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Résumé

Au cours de processus thermomécaniques engendrant une transformation de phase dans 

les aciers, une déformation plastique importante peut se produire sous l’effet d’une 

contrainte appliquée, même si celle-ci est plus faible que la limite d’élasticité de la 

phase la plus molle. Ce phénomène s’appelle plasticité de transformation ou 

TRansformation Induced Plasticity (TRIP), et peut jouer un rôle important sur le 

contrôle des procédés de transformation industriels. Par exemple, au cours du 

refroidissement par trempe de produits semi-finis ou finis (plaques, tôles, roues, ...), ce 

phénomène peut affecter la planéité des produits plats et engendrer des contraintes 

résiduelles qui vont affecter la qualité finale de produits finis. Il s’avère donc important 

de prévoir cette plasticité de transformation induite par un chargement 

thermomécanique donné. 

Dans cette thèse, un modèle micromécanique de plasticité cristalline avec 

transformation de phase a été développé. Il s’appuie sur l’utilisation de la transformée 

de Fourier rapide (TFR) développée pour des milieux périodiques. L’expansion 

volumique  induite par une transformation de phase de type diffusive (« 

Greewood-Johnson effet ») est prise en compte dans le modèle afin d’estimer la 

plasticité de transformation et le comportement mécanique pendant la transformation de 

phase. 

Les résultats obtenus par TFR ont confirmé l’existence d’une relation linéaire entre 

contrainte appliquée et déformation plastique induite par la transformation, lorsque la 

contrainte appliquée faible (c’est-à-dire inférieure à la moitié de la limite d’élasticité de 

la phase la plus molle). Lorsque la contrainte appliquée est plus élevée, le modèle 

prévoit que cette relation linéaire n’est plus valable, même si la déformation plastique 

de transformation augmente toujours avec la contrainte ; ceci est bon accord avec des 

observations expérimentales. 

L’interaction entre paramètres microstructuraux (tels que texture, morphologie et taille 

de grains, ...) et mécaniques (contrainte de rappel, sensibilité à la vitesse de 

déformation, ...) a été analisée. Il a été montré que tous ces paramètres doivent être pris 

en compte dans l’estimation de la plasticité de transformation. L’effet de l’écrouissage 

cinématique de la phase mère sur l’anisotropie de déformation induite a égalament été 

discuté. 

Par ailleurs, les résultats numériques obtenus par TFR ont été comparés à des résultats 

issus de modèles analytiques existants et à des mesures expérimentales. Compte tenu du 

bon accord entre résultats numériques et expérimentaux, les résultats obtenus par TFR 
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ont servi référence pour améliorer les modèles analytiques existants ; ces nouveaux 

modèles simplifiés s’avèrent plus précis que ceux proposés auparavant. 

 

Mots-clefs; 

Plasticité de transformation, transformée de Fourier rapide, TFR, acier, plasticité 

cristalline 
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Abstract

During phase transformation in steels, when stress is applied, significant large strain can 

be observed even though the applied stress is much smaller than the yield stress of the 

softest phase. The phenomenon is called Transformation Plasticity or TRansformation 

Induced Plasticity (TRIP). Transformation plasticity is known to play an important role 

during steel producing processes. For example, during quenching process of plates, 

sheets, wheels and gear products, the phenomenon affects their shape and residual 

stresses which determines the quality of products. In this PhD thesis, a micromechanical 

model of crystal plasticity with phase transformation is developed. It takes advantage of 

the fast Fourier transform (FFT) numerical scheme for periodic media. Volume expansion 

along with phase transformation (Greenwood-Johnson effect) is taken into account in the 

model in order to evaluate the transformation plasticity and mechanical behaviour during 

phase transformation. The FFT results confirm linear relation between applied stress and 

transformation plastic strain, if the applied stress does not exceed a half the value of yield 

stress of the parent phase. For relatively large applied stresses, transformation plastic 

strain increases nonlinearly with respect to the applied stress. These results agree well 

with experimental ones. 

The metallurgical and mechanical interactions during phase transformation are also 

analysed, such as texture, grain morphology, grain size, back stress effect and viscoplastic 

deformation effect. It is shown that they cannot be neglected for estimating 

transformation plasticity. Among others, the role of kinematic hardening of the parent 

phase on the resulting strain anisotropy is discussed. 

Finally, the FFT numerical results have been compared with existing analytical models as 

well as experimental results. Moreover, these FFT computations have been used as 

references to develop new approximate analytical models. They are shown to improve on 

previous proposals. These new models were confirmed that they estimate well the 

transformation plasticity than other analytical models which have been treated in this 

PhD thesis. 
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Chapter 1 Introduction 
 

 

In the course of the heat treatment process of steels, mechanical, thermal and 

metallurgical properties interact with each other. Apparently, this fact involves 

difficulties in modelling the complete phenomena and makes it difficult to carry out 

proper simulations. For example, crystallographic reconfigurations such as 

recrystallisation or phase transformation lead to changes of materials’ mechanical 

properties. A description of these coupling effects is illustrated in Fig. 1. 

 

 

Fig. 1 Description of coupling effects during phase transformation. 

 

As already mentioned, because the constitutive relations are dependent on temperature, 

deformation history, chemical composition and metallic structure including grain size or 

dislocation density, experimental materials data are absolutely important. With this aspect, 

many researchers devote themselves to measure and collect those data. Among those 

complex phenomena, transformation plasticity is known to be one of the most important 

phenomena [1] [2] [3]. However, the experimental data remain limited because of the 

difficulties in performing experiments as well as their cost. Besides, it is extremely 

difficult to distinguish between individual effects such as austenite grain size or cooling 

rate on transformation plasticity by experiments. Consequently, one of the aims of this 

PhD thesis is to investigate the influence of metallurgical parameters on transformation 

plasticity, especially for in the case of diffusive transformation. It is expected to give 

some indications on further works on this topic. 

Two main mechanisms for transformation plasticity are classically invoked: (i) a 
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displacive mechanism (i.e. Magee effect [4]) with a shape change during transformation 

and (ii) a diffusive mechanism (i.e. Greenwood-Johnson effect [5]), implying nucleation 

and growth steps, with a volume change plastically accommodated [2]. They have been 

the subject of a number of experimental studies (see, among others, [6] [7] [3] [8] [9] [10] 

[11]). 

The phenomenon is known to play a central role during phase transformation since it 

affects the shape and residual stresses of heat treated materials. On one hand, 

phenomenological models have been developed and taken into account in the frame work 

of finite element heat treatment simulations [12] [13] [14]. 

On the other hand, micromechanical modelling of transformation plasticity dates back to 

the pioneering theoretical work of Leblond et al. [15] based on a rigorous 

homogenisation procedure. Few years later, an approximate analytical model has been 

derived [16], to describe transformation plasticity due to the Greenwood-Johnson 

mechanism. Since then, further developments have been proposed based on this approach 

[17]. Besides, it is worth mentioning that a variety of mean-field models have also been 

developed; see, for instance [18] [19] [20]. Apart from these works, numerical 

micromechanical modelling has been performed, making use of the finite-element 

method (FEM) to study diffusional transformations. With increasing complexity, 

numerical investigations have first considered the case of a two-phase material with J2 

plasticity, then various nucleation rules [15] [16] [21] [22] [23], and very recently, the 

case of polycrystalline materials with crystalline plasticity at the slip system level, with a 

microstructure described by a Poisson-Voronoi tessellation [24]. 

In the context of classical plasticity (i.e. without solid phase transformation), an efficient 

numerical scheme based on fast Fourier transforms (FFT) [25] has been successfully 

applied to a variety of problems and constitutive relations [26] [27] [28] [29] [30]. This 

alternative approach to FEM allows to consider large polycrystalline aggregates with 

reasonable CPU time and memory allocation. Its accuracy has been discussed by 

confronting with FEM simulation results [31]. Besides, meshing of the microstructure is 

not necessary: the computation is directly made on the digital image of the material 

(regular grid of pixels in 2D or voxels in 3D). These features are especially convenient to 

consider experimental microstructural data obtained by fine-scale EBSD or X-ray 

diffraction contrast tomography [32] [33] [34]. By contrast to FEM, the FFT method is a 

periodic homogenisation scheme which makes it less general. 

In the present work, we first carry out experiments for obtaining transformation plasticity 

data for several carbon steels. In addition, experiments on Invar metals are performed in 

order to confirm the Greenwood-Johnson effect by taking advantage of their small 
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transformation expansion. Then, we investigate the application of the FFT method in the 

context of plasticity induced by diffusional transformation. Following previous 

investigations for classical plasticity, a simple numerical scheme is derived making use of 

a phenomenological transformation kinetic model. The numerical model is described and 

compared to an exact theoretical solution in 4.1. Then, use is made of FFT reference 

results on representative polycrystalline aggregates for (i) a critical analysis of two 

existing analytical micromechanical models [16] [17] and (ii) the proposal of a new 

model (4.3). These analytical models are compared for different material data 

(transformation expansion coefficient and ratio of the yield stress of the parent and 

mother phases) corresponding to bainite and pearlite transformations. 
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Chapter 2 Literature review 
 

 

2.1 Definition of transformation plasticity 

During heat treatment process, the heating and cooling curves sometimes do not coincide 

with each other. The irreversible change in length is significant during phase 

transformation, which is called transformation plasticity [35]. This thermal ratcheting can 

be caused by even unconscious small applied stress. The phenomenon attracts both 

scientific and industrial interests because it affects significantly the shape and residual 

stress of heat treated materials. 

According to the review work by Fischer et al. [2], Greenwood and Johnson (1965) have 

accounted for the mechanism of transformation plasticity in terms of volume change 

during phase transformation (G-J effect) [5]. After Greenwood and Johnson, many 

models which describe transformation plasticity have been suggested (they will be 

presented in details later on). 

By contrast to G-J effect, there exists an alternative transformation plasticity mechanism, 

which is called Magee effect [4]. This mechanism is rather important for displacive phase 

transformation, and so, Shape Memory Alloys (SMAs). It implies a shape change. 

According to the Magee effect, when small stress is applied during phase transformation, 

particular Martensite variants are selected. 

 

Concerning the application of these models, Miyao et al. [36] have taken the 

transformation plasticity effect into account for the heat treatment simulation of gear 

products, Taleb et al. [37] calculated the residual stresses with the effect of transformation 

plasticity during welding process and Fukumto et al. [38] have carried out the quenching 

simulation of helical gears with bainitic phase transformation. According to these works, 

it is revealed that transformation plasticity impact tremendously residual stress and 

product quality. 

 

2.2 Parameters which influence the transformation plasticity 

2.2.1 Pre-hardening 

Taleb et al. [39] have carried out several experiments of transformation plasticity in order 

to investigate the effect of pre-deformation of 16MND5 (French norm, see Table 1) steel. 

The idea seems to be extremely important because, in general, heat treatment processes 
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are carried out just after mechanical deformation such as rolling, grinding or forging. The 

experimental procedure is follows. The specimens are heated up to 1100 ºC and subject to 

subsequent cooling down to 20 ºC to obtain bainitic or martensitic phase. The materials 

are subject to pre-hardening right before the phase transformation. The results show 

interesting phenomena. 

For bainitic transformation, the pre-hardening by tension leads to positive transformation 

plastic strain and the pre-hardening by compression leads to negative one. 

For martensitic transformation, the experimental results show totally opposite effect of 

pre-hardening; the pre-hardening by tension leads to negative transformation plasticity 

and the pre-hardening by compression leads to positive one. 

These results show  

 

Table 1  Chemical composition of 16MND5 (wt%). 

C Si Mn P S Ni Cr Mo Cu Co 

0.16 0.015 1.30 0.010 0.007 0.74 0.18 0.48 0.06 0.01 

 

2.2.2 Austenite grain size (AGS) 

Nozaki et al. [40] elaborated the effect of AGS on transformation plasticity of SCM415 

(Japanese norm, see Table 2) steel. Though they have investigated heating, cooling and 

cyclic temperature conditions, let us concentrate on the cooling condition. They have 

changed the heating temperature and holding temperature ranging from 900 ºC-5min to 

1100 ºC-15min to obtain the grain size of 5 m, 13 m and 125 m. The transformation 

types of the first two grain size cases are ferrite-pearlitic, and the second one is 

ferrite-bainitic. The results showed complex effect of initial grain size. In addition, there 

is not only dependence on grain size, but also dependence on applied stress. Despite the 

complexity, they concluded that the smaller the grain size, one observes the larger the 

transformation plastic strain. They also mentioned that the grain size effect is controlled 

by grain boundary sliding but the magnitude of the effect is much smaller than that of 

internal stress, i.e. G-J effect. 

There is also a work on this topic by Boudiaf et al. [10] on 35NiCrMo16 steel. They have 

carried out not only tension test, but torsion and even biaxial loading test during 

martensitic phase transformation. The results of uniaxial tension tests showed that if the 

holding temperature is high, in other words if the grain size is large, the transformation 

plastic strain will be large accordingly. Alternatively, no difference has been detected for 

torsion tests, and the results of biaxial tests show lightly opposite results to uniaxial 

tension tests. 
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The results of uniaxial tension tests by Boudiaf et al. seem to be in contradiction to the 

results by Nozaki et al.. This can be explained by the difference of the applied stresses. In 

fact, tests by Boudiaf et al. were done under 92 MPa and 130 MPa equivalent stresses. By 

contrast, Nozaki et al. did tests under several applied stress value ranging from 10 MPa to 

50 MPa. 

To sum up, the results by Boudiaf et al. include the effects of both loading type 

(tension/torsion) and stress magnitude so that it is difficult to assert simply the effect of 

grain size. One can say that the grain size affects differently the transformation plasticity 

depending on the conditions of applied stress and loading type. 

 

Table 2  Chemical composition of SCM415 (wt%). 

C Si Mn P S Ni Cr Mo Cu Co 

0.18 0.29 0.68 0.017 0.014 0.07 1.03 0.16 0.11 - 

 

Table 3  Chemical composition of 35NiCrMo16 (wt%). 

C Si Mn P S Ni Cr Mo Cu Co 

0.35 0.29 0.48 0.21 0.011 1.81 3.78 0.27 0.17 - 

 

2.2.3 Anisotropy 

It has been also reported that the transformation plastic strain may vary according to 

applied stress direction, such as tension, compression and torsion. According to the work 

by Videau et al. [41], transformation plastic strain during martensitic phase 

transformation of Cr-Ni-Mo-Al-Ti steel by tension is the highest, torsion is a little bit 

smaller than that of tension and compression gives the lowest value. 

By contrast, the paper by Miyao et al. [36] shows no significant difference between 

tension and compression. 

 

2.2.4 High applied stress 

As we have seen above, transformation plasticity models are often expressed as a linear 

relationship between applied stress and transformation plastic strain. This is confirmed by 

many experimental works [12] [42]. However, if the applied stress exceeds certain 

threshold value, the linear relation does not hold. The value is often observed to be half 

the value of yield stress of parent phase [5] [41]. To the author’s knowledge, no definitive 

explanation for this phenomenon has been provided yet. 
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2.3  Modelling of transformation plasticity 

2.3.1 Phenomenological models 

Phenomenological description of transformation plasticity can be given by a simple 

relation between transformation plastic strain, volume fraction of new phase and applied 

stress (Inoue [12] and Desalos [6] respectively), such that 

 , (1)

 , (2)

where  is transformation plastic strain,  is a transformation plastic coefficient,  

is volume fraction of new phase and  is applied stress. 

The extended version of transformation plastic strain to multi phase transformation was 

proposed by the author [43]: 

 . (3)

The transformation plastic coefficient  can be easily calculated by taking integration of 

the equation from transformation start point  to finish point , one obtains: 

 . (4)

In this way, the transformation plastic coefficient  can be identified with experimental 

results. This  value represents sensitivity of applied stress on transformation plastic 

strain. Typically, this value varies from 10-5 to 10-4 MPa-1 [1][44]. A Japanese group has 

been making an effort to make a data base for facilitating heat treatment simulations. The 

activity bore fruits of a database called MATEQ (MATerial database for Quenching 

process simulation) [1]. The database consists of TTT and CCT diagrams, heat 

conduction coefficients, density, specific heat, elastic modulus, s-s curves, 

temperature-elongation diagrams and transformation plasticity data (  values in 

equation (4)), depending on the chemical compositions. Thus, the users can assess these 

data by searching with steel grades (in Japanese Industrial Standards; JIS) or chemical 

compositions. 

 

2.3.2 Micromechanical models 

2.3.2.1 Analytical models 

Greenwood and Johnson [5] have developed a model of transformation plasticity in their 

paper by considering volume change during phase transformation, such that 

 , (5)
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where  is a yield stress of parent phase and V/V is volume expansion ratio by phase 

transformation and  is externally applied stress. In a similar way, Abrassart [45] 

suggested an equation as, 

 . (6)

In addition to those models, Leblond et al. [15] have obtained the following equation with 

an approximate micromechanical model. 

   , (7)

where  is a transformation expansion coefficient and  is a deviatoric stress tensor. 

For the description of nonlinearity under high applied stress condition, they modified 

their equation as follows: 

 (8)

and 

    , (9)

where the function  is added to express the nonlinearity.  is the applied 

equivalent stress and  is the yield stress of parent phase. The function is fitted with 

results by FEM calculations. 

 

Thereafter, the total transformation plastic strain arising during phase transformation 

under small applied stress can be given by: 

 . (10)

This pioneering micromechanical model is worth explaining in some details since it has 

been the basis of many developments. 

Leblond et al. [15] started with the general expression of strain rate during /  phase 

transformation as a function of volume change: 

 , (11)

where left term denotes macroscopic plastic strain rate caused by phase transformation, 
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 represents the average value through parent phase of the ratio of plastic strain 

increment due to volume fraction change and  is the average value of 

volume expansion (contraction) over the the transformation front  weighted by its 

normal velocity . Starting with the equation (11), 5 hypotheses have been considered. 

H1. The microscopic elastic compliance tensor may be equated to the macroscopic 

overall elastic compliance tensor. 

H2. For small or moderately high applied stresses, the  phase is entirely plastic, but the  

phase remains elastic or its plastic strain rate remains always much smaller than that 

of the  phase. 

H3. Both phases are ideal-plastic and obey the von Mises criterion and the Prandtl-Reuss 

flow rule. 

H4. Correlations between  and  can be neglected. 

H5. For small applied stresses, the average stress deviator in phase 1 is almost equal to 

the overall average stress deviator. 

By neglecting Magee mechanism (we will discuss in the later section), i.e. 

, and with H2, the equation (11) can be reduced into: 

 . (12)

And with H3, the equation (12) will be: 

 , (13)

If the correlations between  and  can be neglected (H4), equation (13) 

becomes: 

 , (14)

where 

 . (15)

Hypothesis 5 means that  in equation (15) can be replaced to applied stress, such that: 

 . (16)

Then, the problem is reduced to how to calculate the term . To solve this, 

Leblond et al.[15] considered the spherical model as shown in Fig. 2. 
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Fig. 2 Typical geometry for the evaluation of . 

