevèze and Nouy,
2003, Ladevèze et al., 2006, Guidault et al., 2008, Ladevèze et al., 2010, Cremonesi
et al., 2013]. Another possibility offered by the LaTIn framework is to solve mul-
tiparametric models by exploiting the previous solution of the LaTIn method to
initialize the solver for the new set of parameters (e.g. [Boucard and Ladevèze,
1999, Heyberger et al., 2011, Relun et al., 2011, Néron et al., 2015]). The LaTIn
method represents a very convenient framework for the PGD. Indeed, PGD, mainly
based on time-space separated representation, has been applied in many of the pre-
vious works enabling to decrease the necessary memory and the calculation time.
The LaTIn-PGD computational strategy represents an efficient solver for nonlinear
problems.

Subsequently, at LMT Cachan and in other research groups, a number of exten-
sions have been proposed. The principal ones are the introduction of parameters
of the model as additional coordinates in the PGD representation [Bognet et al.,
2012, González et al., 2010, Chinesta et al., 2010, Ghnatios et al., 2012, Mokdad
et al., 2007], developed in Chinesta’s research group and real-time simulations, devel-
oped in Cueto’s research group [Niroomandi et al., 2008, Monserrat et al., 2001, Ni-
roomandi et al., 2012b]. Other extensions are: inverse problems [Gonzalez et al.,
2012], separation of the time axis in a multidimensional time space [Ammar et al.,
2012] structural identification problems [Allix and Vidal, 2002], separation of spa-
tial and stochastic parameters in [Nouy, 2009], non-coercive hyperbolic equations
[Barbarulo et al., 2014], elastodynamic models [Boucinha et al., 2013]. An anal-
ysis about the error and verification of the method is in [Ladevèze and Chamoin,
2011]. The interested reader is referred to [Chinesta et al., 2011] for a review of
these types of techniques with more than 100 references and to the book [Chinesta
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and Ladevèze, 2014] for a handbook about separated variables representations and
model reduction techniques.

In the current work, at each iteration of the LaTIn method, the previously calcu-
lated ROB is used first, leading to a ROM and a new approximation of the solution.
It has been proved that this step of the strategy, called here “Preliminary step”
([Boisse et al., 1990, Ryckelynck, 2002, Ladevèze and Nouy, 2003, Ladevèze et al.,
2009, Ladevèze et al., 2010] or “Update step” [Bonithon and Nouy, 2012]), allows
to reduce the number of PGD functions generated, since it enables one to get the
best approximation in the separated variables form, minimizing the approximation
given by the PGD approach to the solution of the problem. If this approximation
is not enough accurate, the ROB is enriched by defining a new functional product
by using a greedy power algorithm.

To deal with nonlinear problems, PGD has been coupled with other lineariza-
tion techniques. One of these techniques is the PGD based asymptotic expansions
that is the combination of the PGD formulation of a problem with an asymptotic
expansion of the displacement. This has been introduced in [Niroomandi et al.,
2010, Niroomandi et al., 2012a] to tackle hyperelasticity. The goal of this conjunc-
tion is to avoid complex consistent linearization schemes necessary in Newton-like
solution strategies. The advantage of this approach is the presence of only one
tangent operator, identical for every term in the series.

For all kinds of model reduction techniques based on the projection of the prob-
lem on a basis, the computational cost associated with assembling the ROM’s
low-dimensional operators scales with the large dimension of the original high-
dimensional model. For this reason, model reduction techniques are particularly
efficient when the ROM needs to be constructed only once or when this step can be
performed off-line, prior to the on-line resolution of this model which can then be
very fast. This is the case of parametrized time-invariant systems [Amsallem et al.,
2009], linear stationary and quasi-stationary systems whose operators are affine
functions of the input parameters [Rozza and Patera, 2008], and a class of nonlinear
systems characterized by quadratic nonlinearities [Nguyen et al., 2005, Veroy and
Patera, 2005]. On the contrary, when the projection is applied to linear dynam-
ics or stationary systems with non-affine parameter dependence, or general nonlin-
ear problems, the resulting ROM is costly to assemble, decreasing the efficiency of
reduced-order modelling. This high cost results from the need to evaluate the high-
dimensional nonlinear function (and eventually its Jacobian) and then to project
it to get the low-dimensional operators at each computational step of a solution
algorithm. This results to be the bottleneck of model reduction strategies in the
nonlinear case.

In the literature, some techniques have already been introduced for model reduc-
tion methods based on a learning stage. A very popular technique is the Empirical
Interpolation Method (EIM) developed for linear elliptic problems with non-affine
parameter dependence [Barrault et al., 2004] as well as for nonlinear elliptic and
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parabolic problems [Grepl et al., 2007, Nguyen, 2005]. It reduces the computational
cost associated with nonlinearities by interpolating the governing nonlinear function
at a few spatial locations using an empirically derived basis. This method operates
directly on the governing partial differential equation and therefore at the contin-
uous level. Its variant proposed in [Nguyen and Peraire, 2008] relies for the same
purpose on best interpolation points. Another variant, called Discrete EIM (DEIM),
includes the semi-discrete analogue to the empirical and best points interpolation
methods that have been developed for parameterized nonlinear stationary problems
and for nonlinear dynamics problems [Chaturentabut and Sorensen, 2010].

Other techniques address the same issue. A family of techniques that tackles non-
linear problems for reduced-order modelling is the one that belongs to the Gappy-
POD application, as the A priori Hyper-Reduction (APHR), the Missing Point Es-
timation (MPE) and the Gauss Newton with approximated tensors (GNAT). The
APHR, introduced in [Ryckelynck, 2005] and described for nonlinear mechanical
problems in [Ryckelynck and Benziane, 2010, Ryckelynck, 2009], is based on Gappy-
POD too but does not exploit the off-line/on-line strategy since it builds the ROB by
the POD along the iterations by performing the Petrov-Galerkin projection over a
restricted subset of the spatial domain. This domain is sought by a heuristic method
controlled by a prediction/correction algorithm (see the articles [Miled et al., 2013]
for recent applications and [Ryckelynck et al., 2012] for developments to multidi-
mensional models). The MPE, developed in [Astrid et al., 2008], performs online
computations by using POD basis computing Galerkin projections over a restricted
subset of the spatial domain, similarly to what is done in the APHR. MPE operates
at the semi-discrete level and proposes a quantitative criteria for selecting such a spa-
tial subset based on an heuristic method. The GNAT explained in [Carlberg et al.,
2013] operates on fully discretized computational models, the dimension reduction
is achieved by a Petrov-Galerkin projection associated with residual minimization
and the hyper-reduction is based on the Gappy-POD as well as the MPE and the
APHR. The difference with the APHR is that the GNAT requires a reduced-order
basis dedicated to the residual and a reduced-order basis dedicated to the Jacobian
matrix.

The trajectory piece-wise linear (TPWL) method developed in [Rewienski and
White, 2006] has been introduced in other context. It constructs a ROM as a
weighted combination of linearized models, where each linearization point lies on a
training trajectory. TPWL operates at the semi-discrete level, i.e. on the ordinary
differential equation obtained after discretizing the PDE in space.

The aim of this work is to develop a new technique, well suited to the PGD, to
efficiently deal with nonlinear problems. For that purpose, an approximation frame-
work, called Reference Points Method (RPM), is introduced in order to decrease
the computational complexity of algebraic operations when dealing with separated
variables approximations in the PGD framework. The RPM approximation frame-
work is based on the concept of reference times, points and parameters and enables
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to define a compressed version of the data. This representation of the fields has
been initially proposed in [Ladevèze, 1997] and in [Ladevèze et al., 2009]. The first
academic example have been introduced in [Néron and Ladevèze, 2012]. In this
Phd thesis this concept is first developed for simple PDEs and then extended to
be an approximation framework adapted to the PGD representation for the solu-
tion of mechanical problems. The RPM is applied to some benchmarks existing in
literature, in order to have a comparison with respect to other similar techniques.
Compared to these techniques [Barrault et al., 2004, Chaturentabut and Sorensen,
2010, Astrid et al., 2008] this is not an interpolation technique but an algebraic
framework allowing to give an inexpensive first approximation of all quantities in a
separated variables form by explicit formulas. The space of compressed data shows
interesting properties dealing with the elementary algebraic operations [Ladevèze,
1997]. Moreover until now, only a limited amount of the fields is represented in the
PGD form in the LaTIn method. This leads to manage fields with different repre-
sentations and it hinders the potential gain of the PGD in terms of calculation. The
Reference Point Method makes possible to give a first approximation of all the fields
in the PGD form without resorting to SVD-based techniques. This approximation
can be, if necessary, enriched by new PGD pairs.

RPM is introduced in the LaTIn-PGD algorithm in order to approximate the
preliminary step of this solver. As said before, this stage of the algorithm enables
to decrease the number of necessary PGD pairs but it involves repetitive operations
that represent about the 50 − 70% of the entire computational cost. RPM enables
to decrease the number of the necessary operations, decreasing the cost of this stage
of an order of magnitude and leading it to represent less than 10% of the entire
computational cost, which is very promising.

The document is organized as follows:

• The first chapter is devoted to a state-of-the-art on reduced-order modelling
with a focus on the application to nonlinear problems. In this chapter the main
scientific motivation behind this thesis are highlighted, showing the main issues
of reduced-order modelling in the case of nonlinear problems.

• In the second chapter the RPM is presented. It represents the novelty of
this thesis and efficiently allows to decrease the computational complexity of
algebraic operations when dealing with separated variables representation in
the PGD framework.

• Chapter three shows how the RPM is introduced in the procedure of the
LaTIn-PGD technique, detailing the procedure for an elliptic parametric prob-
lem. The preliminary step is reformulated in the RPM framework. It is shown
how this reduces the number of operations necessary to evaluate the search
direction and assemble the ROM.
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• Chapter four is dedicated to the computational framework for which RPM
is dedicated: the LaTIn based domain decomposition method with PGD ap-
proximation. RPM is implemented in this computational strategy in order to
decrease the number of necessary operations to construct the ROM.
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Chapter 1

Reduced-Order modelling: a brief
overview of the state-of-the-art

In this first chapter, a literature survey on reduced-order modelling is proposed. The
chapter is organized in two parts:

• First one is dedicated to highlight the interest of the reduced-order modelling
regarding the computational complexity to solve a simple elastic 3D problem
under a load depending on a parameter. This approach is compared to a direct
technique that tackles the same problem for each parameter value.

• The second one explains why the efficiency of reduced-order modelling is
brought into question when addressing nonlinear problems. It is highlighted
how reduced-order modelling can be even more expensive than direct tech-
niques when the size of the discretized problem overpasses a threshold, due to
the necessity of a linearization technique that implies, at each iteration, the
evaluation and integration of the nonlinear term over the entire domain and
its projection onto the reduced-order basis.



10 Reduced-Order modelling: a brief overview of the state-of-the-art

Numerical approximation of the solution of partial differential equations plays
an important role in many areas such as engineering, mechanics, physics, chemistry,
biology... for computer-aided design-analysis, computer-aided decision-making or
simply better understanding. The fidelity of the simulations with respect to reality
is achieved through the combined efforts to derive: (i) better models, (ii) faster
numerical algorithms, (iii) more accurate discretisation methods and (iv) improved
large scale computing resources. In many situations, including optimization and
control, the same model, depending on a parameter that evolves, has to be simulated
over and over, multiplying by a large factor the solution procedure cost of one
simulation.

Model reduction methods allow to define a surrogate solution procedure enabling
to speed up the computations by several orders of magnitude while maintaining a
sufficient accuracy. In this section a brief state-of-the-art of these techniques is
developed detailing the different approaches that depend on different computational
strategies.

The aim of this analysis is to demonstrate the efficiency of reduced-order mod-
elling for parameter-dependent linear problems, compared to direct techniques (Fi-
nite Element Method (FEM), Finite Volumes (FV) or Boundary Element Method
(BEM)) which seek the solution of the problem in an algebraic sub-space that, in
many cases, is oversized in terms of dimensions. Nonlinear problems and non-affine
parametric problems are analyzed in the second part of this chapter. A problem
with a nonlinear term is considered. Necessity of an iterative solver to linearize the
problem hinders the efficiency of reduced-order modelling.

1.1 Model order reduction by separation of vari-

ables

For many years, in different application areas for simulations, experiments or design,
engineers have applied what is known as operational model order reduction. This
way to tackle engineering problems relies on the assumption that it may be not
necessary to calculate all details of the problem and, nevertheless, to obtain a good
understanding of the phenomena behind the problem. There may be many reasons
why some details of the solution are not needed. The operational model order
reduction translates the use of physical (or other) insight to reduce the complexity
of models.

In particular for simulations, there may be physical reasons that can be for-
mulated beforehand, and that can be incorporated into the model before starting
calculations. Let us consider an example belonging to the civil engineering field to
make the concept clearer: for years, buildings have been designed and sized using
truss structures, avoiding 3D expensive models. This is possible since 1D models
give enough informations to describe this kind of structures. Another example is
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the hypothesis of quasi-static evolutions, exploited in different areas, as mechanics,
in order to avoid to integrate dynamical equations, or in electromagnetism in order
to avoid the full Maxwell equations. For some phenomena, this assumption does
not affect the accuracy of the solution but drastically reduces the complexity of its
computation.

In this thesis the analyzed reduced-order techniques are based on the separated
variables assumption. This hypothesis relies on the observation that many natu-
ral phenomena and, consequently, their numerical models have an evolution over
the different coordinates that can be, often, considered independent. Hence, it is
admissible to seek the description of this evolution in a separated variables form.

In order to analyse the features of these techniques, let us consider a bounded
regular domain Ω included in Rd (d = 1, 2, 3). Introducing a parameter domain
D = [0, D], let us consider the two-coordinates domain Ω×D.

For a given space I on Ω, let us denote

L2(D, I) ≡ { u : D → I,
∫
D
‖u‖2

I dµ < ∞ }

and

‖ • ‖I =

(∫
Ω

•2 dΩ

)1/2

a L2 norm on I. Then, let us define U ≡ H1(Ω), P = L2(D,R) and V = L2(D,U).
∀x ∈ Ω and ∀µ ∈ D, let us denote u(x, µ) ∈ V a scalar field related to this space-
parameter problem.

Reduced-order techniques by separation of variables seek ũm(x, µ) ∈ Ṽm = P⊗U ,
the approximation of u(x, µ) in separated variables form:

u(x, µ) ≈ ũm(x, µ) =
m∑
i=1

λi(µ) Φi(x), (λi,Φi) ∈ P × U . (1.1)

Approximation of rank one Let us note ũ the first order approximation of u in
the form:

ũ(x, µ) = λ(µ) Φ(x) (1.2)

whit λ ∈ P and Φ ∈ U . The searching for the best separated variables form of the
function u(x, µ) leads to the following problem.

Problem 1 (first order separated variable representation) Find (λ, Φ) ∈ P ×
U that minimizes the error:

e(u − λ Φ) = ‖ u − λ Φ ‖P×U , (1.3)

with the norm ‖ • ‖P×U defined as follow:

‖ • ‖P×U =

(∫
D

∫
U
•2 dΩ dµ

)1/2

(1.4)



12 Reduced-Order modelling: a brief overview of the state-of-the-art

In the variational form, (1.3) becomes:

∀λ? ∈ P , ∀Φ? ∈ U ,
∫

Ω×D
(u − λ Φ) (λ?Φ + λΦ?)dΩ dµ = 0

⇐⇒
∫
D
λ?
∫

Ω

Φ(u − λ Φ) dΩ dµ +

∫
Ω

Φ?

∫
D
λ(u − λ Φ) dµ dΩ = 0

(1.5)

which gives: 
λ

∫
Ω

Φ2dΩ =

∫
Ω

Φ u dΩ ⇐⇒ λ =

∫
Ω

Φ u dΩ∫
Ω

Φ2dΩ

Φ

∫
D
λ2dµ =

∫
D
λ u dµ ⇐⇒ Φ =

∫
D λ u dµ∫
D λ

2dµ
.

(1.6)

Functions λ and Φ are defined to within about a given multiplicative factor. One of
the two functions has to be normalized. For instance one can set:

∫
D λ

2dµ = 1. The
procedure leading to system (1.6) from Problem 1 can be seen as a power algorithm.
Replacing Φ in the first equation of the system (1.6) leads to:

λ

∫
Ω

Φ2dΩ =
1∫

D λ
2dµ

∫
Ω

(∫
D
λ u dµ

)
u dΩ, (1.7)

λ =
1∫

D λ
2dµ

∫
Ω

Φ2dΩ

∫
Ω

(∫
D
λ u dµ

)
u dΩ, (1.8)

λ =
1

‖λ‖2
D‖Φ‖2

U
(u, (u, λ)D)U (1.9)

By defining the operator T : λ → T(λ) = (u, (u, λ)D)U , system (1.6) can be
expressed as an eigen-decomposition [Ladevèze, 1999, Nouy, 2010]. Find (λ, ω) such
that:

T(λ) = ωλ, with ω ∈ R+. (1.10)

Solution (λ,Φ) of Problem 1, has the following properties:

• λ minimizes the Rayleigh quotient:

R(λ) =
( (u, λ)D, (u, λ)D )U

(λ, λ)D
(1.11)

• Φ = (u,λ)D
‖λ‖D

• e(u − λ Φ) = e(u) − ω, where ω is the biggest eigenvalue of the Rayleigh
quotient R(λ).

In the case of an approximation of order m > 1 the best approximation, reads:

ũm(x, µ) =
m∑
j=1

λj(µ) Φj(x) (1.12)

where λi are the m first eigenfunctions of the eigen-decomposition of T. The com-
plementary functions are evaluated by Φi =

∫
D u(x, µ) λi dµ.
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Solution of a linear system: the reduction by projection The field u(x, µ),
function in the Hilbert space V , may eventually be the solution of a problem written
in the weak form:

∀ µ ∈ D, a(u, v) = `(v, µ) ∀v ∈ V , (1.13)

where `(·, µ) is a linear form on V and a(., .) is a continuous symmetric bilinear form
on V × V .

Once the spatial semi-discretisation is operated, the field u(x, µ) is represented
by a vector of values [u(µ)] and it is sought in the finite vectorial sub-space Vh ⊂ V of
size N . One has to solve the following discretised system for each value of parameter
µ ∈ D:

[v]T A [u] = [v]T [L(µ)], ∀v ∈ Vh, ∀µ ∈ D (1.14)

Thus, it reads:
A [u] = [L(µ)], ∀ µ ∈ D (1.15)

The usual way to proceed is to choose a sampling of size p for the parameter domain
Dp ⊂ D. Hence, for each value µi ∈ Dp, one has to solve the N × N linear system
(1.15) at the computational cost of O(N3) (or O(N2) if A is sparse).

The reduced-order modelling by projection is strongly connected to the separated
variable representation. In fact, in order to solve this parametrised linear system, the
idea is: (i) to extract somehow the “relevant” space modes from the linear system
(1.15); (ii) to construct a reduced-order basis (ROB) of order k < N from these
relevant modes; (iii) to express the sought field as a linear combination of this ROB
and, (iv) finally, to solve the Reduced-Order Model (ROM), obtained by projecting
the linear system on the ROB.

In practice, the field u(x, µ) is approximated by:

u(x, µ) ≈ ũk(x, µ) =
k∑
j=1

λj(µ) Φj(x), (1.16)

The set of k functions Φj(x) makes a reduced-order basis Vk. Let us define the
discretized version of Vk as Vk = {[Φj]}1≤j≤k and Λk = {[λj]}1≤j≤k. Choosing Φi

as a test function for v, system (1.15) reads:

VT
k AVk Λk(µ) = VT

k [L(µ)], ∀ µ ∈ D. (1.17)

Once [Φj]1≤j≤k has been chosen, the ROM on the left-hand-side can be solved for
every value µi ∈ Dp. In order to obtain the k functions [λj]1≤j≤k the computational
cost is in the order of O(k3), instead of O(N3) for (1.15). Once the [λj]1≤j≤k are
obtained, the solution u represented over the full parameter-space domain is obtained
by the approximation (1.16).

Let us remark that the separation of variables in two functions, one depending
on the space and one depending on the parameter enables one to compute the set
of space function Vk = {[Φj]}1≤j≤k during a learning stage. However, the computa-
tional cost related to the construction of the reduced-order basis Vk = {[Φj]}1≤j≤k
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has also to be taken into account. This represents the most expensive part of the
solution.

In literature, model reduction techniques based on the projection differ by the
way in which the ROB is constructed. A first family of techniques involves a learning
phase, called off-line stage. The Proper Orthogonal Decomposition (POD) is prob-
ably the most popular technique to generate the ROB. POD is widely used through
two typical approaches. First one consists in considering during the learning stage a
coarse discretization of the parameter domain. The other approach consists in solv-
ing the original model over the entire parameter interval during the learning phase,
and then using the corresponding ROB to efficiently solve similar problems with, for
instance, slight variations in material parameters or boundary conditions (this is,
for instance, widely used in the CFD field [Zimmermann, 2012, Epureanuand et al.,
2001, Zhao and Ling, 2003]). For this kind of problems the stability of the method
can be improved by a Petrov-Galerkin formulation as proposed in [Carlberg et al.,
2010, Bergmann et al., 2009].

The strong point of this kind of techniques is the fact that the number of the
most relevant modes in the ROB is much lower than the size of the full order model
in space, but, on the other hand, the relevance of the ROB is crucial regarding the
quality of the approximation. A consequence of this feature is that the accuracy
of the approximation is case sensitive [Glüsmann and Kreuzer, 2009]. That is to
say that, changes in the system behaviour (e.g. changes in boundary conditions)
can decisively affect the POD approximation accuracy and the number of required
snapshots can increase [Glüsmann and Kreuzer, 2009, Boucinha et al., 2014].

In order to palliate this issue, another technique of the same family, the reduced-
basis approximation [Rheinboldt, 1993, Rozza and Patera, 2008, Rozza, 2006, Prud’homme
et al., 2002] improves the procedure for the selection of the appropriate snapshots
providing an error indicator that gives a measure of the quality of the ROB. That
palliates the case-sensitivity of arbitrary choices of snapshots but the construction
of the ROB is generally more CPU-intensive. In fact, a greedy algorithm involving
the resolution of reduced-order models over the whole parametric domain is required
to enrich the ROB. However, this enables one to ensure the accuracy of the solution
for the online part of the analysis.

Another path consists in seeking the solution of the targeted problem in the
span of a consistent ROB, progressively built by dedicated algorithm. In this family
there are the Proper Generalized Decomposition (PGD) ([Ladevèze, 1985, Ladevèze,
1999, Chinesta and Ladevèze, 2014, Chinesta et al., 2011]) and the A Priori Hyper
Reduction (APHR) ([Ryckelynck, 2005, Ryckelynck, 2009, Ryckelynck et al., 2012,
Ammar et al., 2006]). In the following, some of these techniques are described and
illustrated on a linear elasticity problem.
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(a) boundary conditions. (b) finite elements discretisation.

Figure 1.1: Boundary conditions and mesh for the reference problem.

1.1.1 Linear elasticity problem

Let us consider an elastic structure. The volume of this structure is the open domain
Ω ∈ R3 with boundary ∂Ω. This structure is submitted to the following boundary
conditions:

• a body force f
d

in Ω;

• a given displacement field ud (clamped structure for this case, i.e. ud = 0)
prescribed on a part of the boundaries ∂uΩ 6= ∅ (Dirichlet boundary condition);

• a given surface force F d(µ) on the part of the boundaries ∂fΩ complementary
to ∂uΩ (∂uΩ ∪ ∂fΩ = ∂Ω, ∂uΩ ∩ ∂fΩ = ∅) (Neumann boundary condition).
Force F d(µ) depends on a parameter µ ∈ D.

The Hilbert space of functions, whose squared value is integrable on Ω, is denoted
by L2(Ω). The Sobolev space of functions and first derivatives, whose the square is
integrable on Ω, is defined as follows:

H1(Ω) ≡ {u ∈ L2(Ω) : ∇u ∈ L2(Ω)}.

Let us introduce H1
0 (Ω) designating the subspace of functions vanishing on ∂uΩ:

H1
0 (Ω) ≡ {u ∈ H1(Ω) : u = 0 on ∂uΩ}.

Let us recall U extended to this 3 −D problem. For simplicity U = [H1
0 (Ω)]

3
. Let

us remember spaces P = L2(D,R) and V = L2(D,U). Let us denote S the space of
distributions of the symmetric tensor defined over Ω:

S ≡ {σ ∈ [L2(Ω)]6 : σ = σT}. (1.18)

Hence, the reference problem can be formulated as follows:
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Problem 2 (strong form) Under the hypothesis of small perturbations, find u(x, µ)
and σ(x, µ) with x = (x, y, z) ∈ Ω and µ ∈ D that verifies, ∀µ ∈ D:

• the kinematic assumptions (or compatibility equations):

u ∈ V and ε(u) =
1

2
(∇u+∇Tu) in Ω (1.19)

• the equilibrium equations:

σ ∈ S; ∇ · σ + f
d

= 0, in Ω; σ · n = F d(µ) on ∂fΩ (1.20)

• the constitutive behaviour:

σ = K ε(u) in Ω (1.21)

K represents the Hooke tensor of the material, σ(x) the stress tensor and ε(u)
the linearized strain tensor associated to the displacement field u, i.e. the symmetric
part of the gradient of u. The Hooke tensor K is a linear, symmetric and definite
positive operator. It enables one to introduce the following energetic norms with
the associated scalar products:

〈•, •〉u,Ω =

∫
Ω

ε(•) : K : ε(•)dΩ ‖ · ‖u,Ω =
[
〈•, •〉u,Ω

]1/2

, (1.22)

〈•, •〉σ,Ω =

∫
Ω

• : K−1 : • dΩ ‖ · ‖σ,Ω =
[
〈•, •〉σ,Ω

]1/2

, (1.23)

The existence and uniqueness of a solution for Problem 2 is guaranteed under
the conditions of ∂uΩ 6= ∅ and mes(∂uΩ) > 0.

Problem 3 (weak form) Find u(x, µ) and σ(x, µ) with x = (x, y, z) ∈ Ω and
µ ∈ D that verifies, ∀µ ∈ D:

• the kinematic assumptions (or compatibility equations):

u ∈ V ; ε(u) =
1

2
(∇u+∇Tu) in Ω (1.24)

• the equilibrium equations:

σ ∈ S;∫
Ω

σ : ε(v)dΩ =

∫
Ω

f
d
· vdΩ +

∫
∂fΩ

F d(µ) · vd Σ, ∀µ ∈ D, ∀v ∈ U (1.25)
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• the constitutive behaviour:

σ = K ε(u) in Ω (1.26)

In order to simplify the notation Problem 3 is rewritten as follows:

Problem 4 Given µ ∈ D, find u(x, µ) ∈ V such that:

a(u, v)− `(v, µ) = 0, ∀v ∈ V , (1.27)

a(u, v) =

∫
Ω

ε(u) : K : ε(v)dΩ (1.28)

`(v, µ) =

∫
Ω

f
d
· v dΩ +

∫
∂fΩ

F d(µ) · v dΣ (1.29)

a(u, v) is a continuous bilinear form on the Hilbert’s space V and `(v, µ) is a linear
form on V .

The reference problem consists in a 3D beam, represented with its boundary
conditions in Fig. 1.1. The reference solution, (uref ,σref ), is the one obtained
with a piecewise-linear finite element method. In this model the space is discretized
by 4146 tetrahedron elements, resulting in N = 2637 dofs and the parameter domain
is divided in p = 100 intervals. The following surface force is prescribed:

F d(x, µ) = 106 [(x/µ) + z cos(100 µ x) x(1/100 µ) + z x)] ey [Pa]. (1.30)

This force is chosen as it couples space and parameter domains. The structure is
subjected to bending and torsion. The parametric domain is chosen as D = [0.1, 1].
The considered material is an Aluminium alloy 2024− T3 with a Young’s modulus
E = 71300MPa, and a Poisson’s ratio ν = 0.33. In Fig. 1.2 the solution fields for
µ = 0.1, corresponding to the highest norm for F d(x, µ) are shown.

In the following, this solution is compared with the ones obtained applying model
reduction methods. The aim of this comparison is to highlight the benefits of ap-
plying reduced-order modelling to linear problems. The following error measure,
according to the solution uref obtained by the classical FE method, is introduced:

η = ‖uROM − uref‖Ω,D/‖uref‖Ω,D, ‖ ◦ ‖2
Ω,D =

∫
D

∫
Ω

◦ : K : ◦ dΩdµ (1.31)

1.1.2 Proper Orthogonal Decomposition and Principal Com-
ponents Analysis

The first type of reduced-order modelling is the one based on Proper Orthogonal
Decomposition (POD). It has been introduced as Singular Values Decomposition
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(a) displacement field magnitude. (b) Von Mises stress field.

Figure 1.2: Solution for µ = 0.1. The deformed shape of the structure is amplified
by a factor 10.

in [Beltrami, 1873], then in [Sylvester, 1889] and, finally, extended to integral op-
erators in [Schmidt, 1907]. In the case of finite dimensional space the POD is
equivalent to Principal Components Analysis [Wu et al., 2003] and Karhunen-Loeve
Decomposition [Karhunen, 1943]. These are well-known in the field of data analysis.
This technique is vastly used in different domains such as, stochastic analysis of ex-
perimental or numerical data, acoustics, image treatment, bio-medics engineering,
fluid-structure interaction, etc. ([Chatterjee, 2000, Atwell and Kings, 2001, Kunish
and Xie, 2005, Carlberg et al., 2010], see this review [Kerschen et al., 2005] for more
examples).

The POD of the output field is founded on the awareness that, in many instances,
the set of all solutions depending on the parameters and/or time can be approxi-
mated very well by its projection on a finite and low dimensional vector space. This
approximation reads:

u(x, µ) ≈ ũk(x, µ) =
k∑
j=1

Φj(x) λj(µ), (1.32)

Expression (1.32) is common to every model reduction technique involving sep-
aration of variables. For the POD the set of of function {Φj(x)}j=1,..,k forms an
orthogonal basis. Thus, during the online part of the strategy, knowing the set
{Φj(x)}j=1,..,k it is sufficient to evaluate the set of interpolating functions λj(µ) to
get the best approximation of the function u(x, µ). This is computed by:

λj(µ) =

∫
Ω

u(x, µ) Φj(x) dΩ. (1.33)

In the next paragraphs, the classical procedures to extract the most relevant
POD modes are presented. The article [Wu et al., 2003] shows the equivalence,
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in the discrete case, between the three methods regarding the way the set of func-
tions of the basis are constructed: Karhunen-Loeve decomposition (KLD), Principal
Component Analysis (PCA) and Singular Value Decomposition (SVD).

Let us consider the discrete framework in the following. An amount of state
variables n is analyzed (e.g. experimental data as well as numerical data, like un-
knowns of a numerical model). The evolutions of these state variables are supposed
to be known at p time instants or given parameter values. In our case, these are the
snapshots obtained by solving the problem for the p parameter values of µi ∈ Dp.
The standard POD techniques consist in arranging these informations in a matrix
A of size n × p, as shown in Fig. 1.3.

A, . . . , . . .

p

n

st
at

e
va

ri
ab

le
s

µ = µ1 µ = µi µ = µp

Figure 1.3: Data arrangement under a matrix A of size n × p.

KLD and PCA The Karhunen-Loeve Decomposition [Karhunen, 1943, Loeve,
1955] has been used extensively in the fields such as digital communication, image
processing and many others. The KLD consists in seeking the eigenvalues and
eigenvectors of the covariance matrix C:

C vi = si vi with C = AAT or C ui = si ui with C = ATA (1.34)

where (si, vi) are respectively the eigenvalues and the eigenvectors of C = AAT

and (si, ui) are respectively the eigenvalues and the eigenvectors of C = ATA. The
first or the second form is chosen whether the basis is a set of space functions
or time (parameter) functions. Generally the one which has the biggest number of
unknowns is chosen (the max between n and p). The set of complementary functions
is evaluated as shown in (1.33).

SVD Another technique, to get a POD basis, is to operate a singular value de-
composition of the matrix A. This is a factorization of a real or complex rectangular
matrix, introduced first in [Beltrami, 1873] for real matrix, extended to integral op-
erators in [Schmidt, 1907] and later to complex matrix in [Eckart and Young, 1939].
This factorization has the form:
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A = V Σ UT (1.35)

where V is the n × n matrix of the orthonormal space functions, U is the p × p
matrix of the orthonormal parametric functions and Σ the n × p diagonal matrix
where the non-zero entries (the min(n, p) diagonal) are the singular values of the
matrix. This decomposition is closely related to the eigen-decomposition. In fact,
the singular values are the square roots of the eigenvalues of the operator ATA,
where AT is the complex conjugate matrix of A. Consequently the left-singular
vectors V are eigenvectors of AAT and the right-singular vectors U are eigenvectors
of ATA

Looking at the expression of the KLD and PCA decomposition of the previ-
ous paragraph, one can note that the singular values are the square roots of the
eigenvalues si of the covariance matrix C.

