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Motivation

The object of the present work is to investigate experimentally several aspects of the
interaction between internal gravity waves and their surrounding medium. In particular,
we study the effect of internal waves over particles either, settled at a boundary or in
suspension in a fluid. In order to appreciate why the transport properties of internal waves
are relevant, it is pertinent to situate internal waves in their natural geophysics context:
the atmosphere and the ocean.

Internal gravity waves propagate in stratified environments. The ocean and the atmo-
sphere having this property are a suitable medium for these waves. In the atmosphere, in-
ternal waves are principally produced by the passage of wind over topography. In the ocean,
the main generation of internal waves is produced by tide forcing over the seafloor [74].
Nevertheless, internal waves can also be generated in the ocean by the interaction with the
atmosphere through surface processes as for example large scale thunderstorms [21].

When internal gravity waves interact with oceans boundaries, it is possible to observe
strong increases of the velocities respect to their mean value [4]. In particular, when the
angle of the bottom seafloor and the angle of propagation of the wave’s energy coincide
(named critical reflection), it is known that there will be a focalization of the wave and
therefore an amplification. This effect has been shown theoretically, [57, 69, 19, 63], verified
experimentally [37, 20, 18] and numerically [15, 64], as well as measured in the ocean [29,
44, 53].

The strong bottom shear generated by internal waves reflection can be a possible mech-
anism of erosion of the seafloor. The reflection of internal waves can, as well, generate
turbulence mixing [41, 44, 15, 64], affecting the global oceanic energy budget. Neverthe-
less, the main interest of this work is centered in the properties of erosion and transport
of matter generated by internal waves. In fact, many observational studies indicate that
internal gravity waves are a cause of sediment resuspension [40, 5, 11, 59].

Reflections of internal waves can occur by remotely generated waves, or by tidal forcing
over sloped topography. In this last case, bottom velocities and bottom shear stresses
should be highest where the slopes are critical [24, 76]. This will occur for a specific
combination of forcing frequency (semi-diurnal tide) and gradient of density. Therefore,
the increase of bottom shear produced by critical reflections generates a feedback process:
erosion will be favored to occur for critical angles, and at the same time, the erosion will
produce larger regions suitable for the waves to be critical over the slope. In consequence,
the angles of energy propagation of semidiurnal internal tides may determine the average
gradient of continental slopes in ocean basins (∼2 to 4 degrees) [12]. In addition, when
shear velocities are high enough they can inhibit deposition of fine-grained sediment onto
the slopes.

1



Motivation

Thesis plan

We propose an experimental study of internal gravity waves for conditions that mimic
oceanic situations where erosion and transport of particles may occur. The order in which
this work is presented follows chronologically the order in which experiments have been
performed. This is a consequence of the explorative character of this investigation.

The propagation of internal waves occur exclusively in stratified fluids. In chapter 1
we introduce the notion of buoyancy restoring force in stratified systems, that lead to
the generation of internal waves when perturbed under specific conditions. The principal
physical aspects of internal gravity waves are then introduce, in particular the special case
of internal waves reflection. We present the conditions of atmospheric and oceanic systems
and how internal waves propagate in them, given that one of the main motivation of this
work relies on the existence of internal waves processes in geophysical systems.

The study of internal waves has been performed through the realization of experiments.
In the second chapter we introduce the main techniques to produce the appropriate condi-
tions for the generation and visualization of internal waves in a well controlled environment
in the Laboratory.

In chapter 3 we introduce the principals features of granular motion, in particular,
we introduce the physical conditions necessary for motion initiation of settled particle in
a fluid. Explorative experiments developed to study the motion of particles induced by
internal gravity waves, are presented, where no bed load transports was observed.

The limitations of internal waves in generating bed load transport in the laboratory,
motivated us to performed a detailed study of a particle configuration of internal waves
reflection, called critical reflection, which is presented in chapter 4. This reflection occurs
when the angle of inclination of a boundary slope coincides with the direction of propa-
gation of the waves, in consequence a intense focalization is produced at the proximities
of the boundary, enhancing the capability of producing erosion. In order to effectuate an
accurate separation of the wavefield in the proximities of the boundary, a signal processing
method has been developed in a collaborative work, and is presented in this chapter. The
high resolution measurements combined to the post-processing techniques allowed to com-
pare our results with a theory in internal waves near-critical reflections. This comparison
shows that the theory predicts fairly well our experimental results. This theory allows us
to perform extrapolation to experimental configurations beyond our experiments and to
oceanic situations.

In chapter 5 we describe the study performed for the interaction of internal gravity
waves and particles in suspension. We describe a technique developed to generate a column
of settling particles. We measured the effect that many particles in suspension have over
the propagation of internal waves, and we studied the effect that the waves produce over the
column of particles. We observed that the particles can be driven by the waves generating
oscillatory trajectories and in some cases generating a net displacement of the particles. A
model is proposed which describes qualitatively the displacement of the particles induced
by internal gravity waves.

2



Chapter 1

Introduction to internal gravity

waves

Wave cloud pattern in southern Algeria. Source:

Wikipedia.

A stratified environment is a medium that
changes its thermodynamics properties (as
temperature, salinity, density, velocity, mo-
mentum) with its vertical location. When dif-
ference of density exists within a fluid, it will
tend to redistribute driven by the force of grav-
ity so that the lighter fluid remains above the
heavier forming a stable stratification profile.
This particular configuration will be stable in
time and if not perturbed, static. When the
fluid is slightly vertically displaced, it will feel
a buoyancy restoring force acting in a direc-
tion opposite to the displacement. The force
will act as a spring, and therefore the fluid
will oscillate around an equilibrium position.

These oscillations are know as internal gravity waves, which differ from the well known
surface waves, as they occur inside the fluid where the density of the fluid changes contin-
uously.

The atmosphere is stratified in temperature, and the ocean is stratified in both salinity
and temperature. Our main motivation for understanding the dynamics of internal gravity
waves is that they occur naturally in these systems. These waves have an effect over the
dynamics of stratify systems, and may be taken into account to be able to better predict
large scale effects such as transport of energy and matter.

3



1. Introduction to internal gravity waves

1.1 Physics of internal gravity waves

We will introduce the analytical elements necessary to describe internal gravity waves. We
will estimate the forces involved in a stably stratified fluid, and deduced the existence of
a restoring force, when the fluid is displaced from its equilibrium position. Force that
allows the existence of oscillatory processes, that as will be shown, can be described by
waves, under the linear and Boussinesq approximation. The effect of viscous dissipation
and diffusive processes over internal waves will be studied. Internal waves own a peculiar
dispersion relation that results in nonintuitive properties, in particular when a wave reflects
over a solid boundary. We will present special attention to this latest process, as it will be
further studied experimentally.

1.1.1 Stable density profile and restoring force

A stratified fluid is a fluid for which its density changes with position. Under gravity,
fluid parcels of various densities will arrange in a way that the higher densities are found
below lower densities. This effect will generate a vertical layering, leading to an anisotropic
medium.

Leaving aside the reorganization and dynamics of a stratified fluid into a vertically
stratified fluid, let us consider the static equilibrium in the latter situation. The lack of
motion requires the absence of lateral forces, and therefore horizontal homogeneity. The
mechanic equilibrium of this fluid relies in the equilibrium between the gravity force and
the pressure force, that is, the local hydrostatic relation,

∂P

∂z
= −ρ̄(z)g, (1.1)

where g is the acceleration of the gravity, ρ̄ the local density of the fluid in repose and P
the pressure over the fluid. The direction of the vertical axis, z is upwards, opposite to the
direction of the acceleration of the gravity.

If we consider a fluid parcel of density ρ1, then the action of the hydrostatic pressure
over the fluid parcel can be interpreted, through Archimedes principle, as a vertical force
equal to the weight of the volume of the displaced fluid. In units of volume this force is,

Fp = ρ̄(z)g. (1.2)

In addition to this force there is the gravity force, in units of volume Fg = ρ1g. The
balance of forces is then,

∑

i

Fi = Fg + Fp = (ρ̄(z)− ρ1)g. (1.3)

A fluid parcel will then go upwards if it is lighter than the surrounding fluid, and will go
downward when heavier. This balance of forces explains why stable stratified fluid density
increases in the direction of g.

In the case that the fluid parcel have the same density as the surrounding fluid, then
the resulting forces will be null and the fluid parcel will be at equilibrium. If this balance
is produced at height z1 such that, ρ̄(z1) = ρ1, then when displaced δz from the position
z1, Newton’s laws predict the consequent motion of the fluid parcel dynamics,

ρ1
d2δz

dt2
= (ρ̄(z1 + δz)− ρ1)g. (1.4)

4



1.1. Physics of internal gravity waves

Assuming small displacements δz of the fluid parcel, and recalling that ρ̄(z1) = ρ1, we
obtain,

d2δz

dt2
=

ρ̄(z1 + δz)− ρ̄(z1)

ρ̄(z1)
(1.5)

=
g

ρ̄(z1)

dρ̄
dz

∣

∣

∣

∣

z1

δz, (1.6)

= −N2(z1)δz. (1.7)

Equation (1.7) is the differential equation of a harmonic oscillator of frequency N , called
the buoyancy frequency. The vertically displaced fluid parcel in a stratified fluid feels a
buoyancy restoring force acting in the opposite direction of the displacement.

In general, the buoyancy frequency is defined as,

N2(z) = − g

ρ0

dρ̄
dz

∣

∣

∣

∣

z

, (1.8)

where ρ0 =< ρ̄ > is the averaged density1. The value of the buoyancy frequency will be
real when the density increases in the direction of g, and imaginary when the density
decreases in the direction of g, and therefore, unstable. The buoyancy frequency N ,
therefore, characterizes the gradient of density of a stratified fluid. When N is large,
the stratification is strong, and when N is small, the stratification is weak. A perturbation
of the fluid within a stratified medium generates an oscillation that will persist until its
dissipated by viscosity.

1.1.2 Linear internal waves

The oscillatory perturbations that propagate in a stratified fluid are called internal waves.
We will describe under which conditions these waves arises from the equation of motion.
We consider an incompressible stratified fluid characterized by a buoyancy frequency N .
Under this condition the Navier-Stokes equation in a non-rotating frame is

∂u

∂t
+ (u · ∇)u = g − ρ̄

ρ
g − 1

ρ
∇P + ν∇2u, (1.9)

the incompressibility of the fluid implies,

∇ · u = 0, (1.10)

and the conservation of mass is represented by

∂ρ

∂t
+ u · ∇ρ = κ∇2ρ, (1.11)

where u = (u, v, w) is the velocity of the fluid in cartesian coordinates, ν is the kinetic
viscosity of the fluid and κ is the mass diffusion coefficient of the stratifying agent (temper-
ature or salinity). The density ρ = ρ̄+ ρ′ is expressed as the addition of a term associated
with the average density ρ̄, and a term associated to the fluctuations of density ρ′.

We will work in the simplified case in which the flow is two-dimensional and contained
in the plane (xOz), that is, there is no variations along (Oy). Under this assumption, the

1Equation (1.8) is derived assuming that density is independent of pressure, which is not true for
extreme deep ocean conditions.
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1. Introduction to internal gravity waves

velocity field can be expressed by the streamfunction ψ, so that (u,w) = (−∂zψ, ∂xψ). We
can then rewrite equations (1.9) and (1.11) as,

∂tzψ + J(∂zψ, ψ) = − 1

ρ
∂xP + ν∂z∇2ψ, (1.12)

∂txψ + J(∂xψ, ψ) =
ρ′

ρ
g∂zP + ν∂x∇2ψ, (1.13)

∂tρ
′ + J(ρ′, ψ) = κ∇2ρ′ +

dρ̄
dz
∂xψ, (1.14)

where J is the Jacobian defined by J(f, g) = ∂xf∂zg − ∂zf∂xg.
In the limit where the fluctuations of density vary by a small fraction with respect to its

average value, that is, ρ′ ≪ ρ̄ and ρ̄ ≈< ρ̄ >= ρ0, it is convenient to assume the Boussinesq
approximation. This is justified for the range of densities used in our experiments, between
ρ = 1000 g·L−1 and ρ = 1050 g·L−1, where we observe variations of the density of the order
of g·L−1. In the Navier-Stokes equation, this approximation implies differences of densities
are sufficiently small to be neglected, except where they appear in terms multiplied by the
acceleration of the gravity g.

In addition to the Boussinesq approximation, we performed the x derivative over equa-
tion (1.12), and the z derivative over equation (1.13), so that when both terms are added,
the pressure contributions will cancel each other. Equations (1.12-1.14) reduce to,

∂t(∇2ψ) + J(∇2ψ,ψ)− ν∇2(∇2ψ) =
g

ρ0
∂xρ

′ (1.15)

∂tρ
′ + J(ρ′, ψ)− κ∇2ρ′ = −N2 ρ0

g
∂xψ. (1.16)

This system describes the non-linear dynamics of a viscous stratified fluid, where the
stratifying agent diffuses in time. We will neglect the non-linear terms of equations (1.15)
and 1.16 in order to study the dynamics of linear waves. The system of equations are then,

∂t(∇2ψ)− ν∇2(∇2ψ) =
g

ρ0
∂xρ

′ (1.17)

∂tρ
′ − κ∇2ρ′ = −N2 ρ0

g
∂xψ. (1.18)

We search for plane wave type solutions, that is, ψ = Ψ0e
i(ωt−k·x) and ρ′ = ρ′0e

i(ωt−k·x).
The system of equations (1.17) and (1.18) can be written in a matrix form,

(

−|k|2 (iω + ν|k|2) i g
ρ0
kx

iN2 ρ0
g kx iω + κ|k|2

)(

ψ
ρ′

)

=

(

0
0

)

, (1.19)

where we have used the explicit form of k = (kx, kz) and |k| =
√

k2x + k2z . This system
presents non trivial solution only if the determinant in the matrix containing the ω and k

is null, that is,

|k|2 (iω + ν|k|2)(iω + κ|k|2) +N2k2x = 0. (1.20)

Equation (1.20) is the full solution of the dispersion relation for linear internal plane
waves propagating in a stratified fluid. We will present some limiting cases for which
diffusion and viscosity can be neglected.
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1.1. Physics of internal gravity waves

z
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cϕ
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cg

cϕ

Figure 1.1: The four possible configurations of internal wave beams created by an oscillating
body at fixed frequency.

Non-viscous and non-diffusive fluid

We will proceed to describe the case of a fluid where dissipative effects, such as diffusion
and viscosity, are negligible. In this case, equation (1.20) is reduced to,

(

ω

N

)2

=
k2x
k2

i.e.
ω

N
= ±|kx||k| . (1.21)

This relationship can be rewritten in the form,

ω

N
= ± sinβ (1.22)

where β is the angle between the wavenumber and the vertical.

For a given frequency, the four possible internal plane waves satisfying equation (1.22)
(or equation (1.21)) have wavenumbers, (±kx,±kz), and are shown in figure 1.1. The
wavelength of the internal waves will be imposed by the size of the forcing oscillation,
since the dispersion relation explicits the direction of propagation of the wave but not its
wavelength.

The dispersion relation contains the anisotropic character of the internal waves. The
group and phase velocities are, respectively,

cg = ±N|kx|
|k|3

k, (1.23)

cϕ = ±N sign(kx)kz
|k|3

(kz,−kx), (1.24)

We obtain, therefore, that the group and phase velocities have a peculiar relationship:
the group velocity is perpendicular to the phase velocity (or to the wavenumber k). In
particular the vertical component of the group velocity is always opposite to the vertical
component of the phase velocity, as shown in figure 1.1. Waves that appear to be prop-
agating their phase upwards will be propagating their energy downwards, and vice versa.
Energy travels along the crests and valleys and not perpendicular to them. The angle β
can also be seen as the angle between the horizontal and the group velocity of the waves
cg.
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1. Introduction to internal gravity waves

Internal waves in a viscous fluid

When taking into account the viscosity of the fluid, and yet neglecting diffusivity, the
dispersion relation of equation (1.20) becomes,

(

ω

N

)2

− iν
k2

N

(

ω

N

)

− k2x
k2

= 0. (1.25)

The discriminant of this second order polynomial for ω/N is,

∆ = −ν2 k
4

N2
+ 4

k2x
k
. (1.26)

Depending on the values of the horizontal and vertical component of the wavenumber k,
the discriminant may be positive or negative for a fixed viscosity ν, . The discriminant will
determined if the roots of the polynomial (and therefore the value of ω/N) are complex or
purely imaginary. If ∆ < 0, ω/N is purely imaginary, and the wave will be evanescent. If
∆ > 0, ω/N will present an imaginary and a real part. For the latter case, the frequency
can be written as

ω = ωr + iωi, (1.27)

where

ωr = ±N
√

k2x
k2

− ν2k4

4N2
, and ωi =

νk2

2
. (1.28)

The viscosity not only generates the appearance of an imaginary frequency, it also mod-
ifies its real part. Nevertheless, for the range of wavenumbers employed in our experiments,
the real part of the frequency will be modified less than 1% because of viscosity.

The imaginary part of the frequency is responsible for viscous attenuation of the wave.
In a right-handed coordinate system attached to the wave2 (η, ξ), where η is in the direction
of cg. In this coordinate system the wave will be,

ψ = Ψ0e
i(ωt−|k|ξ), (1.29)

where the propagation of the wave is such that, η = cgt, and cg = N |kz| /k2. The
contribution of the imaginary part of the frequency will be given by the term e−ωit, where,

ωit = ωi
η

cg
, (1.30)

=
ν|k|3

2
√
N2 − ω2

η. (1.31)

The plane wave can be rewritten in the attached coordinates as,

ψ = Ψ0e
−Ληei(ωt−|k|ξ), (1.32)

where Λ = |k|3
2
√
N2−ω2

, preferentially attenuates the higher wavenumbers (or shorter wave-

lengths) for a fixed frequency ω.

2The coordinates (η, ξ) attached to the wave will be used repeatedly in this work.
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1.1. Physics of internal gravity waves

Internal waves in a viscous, diffusive fluid

When diffusion of the stratifying agent is considered, the polynomial on ω/N becomes,

(

ω

N

)2

− i(ν + κ)
k2

N

(

ω

N

)

−
(

νκ
k4

N2
+
k2x
k2

)

= 0. (1.33)

The determinant of this polynomial is,

∆ = −ν2
(

1 +
1

Sc

)2
k4

N2
+ 4

k2x
k2
, (1.34)

where the Schmidt number, Sc = ν/κ compares the viscous and the diffusive effects. Thus,
for salt water Sc ∼ 700, the determinant can be considerer as equal to the determinant
computed for a viscous non-diffusive fluid.

In the studies presented in this work we will neglect diffusive effects in the fluid.

1.1.3 Vertical modes

We have previously searched for plane wave type solutions, considering that the surround-
ing medium is arbitrary large. In the ocean and atmosphere, internal waves are vertically
confined. We will search for a wave solution of the vertical mode type, that is,

Ψ = Ψ0f(z)exp(i(ωt− kxx)). (1.35)

For a non-viscous and non-diffusive fluid, equations (1.17) and (1.18) can be reduced
to the expression,

∂tt∇2Ψ+N2∂2xxΨ = 0. (1.36)

For the vertical mode type solutions we obtain,

d2f

dz2
+ k2x

(

N2

ω2
− 1

)

f(z) = 0. (1.37)

We will imposes that the fluid cannot traverse the vertical boundaries (at −H/2 and
H/2), and therefore have null vertical velocity at these vertical locations. These conditions
are satisfied if f(−H/2) = 0 and f(H/2) = 0. The functions f satisfying the differential
equation and the boundaries conditions are,

fn(z) ∝ cos

(

(2n+ 1)
π

H
z

)

, (1.38)

where n is an integer number. The full solution for the vertical mode will correspond to
the superposition of all the solutions fn,

Ψ =
∞
∑

n=0

An cos(kznz)e
i(ωt−kxnx), (1.39)

where An are integration constants, kzn = (2n+ 1)π/H and kxn is calculated through the
dispersion relation (equation 1.21).
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1. Introduction to internal gravity waves

Figure 1.2: Schematic view of an internal wave reflection. The angle between the bottom
slope and the horizontal is γ; the angle between the incident group velocity and the hor-
izontal is β, and α = γ + β. cg indicates the group velocity and g indicates gravity. The
horizontal and vertical axis, as well as the axis attached to the slope, are indicated.

This solution represents a stationary wave over the vertical coordinate and propagative
over the horizontal coordinate. Moreover, each mode can be decomposed as the superpo-
sition of two plane waves with wavenumbers, kn↑ = (kxn, kzn) and kn↓ = (kxn,−kzn), one
going upwards and one going downwards.

In this work we will use the vertical mode associated with n = 0, for this case the
horizontal and vertical velocities are respectively,

u = u0 sin

(

π

H
z

)

cos(ωt− kxx), (1.40)

w = w0 cos

(

π

H
z

)

sin(ωt− kxx), (1.41)

where kxu0 = w0π/H, the relation between the horizontal and vertical velocity is obtained
from the incompressibility relation.