 

Since the stress applied is assumed to be small, the term  is estimated under 

external load free condition1. At the time instant , the radii of the outer  and inner  

spheres are, respectively  and , so that the proportion of phase 2 within the whole 

model is . Between the time instants  and  the region comprised 

originally between the radii  and  is transformed into phase 2, so that  

increases by the amount . Because of the positive volume change 

induced by the transformation, the points located originally at  come to a new 

location  (at ); this induces plastic deformations in the  crust. When 

we introduce the spherical coordinates, such that: 

 , (17)

and equilibrium condition leads: 

 , (18)

which implies that: 

 , (19)

where  is volume expansion by phase transformation. 

In addition, equivalent strain is written as follows: 

 . (20)

Hence, the total equivalent strain increment due to volume change can be obtained by 

taking overall integral of equation (20) from radii  to , such that: 

                                                 
1 The assumption will be discussed in Chapter 4. 

R

 phase
 phase

r+ r

r

r+ r+ u(at r+ r)
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 . (21)

Then, we finally obtain the equation (7). 

The validity of hypotheses H2 and H5 has been confirmed by 3D FE calculations. The 

model by Leblond predicts accurately transformation plastic strain [15]. In addition, 

Leblond [16] extends their model with strain hardening. Taleb et al. modified the 

Leblond’s model as follows [17]. 

 , (22)

and 

 , (23)

where  and  are balk and shear elastic moduli respectively. 

The differences between Leblond’s model and Taleb’s model are; the threshold volume 

fraction value which separates into two equations, the equation when the volume fraction 

is under threshold value. This Taleb’s modification derives from the consideration of 

elastic fraction at the beginning of phase transformation (in this stage, not entire parent 

phase undergoes plastic deformation). 

Another equation is also proposed, modifying Leblond’s hypothesis 5;  as a decreasing 

function accompanied with transition of phase transformation, such that: 

 . (24)

In contrast to the Leblond’s model, Nozaki et al. [46] have developed a model taking into 

account the external stress for evaluating . This model is considered to be an 

extension of G-J model. They obtained the following equation. 

 . (25)

This relation implies that the relationship between applied stress and resulting 

transformation plastic strain is not linear. 
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2.3.2.2  Numerical models 

Alternative micromechanical approaches to investigate transformation plasticity were 

proposed by Leblond et al. [15] followed by Gautier et al. [7] and Ganghoffer et al. [21] 

by using Finite Element Method (FEM) taking into account G-J effect. They successfully 

reproduced transformation plasticity phenomenon arising from classical plastic strain. In 

these works, J2 flow theory associated with von Mises yield criterion was adopted. 

Barbe et al. [22][23][24] developed finite element modelling by using crystal plasticity 

and 3D polycrystal microstructure. It should be noted that they applied a considerable 

number of elements taking advantage of today’s development of computer capacity. 

Models by Barbe et al. [22][23][24] consist of crystal plasticity of f.c.c. (austenite phase) 

and b.c.c. (ferrite phase) and intermediate zone where both f.c.c. and b.c.c. slip systems 

are active. The intermediate zone is set to be thin enough. The transformation starts 

randomly inside the austenitic phase, and because the new grains are bigger than that of 

ancient grains (volume expansion), it causes plastic deformation. They obtained almost 

the same results relevant to equation (7). 

However, the problem of this approach is that the FEM calculations require a lot of 

computation time as well as computer resources. 

 

2.4  Crystal plasticity constitutive models 

The summation of individual strain component, such as elastic , plastic , thermal 

 and transformation strain  gives the total strain: 

 , (26)

and its rate form reads: 

 . (27)

The stress rate can be given by a tensor product of elastic compliance  and elastic 

tensor rate  such that: 

 . (28)

By eliminating elastic strain rate  from equations (27) and (28), one obtains 

 . (29)

The second term of the right side in equation (29) shows the effect of plastic strain rate. 

Here, the plastic strain will be expressed in the framework of crystal plasticity as follows. 

Plastic deformation is caused by glide of dislocations on specific planes. It is said that 

there are 12 slip systems for f.c.c. crystals and 48 for b.c.c.. The slip system will be active 

when resolved shear stress applied on the surface reaches Critical Resolved Shear Stress 

(CRSS) value . The resolved shear stress is given by 

 , (30)
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where  is a Schmid tensor of a slip surface, such that 

 , (31)

where  is slip direction and  is normal direction of slip surface of  slip system. 

The set of vectors s and m for both f.c.c. and b.c.c. materials are provided in Table 4. 

 

 

 

 

 

Table 4 Slip systems of f.c.c. and b.c.c. metals. 

 (a) f.c.c. 

  m s 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

 

 

 

 

 

{111} <110>

 

 

 

 

 

(1, 1, 1) 

(1, 1, 1) 

(1, 1, 1) 

(-1, 1, 1) 

(-1, 1, 1) 

(-1, 1, 1) 

(1, -1, 1) 

(1, -1, 1) 

(1, -1, 1) 

(1, 1, -1) 

(1, 1, -1) 

(1, 1, -1) 

(1, -1, 0)

(1, 0, -1)

(0, 1, -1)

(1, 1, 0) 

(1, 0, 1) 

(0, 1, -1)

(1, 1, 0) 

(1, 0, -1)

(0, 1, 1) 

(1, -1, 0)

(1, 0, 1) 

(0, 1, 1) 
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(b) b.c.c. 

  m s   m s 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

 

 

 

 

 

{110} 

<111> 

 

 

 

 

 

(1, 1, 0) 

(1, 1, 0) 

(-1, 1, 0) 

(-1, 1, 0) 

(1, 0, 1) 

(1, 0, 1) 

(-1, 0, 1) 

(-1, 0, 1) 

(0, 1, 1) 

(0, 1, 1) 

(0, -1, 1) 

(0, -1, 1) 

(-1, 1, 1)

(1, -1, 1)

(1, 1, -1)

(1, 1, 1)

(1, 1, -1)

(-1, 1, 1)

(1, -1, 1)

(1, 1, 1)

(1, 1, -1)

(1, -1, 1)

(1, 1, 1)

(-1, 1, 1)

1

2

3

4

5

6

7

8

9

10

11

12

 

 

 

 

 

{112} 

<111> 

 

 

 

 

 

(1, 1, 2) 

(-1, -1, 2) 

(-1, 1, 2) 

(1, -1, 2) 

(1, 2, 1) 

(-1, 2, -1) 

(1, 2, -1) 

(-1, 2, 1) 

(2, 1, 1) 

(2, -1, -1) 

(2, -1, 1) 

(2, 1, -1) 

(-1, -1, 1)

(1, 1, 1) 

(1, -1, 1)

(-1, 1, 1)

(-1, 1, -1)

(1, 1, 1) 

(-1, 1, 1)

(1, 1, -1)

(1, -1, -1)

(1, 1, 1) 

(1, 1, -1)

(1, -1, 1)

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

 

 

 

 

 

{123} 

<111> 

 

 

 

 

 

(1, 2, 3) 

(-1, 2, 3) 

(1, -2, 3) 

(1, 2, -3) 

(2, 1, 3) 

(-2, 1, 3) 

(2, -1, 3) 

(2, 1, -3) 

(1, 3, 2) 

(-1, 3, 2) 

(1, -3, 2) 

(1, 3, -2) 

(1, 1, -1)

(1, -1, 1)

(-1, 1, 1)

(1, 1, 1)

(1, 1, -1)

(1, -1, 1)

(-1, 1, 1)

(1, 1, 1)

(1, -1, 1)

(1, 1, -1)

(1, 1, 1)

(-1, 1, 1)

13

14

15

16

17

18

19

20

21

22

23

24

 

 

 

 

 

{123} 

<111> 

 

 

 

 

 

 

(2, 3, 1) 

(-2, 3, 1) 

(2, -3, 1) 

(2, 3, -1) 

(3, 2, 1) 

(-3, 2, 1) 

(3, -2, 1) 

(3, 2, -1) 

(3, 1, 2) 

(-3, 1, 2) 

(3, -1, 2) 

(3, 1, -2) 

(1, -1, 1)

(1, 1, -1)

(1, 1, 1) 

(-1, 1, 1)

(-1, 1, 1)

(1, 1, 1) 

(1, 1, -1)

(1, -1, 1)

(-1, 1, 1)

(1, 1, 1) 

(1, 1, -1)

(1, -1, 1)

 

When  equals to CRSS, the slip system activates. Let  a strain value along  slip 

surface, then the plastic strain rate can be expressed as a summation of plastic shear strain 

rate on each slip system such that 

 . (32)

Thus, we obtain the local constitutive equation of crystalline materials. 

 , (33)
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      with          . (34)

 

2.4.1 Hardening law expressed by accumulation of shear strain 

Because materials hardening by plastic deformation, the evolution of CRSS of  slip 

system is considered to be associated with shear strain rate [47], such that 

 , (35)

where h  is hardening coefficient. If ,  is called self hardening. Otherwise, it 

is called latent hardening. If  is zero, the model describes elasto-perfect plastic 

material. Many proposals have been made for the expression of , for instance, 

according to a phenomenological low, the hardening matrix has been expressed by Peirce 

et al. [48] as: 

 , (36)

 , (37)

where  is a coefficient,  is an initial yield stress value and  is a saturate stress 

value. The parameter  takes values from 1.0 to 1.4 depending on the material. 

 

2.4.2 Hardening law expressed by dislocation density 

The well-known model to describe the relationship between hardening and dislocation 

density has been introduced by Bailey and Hirsch [49]: 

 , (38)

where  is resolved shear stress,  is initial critical resolved shear stress,  is a 

dimensionless constant,  is Young’s modulus and  is magnitude of Bergers vector. 

The CRSS can be expressed as: 

 , (39)

where  denotes effect of each dislocation density  on . The rate form of 

equation (39) is: 

 . (40)

Tabourot et al. [50] used a model initially proposed by Mecking and Estrin [51]. In this 

model, dislocation evolution is expressed by the sum of production and annihilation 
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terms. 

 . (41)

The interaction matrix  takes the values shown in Table 5 [50]. In addition, they 

considered that the  equals to unity. By contrast, Franciosi and Zaoui [52] take  

as the same value as  which is shown in Table 6. If we associate the matrix with the 

order of slip system written in Table 4, the Table 6 can also be expressed as Table 7. 

 

Table 5 Interaction coefficients. 

if  

if  collinear/coplanar with  

if  perpendicular to  

if  and  form a junction 

if  and  form a Lomer-Cottrell lock 
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Table 6 Interaction coefficients by Franciosi-Zaoui. 

 A2 A3 A6 B2 B4 B5 C1 C3 C5 D1 D4 D6 

A2 SHa0 Copla1 Copla1 CSa1 GJa2 GJa2 HLa1 GJa2 LCa3 HLa1 LCa3 GJa2 

A3  SHa0 Copla1 GJa2 HLa1 LCa3 GJa2 CSa1 GJa2 LCa3 HLa1 GJa2 

A6   SHa0 GJ a2 LC a3 HLa1 LCa3 GJa2 HLa1 GJa2 GJa2 CSa1

B2    SHa0 Copla1 Copla1 HL LC GJ HL GJ LC 

B4     SHa0 Copla1 LC HL GJ GJ CS GJ 

B5      SHa0 GJ GJ CS LC GJ HL 

C1       SHa0 Copla1 Copla1 CS GJ GJ 

C3   Sym.     SHa0 Copla1 GJ HL LC 

C5         SHa0 GJ LC HL 

D1          SHa0 Copla1 Copla1

D4           SHa0 Copla1

D6            SHa0

SH : Self hardening ( ). 

Copl : Coplanar syst. ( ). 

CS : Colinear syst. (cross slip) ( ). 

HL : Hirth Lock syst. Pair with normal slip directions ( ). 

GJ : Systems pair leading to Glissile junctions formation ( ). 

LC : Systems pair leading to Lomer-Cottrell sessile locks formation ( ). 

. 
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Table 7 
Interaction coefficients by Franciosi-Zaoui associated with the order in 

Table 4. 
 1(A2) 2(A3) 3(A6) 4(C1) 5(C3) 6(C5) 7(B2) 8(B4) 9(B5) 10(D1) 11(D4) 12(D6)

1(A2)             

2(A3)             

3(A6)             

4(C1)             

5(C3)             

6(C5)             

7(B2)             

8(B4)   Sym.          

9(B5)             

10(D1)             

11(D4)             

12(D6)             

SH : Self hardening ( ). 

Copl : Coplanar syst. ( ). 

CS : Colinear syst. (cross slip) ( ). 

HL : Hirth Lock syst. Pair with normal slip directions ( ). 

GJ : Systems pair leading to Glissile junctions formation ( ). 

LC : Systems pair leading to Lomer-Cottrell sessile locks formation ( ). 

 

With these models, hardening parameter and dislocation density are directly connected. 

 

2.4.2.1 Dislocation density evolution models [53] 

Dislocation density, in general, can be divided into statistically stored dislocation density 

(SS dislocation density) and geometrically necessary dislocation density (GN dislocation 

density). SS dislocation density represents the stored dislocations which are trapped at 

obstacles like grain boundaries or precipitations. On the other hand, GN dislocation 

density introduced by Ashby [54] is related to elastic incompatibility caused by plastic 

strain gradients. 

Statistically stored dislocation density model [55] 

The relation between slip strain and shear stress is expressed in Fig. 3. 
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Fig. 3 Work hardening specification of single crystals. 

 

In stage A, the slip can easily occur because dislocation density is low. Stage B represents 

linear hardening stage where dislocation density augments. And stage C represents 

dynamic recovery caused by thermally activated dislocation annihilation, where 

subgrains are formed. If we classify the dislocation into mobile and sessile (static) one, 

we can formulate these dislocations as: 

 ,

 ,

(42)

where , ,  and  are the parameters of: dislocation loop emitted from 

dislocation source, immobilisation of mobile dislocation density in stage A, 

immobilisation of mobile dislocation density in stage B and dynamic recovery, 

respectively. 

 

Self-organisation model [56] 

Walgraef and Anifantis have divided the creation of dislocation into slow  and fast  

ones. They assumed that these two dislocation population obey the following diffusion 

equations: 

 ,
 ,

(43)

where , ,  represent creation and annihilation rates of slow distribution;  is the 

rate of fast dislocations production liberated by the applied stress when it surpasses a 

threshold value; and  corresponds to the pinning rate of fast moving dislocations by 

practically immobile dipoles;  the mobility tensor and  the chemical potential-like 

variable;  is of the order of the thermal diffusivity below the threshold stress and 

increasing rapidly to its maximum value when it surpasses the threshold stress. The 

Stage A

Stage B

Stage C
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numerical solution of this kind of problem is given by [57]. 

 

Geometrically necessary dislocation density model [58] 

When there are several dislocations inside a Burgers circuit, the net Burgers vector can be 

obtained by taking integral along the path, such that 

 . (44)

 is defined as follows. 

 . (45)

This is dislocation density tensor. Thus, symmetric part of  is: 

 , (46)

where  is strain incompatibility tensor, which can express almost all the crystal defect. 

Dividing by Burgers vector, 

 , (47)

where  is generalised GN dislocation density. 

If we consider the plane which is set on the slip surface and slip tensor  on the local 

coordinate, non-zero component of  is only . Then the component of equation (47) 

will be: 

 ,  , (48)

where  and  are screw dislocation density and edge dislocation density 

respectively. 

 

2.4.2.2 Constitutive plastic flow rules 

Many models for calculating  have been proposed suggested. Among those, we 

introduce three models by “Hutchinson [59]”, “Anand-Kothari [60]” and “Hutchinson 

[60], Peirce and Asaro [48], Pan and Rice [61]” expressed as follows. 

 

Hutchinson model (Elastplastic)

Model by Hutchinson is a rate-independent crystal plasticity model. For such a case, 

during elastoplastic deformation, the resolved shear stress  equals to CRSS 

(consistency condition) such that, 

 . (49)

The rate form of equation (49) reads: 

 . (50)
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For the small deformation problems, equation !  

can be rewritten as: 

 . (51)

Because the plastic strain is a summation of slip rate on each slip system , 

the equation (29) reads: 

 , 
(52)

and thus, 

 . (53)

Now, we introduce a matrix  for a combination of active slip systems  and  as 

 . (54)

Then, equation (32) can be rewritten as follows. 

 . (55)

Let  an inverse matrix of , such that 

 . (56)

Then, the set of active slip system can be chosen as 

 ,     where       . (57)

It is required that the matrix  is non-singular. For this reason, the maximum number 

of active slip system, i.e. rank of matrix , is limited to 5. From equation (57), we can 

find the values of shear strain rate, which depend on the prescribed strain rate or stress 

rate. 

 

Anand-Kothari model (Elastoplastic)

Anand and Kothari have developed a rate-independent theory for finding a unique set of 

shear strain rates. In this theory, they introduced singular value decomposition (SVD) for 

obtaining inverse or pseudo inverse of the following matrix . 

 , (58)
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where  is right Cauchy-Green tensor. For small deformation problem,  is a unit 

tensor. If we define  as 

 . (59)

When the continuum material is subjected to plastic deformation, the yield surface 

deforms along with the local stress field. In this case, following equation should be 

satisfied at any local points. 

 . (60)

The vector  appears in equation will be a solution of shear strain rate. Although, as is 

explained in the previously, there exists the cases that the matrix  to be singular. To 

avoid this problem, Anand and Kothari introduced SVD technique to obtain pseudo 

inverse matrix. Matrix  can be factorised in the following form. 

 ,      where          . (61)

Then we define , 

  where                        

 and        . (62)

Here, pseudo solution of equation (60) can be obtained by following equation. 

 . (63)

This solution is much more robust than directly taking inverse of matrix A. In addition, 

there is no limitation of the number of active slip systems. 

 

Hutchinson-Peirce and Asaro-Pan and Rice model (Elasto-Viscoplastic)

In contrast to the former two methods, this model is rate-dependent, i.e. viscoplastic 

model. According to this model, every single slip system is active. In this case, the slip 

rate is given by following equation: 

 . (64)

Though its simplicity, the equation (64) causes numerical instability when  tends to 0. 

To avoid this numerical instability, Peirce et al. [48] proposed the rate tangent method as 

follows. 

Presume that the plastic strain increment linearly changes its value with (0 1) 

during one step such that 

 . (65)

Then the equation (33) can be transformed as follows: 
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 , (66)

 , (67)

 , (68)

 , (69)

 , (70)

 , (71)

 ,  , (72)

,   . (73)

By this rate tangent method, one can take a large increment without numerical instability. 

 

2.5 Thermal and transformation strains 

Temperature change and phase transformation cause volumetric dilatation. These 

eigenstrains are called thermal strain and transformation strain respectively. In a 

microscopic view, it can be anisotropic but in mesoscopic or macroscopic point of view, it 

can be considered as isotropic if the material has overall isotropy. Here we’ll take the 

position that those strains are isotropic. In this case, thermal and transformation strain 

rates can be written as follows. 