Let us consider the problem shown in Fig. 1.1. The magnitude of the singular
values obtained by the SVD of the solution over the entire parameter domain D
is shown in Fig. 1.4. It is clear that the singular values drop swiftly. Thus, the
functions associated to the smallest singular values, with respect to the first ones,
are negligible. The relevance of this method resides in the fact that, to describe the
parametric evolution of the given structure over the parametric domain D, a few
POD modes are required. It can be seen a change of slope after the first 15 singular
values. POD functions associated to the remaining singular values are negligible.
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Figure 1.4: The singular values of Problem depicted in Fig. 1.1.
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Galerkin-POD During the off-line stage the full order model is first solved for
a coarse discretisation of parameter values Dp = {µi ∈ D}1≤i≤p with p � N .
These are the snapshots of the solution. A Galerkin projection is classically used
to construct a ROM thanks to a ROB of dimension k � N . From the snapshots a
ROB of dimension k ≤ p is obtained by SVD, selecting the first k orthogonal modes
Vk = {Φi}1≤i≤k.

Let define as Φk the linear span of the reduced-order basis Vk. Following the
classical Galerkin-POD approximation, the solution is sought in the linear span Φk

of the orthogonal ROB Vk, by a standard Galerkin projection. Problem 5 reads:

Problem 5 (Galerkin-POD problem) Given µ ∈ D, find ũ ∈ Φk such that:

∀v ∈ Φk, a(ũ, v)− `(v, µ) = 0 (1.36)

Thus, by denoting the approximation of the solution ũ =
∑k

i=1 λi Φi, and by
choosing Φi as a test function for v in Problem 5, the approximation ũ is obtained
by the k × k linear algebraic system:

∀ 1 ≤ j ≤ k,
k∑
i=1

a(Φi,Φj) λi(µ)− `(Φj, µ) = 0 (1.37)

Let us note that first term on left-hand side member, a(Φi,Φj), is parameter-
independent and can be precomputed off-line. Equation (1.37) is valid for every
value of µ ∈ D. Hence, for every parameter value it is possible to solve a reduced
system involving a number of operations in the order of O(k3) instead of O(N3).

Fig. 1.5 shows the evolution of error (1.31) according to reference solution for
different numbers p of snapshots used to built the ROB and a varying number k
of ROB modes used to compute the solution approximation ũ. Note that once k is
equal to p (all the ROB modes are used for the approximation), the error remains
constant. It can be seen that adding more snapshots greatly improves the solution
accuracy.

The gain in terms of CPU time compared with a direct simulation can reach up
to two orders of magnitude, but it decreases with the number of snapshots. Note
that the time spent to collect the snapshots in the off-line stage is taken into account
Fig. 1.5(b). It corresponds to the major part of the total CPU time.

1.1.3 The Reduced Basis method

For the Galerkin-POD, the quality of the final solution is affected by the pertinence
of the formed ROB. In particular, for problems which have strong variations in
boundary conditions or strong dynamic evolutions the number of necessary snap-
shots to have a suitable basis can increase so much that the technique becomes
unsuitable [Glüsmann and Kreuzer, 2009, Boucinha et al., 2014]. For this issue, the
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Figure 1.5: The error given by the POD approximation of Problem of Fig. 1.1
and the CPU wall clock time compared to the direct method.



Model order reduction by separation of variables 23

reduced-basis improves the procedure for the selection of the appropriate snapshots
(see [Maday and Ronquist., 2004, Veroy and Patera, 2005, Nguyen et al., 2005, Rozza
and Patera, 2008, Nguyen, 2008, Galvis and Kang, 2014]).

The reduced-basis method has been introduced in the beginning of the 1980s
for nonlinear analysis of structures in dynamics [Noor and Peters, 1980], using a
Rayleigh-Ritz decomposition in order to get the ROB. Later it has been extended to
a larger class of parametrized PDEs [Fink and Rheinboldt, 1983, Rheinboldt, 1993].
The reduced-basis belongs to the separated variables model reduction techniques.
Hence, the idea behind this technique is the same one than the POD. The reduced-
basis consists in approximating the solution u(x, µ) of a parameter dependent prob-
lem by a linear combination of, preliminary computed, solutions u(x, µi) correspond-
ing to properly chosen parameters µi, with i = 1, .., k. This can be assumed on the
condition that the set of precomputed solutions Sk = u(x, µi) for (i = 1, ..., k) is
appropriate in the sense that its Kolmogorov n-width converges to zero for k that
goes to ∞.

Definition 1 Kolmogorov n-width. Let Z be an Hilbert linear space, X be a subset
of Z and Zn a generic n-dimensional subspace of Z. The deviation of X from Zn is

E(X;Zn) = sup
x∈X

inf
y∈Zn

‖ x− y ‖Z . (1.38)

The Kolmogorov n-width of X in Z is given by:

dn(X,Z) = inf E(X;Zn) = inf
Zn

sup
x∈X

inf
y∈Zn

‖ x− y ‖Z . (1.39)

In practice the n-width measures the extent to which X may be approximated by a
n-dimensional subspace of Z. For the sake of simplicity, one can say that assuming
a regularity of the solution u(x, µ) with respect to the parameter µ this n-width
goes rapidly to zero as n goes to infinity. More details can be found in [Grepl et al.,
2007, Maday, 2006].

Hence, in the light of this condition, the main difference of the reduced-basis
from the POD is in the construction of the ROB during the learning stage. These
snapshots are constructed by a greedy algorithm such as [Maday, 2006]:

µ1 = arg sup
µ∈D
‖u(x, µ)‖Z , (1.40)

µi+1 = arg sup
µ∈D
‖u(x, µ) − Piu(x, µ)‖Z , (1.41)

with the norm ‖ ◦ ‖Z :

‖ ◦ ‖Z =

(∫
Z

(◦, ◦) dz

)1/2

. (1.42)

Pi is an orthogonal projection, onto

Φi = span {u(x, µ1), ..., u(x, µi)}. (1.43)
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In this way the new (i+ 1)th snapshot is selected minimizing the residue, defined by
the chosen norm, of the solution achieved by solving the original problem projected
onto this basis.

This is generally more CPU-intensive than the learning stage described for the
POD. Indeed, it needs the resolutions of linear systems related to the reduced-order
model over the whole parametric domain. However, it ensures the quality of the basis
for the online part of the analysis. Much current effort is devoted to development of
(i) a posteriori error estimation procedures and in particular rigorous error bounds
for outputs of interest [Prud’homme et al., 2002, Barrault et al., 2004, Rozza and
Patera, 2008, Rozza, 2011], and (ii) effective sampling strategies in particular for
higher (than one) dimensional parameter domains [Rozza, 2004, Nguyen et al., 2005].
A posteriori error bounds are ensured for certification of the technique for output
prediction (for the online stage). The error estimators can also play an important
role in efficient and effective (greedy) sampling procedures: the inexpensive error
bounds allow: (i) to explore much larger subsets of the parameter domain in order to
find the most representative or best snapshots, (ii) to determine when there are just
enough basis functions [Rozza, 2006, Rozza and Patera, 2008]. In [Rozza and Patera,
2008] a large amount of references related to this kind of strategy is presented.

Galerkin reduced-basis The procedure to solve Problem of Fig. 1.1 by the
Galerkin reduced-basis is similar to the Galerkin-POD one. During the off-line
stage the full order model is first solved for some relevant parameter values Dp =
{µi ∈ D}1≤i≤p with p � N . These are the snapshots of the solution. Hence a
ROB is obtained simply by collecting the k relevant snapshot solutions Vk = {Φi =
u(x, µi)}1≤i≤k. In this case, the Φi are also orthonormalized in practice. Then
Problem 5 is solved. In Fig. 1.6 is reported error (1.31) of the reduced-basis
approximation for the problem shown in Fig. 1.1. It is compared with respect to
classical POD-Galerkin approach for the same number of snapshots, chosen with a
uniform coarse sampling.

It is clear that in the beginning the error levels for the two techniques are com-
parable, but after 15 snapshots, the reduced-basis is much more convenient thanks
to the greedy algorithm in the selection of the snapshots Fig. 1.6(b). The gain
with respect to the direct method in terms of CPU time is comparable with the one
obtained by the POD approximation.

1.1.4 The Proper Generalized Decomposition

Other techniques do not involve preliminary high-fidelity simulations in order to
construct a reduced-order basis. They progressively build, by online dedicated al-
gorithms, a pertinent ROB, during the resolution of the same problem.

During the period of the increasing interest in the snapshot POD, a technique
following a different strategy was developed and introduced as radial approximation
[Ladevèze, 1985] in the framework of the LaTIn method (LArge Time INcrements).
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Figure 1.6: The error given by the reduced-basis approximation of Problem of
Fig. 1.1 and the CPU wall clock time compared to the POD method and the

direct method.

This is a non-incremental solver for nonlinear problems which generates the ap-
proximations of the solution over the entire time-space (parameter-space) domain
by successive enrichments. Since its introduction in [Ladevèze, 1985, Ladevèze,
1989], the LaTIn method has been applied for various type of high-complexity
problems: elasto-plasticity [Boisse et al., 1990], elasto-viscoplastic problems [Boisse
et al., 1990, Cognard and Ladevèze, 1993, Champaney et al., 1997], finite displace-
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ments [Michel-Ponnelle, 2001], contact problems [Roulet et al., 2011, Champaney
et al., 1999, Giacoma et al., 2014, Giacoma et al., 2015], thermo-mechanical prob-
lems [Cognard et al., 1999, Ryckelynck, 2002], delamination and damage mechan-
ics for composite materials [Allix et al., 1989, Allix and Ladevèze, 1992, Aubard
et al., 2000], mesh adaptivity for visco-plastic problems [Pelle and Ryckelynck,
2000], post-buckling [Boucard et al., 1997], multiparametric problems [Boucard
and Ladevèze, 1999] and multiphysics problems [Dureisseix et al., 2003, Néron and
Dureisseix, 2008, Néron and Ladevèze, 2010]. The LaTIn method is also the numer-
ical framework of a multiscale computational strategy for mechanical structures de-
composed by a mixed domain decomposition developed at LMT Cachan [Ladevèze
and Lorong, 1991, Blanze et al., 1996, Champaney et al., 1997, Dureisseix and
Ladevèze, 1998, Ladevèze et al., 2001, Ladevèze and Nouy, 2003, Ladevèze et al.,
2006, Guidault et al., 2008, Ladevèze et al., 2010, Cremonesi et al., 2013].

The LaTIn method represents a very convenient framework for the PGD. Indeed,
PGD, mainly based on time-space separated representation, has been applied in
many of the previous works enabling to decrease the necessary memory and the
calculation time. In that time, LaTIn-PGD computational strategy represented a
precursor of model reduction techniques applied to high-complexity problems.

Subsequently, at LMT Cachan and in other research groups, a number of ex-
tensions were proposed. The principal ones are the introduction of parameters
of the model as additional coordinates in the PGD representation [Bognet et al.,
2012, González et al., 2010, Chinesta et al., 2010, Ghnatios et al., 2012, Mokdad
et al., 2007], developed in Chinesta’s research group and real-time simulations, devel-
oped in Cueto’s research group [Niroomandi et al., 2008, Monserrat et al., 2001, Ni-
roomandi et al., 2012b]. Other extensions are: inverse problems [Gonzalez et al.,
2012], separation of the time axis in a multidimensional time space [Ammar et al.,
2012] structural identification problems [Allix and Vidal, 2002], separation of spa-
tial and stochastic parameters in [Nouy, 2009], non-coercive hyperbolic equations
[Barbarulo et al., 2014], elastodynamic models [Boucinha et al., 2013]. An analysis
about the error and verification of the method is in [Ladevèze and Chamoin, 2011].

Another possibility offered by the LaTIn-PGD framework is to solve multipara-
metric models by exploiting the previous solution of the LaTIn method to initialize
the solver for the new set of parameters (e.g. [Boucard and Ladevèze, 1999, Hey-
berger et al., 2011, Relun et al., 2011, Néron et al., 2015]). The interested reader is
referred to [Chinesta et al., 2011] for a review of these types of techniques with more
than 100 references and to the book [Chinesta and Ladevèze, 2014] for a handbook
about separated variables representations and model reduction techniques.

PGD is a method that allows one to find the approximation of a solution by
its best decomposition of order m. It does not require to know a basis to compute
the solution of a problem, since in this method the two functions λj(µ) and Φj(x)
of the (1.32) are unknowns and they are originated by an iterative method that
alternatively produce one of the two, knowing the other one. This can be consid-
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ered as an algorithm of type Gauss-Seidel. An a posteriori error indicator can be
evaluated and the quality of the approximation can be enriched adding a new pair
of functions. Hence, PGD can be viewed as a real a priori resolution technique and
a generalization of the POD since it does not need any information on the solution.
This decomposition is not orthogonal, but in many cases the number of terms in
the finite sum is very close to the optimal decomposition obtained by applying the
POD on the model solution [Nouy, 2010].

In order to illustrate the method, let us consider again the parametric problem
of Fig. 1.1. This problem can be easily extended to the case of more parameter
coordinates. However, for multiparametric problems the convergence of the PGD
depends on the choice of the norm [Bonithon and Nouy, 2012, Falco and Nouy, 2010].

The PGD approximation of this problem consists in seeking an approximation
of the solution in the form:

u(x, µ) ≈ ũk(x, µ) =
k∑
j=1

λj(µ) Φj(x), λj ∈ P , Φj ∈ U (1.44)

Galerkin-PGD definition The classic definition of the Proper Generalized De-
composition consists in building the test field, expressed as:

v(x, µ) =
k∑
i=1

(λ?i (µ) Φi(x) + λi(µ) Φ?
i (x)) (1.45)

and inject it in Problem 4.
Let us start with the first order approximation. The best first order approx-

imation is defined as the optimal pair which verifies the Galerkin orthogonality
criterium. The problem resides in seeking (λ,Φ) such as ∀(λ?,Φ?) ∈ P × U ,

a(λ Φ, λ Φ?) = `(λ Φ?, µ) (1.46)

a(λ Φ, λ? Φ) = `(λ? Φ, µ) (1.47)

(1.46) is a spatial problem independent of the parametric problem, but that
involves the integration on the parameter domain in order to set up the operators.
It is an application S : P → U which maps a parametric function λ ∈ P into a
space function Φ = S(λ) ∈ U . The second equation (1.47) is a simple differential
ordinary problem (ODE), but it involves integrals over the space.

The resolution technique of this problem, detailed in [Ladevèze, 1999, Nouy,
2010], is an iterative process that alternatively solves the spatial problem to get Φ,
assuming known λ (from the previous iteration). The same procedure is, then, run
for the parametric problem to obtain λ(µ) assuming known the other function. This
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is an algorithm of type Gauss-Seidel since the computation of one of the unknowns,
at each iteration, uses only the knowledge of the other unknowns.

- initialization λ0(µ). One could choice to initialize function Φ0. λ0(µ) is
simpler than Φ0 since it is a scalar function.
for l = 1, ..., lmax do

- knowing λl−1(µ), find Φl(x) solution of Problem (1.46);
- knowing Φl(x), find λl(µ) solution of Problem (1.47);
- normalization of Φl(x).

end

Algorithm 1: Algorithm to generate the rank one approximation for a para-
metric problem.

The algorithm to achieve the approximation of first order involves lmax resolutions
of D-dimensional spatial problems (D = 2, 3) for functions Φ and lmax resolutions
of 1-dimensional ODE for function λ(µ). The computational effort relies almost
completely in the lmax D-dimensional spatial problems (the cost of the ODE is
negligible compared to the spatial problem). The number of iterations lmax necessary
to obtain a sufficiently accurate approximation (η = 10−2 in practice) is quite low
in practice (3 or 4 generally).

The next step of the progressive construction of the PGD consists in seeking a
new PGD set of functions as the optimal one, verifying the Galerkin orthogonality
criterium. Given a known decomposition ũm−1 of order (m− 1), a new set of PGD
functions (λ,Φ) ∈ P×U is defined as follows: seek (λ,Φ) such that (λ?,Φ?) ∈ P×U ,

a(ũm−1 + λ Φ, λ Φ?) = `(λ Φ?, µ) (1.48)

a(ũm−1 + λ Φ, λ? Φ) = `(λ? Φ, µ) (1.49)

In order to build an approximation of order m ≥ 2 there are several methods.
Contrary to the progressive construction of the PGD approximation described pre-
viously, another approach consists in finding simultaneously the m spatial functions
and subsequently the m parameter functions. However, it leads to algebraic system
m times bigger than the first order approximation and to prohibitive calculation
costs, as soon as the number of PGD functions overpasses a given number. There
are other methods, based on the Arnoldi’s technique enabling one, by Krylov’s sub-
space construction, to generate the m spatial functions [Nouy, 2010]. This approach
is not taken into account in this context.

In practice, the approximation of order m ≥ 2 is generated using the same
iterative algorithm seen before but by updating the approximation at each new
generated PGD set (progressive construction):
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for m = 2 to mmax do
- initialization λ0

m(µ);
for l = 1, ..., lmax do

- knowing λl−1
m (µ), find Φl

m(x) solution of the problem 1.48;
- knowing Φl

m(x), find λlm solution of the problem 1.49;
- normalization of Φl

m(x).
- Set ũm = ũm−1 + λmΦm.
- Update of the right-hand member: `← `− a(ũm, vm)
- Check convergence

end

end

Algorithm 2: Algorithm to generate the m − th order PGD-Galerkin. The
rank one approximation is already available from Algorithm 1.

The Galerkin-PGD formulation shows some problems in the convergence for
some kind of applications, such as, multiscale problems or acoustics problems. This
issue has led to the introduction of a more general and more robust procedure to
generate the PGD form of the solution of PDEs [Ladevèze and Nouy, 2003, Nouy,
2010, Relun et al., 2011, Allier et al., 2015].

PGD defined by the minimization of a residue This procedure has been
proposed as a palliative for convergence problems of Galerkin-PGD formulation
view in certain situations. Indeed, it is more robust than the Galerkin-PGD in the
sense that monotonic convergence of the decomposition in the residual norm can
be proved, even though convergence can be slow. It consists in defining the PGD
approximation by a problem of minimization of the residue of Problem 4.

Problem 4 can be reformulated as:

Problem 6 Find u(x, µ) ∈ V such that:

A(u, v) = L(v), ∀v ∈ V (1.50)

with:

A(u, v) =

∫
D
a(u, v) dµ (1.51)

L(v) =

∫
D
`(v, µ) dµ (1.52)

with A(u, v) a bilinear form on V and L(v, µ) a linear form on V defined in Problem
4.

In order to define the progressive minimal residual PGD formulation of Problem
6, let us define 〈·, ·〉 as an inner product on Ṽ ≡ P ⊗ U and ‖ · ‖Ṽ the associated
norm. The residual R(u) of Problem 6 is define as follows:
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〈 v,R 〉 = L(v) − A(u, v) = 〈 v, L −A 〉 , ∀v ∈ Ṽ (1.53)

where L ∈ Ṽ and operator A : Ṽ → Ṽ are obtained thanks to Riesz represen-
tation theorem in Hilbert space P ⊗ U . For instance, for Problem 6 and L2-norm,
one can choose:

R(u) = div (K ε(u)) + f
d
, A(u) = −K ∆u, L = f

d
(1.54)

since K is a constant symmetric operator.

Definition 2 (Progressive minimal residual PGD) Find (λm,Φm) ∈ P × U
which minimize the residual norm:

(λm, Φm) = arg min
(λ?, Φ?) ∈ P×U

‖R(
m−1∑
i=1

λi Φi + λ Φ)‖ (1.55)

that is to say:

(λm, Φm) = arg min
(λ?, Φ?) ∈ P×U

1

2
〈 A (λ, Φ), A (λ, Φ) 〉 −

〈
R(um−1), A (λ, Φ)

〉
(1.56)

Remark 1 By introducing the adjoint operator A? of A, (1.56) is equivalent to the
Galerkin-PGD applied to a least-square formulation of the problem (symmetrized
problem) [Nouy, 2010]: find u(x, µ) ∈ V such that:

Ā(u, v) = L̄(v), ∀v ∈ V (1.57)

with:

Ā(u, v) = 〈 A(v), A(u) 〉 = 〈 v, A? A(u) 〉 (1.58)

L̄(v) = 〈 A(v), L 〉 = 〈 v, A? L 〉 (1.59)

and, in this case, progressive minimal residual PGD is defined as follows:

(λm, Φm) = arg min
(λ?, Φ?) ∈ P ×U

1

2
〈 λ Φ, A? A (λ, Φ) 〉 −

〈
λ Φ, A? R(ũm−1)

〉
(1.60)

Consequently, algorithms presented previously for Galerkin-PGD (see Algorithm
1 and 2) can be easily transposed to this formulation by considering Ā (resp. L̄)
instead of A (resp. L). Note that, for Problem 1.56 and natural L2-norm operator
A is self-adjoint: A? = A.
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Stationarity conditions associated with (1.56) reads:

∀(Φ?, λ?) ∈ P×U , 〈 A(λ Φ), A (λ? Φ + λ Φ?) 〉 =
〈
R(ũm−1), A (λ? Φ + λ Φ?)

〉
(1.61)

Applications Sm : P → U (resp. Pm : U → P) which maps a parametric function
λ (resp. space function Φ ) into a space (resp. parameter) function are defined by
the following equations:

• Φ = Sm(λ) ∈ U is defined by:

∀Φ? ∈ U , 〈 A(λ Φ), A (λ Φ?) 〉 =
〈
R(ũm−1), A (λ Φ?)

〉
(1.62)

• λ = Pm(Φ) ∈ P is defined by:

∀λ? ∈ P , 〈 A(λ Φ), A (λ? Φ) 〉 =
〈
R(ũm−1), A (λ? Φ)

〉
(1.63)

The verification of these two equations can be seen as a pseudo-eigenproblem on
operator Gm = Sm ◦ Pm [Nouy, 2010]. The (pseudo) eigenvalue associated with an
eigenfunction Φ = G(Φ) is defined by σm(Φ) = 〈 A(Φ Pm(Φ)), A(Φ Pm(Φ)) 〉. The
optimal function Φm which maximizes σm(Φ) is the dominant eigenfunction of Gm.
The couple (Φ, Pm(Φ) is optimal in the sense that it minimizes the residual norm.
Indeed, it can be shown that:

‖R(ũm)‖2 = ‖R(ũm−1)‖2 − σm(Φm) = L2 −
m∑
i=1

σi(Φi) (1.64)

This shows that the residual norm monotically decreases, which provides a con-
venient convergence indicator of the order m approximation um of the solution. In
that sense, this is a robust construction of the separated representation and this
formulation can be used when Galerkin-based PGD fails.

Remark 2 Convergence rate depends on the choice of the residual norm ‖·‖. Using
classical norm in L2(U)⊗ L2(D), i.e.:

‖R(ũm)‖ = 〈R(ũm),R(ũm)〉 = (R(ũm),R(ũm))

may lead to a slow convergence. Choosing a residual norm based on the operator A
of the problem as close as possible to ‖u − ũm‖ generally improves the convergence
rate. For instance, by introducingM a suitable symmetric bounded coercive operator
as close as possible to the inverse of the symmetric part of A, one can choose:

‖R(ũm)‖M = 〈R(ũm),R(ũm)〉 = (R(ũm), M R(ũm)) .

In this case, one has:

‖R(ũm)‖M = (R(ũm), M R(ũm))

= (L −A(ũm), M L−A(ũm))

= (A(u− ũm), M A(u− ũm))

= (u− ũm,A? M A(u− ũm))

= ‖u− ũm‖A?MA
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The operator M can be seen as a preconditioner for the problem. Its choice is
crucial in order that residual norm ‖R(ũm)‖ gives a measure of the error close to
‖u− ũm‖. The construction of such a norm/preconditionner is not straightforward
and may lead to additional computational issues. Note that, if A is self-adjoint
(hermitian or symmetric) and M is the inverse of A, one has:

‖R(ũm)‖ = ‖u− ũm‖A? = ‖u− ũm‖A
In Fig. 1.7, convergence of error (1.31), for the problem described in Fig.

1.1 is given for the three approximations: POD, Reduced-basis and progressive
Galerkin-PGD. Error levels and CPU time gains for POD, PGD approximation and
reduced-basis approach are similar. Finally the three levels of possible gain, in terms
of CPU time, with respect to the direct method, are comparable.

For linear problems, this can be considered as a general result. In fact the modes
generated by the three different techniques are closed and, in general, the reduction
of the computational complexity is in the same order of magnitude.

1.2 Model Reduction methods for nonlinear prob-

lems

This section considers the application of model reduction techniques to nonlinear
problems. For nonlinear problems, model reduction techniques need to be coupled
with linearization techniques. Each model reduction technique has been coupled
to specific iterative methods that are considered well-suited to one model reduc-
tion technique rather than another one. The most known linearization techniques
employed in model reduction are:

• the Newton-Raphson method, mainly coupled with POD and reduced-basis
for strategies based on a learning stage, but also with the APHR, a technique
that does not involve any learning stage to construct the ROB.

• LaTIn method, well-suited for the PGD approximation because it is a non-
incremental method that generates approximations of the solution over the
entire time-parametric-space domain by successive enrichments;

• Asymptotic Numerical Method (ANM), coupled both with PGD and tech-
niques constructing a ROB in a learning stage. The ANM coupled with PGD
has been introduced in [Niroomandi et al., 2010, Niroomandi et al., 2012a] to
tackle hyperelasticity. The advantage of this approach is the presence of only
one tangent operator, identical for every iteration, but it needs high order of
interpolation of the nonlinear terms to obtain suitable results.

The aim of this section is to highlight a drawback of applying model reduction
techniques based on projection in the framework of nonlinear problems. This issue
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Figure 1.7: The error given by the PGD approximation of Problem 2 and the CPU
wall clock time compared to the POD (offline and online), reduced-basis methods

(offline and online) and the direct method.

derives from the necessity of a linearization scheme. Linearization schemes generate
a series of different linear problems. For each linear problem it is necessary to
construct a new reduced-order model since, in each linear problem of the series, the
nonlinear terms are different from the previous one. This implies (i) the evaluation
of the nonlinear terms, (ii) the integration of those terms over the entire domain
and (iii) their projections on the ROB.
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The complexity of those operations scales with the size of the original discretized
problem, i.e., for problem of Fig. 1.1 the N = 2637 dofs and the p = 100 pa-
rameter steps. Thus, the computational cost associated with assembling the ROM
low-dimensional operators, scales with the large dimension of the original high-
dimensional models. For this reason, model reduction techniques are more efficient
when the ROM needs to be constructed only once or when this step can be per-
formed off-line, prior to the online resolution of this model which can then be very
fast. This is the case of parametrized time-invariant systems, linear stationary and
quasi-stationary systems whose operators are affine functions of the input param-
eters. On the contrary, when projection is applied to linear dynamic systems, lin-
ear stationary systems with nonaffine parameter dependence, or general nonlinear
problems, the resulting ROM is costly to assemble. Often, this results to be the
bottleneck of nonlinear model reduction strategies based on Galerkin projection.

Let us consider the reference Problem 4 but with a nonlinear term. This problem
has been introduced as a benchmark in [Grepl et al., 2007] for numerical tests with
the EIM and then considered again in [Chaturentabut and Sorensen, 2010] in the
framework of the DEIM:

Problem 7 (reference nonlinear problem) Given µ ∈ D, find u(x, µ) ∈ U such
that:

∀v ∈ U , a(u, v) +

∫
Ω

g(u;µ) v dΩ− `(v, µ) = 0 (1.65)

where a(u, v) is a continuous bilinear operator on U ,
∫

Ω
g(u;µ) v dΩ is a continuous

nonlinear operator on U depending on the solution u and parameter µ and `(v, µ) =∫
Ω
f(x, µ) v dΩ is a linear form on U .

Here, Problem 7 is solved considering the reduced-basis technique, described in
section 1.1.3, in order to highlight the computational complexity related to model
reduction techniques by projection, in the framework of nonlinear problems.

The solution is sought in the linear span Φk of the orthogonal ROB, Vk =
{Φ1, . . . ,Φk}, by a standard Galerkin projection. Problem 7 reads:

Problem 8 (reduced-basis problem) Given µ ∈ D, find ũk(x, µ) ∈ Φk such
that:

∀v ∈ Φk, a(ũk, v) +

∫
Ω

g(ũk;µ) v dΩ = `(v, µ). (1.66)

Thus, by denoting the approximation of the solution ũ(x, µ) =
∑k

i=1 λi(µ)Φi, and
by choosing Φi as a test function for v in (1.66), the approximation ũ is obtained by
the k × k nonlinear algebraic system, ∀ 1 ≤ j ≤ k, ∀µ ∈ D:

k∑
i=1

a(Φi,Φj) λi(µ) +

∫
Ω

g

(
k∑
i=1

λi(µ)Φi;µ

)
Φj dΩ = `(Φj, µ). (1.67)
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Let us notice that first term in left-hand side member, a(Φi,Φj), is parameter-
independent and can be precomputed off-line. However, the second term depends
on g(.;µ) and, consequently, it is a nonlinear parameter-dependent term. It has
to be evaluated online for each new parameter value µ. Next section shows that
the complexity of the online stage scales with O(N k2) with N the dimension of
the underlying finite element approximation space. Following [Chaturentabut and
Sorensen, 2010], computational complexity is evaluated in terms of FLOPS counting
both the multiplications and additions as FLOPS.

1.2.1 Computational complexity analysis

Nonlinear algebraic system (1.67) is classically solved by iterative methods, such as,
the Newton-Raphson method for each value of parameter µ. Each tangent problem
of the iterative scheme is, then, projected on a precomputed ROB, Vk. This section
aims at detailing the N -dependence computational complexity of classical model
reduction techniques for nonlinear problems.

Newton method consists in solving a linearized formulation of (1.67). Knowing
iterate ũ(n), one looks for ũ(n+1) = ũ(n) + δũ(n+1) by solving:

Problem 9 (tangent problem) Given µ ∈ D, find δũ(n+1) ∈ U

∀v ∈ U , R(ũ(n), v;µ) +
〈
R′(ũ(n), v;µ), δũ(n+1))

〉
= 0 (1.68)

with R(w, v;µ) = a(w, v) +
∫

Ω
g(w;µ) v dΩ − `(v, µ).

Linear tangent application R′ is defined by:

R(w + z, v;µ)−R(w, v;µ) ≈ 〈R′(w, v;µ), z〉 (1.69)

that is to say:

〈R′(w, v;µ), z〉 = a(z, v) +

∫
Ω

g′(w;µ) z · v dΩ (1.70)

with g′ the derivative according to the first argument. By denoting the reduced-
basis approximation of the solution ũk(x, µ) =

∑k
i=1 λiΦi, and by choosing Φi as a

test function for v, it leads to the following k × k linear algebraic system:

∀ 1 ≤ j ≤ k,

k∑
i=1

[
a(Φi,Φj) +

∫
Ω

Φi g
′ (ũ(n);µ

)
Φj dΩ

]
λi = −R(ũ(n),Φj;µ)

(1.71)
By taking into consideration the underlying finite element approximation ([Φi] =∑N

j=1[Φj
i ]ϕj(x)), the discretized version reduced-order basis is Vk. The discrete

approximation of λ leads to the Λk = { [λj] }1≤j≤k:

VT
k

(
A + G′(ũ(n);µ)

)
Vk Λk = −VT

k [R(ũ(n);µ)]. (1.72)
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where A and G′ are N ×N matrices such that

Aij = a(ϕi, ϕj), (1.73)

G′ij =

∫
Ω

ϕi g
′ (ũ(n);µ

)
ϕj dΩ. (1.74)

Residue {R(ũ(n);µ)} is a N -length vector with {R}i = −R(ũ(n), ϕi;µ). The dis-
cretized ROB is a N × k matrix with Vk = {[Φ1], [Φ2], . . . , [Φk]}. The unknowns Λk

has a size of k.
Both Jacobian matrice G′(ũ(n);µ) and residue {R(ũ(n);µ)} depend on parameter

µ. For each new parameter value, one has (i) to evaluate Jacobian and residue, (ii)
to project it onto the discretized ROB Vk, and, finally, (iii) to solve system (1.72)
to obtain Λk. Projection of Jacobian (resp. residue) onto ROB has a computational
complexity that depends on O(N k2) since G′ is sparse (resp. O(N k)) [Grepl et al.,
2007, Chaturentabut and Sorensen, 2010]. Solving system (1.72) has a complexity
in the order of O(k3) (for a Cholesky factorization of a full matrice). The total
computational complexity of a Newton iteration is consequently in the order of
O(N k2 +N k+k3) and, hence, it depends on N . This complexity number can even
overpass the number of elementary operations to solve the original full order problem
8, that is in the order of O(N3). It is shown in [Chaturentabut and Sorensen, 2010]
that, for Problem 8, the CPU time for solving the POD reduced model (POD-
Galerkin strategy) for each parameter value exceeds the CPU time of the original
full order problem as soon as the dimension of the finite element discretisation
space reaches around N = 80. The analysis of complexity illustrates the well-known
bottleneck issue of model reduction methods in the framework of nonlinear problems.

