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ABSTRACT

While there have been numerous microscopic calculations on fission barriers of even-mass compound nu-

clei, there are however, relatively few such work dedicated to odd-mass nuclei. This is due to the com-

plications posed by the breaking of the time-reversal symmetry at the mean-field level due to the presence

of an unpaired nucleon. In order to circumvent this difficulty, previous fission-barrier calculations of odd-

mass nuclei have been performed by neglecting the effect of time-reversal symmetry breaking. This work

aims to improve on the description of fission barriers as well as the spectroscopic properties of ground

and fission-isomeric state, of some odd-mass actinide nuclei by taking the effect of time-reversal symmetry

breaking into account. This has been perfomed within a Skyrme-Hartree-Fock-plus-BCS framework with

blocking, where the BCS formalism has been adapted to accomodate this symmetry breaking. The Skyrme

nucleon-nucleon effective force has been used with various sets of parameters (SIII, SkM*, SLy5*). The

residual pairing interaction has been approximated by seniority forces whose neutron and proton parame-

ters have been fitted to reproduce the odd-even mass differences of some actinide nuclei. The low-lying

rotational band-head energies evaluated within the Bohr-Mottelson unified model have been determined for

four well-deformed odd-nuclei (235U, 239Pu, 237Np, 241Am) yielding a good qualitative agreement to the

data for odd-neutron nuclei. The agreement was significantly less good for the odd-proton nuclei, possibly

due to the use of the Slater approximation for the exchange Coulomb interaction. The deformation energies

of two odd-neutron nuclei (235U and 239Pu) have been calculated for some single-particle configurations

up to a point beyond the outer fission-barrier. Axial symmetry nuclear shape has been assumed while a

breaking of the left-right (or intrinsic parity) symmetry has been allowed around the outer fission-barrier.

The fission-barrier heights of such odd-neutron nuclei depend significantly on the particle configurations.

A special attention has been paid to the very important rotational correction to deformation energies. In

particular, the correction of the moment of inertia calculated from the usual Belyaev expression was con-

sidered. Overall, a qualitative agreement with available data on fission-barrier heights for the considered

odd-neutron nuclei and their even neighbours has been obtained.
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RÉSUMÉ

Alors qu il existe de nombreux calculs microscopique de barrières de fission pour des noyaux composé de

masse paire, il n’y a cependant que relativement peu de tels calculs pour des noyaux de masse impaire. Ceci

est dû aux complications induites par la brisure de la symétric de reversement du sens du temps au niveau du

champ moyen qui est engendrée par la présence d’un nucleon non-apparié. Pour eviter cette difficulté, des

calculs existants pour des noyaux de masse impaire ont tout simplement negligé ces effets de brisure de la

symétrie de reversement du sens du temps. Dans ce travail, on se donne pour but d’améliorer la description

des barrières de fission, aussi bien que des propriétés spectroscopiques du niveau fondamental et de l’etat

isomerique de fission, pour quelques isotopes de masse impaire dans la région des actinides en prenant en

compte de tels effets. Ceci a été realisé dans le cadre du formalisme de Skyrme–Hartree–Fock plus BCS

avec blocking en adaptant ce formalisme à la brisure de la symétrie considérée. L’interaction résiduelle

d’appariement a été approchée par une force de séniorité dont les paramètres ont été ajustés pour reproduire

les différences de masse pair-impair de quelques noyaux de la région des actinides. Les énergies des têtes

de bande rotationnelle de basse énergie ont été calculées dans le cadre du modèle unifié de Bohr-Mottelson

pour quatre noyaux bien déformés (235U, 239Pu, 237Np, 241Am) produisant un bon accord qualitatif avec les

données pour les noyaux impairs en neutrons. L’accord significativement moins bon obtenu pour les noy-

aux impairs en protons pourrait résulter de l’usage de l’approximation de Slater pour l’interaction d’échange

de Coulomb. Les énergies de déformation de deux noyaux impairs en neutrons (235U, 239Pu) ont été cal-

culées pour quelques configurations de particule individuelle, jusqu’après la barrières de fission externe. La

symétrie axiale a été imposée tandis que la brisure de la symétrie droite-gauche (ou de parité intrinsèque)

a été permise dans la région de la seconde barrière. Les hauteurs des barrières de fission pour ces noyaux

impairs dépendent significativement des configurations de particule individuelle. Un accord qualitatif avec

les données disponibles pour les hauteurs de barrières des noyaux impairs considérés et leurs voisins pairs

a été généralement obtenu.
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Chapter 1

INTRODUCTION

A scientist is not a person who has the right

answers, but the one who asks the right

questions.

- Claude Lévi-Strauss -

From the discovery of fission to fission barriers

Nuclear fission was first discovered by Hahn and Strassmann in 1939 and it immediately received much
attention from both physicists and chemists alike since such a phenomena were unheard of at that time.
Meitner and Frisch [1] coined the term fission to describe this phenomenon, whereby the nucleus is likened
to a liquid drop which breaks into two smaller droplets. The existing semi-empirical mass formula (also
known as the Bethe-Weizacker mass formula) was used to explain the fission process as a competition be-
tween the Coulomb repulsion and the surface tension of the nucleus. This idea was later on taken up and
further developed by Bohr and Wheeler [2] for a more systematic description of fission. The liquid drop
model was successful in describing the general trend of the nucleus as a function of deformation, i.e. the
potential-energy landscape from the ground state up to the saddle point and then towards the scission point.
Nevertheless, the model falls short of explaining many nuclear properties, for example why some nuclei
have a deformed shape in their ground state, or the fact that the deformation energy of some heavy nuclei
has a double peak. Improvement were later made by Strutinsky [3] in 1967 who proposed the incorporation
of shell effects to the liquid drop model, giving rise to the microscopic-macroscopic model. In the 1970’s,
the theoretical study of nuclear structure takes on a new direction when calculations of global nuclear prop-
erties were performed from a microscopic view point via the Hartree-Fock (HF) method using an effective
nucleon-nucleon interaction of the Skyrme type by Vautherin and Brink [4, 5]. This approach was then ex-
tended to large deformations by Flocard and collaborators using the constrained Hartree-Fock method [6]
and was then applied to the study of the 240Pu nucleus [7]. In recent years, many static calculations of the
fission barriers have been performed microscopically based on the Skyrme [8, 9, 10], Gogny [11, 12, 13]
and relativistic mean-field [14, 15, 16, 17] energy functionals. In all these approaches, one obtains the
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CHAPTER 1. INTRODUCTION

total binding energies as a function of nuclear deformations (deformation energy surfaces) from which the
fission-barrier heights can be deduced.

Although fission-barrier heights are not observable quantities, they are still important for many reasons.
From a nuclear reaction point of view, the fission-barrier heights play an important role in determining
whether the excited compound nucleus deexcites through neutron evaporation or fission. In order to facil-
itate the occurence of fission, the information on the fission-barrier height can assists in determining the
amount of excitation energy needed in the compound nucleus for fission to occur by adjusting the energy of
the incident projectile. On the other hand, fission barriers are an input for the calculations of fission cross-
sections whereby the latter are directly comparable to the experimental data. In cases when the intended
compound nucleus is hard to produce from nuclear reactions, the fission cross-sections for this nucleus can
be predicted using fission barriers obtained from theoretical predictions.

From a different point of view, the fission barriers play a role in describing the stability of a nucleus
from spontaneous fission. The stability of a nucleus with respect to spontaneous fission is related to its fis-
sion half-life, the calculation of which involves fission barriers. With recent technological advances, more
and more exotic superheavy nuclei are being produced. For such unstable nuclei, the probability for fission
increases and fission becomes an important decay mode to achieve nuclear stability in competition with α

decay. In this case, a reliable estimate of the fission-barrier heights is all the more important 1 due to the
short-lived nature of these nuclei.

In view of the wide application of fission barriers in nuclear reactions and nuclear energy as well as the
understanding of spontaneuous fission, it is therefore important to improve on the theoretical approaches
from which the fission barriers are obtained. While many fission-barrier calculations have been performed
for even-mass (with even numbers of protons and neutrons) nuclei, there are comparatively very few micro-
scopic studies dedicated to odd-mass nuclei. The main reason is the complication caused by the breaking of
time-reversal symmetry at the mean-field level for a nuclear system composed of odd numbers of nucleons
(fermions).

Mean-field calculations of fission barriers of odd-mass nuclei

One of the earlier microscopic study of odd-mass actinides at large deformation was performed by Lib-
ert and collaborators in Ref. [18] for the band-head energy spectra in the fission-isomeric well of 239Pu
within the rotor-plus-quasi-particle approach. More recently, fission-barrier calculations were performed
within the Hartree-Fock-Bogoliubov approach by Goriely and collaborators [19] for nuclei between be-
tween 88 6 Z 6 96 (Z here referring to the atomic number). The resulting fission barriers were then used

1As was pointed out in Ref. [29], a variation of 1 MeV in the fission-barrier heights will translate into a change of approxi-
mately four order of magnitudes in the fission half-life.
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for the neutron-induced fission cross-section calculations as part of the RIPL-3 project published in Ref.
[20]. At around the same time, Robledo and collaborators have performed fission-barrier calculations of
235U nucleus [21] and 239Pu nucleus [22] within the equal-filling approximation (EFA) presented in Ref.
[23]. In practice, the EFA allows one to “break” the odd-nucleon (unpaired) into half and place one half in
a specific single-particle states and the other half in the time-reversed state. In this way, the time-reversal
symmetry is not broken and the calculations are performed as in the ground state of an even-even nucleus.
However, in the Bohr and Mottelson picture the total angular momentum (total spin) of the odd-mass nu-
cleus corresponds to the projection of the total angular momentum on the nuclear symmetry axis K of the
blocked single-particle state, i.e. I = K.

Although the EFA was found to be a good approximation [24], a proper microscopic description of odd-
mass nuclei requires the consideration of all the effects brought upon by the unpaired nucleon. This nucleon
gives rise to non-vanishing time-odd densities entering the mean-field Hamiltonian. The terms involving
time-odd densities vanish identically in the ground-state of even-even nuclei but increase the computing task
for odd-mass nuclei. As discussed for e.g. in Refs. [25, 26], the time-odd densities cause a spin polarisation
of the even-even core nucleus which results in the removal of the Kramers degeneracy of the single-particle
states. Moreover, the recent work of Ref. [27] shows that the magnetic properties of deformed odd-mass
nuclei can be properly described when taking into account the effect of core polarisation due to the breaking
of the time-reversal symmetry in the mean-field level. Therefore, it is expected to be more appropriate to
take into account the time-reversal symmetry breaking in the study of fission-barrier calculations.

In this work, the mean-field treatment of odd-mass nuclei is based on the Hartree-Fock-plus-BCS
(HF+BCS) approach with self-consistent blocking (SCB). The nuclear part of the resulting energy-density
functional is parametrized in the two-body density-dependent Skyrme form for the particle-hole channel
and the seniority form for the particle-particle channel. The exchange terms induced by the Coulomb
interaction are treated in the Slater approximation, and the one-body (dominant) contribution to the center-
of-mass correction is taken into account. Axial symmetry is assumed throughout this work. The resulting
mean-field solution then serves as the intrinsic state in the Bohr and Mottelson unified model in which
the parity π and the projection of the total angular momentum of the blocked single-particle state on the
nuclear symmetry axis K is assumed to correspond to the experimental Iπ quantum numbers. The blocked
configuration corresponding to given Kπ quantum numbers is obtained by setting to 1 the occupation of the
Kπ single-particle state closest to Fermi level and to 0 the occupation of the conjugate state. It should be
stressed that the SCB treatment for odd-mass nucleus has, in addition to treating properly the time-reversal
symmetry breaking, the advantage that there is no ambiguity in defining the even-even core nucleus while
also having a correct average nucleon number. This was not the case in the one-quasi-particle approach for
e.g. in the earlier work of Ref. [28].
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CHAPTER 1. INTRODUCTION

Research aim and objectives

As mentioned above, one of the quantity of interest from theoretical calculations which can be compared
to experiment is the fission cross section. For odd-mass nuclei, one could expect different cross sections
corresponding to the different Iπ quantum numbers of the fissioning compound nuclei. In order to calculate
the fission cross sections, one needs as one of the input, the fission-barrier heights. This work focuses
only on the latter quantity in odd-mass nuclei, whereby the fission-barrier heights for various Iπ quantum
numbers of the fissioning nucleus are calculated from a self-consistent blocking procedure assuming I = K.
While the SCB and the time-reversal symmetry breaking formalism have been developed a long time ago,
there are by far no published results on the simultaneous application of both aspects to the calculation of
fission barriers and energy spectra of odd-mass nuclei, to the best of our knowledge.

The purpose of this work is then to obtain new results with regards to the fission-barrier heights and
energy spectra of odd-mass nuclei with the SCB approach in the HF+BCS framework and taking the time-
reversal symmetry breaking at the mean-field level into account. The main objectives of this work are as
follows:

• to calculate the deformation energy curves of odd-mass nuclei with various blocked Kπ configurations
from which the fission-barrier heights can be deduced

• to describe the energy spectra of odd-mass nuclei at various deformations, namely at the ground-state
and fission-isomeric wells as well as the discrete transition states at the top of the barrier (no intrinsic
parity breaking at the mean-field level).

In addition to the above, the fission-barrier heights for different blocked Kπ configurations will also be
compared to its neighbouring even-even nuclei. It is expected that the fission-barrier of odd-mass nuclei to
be higher and wider than in even-even nuclei as a consequence of having to follow specific Kπ quantum
numbers along the fission path. The extra barrier energy of odd-mass nuclei referred to as the “specialization
energy” has been proposed to explain the relatively longer fission half-life of odd-mass nuclei (in, e.g., Ref.
[29]).

Roadmap of the thesis

Before presenting mean-field calculations of fission barriers, a discussion of neutron-induced fission cross
sections will be presented in Chapter 2 to give an overview of where this work stands in the wider scope of
induced-fission studies. Chapter 3 will be devoted to the theoretical framework of the work, in particular the
self-consistent blocking procedure within the HF+BCS formalism as well as the description of the Bohr-
Mottelson unified model. Some technical and numerical details will be given in Chapter 4. Then, the results
will be presented in two separate chapters. Chapter 5 will be devoted to the spectroscopic properties in the
ground-state and fission-isomeric wells of some selected odd-mass nuclei, whereas the results on the fission
barriers will be presented in Chapter 6. Finally, conclusions and possible extensions of the work will be
given in Chapter 7.
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Chapter 2

FISSION CROSS-SECTIONS
CALCULATIONS

2.1 Experimental study of the fission phenomenon

2.1.1 Fission as a nuclear reaction

There are several ways in which the fission phenomenon could be studied experimentally. One of them is
decay through spontaneous fission which occurs for very heavy nuclei. Another way is through a nuclear
reaction process whereby the target nucleus is bombarded by a projectile, supplying the target nucleus
with enough energy to fission. Typical reactions include through particle-induced fission, in particular the
(n,xnf) reaction where x is the number of emitted neutrons before the actual fission of the nucleus, and the
photofission (γ ,f) reaction which allows for the study of the sub-barrier excitation energy region. In the case
when the intended compound-nucleus for which fission is to be studied is hard to be produced, the surrogate
fission reactions such as (3He,tf) reaction can be alternately employed (see for e.g. the review paper Ref.
[30] about surrogate reactions). This chapter will focus on neutron-induced fission.

2.1.2 Structures in the (n,f) cross-sections

Figure 2.1 shows some examples of neutron-induced fission cross-sections for the 232Th, 234U and 235U nu-
clei. The fission cross-section for the 232Th nucleus shows that fission does not occur at very low incoming
neutron energy. The total excitation energy of a heavy compound-nucleus is the sum of the total kinetic
energy of the incident neutron En and the neutron separation energy of the resulting compound-nucleus
Sn(CN) such that

E∗ = En +Sn(CN) (2.1)

For low-energy neutron, the total energy of the 233Th compound-nucleus is very much lower than its fission-
barrier height and thus, does not result in fission. It is only when the compound-nucleus excitation energy
is comparable to the height of the fission-barrier (the higher peak), i.e. around the fission threshold energy,
that the fission process starts to be a viable decay mode. On the other hand, the neutron separation energy
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of 235U and 236U compound-nuclei are comparatively higher than the corresponding value of 233Th. In this
case, the compound-nucleus excitation energy is already within the height of the fission barrier, even at
very low neutron energy. Hence, the neutron-induced fission cross-sections for the two uranium isotopes
are much higher than that of 232Th at low neutron energy.

Neutron-induced fission cross-section
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Figure 2.1: Some samples of neutron induced fission cross-sections taken from the Evaluated
Nuclear Data File [31] website for 232Th, 234U and 235U.

In the fission cross-sections of the uranium isotopes, the energy region from about 1 eV to about 1 keV
is referred to as the resolved resonances region. In this energy region, the cross-sections are enhanced due
to the existence of peaks in the nuclear level-density at well-defined energies. Above this energy region is
the unresolved resonances region whereby the nuclear resonances are too close to each other that it could
not be resolved properly by experiment. This gives rise to a smooth variation of the fission cross-sections
as a function of increasing incident neutron energy. At even higher neutron energy of more than 0.1 MeV
is the fast neutron region. In this energy region, there appears possibility of multi-chance fission. There are
also other competing decay channels for the compound-nucleus. For example, one- or even two- neutron
emissions are possible when the excitation energy of the compound-nucleus is higher than the correspond-
ing threshold energies.

6



2.1. EXPERIMENTAL STUDY OF THE FISSION PHENOMENON

This work have considered odd-mass nuclei for the calculations of the fission barriers. These odd-mass
compound-nuclei can be formed through neutron-induced reactions of its neighbouring even-mass nucleus
as the target nucleus. In view of this, the energy region which is of interest is the energy region above
the unresolved resonances, whereby the resulting compound-nucleus excitation energy is at least slightly
higher than the height of the lower fission barrier. In this energy region one can consider that the so-called
statistical regime of Ref. [32] is reached.

In order to show how the fission-barrier heights can be estimated from the neutron-induced fission cross-
sections, the neutron-induced fission cross-sections for 232Th for incident neutron energy from 0.5 to 5.9
MeV are shown in Figure 2.2 and a close-up of the fission cross-sections (in linear scale) from 1.0 to 2.5
MeV are shown in Figure 2.3. As was discussed in Ref. [33], the first change in the slope of the fission
cross-sections appears around incident neutron energy of 1.1 MeV, suggesting that the first inner barrier
height is about 5.9 MeV (the neutron separation energy for 233Th is 4.78 MeV). A fission threshold energy
at about 1.5 MeV incident neutron energy suggests an outer barrier height at about 6.3 MeV. These esti-
mates of the fission-barrier heights require fission cross-sections modelling which will be briefly discussed
in the next section.

Figure 2.2: Neutron-induced fission cross-sections of 232Th from 0.5 MeV to 5.9 MeV taken
from Ref. [33].
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Figure 2.3: A close-up of the neutron-induced fission cross-sections of 232Th for incident neu-
tron energy from 1 to 2.5 MeV taken from Ref. [33].

2.2 Fission cross-section modeling

2.2.1 Fission reaction mechanism

The fission process is a many-body quantum mechanical process which involves the evolution of a nuclear
system with strongly interacting nucleons over time. The phenomenon should in principal be described by
solving exactly the Lippmann–Schwinger equation in the formal theory of nuclear reactions [34] for the
nucleus (Z,N) whose many-body Hamiltonian is written, assuming a two-body nucleon-nucleon interaction
V̂NN as

Ĥ = Kintr + V̂NN (2.2)

where K̂intr is the one-body-plus-two-body kinetic energy operator in the center-of-mass frame. This yields
the full, interacting stationary reaction states from which one can deduce the T -matrix elements for the
relevant entrance and exit channels and finally obtain the angular differential cross-section. This is a chal-
lenging task because all the nucleons participate to the fission dynamics and the corresponding reaction
mechanism is a complicated process. To tackle this problem one has to approximate the solution to the
Lippmann–Schwinger equation, which amounts to simplifying the reaction mechanism.

To do so we shall consider for a nuclear reaction only a two-body arrangement channel whereby the
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particles participating in the reaction consists of two clusters of nucleons in bound states written as

x + A−→ y + B (2.3)

where x,A are the clusters in the entrance channel (projectile and target nucleus) and y,B are those in the
exit channel (the primary fission fragments in the fission channel). Each arrangement channel consisting
of the two nuclei are characterized by some sets of quantum numbers for e.g. the total angular momentum
with its projection on the z− axis chosen to coincide with the fission direction, the spin and its projection
on the z− axis, as well as the parity quantum numbers, kinetic and intrinsic energies.

There are two extreme types of nuclear reaction mechanisms, namely the direct mechanism and the
compound-nucleus mechanism. In the former only a few nucleons or excitation modes are involved,
whereas many nucleons and transitory configurations participate in the latter. The major difference be-
tween both mechanisms is the time taken for the reaction to occur. The direct reaction occurs within a very
short time interval, typically about 10−22 s, which allows for very few nucleon-nucleon collisions. The
pickup (d, p) and stripping (p,d) reactions are examples of direct reactions.

In contrast, the compound-nucleus reaction occurs within a time generally between 10−19 s and 10−16 s
which is relatively long on the nuclear time scale. The projectile shares its energy with the other nucleons
through many nucleon-nucleon collisions, thus leading to a thermal equilibrium in the compound-nucleus.
This mechanism happens when the projectile has a relatively low kinetic energy, typically a few MeV, and
the target is a heavy nucleus. As this is precisely the energy range considered here for the incident neutron
on an actinide target, the discussion will focus on this mechanism only.

In the compound-nucleus mechanism, we can rewrite the nuclear reaction shown above as

x + A−→C∗ −→ y + B (2.4)

to reflect the formation of a compound-nucleus C∗ before it decays through one of the many possible exit
channels. The highly excited compound-nucleus can de-excite either through particle emissions or fission.
Since the compound-nucleus exists for a relatively long time, it seems reasonable to postulate that the decay
of this compound-nucleus should not depend on the formation of the compound-nucleus. This is reflected
by the Bohr’s independence hypothesis which states that the formation and the decay of the compound-

nucleus are independent of each other.

As a consequence of this hypothesis, the nuclear reaction cross-section with the entrance channel e and
the exit channel e′ can be written as

σee′ = ∑
Jπ

σ
Jπ

ee′ = ∑
Jπ

σ
Jπ

e (Ee) PJπ

e′ (Ee′) (2.5)
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where σ Jπ

e (Ee) is the compound-nucleus formation cross-section at a given incident energy Ee and PJπ

e′ (Ee′)

is the decay probability of the compound-nucleus with energy Ee′ . The decay process, in this way, depends
only on the total angular momentum J, parity π , excitation energy (in the center of mass frame), atomic
and mass number of the compound-nucleus. Owing to the microreversibility principle the decay probability
PJπ

e′ (Ee′) is related to the compound-nucleus formation cross-section from channel e through

PJπ

e′ (Ee′) =
k2

e′σ
Jπ

e′ (Ee′)

∑e′′ k2
e′′σ

Jπ

e′′ (Ee′)
(2.6)

where ke is the wave number associated with the relative kinetic energy Ee in the channel e such that

Ee =
(h̄ke)

2

2µe
, (2.7)

with µe the reduced mass of the two clusters in the channel e. The partial cross-section σ Jπ

ee′ is thus deter-
mined solely in terms of the compound-nucleus formation cross-sections in all channels.

Because of the numerous excited configurations of the compound-nucleus, the scattering matrix ele-
ments which enter the formal expression of the cross-section are strongly fluctuating (compound-nucleus
resonance) as a function of the compound-nucleus excitation energy. The experimentally observed cross
section is thus a quantity averaged over energy intervals which are large with respect to the typical spacing
between overlaping compound-nucleus resonances, but small when compared to the experimental energy
resolution. The resulting compound-nucleus formation cross section can thus be expressed as

σ
Jπ

e (Ee) =
π

k2
e
(2J+1)T Jπ

e (Ee) (2.8)

where Te is defined in terms of the energy-averaged scattering matrix elements and is called transmission
coefficient in the channel e. The reaction cross-section (equation 2.5) can therefore be expressed purely in
terms of transmission coefficients: this corresponds to the Hauser–Feshbach statistical model [35].

In the case of neutron-induced fission, the entrance channel is that of the incoming neutron particle and
the target nucleus while the exit channel consists of the pair of fission fragments after scission. This exit
channel is in competition with other decay channels, whereby the probability for fission Pf is given as

PJπ

f =
T Jπ

f

T Jπ

f +∑d T Jπ

d
(2.9)

with T Jπ

f being the fission transmission coefficient for given angular momentum J and parity π of the
compound-nucleus. The summation in the denominator is over other decay channels.

In all rigor, the decay of the compound-nucleus from a given initial state is a many-body, time-dependent
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quantum mechanical problem. This difficult problem can be approximately solved by reducing it to a one-
body, time-dependent problem within an adiabatic approach in which the collective and intrinsic degrees
of freedom can be decoupled. This has been performed for example in Refs. [36, 37] in the framework of
the time-dependent generator coordinate method with the gaussian overlap approximation. The collective
motion of the nucleus is assumed to be described by a few collective variables which are the relevant
shape degrees of freedom, and the intrinsic structure of the nucleus including pairing is treated using a
self-consistent microscopic model. One is led to solve a Schrödinger equation with the Hamiltonian

Ĥ|Φ〉 = ih̄
d|Φ〉

dt
(2.10)

where in the deformation coordinate representation [37]

Ĥ = − h̄2

2 ∑
i, j

∂

∂qi
Bi j({qk})

∂

∂q j
+ V ({qk}) (2.11)

with {qk} being a set of collective degrees of freedom, which are the expectation values of the corresponding
multipole moment operators Q̂k in |Φ〉. The kinetic term involves deformation-dependent inertia parame-
ters Bi j while V ({qk}) is the binding energy as a function of nuclear deformations with the inclusion of the
the so-called zero-point-energy correction. In the calculations with axial symmetry before scission point,
the quadrupole q20 and octupole q30 moments are usually chosen as the relevant shape degrees of freedom.
When approaching scission, q40 becomes necessary to identify various valleys in the potential-energy sur-
face (PES). In this way, the study of static nuclear properties as a function of deformation is required (see
Section 2.3). Such an approach allows for the description of the evolution of the compound nucleus from a
given initial state towards fission in a completely quantum-mechanical manner. From the knowledge of the
nuclear state as a function of time one can then in principle compute the fission transmission coefficient T Jπ

f .

Even in the approximation made in the previous paragraph the computation of T Jπ

f is challenging. In
state-of-the-art fission cross-section modeling one has recourse to the so-called optical model for fission to
calculate T Jπ

f .

2.2.2 Optical model for fission

When the wave function describing the collective variables is well localized in the deformation space at all
times, one can simplify the problem into the time-evolution of the nucleus along a trajectory in the defor-
mation space. Fission can then be viewed as a quantum tunnelling process through a potential barrier which
corresponds to a one-dimensional fission path on a multi-dimensional potential-energy surface. Using the
stationary-state formalism one can thus calculate fission-barrier penetrability, which is nothing else but the
above introduced fission transmission coefficient. The actual fission path can be approximated by the least-
action path [38] or the minimum-energy path as in the adiabatic approximation often considered. From the
corresponding deformation-energy curve, one can deduce the fission-barrier heights. This has been done
for instance in the macroscopic-microscopic approach in Ref. [39], and microscopic approaches using the
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CHAPTER 2. FISSION CROSS-SECTIONS CALCULATIONS

Skyrme and Gogny energy-density functionals [36, 37, 40, 41]. A further approximation of the fission path
is often made by projecting the actual path onto the driving-coordinate axis, namely elongation. In practice,
in microscopic approaches one chooses the quadrupole moment Q20 as the driving coordinate.