1.1.4 Reflection of internal gravity waves

The peculiar dispersion relation and the nonintuitive relation between group velocity and
the wavenumber lead to some very unusual physical consequences. In particular, when
internal waves are reflected on a sloped boundary the frequency is conserved, and there-
fore, its angle of propagation. In consequence, nonintuitive effects including reflection,
focalization and wave attractors [45, 62, 17] will emerge when internal waves interact with
boundaries. In the following, we will formally introduce the linear theory of internal wave
reflections. This process will be extensively studied through experiments in this work (see
chapter 4).

Inviscid incident wave

The linear theory of internal waves reflection was first developed by Phillips [57]. This
theory is based on having a known incident wave reflecting at a sloped boundary [56]. For
simplicity let us consider a two-dimensional non-viscous incident plane wave propagating in
a linearly stratified fluid characterized by the buoyancy frequency N . The representation
of this wave by the streamfunction is,

ψinc(r, t) = Ψincei(k
inc

r−ωinct), (1.42)

10



1.1. Physics of internal gravity waves

where the superscripts inc refer to the incident wavefield, and kinc and ωinc satisfy the
dispersion relation (1.22). The representation of an internal wave reflection is sketched in
figure 1.2.

Boundary conditions

The solid boundary at which the reflection takes place satisfies z = x tan γ, where γ is the
angle of inclination of the slope with respect to the horizontal. The reflected wave has
unknown frequency ωrefl and wavenumber krefl. Nevertheless, we know that the reflected
wave satisfies the dispersion relation of equation (1.22). We can write the reflected wave,
generally, as

ψrefl(r, t) = Ψreflei(k
refl

r−ωreflt). (1.43)

The complete wavefield is therefore given by,

ψ = ψinc + ψrefl. (1.44)

In the non-viscous case, the boundary condition is satisfied when the normal to boundary
flow is null at the boundary.

We define the attached to slope coordinates (xs, zs), which simplifies the description
of the boundary conditions. This coordinates system can be obtained by performing a
counterclockwise rotation of (x, z) by an angle γ, explicitly,

[

xs
zs

]

=

[

cos γ sin γ
− sin γ cos γ

][

x
z

]

. (1.45)

The boundary for this coordinate system is therefore located at zs = 0. The velocity
field in this coordinate system is (us, ws) = (−∂zsψ, ∂xsψ). In the same way, the wavenum-
bers can be written as, k = (kxs , kzs). The non-normal flow condition at the boundary in
this coordinate system, can be written as,

ws |zs=0= 0, ∀xs, t. (1.46)

Applied to the wavefield, equation (1.46) becomes,

kincxs
ψinc + kreflxs

ψrefl |zs=0= 0, ∀xs, t, (1.47)

or,

kincxs
Ψince(k

inc
r−ωinct) + kreflxs

Ψrefle(k
refl

r−ωreflt) |zs=0= 0, ∀xs, t, (1.48)

which is satisfied if

ωrefl = ωinc, (1.49)

kreflxs
= kincxs

, (1.50)

Ψrefl = Ψinc = Ψ0. (1.51)

Thus, the frequency and the component of the wavenumber parallel to the boundary
are both conserved under reflections. The normal to the boundary wavenumber of the
reflected wave can be determined by geometric construction and the dispersion relation.
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1. Introduction to internal gravity waves

Figure 1.3: Sketch of an internal wave reflection. (a) The wave incoming from the left
will be reflected in the direction of the dashed line for an usual wave reflection, and in
the direction of the solid line for an internal wave reflection. (b) For an internal wave
reflection, a sloped boundary produces focalization of the reflected wave.

Conservation of the frequency and focalization

The conservation of the frequency under reflection implies that β = sin−1(ω/N), the angle
of propagation of the wave, is preserved regardless of the orientation of the boundary. For
more familiar specular reflections, as an acoustic or electromagnetic wave reflection, the
wavenumber perpendicular to the boundary is conserved. This is not the case for internal
waves. This comparison is illustrated in figure 1.3(a). An incident wave coming from the
left will reflect following the red dashed line for an acoustic or electromagnetic wave, and
will follow the red solid line for an internal wave reflection.

An implication of the conservation of the frequency under reflection is that the sloped
boundary focuses or defocuses the wave. Focalization or de-focalization occur depending
on the relation between the angle of propagation of the incident wave β and the angle of
the slope γ. In this work we will restrict to reflections that produce focalization of the
reflected wave (as can be seen in figure 1.3(b)). For a more extensive analysis of internal
wave reflections see Gostiaux [35].

For focalization reflections the relation between the magnitude of the wavenumbers is,

∣

∣

∣krefl
∣

∣

∣

∣

∣kinc
∣

∣

=
sin(β + γ)

sin(β − γ)
, (1.52)

written in terms of the wavelength,

λrefl

λinc
=

sin(β − γ)

sin(β + γ)
. (1.53)

The focalization of the wave will modify the amplitude of the oscillations. In particular,
the shearing amplitude will be given by

Umax =
2πΨ0

λ
. (1.54)

Therefore, the focalization of the reflected wave implies an amplification of the wave,
and as β → γ the amplification increases. To summarize, when a internal wave is focused
after a reflection, the reflected wave will have a smaller wavelength and a larger shearing
velocity.
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1.2. Internal waves in the atmosphere and ocean

Critical reflection

When the angle β approaches the angle γ, the reflected wave focused in a decreasing
size section of width λrefl, where all the energy of the incident wave is concentrated,
generating large shearing velocities. In addition, the wave propagates increasingly close to
the boundary. We expect therefore for β = γ, called critical reflection, the reflected wave
to have the following properties,

• A null wavelength.

• An infinite amplitude.

• A null velocity group.

We can anticipate that such short scales would be affected by friction and are likely to
be dissipated.

The model for linear reflections is a good representation of internal wave reflection
when the angles β and γ are not very close. When β ≈ γ one can observe that there is a
singularity for the reflected wavenumber. In chapter 4 it will be shown how this singularity
can be healed by considering viscous and non-linear effects.

1.2 Internal waves in the atmosphere and ocean

The atmosphere and ocean are naturally stratified systems. The gradients of density change
with height (or depth), seasons and the spatial localization around the globe. The ocean
and atmosphere are suitable media for internal waves to propagate.

1.2.1 Stratification of the ocean and the atmosphere

Atmosphere

The atmosphere has been earth’s first fluid layer to be studied. The changes in the to-
pography allow to measure the change in the gradients of pressure and temperature in
the lower section of the atmosphere. More recently, weather balloons have been widely
used to measure these profiles at much higher altitudes, manifesting the layer structure
of the atmosphere, as shown in figure 1.4, where the temperature as a function of the
vertical location is plotted. The subdivision of these layers is performed following the rela-
tive strength of the stratification at different altitudes. Starting from the bottom surface,
the first layer is the troposphere which is below the stratosphere. Even higher is located
the mesosphere, and finally the thermosphere, which extends to about 600 km altitude.
Beyond is the exosphere and space.

In figure 1.4 we can observe that the gradients of temperature will present different
behavior at different heights of the atmosphere. In the stratosphere the temperature in-
creases with height, in contrast to the trend in the mesosphere and the troposphere, where
the temperature decreases with height. This profile seems to indicate that the atmosphere
is not stable.

The study of the stability of the atmosphere, which is a compressible fluid, needs in
fact the introduction of lapse rate, which is the measure of the change of temperature with
height. The dry adiabatic lapse rate takes into account that if air is lifted upwards, then
its temperature will decrease as a result of cooling when it expands in the lower pressure
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1. Introduction to internal gravity waves

Figure 1.4: Schematic representation of the main layers of the atmosphere, which are
determined by the thermal variations with height. Extracted from [67].

Figure 1.5: Wake of atmospheric internal waves downstream of Amsterdam island, located
at southern Indian Ocean.

surroundings at a rate of 10◦ for each km upwards3. Adjusting the environment lapse rate
with the dry adiabatic lapse rate, the profile becomes stable. The environmental me an
density profile from which one defines the lapse rate is therefore the relevant magnitude to
measure the buoyancy frequency.

At the troposphere, internal waves can be generated by the passage of strong winds
over topography. The formation of internal waves downstream from a body is characterized
by the Froude number Fr = U/Nh, that compares the horizontal kinetic energy of a flow
with velocity U to the potential energy necessary to elevate a fluid parcel a height h within

3This is true for air containing no water vapor. The adiabatic lapse rate for moist air is ∼ 6◦·km−1.
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1.2. Internal waves in the atmosphere and ocean

Figure 1.6: Schematic representation of the stratification profile for temperature T (solid
line) and salinity σ (dashed line) of the ocean for decreasing latitudes (a), (b) and (c)
respectively. The main layers as a function of latitude are indicated in (d). Extracted
from [67]

a stratified fluid characterized by buoyancy frequency N . For Fr > 1 the kinetic energy is
enough to pass over a body of height h and descend back afterward. Therefore, oscillations
can occur and internal waves are generated. In the troposphere the buoyancy period is
of the order of tens of minutes. Thus, when winds of the order of 40 km·h−1 pass by
mountains of 1 km height, internal waves will be generated.

In some cases it is possible to visualize internal gravity waves in the atmosphere thanks
to cloud formation. As the waves generate vertical motion of air, the moisture in the air can
condense into water when a strong drop of temperature is generated by upward motion.
Therefore, satellite images allow one to visualize internal waves as shown in figure 1.5.
These waves can induce mixing in the atmosphere when breaking [28]. It is therefore
important for a better prediction of meteorology to model the atmosphere considering
internal waves.

Ocean

The internal structure of the ocean has taken longer to be measured because it is much
more inaccessible than the atmosphere. Density and temperature measurements identify
three main layers in the ocean, as shown in figure 1.6(d). The surface layer, about 100 m
deep, is homogenous in both temperature and salinity. This layer undergoes strong mixing
generated by contact with the atmosphere through wind and changes in temperature.
Below this layer is the pycnocline, a section about 1 km thick with strong stratification
where the buoyancy frequency can be of the order of 10−2 rad·s−1. This layer inhibits the
vertical motion and acts as a barrier between the surface layer and the abysmal layer. The
abysmal layer is the deepest layer, about 4 km thick, and has weak gradients of density.

1.2.2 Generation of internal waves in the ocean

There are mainly two mechanisms that generate internal waves in the ocean, which oc-
cur at the bottom seafloor and at the pycnocline region. As with the atmosphere, the
displacement of a stratified fluid over topography generates waves at different frequencies
depending on the size and shape of the topographies and on the velocity of the flow. These
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1. Introduction to internal gravity waves

Figure 1.7: Illustration of possible mechanisms that generate internal gravity waves. Ex-
tracted from [33]

flows can be due to tides, currents or eddies. The generation of waves in the pycnocline
region is due to effects at the surface such as storms that agitate the homogeneous region
of the surface’s ocean [21]. The different types of wave generation have been summarized
by Garett et al. [33] as shown in figure 1.7.

The generation of internal waves due to tidal forcing is a wide spread subject of study.
Many advances have been achieved experimentally [24, 36, 42, 76], as well as numeri-
cally [54] or in situ measurements [25, 26], in order to determine the transfer of energy
between tide and internal waves, which is not negligible in estimating the oceanic energy
budget [74].

1.2.3 Internal waves near oceanic seafloor

Internal waves are often observed to break close to the seafloor topography that generates
them, or from which they scatter. This breaking often generates turbulent structures
observed hundreds of meters above the seafloor [44]. In consequence, in the proximities of
the seafloor the mean velocities are strongly increased.

It has been observed that in the regions where the continental slope is nearly critical
with respect to the semidiurnal tide there is an intensification of near-bottom water veloci-
ties and bottom shear stresses [53]. It is suggested that this effect arises from the reflection
of remotely generated internal waves. In consequence, the reflection of internal waves
can affect sedimentation patterns and bottom gradients. In addition, it is estimated that
these shears are high enough to inhibit deposition of fine-grained sediment onto the slopes.
Therefore, the angles of energy propagation of semidiurnal internal tides may determine
the average gradient of continental slopes in ocean basins (∼2 to 4 degrees) [12].

The erosion effect of internal gravity waves has been observed by in situ measurement.
It has been seen that after the passage of internal gravity waves near the seabed, there is
an increase of the concentration of particles in suspension, whether in the benthic layer
(a 10 m layer on top of the seabed) or in the full water column [5, 11, 40, 59]. It is
then pertinent to study the interaction of internal gravity waves over boundaries and the
different mechanism for which internal waves can lead to particle erosion.
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Chapter 2

Internal gravity waves in the

laboratory, techniques and

implements

Photo of an experimental setup. A laser sheet illumi-

nating PIV particles seeded in the stratified fluid.

The study of internal gravity waves can be
developed through many different approaches,
including numerical simulations, ocean and at-
mosphere measurements in addition to labo-
ratory experiments. All three are necessary
for the understanding of internal waves re-
lated processes and complement each other.
In this work we will develop an experimental
approach.

Experiments allow for the control of the
main parameters of the generation of internal
waves. Establishing a desired density profile
plays a fundamental role in the control of in-
ternal wave propagation. In addition, the gen-
eration of internal waves can be produced by
many different setups. In order to obtain a
particular type of wave, we use an elaborate
mechanism developed at ENS de Lyon.

Given the lack of a well defined interface,
the observation of internal waves is not a trivial task when the stratification has a contin-
uons change of density.

In addition to the ability to control physical parameters that can be achieved in ex-
perimental setups, experiments are a suitable environment for explorative measurements.
This allows one to encounter unexpected phenomena and their further study.

We will detail in this chapter the different experimental stages to perform, observe,
and measure internal gravity waves. The experiments performed in this work have been
mostly motivated by possible oceanic and atmospheric applications.

17
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Q1 Q2

ρA, VA(t) ρB(t), VB(t)

z

S

Figure 2.1: Schematics of the double bucket method for the generation of a linear stratified
density profile. Extracted from [7].

2.1 Laboratory: experimental techniques

2.1.1 Double bucket method

The generation of a stratified fluid is one of the fundamental steps in the experimental
procedure of the experiments performed in this work, given that internal waves propagate
exclusively in stratified fluids. Stratification in the fluid can be created through a density
or temperature stratification. We performed experiments using density stratification with
salt.

We will use salt water with densities ranging between 1000 g.L−1 and 1050 g.L−1 so
that the largest variation of density is less than 5% of the mean density. In consequence,
for a 35 cm high tank, we will obtain buoyancy frequencies N of the order of 1 rad.s−1.

We want to generate a stratification that has a constant N for all heights. This can
be achieved by generating a linear stratification using the double bucket method [32, 55]
illustrated in figure 2.1. A bucket A of fixed density ρA is discharged in a bucket B with a
flow rate Q1. The fluid of density ρB(t) in the bucket B, always in agitation, is discharged
in the experimental tank with a flow rate Q2.

Mass conservation imposed by the flow rates and densities implies

d(ρB(t)VB(t))
dt

= ρAQ1 − ρB(t)Q2, (2.1)

whereas the volume conservation gives

dVB(t)
dt

= Q1 −Q2, (2.2)

from where we derive,
VB(t) = (Q1 −Q2)t+ VB(0). (2.3)

By combining equations (2.1) and (2.3), we obtain a differential equation for ρB(t).

dρB(t)
dt

= Q1
ρA − ρB(t)

(Q1 −Q2)t+ VB(0)
. (2.4)
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2.1. Laboratory: experimental techniques

By solving this differential equation, we extract the evolution of ρB(t), that is,

ρB(t) = ρA − (ρA − ρB(0))

(

1 +
(Q1 −Q2)

VB(0)
t

)Q1/(Q2−Q1)

. (2.5)

In addition, the experimental tank can be filled from the bottom or from the top of the
free surface. In consequence, a fluid injected at time t will be located at a height,

z(t) =
Q2

S
t, (2.6)

when filled from above, and at a height

z(t) = H − Q2

S
t, (2.7)

when filled from below, where S is the surface of the base of the experimental tank, and
H its height. Combining this results with equation (2.5), we obtain the density in the
experimental tank as a function of height,

ρB(z) = ρA − (ρA − ρB(0))

(

1 +
(Q1 −Q2)

Q2

S

VB(0)
z

)Q1/(Q2−Q1)

, (2.8)

when filling from the top, and

ρB(z) = ρA − (ρA − ρB(0))

(

1 +
(Q1 −Q2)

Q2

S

VB(0)
(H − z)

)Q1/(Q2−Q1)

. (2.9)

when filling from below the tank. From the expressions of the density as a function of
height we notice that the stratification will be linear only when Q1/(Q2 − Q1) = 1, that
is, when Q1 = Q2/2. Two methods allow one to achieve this specific relation between flow
rates: the flow rates can be controlled independently by two peristaltic pumps, or can by
determined by imposing Q2 and obtaining Q1 by communicating both tanks from below.
This last method requires equal section of the base of both tanks.

For Q1 = Q2/2, the density profile will be,

ρB(z) = ρB(0) + (ρA − ρB(0))
S

2VB(0)
z, (2.10)

ρB(z) = ρA + (ρA − ρB(0))
S

2VB(0)
z, (2.11)

for the filling from above and below, respectively.
The densities will be selected depending on whether the filling is performed from above

or from below. In order to obtain a stratification that increases its density with depth, we
need ρB(0) < ρA when we fill from below and, ρA < ρB(0) when we fill from above. The
average time to fill a 30 cm deep tank in order to avoid mixing is around 3 h. For the tanks
used in this work, this time is roughly independent of the size of the base of the tank.

2.1.2 Density measurements

To ensure that the buoyancy frequency, N , is the same for all height in the experiments,
one needs to accurately produce linear stratification profiles. In order to perform a pre-
cise measurement of the density profile we use a densimeter ANtonPaar DMA 35. The
densimeter consists of a capillary filled with the fluid to be studied. An electro-mechanic
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Figure 2.2: Depth as a function of ∆ρ = ρ− 1000 g·L−1. Density profile measured with a
conductivity probe in blue and, in red the linear fit displaced 1 cm below. The buoyancy
frequency N is computed from the linear fit.

system vibrates the capillary and measures the resonance frequency of the capillary-fluid
system. The resonance frequency depends on the mass of both, the known capillary mass
and the fluid mass. From where the fluid mass can be extracted. This equipment allows
one to measure densities between 0 and 3 kg·L−1 with a precision of 0.001 kg·L−1.

This technique allows one to obtain a precise measurement of the density. Neverthe-
less, in order to measure the stratification we would need to extract fluid from the selected
depths before measuring the density. This procedure is complicated, and limits the spa-
tial resolution of the measurement. Therefore, the measurement of stratification is also
performed with a conductivity probe that measures the electric resistivity of the fluid be-
tween two conductive plates. The resistivity of the fluid depends on the ions present in the
solution, and a calibration allows the association of the resistivity value with the density.

The probe attached to a stainless steel bar is moved in the stratified fluid by a stepper
motor. The resistivity is measured continuously as the probe descends. The probe descends
slowly in order to generate the least possible change in the stratification. An example of
the measure of the density is shown in figure 2.2. The buoyancy frequency is obtained by
modeling this measurements with a linear fit. When multiplying the linear fit by −ρ0/g
we obtain N2. We can observe at the top of the profile that the fluid is less stratify than
for the rest of the column. One of the effects responsible for this homogenization is the
movement of the air in the free surface. Other effects, such as filling effects and large
temperatures change can also influence the density profile, especially at the top and the
bottom of the stratification.

2.1.3 Generation of internal waves

Historically, to produce waves propagating in the stratified fluid, a cylinder was oscillated
in the fluid. The oscillations of the cylinder imposes the motion to the surrounding fluid
and generates internal gravity waves. This experimental device generates four wave beams,
and allowed one to perform the first experimental measurements of internal waves [34, 52].

In this work, two types of wave generatorwere used. Both are based on generating an
oscillating boundary along the width of the tank. In one, the conditions of the moving
boundary are imposed when built. The other allows the reconfiguration of the boundary
at any moment. We will describe both methods.
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(a) (b)

Figure 2.3: (a) Representation of the disc and plate system which transforms the rotation
motion into a unidirectional translation. The white piece within the disc can be displaced
to change the eccentricity e, and therefore, the translation amplitude of the black plate.
(b) Image of discs piled over the camshaft (the discs are continuously shifted in phase).
Extracted from [6, 7].

Camshaft based wave generator

We have principally used a wave generator developed at ENS de Lyon by Gostiaux et
al. [38], characterized by Mercier et al. [48] and improved by Bordes [6], which allows the
generation of only one wave beam with a selected amplitude, wavelength and frequency.
The working principle of this generator is to transform a rotation of a vertical camshaft of
plates in an oscillatory horizontal movement. The rotation of the camshaft is generated by
a motor, and perforated discs within the plates allow the selection of the amplitude and
phase of oscillation.