 ,  , (74)

where  is thermal strain rate,  is a linear thermal expansion coefficient,  is 

transformation strain rate,  is a transformation expansion coefficient. Both coefficients, 

which are dependent on temperature and chemical composition, can be identified by 

experiments. For example Jablonka [62] empirically formulated the density equation of 

carbon steels for austenite, ferrite and cementite phases. 

 , (75)

 , (76)

 . (77)

 denotes carbon content in percent. In addition to the equations by Jablonka, Miettinen 

[63] has expanded these equations for other chemical contents starting with following 
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pure iron density. 

 , (78)

 . (79)

The final forms of the steel density depending on chemical composition are: 

 , 

(80)

 . 

(81)

Pearlite phase is a mixed phase of ferrite and cementite. In this case, we start with the 

mixture of pure ferrite and pure cementite, and then consider the effect of other chemical 

component than carbon. Let X volume fraction of ferrite phase, the density of the mixture 

phase will be as follows: 

 . (82)

Arimoto [44] suggested martensite density equation calculated by lattice constant such 

that 

 . (83)

The relation between thermal strain and density is follows 

 , (84)

where  is temperature change from reference state. In the same manner, the 

transformation strain can be expressed as follows (e.g. austenite-ferrite transformation). 

 . (85)

 

2.6 Kinetic models of phase transformation 

In the course of hot steel rolling and subsequent heat treatment or cold rolling processes, 
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following phases are concerned: austenite, ferrite, pearlite (ferrite + cementite), bainite 

and martensite. For example, a casted slab is reheated in reheating furnace and reduced its 

thickness by hot rolling. Then, it is cooled down with certain cooling rate according to 

required quality. Between reheating furnace and cooling equipment, the phase of the 

material is normally austenite. During cooling process, the phase transforms from 

austenite to ferrite, pearlite, bainite and martensite according to the cooling rate and 

chemical composition. The cooling rate and chemical compositions are carefully defined 

according to the customers’ demand. 

The transformation can be divided into two types: diffusive and non-diffusive 

(displacive). The former case includes ferritic, pearlitic and bainitic (controversial) 

transformations and the latter includes martensitic transformation. The transformation is 

expressed by the volume fraction of new phase . In this case, mathematical 

models for both diffusive and non-diffusive transformation are proposed. 

 

2.6.1 Kinetics and formulation (diffusive transformation) 

Firstly, we introduce Johnson-Mehl [64] relation. Diffusive transformation is caused by 

thermally activated atoms which traverse among atoms of parent (ancient) phase or 

daughter (new) phase. The phenomenon is often expressed by the difference of Gibbs free 

energy of both phases. Suppose that the daughter phase has circle shape in the unit 

volume of parent phase and let  the glowing velocity of daughter phase toward the 

normal direction of its surface . In this case, the volume fraction increment of daughter 

phase is: 

 . (86)

In order to identify the surface , Johnson and Mehl have introduced the concept of 

extended volume  and extended area . According to this notion, nucleation occurs 

everywhere in the specimen and the daughter phase grows without any obstacles, namely 

 . (87)

If the nuclei are randomly spread, we obtain: 

 . (88)

Using equations (87) and (88), integration of equation (86) will be: 

 . (89)

The daughter phase which has been germinated at the time , has volume of 

 at the time . Let the germination speed , the extended volume  will be: 

 . (90)

Here,  and  are function of Gibbs free energy. Gibbs free energy is a function of 
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stress, temperature and internal variables such as plastic strain  or back stress . If 

we consider that the effect of stress and temperature is much more significant than that of 

other, and let the effect  and  respectively, we have: 

 . (91)

The functions  and  can be measured by TTT diagrams under constant stress 

field. If one defines  under stress free condition, equation (91) will be: 

 . (92)

Following enhanced equation of (92) is also suggested, which called KJMA 

(Kolmogorov-Johnson-Mehl-Avrami) equation [44]: 

 . (93)

The materials parameter  and  are also identified by TTT diagrams. 

 

2.6.2 Kinetics and formulation (non-diffusive transformation) 

Because the research subject of this thesis is mainly on transformation plasticity during 

diffusive phase transformation, non-diffusive transformation is only briefly discussed. 

Non-diffusive transformation (martensitic transformation) starts when the temperature 

becomes lower than  point.  point is a function of chemical component and stress. 

It is clear that the phase is already transformed to ferrite or so, the martensitic 

transformation does not occur. It means that the intense cooling is necessary to obtain 

martensite phase. We just introduce the model by Koistinen-Marburger [65], or Magee 

[66] such that, 

 , (94)

where  is a material parameter. Oh and Inoue modified the equation [67] for the 

purpose of introducing stress effect as follows. 

 , (95)

where  is also a material parameter which is calculated by Gibbs free energy. 

 

2.6.3 Inheritance of crystallographic orientation 

The crystallographic orientation of the transformed phase is not random. There are certain 

relations between ancient phase and product phase orientations. These relations are more 

significant for martensitic phase transformation than ferritic phase transformation. 

However, it is reported that these relations are still valid for ferritic phase transformation 

[68]. The relations are also affected by applied stress and magnetic field [69] [70] [71]. In 

this section, three relations will be introduced, namely; Bain [72], Kurdjumov-Sachs [73] 



!   !  

27 
 

and Nishiyama-Wasserman [74] [35]. The comparison of these models in a pole figure is 

shown in Fig. 4. 

 

 

Fig. 4 Bain, K-S and N-W variants plotted on  pole figure. 

 

2.6.3.1 Bain relation 

Bain [72] introduced atomic corresponding model during phase transformation from 

austenitic phase into martensitic, bainitic or ferritic phase. After this correspondence, the 

transformed lattice is subject to compression along with  direction. Let the lattice 

parameter of austenite and martensite be  and , then the lattice deformation matrix 

can be denoted as: 

 . (96)

Then schematic illustration of Bain relation is shown in Fig. 5. 

 

  

BAIN K S N W

RD

TD
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(a) Configuration of corresponding atoms       (b) b.c.c. lattice       (c) Lattice 

deformation 

Orange points: f.c.c., Blue points: b.c.c.       

Fig. 5 Bain relation for f.c.c to b.c.c. phase transformation. 

 

The rotation matrix in general can be expressed by the invariants of the rotation (axis 

 and angle ): 

 . (97)

In this case, crystallographic rotation matrix (without Bain deformation) is defined by 

adopting  rotation about the axis  such that: 

 . (98)

It is known that there are 3 variants for Bain relation. For the rest of 2 variants, they are 

easily found by applying rotating axes  and : 

 , (99)

 , (100)

where the superscripts denote variant number. 

2.6.3.2 K-S relation 

Kurdjumov and Sachs [73] proposed another crystallographic relation [68] expressed in 

Fig. 6, which is called Kurdjumov-Sachs relation or K-S relation. The parallel surface is 

 and the direction is . The schematic view of this 

relation is shown in Fig. 6. 

 

 

  

 

  
Compression 
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Orange points: f.c.c., Blue points: b.c.c.       

Fig. 6 Kurdjumov-Sachs relation for f.c.c to b.c.c. phase transformation. 

 

The corresponding rotation is  around the axis . Thus, the rotation matrix  

can be given by inserting  and  into rotation matrix (97). 

It is known that there are 24 possible variants that b.c.c. materials take after phase 

transformation [68]. When we call the first variants obtained by Fig. 6, the relation 

between the variant 1 ( ) and the other variants are given in Table 8. 
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Table 8 Crystallographic relation between  and other variants [75]. 

Varian

t No. 

Parallel surface Parallel 

direction 

Rotation axis Angle(deg

) 

1

//

 

//

 

- - 

2 //

 

  

3 //

 

  

4 //

 

  

5 //

 

  

6 //

 

  

7

//

 

//

 

  

8 //

 

  

9 //

 

  

10 //

 

  

11 //

 

  

12 //

 

  

13

//

 

//

 

  

14 //

 

  

15 //

 

  

16 //

 

  

17 //   
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18 //

 

  

19

//

 

//

 

  

20 //

 

  

21 //

 

  

22 //

 

  

23 //

 

  

24 //

 

  

 

These 24 variants are plotted in Fig. 7 in  pole figure. 

 

 

Fig. 7 K-S 24 variants plotted on  pole figure. 

 

Let  the i-th variant rotation matrix from , the rotation matrix from f.c.c. to b.c.c. can 

be written as follows: 

 . (101)

Note that the rotation of  about  gives the 7-th variant 

shown in Table 8. Thus, in order to find the rotation matrix to 1st variant, one rotates 

 about  and finally obtains: 

RD

TD
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 . (102)

 

2.6.3.3 N-W relation 

Nishiyama [74] and Wasserman [35]  have suggested another model which describes 

orientation relation before and after phase transformation. This relation is depicted in Fig. 

8. 

 

 
Orange points: f.c.c., Blue points: b.c.c.       

Fig. 8 
Nishiyama-Wasserman relation for f.c.c to b.c.c. phase 

transformation. 

 

As shown in Fig. 8, the parallel surface is  and the direction is 

. The corresponding rotation is  around the axis 

. Thus, the rotation matrix  can be given by inserting 

 and  into rotation matrix (97). 

The number of variants that N-W relation has is 12. The relations among the 12 variants 

are shown in Table 9. 
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Table 9 Crystallographic relation between  and other variants [75]. 

Varian

t No. 

Parallel surface Parallel 

direction 

Rotation axis Angle(deg

) 

1

//

 

//

 

- - 

2 //

 

 60.000 

3 //

 

  

4

//

 

//

 

  

5 //

 

  

6 //

 

  

7

//

 

//

 

  

8 //

 

  

9 //

 

  

10

//

 

//

 

  

11 //

 

  

12 //

 

  

 

Note that the rotation of  about the axis  

gives 9th variant in the Table 9. Thus, in order to find the rotation matrix to 1st variant, one 

rotates  about  and one obtains: 

 . (103)

The difference between N-W relation and K-S relation is only . 

Another way to find rotation matrix (98) is to start from Bain relation [76]. The rotation 
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from Bain relation to N-W relation is  around the axis , thus: 

 . (104)

 

2.7 Prediction of beginning of diffusive transformation 

Above models are dedicated for calculation of evolution of daughter phase (grains 

growing process). Here let us explain the model for prediction of transformation start 

timing. For non-diffusive transformation, the transformation start temperature is 

considered to be independent of the cooling history. So, the transformation start 

automatically when the temperature reaches  point. On the other hand, for diffusive 

transformation, the transformation starting temperature changes in response to the 

cooling velocity, heating temperature and so on. Scheil [77] introduced the notion of 

latent period and consumption ratio. In this model, the transformation starts when the 

following equation is satisfied. 

 , (105)

where  is time duration until phase transformation start when temperature is kept at 

constant value .  is often taken as computational time increment in one step. 
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Chapter 3 Experimental determination of transformation 

plastic strain 

 

 

3.1 Experimental method 

3.1.1 Carbon Steels 

Tensile machine with heating and cooling system is developed for identifying 

transformation plasticity. The Ar jet cooling system, which enables high cooling rates for 

obtaining martensite phase, is installed in the Instron 8802 fatigue testing machine in a 

research centre of Nippon Steel & Sumitomo Metal Corporation, Japan. In this facility, an 

induction heating system is adapted to heat up specimens up to 1300 . It is also 

important to note that vacuum chamber is necessary for such high temperature; otherwise, 

thick layer of oxide scale is generated, which makes it difficult to detect precise 

temperature. In this PhD thesis, the specimen with chemical composition shown in Table 

10 -with Japanese industrial standard (JIS) code- are adopted. They are initially heated up 

to 900  and keep the temperature for 5 minutes in order to obtain fully austenite phase, 

which is followed by applying small stress ranging from -50 MPa to 50 MPa. No sooner 

stress is applied than the specimens are cooled down. The cooling rates are 8  and 

50  at 700 . In the course of cooling procedure, phase transformation from 

austenite phase to pearlite or martensite phase occurs depending on the cooling rates. 

During the transformation, one observes large strain generation depending on the values 

of applied stress. 

 

3.1.2 Fe-Ni-Co Invar alloys 

Two types of Invar alloys with chemical composition summarised in Table 11 are used. 

The aim of using Invar alloys is to take advantage of their extremely small transformation 

volume expansion [78] to determine the Greenwood-Johnson effect of martensite 

transformation. 

Fe-25Ni-20Co Invar alloy has the magnetic transformation point at about 500 , and 

below this temperature, coefficient of thermal expansion decreases significantly. 

Therefore, the alloy has considerably small transformation volume expansion when it 

transforms to martensite phase. 

Another Invar alloy Fe-27Ni-20Co has Ms point below 0 . It means that the alloy 
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remains austenite phase at room temperature. Hence, sub-zero cooling should be taken to 

obtain martensite phase. For the purpose of this, a liquid nitrogen direct cooling system 

has been developed and installed into a tensile testing machine (installed in Japan 

Ultra-high temperature Materials Research Centre: JUTEM, Japan) to achieve 

temperature lower than -100 . This temperature is enough lower than Ms point of 

Fe-27Ni-20Co alloy according to the reference11). Maximum cooling rate of this system 

is about 0.2 . A picture of this apparatus is shown in Fig. 9. The specimens are 

cooled down by liquid Nitrogen during loading and strains are measured at the same time. 

The strain gauges are employed to ultra low temperature. The gauge’s thermal expansion 

is identified beforehand, and the resultant strain is calculated by subtracting the gauge’s 

thermal expansion from its original voltage data. This Invar alloy has tremendously small 

transformation volume expansion (almost zero). This is because, besides its lowness of 

Ms point, thermal expansion is tremendously small if the temperature is below magnetic 

transformation point. This alloy has a value of transformation volume expansion much 

smaller than that of Fe-25Ni-20Co alloy. 

 

Table 10  Chemical composition for carbon steels (wt%). 

 C Si Mn P S Ni Cr Mo Cu 

S45C 0.46 0.19 0.65 0.08 0.05 0.02 0.02 0.0 0.02

SCM415 0.15 0.17 0.82 0.16 0.19 0.03 1.11 0.16 0.01

SM490 0.14 0.26 1.22 0.016 0.004 0.08 0.09 0.03 0.17

SCr420 0.21 0.26 0.87 0.017 0.018 0.45 0.5 0.16 0.01

SUJ2* 0.95-1.1 0.15-0.35 <0.50 <0.025 <0.025  1.3-1.6   

* The data signify standard values (not measured). 

 

Table 11  Chemical composition for Invar alloys (wt%). 

 Ni Co 

Fe-25Ni-20Co 25 20 

Fe-27Ni-20Co 27 20 

 

3.2 Results and Discussions 

3.2.1 Temperature-strain curves 

Obtained temperature-strain curves are depicted in Fig. 10 (a) for S45C carbon steel with 

natural cooling (pearlite transformation), in (b) for S45C with intense cooling (martensite 

transformation), in (c) for Fe-25Ni-20Co Invar alloy, and in (d) for Fe-27Ni-20Co Invar 

alloy. 
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From figure 2 (a) and (b), when temperature reaches the phase transformation start point, 

large strain development is observed. These strain values depend on the magnitude of 

applied stress, even though the applied stress is below yield stress of mother phase. 

 

 

 
Fig. 9 Apparatus for tensile test under subzero condition. 

 

 

        (a) S45C (pearlite transformation)        (b) S45C (martensite transformation) 

 

              (c) Fe-25Ni-20Co                         (d) Fe-27Ni-20Co 

Fig. 10 Temperature-Strain curves under various applied stress. 

 

0.2

0.0

0.2

0.4

0.6

0.8

550 600 650 700

S
tr
a
in

(%
)

Temperature T ( )

0MPa

10MPa

30MPa

50MPa

0.2

0.0

0.2

0.4

0.6

0.8

100 200 300 400

S
tr
a
in

(%
)

Temperature ( )

0MPa

10MPa

30MPa

50MPa

1.2

1.1

1.0

0.9

0.8

0.7

0.6

100 150 200 250 300

S
tr
a
in

(%
)

Temperature T (oC)

0MPa 10MPa

30MPa 50MPa

70MPa

0.05

0.00

0.05

0.10

100 50 0

S
tr
a
in

(%
)

Temperature T (oC)

0MPa

10MPa

30MPa

50MPa

Cooling chamber 

(cooled by liquid 

Nitrogen) 



Chapter 3               Experimental determination of transformation plastic 

38 
 

It should be also noted that the temperature of S45C pearlite transformation in Fig. 10 (a) 

rises during phase transformation. This is caused by latent heat generated with phase 

transformation. The reason why this temperature rising is not observed for martensite 

transformation in Fig. 10 (b), (c), is that the cooling rates for those martensite 

transformation are enormously faster so that the latent heat is not enough to bring 

temperatures upward. 

From Fig. 10 (d), it is observed that the temperature drops below room temperature by 

liquid nitrogen i.e. sub-zero cooling is performed. The strain value is corrected by 

subtracting thermal expansion of strain gauge itself, which is preliminary identified. After 

cooling by liquid nitrogen, temperature returns back to room temperature. During cooling, 

the phase becomes fully martensite and remains at room temperature. Consequently, the 

coefficient of thermal expansion during returning back to room temperature (martensite) 

is different from that of during cooling (austenite). From Fig. 10 (c) and (d), one can also 

observe the dependence of strain during phase transformation with the applied stress. 

This fact says that the Invar alloy shows, although small, transformation plasticity, even 

though the transformation expansion is small. As we can see below, the magnitude of 

transformation plastic strain is one-order smaller than those of carbon steels. 

 

3.2.2 Stress-transformation plastic strain relation 

Transformation plastic strain values for each steel grade can be calculated by Fig. 10 

depending on applied stress value. For example, transformation plastic strain of S45C 

pearlite transformation is the strain difference at 550  between stress-free strain value 

and the strain value with small applied stress. This calculation is valid only when every 

single test is carried out under the same temperature history. This is because 

transformation volume expansion and thermal strain vary significantly with temperature 

history such as cooling rate or heating temperature. Relations between applied stress and 

total transformation plastic strain are shown in Fig. 11 (a) for S45C (pearlite), (b) for 

S45C (martensite), (c) for Fe-25Ni-20Co, and (d) for Fe-27Ni-20Co respectively. Fig. 11 

shows that the dependence of applied stress on transformation plastic strain is linear when 

the applied stress is small. In contrast, it is well-known that when applied stress is high, 

applied stress-transformation plastic strain relation is no longer linear. The threshold 

stress below which this linear relation is satisfied is approximately half the value of yield 

stress of mother phase [41]. The value of transformation expansion can be determined by 

strain results under 0 MPa applied stress. For Fe-25Ni-20Co and Fe-27Ni-20Co Invar 

alloys, in spite of its smallness of transformation volume expansion, it shows good 

proportional relationship between applied stress and transformation plastic strain. From 
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the Leblond’s model, the proportionality factor between applied stress and total 

transformation plastic strain can be calculated by integrating (7) from transformation start 

point  to transformation complete point  such that, 

 . (106)

The value  is called transformation plasticity coefficient. Leblond’s model indicates 

that this coefficient has linear relation with transformation expansion (This will be 

discussed in following section). Therefore, the transformation plasticity coefficient  

can be calculated in two ways. One is by Leblond’s model as expressed in equation (7). 