In order to overcome this obstacle, several approaches have been proposed. In
literature, some of such techniques are indicated as hyper-reduction methods [Carl-
berg et al., 2013, Ryckelynck, 2005]. In the following section the following techniques
are briefly presented:

• Empirical Interpolation Method and its different versions combined with the
reduced-basis [Barrault et al., 2004, Rozza, 2006, Nguyen et al., 2005, Maday
et al., 2009, Rozza and Patera, 2008] and POD techniques [Chaturentabut and
Sorensen, 2010, Galbally et al., 2010].

• Techniques based on the Gappy POD [Everson and Sirovich, 1995]: Miss-
ing Points Estimation (MPE) [Astrid et al., 2008], Gauss Newton with ap-
proximated tensors (GNAT) [Carlberg et al., 2013], A priori hyper reduction
(APHR) [Ryckelynck, 2005, Ryckelynck et al., 2012].

1.2.2 Empirical Interpolation Techniques

The EIM, firstly introduced in [Barrault et al., 2004], has been proposed in an em-
pirically derived finite-dimensional functional space. This method deals with linear
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elliptic and parabolic problems with nonaffine parameter dependence as well as non-
linear elliptic and parabolic problems. It operates directly on the governing partial
differential equation and therefore at the continuous level. Its variant proposed in
[Nguyen and Peraire, 2008] relies for the same purpose on best (interpolation) points
and a POD basis. In [Chaturentabut and Sorensen, 2010] the Discrete-EIM (DEIM)
is proposed. It represents the semi-discrete analogue, without greedy algorithm, to
the empirical interpolation method that have been developed for parameterized non-
linear stationary problems and for nonlinear dynamic problems. The DEIM can be
applied to arbitrary systems of ODEs. This method reduces the computational cost
associated with nonlinearities by combining interpolation with projection.

EIM approximates the nonlinear term and the Jacobian of the problem by inter-
polating a pre-computed basis (built by snapshots computed in off-line stage) related
to the nonlinear term evaluated for the snapshots. In order to get the interpolating
coefficients of the basis, the method selects some points (called Magic Points) by
a greedy algorithm. The nonlinear term is, then, evaluated only at these points
and combined with the precomputed basis, opportunely masked in order to extract
only the lines related to the Magic Points. Finally, the complexity of the evaluation
of the nonlinear term, of the Jacobian and their orthogonal projection, is propor-
tional to the number of these Magic Points instead of the finest space dimension.
A posteriori error bounds for the EIM can be found in [Grepl et al., 2007, Barrault
et al., 2004, Nguyen et al., 2005, Maday et al., 2009], also for its discrete variant
[Chaturentabut and Sorensen, 2010]. An a priori error estimation, based on the
Lebesgue constant has also been developed. This constant gives an idea of how
accurate the interpolant of a function (at the given points) is in comparison with
the best polynomial approximation of the function (the degree of the polynomials
are obviously fixed). In the case of equidistant nodes, for polynomial interpolations
the Lebesgue constant grows exponentially. Using the EIM, for the kind of problem
tackled in literature by this technique, this constant tends to the unity as the num-
ber of Magic Points increases. The EIM is briefly detailed and applied to a simple
elliptic problem in section 3.4.2.

This technique has been coupled with all the principal model reduction tech-
niques. Developed initially for reduced-basis [Barrault et al., 2004], extended then
to POD [Chaturentabut and Sorensen, 2010] and recently to PGD [Aguado et al.,
2013]. However, for this latter the development is still in progress and leaves some
open questions. Indeed, in [Aguado et al., 2013] the EIM has been coupled with the
PGD searching for the new points related to a new ROB, generated at each iteration.
In this way it reduces the complexity to evaluate and integrate the nonlinear term
but the Galerkin projection still scales with the size of the original discretisation
because with the PGD the ROB is progressively enriched by new functions and it is
not possible to pre-compute the Galerkin projection operators in an off-line stage.
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1.2.3 Techniques based on the Gappy POD

Some techniques, dealing with nonlinear model reduction, exploit some results origi-
nally found in the field of optics and images. Those studies concerned the problem of
using the Karhunen-Loeve transform with partial data. Such problem is explained
in this article [Everson and Sirovich, 1995]. The idea originates from the fact that
a given amount of data, such as an image or a mechanical evolution field, can be
accurately described by few functions (eigenfunctions). This number is much lower
than the number of the degrees of freedom in standard discretisations (as the num-
ber of pixels for images or the number of nodes for a finite element description of
mechanical fields). In [Everson and Sirovich, 1995] marred images are reconstructed
by the unmarred ones using a mean square minimization procedure. This method,
called Gappy-POD, recovers modal coefficients from an incomplete set of data. In
[Everson and Sirovich, 1995], a scheme is proposed for finding empirical eigenfunc-
tions from gappy data. It is shown numerically that this procedure obtains spectra
and eigenfunctions that are close to those obtained from the unmarred data.

The Gappy POD has been applied to different data reconstruction problems,
such as reconstruction of facial images [Everson and Sirovich, 1995] as well as CFD
problems [Willcox, 2006].

Missing Points Estimation The Missing Point Estimation (MPE) developed in
[Astrid et al., 2008] performs online computation by POD basis computing Galerkin
projections over a restricted subset of the spatial domain. It proposes a quantitative
criteria for selecting such a spatial subset based on an heuristic method. The MPE
operates at the semi-discrete level and can be coupled to several projection-based
model reduction techniques, such as balanced truncation, Krylov subspace methods
and POD.
Summarizing the main features of the MPE, we can say that as the Gappy-POD
recovers modal coefficients from an incomplete set of data, POD-MPE enables to
recover reduced state variables by considering an incomplete set of equations related
to the discretisation of PDEs.

The Gauss-Newton with approximated tensors method The Gauss-Newton
with approximated tensors (GNAT) method is a nonlinear model reduction method
that operates on fully discretized computational models. It achieves dimension
reduction by a Petrov-Galerkin projection associated with residual minimization
and delivers computational efficiency by a hyper-reduction procedure based on the
gappy-POD technique. Originally presented in [Carlberg et al., 2010], where it has
been applied to implicit nonlinear structural-dynamics model, this method is fur-
ther developed in [Carlberg et al., 2013] and applied to the solution of a benchmark
turbulent viscous flow problem.

This technique operates on the system of nonlinear equations arising at each
time step, which are obtained after discretizing the PDE in both space and time.
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GNAT main features are (i) consistency: when GNAT is implemented without snap-
shots compression, it introduces no additional error in the solution at the training
inputs. (ii) discrete-optimality: the error in the discrete approximation decreases
monotonically as the approximation spaces expand. Error bounds are provided for
this method and they are developed in [Carlberg et al., 2013].

The A Priori Hyper-Reduction method The A priori Hyper-Reduction method
(APHR) is an incremental adaptive approach based on a classic step-by-step time-
integration scheme. Introduced in [Ryckelynck, 2005] it operates on the functional
space of the test-functions used in the weak form of the differential equations. It
is based on a specific Petrov-Galerkin formulation, the computational speed-up is
achieved by a procedure based on the Gappy-POD.

This method relies on an a priori approach because it does not need, in order
to build reduced-order models, to solve the full problem by incremental approach
in a learning stage. It is an incremental method, then, a classical implicit time
integration scheme is used to forecast the state evolution of the space domain. The
APHR is a predictor-corrector algorithm. This algorithm provides an approximate
solution of the PDEs and an hyper-reduced model (HRM) formed by the reduced
basis and the Reduced Integration Domain (RID). At each iteration, the prediction
is provided by the current HRM. A truncated error indicator is computed. If this
error indicator is too high, then a correction of this prediction is performed by using
the solution of the finite elements equations. The computation of the finite elements
correction can be performed using any classical incremental algorithm. A POD of
this solution is operated to adapt the reduced-bases [Ryckelynck et al., 2012]. A
specific spatial integration scheme is introduced when computing the reduced-state
variables related to the ROM prediction. The constitutive equations are integrated
over the RID, provided that this equations are local. The number of operations to
integrate and project the operators scales with the size of the RID. If the reduced-
bases have been adapted, the reduced integration domain and the truncated test-
functions are therefore updated.

Initially, the APHR method has been used with Krylov subspaces in order to
extend the subspace spanned by the ROM basis (see, for instance, [Ammar et al.,
2006]). The recent advance on Hyper-Reduction methods proposed in [Ryckelynck,
2009] makes possible the extension of the APHR method to the complex nonlinear
mechanical models involving internal variables. But, the expansion using Krylov
subspace was not conserved because the Krylov approach increases the number of
balance residual evaluations. Therefore the computational time devoted to residuals
becomes too expensive in case of complex constitutive laws.

1.2.4 Other techniques

There are some others techniques proposed to palliate the problem of the computa-
tional cost induced by nonlinear terms in the reduced-order modelling.



40 Reduced-Order modelling: a brief overview of the state-of-the-art

The trajectory piecewise-linear approximations The trajectory piecewise-
linear approximations (TPWL), introduced in [Rewienski and White, 2006], con-
structs a ROM as weighted combination of linear models, where each model lays on
the tangent of the original problem trajectory. The TPWL operates at the semi-
discrete level, as for instance, on the ODEs obtained after discretizing the PDEs
in space. It can be seen as an actual first order Taylor expansion of the nonlinear
terms around some chosen state values.

Nonuniform Transformation Field Analysis For solid mechanical problems
with idealized interfaces (i.e. without displacement jumps) but (possibly) nonlinear
bulk behaviour, a promising approach has been presented in terms of the Nonuni-
form Transformation Field Analysis (NTFA) [Michel and Suquet, 2003]. The NTFA
belongs to the class of reduced basis methods. More precisely, dealing with non-
linear micromechanically problems, the plastic strain tensor is approximated by
nonuniform global basis functions while the hardening variables are assumed to be
phase-wise constant. Recently, the method has been extended for the modelling
of the cohesive interfaces with hyperelastic cohesive laws [Fritzen and Leuschner,
2015]. The method aims at to reduce parameterization of the internal variables in
the material thanks to a previously developed a reduced order model for nonlinear
solid materials that is based on a low-dimensional parameterization of the internal
variables of the dissipative phases.

The expanded space approach In [Hernandez et al., 2014] is addressed the
problem of model reduction for the solution of the fine-scale equilibrium problem
appearing in computational homogenization. In this work it is shown that, for
the problems coming from homogenization, the standard approach of replacing the
nonaffine term by an interpolant constructed using only POD modes (the EIM)
leads to ill-posed formulations. Such problem can be avoided by enriching the ap-
proximation space with the span of the gradient of the empirical shape functions.
Furthermore, interpolation points are chosen, not only by accuracy requirements,
but also by stability considerations. In some numerical results is shown that com-
putational complexity is independent of the size and geometrical complexity of the
Representative Volume Element.

1.3 Conclusions

In this section it is shown how, for linear problems, model reduction techniques
enable one to decrease the computational complexity related to systems of linear
equations obtained by discretizing PDEs. The detailed techniques seek the solution
of a problem in a reduced-order basis (ROB), whose dimension is much smaller
than the original vectorial space. This ROB can be acquired either by solving the
original system for some appropriate values of the parameter domain (snapshots of
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the solution) in a learning stage or it can be constructed on-the-fly by a greedy
algorithm, during the solution of the PDE projected on the ROB. The comparison
with respect to the direct solution techniques on a simple 3D problem shows an
important gain in the computational cost.

On the other hand, when the projection is applied to linear dynamic systems,
linear stationary systems with non-affine parameter dependence, or general nonlinear
problems, the resulting ROM is expensive to assemble. This high cost results from
the need to evaluate the high-dimensional nonlinear function (and eventually its
Jacobian) and, then, to project it to get the low-dimensional operators at each
computational step of a solution algorithm. This results to be the bottleneck of
nonlinear model reduction strategies.

Some solutions have already been introduced in literature. The most common
one is the Empirical Interpolation Method (EIM) [Barrault et al., 2004, Grepl
et al., 2007, Nguyen, 2005] and its semi-discrete version (DEIM) [Chaturentabut
and Sorensen, 2010]. These techniques have been introduced for model reduction
techniques that resort to a learning stage, i.e., POD and reduced-basis. Extensions
to PGD approximation are in progress, i.e., in [Aguado et al., 2013]. However the
use of the EIM coupled with the PGD leaves some opened questions. Indeed, in
[Aguado et al., 2013] the EIM has been coupled with the PGD searching for the
new points related to a new ROB, generated at each iteration. In this way it re-
duces the complexity to evaluate and integrate the nonlinear term, but the Galerkin
projection still scales with the size of the original discretisation because with the
PGD the ROB is progressively enriched by new functions and it is not possible to
pre-compute the Galerkin projection operators in an off-line stage.

The aim of this work is to propose an approximation framework, called Refer-
ence Points Method (RPM), in order to decrease the computational complexity of
algebraic operations when dealing with separated variable approximations and in
the case of evolving ROB.
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Chapter 2

The Reference Points Method

In this chapter a new approximation framework, well-suited for the PGD technique,
is developed. This framework is based on the concept of reference times, points and
parameters and enables one to define a reduced version of the data which allows to
decrease the computational complexity and the number of algebraic operations, to
construct a reduced order model. Herein, starting from the compressed version of
data, a method to reconstruct the data in a separated-variables form is developed,
analysed and demonstrated by numerical examples.

In chapter 1, it has been shown how reduced order modelling, by separation
of variables, represents a way to reduce the complexity related to the solution of
parametric linear problems. On the other hand, in section 1.2 it has been explained
that, dealing with nonlinear problems, a linearization technique is necessary and,
thus, a new ROM has to be constructed at each new iteration of the solution method.
The complexity related to the necessary operations scales with the underlying space
and parameter discretisation and it hints the potential gain of the reduced order
modelling.

Let us consider again Problem 7, introduced previously in chapter 1, which is
an µ-parametrized elliptic nonlinear problem and let us assume that the problem
has been linearized by a Newton scheme in Problem 9. By denoting the separated-
variables approximation of the solution ũ =

∑k
i=1 λi Φi, and by choosing Φi as a

test function for v, the following k × k linear algebraic system has been obtained:
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∀ 1 ≤ j ≤ k,

k∑
i=1

[
a(Φi,Φj) +

∫
Ω

Φi g
′ (ũ(n), µ

)
Φj dΩ

]
λi = −R(ũ(n),Φj;µ)

(2.1)
where a(Φi,Φj) is a bilinear form and R(ũ(n),Φj;µ) a linear form. g′

(
ũ(n), µ

)
is a

continuous nonlinear operator depending on the solution and the parameter µ. The
reduced model is obtained from the operation on the left-hand side:

a(Φi,Φj) +

∫
Ω

Φi g
′ (ũ(n), µ

)
Φj dΩ. (2.2)

First term in left-hand side member, a(Φi,Φj), is parameter-independent and can
thus be pre-computed offline. However, the second term:∫

Ω

Φi g
′ (ũ(n), µ

)
Φj dΩ (2.3)

depends on g′
(
ũ(n), µ

)
and, consequently, is parameter-dependent and has to be

evaluated online for each new parameter value µ ∈ D. It was shown that the projec-
tion of the Jacobian onto the reduced-order basis has a computational complexity
that scales with O(N k2). This point, described in the previous chapter, represents
the bottleneck of reduced order modelling in the framework of nonlinear problems
and it is even more important when the number of space functions in the ROB in-
creases. For that reason, the aim of this work is to propose a new technique, called
Reference Points Method (RPM), which consists in:

• providing a compressed version of quantities based on the concept of reference
times, points and parameters [Ladevèze, 1997]. This approximation framework
enables one to reduce the complexity of algebraic operations between quantities
in separated-variables form.

• reconstructing the quantities to give a first approximation of them in a separated-
variables form by explicit formulas.

• avoiding the artificial increasing of the PGD modes representing the result of
the algebraic operation between quantities in separated-variables form.

In this chapter, for the sake of clarity, let us focus on the evaluation of the
integrand of expression (2.3), considered as the product of two functions:

F (µ, x) = f(µ, x) f ′(µ, x). (2.4)

f(µ, x) and f ′(µ, x) are two scalar functions of two variables, µ ∈ D = [0, 1] and
x ∈ Ω = [0, 1]. An example for functions f and f ′ and their product F is given in
Fig. 2.1. The extension to function defined in 3D domains or depending on the
time will be presented in the following.
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(a) scalar function f(µ, x). (b) scalar function f ′(µ, x).

(c) the resulting product function
F (µ, x) = f(µ, x) f ′(µ, x).

Figure 2.1: Example of two scalar functions and their product.
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2.1 Compressed format and generalized compo-

nents

Let us assume that functions f and f ′ are described under separated-variables rep-
resentations:

f(µ, x) =
k∑
i=1

λi(µ) Λi(x) and f ′(µ, x) =
k′∑
i=1

θi(µ) Θi(x). (2.5)

The evaluation of product F , under its separated variable form, involves the sum
of M=k × k′ term by term products, which results into a M -term representation
of product F . This M -term representation is likely to be non-optimal and M may
increase swiftly if terms are added to f and f ′ representations (k and k′ increase).
Performing a singular value decomposition of F may be necessary to achieve a
separated-variables representation of F with a reasonable number of terms. RPM
follows a different path to avoid the artificial increasing of the PGD modes.

The RPM approximation framework is based on the concept of reference times,
points and parameters and enables one to define a reduced version of the data
[Ladevèze, 1997]. The parameter domain is split in mµ sub-intervals Di of the size
∆µi. The center µi of the sub-interval Di are called reference parameter points. For
the space domain mx points xj are introduced and the domain Ω is divided into mx

sub-domains Ωj. The xj are called reference spatial points and the size of the patch
is indicated ∆ωj.

Di

µi D

≠

≠ j x j �!j

�µi

Figure 2.2: Reference parameters and reference points when D = [0, 1] and Ω =
[0, 1].

An influence zone is defined around each reference point given by the xj space
point and the µi parameter point. This part of the domain, Di × Ωj, is called
reference patch (i, j). Then, the entire domain D×Ω is divided in mµ×mx patches.

A function f defined on the domain D × Ω is represented by its generalized
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components f̄ = {(āij, b̄ij)}, defined as follows. For i = 1, ..,mµ and j = 1, ..,mx:

f̄ ≡
{
āij(µ) = f(µ, xj) ifµ ∈ Di | b̄ij(x) = f(µi, x) if x ∈ Ωj

āij(µ) = 0 otherwise | b̄ij(x) = 0 otherwise

}
(2.6)

(a) function f(µ, x).
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āij(µ)

b̄ij(x)

(b) f̄ , the generalized components of
function f(µ, x).

(c) function f ′(µ, x).
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(d) f̄ ′, the generalized components of
function f ′(µ, x).

Figure 2.3: The generalized components of functions f , f ′ and their product F ,
for a choice of mµ = 10 and mx = 10.

The generalized components {āij(µ)}i=1,...,mµ related to spatial point xj gives the
description of the function f at spatial point xj over the entire parameter domain D.
Inversely the generalized components {b̄ij(x)}i=1,...,mx related to parameter value µi
gives the description of the function f at parameter value µi over the entire spatial
domain Ω.

Remark 3 Whenever the function f is expressed in a separated-variables form,
each pair of functions is described by the generalized components. Hence, for

f(µ, x) =
k∑
i=1

λi(µ) Λi(x),
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it yields: for i = 1, ..,mµ and j = 1, ..,mx

f̄ ≡
{
āij(µ) =

∑k
i=1 λi(µ)Λi(xj) if µ ∈ Di | b̄ij(x) =

∑k
i=1 λi(µi)Λi(x) if x ∈ Ωj

āij(µ) = 0 other. | b̄ij(x) = 0 other.

}
(2.7)

Fig. 2.3 depicts surfaces defined by functions f and f ′. Their generalized com-
ponents are shown also when mµ = 10 and mx = 10 reference points are considered.
Let us remark that for a 2D defined function, a generalized components associated
to a reference point is a quantity defined over a line. For instance, for a fixed refer-
ence space point it contains the description of the quantity over the entire parameter
domain.

In Fig. 2.4, some patches for functions f and f ′ are depicted. These patches can
easily be imagined, since it is a parametric function defined over a two-dimensional
coordinate.

(a) some of the patches for function f(µ, x). (b) some of the patches for function
f ′(µ, x).

Figure 2.4: Some of the parameter-space patches Di × Ωj for function f and f ′.

For a single parameter problem defined on a two-dimensional space domain,
patches become volumes. For a rectangular 2D space domain (F (x, µ) with x =
(X, Y )), a patch is a parallepiped (see Fig. 2.5). Reference and parameter points
xj and µi can be chosen on a regular grid or arbitrary provided that patches are
easily defined. Generalized components in this case are highlighted in Fig. 2.5. For
3D space domain, patch dimension is higher than three and, consequently, is more
complicated to represent.

The algorithm to define the patches, for a chosen number of reference points on
each coordinate, takes into account the eventually irregular geometry of the domain.
If a point takes place outside of the domain where the given field f(x, µ) or f ′(x, µ)
is undefined, e.g. in an hole of the space domain, the reference point is moved to the
closest node inside the domain. Fig. 2.6 shows how the points move accordingly
to the problem in the case of the presence of a hole in the domain.
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(a) āij(µ) generalized component related to the
spatial point xj
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(b) b̄ij(x), generalized component related to the
parameter value µi
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µ

(c) patch ij for a 2D parametric space field

Figure 2.5: Generalized components and patch (i, j) for a 2D parametrized func-
tion.
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Y 

X 

x1 x2

x25

Figure 2.6: The construction of the reference patches in the space domain around
the reference points. These will be extruded in the third dimension to take into

account the reference parameter evolution.

2.2 Algebra in the compressed framework

It is straightforward to show that the space of compressed fields shows interesting
properties regarding elementary operations (Tab. 2.1).

Addition f + f ′ = f̄ + f̄ ′

Multiplication f f ′ = f̄ f̄ ′

Derivation ∂f/∂µ = ∂f̄/∂µ

Operator H f = H̄ f̄

Table 2.1: Elementary operations in the compressed framework.

For instance, the evaluation of the product of two functions f and f ′ (see (2.4))
is obtained as follows:

1. Determination of the compressed formats of f and f ′ (see (2.6)): f̄ = {(āij, b̄ij)}
and f̄ ′ = {(ā′ij, b̄′ij)}.

2. F̄ = {(Āij, B̄ij)}, with:

Āij = āij ā
′
ij and B̄ij = b̄ij b̄

′
ij. (2.8)
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This stage is illustrated in Fig. 2.7.
In the case when f and f ′ are in separated variables form (see (2.5)). Following
(2.7), it leads to:

Āij =
k∑
i=1

λi(µ)Λi(xj)
k∑
i=1

θi(µ)Θi(xj) and B̄ij =
k∑
i=1

λi(µi)Λi(x)
k∑
i=1

θi(µi)Θi(x)

(2.9)

Remark 4 Let us remark that in (2.9) the reconstruction of the quantities in
the ”full” format is made only on the generalised components. This involves
that the complexity related to the (2.9) is decreased with respect to the one
related to the classic tensor product expressed in (2.5). The RPM enables one
to avoid the complete reconstruction of the quantities in the ”full” format,
considering the only generalised components of them.
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Figure 2.7: The product F = f f ′ in the RPM algebra is operated on the general-
ized components F̄ = f̄ f̄ ′

2.3 Reconstruction from the RPM format

2.3.1 First approximation

The generation of a first approximation of F in a separated-variables format, denoted
¯̄F , is obtained from the compressed format F̄ by generating one product of functions
per parameter-space patch Di × Ωj (Fig. 2.8):

∀ (i, j) ∀(µ, x) ∈ Di × Ωj F (µ, x) ≈ ¯̄F (µ, x) = aij(µ)bij(x) (2.10)

Products of functions aij(µ)bij(x) for all patches (i, j) are determined from the
generalized components of F̄ , {Āij(µ)B̄ij(x)} thanks to the solution of a minimiza-
tion problem as described in the following.
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The norms with respect to the parameter domain and the space are introduced
as follows:

‖f‖2
Di =

∫
Di
f 2dµ and ‖f‖2

Ωj
=

∫
Ωj

f 2dΩj (2.11)

Let us introduce the functional (2.12) on patch Di × Ωj:

J(aij, bij) =
mx∑
k=1

[
∆ωk‖(Āik(µ)− aik(µ)bik(xk)) λik‖2

Di + ∆µi‖B̄ik(x)− aik(µi)bik(x)‖2
Ωk

]
.

(2.12)
This functional imposes to the reconstructed patch to minimize its distance from
the generalized components. For the reconstruction of a given patch, the influence
of the neighbouring patches over the space coordinates is taken into the account
by the sum over the space coordinates. For that λik is an influence function which
gives more importance to the patches next to the considered patch. Let us write
the minimization problem:

min
(aij(µ),bij(x)) ∈ P×U

mx∑
k=1

[
∆ωk

∫
Di

(Āik(µ)− aik(µ)bik(xk))
2 λ2

ik dµ + . . .

. . . ∆µi

∫
Ωj

(B̄ik(x)− aik(µi)bik(x))2 dΩj

]
(2.13)

Minimization of functional J(aij, bij) leads to a variational problem:

δ(aik(µ) bik(x)) = a?ik(µ) bik(x) + aik(µ) b?ik(x) (2.14)

mx∑
k=1

[
∆ωk

∫
Di

2 (a?ik(µ) bik(xk) + aik(µ) b?ik(xk)) (Āik(µ)− aik(µ)bik(xk)) λ
2
ik dµ +. . .

. . . ∆µi

∫
Ωj

2 (a?ik(µi) bik(x) + aik(µi) b
?
ik(x)) (B̄ik(x)− aik(µi)bik(x)) dΩj

]
= 0

(2.15)

Let us choose, ∀ (i, k):

b?ik(x) = 0 (2.16)

a?ik(µi) = 0. (2.17)

Hence, ∀ a?ik(µ) and in particular for a given one such as a?ik(µi) = 0:

mx∑
k=1

2 ∆ ωk

∫
Di

(a?ik(µ) bik(xk)) (Āik(µ)− aik(µ) bik(xk)) λ
2
ik dµ = 0 (2.18)
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This leads to:

2

∫
Di

a?ik(µ) (
mx∑
k=1

∆ωk bik(xk) (Āik(µ)− aik(µ) bik(xk) λ
2
ik) dµ = 0 (2.19)

Equation (2.19) is verified ∀ a?ik(µ) and in particular for a given one such as
a?ik(µi) = 0. It yields:

mx∑
k=1

∆ωk bik(xk) Āik(µ) λ2
ik =

mx∑
k=1

∆ωk aik(µ) b2
ik(xk) λ

2
ik (2.20)

aik(µ) =

∑mx
k=1 ∆ωk Āik(µ) λ2

ik∑mx
k=1 ∆ωk b2

ik(xk) λ
2
ik

, ∀ Di (2.21)

Now, in order to seek an expression for bik(x), let us come back to the (2.15).
Let us impose, ∀ i:

b?ik(xj) = 0 (2.22)

a?ik(µ) = 0. (2.23)

This choice leads to:

mx∑
k=1

2 ∆µi

∫
Ωj

b?ik(x) aik(µi) (B̄ik(x)− aik(µi)bik(xk) ) dΩ = 0 (2.24)

This latter is verified ∀ b?ik(µ) and in particular for a given one such as b?ik(xj) = 0.
It yields:

bij(x) =
B̄ij(x)

aij(µi)
, ∀x ∈ Ωj (2.25)

Now, replacing (2.25) in (2.21) one obtains:

aij(µ) =

(∑mx
k=1 ∆ωk Āik(µ) B̄ik(µi) λ

2
ik∑mx

k=1 ∆ωk B̄ik(xk)2 λ2
ik

)
aik(µi), ∀ Di (2.26)

Considering that by definition of the generalized components:

B̄ik(xk) = Āik(µi) (2.27)

It follows:

aij(µ) =

(∑mx
k=1 ∆ωk Āik(µ) Āik(µi) λ

2
ik∑mx

k=1 ∆ωk Āik(µi)2 λ2
ik

)
aij(µi), ∀ µ ∈ Di (2.28)

Let us consider the function F product of the two functions f and f ′. The
approximation of F by the RPM is given by:

F (x, µ) ≈ ¯̄F = aij(µ)bij(x) (2.29)
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Replacing (2.28) and (2.25) in (2.29), one obtains:

F (x, µ) ≈ ¯̄F =

( ∑mx
k=1 ∆ωk Āik(µ) Āik(µi) λ

2
ik∑mx

k=1 ∆ωk Āik(µi) Āik(µi)ik λ2
ik

)
B̄ij(x) (2.30)

Observing (2.30), it is possible to simplify expressions (2.28) and (2.25) for func-
tions aij and bij just by scaling aij and multiplying bij by aik(µi). The (2.30) shows
that this choice does not affect the reconstruction, since their product does not
change, and enables one to obtain the following explicit formulas:

aij(µ) =

∑mx
k=1 ∆ωk Āik(µ) Āik(µi) λ

2
ik∑mx

k=1 ∆ωk Āik(µi) Āik(µi) λ2
ik

bij(x) = B̄ij(x) (2.31)

Hence, space domain is favored holding all the information arising from the
spatial generalized component B̄ij(x). This result is suitable for structural mechanics
where the spatial gradients of quantities are usually stronger than their variations
in parameters/time.

Let us notice that, if one chooses:

λik = 1 ∀k ∈ mx,

it follows:
¯̄F (x, µi) = B̄ij(x), for µ = µi

Hence, if influence function λ is not taken into account (λik = 1 ∀k ∈ mx),
the continuity of the approximated function ¯̄F over the space domain is ensured for
all Di.

Using mµ = 10 reference times and mx = 10 reference points, selected as a
regular grid, the reconstruction from the set of generalized components {Āij, B̄ij}
(right-hand plot in Fig. 2.8) leads to an error e = 5% with respect to the exact
solution (see 2.32). This error is defined as follows:

e =
‖F − ¯̄F‖D×Ω

‖ ¯̄F‖D×Ω

, ‖F‖2
D×Ω =

∫
D×Ω

F 2dΩdµ =

mµ∑
i=1

mx∑
j=1

∫
Di×Ωj

F 2dΩdµ. (2.32)

Whenever the quality of the approximation is poor, one can choose to enrich this
first approximation in two ways:

• the approximation is improved by adding new PGD pairs;

• the approximation is improved by adding more reference points. This latter
choice leads to the redefinition of the influence patches and the issue of the
selection of the new points arises.

These procedures for the enrichment of the first approximation are analysed later,
in section 2.3.2.
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(a) F exact. (b) ¯̄F reconstructed by RPM.

Figure 2.8: The exact function F and its approximation ¯̄F by mµ = 10 reference
parameters and mx = 10 reference points.

Cost of the reconstruction By the explicit formulas (2.31), one obtains the
reconstruction of F̄ over the entire parameter-space domain:

¯̄F (µ, x) =

mµ∑
i=1

mx∑
j=1

aij(µ)bij(x). (2.33)

The cost of reconstruction, in terms of FLOPs, is simply in the order of 8(m2
x mt)+

2. This computational cost is moderate thanks to the explicit form (2.31).

On the choice of the function λ By definition of functional (2.12), function λ
controls the influence of the next patches on the considered one. λ is defined as a
discrete function of the space domain:

λ = λ(| xj − x |) (2.34)

In order to illustrate the analysis about λ, let us consider a simple function that
enables one to depict clear images:

F = e−|(x−0.5) (µ−1)| + sin(x µ) (2.35)

In this case function F is a given function and it is not a product of functions. F is
displayed in Fig. 2.9.

The limit case of the independent patches In this case, λ = 1 when k = j
and slopes to 0 otherwise. In such a way the reconstructed patch is not affected
by other patches in the neighbourhood (see Fig. 2.10). Replacing λ in (2.31), it
yields:

aij(µ) =
∆ωjĀij(µ)B̄ij(xj)

∆ωjB̄ij(xj)B̄ij(xj)
and bij(x) = B̄ij(x) (2.36)
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Figure 2.9: F = e−|(x−0.5) (µ−1)| + sin(x µ).

Patches are reconstructed completely independently of the others. ¯̄F is written as
follows:

∀ i, j ∀(µ, x) ∈ Di × Ωj
¯̄F (µ, x) =

mµ∑
i=1

mx∑
j=1

aij(µ)bij(x) =

mµ∑
i=1

mx∑
j=1

∆ωjĀij(µ)B̄ij(x)

∆ωjB̄ij(xj)

(2.37)

Fig. 2.10 presents the reconstruction given by (2.36) considering 3×3 reference
points in the case when patches are reconstructed completely independently to the
others.
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(a) shape of the influence function lambda

for the central patch of the function ¯̄F .

(b) ¯̄F , reconstructed by the (2.36) by using
3× 3 reference points.

Figure 2.10: F and ¯̄F reconstructed by (2.36) when λ = 1 for k = j and 0
otherwise.