In figure 2.3(a) is shown a disc (in grey) with the axle positioned inside. The position
of the white piece of the inside can be regulated in a way that the axle does not necessarily
coincide with the center of the disc. When rotated, the black plate allows one to obtain an
unidirectional oscillation, where the amplitude corresponds to the distance between the axle
and the center of the disc. The system allows the generation of horizontal displacements
of amplitude e, between 0 and 1.5 cm. This setup also has the possibility of changing the
relative phase between two contiguous discs. For a fixed e, each plate will perform the same
displacement but shifted in temporal phase. The camshaft has 6 slots distributed at 60◦.
This allows the generation of a whole wavelength using 6 discs, by shifting in one the slot
when introduced in the axle. For generating a smaller phase shift (or longer wavelength),
the workshop of Mécanique du Laboratoire de Physique de l’ENS Lyon, made several sets
of discs which allow one to performed a wider range of phase shifts. The three type of
discs are shown in figure 2.4. The difference between these discs is that the position of
the grooves in the axe are shifted respect to the displacement direction of the plates. This
shift is 0◦, 15◦, -15◦ and 30◦ for the discs A, B, B’ and C respectively. By combining these
3 types of discs we can perform shifts up to 15◦.
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θ = 0° θ = 15° θ = −15° θ = 30°

A B B’ C

camshaft

1

4

26

35

Figure 2.4: Representation of the three sets of discs. θ is the angle between the displace-
ment direction and the closest groove. B’ is obtained by rotating B. Below, the camshaft
and the grooves are numerated. Extracted from [7].

GOAL

The generator GOAL (Generator of Oscillation As you Like) is an internal wave generator
developed through a collaborative work at the Laboratory of the ENS de Lyon between
the Internal Wave group and the Electronic and Mechanic workshop1. The main objective
was to construct a generator which allowed one to produce a given boundary profile that
evolves in time.

The Goal generator is based on the same principle as the camshaft generator in the sense
that the boundary profile is produced by vertically spaced plates moving unidimensionally,
as illustrated in figure 2.5. However the GOAL generator allows to control independently
each plate. In addition, the settings of the plate motion are controlled electronically and
can be modified at any moment.

The wave generator can be divided in two main parts: the section consisting of 50
plates of 6.5 mm thick that is immersed in the tank filled with the stratified fluid, and
the part which controls the oscillation of the plates, consisting on 50 linear stepper motors
controlled by an automata and controlled through a LabView interface.

The horizontal motion of each plate xi, where i ∈ [1, 50], will be given by the temporal
function, xi = Xi(t), where Xi(t) can be any classic periodic function (sinusoidal, triangle
or square function). In particular, we used sinusoidal functions in this work for which the
amplitude, phase, and frequency of the signal are adjusted.

In this work the GOAL generator has not been fully exploited given that it has been
used for the generation of plane waves only. It has been used mainly because of its facility
in modifying experimental parameters during the experiment.

1For further details of the GOAL generator contact Pascal Metz: pascal.metz@ens-lyon.fr.
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2.1. Laboratory: experimental techniques

Figure 2.5: Schematics of the GOAL wave generator. The moving boundary is composed
of 50 vertically spaced plates which are controlled independently. Each plate is driven by
a linear stepper motor which can be command through a LabView interface.

Wave generator profile

As previously detailed, the camshaft wave generator allows the adjustment of the phase
and amplitude of each plate, and, during the experiment, the frequency of oscillation of
the set of plates can be varied. The GOAL generator, allows one to change the phase,
amplitude, and frequency independently for each plate during the experiment. This allows
a broad range of possible oscillating boundaries. In addition, the camshaft wave generator
can be positioned vertically or horizontally within the tank. In this work, we will always
place the generator vertically. Two types of boundary profile have been used: a boundary
profile that generates plane waves and a vertical mode.

To generate,

• Plane waves

The horizontal velocity at x = 0 generated by this profile can be expressed as,

u = Ψ0kz sin(ωt− kzz), (2.12)

where the horizontal velocity of each plate will have amplitude Ψ0kz, and the velocity of
each plate will be shifted as a function of the position z. The set of discs available allows
one to generate wavelengths λg = 2π/kz between 3 and 24 times the thickness of the plates.

• Vertical mode

The horizontal velocity at x = 0 generated by the vertical mode profile is,

u = u0 sin

(

π

H
z

)

cos(ωt), (2.13)
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where H is the height of the fluid, and kz = π/H. The horizontal velocity is a sinusoidal
function of time, where the amplitude changes with height. This profile is generated by
discs with the same phase, whose eccentricity changes with height in order to generate a
sinusoidal profile.

In both types of profiles, the magnitude of the velocity is imposed by the rate of rotation.
We will use wavelengths not smaller than 6 discs in order to avoid rough discretization of
the shape of the wave. The largest wave generator used 50 vertically spaced plates where
each plate is 0.65 cm thick.

2.1.4 Visualization techniques

The observation of internal gravity waves is not a trivial task. Unlike surface gravity
waves and perturbations in a bilayer system, internal waves propagate in the inside of a
continuously stratified fluid. Specific techniques have been developed in order to observe
these perturbations. In this work we have used PIV and Schlieren visualization techniques
which we detail.

Synthetic Schlieren

The Synthetic Schlieren technique exploits the fact that the concentration of salt in water
modifies the refractive index of the solution, in order to detect the densities perturba-
tions [16, 68]. A ray of light passing through a medium with inhomogeneous refractive
index will be spatially bent. When the refractive index only varies in one direction (z in
our case), it is possible to compute the gradient of the refractive index by measuring the
bending angle.
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Figure 2.6: Schematics of the Schlieren visualization setup. The rays of light generated
from luminous screen traverse a pattern (a circle in this example). The camera of focal
length f and CCD sensor, is focused on the Schlieren screen. The stratified fluid between
the screen and the camera shifts the position of the circle at the CCD sensor in ∆z.
Extracted from [7].

A camera with focal length f measures in time a pattern placed over a luminous screen
(Schlieren screen) with a CCD sensor. Between the screen and the camera is located a
tank filled with a fluid that is stratified in density and, therefore, in the refractive index,
which bends the light rays in an angle α, as shown in figure 2.6. This angle is related to
the spatial gradient of the refractive index through the relation,

α =
L

n

dn
dz

=
L

n

dn
dρ

dρ
dz
. (2.14)

In the salt concentration range of salt used in this work, the variation of the density as
a function of the refractive index is linear and the slope is, dρ/dn = 4.1 g·cm−3.
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The deviation of the ray of light will generate a displacement of the pattern over the
CCD sensor. For the approximation of small angles the deviation of the pattern with
respect to the homogenous medium case is,

∆z = αf
d+ L/2

d+ L+D − f
. (2.15)

We can translate the spatial displacement of the detected pattern to pixel displacement
through the relation ∆p = ∆z/r, where r is the physical size of a pixel.

The density gradient can be therefore written as,

∂ρ

∂z
= r∆p

dρ
dn

n

L

(d+ L+D − f)

f(d+ L/2)
. (2.16)

When internal waves propagate, the density gradient is locally modified. In conse-
quence, the refractive index is locally modified and therefore so will it be the pattern on
the camera. The comparison of an image of the fluid with and without waves allows one to
determine the local variations of the refractive index caused by the internal waves. Con-
sidering that at t = 0 no waves are present in the fluid, the perturbations of the refractive
index will be,

∂ρ̃

∂x
=
∂ρ(t)

∂x
− ∂ρ(0)

∂x
and

∂ρ̃

∂z
=
∂ρ(t)

∂z
− ∂ρ(0)

∂z
. (2.17)

From where we can obtain the evolution in time of the perturbations of the gradient of
density, by comparing the perturbed density profile at t with the unperturbed at t = 0.
This specific procedure will be explained in detailed below.

If vertical mixing occurs, so that the average density profile is changed, then the measure
of the wave will be distorted, as the mixing and the wave perturbation will both contribute
in the term ∂ρ(t)/∂z. In order to have reliable measurements, mixing and long experiments
should be avoided. It is important to mention that this technique is developed for flows
with specific features, usually two-dimensional and linear flows, with some exceptions as
can be seen in [60], for example.

Particle image velocimetry (PIV)

Particle image velocimetry is a technique that allows one to measure the velocity field of a
flow [70]. This is performed by seeding the fluid with particles that can be observed when
illuminated. The particles will be dragged by the flow, and their motion will represent
the flow. The selection of the particles is such that the particles are advected by the flow,
having very little inertia.

In our experiments, the particles are slightly heavier than the surrounding fluid (ρp =
1.1 g·cm−1) and of a typical size of 10 µm. For the flow velocities measured in the experi-
ments, the Stokes number is St≈ 10−5. The Stokes number, St= τp/τf measures the ratio
between the characteristic time of the particle, τp, and the characteristic time of the flow,
τf . It is also an indicator of the flow tracer fidelity. For acceptable tracing accuracy, the
particle response time should be faster than the smallest time scale of the flow. For St<0.1
the tracing accuracy errors are below 1% [70].

The fluid is illuminated with a vertical laser sheet and the position of the particles is
measured by a camera at different times. Two successive images are compared in order
to obtain the displacement of the particles, and estimate their velocity and therefore the
fluids velocity.
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2. Internal gravity waves in the laboratory, techniques and implements

Image correlation algorithm

To measure the evolution of a magnitude as a function of time, either the velocity or the
perturbed density gradient, we compare two successive images through a PIV algorithm
visualized in the uvmat graphic interface [66]. Each image is divided in boxes of a selected
size. The size of the box is such that a recognizable pattern can be observe within the box,
but small enough to present little perturbation of the shape of the pattern between two
successive images. The pattern is generated with seeded particles for PIV and with the
pattern on the screen for Synthetic Schlieren. The algorithm determines the position of the
pattern in the successive image by calculating the correlation coefficients [30], the maximal
correlation defines the position of the pattern in the successive image. This algorithm
allows to estimate the displacement of the pattern in a time ∆t defined by the acquisition
frequency. That is, the change of the position of the particles in time for the PIV technique
and distorsion effects from density changes for the Synthetic Schlieren technique.

2.2 Image processing techniques

The visualization techniques presented in section 2.1.4, allows one to determine the spatial
distribution of the velocity or density gradient field as a function of time, which we call
f(x, z, t). We will introduce some post processing techniques performed over f(x, z, t) that
will be used to produce many results presented in this work.

2.2.1 Temporal filtering

The temporal filtering technique allows one to extract the spatial contribution of f related
to a specific frequency ω. This allows one to focus on the spatial contribution of each
specific frequency. The temporal filtering technique is performed independently over each
component of the field; let us consider, for example, the horizontal component of the field
fx(x, z, t). This field can be expressed as,

fx(x, z, t) =
1

N0

N0
∑

n=1

f̂x(x, z, ωn)e
i2πωn/N0 , (2.18)

=
1

N0

N0
∑

n=1

fωn
x (x, z, t), (2.19)

where N0 (the number of partitions) and the frequency resolution, ∆ω = ωn+1 − ωn, will
be given by the temporal size and resolution of the field. The spatial field associated to
the frequency ωn is,

fωn
x (x, z, t) = f̂x(x, z, ωn)e

i2πωn/N0 . (2.20)

The spatial field fx(x, z, t) is the addition of the contributions of the spatial fields associated
to each frequency ωn.

In practice, we will be interested in the contribution of the field associated with a fre-
quency interval and not with an individual frequency. We will analyze the field associated
with the frequencies ω ∈ [ω−, ω+], where ω− and ω+ are the limits of the frequency interval
we are interested in.

In order to extract the temporal frequency content of the field, a Fast Fourier Transform
(FFT) is performed for the time evolution field signal related to each spatial point. This
process is performed over a selected spatial region, small enough to have similar spectral
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characteristics in the region. The resulting spectrum is averaged for all the points within
the region to increase the signal-to-noise ratio. Then, a frequency filter is performed over
the spectrum. The resulting spectrum ĝ, can be written,

ĝ(x, z, ω) = f̂x(x, z, ω) ·H(ω), (2.21)

where, H(ω) is a rectangular function smoothed at the sides by a cosine function so that
the amplitude of H is 1 for ω ∈ [ω−, ω+] and zero elsewhere. Finally, the field associated
with the frequencies ω ∈ [ω−, ω+], fωx (x, z, t), is determined by applying the inverse FFT
to ĝ(x, z, ω).

2.2.2 Hilbert transform

The Hilbert transform is a filtering technique which allows the extraction of the spatial
contribution of f(x, z, t) related to a specific wavenumber (kx, kz). This spatial filtering is
analogous to the temporal filtering presented previously. The application of this method
to internal gravity waves has been developed by Mercier et al [46, 47].

The utility of the Hilbert transform is manifested in the fact that an internal plane wave
propagating in a linearly stratified fluid cannot be fully identified by only the temporal
frequency ω and the absolute value of the wavenumber |k|. It is necessary to explicitly
defined the sign and value of the components of the wavenumber. In figure 2.7 the four
possible waves that exist for a pair of values (ω,|k|) are shown. To extract one of the four
waves we apply the Hilbert transform.

Figure 2.7: Ilustration representing four possible waves generated from one pair of values
(ω,|k|), A, B, C and D.

The procedure to extract from the full field f the field associated to a specific wavenum-
ber (or interval of wavenumber) is performed in the same way as for the temporal filtering.
But rather than performing the FFT over time, the spectrum is performed over the space
coordinate, x or z, and the spectrum is filtered around kx or kz, respectively. The Hilbert
transform together with the temporal filtering allows one to identify a wave through the
triple (ω, kx, kz) within a complex field.

2.3 Perspectives

We have presented procedures with which internal gravity waves are generated in a well
controlled environment. In addition, visualization techniques allow one to observe the
resulting wave field. After the acquisition is performed, we can apply additional processing
to the wave field to isolate the particular process we are interested in.
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In the following chapters we will use internal gravity waves under a large variety of
situations, that will require the good handling of the experimental techniques detailed in
this chapter.
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Chapter 3

Sediment transport

Satellite view of sand particles driven from Sahara dessert to-

wards Amazons. Photo Credit: NASA.

The oceans and the atmosphere are
dynamical systems globally connected
through large scale processes, as for ex-
ample, the Thermohaline current and
Rossby waves, which are usually com-
posed of multi-scales behavior (eddies,
costal currents, internal waves). Among
other things, these processes have an ef-
fect on the accumulation, dispersion and
transport of mineral and organic parti-
cles present in these systems.

Biological life processes, fish re-
sources, pollutants and volcanic ash dis-
persial, and sand formation depend,
among other things, on the transport
of sediments and nutrients in the ocean

and the atmosphere.
Resuspension of sediments can be caused by many phenomena in the ocean (surface

waves, density currents, etc.). A common feature in all these processes is the generation
of a shear stress intense enough to induce particle motion therefore generating erosion at
the seafloor boundary.

Since internal waves are created in great part owing to tidal forcing and oceanic to-
pography jointly, internal waves are candidates to be a considerable source of sediment
resuspension and transport.
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3. Sediment transport

3.1 Introduction

The physical processes involved in sediment transport are complex and influenced by many
hydrodynamical (or aeolian) and sedimentological factors over a wide range of spatial and
temporal scales. In the ocean, internal wave forcing plays a significant role in the transport
of sediments, from coastal zones [71] to deep-water environments [23].

Despite the ubiquity of granular systems in nature and industry, the physics of granular
media is yet not well understood. Grains behavior exhibits a great variety of characteristics
with unique properties, and at the moment no theoretical framework allows to explain the
wide range of possibilities that these systems display.

Sediment grain size in ocean basin environments typically range from non-cohesive sand
to cohesive clay. We therefore need a basic understanding of the fundamental physics of
erosion and sediment transport.

The results of laboratory experiments and discrete numerical simulations have enlarged
the understanding of granular media, and the present description of sediment transport is
based largely on empirical results obtained by field and laboratory measurements.

Motivation: state of the art and background

Sedimentation in the ocean is controlled by a large variety of interacting factors such
as surface waves, tides and internal waves, sea level changes, sediment supply, as well
as climatic and geological long term dynamics. In particular, density gradients due to
changes in salinity, temperature or particulate matter are found everywhere in the ocean,
generating a medium where internal gravity waves can propagate. Internal tides (internal
waves with diurnal and semi-diurnal periods) are believed to be a mechanism that provides
energy to deep marine areas, that otherwise might not receive much energy flux [27]. Since
the primary source of internal waves generation is the interaction of surface tides and
seafloor topography, internal waves create shear stresses in marine boundaries when they
are created and also when they are reflected over other seafloor boundaries after being
radiated out from the source.

Many observational studies have been done that indicate that internal gravity waves are
a cause of sediment resuspension. Usually, measurements of the propagating perturbation
and sediment resuspension are done in an independent way. Bogucki et al. [5] reported the
observation, thanks to temperature measurements, of internal solitary waves propagating
upstream along a strongly stratified bottom layer on the California shelf, which was accom-
panied by an increased concentration of particles in the water column (increase in water
turbidity). In the western Portuguese mid-shelf, Quaresma et al. [59] complemented these
observations by a CTD survey (conductivity, temperature, and depth measurements) and
bottom sediment sampling, in order to observe the propagation of large amplitude internal
solitons forcing strong bottom current pulses. In agreement with these results, Hosegood &
van Haren [40] observed an O(102) larger than the background value increase in sediment
fluxes at 2 and 30 m above the bed after the passage of a solibore (which they named
because it displays the properties of both turbulent internal bores and nonlinear internal
solitary waves). In the Massachusetts Bay, by measuring the bottom velocity increase (1
m from bottom), Butman et al. [11] estimated that the resuspension time associated to
large-amplitude internal waves, is about the same order of magnitude as resuspension time
caused by surface waves.

In every case the capacity of generating sediment transport through the interaction of
internal waves over the seafloor is limited by the shear stress generated at the boundary
and the physical characteristics of the particles.
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Figure 3.1: A schematic diagram showing the different modes and trajectories of sediment
transport. Extracted from [1].

3.2 Physics of erosion, transport and sedimentation of

particles in a fluid

When a fluid flows over a stationary solid surface, a boundary layer develops. In this
boundary layer the fluid velocity tangential to the boundary goes from the mean value in
the interior to zero at the boundary, where viscosity is dominant. If we consider that the
boundary is actually formed by sediment particles, then, if this flow is sufficiently intense,
an erosion of the boundary is expected.

3.2.1 Sediment transport

In this section we will introduce the basics of erosion and transport of granular mate-
rial in a fluid through a classical approach in which different types of transport modes
are described. This characterization of granular transport is based on the description of
Andreotti, Forterre & Pouliquen [1].

The dynamics of granular movement in a fluid can be expressed through three forces
acting over the particle: hydrodynamical forces, the force of gravity and contact forces
between particles. The relative effect that each of these forces have over the grains will
change the qualitative behavior and dynamics of these particles. Depending on the domi-
nating forces involved in the transport of sediment, different modes are distinguished (see
figure 3.1). The suspension mode will develop if the hydrodynamic forces dominate. This
will be expected for fine and/or light sediments and strong fluxes. If the gravity effect over
the particles is large enough so that the transport occurs in a thin layer near the boundary,
then the transport mode is called bed load. The typical bed load transport is composed by
large and heavy grains. Within the bed load transport one can make different distinctions
in the type of particles trajectories. When the gravity and hydrodynamic forces are dom-
inant, the grains will make successive jumps. In this case, the transport is by saltation.
When the grains that are driven by the fluid roll at the surface of the particles bed, spend-
ing long time intervals of contact between particles, the trajectory is named tractation. In
this case, the three forces are present in the dynamics of the grain. Finally reptation is a
mode of transport dominated by contact forces and gravity. This trajectory occurs when
the grains transported in saltation collide with the bed with enough energy to induce a
motion of the lying particles. The idea of mode and trajectory decomposition of granular
transport is expressed in the schematic network diagram of figure 3.2.

In this chapter, we will focus on the incipient movement of settled particles in a bound-
ary. We will start by presenting a formalism to relate the sediment flux (or the initiation
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Figure 3.2: Diagram of the different types of granular transport separated by modes and
trajectories, which respond to a particular combination of the relative hydrodynamic, grav-
ity and contact forces acting over an individual grain.

of grains movement) to the fluid flow in the bed load transport mode.

3.2.2 Shields dimensionless number

In order to predict the initiation of sediment motion in a horizontal bed composed of
particles, the use of the Shields dimensionless number is widely accepted. This number
measures the ratio between the apparent weight of the particle in the fluid and the drag
exerted by the fluid on the particle. The particle will loose equilibrium and will start
moving when theses forces balance.