For nuclei in the actinide region, the fission barriers are known to have two humps. In this case, fission
is viewed as a two-step process whereby the incoming waves representing the compound-nucleus are first
transmitted across the first (inner) barrier. When encountering the inner barrier, a portion of the incident
waves can be reflected back in the ground-state well, while the rest is transmitted through the barrier. From
the transmitted flux a fraction can be absorbed into the second well whereby the wave then attempts to
tunnel through the outer barrier leading to fission. A one-step fission process is valid only in cases when the
excitation energy is too low or too high as compared to the fission-barrier heights. In these cases one can
assume that there is no absorption in the second well (the so-called no-damping limit) and that the incident
wave tunnels through the double-hump fission-barrier and exit beyond the outer saddle point [42].

The calculations of the fission transmission coefficient over a multi-humped barrier taking into account
the incident-wave reflection by each barrier and the partial absorption of waves into each well have been
performed in Ref. [42]. Figure 2.4, extracted from Ref. [42], illustrates the direct transmission and ab-
sorption coefficients in the calculation of the fission transmission coefficient for a four-humps barrier. The
possibility for a partial absorption and reflection of the incident wave in the calculations of the fission
transmission coefficient is important when the excitation energy of the compound-nucleus is lower than the
heights of both the inner and outer barriers. At this excitation energy, the coupling between class I and
class II states, which are energy levels dominantly located in the ground-state and fission-isomeric wells,
respectively, (see Figure 2.5 in the double-hump case) brings a substantial impact on Tf .

Figure 2.4: This diagram extracted from Ref. [42] illustrate the calculation of the fission trans-
mission coefficient for a four-humps barrier. The number of the barrier is denoted as h while
the number of the well is denoted by w, whereby w = 1 refers to the ground-state well. Td(h,h′)
refers to the direct transmission coefficient from the hth-hump to the h′th-hump, while Ta(w,w′)
refers to the absorption coefficient from the wth-well to the wth-well.
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2.2. FISSION CROSS-SECTION MODELING

When the excitation energy of the compound-nucleus is higher than the lower of the two barriers (in
the statistical regime), one can assume that all the incoming waves impinging on the inner barrier is fully
absorbed into the second well. In this full-damping limit [42], the fission transmission coefficient Tf is
given by

T Jπ

f =
TA(E,Jπ)TB(E,Jπ)

TA(E,Jπ) + TB(E,Jπ)
(2.12)

where TA(E,Jπ) and TB(E,Jπ) are the transmission coefficient through the inner and outer barrier, respec-
tively.

The transmission coefficient across a barrier for specific Jπ quantum numbers is the sum of the barrier
penetrabilities of all the transition states at the top of the barrier (see Figure 2.5) having the same Jπ quan-
tum numbers.

Figure 2.5: Figure taken from Ref. [32]: Class I and class II states at the ground-state and
fission-isomeric wells, respectively, together with the transition states at the top of the barriers.

The transition states above barriers can be separated into discrete states and continuum states. The trans-
mission coefficients for these transition states were calculated in Ref. [19] using the expression

Tj(E,Jπ) = ∑
d

P j(E,V Jπ

jd ) +
∫ E∗max

Ed

P(E,V Jπ

j (ε))ρ(ε,J,π)dε (2.13)

where the index j = A and B refers to the inner and outer barrier, respectively. The sum is taken over all
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CHAPTER 2. FISSION CROSS-SECTIONS CALCULATIONS

discrete transition states with the same Jπ quantum numbers1 as the decaying compound-nucleus with their
barrier heights given by V Jπ

jd . In the continuum region where the nuclear levels are very close to one an-
other, the summation of the discrete states is replaced by an integration involving the level-density ρ over
an energy range with an associated barrier height denoted by V Jπ

j (ε), starting from the energy below which
it is appropriate to consider the discrete part of the transition states, to a maximum energy E∗max defined as
E∗max = E∗+B f in Ref. [43] where E∗ is the compound-nucleus excitation energy and B f is the lowest-
energy fission-barrier height.

The barrier penetrabilities should in principal be obtained from integrating over the fission-barrier curve
as a function of the one dimensional fission path along the multi-dimensional potential-energy surface, with
the expression for P(E,V Jπ

jd ) given within the Wentzel–Kramers–Brillouin (WKB) approximation [38]
as

P j(E,V Jπ

jd ) =
1

1 + exp(2 K(d)
j )

(2.14)

where
K(d)

j = ±
∫ b j

a j

[2 Be f f (s)

h̄2

(
E−V Jπ

jd (s)
)]1/2

ds (2.15)

is the action integral, and Be f f is the effective nuclear inertia along the fission path and s is the curve linear
abscissa along this path. The boundaries a j and b j refer to the intercepting points of the fission path with
the constant energy E. The negative sign in the integral is taken when the excitation energy E∗ is higher
than the barrier height and conversely, the positive sign is taken when E∗ is lower than the barrier height.
In the former case, the WKB approximation is valid for an energy which is at least slightly higher than the
top of the barrier [19, 33].

The calculation of the barrier penetrabilities can be simplified even further by assuming the double-
humped barrier as consisting of two independent inverted parabolas. In this case, the penetrability through
each single barrier is given by the exact Hill-Wheeler expression

PHW
j (E,V Jπ

jd ) =
[
1 + exp

(
2π

VJπ

jd −E

h̄ ωJπ

jd

)]−1
, (2.16)

where the curvature of the parabolic barrier is driven by the quantity h̄ωJπ

j .

2.3 Nuclear structure input

2.3.1 Potential-energy surface

As was discussed in the previous section, fission cross-section calculations require nuclear-structure in-
put. One of such information is related to the potential-energy surface which is the binding energy as a

1In practice, the summation is usually taken for the discrete transition states with the projection of the total angular momentum
on intrinsic symmetry axis, K, quantum number having the same J quantum number as the compound-nucleus.
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2.3. NUCLEAR STRUCTURE INPUT

function of deformation. There are two main approaches in which one can calculate the potential-energy
surface. One can follow, as done in the present work, a fully microscopic approach by implementing a
self-consistent mean-field model. The coordinates for the potential-energy surface usually considered in
the mean-field approach are the quadrupole, octupole and hexadecapole moments. The quadrupole moment
describes the elongation of the nucleus as it goes towards fission. When a heavy nucleus becomes more and
more elongated, there may appear a situation in which a pear-shaped nucleus is more energetically favored.
This shape degree of freedom is described by the octupole moment. The hexadecapole moment, on the
other hand, provides an indication of the formation of a neck as one approaches the scission point. An-
other approach which is more phenomenological, relies on the liquid drop model with shell corrections and
including pairing. This is the so-called macroscopic-microscopic model in which the potential-energy sur-
face is parametrized for example in terms of five-dimensional shape degrees of freedom (see, e.g., [39, 44])
illustrated in Figure 2.6.

Figure 2.6: Five-dimensional shape parametrization used for the calculations of the potential-
energy in the macroscopic-microscopic model. Figure extracted from Ref. [39].

2.3.2 Nuclear spectra

Another important piece of information for the fission cross-section calculations is related to the energy
spectra at the ground-state deformation (class I states), in the fission-isomeric well (class II states) and at
the saddle points where the corresponding states are called transition states. This information can be pro-
vided by microscopic calculations. For an odd-mass nucleus, the low-lying discrete states in the class I
and class II states as well as the discrete transition states can be obtained using for e.g. the quasi-particle
approach of Ref. [28], or through self-consistent blocking calculations (as performed herein). One can then
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CHAPTER 2. FISSION CROSS-SECTIONS CALCULATIONS

build rotational and vibrational bands on top of the nuclear band heads as a mean to obtain the low-lying
discrete states.

At higher excitation energy, even below the neutron emission threshold, the nuclear states are so nar-
rowly spaced that one can consider a continuum of states characterized by a nuclear level-density, instead of
discrete states. The nuclear level-density calculations have been usually performed using analytical-Fermi-
gas type formulas (for e.g. Refs. [45, 46]). On the other hand, when moving away from experimentally
known regions, a more reliable and physically sound microscopic approach is preferred. Global microscopic
models of the nuclear level densities have been developed and refined over the years. The combinatorial
approach (see for e.g. Refs. [47, 48]) is one of such example, and it has been applied to the calculations of
the neutron-induced fission cross-section calculations in Ref. [19].

2.3.3 Inertia parameters

As discussed in the previous section, the calculations of barrier penetrabilities require the evaluation of the
effective inertia parameter (also known as mass parameter in some references) Be f f in equation (2.15).
A microscopic determination of this quantity allows one to take into account its deformation dependence.
According to Ref. [38], the expression for the effective inertia parameter is

Be f f (s) = ∑
i, j

Bi j({qk})
dqi

ds
dq j

ds
(2.17)

where at first order perturbation theory

Bi j = 2 h̄2
∑
m

〈0| ∂

∂qi
|m〉 〈m| ∂

∂q j
|0〉

E0 +Em
(2.18)

where |0〉 and |m〉 denote ground and excited states of a nucleus with corresponding energies E0 and Em.

Because of the complexity of the calculation of Be f f , this quantity is approximated by the empirical
expression

Be f f ≈ 0.054 A5/3 MeV−1 (2.19)

which depends only on the mass number A, based on a fit procedure to the spontaneous fission half-lives of
some superheavy nuclei [49] in the work of Refs. [19, 33] where the fission path is projected on the Q20

axis.
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Chapter 3

THEORETICAL FRAMEWORK

This chapter is devoted to the theoretical models employed in this study. It is not meant to be an exhaustive
review, but a rather brief discussion on the major topics that are related to the present work. It is divided
into five main sections as follows. A major portion is devoted to Section 3.1 focusing on the Hartree-Fock
method supplemented with a presentation of the Skyrme effective nucleon-nucleon interaction. The pairing
correlations, described within the Bardeen-Cooper-Schrieffer (BCS) method will be discussed in Section
3.2. One of the correction to the mean-field approach comes from the breaking of the translational invariance
due to the fact that the mean-field wave-function is not of a plane-wave type. This results in an approximate
correction to the center-of-mass motion which will be treated in Section 3.3. The last section, 3.4, will be
devoted to the derivation of equations relating the intrinsic mean-field solution to the lab frame solution
within the collective Bohr-Mottelson unified model. Such an approach is meant to translate the mean-field
calculation results obtained in the intrinsic state onto laboratory frame quantities before comparing the
results to any experimental data when available.

3.1 The mean-field approach

3.1.1 The Skyrme approximation to the effective nucleon-nucleon interaction

The effective internucleon interactions entering the many-body Hamiltonian consist of two parts. There
is the strong nuclear force which binds nucleons together, and the repulsive Coulomb force which acts
between protons. The strong nuclear force part of the effective interaction is hereby approximated with a
phenomenological two-body density-dependent Skyrme interaction [50] of the form:

V (r1,r2) =Vc(r1,r2)+VDD(r1,r2)+Vs.o(r1,r2) (3.1)
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CHAPTER 3. THEORETICAL FRAMEWORK

whereby the central Vc, density-dependent VDD (to approximate the in medium effects in an effective way),
and the spin-orbit Vs.o contributions have the following expressions:

Vc(r1,r2) = t0(1+ x0Pσ )δ (r1− r2)

+
1
2
(t1 + x1Pσ )[δ (r1− r2)k2 +k†2

δ (r1− r2)]

+ t2(1+ x2Pσ )k†
δ (~r1−~r2)k (3.2)

VDD(r1,r2) =
1
6

t3(1+ x3Pσ )ρ
α

δ (~r1−~r2) (3.3)

Vs.o(r1,r2) = iW0(σ
(1)+σ

(2)) ·k†×δ (~r1−~r2)k (3.4)

In the above equation, the notation ρ and Pσ = 1
2 [1+~σ1 ·~σ2] refers to the density and the spin-exchange

operator respectively while k† is the conjugate of the momentum operator, k, of the form:

k =
1
2i

(
~∇1−~∇2

)
(3.5)

The symbols ti, xi with i = 1,2,3 and W0 are parameters whose values were obtained from a fit to some set
of experimental nuclear data.

3.1.2 The Hamiltonian density in the case of time-reversal symmetry breaking

By employing the effective internucleon interaction of the Skyrme type, the total energy of the nucleus, E,
being an expectation value of the Hamiltonian operator in the normalized Slater determinant |ΨHF〉 can be
written as an integral of a Hamiltonian density, H , such that:

E = 〈ΨHF |Ĥ|ΨHF〉=
∫

H (r) dr

=
∫ (

Hkin(r)+Hc(r)+HDD(r)+Hs.o(r)+HCoul(r)
)

dr (3.6)

The Hamiltonian densities namely Hkin, Hc, HDD, Hs.o and HCoul(r) are the kinetic energy, central,
density-dependent, spin-orbit and Coulomb energy density contributions respectively, with the following
expressions [51, 52]:

Hkin(r) =
(

1− 1
A

) h̄2

2m
τ (3.7)

Hc(r) = B1ρ
2 +B10s2 +B3(ρτ− j2)+B14(

←→
J

2
− s ·T)+B5ρ4ρ

+B18s ·4s+∑
q
{B2ρ

2
q +B11s2

q +B4(ρqτq− j2
q)

+B15
(←→

J q
2
− sq ·Tq

)
}+B6ρq4ρq +B19sq ·4sq (3.8)

(3.9)
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HDD(r) = ρ
α

[
B7ρ

2 +B12s2 +∑
q
(B8ρ

2
q +B13s2

q)
]

(3.10)

Hs.o(r) = B9

[
ρ∇ ·J+ j ·∇× s+∑

q

(
ρq∇ ·Jq + jq ·∇× sq

)]
(3.11)

HCoul(r)≈
1
2

ρp(r)VCD(r)−
3
4

e2(
3
π
)

1
3
ρ

4
3
p (r) (3.12)

The factor (1− 1
A) appearing in the kinetic energy density is a corrective term introduced to approximately

eliminate the center-of-mass motion spuriously introduced by the breaking of the translational invariance
inherent to the mean-field approach. A more detailed discussion on this corrective term will be made in
Section 3.3.

The Coulomb energy density consists of two terms whereby the direct term is given as the first term on
the r.h.s of equation (3.12) with

VCD = e2
∫

dr
′ ρp(r

′
)

||r− r′||
(3.13)

Further discussion on the calculation of the direct Coulomb term can be found for e.g. in Ref. [5, 53, 54].
The exchange part given by the second term of equation (3.12) has been approximated here as usually done,
with a Slater approximation [55]. The effect of using such an approximation as opposed to performing
rather time-consuming exact Coulomb exchange calculations have been previously investigated (see Ref.
[56, 57, 58]). It has been found that the appropriateness of the Slater approximation is directly proportional
to the proton single-particle level density near the Fermi level, being less good for a spherical (close shell)
nucleus as compared to a well deformed nucleus. More importantly and of interest to the present study
is that the Slater approximation was found to underestimate the first fission-barrier by 0.31 MeV and the
fission-isomer energy by 0.28 MeV in 238U upon using the SkM* parametrization of the Skyrme interac-
tion, when compared to calculations incorporating exact Coulomb exchange terms [58]. This effect will be
taken into account later when comparing the present results with the experimentally derived fission-barrier
heights.

All the above Hamiltonian densities are time-even functionals of the local densities that are further
categorized into time-even and time-odd densities with respect to the action of the time-reversal operator.
The time-even densities are the particle density ρ(r), the kinetic energy density τ(r) and the spin-current
density Jµν(r) of the following form [51, 52]:

ρ(r) = ∑
k

v2
k [φk]

†(r)[φk](r) (3.14)

τ(r) = ∑
k

v2
k

(
∇[φk]

†(r)
)
·∇[φk](r) (3.15)

Jµν(r) =
1
2i ∑k

v2
k

{
[φk]

†(r)σν∇µ [φk](r)−
(

∇µ [φk]
†(r)

)
σν [φk](r)

}
(3.16)
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For each of the time-even densities, there exists a time-odd counterpart, namely the spin density s(r),
the spin kinetic density, Tµ(r) and the current density j(r) [51, 52]:

s(r) = ∑
k

v2
k [φk]

†(r)σ [φk](r) (3.17)

Tµ(r) = ∑
k

v2
k

(
∇[φk]

†(r)
)
·σµ∇[φk](r) (3.18)

j(r) =
1
2i ∑k

v2
k

{(
∇[φk]

†(r)
)
[φk](r)− [φk]

†(r)∇[φk](r)
}

(3.19)

These densities are time-odd only by construction and are non-vanishing in cases where the time-
reversal symmetry is broken. They contribute to the single-particle Hamiltonian in such a way that the
expectation value of the energy is a time-even quantity as it should. For the corresponding mean-field
Hamiltonian (as explicited in Eq. 3.21 below), one will observe when the solution is not even under time-
reversal, a lifting of the Kramers degeneracy of its eigenvalues. Such situations occur, for instance, in the
case of odd-mass nuclei and even-mass nuclei with odd numbers of both protons and neutrons, as well as in
the case of rotating nuclei treated semi-quantally within the so-called Routhian approach. Figure 3.1 shows
a comparison of the single-particle energy levels in 239Pu exhibiting the lifting of the Kramers degeneracy
with the degenerate case corresponding to the 238Pu nucleus.

The notation v2
k entering the expressions of the local densities refers to the partial occupation probablity

of the single-particle states due to pairing correlations which are described within the Bardeen-Cooper-
Schrieffer (BCS) approach discussed in a later section. The coupling constants Bi are given in terms of
the parameters ti, xi and W0 from the phenomenological Skyrme interaction. The values of the interaction
parameters together with the resulting coupling constants which depend on the type of Skyrme forces in use
are listed in Appendix A.
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3.1.3 The Hartree-Fock equations

The Hartree-Fock equations are obtained by varying the total energy given in equation (3.6) with respect to
the single-particle wavefunctions φk.

δ

δφ j(r)

(
E[φk] − ∑

k,τ,σ
ek

∫
dr |φk(r)|2

)
= 0 (3.20)

to obtain the one-body Hamiltonian ĥHF of the following form in coordinate representation [51, 52]:

〈r|ĥ(q)HF |φk〉= −∇ ·
( h̄2

2m∗q(r)
∇[φk](r)

)
+
(

Uq(r)+δqpUCoul(r)
)
[φk](r)

+ iWq(r) ·
(

σ ×∇[φk](r)
)
− i ∑

µ,ν

{(
W (J)

q,µν(r)σν∇µ [φk](r)
)

+∇µ

(
W (J)

q,µν(r)σν [φk](r)
)}
− i

2

{
Aq(r) ·∇[φk](r)+∇ ·

(
Aq[φk](r)

)}
+Sq(r) ·σ [φk](r)−∇ ·

((
Cq(r) ·σ

)
∇[φk](r)

)
(3.21)

The time-even fields m∗, Uq, UCoul , Wq and W (J)
q,µν are the effective mass, the central-plus-density-

dependent field, the Coulomb field, the spin-orbit field and the spin-current field respectively. The notation
q labels the nuclear charge state, with q = n referring to neutron and q = p for proton charge state. These
time-even fields are complemented by the time-odd fields; Sq, Aq and Cq which vanish in the cases when
there exists a time-reversal symmetry for e.g. in the case of a nucleus with an even number of protons and
neutrons (see e.g. Ref. [5]).

These fields are given as follows [51, 52] in terms of the various densities by:

h̄2

2m∗q
=

h̄2

2mq
+B3ρ +B4ρq (3.22)

Uq = 2
(
B1ρ +B2ρn

)
+B3τ +B4τq +2

(
B5∆ρ +B6∆ρq

)
+(2+α)B7ρ

1+α

+B8
(
αρ

(α−1)(
ρ

2
n +ρ

2
p
)
+2ρ

α
ρq
)
+B9

(
∇ ·J+∇ ·Jq

)
+αρ

α−1(B12s2 +B13
(
sn + s2

p
))

(3.23)

UCoul =Vdir− e2 ( 3
π

ρp
)1/3 (3.24)

Wq = −B9
(
∇ρ +∇ρq

)
(3.25)

Wq,µν = B14Jµν +B15Jq,µν (3.26)
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Sq = 2
(
B10 +B12ρ

α
)
s+2

(
B11 +B13ρ

α
)
sq−B9∇×

(
j+ jq

)
−B14T

−B15Tq +2
(
B18∆s+B19∆sq

)
(3.27)

Aq = −2
(
B3 j+B4 jq

)
+B9∇×

(
s+ sq

)
(3.28)

Cq = −
(

B14 s+B15 sq

)
(3.29)

The local densities for each charge state q are shown explicitly, while the sum of the local density for both
charge state is given without any indices (e.g. ρ = ρn +ρp).
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Figure 3.1: The single-particle states as a function of energy in 238,239Pu to illustriate the lifting of
the Kramers degeneracy of the single-particle states when the time-reversal symmetry is broken due
to the presence of an odd numbers of neutron in 239Pu.

3.1.4 Self-consistent blocking calculation (SCB)

For the description of odd-mass nuclei, only seniority-one states have been considered whereby the seniority

quantum number [59] refers to the number of unpaired nucleons, i.e which thus do not participate in the
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3.1. THE MEAN-FIELD APPROACH

pairing treatment. The ground state of an even-even nucleus is a seniority-0 state, with subsequent excited
states of seniority 2,4,6,...,etc. The projection Ωk of the total angular momentum onto the axial symmetry
z−axis, Ĵz, of the single-particle state |k〉

〈k|Ĵz|k〉= Ωk (3.30)

and its parity πk are assumed to be good quantum numbers. In general, the lowest nuclear Kπ state corre-
sponds to an unpaired nucleon blocked in the single-particle state which is the nearest to the Fermi level
with Ωπ

k = Kπ . The single-particle states in the Ωπ blocks are sorted as a function of an increasing energies
and is labelled by rank. The rank of the single-particle state reflects the number of single-particle states
with the desired Ωπ quantum numbers. In practice, the single-particle state nearest to the Fermi level is
systematically chosen to be populated by the last unpaired nucleon. The Fermi energy eF in this case is
defined as the average energy of the last occupied single-particle state and the next unoccupied state, given
by

eF =
1
2
(eNq + e(Nq+1)) (3.31)

where Nq is the total number of nucleons of a given charge state q. In so-called self-consistent blocking

(SCB) calculations, the occupation probability v2
k of this chosen blocked state is then set to 1 at each step

of the iterative process.

Having decided which single-particle state is to be blocked, one then needs to define a pair conjugate
state which is indeed its time-reversed state when the time-reversal symmetry is preserved. Denoting such
a true time-reversed state by |φ (k)

K,π〉, such that:

|φ (k)
K,π〉= T̂ |φ (k)

K,π〉 ≡ |φ
(k)
−K,π〉 (3.32)

The action of the time-reversal operator T̂ on the single-particle state yields a change in the sign of the
K quantum number. In the case where the time-reversal symmetry is broken, the Kramers degeneracy is
lifted. One does not have thus a straightforward correspondence to define (K,−K) partner states. In this
work, a pair partner of the |φ (k)

K,π〉 state is considered within the eigen-solutions of the mean-field Hamil-

tonian denoted as |φ̃ (k)
K,π〉. It is to be distinguished from the previous partner state |φ (k)

K,π〉 which is not an
eigen-solution of the mean-field Hamiltonian.

In practice, the pair partner state is selected by calculating the overlap χ
(k)
K,π between two eigenstates

|φ (k)
K,π〉 and |φ̃ (k)

−K,π〉, such that:

χ
(k)
K,π = 〈φK,π |

(
T̂ |φ̃−K,π〉

)
(3.33)

These partner states |φ (k)
K,π〉 and |φ̃ (k)

−K,π〉 form a so-called pseudo-pair. The value of this overlap would be
exactly 1 when time-reversal symmetry is observed. As a fact assessed by actual calculations the breaking
of the time-reversal symmetry modifies slightly the wave function |φ̃ (k)

−K,π〉 as compared with |φ (k)
K,π〉. Thus,

if the above value of |χ(k)
K,π |2 is close to 1 when the time-reversal symmetry is broken, it can be safely as-
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sumed that this state originates from the same Kramers degenerate pair as |φ (k)
K,π〉. However, there may a

priori exist several single-particle states with the same K and π quantum numbers within some small energy
range. In order to define the pseudo-pairs in such a case, the partner state of |φ (k)

K,π〉 is assigned to be the

state with the largest overlap value of |χ(k)
K,π |2.

3.1.5 Self-consistent symmetries

In performing any mean-field calculation, one has to define a variational space in which the lowest energy
solution is searched. By using the most general variational space, one would in principal obtain the exact
variational solution. However, this would require unavailable computing resources and makes such a study
impossible. One is thus compelled to perform the variation in a truncated ensemble. A further restric-
tion arises when one imposes a certain number of symmetry conditions reducing the variational ensemble
whether these conditions are of physical or numerical origins.

If one have a many-body Hamiltonian which possesses a certain symmetry represented here by the
symmetry operator Ŝ, then by definition, these two operators will commute:

[Ĥ, Ŝ] = 0 (3.34)

Then if one starts from a mean-field solution ρ̂ which also possess this symmetry, the corresponding one-
body reduction of the many-body Hamiltonian (e.g. the Hartree-Fock Hamiltonian ĥ[ρ̂]) also possesses this
symmetry

[ĥ[ρ], Ŝ] = 0 (3.35)

In that way, the solutions to ĥ[ρ̂] will also be symmetric under the action of Ŝ. Due to the self-consistent
procedure, one finds that by starting from a mean-field solution which obeys certain symmetries as men-
tioned above, this set of symmetries will be conserved in the rest of the self-consistent iterative process.
These symmetries are then referred to as the self-consistent symmetries [59].

3.1.6 Constrained Hartree-Fock

Solving the Hartree-Fock secular equation as it is would yield the nuclear properties at a local extremum, in
practice a local minimum, for instance describing the nuclear ground state. In order to obtain information
at a specific nuclear deformation 〈Q̂lm〉, an external field may be included to a constrained Hamiltonian
introducing some Lagrange multiplier λ . As discussed in Ref. [6] one may equivalently consider the
variation quantity written as:

Ĥ ′ = H + f (µl,〈Q̂lm〉) (3.36)
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for instance with quadratic constraint [6]

f (µl,〈Q̂lm〉) =
1
2

Cl(〈Q̂lm〉−µl)
2 (3.37)

where Cl is a curvature parameter and µl is the center of a parabolic shape which is adjusted in order to
obtain the desired value for the expectation value of the operator Q̂lm :

〈 Q̂lm 〉=
∫

dr ρ(r) ql(r) (3.38)

Applying the variational procedure with the above constrained Hamiltonian, one would have

δ

δφ j(r)

(
E[φk] + f (µl,〈Q̂lm〉)− ∑

k,τ,σ
ek

∫
dr |φk(r)|2

)
= 0 (3.39)

whereby the variation of the external constraint with respect to the single-particle state would be written as:

δ

δφ j(r)
f (µl,〈Q̂lm〉) = Cl (〈Q̂lm〉−µl)

δ 〈Q̂lm〉
δφ j(r)

(3.40)

with
δ 〈Q̂lm〉
δφ j(r)

=
δ

δφ j(r)

(∫
dr ∑

k
φk(r) φ

∗
k (r) Qlm(r)

)
= φ

∗
j (r) ql(r) (3.41)

The Hamiltonian density is then modified to include this constraint and is written as:

H ′(r) = H (r) + Cl (〈Q̂lm〉−µl) Qlm(r) ρ(r) (3.42)

yielding a constraint in the Hartree-Fock mean-field given by:

V̂constr = Cl (〈Q̂lm〉−µl) ql(r) (3.43)

Starting from an axially symmetric shape for the ground state, the leading multipole moment to be
considered as the nucleus undergoes fission is the quadrupole moment corresponding to Q20(r) = 2z2− r2

(with r = x2 + y2) so that
Q20 = 〈Q̂20〉 =

∫
dr ρ(r)(2z2− r2) (3.44)

Around the top of the inner-barrier of actinide nuclei, the nucleus is unstable with respect to triaxial shape.
The non-axial quadrupole deformation is defined as the expectation value of the Q̂22 operator corresponding
to Q22(r) = x2− y2 so that

Q22 = 〈Q̂22〉 =
∫

dr ρ(r)(x2− y2) (3.45)

Although the breaking of the axial symmetry plays a role in decreasing slightly the inner-barrier height, this
will not be considered in the present study. The reduction in the inner-barrier height would instead be taken
from a previous study [60] and is estimated to be about 0.5 MeV for instance in the three actinide nuclei
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(234,236U and 240Pu) using the SkM* parametrization of the Skyrme interaction.