The limit case of completely influenced patches In this case, at the opposite
to the previous one, λ = 1, ∀k ∈ mx. It is that, the reconstruction of a patch k
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is influenced by every patch of the entire domain, with the same weight (see Fig.
2.11). Replacing λ in (2.31), it yields:

aij(µ) =

∑mx
k=1 ∆ωkĀik(µ)B̄ik(xk)∑mx
k=1 ∆ωkB̄ik(xk)B̄ik(xk)

and bij(x) = B̄ij(x) (2.38)

Fig. 2.11 depicts the reconstruction given considering 3× 3 reference points in
the case when every patch influences the reconstructed patch with the same weight.
This images illustrates that, in such a way case, the function ¯̄F shows the continuity
over the space coordinate. Indeed, considering (2.31) without the influence function
λ (λ = 1), continuity is ensured over the entire space coordinate, for all Di.
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(a) shape of the influence function lambda

for the central patch of the function ¯̄F .

(b) ¯̄F , reconstructed for the completely
influenced patches by using 3× 3 reference

points.

Figure 2.11: F and ¯̄F reconstructed by (2.38) when λ = 1 for ∀k ∈ mx.

The optimization of the function λ An optimization study has found the
optimal shape for function λ. Several functions have been tested to arrive to the
optimum. It consists in a function that assumes value 1 when k = i and slopes to
0.1 when |k−i| = 1 and 0 otherwise. In practice, only the first neighbouring patches
give a contribution to the reconstruction of the considered patch. For most of the
tested functions, this choice of function λ represents the optimal one. Function F is
presented in Fig. 2.12 with its approximation ¯̄F given by the (2.31) by using 3× 3
reference points in the case when function λ is optimized.

For the reconstructed function ¯̄F , Fig. 2.13 presents the optimal shape for the
influence function λ related to the central patch i = 2, j = 2.

In Tab. 2.2, the different level of approximation, according to the different
choices of λ, are reported. All the reconstruction ¯̄F are given by (2.31) by using
3 × 3 reference points. The error is defined in (2.32). The optimized shape of λ
enables one to give an approximation ¯̄F of F showing the lowest level for error
(2.32). Hence, this shape for λ is considered in the following.
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(a) F = e−|(x−0.5) (µ−1)| + sin(x µ). (b) ¯̄F , reconstructed by using 3× 3
reference points.

Figure 2.12: Initial function and its first approximation when λ is optimized.
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function ¯̄F .
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reconstructed by using 3× 3 reference

points.

Figure 2.13: Optimized shape of the influence function λ for the central patch of

the function ¯̄F .

Table 2.2: error e (see (2.32)) related to the different choices for λ.

influence function λ error e
λ = 1 for k = i; λ = 0.1 for |k − i| = 1; λ = 0 otherwise 1.9%
λ = 1 for k = i; λ = 0 otherwise 2.2%
λ = 1 ∀k ∈ mx 3.2%
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2.3.2 Approximation improvement

To quantify the quality of this first approximation given by generating one pair per
each patch, let consider again the error defined in (2.32):

e =
‖F − ¯̄F‖D×Ω

‖ ¯̄F‖D×Ω

, ‖F‖2
D×Ω =

∫
D×Ω

F 2dΩdµ =

mµ∑
i=1

mx∑
j=1

∫
Di×Ωj

F 2dΩdµ. (2.39)

This evaluation can be computed cheaply exploiting the fact that F is the product
of two functions described in separated representation by PGD. If the PGD modes
of these two functions are assumed to be sorted in descending order according to the
L2 norm of the parameter function, it is sufficient to take into account the first PGD
modes to have a good prediction of the difference (F− ¯̄F ). Generally, for mechanical
problems, mostly of the energetic information of the evolution of a time/parameter-
space system is kept by the first PGD pairs. This is not a general result but an
empiric observation. However, it is not straightforward to a priori know how many
PGD functions are sufficient to get an accurate forecast of the function F .

In the following, three way to enrich the first approximation obtained by the
RPM are analysed:

(a) first procedure consists in enriching the approximation by generating some new
PGD pairs.

(b) Second way consists in enriching the first approximation by the reduced-basis
technique.

(c) The third one resides in adding more reference points.

(a) First approximation enrichment by generation of PGD pairs. Approx-
imation ¯̄F obtained by the RPM can be sufficient for classical mechanical problems.
This approximation can be improved if needed according to three different proce-
dures.

The first procedure consists in enriching the approximation by generating some
new PGD pairs as follows:

1. Firstly, the prediction of F , denoted as F̃ , is constructed. According to the
case, this step is computed in different ways. In the case where F is a known
function given by the product of two functions f and f ′ in separated variables
form (see (2.4)), F̃ is the prediction given by considering only the first PGD
pairs of f and f ′. Let us construct F̃ , a cheap forecast of F , by considering
first 3 PGD pairs of

F̃ = fk=3(µ, x) f ′k′=3(µ, x) =

(
3∑
i=1

λi(µ) Λi(x)

) (
3∑
i=1

θi(µ) Θi(x)

)
.

(2.40)



60 The Reference Points Method

First are the most important modes since they are sorted in descending order
according to the L2 norm of the parameter function. Once obtained F̃ , a
residue of the first approximation can be constructed as follows:

R = F̃ − ¯̄F (2.41)

In the case where F is defined implicitly as solution of a algebraic problem,
F̃ would be the residue between the right-hand side of the equation and the
first approximation given by ¯̄F . For instance, let us consider a fully discretized
linear elliptic problem. It is governed by the discretized equation:

A [F ] = [B] (2.42)

where A is a matrix, [F ] and [B] are vectors of scalar values depending on
two scalar variables, space and parameter. Let us suppose that, once F is ex-
pressed in a separated variables form, an approximation of F is given by RPM
by choosing a number of reference points, by defining, then, its generalized
components by the (2.7) and by reconstructing it by (2.31), obtaining ¯̄F . In
order to enrich this approximation, one can set:

R = [B] − A [ ¯̄F ]. (2.43)

2. This residue, implicitly or explicitly expressed, enables one to generate some
PGD pairs by the Algorithm 2 shown in chapter 1. Note that, in case that the
field R represents an explicitly defined function, Algorithm 2 gives a separated
variables representation of R (as already seen in (1.6)).

Remark 5 In chapter 1, the correlation between system (1.6) and an eigen-
decomposition, such as SVD, is shown. The details of this analogy can be
found in [Ladevèze, 1999, Nouy, 2010]. Hence, whenever the residual field R
represents an explicitly defined function, the enrichment by PGD Algorithm 2
leads to an eigen-decomposition of R.

3. The generated PGD pairs are added to the first approximation ¯̄F enabling one
to have a more accurate representation of F .

Let us consider, firstly, the simple function defined in (2.35). Let us take into
account the separated variables description of this function, assuming that the first
approximation ¯̄F is the one given by the RPM by using 3× 3 reference points. The
prediction of F , denoted as F̃ , is constructed considering the first 3 PGD pairs of
this function, as described in (2.40). From this prediction, a residue R has been
constructed as defined in (2.41).

Fig 2.15 shows how the approximation of the function (2.35) evolves by adding
some PGD pairs as correction to the first RPM approximation. It can be seen that,
for the considered function (2.35), 3 PGD pairs are necessary to enrich the solution
up to a quality corresponding to an error e lower than 0.1%. Let us remark that
these PGD pairs are generated by the residueR = F̃− ¯̄F , where F̃ is the prediction
of F considering only the first 3 PGD pairs.
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(a) F̃ , prediction of F , constructed
considering the first 3 PGD pairs of F .

aij bij

(b) ¯̄F given by considering 3× 3 reference
points.

(c) Residue of the first approximation
with respect to a prediction of F ,

R = F̃ − ¯̄F .

Figure 2.14: First approximation given by RPM ¯̄F and its residue R with respect
to a prediction of the function F .

(b) First approximation enrichment by generation of reduced-basis modes.
The first procedure to enrich the RPM approximation consisting in generating some
new PGD pairs, can be revisited in order to enrich the first approximation by the
reduced-basis technique:

1. This first step remains the same either by generating some PGD pairs or by
generating a reduced-basis approximation. Hence, in this step, the prediction
of F , denoted by F̃ , is constructed in order to obtain R = F̃ − ¯̄F , the residue
of the first approximation given by the RPM.

2. This residue, implicitly or explicitly expressed, is approximated by the reduced-
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(a) error e (see (2.39)) by adding PGD pairs

(b) Surface of function (2.35). (c) first approximation of function (2.35)
obtained by RPM corrected by few PGD

pairs.

Figure 2.15: Evolution of the error e (see (2.39)) by adding PGD pairs to the RPM
approximation of function (2.35). 3 PGD pairs are necessary to attain an error e

lower than 0.1%.
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Figure 2.16: Comparison of the error e (see (2.39)) between the enrichment given
by adding PGD pairs to the RPM approximation of function (2.35) and the enrich-

ment given by using reduced-basis technique.

basis technique following the greedy algorithm:

µ1 = arg sup
µ∈D
‖R‖L2 , (2.44)

µi+1 = arg sup
µ∈D
‖R − Pi R‖L2 , (2.45)

Pi is the orthogonal projection onto

Φi = span {R(x, µ1), ...,R(x, µi)}. (2.46)

3. The generated reduced-basis approximation of R is added to the first approx-
imation ¯̄F enabling one to have a more accurate representation of F (or R in
the implicit case).

For the considered example (2.35), Fig 2.16 depicts the error e, defined in (2.39),
comparing two different enrichments for the first RPM approximation. First one is
given by adding some PGD pairs, obtained constructing the residue R and the
second one is the enrichment obtained by considering the reduced-basis technique
to approximate the residue R. The level of the error is comparable for these two
techniques.

Let us consider, now, a more complex function:

s(x, µ) = (1− x) cos(3πµ(x+ 1)) exp(−(1 + x)µ) (2.47)

where x ∈ Ω = [0, 1] and µ ∈ D = [0, 1] taken from an example in [Chaturentabut
and Sorensen, 2010]. Surface s(x, µ) is shown in Fig. 2.17.
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X 

Figure 2.17: The function s(µ, x).

Let us assume that the first approximation ¯̄F is the one given by the RPM
by using 3 × 3 reference points. Fig 2.18 shows how the approximation of the
function (2.47) evolves by adding some PGD pairs as correction to the first RPM
approximation. It can be seen that, in this case, 4 PGD pairs are necessary to enrich
the solution up to a quality corresponding to an error e ≈ 15%. Moreover, by adding
one more PGD pair, error does not decrease any more. This highlights the lack of
the prediction F̃ . Indeed, by the first 4 PGD pairs the entire information, given by
the residue R = F̃ − ¯̄F , is added to the first approximation ¯̄F .

Fig 2.18 depicts also how the approximation of the function (2.47) evolves by
enriching the RPM approximation by the reduced-basis technique. Enriching the
first approximation by considering the reduced-basis technique with a basis of 5
functions leads to the error given by adding the same number of modes PGD.

(c) First approximation enrichment by the adaptive selection of the ref-
erence points Previous paragraph has shown that it is not always possible to
have a good prediction of the quantity of the necessary PGD pairs to improve the
first approximation given by the RPM. If a few reference points are considered, the
precision of the approximation can be unsuitable. Hence, the third procedure to
enrich first approximation consists in adding more reference points. The enrichment
by adding more reference points is motivated by the following consideration. The
minimization of functional (2.12) represents, patch by patch, a weighted least-square
regression. Considering the approximation generated on a single patch, some con-
vergence properties detailed in [Bissantz et al., 2009, Liu et al., 2010], that can be
summarized under the definition of optimality, can be extended to the RPM. Then,
these properties can be applied to the entire set of patches. The RPM is optimal
in the sense that a given error measure monotonically decreases as the number of
reference points is hierarchically increased. Hence, given a first approximation and
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Figure 2.18: Comparison of the error e (see (2.39)) between the enrichment given
by adding PGD pairs to the RPM approximation of function (2.47) and the enrich-

ment given by using reduced-basis technique.

by adding further reference points among of the already existing patches, the norm
of a chosen error decreases. Let us consider again the function (2.47) and the error
defined by (2.39). Fig 2.19 depicts how the error evolves by adding more reference
points. Investigating the link between functional (2.12) and least-square regression
may help to address this issue. Further studies should be done in this direction in
the future.
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Figure 2.19: The error evolution over the number of reference points, mx and mµ.
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2.4 Conclusions

Managing fields with different representations hinders the potential gain of the PGD
in terms of calculation. Indeed, operations to pass from a full representation to the
separated-variables one are, often, necessary but costly.

In this chapter a new technique, called Reference Points Method (RPM), has
been developed. The RPM enables one to give a first approximation of all fields
in separated-variables format. This approximation can be enriched if necessary by
three procedures. One procedure consists in adding more reference points. In this
case, it was shown that the error monotonically decreases as the number of reference
points - hierarchically introduced - increases. However, definition of patches changes
when reference points are added, which may be cumbersome. Another procedure
does not need to modify the number of reference points nor the definition of patched.
It consists in enriching the first approximation by adding some PGD pairs or by
reduced-basis technique. This solution is very convenient since only few pairs are
necessary to attain a good quality of approximation.

The development of the RPM aims at reducing the complexity related to the
standard algebraic operation (products, additions, integration, ..) for the fields
defined under the separated-variables form. In the separated-variables framework
these operations lead to artificially increase the number of product terms to repre-
sent the resulting quantities. RPM enables one to avoid this increasing number of
product terms by generating a patch-by-patch rank one PGD. In the next chapter
the RPM is introduced in the LaTIn-PGD computational strategy, to solve a pa-
rameter nonlinear-dependent elliptic problem. More precisely, RPM is introduced
at the preliminary step. This latter will be reformulated in the RPM framework,
showing how the number of necessary operations to evaluate the search direction
and assemble the ROM can be drastically reduced.



Chapter 3

A non-incremental nonlinear
solver: the LaTIn-PGD with RPM

approximation

This chapter is dedicated to the LaTIn framework for which RPM has been devel-
oped. In the first part, the LaTIn-PGD method is presented and described for a
parametric elliptic nonlinear problem. In this description the Preliminary step of
the LaTIn-PGD algorithm is detailed. This part of the algorithm is important to
generate only the most relevant PGD modes, enabling one to decrease the CPU
time and memory consuming. However, it represents a big amount of the remaining
CPU time, as it consists in building a new reduced-order model by in integrating
and projecting the updated nonlinear terms onto an evolving reduced basis. As
the nonlinear term and the reduced-order basis change throughout the iterations,
this model cannot be precomputed prior to the algorithm. This issue is one of the
main motivations behind the development of the RPM. Hence, for the considered
nonlinear problem, it is described how the Preliminary step is approximated by the
RPM.

In the second part of the chapter the same problem is solved by another reduced
order model computational strategy: Newton method is combined with reduced
basis approximation. In this approach, the nonlinear terms are interpolating by the
EIM. This part aims at highlighting similarities and differences between the RPM
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and the EIM.

The reference problem considered in this section is a two-dimensional elliptic and
nonlinear parametrized problem. It has been introduced as a benchmark in [Grepl
et al., 2007] for numerical tests with the EIM and then considered again in [Cha-
turentabut and Sorensen, 2010] in the framework of the DEIM. It involves an elliptic
PDE containing a linear term and a nonlinear term depending on two parameters.
This problem can be viewed as a two-dimensional thermal diffusion evolution over
two parameters with a nonlinear source term. The study proposed hereafter could
be easily extended to general parabolic PDEs.

Given a regular domain Ω =]0, 1[2 included in R2 and introducing a parameter
domain D = [0.01, 10]2, let us consider the two-coordinates domain Ω × D. The
Hilbert space of functions, whose squared value is integrable on Ω, is denoted by
L2(Ω). The Sobolev space of functions and first derivatives, whose the square is
integrable on Ω, is defined as follows:

H1(Ω) ≡ {u ∈ L2(Ω) : ∇u ∈ L2(Ω)}.

Let us introduce H1
0 (Ω) designating the subspace of functions vanishing on ∂uΩ:

H1
0 (Ω) ≡ {u ∈ H1(Ω) : u = 0 on ∂uΩ}.

Let us define Problem 10:

Problem 10 (strong form) Find u(x, µ) with x = (x1, x2) ∈ Ω =]0, 1[2 and µ =
(µ1, µ2) ∈ D = [0.01, 10]2, such that:

−∇2u +
µ1

µ2

(eµ2u − 1) = 100 sin(2πx1) sin(2πx2) (3.1)

with homogeneous Dirichlet boundary condition on ∂Ω.

Let us recall U , introduced in chapter 1 extended to Problem 10. For simplicity
U = H1

0 (Ω). Let us remember spaces P = L2(D,R) and V = L2(D,U). Problem 10
can be stated under the weak form:

Problem 11 (weak form) Given µ ∈ D, find u(x, µ) ∈ V such that:

∀v ∈ V , a(u, v) +

∫
Ω

g(u;µ) v dΩ =

∫
Ω

f(x) v dΩ (3.2)
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where:

a(u, v) =

∫
Ω

∇u · ∇v dΩ (3.3)

g(u;µ) =
µ1

µ2

(eµ2u − 1) (3.4)

f(x) = 100 sin(2πx1) sin(2πx2) (3.5)

Here g(u;µ) is a nonaffine nonlinear function of the parameter µ and field variable
u(x, µ). Bilinear term a(u, v) =

∫
Ω
∇u · ∇v dΩ and linear term

∫
Ω
f(x) v dΩ are

V-continuous bounded functionals and they are parameter-independent. It is shown
in [Grepl et al., 2007] that Problem (11) is well-posed and that it admits a unique
solution u ∈ V .

In this chapter, the reference solution is the one obtained with a piecewise-linear
finite element for approximation space Vh ⊂ V . The solution u for two sets of
parameters (µ = (0.01, 0.01) and µ = (10, 10)) is given in Fig.3. In this case, a
mesh with 50× 50 bilinear quadrilateral elements was used (N = 2601). Note that
the parameter µ1 controls the strength of the source term whereas µ2 changes the
strength of the non-linearity.
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Figure 3.1: FE numerical solution of Problem (11) for the extreme values of the
parameter.

3.1 The LaTIn method

For Problem 11, the LaTIn-PGD computational strategy is hereafter used over the
parameter-space domain.

A two-stages iterative scheme is proposed to obtain the solution of Problem 11
by introducing two search directions. The key point is to introduce a new variable,
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Figure 3.2: The LaTIn alternative scheme. The two manifolds are coupled by the
search direction E+ and E−

w ∈ W = { v ∈ H1(Ω) } in order to satisfy the nonlinear local equation w = g(u;µ)
associated with manifold Γ at the local stage. This new variable is, then, coupled
during the global stage with the equilibrium equation, associated with space Ad,
thanks to a search direction. The problem solution is found by solving alterna-
tively the local stage and the global stage. This alternative scheme is represented in
Fig.3.2.

Local stage at iteration n+1 Local stage consists in building solution ŝ(n+1/2) =
(û(n+1/2), ŵ(n+1/2)) in Γ, knowing solution s(n) = (u(n), w(n)) coming from the previ-
ous global stage thanks to search direction E+, verified by ŝ(n+1/2) − s(n):

E+ : (ŵ(n+1/2) − w(n)) + H+(û(n+1/2) − u(n)) = 0, (3.6)

ŵ(n+1/2) = g(û(n+1/2);µ) (3.7)

where H+ is a symmetric definite operator which is a parameter of the method. At
this stage, the problem is nonlinear but local in space variable. A simple choice is to
take a “stiff” ascending search direction (H+ → ∞), which is equivalent to setting
û(n+1/2) = u(n). In this case, solution is found explicitly without resorting to a local
nonlinear solver. Solution ŝ(n+1/2) = (û(n+1/2), ŵ(n+1/2)) is defined by:

∀µ ∈ D, ∀x ∈ Ω,

{
û(n+1/2) = u(n)

ŵ(n+1/2) = g(û(n+1/2);µ) = g(un;µ)
(3.8)

Global stage at iteration n+1 Global stage consists in building solution s(n+1) =
(u(n+1), w(n+1)) in Ad, knowing solution ŝ(n+1/2) = (û(n+1/2), ŵ(n+1/2)) coming from
the previous local stage thanks to search direction E− verified by s(n+1) − ŝ(n+1/2):

E− : (w(n+1) − ŵ(n+1/2))−H−(u(n+1) − û(n+1/2)) = 0 (3.9)



The LaTIn method 71

H− is the descending search direction and a parameter of the method, as the previous
one, H+. In [Ladevèze, 1999], it is shown that a well-suited choice is to use the
tangent operator :

H− =
∂g(u;µ)

∂u

∣∣∣∣
u=û(n+1/2)

. (3.10)

Global stage problem reads as follows:

Problem 12 (global stage) Given ŝ(n+1/2) = (û(n+1/2), ŵ(n+1/2)), find s(n+1) =
(u(n+1), w(n+1)) ∈ V ×W in Ad such that:

∀v ∈ V ,
∫
D
a(u(n+1), v) dµ+

∫
D×Ω

w(n+1) v dΩ dµ =

∫
D×Ω

f(x) v dΩ dµ (3.11)

with: ∀x ∈ Ω, (w(n+1) − ŵ(n+1/2))−H−(u(n+1) − û(n+1/2)) = 0

By introducing search direction (3.9) in (3.11), one obtains:

∀v ∈ V ,
∫
D
a(u(n+1), v) dµ+

∫
D×Ω

H− u(n+1) v dΩ dµ = . . .

. . .

∫
D×Ω

f(x) v dΩ dµ−
∫
D×Ω

(
ŵ(n+1/2) −H−û(n+1/2)

)
v dΩ dµ (3.12)

The only unknown in this latter equation is the unknown u(n+1). This equation
is global over the parameter-space domain but linear. Due to the specific choice
done for search directions E− (see (3.8)) and E+ (see (3.10)) and by introducing the
correction δu(n+1) = u(n+1) − u(n) between two consecutive global stages, it yields:

Problem 13 (global stage) Find u(n+1) = δu(n+1) + u(n) ∈ V and w(n+1) ∈ W
such that:

∀v ∈ V ,
∫
D
a(δu(n+1), v) dµ

∫
D×Ω

g′(u(n);µ) δu(n+1) v dΩ dµ =

∫
D
R(u(n), v;µ) dµ

(3.13)
where

R(u(n), v;µ) = a(u(n), v) −
∫

Ω

f(x) v dΩ +

∫
Ω

g(u(n);µ) v dΩ,

g′(u(n);µ) =
∂g(u;µ)

∂u

∣∣∣∣
u=û(n+1/2)=u(n)

.

The third principle of the LaTIn method is to exploit the framework supplied by
the global stage to introduce a well-suited representation of the unknowns, in order
to reduce the number of operations and the cost related to the memory. Hence, the
solution u(n+1) of the global stage (Problem 13) is sought in Ṽ = P ⊗ U thanks to
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a parameter-space PGD. One introduces the following approximation of order k of
the correction δu(n+1):

δu(n+1)(x, µ) =
k∑
i=1

Φi(x) λi(µ) (3.14)

Each PGD pair (λi,Φi) ∈ P × V is unknown and determined throughout the com-
putation by a greedy algorithm (see algorithm (2) in chapter 1).

3.2 The PGD approximation with Preliminary step

The construction of a new space function Φi is by far the most expensive step of this
process. Thus, at a given iteration n+ 1 of the nonlinear solver, it is advantageous
to first reuse the reduced basis Wk generated up to iteration n by updating the
parameter functions {λi}1≤i≤k [Ladevèze et al., 2010]. One proceeds with the global
stage at the iteration n+ 1 of the nonlinear solver as follows:

1. Preliminary step: reuse of the reduced basis. This step consists in building an
approximation of the solution, denoted s̆(n+1), thanks to the ROB generated
at the previous iteration n of the nonlinear iterative scheme. Here, the only
unknowns are the functions {λi}1≤i≤k depending on the parameters. Given a
ROB of space functions Wk = {Φi}1≤i≤k, one seeks the best linear combination
of this ROB which solves Problem 13.

The Preliminary step problem reads:

1 ≤ j ≤ k,

k∑
i=1

∫
D
λ?i

(
a(Φi,Φj)dµ +

∫
Ω×D

Φi g
′(u(n);µ)Φj

)
λj dΩ dµ = . . .

. . .−
∫
D
λ?i R(u(n),Φj;µ) dµ, (3.15)

where:

R(u(n),Φj;µ) = a(u(n),Φj) dµ−
∫

Ω

f(x) Φj dΩ +

∫
Ω

g(u(n);µ) Φj dΩ (3.16)

By taking into consideration the underlying finite element approximation ([Φi] =∑N
j=1[Φj

i ]ϕj(x)) and ([λi] =
∑p

j=1[λji ]ξj(µ)), this leads to a k × k linear alge-
braic system:∫

D
{[λ?]}k ξk WT

k

[
A + G′(u(n);µ)

]
Wk {[λ]}k ξk dµ = . . .

− . . .
∫
D
{[λ?]}k ξk WT

k [R(u(n);µ)] dµ (3.17)
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A and G′ are N ×N matrices such that:

Aij = a(ϕi, ϕj), (3.18)

G′ij =

∫
Ω

ϕi g
′ (u(n);µ

)
ϕj dΩ, (3.19)

and right-hand side [R(u(n);µ)] is a N -length vector with:

[R]i = −R(u(n), ϕi;µ). (3.20)

The discretized reduced basis is aN×k matrice with Wk = [[Φ]1, [Φ]2, . . . , [Φ]k].
The vector of unknowns {λ}k has a size of k.

This system is solved for each parameter value µ ∈ D. Thus, considering for
the parameter domain a discretisation of p parameter values µ

i
, this leads to

a computational complexity in the order of O(p N k2 + p N k + p k3) as
for model reduction techniques building a ROB during a learning stage (see
section 3.4).

2. Preliminary step performance indicator : The Preliminary step produces a first
approximation of Problem 13 at the iteration n+ 1 by seeking the solution u
in the span of the already existing ROB, generated at the previous iteration
n. An error indicator, based on the error indicator developed for the LaTIn
method in [Ladevèze, 1999], is then computed to quantify the accuracy of this
first prediction. The performance indicator of the preliminary stage compares
the distance between the two spaces Ad and Γ for two consecutive iterations
(see [Heyberger et al., 2011] for more details):

η0 =
e1 − e2

e1

(3.21)

e1 =
‖u(n) − û(n−1/2)‖

1/2 ‖u(n) + û(n−1/2)‖ e2 =
‖ŭ(n+1) − û(n+1/2)‖

1/2 ‖ŭ(n+1) + û(n+1/2)‖ (3.22)

or, due to (3.8):

e1 =
‖u(n) − û(n−1)‖

1/2 ‖u(n) + û(n−1)‖ e2 =
‖ŭ(n+1) − û(n)‖

1/2 ‖ŭ(n+1) + û(n)‖ (3.23)

If its value is higher than a critical threshold, then the global / linear stage at
Iteration n+ 1 is considered to be solved. One can proceed to next iteration.
Otherwise, one proceeds to the generation of a new PGD pair.
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3. Generation of a new PGD pair : The prediction previously computed is con-
sidered to be known and the performance indicator (3.21) is lower than the
given threshold. A new PGD pair is sought to enrich the previous approxima-
tion. It is generated by solving Problem 13 by the Galerkin-PGD procedure,
described in (1.1.4). Let us remember that the new PGD pair is generated
to approximate the correction δu(n+1) = u(n+1) − u(n) of the LaTIn iteration
n+ 1.

The generation of the new PGD pair (λ,Φ) leads to the definition of the
following problems:

Problem 14 (Generation of the spatial function) Knowing λ from (3.25),
find Φ such that:(∫

D
[λ]T ξT

[
A + G′(u(n), µ)

]
ξ [λ]

)
[Φ] dµ =

∫
D
λ [R(u(n);µ)] dµ

(3.24)

Problem 15 (Generation of the parametric function) Knowing Φ from
(3.24), find λ such that:∫
D
ξ? [Φ]T

[
A + G′(u(n), µ)

]
[Φ] ξ [λ] dµ =

∫
D

[Φ]T [R(u(n+1);µ)]dµ. (3.25)

Equation (3.24) is a spatial problem that involves the integration on the
parameter domain in order to set up the operators. It is an application
S : P → U which maps a parametric function λ ∈ L2(D) into a space func-
tion Φ = S(λ) ∈ U . The second equation (3.25) involves space integrals. It
defines an application P : U → P . An algorithm that alternatively and it-
eratively generate parameter function λ and space function Φ is used [Nouy,
2010, Ladevèze, 1999] (see Algorithm 3).

- Initialization λ0(µ). Initializing Φ0 leads to the same result.
for l = 1, ..., lmax do

- knowing λ(l−1)(µ), find Φ(l)(x) solution of Problem 3.24;
- knowing Φ(l)(x), find λ(l)(µ) solution of Problem 3.25;
- normalization of Φ(l)(x).

end

Algorithm 3: Algorithm to generate a new PGD pairs.

Once this new pair of parameter and space functions is calculated, the (k+1)th
space function is orthogonalized and added to the reduced-basis to form Wk+1.
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Convergence test of the nonlinear iterative solver In order to check the
convergence of the iterative scheme, one constructs the error defined in (3.21):

‖u(n+1) − u(n)‖
1
2
‖u(n+1) + u(n)‖ =

‖δu(n+1)‖
1
2
‖u(n+1) + u(n)‖ (3.26)

Under the hypothesis of monotonous operator g(u;µ), the algorithm above converges
toward the reference solution sref (see [Ladevèze, 1999] for proof of the convergence),
moreover the convergence is ensured for any choice of H−. Finally, solution of the
global stage at the iteration n+ 1 of the LaTIn method is obtained by:

- Preliminary step: given a ROB of space functions Wk, updates the time
functions {λ(n+1)

i }1≤i≤k by solving (3.15).
- Check preliminary step performance indicator η0, defined in (3.21).
- if η0 > threshold then

global stage at iteration n+ 1 is considered to be solved.
else

generation of a new PGD pair summarized in Algorithm 3 ;
end
- LaTIn convergence indicator defined in (3.26).

Algorithm 4: global stage at iteration n+ 1.

Remark 6 The search directions are parameters of the method. In [Ladevèze,
1999], it is shown that they do not affect the solution but only the convergence rate.
Fig. 3.3 depicts the convergence curves for solution of Problem 10. First curve is
the convergence toward the solution using as search direction operator the tangent
operator:

H− =
∂g(u;µ)

∂u

∣∣∣∣
u=û(n+1/2)

. (3.27)

The second curve is the convergence toward the solution using as search direction
operator a constant operator. This is the tangent operator computed at first iteration
of the LaTIn method:

H− = H−0 =
∂g(u;µ)

∂u

∣∣∣∣
u=u(0)

(3.28)

In this case, the algorithm bears some similarities to a quasi-Newton scheme. These
two different choices lead to the same solution. however, choice (3.27) drastically
improves the convergence rate.

Remark 7 The new PGD pairs are generated by the correction of the solution at
the iteration n+1, δu(n+1) = u(n+1)−u(n). It means that the correction δu converges
to zero as the number of PGD pairs increases. The above conclusion motivates the
definition of the threshold defined in (3.21). This threshold checks the necessity of a
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Figure 3.3: Comparison between the choice of the tangent operator and a constant
operator.

new PGD pair by evaluating the quantity ‖δu(n+1)‖ = ‖u(n+1)−u(n)‖, where u(n+1) is
the solution of the Preliminary step. It implies that the most important PGD pairs
are generated at the first iterations.

Remark 8 Fig.3.4 shows the comparison between the convergences of the LaTIn-
PGD method with the Preliminary step and the classic LaTIn-PGD without the
Preliminary step. This latter consists in generating a new PGD pair for each new
LaTIn iteration. The Preliminary step enables a reduction of the number of gener-
ated PGD pairs. Indeed, in order to reach an error (3.26) of 10−4, the order of the
ROB by using the LaTIn-PGD with Preliminary step, is two times lower than the
ROB related to the classic LaTIn-PGD. Hence, this corresponds to a gain in terms
of CPU time.