To describe the existence of a transport threshold in the Shields number, we will con-
sider the configuration presented in figure 3.3. The grains are located in a horizontal bed,
above which a fluid flows in the horizontal direction with a velocity profile which is zero
in the bed and increases away from the bottom. The transition of the velocity field in the
region between the surface of the bed and the height where the velocity is null, is very
complex, since the exact position where the velocity is null is very difficult to determine,
and the non-slip condition will depend on the motion of the particles. For our purposes, it
will be satisfactory to approximate that the velocity field is null at the surface of the bed,
although we will consider that the particles at the surface will perceive a difference of veloc-
ity of the fluid within their size. The boundary condition of the velocity field at the bottom
will then be: the fluid does not traverse the boundary (no normal flux u.n̂|boundary = 0),
and because of viscosity, a layer in the boundary is formed so that the tangent velocity
is zero at the boundary (no-slip condition). The exact shape of the velocity profile in the
fluid bulk will depend if we are in a turbulent or laminar regime.

The motion of a particle at the surface of the bed will depend on the balance between
two horizontal forces: the drag force exerted by the upper flow Fdrag and the frictional
force Ffriction produced by the contact with other particles. These forces are in opposite
direction by definition. The drag force is related to the hydrodynamics of the fluid. This
force is proportional to the shear stress at the boundary σ, times the surface of the particle,
that is, Fdrag ∝ σd2. The friction force, Ffriction will be related to the normal force (in this
case, equal in magnitude to the gravity force Fg) through an effective friction coefficient
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Figure 3.3: Schematics showing the forces acting over an individual grain located in a bed
underneath an horizontal stationary flow.

term ccont to model the contact forces between particles [1]. The weight/buoyancy balance
that the immersed particle experience, Fg in the vertical direction ẑ, will be related to
the density and size of the particle and the density of the displaced fluid, this is, Fg =
ρgV − ρpgV = −(ρp − ρ)d3gπ/6, where ρ and ρp are respectively the densities of the fluid
and of the particle, V and d are the volume and diameter of the particle (which we will
consider spherical for simplicity), and g is the acceleration of gravity.

In order to initiate motion of a grain, it is necessary that the force imposed by the
fluid overcomes the frictional force imposed by the contact with the boundary, that is,
Fdrag > Ffriction. The Shields dimensionless number is defined as the ratio between these
two forces acting over a grain,

Θ =
σ

(ρp − ρ)gd
∝ Fdrag

Ffriction
. (3.1)

It characterizes the relative effect of these two forces, and therefore the initiation of trans-
port through a threshold value1.

The threshold that defines the initiation of grains transport will be given by the balance
between the drag force exerted on the upper half of the particle and the gravity force
Fdrag & ccontFg, that is,

3πd2σ

4
&
π

6
ccont(ρp − ρ)gd3. (3.2)

Writing this balance as a function of the Shields number (equation (3.1)), we obtain a
threshold value,

Θth =
2

9
ccont, (3.3)

this value will vary between 0.09 and 0.14 for a range of particles roughness going from
smooth glass to angular grains.

Viscous regime

In this work we will focus on flows in which viscous effects are dominant in the boundary.
For these regimes, the viscous shear stress can be expressed as σ = µ∂u/∂z, where µ is
the dynamic viscosity and u the component of the velocity parallel to the granular bed.

1In equation (3.1) the cohesion between particles has not been considered
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Figure 3.4: Schematics showing the forces acting over a individual grain located in a bed
over an inclined slope underneath an horizontal stationary flow.

We will consider that the velocity profile is linear near the boundary, which is a good
approximation for viscous flows (for our experiments Re ≈ 100).

The threshold for an inclined slope

In the case where the bed of grains lies on an inclined slope, as shown in figure 3.4, the
threshold value of equation (3.3) obtained for the Shields number will vary as a function of
the angle γ between the slope and the horizontal [1]. This can be understood by considering
the limit case where the angle γ is near the value where the bed will not be stable, known
as the avalanche angle (∼ 30◦). For this case, with a small perturbation the grains will
loose balance more easily than when the particles are lying on a horizontal bed.

For a particle in a bed on a tilted slope the balance of forces can be rewritten. The
normal force will be π

6d
3(ρp − ρ)g cos γ and the tangential force Fdrag − π

6d
3(ρp − ρ)g sin γ.

Through the balance of forces we obtain the transport threshold, that is

Fdrag −
π

6
d3(ρp − ρ)g sin γ =

π

6
d3(ρp − ρ)g cos γ. (3.4)

So that the Shields threshold value is modified following,

Θth(γ) = Θth(0)

(

cos γ +
sin γ

ccont

)

, (3.5)

this result implies a change of the order of 40% in the Shields threshold value for inclinations
of γ = 20◦.

3.2.3 Particles sedimentation

Placing the particles at the bottom of the tank is a non-trivial aspect of the experimental
setup. In order to explain the details of the experimental setup we will introduced some
concepts of sedimentation in stratified fluids. First we will consider the case of an individual
particle in sedimentation in a linearly stratified fluid. Then we will describe sedimentation
for a cloud with a large number of settling particles.

Individual grain settling

The classical form to describe a settling sphere of radius a = d/2, in a homogenous fluid
is through the drag force Fdrag, which can be written as [75],

Fdrag = 6πµaws +
4

3
πa3

ρ

2

dws

dt
+ 6a2

√
πρµ

∫ t

−∞

(

dws

dt

)

t=s

ds√
t− s

, (3.6)
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3.2. Physics of erosion, transport and sedimentation of particles in a fluid

where ρ is the density of the fluid, ws the settling velocity and µ the dynamic viscosity.
The first term on the right corresponds to the Stokes drag for steady settling velocity ws.
The second and third term are related to the acceleration of the sphere. The second is the
added mass term, which is associated to the fact that an accelerating sphere accelerates
the surrounding fluid and therefore spends energy. The third term is the Basset history
drag, and is due to diffusion of vorticity from an accelerating sphere as the boundary layer
forms. The last two terms are negligible for steady conditions. In this case, Fdrag is usually
written using the following expression

Fdrag = CH
drag

1

2
ρwsπa

2. (3.7)

This formalism can also be used for a settling sphere in a stratified fluid [75]. Considering
that the settling velocity is steady, the drag force in a stratified fluid will be Fdrag =
CS
drag

1
2ρwsπa

2, where the influence of the stratification is introduced through the unknown

coefficient CS
drag. For the range of values explored in this work, it is a good approximation

to consider that the settling is steady, of course this will stop being valid for positions
where the density of the fluid ρ(z) is close to the density of the particle ρp. The force
balance in a stratified fluid is:

CS
drag

1

2
ρwsπa

2 =
4

3
πa3(ρp − ρ(z))g. (3.8)

From equation (3.8) we can obtain the drag coefficient

CS
drag =

8ga

3w2
s

(ρp − ρ(z))

ρ(z)
. (3.9)

Defining ĈS
drag = CS

drag/C
H
drag, where CH

drag is the local homogeneous drag coefficient.

Yick et al. [75] showed experimentally and numerically that ĈS
drag ≥ 1, and that it increases

with the particles viscous Richardson number Rip = a3N2/wsν, where ν is the kinematic
fluid viscosity. This behavior is shown in figure 3.5. The particles viscous Richardson
number, defined as Rip = Rep/Fr

2
p, where Rep = wsa/ν and Frp = ws/(Na), expresses a

balance between buoyancy, inertial and viscous forces. The fact that CS
drag ≥ CH

drag implies
that the particle settles slower in a stratified fluid than in an homogeneous one, where the
homogenous fluid corresponds to Rip = 0.

The reduction of the sedimentation velocity can be explained by considering the en-
trainment of fluid on the contour of the particle. Given that the particle entrains the
surrounding fluid with it, it is useful to consider an apparent particle in which the size
and density of this apparent particle is modified with respect to the original particle. Let
us consider the example of an apparent particle with density and volume ρa and Va as a
consequence of a particle of density and volume ρp and Vp in sedimentation which entrains
a volume of fluid Ve with density ρ, so that Va = Vp + Ve. Now, we consider the two cases
illustrated in figure 3.6, that is: the particle settles in a homogeneous fluid of density ρ2
producing an apparent particle of density ρa at the height z1; and the particle settles in
a fluid in which density increases with depth, from the density ρ1 to ρ2, where ρ1 < ρ2,
producing an apparent particle of density ρ′a at the height z1.

If we consider the gravitational force on the apparent particle when descending to the
position z2, one can see that this force is proportional to the difference of density between
the apparent particle and the surrounding fluid. To compare the sedimentation of the
particle in the homogeneous fluid and in the stratified fluid, we consider the gravity force
exerted on the apparent particle when displaced to the position z2. The apparent particle
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3. Sediment transport

Figure 3.5: Drag coefficient ĈS
drag of a sphere in a stratified fluid as a function of Rip.

Adapted from Yick et al [75].

Figure 3.6: Sketch of a particle in sedimentation. On the left side of the sketch, the particle
is in a homogeneous fluid with density ρ2. On the right, the particle is in a stratified fluid
in which density increases with depth, going from ρ1 at the top to ρ2 below (ρ1 < ρ2). To
indicate the entrainment of fluid in the boundary of the particle a dotted circle is drawn
around the particle.

with density ρa feels a force FH
g = (ρa−ρ2)Vag, whereas, the apparent particle with density

ρ′a, feels a force FS
g = (ρ′a − ρ2)Vag. The difference between the two forces will then be,

FH
g − FS

g = (ρa − ρ′a)Vag. (3.10)

Considering that the volume of entrained fluid Ve is equal in both cases the apparent density
will then be, ρa = (Veρ2 + Vpρp)/Va, and ρ′a = (Veρ1 + Vpρp)/Va, so that FH

g − FS
g =

(ρ2 − ρ1)Veg > 0. One would expect that the particle in the lighter surrounding will
sediment faster downwards, nevertheless, what is most influential over the sedimentation
is the change in the density of the surrounding fluid. The particle entrains lighter fluid
and becomes more buoyant. Through this simple but representative example one can see
that the gravity force exerted over the particle in the homogeneous fluid is stronger than
in the stratified fluid.

Another important aspect to notice is that stratification tends to suppress vertical
motion of fluid. To see this let us consider the displacement of a particle of fluid (a volume
of fluid in which the density is considered constant). When the particle of fluid is displaced
from equilibrium in the horizontal direction, no force will inhibit the particle motion other
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3.2. Physics of erosion, transport and sedimentation of particles in a fluid

Figure 3.7: Particle cloud sedimentation. Three different scenarios are present, when the
deposit is localized, disperse and in ring shape. Extract from Bush et al. [10]

than the drag force. On the other hand if the particle is moved vertically, energy will have
to be spent in order to overcome the potential energy related to the difference of density
between the particle of fluid and the new surrounding. This effect prevents the formation
of eddies and therefore particles horizontal dispersion as they are settling, making the
trajectory of the particles considerably more straight downward than when the fluid is
homogeneous.

Collective grains settling

Now that we have presented the behavior of one settling particle, we proceed to describe
the case in which many particles (particles cloud) settle in a fluid.

In order to describe the complete process of particles sedimentation it is useful to dis-
tinguish two regimes. When the number of particles forming the particle cloud is very small
then, the dynamics will be dominated by the behavior of a single particle in sedimentation,
which has been previously described in section 3.2.3. For a sufficiently large number of par-
ticles, the cloud behaves as a second phase of fluid. And therefore if strong motion exists,
the particles cloud will present characteristics of a negatively buoyant plume. A plume
is a column of fluid moving through another which can be driven by momentum and/or
buoyancy. A plume grows by turbulent entrainment, in consequence, its radius (distance
between the axisymmetric vertical axis and the boundary of the plume) increases linearly
with distance from the source, as the density difference between plume and ambient de-
creases. In a homogeneous environment a plume grows indefinitely; on the other hand, in
a stratified fluid, the plume is continually reduced until it stops growing and intrudes at
its neutral buoyancy height (in some cases the plume rebounds up to a height ZR after the
particles rain down from the intrusive fluid). This description can vary significantly for
cases that exceed the interest of this work, for example, if the density difference between
plume and ambient is very large, or if the plume has significant initial momentum.

In summary, when particles are introduced from above in a stratified fluid, the particles
will first form a particle cloud that will behave as a plume, followed by a later state in which
the particles rain out of the cloud as individuals. The settling of the particles in a stratified
fluid can be reduced to three possible scenarios as illustrated in figure 3.7, depending on
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Figure 3.8: Schematics of the experimental setup used to study particle transport by
internal gravity waves. The internal waves are generated at the side of the tank thanks to
a wave generator. The particles are deposited at the bottom boundary in the region where
the internal waves will pass through. On the right is plotted an experimental measurement
of the density (crosses) as a function of the water depth.

Table 3.1: Main parameters of the experimental configurations used to study transport
and erosion of sediment grains (S.S. represents Synthetic Schlieren technique).

particles deposition view generator A [cm] λg [cm] View slope

PVC mountain front vertical mode 1 30 S. S. No
Hollow glass bed above plane waves 1.5 4 S. S. No
Hollow glass bed above plane waves 1.5 4 S. S. Yes
Polystyrene bed above vertical mode 1 30 S. S. Yes

the relative magnitudes of: the depth between source and bottom H, the fall out height
Zf which is the height where the particles separate from the cloud as individuals, and the
intrusion height ZN , which is the height where the plume reaches buoyancy equilibrium
with the surrounding environment. The deposition of particles will be localized when the
particles fallout of the cloud before reaching the neutral height. The deposition will be
dispersed when the particles settle irregularly at the neutral depth ZN , and then rain down.
The latest case occurs when the cloud maintains its plume form through all the descent,
that is, H < Zf . In consequence, the plume collides with the bottom as a turbulent vortex
ring generating a doubly peaked deposition pattern.

For a more general description of sedimentation of cloud particles in a stratified fluid
see [10]. One can then use these different scenarios according to the deposition pattern
desired. In the work presented in this thesis we will make use of the first two scenarios
described.

3.3 Conditions in the Laboratory

We present the experimental setup used in this work to study sediment transport and
erosion in a stratified fluid where internal gravity waves interact with settled grains.

Experiments are done in a tank 80 cm long, 17 cm wide and 42 cm deep, filled with
36 cm of salt water. Using the two bucket method described in section 2.1.1, the fluid
is linearly stratified in density in order to produce a constant buoyancy frequency N .
Vertical density measurements are performed with a conductimetry probe along the tank.
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Table 3.2: Size and density of particles used to study particle transport.

compound d[cm] ρp[g.cm−3]

PVC 0.02± 0.01 1.4
Polystyrene 0.02± 0.01 1.05
Hollow glass 0.001± 0.0005 1.1

The generation of internal waves is performed by a moving boundary generator described
in detail in section 2.1.3, which is positioned vertically at the side of the tank as sketched
in figure 3.8. Two types of displacement profiles have been used: plane waves profile,
and vertical mode profile, which are detailed in section 2.1.3. The velocity of the fluid is
measured using synthetic Schlieren technique detailed in section 2.1.4.

After the tank is filled by the stratified salt water, particles introduced from the top
surface of the fluid are deposited on the bottom of the tank. This procedure is performed
by introducing particles through a sifter placed above the fluid at the horizontal location
where one wants the particles to be deposited. A small amount of particles are placed in the
sifter which is shaken producing the fall of the particles over the surface of the fluid. The
particles will stay momentarily attached to the surface because of surface tension. After the
accumulation of enough particles at the surface of the fluid, the particles weight overcomes
the surface tension and the particles sediment inside the fluid. The particles experience
turbulent 3D dynamics before raining straight down as described in section 3.2.3.

Three experimental configurations have been used for the study of particles transport.
These experiments aim at observing the effect internal gravity waves on particles settled
in the lower boundary of the tank. These configurations are:

1. In the first experiment a mountain-shaped pile of particles is built on the bottom
boundary of the tank.

2. The second experiment consists in producing a shallow horizontal bed of particles in
the bottom of the tank.

3. Finally, particles forming a bed are deposited on an oblique slope, where reflections
of internal waves are produced.

The main features of these experimental configurations are listed in table 3.1.
Three types of particles have been used to study the transport of settled grains. The

characteristics of these particles are listed in table 3.2. The variety of sizes and densities
of the grains allows to explore different threshold conditions of the Shields dimensionless
number.

Mountain of particles

Using a localized deposition of settling particles as described in section 3.2.3, a vertically
symmetric mountain-shaped pile of the PVC particles (physical characteristics described in
table 3.2) is produced, about 4 cm tall and width of diameter of about 18 cm. The mountain
is built as a consequence of the accumulation of particles in the same localization. The
center of the mountain is located at 27 cm from the wave generator. Figure 3.9 shows
an image illustrating the relative position of the mountain with respect to the generator.
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Figure 3.9: Image of the field of view. The wave generator is positioned vertically on the
left of the image, the mountain-shaped pile can be observed at the bottom, and in the
background one can observe the Synthetic Schlieren dotted screen. A white cross indicates
the position where the time evolution of the wavefield is taken.

On the left, at the position x = 0 cm is located the wave generator with a vertical mode
profile, with vertical wavelength λg = 30 cm, and amplitude A = 1 cm. In order to produce
internal waves propagating in a linearly stratified fluid with constant buoyancy frequency,
N = 1.3 rad/s, the wave generator is forced with a frequency ω0 = 0.77 rad/s, so that
ω0/N = 0.6. The experiment is ran during 600 minutes.

The wave field is obtained by performing Synthetic Schlieren technique. The illumi-
nated screen is used for the visualization of the change in the refractive index, and also
to generate a contrast with the contour of the mountain. A camera focused on the dotted
screen, is used to take 2450×1650 pixel size images, which allow to compute the wavefield.
The change in height of the mountain from a front view is obtained by a 3100× 2100 pixel
size image taken with a 14 bits resolution Nikon D3S camera focusing on the contour of
the mountain. The temporary filling of each camera is well controlled, nevertheless, the
cameras are not synchronized.

Horizontal bed of particles

Introducing particles from above the fluid, a bed of hollow glass particles, described in
table 3.2, is created on the horizontal bottom boundary. The thickness of the bed is
approximately 10 times the diameter of the particles. The particles are deposited in a
region such that the distribution of particles is homogenous over the width of the tank and
occupying between 10 and 15 cm along the bottom of the tank. The bed of particles is
centered in the position where the center of the wave beam will reflect with the bottom
boundary, 35 cm from the generator, as schematized in figure 3.8. Internal plane waves
are generated and propagate in a linearly stratified fluid with buoyancy frequency N =
0.8 rad/s, the vertical wavelength and amplitude of the wave generator are λg = 4 cm and
A = 1.5 cm respectively. The forcing frequency of the generator is ω0 = 0.41 rad/s, so that
the angle of propagation of the wave is 30◦. The experiment is run during 200 minutes.
In order to obtain the wavefield, Synthetic Schlieren technique is performed. During this
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time, top view images of the bed of particles are taken with a Nikon D3S camera located
above the tank in order to observe movement of the grains.

Bed of particles on a inclined slope

The experimental configuration presented here consists in generating a bed of particles
as presented in the above experimental configuration, only that in this case, the bed of
particles is created over an inclined slope in which the internal waves will reflect. For
this configuration we use a 160 cm long tank, so that the reflected wave propagates away
from the region of interest without perturbing twice the field of view. This experiment is
motivated by the peculiar properties of internal waves reflection which can enhance the
shear stress near boundary as has been described in section 1.1.4.

We will present results of two representative experiments, that have a different forcing
profile. The first consists in generating internal plane waves with vertical wavelength and
amplitude λg = 4 cm and A = 1.5 cm respectively, in a linearly stratified fluid with
N = 1.3 rad/s. The slope is inclined 20◦ from horizontal, and the waves are forced at the
frequency ω0 = 0.44 rad/s, so that the angle of propagation of the waves is the same as the
angle of the slope. The granular bed is composed by PVC particles. The second experiment
consists in generating internal waves with a vertical mode profile with λg = 30 cm and
A = 1 cm, in a fluid with N = 1.43 rad/s. The forcing frequency was varied around
ω0 = 0.33 rad/s, which is the frequency that will be critical for the inclination of the slope,
equal to 13◦. The bed of particles is composed by the polystyrene particles. In both cases,
the wave field is obtain by performing Synthetic Schlieren technique, and top view images
of the bed of particles are taken with a Nikon D3S camera located above the tank.

3.4 Results

We studied the behavior of settled particles when forced by internal wave perturbations for
different configurations. The results presented in this section aim to relate the grain be-
havior with the internal wavefield, which are measured independently and simultaneously.

3.4.1 Particles in a mountain-shaped pile

The characteristic time of a single particle motion is much smaller than the internal wave
period. For this reason, in order to observe both, particle displacement and the internal
wavefield during many periods, we will focus in the average displacement of the grains and
not in the individual grain movement.