The other way is using Fig. 11 and equation (2). By integrating equation (2) from 

transformation start point  to transformation complete point , one 

obtains total transformation plastic strain, such that 

 . (107)

If applied stress is uniaxial, transformation plastic strain can be written in simple form. 

 . (108)

 

 

               (a) S45C (pearlite)                      (b) S45C (martensite) 

 

               (c) Fe-25Ni-20Co                         (d) Fe-27Ni-20Co 

Fig. 11 Transformation plastic strain under various applied stress for each material. 
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              (a) S45C at 674                         (b) S45C at 340  

 

          (c) Fe-25Ni-20Co at 220                  (d) Fe-27Ni-20Co at RT 

      (Cooling rate at 700  is 50 .) 

Fig. 12 Stress-strain curves right before transformation start. 

 

Therefore, transformation plasticity coefficient  is a slope of Fig. 11. The 

transformation plasticity coefficients calculated by the latter way (108) are denoted by 

 (pearlite) and  (martensite). 

 

3.2.3 Yield stresses 

According to Leblond’s model, the transformation plasticity coefficient depends on the 

coefficient of volume expansion and the yield stress of parent phase. To obtain 

stress-strain curves of mother phase of each material, tensile tests under the same 

temperature history as the tests for transformation plasticity (Fig. 10) are carried out. The 

specimens are heated up to 900 , and keep the temperature for 5 minutes. After the 5 

minutes, they are cooled down as the same manner (i.e. same cooling rate) of the tests for 

transformation plasticity. Shortly before transformation start point, tensile tests are 

carried out. The transformation start points can be determined by stress free 

temperature-strain curves. The loading points are carefully determined, for it is assumed 
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that the yield stress is dependent on temperature. It is also important to duplicate the 

cooling rate, because it affects the yield stress. If the upper yield point is not clear, then 

0.2 % proof stress is adopted. The stress-strain curves of S45C (Pearlite), S45C 

(martensite), Fe-25Ni-20Co, and Fe-27Ni-20Co are drawn in Fig. 12 (a), (b), (c) and (d) 

respectively. These experiments are carried out at 0.02 (s-1) strain rate. 

 

 

3.2.4 Dependence of transformation plasticity coefficient on volume expansion and 

yield stress: 

3.2.4.1 Case of pearlite 

Transformation expansion can be obtained from temperature-strain curves under stress 

free condition. Although, strictly speaking, these values are not unique for one steel grade. 

It is because the transformation expansion is a dependent of cooling rate and obtained 

phase. This is the reason why one has to be careful when carrying out experiments that the 

temperature history should be exactly the same throughout the experimental sequence of 

one type of steel grade. 

The obtained results of transformation volume expansion, yield stress and transformation 

plastic coefficient  are shown in Table 12. From the data in Table 12, relation between 

the parameter  and transformation plasticity coefficient  are depicted in Fig. 

13. Fig. 13 indicates that the relation between the parameter in equation (7) and 

transformation plasticity coefficients  is proportional, although the obtained 

transformation plasticity coefficients  are much larger than the one estimated by 

equation (7). 

 

 

Table 12  
Transformation expansion and transformation plasticity coefficient data 

for each material (pearlite transformation). 

  (MPa)  (MPa-1)

S45C*    

SCM415*    

SM490*    

SCr420*    

* Cooling rate at 700  is 8 . 
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Fig. 13 
Relation between parameter  and transformation plasticity 

coefficient. 

 

3.2.4.2 Case of martensite 

Similar to the pearlite transformation, obtained transformation expansion, yield stress and 

transformation plasticity coefficient  are shown in Table 13. 

Along with the data shown in Table 13, the relations between parameter  and 

transformation plasticity coefficient for martensite transformation  are depicted in 

Fig. 14. From Fig. 14, one can observe the proportional relation between transformation 

volume expansion over yield stress and transformation plasticity coefficient . With 

smaller transformation volume expansion, we have considerably small value of 

transformation plasticity coefficient for Fe-25Ni-20Co and Fe-27Ni-20Co Invar alloy. 

From this proportional factor, parameter  for martensite transformation can be 

calculated by equations (106) and (108). 

Similar to pearlite transformation, the magnitude of the transformation plasticity 

coefficient  is slightly larger than that of parameter . Even though, the 

proportional relation between the parameter and transformation plasticity is satisfied, i.e. 

the idea of equation (7) is confirmed to be valid. 
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Table 13  
Transformation expansion and transformation plasticity coefficient data 

for each material (martensite transformation). 

  (MPa)  (MPa-1)

S45C*    

SCr420*    

Fe-25Ni-20Co**    

Fe-27Ni-20Co***    

* Cooling rate at 700  is 8 . 

** Cooling rate at 700  is 50 . 

*** Cooling rate at 0  is 0.09 . 

 

 

Fig. 14 
Relation between parameter  and transformation plasticity 

coefficient. 

 

 

All above tests have been done under tensile stress. Videau et al. [41] showed in their 

paper that there is dependence of transformation plasticity on the loading condition. By 

contrast, the experimental results by Miyao et al. [36] imply that there is no difference 

between tensile and compressive applied stress. The difference may occur depending on 

the steel grades and the conditions such as transformation type or cooling rates. 

In fact, it has been observed the difference in transformation plastic strains between 

tensile and compressive applied stress on SUJ2 steel during martensitic phase 

transformation (see Fig. 15), although, not significant difference has been observed for 

S45C pearlitic phase transformation The mechanism of this phenomenon will be 

discussed together with numerical modelling in the later chapter. 
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                                   (a) Cooling curves 

 

                                (b) Transformation plastic strain 

Fig. 15 Experimental results of SUJ2 steel (tension/compression). 

 

The calculated results of transformation plastic coefficients for SUJ2 are; 

 for tensile applied stress and  for compressive applied stress. 

So it shows about 30 % difference between tensile and compressive applied stresses. The 

mechanism of this difference will be discussed in the following chapter. 

The same tests are carried out on S45C materials for pearlitic phase transformation; the 

results are shown in Fig. 16. Although transformation start temperature are not consistent, 

the results appear to be enough accurate for transformation plasticity. In this case, it 

shows no significant difference between tensile and compressive conditions. This appears 
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to be inconsistent with the previous test results. 

 

 

                                   (a) Cooling curves 

 
                               (b) Transformation plastic strain 

Fig. 16 Experimental results of S45C steel (tension/compression). 

 

3.3 Identification of transformation plasticity under high applied stress 

The transformation plasticity test under relatively high applied stress has been performed. 

It is expected that the relation between applied stress and transformation plastic strain is 

nonlinear when applied stress is large. Tests have been carried out on SM490 steel of 

pearlitic phase transformation as shown in Fig. 17. 

From Fig. 17, the nonlinearity appears between 30 MPa and 50 MPa. The yield stress of 

SM490 austenite phase before phase transformation is estimated as 63 MPa from Table 

12. Our experimental results appear to be in good agreement with previous studies 
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[5][41]. 

 

 

Fig. 17 
Stress-Transformation plastic strain relation of SM490 pearlitic 

transformation. 

 

3.4 Brief summary of experimental results 

Several carbon steel grades and Invar alloys have been employed to identify the 

dependence of volume expansion on transformation plasticity for both diffusive and 

nondiffusive transformation. 

For pearlite tranformation, the proportional relation between the parameter  and 

transformation plasticity coefficient  is confirmed; however, the relation was not 

quantitatively correspond with Leblond’s model. 

For martensite transformation, the proportional relation is also confirmed. The parameter 

 is slightly smaller than transformation plasticity coefficient  by experiments. 

The experimental results for Invar alloys show that if the transformation volume 

expansion is significantly small, the transformation plastic strain becomes tremendously 

small accordingly. It is said that Magee effect (selective martensite variant) plays main 

role during martensite transformation. However, for several steel grades treated in this 

chapter, transformation volume change affects transformation plastic strain significantly. 

These results indicate that Greenwood-Johnson effect (transformation expansion) is not 

negligible during martensite transformation. 
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Chapter 4 Micromechanical modelling of transformation 

plasticity 

 

 

4.1 Constitutive modelling of elastoplastic polycrystalline media 

An efficient numerical scheme based on Fourier transforms [25] has been developed and 

applied to a wide range of problems [26] [28] [29] [30]. This numerical scheme can 

consider large polycrystalline aggregates with reasonable computation time and memory 

requirements. Besides, meshing of the microstructure is not necessary. These features are 

especially convenient to consider experimental microstructural data [32] [33] [34]. It also 

offers an attractive framework to consider microstructural evolution during phase 

transformatioin. In this section, a coupling model of elastoplasticity using FFT numerical 

scheme and phase transformation model will be developed. 

 

4.1.1 Elastic case 

For the elastic heterogeneous material, the local constitutive equation is expressed by 

linear relation, 

 , (109)

where  represents local position and  is local elastic tensor. 

For heterogeneous material, the elastic tensor  is not uniform throughout the medium. 

By introducing homogeneous elasticity , we have: 

 , (110)

where  is a polarisation tensor. 

Equilibrium condition reads: 

 . (111)

Equations (110) and (111) in the Fourier space are: 

  . (112)

Eliminating  from equation (112), we obtain 

 , (113)

where 

 ,  , (114)
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 , (115)

 . (116)

In the case of isotropic material, the introduced tensors can be written with Lamé’s 

constants  and  such that, 

 ,  , 

 ,   
(117)

 . 

(118)

The tensor  is the Green periodic operator for homogeneous medium . The local 

problem is a Lipmann-Schwinger integral equation for , and the iterative algorithm 

for finding stress/strain values in this problem can be written as follows. 

Initialise,       ,  

Iteration n+1:   and  are already known 

(a)  

(b) Check convergence  

(c)    

(d)  

(e)         

 

4.1.2 Elasto-(Visco)Plastic case 

In the elastoplasticity, the stress strain relationship is nonlinear. In this case, the equation 

(109) is rewritten as: 

 . 

(119)

This equation can be solved almost as the same manner as elastic case thanks for the 

polarisation tensor . The iterative solution for the elastoplastic problem can be written as 

follows. 
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Iterative algorithm for the FFT numerical scheme

Initialise, ,  

Iteration n+1:  and  are already known 

(b) Check convergence  

(c)    

(d)  

(e)       

The differences between elastic problem and elastoplastic problems are the initialisation 

step and the constitutive equation. For elastoplasticity an incremental procedure has to 

be considered. 

 

4.1.3 Coupling of elastoplasticity using FFT numerical scheme and phase 

transformation model 

Phase transformation imposes stress/strain heterogeneity because of the volumetric 

difference between two phases. Moreover, the plastic strain is significantly concentrated 

in the weaker phase because of the difference of hardness in two different phases. In this 

section, the mechanical behaviour of polycrystalline material under /  phase 

transformation will be modelled by using FFT numerical scheme coupled with a phase 

transformation model. 

First of all, let us consider the periodic boundary media with elastic tensor , such that: 

 , (120)

Then, considering elastic heterogeneity, introducing , the homogeneous elastic tensor, 

by , we have: 

 , (121)

where  is a polarisation tensor. 

If the material is subject to plastic, thermal and transformation strain, the equation (121) 

is given as: 

 ,

(122)

where, ,  and  are plastic, thermal and transformation strain respectively. Note 

that we intend to describe transformation plastic strain through the scale transition 

process., At the local scale, there is no transformation plastic strain term. 
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The thermal strain and transformation strain can be expressed as: 

 ,  , (123)

where,  is a coefficient of linear expansion,  is temperature difference from reference 

state,  is coefficient of transformation expansion and  is volume fraction difference 

from reference state. 

Now we consider a cubic area constituted of austenitic (parent phase) grains. The division 

is performed with a Poisson-Voronoi tessellation process (Fig. 18). 

 

Fig. 18 Sample Voronoi tessellation; 100 grains in 643 cubic space. 

 

The orientation of each grain is set randomly (each point has its Euler angle but the same 

grain is considered to share the same orientation). Bunge type Euler angle is adopted and 

the random orientation is calculated by following equation; 

 ,  ,  , (124)

where  are random numbers. With the Euler angles given by 

equation (124), one obtains rotation matrix such that: 

 , (125)

So, if we initially set the slip systems (slip surface  and slip direction ) according to 

Table 4, the vectors which is considered can be calculated as: 

 ,  . (126)

 

4.1.4 Validation of the numerical implementation 

In order to validate the FFT-based model, two kinds of calculations are carried out; first, 

macroscopic thermal strain is calculated following the method by Leblond et al. [15], and 

second, macroscopic transformation strain is calculated. These calculations are carried 

out with the FFT numerical scheme and compared with theoretical results. Then the 

results will be compared each other to verify the FFT-based polycrystalline model. 
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Starting with 100 parent grains, transformation begins and the macroscopic 

transformation strain is determined, which is assessed by following theoretical solution. 

 . (127)

with , the macroscopic volume fraction of daughter phase. The results obtained for an 

austenitic polycrystal composed of 100 grains with random orientations are shown in Fig. 

19. The numerical response agrees with the exact result. The chosen numerical 

microstructure can thus be considered isotropic. It is noted that there is no macroscopic 

plastic strain hereas plastic deformation occurs at the crystal (microscopic) level. 

 

 

Fig. 19 
Macroscopic thermal strain comparison between calculation and 

theory. 

 

By the comparisons between FFT numerical model and theoretical ones, the model well 

describes the macroscopic homogeneity even though microscopically there are plastic 

strains in the microscopic scale. 

 

Next, the following mixture law should be examined for validation of mixture model of 

polycrystalline material. The equation has been theoretically and numerically confirmed 

by Leblond et al. [79]. 

 . (128)

The calculation procedure is follows. 

Thermal strain for phase 1 is set to -0.42 % and phase 2 0.42 %. So, if the volume fraction 

of phase 2 becomes 50 %, total macroscopic thermal strain  should equate 0. 

The comparison of calculated results and theoretical results (by equation (128)) is written 

in Table 14. One can conclude with the results of Table 14 that the mixture law is well 

satisfied. 
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Table 14  Comparison of calculated and theoretical macroscopic strain. 

Data from reference (FEM) [79] Data obtained by FFT 

   theory    theory

0.125 -0.319 -0.3 -0.317 -0.316 0.128 -0.314 -0.315 -0.308 -0.313

0.25 -0.219 -0.197 -0.195 -0.21 0.251 -0.213 -0.207 -0.210 -0.209

0.5 -0.045 0.015 0.003 0 0.504 0.011 -0.019 0.018 0.003

0.75 0.211 0.209 0.213 0.210 0.752 0.212 0.217 0.205 0.212

 

4.1.5 Comparison of Huntchinson and Anand-Kothari elastoplastic models 

In the section 2.4.2.2, the two elastoplastic models have been introduced in this PhD 

thesis; Hutchinson [59] and Anand-Kothari [60]. These two approaches give slip rates 

for elastoplastic problems. In order to avoid a singular matrix, they make use of 

different techniques; Hutchinson’s model restricts the number of active slip systems. By 

contraries, Anand-Kothari’s model does not restrict the number of active slip systems 

but uses SVD technique for pseudo inverse matrices. In this case, it is important to 

compare the calculation results by these alternative methods. 

The calculation is carried out in the 643 voxels cubic space with 100 austenitic grains. The 

f.c.c. slip systems shown in Table 4 (a) are used. The computational results of 

macroscopic stress/strain curves are depicted in Fig. 20. The macroscopic stresses and 

strains are calculated by volume averaging of the local values. The differences between 

two models are confirmed to be less than 10 % for the hardening materials and less than 

5 % for the elasto-perfect plastic materials. In general, the austenite phase which is going 

to transform has material components similar to elasto-perfect plasticity. It means that the 

choice of models may bring little difference to the calculation of transformation plasticity. 
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                  (a)                             (b)  

Fig. 20 
Macroscopic stress/strain curve of 3 models with/without 

hardening. 

 

4.1.6 Modified Hutchinson rate-independent model 

Numerical solutions of elastoplastic problems of polycrystalline materials require a step 

by step procedure and the verification of the yield criteria and consistency condition. 

During iterations, newly calculated stresses are employed to judge whether the yield 

criteria are satisfied or not, and then the stress and strain will be updated according to the 

judgement. 

If the previous state was elastic and the present state is also elastic, then one can use only 

elastic materials’ constants to solve the stress/strain field. In the same manner, if previous 

and present states are elastoplastic, the condition allows one to use only elastoplastic 

constitutive relations. The condition that previous state was elastoplastic and the present 

one is elastic is rather tricky, for the case occurs not only unloading process but also 

loading process. The hardness of slip system can surpass resolved shear stress because of 

the slip on other slip systems. Contrary to above discussion, the cases of state change 

from elastic to elastoplastic condition is rather complicated and may provoke a problem 

because it is uncertain when the yield criterion is satisfied or not during one incremental 

step. For this kind of problem, we propose a methodology for crystalline elastoplasticity 

as follows. 

 

The plastic strain rate is given by summation of each slip rate on the slip systems, such 

that 

 , (129)

where  is slip system  is a Schemid tensor. On the other hand, the stress rate of 

elastoplastic problem can be found as: 
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, (130)

where  is total strain rate and  is elastic stiffness tensor. 

When resolved shear stress  exceeds the value , the material satisfies the 

yield condition and the problem becomes elastoplastic. The values  can be found 

according to the initial hardness of each slip system and their hardening law. 

 

First of all, let us introduce Hutchinson method which allows to find the magnitude of slip 

rate on each slip system. Suppose that the work hardening and resolved stress increment 

of the  slip system during one step are equal as depicted inFig. 21. 

 

 

Fig. 21 Work hardening and resolved stress increment during plastic deformation. 

 

It can also be expressed as: 

 ,

 . (131)

When one introduces the matrix , defined as: 

 , (132)

the following relation is obtained. 

 

(133)

Thus, the slip increment is calculated by using matrix , the inverse matrix of : 

 , (134)
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such that, 

 . (135)

 

Second, let us consider the situation where the state of  slip system of previous 

increment was elastic and presently elastoplastic. Here, the trajectory of one step can be 

divided in two paths as depicted in Fig. 22; one is elastic and the other is elastoplastic. 

 

 

Fig. 22 Division of trajectory in one step into two paths (elastic and elastoplastic). 

 

In this case, (131) can be rewritten as: 

 ,

 . (136)

Following Hutchinson model, we obtain the final form of slip increment. 

 . (137)

 

We have performed FFT computations of uniaxial tensile tests to compare the two 

approaches; (135) and (137). 
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Fig. 23 Calculated stress-strain curves with different strain increment par step. 

 

Fig. 23 shows calculated stress/strain curves with strain increment per step of 10-4 and 

10-5 with relation (135). The case of large strain increment per step shows softer relation. 