3.3 Preliminary step approximated by Reference

Points Method

In order to describe this procedure, let us consider equation (3.15). Let us denote
as:

αij =

∫
Ω×D

Φi(x) g′
(
u(n);µ

)
Φj(x) dΩ dµ. (3.29)

The term g′
(
u(n);µ

)
is denoted as G(x, µ) to alleviate the notations. It yields:

αij =

∫
Ω×D

Φi(x) G(x, µ) Φj(x) dΩ dµ. (3.30)
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Let us define α considering the contributions of the k modes composing the reduced-
order basis Wk = {Φ1,Φ2, . . . ,Φk}. Considering the classic discretizations, already
seen before for the underlying finite element approximation ([Φi(x)] =

∑N
j=1[Φj

i ]ϕj(x)),
α is defined as follows:

α =

∫
D

WT
kG(x, µ)Wk dµ. (3.31)

and the residue: ∫
D

WT
k [R(ũ(n);µ)] dµ (3.32)

where G is a N×N matrix such that Gij =
∫

Ω
ϕi G(x, µ) ϕj dΩ. Residue [R(ũ(n);µ)]

is a N -length vector with [R]i = −R(u(n), ϕi;µ).
The Preliminary step, detailed in the previous section, involves, at each itera-

tion of the LaTIn-PGD method, the construction of a new reduced-order model in
order to seek the best linear combination of the already existing ROB which solves
Problem 13. For nonlinear problems, the construction of a reduced-order model is
performed after the evaluation of the new search direction operator (3.10), when-
ever it is necessary. Hence, this latter has to be integrated over the whole domain of
the definition of the problem. In order to quantify the CPU cost of this operation,
computational complexity is evaluated in terms of FLOPS, following [Chaturentabut
and Sorensen, 2010]. One denotes by β the number of FLOPS to evaluate the search
direction operator at a single integration point. Let us remember that p is the num-
ber of parameter values in the discretized parameter domain and N the number of
degrees of freedom of the underlying space discretization. If the number of integra-
tion points of our model is assumed to be equal to N for the sake of simplicity, the
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number of FLOPS involved to integrate the search direction operator is of the order
of O(p N β).

For each new parameter value, one has (i) to evaluate Jacobian and residue, (ii)
to project onto the discretized ROB Wk. Projection of Jacobian (resp. residue) onto
ROB has a computational complexity that depends on O(N k2) since G is sparse
(resp. O(N k)) [Grepl et al., 2007, Chaturentabut and Sorensen, 2010]. The total
computational complexity is consequently in the order of O(N k2 + N k) and is
N -dependent (see Tab.3.1).

Table 3.1: Computational complexity of Jacobian and residue projections onto
ROB

Operation type Complexity

Integration point evaluation O(pN β)
Projection of Jacobian onto ROB O(pN k2)
Projection of residue onto ROB O(pN k)

Both the integration and the Galerkin projection of the operators involve a num-
ber of operations that scales with the dimension N of the underlying finite element
approximation space and the dimension p of the underlying discretisation of the
parameter domain.

At the preliminary step of LaTIn-PGD computational strategy, operations re-
lated to the construction of the reduced-order basis (3.31) and residue (3.32) are
the same than for the (1.71) related to the reduced-basis technique. The difference
concerns the choice of the ROB. For the reduced-basis technique, the ROB results
from a learning stage and during the resolution of the problem (the online stage)
does not evolve. The EIM technique makes use of this feature by pre-computing a
basis for the nonlinear term and enabling one, during the online stage, to compute
the nonlinear term at some particular space points (Magic Points) and reduce the
projection of this term to these particular points. This procedure is detailed in the
next section 3.4. On the other hand, EIM is not appropriate for the LaTIn-PGD
technique because the construction of the ROB is operated during the resolution of
the problem and the basis evolves throughout the iterations. A possible use of the
EIM in the LaTIn-PGD would lead, for each new generated PGD pair, to compute
a number of operations related to the research of the new Magic Point and the as-
sociated basis scaling with the size p and N of the underlying discretizations. This
would hint all the potential of the EIM technique.

In this section, the Preliminary step is approximated by the RPM. This enables
one to reduce the number of elementary operations to construct the reduced order
model.

Construction of the reduced-order model by the Reference Points Method
All the operations of projection and integration, denoted as αij in (3.30), are

approximated by the RPM. Let us split the parameter domain in mµ sub-intervals
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Da. The center µ
a

of the sub-interval Da is the reference parameter point. For the
space domain mx points xb are introduced and the domain Ω is divided into mx

sub-domains Ωb. The xb are the reference spatial points. Denote by ω the integrand
of αij:

ω = Φi(x) G(x, µ) Φj(x). (3.33)

let us define ω̄ = (ω̄µ, ω̄x), the generalized components of ω: ω̄µ is associated to the
reference parameter points and ω̄x to the reference space points:

ω̄x :=

{
ω̄xab(x) = Φi(x) G(x, µ

a
) Φj(x) if x ∈ Ωb

ω̄xab(x) = 0 otherwise

}
a=1,..,mµ; b=1,..,mx

(3.34)

ω̄µ :=

{
ω̄µab(µ) = Φi(xb) G(xb, µ) Φj(xb) ifµ ∈ Da
ω̄µab(µ) = 0 otherwise

}
a=1,..,mµ; b=1,..,mx

(3.35)

The approximation of ω given by RPM, noted ¯̄ω =
∑mµ

a=1

∑mx
b=1 ψab(µ) χab(x)

is obtained by the explicit formulas (2.31). Following formulas (2.31), χab(x) and
ψab(µ) are obtained from (3.34) and (3.35) as follows:

ψab(µ) =

∑mx
c=1 ∆Ωc ω̄

µ
ac(µ)ω̄xac(xc)λ

2
ac∑mx

c=1 ∆Ωc ω̄xac(xc)ω̄
x
ac(xc)λ

2
ac

and χab(x) = ω̄xab(x) (3.36)

Analysis of computational complexity Replacing ω in (3.30) one obtains:

αij =

∫
Ω×D

ω(x, µ) dΩ dµ ≈
∫

Ω×D
¯̄ω(x, µ) dΩ dµ (3.37)

Replacing ¯̄ω in (3.37) one can separate the integrals:

αij ≈
∫

Ω×D
¯̄ω(x, µ) dΩ dµ =

mµ∑
a=1

mx∑
b=1

∫
Ωb

χab(x) dΩb

∫
Da
ψab(µ) dµa (3.38)

Replacing (3.36) in (3.38) one obtains:

αij ≈
mµ∑
a=1

mx∑
b=1

∫
Ωb

ω̄xab(x) dΩb

∫
Da

∑mx
c=1 ∆Ωc ω̄

µ
ac(µ) ω̄xac(xc) λ

2
ac∑mx

c=1 ∆Ωc ω̄xac(xc) ω̄
x
ac(xc) λ

2
ac

dµa (3.39)

For the integral over Da the only term depending on µ is ω̄µac(µ). Equation (3.39)
is equivalent to:

αij ≈
mµ∑
a=1

mx∑
b=1

∫
Ωb

ω̄xab(x) dΩb

∑mx
c=1 ∆Ωc

(∫
Da ω̄

µ
ac(µ) dµa

)
ω̄xac(xc)λ

2
ac∑mx

c=1 ∆Ωc ω̄xac(xc) ω̄
x
ac(xc)λ

2
ac

(3.40)
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Considering the classic discretizations, already seen before for the underlying
finite element approximation ([Φi] =

∑N
j=1[Φj

i ]ϕj(x)), the two integrals become as
follows:

∫
Ωb

ω̄xab(x) dΩb = [Φi]
T
b Gab [Φj]b (3.41)∫

Da
ω̄µac(µ) dµa = [Φi]

T
xb

∫
Da
G(xb, µ) dµ [Φj]xb (3.42)

where

Gab =

( ∑
el. in Ωb

∫
elem.

ϕi(x) G(x, µ
a
) ϕj(x) dΩ

)
(3.43)

[Φi]b = [Φi] ∀ x ∈ Ωb (3.44)

[Φi]xb = [Φi] for x = xb. (3.45)

Let us consider, now, the contribution of every PGD space mode of the reduced-
order basis, Wk = ([Φ1], [Φ2], . . . , [Φk]). It yields:

Wb = Wk ∀ x ∈ Ωb (3.46)

Wxb = Wk for x = xb (3.47)

Wk b represents the restriction of the PGD reduced-order basis of order k to the
patch b. Let us suppose that the reduced-order basis is composed by three PGD
modes W3 = ([Φ1], [Φ2], [Φ3]) and the reference points are a grid of 3 × 3 points.
Fig. 3.5 depicts PGD space modes composing W3 and their restriction to a generic
patch b.

Hence, considering the contribution of the entire reduced-order basis Wk (de-
noted W in the following to alleviate the notations), (3.41) and (3.42) are written
as follows: ∫

Ωb

ω̄xab(x) dΩb = WT
b Gab(x, µa) Wb (3.48)∫

Da
ω̄µac(µ) dµa = WT

xb

∫
Da
G(xb, µ) dµWxb (3.49)

The Galerkin projection onto the reduced-order basis (3.48) and (3.49) is com-
puted patch by patch. For the patch (a, b), terms in (3.48) and (3.49) have the
following size:

ω̄xab = WT
b︸︷︷︸

k× N
mx

Gab︸︷︷︸
N
mx
× N

mx

Wb︸︷︷︸
N
mx
× k

ω̄µab =

WT
xb︸︷︷︸

k×1

∫
Da
G(xb, µ)︸ ︷︷ ︸
p × 1

dµ Wxb︸︷︷︸
1×k

 (3.50)
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Figure 3.5: Reduced-order basis composed by three PGD modes W3 and its re-
striction to Ωb.

Consequently, for a single patch the number of operations is in the order of:

N

mx

β +
N

mµ

k2 +
p

mµ

β + k2. (3.51)

N
mx

β represents the number of operations to compute the integral Gab (3.43).
N
mµ

k2 represents the number of operations to perform the Galerkin projection

WT
b Gab(x, µa) Wb (see (3.50)). p

mµ
β represents the number of operations to com-

pute the integral
∫
Da G(xb, µ) dµ and k2 the Galerkin projection in (3.50).

Computing the sum over the mµmx patches, it yields: N

mx

β +
N

mx

k2︸ ︷︷ ︸
ω̄xab

+
p

mµ

β + k2︸ ︷︷ ︸
ω̄µab

 mµ mx. (3.52)

The same procedure for the residue in (3.32) leads to:(
N

mx

k + k2

)
mµ mx. (3.53)

The results of this analysis are summarized in Tab.3.2. Order of complexity for
numerical simulation of Problem 10 is also given as an example. In this case, one
has N = 2500; p = 225; kmax = 20; mx = mµ ≈ 10; β ≈ 1.
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Table 3.2: Computational complexity of integration and projection onto ROB for
Jacobian and residue, in the RPM format

Operation type Complexity Problem 10

ω̄µ

Integration point evaluation O(mµ N β) ≈ 105

Projection of Jacobian onto ROB O(mµ N k2) ≈ 107

Projection of residue onto ROB O(mµ N k) ≈ 106

ω̄x

Integration point evaluation O(mx p β) ≈ 103

Projection of Jacobian onto ROB O(mµ mx k
2) ≈ 104

Projection of residue onto ROB O(mµ mx k) ≈ 103

The number of operations corresponding to ω̄µ is almost three orders of magni-
tude bigger than the number of operations related to ω̄x. Hence, this latter can be
neglected. Finally, whenever the ratio N

mx
is higher than three order of magnitude,

the ideal gain is in the order of the ratio:

p N (β + k2)

mµ N (β + k2)
=

p

mµ

. (3.54)

This gain, for typical mechanical problems, can be around one order of magnitude.

Cost of the reconstruction As introduced in chapter 2.3 the generation of a first
approximation of the quantity α in a separated-variables format is obtained from the
compressed format ω̄ by generating one product of functions per parameter-space
patch Da × Ωb. This leads to explicit formulas (3.36):

ψab(µ) =

∑mx
c=1 ∆Ωcω̄

µ
ac(µ)ω̄xac(xc)λ

2
ac∑mx

c=1 ∆Ωcω̄xac(xc)ω̄
x
ac(xc)λ

2
ac

and χab(x) = ω̄xab(x) (3.55)

The cost of reconstruction given by the (3.55) is simply in the order of 8(m2
x mµ)+

2. This computational cost has to be added to the computational complexity of the
operation, analysed in Tab. 3.2.

Numerical results Problem 11 is solved by the LaTIn-PGD computational strat-
egy with the preliminary step approximated by the RPM (see previous section).
Different combinations of reference points are investigated. Space and parameter
domains have two components, x = (x1, x2) and µ = (µ1, µ2). Hence, selection of
reference points leads to the definition of two grids, one over the space and one over
the parameter domain. For instance, in Fig. 3.6 are shown the two grids when
1× 1 points over the space and 2× 2 over the parameter domain are chosen.

Fig. 3.7 shows the relative error ε with respect to the reference solution, when
the Preliminary step is approximated by the RPM. The relative error ε is defined
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Figure 3.6: Example of selection for 1× 1 reference point over the space and 2× 2
reference points over the parameter domain.

by:

ε = 1/p

p∑
j=1

‖ uref (x, µ
j
)− uRPM (x, µ

j
)‖L2

‖ uref (x, µ
j
)‖L2

(3.56)

where uref (x, µ
j
) is the solution for the parameter value µ

j
obtained by solving

Problem 11 with a direct incremental method (i.e. a classic finite element analysis
for the same number N of d.o.f. with Newton solution method). Error between
the classic PGD technique and the reference solution is also presented. Fig. 3.7
also depicts, the wall-clock time for the RPM approximation compared to the direct
incremental method, the POD and the standard PGD techniques.

One can see that by increasing the number of reference points, the error curve
tends to the one obtained with the classic PGD technique (i.e. without RPM ap-
proximation of the Preliminary step).

Let us consider a single curve, for instance the blue one in Fig. 3.7 (c). The
error ε of the RPM approximation decreases by adding new PGD pairs along the
LaTIn iterations. At each LaTIn iteration, the first approximation obtained by
approximating the preliminary step by the RPM can be enriched by generating a
new PGD pair (see Algorithm 4). The blue line corresponds to the case where only
one reference point is used for both space and parameter domains. This curve shows
that even by using only one reference point an error ε of 10−3 can be reached.

Fig. 3.7 (c) shows, globally, an error higher than Fig. 3.7 (a). This is be-
cause in Fig. 3.7 (a) more parameter reference points are used. For each reference
parameter point a complete integration of the operators over the space domain is
computed. The dependence to the space variable plays a more important role than
the dependence to the parameter variable. In fact, generally, for parametrized ellip-
tical problems (as it is for many mechanical problems), gradients in space variable
are stronger than gradients in time/parameter variable. Finally, the error ε decreases
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Figure 3.7: The error ε, defined in (3.56) and the wall clock curves of the RPM
approximation for the Preliminary step (Problem 10) compared to the error ε of the

standard LaTIn-PGD without approximation of the Preliminary step.

either by adding more RPM point or by adding more PGD pairs. The choice between
these two options can be adapted to the considered problem.

Remark 9 Fig. 3.7 shows that increasing the number of reference points, the error
curve tends to the one obtained with the classic PGD technique (i.e. without RPM
approximation of the Preliminary step). Let us remark that the error obtained with
the classic PGD technique represents the limit for the approximation given by the
RPM. Indeed, at the LaTIn iteration n+1, the level of accuracy of the approximation
is defined by the order of the reduced-order basis. Hence, the first approximation of
the Preliminary step given by the RPM can be enriched either by adding more RPM
point (up to reach the same approximation given by the classic PGD technique) or
by adding more PGD pairs.
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Tab. 3.3 presents the comparison between the standard LaTIn-PGD and the
LaTIn-PGD using the RPM framework to perform the Preliminary step, in terms
of speed up of CPU time. For a given level of error ε = 10−2 the gain with respect
to the direct incremental method is in the order of 15 and it is three times bigger
than the gain of the classic LaTIn-PGD.

Table 3.3: Complete simulation: CPU time gain with respect to the classic finite
element simulation for a given level of error (ε = 10−2)

PGD PGD-RPM PGD-RPM PGD-RPM
1 Parameter point 4 Parameter point 9 Parameter point

1 Space points 1 Space points 1 Space points
num. of PGD pairs 7 9 7 7
Total gain 6 18 14.2 11.5

Let us analyse the preliminary step, where the RPM approximation takes place.
Tab. 3.4 analyses the computational cost of the preliminary step. It shows the
ideal and the real gain reachable by applying the RPM to approximate the Prelimi-
nary step. The ideal gain is in the order of p/mµ (see the analysis of computational
complexity in section 4.4), where p is the number of values in the parameter dis-
cretization and mµ is the number of reference points along the parameter coordinate.
The ideal gain and the real gain are equals when 9 parameter points are used. This
gain is in the order of 25. Using less reference points the real gain is higher than
25, but the ideal gain is not reached. For Problem 10 the preliminary step of the
classic LaTIn-PGD is computed in 166 seconds. Using the RPM method it can be
computed in 1.84 seconds.

Table 3.4: Preliminary step: CPU time gain with respect to the classic LaTIn-PGD
for a given level of error (ε = 10−2)

PGD-RPM PGD-RPM PGD-RPM
1 Parameter point 4 Parameter point 9 Parameter point

1 Space points 1 Space points 1 Space points
Ideal gain p/mµ 225 56 25

Real gain 90 39 25
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3.4 Comparison with respect to the Empirical In-

terpolation Method

The aim of this section is to compare the quality and the efficicency of the ap-
proximation given by the RPM-PGD approach, previously presented, with the one
achieved by the popular EIM-Reduced Basis approach. This technique belongs to
the family of reduced-order modelling that constructs the ROB during a learning
stage. The full order model is first solved for some “appropriate” parameter values
Sn = {µ

i
∈ D}1≤i≤n with n� N . From these snapshots a ROB of dimension k ≤ n

is obtained either by a POD, selecting the first k orthogonal modes Vk = {Φi}1≤i≤k
(POD-Galerkin strategy) or simply by collecting the k “relevant” snapshot solutions
Vk = {Φi = u(x, µ

i
)}1≤i≤k (reduced-basis approach). In the latter case, the Φi are

also orthonormalized in practice. Galerkin projection is typically used to construct
a ROM thanks to the obtained ROB of dimension k � N .

Following the classic reduced-basis approximation, the solution is sought in Φk,
the linear span of the orthogonal ROB, Vk, by Galerkin projection. Problem 11
reads:

Problem 16 (reduced basis problem) Given µ ∈ D, find u(x, µ) ∈ Φk such
that:

∀v ∈ Φk, a(u, v) +

∫
Ω

g(u;µ) v dΩ =

∫
Ω

f(x) v dΩ (3.57)

Thus, by denoting the approximation of the solution ũ(x, µ) =
∑k

i=1 λi(µ) Φi(x),
and by choosing Φi as a test function for v in Problem 16, the approximation ũ is
obtained by the k × k nonlinear algebraic system:

∀ 1 ≤ j ≤ k,
k∑
i=1

a(Φi,Φj) λi(µ) +

∫
Ω

g

(
k∑
i=1

λi(µ)Φi;µ

)
Φj dΩ =

∫
Ω

f(x) Φj dΩ

(3.58)
Let us note that first term in left-hand side member, a(Φi,Φj), is parameter-
independent and can be precomputed just once. However, the second term depends
on g(u;µ) and, consequently, is parameter-dependent and must be evaluated online
for each new parameter value µ. One can show that the complexity of the online
stage scales with O(Nk2) with N the dimension of the underlying finite element
approximation space. Empirical interpolation method [Grepl et al., 2007] replaces
g(.;µ) in (3.58) by an affine approximation g(.;µ) ≈ ∑M

i=1 Ψi(µ)qi(x), in order to
recover N -independence. Contrary to the RPM, the EIM is not an approximation
method but rather an interpolation method in a sense that it aims at interpolating
the nonlinear term from values at M ”Magic Points” points.



Comparison with respect to the Empirical Interpolation Method 87

3.4.1 Computational complexity analysis of reduced-basis
method

Nonlinear algebraic system (3.58) is classically solved by iterative methods such as
the Newton-Raphson method for each value of parameter µ. Each tangent problem
of the iterative scheme is, then, projected on the precomputed ROB, Vk. This
section aims at detailing the N -dependence computational complexity of classic
model reduction techniques for nonlinear problems.

Newton method consists in solving a linearized formulation of Problem (16).
Knowing iterate ũ(n), one looks for ũ(n+1) = ũ(n) + δũ(n) by solving:

Problem 17 (tangent problem) Given µ ∈ D, find δũ(n) ∈ Φk such that:

∀v ∈ Φk, R(ũ(n), v;µ) +
〈
R′(ũ(n), v;µ), δũ(n))

〉
= 0 (3.59)

with R(w, v;µ) = a(w, v) +
∫

Ω
g(w;µ) v dΩ−

∫
Ω
f(x) v dΩ.

Linear tangent application R′ is defined by:

R(w + z, v;µ)−R(w, v;µ) =
〈
R′(w, v;µ), z

〉
+ o(z)

that is to say: 〈
R′(w, v;µ), z

〉
= a(z, v) +

∫
Ω

g′(w;µ) z v dΩ

with g′ the derivative according to the first argument. By denoting the reduced-
basis approximation of the solution δũ

(n)
i =

∑k
i=1 λi Φi, and by choosing Φi as a test

function for v, it leads to the following k × k linear algebraic system:

∀ 1 ≤ j ≤ k,
k∑
i=1

[
a(Φi,Φj) +

∫
Ω

Φi g
′ (ũ(n);µ

)
Φj dΩ

]
λi = −R(ũ(n),Φj;µ)

(3.60)
By taking into consideration the underlying finite element approximation ([Φi] =∑N

j=1[Φ]jiϕj(x)), this reads:

VT
k

[
A + G(ũ(n);µ)

]
Vk {λ}k = −VT

k [R(ũ(n);µ)] (3.61)

A and G are N×N matrices such that Aij = a(ϕi, ϕj), Gij =
∫

Ω
ϕi g

′ (ũ(n);µ
)
ϕj dΩ.

Residue [R(ũ(n);µ)] is a N-length vector with [R]i = −R(ũ(n), ϕi;µ). The discretized
reduced basis is a N × k matrix with Vk = {[Φ1], [Φ2], . . . , [Φk]}. The vector of
unknowns {[λ]}k has a size of k.

Note that (3.61) is the same as (3.17) where the ROB is not given by Wk =
{Φi}1≤i≤k but by Vk = {Φi}1≤i≤k. These two ROBs are not the same since PGD
generates modes throughout the process and Wk = {Φi}1≤i≤k may change at each
iteration.
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Both Jacobian matrices G(ũ(n);µ) and residue [R(ũ(n);µ)] depends on parameter
µ. For each new parameter value, one has (i) to evaluate Jacobian and residue, (ii)
to project onto the discretized ROB Vk, and, finally, (iii) to solve system (3.61) to
obtain {λ}. Projection of Jacobian (resp. residue) onto ROB has a computational
complexity that depends on O(N k2) since G is sparse (resp. O(N k)) [Grepl et al.,
2007, Chaturentabut and Sorensen, 2010]. Solving system (3.60) has a complexity
in the order of O(k3) (for a Cholesky factorization of a full matrice). The total
computational complexity of a Newton iteration is consequently in the order of
O(N k2 +N k+k3) and is N -dependent. This complexity number can even overpass
the number of elementary operations to solve the original full order Problem 11, that
is in the order of O(N3). It is shown in [Chaturentabut and Sorensen, 2010] that,
for Problem 10, the CPU time for solving the POD reduced model (POD-Galerkin
strategy) for each parameter value exceeds the CPU time for solving the original
full order problem as soon as the dimension of the finite element discretisation space
reaches around N = 80.

Learning stage of reduced-basis method The procedure explained in this
section exploits a reduced-basis constructed during a learning stage. The process to
collect the k relevant snapshot solutions Vk = {Φi = u(x;µ

i
)}1≤i≤k is based on the

following greedy algorithm:

1. First snapshot is computed for first parameter. It can be chosen randomly in
the discretized parameter domain Dp ⊂ D:

µ
1
∈ Dp (3.62)

2. Given i− 1 samples in the parameter set, µ
1
, . . . , µ

i
, one constructs the space

Φi = span {u(x, µ
1
), ..., u(x, µ

i
)}.

In actual practice u(x, µ) is approximated by the underlying finite element
approximation. One denotes by Pi the Galerkin projection onto the space Φi:

a(Piu(x, µ), v) +

∫
Ω

g(Piu(x, µ);µ) = a(w, µ, v) +

∫
Ω

g(w;µ), ∀v ∈ Φi.

(3.63)

3. The next snapshots are related to the parameters chosen as follows

µ
i+1

= arg sup
µ∈D
‖u(x, µ) − Piu(x, µ)‖L2 (3.64)

4. Iterate until ‖u(x, µ) − Piu(x, µ)‖L2 < tol.

Then, Φi is orthogonalize with respect to the scalar product related to the L2 norm.
One denotes by Vk the obtained basis.
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3.4.2 Empirical Interpolation method

The EIM is briefly developed in this section. See the article [Grepl et al., 2007]
for more details. Under the hypothesis of sufficient regularity (C0(Ω) is suffi-
cient) of g(u;µ) = g(u;x, µ) in this approach, a secondary reduced-basis expansion
gM(u;x, µ) for the nonlinear term g(u;x, µ) is developed and replaced in (3.58) with

some necessarily affine approximation, defined as: gM(u;x, µ) =
∑M

m=1 φ
M
m (µ) qm(x).

Hence, function g(u;x, µ) is approximated in a separated variables form and a ROB
for this term has to be generated. Note that, since there is already a basis for the
field u(x, µ), the term ”secondary” is used to distinguish the two reduced-basis ex-
pansions. To this end, let introduce the nested sample sets SgM = {µg

1
, .., µg

M
∈ D}

and the associated nested reduced-basis

Wg
M = span {ξm(x) ≡ g(u;x, µg

m
), 1 6 m 6M}

in which gM shall reside. In order to construct this sets let introduce the best
approximation

g?(u;x, µ) ≡ arg min
z∈Wg

M

‖g(u;x, µ)− z‖L2(Ω) (3.65)

and the associated error

ε?(µ) = ‖g(u;x, µ)− g?(u;x, µ)‖L2(Ω). (3.66)

The construction of SgM and Wg
M is based on a greedy selection process (as al-

ready seen before this is a feature of the RB). The first sample point can be chosen
randomly in the parameter domain µg1 ∈ Dp, and define:

Sg1 = µg
1
, ξ1 = g(u;x, µg

1
), Wg

1 = span{ξ1} (3.67)

For M ≥ 2:

µg
M

= arg max
µ∈Dp

ε?M−1(µ), SgM = SgM−1 ∪ µgM , ξM = g(u;x, µg
M

). (3.68)

and
Wg

M = span{ξm, 1 6 m 6M}. (3.69)

Then Wg
M consists of a basis of functions from the parametrically induced man-

ifold Mg ≡ g(u;x, µ)|µ ∈ Dp. The computational cost to evaluate the new µgM
is O(M N) + O(M3), where N is the dimension of the underlying finite element
space. At this stage, the ”secondary” ROB related to the nonlinear term g(u;x, µ)
is obtained.

Let us construct, now, the nested sets of interpolation points (the ”Magic Points”)
TM = {x1, .., xM}16M6Mmax . Set firstly:

x1 = arg sup
x∈Ω
|ξ1(x)|, q1 = ξ1(x)/ξ1(x1), B1

11 = q1(x1) = 1, (3.70)
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where ξi(x) ≡ g(u;x, µg
i
).

The first interpolation point x1 is the point where the maximum of the absolute
value of g(x, ug1) is reached. Then for M = 2, ...,Mmax, one solves the following
linear system for the coefficients σ:

M−1∑
j=1

σj Bij = ξM(xi) = 1, 1 6 i 6M − 1; (3.71)

then, the residue is calculated by:

rM(x) = ξM(x) −
M−1∑
j=1

σj qj(xi), (3.72)

Thus, one can set:

xM = arg sup
x∈Ω
|rM(x)|, qM(x) = rM(x)/rM(xM), Bij = qj(xi), 1 6 i, j 6M.

(3.73)

Remark 10 At this stage, it is not straightforward to understand the meaning of
matrix B. Looking at (3.74) and (3.75), this is the matrix that enables one to ob-
tain the coefficients interpolating the secondary reduced-order basis Wg

M = {ξm, 1 6
m 6 M} evaluating the nonlinear function g(u;x, µ) only at the Magic Points:
g(u;xi, µ), 1 6 i 6 M . Hence, the linear system (3.71), relying on the solutions of
the nonlinear function g(u;x, µ) for the nested sample sets SgM , enables one to locate
the space points ( Magic Points) where to evaluate the nonlinear function g(u;x, µ)
in order to obtain the right interpolating coefficients associated to the secondary
reduced-order basis Wg

M (see (3.75)).

Now, whether Bij is invertible the construction of the interpolation points is
well-defined and the functions { q1, ..., qM } form a basis for Wg. To prove that it is
sufficient to observe that from the construction procedure |Bij| = |rj(xi)/rj(xj)| = 0
for 1 < j; that |Bij| = |rj(xi)/rj(xj)| = 1 for i = j and that |Bij| = |rj(xi)/rj(xj)| 6
1 for i > j. Consequently, B is lower triangular with unity diagonal, and thus
invertible.

At this stage ”secondary” ROB for gM(u;x, µ) is built and also the way to
approximate gM(u;x, µ) in the linear span of this ROB is found. Hence, let us
express the reduced-basis expansion for gM(u;x, µ). Based on the approximation
space Wg

M and set of the interpolation points TM , the approximation of g(u;x, µ)
can be written as

gM(u;x, µ) =
M∑
m=1

φMm (µ) qm(x), (3.74)
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where the interpolating functions φM(µ), defined in L(D) with values in RM , are
given by:

M∑
j=1

Bij φj(µ) = g(u;xi, µ), 1 6 i 6M ; (3.75)

Note that gM(u;xi, µ) = g(u;xi, µ), 1 6 i 6M . Finally the nonlinear function
is evaluated just on the M points defined in TM . These values, thanks to the matrix
B allow one to generate gM(u;x, µ), a reduced-basis expansion for g(u;x;µ).

Numerical results Problem 11 is solved, here, by the Reduced Basis technique
coupled with the Empirical Interpolation Method following [Grepl et al., 2007]. Let
us consider the discretized parameter domain Dp ⊂ D. Dp is denoted by Dc to define
a regular parameter coarse grid Dc = {µ

i
}i=1..nc with nc = 12 over D is considered.

During an off-line stage the solution is calculated by an incremental direct method
for every parameter set µ ∈ Dc. For nonlinear problems the solution of the PDE is
necessary in order to construct the secondary basis Wg

M for the nonlinear function.
Then, the reduced basis is constructed by an adaptive sampling construction (see
the previous section). At this point the nested sets of 1 ≤M ≤Mmax interpolation
points are constructed using a greedy algorithm based on a L2 norm. Once the
learning stage is accomplished, the discretized parameter domain Dp is denoted by
Df to define a finer set of parameters Df = {µ

i
}i=1..nf with nf = 15. This leads to

p = 225 values for parameter µ.
Let us consider the error ε in (3.56). In Fig. 3.8 (b) the error obtained by

applying the EIM to the Problem 10 is presented. It is compared with the error
found with the RPM, already seen in 3.7 and reported in Fig. 3.8 (a). The RPM
solutions obtained with only one space reference point and a various number of
parameter points have been considered for this comparison. Indeed, as previsously
seen for this example, adding more parameter points is better than adding more
reference spatial points in order to get a solution with a good level of accuracy.

The quality of the approximation is comparable between the two techniques.
However, some differences must be pointed out. In fact, the approximation given
by the EIM shows the plateau in the curves when M is higher than the reduced
basis dimension approximately. It reflects the trade-off between the reduced basis
approximation and the EIM approximation contribution to the error: for fixed M
the error in the nonlinear function approximation g(u;µ) will ultimately dominate
for large N . Increasing M renders the EIM approximation of the nonlinear term
more accurate. To sum up, the error can only be reduced by increasing both N and
M .

On the other hand, the approximation given by the RPM shows the monotonic
reduction in the error by adding more PGD pairs. Equivalently, the approximation
can be enriched by using more reference points avoiding the generation of new PGD
pairs. Hence, the error can be reduced by increasing either the number of reference
points or the PGD pairs.
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Figure 3.8: The error ε (3.56) introduced by the RPM approximation (left) for the
solution of the problem (10) compared to the one introduced by the EIM.

As said before, the EIM enables one to decrease the number of operations to
integrate and project the problem from O(p N (β + k2)) to O(p M (β + k2)),
where M � N . However, the learning stage to construct a ROB can be very
expensive, especially for nonlinear problems, for which it is necessary to produce
more snapshots to obtain a pertinent ROB for the problem. For Problem 10 defined
on a discretized parametric domain Df = {µ

i
}i=1..nf with nf = 15 over D, the EIM

technique imposes to compute and store, in the learning stage, the solutions by a
direct solver uref for a coarse grid Dc = 12× 12 over D. It means that the learning
stage to construct the ROB represents 64% of the computational cost given by a
direct classic analysis.

Fig. 3.9 reports the relative error ε (3.56) for different coarse grids Σc of snap-
shots with nc = 2, nc = 5 et nc = 10. They are compared with the error obtained
considering a Σc = 12× 12 coarse grid of snapshots over D.

The lack of snapshots produces a lost in accuracy. For the graph of Fig. 3.9
(c) related to the grid with nc = 5, the lack of snapshots affects the curves related
to a number of interpolation points from 13 to 19. In this case, error level reaches
a plateau one order of magnitude higher than convergence curve for the grid with
nc = 12. Fig. 3.9 (d) shows that a very few number of snapshots leads to level of
error higher than ε = 10−2, whatever the number M of magic points is.