Shape of the mountain

The evolution in the shape of the mountain of particles after the passage of internal gravity
waves can be observed from a front view image in figure 3.10. Figure 3.10(a) and (b)
respectively show the profile of the mountain before the internal waves are generated, at
t = 0, and after 4000 periods of the internal waves, that is at t/T = 4000, with T = 2π/ω0,
where ω0 is the forcing frequency. Initially the shape of the mountain presents a more
pronounced peak than after the passage of the waves, where, the mountain is stretched
horizontally.

The height profile of the mountain at different times, which we name h(x, t), is illus-
trated in figure 3.11. Initially the contour does not vary significantly. After t/T ∼ 900 the
contour presents an abrupt change where the peak of the mountain profile is reduced by
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(a)

(b)

Figure 3.10: Front view of the mountain of particles for t/T = 0 (a), and for t/T = 4000
(b).
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Figure 3.11: Height of the mountain h(x, t) for different instants.

30% and the mountain is spread horizontally at the base, until t/T ∼ 2000, after which
the contour barely changes. The change of the shape of the mountain in time can be
observed more synthetically by considering the evolution in time of the maximum height
of the contour. It is plotted in figure 3.12(a) the height of the profile as a function of time
and normalized by the height of the mountain averaged over the first 100 T . The rapid
change in the shape of the mountain is evidenced in the evolution of the maximum height
at t/T ∼ 1000.

The profile height of the mountain is symmetrical with respect to the center of the
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Figure 3.12: Evolution in time of: (a) the normalized maximum height of the contour, and
(b) the normalized volume of the mountain.

mountain. This symmetry is conserved throughout the evolution of the shape of the
mountain, even though the wave generator is located on one of the sides of the tank
only.

Considering that the mountain presents symmetry of rotation with respect to the center
peak, we can estimate the volume of the mountain for every instance t. We will then write
h(r, t) instead of h(x, t), where r is the distance between the center vertical axis of the
mountain (x = 0 for figure 3.11) and the boundary of the mountain. We define,

Vm(t) = 2π

∫ r

0
h(r′, t)r′dr′, (3.11)

which is the volume of the mountain as a function of t. In figure 3.12(b), we show the
evolution of Vm(t) in time, normalized by the volume of the mountain averaged over the
first 100 periods T .

The plot of figure 3.12(b) shows variations in the volume of the mountain of the order
of ±4% with respect to the initial value. Initially the volume of the mountain increases,
and at t/T = 900 the volume decreases until t/T = 2000 where it settles. Given the way
the mountain is constructed, it will be initially in a loose packing state. Under these condi-
tions it is very unlikely to have an increase in the volume of the mountain. We believe that
the change in volume detected is related to the fact of supposing valid that the mountain
conserves symmetry of rotation with respect to his center. This is based on the fact that
there is no considerable change in max(h(x, t)) before 800 T as shown in figure 3.12(b).
If the height does not increase but the volume does, then we can expect a increase of the
width of the mountain on the slopes. If the rotation symmetry is not conserved there will
be positions of the mountain at the same height with different inclinations of the slope. In
the way the mountain is constructed, the angles of the slope are slightly underneath the
avalanche angle, and therefore a small perturbation can trigger an avalanche. Since some
regions have steeper slopes than others, the distribution of avalanches would not be the
same. This not uniform distribution of avalanches will change the symmetry of the moun-
tain and therefore the height profile, with no need of modifying the height max(h(x, t)),
and hence modifying the volume Vm. Unfortunately we did not measure accurately the ro-
tation symmetry of the mountain when performing this experiment, thus this idea remains

43



3. Sediment transport

x[cm]
5 10 15 20 25 30 35 40 45

z
[c
m
]

5

10

15

20

25

30

∂xρ̃ [Kg/m4]
-20 -15 -10 -5 0 5 10 15 20

Figure 3.13: Snapshot of the wavefield generated by a vertical profile mode for t/T = 300.
The mountain of particles is centered at 27 cm from the wave generator, and acts as a
source of waves. A white cross indicates the position where the time evolution of the
wavefield is taken.

as an hypothesis since the dynamics of the shape of the mountain depends strongly on the
initial conditions of the experiment which can be changed with a slightly perturbation.

At approximately T/t =900 there is an abrupt change in the shape of the height profile,
in particular a decrease of max(h(x, t)). As we will discuss below, this effect is related to a
qualitative change of the velocity field. The change in the shape of the mountain produces
an effect on the volume of the mountain Vm as can be observed in figure 3.12(b). This
change in volume can be in part related to a change in the symmetry of the mountain
because of avalanches, however the main effect is probably a compaction effect on the
mountain.

Wave field

As mentioned, the internal gravity waves are generated by a vertical mode profile. The wave
perturbation will propagate and will be reflected on the boundaries and on the mountain
of particles. The reflections of the vertical mode on the mountain will generate new waves.
These waves will be mostly generated in a region of the mountain where the slope angle
matches the direction of propagation of the internal waves [76]. In figure 3.13 is shown a
snapshot at t/T = 300 of the wavefield over the mountain of particles. We can observe
two large patches on the wavefield with different sign at the right and at the left of the
mountain, this is the outcome wavefield of the wave generator. In addition, two beams are
produced at the slopes of the mountain and propagate upwards.

Figure 3.14 shows the time evolution of the horizontal gradient of the density ∂xρ
between t/T = 0 and t/T = 1550, for a point located above the mountain (indicated
with a white cross in figure 3.9 and figure 3.13). Given the fact that the experiment is
very long (∼1500 periods of the wave) it is expected that mixing will occur, therefore, the
horizontal gradient of the density is produce by the sum of: the fluctuations of the density
profile (internal waves) and the variation of the average density profile (mixing). These
magnitudes are related through the relationship: ∂xρ = ∂xρ̃(t) + ∂xρ̄(t).
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Figure 3.14: Time evolution of ∂xρ as a function of t/T . Three pair of vertical lines indicate
time intervals that will be detailed in figure 3.15.

Three different situations can be distinguished, which are detailed in figure 3.15 with
a zoom in time. From the start to t/T ∼ 600 the wave field oscillates with the dominant
frequency ω0 and the amplitude increases monotonically (figure 3.15(a)), then the wave
field is less monochromatic and presents strong variations in the amplitude (figure 3.15(b)),
until t/T ∼ 1300 where the wave field becomes again dominated by the forcing frequency
ω0 (figure 3.15(c)).

Between t/T ∼ 600 and t/T ∼ 1300 the Synthetic Schlieren technique cannot resolve
the wavefield, we deduce in consequence, that overturns occur in the density field and
therefore the changes of refractive index cannot be obtained through this method. Even
though we do not have access to the wavefield, this behavior is an indication that the
wavefield is non-linear, which can be corroborated by the strong change of the density
profile (shown in figure 3.16) measured before and after performing the experiment.

In a control experiment without the mountain of particles, after several wave periods
T , we observe as well the appearance of many frequencies related to non-linearities in
the wavefield. The mixing generated by internal gravity waves in similar experimental
configurations has been study by Bourget [8] through parametric subharmonic instabilities,
and by Brouzet [9] through internal wave attractors. Nevertheless, the non linear behavior
of the wavefield within all the depth of the tank has not been observed yet, probably
because in the experiment presented here the experimental parameters have been chosen
to intensify as much as possible the characteristic velocities, which is not the case in the
works before mentioned. In addition, the experiment is performed for longer time than the
ones performed by Bourget and Brouzet.

Conclusions: mountain of particles

The mountain-shaped pile of particles has been used to study grain transport behavior
induced by internal waves because it reproduces some particular oceanic conditions: the
slope of the mountain changes for different positions generating diverse conditions for the
settled grains in the contour; the mountain height is large enough so that the difference of
densities of the fluid at the bottom and at the top of the mountain are appreciable.

We have observed that after the passage of a vertical mode internal gravity wave, there
is a change in the shape of the mountain of particles, in particular when the wavefield
presents strong non-linearities. We infer that the change in volume and height of the
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Figure 3.15: Time evolution of ∂xρ for three time intervals detailed with pairs of vertical
lines in figure 3.14, (a) corresponds to the pair of lines on the left, (b) at the center and
(c) on the right. Note the change in vertical scales between the three graphs.
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Figure 3.16: Measurements of the density profile, where ∆ρ = ρ− 1000 g/L, for the initial
state before internal waves are generated, and for t/T = 4000. The linear approximation
of the initial density profile is plotted with dashed line.

mountain is produced by two main effects: avalanches and compaction. In a first stage
the avalanches are the dominant effect in the change of shape of the mountain. After the
wavefield becomes non-linear, there is compaction of the mountain and a decrease of the
maximal height of the mountain.

There is no distinguishable difference in the symmetry of the height profile h(x, t)
respect with the center of the mountain, despite the fact that the generator is positioned
in one particular side of the setup, we conclude that no bed load transport is then present.

Large velocities are needed in order to produce large shear stresses at the contour of
the mountain. We used a vertical mode profile which is the wave generator that injects
the highest energy rate in the stratified fluid. The presence of the mountain together with
the long duration of experiments generated perturbations in the fluid that enhanced mix-
ing. This complex outcome process in the wavefield inhibits the possibility of quantifying
the effect of internal waves over the grains. Therefore, we proceed to use internal waves
generated with a plane wave profile, which are less energetic than the vertical mode, and
are less likely to produce turbulence and mixing.

3.4.2 Particles in a horizontal and inclined bed

A snapshot of the wave field of the second experimental configuration described in sec-
tion 3.3 can be observed in figure 3.17. The plane waves propagate from the top-left side
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Figure 3.17: Snapshot of the wavefield of a plane wave propagating from left to right and
reflecting on the bottom.

(a) (b)

Figure 3.18: Image of a bed of particles taken from above, before internal waves are
generated in the tank (a), and for t/T = 500 (b), where T is the period of the wave. No
significative change in the bed is observed between these two moments.

of the image and reflects on the bottom boundary. The intensity of the wave decreases as
it departs from the source. The center of the beam reflects on the bottom boundary at
35 cm from the wave generator, where the bed of particles is located. No change in the
stratification profile has been observed during the course of this experiment.

The particle bed motion was controlled by images taken from above the position of the
bed, as shown in figure 3.18, (a) before the waves are generated, and (b) after 500 periods
of the wave. During the course of the experiment no appreciable difference was observed
in the bed of particles, and therefore, we conclude that no motion of grains was induced.

To generate larger shear stress over the bed of particles, and yet make use of plane
waves, we used the property of internal waves focusing over an oblique slope. Figure 3.19
shows a snapshot of the wavefield of internal plane waves, corresponding to the third
experiment described in section 3.3. The plane waves propagate from the upper-left corner
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Figure 3.19: Snapshot of the wavefield of a plane wave propagating from left and reflecting
over an oblique slope (indicated with a red line).

(a) (b)

Figure 3.20: Image taken from above of a bed of particles located in an oblique slope,
before internal waves are generated (a), and for t/T = 400 (b). No movements of grains is
observed between these two moments.

to the lower-right corner and is reflected on the sloped boundary (indicated with a red
line in figure 3.19). After reflecting, the waves propagate up along the slope in a narrow
section which evidences focusing of the wave. This effect is produced by forcing the waves
to propagate at an angle β = 20◦ equal to the angle of the slope γ.

Again, the particle bed was observed by images taken from above the position of the
bed. No perceptible particle motion has been observed after the reflection of internal plane
waves over the bed of particles in a near critical reflection during 400 periods. The lack of
grain movement can be appreciated in figure 3.20(a) and (b), which shows no differences
in the initial and final state of the bed of particles.

Finally we proceeded to force internal waves in a sloped experimental configuration with
a vertical mode profile. Despite the fact that mixing can be generated and the wavefield can
become complex and non-linear, larger shear stress are produced at the boundary where
the bed of particles is located, when a near critical reflection occurs. As in previously
described experiments, no particle motion was detected.
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3.5 Conclusions of bed load transport

We have performed several explorative experiments in order to study the behavior of settled
particles, when motion is induced by internal waves. In order to produce a large shear stress
over settled grains, we started using a vertical mode profile to generate internal waves,
which is the profile that creates the most intense velocity field. We observed a change in
the shape of a mountain of particles located at the bottom boundary in a linearly stratified
fluid after the passage of a vertical mode wave, in particular, when the non-linearities in
the wavefield increased. The change of the shape of the mountain is very sensible to the
initial conditions of the construction of the mountain, and we did not found any evidence
of bed load transport. Nevertheless, we inferred that the change of shape and size of the
mountain is consequence of avalanches in the slope of the mountain and compaction in the
interior of the mountain.

The complexity of the wavefield when mixing occurs, inhibits the capability to quantify
the relation between the change in the shape of the mountain and the wavefield. For this
reason we pursued our investigation by generating internal plane waves which are less likely
to generate mixing.

The first experiment with plane waves reflecting on the bottom boundary at the position
where the bed of particles was located did not induce any perceptible grain movement. In
order to generate a larger shear stress over the bed of particles, and still use plane waves,
we used the focusing property of internal waves when reflecting over an oblique slope in
critical and near-critical configurations. Again no bed load transport has been observed in
this case. Finally, critical and near critical reflections of internal waves have been produced
with a vertical mode profile, to generate the largest possible velocity field and therefore a
large shear stress σ. No grain motion was observed in the bed for this configuration.

We have observed an increase of the intensity of the wave field near the boundary
when an internal wave reflects at an oblique slope with the same angle as the direction of
propagation of the wave. The particular property of internal waves reflection produces, in
the critical and near-critical cases, an increase of the intensity of the along-slope component
of the velocity field in a thin layer near the boundary. This behavior permits to increase
significantly the shear stress, and therefore enables to approach the threshold that allows
particles to move. In the next chapter we will study in detail the velocity field near
the boundary for critical and near critical reflections for a wide range of experimental
parameters. This will be performed thanks to PIV visualization technique described in
section 2.1.4, which allows to capture the velocity field even if non linearities are present
in the wavefield.

The main interest of the work presented in this chapter was to produced bed load
transport of settle particles by inducing motion through internal gravity waves, which was
not achieved. Nevertheless, we have observed that internal waves can generate motion of
particles in a mountain-shaped pile, through either avalanches, compaction or both. We
have not aim our experiments to observe these processes, however it can be interesting to
study them. From the conclusions of our work, we propose to perform this experiment by
performing improvements to our setup. First, a well controlled mountain builder should
be developed, in order to perform multiple experiments with the same mountain. Second,
the wavefield can be measured by performing PIV visualization technique (described in
section 2.1.4), this technique allows to measure the velocity of a turbulent wavefield. How-
ever, this technique may require some adjustment to the visualization of the grain motion
respect to our technique.
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Chapter 4

Internal waves reflection

Wavefield of a focalization produced by an internal

wave near-critical reflection over a sloped boundary.

In this Chapter we will present the charac-
teristics of internal gravity waves reflection in
the critical and near critical cases. The de-
tailed study of this process is principally mo-
tivated by some peculiar characteristics of in-
ternal waves reflection that can enhance the
shear stress developed near boundaries.

The separation of incident and reflected
wave in the reflection process is crucial to
the understanding of the velocity field in the
proximity of the boundary. Two methods
are presented in order to achieve this goal:
the Hilbert transform method used previously

and, an innovating variational method (developed in collaboration with researchers from
the signal processing community [61]), which takes into account the particular character-
istics of internal waves reflection.

We will compare high resolution measurements of the velocity field close to the bound-
ary with a theory for critical wave reflection developed by Dauxois & Young. In addition
this measurements will allow us to estimate the shear stress σ near the boundary for exper-
iments ranging an interval in the Reynolds number Re ∼ 5 to Re ∼ 600. The agreement
between experimental results and theory allows to predict through the Shields approach,
if erosion of particles in a bed will be achieved for a particular experimental configuration
and particles characteristics.
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4. Internal waves reflection

4.1 Critical reflection: Singularity and localization of the

reflected wave

As shown in section 1.1.4 in the linear theory of internal waves reflection, it is expected
for a critical reflection, the reflected wave to present some singularities:

• The wavelength is equal to zero, λrefl = 0,

• The amplitude is equal to infinity,

• The group velocity is equal to zero.

The reflected wave will focus at a boundary on a layer with zero width. As the energy
of the incident wave is conserved during the reflection, the energy density is expected to
be infinite at the boundary. In consequence, the along slope velocity at the boundary and
apart from it will present a jump. This is equivalent to an infinite shear stress σ at the
boundary.

The particular characteristics present in the linear theory developed by Phillips indi-
cates that this theory does not solve the problem of an internal wave reflection in the
critical case. The presence of the singularity suggests the existence of a mechanism, not
taken into account in the theory that prevents the singularity from developing. The exis-
tence of a mechanism that heals the singularity is supported by our measurements as well
as other previous observations [12], [37] and [20].

Many efforts have been done in order to heal the singularity present in the linear theory.
The advances done in this field rely on the belief that the absence of this singularity is due
to viscosity and/or non-linearities ([72], [43], and [63]).

In the theory developed by Dauxois & Young [19] it is shown that the singularity
present in a critical reflection of a weakly nonlinear internal gravity wave can be healed,
by using a matched asymptotic expansion, either through dissipation or transience.

4.2 Experimental setup and system description

4.2.1 Schematic configuration and coordinate systems

Many possible configurations exist in order to generate an internal wave reflection over an
oblique slope. The reflection process can generate focusing or defocusing of the reflected
wave. Given that the main interest is to describe critical and near-critical reflections, we
will present in this work only results in which focusing occurs.

The configuration used to study the reflection process is schematized in figure 4.1.
Imposed by the frequency of the wave generator ω0, the incoming wave propagates from
up-left to down-right at an angle β with respect to the horizontal. It reflects on an oblique
slope tilted at an angle γ with respect to the horizontal and propagates away from the
slope.

Higher order frequencies are generated through non linear interactions between the
incident and reflected waves. This process is thus decomposed in several waves: the in-
cident wave, which propagates before touching the boundary, the reflected wave which
conserves the temporal frequency ω0, and the higher order waves that are product of the
non-linearities and propagate at frequencies 2ω0, 3ω0, etc., where the highest harmonic
will be bounded by N through the dispersion relation, that is, ω/N ≤ 1. We are interested
in the waves that propagate near the boundary for near critical-reflection, that is, the
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4.2. Experimental setup and system description

Figure 4.1: Schematic view of the incident wave reflection. The angle between the bottom
slope and the horizontal is γ; the angle between the incident group velocity and the hor-
izontal is β, and α = γ + β. cg indicates the group velocity and g indicates gravity. The
horizontal and vertical axis, as well as the axis attached to the slope, are indicated. Same
illustration shown in figure 1.2.

reflected wave with frequency ω0, given that the waves associated with higher harmonics
will propagate away from the slope.

The direction of propagation of the incident wave is defined through the angle between
the group velocity cg and the horizontal; the angle between the incident group velocity
and the slope is defined as α = β + γ. Two coordinate systems will be used, as indicated
in figure 4.1; x and z are the coordinates respectively perpendicular and parallel to the
gravity, and xs and zs are the coordinates along and normal to the slope. The reflected
wave will be studied for different departures from criticality and will be described as a
function of the control parameters β − γ.

4.2.2 Experimental setup

Experiments are done in a tank 160 cm long, 17 cm wide and 42 cm deep, filled with 36 cm
of salt water. Using the two-bucket method described in section 2.1.1, the fluid is linearly
stratified in density in order to produce a constant buoyancy frequency N . Vertical density
measurements are performed with a conductivity probe along the tank. An example of an
experimental measurement of the density as a function of the height is plotted at the right
side of figure 4.2.

The generation of internal waves is performed by a moving boundary generator de-
scribed in detail in section 2.1.3. The wave generator is located vertically so that the
displacement profile is:

X(z, t) = A sin (ω0t− kgzz) , (4.1)

where ω0 is the forcing frequency, kgz the vertical wavenumber of the generator and A the
amplitude. For the experiments presented in this work the amplitude of the plane wave
generator varies between 0.25 and 1.5 cm, and the vertical wavelength λg = 2π/kgz between
4 and 8 cm. The wave generator is located at the side of the tank as illustrated in figure 4.2.

In order to achieve critical and near critical reflections, a transparent acrylic slope with
variable inclination is placed in the tank before the filling. There is no perceptible difference
in the stratification density profile because of the presence of the slope. The angle of the
slope γ can vary between 0 ◦ and 35 ◦, and is 16 cm wide. The velocity of the fluid is
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Figure 4.2: Sketch of the experimental setup. On the left of the tank is the wave generator
(plane waves). A slope is introduced in the tank. Coming from the generator, the internal
waves propagate from up-left to down-right as illustrated. The field of view is represented
with a tilted rectangle over the slope. The control parameters are indicated in the sketch:
A, λg and ω0 of the plane waves generator, and the angle of the slope γ. The two systems
of coordinates are indicated: x, z and xs, zs. On the right is plotted an experimental
measurement of the density (crosses) as a function of the water depth.