This is because large strain increment causes rapid plasticisation even though previous 

stress condition remains elastic. This occurs when elastic-plastic test is done implicitly; 

the current stress value is employed to judge if elastic or elastoplastic. If it is explicit, 

the relation becomes contrary consequence (large strain increment causes harder 

relation). 

 

 

Fig. 24 Calculated stress-strain curves taken into consideration of case 1 and 2. 

 

Fig. 24 is a comparison among two different strain increments (10-4 and 10-5) in one step 

with using equation (135) and the case of increment 10-4 using equation (137). The 

result is in good agreement with the reference solution even though the strain increment 

is rather large. These comparisons point out the efficiency of the proposed procedure. 

0

20

40

60

80

100

120

140

0.000 0.002 0.004 0.006 0.008 0.010

S
tr
e
ss

(M
P
a
)

Strain

de=1e 4

de=1e 5

0

20

40

60

80

100

120

140

0.000 0.002 0.004 0.006 0.008 0.010

S
tr
e
ss

(M
P
a
)

Strain

de=1e 4

de=1e 5

de=1e 4(new)



Chapter 4         Micromechanical modelling of transformation plasticity 

57 
 

This kind of procedure may be indispensable for the stress concentration problems, etc, 

where strain increment cannot be controlled to be enough small. 

 

4.1.7 Identification of material parameters for S45C carbon steel 

In order to simulate the transformation plasticity of S45C material, parameters are fitted 

to reproduce the experimental data (Fig. 12). In this calculation, the Hutchinson model 

[59] and a hardening model by Peirce et al. [48] are applied (see 2.4). 

When  is equal to CRSS, the slip system activates. Let  a strain value along  slip 

surface, then the plastic strain rate can be expressed as a summation of plastic shear strain 

rate on each slip system such that 

 . (138)

Thus, we obtain the local constitutive equation of crystalline materials. 

 , (139)

     with    . (140)

Because materials harden with plastic deformation, the CRSS of  slip system is 

considered to be associated with shear strain rate [47], such that 

 , (141)

where h  is hardening coefficient. If ,  is called self hardening. Otherwise, it 

is called latent hardening. If  is zero, the model describes elasto-perfect plastic 

material. For the hardening materials, hardening parameter can be expressed by following 

equation. 

 , (142)

 , (143)

where  is a coefficient,  is an initial yield stress value and  is a saturate stress 

value. The parameter  takes values from 1.0 to 1.4 depending on the material. Here,  

takes values to accommodate continuum body. 

The set of optimised parameters is shown in Table 15. The macroscopic stress/strain 

relation of parent phase (f.c.c.) and daughter phase (b.c.c.) are depicted in Fig. 25. 
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Table 15  Parameters for crystal plasticity calculation. 

 parent phase daughter phase 

Bulk modulus (GPa) 135,833 150,000 

Shear modulus (GPa) 62,692 69,231 

 (MPa) 10 550 

 (MPa) 30 100 

 (MPa) 40 130 

1.0 1.0 

Constitutive model Hutchinson 

Number of grains 100 100 

 

 
Fig. 25 Macroscopic stress/strain curve of parent and daughter phases. 

 

4.1.8 Phase transformation model 

Here we consider the isothermal phase transformation. In this case, there will be no 

thermal strain; it simplifies the problem and it provides the basic results of transformation 

plasticity. 

The local transformation expansion coefficient is defined to be . New 

phase seeds are spread randomly and then start to grow isotropically. For computational 

reasons, very fine intermediate area, where the volume fraction of new phase takes values 

, is defined surrounding the surface of new phase. The sample image of new 

grains (red coloured circles) which are spread and expanding is shown in Fig. 26. 
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Fig. 26 Austenite grains and transformed new grains (red coloured circles). 

 

Within the intermediate area, the volume fraction of new phase yields following KJMA 

type equation [44]: 

 . (144)

The calculations start with 100% original grains which are subsequently loaded at the 

stress values vary from -90MPa to 90MPa. The applied stress will be hold until phase 

transformation is complete, i.e. 100% daughter phase. 

When the volume fraction exceeds 50%, the constitutive relation in the intermediate zone 

takes the value of new b.c.c. phase. At the same time, the crystallographic orientation will 

be changed according to Kurdjumow-Sachs relation [68] expressed in Fig. 27. The 

accumulated plastic strain is considered not to inherit to a daughter phase. Thus, the 

hardness of daughter phase is independent of plastic deformation before phase 

transformation. 

 

 
Orange points: f.c.c., Blue points: b.c.c.       

Fig. 27 Kurdjumow-Sachs relation for f.c.c to b.c.c. phase transformation.
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According to this relation,  and  of f.c.c. phase are parallel to  and 

 of first variant of b.c.c.. The corresponding rotation is  around the axis 

. Thus, the rotation matrix  can be found by inserting 

 and  into following rotation matrix: 

 . (145)

It is known that there are 24 possible variants that b.c.c. materials take after phase 

transformation [68]. When we call the first variants obtained by Fig. 27, the relation 

between the variant 1 ( ) and the other variants are given in Table 16. 
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Table 16 Crystallographic relation between  and other variants [75]. 

Variant 

No. 

Parallel surface Parallel 

direction 

Rotation axis Angle(deg) 

1

//  

// - - 

2 //   

3 //   

4 //   

5 //   

6 //   

7

//  

//   

8 //   

9 //   

10 //   

11 //   

12 //   

13

//  

//   

14 //   

15 //   

16 //   

17 //   

18 //   

19

//  

//   

20 //   

21 //   

22 //   

23 //   

24 //   

 

Let  the i-th variant rotation matrix from , the rotation matrix from f.c.c. to b.c.c. can 

be written as follows: 

 . (146)

Note that equation (145) gives the 7-th variant shown in Table 16. 

In this calculation, these 24 variants are taken randomly. 

 

4.1.9 Results and discussions 

During phase transformation, because of the difference in volume between two phases, 
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stress and plastic strain occurs at the grain scale. Fig. 28 shows the evolution of volume 

fraction of new phase, equivalent stress and equivalent plastic strain during phase 

transformation. The volume fraction of parent phase increases with time (a-1) as 

randomly spread new germination grows forming spherical grains. When two or more 

grains come across each other, the surface separating grains will be frontiers of those 

grains (b-1). Along with the growth of new grains, local stress occurs because of the 

volumetric difference between two phases (a-2). The equivalent stress is higher in 

daughter phase than in parent phase (a-2). This is because yield stress of daughter phase is 

larger than that of parent phase. Although the equivalent stress is smaller in parent phase, 

equivalent plastic strain value is larger in parent phase than in daughter phase when 

average transformed phase are 3% and 50% (a-3), (a-4), (b-3) and (b-4). Apart from 99 % 

transformed condition (c-3), the equivalent plastic strain in parent phase shows that it has 

relatively large value when the transformed new particles (daughter phase) are located in 

its neighbour (for 99% transformed condition, the equivalent plastic strain in parent phase 

disappears because of the absence of parent phase.). 
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(a-1) Volume fraction of parent phase (3% transformed) 

 

(a-2) Equivalent stress (3% transformed) 
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(a-3) Equivalent plastic strain of parent phase (3% transformed) 

 

(a-4) Equivalent plastic strain of daughter phase (3% transformed) 
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(b-1) Volume fraction of parent phase (50% transformed) 

 

(b-2) Equivalent stress (50% transformed) 
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(b-3) Equivalent plastic strain of parent phase (50% transformed) 

 

(b-4) Equivalent plastic strain of daughter phase (50% transformed) 
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(c-1) Volume fraction of parent phase (99% transformed) 

 

(c-2) Equivalent stress (99% transformed) 
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(c-3) Equivalent plastic strain of parent phase (99% transformed) 

 

(c-4) Equivalent plastic strain of daughter phase (99% transformed) 

 

Fig. 28 Evolution of macroscopic plastic strain caused by phase transformation. 
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The evolution of the average volume fraction of new phase under stress free condition is 

shown in Fig. 29 (a). During the phase transformation, the strain values change according 

to the magnitude of applied stress. This evolution of strain is depicted in Fig. 29 (b). As 

the applied stress value increases, the resultant total strain value also increases. As seen 

above, transformation plasticity is naturally obtained along with evolution of phase 

transformation without any artificial term like macroscopic transformation plastic strain. 

 

 

       (a) Evolution of volume fraction             (b) Evolution of total strain 

Fig. 29 Evolution of volume fraction of new phase and macroscopic total strain. 

 

The relation between total strain evolution during phase transformation and volume 

fraction is almost linear when applied stress is not so large. 
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4.2 Numerical investigation of metallurgical and mechanical interaction effects on 

transformation plasticity 

 

The difference of conditions between industrial and experimental ones sometimes causes 

significant effect. In fact, the phenomena of industrial processes are generally so dynamic 

and severe that one fails to duplicate the equivalent conditions in spite of many efforts. 

For example, the mode and rapidness of deformation are much faster in the real processes 

than those in the laboratories. It should be noted that the perturbation in mass production 

conditions can be also significant because it may result in thermal, metallurgical and 

mechanical heterogeneity of materials. 

To take some examples, hot rolling processes introduce high dislocation density inside 

materials, which causes mechanical hardening. At the same time, crystallographic 

orientations change because of rigid body rotation of lattice during rolling, which results 

in texture. Subsequently, the rolled materials will be subject to cooling. In the very short 

time period between rolling and cooling, important metallurgical events occur, such as 

static recovery, recrystallisation, and grain growth. 

In this context, it is absolutely important to know the sensitivity of each effect which 

arises from the differences in order to minimise the discrepancies among experimental 

results and real processes. The numerical simulations allow to distinguish individual 

parameters and to know their relative effect. 

 

4.2.1 Texture 

Almost all the existing experimental results concerns transformation plasticity of fully 

annealed materials. Although austenitic phase transformation inherits crystallographic 

orientation on certain conditions, the texture of specimen is expected to be different from 

those of industrial ones. 

The calculation results of transformation plasticity presented above were obtained for 

isotropic polycrystals. This assumption is, on the whole, in good agreement with 

Leblond’s model [15] (ideal cases). In contrast, it is known that materials such as sheets 

and plates after rolling have texture so that they have anisotropic mechanical component. 

In this section, the texture of hot rolled sheet is observed, which will be taken into account 

to the transformation plasticity calculations, and compared with the results of random 

orientations. 

 

4.2.1.1 Texture observation of hot rolling sheet products 

The classical low carbon hot rolled steel sheet is investigated in order to determine the 



Chapter 4         Micromechanical modelling of transformation plasticity 

71 
 

texture effect on transformation plasticity. The crystallographic orientation can be 

detected by taking advantage of the EBSD (Electron Back Scattering Diffraction) 

technique. The data are taken every 5 micro metre that will count 98213 points in total. 

The inverse pole figures of planes perpendicular to normal direction and rolling direction 

are shown in Fig. 30. Although a slight difference of texture between surface and centre is 

observed from Fig. 30, for the simplicity, it is not taken into account. 

 

 

                 (a) ND                  (b) RD 

Fig. 30 Inverse Pole Figure of hot rolled low carbon steel sheet. 
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Fig. 31 ODF of hot rolled sheet after phase transformation (Ferrite). 

 

For the same specimen, ODF is depicted in Fig. 31. Note that this is the texture at room 

temperature. It means that the material experienced phase transformation after rolling 

from austenitic phase to ferritic phase. Thus, in order to know initial austenitic 

orientations, these ferritic orientations have to be inversed into austenitic ones. Cabus 

[68] has proved in her PhD thesis that the initial texture is predictable from final texture 

by adopting inverse K-S relation. 

By using this theory, the initial austenite texture is calculated and depicted in Fig. 32. 

Both ferrite and austenite texture are similar to those of experimental observations by 

Cabus [68]. 
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Fig. 32 ODF prediction of hot rolled sheet before phase transformation (austenite).

 

4.2.1.2 Incorporation of texture effect into transformation plasticity calculation 

To perform transformation plasticity calculations, the obtained texture results for 

austenite phase have to be incorporated. To clarify sole texture effect, we consider an 

isotropic morphologic texture with uniform grain size. 

First, the number of orientations is reduced with the volume fraction information into one 

set which is feasible for calculations (1645 orientations). 

Second, crystalline orientation is assigned to each grain according to the volumetric 

fraction information. 
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Fig. 33 
ODF of reduced number of orientations (1645 orientations with volume 

fraction). 

 

The sample ODF figure of the Voronoi microstructure obtained by using this 

methodology is shown in Fig. 34. By comparing Fig. 33 with Fig. 34, the reduced texture 

well matches original texture information (Fig. 32). The more grains is introduced, the 

more precise is the texture. The maximum number of grains is defined by the memory 

space and calculation time. 

In this calculation, the following case is adopted; 2000 grains inside a unit-cell of 1283 

voxels. 
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Fig. 34 ODF of reduced number of grains (2000 grains). 

 

4.2.1.3 Results and discussions 

The calculated transformation plastic strains versus applied stresses are shown in Fig. 35 

and Fig. 36 for isotropic and textured polycrystals. Note that the isotropic computations 

have been performed with a Voronoi tessellation of 2000 cells for an accurate 

comparison. In order to evaluate the anisotropy effect on transformation plasticity, 

simulations have been performed for three different uniaxial applied stress conditions; 

rolling direction (RD), normal direction (ND) and transverse direction (TD). 
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Fig. 35 
Transformation plasticity of random orientations 

(2000 grains in 1283 voxels). 

 

  

0.0035

0.0025

0.0015

0.0005

0.0005

0.0015

0.0025

0.0035

100 80 60 40 20 0 20 40 60 80 100

Tr
a
n
sf
o
rm

a
ti
o
n
P
la
st
ic
S
tr
a
in

tp

Applied Stress (MPa)



Chapter 4         Micromechanical modelling of transformation plasticity 

77 
 

 
                 (a) Applied stress – Normal direction (equivalent to z-direction) 

 
            (b) Applied stress – Rolling direction (equivalent to x-direction) 

 
            (c) Applied stress – Transverse direction (equivalent to y-direction) 

Fig. 36 Transformation plasticity of textured polycrystals. 
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Random : (MPa-1), (MPa-1) 

Texture (RD) : (MPa-1), (MPa-1) 

Texture (ND) : (MPa-1), (MPa-1) 

Texture (TD) : (MPa-1), (MPa-1) 

 

The results for the random orientation case show no significant difference with our 

previous results. This means that the number of grains and the discretisation allows to 

reproduce the transformation plasticity phenomena. 

According to the results for ND are the largest transformation plastic coefficient which 

is equivalent to those of Random case. The RD results are slightly smaller than ND 

results and TD results are the smallest. These results can be explained by stress/strain 

curves for each applied stress direction (Fig. 37). The ND direction and Random case 

(Fig. 25) show the hardest and the TD shows softest, which is the same tendency with 

transformation plasticity. Thus, it can be concluded that the transformation plasticity of 

textured polycrystals has the same trend with their yield stresses. This coincides with 

the claim by Leblond [15]. 

 

 

                (a) Parent phase                        (b) Daughter phase 

Fig. 37 Stress/strain curves in three directions of each phase (anisotropy effect). 

 

4.2.2 Grain morphology effect 

In the previous discussion, the phase transformation is assumed to expand isotropically. 

In contrast, in the steel producing process, the final grain shape is anisotropic because of 

plastic deformation such as rolling. In this case, it is expected that the stress field 

surrounding phase transformation front differs from the one for isotropic growth. In 

order to analyse the grain morphology effect, two cases of grain growth are examined; a 

preferential growth along the tensile direction or along a direction perpendicular to it. 

The final microstructures are shown in Fig. 38. The average aspect ratio is set to be 10:1. 
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The corresponding transformation plasticity results are presented in Fig. 39. 

 

 

           (a) z-direction growth                   (b) x-direction growth 

Fig. 38 Ellipsoidal Grain morphology of daughter phase. 

 

 

 
            (a) z-direction growth                     (b) x-direction growth 

Fig. 39 
Calculated transformation plasticity with spheroidal daughter grains. 

(aspect ratio 10:1) 

 

Transformation plastic coefficients along the tensile direction for both cases are 

calculated for tensile and compressive applied stress. 

z direction growth: (MPa-1), (MPa-1) 

x direction growth: (MPa-1), (MPa-1) 

The results indicate that if the preferential grain growth direction is parallel to the 

direction of applied stress, transformation plastic strains are larger for tensile stress than 

compressive ones. This is because the transformation is expanding process and hence 

tensile stress parallel to the direction of applied stress arises during phase transformation. 

The applied stress enhances the local tensile stress, whereas macroscopic compressive 

stress decreases the local tensile stress. In this case, difference of transformation plastic 

coefficients between under tensile and compressive stress is about 20%. 
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In comparison, when applied stress is normal to preferential grain growth direction, no 

significant difference of transformation plastic coefficients between tensile and 

compressive has been observed with the numerical simulation. 

The results strongly suggest that the behaviour of transformation plasticity can be 

affected by grain morphology of daughter phase. It means that the metallurgical effect 

(e.g. microsegregations) which results in non-equiaxed grain shape influences the 

subsequent transformation plasticity. 

 

4.2.3 Effect of band structure 

Among the processes of steel production, the concentration of chemical species occurs 

mainly in the casting process. For example, Mn segregation is formed during casting 

process and it changes its form during subsequent rolling process. It is known to create a 

band structure after phase transformation. 

Kop et al. [80] have experimentally found that the microstructure with banded form of 

Pearlite phase causes anisotropic dilatation during phase transformation. They have 

measured the dilatations for two directions and compared between them. They have 

found that the anisotropic dilatation is strongly affected by the shape and direction of 

banded structure; the dilatation is approximately two times larger in the direction of 

perpendicular to the bands than normal to them (Fig. 40 (a)). In contrast, the other 

microstructure, which has less clear banded structure, shows less anisotropic dilatation. 

In order to confirm this phenomenon by FFT-based numerical scheme, pearlite band 

structure, which forms an infinite number of layers of pearlite and ferrite phases, is 

modelled as follows. 

During ferrite and pearlite phase transformation, at first, ferrite phase starts to be 

produced and then, pearlite transformation starts. Because ferrite phase cannot contain as 

much carbon as austenite, carbon is brought out from ferrite phase and austenite absorbs 

it. The austenite phase with much carbon contents transforms into pearlite phase, which 

shows very higher strength than ferrite phase. In order to simulate this phenomenon, a 

dual phase transformation procedure is modelled. In this procedure, the ferrite phase 

transformation start at first, followed by pearlite transformation, and at the end ferrite and 

pearlite dual phase is obtained. It should be noted that the geometrical importance of 

banded structure should also be considered. The banded structure is often formed by the 

microsegregations, which is initially formed during casting and elongated by subsequent 

rolling. 

 

For the modelling, a band-shaped pearlite phase with two different layer thicknesses are 
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adopted in the computations. These structures are depicted in Fig. 41. It is obvious that 

the pearlite phase transformation starts later than ferrite one. Another parameter 

considered here is the delay time of pearlite transformation. Three delay times are 

employed in this paper; 0, 4 and 8sec after ferrite transformation start. 