In order to give an idea of the efficiency of the EIM let us consider a level of error
ε (3.56) equal to 10−2. A 5 × 5 grid of snapshots is required for the EIM to reach
this error level. Then, a nested set of 5 interpolation points (M = 5) is determined
from this snapshots thanks to a greedy algorithm based on a L2 norm. Once the
learning stage is done, the finer parameters sample is introduced. It is defined by a
15 × 15 grid over D. Speed up in CPU time compared with a classic FE analysis



Comparison with respect to the Empirical Interpolation Method 93

0 5 10 15 20
10−6

10−4

10−2

100

Size of the RB basis

er
ro

r

 

 

EIM 1
EIM 3
EIM 5
EIM 11
EIM 13
EIM 15
EIM 19
RBε 

(a) error ε of EIM-RB for a grid nc = 12 of
snapshots.
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(b) error ε of EIM-RB for a grid nc = 10
of snapshots.
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(c) error ε of EIM-RB for a grid nc = 5 of
snapshots.
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(d) error ε of EIM-RB for a grid nc = 2 of
snapshots.

Figure 3.9: The quality of the EIM approximation depends on the pertinence of
the precomputed ROB. Decreasing the number of snapshots makes the error level

increase.

is given for the PGD-RPM and the RB-EIM. Results are given for the considered
error level (ε = 10−2) in Tab. 3.5.

Table 3.5: Wall clock to attain an error ε = 10−2 for Problem 10. The Gain is
relative to the standard Finite Element Analysis

PGD-RPM RB-EIM
4 parameter points 5 EIM points

1 space points

size of reduced basis 7 5
Gain 14.2 18

Note that, CPU time for the RB-EIM includes the time spent for the ROB
construction during the learning stage. This time represents actually the largest
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part of CPU time, the on-line reduced basis generation taking only few seconds for
the entire parametric domain D. Thereby, the definition of a ROB that does not
evolve during the iterative method represents a strong point of the EIM. In fact, this
feature enables one to pre-compute, during the learning stage, the required reduced
operators. Thus, during the online stage the independence of the reduced model by
the size of the underlying space discretisation is recovered. This strong point may
also represent, for some applications, a weak point. Indeed, for multiparametric
problems, the EIM needs to solve during the learning stage, the full size problem
for some appropriate snapshots. In order to ensure pertinent ROB, the amount
of necessary resolutions can drastically increase due to the amount of necessary
snapshots for each parameter coordinate.

3.5 Conclusions

The computational framework in which the RPM has been developed is the LaTIn-
PGD nonlinear solver. In this chapter, this approach is presented and described on
a two-dimensional elliptic and nonlinear parametrized problem (Problem 10). It is
a benchmark introduced in [Grepl et al., 2007] as a numerical test for the EIM and
then considered again in [Chaturentabut and Sorensen, 2010] in the framework of
the DEIM.

The Preliminary step of the LaTIn-PGD algorithm has been detailed. This
step is important to generate only the most relevant PGD modes, enabling one to
decrease the CPU time and memory consuming. Nevertheless, this step involves
the construction of a new reduced-order model. It leads to compute repetitive
operations that scale with the underling discretization of the domain and already
existing techniques (as EIM) are not well-suited for the LaTIn-PGD computational
strategy. This issue is one of the main motivations behind the development of the
Reference Points Method.

RPM enables one to decrease the number of operations of the preliminary step by
a factor p/mµ where p is the number of discretized values over the parameter domain
and mµ is the chosen number of reference points along the parameter coordinate.
For the considered problem the approximation gives an error of 10−3 using just a
few reference points. This error decreases either by adding more reference points or
by adding more PGD pairs to the ROB.

The second part of the chapter has been dedicated to a comparison between the
RPM and the reduced-order model obtained by applying the reduced-basis tech-
nique on the same problem. In fact, also for techniques that consider a learning
stage to construct a reduced basis, the construction of the reduced-order model ne-
cessitates, for each new iteration of the method, the update of the tangent operator
and its projection onto the precomputed reduced basis. The number of these op-
erations scales with the underling discretization of the computational domain. For
the considered problem (Problem 10), in this chapter, it has been shown that the
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reduced-order problems obtained for the two different methods (Preliminary stage
for the LaTIn-PGD in (3.17) and reduced-basis in (3.61)) are similar. They are
affected by the same computational “bottleneck”. The EIM enables one, during the
on-line stage, to reduce the number of operations for constructing the ROM by a
factor of N/M , where M is the number of interpolating points and N is the size of
the underlying FE approximation space. Hence, for the on-line stage the problem
is independent of the underlying space discretization.

The quality of the approximations obtained by the two techniques has been
compared in Fig. 3.8 showing a comparable level of error with some differences.
In fact the quality of the approximation given by the EIM can be increased only by
increasing both the number of interpolation points and the size of the precomputed
ROB. On the contrary, the error obtained with the RPM combined with the LaTIn-
PGD solver can be not only decreased by adding more reference points but also by
adding new PGD pairs if needed in order to automatically enrich the ROB.
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Chapter 4

The multiscale nonlinear
LaTIn-PGD with RPM

approximation

This last chapter is dedicated to the implementation of the RPM in the numerical
analysis of structural mechanics. For that purpose, the multiscale LaTIn-based
domain decomposition method is considered.

First part of this chapter describes this computational strategy. The coupling
of the PGD solver with the LaTIn method is detailed. The second part shows how
the RPM is introduced in the LaTIn-PGD computational strategy to approximate
the Preliminary step, enabling one to reduce the number of operations to construct
the ROM. The chapter ends with a numerical example to assess the efficiency of the
RPM within the LaTIn-PGD nonlinear solver.

In structural mechanics, there is a growing interest in a class of techniques called
multiscale computational approaches, capable to analyse structures in which two
or more very different scales can be identified. This is the case of material models
described on a scale smaller than that of the macroscopic structural level or when one
is interested in the microscale phenomena, such as the comprehension of dislocations
propagation. Often, the analysis at the scale of the material is not sufficient because
large scale or bulk effects have to be accounted for. In that cases, two models are
coupled together: one at the scale of the material (microscale) and one at the scale
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of the structure (the macroscale). In order to have a precise description at the
microscale and to avoid huge calculations, a natural idea is to try to take advantage
of both models. One of the first proposed approaches to address this problem is
the theory of homogenization of periodic media (introduced in [Sanchez-Palencia,
1974]) which leads to the resolution of a coarse homogenized problem whose the
model is associated with the behaviour of a representative elementary volume. Local
properties can be deduced from the homogenised quantities. This theory is the basis
of many strategies [Devries et al., 1989, Fish et al., 1997, Oden et al., 1999, Feyel,
2003, Efendiev et al., 2013]. Other strategies have been proposed and one can
distinguish a first family of techniques based on a coarse description enriched by the
local solution. The microscale at the local solution is described by a finer model
[Ibrahimbegovic and Melnyk, 2007], by a different model (e.g. discrete model for
atomistic description [Blanc et al., 2005, Legoll, 2009]) or analytically [Hughes et al.,
1998].

For a second family of techniques, the strategy starts from the problem at the
fine scale, and uses the coarse scale to accelerate the convergence. This is the case,
for instance, of domain decomposition methods [Mandel, 1993, Farhat and Roux,
1991, Ladevèze and Dureisseix, 2000] or multigrid methods [Briggs et al., 2000,
Fish and Belsky, 1995]. In this work, in order to deal with structural mechanics,
the LaTIn method is considered. This iterative method represents the engine of a
multiscale computational strategy for structural mechanics based on a mixed domain
decomposition method. In the following this is briefly described. The complete
details are available in [Ladevèze, 1999, Dureisseix and Ladevèze, 1998, Ladevèze and
Nouy, 2003, Ladevèze et al., 2009, Ladevèze et al., 2010]. The RPM is implemented
in this computational strategy to deal with structural mechanics.

4.1 The reference problem

For the sake of simplicity, let us consider the quasi-static evolution of a structure
defined over the time-space domain I × Ω with Ω = R3 and I = (0, T ), under
the hypothesis of small perturbations (for a complete range of behaviour models
see [Ladevèze, 1999]). The dependence on parameters is not taken into account in
this part, but this computational strategy has already been successfully applied to
problems depending on parameters [Heyberger et al., 2011, Relun et al., 2011, Néron
et al., 2015]. The volume of this structure is the open domain Ω ∈ R3 with boundary
∂Ω. The structure is submitted to the following boundary conditions (Fig.4.1):

• a body force f
d

in Ω;

• a displacement field ud imposed on a part of the boundaries ∂uΩ 6= ∅ (Dirichlet
boundary condition);

• a given quasi-static pressure field F d(t) on the part of the boundaries ∂fΩ
complementary to ∂uΩ (∂uΩ∪∂fΩ = ∂Ω, ∂uΩ∩∂fΩ = ∅) (Neumann boundary
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condition).

The Hilbert space of functions defined on I, the square of which is integrable on Ω,
is denoted by L2(I,Ω):

L2(I,Ω) = {u : I → Ω,

∫
I

‖u(t)‖2
Ωdt <∞}. (4.1)

The Sobolev space of functions defined on I, whose first derivatives have square that
is integrable on Ω, is denoted by H1(I,Ω):

H1(I,Ω) = {u ∈ L2(I,Ω) : ∇u ∈ [L2(I,Ω)]3}. (4.2)

U = [H1
0 (Ω)]

3
is the space of finite energy distributions of displacement defined

over Ω:
U ≡ {u ∈

[
H1

0 (Ω)
]3

: u = 0 on ∂uΩ}. (4.3)

Let us remember spaces P = L2(D,R) and V = L2(D,U).

which enters in what is called the Proper Generalized Decomposi-
tion or, in short, PGD. Such approximation reduces calculation and
storage cost drastically and presents some similarities with the
POD. Initially introduced for the analyze and reduction of statistical
and experimental data, the a posteriori decomposition techniques,
also known as Karhunen–Loeve Expansion, Singular Value Decom-
position or Principal Component Analysis, are now used in the con-
text of model reduction [11,22,4]. But those methods require a
partial, total or even approximate resolution of the reference prob-
lem in a preliminary stage called learning phase or snapshot. Then
a truncated POD of the snapshot is used to reduce the initial model.
In opposition with this first class of methods, the PGD, initially
called ‘‘radial time–space approximation” [12] is an a priori resolu-
tion technique which is driving to a POD without requiring any ba-
sis nor known solutions. The solution is built thanks to the
resolution of a few spatial problems (time-independent) and tem-
poral problems (scalar ODE). This technique has already been used
in the context of stochastic problems [19] and multidimensional
problems [1,2,6].

In this paper a new, more efficient and more robust version is
proposed for the resolution of the microproblems of the multiscale
strategy, in the case of material model with internal variables.
Several numerical examples, among which a rather large scale het-
erogeneous structure with multicracks, will illustrate the capabili-
ties of the proposed approach.

2. Description of the problem

In this section, a brief review of the main aspects of the multi-
scale computational strategy is presented. Further details can be
found in [14,17].

2.1. Reference problem

For the sake of simplicity, let us consider the quasi-static and iso-
thermal evolution of a viscoelastic structure defined over the time–
space domain ½0; T" #X, under the assumption of small perturba-
tions (for a much larger range of material behaviors see [13,17]).
This structure is subjected to prescribed body forces f d, to traction
forces Fd over a part @2X of the boundary, and to prescribed dis-
placements Ud over the complementary part @1X (see Fig. 1).

Let e denote the strain associated with displacement field U and
r stress. The strain is divided into an-elastic part ee verifying the
state law r ¼ KeeðK Hooke operator), and an inelastic part eP which
linked to the stress through the state evolution law _eP ¼ BðrÞ
which is possibly non-linear. The displacement, strains and stres-
ses are subjected to initial conditions at t ¼ 0.

2.2. Sub-structuration of the problem

The structure is viewed as an assembly of simple components,
i.e. substructures and interfaces [14] (see Fig. 2). Concerning time,

the domain ½0; T" is split into a few coarse sub-intervals
ICi ¼ ½tCi ; tCiþ1". The interface between one substructure XE

1 and one
substructure XE0 is denoted by UEE0 (Fig. 2). Each substructure and
each interface have their own variables and equations (admissibility,
balance or constitutive relation) driving their evolution. The state of
one substructure XE is entirely defined by _ePE and rE, the restriction
of the fields _eP and r on XE. The state of an interface UEE0 is given by
WE the restriction of displacement UE on UEE0 ; and FE, the normal
stress on UEE0 .

Let sE ¼ ð _ePE; _WE; rE; FEÞ denote the set of fields describing the
state of the substructure XE and its boundary @XE and EE; WE; FE

and FE denote the corresponding spaces. For sake of simplicity,
we only present the case of a null initial condition except from
the initial displacement UEjt¼0, but taking into account other kinds
of initial condition is not difficult.

2.3. Admissibility conditions for substructure XE

Let us introduce the following spaces, as well as their corre-
sponding vector spaces (denoted by !H):

( the space EE of kinematic admissible fields ð _eE; _WEÞ:

ð _eE; _WEÞ 2 EE () 9UE; UEj@XE ¼WE;FEjt¼0 ¼ UE0; eE ¼rsymUE;

ð1Þ

( the space FE static admissible fields ðrE; FEÞ:

ðrE; FEÞ 2 FE () 8ð _eHE ; _WH
E Þ 2 EH

E ;)
Z

ICi #XE

rE : _eHE dXdt

þ
Z

ICi #XE

f d * _UH
E dXdt þ

Z

ICi #@XE

FE * _WH
E dSdt ¼ 0;

ð2Þ

( the space AdE of ‘‘ E-admissible” variables sE: sE ¼ ð _ePE; _WE; rE;
FEÞ 2 AdE () ðK)1 _rE þ _ePE; _WEÞ 2 EE and ðrE; FEÞ 2 FE.

The interface is characterized by the restriction to UEE0 of the
displacement fields ðWE;WE0 Þ, and of the force fields ðFE; FE0 Þ. Those
restrictions are denoted by ðWEE0 ;WE0EÞ and ðFEE0 ; FE0EÞ :

A relation between those quantities is introduced to character-
ize the behavior bEE0 of the interface.

bEE0
_WEE0 ; _WE0E; FEE0 ; FE0E

! "
¼ 0: ð3Þ

For example a perfect interface: _WEE0 ¼ _WE0E et FEE0 þ FE0E ¼ 0.
∂1Ω

∂2Ω

Ω

Fd

Ud

fd

Fig. 1. Reference problem on X.

ΩE ΩE'ΦEE'

Fig. 2. Decomposition of X into substructures XE and interfaces UEE0 .

1 the notation !E is used to indicate the restriction of a quantity ! to the
substructure XE .
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Figure 4.1: The reference problem over the domain Ω

The reference problem can be formulated as below:

Problem 18 (reference problem continuous form) Find u(x, t) and σ(x, t) with
x = (x, y, z) ∈ Ω and t ∈ I that verifies:

• the kinematic assumptions (or compatibility equations):

u ∈ V and ε(u) =
1

2
(∇u+∇Tu) in Ω (4.4)

• the equilibrium equations:

σ ∈ [L2(I,Ω)]6; ∇ · σ + fd = 0 in Ω; σ · n = Fd on ∂fΩ (4.5)
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• Let ε(u) be the linearized strain tensor associated to the displacement field u
and σ the Cauchy stress tensor. The strain can be divided into an elastic
strain εe and an inelastic strain εp, so that ε = εe + εp. The elastic strain εe
is related to the stress through the state law:

σ = K εe. (4.6)

The inelastic strain εp is related to the stress through the evolution law:

ε̇p = B(σ). (4.7)

• The homogeneous initial conditions.

K represents the Hooke’s tensor of the material while B is a differential operator
which can be time-dependent and nonlinear. In the numerical example (section 4.5)
a nonlinear time-dependent behaviour is considered:

ε̇p =
K−1

E η(t)
Tr(σ)σ.

η is the viscosity coefficient. To fix the ideas, one can imagine that this viscosity
depends on the temperature whose evolution along the time is assumed to be known,
which leads to the knowledge of η(t). E is the Young modulus of the material. Such
a material behaviour (see 4.5) is typical of a viscoelastic constitutive law. Other
types of constitutive laws, such as elasto-viscoplastic behaviour, which requires the
introduction of internal variables, can be found in [Relun et al., 2011] or [Ladevèze,
1999] expressed by using what is called a “normal formulation”. Dealing with such
laws does not require any change in the strategy which is developed herein. The
Hooke’s tensor K is a linear, symmetric and defined positive operator. It enables
one to introduce the following energetic norms with the associated scalar products:

‖ · ‖u,Ω =
[
〈•, •〉u,Ω

]1/2

〈•, •〉u,Ω =

∫
Ω

ε(•) : K : ε(•)dΩ, (4.8)

‖ · ‖σ,Ω =
[
〈•, •〉σ,Ω

]1/2

〈•, •〉σ,Ω =

∫
Ω

• : K−1 : • dΩ, (4.9)

4.2 The LaTIn multiscale method

In this section, the main characteristics of the LaTIn multiscale method are reviewed.
The interested reader can refer to [Ladevèze et al., 2010] for additional details.

4.2.1 Decomposition of the domain

The domain Ω which is occupied by the structure is divided into subdomains and
interfaces. Each subdomain ΩE has its own variables (ε̇pE and σE) and is subjected,
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over its boundary ∂ΩE, to the action of its environment (the neighboring interfaces)
defined by a displacement distribution WE and a force distribution FE. Thus, the
state of subdomain ΩE is described by the set sE = (ε̇pE, ẆE, σE, FE). In order to
formulate the reference problem, we need to introduce some functional subspaces.
Hereafter, �? will denote the vector space associated with affine space �.

which enters in what is called the Proper Generalized Decomposi-
tion or, in short, PGD. Such approximation reduces calculation and
storage cost drastically and presents some similarities with the
POD. Initially introduced for the analyze and reduction of statistical
and experimental data, the a posteriori decomposition techniques,
also known as Karhunen–Loeve Expansion, Singular Value Decom-
position or Principal Component Analysis, are now used in the con-
text of model reduction [11,22,4]. But those methods require a
partial, total or even approximate resolution of the reference prob-
lem in a preliminary stage called learning phase or snapshot. Then
a truncated POD of the snapshot is used to reduce the initial model.
In opposition with this first class of methods, the PGD, initially
called ‘‘radial time–space approximation” [12] is an a priori resolu-
tion technique which is driving to a POD without requiring any ba-
sis nor known solutions. The solution is built thanks to the
resolution of a few spatial problems (time-independent) and tem-
poral problems (scalar ODE). This technique has already been used
in the context of stochastic problems [19] and multidimensional
problems [1,2,6].

In this paper a new, more efficient and more robust version is
proposed for the resolution of the microproblems of the multiscale
strategy, in the case of material model with internal variables.
Several numerical examples, among which a rather large scale het-
erogeneous structure with multicracks, will illustrate the capabili-
ties of the proposed approach.

2. Description of the problem

In this section, a brief review of the main aspects of the multi-
scale computational strategy is presented. Further details can be
found in [14,17].

2.1. Reference problem

For the sake of simplicity, let us consider the quasi-static and iso-
thermal evolution of a viscoelastic structure defined over the time–
space domain ½0; T" #X, under the assumption of small perturba-
tions (for a much larger range of material behaviors see [13,17]).
This structure is subjected to prescribed body forces f d, to traction
forces Fd over a part @2X of the boundary, and to prescribed dis-
placements Ud over the complementary part @1X (see Fig. 1).

Let e denote the strain associated with displacement field U and
r stress. The strain is divided into an-elastic part ee verifying the
state law r ¼ KeeðK Hooke operator), and an inelastic part eP which
linked to the stress through the state evolution law _eP ¼ BðrÞ
which is possibly non-linear. The displacement, strains and stres-
ses are subjected to initial conditions at t ¼ 0.

2.2. Sub-structuration of the problem

The structure is viewed as an assembly of simple components,
i.e. substructures and interfaces [14] (see Fig. 2). Concerning time,

the domain ½0; T" is split into a few coarse sub-intervals
ICi ¼ ½tCi ; tCiþ1". The interface between one substructure XE

1 and one
substructure XE0 is denoted by UEE0 (Fig. 2). Each substructure and
each interface have their own variables and equations (admissibility,
balance or constitutive relation) driving their evolution. The state of
one substructure XE is entirely defined by _ePE and rE, the restriction
of the fields _eP and r on XE. The state of an interface UEE0 is given by
WE the restriction of displacement UE on UEE0 ; and FE, the normal
stress on UEE0 .

Let sE ¼ ð _ePE; _WE; rE; FEÞ denote the set of fields describing the
state of the substructure XE and its boundary @XE and EE; WE; FE

and FE denote the corresponding spaces. For sake of simplicity,
we only present the case of a null initial condition except from
the initial displacement UEjt¼0, but taking into account other kinds
of initial condition is not difficult.

2.3. Admissibility conditions for substructure XE

Let us introduce the following spaces, as well as their corre-
sponding vector spaces (denoted by !H):

( the space EE of kinematic admissible fields ð _eE; _WEÞ:

ð _eE; _WEÞ 2 EE () 9UE; UEj@XE ¼WE;FEjt¼0 ¼ UE0; eE ¼rsymUE;

ð1Þ

( the space FE static admissible fields ðrE; FEÞ:

ðrE; FEÞ 2 FE () 8ð _eHE ; _WH
E Þ 2 EH

E ;)
Z

ICi #XE

rE : _eHE dXdt

þ
Z

ICi #XE

f d * _UH
E dXdt þ

Z

ICi #@XE

FE * _WH
E dSdt ¼ 0;

ð2Þ

( the space AdE of ‘‘ E-admissible” variables sE: sE ¼ ð _ePE; _WE; rE;
FEÞ 2 AdE () ðK)1 _rE þ _ePE; _WEÞ 2 EE and ðrE; FEÞ 2 FE.

The interface is characterized by the restriction to UEE0 of the
displacement fields ðWE;WE0 Þ, and of the force fields ðFE; FE0 Þ. Those
restrictions are denoted by ðWEE0 ;WE0EÞ and ðFEE0 ; FE0EÞ :

A relation between those quantities is introduced to character-
ize the behavior bEE0 of the interface.

bEE0
_WEE0 ; _WE0E; FEE0 ; FE0E

! "
¼ 0: ð3Þ

For example a perfect interface: _WEE0 ¼ _WE0E et FEE0 þ FE0E ¼ 0.
∂1Ω

∂2Ω

Ω

Fd

Ud

fd

Fig. 1. Reference problem on X.

ΩE ΩE'ΦEE'

Fig. 2. Decomposition of X into substructures XE and interfaces UEE0 .

1 the notation !E is used to indicate the restriction of a quantity ! to the
substructure XE .
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Figure 4.2: Decomposition of the domain

Over boundary ∂ΩE, displacement uE must be equal to the interface displace-
ment WE and must satisfy the initial condition at t = 0:

uE|∂ΩE
= WE and uE|t=0 = uE0 (4.10)

The corresponding space of the kinematically admissible displacement fields (uE,WE)
is denoted by UE. Standard techniques (i.e. Lagrange multipliers or penalization)
can be considered to apply this boundary conditions for domain ΩE. Stress σE must
balance interface forces FE over ∂ΩE and body forces f

d
in ΩE: ∀ (u∗E,W

∗
E) ∈ U∗E,∫

ΩE×I
σE : ε∗(u̇E) dΩ dt =

∫
ΩE×I

f
d
· u̇∗E dΩ dt+

∫
∂ΩE×I

FE · Ẇ
∗
E dS dt (4.11)

Condition (4.11) defines the space SE of the statically admissible fields (σE, FE).
Let S denote the extension of SE to the entire problem: S =

⊗
ΩE⊂Ω SE.

Strain εE must derive directly from admissible displacements, (uE,WE) ∈ UE:

∀ (σ∗E, F
∗
E) ∈ S∗E,

∫
ΩE×I

σ∗E : ε̇E dΩ dt =

∫
∂ΩE×I

F ∗E · ẆE dS dt (4.12)

Condition (4.12) defines the space EE of the kinematically admissible fields (ε̇E, ẆE).
Finally, one introduces the space AdE of the sE in which (σE, FE) is statically

admissible, σE and ε̇eE satisfy the state law (4.6) and (ε̇E, ẆE) is kinematically
admissible. These conditions read:

(σE, FE) ∈ SE,
(
K−1σ̇E + ε̇Ep, ẆE

)
∈ EE (4.13)
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Concerning the interfaces, in the set NE of the neighboring subdomains of ΩE,
let ΦEE′ denote the interface between ΩE and subdomain ΩE′ . This interface is
characterized by the restrictions (WEE′ ,WE′E) of displacement field (WE,WE′)
and (FEE′ , FE′E) of force field (FE, FE′) to ΦEE′ . A constitutive relation for every
interface ΦEE′ can also be introduced under the form:

bEE′(ẆEE′ , ẆE′E, FEE′ , FE′E) = 0 (4.14)

For instance, a perfect interface can be described by ẆEE′ = ẆE′E and FEE′ +
FE′E = 0. Other possible types of behaviour (contact, contact with friction ...) can
be found in [Ladevèze et al., 2010].

4.2.2 Multiscale description of the interface unknowns

Two different descriptions of the interface unknowns (displacements and forces) are
introduced: a macroscale description (�M) and a microcomplement (�m). Over an
interface ΦEE′ between subdomains ΩE and ΩE′ , one has:

ẆEE′ = Ẇ
M

EE′ + Ẇ
m

EE′ FEE′ = FM
EE′ + Fm

EE′ (4.15)

The choice of the spaces of the macrodisplacements and macroforces, denoted
respectively by WM

EE′ and FMEE′ , is arbitrary, but has a strong influence on the
scalability of the method. In practice, in the spatial domain, the macropart is
chosen to be the linear part of the forces and displacements, which guarantees the
scalability of the domain decomposition method in space, but other possible choices
are discussed in [Guidault et al., 2008]. Scalability in time is more difficult to achieve
and requires an adaptive generation of the temporal macrobasis. A detailed analysis
of this question was presented in [Passieux et al., 2010]. Here, the separation of the
macroscale from the microscale is carried out only in space, which means that the
temporal microscale and macroscale are identical.

Once spaces WM
EE′ and FMEE′ have been defined, the macropart of the displace-

ment field can be defined as:

∀F ∗ ∈ FMEE′ ,
∫

ΦEE′×I

(
Ẇ

M

EE′ − ẆEE′

)
· F ∗dSdt = 0 (4.16)

and the macropart of the force field can be defined as:

∀Ẇ ∗ ∈ WM
EE′ ,

∫
ΦEE′×I

(
FM
EE′ − FEE′

)
· Ẇ ∗

dSdt = 0 (4.17)

The spaces of the interface quantities can be extended to the interfaces NE of
subdomain ΩE as: WM

E =
⊗

E′∈NEWM
EE′ . FME =

⊗
E′∈NE FMEE′ . The extension to

the whole set of the subdomains of Ω leads to WM and FM . The micropart of the
displacements and forces can be derived from (4.15).
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Over the interfaces, the macroforces are assumed to verify the transmission con-
ditions:

FM
EE′ + FM

E′E = 0 over ΦEE′ (4.18)

FM
E + FM

d = 0 over ∂ΩE ∩ ∂fΩ (4.19)

This assumption is called the “admissibility of the macroquantities”.

The corresponding subspace is defined as FMad . Now let us introduce the space
WM

ad of the displacements which are continuous at the interfaces and equal to the
macropart of prescribed displacement ud over ∂uΩ. The spaces whose elements have
their macroparts in WM

ad and FMad are denoted Wad and Fad.

4.2.3 The LaTIn solver

The governing equations of the problem are divided into two groups: the linear
equations and the local equations. First, let Ad be the space of the solutions of
the linear equations (defined globally in the spatial domain) whose elements s =
(sE)ΩE⊂Ω verify:

• the admissibility condition (4.13) for every ΩE ⊂ Ω: sE ∈ AdE

• the admissibility of the macroforces (4.18,4.19)

Then, let Γ be the space of the solutions ŝ = (sE)ΩE⊂Ω of the local (possibly non-
linear) equations whose elements satisfy:

• the evolution law (4.7) for every ΩE ⊂ Ω: ∀(t, x) ∈ I × ΩE, ε̇pE = B(σE)

• the interface behaviour (4.14) over every interface ΦEE′

Solutions of both the spaces verify the state law ((4.6)) and the initial condition.
The solution of the problem sref is defined as:

sref ∈ Ad ∩ Γ (4.20)

The LaTIn method used for the resolution of Problem (4.20) is an iterative
scheme between two stages called the “local stage” and the “linear stage”. In the
local stage, one seeks a solution of the local nonlinear equations in space Γ. In the
linear stage, one seeks a solution of the global linear equations in space Ad. The
linear stage and the local stage are repeated alternatively until convergence. More
precisely, two approximations are calculated at iteration n + 1: ŝ(n+1/2) ∈ Γ and
s(n+1) ∈ Ad. The introduction of search directions enables one to switch back and
forth between space Γ and space Ad.
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4.2.4 The local stage

At iteration n + 1, given s(n) ∈ Ad, the local stage leads to an approximation of
the solution ŝ(n+1/2) in space Γ such that (ŝ(n+1/2)− s(n)) belongs to search direction
E+. Skipping the subscripts for the sake of clarity, in each subdomain ΩE ⊂ Ω, E+

is defined by:

H(σ̂E − σE) + (ˆ̇εpE − ε̇pE) = 0 (4.21)

h(F̂E − FE)− ( ˆ̇WE − ẆE) = 0 (4.22)

where H and h are symmetric, positive definite operators which have an influence on
the convergence rate of the algorithm, but do not affect the solution. The solution
ŝ of the local stage is the “intersection” of spaces E+ and Γ. This leads to a set of
equations which are defined locally in space.

4.2.5 The linear stage

The linear stage consists, given the solution ŝ(n+1/2) ∈ Γ of the local stage, in finding
a solution s(n+1) ∈ Ad such that (s(n+1) − ŝ(n+1/2)) belongs to search direction E−.
Skipping the subscripts, E− is defined by:

∀σ∗ ∈ S,
∑

ΩE⊂Ω

∫
ΩE×I

(
H (σE − σ̂E)− (ε̇pE − ˆ̇εpE)

)
: σ∗ dΩ dt = 0 (4.23)

∀F ∗ ∈ Fad,
∑

ΩE⊂Ω

∫
∂ΩE×I

(
h(FE − F̂E) + (ẆE − ˆ̇WE)

)
· F ∗ dS dt = 0 (4.24)

which is written in a weak sense in order to take into account the admissibility of
the macroforces (4.18,4.19).

In [Ladevèze, 1999], it was shown that an optimal choice of H in terms of the
convergence rate consists in defining the manifold E− as the vector space which is
tangent to Γ in ŝ. This requires the calculation of H = ∂B/∂σ|σ̂ at each iteration (or,
at least, every few iterations) as in a classical Newton algorithm. h can be viewed
as a “viscosity” effect at the interface. The choice of this parameter is discussed in
[Ladevèze et al., 2010].

The admissibility of the macroforces F ∗ ∈ Fad in (4.24), which expresses that
macropart FM∗ belongs to FMad , is enforced by introducing a Lagrange multiplier
˙̃WM
E ∈ WM

ad . Then, (4.24) is defined locally in each subdomain ΩE as:

∀F ∗ ∈ F
∫
∂ΩE×I

(
h(FE − F̂E) + (ẆE − ˆ̇WE)− ˙̃WM

E

)
· F ∗ dS dt = 0 (4.25)

Conversely, the problem of the admissibility of the macroquantities is defined on the
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global interface level by:

∀ ˙̃WM∗
E ∈ WM∗

ad

∑
ΩE⊂Ω

∫
∂ΩE×I

˙̃WM∗
E · FE dS dt−

∫
∂ΩE∩∂fΩ×I

˙̃WM∗
E · F d dS dt = 0

(4.26)

Moreover, kinematic admissibility and state law lead to the following condition for
each subdomain:

∀ (σ∗E, F
∗
E) ∈ S∗E

∫
ΩE×I

(
K−1σ̇E + ε̇pE

)
: σ∗E dΩ dt =

∫
∂ΩE×I

ẆE · F ∗E dS dt

(4.27)

The microproblem Introducing the weak form of search direction (4.23,4.25)
into Equation (4.27), one gets the following microproblem:

Problem 19 (microproblem) Find (σE, FE) ∈ SE such that:

∀ (σ∗E, F
∗
E) ∈ S∗E,

∫
ΩE×I

(
K−1σ̇E + HσE

)
: σ∗E dΩ dt+

∫
∂ΩE×I

hFE · F ∗E dS dt =∫
ΩE×I

(
Hσ̂E − ˆ̇εpE

)
: σ∗E dΩ dt+

∫
∂ΩE×I

(
hF̂E + ˆ̇WE + ˙̃WM

E

)
· F ∗E dS dt

(4.28)

Problem 19 is linear and depends on the hat quantities (ŝE), which are known from

the previous local stage, and on Lagrange multiplier ˙̃WM
E , which is a new unknown

of the problem. Therefore, the solution can be divided into two parts:

sE = ˆ̂sE + ¯̄sE( ˙̃WM
E ) (4.29)

where ˆ̂sE is the solution of Problem 19 when ˙̃WM
E is equal to zero, and ¯̄sE( ˙̃WM

E )

depends linearly on Lagrange multiplier ˙̃WM
E through a linear operator. Relation

(4.29) can also be written in terms of the macroforces:

FM
E =

ˆ̂
FM
E + ¯̄FM

E with ¯̄FM
E = LF

E( ˙̃WM
E ) (4.30)

where
ˆ̂
FM
E represents the macroforces corresponding to ˆ̂sE, and LF

E is a homogenized
operator defined over the space-time domain ΩE × I. The details of the calculation
of the homogenized operator in both the linear case and the nonlinear case will be
given in section 4.2.7.
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The macroproblem In order to obtain the value of Lagrange multiplier ˙̃WM
E ∈

WM
ad , homogenized operator (4.30) is introduced into the admissibility condition of

the macroquantities (4.26), leading to a problem defined on the macroscale: ∀ ˙̃WM∗
E ∈

WM∗
ad ,

∑
ΩE⊂Ω

∫
∂ΩE×I

˙̃WM∗
E ·

(
LF
E( ˙̃WM

E ) +
ˆ̂
FM
E

)
dS dt =

∑
ΩE⊂Ω

∫
∂ΩE∩∂fΩ

˙̃WM∗
E · F d dΓ dt

(4.31)

This macroproblem boils down to a linear homogenized problem in space and
time defined over the whole set of interfaces and the entire time interval.