Another constraint of interest would be the hexadecapole moment corresponding to Q40(r)= r4 Y 0
4 (θ ,ϕ)

so that:
Q40 = 〈Q̂40〉 =

∫
dr ρ(r) r4 Y 0

4 (θ ,ϕ) (3.46)

In the case when the constrained Hartree-Fock calculation is performed with a constraint only on the
quadrupole moment, the fission path may be slightly different, away from stationary points, from the true

fission valley (see the discussion of Ref. [6]). However, this is of minimal consequence as the focus of this
study is placed on the height of the barriers.

Moving away from the superdeformed isomeric well and towards the outer-barrier, the nucleus is known
to explore left-right asymmetric shapes. This extra degree of freedom lowers coincidentally the second
fission-barrier height. For that purpose, one should consider non-vanishing octupole moments correspond-
ing to Q30(r) = r3 Y 0

3 (θ ,ϕ) so that

Q30 = 〈Q̂30〉 =
∫

dr ρ(r) r3 Y 0
3 (θ ,ϕ) (3.47)

This symmetry breaking entails a significant complication of the numerical calculations. When performing
calculations with a conserved intrinsic parity symmetry the integration over the z− coordinates may be
simplified by considering merely

2
∫

∞

0
f (r,z) dz (3.48)

due to the condition that f (r,z) = f (r,−z). This no longer holds of course when the parity symmetry is
broken. In this case, the integration must be performed over the full z− space∫

∞

−∞

f (r,z) dz (3.49)

In practice, parity breaking calculations of the fission-barrier are performed by constraining the quadrupole
moment to some relevant value, while leaving the octupole moment unconstrained so as to obtain the most
energetically favored solution in the Q30 direction. One should then, of course, guarantee that the center-of-
mass of the solution is fixed at the origin point 〈z〉 = 0 to preserve a consistent meaning for the calculated
multipole moments.

In addition to the commonly used quadratic constraint, a procedure has been developed employing an
automatic readjustment of linear constraints so as to converge at the desired deformation points. The deriva-
tion of the readjustment of the linear constraints is detailed in the Appendix B and only the main point shall
be highlighted here.
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When using a linear constraint, the one-body Hartree-Fock Hamiltonian can be written as:

ĥ
′
HF = ĥHF −∑

l
λl q̂l (3.50)

where λl are Lagrange multipliers. The readjustment of the constraints is made such that at each of the
nth iteration of the Hartree-Fock process, the λl value is adjusted by a small amount of dλ

(n)
l so that the

Hamiltonian to be diagonalized in the next iteration would be

ĥ(n+1)
HF = ĥ(n)HF −∑

l

(
λ
(n)
l +dλ

(n)
l

)
q̂l (3.51)

with
dλ

(n)
l = ∑

j

(
χ
−1
)

l j
·
(

Qlm−〈Φ
(n)
0 |Q̂lm|Φ

(n)
0 〉
)

(3.52)

where Qlm is the desired deformation point.
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3.2 Treatment of pairing correlation

The most important ground-state correlations to be considered beyond the Skyrme Hartree-Fock mean-field
scheme are due to the pairing part of the residual interaction. The wavefunction in the HF approximation
is a Slater determinant which is good for the description of a doubly magic nuclei, whereby the occupa-
tion factors of the single particle states is v2

k ∈ {0,1}. However, for non-magic nuclei which have a high
single-particle level density at the Fermi surface, the residual interaction will allow for a partial population
of these single-particle states in the many-body ground state so that the occupation factors of the single
particle states should no longer correspond to empty or occupied states.

In such cases, the treatment of pairing correlation comes into play. The description of pairing beyond
the mean field scheme is usually carried out using the Bardeen-Cooper-Schrieffer (BCS) approximation
[61]. The BCS ansatz is an approximation to the Hartree-Fock-Bogoliubov (HFB) approximation. On the
other hand, the manner in which the Skyrme forces are usually fitted does not enable such an approach with
it and therefore a different interaction is often needed to treat adequately pairing correlations (see e.g. the
discussion of Ref. [62]).

The BCS pairing treatment in nuclei via the BCS method is usually restricted to the |Tz = 1| (neutron-
neutron and proton-proton) isospin channel. Such a restriction is justifiable in view of the current scope of
the study which focuses on heavy nuclei in the stability valley or close to it. This is due to the fact that the
pairing between neutrons and protons which contributes to both the T=1 and T=0 channel has a significant
impact only for nuclei with about equal numbers of protons and neutrons. Among the many single-particle
states available for pairing, the states near the Fermi level are the ones to contribute the most. However, for
stable or not too unstable heavy nuclei with much more neutrons than protons, the wave functions of the
occupied single-particle states of both charge states near the Fermi level may be very different in structure.
Coupled with the fact that the pairing interaction is a short-range interaction which could be approximated
by a delta contact interaction

V̂p(r,r’)≈ δ (r− r’) (3.53)

the overlap of the two differing single-particle charge states in that case would be very small, thus yielding
vanishing neutron-proton pairing correlations in such heavy nuclei.

3.2.1 The BCS approximation

The ground state of an even-even nucleus (namely even with respect to the number of protons and neutrons)
is written using the second quantization notation as:

|BCS〉= ∏
Ωk>0

(
uk + vka+k a+k̄

)
|0〉 (3.54)
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where uk and vk ∈ℜ, a+k and a+k̄ are the particle creation operators in the state k and its time-conjugate state,
k̄ respectively, while the null vector |0〉 denotes the particle vacuum state. The occupation probablility of
the state k is given by v2

k while its non-occupation probability is given by u2
k such that v2

k +u2
k = 1.

Using a restricted Bogoliubov canonical transformation known as the Bogoliubov-Valatin transforma-
tion, one could transform the description of a system of paired-interacting particles in terms of a state of
non-interacting quasi-particles where the relations between the particle and quasi-particle creation operators
are given as

α
†
k = uka†

k− vkak̄ (3.55)

α
†
k̄ = uka†

k̄ + vkak (3.56)

with the following phase convention:

uk̄ = uk > 0 and vk̄ =−vk < 0 (3.57)

for Ωk > 0.

A blocked BCS wave function for odd-mass nuclei is defined in the following way. One adds to a BCS
state representing the even-even core, a specific single-particle state denoted here by the index i, such that

|BCS(i)〉= a†
i |BCS(core)〉= a†

i ∏
k 6=i

Ωk>0

(
uk + vka+k a+

k̃

)
|0〉 (3.58)

In this case, one defines quasi-pairs (k and k̃) as defined in Section 3.1.4 where one of the quasi-pair partners
is no longer the time-reversed state of the other. The single-particle state i will always be occupied (v2

i = 1)
while its quasi-pair partner ĩ state will be always empty (u2

ĩ = 0). Owing to the Pauli principle, the quasi-
pairs to which the blocked state belongs would not participate in the scattering of the quasi-pair excitations
due to the pairing residual interaction. This would in effect reduce the number of available quasi-pair states,
and thus, lowering the effective single-particle level density near Fermi surface. As a consequence, one
have a quenching of pairing due to the blocking procedure. For a nucleus with high enough single-particle
level density, the BCS pairing treatment for a valence space which is reduced by one quasi-pair is of little
consequence. A problem would occur for the case when the blocking procedure is applied to a situation
where we have a weak-pairing regime characterized by

g̃|G| � 1 (3.59)

with G representing a typical pairing matrix element and g̃ denoting the average single-particle level density
near the Fermi surface. Then the quenching of the pairing correlations would be unduly strong.

As a way to circumvent the potential problem due to the inappropriateness of the BCS pairing treatment
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in the case of low single-particle level density near the Fermi level, one could consider a different pairing
treatment called the Highly Truncated Diagonalization approach (HTDA) [63]. This alternative pairing
treatment is akin to the shell model -like calculations which has the essential benefit in that this method
conserves the particle number as opposed to the BCS approach (the violation of which is known to cause
the inadequacy of the BCS approximation in the low pairing correlation regime).

Since the BCS wave function given in equation (3.54) clearly mixes Slater determinants corresponding
to different particle numbers, one makes use, as discussed e.g. in Ref. [64], of a Lagrange multiplier, λ

(also referred to as the BCS chemical potential), to constrain the particle number on the average, whereby
the particle number operator is given as

N̂ = ∑
µ

a+µ aµ (3.60)

For an odd-mass nucleus with Ntotal particles, our blocked BCS wave function is thus constrained to have a
particle number equal to Ntotal . Denoting by Neven the particle number of its neighbouring N−1 (even-even)
nucleus, one has thus

〈BCS(i)|N̂|BCS(i)〉 = Ntotal = Neven +1 (3.61)

with 〈BCS(core)|N̂|BCS(core)〉 = Neven. The even-even core |BCS(core)〉 defined in equation (3.58) to be dis-
tinguished from the wave function considered in equation (3.54) in that one is now dealing with a polarized
even-even core where the Bogoliubov-Valatin transformation is now connecting the pair members |i〉, ˜|i〉 of
a quasi-pair.

3.2.2 The BCS approximation with a seniority force

Let us first start with the many-body Hamiltonian, Ĥ, which consists of the (one-body) kinetic energy
operator, K̂, and a two-body interaction, V̂ (2b)

Ĥ = K̂ +V̂ (2b) (3.62)

The present approach made use of an approximation reducing the many-body problem to a one-body ap-
proach. One realization of this program is the Hartree-Fock approximation. The Hartree-Fock Hamiltonian
which is one possible one-body reduction of Ĥ associated with a self-consistent Hartree-Fock density matrix
ρ̂HF denoted here as ĥHF and can be written as

ĥHF = K̂ +ÛHF (3.63)

where ÛHF is the one-body reduction of the two-body interaction V̂ (2b) associated with ρ̂HF .

Consider a functional of the density operator ρ̂ defined with respect to a two-body Hermitian operator,

30



3.2. TREATMENT OF PAIRING CORRELATION

V̂ (2b),
V (2b)[ρ̂] =

1
2 ∑

mnpq
ρ̂nm ρ̂qp〈mp|V̂ (2b)|ñq〉 (3.64)

where the indices m,n,p,q denote the single-particle states of a complete single-particle basis and |̃nq〉 is an
anti-symmetrized wavefunction given by

|̃nq〉= |nq〉− |qn〉 (3.65)

The one-body reduction of V̂ (2b) is a one-body operator whose matrix elements are given by

〈m|ÛHF |n〉=
δ

δ ρ̂nm
V̂ (2b) = ∑

pq
〈mp|V̂ (2b)|ñq〉ρ̂qp (3.66)

In the Hartree-Fock case, the density operator ρ̂HF associated with the Slater determinant |Ψ〉 has {0,1} as
a spectrum.

The part of V̂ (2b) which is not accounted for in the ÛHF potential is referred to as the residual interaction
V̂res where

V̂res = V̂ (2b)−ÛHF (3.67)

so that the many-body Hamitonian may be now written as

Ĥ = ĥHF +V̂res (3.68)

We now make an approximation for V̂res by considering it to be a seniority force. Given a one-body density
matrix ρ̂ and a spectrum {ei} associated to its eigensolutions |i〉, we perform a BCS calculation with this
pairing interaction. This defines a new many-body wave function |ΨBCS〉 from which one would obtain a
BCS density matrix ρ̂BCS with occupation probability lying between 0 and 1. At this point, the one-body
reduction of the two-body interaction called now Ûm f (with m f standing for mean-field) is no longer as-
sociated with ρ̂HF as before, but with ρ̂BCS. Using ρ̂BCS as an input, one then defines a new one-body
Hamiltonian called ĥm f . Diagonalizing ĥm f one yields the density operator ρ̂m f defining a new canonical
basis to which a new energy spectrum is associated. The BCS pairing treatment is then performed on this
basis states to obtain a new ρ̂BCS which will be the input to define ĥm f in the next iteration. These steps are
then repeated until self-consistency is achieved. Self-consistency was considered to be reached when the
variations of the total binding energy and the quadrupole moment from one iteration to the next are lesser
than 10 eV and 0.010 fm2, respectively.

The seniority force which is used to approximate the pairing interaction V̂p assumes the constancy of so-
called pairing matrix elements between all the single-particle states belonging to a restricted single-particle
configuration space. This pairing matrix element between two pair-conjugate states is written as

〈kk̃|V̂ (q)
p |l̃ l̃〉 = fk fk̃ fl fl̃ v̂(q)

kk̃ll̃
(3.69)
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with
v̂(q)

kk̃ll̃
= −

Gq

11.0+Nq
(MeV ) (3.70)

being dependent on the total number of nucleon Nq, of a particular charge state, q. The values for the pairing
strengths Gq are obtained herein from a fit to the odd-even mass differences of some sets of nuclei. This
will be the subject of the discussion in Section 4.2.1. The functions fk is written as

fk =
1

1+ e(|ek−eF−X |−Y )/µ
(3.71)

where
X = (Emax−Emin)/2 (3.72)

Y = (Emax +Emin)/2 (3.73)

Emin and Emax being the minimum and maximum energies, respectively, within which the single-particle
states (with single-particle energy ek) are considered. In the present work, all the single-particle states
below the Fermi level (Emin = −∞) up to a maximum energy of 6 MeV above the Fermi level (Emax = 6
MeV) are allowed for pairing. In order to avoid a sudden transition in the single-particle states from being
an occupied to an unoccupied state, a gradual single-particle energy cut-off (instead of a sharp cut-off) is
allowed by taking a diffuseness parameter µ = 0.20 MeV.

The gap equation to be solved takes on the form [59]

∆k = ∑
Ωl>0

v̂(q)
kk̃ll̃

∆l

[(e′l−λ )2 +∆2
l ]

1/2
(3.74)

where e
′
l is the average single-particle energy for the pair-conjugate (l, l̃) states, such that

e
′
l =

1
2
(el + el̃) (3.75)

Due to the constancy of the pairing matrix element, one gets the same gap for all single-particle states
belonging to the retained configuration space.

∀ k ; ∆k = ∆ (3.76)

Similiarly, due to equation (3.75) one has

∀ k ; v2
k = v2

k̃ (3.77)

The constraint on the particle number requires that the sum of the occupation probability of all occupied
states is equal to the total particle number of a specific nuclear charge state:

2 ∑
Ωk>0

v2
k = Nq (3.78)
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As mentioned above, the particle number would corresponds to the neighbouring N−1 even-even nucleus
when performing a BCS calculation for an odd-mass nucleus.

The occupation probability v2
k of the single-particle state k, and its complement, u2

k are given by:

v2
k =

1
2

{
1−

e
′
k−λ

[(e′k−λ )2 +∆2]1/2

}
(3.79)

u2
k =

1
2

{
1+

e
′
k−λ

[(e′k−λ )2 +∆2]1/2

}
(3.80)

After obtaining the converged solution, the two-body quantity which is of interest is the total binding
energy. It is defined in this case as the expectation value of the Hamiltonian in the blocked BCS wave
function, given as:

〈BCS(i)|Ĥ|BCS(i)〉=
∫

H Skyrme(r) dr + G ∑
k,l 6=i

Ωk,Ωl>0

ukvkulvl (3.81)

where the Hamiltonian densities contributing to the term H Skyrme is given in equation (3.7) to (3.12) using
of course the one-body density ρ̂BCS while the last term on the r.h.s is the contributing term coming from
the pairing correlations (with G≡ v̂(q)

kk̃ll̃
).
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3.3 The center-of-mass correction

The many-body nuclear Hamiltonian can be written in terms of relative coordinates r̂i (with momentum
operator π̂i and reduced mass µi) and the center-of-mass coordinate X̂ = ∑i

x̂i
A with its conjugate momentum

operator P̂ = ∑i p̂i such that (see e.g. [65]):

Ĥ =
P̂2

2mA
+

A−1

∑
i

π̂2
i

2µi
+ V̂ (r̂1, r̂2, ...r̂i) (3.82)

The many-body kinetic energy of A nucleons may be splitted into two parts.

K̂ = K̂(cm) + K̂(rel)

=
P̂2

2mA
+ K̂(rel) (3.83)

where P̂ is the center of mass momentum. In this work, the K̂(cm) term is approximated by

K̂(cm) =
A

∑
i

p̂2
i

2mA
(3.84)

i.e. neglecting its two body contribution. This introduces a renormalization term
(
1− 1

A

)
to the kinetic

energy operator as seen in equation (3.7).

Such an approach has been noted to overestimate the contribution from the center-of-mass correction
[66]. Nevertheless, the approximate treatment of the correction term is consistent with the manner in
which the adopted Skyrme parametrizations were fitted which is assumed to cure approximately this defect.
A study on the various approximations used to include the center-of-mass correction term in the mean-
field approach and also its effects on nuclear properties as well as deformation energy surface has been
performed in Ref. [67]. Of particular interest is the consequence of the center-of-mass correction to the
deformation energy of heavy nuclei. Comparison between the deformation energy curves obtained with
the SLy4 and SLy6 parametrizations of the Skyrme force shows that the former parametrization results
in a wider and higher fission-barrier [67]. This was attributed to the different treatment for the center-of-
mass correction term, and consequently reflected in the value of surface coefficient asur f for the respective
interaction. Effective interactions with small value of asur f were reported to yield lower deformation energy,
with asur f = 17.4 MeV for SLy6 as compared to asur f = 18.2 MeV for SLy4. The surface coefficient for
the SkM* parametrization frequently used for fission-barrier calculations was reported to be 17.6 MeV and
this value has been constrained in the earlier fit of the interaction.

34



3.4. FROM HF+BCS ENERGIES TO NUCLEAR ENERGIES

3.4 From HF+BCS energies to nuclear energies

3.4.1 The case of even-mass nuclei

We will first limit our discussion to the case of even-mass nuclei.

The HF+BCS energies cannot be associated in general with the nuclear energies since they incorporate
a spurious component due to the breaking of the rotational symmetry. For deformed nuclei, these micro-
scopically calculated energies corresponds, as well known, to the energy of intrinsic states. Due to the
Heisenberg uncertainty principle, the imposition of a definite angular position for the intrinsic state entails
a mixing of angular momenta in the lab frame. The ground state energy in the lab frame will thus corre-
spond to the energy of a superposition of states having a priori all possible values of the angular momentum
compatible with the symmetries. If the intrinsic solution is axially symmetrical and possesses left-right re-
flection symmetry, it is thus a mixture of 0+, 2+, 4+ ... states. If it is a reasonably well-deformed it will
correspond to a mixture of states belonging to the rotational ground state band. In such a case, a simple
approach yielding the ground state energy out of the microscopically calculated HF+BCS energy have been
proposed and will be detailed as follows.

Starting from a mean-field solution whose wave-function is noted as |Ψα
Kπ
〉where α refers to a particular

solution, the projection onto normalized good angular momentum states |ΦI〉 would yield:

|Ψα〉 = ∑
I>K

Xα
I |ΦI

α〉 (3.85)

The expectation value of the Hamiltonian in this wave-function is assumed to provide a rotational spectra
(as proposed by Lipkin [65]) such that:

〈ΦI
α |ĤSkyrme|ΦI

α〉 = E(I=0)
α +

h̄2

2 Lג
I(I +1) (3.86)

with E(I=0)
α being the energy of the contribution to |ΦI

α〉 of the I = 0 component, while Lג plays the role of
a moment of inertia. Subsequently, one could write:

〈Ψα | ˆHSkyrme|Ψα〉 =
∞

∑
I=0
|Xα

I |2
[
E(I=0)

α +
h̄2

2 Lג
I(I +1)

]
(3.87)

and thus
E(I=0)

α = 〈Ψα |ĤSkyrme|Ψα〉 − 1
2 Lג
〈Ψα |Ĵ2|Ψα〉 (3.88)

The evaluation of the spurious rotational energy content of |Ψα〉 will thus imply the calculations of the
expectation value of the Ĵ2 operator for this state as well as an estimate of the moment of inertia .Lג The
former quantity is calculated as recalled in Appendix C. The determination of the moment of inertia is
somewhat more difficult.
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The usual way to handle it is to use the Inglis-Belyaev formula [68]. It is not satisfactory for at least
three reasons. It corresponds to the adiabatic limit of the Routhian Hartree-Fock-Bogoliubov approach. The
Routhian approach is, as well known, only a semi-quantal prescription to describe the rotation of a quantal
object. Moreover, it is not clear, as we will see, that the corresponding collective motion is adiabatic.
Finally, the Belyaev formula corresponds to a well-defined approximation to the Routhian-Hartree-Fock-
Bogoliubov approach. As discussed in Ref. [69], the Belyaev moment of inertia ought to be renormalized
to take into account the so-called Thouless-Valatin corrective terms [70]. These corrective terms have been
studied in detail in Ref. [69]. They come about due to the fact the that response of the self-consistent fields
with respect to the time-odd density (as e.g. current and spin vector densities) generated by the rotation of
the nucleus is neglected in the Belyaev formula. In order to incorporate these corrective terms in our current
approach, the moment of inertia yielded by the Belyaev formula Belג could be scaled by a factor α whose
value is taken to be 0.32 following the prescription of Ref. [71]:

′ג = Belג (1 + α) (3.89)

As a result, one should diminish by the same percentage the rotational correction evaluated upon using the
Belyaev moment of inertia.

Projecting after variation the 0+ state out of a HF+BCS solution, corresponds, of course, in principle to
a better approach to the determination of the ground-state energy. This has been performed in Ref. [72] for
the fission-barrier of 240Pu upon using two Skyrme force parametrizations (SLy4 and SLy6 [73, 74]). These
authors clearly show that using the Inglis-Belyaev leads to an overestimation of the rotational correction by
about 10 - 20% in the region of inner-barrier and fission-isomeric state and by more than 80% close to the
outer-barrier. A word of caution on the specific values listed above should be made, however, since these
calculations yield a first 2+ energy in the ground-state band which is about twice its experimental value (83
keV instead of 43 keV).

Moving now to a third theoretical estimate which belongs to the family of phenomenological approaches
known as Variable Moment of Inertia models. It describes the evolution of rotational energies in a band
by consideration of the well known Coriolis Anti-Pairing (CAP) effect [75] in terms of intrinsic vortical
currents (see e.g. Ref. [76]). The Belyaev treatment to the moment of inertia corresponds to a global
nuclear rotation which is adiabatic, i.e. corresponding to a low angular velocity Ω, or equivalently to a
rather small value of the total angular momentum (also referred to as spin). One can compute the average
value of the total angular momentum Iav spuriously included in the mean-field solution |Ψα

0+〉 computed as
described in Appendix C as

Iav(Iav +1) h̄2 = 〈 Ĵ2 〉 (3.90)

where Ĵ is the total angular momentum operator. It cannot even, at ground-state deformation, be considered
as being small (one finds there that Iav ≈ 13). Consequently, the moment of inertia entering the rotational
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correction term should reflect the fact the average Ω is large.

Recently, a polynomial expression for the moment of inertia as a function of Ω denoted as (Ω)ג has been
proposed [77] according to this approach to CAP. This model shall be referred to as the Intrinsic Vorticity
Model (IVM) in the discussion herein. The IVM was found to work well for the rotational bands in the
ground-state deformation for some actinide nuclei, for instance a very good agreement for 240Pu for a value
of I as high as Iav≈ 30 (where it predicts a rotational energy differing by only 70 keV from the experimental
value). A more detailed discussion on the model and the comparison of the calculated rotational bands to
the experiments will be made in Appendix D. A brief description will be given in the following as to how
this model will be applied in the context of fission-barrier heights calculations. The IVM uses merely two
inputs for each nuclei in order to describe up to 16 rotational energies, namely the experimental values of
the charge quadrupole moment and the 2+ energy of the ground-state band. As such, it is limited to de-
scribe only the rotational mode for the ground-state, and thus the corresponding spurious rotational energy
correction.

Table 3.1 lists the spurious rotational energy obtained using the Belyaev formula as compared to the
IVM rotational energy for a given value of the total angular momentum Iav in the ground-state of the even-
even nuclei. In all cases, the spurious rotational energy evaluated using the Belyaev formula is larger by
about a factor 2 with respect to the values obtained in the IVM approach. Therefore, the rotational energy
obtained using the Belyaev formula should be reduced by approximately 50%. The same amount of correc-
tion is assumed to apply as well to all other deformations, and therefore possibly include this 50% reduction
in the calculations of the fission-barrier heights.

Table 3.1: Rotational energy (given in MeV) calculated from Belyaev formula (IB) and the Intrinsic Vor-
ticity Model (IVM) at the ground-state deformation as a function of the total angular momentum Iav with
Iav(Iav +1) = 〈Ĵ2〉.

Nucleus Iav IB IVM
234U 12.988 2.371 1.232
236U 12.905 2.423 1.255
238Pu 13.146 2.441 1.266
240Pu 13.143 2.408 1.232

To conclude this subsection, it appears that the evaluation of the spurious rotational energy content of
the intrinsic wavefunction |Ψα〉 is very significantly overestimated upon using Belyaev’s moments of iner-
tia. On the other hand, as will seen later, it corresponds to energies that can amount over a fission-barrier to
a few MeV which is by far a fairly large correction. Since this correction varies with deformation, its exact
estimate is of paramount importance for an accurate calculations of the fission-barrier heights.
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In the current situation when a reliable prescription could not be made, the present results for fission
barriers may be obtained by using four prescriptions for the rotational energy correction:

- upon using the Belyaev’s moment of inertia

- reducing the above moments by 32% (i.e. correcting for the omission of some Thouless-Valatin
self-consistent terms )

- using the reduction factors from the Belyaev approach for all considered even-mass nuclei, as found
(as a function of the deformation) for 240Pu with the SLy4 Skyrme force

- using at all deformations the reduction factors found at the ground-state of the considered nuclei
within the so-called Intrinsic Vorticity model.

3.4.2 The case of odd-mass nuclei

An adequate description of the nuclear energy of states corresponding to a rigid deformation implies the
treatment of both the single-particle dynamics and the collective rotational mode. This is achieved here
according to the so-called Bohr-Mottelson model [78] within the rotor-plus-particle approach. The Bohr-
Mottelson Hamiltonian given as

Ĥ(BM) = Ĥ(intr) +
(Î− ĵ)2

Cג
(3.91)

where the first part of Ĥ(BM) corresponds to the intrinsic degrees of freedom and the second part is the
rotational energy of the core (whose moment of inertia is noted by Cג and angular momentum by R̂ = Î− ĵ).
Note that whereas the core is made of an even number of nucleons, Cג is not the moment of inertia of the
corresponding even-even nucleus alone since the presence of an odd particle will increase its value due to
the pair quenching induced by the blocking of the level which the odd particle occupies.