 

 

Fig. 40 Dilatation curves and banded microstructure. [80] 
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                          (a) Case1: thin layer 

 
                          (b) Case2: thick layer 

Fig. 41 Pearlite banded structure with two different band widths. 
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       (a) thin layer (pearlite start at 0sec)        (b) thick layer (pearlite start at 0sec) 

 

       (c) thin layer (pearlite start at 4sec)        (d) thick layer (pearlite start at 4sec) 

 

       (e) thin layer (pearlite start at 8sec)        (f) thick layer (pearlite start at 8sec) 

Fig. 42 Strain evolution during ferrite-pearlite dual phase transformation. 

 

The strain evolutions of these cases are shown in Fig. 42. It is clear that the strains in 

z-direction (perpendicular to the band) are larger than those of other directions (figures 

(c), (d), (e) and (f)). Obviously, the banded structure causes the difference since the larger 

the layer thickness, the larger the difference in strain (figures (c) and (d)). On the other 

hand, when the pearlite phase transformation starts at the same time with ferrite 

transformation, there is no significant anisotropic effect even though the pearlite phase is 

much harder than that of ferrite. 
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With these results, it can be concluded that both transformation start order and pearlite 

band thickness are important parameters influencing the anisotropic dilatation. However 

the anisotropic effect reported in [80] is much larger than the one obtains with our 

calculations. 

 

4.2.4 Grain size effect 

The calculation results throughout this thesis cannot reflect the grain size effect even 

though the cases with both plenty grains and few grains are performed. In fact, the 

hardening law such as equation (141) is independent of grain size. 

In contrast, it is well known that the hardness increases along with decreasing mean grain 

size. Historically, this fact is claimed by Hall (1951) [81] and Petch (1953) [82]. The 

mechanism is often explained by grain boundaries preventing the penetration of 

dislocations into neighbouring grains. Thus, the smaller grain size the shorter distance 

dislocation can travel and consequently, the material gets harder than larger grain size. 

The dislocation can be divided into Statistically Stored Dislocation (SSD) and 

Geometrically Necessary Dislocation (GND) [54]. The SSD represents dislocations from 

Frank-Read source. The SSD describe well the dislocation dynamics. On the other hand, 

GND compensates geometrical incompatibility between neighbouring regions [83]. In 

order to incorporate the grain size effect on FFT-based numerical scheme, GND is taken 

into account. 

4.2.4.1 Hardening model by dislocation density 

Dislocation density and material’s hardness can be related by following extended 

Bailey-Hirsch equation [84]. 

 , (147)

where , ,  are dimensionless parameter, Young’s modulus and Burgers vector 

respectively. If we define the total dislocation density to be a summation of statistically 

stored dislocation (SSD) and geometrically necessary dislocation (GND) [53], the total 

dislocation density can be written as: 

 , (148)

where SSD is: 

 , (149)

and GND is[84]: 
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 .
 (150)

 is mean distance of annihilation of dislocation and  is a mean free path whose 

evolution is determined by a power law: 

 , (151)

where   are initial free path distance and dislocation density. The rate form of 

equation (147) can be obtained as: 

 . (152)

In this case, the hardening parameter takes following form. 

 . (153)

By these formulations, dislocation density is explicitly connected with mechanical 

hardening and crystal plasticity regime. 

Note that the slip rate derivative can be directly calculated using the slip rate in the 

Fourier space: 

 . (154)

This is yet another advantage of the FFT numerical scheme over FEM in terms of 

efficiency and simplicity. 

 

4.2.4.2 Effect of grain size on stress/strain curve 

According to Hall (1951) [81] and Petch (1953) [82], the relation between square root of 

grain diameter and yield stress is inverse proportional (sometimes, depending on the 

material, the p number of p-times root changes). Here, uniaxial tensile test simulations 

are carried out to determine the relation between grain size and hardness. The material 

parameters which are adopted in the calculations are shown in Table 17. The parameters 

are set to be the same values for austenite and ferrite phase without initial  which is 

already defined in Table 15. 

 

Table 17 Material parameters for both parent and daughter phases. 

  (m)  (m)  (m-2)  (m) 
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In Fig. 43, (a) 0.2% strength and (b) 1.0% strength are plotted with several inverse square 

root of grain diameters. 

 

 
               (a) 0.2% strength                        (b) 1.0% strength 

Fig. 43 Relation between flow stress and grain size (100 gains in 643 voxels). 

 

An increase of the yield stress is described when the grain size decreases by our FFT 

computation. Moreover, the relation between inverse square root of grain diameter and 

both 0.2% and 1.0% yield strength is linear. 

In the sequel, two grain sizes are selected (10 m and 100 m) and the evolution of 

dislocation density distribution during tensile procedure will be investigated. During 

tension, dislocations develop from Frank-Read source (SSD) and annihilate after a free 

path or trapped into precipitates or grain boundaries. On the other hand, dislocations must 

be exist where the strain incompatibility exists (GND) such as grain boundaries. The 

macroscopic stress-strain relations are shown in Fig. 44. 

 

 

                   (a) D=10 m                           (b) D=100 m 

Fig. 44 Calculated stress-strain curves (100 gains in 643 voxels). 

 

The parameters of the constitutive law are the same. It is observed that the work 

hardening is much stronger for small grain size because of GND evolution. 
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The evolutions of SSD, GND and total dislocation density are depicted in Fig. 45 and Fig. 

46. These figures show a cross section of whole 3D calculation. 

 

 

 

        (a) SSD ( =0.003)        (b) GND ( =0.003)      (c) TOTAL ( =0.003) 

 

        (d) SSD ( =0.006)       (e) GND ( =0.006)       (f) TOTAL ( =0.006) 

 

       (g) SSD ( =0.009)        (h) GND ( =0.009)       (i) TOTAL ( =0.009) 

Fig. 45 

Dislocation density distribution during tension 

(D=10 m, 2000 gains in 1283 voxels). 

 represents dislocation density: 

>5 1013 (SSD), >5 1013 (GND), >1014 (TOTAL) 

 

  

tensile direction
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       (a) SSD ( =0.003)         (b) GND ( =0.003)      (c) TOTAL ( =0.003) 

 

       (d) SSD ( =0.006)         (e) GND ( =0.006)      (f) TOTAL ( =0.006) 

 

       (g) SSD ( =0.009)         (h) GND ( =0.009)       (i) TOTAL ( =0.009) 

Fig. 46 

Dislocation density distribution during tension 

(D=100 m, 2000 gains in 1283 nodes). 

 represents dislocation density: 

>5 1012 (SSD), >5 1012 (GND), >1013 (TOTAL) 

 

For 10 m case (Fig. 45), GND density is much more important than SSD density. GND 

starts to accumulate mainly along with the grain boundaries (there exist the dislocations 

inside the grains but it may be caused by 2D cross section image out of 3D and thus the 

grain boundaries for normal to the sheet direction are not presented). 

For 100 m case (Fig. 46), similar to 10 m case, GND is higher than SSD. But in this case, 

comparing to 10 m, SSD is rather dense. This is because GND develops near grain 

boundaries and hence it is stronger in smaller grains. SSD and GND densities show a 
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pattern with bands at . 

 

4.2.4.3 Effect of grain size on transformation plasticity 

Following above discussion, the grain diameters of 10 m and 100 m are selected to 

investigate the grain size effect on transformation plasticity. The parameter set of Table 

17 is again used. The phase transformation is studied under constant applied stresses 

(from -90MPa to 90MPa). Fig. 47 shows cross sections during phase transformation of 

average grain diameter of 10 m (black colour is parent and red represents daughter 

phase) under stress free condition. Starting with 2000 grains germination, they grow 

isotropically. 
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        (a) SSD ( =0.0)           (b) GND ( =0.0)        (c) TOTAL ( =0.0) 

 

         (d) SSD ( =0.1)          (e) GND ( =0.1)        (f) TOTAL ( =0.1) 

 

         (g) SSD ( =0.3)          (h) GND ( =0.3)        (i) TOTAL ( =0.3) 

 

         (j) SSD ( =0.5)          (k) GND ( =0.5)        (l) TOTAL ( =0.5) 
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        (m) SSD ( =0.7)          (n) GND ( =0.7)        (o) TOTAL ( =0.7) 

 

         (p) SSD ( =0.9)         (q) GND ( =0.9)         (r) TOTAL ( =0.9) 

 

         (s) SSD ( =1.0)          (t) GND ( =1.0)         (u) TOTAL ( =1.0) 

Fig. 47 

Dislocation density distribution during phase transformation (D=10 m, 2000 

gains in 1283 nodes, black colour : parent phase, red colour : daughter phase).

 parent phase:  >1011 (SSD), >1011 (GND) , >2 1011 (TOTAL) 

 daughter phase:  >1012 (SSD), >1012 (GND) , >2 1012 

(TOTAL) 

 

In this case, GND is much greater than SSD in parent phase. It is clear that GND in the 

parent phase develops around the daughter grains. It means that the transformation strain 

causes strong incompatibility between the two phases, and consequently, GND in parent 

phase accumulates at the vicinity of the daughter grain spheres. Furthermore, when two 

or more daughter grains approach each other, parent grains in between these daughter 

grains have considerable high dislocation density. 
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GND density in daughter phase is also more important than SSD density. Similar to GND 

in parent phase, it is strong near their grains’ surface. 

 

 

        (a) SSD ( =0.0)           (b) GND ( =0.0)        (c) TOTAL ( =0.0) 

 

         (d) SSD ( =0.1)          (e) GND ( =0.1)        (f) TOTAL ( =0.1) 

 

         (g) SSD ( =0.3)          (h) GND ( =0.3)        (i) TOTAL ( =0.3) 

 

          (j) SSD ( =0.5)          (k) GND ( =0.5)         (l) TOTAL ( =0.5) 
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         (m) SSD ( =0.7)         (n) GND ( =0.7)        (o) TOTAL ( =0.7) 

 

         (p) SSD ( =0.9)         (q) GND ( =0.9)         (r) TOTAL ( =0.9) 

 

         (s) SSD ( =1.0)         (t) GND ( =1.0)         (u) TOTAL ( =1.0) 

Fig. 48 

Dislocation density distribution during phase transformation (D=100 m, 

2000 gains in 1283 nodes, black colour : parent phase, red colour : daughter 

phase). 

 parent phase :   >1011 (SSD), >1011 (GND) , >2 1011 (TOTAL) 

 daughter phase : >1012 (SSD), >1012 (GND) , >2 1012 (TOTAL) 

 

Fig. 48 shows dislocation densities for average grain diameter of 100 m case under stress 

free condition. Similar to 10 m grain size case, GND is more dense than SSD in both 

parent and daughter phase. Comparing to 10 m grain size case, both SSD and GND 

densities are less important, while the difference in SSD between both grain sizes is 

much less important than that in GND. This is because the grain size effect is much 

more important on GND density than SSD density, for GND dislocations accumulate at 
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the vicinity of grain boundaries and the smaller grain size, the more grain boundaries 

the material contains. 

 

 

                    (a) D=10 m                             (b) D=100 m 

Fig. 49 Transformation plasticity results. 

 

Fig. 49 reports the comparison of transformation plasticity between 10 m and 100 m 

average grain diameters. The slopes of applied stress and transformation plastic strain 

curve is calculated as  (MPa-1) for 10 m diameter and 

 (MPa-1) for 100 m. This dependence can be easily predicted by the notion that the 

transformation plastic strain is inverse proportional of yield stress of parent phase. 

 

4.2.5 Kinematic hardening 

Back stress effects on transformation plasticity are reported. Taleb et al.[39] revealed that 

the pre-hardening affects significantly on the subsequent transformation plastic strains. 

They have observed transformation plastic strain even under stress free condition, if the 

material is preliminarily deformed. Even more, the reverse transformation plastic strains 

(compressive TP strain under tensile stress, or tensile TP strain under compressive stress) 

have been observed. 

Nagayama et al. [85] also confirmed the pre-hardening effect by their experiments. They 

claimed that the effect differs with the modes of applied stress, i.e. tension, compression 

and shear. 

These effects have been observed with experimental approach and all those effects have 

been manifested under bainitic or martensitic phase transformation. To the author’s 

knowledge, pre-hardening effect (or back stress effect) on ferritic or pearlitic phase 

transformation remains an open question. Thus, back stress effect during diffusive phase 

transformation, i.e. Greenwood-Johnson effect, is investigated in the sequel. 
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4.2.5.1 Back stress model for crystal plasticity 

Previous discussions considered only isotropic hardening models. The yield surface 

centre remains at its original position. In this section, we introduce following effective 

resolved shear stress . 

 , (155)

where  is the effective resolved shear stress and  is the back stress on the  

slip system. Now let the evolution of  be described by Armstrong-Frederick type 

model [86], such that: 

 (156)

where  and  are material constants. 

The compression calculation until -0.2% strain following 0.3% tension is operated with 

several set of material constants; ( . The 

calculated results are depicted in Fig. 50. Note that pre-deformation is always carried out 

in z-direction. 

 

 
Fig. 50 Calculated stress/strain curve during cyclic deformation. 

 

As increasing  value, work hardening effect as well as back stress effect becomes 

significant. The difference between the cases (  and 

 is enough small so that the difference may not affect the transformation 

plasticity. 

Finally, the material constants are chosen (  for the following 

transformation plasticity calculations. Since the results depend on the value of these 

coefficients, the following discussion will provide only qualitative trends. 
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4.2.5.2 Back stress effect on transformation plasticity 

For the purpose of examining the back stress effect on transformation plasticity, 

computations of pre-hardening along z-direction (up to 10% strain for tensile case and 

-10% for compressive case) followed by phase transformation under several applied 

stresses are carried out in a 643 voxels unit-cell with 100 grains. The schematic 

illustration of this sequence is depicted in Fig. 51. Results obtained for a free dilatation 

condition are reported in Fig. 52. 

 

 

 
Fig. 51 Schematic illustration of calculation sequence. 

 

 

 

               (a) pre-tension                     (b) pre-compression 

Fig. 52 Transformation strain for pre-tensioned material. 

 

They strongly differ from the isotropic case (Fig. 19). The pre-hardened sample (Fig. 52 

(a)) shows minimum value of transformation strain in the z-direction and the strain along 

the other directions x and y have the same value. The overall response is thus 
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transversely isotropic. It is worth mentioning that it has been checked that the overall 

volume change is not affected, as expected. That is  with  the dilatation 

coefficient. This means that the anisotropic strain during phase transformation is caused 

by plastic deformation. The explanation of this phenomenon can be given as follows. 

During pre-hardening process, the centre of yield surface moves toward the loading 

direction, and thus material gets hardened in the loading direction. During subsequent 

phase transformation, plastic strain mainly occurs in parent phase in order to 

accommodate the volume difference between parent and daughter phases. If the material 

is totally isotropic, this plastic strain is cancelled at the overall scale [79]. Though, if the 

material is anisotropic, the plastic strain is not cancelled. In the present case, due to the 

hardness in z-direction, parent phase preferably deform along x and y directions during 

phase transformation and it causes macroscopic anisotropic deformation and even 

negative strain for z-direction. It can be remarked that negative plastic strain occurs 

along z-direction at the beginning. During phase transformation, it is counterbalanced 

by volume expansion. 

The above explanation is also valid for the pre-compressed case (Fig. 52 (b)). To confirm 

this, -10% pre-compressed followed by phase transformation calculations are carried out. 

It is clear that the z-direction is compressed in advance and which eased the tensile plastic 

deformation because the transformation strain is positive. In this case, only z-direction 

strain accelerates during phase transformation and other strain components are smaller. 

 

Experimental evidence with bainitic phase transformation can be found in the work by 

Taleb et al. [39]. They have performed pre-hardening tests followed by transformation 

plasticity. They observed similar results to those shown in this thesis (see Fig. 53). 
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Fig. 53 
Pre-hardening effect on transformation plasticity for bainitic phase 

transformation. (Experimental results taken from [39]) 

 

For example, 5% tensile pre-deformation followed by phase transformation under free 

applied stress shows negative transformation strain at the beginning, which is similar to 

Fig. 52. 

 

Calculated pre-tension results with applied stresses (compression and tension) are 

reported in Fig. 54. 
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          (a) x-direction strain (tension)           (b) x-direction strain (compression) 

 

          (c) y-direction strain (tension)           (d) y-direction strain (compression) 

 

          (e) z-direction strain (tension)           (f) z-direction strain (compression) 

Fig. 54 Transformation plastic strain for pre-tensioned material. 

 

Analogous to the stress free dilatation with pre-tensioning, the negative dilatations for 

z-direction are observed at the beginning of phase transformation. As increase the 

applied stress, the obtained transformation plastic strain increase as well. It can be also 

observed that as increase the transformation plastic strain for z-direction, the strains for 

other directions decrease. 

 

On the other hand, for the pre-compression case (Fig. 55), the transformation plastic 
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strains of compressive pre-deformed case in x-direction and in y-direction, i.e.  and 

, are smaller than those of tensile pre-deformed case. The transformation plastic 

strains in z-direction ( ), however, are much larger. These results can also support the 

notion that the back stress which is introduced during pre-deformation causes the 

anisotropic transformation plastic strain evolutions. This tendency is found to be similar 

to the transformation strains evolution under stress free conditions as well as 

pre-tensioned case. 

 

 

          (a) x-direction strain (tension)           (b) x-direction strain (compression) 

 

          (c) y-direction strain (tension)           (d) y-direction strain (compression) 

 

          (e) z-direction strain (tension)           (f) z-direction strain (compression) 

Fig. 55 Transformation plastic strain for pre-compressed material. 
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Transformation plastic strains in z-direction versus applied stresses are plotted in Fig. 56. 

Note that figures (b) and (d) are enlarged views of (a) and (b) with respect to the applied 

stresses. 

 

 
                (a) pre-tension                     (b) pre-tension (zoomed) 

 

              (c) pre-compression                (d) pre-compression (zoomed) 

Fig. 56 
Relation between transformation plastic strain and applied stress 

in z-direction. 

 

The quantitative descriptions of these trends are given by following transformation 

plastic coefficients values. 

Pre-tension:  (MPa-1), (MPa-1) 

Pre-compression: (MPa-1), (MPa-1) 

 

For relatively small applied stress case (between -50 and 50MPa applied stress) with 

pre-tension, the slope for tensile stress  is larger than for compressive stress  

(Fig. 56 (b)). Inversely, for the case with pre-compression, the slope for tensile stress 

 is smaller than for tensile stress  (Fig. 56 (d)). 

For large applied stress case, the transformation plastic strains for negative applied stress 

in pre-tension case accelerate faster than those of positive (Fig. 56 (a)). And one can see 

the contrary behaviour in pre-compression case (Fig. 56 (c)). 