Table 4.1: Control parameters for experiments. N is the buoyancy frequency, γ the angle of
the slope, A and λg = 2π/kgz the amplitude and vertical wavelength of the wave generator, β
the angle of propagation of the incident wave, given by the dispersion relation ω0 = N sinβ,
where ω0 is the forcing frequency of the generator. Re = λU/ν is the Reynolds number, and
Fr = U/(ω0λ) the Froude number, where λ and U are the wavelength and the maximum
velocity in the direction of the incident wave, and the Re and Fr number are calculated for
experiments corresponding to the smallest value of |β − γ| in each case. The experiments
were done with planes waves, except the experiments of the two last lines, which correspond
to a mode generated with a vertical profile.

Case N [rad/s] γ[ ◦] A[cm] λg[cm] Re β[ ◦] Fr

exp1 1.15 16.5 0.25 4 5 12 - 25 0.01
exp2 1.14 15 0.25 8 17 12 - 26 0.01
exp3 1.22 15 1 4 18 8 - 22 0.04
exp4 1.1 16 1 4 16 7 - 33 0.043
exp5 1.1 16 1.5 4 23 7 - 34 0.059
exp6 1.13 16 0.5 8 32 7 - 32 0.02
exp7 1.02 17 1 8 98 11 - 40 0.05

exp8 1.02 16 0.5 30 400 8 - 28 0.016
exp9 0.82 16 1 30 620 8 - 38 0.03

measured in a vertical plane using particle image velocimetry (PIV) (see section 2.1.4 for
more details). The parameters that are modified for different experiments are expressed in
table 4.1.

4.3 Observations and post-processing

From the set of near-critical reflection experiments realized in this work, we will make use
of the experiment with smallest value of |β − γ| to describe the critical reflection behavior.
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Figure 4.3: Snapshot of the normalized velocity field at t/T = 15. The plot is tilted
similarly to the experiment in order to illustrate the inclination of the slope γ = 16◦.
x, z and xs, zs coordinates are indicated. The slope boundary is located at zs = 0.
The background color indicates the us velocity component normalized by the along-slope
component of the incident velocity uincs = 0.1 cm/s , and arrows represent the velocity
field. The incident wave is coming from left to right, and the generator is located 30 cm
from the center of the image. This experiment corresponds to the case "exp3" indicated
in table 4.1.

A snapshot of the velocity field of experiment "exp3", for which γ − β = −0.18◦, is shown
in figure 4.3, obtained 15 periods after the wave generator was started. The incoming
plane wave is reflected on the sloped boundary (at zs = 0 in figure 4.3) and propagates
along the slope in a narrow region producing an increase in the intensity of the velocity
field, as a consequence of focusing. After a transient regime (∼ 10 periods), the reflection
process reaches a stationary regime. Due to viscous dissipation the intensity of the incident
wave decays as the waves propagate away from the wave generator. The color indicates
the intensity of the along-slope component of the velocity field, which is normalized by the
amplitude of the incident wave velocity.

In order to study the reflection process it is necessary to distinguish the different waves
involved in the process. The higher harmonics waves with frequencies (2ω0, 3ω0, etc.) can
be isolated through temporal filtering. The reflected wave will stay closer to the slope for
near-critical reflections since it conserves the frequency ω0. This wave cannot be separated
from the incident wave with temporal filtering techniques. For this, the procedure of
separation of the waves will be based on the fact that the spatial wavenumber is not
conserved in the reflection process.

We will now introduce temporal and spatial filtering applied to our experiments.

4.3.1 Temporal filtering

As mentioned in section 2.2, we can obtain the velocity field of an internal wave associated
to each specific frequency through the following routine: a Fourier transform is performed
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Figure 4.4: Power spectrum density P (ω/N) of us for a critical reflection of the experiment
corresponding to figure 4.3. The spectrum is taken from a set of points located in the left
side of the field of view at approximately 8 cm from the slope (indicated with a white square
in figure 4.3). This experiment corresponds to the case "exp3" indicated in table 4.1, in
which ω0/N = 0.26.

.

for the time evolution of the velocity field, then a band-pass filtering around a selected
frequency is performed, and finally an inverse Fourier transform is accomplished.

Figure 4.4 shows the frequency power spectrum for the experiment corresponding to
the snapshots presented in figure 4.3, taken from the region illustrated by a white dotted
line square. The largest contribution is associated to the frequency ω0/N = 0.26, which
comes from two waves: the wave produced by the generator forcing (incident wave), and
the reflected wave with frequency ω0 that will stay near the slope. The harmonics 2ω0/N =
0.52, 3ω0/N = 0.78 and 4ω0/N = 1.03 are also present, with lower magnitude. One other
frequency ω/N = 0 has non vanishing contributions to the signal. It corresponds to the
mean flow generated as a result of the non-linear interaction between incident and reflected
waves.

When the temporal filter is performed over the frequency ω0/N = 0.26, the components
related to the higher harmonics are removed, and the velocity field obtained will be solely
associated to the incident and the reflected wave with frequency ω0.

Through temporal filtering the incident and reflected wave cannot be separated. A way
to resolve this problem and distinguish the two waves is through spatial filtering techniques.

4.3.2 Spatial selection and Hilbert transform

In section 1.1.4 we showed that when an internal wave reflection occurs, the temporal
frequency of the wave is conserved. This leads to the impossibility to distinguish these two
waves through temporal filtering. On the other hand, the wavenumber of a wave is not
conserved in the reflection process: to be more precise the absolute value of the along-slope
component of the wavenumber is conserved, | kreflxs |=| kincxs

|, while | kzs | is not.
The separation of the incident and reflected wave through the spatial spectrum is

based on differentiating the wave associated to (kincxs
, kinczs ) and (kreflxs , kreflzs ), which comes

to discriminate between kinczs and kreflzs . Figure 4.5(a) and (b) show respectively the power
spatial spectrum as a function of kxs and kzs , for the experiment corresponding to the
snapshot presented in figure 4.3, after filtering around the temporal frequency ω0/N = 0.26.
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Figure 4.5: (a) Spatial spectrum (solid curve) for kxs . (b) Spatial spectrum (solid curve)
for kzs ; the dashed line represents the spectrum filtered around the forced wavenumber
kinc. With a dashed-dotted vertical line is indicated the experimental value of kinc and
krefl. These spectra correspond to experiment "exp3" and ω0/N = 0.26.

For the component kzs the wavenumber of both waves can be separated in the spatial
spectrum, whereas both wavenumber components overlap in the spectrum P (kxs).

The largerst peak of these two power spectra corresponds to the wavenumber com-
ponents of the incident wave. The spatial power spectrum after the spatial filtering is
performed around the values kincxs

±∆kincxs
and kinczs ±∆kinczs are respectively plotted as red

dashed lines in figure 4.5(a) and (b), where ∆kincxs
= kincxs

/4 and ∆kinczs = kinczs /4.
The Hilbert transform method (detailed in section 2.2.2) recovers the outcome velocity

field corresponding to the spatial filtering process. This spatial filtering centered in kincxs

and kinczs permits to isolate the velocity field corresponding to the incident wave. We will
call this velocity field HT(ω, kincxs

, kinczs ), where HT denotes Hilbert transform (shown in
figure 4.6(b)). Obtaining the reflected wave is less direct: in a first step, the velocity field
is filtered around kincxs

, which is a quantity conserved in the reflection. This field is named
HT(ω, kincxs

) and is shown in figure 4.6(a); the second step consists in subtracting to this
field HT(ω, kincxs

) the velocity field corresponding to the incident wave HT(ω, kincxs
, kinczs ):

U refl
HT = HT(ω, kincxs

)− HT(ω, kincxs
, kinczs ), (4.2)

where U refl
HT is the velocity field associated to the reflected wave.

The filtering operation allows to extract the reflected wave U refl
HT (figure 4.6(c)), which

propagates from left to right in the neighborhood of the slope, in contrast with the incident
wave, which propagates from up-left to down-right.

The Hilbert transform method can present some disadvantages to separate the incident
and reflected wave. The outcome velocity field of the incident wave can present distortion
of the amplitude on the sides of the image caused by boundary effects. This effect is
produced by the fact that there is a finite number of wavelengths of the wave in the field of
view. The artifact will be more pronounced when the ratio between wavelength and image
size increases.
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(a)

(b) (c)

Figure 4.6: Snapshot of us/uincs resulting from a filtering through Hilbert transform around:
ω0 and kincxs

(a); and around ω0, kincxs
and kinczs (b). (c) Result of the subtraction between

velocity field us of (a) and (b). Note that the slope boundary is located at zs = 0.

It is intrinsic to the procedure of obtaining the reflected wave, that if the incident wave
presents artifacts, the reflected wave will also do. We will now present a variational method
that permits a more accurate separation between incident and reflected wave.

4.3.3 Variational mode decomposition method (VMD)

Another way that wave selection can be performed is through 2-D Variational Mode De-
composition [22]. This method consists in decomposing an image into different modes of
separated spectral bands, which are unknown beforehand.

The 2-D Variational Mode Decomposition allows, instead of searching for a specific
wave, to perform a selection that can be formulated as an inverse problem which consists
in extracting J oscillating components (modes), denoted (uj)1≤j≤J with uj ∈ R

N1×N2 ,
from the observed data u, where N1 × N2 is the spatial region of the field of view, say
u ∈ R

N1×N2 such that

u =

J
∑

j=1

uj + ε (4.3)

where ε models an additive noise which represents in our case how close the addition of
the modes are to the input data. The study of internal wave reflection corresponds to the
specific case J = 2 (in some specific cases we will use J = 3), where u models the velocity
field, and each component is centered around an unknown spatial frequency kj = (kj,1, kj,2)
so that, for every location (xs, zs) ∈ {1, ..., N1} × {1, ..., N2},

uj,(xs,zs) = aj,(xs,zs) cos(vj,1,(xs,zs)xs + vj,2,(xs,zs)zs + ϕ) (4.4)
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where aj ∈ R
N1×N2 models the amplitude changes in space and, for i ∈ {1, 2}, the mean

value over space of the spectral content vj,i ∈ R
N1×N2 is close to the central value kj,i, and

ϕ is a phase term.
The 2-D Variational Mode Decomposition aimes at estimating jointly (uj)1≤j≤J and

(kj)1≤j≤J by solving

min
(uj ,kj)1≤j≤J
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where the 2D analytic signal uAS
j is defined in the Fourier domain, for every spatial fre-

quency (ν1, ν2) ∈ V, as

ûAS
j,(ν1,ν2)

= (1 + sign(kj,1ν1 + kj,2ν2))ûj,(ν1,ν2). (4.6)

D models the gradient operator and the coefficient αV > 0 denotes a regularization pa-
rameter allowing to adjust the bandwidth size of the filter.

We have improved this algorithm considering the specific properties of internal wave
reflections:

• first, incident and reflected wave have different spectral behaviors. In particular,
the spectrum of the reflected wave is very compact horizontally but not vertically.
Parameters αV depending on the mode j and the coordinate i ∈ {1, 2} have been in-
troduced, in order to separately adjust the horizontal and vertical spectral compacity
of each mode.

• Second, for the critical and near critical reflections, the reflected wave will stay in
the proximity of the boundary. For this case we expect that the mode associated
to the reflected wave will vanish far away from the slope. This information can
be introduced through a penalty term fj(uj), which acts as an indicator function
iC(uj) whose value is 0 if uj ∈ C = {u ∈ R

N |(∀(xs, zs) ∈ S) u(xs,zs) = 0} and +∞
otherwise. For such a choice of the penalty fj , we impose the component uj to be
zero in the set of indexes S.

According to these remarks, the criteria derived to minimize is the following:

min
(uj ,kj)1≤j≤J
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∥

2
}

(4.9)

where D1 and D2 denote respectively the gradient operator along the xs and zs component.
The parameters αV

j,1 and αV
j,2 which allow to adjust the selectivity for each mode and

component are chosen positive. The parameter λV permits to adjust the attachment of
the decomposition to the data u

A more extensive and detailed presentation of the 2-D Variational Mode Decomposition
method improved for internal wave reflection has been published in Schmitt et al [61].
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Figure 4.7: 2D spatial power spectrum P (kxs , kzs) of the velocity field corresponding to the
experiment presented in figure 4.3. (a) Spectrum of a velocity field of incident and reflected
wave together. (b) and (c) are Mode 1 and 2 obtained through 2D-VMD separation method
associated to the velocity field of the incident and reflected wave respectively. kincxs

and
kinczs are indicated in the lower and right margin of each figure.

4.3.4 VMD spectral analysis

The particular behavior of an internal wave critical reflection distribution in space can be
analogously described through the respective spatial spectrum of its components. First,
the along-slope component of the wavenumber will be conserved, kreflxs = kincxs

. Second, it

is expected that kreflzs > kinczs . Finally, the reflected wave will be confined to a small section

close to the slope, in consequence, kreflzs will be highly spread in the spatial spectrum.
Figure 4.7 shows the spatial spectrum of the incident and reflected wave after filtering

in time around ω0 (which we named Input), as well as the spatial spectrum corresponding
to the incident (named Mode 1) and reflected wave (named Mode 2), separated through
2D-VMD method. The spectra corresponds to the experiment presented in figure 4.3.

The spatial spectrum for the velocity fields corresponding to both the incident and
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Figure 4.8: Profile along the kzs coordinate for kxs = kincxs
of the three spatial spectrum

plotted in figure 4.7.

reflected waves (4.7(a)), and to the incident wave alone (4.7(b)) present their maximum
value for the wavenumber matching the incident wave kinc. For the spectrum corresponding
to the reflected wave (figure 4.7(c)) the maximum in the kxs coordinate is equal to kincxs

; in
contrast, the maximum corresponding to the kzs coordinate has a larger value and is not
as well defined along the kzs coordinate. We can see that there is conservation of kxs in
the reflection process.

By taking a vertical profile along the coordinate kzs of the spectra presented in 4.7,
for the along-slope wavenumber kxs = kincxs

, one can see the relative contributions that the
Mode 1 and the Mode 2 have over the Input spectrum profile. This is shown in figure 4.8,
the Mode 1 associated to the incident wave is well localized around kincxs

and has a larger
magnitude P (kincxs

, kzs) than the Mode 2 (reflected wave) which is located around a larger
value of kzs and is more spread out.

The spectral shape of internal waves in a reflection process is fundamental at the
moment of choosing the correct parameters for the spatial separation through the improved
VMD method described in section 4.3.3. That is, as the reflected wave is more compact
in the kxs coordinate that in the kzs , the parameters αV

j,2 that adjust the selectivity of
the filter of the VMD method (equation (4.9)) in order to better perform the separation
between incident and reflected wave, will not have the same value in both directions j.

4.3.5 HT vs VMD and improved VMD

In order to select the best method for the separation of the incident and reflected wave in
a reflection process, the Hilbert transform and Variational Mode Decomposition methods
are compared.

For the Hilbert transform the time evolution of the velocity field is needed in order
to obtain the phase of the wave and correctly describe the wavenumber before the spatial
filtering is done. In the case of the VMD methods only one image is required to perform
the spatial decomposition operation, in this case, the velocity field is previously filtered in
time at the forcing frequency ω0 (figure 4.9(a)).

The VMD method will be used with various stages of refinement considering the im-
provements developed for the algorithm presented in section 4.3.3, that is, control the
bandwidth selectivity for each mode, and perform a penalization in a particular spatial
region. We will then consider the following stages:
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4. Internal waves reflection

• VMD: the separation method has the same bandwidth selectivity for the spatial
frequency of each mode, as well as for the different coordinates, kxs and kzs , and
no penalization is done to any values of the velocity field in the real space. This is,
αV
j,{1,2}=α

V for j = {xs, zs} and fj = 0 in equation (4.9), which in this case becomes
equation (4.5).

• VMD non-iso: the bandwidth selectivity for the spatial frequency αV
j,{1,2} can be

chosen independently for each mode and coordinate. No penalization is done, fj = 0.

• VMD non-iso projection: the bandwidth selectivity for the spatial frequency αV
j,{1,2}

can be chosen independently for each mode and coordinate. A penalization to the
reflected wave (Mode 2) is performed in order to have a null velocity field for a
selected region of the real space (the upper half of the image).

The selection criteria to determine which method will be used is based on assuming
that some physical properties should be satisfied in the reflection process. These physical
properties are:

1. The amplitude of the incident wave barely changes in the region of the image.

2. The amplitude of the reflected wave is negligible far from the slope.

3. The complete velocity field is composed of the addition of the incident and reflected
wave.

Following these remarks, the methods are compared. Figure 4.9 shows the velocity field
decomposition of the incident and reflected wave for the experiment corresponding to the
snapshot presented in 4.3 through the Hilbert transform and the VMD methods.

As expected for the Input image (figure 4.9(a)), the intensity of us decreases from
left to right due to viscous dissipation. Nevertheless, in figure 4.9(b), the velocity field
related to the incident wave obtained by the Hilbert transform method presents the largest
intensity of us in the center of the image and not on the left side of the image. This is a
hint that some boundary effects are present in the outcome of the filtering process through
the Hilbert transform that are not present in the VMD methods (figure 4.9(d), (f), (h)).
The VMD methods are able to capture the variation of the intensity of the wave given by
dissipation, that is, the wave looses intensity as it moves away from the source. For the
Hilbert transform method one notices that in the separation process, the incident wave
is partially mixed up in the velocity field associated to the reflected wave (figure 4.9(c)).
Less pronounced, in the VMD methods, the opposite happens: the reflected wave modifies
the velocity field related to the incident wave (Mode 1) near the boundary. In the Mode 2
for VMD and VMD non-iso methods an artifact appears in the upper part of the image,
which is not present in the VMD non-iso projection method.

In order to compare the different separation methods, it is also useful to take the
absolute value of the velocity field us(xs, zs) spatially averaged in the coordinate xs as
a function of zs, that is, < |us| >xs . These profiles are shown in figure 4.10 for all the
separation methods presented here. From these profiles one can observe the dependence
of the amplitude with zs for the incident or reflected wave obtained through different
methods. For the incident wave (Mode 1) the amplitude varies by almost 30% between
the center and the boundaries of the image for the Hilbert transform method, whereas
in VMD method this variation decreases to a 15%. For the reflected wave (Mode 2), the
amplitude at the boundary seems to be overestimated for the Hilbert transform method.
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Figure 4.9: 2D images of the field of view for the experiment presented in figure 4.3.
Abscissa and ordinate correspond respectively to the xs and the zs coordinates. Color scale
indicates a scale proportional to us. (a) Velocity field filtered temporally at ω0/N = 0.26
that will be used as the input of the spatial separation methods. Figures (b), (d), (f)
and (h) represent the Mode 1 (incident wave) obtained through respectively the Hilbert
transform, VMD, VMD non-iso and VMD non-iso projection methods; whereas figures (c),
(e), (g) and (i) represent the corresponding field for Mode 2 (reflected wave).
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Figure 4.10: <
∣

∣us(zs)
∣

∣ >xs for different spatial separation methods. (a) velocity field
related to the incident wave (Mode 1). (b) velocity field related to the reflected wave
(Mode 2). In both figures is plotted the profile of the Input. zs = 0 represents the position
of the slope.

In the reflected wave for the VMD and VMD non-iso methods the artifact found in the
upper part of the figures 4.9(e) and (g), can be observed for large values of zs. While in
the VMD non-iso projection method this artifact will not be present.

Taking into account the requirements that are expected for the separation methods,
one can summarize the comparison by the following remarks:

• The mode decomposition in the HT method is completely attached to the input, that
is intrinsic to the separation process of the modes. In consequence, the Mode 2 will
present boundary effects, because the Mode 1 presents boundary effects.

• The VMD methods allows to reduce the oscillations of the Mode 1 on the first 30
pixels near the slope.

• Adding the directionality constraint allows to be less sensitive to the choices of the
optimal method parameters.

• The zero-constraint on the Mode 2 for the pixels that are far from the slope enables
to cancel the undesired oscillations of the incident wave and the boundary effects in
the reflected wave.

The attachment to data is fairly similar in all methods (the value of ε of equation 4.3).
It has been taken into account in the optimal selection of the parameters of each method.

In view of the physical remarks pointed out for the separation of incident and reflected
wave in the reflection process, the method that highlights best these features is the VMD
method. In further analysis we shall use the VMD non-iso projection to separate the
incident and reflected wave. For non-critical reflections the VMD non-iso method will be
also used, given that the reflected wave will not remain close to the slope.

4.3.6 Extraction of the incident velocity

In order to study the enhancement of the shear stress when focusing occurs, we will relate
the intensity of the reflected wave to the intensity of the incident wave. To measure this
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4.3. Observations and post-processing

Figure 4.11: Wavefield associated to the incident velocity obtained through VMD decom-
position of "exp3". With a white square is marked the regions in which the incident velocity
is averaged.

relation it is useful to extract a value for the intensity of the incident wavefield velocity.
This is performed by using the mode associated to the incident wave.