The eigenstates of Ĥ(intr) corresponding to an intrinsic frame solution |Ψα
Kπ
〉 are written as

|IMαKπ〉 =
√

2I +1
16π

(
DI

M K|Ψα
Kπ〉 + (−)(I+K)DM−K T̂ |Ψα

Kπ〉
)

(3.92)

The intrinsic energy

The eigenvalue of Ĥ(intr) is not given as the expectation value of ĤSkyrme for the state |Ψα
Kπ
〉 in that this

intrinsic frame wave function includes a spurious rotational component. Similarly to what is the case for
even nuclei, it is assumed that

〈IMαKπ|Ĥ(intr)|IMαKπ〉 = 〈Ψα
Kπ |Ĥ(Skyrme)|Ψα

Kπ〉 −
1

2 L(αKπ)ג

[
〈Ψα

Kπ |Ĵ2|Ψα
Kπ〉 − K(K+1)h̄2

]
(3.93)
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One can split the one-body part of Ĵ2 into core plus odd particle contributions and similarly for its two-body
part to which however one should add a cross term, so that with an obvious notation, one has

〈Ψα
Kπ |Ĵ2|Ψα

Kπ〉 = 〈Ψα
Kπ |Ĵ2

core|Ψα
Kπ〉 + 〈Ψα

Kπ |ĵ2odd|Ψα
Kπ〉 + 2 〈Ψα

Kπ |Ĵcore · ĵodd|Ψα
Kπ〉 (3.94)

Within the blocked BCS approach, it is easy to show that only the one-body part of ĵ2odd contributes to the
relevant matrix element so that

〈Ψα
Kπ |ĵ2odd|Ψα

Kπ〉 = 〈αKπ|ĵ2|αKπ〉 (3.95)

where |αKπ〉 is the single-particle state corresponding to the odd-particle and ĵ2 a one-body operator.

For the cross-term involving the two-body separable operator Ĵcore · ĵodd , one obtains readily due to the
axial symmetry that

〈Ψα
Kπ |Ĵcore · ĵodd|Ψα

Kπ〉 = −2 ∑
c,

Kc=Kα+1

v2
c |〈c|ĵ+|αKπ〉|2 (3.96)

where c are all the canonical basis states satisfying the matching condition Kc = Kα +1. This contribution
is assumed to be negligible and thus

〈Ψα
Kπ |Ĵ2|Ψα

Kπ〉 ≈ 〈Ψα
Kπ |Ĵ2

core|Ψα
Kπ〉 + 〈αKπ|ĵ2|αKπ〉 (3.97)

To compute, in practice, the expectation value of Ĵ2
core one perform the calculations of the expectation value

of the corresponding one-body and two-body operators for a restricted single-particle space where the state
occupied by the odd particle together with its quasi-pair partner have been removed. In particular, one
may note that this calculation corresponds to a BCS calculation for even numbers of particles with pairing
correlations diminished from what it is expected to be present in the core nucleus alone (i.e. without a
polarizing odd particle). One thus gets for the intrinsic energy eigenvalue

〈IMαKπ|Ĥ(intr)|IMαKπ〉 = 〈Ψα
Kπ |Ĥ(Skyrme)|Ψα

Kπ〉 −
1

2 L(αKπ)ג

[
〈Ψα

Kπ |Ĵ2
core|Ψα

Kπ〉

+ 〈αKπ|ĵ2|αKπ〉 − K(K +1)h̄2
]

(3.98)

The core rotational energy

Since any band coupling through the so-called Coriolis interaction term is neglected, one will merely con-
sider here the diagonal term

〈IMαKπ|Ĥ(core)|IMαKπ〉 = 1
2 C(αKπ)ג

[
I(I +1)h̄2 + 〈Ψα

Kπ |ĵ2|Ψα
Kπ〉

− 2K2 + δK, 1
2

a (−1)I+1/2 (I +
1
2
)
]

(3.99)
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with the so-called decoupling parameter a defined as

a = 〈Ψα
1
2 π
|ĵ+T̂ |Ψα

1
2 π
〉 (3.100)

Some remark is in order here. In the spirit of the rotor-plus-particle approach, the one-body operator ĵ is
acting only in the space of the odd particle. Consequently, as was seen before and with the same notation
as above

〈Ψα
Kπ |ĵ2|Ψα

Kπ〉 = 〈αKπ|ĵ2|αKπ〉 (3.101)

and similiarly

〈Ψα
1
2 π
|ĵ+T̂ |Ψα

1
2 π
〉 = 〈α 1

2
π|ĵ+|α

1
2

π〉 (3.102)

noting that here one considers not the conjugated state ˜|α 1
2 π〉 of |α 1

2 π〉 in the sense of the quasi-pairs in

use in the approach but its time-reversed state. However, in view of the closeness of |〈α 1
2 π|α̃ 1

2 π〉| to 1
and the weak impact on the total energy of the corresponding term, this difference may be neglected.

The total Bohr-Mottelson energy

A final assumption is made, namely identifying L(αג K π) with C(αג K π) for each configuration defining
the Bohr-Mottelson eigenstate. It is to be noted in that respect, that both are affected by the same pairing
quenching due to the blocking effect. One may remark that the former (Lג) corresponds to a number A (odd)
of particles while the second (Cג) to a number A±1 (even). The bulk effect (scaling as A5/3) of this mass
discrepancy for A∼ 240 is rather small anyway (less than 0.7%).

As a result of the above, the 〈αKπ|ĵ2|αKπ〉 terms cancel in the total energy to yield

〈IMαKπ|Ĥ(BM)|IMαKπ〉= 〈Ψα
Kπ |Ĥ(Skyrme)|Ψα

Kπ〉 +
h̄2

2 C(αKπ)ג

{
[I(I +1)−K(K−1)]h̄2

− 〈Ψα
Kπ |Ĵ2

core|Ψα
Kπ〉 + δK, 1

2
a (−1)I+1/2 (I +

1
2
)
}

(3.103)

Limiting only to the lowest-energy ground-state of the rotational band for each configuration (the so-
called band heads), one gets

E(BM)(αKπ) = 〈Ψα
Kπ |Ĥ(Skyrme)|Ψα

Kπ〉 +
1

2 C(αKπ)ג

{
2Kh̄2 − 〈Ψα

Kπ |Ĵ2
core|Ψα

Kπ〉

+ δK, 1
2

a (−1)I+1/2 (I +
1
2
) h̄2
}

(3.104)

One may note en passant that the corrective term to the HF+BCS energy for even-mass nuclei may also be
obtained from the formula obtained for odd-mass nuclei upon setting K = 0.
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As it was the case for even nuclei, a specific evaluation of the above corrective term to 〈Ψα
Kπ
|Ĥ(Skyrme)|Ψα

Kπ
〉

depends on the choice made to estimate the moment of inertia .C(αKπ)ג Three different approaches are
considered, namely

- upon using the Belyaev’s moment of inertia

- reducing the above moment by 32% (i.e. correcting for the omission of some Thouless-Valatin self-
consistent terms)

- making an estimate of C(αKπ)ג from the data at ground-state deformation to define a reduction factor
to be used at all deformations as it will be discussed below.

The latter estimate of C(αKπ)ג will follow these lines. From the calculated values of 〈Ψα
Kπ
|Ĵ2

core|Ψα
Kπ
〉

we define an average spin value through

Rav(αKπ)
[
Rav(αKπ)+1

]
h̄2 = 〈Ψα

Kπ |Ĵ2
core|Ψα

Kπ〉 (3.105)

From the energy sequence in a rotational band (αKπ, I), one deduce the rotational core energy. For that
purpose, for instance for the 7/2− ground-state band of 235U, R = 0 is assigned for the I = 7/2 state, R = 2
for the I = 11/2 state and so on. The core dynamical moment of inertia as a function of R is deduced
through the formula currently used by experimentalists

C(R)ג =
4h̄2

E(R+2→ R)−E(R→ R−2)
(3.106)

where E(R0 +2→ R0) is the transition energy from the state with R = R0 +2 to the state with R = R0. The
value of C(Rav)ג is then computed by interpolation.

In Table 3.2, a comparison is made between the values of the rotational correction for 4 configurations
in 235U and the 1/2+ configuration in 239Pu at ground-state deformation obtained with the method using the
Rav spin value and the Inglis-Belyaev moments of inertia.

Table 3.2: Rotational energy (given in MeV) calculated from Belyaev formula (IB) and those using the
moment of inertia deduced from Rav spin value at the ground-state deformation for 235U and 239Pu nuclei.
The 1/2+ configuration in 235U is not included for comparison due to the possible influence of the Coriolis
coupling.

Nucleus Kπ Rav IB E(ג(Rav))

235U

7/2− 12.26 2.335 0.718
3/2+ 12.33 2.257 0.686
5/2+ 12.47 2.265 0.668
5/2− 12.12 2.247 0.710

239Pu 1/2+ 12.91 2.147 0.890
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It was found that the reduction factor of the rotational correction is about 65% when using the Rav values
with respect to the Inglis-Belyaev approach, which is slightly larger as compared to the estimated reduction
factor obtained with the IVM approach in even-mass nuclei. In order to be consistent with what was done
for even-even nuclei, the same 50% reduction to the rotational energy calculated using the Belyaev formula
will be applied to the case of odd-mass nuclei.

Consequences for fission barriers

The net results is that one should correct microscopically evaluated (HF+BCS) energies (at a given defor-
mation β for a given configuration (αKπ) called Em f (αKπ,β )) by a rotational correction Ecorr(αKπ,β ).
The latter may have two origins. For all nuclei, it comes as an approximate correction for a spurious content
of rotational energy. In odd-mass nuclei, it comes as an estimate of a dynamical contribution to the energy
for the rotation of the core. Clearly when dealing with relative energies, such as deformation energies for
a given configuration (which is exactly what is needed to construct a fission-barrier), one should add to the
HF+BCS deformation energy

∆Ede f (αKπ,β1β2) = Em f (αKπ,β2) − Em f (αKπ,β1) (3.107)

the corresponding rotational correction energy

Ecorr(αKπ,β1β2) = Ecorr(αKπ,β2)−Ecorr(αKπ,β1) (3.108)

which will depend in general (beyond the deformation in β1 and β2) on the configuration (αKπ).

Note that as discussed in subsection 3.4.1 and the previous subsection, various ways will be considered
to define in practice this correction when presenting fission-barrier heights.
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Chapter 4

TECHNICAL ASPECTS OF THE
CALCULATIONS

Some technical aspects of the calculations will be discussed in this chapter. Section 4.1 will be devoted to
the discussions of the choice of Skyrme parametrizations employed in the study. For each choice of the
Skyrme parametrization, the pairing strengths entering the BCS pairing treatment have been fitted to the
odd-even mass differences of some actinide nuclei. The results from such a fit procedure will be discussed
in Section 4.2. The discussion on the choice of numerical parameters will be made in Section 4.3 and the
Broyden’s method for the determination of the extremum points in the deformation energy curves will be
made in Section 4.4. The last Section 4.5 will be devoted to the implementation of blocking procedure in
the code and issues arising in the course of the work.

4.1 Choice of the Skyrme parametrization

In the domain of the microscopic calculation of fission barriers, the SkM* parametrization of the Skyrme
force have proved to be a reliable yardstick. This set of parameters have been fitted to the liquid drop
fission-barrier of 240Pu [79] and seen wide applicaton in the studies of fission-barrier properties for exam-
ple in Ref. [60, 80] performed within the HF framework and Ref. [81, 82] in the Hartree-Fock-Bogoliubov
calculations.

On the other hand, another set of Skyrme parameters of the SIII type which have been fitted to the
nuclear properties of even-mass spherical nuclei [83] is known to perform better in the domain of nuclear
spectroscopy. The validity of the SIII force has been tested in many instances. In particular, it gives good
single-particle spectra when compared to the experimental ones [28] and it reproduces fairly well the N-Z
dependence of the binding energy [84]. It is imperative then, to consider the SIII parametrization for the
spectroscopic study of odd-mass nuclei.

Although the SIII and SkM* parameter sets perform rather well in the intended fields of studies in which
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they have been fitted for, both sets of Skyrme parameters are rather old in that they have been fitted over 30
years ago. There are currently many types of Skyrme parametrizations such as the TIJ [85], SLyIII.0.8 [86]
and SLy5* [87], to name a few.

The SLy5* in particular, is interesting because of some similiarities to the SkM* parametrization. Both
SkM* and SLy5* have a density dependence of 1/6 (see Appendix A for the sets of parameters of the
considered Skyrme forces) to simulate a density dependent interaction. The center-of-mass correction is
approximated by its one-body part while the Coulomb exchange interaction is treated using the Slater ap-
proximation in both cases. One difference between these two Skyrme parameters sets are the manner in
which they deal with the time-even spin-current density Jµν term entering the Hamiltonian density. The
spin-current density was taken into account in the fit of the SLy5* parametrization whereas it is absent in
the fit of the earlier SkM* interaction. On a different aspect of the fit procedure, the SLy5 interaction being
the initial version of the SLy5* set is fitted without adjusting the surface coefficient [88, 73], in constrast to
what was done for the case of the SkM* interaction. In view of the above, it is meaningful and interesting
to compare some limited yet relevant results obtained using the SLy5* parametrization with those obtained
with the SIII and SkM* parametrizations.

We shall now take a rather different point of view with regards to our choice of Skyrme parametrizations
for the study. The older generation of Skyrme forces were fitted with respect to the nuclear properties of
even-mass nuclei. As such, some terms entering the Hamiltonian density are non-contributing during the
fit due to the vanishing time-odd densities. When performing calculations for cases where the time-odd
densities are not vanishing, as it is the case with odd-mass nuclei, the unconstrainted coupling constants are
contigent upon on the values of the Skyrme parameters (in an uncontrollable fashion) which were obtained
in the fit of the even-mass nuclei [89]. One is then forced to decide on the course of action with regards to
the terms which were not considered during the fitting procedure. To this end, one could decide to either
adopt the interaction or a functional point of view.

From the interaction point of view, all the cumulative terms involving the Skyrme parameters entering
the expression of the Hamiltonian density (equations (3.7) to (3.12) ) have to be taken into account. In doing
so, the coupling constants will depend on the values obtained in the original fit of the Skyrme force. On
the other hand, adopting the functional point of view would allow for a choice of the coupling constants of
the time-odd terms independent of what has been done for the time-even ones. In addition, some terms in
the Hamitonian densities can be omitted by setting the corresponding coupling constants to zero. However,
the term (ρτ− j2) which ensures the Galilean invariance property of the Skyrme functional [51] should be
either cancelled or maintained as a whole in such an approach.

The interaction point of view has been adopted while respecting the original fit of the Skyrme parametriza-
tions as a default approach for the study. In this way, the coupling constants of B14,B15,B18 and B19 are set
to zero when employing the SIII and SkM* parameters sets. By setting these coupling constants to zero,
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the only terms related to time-odd densities which are not vanishing are those of the form s2, (ρτ− j2) and
(j ·∇× s). This shall be referred herein as the minimal time-odd scheme.

The full time-odd scheme would refer to the case when all the time-odd densities appearing in the
Hamiltonian density are taken into account when solving the Hartree-Fock equations. This would indeed
be the default scheme for the SLy5* parameters set. The contributions from unconstrainted coupling con-
stant terms in the full time-odd scheme when employing the SIII and the SkM* parametrizations will be
investigated for some relevant cases. Figure 4.1 shows as an example the single-particle energy spectra in
the ground-state of 240Pu obtained with the SIII and SkM* (in the minimal time-odd scheme) and the SLy5*
(in the full time-odd scheme).
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Figure 4.1: The ground state neutron and proton single-particle spectra of 240Pu obtained with the SIII
and SkM* interactions in the default minimal time-odd scheme, while the SLy5* in the full time-odd
scheme. The Fermi levels for each Skyrme interaction are indicated by the thick dashed lines.
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4.2 Pairing strengths in the BCS framework

4.2.1 Determining the neutron and proton pairing strengths

It is well known that the amount of nuclear pairing will affect the fission-barrier heights substantially. For
example, the study of fission-barrier heights of 240Pu in the relativistic mean-field approach with the BCS
pairing scheme [90] shows that an increase of 20% in pairing strengths would decrease the inner-barrier
height by about 2 MeV, while the asymmetric outer-barrier would be reduced by about 1 MeV. Similarly,
the work of Ref. [91] in the Hartree-Fock-Bogoliubov framework in some actinide nuclei, assuming axial
symmetry, gives an estimate of an increase of the inner and outer-barrier height by 2 MeV and 3 MeV,
respectively, with a 15% decrease in pairing strength. An identical pattern of the effect on the inner-barrier
height due to pairing was also reported in Ref. [92].

In view of the importance of nuclear pairing on the barrier heights, it is thus necessary to perform a
good estimate of the pairing strengths entering the BCS scheme. This was achieved by means of a fit of
the odd-even staggering of the nuclear masses for some actinide nuclei, using the three-point mass formula
(see Refs. [93, 94] for a more detailed discussion on the odd-even staggering calculations):

∆
(3)
q (N) =

(−)N

2
[
E(N +1)−2E(N)+E(N−1)

]
(4.1)

with q referring to the charge state of the odd number of nucleon, N, entering the equation above. Although
the five-point mass formula, ∆(5), has been reported to be better at projecting out the pairing contribution
as compared to ∆(3) [95], such an approach has not been pursued here. It should be noted that a recent
work [96] utilized a similiar fit of the pairing force in the study of fission barriers of Thorium and Uranium
isotopes.

The sets of nuclei chosen for the fit of the pairing strengths were selected on the basis of two criteria.
The chosen nuclei have to be of a rigidly deformed shape in order to minimize the effect of nuclear vibra-
tion invalidating a single configuration description of the ground state. It is also important to ensure that the
BCS approximation in the intended nuclei is satisfactory and therefore avoid cases of low pairing regime
whereby the BCS scheme is known to be less appropriate. This was checked by comparing the calculated
pairing gap of the neighbouring even-even nuclei to be within the range of 200 keV from the standard aver-
age value of 12.5 MeV√

A
, where A is the nuclear mass number.

In view of these considerations, the calculations of the mass differences were performed for the follow-
ing nuclei

(i) 231
90 Th, 235

92 U, 239
94 Pu, 241

94 Pu, 245
96 Cm and 249

98 Cf to determine the neutron pairing strength Gn

(ii) 229
89 Ac, 237

93 Np, 239
93 Np, 241

95 Am and 249
97 Bk to determine the proton pairing strength Gp
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The mass differences were calculated with two sets of pairing strengths (Gn,Gp) for the SkM* interac-
tion entering the BCS scheme such that

v̂(q)
kk̃ll̃

= −
Gq

11.0+Nq
(MeV ) (4.2)

where Nq is the number of nucleons of the charge state q. In some nuclei, the calculated lowest energy
solution at ground state deformation may have Kπ quantum numbers which may not correspond to the
experimental Iπ quantum numbers. In such cases, the mass differences were calculated for both blocked
Kπ configurations (i.e. blocked state corresponding the lowest-energy solution and the blocked state cor-
responding to the experimental Iπ ). The plot of the mass differences as a function of nucleon numbers are
shown in Figure 4.2 and Figure 4.3 for the fit of neutron and proton pairing strengths, respectively. In both
diagrams, the results corresponding to the experimental Iπ quantum numbers are plotted with filled squares
and circles, while the unfilled ones corresponds to the calculated lowest-energy solutions.

It is quite evident from the diagrams that the set of the pairing strengths (16.0, 16.0) yields a better
agreement of the mass differences with the experimental ones, with some minimal exceptions in 245

96 Cm
and 249

97 Bk. For a direct comparison of the mass differences obtained in the two sets of pairing strengths,
we have tabulated only the calculated values for the blocked states corresponding to the experimental Iπ

quantum numbers in Table 4.1. The agreement between the calculated values with pairing strengths (16.0,
16.0) were found to be comparatively better, with a root-mean-square deviation of 118 keV for ∆

(3)
n and

119 keV for ∆
(3)
p . These are to be compared with the root-mean-square deviations obtained with the pairing

strengths (14.5,14.6) at 208 keV and 173 keV for the neutron and the proton charge states, respectively. In
view of the better agreement with the experimental data when using the set of pairing strengths (16.0,16.0),
these values were retained for the present work.
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Figure 4.2: Plot of the three point mass difference formula for a series of isotopes, calculated within
the HFBCS approach using SkM* parametrization of the Skyrme force in basis size of N0 = 14. Data
plotted in boxes and circles were calculated with pairing strengths (Gn , Gp) of (16.0 , 16.0) and (14.5
, 14.6) MeV respectively. In both cases, the filled squares (circles) corresponds to experimental Kπ

states while the unfilled ones correspond to the Kπ configurations with the lowest calculated energy.
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Figure 4.3: Similar to Fig. 4.2 but for a series of isotones.
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Table 4.1: Calculated values of the odd-even mass difference ∆
(3)
q (in keV) with the SkM*

parametrization for two pairs of pairing strengths (Gn,Gp) in comparison with experimental data (exp).
The quoted values for the blocked state corresponds to the experimental Iπ quantum numbers.

Nucleus (16.0,16.0) (14.5,14.6) Exp
231Th 510 317 661
235U 567 416 624
239Pu 525 373 444
241Pu 452 242 534

245Cm 678 509 469
249Cf 550 448 520
229Ac 681 555 794
237Np 573 385 568
239Np 568 391 594
241Am 502 392 470
249Bk 806 680 568

Table 4.2: Root-mean-square energy deviation of the calculated ∆
(3)
q quantities (in keV) with corre-

sponding data given in Table 4.1. These results are presented for three groups: considering the sets of
nuclei for (I) neutron pairing only, (II) proton pairing only and (III) both proton and neutron pairing
strengths.

Group (16.0,16.0) (14.5,14.6)

(I) 118 207
(II) 119 174
(III) 119 193

The pairing strengths when employing the SIII interaction were fitted in similar manner leading to the
retained pairing strengths of Gn = 17.15 MeV and Gp = 14.0 MeV [97]. A lesser version of the fit was
performed for the pairing strengths when utilizing the SLy5* parametrization. The pairing strengths were
obtained in this case by reproducing the BCS gap parameter of the 236U and 240Pu obtained earlier with
the SkM* parametrization. The retained values of the pairing strengths with the SLy5* interaction are
Gn = 18.0 MeV and Gp = 17.0 MeV. Using these pairing strengths, the ∆

(3)
n values corresponding to the

calculated lowest-energy state and the blocked state yielding the experimental Iπ quantum numbers are
tabulated for the 239,241Pu nuclei in Table 4.3 and compared with the data.

To sum up the discussion in this section on the determination of the BCS pairing strengths, the retained
values are tabulated in Table 4.4 for each type of Skyrme parametrizations considered herein.
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Table 4.3: Odd-even mass difference ∆
(3)
n (in keV) calculated with the SLy5* parametrization with pairing

strengths Gn = 18.0 MeV and Gp = 17.0 MeV. The results for both solutions corresponding to the calculated
and experimental ground states are given.

Nucleus Calculated GS Experimental GS Exp
239Pu 504 748 444
241Pu 502 502 534

Table 4.4: The retained pairing strengths for the three considered Skryme parametrizations.

Skyrme force Gn (MeV) Gp (MeV)

SkM* 16.0 16.0
SIII 17.15 14.0

SLy5* 18.0 17.0

4.2.2 Effect of pairing on fission-barrier heights

Having obtained an optimal estimate of the pairing strengths, it would then be interesting to investigate
the effect on the fission-barrier heights by changing their values. The test was made on the 240Pu nucleus
assuming axial and parity symmetry. The deformation energy as a function of quadrupole moment obtained
with a lowering of the neutron pairing strength by 1 MeV is plotted on Figure 4.4. The corresponding
fission-barrier heights are tabulated in Table 4.5. It appears that the decreasing the neutron pairing strength
by 1 MeV would increase the inner and outer-barrier heights by about 0.6 MeV and 0.9 MeV, respectively.
The fission-isomeric energy is less affected, with an increase of about 50 keV for the same amount of re-
duction in neutron pairing strength.

In order to assess the effect of proton pairing strength, a similar study were done by decreasing the
proton strength by 1 MeV. The effect brought about due to the reduction of the proton pairing strength on
the inner and outer-barrier heights are lesser when compared to the case of neutron pairing. It was found
that the inner-barrier increases by 0.35 MeV and the outer-barrier by 0.26 MeV when decreasing the proton
pairing strength by 1 MeV. However, the fission-isomeric energy is much affected (see Table 4.5) when the
proton pairing strength is reduced. The fission-isomeric energy was found to increase by nearly 0.3 MeV
when decreasing the proton pairing strength, in contrast to the case of neutron pairing whereby the fission-
isomeric energy increases by an average of 0.06 MeV for the same amount of decrement in the pairing
strength.

Through this assessment of the fission-barrier heights it points out that while the inner and symmetric
outer-barrier are much affected by the pairing strength of both charge states, the isomeric energy is much
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more sensitive to the proton pairing strength.

Table 4.5: The inner-barrier heights EA, isomeric energies EII and second barrier heights EB of 240Pu
assuming axial and parity symmetry obtained with the SkM* interaction with different BCS pairing
strengths (Gn,Gp). The energies are given in MeV. The locations of the global and second minimum,
as well as the saddle points were determined using the modified Broyden’s method (see Section 4.4).

Pairing strengths EA EII EB

(14.0,16.0) 9.40 2.65 12.02
(15.0,16.0) 8.79 2.60 11.11
(16.0,16.0) 8.18 2.53 10.18
(16.0,15.0) 8.53 2.81 10.44
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Figure 4.4: Deformation energy curves (in MeV) of 240Pu as a function of quadrupole moment (in
barns) calculated with the SkM* interaction with different values of the BCS neutron pairing strength,
Gn, as indicated on the figure.
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4.3 Some numerical aspects

4.3.1 Expansion of the single-particle wavefunctions on an axially symmetrical har-
monic oscillator basis

In solving the one-body hamitonian ĥHF by means of an iterative diagonalization process,

ĥHF |k〉= ek|k〉 (4.3)

the single-particle states |k〉 were chosen to be represented in terms of an axially symmetrical harmonic
oscillator basis states defined as

φk(r,σ ,q) = χq ∑
α

C(k)
α ϕα(r,σ) (4.4)

in which χq is a function specifying the isospin state and the {C(k)
α } set stands for the expansion coefficients

of the eigenvector associated with the eigenvalue ek. The notation α represents the various quantum num-
bers of the harmonic oscillator states. For an axially deformed harmonic oscillator Hamiltonian we have
α ≡ {nz,nr, lz,sz} where nz and nr are the number of nodes in the z- direction and perpendicular direction
respectively while lz and sz are the third component of the orbital angular momentum and spin quantum
numbers, respectively. The harmonic oscillator wavefunctions in the cylindrical coordinate {r = r,z,ϕ} are
written as:

ϕα(r,σ) = Γsz(σ) ψnz(z) ψ
lz
nr
(r)

eilzϕ
√

2π
(4.5)

where the wavefunctions in the z- and perpendicular direction are written in terms of the Hermite polynomial
Hnz(ξ ) and the associated Laguerre Llz

nr(η) with

ξ = βz z ; η = β
2
⊥ r2 (4.6)

such that:
ψnz(z) = Nnzβ

1/2
z e−ξ 2/2Hnz(ξ ) (4.7)

and
ψ

lz
nr
(r) = Nlz

nr
β⊥
√

2 η
lz/2e−η/2Llz

nr
(η) (4.8)

The normalization factors [98] are given as

Nnz =
( 1√

π 2nznz!

)1/2
; Nlz

nr
=
( nr!
(nr + lz)!

)1/2
(4.9)

while the oscillator parameters are written as

βz =
√

mωz/h̄ ; β⊥ =
√

mω⊥/h̄ (4.10)
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In our approach, the total angular momentum Ω of the single-particle state written as

Ω = lz + sz (4.11)

and parity ( when the parity symmetry is observed ) given by

π = (−1)(nz + lz) (4.12)

are good quantum numbers. The single-particle states are divided into blocks categorized by Ω and π . As
was discussed in Section 3.1.4, the single-particle states are sorted according to an increasing single-particle
energies and are labelled by rank.

4.3.2 Optimization of basis parameters

Solving the one-body Hamiltonian in the single-particle states expanded on the deformed harmonic oscilla-
tor basis states requires in practice that the expansion to be truncated. The truncation is performed according
to the prescription of Ref. [6] such that

h̄ω⊥
(
n⊥+1

)
+ h̄ωz

(
nz +

1
2
)
≤ h̄ω0

(
N0 +2

)
(4.13)

One defines a spherical angular frequency, ω0 in terms of the frequencies ωz and ω⊥ defining the oscillator
potential by ω0 = ω2

⊥ωz.