Obviously, these phenomena are linked to the back stress which was introduced by 
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precedent deformation. For example, the pre-tension hardens the parent phase in 

z-direction, and it hinders the deformation of parent phase toward z-direction during 

phase transformation. In contrast, it enhances plastic deformation of daughter phase, 

which results in large  in (Fig. 56 (b)). As it enhances plastic deformation in 

daughter phase even under small applied stress, we observe less nonlinearity under high 

applied stress (Fig. 56 (a)). The inverse explanation can be given to (Fig. 56 (c) and (a)). 

 

4.2.5.3 Back stress effect on secant modulus of elasticity 

Back stress can affect not only transformation plasticity but also secant modulus of 

elasticity (pseudo elasticity). Secant modulus of elasticity is important material 

component especially for the spring back analyses during forging processes of the 

automobile applications. 

It is well known that the secant modulus of elasticity in steel can be decrease after plastic 

deformation. However, there are not so many data have been given and even more, the 

mechanism of this phenomenon remains unclear. Thus, the secant moduli of elasticity 

after several pre-deformation strain values are analysed. Fig. 57 is a representation of 

secant modulus of elasticity after deformation. 

 

 

Fig. 57 Schematic illustration of tangent modulus of elasticity after deformation. 

 

The cyclic loading simulations by using back stress model (treated throughout in this 

section) are carried out. After deformation, with strain values of 0.3, 1.0, 10.0%, the 

secant moduli of elasticity during unloading process are calculated. The results are 

plotted in Fig. 58. 
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Fig. 58 Relation pre-strain value and tangent modulus of elasticity. 

 

It is shown that the secant modulus of elasticity decreases along with increasing pre-strain 

value (about 30% decrease by 10% strain). These calculation results agree qualitatively 

with the experimental results. During unloading process, plastic deformation occurs 

because of the back stress effect and it results in the difference in nominal secant modulus 

of elasticity. 

 

It is also interesting to look at the anisotropy of secant modulus of elasticity after the 

deformation. Thus, 1% uni-axial pre-tension and complete unloading process calculation 

is followed by uniaxial tensile deformation along other two directions (i.e. x-direction 

and y-direction) examining their secant moduli of elasticity. 

 

 

Fig. 59 
Anisotropic tangent modulus of elasticity (the values in three directions 

after unloading). 
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The results (Fig. 59) show that the secant moduli of elasticity in all three directions are 

decreased from initial state after the deformation. The pre-tension is loaded in z-direction 

and so the secant modulus of elastic in x and y directions found to be almost the same 

value. These values are found to be smaller than the one in z-direction. This fact means 

that after deformation, it is easier to induce plastic deformation scale in x and y directions 

than in z-direction because z-direction was pre-deformed and the yield surface has 

already moved forward this direction. This is consistent with previous analysis on 

transformation plasticity. 

 

4.2.6 Effect of cementite phase 

Because pearlite is a composite material composed of ferrite and cementite lamellar, the 

real transformation plasticity can differ from the calculation using average material 

components. To confirm this fact., the volumetric difference between ferrite and 

cementite is calculated by Miettinen’s model5). Transformation volume expansion ratio of 

cementite and ferrite is shown in Table 18. 

 

Table 18 Calculated transformation volume change of Cementite and Ferrite.

Temp.( C)  Ferrite  

Cementite 

 Ferrite  

Cementite 

ratio 

300 7676 7533 0.74 0.26 1.0063 

400 7643 7505 0.74 0.26 1.0061 

500 7609 7470 0.74 0.26 1.0061 

600 7573 7430 0.74 0.26 1.0064 

700 7536 7383 0.74 0.26 1.0069 

 

According to the model, the volumetric difference is not so significant that it cannot 

significantly affect transformation plasticity. 
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Fig. 60 
Calculated results of transformation plasticity with effect of 

Cementite. 

 

The transformation plastic coefficients can be calculated as follows. 

(MPa-1) 

(MPa-1), (MPa-1) 

They are not so different from those of austenite-ferrite phase transformation which are 

presented in the above discussion. 

 

4.2.7 Transformation plasticity at high temperature (viscoplasticity) 

Up to now, we have considerate rate-independent elastoplastic behaviour. However, the 

diffusive phase transformations in steels often occur at high temperature during cooling 

processes comparing to displacive phase transformations. In this case, viscoplastic 

deformation or creep deformation should be taken into account. Viscoplasticy at the slip 

systems scale is usually modelled as a power law between resolved shear stress and slip 

rate, such that 

 (64)

In order to examine the sensitivity of parameters reproducing the stress/strain relation in 

Fig. 12, the following properties are used (four sets of materials constants are chosen;  

indicates set number 1 and so on). 
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Table 19  Parameters for viscoplastic crystal plasticity calculation. 

Materials parameters 1 parent phase daughter phase 

Bulk modulus (GPa) 135.8 150.0 

Shear modulus (GPa) 62.7 69.2 

 (MPa) 50 50 50  50 2400 2400 4400 3000

 (MPa) 41 37 37  37 195 195 350 100 

 (MPa) 55 51 51  51 290 290 590 350 

1.0 1.0 

0.2 0.5 0.5  0.5 0.2 0.2 0.3  0.1 

0.001 0.001 

Constitutive model Hutchinson-Peirce-Pan and Rice (viscoplastic) 

Number of grains 100 100 

 

In these calculations, the parent phase has f.c.c. crystal lattice parameters whereas 

daughter phase has b.c.c.. For the simplicity, we limit the f.c.c. slip systems to {110} and 

{112} (see Table 4). Stress/strain curves are reported on (Fig. 61). 
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              (a) Parameter set                        (b) Parameter set  

 

               (c) Parameter set                       (d) Parameter set  

Fig. 61 

Stress-strain curves by viscoplastic model. 

Parent phase[42]:  (sec-1) 

Daughter phase[1]:  (sec-1) for , 

    (sec-1) for  

 

The transformation plasticity has also been calculated by the FFT viscoplastic model 

with these parameter sets. The transformation duration is defined according to the 

experimental results of S45C pearlitic phase transformation [42]. The calculated 

evolution of strain in case  is shown in Fig. 62. Others show the similar results; the 

transformation lasts about 20 seconds for all cases. 
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                (a) Small applied stress                  (b) Large applied stress 

Fig. 62 Evolution of strain when case . 

 

The strain evolutions in Fig. 62 have more nonlinearity than in Fig. 29 (rate-independent 

case). It is remarked that the strain evolution is more significant in rate-dependent case 

especially at the beginning of phase transformation than in rate-independent case. This is 

caused by the difference of creep resistance in two phases; the parent phase is softer than 

daughter phase. In fact the strain evolutions when parameters  (Fig. 63) show higher 

nonlinearity than those of . It is because the  value of parent phase (austenite) in 

the parameters  is larger than in parameters , and hence more sensitive to the 

applied stress. 

 

 

                (a) Small applied stress                  (b) Large applied stress 

Fig. 63 Evolution of strain when case . 

 

For all cases, the relation between applied stress and transformation plastic strain is 

almost linear like rate-independent problems under small applied stresses. It should be 

emphasised that the results are strongly dependent on chosen parameter sets. These 

results indicate that for the transformation plasticity at high temperature, the stress-strain 
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curves should be measured at least at two strain rates. Furthermore, in this case, present 

analytical models cannot give an appropriate answer. 

 

Table 20 Transformation plastic coefficient results of each parameter set. 

  (MPa-1)  (MPa-1) 

   

   

   

   

Experiment [42]  

 

Table 20 is a summary of transformation plastic coefficient values for each case and 

experimental one. The transformation plastic coefficients are found to be very sensible 

with viscoplasticity. The case  is equivalent to the experimental results found in the 

chapter 3. It may imply that the viscoplastic deformation is responsible for some 

discrepancies between experimental results (of ferrite or pearlite phase transformation) 

and both analytical and numerical ones. This means that not only yield stress but also 

viscoplastic behaviour has to be identified in order to describe accurately transformation 

plasticity at high temperature. 
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4.3 A new approximate analytical model 

A new approximate analytical model will be proposed in this section. The main feature 

of the new model is that it considers plastic deformation of daughter phase and that it 

takes into consideration the external applied stress effect on the deformation of parent 

phase. 

First of all, the plastic deformation of daughter phase is modelled. The existing 

analytical models consider plastic deformation of the parent phase and elastic 

deformation of the daughter phase. However, our calculation results by FFT show that 

the plastic deformation of daughter phase is not negligible especially at the end of phase 

transformation. Hereafter, the transformation plastic strain will be divided into that of 

parent phase and of daughter phase, such that: 

 . (157)

Second, let us discuss the effect of external stress on the parent phase. Leblond [79] has 

neglected the effect of external applied stress when calculating equivalent plastic strain of 

the parent phase. This approximation is valid only when applied stress is enough small 

(this point will be discussed later). However, for large applied stress, the external stress 

effect should obviously be considered. 

On the other hand, we consider that the daughter phase has a spherical form with 

surrounding parent phase. We intend to modify the equivalent strain of parent phase in 

equation (20) by considering external stress effect on the vicinity of daughter phase. We 

denote the applied stress as , and we assume that the additional strain caused by 

external stress reads: 

 , (158)

where  is an angle between applied stress direction and the normal of the surface of the 

sphere shaped daughter phase. The average value over the whole crust can be calculated 

by taking an average throughout the angle: 

 , (159)

where  is newly defined increment of equivalent plastic strain in parent phase with 

the effect of external stress. The modified transformation plastic strain equation of parent 

phase takes the form: 
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 , (160)

where  denotes equivalent stress of applied stress. 

The approximation of an elastic daughter phase is only appropriate when it is much 

harder than the parent phase such as bainite and martensite phase transformation. In 

addition, it is observed the plastic strain of daughter phase is important in the late stage of 

phase transformation. 

Let us again consider the same model employed by Leblond and Taleb, infinite parent 

phase with a spherical inclusion of daughter phase. In this case, the stress state of 

daughter phase can be considered to be uniform. When the external stress  is applied on 

z-direction, the three components of normal stress with angle  from the direction of 

applied stress can be expressed as follows. 

 , 

 . 

(161)

So, the deviatoric component in z direction will be: 

 . 

(162)

If one takes the average value over , 

 . (163)

So, by using Levy-Mises formula, the transformation plastic strain rate of daughter phase 

can be expressed as: 

 , (164)

here  is defined in equation (23) but it should be calculated with the materials 
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parameters of daughter phase. If the yield strength of the new phase is high enough, 

compared to the parent phase, and the applied stress is small, the new model reduces 

Taleb’s model [17]. 

 

4.3.1 Assessment of a new model - rate independent case - 

4.3.1.1 Case of small transformation expansion ( ) 

In this section, the proposed model and existing models are assessed by comparison with 

reference by FFT computations. 

First of all, the transformation plastic strain values which are calculated by FFT when 

phase transformation is completed are plotted in Fig. 64. Here, transformation plastic 

strain by FFT is calculated with following definition. 

 , (165)

where  and  are average total uniaxial strain along the applied stress direction 

and average volume fraction and  is elastic strain. Note that the line “Leblond” 

signifies equation (7) and “Leblond-Mod.” is equation (8). “Leblond-Mod” is an 

enhanced “Leblond” model considering nonlinearity under high external stress. 

 

 

Fig. 64 Relation between applied stress and transformation plastic strain. 

 

One can observe in the Fig. 64 the linear relation between applied stress and 

transformation plastic strain when applied stress is less than 60 MPa. This relation agrees 

with models by Greenwood-Johnson, Leblond or Inoue. The factors of proportionality 

(transformation plasticity coefficient) are;  (MPa-1) for tensile and 

(MPa-1) for compressive applied stresses. Thus, there is no significant 

difference between tensile and compressive applied stresses. On the other hand, 

according to Leblond’s model, transformation plasticity coefficient is 
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(MPa-1). This appears to be in good quantitative agreement. 

For the large applied stresses, the results by FFT predict well the experimental evidence 

that the relation between applied stress and transformation plastic strain will be nonlinear. 

Leblond’s modified model (to describe nonlinearity) overestimates transformation 

plastic strain at large applied stresses. On the other hand, the new model successfully 

estimates the transformation plasticity for all stress regimes. 

 

  
                    (a) 30MPa                                 (b) 50MPa 

  
                    (c) 70MPa                                (d) 90MPa 

Fig. 65 Comparison of evolution of transformation plastic strain. 

 

Second, the whole kinetics of transformation plastic strain evolution during phase 

transformation is analysed. Fig. 65 shows the comparison of evolution curves of 

transformation plastic strain among FFT, model by Leblond (7) and model by Taleb (22). 

According to Fig. 65, Taleb’s model and FFT results agree well at the beginning of phase 

transformation. In contrast, Leblond’s model overestimates transformation plastic strain 

at this stage especially under small applied stresses (figures (a), (b) and (c)). This 

agreement of Taleb’s model and FFT results at the first stage can be explained by Taleb’s 

modification after Leblond’s model: it takes into account the fact that not the entire parent 

phase is subjected to plastic deformation at the beginning of phase transformation. The 

modification is rather important when transformation expansion is relatively small. 

Both Leblond’s and Taleb’s models underestimate the transformation plastic strain at the 
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latter half of phase transformation for every condition. This means that Leblond’s model 

overestimates the transformation plastic strain with respect to FFT results at the first 

stage, which is compensated by the underestimation at the final stage. On the other hand, 

for Taleb’s model, due to its agreement at the first stage, an underestimation at the final 

stage remains. This derives from the assumption that daughter phase is much stronger 

than parent phase and so the plastic deformation of daughter phase can be neglected. This 

explanation will be confirmed in the sequel. 

 

Effect of plastic deformation of daughter phase

In order to distinguish the contribution of parent and daughter phases, equivalent plastic 

strain of each phase during phase transformation is calculated. These results are depicted 

in Fig. 66. 

 

 

                 (a) parent phase                         (b) daughter phase 

Fig. 66 
Strain evolutions of parent and daughter phases during phase 

transformation. 
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50% transformed point and it continues to increase until the end of phase transformation. 

The equivalent plastic strain in daughter phase is not negligible especially at latter half of 

phase transformation. 

From these discussions, it can be concluded that the underestimation of Leblond’s and 

Taleb’s models in the latter half of phase transformation derives from the assumption of 

elastic daughter phase. This supports the idea of equation (157) of the newly proposed 
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model. 

To confirm this analysis, FFT simulations with elastoplastic parent and elastic daughter 

phases are carried out. The macroscopic stress/strain relations of parent and daughter 

phases calculated by using the same FFT model are shown in Fig. 67. The comparison 

among models by FFT, Leblond’s equation (7), Taleb’s equation (22) and new model 

(157)-(164) under several applied stresses are shown in Fig. 68. 

 

 

Fig. 67 
Macroscopic stress/strain curves of parent (elastoplastic) and daughter 

(elastic) phases. 
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                    (a) 10MPa                                 (b) 30MPa 

  
                    (c) 50MPa                                 (d) 60MPa 

Fig. 68 
Comparison of evolution of transformation plastic strain (daughter: elastic 

case). 

 

Fig. 68 shows that Taleb’s equation (22) agrees well with FFT calculation results. This is 

yet another evidence; Leblond’s model agrees well with FFT model at the end of the 

phase transformation and it is because Leblond’s model overestimates the transformation 

plasticity at the first half and it compensate the underestimation at the latter half; Taleb’s 

model agrees well during first half of phase transformation and during latter half when 

daughter phase is elastic but underestimates during latter half when daughter phase is 

elastoplastic. 

The disagreement of FFT results and those of new model is considered to be caused by 

over estimation of plastic deformation of parent phase. This suggests that a correlation 

between yield stresses of parent and daughter phases should be incorporated. 

Fig. 69 represents relation between applied stress and transformation plastic strain for 

daughter phase elastic condition. The transformation plasticity coefficient is calculated as 

(MPa-1) and again there is no significant difference between tensile 

and compressive stress conditions. Comparing to the daughter phase elastoplastic case, 

the transformation plasticity coefficient value is about 20% smaller for daughter phase 

elastic case. This appears also to be quantitative agreement with the difference between 

FFT model and Taleb’s model at the end of phase transformation. 
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Fig. 69 
Relation between applied stress and transformation plastic strain (Pearlite: 

elastic case). 

 

Finally, in order to know the performance of each model, transformation plasticity 

calculation by FFT under increasing/decreasing stress loading conditions are carried out. 

The stress conditions and calculated transformation plastic strain are shown in Fig. 70. 
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                  (c-1) 0 - 50MPa                          (c-2) 50 - 0MPa 

 
                  (d-1) 0 - 60MPa                          (d-2) 60 - 0MPa 

 
                  (e-1) 0 - 70MPa                          (e-2) 70 - 0MPa 

Fig. 70 
Variation of transformation plastic strain under linearly changing stress 

conditions. 
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model agrees well with FFT during first stage of phase transformation but it under 

estimates during last stage; the model estimates well if the daughter phase is elastic. The 

proposed model agrees well FFT throughout phase transformation. Even though the new 

model gives the best estimation among those models, it overestimates the plastic 

deformation of daughter phase, and therefore, it overestimates transformation plasticity at 

latter half of phase transformation. 

 

Mechanism that causes nonlinearity under high applied stress

When the applied stress is large, both Leblond’s and Taleb’s model underestimate 

transformation plastic strain as are shown in figure (c) and (d). In these cases, the linear 

relation between transformation plastic strain and applied stress is never satisfied (Fig. 

64). The reason of this nonlinearity is investigated by FFT computations. 

Many models, such as Greenwood-Johnson [5] or Inoue [87], describe that applied stress 

is linear to transformation plastic strain. Therefore, they are valid only under small 

applied stress conditions. As previously discussed, experimental results show that when 

the applied stress exceeds a half the value of yield stress of parent phase, non-linearity 

occurs. 

Leblond has analytically modelled transformation plasticity along with 

Greenwood-Johnson mechanism [15]. This model consists of 5 main hypotheses which 

are recalled here. 

H1. The microscopic elastic compliance tensor may be equated to the macroscopic 

overall elastic compliance tensor. 

H2. For small or moderately high applied stresses, the austenitic phase is entirely plastic, 

but the  phase remains elastic or its plastic strain rate remains always much smaller 

than that of the  phase. 

H3. Both phases are ideal-plastic and obey the von Mises criterion and the Prandtl-Reuss 

flow rule. 

H4. Correlations between  and  can be neglected. 

H5. For small applied stresses, the average stress deviator in phase 1 is almost equal to 

the overall average stress deviator. 

We now intend to check which assumptions remain valid for the high applied stress 

regime. 

Hypothesis 1 is fulfilled because local elastic anisotropy does not significantly affect 

transformation plasticity. 

Concerning hypothesis 2, Fig. 71 shows equivalent plastic strain distribution at 50% 

transformed state calculated by FFT (643 voxels, 100 grains). The results show that most 
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voxels remain elastic, which is against the hypothesis. The larger the applied stress, the 

more voxels deform plastically. It means that even though there are many parts which 

remain elastic, this hypothesis cannot be the reason for the nonlinearity under high 

applied stress. 