The method used to obtain a value which represents the intensity of the incident ve-
locity is based on considering that the wavefield has the form of a sinusoidal along both xs
and zs coordinates, that is, us = uincs sin(kxsxs+kzszs+φ), for example for the along-slope
component of the velocity (this is not completely true given that the wave is dissipated,
however, we estimated the systematic error related to this effect). Now, taking

∣

∣us(xs, zs)
∣

∣

and averaging this quantity in space, over a region of size λxs × λzs , which are the wave-
lengths associated to the wavenumbers kxs and kzs , on can see that < |us| >λxs×λzs

= 2
πu

inc
s ,

from where we can obtain uincs .

This technique has been implemented by averaging
∣

∣us(xs, zs)
∣

∣ in the region of the left
side of the field of view of the mode associated to the incident velocity (marked with a
white square on the left side of the wavefield of figure 4.11). Only the wavefield of the left
side of the field of view is used, so that the variations in the intensity because of dissipation
are small enough to be neglected. It is important to mention that when averaging over
a region Lxs × Lzs , where Lxs > λxs and Lzs > λzs (which is our case), the difference in
calculating < |us| >λxs×λzs

and < |us| >Lxs×Lzs
is smaller than 2%.

The reflected wave will propagate upward and/or downward depending on the value
of β − γ. For this reason, the intensity of the reflected wave will sometimes be associated
to the intensity of the incident wave in the region on the left of the field of view and
sometimes to the region on the right. For a given experiment we will consider that the
error in estimating the incident velocity, ∆uincs , will be associated to the difference between
obtaining uincs by averaging the right side of the field of view, uincR =< |us| >Right, and the
left side, uincL =< |us| >Left (the Left and Right regions of the field of view are shown in
figure 4.11 with a white square at the left and at the right respectively). The systematic
error associated to the dissipation of the incident wave in the region of the field of view
will then be ∆uincs =

∣

∣uincR − uincL

∣

∣.

The separation of the waves involved in a near-critical reflection process, obtained
through high resolution measurements, allows us to compared these results with Dauxois-
Young theory for near-critical reflections. This theory emphasizes the fact that weak non
linearities and viscosity will be determinant in the reflection process.
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4. Internal waves reflection

Figure 4.12: Schematics showing the definition of the two regions in the direction normal
to the slope. The inner region near the slope is described by the coordinate ξ; and the
outer region described by zs.

4.4 Weakly non-linear near critical reflection: Dauxois

Young model

The model for internal wave reflections proposed by Phillips [57] presents fundamental
problems to describe a critical reflection. A more accurate representation of the near-
critical reflection has been developed by Dauxois & Young [19]. The theory is based on
separating in two regions the space where the reflection occurs. The incident wave is in the
outer region and the reflected disturbance is largely confined to an inner region, which is
essentially a boundary layer close to the slope. Both regions are connected by a asymptotic
matching condition. This separation is shown in the schematics of figure 4.12. The solution
in the inner region is obtained by regular perturbation expansion.

In the following we will expose the key ingredients of this theoretical approach.

4.4.1 Dimensional analysis

We consider a two-dimensional, non-rotating, incompressible Boussinesq fluid, with con-
stant Brunt-Väisälä frequency N . Taking an incident wave train, for which the stream-
function has the form:

ψ = A cos(K sinαx+K cosαz −N sinβt), (4.10)

where the wavenumber K has been introduced. Considering this incident wave, we intro-
duce the following dimensionless variables,

[x̂s, ẑs] = K[sinαxs, cosαzs], (4.11)

t̂ = N sinβt, (4.12)

[ψ, us, ws, b, p] = ψmax[ψ̂,K cosαûs,K sinαŵs,KNb̂s, Np̂]. (4.13)

where A = ψmaxÂ, and ψmax is defined as the maximum amplitude of the streamfunction,
so that max(Â) = 1, b(x, z, t) is the buoyancy perturbation of the stratification at rest and
p the presure.

The equations of motion for the dimensionless variables in the coordinate system at-
tached to the slope are

Dûs

Dt̂
+

tan(α)

sinβ
p̂x̂s −

sin(γ)

sinβ cosα
b̂s =

1

Re
∇2ûs, (4.14)
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Dŵs

Dt̂
+

cot(α)

sinβ
p̂ẑs −

cos(γ)

sinβ sinα
b̂s =

1

Re
∇2ŵs, (4.15)

Db̂s

Dt̂
+

cos(α) sin γ

sinβ
ûs −

cos(γ) sinα

sinβ
ŵs =

1

Pe
∇2b̂s, (4.16)

∂x̂s ûs + ∂ẑsŵs = 0. (4.17)

And the boundary conditions at the slope will be,

N2 cos γ + ∂ẑs b̂ no-diffusive flux of buoyancy condition, (4.18)

ûs = 0 no-slip condition, (4.19)

ŵs = 0 no-flux condition. (4.20)

Where the laplacian and time derivative operators are written as

∇2 = sin2(α)∂2x̂s
+ cos2(α)∂2ẑs , (4.21)

D

Dt̂
= ∂t̂ + a(ûs∂x̂s + ŵs∂ẑs). (4.22)

The Reynolds and Peclet numbers are defined as:

Re =
N sinβ

νK2
, P e =

N sinβ

κK2
. (4.23)

A measure of the nonlinearities of the wave is defined by the parameter a:

a =
K2 sin 2α

2N sinβ
ψmax. (4.24)

In this non-dimensional and slope oriented coordinate system, the dispersion relation
for an inviscid internal plane wave is,

ω = ± kx̂s sinα cos γ − kẑs cosα sin γ

sinβ
√

(kx̂s sinα)
2 + (kẑs cosα)

2
, (4.25)

and the wave solution that satisfies the dispersion relation is:

[ψ̂, b̂] = [1, 1]
A

2
ei(x̂s+ẑs−t) + c.c. (4.26)

Where the streamfunction is defined by the convention

ûs = −ψ̂ẑs , ŵs = ψ̂x̂s . (4.27)

In what follows, the hats in the dimensionless variables will be dropped for simplicity.
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4.4.2 Near critical approximation

The streamfunction solution (4.26) is of the same type of solution presented in section 1.1.4.
In order to heal the singularity that this solution presents, a reductive approximation is
developed based on taking a particular limit in which a, β − γ, Re−1 and Pe−1 are all
small.

In terms of non-dimensional variables, the vertical wavenumber of the reflected wave
is:

kreflzs =
tan(γ + β)

tan(γ − β)
. (4.28)

When the reflection is critical (γ = β) one can observe that kreflzs → ∞. The parameter ǫ
is defined,

ǫ = (a tanα)1/3, (4.29)

which is related, through a, to the relative weight of the non linearities. The reduction is
based on the assumption that ǫ is small. We introduce δ:

δ =
β − γ

ǫ2
, (4.30)

so that
γ = α/2− δǫ2/2, β = α/2 + δǫ2/2. (4.31)

And for ǫ≪ 1, we have

kreflzs ≈ tan(α)

δǫ2
, (4.32)

and

cg ≈ tan(2β)

(kreflzs )2 tanβ
[−kreflzs , 1]. (4.33)

4.4.3 Inner region

The theory resolves the velocity field of an internal wave near-critical reflection by separat-
ing the space in two regions in the direction normal to the slope as shown in figure 4.12: the
outer region where the incident wave is located; and the inner region where the reflected
wave is confined.

In order to describe the reflected disturbance in the inner region a stretched coordinate
ξ and a slow timescale t2 are used, these scales are:

ξ ≡ ǫ−2 tanαzs, t2 ≡ χǫ2t, (4.34)

where χ ≡ cot(α/2). We also define:

us ≡ ǫ−2 tanαU, ws ≡W, ψ ≡ Ψ, (4.35)

so that we have

U = −Ψξ, W = Ψxs . (4.36)
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By solving the equations of motion for these stretched coordinates, Dauxois et Young
derived a solution in terms of a regular perturbation expansion in ǫ (for more details
see [19]). The leading-order solution for the streamfunction is

Ψ0 =
1

2
ei(t−xs)S (ξ, t2) + c.c., (4.37)

where S will depend on the physical case considered (viscous/non viscous, critical/non
critical, transient/steady).

Many cases are considered in this model, we will be interested in the stationary solution.
For the viscous case, the steady solution for the reflected wave in a critical reflection δ = 0
is:

S = − 2√
3
sin

( √
3ξ

2̺2/3
+ π/3

)

e−ξ/2̺2/3 , (4.38)

where

̺2 =
K2 sin2 α

ǫ62χN sinβ
(ν + κ). (4.39)

By using equations (4.36), (4.37) and (4.38), we can obtain the along-slope velocity in
the stretched coordinates of the reflected wave:

U = −e
−ξ/2̺2/3

√
3̺2/3



sin

( √
3ξ

2̺2/3
+ π/3

)

−
√
3 cos

( √
3ξ

2̺2/3
+ π/3

)



 cos(xs − t). (4.40)

This solution will be compared with our high resolution measurements of the velocity field
close to the slope, in section 4.5.

4.5 Results

4.5.1 Critical reflection: upward wave, downward wave or both?

As mentioned in section 4.3.5, the separation of the modes associated to the incident and
reflected waves is done with the VMD method. This method allows to perform a mode
decomposition in as many modes as one wants.

When |β − γ| is large, the reflected wave reflects away from the boundary allowing
the observation of the wave in a large region of the field of view, which permits an easy
identification of this wave. On the other hand, when the reflection is near-critical, the
wave focuses in a thin layer close to the boundary. As mentioned in section 1.1.4, when
β − γ . 0 the direction of propagation of the reflected wave will be downward along the
slope, whereas, it will be upward when β − γ & 0. When β − γ ≈ 0, both waves occur,
upward and downward. For a near critical reflection, when decomposing the wavefield in
three modes through VMD method we can observe that, in addition to the incident wave,
the upward and downward reflected waves come into view (an example of these two waves
is shown in figure 4.13). This decomposition is possible given that the propagation of these
waves are in different directions, and therefore, have different associated wavenumber. In
the cases where upward and downward reflected waves exist, we will consider that the full
reflected wave is formed by the superposition of upward and downward waves.
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Figure 4.13: Normalized velocity field of experiment "exp4" corresponding to the downward
(a) and the upward mode (b) of the reflected wave obtained through three-mode VMD
decomposition. For this experiment β − γ = −0.7◦.
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Figure 4.14: ûrefls as a function of zs/λg estimated by two- and three-mode VMD de-
composition, corresponding to experiment "exp4" and β − γ = −0.7◦. The upward and
downward components of the three-mode VMD decomposition are also indicated.

The convergence time of the VMD method towards a steady solution will depend,
between other things, on the number of modes employed in the decomposition. The con-
vergence to a solution by using three-mode decomposition will not only take longer, but
in some cases will not be possible. In particular, if we make use of the improved algo-
rithm property which forces a mode to have a null velocity field in a particular spatial
region (detailed in section 4.3.3), it is rare to converge to a solution when performing the
decomposition with three modes.

We are interested in the dependency of the along-slope component of the velocity with
respect to the coordinate normal to the slope, that is, urefls as a function of zs. Depending
on the experimental parameters, the intensity of the incident wave will vary. In order
to compare results from different experiments, we will measure the amplification of the
reflected wave. For this, we introduce the useful quantity
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(û

r
e
f
l

s
)

0.5

1

1.5

2

2.5

2-mode decomposition
3-mode decomposition

(b)

β − γ [◦]
-10 -5 0 5 10

m
a
x
(û

r
e
f
l

s
) 3

M
−
m
a
x
(û
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Figure 4.15: (a)uincs as a function of β − γ for two- and three-mode decomposition (b)
max(ûrefls ) as a function of β − γ for two- and three-mode VMD decomposition. (c)
Normalized difference for max(ûrefls ) between two- and three-mode decomposition.

ûs =
< |us| >xs

uincs

, (4.41)

where uincs is the value which represents the intensity of the incident wave velocity (the
procedure to obtain this value is described in detailed in section 4.3.6). In order to extract
the dependency in the zs coordinate, we perform the average in the xs coordinate over
the same length as used for obtaining uincs . The quantity ûs allows to observe how the
along-slope velocity varies with respect to the distance from the slope where the reflection
occurs. In particular, we will study this quantity related to the reflected wave alone, named
ûrefls .

In figure 4.14 is shown the profile ûrefls as a function of zs/λg corresponding to the
most critical reflection of "exp4", where λg is the vertical wavelength of the generator.
The various profiles correspond to the reflected wave obtained by two- and three-mode
VMD decomposition, and in the case of two-mode decomposition the mode associated to
the reflected wave is forced to be null far from the slope. In dotted-dashed and dashed lines
are indicated the profiles corresponding to the downward and upward components of the
reflected wave obtained through three-mode VMD decomposition. One can observe that
the intensity near the boundary (zs = 0) of the reflected wave obtained through two modes
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is comparable to the upward and downward components. This is an indicator that when
both upward and downward components are present, it is necessary to use three modes
to describe properly the reflected wave. This result can be explained by the fact that
the two-mode decomposition selects the upward or downward components of the reflected
wave only. The differences between two- and three-mode decompositions is amplified for
the largest values of ûrefls . Figure 4.14 shows the difference of the largest value of ûrefls ,
between two- and three-mode decompositions for a particular value β − γ. In order to
better compare two- and three-mode decompositions for different values of β − γ, we use
the maximum value of the profile ûrefls (zs) as an indicator of how well the reflected wave
is extracted from the full wavefield. The incident velocity obtained through two- and
three-mode decompositions present differences not larger than 5% as can be observed in
figure 4.15(a) for experiment "exp4", where uincs is plotted as a function of β − γ. In
figure 4.15(b) is shown max(ûrefls ) as a function of β − γ for the experiment "exp4". One
can observe that the value of max(ûrefls ) for the two-mode decomposition does not change
much for different values of β − γ. On the other hand, the three-mode decomposition
presents larger values of max(ûrefls ) for 0◦ . β − γ . 5◦. The normalized difference of
max(ûrefls ) obtained through the two- and three-mode decomposition as a function of β−γ
can be observed in figure 4.15(c). Even though the error bars are large, one can see that for
large values of |β − γ| the difference in obtaining max(ûrefls ) through two- and three-mode
decompositions is small. On the other hand, these differences increase for 0◦ . β−γ . 5◦.

The difference in using two- or three-mode decompositions is increased for values of
β−γ for which the reflection is near-critical and upward and downward components of the
reflected wave exist simultaneously. This effect can be understood through the solution
for critical reflections presented in equation (4.40). The oscillation term of this solution
presents the form, cos(zs) cos(xs − t), that can be decomposed in the form,
1
2(cos(xs−t+zs)+cos(xs−t−zs)), which are two waves propagating upward and downward.

In summary, the three-mode decomposition resolves more accurately the wavefield of
the reflected wave near the sloped boundary than the two-mode decomposition when three
waves are present, yet introduces boundary effects for large values of zs, since the algorithm
cannot be used to penalized (in our case the penalization will be to force the mode to have a
null velocity field) the wavefield of a mode in a region of the field of view for the three-mode
decomposition. We will then make use of the three-mode decomposition when three waves
are present in the reflection (for reflections in the interval 0◦ . β − γ . 5◦ for "exp4"),
and the two-mode decomposition when two waves are present in the reflection with the
possibility of applying the property of the improved algorithm to penalize the velocity field
in a region of space.

4.5.2 Intensity of the reflected wave

As already remarked we are interested in the intensity of the velocity field of the reflected
wave near the slope for reflections that are near critical, that is, reflections for which
β − γ ≈ 0. Nevertheless, in order to understand the behavior of near-critical reflections,
we have explored a wider range of values centered on β − γ = 0, from −15◦ to 15◦.

In figure 4.16 is shown max(ûrefls ) as a function of β− γ for experiments with different
sets of the experimental parameters, A and λg, the amplitude and vertical wavelength
of the wave generator respectively. One can see that the value of max(ûrefls ) presents
variations in the range of angles −10◦ . β − γ . 15◦, of not more than 50% within each
experiment, which in some cases, represents the same magnitude as the uncertainty. The
uncertainty of max(ûrefls ) for each experiment will depend on the uncertainty in estimating
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(û

r
e
f
l

s
)

0

0.5

1

1.5

2

(c)

β − γ [◦]
-5 0 5 10 15

m
a
x
(û
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Figure 4.16: max(ûrefls ) as a function of β − γ for experiments (ordered by increasing Re
number): (a) "exp1", (b) "exp2", (c) "exp3" and (d) "exp6". The experiments present
different sets of parameters A and λg, and at the top left is indicated in which direction
these two parameters increase.

uincs . And the uncertainty in uincs will depend on how dissipation affects the incident wave
in the field of view (as described in detail in section 4.3.6). The uncertainty in max(ûrefls )
will be usually smaller for experiments in which the wavelength λg is large, as dissipation
will have a larger effect over waves with small wavenumber. The higher amplification of the
reflected wave is found in experiment "exp2", which corresponds to the experiment with
smaller amplitude A = 0.25 cm, and larger wavelength λg = 8 cm, for the wave generator.
For this experiment, the largest value of max(ûrefls ) is slightly above 3 and it corresponds
to a value of β − γ ≈ 3◦ which is not the most critical value explored in this experiment.

An increase of max(ûrefls ) for small and positive values of β−γ (as for example "exp2"
and "exp4" in figures 4.16(b) and 4.15(a) respectively) has been observed in several exper-
iments. However, in other experiments the uncertainty in estimating max(ûrefls ) does not
allow to interpreter an increase of this value in an interval of β− γ (as for example "exp1"
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and "exp3" in figures 4.16(a) and 4.16(c) respectively).
In contrast with what is observed in our experiments, in the linear theory of internal

waves reflection, the maximum amplification of the reflected wave is expected to occur
at the critical angle β − γ = 0. Dauxois & Young proposed solutions for critical and non
critical reflections, in the non viscous case, as well as in the viscous case but only for critical
angle. For this reason, we cannot compare the evolution of max(ûrefls ) as a function of
β − γ which for our experiment is both non critical and viscous. Nevertheless, we will
compare the Dauxois & Young solution for critical-viscous reflections (smallest |β − γ|)
with our most critical reflections of the experiments performed.

4.5.3 Dauxois & Young model: comparison with experiments

In order to compare the solution developed by Dauxois & Young for critical and viscous
reflections, with our measurements we will again use ûrefls . This quantity allows to see how
the reflected wave varies as a function of zs/λg, and will be compared with the average in
t and in xs of the solution presented in equation (4.40). By performing these averages, the
dependency on t and xs disappears, and in return a 2/π multiplicative factor is taken into
account.

Figure 4.17 shows the profile of ûrefls as a function of zs/λg for the most critical reflec-
tions performed in experiments "exp1", "exp2", "exp3" and "exp6". In addition, is plotted
the profile of ûrefls expected by Dauxois & Young theory. For the range of experimental
parameters explored in this work, the theory predicts a profile that presents several peaks
with decreasing amplitude away from the boundary, and practically vanishing after the
third peak. In the case of the profile obtained through experiments, these peaks can also
be found. Starting from the slope boundary (zs/λg = 0), the first two peaks are well
identified, and the third is usually lost. For higher values of zs/λg the experimental profile
decreases to lower amplitude values, and in the farther region of the field of view the profile
amplitude increases because of boundary effects. The effect at the boundary of the field of
view far from the slope is a consequence of the impossibility of using the three-mode VMD
method and force a particular mode to have a null wavefield in a determined section of
space (described in section 4.5.1). The amplitude of the first peak that the theory predicts
is of the same magnitude (as for example, "exp1" and "exp2" in figures 4.17(a) and (b)
respectively) or larger ("exp3" and "exp6" in figures 4.17(c) and (d) respectively) than
the amplitude of the peak obtained experimentally. Nevertheless, the width of the first
peak, in zs/λg coordinates, is usually well predicted by the theory. On the other hand, the
amplitude of the second peak is always underestimated by the theory with respect to the
experimental measurements. Even though the difference is not very large, the width of the
second peak is also underestimated by the theory.

The theory developed by Dauxois & Young predicts qualitatively well the velocity
profile ûrefls as a function of zs/λg for the reflected wave in a critical reflection. The theory
manifests the two peaks observed in the experiments near the slope, with a similar width
for each of these peaks. The amplitude of the first peak is usually overestimated by the
theory (up to a 50% larger than the experimental value), this effect may be due to the fact
that experimentally we have incertitude in the angles β(N,ω) and γ, that does not allow
us to be sure of being in the case β − γ = 0, as expected for the solution predicted by the
theory.