The oscillator parameter, β0 =
√

mω0
h̄ and the deformation parameter, q ≡ ω⊥

ωz
are optimized to obtain

the lowest energy at each deformation points in a chosen basis size,N0. For computational time reasons, and
also for the purpose of extracting out, within reasonable numerical effort, interesting physics with regards
to the odd-mass nuclei, it has been deemed sufficient that calculations are restricted to the basis size of
N0 = 14. Such a choice of deformed oscillator basis size corresponds to 15 spherical major shells. The
b and q parameters for the calculations involving the SIII and SkM* interactions in odd-mass nuclei are
optimized by minimizing the binding energy for its neighbouring even-even nuclei in this basis size at each
deformation points. It was then checked that the same values obtained from the SkM* interaction are ap-
plicable for the SLy5* parameters sets, with a minimal variation in the binding energy of the order of tens
of keV.

Some investigations on the truncation effect have been performed for some cases of the energy spectra
and the fission-barrier heights. Table 4.6 shows the band heads energies calculated in two basis sizes with
the SIII and SkM* interactions. The results between solutions for the two basis size differ only by some
tens of keV. Therefore, the choice of the basis size N0 = 14 is appropriate and sufficient for comparison
with the experimental data when values are of the order of hundreds of keV.
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Table 4.6: Comparison of the calculated band heads energies (in keV) at the ground state of 239Pu
with the SIII and SkM* interactions for a basis size defined by N0 = 14 and N0 = 16.

Kπ
N0 = 14 N0 = 16

SkM* SIII SkM* SIII

1/2+ 0 0 0 0
5/2+ 121 359 134 367
7/2− 27 95 38 97
7/2+ 1022 260 1010 265

The investigation of the basis size effect on fission-barrier heights was first performed for the even-even
core 240Pu considered as a test nucleus with the assumption of axial and parity symmetry along the whole
fission path. Calculations were performed with the SkM* interaction for three basis sizes (N0= 14, 16, 18).
While it is desirable to optimize the b and q parameters for each basis size, the work of Ref. [60] com-
paring solutions which has been optimized in their respective basis size, has shown that the impact of the
optimization process on the barrier heights is rather small. Furthermore, since the present purpose is only
to test the accuracy of results as the function of the basis size, all other things kept constant, the same b and
q parameters obtained earlier in the optimization process in N0 = 14 are used. The locations of the saddle
points as well as the ground state and second minima in the deformation energy surface were obtained by
using the modified Broyden’s method (kindly refer to Section 4.4 for further discusssions).

The fission-barrier heights obtained for the various basis sizes are shown in Table 4.7. From this table,
we have an estimate of the basis size correction when comparing the barrier heights obtained in the basis
size of N0 = 14 and N0 = 16. The truncation effect are shown to increase with deformation with a value of
about 0.2 MeV for the inner-barrier and isomeric energy, and about twice the amount for the outer-barrier.
The same amount of basis size effect was also to be expected for the odd-mass nuclei, as was shown in
Table 4.7 for the blocked 5/2+ configuration of 239Pu with the SkM* interaction. A rather similar estimate
was obtained when computing the barrier heights with the SLy5* parametrization with a slightly larger
correction of 0.1 MeV more than the corresponding values in the case of SkM* interaction for the second
barrier height (refer Table 4.8).

It should be noted that a more thorough study of the deformation energy curves and the fission-barrier
heights as a function of basis size have been performed in the work of Refs. [60, 54] for the 252Cf nucleus
with the SkM* parametrization (replicated here in Figure 4.5). The increase in the basis size translates
into a downward shift of the deformation energy curves in terms of energy, with an optimal basis size of
N0 = 16.
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Figure 4.5: Effect of basis size N0 parameter on the deformation energy curve for the 252Cf nucleus
obtained with the SkM* parametrization. The plot is taken from the work of Ref. [60].

As a short summary, the test of the basis size truncation effect provides a useful information on the con-
vergence of the results with regards to the basis size in use. Firstly, it shows that the calculated band-head
energy spectra are reasonably well converged when performing calculation in the basis size of N0 = 14. This
provides a justification for performing the other calculations of the energy spectra with a similar choice of
the basis size. Secondly, we have obtained estimates of the basis corrections to the fission-barrier heights
for two Skyrme forces considered here.
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Table 4.7: The inner-barrier EA, fission-isomeric energy (EII for even-even nucleus and EIS for odd-
mass nucleus) and outer-barrier EB heights of 239,240Pu with axial and parity symmetry in different
basis sizes calculated with the SkM* interaction. The energies are given in MeV.

Nucleus N0 EA EIS /EII EB

239Pu (5/2+)
14 8.14 2.42 11.25
16 7.97 2.22 10.83
18 7.93 2.12 10.80

240Pu
14 8.18 2.53 10.18
16 8.00 2.31 9.76
18 7.96 2.22 9.71

Table 4.8: Similiar to Table 4.7 but for the barrier heights of the 5/2+ blocked configuration of 239Pu
obtained with the SLy5* interaction.

Nucleus N0 EA EII EB

239Pu (5/2+)
14 8.81 4.35 15.47
16 8.62 4.15 14.93
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4.3.3 Numerical integration

In solving the Hartree-Fock equation, one will need to evaluate matrix elements (equation (3.21) ) which
involve an integration over space. When representing the single-particle states in the deformed harmonic
oscillator basis states, such an integration over the space coordinates could be written in a general form∫ ∫

e−ξ 2
e−η g(ξ ,η) dξ dη (4.14)

The numerical integration is performed by using the Gauss-Hermite and Gauss-Laguerre quadrature meth-
ods, such that ∫ ∫

e−ξ 2
e−η g(ξ ,η) dξ dη ≈

N(z)
G

∑
i=1

N(r)
G

∑
j=1

wi w j f (ξi) f (η j) (4.15)

where the weighting factors {wi} and {w j} are given as [98]

wi =
2(N

(z)
G −1) N(z)

G !
√

π

N(z)
G

2
[H

N(z)
G −1

(ξi)]2
(4.16)

w j =
η j

(N(r)
G +1)2[L

N(r)
G +1

(η j)]2
(4.17)

The integration is performed at the roots of the Hermite polynomials, Hn(ξ ) and the Laguerre polynomials,
Ln(η) with the number of Gauss-Hermite and Gauss-Laguerre integration points given by N(z)

G and N(r)
G

respectively.

An extensive evaluation of the impact of the number of Gauss-Hermite and Gauss-Laguerre points on
the inner and outer-barrier of 252Cf was done in the work of Ref. [60, 54]. It was found that at very large
deformation where the basis parameter q >> 1, one would include basis states with higher number of nz

nodes. The number of Gauss-Hermite integration points N(z)
G should then be adjusted to accommodate the

maximal value of nz. For the basis size of N0 ≤ 20, the value of N(z)
G = 50 was reported to be a reasonable

choice for a study of the deformation energy up to a point far beyond the top of the second fission-barrier.
In the case where the parity symmetry is conserved, the integration is performed for z > 0 and this would
involve 25 Gauss-Hermite integration points. In the perpendicular direction, the Gauss-Laguerre points of
N(r)

G = 16 was used.
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4.4 Locating the top of the barrier using the modified Broyden’s
method

In the calculation of fission-barrier heights, one usually relies on the interpolation of some points around
the barrier top in the deformation energy curves in order to estimate the top of the barrier. However, it was
reported recently in the work of Ref. [99] that the modified Broyden’s method was able to locate the exact
maxima, in addition to the local minima, in the deformation energy curve of 212Ra (as shown in Figure
4.6). It was also shown that the Broyden’s method results in a faster convergence of the iterative process as
compared to the usually used linear mixing. In view of the success of this method, the modified Broyden’s
method was incorporated and tested in the present calculations of odd-mass nuclei when parity is conserved.

Figure 4.6: Location of local minima and maxima when using the modified Broyden’s method. Extracted
from Broyden’s method in nuclear structure calculations by Baran et al. (2008) [99].

In solving self-consistent equations, one usually used as an input for iteration m+1 in the linear mixing
method, a mixing of input and output at iteration m with mixing parameter α with α ∈ [0,1], such that

V(m+1)
in = α V(m)

out + (1−α)V(m)
in

= V(m)
in + α R(m) ; R(m) = V(m)

out −V(m)
in (4.18)

where the input V(m)
in at iteration m denotes, in our case here, a set of Hartree-Fock fields. With a proper

choice of α , one may obtained converged solutions but the rate of convergence is rather slow in most cases.
The modified Broyden’s method which has been widely used in quantum chemistry was implemented in
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nuclear structure calculations, and was reported to improve vastly the convergence rate as reported in Ref.
[99], in addition to the fact that this method could be used to locate extremum points in the energy curve.
The modified Broyden’s mixing procedure is given by the expression [99, 100]

V(m+1)
in = V(m)

in + α R(m) −
m−1

∑
n=m̃

wn γmn u(n) (4.19)

with m̃ = max(1,m−M) where M = 7 was chosen in this work, while

γmn =
m−1

∑
k=m̃

cm
k βkn (4.20)

u(n) = α ∆R(n) + ∆V(n) (4.21)

where

βkn = (w2
0 I+a)−1

kn ; akn = wk wn
(
∆R(n))†

∆R(k) (4.22)

cm
k = wk[∆R(k)]† R(m) (4.23)

∆V(n) =
V(n+1)

in −V(n)
in

|R(n+1)−R(n)|
(4.24)

∆R(n) =
R(n+1)−R(n)

|R(n+1)−R(n)|
(4.25)

The weights associated with each previous iteration wn(n = 1,2,3...,M) was set to 1, while w0 = 0.01 was
chosen. When employing the modified Broyden’s convergence method, the mixing parameter was chosen
to be α = 0.5. Starting with an initial input V(0)

in , one performs the calculation to obtain the first output
solution V(0)

out . The input for the next iteration m = 1, is a linear mixing between V(0)
in and V(0)

out . It is only
at iteration m = 2 and above that the Broyden correction term is contributing to determine the input for the
next iteration.

In order to locate the extrema in the energy curve, the calculations are performed as described below.
The deformation energy curve as a function of the quadrupole moment is first obtained with the usual con-
strained HF-BCS calculation with axial symmetry. This would give an estimate of the location of the top of
the barrier. Starting from the converged solution within the vicinity of the barrier top, one then obtain the
maxima point by performing an unconstrained HF-BCS calculation with Broyden mixing. It was found that
the Broyden’s method is able to locate the lowest-energy solution at the top of the barrier in the (Q20,Q40)
planes.

In some cases, the location of the top of the barrier using Broyden’s method may differ from the usual
way of estimating the barrier top from interpolation of the total energy as a function of Q20 only. This was
found to be the case, for example in the 7/2− blocked state of 239Pu calculated with the SkM* interaction
(refer to Figure 4.7). When considering the constrained HF-BCS solution along the Q20 direction assuming
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axial symmetry, one would find that the height of the inner-barrier is about 9.4 MeV whereas the Broyden’s
solution is about 400 keV lower. In order to investigate the appropriateness of the Broyden’s solution at the
top of the barrier, calculations constraining on the hexadecapole moment Q40 with a fixed value Q20 = 50b

were performed. The plot of the total energy as a function of Q40 is plotted as an inset of Figure 4.7.
The results shows that there exists a solution with lower energy at a different Q40 value as compared to
the initial calculation without a constraint on Q40. When considering the local minima solution in the Q40

direction, it is found that the Broyden’s solution does correspond to the actual top of the inner-barrier,
confirming that the modified Broyden method is appropriate and efficient to locate the top of the barrier in
our calculations. Moreover, the comparison between the results obtained with and without constraint on
Q40 seems to suggest that constraining on Q20 alone may not be sufficient and that an extra constraint is
needed to obtain the lowest-energy solution for a given Q20.
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Figure 4.7: A portion of the deformation energy curve of 239Pu calculated with a blocked 7/2− state
from the normally deformed ground state to around the top of the inner-barrier. The top of the inner-
barrier obtained by using the Broyden’s method is shown by the filled square. Inset: Plot of the energy
as a function of the hexadecapole moment Q40 with a value Q20 = 50b. The result at Q20 = 50b obtained
without constraint on Q40 corresponds to a solution with higher binding energy as shown here by a circle.

60



4.5. IMPLEMENTATION OF THE BLOCKING PROCEDURE

4.5 Implementation of the blocking procedure

As previously mentioned, only a seniority-one state is considered for the description of odd-mass nuclei in
this thesis work. This is achieved by blocking one single-particle state |φ (k)

K,π〉 with the desired Ωπ = Kπ

quantum numbers nearest to the Fermi level. For self-consistent blocking (SCB) calculations, the occupa-
tion probability for the single-particle state to be blocked is set to 1, while its conjugate state |φ̃ (k)

K,π〉 is set to
0. On the other hand, the equal filling approximation which is also considered herein to study the impact of
the time-reversal symmetry breaking in some cases was performed by setting the occupation probabilities
of both single-particle states to 0.5.

The choice of the single-particle state to be blocked was automated in the code based on the energy
distance from the Fermi level. In this way, the rank of the blocked single-particle state may changed from
one iteration to another. This was indeed the case when there are more than one single-particle state with
the same Ωπ quantum numbers near the Fermi level. The oscillation from one blocked single-particle state
to another may prevent one from arriving at a converged solution. When this problem occurs, we are then
forced to perform two sets of calculations, one for each blocked single-particle state with fixed rank and
then to choose among them, the solution which corresponds to the lowest total binding energy.

It has also been found for some isolated cases that blocking the single-particle state closest to the Fermi
level whereby the Fermi level is as defined in equation (3.31) may not yield the lowest-energy HF+BCS
solution. In order to obtain the lowest-energy solution, one needs to block instead the single-particle state
with the desired Ωπ quantum numbers nearest to the BCS chemical potential (denoted by λ in equation
(3.74)). In the present work, we verify that the solution is indeed the lowest-energy HF+BCS solution
by manually inspecting the single-particle energy spectra obtained from a converged solution. A second
calculation is then performed by specifying specifically the rank of the single-particle state to be blocked,
if the automated selection of the blocked state does not yield the single-particle state nearest to the BCS
chemical potential.

61
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Chapter 5

SPECTROSCOPIC PROPERTIES OF
ODD-MASS ACTINIDES

This chapter shall be devoted to the spectroscopic properties at the ground-state and fission-isomeric wells.
Two odd-neutron (odd-mass nucleus with an odd numbers of neutron) nuclei namely 235U and 239Pu and
two odd-proton (odd-mass nucleus with an odd numbers of proton) nuclei namely 237Np and 241Am are con-
sidered at the ground-state well, whereas only the two odd-neutron nuclei were considered for the fission-
isomeric well. We shall first discussed the static moments, namely the charge quadrupole moments and
the magnetic moments in the ground-state deformation obtained from the mean-field calculations in Sec-
tion 5.1. This section serves in someway as an assessment of the mean-field solutions before comparing
the calculated band-head energies with the experiment. The band-head energies evaluated from the Bohr-
Mottelson unified model will be presented in Section 5.2 for the ground-state well and in Section 5.3 for the
fission-isomeric well. The last two sections will be devoted to technical details of the mean-field approach.
In Section 5.4, we shall discussed the effect on the band-head energies of the ground-state well when the
calculations employing the SkM* and the SIII parametrizations were performed in a different manner from
which they were initally fitted with respect to the time-odd densities. Finally, we shall briefly discussed the
effect of performing calculations with a conserved time-reversal symmetry within the so-called equal filling
approximation (EFA) on the ground-state band-head energies in Section 5.5.

5.1 Static moments in the ground state well

The intrinsic charge quadrupole moment of the neighbouring even-even core nuclei calculated with the
SIII, SkM* and SLy5* parametrizations are shown in Table 5.1. The root-mean-square (r.m.s) deviation of
the charge quadrupole moment obtained with the SkM* and SIII parametrizations are 0.19 and 0.26 barn,
respectively. The intrinsic charge moment obtained with the SLy5* parametrization agree best with the ex-
periment among the three Skyrme forces with a r.m.s deviation of 0.11 barn. Having shown good agreement
between the calculated and experimental intrinsic charge quadrupole moment of the even-even core nuclei,
similar comparison is also made for the odd-mass nuclei.
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5.1. STATIC MOMENTS IN THE GROUND STATE WELL

Table 5.1: Intrinsic charge quadrupole moment (in barn) of the even-even core nuclei calculated with
the SkM* and SIII parametrizations in the minimal time-odd scheme and the SLy5* in the full time-odd
scheme. The experimental values deduced from the B(E2) value of Ref. [101] are shown. The numbers in
parentheses represents the uncertainty in the last digits.

Nucleus SkM* SIII SLy5* Exp
234U 10.48 10.14 10.26 10.35(10)
236U 10.79 10.37 10.62 10.80(7)
238Pu 11.49 11.16 11.34 11.26(8)
240Pu 11.71 11.27 11.51 11.44(13)

Comparison between the intrinsic Q0 and spectroscopic charge quadrupole moment Q(s) of the odd-mass
nuclei can made using the relation:

Q(s) =
3K2− I(I+1)
(K+1)(2I+3)

Q0 (5.1)

where K is the projection of the total angular momentum on the z- axis. The spectroscopic charge quadrupole
moment Q(s) for the odd-mass nuclei obtained with the three Skyrme parametrizations are tabulated in Ta-
ble 5.2. At the moment, there is no known experimental data on spectroscopy charge quadrupole moment
of 239Pu available for comparison. However, three out of the four band-heads available for comparison
shows that the calculated spectroscopic quadrupole moments differ, at most, by 0.2 barn when compared
to the experimental data. The experimental data of 241Am is less well established. The calculated values,
nevertheless, lies within the error bars of two of the three experimental values.

Table 5.2: Calculated values of the spectroscopic (charge) quadrupole moment (in barns) of odd-mass
nuclei obtained with the SkM* and the SIII parametrizations in the minimal time-odd scheme while the
SLy5* in the (full time-odd densities scheme). The experimental data compiled in [102] are shown for
comparison.

Nucleus Kπ SkM* SIII SLy5* Exp.
235U 7/2− 4.98 4.78 4.92 4.936(6)

4.55(9)
237Np 5/2+ 4.01 3.90 3.97 +3.866(6)

5/2− 3.96 3.89 3.92 +3.85(4)
241Am 5/2− 4.30 4.24 4.25 +3.81(1.2)

+3.14(5)
+4.20(13)
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CHAPTER 5. SPECTROSCOPIC PROPERTIES OF ODD-MASS ACTINIDES

We now present the total magnetic moment for the considered odd-mass nuclei. The total magnetic
moment µtot is given by the sum of the intrinsic magnetic moment µintr and the collective magnetic moment
µcoll given by:

µtot = µintr + µcoll (5.2)

The intrinsic magnetic moment is obtained by evaluating the expectation value of the magnetic dipole
moment operator projected on the symmetry axis (chosen to be the z-axis here), µ̂z written as:

µintr =
K

K +1
〈ΨBCS|µ̂z|ΨBCS〉 (5.3)

The one-body operator µ̂z is defined as

µ̂z = g(q)l l̂z + g(q)s ŝz (5.4)

with l̂z and ŝz being the projection of the single-particle orbital and spin angular momentum on the sym-
metry z- axis. The spin gyromagnetic ratios are given by g(n)s =−3.826085 and g(p)

s = 5.585695 while the
corresponding orbital gyromagnetic ratios are g(n)l = 0 and g(p)

l = 1.0 for neutrons and protons, respectively.

The collective magnetic moment is related to the collective gyromagnetic ratio gR given by:

µcoll =
K

K +1
gR (5.5)

with

gR =
∑k,l 〈l|µ̂−|k〉〈k| ĵ+|l〉(ukvl−ulvk)

2/(Ek +El)

∑k,l 〈l| ĵ−|k〉〈k| ĵ+|l〉(ukvl−ulvk)2/(Ek +El)
(5.6)

where uk and vk are the BCS probability amplitudes of the single-particle state |k〉 to be empty and occupied,
respectively with quasi-particle energy Ek. The operators ĵ± = ĵx± i ĵy are the angular momentum raising
and lowering operators, with similar expression for µ̂±. The gR value have been calculated for a polarized
even-even (A− 1) core nucleus, whose self-consistent fields were obtained from the blocking calculations
of the odd-mass nucleus with mass number A.

The calculated intrinsic, collective and total magnetic moments are tabulated in Table 5.3 together with
experimental values taken from Ref. [102]. It should be noted that such a study on the magnetic moments
have been reported in Ref. [27]. The results obtained with the SIII parametrization herein are slightly dif-
ferent than the corresponding values reported in Ref. [27] due to the difference in the BCS pairing strengths
and also possibly due to the harmonic-oscillator basis parameters. From the small sample of nuclei con-
sidered here, the results obtained with the SIII parametrization gives better agreement to the experimental
data. The root-mean-square deviation for the SIII parametrization is 0.47, as compared to 0.59 and 0.61 for
the SLy5* and the SkM* parametrizations, respectively (with values given in units of nuclear magneton µN).
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CHAPTER 5. SPECTROSCOPIC PROPERTIES OF ODD-MASS ACTINIDES

5.2 Band-head spectra at the ground state deformation

Since the present approach considers a one quasi-particle blocked state (seniority one), band-head at higher
excitation energy which may involve a more complicated many-body structure (i.e. higher seniority states)
are not considered herein. Therefore, only the states found within 650 keV excitation energy in the ex-
perimental spectrum are considered for the blocked HF+BCS calculations. The results obtained from the
HF+BCS calculations have been interpreted within the Bohr-Mottelson unified model without taking into
account the contribution from the rotational energy term. In doing so, we assume that the effect of the
rotational correction on the band-head excitation energies corresponding to the same deformation could be
neglected. However, the rotational correction will be taken into account when calculating the fission-barrier
heights where such a correction is known to have an important effect.

As explicitly shown in equation (3.104), the total energy in the Bohr-Mottelson model requires the eval-
uation of the moment of inertia at specific nuclear deformation for each band-head characterized by the Kπ

quantum numbers. Two sets of the moment of inertia have been considered in the present calculations. On
one hand, we have considered the moment of inertia obtained with the Belyaev formula with a renormaliza-
tion of 32% due to the omission of the Thouless-Valatin terms. On the other hand, we have also considered
the empirical moment of inertia obtained from Ref. [103] in which the study of the rotational bands in this
mass region has been carefully performed some years ago.

Both sets of moment of inertia have been used to calculate the excitation energy of the odd-mass nu-
clei, taking as reference the state having the same quantum numbers as the experimental ground-state. The
excitation energies are tabulated in Table 5.4 whereby the results obtained with the empirical moment of
inertia are given in parentheses. The negative excitation energies are due to the fact that the calculated
lowest-energy solution may not necessary corresponds to the same quantum numbers as the experimental
ground-state. Comparison of the results in Table 5.4 shows that the excitation energies calculated with the
two sets of moment of inertia differ only by some tens of keV. This is despite of the relatively large differ-
ence of about a factor 2 between the calculated and the empirical moment of inertia.

The excitation energies of the two odd-neutron nuclei obtained with the calculated moment of inertia are
plotted in Figure 5.1. The spectra calculated using the SIII interaction appears to be qualitatively more con-
sistent with the experimental data, with the spectra from the SLy5* interaction being the least good among
the three considered Skyrme parametrizations. This has been assessed by calculating the root-mean-square
(r.m.s) energy deviation from the data for the six excited states in 235U and the three excited states in 239Pu.
The r.m.s. energy deviation was found to be about 250 keV, 350 keV and 650 keV for the SIII, the SkM*
and the SLy5* interactions, respectively. It should be noted that some Coriolis inter-band coupling between
the I = 5/2+ and I = 7/2+ states in the 350-500 keV range in 235U cannot be a priori ruled out, which may
potentially perturbed our direct comparison of the calculated results with the experimental data.

The band-head energy spectra of the odd-proton nuclei are plotted in Figure 5.2. The agreement of the
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5.2. BAND-HEAD SPECTRA AT THE GROUND STATE DEFORMATION

calculated results to the experiments are slightly worse in this case for the SIII and SkM* parametrizations.
The r.m.s energy deviation for the seven excited states considered in 237Np and 241Am were found to be
about 450 keV and 500 keV for the SIII and the SkM* parametrizations. On the other hand, the agreement
to the experimental band-head energies was found to be better for the odd-proton nuclei as compared to the
odd-neutron nuclei when using the SLy5* interaction, with a r.m.s energy deviation of about 460 keV for
the former.

An explanation for the difference in quality of our evaluation of the odd-neutron and odd-proton nuclei
especially for the case when using the SIII and SkM* parametrizations could possibly be due to the used
of the Slater approximation to treat the Coulomb exchange term. As noted in earlier papers (e.g. Refs.
[56, 57]) and explained in Ref. [58], there is a systematic and significant bias in the single-particle proton
spectra brought by this approximation: the occupied states are unevenly shifted upwards and the unoccupied
states downwards, which perturbs in an uncontrolled fashion the relative ordering of nuclear levels. Some
exact calculations of the Coulomb two-body interaction would be required in order to assess the effect of
this approximation on the odd-proton nuclear spectra. This would require a significant numerical effort
for such very heavy nuclei in general and even more so upon breaking the time-reversal symmetry, and is
therefore not attempted for the current work. Finally, we would like to note that the spectroscopy results
presented in this section have been submitted for publication in Ref. [97].
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5.2. BAND-HEAD SPECTRA AT THE GROUND STATE DEFORMATION
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Figure 5.1: Partial band-heads of 235U and 239Pu calculated with the SkM* and SIII interactions
without rotational correction in the minimal time-odd scheme and the SLy5* in the full time-odd
scheme with comparison to the experiments.
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Figure 5.2: Partial band-heads of 237Np and 241Am calculated with the SkM* and SIII interactions
without rotational correction in the minimal time-odd scheme while the SLy5* interaction in the full
time-odd scheme with comparison to the experiments.
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5.3. SPECTROSCOPIC PROPERTIES IN THE ISOMERIC WELL

5.3 Spectroscopic properties in the isomeric well

Moving now to the discussion on the results obtained in the fission-isomeric well for the 235U and 239Pu
nuclei. A quantity of interest is the the fission-isomeric energy EII which is defined as the energy difference
between the lowest-energy solutions denoted here as E0, irrespective of the Kπ quantum numbers at the
ground-state (GS) and the fission-isomeric well (IS) such that

EII =
(
E0
)

IS−
(
E0
)

GS (5.7)

On top of the lowest-energy solution at the fission-isomeric well are the band-head excited states similar to
the band-heads in the ground-state deformation well. These two informations have been sketched in Figure
5.3 and Figure 5.4 for the 239Pu and 235U nuclei, respectively. These results have been obtained with the in-
clusion of rotational correction whereby the approximate Thouless-Valatin corrective term have been taken
into account in the calculations of the moment of inertia. The moment of inertia for the various blocked Kπ

configurations in the fission-isomeric well are listed in Table 5.5.

Let us first discuss the energy spectra for the 239Pu nucleus for which a comparison with the experimen-
tal data of Ref. [104, 105] are available. As shown in Figure 5.3, the experimental ground state quantum
numbers at the normal-deformed well is a 1/2+ state while it is a 5/2+ state in the fission-isomeric well.
These exact sequence of states was reproduced by the SkM* and the SIII parametrizations. On the contrary,
the solutions obtained with the SLy5* interaction shows a 5/2+ state in the normal-deformed solution and
a 1/2+ lowest-energy state in the fission-isomeric well. The EII value obtained with the SkM* interaction is
much too compressed when compared to the experiment, while the corresponding value obtained with the
SLy5* interaction appears to be within a more reasonable range when compared to the experimental value.