Resolution of the linear stage The linear stage consists in solving a series of
microproblems (Problem 19) defined in each time-space subdomain I × ΩE along
with macroproblem (4.31) defined over the entire time interval I and for the whole

set of interfaces, leading to Lagrange multiplier ˙̃WM
E . One can note that parallel

resolution of these microproblems is possible, which reduces the computation cost.

4.2.6 Convergence of the algorithm

Under the assumption of perfect interfaces and a monotonous operator B for the
description of the constitutive law, the algorithm presented above converges toward
the reference solution sref (see [Ladevèze, 1999] for proof of the convergence). In
order to check the convergence of the iterative scheme, one introduces the following
error indicator:

η =
‖s(n+1) − ŝ(n+1/2)‖
1
2
‖s(n+1) + ŝ(n+1/2)‖

(4.32)

where the norm is defined as:

‖s‖2 =
∑

ΩE⊂Ω

∫
ΩE×I

(σE :HσE + ε̇pE : H−1ε̇pE) dΩ dt

+

∫
∂ΩE×I

(FE · hFE + ẆE · h−1ẆE) dS dt

(4.33)

Let us note that if the reference solution sref is available one can also introduce
the actual relative error ηref :

ηref =
‖s(n+1) − sref‖
‖sref‖

(4.34)
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4.2.7 Construction of the homogenized operator

In (4.30), the homogenized operator LE of the subdomain ΩE maps ˙̃W
M

E to FM
E

through the relation:

FM
E = LE( ˙̃WE) +

ˆ̂
FE, (4.35)

Classically in the multiscale LaTIn method [Ladevèze and Nouy, 2003, Ladevèze
et al., 2010], LE is obtained by solving the following microproblem:

∀(σ?, F ?) ∈ F?,∫
I×ΩE

σ? : (K−1 ˙̂σ+H−σ) dΩ dt+

∫
I×∂ΩE

F ? ·h−F dS dt =

∫
I×∂ΩE

F ? · ˙̃W
M

E dS dt.

(4.36)

which corresponds to Problem 19 in which the hat quantities (̂sE) have been
zeroed. In this thesis the separation of the macroscale from the microscale is car-
ried out only in space, but a coarse discretisation of I = [0, T ] has already been

introduced in [Passieux et al., 2010]. The Lagrange multiplier ˙̃W
M

E becomes:

˙̃W
M

E (x, t) =
d∑
i=1

α̇i(t)e
M
i (x) (4.37)

where {eMi (x)}i=1,...,d is the spatial macrobasis for each of theNE interfaces of the
subdomain (Fig.4.3). A classical choice is a macrobasis which extracts the linear
part of the quantities. Other choices can be found in [Guidault et al., 2008]. Time
functions {αi(t)}i=1,...,d are unknowns during the construction of the homogenized
operator.

Each of these time functions can be written using, for example, a finite element
basis with shape functions {φj(t)}j=1,...,p+1 (where p is the number of time steps in
the discretisation of I). Hence, αi(t) =

∑p+1
j=1 φ

j(t)cji . And (4.37) becomes:

˙̃W
M

E (x, t) =
d∑
i=1

α̇i(t)e
M
i (x) =

d∑
i=1

p+1∑
j=1

cji

(
φ̇j(t)eMi (x)

)
(4.38)

which can be rewritten as:

˙̃W
M

E (x, t) =
d∑
i=1

p+1∑
j=1

cjiw
j
i (x, t) (4.39)

where the d(p+1) vectors wji (x, t) = φ̇j(t)eMi (x) represent the time-space macrobasis
associated to each of the r interfaces of the problem. The coefficients cji are unknowns
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The philosophy of the method is clearly to make the interfaces
coincide with the complex surface behaviors of the problem like
cohesive interfaces or frictional contact. The boundary conditions
are also viewed as particular interface behaviors.

2.4. Two-scale description of the unknowns

This multiscale approach consists in introducing a two-scale
description of the unknowns. These two scales are denoted
‘‘macro” ð!MÞ and ‘‘micro” ð!mÞ. This choice is physically sound:
macro part are mean values in space and time. For _WE 2 WE, its
macropart _WM

E and microcomplement _Wm
E are defined by

8FMH 2 FM
E :

Z

ICi #@XE

ð _WM
E $ _WEÞ % FMH dSdt ¼ 0 and _Wm

E ¼ _WE $ _WM
E : ð4Þ

The spaces FM
E and WM

E can be chosen arbitrarily. In practice, they
are defined by the linear part of force and displacement in space
Fig. 3, and quadratic part in time Fig. 4.

An important point of the strategy, which provides its multiscale
character, is the choice of the admissibility conditions for the mac-
roquantities. The set of the macroforces FM ¼ ðFM

E ÞXE'X is required, a
priori, to verify the transmission conditions systematically, including
the boundary conditions. The corresponding subspace of FM ¼
(FM

E is designated by FM
ad. The subspace of F whose elements

have their macroparts in FM
ad is designated byFad. We use the def-

inition for WM ;WM
ad and Wad.

3. The multiscale computational strategy

3.1. The LATIN method

The engine of the strategy is the LATIN method [14]. It is a gen-
eral iterative non-linear solver for time-dependant problems,
which works globally over the entire time–space domain. It is said

to be non-incremental since it allows to deal with a problem which
is defined with a variational form over the entire time–space do-
main which makes possible to use different resolution techniques,
such as the PGD which is non-incremental.

The first principle of the LATIN method is to separate the solu-
tions of the equations into two subspaces: The space Ad of solu-
tions to the global linear equations: s ¼ ðsEÞXE'X 2 Ad if s verifies

(a) the E-admissibility condition:

8XE ' X; sE 2 AdE:

(b) the admissibility of macroforces:

F 2 Fad:

And the space C of solutions to the local non-linear equations:
ŝ ¼ ðsEÞXE'X 2 C if ŝ verifies

(c) the evolution law on XE:

8XE ' X; _ePE ¼ BðrEÞ:

(d) the interface behavior 8UEE0 :

bEE0 ð _WEE0 ; _WE0E; FEE0 ; FE0EÞ ¼ 0:

The state law and initial conditions are verified by the solutions
of both Ad and C. Clearly, the exact solution to the decomposed
problem is defined by:

sexact 2 Ad \ C: ð5Þ

The second principle of the method is to use a two-stage iterative
scheme to obtain the solution to the problem. Indeed, one iteration
of this solver is made of two stages called ‘‘local stage” and ‘‘linear
stage”. As shown in Fig. 5 these stages consists in building a mem-
ber of C and Ad alternatively. In Fig. 5 one can notice, that, in order
to close the problem, we need to introduce what we call the
‘‘search directions” Eþ and E$ which will be detailed later.

The third principle of the method is to take advantage of the
time–space framework by using adapted approximations of the
unknowns. More precisely, we use the PGD to solve the problems
of the linear stage. This technique will be presented in details in
the Section 4.

3.2. Local stage

Local stage consists in building ŝnþ1=2 2 C knowing sn 2 Ad and
using a search direction Eþ followed by ðŝE;nþ1=2 $ sE;nÞ and defined
by (subscript E skipped):

Eþ ð _̂ep $ _ePÞ þHðr̂$ rÞ ¼ 0;

ð _̂W $ _WÞ $ hðF̂ $ FÞ ¼ 0;

(

ð6Þ
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Fig. 3. Linear macrospace basis for a square interface UEE0 in the 3D case.
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Fig. 4. Quadratic macrotime basis on ICi .
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Fig. 5. One iteration of the LATIN method.
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Figure 4.3: Linear macrobasis for a plane interface.

at this stage. They are determined by solving the macroproblem (4.31), once the
homogenized operator has been constructed.

The homogenized operator is obtained by solving rd(p + 1) microproblems (see

4.36) in which ˙̃W
M

E is taken to be equal to wji (x, t). The construction of the homog-
enized operator can represent a big amount of the entire computational cost. It is
particularly evident when the number of subdomains increases or when search di-
rections change. Recently, in [Cremonesi et al., 2013], a new technique to construct
the homogenized operator has been developed. The computation cost is reduced
by solving the rd(p + 1) microproblems (4.36) thanks to an extension of the PGD
representation to the variable which defines the Lagrange multiplier. This technique
has not been implemented in the current work.

If H is the tangent search direction (i.e. H = ∂B/∂σ|σ̂), a physical interpre-
tation can be given to the homogenized operator. Let us recall that homogenized

operator LE maps Lagrange multiplier ˙̃W
M

E to macroforce FM
E = LE

˙̃W
M

E in subdo-
main ΩE, so that:

FM
E = LE( ˙̃WE) +

ˆ̂
FE, (4.40)

This relation can be rewritten in terms of macroforce FM
E and macrodisplacement

WM
E at the interface, leading to a linear relation between the small perturbations of

these quantities in the form:

∆FM
E = LW

E ∆ẆE (4.41)
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Once the algorithm has converged, (4.41) can be viewed as the local macrobehaviour
near the calculated solution, defined over I = [0, T ] and in each subdomain ΩE. This
behaviour establishes a relation between a small perturbation in terms of macrodis-
placements and a small perturbation in terms of macroforces. In the particular case
of a linear problems, such as in viscoelasticity, the tangent search direction is inde-
pendent of the solution being sought. Therefore, it is calculated only once at the
beginning of the algorithm and then remains constant throughout the iterations.
Thus, the previous interpretation is valid throughout the iterations.

If search direction H is not tangent to subspace Γ, the algorithm bears some
similarities to a quasi-Newton scheme and no obvious physical interpretation can be
given to the homogenized operator.

4.3 Proper generalized decomposition for the so-

lution of the microproblems

In order to perform the linear stage at the iteration n+1, a bunch of microproblems,
on each subdomain, has to be solved. The LaTIn-PGD provides a first approxima-
tion of these problems by the Preliminary step: each microproblem is projected
on the ROB that arises from the previous iteration n. Hence, the solutions of the
microproblems are approximated in the linear span of the already existing ROB. If
this approximation is not enough accurate, each subdomain can eventually generate
a new PGD pair by the Algorithm 5. That strategy can involve the sharing of the
ROB among subdomains derived by similar cells.

Reformulation of the microproblem At the iteration n + 1 the linear stage
consists in building s(n+1) ∈ Ad knowing ŝ(n+1/2) ∈ Γ and verifying search direction
E− (see (4.23) and (4.25)).

For the subdomain E the search direction is given by the following system of
equations:{

(ε̇(n+1)
p − ˙̂ε

(n+1/2)
p )− (σ(n+1) − σ̂(n+1/2))H = 0,

(Ẇ
(n+1) − ˙̂

W (n+1/2)) + h((F (n+1) − F̂ (n+1/2)
)− ˙̃W

M

) = 0.
(4.42)

Let us introduce correction of the solution:

∆s = s(n+1) − s(n). (4.43)

The previous system of equations, given by (4.42), reads:{
(∆ε̇(n+1)

p − ˙̄ε)− (∆σ(n+1) − σ̄)H = 0,

(∆Ẇ
(n+1) − ˙̄W ) + h((∆F (n+1) − F̄ )) = 0.

(4.44)
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where s̄ are known quantities at this stage:

s̄ =

(
( ˙̂ε

(n+1/2)
p − ε̇(n)

p ), (
˙̂
W (n+1/2) − Ẇ (n)

+ ˙̃W
M

), (σ̂(n+1/2) − σ(n)), (F̂
(n+1/2) − F (n))

)
= ŝ(n+1/2) − s(n) +

(
0, ˙̃W

M

, 0, 0

)
.

(4.45)

The PGD approximation is sought by approximating the search directions (4.44)
rewritten in terms of a constitutive relation error. Hence, for the subdomain E, the
microproblem becomes:

Problem 20 Seek ∆s ∈ Ad minimising the error in the constitutive behaviour re-
lated to the search direction:

e2
CB(∆s) = ‖(∆σ(n+1)−σ̄)H−(∆ε̇(n+1)

p − ˙̄ε)‖2
Ω+‖(∆Ẇ (n+1)− ˙̄W )+h((∆F (n+1)−F̄ ))‖2

∂Ω,
(4.46)

where

‖ ◦ ‖2
Ω =

∫
ΩE×I

◦ ·M(t) ◦ dΩdt and ‖ ◦ ‖2
∂Ω =

∫
∂ΩE×I

◦ ·m(t) ◦ dΩdt. (4.47)

The error in constitutive behaviour constructed is made of two norms: a norm
related to the quantities in the subdomain ‖◦‖Ω and a norm related to the quantities
on the interfaces ‖ ◦ ‖∂Ω. In practice, a good choice for M(t) and m(t) is to take
the symmetric part of the search direction operators:

M(t) = H−symm(t) = H−(t) (4.48)

m(t) = h−symm(t) = h−(t) (4.49)

Separated variable description of the unknowns PGD is introduced in Prob-
lem 20 to approximate primal variables as follows:

∆ε(n+1)
p (x, t) ≈ ∆ε̃

(n+1)
p,k (x, t) =

k∑
i=1

αui (t) Ei(x) (4.50)

∆W (n+1) ≈ ∆W̃
(n+1)

k (x, t) =
k∑
i=1

αWi (t) W i(x) (4.51)

where {αi(t)}1≤i≤k ∈ P ≡ L2(I,R), {Ei(x)}1≤i≤k ∈ U , and {Wi(x)}1≤i≤k corre-
sponds, on the bound of the subdomain, to the trace of displacement field, which is
linearly related to εp by (4.4). Hence, the functions depending on time αui (t) and
αWi (t) are set to be equal αui (t) = αWi (t) = αi(t).

The dual variables ∆σ(n+1) and ∆F (n+1) are deduced as:
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∆σ(n+1)(x, t) ≈ ∆σ̃
(n+1)
k (x, t) =

k∑
i=1

αui (t) Ci(x) (4.52)

∆F (n+1)(x, t) ≈ ∆F̃
(n+1)

k (x, t) =
k∑
i=1

αWi (t) Ci(x) · n|Φ (4.53)

with Ci(x) = K Ei(x) the space function related to the dual variables.

The best PGD approximation is the one that minimize the error in Problem 20:

Problem 21 Seek ∆s ∈ Ad minimising the error in the constitutive behaviour re-
lated to the search direction:

e2
CB(∆s̃−s̄) = ‖(∆σ̃(n+1)

k −σ̄)H−(∆ ˙̃ε
(n+1)
p k − ˙̄ε)‖2

Ω+‖(∆ ˙̃W
(n+1)
k − ˙̄W )+h(∆F̃

(n+1)

k −F̄ )‖2
∂Ω.

(4.54)
with

∆ε̃
(n+1)
p,k (x, t) =

k∑
i=1

αui (t) Ei(x) (4.55)

∆W̃
(n+1)

k (x, t) =
k∑
i=1

αWi (t) W i(x) (4.56)

∆σ̃
(n+1)
k (x, t) =

k∑
i=1

αui (t) Ci(x) (4.57)

∆F̃
(n+1)

k (x, t) =
k∑
i=1

αWi (t) Ci(x) · n|Φ (4.58)

with αui = αWi = αi

First order approximation and k-th order approximation The best approx-
imation of first order (k = 1) is defined as the solution of the minimization problem
related to the error e2

CB(∆s) with the following description of the unknowns:

∆ε̃(n+1)
p (x, t) = α(t) E(x) (4.59)

∆W̃
(n+1)

(x, t) = α(t) W (x) (4.60)

∆σ̃(n+1)(x, t) = α(t) C(x) (4.61)

∆F̃
(n+1)

(x, t) = α(t) C(x) · n|∂Ω (4.62)
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Generation of the pair of PGD functions is given by minimization of Problem
21. It reads:

(α(t),E(x),C(x),W (x)) = arg min
α∈P,(E(x),C(x),W (x))∈U

. . .

. . . ‖(α C − σ̄)H− (α E − ˙̄ε)‖2
Ω + ‖(α W − ˙̄W ) + h(α C · n|∂Ω − F̄ )‖2

∂Ω

(4.63)

Applications Sm : P → U (resp. Pm : U → P) which maps a time function
α (resp. space function E ) into a space (resp. time) function are defined by the
following equations:

• (E,C,W ) = Sm(α) ∈ U is defined by:

∀(E?,C?,W ?) ∈ U , . . .∫
ΩE×I

[αC? H − α̇E?] M
[
(αC− σ̄)H − (α̇E− ˙̄ε)

]
dΩ dt+ . . .

. . .

∫
∂ΩE×I

[αW ? + h αC?] m
[
(αW − ˙̄W ) + h(αC− F̄ )

]
dΣ dt = 0

(4.64)

• α = Pm(E,C,W ) ∈ P is defined by:

∀α? ∈ P , . . .∫
ΩE×I

[α?C H − α̇?E] M
[
(αC− σ̄)H − (α̇E− ˙̄ε)

]
dΩ dt+ . . .

. . .

∫
∂ΩE×I

[α?W + h α?C] m
[
(αW − ˙̄W ) + h(αC− F̄ )

]
dΣ dt = 0

(4.65)

The algorithm to construct the first order PGD approximation is based on an
alternative minimization of (4.54) where the variables are represented by equation
(4.59) to (4.62):

- Initialization of α1(t);
for l = 2, ..., lmax do

- Space problem: knowing αl−1(t), find (E(x),C(x),W (x))l which solves
(4.64);
- Time problem: knowing (E(x),C(x),W (x))l, find αl which solves (4.65);
- normalization of (E(x),C(x),W (x))l.

end

Algorithm 5: Algorithm to generate the first order PGD for the microproblem.
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In order to build the approximation of order k, it is sufficient to update the

variables by adding the already generated PGD pairs to
(
σ̄, ˙̄ε, F̄ , ˙̄W

)
in Problem

21.

Problem 21 provides an intrinsic convergence criteria related to the verification
of the search direction. Let us note that even a partial verification of the search
direction is sufficient to attain a good convergence of the computational strategy.
This feature of the LaTIn method enables one to generate new PGD pairs only when
necessary, since it represents the most expensive part of the strategy. In practice, an
updating of all the time functions αi with the current ROB at iteration n+ 1 is first
performed before any generation of new PGD pairs. This stage is called Preliminary
step in the following.

Microproblem of the linear stage for iteration n + 1 at the LaTIn-PGD
strategy

1. Preliminary step [Boisse et al., 1990, Ryckelynck, 2002, Ladevèze and Nouy,
2003, Ladevèze et al., 2009, Ladevèze et al., 2010] : reuse of the ROB (called
update step in [Nouy, 2010, Bonithon and Nouy, 2012]). This step consists in
building an approximation of the solution, denoted s̆(n+1), thanks to the ROB
generated at the previous iteration n of the LaTIn-PGD. Here, the only un-
knowns are the time functions {α(n+1)

i }1≤i≤k. Given a ROB of space functions
{Ei,Ci,W i}1≤i≤k, one seeks the best linear combination of this ROB which
minimizes the error (4.54). Let us regroup known quantities in:

∆0 = H σ̄ − ˙̄ε ∆1 = − ˙̄W − hF̄ (4.66)

Denoting as α the set as time functions {αi}1≤i≤k, the stationary of the error
(4.54) with respect the set of time functions leads to Problem 22:

Problem 22 (preliminary step) Find {αi(t)}i=1,...,k ∈ P such that, ∀α?i ∈
P,

∀ α?,
∫
I

α̇? (A00 α + A01 α̇−Q0) dt+

∫
I

α? (A10 α + A11 α̇−Q1) dt + . . .

. . .

∫
I

α̇? (B00 α + B01 α̇−Z0) dt +

∫
I

α? (B10 α + B11 α̇−Z1) dt = 0

(4.67)
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with the matrices:

A00 =
∫

Ω
C H M H CT dΩ A01 = −

∫
Ω

C H M ET dΩ

A10 = −
∫

Ω
E M H CT dΩ A11 =

∫
Ω

E M ET dΩ

Q0 =
∫

Ω
C H M ∆0 dΩ Q1 = −

∫
Ω

E M ∆0 dΩ

B00 = −
∫
∂Ω

W m h CT dΣ B01 =
∫
∂Ω

W m W T dΣ

B10 = −
∫
∂Ω

C h m h CT dΣ B11 =
∫
∂Ω

C m h W T dΣ

Z0 =
∫
∂Ω

W m ∆1 dΣ Z1 =
∫
∂Ω

C h m ∆1 dΣ

(4.68)

By taking into consideration the underlying finite element approximation (Ei =∑(n)
j=1(Φi)jϕj(x)), this leads to a k × k linear algebraic system. The linear

algebraic system is assembled and solved for each time instants of the set
Ip = {ti ∈ I}1≤i≤p, where Ip represents the discretized time space I. For
this discretized domain a linear interpolation and a Euler implicit integration
scheme is considered. This leads to a computational complexity in the order
of O(p N k2 + p N k + p k3).

2. Preliminary step performance indicator : An error indicator, based on the error
indicator (4.32) developed for the LaTIn method in [Ladevèze, 1999], is then
computed to quantify the accuracy of this first prediction. This error indicator
is used to quantify the rate of the convergence, by measuring the ratio (see
[Heyberger et al., 2011] for more details):

η0 =
e1 − e2

e1

(4.69)

with

e1 =
‖s(n) − ŝ(n−1/2)‖

1/2 ‖s(n) + ŝ(n−1/2)‖
e2 =

‖s̆(n+1) − ŝ(n+1/2)‖
1/2 ‖s̆(n+1) + ŝ(n+1/2)‖

(4.70)

The difference at numerator compares the distance between the two spaces Ad

and Γ for two consecutive iterations and gives a measure of how swiftly solution
s̆(n+1) is leading to the convergence solution with respect to the previous LaTIn
iteration.

If η0 is higher than a critical threshold, then the linear stage at Iteration n+ 1
is considered to be solved. One can proceed to next iteration. Otherwise, one
proceeds to the generation of a new PGD pair. The convergence indicator η0

is computed for each subdomain, thus, it enables the computational strategy
to seek the subdomains where the approximation needs to be enriched.
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3. Generation of a new PGD pair : The prediction previously computed is consid-
ered to be known and the performance indicator is lower of the given thresh-
old for a given subdomain. A new PGD pair is sought to enrich the previous
approximation from the order k − 1 up to order k. It is generated solving
Problem 21 by the algorithm 5 where the right-hand side is updated by the
already known previous solution s̃k−1 expressed in PGD form of order k − 1.
Problem 21 leads to the definition of two problems:

Problem 23 (Generation of a spatial function) Knowing α(t) from (4.65),
find (E(x),C(x),W (x)) such that it solves equation (4.64).

Problem 24 (Generation of a time function) Knowing (E(x),C(x),W (x))
from (4.64), find α(t) such that it solves equation (4.65).

Once this new pair of time and space functions is generated, the (k+1)th space
mode is orthogonalized and added to the ROB. The orthogonalization with
respect to the already existing modes becomes necessary with the introduction
of the Preliminary step. Indeed, to generate the best linear combination for a
given ROB, this stage needs an orthogonal basis ensuring the well-conditioning
of the linear system. The reader is referred to [Giacoma et al., 2015] in order
to appreciate the importance of the basis orthogonalization in the context of
nonlinear contact problems.

Remark 11 For some particular domains of application, as for instance the analy-
sis of structure made of composite materials, it is possible to discern a representative
volume subdomain. For these problems, the domain decomposition method produces
structures as assembly of similar subdomains. Two or more subdomains are con-
sidered to be similar when their geometries and their boundary conditions are very
similar. In this case, it is possible to construct a single ROB shared by all those
subdomains. Hence, each new PGD function added to this ROB is exploited to
approximate the solution of all the other similar subdomains. This ROB sharing
enables one to generate less space functions. Indeed, similar subdomains would gen-
erate similar PGD modes. This process of ROB sharing occurs at the preliminary
step [Ladevèze et al., 2010].

Convergence test of the LaTIn-PGD In order to check the convergence of the
iterative scheme, one constructs the error defined in (4.32). To resume, microprob-
lem of the linear stage at iteration n+ 1 is solved as follows:
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- Preliminary step: given a ROB of space functions {Ei,Ci,W i}1≤i≤k,

updates the time functions {α(n+1)
i }1≤i≤k which minimizes (4.54).

- Preliminary step performance indicator η0, defined in (4.69).
- if η0 > threshold then

microproblem of the linear stage at iteration n+ 1 is solved.
else

generation of a new PGD pair summarized in Algorithm 5 ;
end
- LaTIn convergence indicator defined in (4.32).

Algorithm 6: Microproblem of the linear stage at iteration n+ 1.

4.4 Approximation of the Preliminary step using

the Reference Points Method

In this section the Preliminary step is approximated by using the RPM. That enables
one to reduce the number of elementary operations to construct the reduced-order
model. In order to describe this procedure, let us consider equation (4.67). In order
to examplify the technique, let us focus on the term A00, the treatment of A01, A10,
A11 being similar. Let us denote the term (i, j) of the new reduced-order model as:

Jij =

∫
I×Ω

α?i Ci H M H CT
j αj dΩ dt, (4.71)

such that
J = (Jij)i=1,..,k, j=1,..,k . (4.72)

In order to simplify the notation let us note

G(x, t) = H(x, t) M(x, t) H(x, t).

The Preliminary step, detailed in the previous section, involves, at each iteration
of the LaTIn-PGD method, the construction of a new reduced-order model in order
to seek the best linear combination of the already existing ROB (see (4.67)). For
nonlinear problems, the construction of a reduced-order model is performed after
the evaluation of the new search direction operator (i.e. H = ∂B/∂σ|σ̂), whenever
it is necessary. Hence, this latter has to be integrated over the entire domain of
the definition of the problem. The computational complexity analysis of this part
of the strategy has been already shown in (3.3) for an elliptic problem. This anal-
ysis remains the same in the present situation. The results of the computational
complexity analysis to compute J are summarized in Tab.4.1.

Both the integration and the Galerkin projection of the operators involve a num-
ber of operations that scales with the dimension N of the underlying finite element
approximation space and the dimension p of the underlying discretisation of the time
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Table 4.1: Number of operations associated to J .
Standard PGD framework

J
Integration point evaluation of G O(p N β)
Projection of J onto ROB O(p N k2)
Projection of residue onto ROB O(p N k)

domain. In [Néron et al., 2015] the authors have shown that for a parametrized 3D
visco-plastic problem, the computational cost related to these two operations repre-
sents 75% of the entire CPU time spent for the simulation.

Two approaches are investigated:

• Method 1: separated representation of operator by RPM. It consists into ap-
proximating the evaluation and integration of the search direction by the RPM,
and then into reconstructing it in a separated representation by the explicit
formulas (as described in (2.31)). The approximation of G(x, t) in separated
variables form enables one to separate the computation of the time-space in-
tegrals. This leads to a reduction of the complexity for the operation (4.71).

• Method 2: construction of the reduced-order model by the Reference Points
Method. This one consists into constructing the reduced-order model by us-
ing the RPM. In that case, all the operations are computed using the RPM
approximation framework. Hence, all the quantities are represented with their
generalized components. Operations are executed between generalized com-
ponents of quantities enabling one to separate the time-space integrals and
reduce the number of elementary operations.

In order to clarify the different approaches of this two methods let consider again
(4.71):

Jij =

∫
I×Ω

α?i Ci G CT
j αj dΩ dt, (4.73)

First method (Method 1) gives a separated variables approximation of the oper-
ator G. This enables one to separate the integrals of the (4.73). When the integrals
over the time and space are separated, the operation of projection of G over the
reduced-order basis {Ci}i=1,...,k does not have to be computed for every value of the

time domain, but it can be computed just once. Considering ¯̄G a separated variables
representation of G:

¯̄G(t, x) = g(t)Γ(x), (4.74)

equations (4.74) and (4.73) lead to:

Jij =

∫
I

α?j (t) g(t)αj(t) dt

∫
Ω

Ci Γ(x) CT
j dΩ. (4.75)

The second method (Method 2) does not give a separated variables approxima-
tion of the operator G. It computes the operation Ci G CT

j of (4.73) exclusively
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between the generalized components of the operands: C̄i Ḡ C̄
T
j . It leads to operate

the integrals only over a restricted part of the time and space domain:

Jij =
mt∑
a=1

mx∑
b=1

∫
Ia×Ωb

C̄i Ḡ C̄
T
j dΩb dt (4.76)

That enables one to decrease the computational complexity related to (4.73). Thus,
this method does not give a separated variables approximation of quantities but
consider a restricted part of these quantities to perform the operations. Then,
thanks to the explicit formulas (2.31) the result of the operation is reconstructed in
a separated variables representation.

4.4.1 Method 1: approximation of the tangent operator by
the Reference Points Method

Let us split the time domain in mt sub-intervals Ia. The center µ
a

of the sub-interval
Ia is the reference instance point. For the space domain mx points xb are introduced
and the domain Ω is divided into mx sub-domains Ωb. The xb are the reference
spatial points. The quantities are represented by their generalized components.

In this method, the tangent operator G is approximated by the RPM before
reconstruction in a separated variable format by the explicit formulas presented in
section 2.3.1. Let us introduce the generalized component Ḡ = (Ḡt, Ḡx), defined as
follows:

Ḡt :=

{
Ḡt
ab(t) = G(xb, t) if t ∈ Ia

Ḡt
ab(t) = 0 otherwise

}
a=1,..,mt; b=1,..,mx

(4.77)

Ḡx :=

{
Ḡx
ab(x) = G(x, ta) if x ∈ Ωb

Ḡx
ab(x) = 0 otherwise

}
a=1,..,mt; b=1,..,mx

(4.78)

For the first generalized component Ḡx, the operator G(x, ta) is evaluated over
the entire space domain for mt reference instants {ta}i=1,...,mt . For the second gener-
alized component Ḡt, the operator G(xb, t) is evaluated over the entire time domain
for mx reference space points {xb}i=1,...,mx .

Once Ḡt and Ḡx are known, the full format is obtained thanks to the explicit
formulas (2.31). This leads to a separated representation of operator G:

¯̄G(t, x) = gab(t)Γab(x). (4.79)

Analysis of computational complexity Equations (4.79) and (4.71) lead to:

Jij =

∫
I×Ω

α?i Ci
¯̄G CT

j αj dΩ dt, (4.80)
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Jij =
mt∑
a=1

mx∑
b=1

∫
Ia

α?j (t) gab(t)αj(t) dt

∫
Ωb

Ci Γab(x) CT
j dΩ. (4.81)

Considering the contribution of all the k space modes {Ci}i=1,..,k of the PGD
reduced-order basis, one obtains the Jacobian J . The approximation of G(x, t) in
separated representation enables one to separate the integrals, as shown in (4.81).
The operator Γ(x) does not depend on t. Hence, the operation of integration over
the space (scaling with N) and projection of the operator on the basis, Ci Γ(x)Cj,
is computed just once instead of p times. The number of operations to calculate
J decreases from O (p N (β + k2)) to O (p + N (β + k2)) with a gain equal to p.
Let us remember that β is the number of FLOPS to evaluate the search direction
operator at a single integration point, p, in this case is the number of time instants
in the discretized time domain and N the number of degrees of freedom of the
underlying space discretization. Finally the gain in the number of operations is
equal to the ratio between the number of operations to integrate and project the
Jacobian in the standard PGD and the same operations computed by the RPM:

p N (β + k2)

p + N (β + k2)
(4.82)

Scaling numerator and denominator by p, (4.82) can be written as follows:

N (β + k2)

1 + N
p

(β + k2)
(4.83)

Now, considering that, for mechanical problems:

N

p
(β + k2) >> 1 (4.84)

the gain in the number of operations is expressed as follows:

N (β + k2)
N
p

(β + k2)
= p (4.85)

Finally the gain in the number of operations to compute the Jacobian J (4.81)
is in the order of p. Tab. 4.2 resumes this analysis.