 

 

                (a) Parent phase                         (b) Daughter phase 

Fig. 71 Equivalent plastic strain distribution at . 

 

We do not discuss hypothesis 3 since we perform the calculations of crystal plasticity 

which is not relevant to von Mises and Prandtl-Reuss models. 

Hypothesis 4 can be verified by numerical results. The terms  (Line 1) 

and  (Line 2) are to be calculated during phase transformation. The 

comparison of these two values is shown in Fig. 72. 
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                  (a) 0MPa                                (b) 30MPa 

 

                 (c) 70MPa                                (d) 90MPa 

Fig. 72 
Effect of correlation between  (1) and  (2) at several 

applied stress. 

 

According to Fig. 72, it is clear that correlation between  and  can be 

neglected. Thus, the hypothesis 4 is well verified. In fact, as shown in Fig. 73, the 

resultant transformation plastic strains calculated with H.4 and without H.4 do not show 

substantive difference. This verification has also been performed by Leblond et al. [15] 

by using FEM with J2 plasticity. 
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Fig. 73 Effect of correlation between  and . 

 

Hypothesis 5 is also verified by numerically. As for H.4, the average stress value of phase 

1 and overall stress (average stress of both phase 1 and phase 2) are shown in Fig. 74. 

 

 

                  (a) 0MPa                                 (b) 30MPa 

 

                  (c) 70MPa                                (d) 90MPa 

Fig. 74 Difference between average stress value of phase 1 and overall stress. 
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The maximum difference between average stress of phase 1 and overall stress until 50% 

phase transformation is less than 7%. So the hypothesis 5 is likely to be valid. To confirm 

this, the transformation plastic strain values with several applied stress are shown in Fig. 

75;  without H.5 and  with H.5. In this case, 

 is calculated by using analytical solution given by equation (21). As shown 

in Fig. 75, the hypothesis 5 is well verified. 

 

 

Fig. 75 
Difference between average stress value of phase 1 and overall 

stress. 

 

In contrast to Fig. 73, where one can observe the nonlinearity between applied stress and 

transformation plastic strain, Fig. 75 shows linear relation between them; the difference 

seems to arise from whether the term  is calculated by FFT or by analytic 

solution given by equation (21). 

Fig. 76 shows the transformation plastic strains calculated by equation (16) in which the 

term .is given by analytical solution using equation (21) (1. circle symbol) 

and FFT solution (2. cross symbol). An important discrepancy is observed. 
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Fig. 76 
Difference between analytical solution (circle) and FFT (cross) for 

. 

 

From thse discussions, it can be concluded that the estimation of term  is 

responsible for the nonlinearity under high applied stress condition. In addition, it shows 

that the analytical solution given by equation (21) is accurate for small applied stress but 

it is not valid under high applied stress value. 

The reason why equation (21) is invalid under high applied stress is that the equivalent 

strain increment  is supposed to be initiated only by transformation expansion as 

shown in equation (20). The assumption is valid under small applied stress but applied 

stress effect on equivalent strain increment is no longer negligible when applied stress is 

large. 

 

4.3.1.2 Case of large transformation expansion ( ) 

The case of large transformation expansion is now analysed. The constitutive relations 

are the same as those used for the small transformation expansion case. The calculated 

final values for the transformation plastic strain as a function of several applied stresses 

are plotted in Fig. 77. 
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Fig. 77 Relation between applied stress and transformation plastic strain. 

 

For this large transformation expansion case, the nonlinearity of the relationship between 

applied stress and transformation plastic strain starts at relatively smaller stresses 

compared to the small transformation expansion case. In both cases, the new model 

estimates correctly the magnitude of transformation plastic strain calculated by FFT. 

Especially, it is observed that the nonlinear threshold between applied stress and 

transformation plastic strain is smaller than the half-value of the yield stress of the weaker 

phase. By contraries, the modified Leblond’s model assumes a nonlinear relation between 

applied stress and transformation plastic strain only when the applied stress is larger than 

a half value of yield stress of weaker phase. This causes an underestimation of the 

transformation strain when applied stresses are larger than 30 MPa. It means that the 

classical assumption that the nonlinearity starts from the half the value of the yield stress 

is not always valid. In other words, the threshold value is not only a function of the yield 

stress of the weaker phase but it also depends on the magnitude of the transformation 

expansion. 

Fig. 78 shows the evolution of the transformation plastic strain with time for selected 

applied stresses. 
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                    (a) 30MPa                                (b) 50MPa 

 
                    (c) 70MPa                                (d) 90MPa 

Fig. 78 Comparison of evolution of transformation plastic strain. 

 

In this case, Leblond and Taleb models predict almost the same values because of the 

short period until the parent phase undergoes entirely plastic deformation. In addition, 

these two models greatly underestimate the transformation plastic strain under any 

applied stress conditions. The primary reason for these rather large discrepancies is that 

the effect of external stress on plastic strain in parent phase is more significant for large 

transformation expansion because much more parent phases undertake plastic 

deformation when the transformation expansion is larger than in small transformation 

expansion case. Secondly, these models always omit the plastic deformation of the 

daughter phase. The plastic deformation in daughter phase is also larger when 

transformation expansion is larger than in small transformation expansion case. 

If one takes the average slope of transformation plastic strain calculated by the FFT 

numerical model and proposed new model between 0 and 50 (MPa) applied stresses, the 

transformation plastic coefficients are (MPa-1) and 

(MPa-1) respectively. On the other hand Leblond’s model predicts 

(MPa-1), which is smaller than FFT result and that of new model. 
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4.3.2 Viscoplasticity (rate-dependent model) 

An enhanced analytic model of transformation plasticity will be proposed by considering 

creep strain following the previous numerical investigation on viscoplasticity. 

Let us define a creep constitutive equation as: 

 , (166)

where  and  are fitting parameters. 

In this case, the local stress on the parent phase crust which surrounds the daughter phase 

caused by phase transformation can be expressed as follows. 

 . (167)

Analogous to the discussion on elastoplasticity, the additional effect by external stress is 

introduced. Hence, the final form of the equation is given as follows. 

 , (168)

 . (169)

For the purpose of indentifying the parameters  and  in equations (166) and 

(168)-(169), the creep strain evolutions under 30, 50, 70 and 90MPa constant applied 

stresses are calculated. These parameters are identified by using least square method, and 

the fitted results are shown in Table 21. Note that the stresses are defined in MPa unit. 

 

Table 21  Parameters for viscoplastic crystal plasticity calculation. 

  (parent)  (daughter)  (parent)  (daughter) 

     

     

     

    1.00 

 

The computational results of uniaxial tensile calculation by FFT using crystal plasticity 

with viscoplastic constitutive model (equation (64) with each parameter set designated 

in Table 19) have been carried out. The example of comparison between FFT results and 
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equation (166) with parameter set  in Table 21 are shown in Fig. 79. It shows that the 

fitting procedure (to obtain Table 21) has been successfully performed. 

 

 

                                      (a) Parent phase 

 

                                    (b) Daughter phase 

Fig. 79 
Identification of creep parameters for case . 

(the label “eq.” signifies equation (166)) 

 

The results of transformation plastic strain at the end of phase transformation are shown 

in Fig. 80. The new model agrees well with FFT numerical results for parameter sets , 

 and , whereas it underestimates for parameter sets . The reason why it 

underestimates for the case  is that the work hardening of daughter phase (Fig. 61) is 

much larger in the case  than others. This point indicates that the proposed model 

requires further improvements. 
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                  (a) Parameter set                        (b) Parameter set  

 

                 (c) Parameter set                         (d) Parameter set 

Fig. 80 Calculated transformation plastic strain with viscoplasticity. 

 

4.3.3 Comparison with experimental results at high temperature 

The calculated results of evolution of transformation plastic strain (including 

transformation dilatation) by using FFT numerical scheme (with parameter set  in Table 

19) are confronted with experimental ones (see in chapter 3) on Fig. 81. 

 

 

Fig. 81 
Comparison of transformation strain evolution between calculation 

and experiment. 
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In spite of a good agreement at the final strain values, we obtain discrepancies on the 

kinetic. For small applied stress ( ), the calculated strains by calculation 

evolve gently whereas the experimental results show delayed strain increase and for large 

applied stress ( ) the strains by calculation show rapid increase than those of 

experiment. 

The discrepancies may imply that the parameters which were adopted in these 

calculations were not appropriate to fully describe the transformation plasticity at high 

temperature. This indicates that the strain-rate sensitivity has to be determined 

accurately by experimental measurements. 
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Chapter 5 Conclusions and Perspectives 
 

 

The mechanism of transformation plasticity in fcc-bcc (austenite-ferrite or pearlite) 

diffusive phase transformation and mechanical-metallurgical effect on it are discussed 

throughout this thesis. 

In chapter 3, transformation plasticity is experimentally observed and discussed by 

comparing analytical model by Leblond [15]. Qualitatively, the experimental results 

agree with the analytical model; transformation plastic strain is proportional to 

transformation strain and inverse proportional to yield stress of parent (weaker) phase. 

The transformation plastic strain values of experiment, however, were much bigger than 

estimation by the model. 

In chapter 4, the FFT-based numerical model with crystal plasticity and phase 

transformation were developed. 

By using this model, the metallurgical and mechanical interaction and its influence on 

transformation plasticity has been analysed. 

First of all, the texture effect on transformation plasticity is determined. The texture 

affects yield stress in parent phase and in proportion to it, the transformation plastic strain 

values changes although the effect is moderate. 

Second, grain morphology effect is analysed. It is found that ellipsoidal shaped grains 

cause anisotropic transformation plastic strain. 

Third, it is revealed that if a band structure is produced, it results in anisotropic 

transformation plastic strain, which coincides well with experimental results but the 

magnitude of anisotropy was much weaker for the calculation results than those of 

experiments. 

Fourth, grain size effect is analysed. In order to realise grain size effect, a notion of 

Geometrically Necessary Dislocation (GND) was introduced. The developed model 

confirmed Hall-Petch relation. From the analyses of transformation plasticity with 10 m 

and 100 m average grain sizes, it was shown that the transformation plastic strain of 

10 m grain size is smaller than that of 100 m. The results agree with the analytic models 

as they claim that the transformation plastic strain is inverse proportional to yield stress of 

parent phase. It should also be noted that the high dislocation density appears at the region 

surrounding the daughter phase particles. When two or more daughter particles approach 

each other, the dislocation density gains even higher. 
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Fifth, back stress effect on transformation plasticity was identified. Back stress is 

developed during plastic flow and it causes anisotropic transformation strain as well as 

transformation plastic strain during subsequent phase transformation. 

Sixth, pearlite phase transformation is modelled to compare with ferrite phase 

transformation. Pearlite consists of ferrite and cementite phase and cementite is bigger 

and harder than ferrite. Those effects, as well as their volume percent inside pearlilte 

phase, were taken into account. The results of calculations show no apparent difference in 

transformation plasticity from pure ferrite phase. 

Finally, viscoplasticity was implemented in the crystal plasticity modelling. The 

viscoplasticity was found to be able to explain the discrepancies between experimental 

results and numerical ones. The viscoplastic deformation cannot be neglected during 

phase transformations at high temperature. This is the reason why the numerical model 

developed in this thesis and analytical models agree each other with experimental ones of 

bainite and martensite phase transformations. 

It is found that one should take into account more parameters than the previous 

requirements by Greenwood-Johnson [5] such as back stress and viscoplastic information. 

Nonetheless, it is expected that this thesis cast an indispensable knowledge on 

transformation plasticity and its interaction with thermo-mechanical-metallurgical 

effects. 

In addition, a new analytical model was developed modifying the models of Leblond [15] 

and Taleb [17]. Then transformation plasticity is calculated by means of FFT numerical 

model for two different transformation strain values. By the comparison between 

calculated results and analytical ones, it is revealed that external stress effect causes 

nonlinear behaviour between applied stress and transformation plastic strain; the 

phenomenon is also observed by experiments. It is also found that the plastic deformation 

in daughter phase (stronger phase) also contribute the transformation plastic strain 

especially at the latter half of phase transformation. The new model takes those important 

effects into account and thus it agreed well with FFT numerical results. 

The work on viscoplastic deformation allows to improve the new analytical model. The 

new model was modified by taking into account the viscoplastic behaviour during phase 

transformation at high temperature. The modified model shows good agreement with FFT 

numerical results and experimental results. 

 

Although many phenomena concerning transformation plasticity have been discussed 

throughout this thesis, there still remain many aspects that should be investigated. For 

example, for more deep investigation, it is necessary to measure stress/strain curves at 
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least at two different strain rates. With this, the creep parameters can be identified and the 

new analytical model can be suppose to confrontation with experimental results. 

Furthermore, transformation plasticity during displasive phase transformation was not 

treated. 

Despite these remaining works, this thesis is expected to cast further apprehension on 

transformation plasticity in steels. 
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Appendix A: Large deformation simulation of mono crystalline 

material 

 

In order to identify the effect of rotation of crystallographic orientation, large deformation 

simulation considering rotation is performed. 

 

 

Fig. 82 Description of configuration during deformation. 

 

Fig. 82 shows a schematic view of configurations of reference, before deformation and of 

current. Using this notion, engineering stress  (1st Piola-Kirchhoff stress) is defined 

as follows. 

 , (170)

where  is a surface where the force  is acting before deformation. The Cauchy 

stress  and 2nd Piola-Kirchhoff stress  are: 

 , (171)

 . (172)

And Nanson’s theorem connects both surfaces of before deformation and current such 

that, 

 , (173)

where  and  represent density of the material before deformation and that of current 

state.  is deformation gradient. If we define  a determinant of the deformation 

gradient , these three stresses are related with using  such that, 

Reference configuration Current configuration 
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 , (174)

 , (175)

 . (176)

And the equilibrium condition is: 

 . (177)

If one considers the current configuration as reference configuration, i.e. update Lagrange, 

following equations are satisfied, 

 ,  ,  ,  , (178)

where  is velocity gradient. In this case, each stress rate can be written as 

follows 

 , (179)

 , (180)

with the equilibrium condition: 

 . (181)

In contrast, for the solution by FFT, the material points have to be fixed in the calculation 

space. This means that the transportation equation of internal variables should be solved 

and they have to be interpolated/extrapolated to Euler coordinate. For example, ALE [88] 

or particles-in-cell method [89] may be incorporated with FFT method. 

For large deformation problems, constitutive equations should not be dependent on the 

coordinate which observers define. First of all, suppose that velocity gradient  can be 

divided into elastic  and plastic  parts, such that 

 . (182)

This elasto-plastic decomposition is explained in Fig. 83. The total deformation gradient 

is divided into plastic part , which impose no rotation of slip vectors  and , and 

elastic part , which impose rotation of slip vectors. 

 

Fig. 83 Elasto-Plastic decomposition of deformation gradient. 
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The plastic part  is a summation of shear slips of each slip system. 

 . (183)

Splitting  into symmetric and asymmetric part, such that 

 , (184)

 . (185)

 is plastic strain (stretching) tensor and  is plastic spin tensor. Then we consider 

elastic part of , i.e. . The symmetric and asymmetric part of  are: 

 , (186)

 . (187)

Local stress can be considered as result of elastic deformation rate. Then one can write as 

follows. 

 . (188)

Because , equation (188) can be deformed as, 

 . (189)

If we introduce stress Jaumann rate: 

 , (190)

using equation (185), (188) and (189),the Jaumann rate of Cauchy stress becomes as 

follows. 

 .

 (191)

The solution of equation (191) by using FFT is given by following. Again we introduce 

the polarisation tensor . In contrast to previous discussion, for the purpose of 
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calculating spin, stress rate and strain rate are calculated instead of total stress and strain. 

Starting with equation (191) with polarisation tensor, we obtain: 

 , (192)

and rewriting the equilibrium condition: 

 . (193)

Equations (192) and (193) in the Fourier space are: 

 , 

 . 

(194)

Eliminating  from equation (194), we obtain 

 , (195)

where 

 , (196)

and, 

,  . (197)

Thus, the stretching (strain) and spin rate tensor can be solved: 

 ,
 

(198)

(199)

where 

 .
 (200)

FFT method uses Euler type mesh, which means that the calculation points are not set on 

the materials points but on the special points. It means that for the solution of large 

deformation, one should take the transportation equation into account. 

The iterative solution is follows. 

Iterative algorithm (without transportation equation)
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Initialise,  at the last step,  

Iteration n+1:  and  are already known 

(b) Check convergence  

(c)    

(d)    

(e)  

(f)  

(g)       

when converged, 

(h)  

(i)  

 

In addition to above FFT solution, following hardening law is applied. Starting with 

Baily-Hirsch equation for visco-plastic materials: 

 , (201)

where  is resolved shear stress,  is a dimensionless constant,  is Young’s modulus 

and  is magnitude of Bergers vector. Then, the extended hardening model is obtained 

as: 

 , (202)

or for visco-plastic model: 

 , (203)

where  is effect of each dislocation density  on . The rate form of equation 

(203) is: 
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 . (204)

Tabourot et al.[50] used a model by Mecking and Estrin[51]. In this model, ( ) 

dislocation evolution is expressed as a summation of each dislocation forest ( ) and 

annihilation of ( ) dislocation controlled b the mean distance  such that, 

 . (205)

The interaction matrix  takes the values shown in Table 23. 

In order to conform to Hutchinson model, let  a redefined hardening parameter, such 

that: 

 , (206)

then the whole procedure of finding slip rate  will be exactly the same as equation (57). 

 

Table 22  Parameters values for Cu metal [50]. 

(K) (GPa) (m) (s-1)  (m-2)   

  

 

     

 

Table 23  Interaction coefficients represented by parameters in Table 7. 

     

0.2 0.3 0.4 0.4 1.0 0.2 

    if  0.0 

    if  1.0 

 

The strain value of  slip system  is determined by following visco-plastic model. 

 . (207)

 

The single point is employed for the calculation. The point is loaded toward  

direction and its strain and resolved shear stress are observed. 
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Results and discussion

Obtained stress-strain curve of primary glide is shown in Fig. 84, and comparison of 

primary and secondary glide is shown in Fig. 85. 

 

 
Fig. 84 Stress-strain curve of primary glide. 

 

 
Fig. 85 Comparison of strain value between primary and secondary glide. 

 

From Fig. 84 and Fig. 85, it is clear that from about 20% of primary slip strain, the 

secondary glide is activated. Right after the activation of secondary glide, because of the 

latent hardening, the resolved shear stress increases. The activation of secondary glide is 

due to the rotation of crystallographic orientation. 

Fig. 86 shows the position of the initial tensile axis  during deformation. It is also 

confirmed that after the activation of secondary glide, the rotating direction is changed. 

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

R
e
so
lv
e
d
sh
e
e
r
st
re
ss
(M

P
a
)

Strain

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

S
e
co
n
d
a
ry

st
ra
in

Primary strain



 

148 
 

 

 

Fig. 86 
Inverse pole figure of  axis (initial loading direction) during 

deformation. 
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