The rather good agreement of the EII obtained with the SLy5* interaction is watered-down immediately
when comparing the experimental first excited state (Kπ = 9/2−) in the fission-isomeric well to the calcu-
lated results. The Kπ = 9/2− state appears at a much higher energy at 549 keV above the fission-isomer
ground-state Kπ = 1/2+ solution. The excited 9/2− state appears at 139 keV for the SkM* interaction and
127 keV for the SIII interaction, above the ground-state 5/2+ solution in the fission-isomeric well. These
values can be expected to be favorably improved when comparing the effect of Coriolis coupling, as sug-
gested from the work of Ref. [18] for the calculations of band-heads energies in the fission-isomeric well
of 239Pu using the SIII parametrization. In addition, a 11/2+ excited state was predicted at 151 keV, 129
keV and 299 keV with the SLy5*, the SkM* and the SIII parametrizations, respectively. The 11/2+ state
was predicted at 44 keV excitation energy in the work of Ref. [22].

The rotational bands built on the 5/2+ band-head were also compared to the available experimental
data. The calculated rotational energies for the first two excited states evaluated within our Bohr-Mottelson
unified model were found to be rather similiar when going from one Skryme force to another, and they
compares well with the experiment.
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CHAPTER 5. SPECTROSCOPIC PROPERTIES OF ODD-MASS ACTINIDES

Let us now move to the results for the 235U nucleus as sketched in Figure 5.4. To the best of our
knowledge, there were no experimental data available for comparison with our calculated values in the
superdeformed well of 235U. There is, however, some calculations performed with the Gogny force in the
work of Ref. [21] which predicted a 5/2+ ground state with a first excited state at 120 keV in the isomeric
well of this nucleus. The same level sequence of a 5/2+ ground-state followed by a 11/2+ excited state
was also obtained with the SkM* and the SLy5* interactions, although the 11/2+ state is located at a much
higher energy in the latter Skyrme parametrization. The calculations with the SIII interaction yields the
opposite level sequence, with a 5/2+ state at 66 keV above the 11/2+ ground-state.

We shall now return to the discussion on the fission-isomeric energy EII with emphasis on the effect of
rotational correction. As discussed before, the rotational correction calculated using the Belyaev formula
was found to be too large, resulting in an underestimation of the fission-barrier heights. Another way to im-
prove on the overestimation of the rotational correction is to reduced the amount obtained from the Belyaev
formula by 50%. The resulting EII values are listed in Table 5.6. It has been checked that the band-head
energy spectra in the fission-isomeric well are only affected by some tens of keV from the values shown
in Figure 5.3 and Figure 5.4, when applying a 50% reduction to the rotational correction calculated using
the Belyaev formula. The Kπ quantum numbers of the lowest-energy solutions in all cases remained un-
changed except for 235U with the SkM* interaction. In this case, we have a changed in the level ordering of
the ground-state and first excited state, whereby the quoted value of EII = 2.20 MeV is for the Kπ = 11/2+

blocked configuration.

Finally, the calculated intrinsic quadrupole moments for some relevant Kπ configurations in the fission-
isomeric well are listed in Table 5.7. The only experimental value available for comparison is in 239Pu
[106, 107], whereby our calculated values falls within the range of the quoted error bars.
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5.3. SPECTROSCOPIC PROPERTIES IN THE ISOMERIC WELL

Table 5.5: Moment of inertia (A = h̄2/2J ) and the decoupling parameter a of odd-neutron nuclei in the
fission-isomeric well calculated with the SkM* and SIII parametrizations in the minimal time-odd scheme,
and the SLy5* in the full time-odd scheme. The moment of inertia have been corrected for by taking into
account the so-called Thouless-Valatin correction term.

Nucleus Kπ
A (keV) a (keV)

SkM* SIII SLy5* SkM* SIII SLy5*

235U
5/2+ 4.17 4.03 4.05 - - -

11/2+ 4.00 3.82 3.94 - - -
9/2− 4.19 4.10 4.06 - - -
3/2− 4.11 3.94 4.13 - - -
1/2− 4.17 3.96 4.13 0.82 1.29 1.06

239Pu
5/2+ 4.09 3.92 4.04 - - -

11/2+ 3.86 3.69 4.05 - - -
9/2− 4.02 3.86 4.16 - - -
1/2+ - - 3.90 - - −1.08

Table 5.6: The fission-isomeric energy EII being the energy difference between the lowest-energy solutions
at the fission-isomeric and the ground-state wells are given for three different cases (in MeV) with regards
to the evaluation of the rotational correction. The first case denoted by the index IB refers to results obtained
with the moments of inertia obtained using the Belyaev formula. The second case denoted by IB-TV are
obtained from the scaling of the Belyaev moment of inertia by a factor (1+α) with α chosen to be 0.32. The
results obtained with the reduction of the rotational correction obtained from the Belyaev formula by 50%
are denoted as IB-50%. Going from one rotational correction scheme to another, the excitation energy of
the band-heads with respect to the lowest-energy solution in the fission-isomeric well have been checked to
be affected only by some tens of keV. The Kπ quantum numbers of the ground-state solution in the fission-
isomeric well remains unchanged from the ones shown in Figure 5.3 and 5.4, except for case of 235U with
the SkM* interaction and a reduction of the rotational correction obtained using the Belyaev formula by
50% (IB-50%), whereby the EII = 2.20 MeV was obtained for a Kπ = 11/2+ blocked configuration.

Nucleus
SLy5* SkM* SIII

Exp
IB IB-TV IB-50% IB IB-TV IB-50% IB IB-TV IB-50%

235U 2.36 2.73 3.11 1.46 1.83 2.20 3.62 3.97 4.35 -
239Pu 2.30 2.69 3.10 1.08 1.43 1.80 3.42 3.84 4.30 3.1
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CHAPTER 5. SPECTROSCOPIC PROPERTIES OF ODD-MASS ACTINIDES

Table 5.7: The calculated intrinsic quadrupole moments (in barn) in the isomeric well are reported for the
two lowest-energy states in 235U and the two states corresponding to the experimental Kπ quantum numbers
in 239Pu. In addition, the values obtained for the 11/2+ state in 239Pu were also reported since this state
was found to be the lowest-energy solution in the calculation performed with the SLy5* interaction. The
experimental value for 239Pu was taken from the work of Ref. [106, 107].

Nucleus Kπ SkM* SIII SLy5* Exp

235U
5/2+ 32.93 31.81 33.41 -

11/2+ 32.52 31.79 32.26 -

239Pu
5/2+ 34.08 33.22 34.83 36 ± 4
9/2− 34.10 33.18 34.54 -

11/2+ 34.51 33.86 34.31 -

5.4 Effect of the neglected time-odd densities in the fit of the Skyrme
forces

The excitation energy ∆EαKπ for the two odd-neutron nuclei have also been calculated in the full time-odd

scheme whereby all the coupling constants entering the Hamiltonian density were considered (see discus-
sions in Section 4.1). The moment of inertia and decoupling parameter used for the calculations of ∆EαKπ

have been calculated in their respectively time-odd schemes, with the values obtained in the full time-odd

scheme being listed in Table 5.8.

The energy spectra in both time-odd schemes are plotted in Figure 5.5 for comparison. In going from
one time-odd scheme to another, we see that unconstrained coupling constants affects the band-heads spec-
tra in an uncontrollable fashion. Therefore, it is important that the Skyrme interactions should be employed
in the same manner in which they have been fitted with respect to the time-odd densities entering the Hamil-
tonian density.
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5.4. EFFECT OF THE NEGLECTED TIME-ODD DENSITIES IN THE FIT OF THE SKYRME FORCES

Table 5.8: The band-head energies (∆EαKπ in keV) similiar to Table 5.4 calculated with the SkM* and
the SIII parametrizations within the full time-odd scheme are listed together with the moments of inertia (A
= h̄2/2J ) after taking into account the Thouless-Valatin correction, and the decoupling parameter a. The
excitation energy ∆EαKπ obtained within the two time-odd densities schemes are plotted in Figure 5.5 for
easier comparison of the spectra.

Nucleus Kπ ∆EαKπ A a
SkM* SIII SkM* SIII SkM* SIII

235U

7/2− 0 0 12.83 11.62 - -
1/2+ -492 -236 11.60 10.46 −0.42 −0.78
5/2+ -139 750 12.06 10.90 - -
5/2+ -110 304 12.07 11.04 - -
3/2+ 437 243 11.97 11.35 - -
7/2+ 696 -84 12.13 11.35 - -
5/2− -85 -4 13.36 12.13 - -

239Pu

1/2+ 0 0 11.68 9.47 −0.54 −0.82
5/2+ -40 364 11.46 9.59 - -
7/2− -23 63 12.72 10.33 - -
7/2+ 684 53 11.90 9.63 - -
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Figure 5.5: Comparison of the ground state rotational band-head spectra for the two odd-neutron nu-
clei obtained with the SkM* and the SIII parametrizations in both the minimal (default) and full time-odd
schemes. The moment of inertia and decoupling parameter are calculated in their respective time-odd den-
sities scheme.
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5.5 Effect of time-reversal symmetry breaking on the ground-state
band heads energy

Taking the two odd-neutron nuclei again as a testing ground, the calculations of the band-head energies
∆EαKπ have been performed within the so-called equal-filling approximation (EFA) scheme. In the EFA
scheme, for a specific Kπ configuration, the occupation number is divided equally between a single-particle
state and its time-reversed state. In doing so, the various time-odd densities entering the Hamiltonian density
vanishes and the time-reversal symmetry is again established. The difference in the total binding energy
within the EFA scheme and our blocking calculations were found to be of the order of 100 keV at most.
This translates to an effect of one order less in the relative energies, of about tenths of keV (see Table 5.9).
The rather small differences stems from the perturbative character of the time-odd density terms.

Table 5.9: Energy differences (∆EαKπ in keV) of a given band head K with respect to the ground state
within the equal-filling approximation without rotational correction. The moments of inertia (A = h̄2/2J )
and the decoupling parameter (a) are taken from the study of Jain and collaborators [103]. The energy differ-
ence (in keV) between the solutions of equal-filling approximation (EFA) and the self-consistent blocking
(SCB) procedure are shown in the last three columns for each Skyrme interaction.

Nucleus Kπ
∆EαKπ ∆E(EFA)

αKπ
−∆E(SCB)

αKπ

SkM* SIII SLy5* SkM* SIII SLy5*

235U

7/2− 0 0 0 0 0 0

1/2+ -69 124 -857 9 0 3

5/2+ 15 642 -451 15 14 -8

5/2+ 455 658 -271 16 8 -2

3/2+ 686 549 216 6 -8 -13

7/2+ 1228 631 231 11 19 2

5/2− 652 636 -682 -5 -3 -7

239Pu

1/2+ 0 0 0 0 0 0

5/2+ 130 366 -230 9 7 -8

7/2− 21 97 -55 -6 2 2

7/2+ 1031 279 291 9 19 1
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Chapter 6

FISSION BARRIERS OF ACTINIDE NUCLEI

From the study of the ground-state band-head energy spectra presented in Chapter 5 we take stock of a
better agreement between the calculated results of odd-neutron nuclei with the experiments as compared
to odd-proton nuclei. In view of this, calculations of the fission-barrier heights have been considered only
for the two odd-neutron nuclei, namely 235U and 239Pu, and their neighbouring even-even nuclei. The cal-
culations of the total energy as a function of deformations, with a conserved parity symmetry, were first
performed for even-even nuclei. The converged fields were then used as starting points for the calculations
of the odd-mass nuclei. The SkM* parametrization has been employed for the calculations of both the ura-
nium and plutonium isotopes up to a point beyond the top of the second fission-barrier. On the other hand,
calculations using the SIII parameters set were performed only up to the fission-isomeric well. We have
also considered the 239Pu nucleus and its neighbouring even-even nuclei as a testing ground for the SLy5*
parametrization.

In Section 6.1, we will present the results for the neighbouring even-even nuclei obtained from parity-
conserving calculations. The spurious rotational energy correction to the binding energy evaluated using
the Belyaev formula for the moment of inertia will be presented first in Section 6.1.1. Then, in Section
6.1.2, a sensitivity study of the fission-barrier heights to the moment of inertia is made. The Section 6.2
will be devoted to the fission barriers of odd-mass nuclei. For the odd-mass nuclei, the discussions have
been separated into four subsections whereby the first three will be devoted to the results obtained from
our mean-field calculations. We shall first discuss the fission barriers of the odd-mass nucleus with a
conserved parity symmetry in Section 6.2.1. The effect of the unconstrained coupling-constant terms in the
Hamiltonian density when utilizing the SIII and the SkM* parametrizations on the fission-barrier heights
will be presented in Section 6.2.2. The results obtained with parity symmetry breaking around the outer
fission-barrier for some relevant cases will be discussed in Section 6.2.3. Finally, the fission-barrier heights
obtained with the SkM* parametrization and evaluated within the Bohr-Mottelson unified model will be
presented in Section 6.2.4. In Section 6.3, we compare the deformation energy curves of the considered
plutonium isotopes to illustrate the concept of “specialization energy”. Finally, we shall compare our results
with other calculations or empirical fission-barrier heights in Section 6.4, together with a short discussion
on how our results could be of use in fission cross-sections calculations.
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CHAPTER 6. FISSION BARRIERS OF ACTINIDE NUCLEI

6.1 Even-even nuclei

6.1.1 Results with a conserved parity symmetry

The deformation energy curves for 234U, 236U, 238Pu and 240Pu nuclei obtained with the SkM* are plotted
in Figure 6.1. Similar plots obtained with the SLy5* parametrization for the 238Pu and 240Pu nuclei are
displayed in Figure 6.2 while those obtained with the SIII parametrization are shown in Figure 6.3. In all
these plots, the solid lines correspond to mean-field solutions while the dashed lines show the downward
shift in energy after taking the rotational energy correction into account. The rotational energy correction
in these cases have been obtained using the Belyaev formula. Further refinements to the moment of inertia
thus obtained will be discussed in the next section. The inner-barrier height EA, the fission-isomeric energy
EII and the outer-barrier height EB deduced from these deformation energy curves are tabulated in Table 6.1.

Let us first discuss the results obtained from our mean-field solutions. The deformation energy curves
exhibit the well-known double-hump fission barriers. A striking feature of the deformation energy curves
comes from those obtained with the SLy5* parametrization, around the top of the second barrier. A com-
parison of the total energy E obtained with the SkM* parametrization around this saddle point shows that
the corresponding values of E obtained with the SLy5* parametrization are too high in energy. This in turn
gives rise to an unphysically high value of the second fission-barrier height. In addition, we observe that
the total binding energy does not decrease as smoothly as is seen for the curves obtained with the SkM*
parameter set at very large deformations. On the other hand, a comparison of the inner-barrier heights and
the fission-isomeric energies of 238Pu and 240Pu nuclei as obtained with the SLy5* and the SIII parametriza-
tions, shows that the SLy5* parametrization performs better as compared to SIII.

We shall now turn our discussion to the results including the rotational energy correction. The variation
of the rotational energy calculated with the Belyaev moment of inertia as a function of deformation is
plotted in Figure 6.4, limiting ourselves to those obtained with the SkM* and SLy5* parametrizations. At
each deformation point, the magnitude of the rotational correction obtained with the SkM* parametrization
is about the same for all considered even-even nuclei. This translates to a lowering of EA and EII by about
1.2 MeV and 1.4 MeV, respectively, while the correction to EB is much larger and reaches 2.5 MeV with
the SkM* parametrization. The effect of the rotational correction on the fission-barrier heights obtained
with the SLy5* is slightly larger as compared those obtained with the SkM*, by about 0.2 MeV for EA, and
about 0.5 MeV for EB.
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Figure 6.1: Deformation energy curves as a function of quadrupole moment of the neighbouring even-
even nuclei calculated using the SkM* parametrization. The results obtained after taking into account the
rotational correction are plotted in dashed lines.
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Figure 6.2: Similar to Figure 6.1 for the SLy5* parametrization.
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Figure 6.3: Similar to Figure 6.1 for the SIII parametrization
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Figure 6.4: Rotational energy correction Erot =
h̄2

Ĵ〉ג2
2〉 for the even-even neighbouring nuclei obtained

with the SkM* and SLy5* parametrizations. The values of the moment of inertia ג used for this plot were
obtained from the calculations using the Belyaev formula.

6.1.2 Sensitivity of the fission-barrier heights of even-even nuclei to the moment of
inertia

As was discussed in Section 3.4.1, the rotational energy calculated using the Belyaev formula was found to
be too large, resulting in an underestimation of the fission-barrier heights. Three ways of improvement to
the rotational energy have been considered. The first approach is to include the so-called Thouless-Valatin
corrective term which translates into a scaling of the Belyaev moment of inertia by a multiplicative factor
(1+α) with α = 0.32. The second approach was to consider a reduction of the rotational energy obtained
from the Belyaev formula by 50%, as indicated from the test of the intrinsic vorticity model. The third
approach is to employ the amount of rotational energy obtained from the angular momentum projection
calculations in 240Pu of Ref. [72] and use the same values for the other nuclei.

Table 6.1 lists the resulting fission-barrier heights of the considered even-mass nuclei obtained from the
four different approaches to the rotational correction. The inner-barrier height and fission-isomeric energy
obtained from the scaling of the rotational energy calculated using the Belyaev formula by 50% were found
to be rather close to those obtained when using the rotational correction deduced from Ref. [72]. The values
of the rotational correction and as a consequence, the outer-barrier height, between these two approaches
was found to differ by about 0.3 MeV. It is also worth noting that a more reasonable fission-isomeric
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CHAPTER 6. FISSION BARRIERS OF ACTINIDE NUCLEI

energies were obtained when reducing the rotational correction by 50%. The fission-isomeric energies
listed in Table 6.1 could be compared to the empirical values of (2.3±0.2), (2.7±0.2) and (2.4±0.2) MeV
for 236U, 238Pu and 240Pu, respectively, of Ref. [108]. Figure 6.5 shows the effect of rotational correction on
the deformation energy curves of the four considered even-even mass nuclei, only for the SkM* interaction.
We can see from the plots that the rotational energy, in general, plays a significant role in the lowering of
the deformation energies, especially more so around and beyond the second fission-barrier.
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Figure 6.5: Deformation energy curves starting from the ground-state up to beyond the second fission-
barrier of the even-even neighbouring nuclei with the SkM* parametrization obtained with various approx-
imation to the rotational correction. The line denoted as BCS refers to the mean-field results obtained
without the rotational correction, while IB refers to the inclusion of the rotational energy calculated using
the Belyaev formula. The inclusion of the so-called Thouless-Valatin correction to the moment of inertia is
referred to as IB+TV. The reduction of the rotational energy calculated using the Belyaev formula by 50%
is denoted as IB-50%.
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6.2 Odd-mass nuclei

6.2.1 HF+BCS results with a conserved parity symmetry

We shall now turn to the calculations of deformation energies of odd-mass nuclei, confining ourselves first
to the mean-field results (i.e. without rotational correction term). The calculations of the deformation en-
ergies for odd-mass nuclei are performed for the blocked Kπ configurations considered in the band-head
energy spectra discussed in Chapter 5. The deformation energy as a function of the quadrupole moment Q20

has been calculated for the two considered odd-neutron nuclei with the SkM* parametrization up to some
deformation beyond the top of the second fission-barrier. The deformation-energy curves, with the corre-
sponding Kπ ground-state energy as the energy reference, obtained with the SkM* parameter set are shown
in Figure 6.6 for the 235U nucleus and in Figure 6.7 for the 239Pu nucleus. The corresponding inner-barrier
heights EA, fission-isomeric excitation energies EIS and outer-barrier heights EB are tabulated in Table 6.2.
It should be noted that fission-isomeric excitation energy denoted here as EIS is to be distinguished from the
relative energy EII discussed in Chapter 5. Indeed EII refers to the energy difference between the lowest-
energy configuration in the fission-isomeric and ground-state wells, whereas EIS is the energy difference
for a particular Kπ blocked configuration between the lowest-energy solution in the two wells, such that;

EIS = E(Kπ )
IS well − E(Kπ )

GS well (6.1)

The fission-barrier heights are found to vary from one blocked configuration to another between 7 and
9 MeV for both nuclei.

A further lowering of the inner-barrier height is to be expected when allowing for axial-symmetry break-
ing shapes. Triaxial calculations performed with the SkM* parametrization for the 234U, 236U, 240Pu and
252Cf nuclei in Ref. [60] show a reduction of the inner-barrier height by about 0.5 MeV for the three lighter
nuclei, and by as much as about 2 MeV for the 252Cf nucleus. We can thus assume that performing triaxial
calculations for odd-mass nuclei would also yields a correction to the inner-barrier heights of about the
same order of magnitude as the one reported in Ref. [60]. In this work, we have rather focussed on the
effect of parity symmetry breaking which is expected to have a larger impact on the outer fission-barrier
height. This shall be discussed in the Section 6.2.3.

We have also performed calculations of the deformation energies of the 239Pu nucleus with the SLy5*
parametrization. The deformation-energy curves has been plotted in Figure 6.7 for comparison with those
obtained with the SkM* parametrization. The SLy5* parametrization is found to describe well the variation
of the binding energy with quadrupole deformation up to a point beyond the top of the inner-barrier. The
deformation energy curves obtained with the SIII parametrization are plotted in Figure 6.8 and 6.9 for the
two considered nuclei up to the fission-isomeric well. Despite the limited number of results available for
comparison between the three Skyrme parametrizations considered herein, namely in 239Pu only, we note
that the SIII parametrization gives for all retained Kπ configurations higher inner-barriers than SkM*, as

87



CHAPTER 6. FISSION BARRIERS OF ACTINIDE NUCLEI

already known for even-even nuclei, and that SLy5* yields inner-barrier heights slightly smaller than SIII
but overall significantly larger than SkM*.
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Figure 6.6: Deformation energy curves (with the ground state energy taken as the reference) as a
function of quadrupole moment Q20 (given in barns) of the different blocked configurations with Kπ

quantum numbers in 235U obtained with the SkM* parametrization.
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Figure 6.7: Similar to Figure 6.6 for 239Pu nucleus obtained with the SkM* (top two rows) and the SLy5*
(bottom two rows) parametrizations.
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Figure 6.8: Deformation energy curves of the different blocked configurations with Kπ quantum numbers
in 235U nucleus obtained with the SIII parametrization up to the fission-isomeric well.
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Figure 6.9: Similar to Figure 6.8 for 239Pu with the SIII parametrization.

Table 6.2: The inner-barrier heights EA, the fission-isomeric energy with respect to the same Kπ

ground-state solution EIS and the outer-barrier height EB of the odd-neutron nuclei obtained with
the SkM*, the SLy5* and the SIII parametrizations. The outer-barrier height obtained from a parity
breaking calculations are given in parentheses for the selected blocked configurations. Results shown
were obtained from mean-field calculations without rotational correction.

Nucleus Kπ
EA (MeV) EIS (MeV) EB (MeV)

SkM* SLy5* SIII SkM* SLy5* SIII SkM* SLy5*

235U

1/2+ 7.67 - 8.03 4.00 - 5.85 11.20 (7.5) -
7/2− 7.87 - 7.65 3.99 - 7.07 12.81 (7.4) -
5/2+ 6.93 - 7.06 2.89 - 4.69 12.07 -
3/2+ 7.21 - 8.34 2.87 - 4.93 10.64 -
7/2+ 5.97 - 7.10 3.67 - 5.78 9.99 (6.2) -
5/2− 7.44 - 9.02 5.31 - 7.17 10.75 -

239Pu

1/2+ 8.56 9.02 9.34 3.17 3.71 6.23 10.14 (6.3) 14.47 (9.9)
7/2− 9.05 9.19 9.26 4.05 5.37 7.28 11.17 15.16
7/2+ 7.09 8.11 8.84 3.14 4.59 5.82 9.15 14.10
5/2+ 8.14 8.81 8.75 2.42 4.35 4.83 11.25 (6.6) 15.47 (9.9)
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6.2.2 Effect of neglected time-odd terms on the fission barriers

Calculations of the total binding energies as a function of deformation with parity symmetry have also been
performed from the normal-deformed ground-state well up to the fission-isomeric well for the two odd-
mass nuclei with the SkM* and the SIII parametrizations in the full time-odd scheme. In this scheme, the
B14, B15, B18 and B19 coupling-constants are not set to zero, as was done for the default minimal time-odd

scheme. From the converged solutions, the energy contributions to the inner-barrier height EA and fission-
isomeric energy EIS stemming from the kinetic energy, the Coulomb energy, the pairing energy as well as
the various coupling-constant terms appearing in the expression of the Hamiltonian density are calculated
in both schemes.

For each energy contribution, we take the difference between the values obtained in both time-odd

schemes. Restricting our discussion here to the inner-barrier height, the above corresponds to taking the
energy difference for example, for the term related to B1 coupling-constant, such that

∆E′B1
= ∆E(full)

B1
− ∆E(min)

B1
(6.2)

where ∆E(full)
B1

and ∆E(min)
B1

refers to the inner-barrier height in the full time-odd and the minimal time-odd

schemes, respectively. The sum of all the energy differences except for the those related to the B14, B15,
B18 and B19 terms between the two time-odd schemes are denoted as ∆E ′even such that

∆E ′even = ∆E ′kin + ∆E ′Bx
+ ∆E ′pairing + ∆E ′Coulomb ; x 6= 14,15,18,19 (6.3)

The contribution of the B14 and B15 terms to the difference in the inner-barrier height between the two
time-odd schemes are denoted as EB14,15 while those from B18 and B19 terms are denoted as EB18,19 . The
difference in the inner-barrier height in the two time-odd schemes is then given as

∆E ′A = ∆E ′even + ∆E ′B14,15
+ ∆E ′B18,19

(6.4)

and the same applies also to case of the fission-isomeric energy EIS.

Comparing both Figure 6.10 and Figure 6.11, we see that the inner-barrier heights, in general, decreases
when going from a minimal to a full time-odd scheme. This is reflected by the negative values of ∆E′A in
the histogram. The difference in the inner-barrier height between both time-odd schemes is overall a com-
petition between the ∆E ′even and ∆E ′B14,15

terms, while the ∆E ′B18,19
term has a negligible effect. The ∆E ′B14,15

term is related to the local densities in the form of (
←→
J 2− s ·T). It was checked that the contribution of the

(s ·T ) component was rather unconsequential and that the bulk of it comes from the
←→
J 2 component. When

both ∆E ′even and ∆E ′B14,15
contributions are of the same magnitude but with opposite sign, then we do not

have a change in the inner-barrier height, as is the case for the 7/2+ blocked configuration obtained with the
SkM* parametrization.
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The effect of the time-odd scheme on fission-isomeric energy EIS is less clear-cut. However, we could
still observe an interplay between the even and the B14,B15 terms in determining the overall effect on
∆EIS. The effect of the time-odd scheme is generally less in the fission-isomeric energy as compared to the
inner-barrier height, with the notable exceptions for the the 1/2+ configuration with the SkM* and the 5/2+

configuration with the SIII parametrizations.

This study shows that the coupling-constant terms which are not constrained in the earlier fits of the
Skyrme force can impact the fission-barrier heights. This suggests that the effect of the unconstrained terms
cannot be absorbed into the variational procedure. This could provide a constraint of some coupling con-
stants in the fit of the Skyrme parametrizations in a functional point of view.
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Figure 6.10: The plot shows the energy differences between various terms obtained from calculations
in the default minimal time-odd scheme as opposed to the results obtained in the full time-odd scheme
of 239Pu with the SkM* parametrization. All the terms in the Hamiltonian density which contributes to
the total binding energy in the case of an even-even nucleus are grouped and denoted to as ∆E ′even. The
energy contributions coming from the B14 and B15 terms are denoted as ∆E ′B14,15

while those related to
the B18 and B19 terms are denoted as ∆E ′B18,19

. The difference in the inner-barrier heights ∆E′A and the
fission-isomeric energy ∆E′IS between the two schemes are also given for each blocked configurations.
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Figure 6.11: Similar to Figure 6.10 but for the blocked configurations of 239Pu with the SIII
parametrization.
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6.2.3 HF+BCS results with parity symmetry breaking

Parity symmetry breaking calculations have been performed for the experimental lowest two band heads in
the normal-deformed ground-state well of the 235U and 239Pu nuclei. In the 235U ground-state well, the first
and second band-head states correspond to the Kπ = 1/2+ and Kπ = 7/2−, respectively, while in 239Pu,
they correspond to Kπ = 1/2+ and Kπ = 5/2+. When breaking the intrinsic parity symmetry, we have
always considered the blocking of the single-particle state nearest to the Fermi level corresponding to the
desired K quantum number. The parity symmetry breaking calculations have been started from a converged
left-right symmetric field with a constraint on Q30 for a limited number of iterations so as to allow for the
nucleus to explore left-right asymmetric shapes. Subsequently, the constraint on Q30 has been released so
that the calculation converges to a local minimum at fixed elongation.