4.4.2 Method 2: construction of the reduced-order model
by the Reference Points Method

In that case, all the operations of projection and integration to construct the reduced-
order model, denoted as Jij in (4.71), are approximated by the RPM. The quantities
are represented by their generalized components and the operations are executed be-
tween generalized components of quantities.
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Table 4.2: Comparison of the number of operations between J and its approxima-
tion by RPM.

Standard PGD framework

J
Integration point evaluation of Jacobian O(p N β)
Projection of Jacobian onto ROB O(p N k2)

RPM framework

J
Integration point evaluation of Jacobian O(p + N β)
Projection of Jacobian onto ROB O(N k2)

ω̄t :=

{
ω̄tab(x) = Ci(x) G(x, ta) CT

j (x) if x ∈ Ωb

ω̄tab(x) = 0 otherwise

}
a=1,..,mt; b=1,..,mx

(4.86)

ω̄x :=

{
ω̄xab(t) = Ci(xb) G(xb, t) CT

j (xb) if t ∈ Ia
ω̄xab(t) = 0 otherwise

}
a=1,..,mt; b=1,..,mx

(4.87)

The approximation of ω given by RPM, noted ¯̄ω = ψ(t) χ(x) is obtained by the
explicit formulas (2.31). Following formulas (2.31), χ(x) and ψ(t) are obtained from
(4.86) and (4.87) as follows:

ψab(t) =

∑mx
c=1 ∆Ωc ω̄

t
ac(t)ω̄

x
ac(xc)λ

2
ac∑mx

c=1 ∆Ωc ω̄xac(xc)ω̄
x
ac(xc)λ

2
ac

and χab(x) = ω̄xab(x) (4.88)

Replacing ω in (4.71) one obtains:

Jij =

∫
Ω×D

ω(x, t) dΩ dµ ≈
∫

Ω×D
¯̄ω(x, t) dΩ dt (4.89)

Replacing ¯̄ω = ψ(t) χ(x) in (3.37) one can separate the integrals:

Jij ≈
∫

Ω×I
¯̄ω(x, t) dΩ dt =

∫
Ω

χ(x) dΩ

∫
I

ψ(t) dt (4.90)

The domain is the union of the mx mµ considered patched. Hence (3.38) lead
to:

Jij ≈
mt∑
a=1

mx∑
b=1

∫
Ωb

χab(x) dΩb

∫
Ia

ψab(t) dta (4.91)

Replacing (3.36) in (3.38) one obtains:

Jij ≈
mt∑
a=1

mx∑
b=1

∫
Ωb

ω̄xab(x) dΩb

∫
Ia

∑mx
c=1 ∆Ωc ω̄

t
ac(t) ω̄

x
ac(xc) λ

2
ac∑mx

c=1 ∆Ωc ω̄xac(xc) ω̄
x
ac(xc) λ

2
ac

dta (4.92)



Approximation of the Preliminary step using the RPM 121

For the integral over Ia the only term depending on t is ω̄tac(t). Equation (3.39)
is equivalent to:

Jij ≈
mt∑
a=1

mx∑
b=1

∫
Ωb

ω̄xab(x) dΩb

∑mx
c=1 ∆Ωc

(∫
Ia
ω̄tac(t) dta

)
ω̄xac(xc)λ

2
ac∑mx

c=1 ∆Ωc ω̄xac(xc) ω̄
x
ac(xc)λ

2
ac

(4.93)

Analysis of computational complexity For this method, the analysis of com-
putational complexity has already been detailed in section 3.3 considering the con-
tribution of the entire set of PGD space functions in the ROB. This analysis is
summarized in Tab.4.3.

Let us remember that β denotes the number of FLOPS to integrate the operator
G at a single integration point. p is the number of parameter values in the discretized
parameter domain and N the number of degrees of freedom of the underlying space
discretisation. For the sake of simplicity, the number of integration points of our
model is assumed to be equal to N .

Table 4.3: Computational complexity of integration and projection onto ROB to
obtain J and R, in the RPM format

Operation type Complexity

ω̄t

Integration point evaluation O(mt N β)
Projection to obtain J O(mt N k2)
Projection to obtain R O(mt N k)

ω̄x

Integration point evaluation O(mx p β)
Projection of J onto ROB O(mt mx k

2)
Projection of R onto ROB O(mt mx k)

Considering that, for structural mechanics, N � mx, the cost to compute ω̄x
can be neglected. Hence, the expected gain in terms of number of operations to
construct the reduced-order model is equal to the ratio p/mt. This is outlined in
Tab.4.4. This gain, for typical mechanical problems, can be around one order of
magnitude.

Table 4.4: Comparison of the number of operations between J and its approxima-
tion given by RPM.

Standard PGD framework

J
Integration of G on I × Ω O(p N β)
Projection of Jacobian onto ROB O(p N k2)

RPM framework

J
Integration related to ω̄t O(mt N β)
Projection related to J O(mt N k2)
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Cost of the reconstruction As introduced in chapter 2.3 the generation of a
first approximation of the quantity J in a separated-variables format is obtained by
generating one product of functions per time-space patch Ia × Ωb.

ψab(t) =

∑mx
c=1 ∆Ωc ω̄

t
ac(t)ω̄

x
ac(xc)λ

2
ac∑mx

c=1 ∆Ωc ω̄xac(xc)ω̄
x
ac(xc)λ

2
ac

and χab(x) = ω̄xab(x) (4.94)

The approximation is given by generating only a PGD pair locally, over each patch
Ia × Ωb. The cost of reconstruction given by the (4.94) is simply in the order of
8(m2

x mt) + 2. This computational cost has to be added to the computational
complexity of the operation, analysed in 4.4.1 and 4.4.2.

4.5 Numerical example

In this section, the proposed strategy is illustrated through a numerical test. The
aim is to show that the application of the RPM to approximate the Preliminary step
of the strategy leads to the same order of convergence as the standard technique
while leading to a significant reduction in the computation time.

Under the assumption of plane strain, let us consider the evolution over I =
[0, T ], (T = 10s) of a two-dimensional L-shaped structure made of 4 subdomains
(see the Fig.4.4). Each subdomain is a square of 10 mm × 10 mm. The first
cell has three holes. The structure is clamped at the bottom and subjected, along
its top side, to a prescribed pressure F d(t) = F0 sin(t) ey with F0 = 10 MPa (see
Fig.4.5)). Each subdomain is discretized into quadratic triangular finite elements
and the integration is computed over 3 Gauss points per each finite element, leading
to 1368 dofs for the holed subdomain and 882 dofs for the others, for a total amount
of 4014 spatial dofs. The time interval I is discretized into 100 time steps and an
Euler implicit integration scheme is used. Since our example is relatively simple, it
is possible to build a reference solution by using a direct incremental computation.
Thus, the following error according to the reference solution is introduced:

ηtrue =
‖ ¯̄U − U‖I×Ω

‖U‖I×Ω

, ‖U‖2
I×Ω =

∫
I×Ω

U2 dΩdt. (4.95)

where U(M, t) is the displacement field, solution over the entire time-space domain
of the simulation using the direct incremental computation. ¯̄U(M, t) is the solution
of the simulation obtained with the non-linear LaTIn-PGD solver with the RPM
approximation of the Preliminary step. The implementation is made in an inhouse
Matlab code.

In order to study the new procedure in the case of a nonlinear problem, let us
consider that the evolution law of the material is described as:

ε̇p =
K−1

E ν(t)
Tr(σ) σ (4.96)
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e y
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Figure 4.4: The considered structure, the partitioning into 4 subdomains and the
boundary conditions. Two PGD ROB are generated: one for subdomain 1 and one

shared between subdomains 2 to 4.
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Figure 4.5: The evolution of the load over the time, Fd(t).

where K is the Hooke’s tensor of the material. Poisson’s ratio is taken equal to ν =
0.33 and Young’s modulus is 210 GPa. The viscosity coefficient ν(t) is considered
depending on the time as follows:

ν(t) = 102 + 10 sin(
2π

10
t)− 10 t [s]. (4.97)

In order to ensure rapid convergence, the search direction operators H− and H+ are
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updated at each LaTIn iteration and equal to the tangent operator:

dε̇p
dσ

=
d( K−1

E ν(t)
Tr(σ) σ)

dσ
=

K−1

E ν(t)
(σ I + Tr(σ)). (4.98)

As mentioned earlier, a practical criteria could be used to set this operator to be con-
stant, in order to avoid updating the operators when their variations are small. But
this feature is not considered in this study in order to facilitate the interpretations.
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Figure 4.6: The evolution of the viscosity coefficient over the time, ν(t).

Fig.4.7 shows the displacement field and the Von Mises stress field at the final
time step T = 10 seconds. The evolution of the vertical displacement of Point P (see
Fig.4.4) is in perfect agreement with the result obtained with the direct incremental
computation (Fig.4.8).

The time-space multiscale LaTIn-PGD with Preliminary step needs 48 iterations
to achieve an error smaller than 5 · 10−2. More precisely, the ROB is composed of
10 modes for sudomain 1 and 19 modes for subdomains 2 to 4. Indeed, here spatial
functions have been shared between subdomains 2 to 4 as mentioned at the end of
section 4.3.

Remark 12 For the considered academic example, the sharing of the PGD basis
within subdomains bearing similarities in terms of geometry and boundary conditions
enables one to generate 2 different PGD basis instead of 4 (i.e. one for each subdo-
main). Dealing with only 2 PGD basis implies the construction of only 2 reduced-
order models at each iteration of the LaTIn method. Considering more complicated
scenarios, e.g. models for structures made of composite materials, the sharing of the
basis between similar subdomains could be not sufficient to consider the construction
of only one reduced-order model for all of these subdomains. In some cases, these
subdomains can evolve according to different nonlinearities. This situation implies,
for each subdomain, one different operator governing the evolution law (see (4.96)).
Hence, despite of the sharing of the same PGD modes, this difference involves the
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(a) Magnitude of displacement field

(b) Von Mises stress field

Figure 4.7: The displacement field and the Von Mises stress field at the final time
step t = 10 sec.

construction of a reduced-order model for each one of the subdomains, increasing
the necessary computational effort. In these cases, the application of the RPM can
effectively decrease the necessary computational effort decreasing the computational
complexity to construct each one of the reduced-order models.

Fig.4.9 shows the comparison between the convergences of the multiscale LaTIn-
PGD method with and without the Preliminary step. Here, for each subdomain, a
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Figure 4.8: The displacement of point P over the time domain.

new PGD pair is generated at each LaTIn iteration. Not every generated PGD pair
is added to the ROB. A sort, based on the norm of the time function, is considered:

φk =

(∫
I

(αk)2dt

)1/2

(4.99)

That enables one to measure the relative importance of the new PGD pair {Ek, αk}
with respect to the already existing PGD pairs. Only the most relevant PGD pairs
are kept.

The Preliminary step enables one to drastically reduce the number of PGD pairs
(Fig. 4.9(b)). This corresponds to an important gain in terms of CPU time spent
to achieve the solution. Nevertheless, as already explained before, this represents a
significant part of the remaining CPU time. Indeed, for the present numerical test
considered, the CPU time spent by the Preliminary step overpasses the 50% (see
the allocation of the CPU time in Fig. 4.10). Most of this time is spent to update
the tangent operator (around 45% of the entire CPU time). For problems relatively
small in terms of number of degrees of freedom, the update of the tangent opera-
tor represents the biggest part of the Preliminary step. However, when increasing
the number of degrees of freedom, the computational complexity of the Galerkin
projection increases.

Convergence curves of the LaTIn error indicator (see (4.32)) for the LaTIn-PGD
with preliminary step with (LaTIn-PGD-RPM) and without (LaTIn-PGD) RPM are
given in Fig.4.11(a). For the LaTIn-PGD-RPM, the two proposed approximation
methods (see section 4.4) are compared:

• LaTIn-PGD-RPM1 (method 1, section 4.4.1): It consists into approximating
the evaluation and integration of the search direction by the RPM, and then



Numerical example 127

0 5 10 15 20 25
10

−2

10
−1

10
0

LATIN iterations

η

 

 

LATIN−PGD with Prelim. step

LATIN−PGD without Prelim. step

(a) Error indicator vs. number of iterations

0 20 40 60 80 100
10−2

10−1

100

LATIN iterations

d

 

 

LATIN−PGD with Prelim. step
LATIN−PGD without Prelim. step

number of PGD pairs 

(b) Error indicator vs. number of generated PGD pairs

Figure 4.9: Comparison between the multiscale LaTIn-PGD method with the
Preliminary step and the multiscale LaTIn-PGD without the Preliminary step. The

RPM technique is not used.

into reconstructing it in a separated representation by the explicit formulas
(as described in (2.31)).

• LaTIn-PGD-RPM2 (method 2, section 4.4.2): This one consists into construct-
ing the reduced-order model using the RPM. In that case, all the operations
to construct Jij are performed using the RPM approximation framework. The
quantities are represented on their generalized components. Operations are ex-
ecuted between generalized components of quantities enabling one to separate
the time-space integrals.
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Figure 4.10: The distribution of the CPU time spent to achieve the solution.

The error indicator (4.32) as a function of the number of generated PGD pairs is
also plotted in Fig.4.11(b) for the different methods. The implementation of the
RPM1, does not give satisfactory results in terms of convergence and relative error.
Let us remember that RPM1 gives the separated variables representation of the
search direction operator. Even if the algorithm has generated more PGD pairs
to enrich the approximation, the convergence curve remains irregular. Tab. 4.5
reports the relative error (4.95) related to each subdomain. The separated variables
representation of the search direction operator seems to be not enough accurate
where the gradients over the space domain are stronger (i.e. over the subdomain 1).
Hence, it needs further analysis in the case of nonlinear problems.

The LaTIn-PGD-RPM2 produces better convergence curves compared with the
LaTIn-PGD-RPM1. Convergence curves are smoother, even though small oscilla-
tions remain, and similar to the ones obtained with the LaTIn-PGD approach with-
out RPM. Nevertheless, one can note that 6 additional PGD pairs are generated to
reach an error level of 10−2.

A posteriori error estimation. In order to appreciate the error introduced by
the RPM to solve the Preliminary stage (4.67), let us consider the error (4.95).
The number of reference instants is set equal to mt = 10 and the number of
reference spatial points varies from 1 to 25 per each subdomain. Let us recall that
the ideal gain that can be reached by the RPM is in the order of p/mt = 10. The
computational time cost and the error ηtrue introduced by the RPM in the LaTIn-
PGD strategy to solve the time problem (4.67) are given in the Tab. 4.5. Error
ηtrue is given in percentage for each subdomain.
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Figure 4.11: Convergence curves

As previously said, the LaTIn-PGD-RPM1 does not give satisfactory results
in terms of relative error. In fact, for the first and second subdomains, where
gradients are stronger, the error remains not acceptable (higher than 15%). Adding
more spatial reference points makes the error decrease but not significantly. LaTIn-
PGD-RPM2, enables one to obtain a remarkable gain in terms of CPU time while
maintaining a very good level of accuracy. The relative error never exceeds 4% even
when only 1 spatial reference point is used for each subdomain. Let us note that the
gain in terms of CPU time is close to the ideal one - i.e. p/mt = 10 - when using only
one spatial reference point per subdomain. This gain decreases when more spatial
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Table 4.5: Wall clock time table comparing PGD standard and RPM to compute
the Preliminary step.

Standard PGD to compute the Preliminary step (s) 1, 040.3

Num. of ref. points for sub-dom. 1 9 25

PGD-RPM Method 1 (s) 113 129 217
Gain 9.2 8.1 4.8
Error ηtrue subdomain 1 31% 29% 26%
Error ηtrue subdomain 2 14.4% 14.2% 13.3%
Error ηtrue subdomain 3 9.3% 8.7% 8.1%
Error ηtrue subdomain 4 6.4% 6.4% 5.8%

PGD-RPM Method 2 (s) 137 150 297
Gain 7.6 6.9 3.5
Error ηtrue subdomain 1 2.5% 2.3% 1.8%
Error ηtrue subdomain 2 4% 3.9% 3.6%
Error ηtrue subdomain 3 4.2% 4% 3.3%
Error ηtrue subdomain 4 3% 2.8% 2.3%

reference points are added. This comes from the fact that, for a small number of
spatial dofs, the ratio N/mx becomes no more negligible in the computational cost
of the method 2 (see section 4.4.2). In practice, for more realistic cases, the number
of degrees of freedom is much higher and the ratio N/mx should be higher than two
orders of magnitude.

4.6 Conclusions

In this chapter, the multiscale strategy based on the LaTIn-PGD has been presented.
It represents a convenient framework for separated variables representation since the
LaTIn method is a non-incremental iterative method that attains the solution by
successive enrichments defined all over the time-space domain. At the iteration
n + 1, a first approximation of the solution is provided by the Preliminary step:
it consists in minimizing the error in the search direction in the linear span of
the already existing reduced-order basis, arising from the previous iteration. This
approximation can be enriched by generating a new PGD pair by a greedy algorithm,
whether the convergence rate is lower than a threshold. The basis of PGD functions
can be shared among subdomains representing similar cells (for instance the RVE
of composites materials).

The Preliminary step enables to generate only the most relevant PGD pairs
with a significant time saving. However it represents a big part of the remaining
computational time because it involves repetitive operations to construct the new
ROM. These operations scale with the underlying time and spatial discretisations.

The RPM, developed in the chapter 2, is introduced in this part of the strategy
in order to decrease the number of necessary operations to construct the new ROM
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from the existing ROB. The gain in terms of number of operations is in the order
of the ratio between the number p of time instants and the number mt of reference
time instants (p/mt).

Two different ways to approximate the Preliminary step by the RPM has been
developed and implemented in the computational strategy: (i) the approximation of
the search direction under separated representation (denoted RPM 1) and (ii) the
approximation of all the operations concerning the construction of the ROM under
separated representation (denoted RPM 2). Both of them show an important gain in
terms of CPU time when implemented in the considered example. Nevertheless, the
approach called RPM1 needs more investigation since it appears to be less robust
than the first one. In fact, it provides a low level of accuracy where gradients are
stronger. On the other, RPM2 approach shows remarkable gains providing results
with high level of accuracy.
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Conclusion

Numerical simulation has been playing an increasingly important role in science and
engineering because of the need to simulate realistic physical scenarios in order to
provide reliable tools for computer-aided design-analysis. Simulations reduces the
use of real prototypes and assist the design phase. In many situations, including
optimization and control, the same model, depending on a parameter that is chang-
ing, has to be simulated over and over, multiplying by a large factor the solution
procedure cost of one simulation.

Despite of the continuing progress in computer speeds and hardware capabili-
ties, the construction of those solutions would be still unsuitable for all the classical
numerical approaches. In fact, traditional direct techniques make use of huge ap-
proximation subspaces for the solution of the underlying PDE. This leads to systems
so large that direct techniques are inappropriate for the computational efforts they
involve. Model reduction techniques constitute one of the tools to circumvent this
obstacle by seeking the solution of a problem in a reduced-order basis, whose di-
mension is much smaller than the original vector space. Chapter 1 has shown how
reduced order modelling, by separation of variables, reduces the complexity related
to the solution of parametric linear problems.

In literature, all the model reduction techniques based on the projection differ by
the way to construct the reduced-order basis (ROB). There is a family of techniques
that, in order to build the reduced-order basis, involves a learning phase, called
off-line stage. In a second stage, once the reduced-order basis is built, it solves the
reduced-order model (ROM) for all the parameters values. During this learning
phase, these techniques perform high-fidelity simulations by direct techniques, or
data acquisition by experiments, in order to obtain the main characteristics of the
problem. From this phase, that can be expensive in terms of CPU, they obtain
the reduced-order basis that is exploited to project the linear system and solve the
reduced-order model in a smaller sub-space, with the associated computing time
savings. Proper Orthogonal Decomposition (POD) and reduced-basis belong to this
family of techniques.

In this work we deal with the Proper Generalized Decomposition (PGD). Basi-
cally, PGD consists in seeking the solution of a problem in a relevant reduced-order
basis which is generated automatically and on-the-fly by a greedy algorithm. In the
presented computational strategy, PGD is part of the LaTIn method. This is a non-
incremental solver for nonlinear problems which generates the approximations of the
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solution over the entire parameter/time-space domain by successive enrichments. At
each iteration of the LaTIn method, the previously calculated reduced-order basis
is used first, leading to a reduced-order model and a new approximation of the solu-
tion. It has been proved that this step of the strategy, called here Preliminary step
([Ladevèze and Nouy, 2003, Ladevèze et al., 2009, Ladevèze et al., 2010], enables
one to reduce the number of PGD functions generated. If this approximation is
not good enough, the reduced-order basis is enriched by defining a new functional
product by using a greedy algorithm.

Dealing with nonlinear problems, a linearisation technique is necessary and thus,
a new reduced-order model has to be constructed at each new iteration of the solution
method. Section 1.2 has explained that for all kind of model reduction techniques
based on the projection of the problem on a basis, the computational cost associ-
ated with assembling the ROM’s low-dimensional operators scales with the large
dimension of the original high-dimensional model. For this reason, model reduction
techniques are particularly efficient when the reduced-order model needs to be con-
structed only once or when this step can be performed off-line, prior to the on-line
resolution of this model which can then be very fast. This issue results to be the
bottleneck of nonlinear model reduction strategies.

Some solutions have already been introduced in literature. The most known
is certainly the Empirical Interpolation Method (EIM) [Barrault et al., 2004, Grepl
et al., 2007, Nguyen, 2005] and its semi-discrete version (DEIM) [Chaturentabut and
Sorensen, 2010]. These techniques are well-suited for model reduction techniques
that resort to a learning stage, i.e., POD and reduced-basis.

However, these techniques are not suitable for the LaTIn-PGD strategy. In fact,
in this strategy the reduced-order basis is progressively enriched by new functions
and it is not possible to pre-compute the Galerkin projection operators in an off-line
stage. It means that, even if it would be possible to start the EIM procedure at each
LaTIn iteration, there would be no gains in the number of operations because the
complete Galerkin projection could be not avoided. For that reason, the aim of this
work has been to propose a new technique, called Reference Points Method (RPM).
It consists in:

• to provide a compressed version of quantities based on the concept of reference
times, points and parameters [Ladevèze, 1997]. This approximation framework
enables one to reduce the complexity of algebraic operations between quantities
in separated representation.

• to reconstruct the quantities to give a first approximation of quantities in a
separated representation. The reconstruction is obtained by explicit formulas
(2.31) and it arises from compressed version of quantities, generating only one
product of functions locally per each patch.

• to avoid the artificial increasing of the PGD modes representing the result of
the algebraic operation between quantities in separated representation.
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RPM has been introduced in the LaTIn-PGD strategy in order to approximate
the Preliminary step. This step involves repetitive operations between PGD quan-
tities that scale with the underling discretisation of the computational domain. Ap-
plying the RPM to this step it is possible to decrease the number of operations by a
factor p/mµ where p is the discretisation over the parameter domain and mµ is the
number of reference parameter points chosen.

In Chapter 3 a two-dimensional elliptic and nonlinear parametrized problem
has been considered to detail the technique. For that problem, the Preliminary step
represents up to the 70% of the CPU time. RPM gives a gain in the order of 15 with
respect to a direct technique, for an error of 10−3 with only a few reference points.
The second part of the chapter has been dedicated to underline the similarities
with respect to the reduced order model obtained by applying the reduced-basis
technique on the same problem. The quality of the approximations obtained by the
two techniques have been compared showing a comparable level of error with some
differences. The quality of the approximation given by the EIM can be increased
only by increasing both the number of interpolation points and the size of the
precomputed reduced-order basis. On the contrary, the error obtained by the RPM
can be reduced by increasing either the number of reference points or by adding
PGD pairs throuhgout the LaTIn iterations.

Chapter 4 has been dedicated to the implementation of the RPM in the numer-
ical analysis of structural mechanics. For that purpose, the multiscale LaTIn-based
domain decomposition method has been considered. First part of this chapter has
been dedicated to the description of this computational strategy. The second part
has shown how the RPM has been introduced in the LaTIn-PGD strategy to ap-
proximate the Preliminary step, enabling one to reduce the number of operations to
construct the reduced-order model. The chapter ends with a numerical example to
assess the efficiency of the RPM within this computational strategy.

There are some perspectives related to the presented work:

• In chapter 4, the implementation of the RPM1 to give a the separated vari-
ables representation of the search direction operator is not enough accurate
where the gradients over the space domain are stronger. Further investigations
are required for a better implementation of the approximation of the search
direction operator in separated variables format.

• Further studies are necessary in order to provide error bounds to the RPM.
The way forward could be the correlation between the formulation of the
functional (2.12) and the least-square regression. Indeed the functional (2.12)
can be seen, patch by patch, as a least-square regression. There are already
provided, for a wide family of problems, demonstrations to obtain error bounds
for least-square regression and that could be the base to develop error bounds
for the RPM.

• Application of the technique to more realistic 3D industrial cases.



136 Conclusion

• Implementation of the RPM in more complex nonlinear models with more
physical description of materials.

• Extension of the RPM technique outside of the LaTIn framework. This would
lead to the application of the RPM for techniques exploiting a learning stage
to construct a reduced-order basis. In chapter 2, considering simple examples,
the RPM approximation is enriched by the reduced-basis technique. Further
studies are necessary, in order to have more realistic applications and extend
the RPM to other reduced-order modelling techniques.

• Applied to preliminary step of the LaTIn-PGD, the RPM enables a gain
in the order of the ratio p/mt, with p the number of discrete values over
the time/parameter domain and mt the number of time/parameter reference
points. This gain, for mechanical applications, can be of one or two order of
magnitude. However, the independence from the finest space discretization
N is not achieved since some complete integrations over the space are still
necessary. In further study, a way to avoid the complete integration over the
space could be figured out. For this purpose, techniques relying on gappy POD
could give a contribution.

• RPM could be the starting point to develop a new PGD algorithm. This new
algorithm would exploit the minimization of the functional defined in (2.12)
in order to generate the new PGD pairs of functions. As in a progressive POD
algorithm (see [Ryckelynck, 2005] for an example of progressive POD), at each
iteration of the LaTIn method, some few solutions would be computed at the
reference points. That would represent the generalized components. From
these, the new PGD pairs would be generated by the explicit formulas (2.31).
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solution method for non-linear structural mechanics. Mechanical Engineering,
50(5):317–328.

[Boucard et al., 1997] Boucard, P.-A., Ladeveze, P., Pass, M., and Rougée, P.
(1997). A nonincremental approach for large displacement problems. Computers
and Structures, 64(1):499–508.

[Boucinha et al., 2014] Boucinha, L., Ammar, A., Gravouil, A., and Nouy, A.
(2014). Ideal minimal residual-based proper generalized decomposition for
non-symmetric multi-field models – application to transient elastodynamics in
space-time domain. Computer Methods in Applied Mechanics and Engineering,
273(1):56–76.

[Boucinha et al., 2013] Boucinha, L., Gravouil, A., and Ammar, A. (2013). Space–
time proper generalized decompositions for the resolution of transient elastody-
namic models. Computer Methods in Applied Mechanics and Engineering, 255:67
– 88.

[Briggs et al., 2000] Briggs, W., Henson, V., and McCormick, S. (2000). A Multigrid
Tutorial, Second Edition. Society for Industrial and Applied Mathematics, second
edition.

[Buffa et al., 2012] Buffa, A., Maday, Y., Patera, A., Prud’homme, C., and Turinici,
G. (2012). A priori convergence of the greedy algorithm for the parametrized
reduced basis. Mathematical Modelling and Numerical Analysis, 46(3):595–603.

[Carlberg et al., 2010] Carlberg, K., Bou-Mosleh, C., and Farhat, C. (2010). Effi-
cient nonlinear model reduction via a least-squares petrov-galerkin projection and
compressive tensor approximations. International Journal for Numerical Methods
in Engineering, 86(1):155–181.

[Carlberg et al., 2013] Carlberg, K., Farhat, C., Cortial, J., and Amsallem, D.
(2013). The gnat method for nonlinear model reduction : Effective implementa-
tion and application to computational fluid dynamics and turbulent flows. Journal
of Computational Physics, (242):623–647.



140 Bibliography

[Champaney et al., 1999] Champaney, L., Cognard, J., and Ladevèze, P. (1999).
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(1998). The variational multiscale method—a paradigm for computational me-
chanics. Computer Methods in Applied Mechanics and Engineering, 166(1–2):3–
24. Advances in Stabilized Methods in Computational Mechanics.

[Ibrahimbegovic and Melnyk, 2007] Ibrahimbegovic, A. and Melnyk, S. (2007). Em-
bedded discontinuity finite element method for modeling of localized failure in
heterogeneous materials with structured mesh: an alternative to extended finite
element method. Computational Mechanics, 40(1):149–155.
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Résumé : Le but de ce travail est d'introduire un cadre 
d'approximation, la Reference Points Method, afin de 
réduire la complexité de calcul des opérations 
algébriques lorsqu'elles concernent des approximations à 
variables séparées dans le cadre de la Proper 
Generalized Decomposition. La PGD a été introduite 
dans le cadre de la méthode LaTIn pour résoudre 
efficacement des équations différentielles non linéaires 
et dépendantes du temps en mécanique des structures. 
La technique consiste à chercher la solution d'un 
problème dans une base d'ordre réduit (ROB) qui est 
générée automatiquement et à la volée par la méthode 
LaTIn. Les techniques de réduction de modèle sont 
particulièrement efficaces lorsque le ROM a besoin 
d'être construit qu'une seule fois. Ce n'est pas le cas pour 
des problèmes non linéaires. En effet, dans un tel cas, 
les opérateurs qui sont impliqués dans la construction du 
ROM varient au cours du processus itératif et des 
calculs préliminaires ne peuvent pas être effectués à 
l'avance pour accélérer le processus 'online'. Par 
conséquent, la construction du ROM est un élément  

coûteux de la stratégie en terme de temps de calcul. Il en 
découle la nécessité d'évaluer, à chaque itération, la 
fonction non linéaire de grande dimension (et 
éventuellement sa jacobienne) et ensuite sa projection 
pour obtenir les opérateurs réduits. Cela représente un 
point de blocage des stratégies de réduction de modèle 
dans le cadre non linéaire. Le présent travail a comme 
but une réduction ultérieure du coût de calcul, grâce à 
l'introduction d'un nouveau cadre d’approximation 
dédiée à la strategie de calcul LaTIn-PGD. Il est basé 
sur la notion de temps, de points et de paramètres de 
référence et permet de définir une version compressée 
des données. Le RPM est introduit dans le solveur 
LaTIn-PGD non linéaire pour calculer certaines 
opérations répétitives. Ces opérations sont liées à la 
résolution du problème du temps/paramètre qui implique 
la mise à jour de l'opérateur tangent et la projection de 
ce dernier sur la base réduite. La RPM permet de 
simplifier et de réduire le nombre d'opérations 
nécessaires. 

 

 

Title : A new approximation framework for PGD-based nonlinear solvers 
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Abstract : The aim of this work is to introduce an 
approximation framework, called Reference Points 
Method (RPM), in order to decrease the computational 
complexity of algebraic operations when dealing with 
separated variable approximations in the Proper 
Generalized Decomposition (PGD) framework. 
The PGD has been introduced in the context of the 
LATIN method to solve efficiently time dependent 
and/or parametrized nonlinear partial differential 
equations in structural mechanics. Roughly, the PGD 
technique consists in seeking the solution of a problem 
in a relevant Reduced-Order Basis (ROB) which is 
generated automatically and on-the-fly by the LATIN 
method. However, model reduction techniques are 
particularly efficient when the ROM needs one 
construction only. This is not the case for the model 
reduction techniques when they are addressed to 
nonlinear problems. Indeed, in such a case, the operators 
which are involved in the construction of the ROM 
change all along the iterative process and no preliminary 
computations can be performed in advance to speed up  

the online process. The Hence, the construction of the 
ROM is an expensive part of the calculation strategy in 
terms of CPU. It ensues from the need to evaluate the 
high-dimensional nonlinear function (and eventually its 
Jacobian) and then to project it to get the low-
dimensional operators at each computational step of a 
solution algorithm. This amounts to being the bottleneck 
of nonlinear model reduction strategies. The present 
work is then focused on a further reduction of the 
computational cost, thanks to the introduction of a new 
approximation framework dedicated to PGD-based 
nonlinear solver. It is based on the concept of reference 
times, points and parameters and allows to define a 
compressed version of the data. The RPM is introduced 
in the PGD-based nonlinear solver to compute some 
repetitive operations. These operations are related to the 
resolution of the time/parameter problem that involves 
the update of the tangent operator (for nonlinear 
problems) and the projection of this latter on the 
Reduced Order Basis. For that the RPM allows to 
simplify and reduce the number of operations needed. 
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