Let us first discuss the results for the 239Pu nucleus. The deformation energies corresponding to the
parity asymmetric solutions obtained with the SkM* and SLy5* parametrizations have been plotted in Fig-
ure 6.12 in dashed lines. As well known, the parity symmetry breaking calculations do yield a substantial
effect on the deformation energies around the outer fission-barrier. The asymmetrical outer-barrier height
for the K = 1/2 configuration with SkM* is lowered by about 3.9 MeV with respect to the symmetrical
solution, which yields a barrier height EB = 6.3 MeV. For the K = 5/2 configuration with the same Skyrme
parameters we find an outer-barrier height of 6.6 MeV including a reduction of about 4.7 MeV with respect
to the left-right symmetric solution.

In contrast to the parity-breaking deformation energy curves obtained with the SkM*, those obtained
with the SLy5* parameters are much flatter with a very slow decrease of E with Q20 even up to about
Q20 = 300 b. This shows that the SLy5* parametrization has unsatisfactory surface properties as compared
to SkM*. The left-right asymmetric outer fission-barrier heights obtained with these two Skyrme parameter
sets are tabulated in Table 6.2 in parentheses.

A cut in the potential energy surface along the Q30 direction at fixed Q20 values was performed for the
K = 5/2 blocked configuration with the SkM* parametrization around the top of the second fission-barrier.
The results are plotted in Figure 6.13. The figure clearly illustrates the transition from a symmetrical equi-
librium solution at Q20 = 95b to increasingly asymmetrical solutions as a function of Q20. The top of the
barrier around Q20 = 115b for the 5/2 blocked configuration corresponds to a rather large value of Q30. It
is worth mentioning here that in the work of Ref. [80] in the 240Pu nucleus within the Highly Truncated
Diagonalization approach, the parity-projection calculation was found to have no effect on the total binding
energy at the top of the outer fission-barrier, where the value of Q30 was also found to be large. In contrast,
projecting on a positive parity state causes a lowering of the total binding energy in the fission-isomeric
well. In view of this, we expect that restoring the parity symmetry may not have a large impact, if any,
on calculated outer-barrier heights with respect to the normal-deformed ground-state well in odd-mass ac-
tinides.
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Another shape degree of freedom of interest in this fission context is the hexadecapole moment Q40.
This quantity provides an indication of the formation of a neck as one approaches the scission point, where
the fissioning nucleus splits into two smaller nuclei. In this situation a sudden decrease occurs in the value
of Q40. It has been checked that the results obtained here correspond to the same fission valley, without
any drastic change in Q40. An example of variation of Q40 as a function of Q20 around the top of the outer-
barrier is shown in Fig. 6.14 for the lowest-energy K = 1/2 and K = 5/2 solutions in 239Pu with SkM* and
SLy5* parametrizations. A smooth variation is obtained in each case when asymmetric shapes are allowed.
However, a shoulder appears when restricting to left-right symmetric shapes with SkM*, with the inflexion
point located near the top of the outer barrier. With SLy5* this deviation from a smooth variation is actually
accentuated and turned into a shallow local minimum, again around the top of the outer saddle point. It has
been checked that this is not an artifact that arises, for example, when jumping from one fission valley to
another.
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Figure 6.12: Deformation energy curves of 239Pu as a function of deformation Q20 with parity sym-
metry breaking calculations obtained with the SkM* and the SLy5* parametrizations.
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Figure 6.13: A cut in the potential energy surface around the top of the second barrier as a function of
octupole moment Q30 (given in barns3/2) of the 5/2 blocked configuration of 239Pu obtained with the SkM*
parametrization.
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Figure 6.14: The hexadecapole moment Q40 as a function of Q20 in 239Pu obtained with the SkM*
and SLy5* parametrizations are plotted in solid lines for the solutions corresponding to a conserved
parity symmetry. The solutions for the 1/2 and 5/2 blocked configurations with a broken parity are
plotted in dashed lines.

We now move to the results of the parity symmetry breaking calculations for the 235U nucleus with the
SkM* parametrization. As mentioned before, the blocked configurations considered for the parity asym-
metric calculations correspond to K = 1/2 and K = 7/2. As was done for the 239Pu nucleus, the Hartree–
Fock–BCS solutions for both configurations were obtained by blocking the single-particle state with Ω = K

nearest to the Fermi level at each Q20 deformation. The deformation-energy curve for the K = 1/2 blocked
configuration is plotted in Figure 6.15. The parity-asymmetric outer-barrier height for this blocked config-
uration is found to be 7.5 MeV, which is 3.7 MeV less than the left-right symmetric barrier height.
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Figure 6.15: Deformation energy curves of 235U as a function of quadrupole moment obtained with
the SkM* parametrization for the 1/2 blocked configuration. The parity symmetric solutions are plot-
ted in solid line while the asymmetric solutions are plotted in dashed line.
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Figure 6.16: Deformation energy curves of 235U as a function of quadrupole moment obtained with
the SkM* parametrization for the 7/2 blocked configurations. The parity asymmetric solutions ob-
tained with the blocking of a single-particle state with Ω = 7/2 nearest to the Fermi level at each
deformation are connected by a dashed line.
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Similarly the deformation-energy curve for the K = 7/2 blocked configuration is plotted in Figure 6.16.
In this case the decrease of the outer-barrier height obtained by the release of the parity-symmetry constraint
is about 5.4 MeV, which is much more than the above 1/2 case.

Because in the ground-state well, experiments have found a 7/2+ state only 445 keV above the 7/2−

ground-state, we have to make sure that the obtained curve for the K = 7/2 blocked configuration does
represent a continuous fission-path. To do so we first analyze the structure of the Ω = 7/2 single-particle
states near the Fermi level as a function of the quadrupole moment Q20 from the superdeformed well (where
Q20 ≈ 85 b) to higher elongations. The upper panel of Figure 6.17 shows the variation of the single-particle
energies for the two Ω = 7/2 states nearest to Fermi level as a function of Q20, whereas the lower panel
shows the expectation value of the parity operator (average parity) in theses two states as a function of Q20.
As expected the average parity is equal to −1 for solutions of left-right asymmetric calculations performed
at elongations slightly larger than the one of the superdeformed minimum and decreases in absolute value
as Q20 increases. Up to Q20 = 110 b the lowest 7/2 blocked configuration is found to has a negative average
parity. The corresponding fission-path is then continuous up to this elongation value. For Q20 values equal
to and larger than 120 barns the average parity is found to be positive with a large value slowly decreasing
as a function of Q20. We might then suspect a possible discontinuity in the fission-path between 110 and
120 barns. Indeed in this interval two 7/2 single-particle states above the Fermi level seem to become al-
most degenerate as is visible from the upper panel of Figure 6.17. However, according to the “no-crossing
rule”, the curves corresponding to the variation with a continuous quantity (here the quadrupole moment)
of the energy of two single-particle states with the same good quantum number (here the projection of the
angular momentum on the z axis) do not cross. Therefore the energy of the many-body solution obtained by
blocking the single-particle state nearest to Fermi level remains a continuous function of Q20 in the 110-120
barns interval despite the jump of the average parity (see solid line in lower panel of Figure 6.17).

Figure 6.18 summarizes the various solutions obtained as a function of the quadrupole moment between
the isomeric well and Q20 = 200 b. The dashed line connecting the open symbols correspond to left-right
symmetric calculations for the 7/2+ (circles) and the 7/2− (triangles) blocked configurations. It is worth
keeping in mind that the solutions resulting from these calculations are not necessarily local minima as
functions of left-right asymmetric deformations. In contrast filled symbols represent equilibrium solutions
resulting from left-right asymmetric calculations for two blocked configurations: circles correspond to a
positive average-parity solution whereas triangles correspond to the other 7/2 configuration (of negative
average parity up to 110 barns). When these symbols lie on the dashed line one has a local minimum at
Q30 = 0 as a function of the octupole moment Q30 for a fixed value of the quadrupole moment. Finally the
solid line in Figure 6.18 connects the lowest-energy solutions as a function of Q20. From this figure and the
above “no crossing rule” we deduce that following a fission-path along which the structure of the blocked
state remains continuous from the left-right symmetric 7/2+ and 7/2− soutions in the isomeric well give
different and erroneous fission barriers. The actual mean-field, left-right asymmetric fission barrier is the
one represented as a solid line in Figure 6.18.
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Figure 6.17: (Top): The evolution of the energies of the single particle states near the BCS chemical
potential (marked with crosses) with Ω = 7/2 quantum number as a function of quadrupole moment
Q20 obtained in the parity asymmetric calculations of 235U. The solid line connects the blocked single-
particle states as a function of deformation. (Bottom): The average parity of the blocked single-particle
states as a function of deformation.
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Figure 6.18: A portion of the deformation energy curves of the blocked K = 7/2 configurations in
235U from the fission-isomeric well up to beyond the top of the second barrier. The filled symbols refer
to the local minima as functions of Q30 for fixed elongation Q20 while the unfilled symbols refer to the
solutions obtained by constraining the nucleus to have a left-right symmetry. The solid line connects
the lowest-energy solutions when the left-right symmetry is broken.
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Figure 6.19: A portion of the deformation energy curves for the two 7/2 blocked configurations
around the top of the outer-barrier. The lowest-energy mean-field solutions are connected by
a solid line. The unfilled symbols refer to the predicted solution when the parity projection
calculations are performed by projecting the mean-field solutions on a good parity state of similar
(positive or negative) sign. The effect of parity projection on the total energy are estimated from
the values obtained for 240Pu in Ref. [80].

As known from Refs. [91, 80], the effect on the total energy of parity projection after variation of left-
right asymmetric mean-field solutions is the larger in the isomeric well and decreases as one approaches
the top of the outer-barrier. In Figure 6.19 we estimate this effect as follows. As in the previous figure the
filled symbols represent left-right asymmetric equilibrium solutions for two 7/2 blocked configurations and
the solid line connect the lowest ones as a function of the quadrupole moment. The corresponding unfilled
symbols connected by dashed lines are estimates of parity projected solutions assuming the same gain in
energy as found for 240Pu as a function of Q20 in Ref. [80]. More precisely open circles correspond to
positive parity projection of the positive average parity mean-field solution represented by the filled circles,
whereas open triangles correspond to negative parity projection of the other blocked mean-field solution
represented by the filled circles. Beyond 115 barns the effect of parity projection is assumed to be neg-
ligible, hence the merge of the two dashed curves with the solid curve for Q20 ≥ 120 b. With the above
assumptions the barrier tops for the Kπ = 7/2− and the Kπ = 7/2+ band heads are predicted to coincide
at about Q20 = 120 b. Therefore the barrier-height difference for these two states is expected to be entirely
due to the their binding-energy difference in the ground-state well.
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6.2.4 Fission-barrier heights within the Bohr-Mottelson unified model

From the earlier discussions in this section up to this point, we have investigated at how the different Skyrme
parametrizations perform in the calculations of the deformation energies at the mean-field level. In order
to evaluate our mean-field solutions within the Bohr-Mottelson unified model, we will need to take into
account the core rotational correction. The rotational correction calculated using the Belyaev formula were
evaluated from three different ways. The values obtained from pure Belyaev formula are denoted as IB,
those which take into account the approximate Thouless-Valatin correction term to the moment of inertia
are denoted as IB+TV and the reduction of rotational correction calculated using the Belyaev formula by
50% are denoted as IB-50%. In all three cases, the 〈Ĵ2

core〉 term was calculated for its polarized even-even
(A−1) core nucleus, where A is the mass number of the odd-mass nucleus, by excluding the blocked state
and its conjugate state from the expression of 〈Ĵ2

core〉 of Ref. [109].

In this section, we shall limit the evaluation of the fission barriers within the Bohr-Mottelson model to
the mean-field solutions obtained with the SkM* parametrization. The SIII and SLy5* parametrizations
have been shown to give higher fission barriers as compared to SkM* at the mean-field level, and this re-
mains true even with the inclusion of the rotational correction. The fission-barrier heights for the various
Kπ blocked configurations in the two considered odd-neutron nuclei are listed in Table 6.3. Both the par-
ity symmetric and asymmetric outer-barrier heights are tabulated for completeness. The parity asymmetric
outer-barrier heights obtained for other blocked configurations are also given in the table. It can be seen that
the rotational correction calculated using the Belyaev formula gives too low an outer fission-barrier in some
cases as compared to the empirical values found to be within the range of 5.5 - 6.0 MeV (see Table 6.5).
From the study of fission-isomeric energy EII presented in Section 5.3 for the odd-mass nuclei and Section
6.1.2 for even-mass nuclei, it has been found that the calculated values compares more reasonably to the
experiment when considering a 50% reduction to the rotational correction calculated using the Belyaev
formula. In view of this, we shall make use of the fission-barrier heights obtained from this rotational cor-
rection scheme for comparison with empirical values and values obtained from other work in a later section.
The inner-barrier heights, fission-isomeric energy for a fixed Kπ configuration EIS, and asymmetric outer-
barrier heights obtained with this rotational correction scheme were found to differ by about 0.50, 0.70 and
1.0 MeV, respectively, from the results obtained with the Belyaev moment of inertia. Figure 6.20 shows the
deformation energy curves evaluated within the Bohr-Mottelson model for the four blocked configurations
in 239Pu as compared to its neighbouring even-mass nuclei. The rotational correction used for the plot were
the values obtained using the Belyaev values with a reduction by 50%.
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Figure 6.20: The deformation energy curves with a conserved parity symmetry of the considered plutonium
isotopes within the Bohr-Mottelson unified model whereby the values of the rotational correction calculated
using the Belyaev formula have been reduced by a factor 2.
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CHAPTER 6. FISSION BARRIERS OF ACTINIDE NUCLEI

6.3 The specialization energy of odd-mass nucleus

Figure 6.21 shows the fission-barrier heights with a conserved parity symmetry evaluated within the Bohr-
Mottelson unified model of the various blocked Kπ configurations of 239Pu with respect to those of the
neighbouring even-even nuclei. We see that the inner and outer-barrier heights of some blocked config-
urations (the 7/2− configuration being an excellent example) are higher than the even-even nucleus as a
consequence of following fixed Kπ quantum numbers. On the other hand, the 7/2+ blocked configuration
appears to have lower fission-barrier heights as compared to the even-even nucleus. This is so because the
7/2+ configuration is found at much higher energy in the ground-state deformation well (see Section 5.2),
but with a lower energy solution at the saddle points as compared to the other blocked configurations (refer
to Figure 6.20).

We define here the specialization energy as the difference in the fission-barrier heights of the various
blocked configurations of odd-mass nucleus with respect to the average fission-barrier heights of its neigh-
bouring even-mass nuclei. Table 6.4 list the specialization energies denoted as Espec

A,B (with A and B referring
to the inner and outer-barrier, respectively) for the four considered blocked configurations in 239Pu. The
negative values reported for the 7/2+ state reflect that the inner and outer fission-barrier heights for this
blocked configuration are lower than the average fission-barrier heights of 238Pu and 240Pu nuclei.

Table 6.4: The specialization energies defined as the difference in the fission-barrier heights of
the odd-mass nucleus with respect to the average values of the two neighouring even-mass nuclei
is listed for the four blocked configurations of 239Pu (in MeV). The results were obtained with
the SkM* parametrization with a reduction factor of 50% for the rotational correction calculated
using the Belyaev formula.

Kπ

1/2+ 5/2+ 7/2+ 7/2−

Espec
A 0.83 0.39 -0.68 1.41

Espec
B 0.26 1.38 -0.77 1.31
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Figure 6.21: The locations of the inner-barrier heights, fission-isomeric energies (for a fixed Kπ ) and the
outer-barrier heights of the four considered Kπ configurations of 239Pu nucleus (with a conserved parity
symmetry) are plotted with respect to the deformation energy curves of the 238,240Pu nuclei. The results
used for the plot were obtained with the SkM* parametrization and including the reduction factor of 50%
for the rotational correction calculated using the Belyaev formula.
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6.4 Connection with fission cross sections

6.4.1 Comparison of barrier heights with empirical values and other calculations

It is to be noted that some corrections should be taken into account before comparing our fission-barrier
heights within the Bohr-Mottelson unified model listed in Table 6.3 with barrier heights obtained in other
calculations or those deduced from experiment. We shall discuss first the corrections to be made for the
inner-barrier heights. As discussed in Section 4.3.2, the inner-barrier height is estimated to be lowered by
about 0.2 MeV when increasing the basis size parameter N0 from 14 to 16. Secondly, the correction due
to the Slater approximation for the Coulomb exchange interaction was found to increase the inner-barrier
height by about 0.3 MeV in 238U [58] and we shall assume a similar amount of correction for the two con-
sidered nuclei herein.

On top of that, one should also consider the impact of breaking the axial symmetry especially around the
top of the inner-barrier where this symmetry breaking have been shown to lower the inner-barrier height,
especially so for superheavy nuclei. When breaking the axial symmetry, K is no longer a good quantum
number and this may pose a problem in the blocking procedure for an odd-mass nucleus. One may ex-
pect that the single-particle states would contain mixtures of K quantum numbers. By following a blocked
single-particle state as a function of deformations, there may arise situations where the “transition” from
one blocked solution to another occur for single-particle states with differing K content. We would rather
consider the impact of the axial symmetry breaking on the inner-barrier of odd-mass nuclei by using the
estimates obtained in the calculations for even-mass nuclei in the work of Ref. [60]. Assuming that the
effect of triaxiality to be the same for all considered blocked configurations, we expect a reduction in the
inner-barrier height by about 0.5 MeV. This translates into a total reduction (including the two corrective
terms discussed above) of the inner-barrier height by about 0.4 MeV.

A note is to be made here with regards to the effect of triaxiality. As was reported in Ref. [110], the
effect of triaxiality in dynamical calculations depends on the manner in which the inertia parameter is cal-
culated. When using the non-perturbative cranking approximation for the inertia parameter, the fission-path
of 264Fm was found to be closer to the triaxial fission-path obtained from static (minimum-energy) calcula-
tions, with a slightly higher barrier height for the former as compared to the latter. On the other hand, the
dynamical fission-path is closer to axially symmetric fission-path when the inertia parameter is calculated
from a perturbative cranking approximation. In view of this, the triaxial correction as mentioned above is
thus an upper limit of this effect on the inner-barrier height.

Moving now to the outer-barrier, the correction due to the Slater approximation have not been tested
due to the rather heavy computing task, in particular when breaking the parity symmetry. We need to rely
on a rough estimate for this purpose. In Ref. [58], exact calculations were found to increase the fission-
isomeric energy by about 0.28 MeV. Since the Slater approximation is supposed to work well for cases
where the single-particle level density near the Fermi level is high, as is the case at the outer-barrier, we
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may then assume that the amount of correction to the outer fission-barrier height is about 0.25 MeV at
most. This amount of correction due to the Slater approximation partly compensates for the lowering of the
outer-barrier due to the basis size truncation effect estimated to be around 0.40 MeV. The total effect of the
corrective terms to the outer-barrier is therefore a lowering of the barrier height by about 0.1 - 0.2 MeV.

When taking the total corrections to the fission-barrier heights as mentioned above, the inner-barrier
heights for the different blocked configurations obtained with the SkM* parametrization and including the
(IB-50%) rotational correction scheme ranges from about 5.0 to 7.0 MeV for 235U, and about 6.1 to 8.2
MeV for 239Pu. The left-right asymmetric outer-barrier heights lies within the range of about 4.7 to 6.2
MeV for the 235U nucleus, while it range from about 4.3 to 5.4 MeV for the 239Pu nucleus.

Some sets of fission-barrier heights of the two considered odd-neutron nuclei obtained from other cal-
culations or from empirical means are tabulated in Table 6.5 for comparison. Three sets of values were
obtained from calculations, namely the calculations by Robledo and collaborators [21, 22], the fission-
barrier heights fitted to reproduce the neutron-induced fission cross-sections by Goriely and collaborators
[19], and the macroscopic-microscopic calculations by Möller [44]. In the the RIPL-3 [20] database, an-
other set of fission-barrier heights are given apart from those of Ref. [19]. This set of data which is also
listed in the table is taken from the empirical estimates compiled by Maslov et al. [111]. The last set of
data is the empirical fission-barrier heights of Bjørnholm and Lynn [108] obtained from the lowest energy
solution at the saddle points irrespective of the nuclear angular momentum and parity quantum numbers.

Out of these values, only those obtained from Refs. [21, 22] using the Gogny D1S force within the
Hartree-Fock-Bogoliubov-EFA framework (listed in the third column of Table 6.5) are directly comparable
to our results. Their fission-barrier heights assuming axial symmetry are much higher when compared to
our calculated results. However, the values obtained in Refs. [21, 22] are consistent with the rather high
fission-barrier heights obtained for the even-even 240Pu nucleus in the earlier work of Ref. [36]. It should
be stressed that the rather large differences between our results and those reported in Refs. [21, 22] should
not be interpreted as an effect due to the treatment of the time-reversal symmetry breaking. In fact, it has
been checked that equal-filling approximation (EFA) calculations affects the total binding energies by a few
hundreds keV at most for the parity symmetric case. A test calculation performed for the parity asymmet-
ric case of 239Pu also leads to the same conclusion, that the effect of time-reversal symmetry breaking is
approximately constant with deformation.

The comparison with the other sets of data in Table 6.5 are less straight forward and we could not estab-
lished a one-to-one comparison between our calculated values with the empirical data. As was mentioned
in Ref. [82], since the uncertainty in the empirical fission-barrier heights is about 1 MeV, it is then deemed
reasonable if the fission-barrier heights are reproduced within 1-2 MeV from the empirical values. In our
case, the fission-barrier heights calculated with the SkM* parametrization and after taking into account
the various corrective terms as discussed above, falls within the 2 MeV range from the empirical values.
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For comparison, the values of the fission-barrier heights corresponding to the experimental ground-state
Kπ quantum numbers, obtained after corrections are listed in the last column of Table 6.5. The calculated
outer-barrier heights compares favorably with the RIPL-3 empirical data. However, the agreement is less
good for the inner-barrier and this could be due to the approximate correction to the effect of triaxiality.

Interestingly, the calculated inner-barrier heights for all blocked configurations in 235U and 239Pu were
found to be higher than their respective outer-barrier. This pattern is consistent with the results of Ref.
[21, 22] and the empirical values provided by Ref. [108]. On the other hand, the macroscopic-microscopic
calculations of Ref. [44] and the fission-barrier heights supplied by Ref. [20] suggest a higher outer-barrier
as compared to its inner-barrier in 235U .

Finally, it is to be noted that the inner and outer-barrier heights supplied by Ref. [19] in the RIPL-3
database, and listed in Table 6.5 have been independently optimized so as to reproduce at best the neutron-
induced fission cross-sections. The simultaneous optimization of the inner and outer-barrier heights have
also been attempted (with the resulting fission-barrier heights given in Table 6.6) but such a procedure was
found to yield a poorer agreement to the fission cross-sections as compared to the independent optimization
of the two barriers.

Table 6.5: The inner EA and outer-barrier EB heights (given in MeV) of the two considered odd-neutron
nuclei obtained from other calculations as well as the values deduced from experiments. The EFA results
were extracted from Ref. [21] and [22]. The RIPL-3 [20] values consists of two sets of data; one by
Ref. [19] whereby the barrier heights have been fitted independently of one another to best reproduce the
experimental neutron-induced fission cross section, while the other set consists of empirical values compiled
by Maslov et al. [111]. The fission-barrier heights obtained from the macroscopic-microscopic model of
Ref. [44] and the empirical values of Bjørnholm and Lynn [108] are also tabulated for comparison. The
calculated fission-barrier heights corresponding to the experimental ground-state Kπ quantum numbers are
listed in the last column, whereby these values have been obtained after taking the various corrections into
account.

Nucleus K
EFA Ref. [19] Ref. [111] Ref. [108] Ref. [44] present work

EA EB EA EB EA EB EA EB EA EB EA EB

235U
1/2 9.0 8.0

5.54 5.80 5.25 6.00 5.9 5.6 4.20 4.87
- -

7/2 8.5 7.2 7.01 6.22

239Pu
1/2 11.0 8.5

5.96 5.86 6.20 5.70 6.2 5.5 5.73 4.65
7.58 5.00

5/2 11.5 9.0 - -
7/2 11.0 8.5 - -
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Table 6.6: The values (given in MeV) are extracted from Table I of Ref. [19]. The inner EA and outer
EB barrier heights were obtained from independent fit of the fission-barrier heights of RIPL-2 [46] to best
reproduce the neutron-induced fission cross-sections. The values of E′A and E′B were obtained when fitting
both the inner and outer-barrier heights simultaneously but the resulting fission cross-sections obtained with
these values of the fission-barrier heights were found to be in less good agreement to the experimental data.

Nucleus EA EB E′A E′B
235U 5.54 5.80 4.80 5.58

239Pu 5.96 5.86 6.02 5.38

6.4.2 Transition states at the top of the inner-barrier

As was discussed in Chapter 2, the calculations of the neutron-induced fission cross sections requires the
knowledge of the transition states. The transition states are further categorized into discrete states and a
continuum. Some of the discrete transition states can be obtained by performing self-consistent blocking
calculations as was done for the band-heads energy spectra in the ground-state and fission-isomeric wells
spectra presented in Chapter 5. They describe multi-quasiparticle configuration and the rotational band built
upon them. Other excitation modes exist at higher energies and have to be described with an appropriate
nuclear-structure model.

Figure 6.22 shows a sample of the transition states above the inner saddle point of 239Pu obtained with
the SkM* parametrization. Calculations have been performed first by blocking several single-particle states
corresponding to different Ωπ quantum numbers near to the Fermi level. Such solutions corresponds to the
different Kπ band-head energies. The rotational bands are then build on top of these band-heads using the
usual expression:

E(I)
K π

= E(I=K)
K π

+
h̄2

2 ג

[
I(I +1) − K(K +1)

]
(6.5)

where E(I=K)
K π

is the band-head energy while I = K,K +1,K +2, ... etc.

Such an approach to obtain the discrete transition states can be extended to other nuclei, as well as to the
outer saddle point. The calculations of the discrete transition states at the outer saddle points are however
more involved as one will need to perform parity-breaking calculations for several K quantum numbers.
In addition to the rotational states thus obtained, one could also apply the highly truncated diagonalization
approach (HTDA) model [63] to build multi-particle-multi-hole excited states above the saddle points.

6.4.3 Additional nuclear structure ingredients for fission transmission coefficients

As was discussed in Section 2.2.2, one would need to calculate the barrier penetrabilities P j(E,V Jπ

jd ) in or-
der to obtain the fission transmission coefficients for a compound nucleus with specific Jπ quantum numbers
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and excitation energy E. Apart from the above two ingredients which could be supplied by our microscopic
model, namely the fission barriers and the transition states at the saddle points, one would need at least three
more kinds of nuclear structure input for the calculations of the barrier penetrabilities.

The first one is the fission-barrier profile for each discrete transition states. In the neutron-induced fis-
sion cross sections calculations of Ref. [19], the shape of the fission barriers are assumed to be the same
for all Bohr transition states. One can now improve on this approximation by making use of the approach
discussed in Section 6.4.2 to obtain a unique fission-barrier profile for each of the considered discrete state.
This can be done by building rotational bands on top of each band-heads at different Q20 deformations. The
solutions corresponding to the same Jπ quantum numbers originating from the same band-heads along Q20

can then be connected to obtain the deformation energy curves.

The second piece of information is related to the inertia parameter as a function of deformation (see
Section 2.3.3) and to be computed for each considered Kπ quantum numbers. Finally, one would need the
nuclear level density at high excitation energy and this could be supplied by an appropriate nuclear-structure
model.
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Figure 6.22: The discrete transition states at the top of the inner-barrier of 239Pu with the SkM*
parametrization shown as rotational bands build on top of the different band-heads, presented in the Fission
Experiments and Theoretical Advances Fission School and Workshop (2014).
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Chapter 7

CONCLUSION & PERSPECTIVES

Spectroscopic properties and fission-barrier heights of odd-mass nuclei have been calculated within the
Skyrme-Hartree-Fock-plus-BCS (HF+BCS) framework, assuming axial symmetry, for various blocked Kπ

configurations taking into account the effect of time-reversal symmetry breaking. For each set of quantum
numbers Kπ , the lowest energy solution is obtained by blocking the Ω

πi
i =Kπ single-particle state |i〉 closest

to Fermi level. The SIII, SkM* and SLy5* parametrizations were used. The HF+BCS results were inter-
preted within the Bohr-Mottelson unified model in the laboratory frame with some due attention made to
the core rotational energy in fission-barrier calculations. The moment of inertia entering the rotational en-
ergy is usually calculated using the Belyaev formula. However, it has been reported in an earlier work that
the rotational correction thus obtained is overestimated resulting in underestimation of the fission-barrier
heights. Two improvements have been considered herein. First is the scaling of the moment of inertia by
a factor (1+α) with α = 0.32 to account for the omission of some Thouless-Valatin corrective term in the
Belyaev formula. The second is to reduce the rotational energy calculated with Belyaev formula by 50%.
In this way, the various approaches to the rotational correction allows for a sensitivity study of the fission-
barrier heights to the moment of inertia.

Since the fission-barrier heights are related to the energies at the saddle points with respect to the ground-
state solution, the study of the band-head energies in the normal-deformed (ground-state) well of some odd-
mass nuclei was first performed as a test of the quality of our approach. The calculations were restricted to
the experimental band-heads of 237Np, 241Am, 235U and 239Pu nuclei up to 650 keV excitation energy. An
overall good qualitative agreement with experimental data was found for the odd-neutron 235U and 239Pu
nuclei when using the SIII and SkM* parametrizations with root-mean-square (r.m.s) energy deviation of
about 250 keV and 350 keV, respectively. The agreement with experimental data was however less good for
the odd-proton 237Np and 241Am nuclei when using these two Skyrme parametrizations with the r.m.s en-
ergy deviation at about 450 keV for the SIII and 500 keV for the SkM* parametrizations. A possible reason
for the poorer agreement in odd-proton nuclei is the use of the Slater approximation in the treatment of the
Coulomb exchange term. On the other hand, the band-head energies obtained with the SLy5* parametriza-
tion were found to give a better agreement with experimental data for the odd-proton nuclei with an r.m.s
energy deviation of about 460 keV as compared to 650 keV for the odd-neutron nuclei. In general, the SIII
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parametrization give a better agreement with experimental band-head energies than the other two Skyrme
parametrizations.

The static moments of the four considered odd-mass nuclei in their ground-state deformation have also
been investigated. Out of the three odd-mass nuclei (namely 235U, 237Np and 241Am) for which the ex-
perimental spectroscopic charge quadrupole moment are available for comparison, the calculated values
were found to differ at most by 0.2 barn. The charge quadrupole moment of the neighbouring even-mass
nuclei namely 234U, 236U, 238Pu and 240Pu were best reproduced when using the SLy5* parametrization,
with a r.m.s of about 0.1 barn. For the total magnetic moments of the four odd-mass nuclei, the r.m.s de-
viation when using the SIII parameters set was found to be about 0.5 µN (µN being the nuclear magneton)
while the corresponding value for the other two Skyrme parametrizations is about 0.6 µN. The collective
gyromagnetic ratio gR entering the expression of the total magnetic moment have been calculated for the
neighbouring (A−1) polarized even-even core (where A is the mass number of the odd-mass nucleus).

In the fission-isomeric well, there are two kinds of quantities which could be compared to the experiment
namely the fission-isomeric energy, which is defined as the energy difference of the lowest-energy solution
between the fission-isomeric and the ground-state wells, and band-head energies. The experimental data
available for comparison in this region of nuclear deformation exists only for the 239Pu nucleus, out of the
two considered odd-neutron nuclei. Overall, the fission-isomeric energy was found to be much more sensi-
tive to the various rotational correction schemes implemented herein as opposed to the band-head energies
in the isomeric well. The three rotational correction schemes mentioned above have been considered. Be-
tween the first (Belyaev) and the latter (with 50% reduction) scheme, the fission-isomeric energy was found
to vary by about 800 keV, while the band-head energies in the isomeric well, in general, were only affected
by some tens of keV. The experimental level sequence of a 5/2+ ground-state with a 9/2− excited state in
the isomeric well of 239Pu was reproduced when using the SIII parametrization. The intrinsic quadrupole
moment for the 5/2+ state in the isomeric well of 239Pu calculated with the three Skyrme parametrizations
was found to be within the error bar of the experimental value.

The Kπ quantum numbers of the band-heads in the ground-state well of 235U and 239Pu nuclei were
considered for the calculations of the deformation energies as a function of deformation. The heights and
shape of fission barriers were found to be dependent on the blocked Kπ configurations. Both the SIII and
SLy5* parametrizations give much higher fission barriers as compared to the SkM* parametrization usually
used for fission-barrier calculations. In particular, the width of the outer-barrier obtained with the SLy5*
parametrization are too large as compared to those obtained with SkM*. As expected, allowing the nucleus
to explore left-right asymmetrical shapes in the region of the outer fission-barrier considerably lowers the
barrier height. It was conjectured that restoration of the broken parity symmetry through parity projection
calculations would yield for the case of two blocked configurations with the same K quantum number but of
opposite parity, the same energy solution at the top of the outer barrier. Therefore, the difference between
the outer-barrier heights would solely be due to their energy difference in the ground-state deformation.
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While the fission-barrier heights are not observable quantities, one usually compares the calculated re-
sults with the empirical values derived from experimental fission cross sections to serve as a guide on the
appropriateness of the theoretical approach. We could only made a qualitative comparison since a direct
comparison between the calculated fission-barrier heights for the various blocked configurations with ex-
isting empirical data is not possible since the empirical values were obtained by taking the lowest-energy
solution at each deformation irrespective of the K quantum number. As expected, the rotational correction
calculated from the usual Belyaev formula was found to give too low a value for the fission-isomeric energy,
EII, and parity asymmetric outer-barrier heights of some blocked K configurations. From the study of EII

of odd-mass and even-mass nuclei with the SkM* parametrization, the reduction of the rotational correc-
tion calculated using the Belyaev formula by 50% was found to give reasonable EII values as compared to
the experiment. This rotational correction scheme was found to increase the inner-barrier heights, fission-
isomeric energy for a fixed Kπ configuration EIS, and asymmetric outer-barrier heights by about 0.50, 0.70
and 1.0 MeV, respectively, from the ones obtained with the Belyaev moment of inertia.

When using the 50% reduction scheme to the rotational correction with the SkM* parametrization, it
was found that the lower range of the inner-barrier and the higher range of the asymmetric outer-barrier in
both nuclei agree best with the empirical values. The inner-barrier heights for the various blocked configu-
rations are within the range of 5.0 to 7.0 MeV for 235U nucleus and from 6.1 to 8.2 MeV for 239Pu nucleus.
Recent dynamical calculations using non-perturbative cranking approach show that static calculations over-
estimates somewhat the impact of triaxility and thus underestimate the height of the inner-barrier. As such,
a slight increase in the inner-barrier height is to be expected. The asymmetrical outer-barrier heights were
found to be between 4.7 and 6.2 MeV for 235U, and from 4.3 to 5.4 MeV for 239Pu. In all cases, these values
are within 2 MeV away from the empirical data. Interestingly, the inner-barrier heights of all the considered
blocked configurations in both nuclei were found to be higher than the outer-barrier heights. This is at
variance with the recent empirical values for the 235U nucleus published in RIPL-3 database, whereby the
inner-barrier was reported to be lower than its outer-barrier.

Two technical aspects of the work have also been investigated. The first is regarding the effect of the
missing terms in the Skyrme energy-density functionals on the fission-barrier heights. This have been stud-
ied for the inner-barrier height, EA, and fission-isomeric energy for a fixed Kπ , EIS, with the SIII and SkM*
parametrizations with a conserved parity symmetry. Both EA and EIS were found to be sensitive to the
←→
J 2 term and this term yields an uncontrolablle effect on the fission-barrier heights. As such, the Skyrme

parametrizations should only be employed in the same manner in which they have been fitted. Secondly,
the consequence of the time-reversal symmetry breaking has been investigated by comparing the results
obtained from SCB calculations with the EFA. It was found that the difference in absolute energies between
those two approaches to be less than 200 keV and even smaller, of the order of tens of keV, for relative
energies.
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A possible extension from this work would be to restore the parity and rotation symmetries to obtain
deformation energy curves with good Jπ quantum numbers. The framework of the angular momentum pro-
jection calculations have been recently extended to include odd-mass nuclei in Ref. [112]. When projecting
on good total angular momentum states, the problem of whether the K quantum number is a conserved
quantity or not along the fission path would not arise. One should also consider a better pairing treatment
using for example the HTDA approach which allows also to treat vibrational correlations on the same foot-
ing [113]. From the preliminary study published in Ref. [114], the particle-number symmetry breaking as
in BCS approach tends to underestimate fission-barrier heights. Finally, the present work could be extended
to a wider range of odd-mass as well as odd-odd nuclei.

118



BIBLIOGRAPHY

Bibliography

[1] L. Meitner and O. R. Frisch (1939). Disintegration of Uranium by neutrons : a new type of nuclear
reaction. Nature. 143, 239

[2] N. Bohr and J. A. Wheeler (1939). The mechanism of nuclear fission. Phys. Rev. 56, 426

[3] V. M. Strutinsky (1967). Shell effects in nuclear masses and deformation energies. Nucl. Phys. A. 95,
420

[4] D. Vautherin and D. M. Brink (1972). Hartree-Fock calculations with Skyrme’s interaction. I. Spher-
ical nuclei. Phys. Rev. C. 5, 626

[5] D. Vautherin (1973). Hartree-Fock calculations with Skyrme’s interaction. II. Axially deformed nu-
clei. Phys. Rev. C. 7, 296

[6] H. Flocard, P. Quentin, A. K. Kerman and D. Vautherin (1973). Nuclear deformation energy curves
with the constrained Hartree-Fock method. Nucl. Phys. A. 203, 433

[7] H. Flocard, P. Quentin, D. Vautherin, M. Veneroni and A. K. Kerman (1974). Self-consistent calcu-
lation of the fission barrier of 240Pu. Nucl. Phys. A. 231, 176

[8] N. Nikolov, N. Schunck, W. Nazarewicz, M. Bender, and J. Pei (2011). Surface symmetry energy of
nuclear energy density functionals. Phys. Rev. C. 83, 034305. American Physical Society.

[9] J. D. McDonnell, W. Nazarewicz, and J. A. Sheikh (2013). Third minima in thorium and uranium
isotopes in a self-consistent theory. Phys. Rev. C. 87, 054327. American Physical Society.

[10] A. Staszczak, A. Baran, and W. Nazarewicz (2013). Spontaneous fission modes and lifetimes of
superheavy elements in the nuclear density functional theory. Phys. Rev. C. 87, 024320. American
Physical Society.

[11] W. Younes and D. Gogny (2009). Microscopic calculation of 240Pu scission with a finite-range effec-
tive force. Phys. Rev. C. 80, 054313. American Physical Society.

[12] M. Warda and J. L. Egido (2012), Fission half-lives of superheavy nuclei in a microscopic approach.
Phys. Rev. C 86, 014322. American Physical Society.

119



BIBLIOGRAPHY

[13] R. Rodriguez-Guzman and L. M. Robledo (2014). Microscopic description of fission in uranium
isotopes with the Gogny energy density functional. Phys. Rev. C. 89, 054310. American Physical
Society.

[14] H. Abusara, A. V. Afanasjev, and P. Ring (2010). Fission barriers in actinides in covariant density
functional theory: The role of triaxiality. Phys. Rev. C. 82, 044303. American Physical Society.

[15] Bing-Nan Lu, En-Guang Zhao, and Shan-Gui Zhou (2012). Potential energy surfaces of actinide
nuclei from a multidimensional constrained covariant density functional theory: Barrier heights and
saddle point shapes. Phys. Rev. C. 85, 011301. American Physical Society.

[16] H. Abusara, A. V. Afanasjev, and P. Ring (2012). Fission barriers in covariant density functional
theory: Extrapolation to superheavy nuclei. Phys. Rev. C. 85, 024314. American Physical Society.

[17] A. V. Afanasjev and O. Abdurazakov (2013). Pairing and rotational properties of actinides and su-
perheavy nuclei in covariant density functional theory. Phys. Rev. C. 88, 014320. American Physical
Society.

[18] J. Libert, M. Meyer and P. Quentin (1980). Spectroscopic Properties of 237,239Pu Fission Isomers
from Self-Consistent Calculations. Phys. Lett. B. 95, 175. Elsevier.

[19] S. Goriely, S. Hilaire, A. J. Koning, M. Sin and R. Capote (2009). Towards a prediction of fission
cross sections on the basis of microscopic nuclear inputs. Phys. Rev. C. 79, 024612. American Phys-
ical Society.
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APPENDIX A. SKYRME PARAMETERS AND THE VARIOUS COUPLING CONSTANTS

Appendix A

SKYRME PARAMETERS AND THE
VARIOUS COUPLING CONSTANTS

The coupling constants entering the expression of the Hamiltonian densities are written in terms of the
Skyrme parameters which are listed in Table A.1 for the three Skyrme interactions considered herein. The
expression of the coupling constants are written as follows with the values of each coupling constant given
in the Table A.2 according to the type of Skyrme parametrization.
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Table A.1: Values of the Skyrme parameters as a function of the Skyrme interaction.

Parameter SIII SkM* SLy5* SLy5

t0 1128.75 -2645.00 -2495.31 -2484.88

t1 395.00 410.00 484.02 483.13

t2 -95.00 -135.00 -469.48 -549.40

t3 14000.0 15595.00 13867.43 13763.0

x0 0.45 0.09 0.620 0.778

x1 0 0 -0.086 -0.328

x2 0 0 -0.947 -1.000

x3 1.0 0 0.934 1.267

α 1.0 1/6 1/6 1/6

W0 120 130 120.250 126.0

Table A.2: The values of the coupling constants for each Skyrme interaction.

Coupling constant SIII SkM* SLy5*

B1 -691.359375 -1382.0125 -1634.42805

B2 536.15625 780.275 1397.3736

B3 -583.333333 -649.791667 -577.809583

B4 -61.25 -68.125 2.36832

B5 -80.0 -85.3125 -102.300165

B6 34.0625 34.21875 50.68815

B7 1750.0 1299.583333 1695.293318

B8 -1750.0 -649.791667 -1657.157885

B9 -60.0 -65.0 -60.125

B10 -126.984375 -59.5125 -386.77305

B11 282.1875 661.25 623.827500

B12 583.333333 0.0 539.674151

B13 -583.333333 -649.791667 -577.809583

B14 0.0 0.0 -50.37148

B15 0.0 0.0 119.1875

B18 0.0 0.0 17.796085

B19 0.0 0.0 30.705625
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Appendix B

HF CALCULATIONS WITH ADJUSTMENT
OF LINEAR CONSTRAINTS

B.1 Principle of the method

Let us consider the usual constrained Hartree-Fock calculation with the Hamiltonian given as

Ĥ ′ = Ĥ−∑
i

λi Q̂i (B.1)

where the Lagrange multipliers λi are used to constrain the Hartree-Fock Slater determinant to a specific
deformation point Qi. If |Ψ0〉 is a solution to the variational problem

δ
(
〈Ψ0|H ′|Ψ0〉

)
= 0 (B.2)

then the solution of the following variational equation

δ 〈Ψ|(Ĥ ′−∑
i

dλi Q̂i)|Ψ〉= 0 (B.3)

is given by the first order perturbation theory as

|Ψ〉 = |Ψ0〉−∑
i

λi ∑
n6=0

〈Ψn|Q̂i|Ψ0〉
E0−En

|Ψn〉 (B.4)

The expectation value of the one-body operator Qi can be written in matrix form with unknowns dλi as:

〈Ψ|Q̂i|Ψ〉 = 〈Ψ0|Q̂i|Ψ0〉+∑
j

χi j dλ j (B.5)

with

χi j = 2 ∑
n6=0

ℜe(〈Ψn|Q̂i|Ψ0〉〈Ψ0|Q̂ j|Ψn〉∗)
En−E0

(B.6)
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B.2. APPLICATION TO THE CONSTRAINED HARTREE-FOCK CALCULATION

The solutions to the unknown dλi is obtained by rearranging the equation and taking the inverse of the χi j

matrix, so that:
dλi = ∑

j

(
χ
−1
)

i j
·
(
〈Ψ|Q̂i|Ψ〉−〈Ψ0|Q̂i|Ψ0〉

)
(B.7)

The value of dλi corresponds to the amount of correction to the constraint λi in order to obtain the desired
values Qi of 〈Ψ|Q̂i|Ψ〉.

B.2 Application to the constrained Hartree-Fock calculation

In order to obtain an estimate of the correction of dλi, the pairing correlation can be ignored so that the
matrix elements of χi j is calculated from the Slater determinant of the Hartree-Fock ground state |Φ0〉, with
the following expression:

χi j = 2 ∑
a∈H (Φ0)

∑
α∈P(Φ0)

ℜe(〈Φ0|a†
aaαQ̂i|Φ0〉〈Φ0|a†

aaαQ̂ j|Φ0〉)
eα − ea

(B.8)

where |a〉 and |α〉 denotes the hole and particle states respectively with ea and eα are their respective
single-particle energies.

If Q̂i is a one-body operator of the form:

Q̂i = ∑
m,n
〈m|q̂i|n〉 a†

man (B.9)

one can then make use of the Wick’s theorem to show that:

〈Φ0|a†
aaαQ̂i|Φ0〉= ∑

j,k
〈 j|q̂i|k〉〈Φ0|a†

aaαa†
jakQ̂i|Φ0〉= 〈α|q̂i|a〉 (B.10)

Making use of the expression above, the matrix elements of χi j can be written as:

χi j = ∑
a∈H (Φ0)

∑
α∈P(Φ0)

ℜe(〈α|q̂i|a〉〈a|q̂ j|α〉∗)
eα − ea

(B.11)

It should be noted that the expectation value of the Q̂i operator in the Hartree-Fock ground state would be
written as

〈Φ0|Q̂i|Φ0〉= ∑
j∈H (Φ0)

〈 j|q̂i| j〉 (B.12)

When dealing with a linear constraint, the Hartree-Fock to be diagonalized is such that

ĥ
′
HF = ĥHF −∑

i
λiq̂i (B.13)
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If the operator q̂i is a function of the R̂ position operator, one would then have

〈r|ĥ
′
HF |ϕ〉= 〈r|ĥHF |ϕ〉−∑

i
λi qi(r)ϕ(r) (B.14)

At the nth iteration of the Hartree-Fock process, the λi value is adjusted by a small amount of dλ
(n)
i so that

the constrained Hamiltonian to be diagonalized in the next iteration would be

ĥ(n+1)
HF = ĥ(n)HF −∑

i

(
λ
(n)
i +dλ

(n)
i
)
q̂i (B.15)

with
dλ

(n)
i = ∑

j

(
χ
−1
)

i j
·
(

Q j−〈Φ(n)
0 |Q̂ j|Φ(n)

0 〉
)

(B.16)
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Appendix C

THE MOMENT OF INERTIA AND 〈Ĵ2〉
TERM USING BELYAEV FORMULA

The expression for the moment of inertia in the case whereby the time-reversal symmetry is conserved, is
given by [109]:

Belג =
(A)

∑
kl

|〈k| j+|l〉|2

Ek +El

(
ukvl−ulvk

)2
+

1
2

(B)

∑
kl

|〈k| j+|l〉|2

Ek +El

(
ukvl−ulvk

)2 (C.1)

The first summation term of index A sums up all the single-particle states (|k〉 and |l〉) with its third com-
ponent of the total angular momentum operator, Ω > 0. The second summation (index B) only takes into
account the states with Ω = 1

2 . The quasiparticle energy is calculated as:

Ek =
√
(ek−λ )2 +∆2 (C.2)

with λ and ∆ being the energy of the Fermi level and pairing gap respectively, calculated within the BCS
approach. The expectation value of Ĵ2 for an even-even nucleus has an almost similar form as the equation
of the moment of inertia except for the absence of the denominator term:

〈Ĵ2〉=
(A)

∑
kl
|〈k| j+|l〉|2

(
ukvl−ulvk

)2
+

1
2

(B)

∑
kl
|〈k| j+|l〉|2

(
ukvl−ulvk

)2 (C.3)

In the case of odd-mass nuclei, we shall recall that the experimental Iπ quantum numbers is taken equal
to the Kπ quantum numbers which corresponds to the expectation value of the Ĵz and π̂ operators of the
blocked single-particle state. This is consistent with the unified model ansatz in the absence of Coriolis
terms. The moment of inertia for the odd-A nucleus has been calculated from the polarized even-even
(A−1) core nucleus, taking into account the time-reversal symmetry breaking. This has been done by first
performing the HF-BCS calculations for the desired Kπ blocked configuration of the odd-A nucleus. After
self-consistency has been achieved, we used this polarized field and perform the calculation of the moment
of inertia by excluding the blocked single-particle state denoted by |m〉 and its pair conjugate state |m̃〉 such

133



APPENDIX C. THE MOMENT OF INERTIA AND 〈Ĵ2〉 TERM USING BELYAEV FORMULA

that

Belג =
1
2 ∑

kl 6=m

|〈k| j+|l〉|2

Ek +El

(
ukvl−ulvk

)2 (C.4)

where the summation is taken for all the single-particle states with Ω ≶ 0. This is reflected by the factor 1/2
appearing in the expression of the moment of inertia above as opposed to the expression given in equation
(C.1).
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Appendix D

ROTATIONAL ENERGY AS A FUNCTION
OF ANGULAR VELOCITY

In this model, we will discussed about the calculational details of the model proposed by Ref. [77]. This
model was originally proposed so as to provide the energies of the rotational band by using simply the
energies of the first 2+ state in the ground-state deformation. The nucleus is viewed as rotating on an axis
perpedicular to its symmetry axis with an angular velocity denoted as Ω. In the intrinsic system of the
nucleus, the global rotation of the nucleus generates an intrinsic motion denoted as ω which counter-rotates
the global nuclear rotation such that the product of both angular velocities ω ·Ω < 1.

The counter-rotating motion ω increases proportionally with the global rotation Ω. On the other hand,
it decreases as the pairing correlation do, as a function of Ω with an expression given as:

ω = −k Ω

[
1 −

(
Ω

Ωc

)2]
(D.1)

where the parameter k is a positive constant to be determined from the model. The critical angular velocity
Ωc corresponds to the angular velocity where the pairing correlations vanishes, due to the Coriolis anti-
pairing which was first discussed in Ref. [115]. The critical angular velocity is estimated from

Ω
2
c =

4 E0

Rג
(D.2)

where Rג is the rigid-body moment of inertia . The moment of inertia of a spherical nuclear shape 0ג
R could

be estimated to a good approximation from the expression

0ג
R

h̄2 =
A5/3

68.4
MeV−1 (D.3)

as reported in the work of Ref. [116]. E0 is the pair-condensation energy at zero spin which was found to
be twice the correlation energy [76]. From Ref. [117], the correlation energy was estimated to be about 2.3
MeV across the whole nuclear chart. Therefore, the condensation energy is taken to be 4.6 MeV.
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The total excitation energy E(ω,Ω) is assumed to have a quadratic form in the angular velocities ω and
Ω, such that

E(ω,Ω) =
1
2

[
A ω

2 + 2 B Ω ω + C Ω
2
]

(D.4)

whereby we would get the following expression upon using equation (D.1)

E(ω,Ω) =
Ω2

2

[
C−2 B k(1− ε

2)+A k2(1− ε
2)2
]
≡ 1

2
(Ω)ג Ω

2 (D.5)

with ε = Ω

Ωc
and (Ω)ג being the moment of inertia as a function of the global nuclear rotation. The expres-

sion for the parameters A,B and C are estimated with a semi-classical approximation:

A = ηΘF
[
1− D

η
Θ

]
B = ηF

[
1− D

η
Θ

]
C = ηFΘ

[
1− D

ηΘ

]
(D.6)

with
η = 0ג

R q1/3, Θ =
1
2

(
q+

1
q

)
(D.7)

where q is a ellipsoidal deformation parameter being the ratio of the semi-axis along the symmetry z-axis
to the perpendicular direction. The renormalization factor F is given by:

F =
1 + 0.69 A−2/3

1 − D
η

(D.8)

The parameter D was obtained from the expression [118]:

D
η

= 5
( 8

9 π

)2/3
fNM A−2/3 (D.9)

where fNM is the (constant) isoscalar nucleon effective mass form factor in nuclear matter and A is the total
number of nucleons. For A = 240 and the Skyrme SkM* parametrization where fNM = 1.265, we have
D = 0.0706 η .

In the work of Ref. [77], the deformation parameter q is fixed so as to reproduce the mass quadrupole
moment Q(q) of a deformed nuclear shape using the expression [119]:

Q(q) =
2
5

A5/3 r2
0 q−2/3 (q2 − 1

)
(D.10)

where r0 = 1.2049 fm according to Ref. [120]. The value of the mass quadrupole moment was obtained
using the expression

Q =
A
Z

Qch (D.11)

where Qch is the charge quadrupole moment taken from Ref. [101].
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One of the crucial step in the model is to obtain a good estimate of the parameter k entering the equations
(D.1) and (D.5). This has been done by using the the energy of the first 2+ state. Using the expression for
the energy of a rotational band, E(I) = h̄2

ג2 I(I +1) we have for the first 2+ state:

E(2+) =
6 h̄2

2ג2
=

1
2
2ג Ω

2 (D.12)

By solving the first two equation on the left, one would obtain an estimate of 2ג which in turns would
provide the value of Ω. Using equation (D.12) above and together with equation (D.5), the value of k can
be obtained from :

k =
B

A(1− ε2
2+)

[
1 −

√
1− A(C− (2ג

B2

]
(D.13)

where ε2+ is the value of ε = Ω

Ωc
corresponding to the angular velocity of the 2+ state.

The total angular momentum I as a function of the global rotation Ω can then be determined from the
expression:

Ī =
{[

C−2 B k + A k2] + 4
3
[
B k−A k2]

ε
2 +

3
5

A k2
ε

4
}

Ω (D.14)

where Ī =
√

I(I +1) with I = 0,2,4,6 etc. The equation Ī(Ω) could be inverted so as to obtain the value
of Ω as a function of Ī. Thereafter, the rotational energy at a specific value of Ω(Ī) could be obtained from
equation (D.5).

Figure D.1 shows the rotational bands obtained using the current model extracted from the work of Ref.
[77] as compared to the experimental data. The rotational bands of 236U was found to be nicely reproduced
up to I ≈ 18 while it is less satisfactory at higher spins. The agreement for the 240Pu is much more impres-
sive, with good agreement between the calculated values and the experiment even up to I ≈ 30.
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Figure D.1: Excitation energy of the rotational bands in 236U and 240Pu nuclei extracted from
the calculations of Ref. [77] and compared to the experiments.
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