The implementation of these experiments required the control of many sensible experi-
mental parameters. These measurements allowed for the first time to perform a comparison
of the velocity field close to the slope in an internal near-critical wave reflection with the
theory proposed by Dauxois & Young. In particular, we obtained a precise profile in the
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Figure 4.17: ûrefls as a function of zs/λg for experiments (order in increasing Re number):
(a) "exp1", (b) "exp2", (c) "exp3" and (d) "exp6". The experiments present different
set of parameters A and λg, and at the top left it is indicated in which sense these two
parameters increases.

direction normal to the slope of the along-slope component of the velocity thanks to high
resolution velocity fields. In the near critical cases we observed that the velocity profile pro-
posed by Dauxois & Young successfully predicted the main features of the profile obtained
experimentally.

4.5.4 Shear stress and Shields number

Let us come back to our initial question: can we generate grain transport with internal
waves? in particular, can we generate grain transport by internal waves reflection? We
will investigate this question through the Shields number presented in section 3.2.2.

Through the velocity profile of the along-slope component we can now estimate the
shear stress, σ, exerted by the fluid at the boundary. It is important to mention that the
shear stress that will be exerted at the boundary slope is a consequence of the superposition
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Figure 4.18: < us >xs as a function of zs for positions close to the boundary slope (located
at zs = 0). With a dashed blue line is indicated the slope of the first peak from which the
shear stress σ is estimated. The experiment used here to illustrate how σ is obtained is
"exp3".

of both the incident and reflected wave. We will then use the profile of the complete velocity
field in order to extract σ(zs = 0). We will make use of the peak in the amplitude of the
profile < us >xs closest to the sloped boundary. The maximum of < us >xs will indicate
how much the velocity changed in a distance close from the sloped boundary, zs = 0,
where the velocity is null. Naming these variations in velocity and position respectively
∆us and ∆zs, we can estimate the shear stress at the boundary, σ = µ∂us/∂zs, by using the
approximation σ = µ∆us/∆zs. An example of the estimation of σ(zs = 0) is represented
in figure 4.18, where the velocity profile < us >xs of the complete velocity field is plotted
as a function of zs, for positions near the slope. Is indicated with a dashed straight line
the slope of the first peak from which σ is estimated.

Figure 4.19 shows the shear stress divided by the dynamic viscosity of the fluid (same
constant coefficient for all experiments), σ/µ, as a function of β−γ, for experiments "exp1",
"exp2", "exp3" and "exp6". One can observe that the smallest values of σ corresponds to
large values of |β − γ|, in particular, the values of σ are smaller for β−γ negative. For each
experiment, the largest values of σ are found in the interval 0 . β − γ . 5◦. In particular,
in figure 4.19(c), one can evidence the increase of σ as approaching the angle β − γ ≈ 2◦.
The largest values of σ can be found, as expected, in "exp6", which corresponds to the
experiment with largest Re number.

From the values estimated for σ, shown in figure 4.19, one can compute the Shields
number by using equation (3.1). In figure 4.20 is plotted the Shields number Θ as a
function of β−γ, for hollow glass (a) and Polystyrene (b) particles. Both plots show values
of Θ corresponding to experiments "exp1", "exp2", "exp3" and "exp6". For calculating
Θ, we considered that the particles are surrounded by a fluid with density ρ = 1.030
g/cm3. We can observe that the values of Θ as a function of β − γ increases with the
Reynolds number of the experiment. This is what we expected, given that a strong flow
will generate transport of grains more easily that a weak flow. Nevertheless, the Shields
threshold number Θth = 0.12 ± 0.2, is larger than the Shields number obtained through
experimental measurements. For the hollow glass type of particles, the maximum value
reached for the Shields number is smaller than half of Θth (figure 4.20 (a)). This difference
is even more evident for the Polystyrene particles, for which the maximum value of the
Shields number is ∼ 0.01 (figure 4.20 (b)).
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Figure 4.19: σ/µ as a function of β−γ for experiments "exp1" (a), "exp2" (b), "exp3" (c)
and "exp6" (d).

The estimation of the Shields number for the internal plane waves reflection experi-
ments, indicates that it is very unlikely to generate grains transport, even with the very
small hollow glass particles.

4.5.5 Vertical mode reflections

In the experiments in which the internal waves are generated with a vertical mode profile
wave generator, the reflection process is different with respect to the case of plane waves.
The wavefield involved in the reflection is not localized in a beam as in the case of the plane
waves, instead, the complete vertical profile generates an increase of the velocity field near
the boundary when the reflection occurs. The wavelength associated to this vertical mode
is of the size of the tank, in consequence it is possible to observe one or less wavelengths in
a field of view smaller in size that the complete tank. Therefore, the decomposition of the
incident and reflected wave cannot be done through VMD method, as several wavelengths
within the field of view are necessary to identify the wavenumber associated to the wave.
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Figure 4.20: Shield dimensionless number as a function of β − γ for experiments "exp1",
"exp2", "exp3" and "exp6". The Shields number is estimated for hollow glass particles
(a), and for Polystyrene particles (b).

In consequence the velocity profile will not be compared with the solution presented by
Dauxois & Young, given that the reflected wave cannot be isolated. Nevertheless, the shear
stress σ at the boundary can be estimated, given that it is a result of both incident and
reflected wave together (as described in section 4.5.4).

In figure 4.21 is shown the velocity field us for a reflection of an internal wave generated
by the vertical mode over a slope, corresponding to experiment "exp9". When β − γ ≈ 0
(figure 4.21(a)), the reflected wave is confined near the boundary as expected and focusing
of the wave beam occurs. When β − γ > 0 the reflected wave detaches from the boundary
and propagates upward (figure 4.21(b)), contrary to what happens when β − γ < 0 in
which the wave propagates downward (figure 4.21(c)).

The shear stress σ near the boundary has been estimated by using once again the
quantity max(ûs) involving the complete wavefield generated by the incident and reflected
wave. The shear stress σ is obtained and the Shields dimensionless number can be estimated
for a given particle. Figure 4.22 shows the Shields number Θ as a function of β − γ for
experiments "exp8" and "exp9" by using the hollow glass particles (a) and the Polystyrene
particles (b) (we considered that the particles are located around the isopycnal ρ = 1.03
g/cm3). One can observe that the maximum value of Θ is reached for the most critical
reflection for experiment "exp8", whereas the maximum is reached at β − γ ≈ 5◦ for
experiment "exp9". For the hollow glass particles in the angle interval 0◦ ≤ β−γ ≤ 10◦ the
Shields number is slightly larger than the threshold Shields number Θth = 0.12, indicated
with a dashed horizontal line in figure 4.22(a). This indicates that the Shields model
predicts the possibility of particles erosion for these configurations. Nevertheless, the
largest value obtained for the Shields number slightly overpasses the threshold value. As
described in chapter 3, no bed load transport has been observed.

4.5.6 Shields and Reynolds numbers

In order to observe how the focusing and the absolute intensity of the reflected wave in a
critical reflection change for different experimental parameters, we plotted in figure 4.23(a)
the value max(ûrefls ) as a function of the Reynolds number Re for the experiments presented
in table 4.1. The value max(ûrefls ) is taken for the most critical reflection of each experiment
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Figure 4.21: Snapshot of the velocity field us for a internal wave reflection generated with
a vertical mode corresponding to experiment "exp9". Different frequencies (propagation
angle β) have been explored, β − γ = 1◦ (a), β − γ = 14◦ (b) and β − γ = −8◦ (c).

(smallest |β − γ|). We can observe that the value max(ûrefls ) increases as expected with
the Reynolds number.

In the case of the experiments performed with the vertical profile wave generator,
as the incident and reflected wave cannot be separated through VMD decomposition
method, we will approximate the value representing the intensity of the incident wave-
field as uincs = Aω0 cosβ, where A and ω0 are the amplitude and the forcing frequency of
the wave generator respectively, and the factor cosβ models a transfer term of the wave
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Figure 4.22: Shields dimensionless number Θ as a function of β − γ for experiments
"exp8" and "exp9". The Shields number is estimated for hollow glass particles (a), and
for Polystyrene particles (b)
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Figure 4.23: max(ûrefls ) obtained for the most critical reflection of each experiment (small-
est |β − γ|), as a function of the Re number (a). Dimensionless shear stress σ

Nµ for the

most critical reflection as a function of uinc
s λ1/3

ν2/3N1/3 (b), with a dashed line is plotted the linear
regression performed to the experimental results. The experiments for which the forcing is
performed with plane waves are indicated with circles (◦), whereas the squares (�) indicate
the experiments performed with vertical mode.

generator. As the distance between the source and the location where the reflection occurs
is of the order of one wavelength λg of the vertical profile generator, the effect of dissipation
over the intensity of the wave has been neglected.

The intensity and focusing of the reflected wave are both contained in the quantity σ.
By using the solution developed by Dauxois & Young for critical and viscous reflections
expressed in equation (4.40), one can estimate the value and position where the profile
< |urefls | >xs is maximum, that is, the value of the first peak used to estimate the shear
stress σ in section 4.5.4. Making the approximation that the shear stress σ in the boundary
is equal to the maximum value of < |urefls | >xs divided by the distance between the
maximum and the boundary, one can predict the dependence of σ with uincs and λ:
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σDY ∝ uincs λ2/3

λ1/3
= uincs λ1/3, (4.42)

where we omit a multiplicative term that depends on the geometric configuration of the
slope. We plotted in figure 4.23(b) σ

Nµ estimated from the experimental results, as a

function of the dimensionless quantity uinc
s λ1/3

ν2/3N1/3 , where ν, the kinematic viscosity, is the
same for all the experiments. With a dashed line is plotted the linear regression made
over the experimental values of σ

Nµ . One can observe, that in effect, the increase of σ with

uincs λ1/3 is quite linear within the values explored in this work. The slope of the linear
regression is equal to 0.042 as illustrated in figure 4.23(b). This shows that the solution
for critical and viscous reflections (equation (4.40)) predicts successfully the shear stress σ
for near critical reflections.

As explained previously, by considering a given particle size and density, the Shields
number can be estimated from the shear stress σ. In figure 4.24 is shown the Shields

number Θ as a function of uinc
s λ1/3

ν2/3N1/3 for hollow glass particles (a) and Polystyrene particles

(b). Again we observe a linear dependency of Θ with uinc
s λ1/3

ν2/3N1/3 . For the hollow glass
particles, as we observed before, the largest value reached for the Shields number slightly
exceeds the threshold value Θth = 0.12. Whereas for the Polystyrene particles, all the
Shields number computed by using the experimental results are below the threshold value.

The linear dependency of σ with uincs λ1/3 allows us to establish the experimental limits
in laboratory experiments for generating transport or erosion of a bed formed by a given
particle. For example, if we want to achieve a Shield number Θ = 2 · Θth ≈ 0.24 for
the Polystyrene particles, the solution of equation (4.40) predicts that we would need
uinc
s λ1/3

ν2/3N1/3 = 220, which corresponds to velocities of uincs larger than 2 cm/s, for a wavelength
of 90 cm (considering the same viscosity and buoyancy frequency).

If we project the linear dependence of the shear stress σ with uinc
s λ1/3

ν2/3N1/3 to oceanic
conditions, we can estimate the Shields number and examine if the model predicts erosion
of the particles bed. If we consider an internal wave with λ = 100 m, and generating
maximum velocities of 0.3 m/s in an ocean with a buoyancy frequency N = 10−3 rad/s,
the computed Shields number for typical sand particles (ρp = 2.62 g/cm3, d = 200 µm)
will be Θ ≈ 0.02 < Θth, predicting that no transport of sediments will occur in the ocean
for these chosen conditions.

In order to summarize the results found in this section let us rewrite the equations
relating the shear stress σ with the Shields number Θ and incorporate the result of linear
dependency of the σ with uincs λ1/3,

Θ =

σ
µµ

(ρp − ρ)gd
= Cp

σ

µ
(4.43)

where the influence of the parameters involved in the particle characteristics and buoyancy
force are comprised in the coefficient Cp. For experiments ranging between Re = 5 and
Re = 600, we obtain:

σ

µ
= Cσ

uincs λ1/3N2/3

ν2/3
, (4.44)

where the coefficient of the linear regression is Cσ = 0.042, so that,

Θ = Cp
σ

µ
= CpCσ

uincs λ1/3N2/3

ν2/3
(4.45)
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Figure 4.24: Shields number Θ as a function of uinc
s λ1/3

ν2/3N1/3 for all experiments presented
in table 4.1, computed for hollow glass particles (a) and Polystyrene particles (b). The
experiments for which the forcing is performed with plane waves are indicated with circles
(◦), whereas the squares (�) indicate the experiments performed with vertical mode.

We expect that this result can be used for experimental configurations that go beyond
the limits of our experiments.

4.6 Conclusions

The initial motivation of performing experiments of internal waves reflection in the critical
and near critical cases was to understand the conditions in which the reflection process
will increase the shear stress σ at the boundary to an amplitude large enough to generate
erosion of grains in a particle bed. In order to understand the reflection process, we
performed experiments in a wide range of parameters and configurations, which allowed
us to comprehend the limitations in our systems and to be able to predict under which
circumstances erosion is expected by the Shields approach.

We have developed, in a collaborative work, and applied to our experimental mea-
surements, an image processing technique which allows to decompose the wavefield in the
various wave components involved in an internal wave reflection by using its particular
spectral content. This method minimizes the boundary effects in the field of view and
satisfactorily decomposes the waves involved. It allows to decompose the wave in as many
modes as desired. This feature has been used in order to identify when a near critical
reflection involves two (incident and reflected) or three (incident, reflected upward and
reflected downward) wave components. This allows to identify not only the angle interval
β − γ where the linear theory fails in predicting a single reflected wave, but also permits
to have a precise identification of the reflected wave in this interval composed by both the
upward and downward reflected wave.

The high resolution measurements of the velocity field of an internal wave reflection
near the slope, together with the capability of decomposing the wavefield in a incident and
reflected wave, allowed to compare for the first time experimental results with a theoret-
ical solution of the velocity field near the boundary in an internal wave critical reflection
developed by Dauxois & Young. We observed that the theory manages to represent the
main features of the velocity field near the boundary.

In addition, the shear stress σ at the boundary exerted in an internal wave reflection
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has been obtained in experiments with different parameters, ranging from Re = 5 to
Re = 600. We observed that for each experiment the shear stress σ is larger for angles
β − γ that are critical or slightly positive. Through the shear stress σ we estimated the
Shields dimensionless number for hollow glass and Polystyrene particles, which allowed us
to estimate the limits of erosion and transport expected for the Shields approach for our
experimental conditions.

The theoretical solution for the velocity field in a critical reflection allowed us to esti-
mate the shear stress σ and the dependency of this quantity in the experimental param-
eters. The shear stress obtained experimentally is in good agreement with the theory for
the experimental parameters explored in this work. This allows to estimate under which
condition erosion in a bed of grains is predicted for a given particle and experimental
configuration, as well as an oceanic situation.
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Chapter 5

Particles in suspension

Satellite view of thin clay particles driven from Rio de la

Plata estuary towards the south Atlantic ocean. Photo Credit:

NASA Visible Earth.

The existence of fluid flows over granular
systems can be found in many natural
environments, and we have already seen
that, for some particular conditions of
both the flow and the grains, erosion and
resuspension can be generated.

The trajectory of a particle in sus-
pension will respond to a balance be-
tween advective, inertial and viscous
forces. When many particles are trans-
ported in resuspension, the behavior
gets more complicated. The dynamics
of a many-particles system in a fluid, in
some cases, is closer to the behavior of a
two-phase flow than to the behavior of
an individual grain. One can see that
the complexity will increase if we now
add that the surrounding fluid in which

the particles are immersed is stratified. Despite the complexity of the system, we will be
situated in a configuration close to oceanic and atmospheric conditions. In this config-
uration we will study experimentally the motion, induced by internal gravity waves, of
particles in suspension.
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5. Particles in suspension

5.1 Suspended particles: nature and experiments

When particles are suspended in a viscous fluid, the trajectory of these particles can reach
large distances before settling on a boundary. This process can be found in multiple cases
in geophysical processes. For example, a volcanic eruption can send ash high into the
atmosphere which can travel thousands of kilometers [31]. In cases where a combination
of small ash particles, which take a long time to fall on the ground, and high winds of
the jet stream can result in this ash plume being carried around the globe [14]. Other
typical case of particle resuspension can be found in rivers. The sediments transported by
rivers into estuaries modify the turbidity and concentration of particles in the ocean in vast
regions [51], and can even can be remotely carried by ocean currents before settling on the
seafloor. In addition, many mechanisms can generate resuspension of sediments directly
from the oceanic boundaries.

Many biological systems in the ocean depend on the resuspension and transport of
sediments and nutrients. For example the benthic boundary layer, which represents a
∼10 m layer above the sea floor, plays a vital role in the cycling of matter thanks to the
variety of suspended materials [2].

Marine aggregates of biogenic origin, known as marine snow, are considered to play
a major role in the ocean particle flux and may represent a concentrated food source for
zoo-plankton [49]. These particles in suspension are found to be transported by internal
gravity waves. It has been observed for example, that humpback whales aggregate in
regions because of the presence of planktivorous fish, which in turn respond to zooplankton
concentrated by internal gravity waves transport [58, 50].

Many efforts have been done to understand the behavior of particles in suspension in
a stratified fluid. In particular, the study of individual particles settling in stratified fluid
has been performed experimentally [13, 75] and numerically [3, 75], in order to understand
the complex dynamics of these particles. A many-particle approach has been performed by
Bush et al., who studied the dynamics of particle clouds in a stratified fluid [10]. Snow et
al. [65] studied experimentally the behavior of particle-laden flows down a slope into linearly
stratified ambient fluids.

We will study the effect of settling particle in a linearly stratified fluid. In particular,
the particles will settle in a columnar shape configuration. The effect of internal gravity
waves on the particles in suspension and on the column as a whole will be analyzed, as
well as the effect of the particles on the waves.

5.2 Experimental setup and system description

5.2.1 System description

The experimental system used to study the interaction between internal gravity waves and
particles in suspension can be observed in figure 5.1. The main experimental parameters
controlled during the experiments are given in the figure. In a linearly stratified tank
internal gravity plane waves are generated from the left side of the tank and propagate
with an angle β through a localized column of particles in suspension before dissipating at
the right side of the tank.

5.2.2 Experimental setup

In order to study experimentally the interaction between internal gravity waves and parti-
cles in suspension we used a tank of dimensions 80×17×42 cm3 in the directions x, y and z
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Figure 5.1: Schematic diagram of the experimental system. The plane wave generator is
located at the left of the tank. The column of particles of size dc is created at a distance
D from the wave generator, so that the waves pass roughly through the center of the
column for the different directions of propagation β used in the experiments. On the right
is plotted an experimental measurement of the density (crosses) as a function of the water
depth.

respectively. The tank is filled with salt water through the double bucket method described
in section 2.1.1 in order to obtain a linear stratification in density and, therefore a con-
stant buoyancy frequency N . Internal plane waves are generated with a moving boundary
generator described in section 2.1.3 and section 2.1.3, which is positioned vertically at the
side of the tank as sketched in figure 5.1.

A particle injector has been developed (described in detail in section 5.2.3) in order to
generate a vertical column of particles in suspension. The size and position of the column
in the x direction is variable, and in the y direction the column is fairly homogeneous along
the width of the tank.

The visualization of the wavefield is performed thanks to Synthetic Schlieren technique
(described in section 2.1.4), where the variation in the density of the fluid is related to
the variation in its refraction index. The luminous screen used for the Synthetic Schlieren
visualization is also employed to identify the edges of the column of particles in suspension,
as well as its relative intensity, related to the particle concentration.

5.2.3 Particle injector

The theory that describes internal gravity waves in section 1.1, refers to a two-dimensional
perturbation. The internal waves generated in our experiments are also two-dimensional.
This is why we have chosen to conserve this symmetry for the particles in sedimentation.
We generated a column of particles of a controlled size, along the x direction of the tank.
The particles are injected through a slitted copper tube extended along the y direction.
The particles are previously mixed with a fluid in order to avoid their clustering during
the immersion in the stratified fluid (see figure 5.2 (a)). This is performed in a small
container where a mass m of particles is mixed with a volume V of fresh water (density
ρ = 0.998 g·cm−3) with some drops of surfactant (to prevent further clustering). The water
will act as a dragging fluid for the particles. The fluid carrying the particles is then injected
thanks to a peristaltic pump into the tank through the copper tube allowing the particles
to settle in the stratified fluid, and then the dragging fluid is sucked out at the other end of
the tube with the same flow rate as at the input, so that the level of water in the stratified
tank remains constant. The flow rate has been chosen to be the smallest possible that
avoids sedimentation of the particles in the tube (Q = 20 cm3.min−1). The interest of
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(a) (b)

Figure 5.2: Diagram of the particle injector. Figure (a) shows how the particles are mixed
prior to the injection, (b) shows a front view of the copper tube immersed in the water
and contained between two PVC plates.

(a) (b)

Figure 5.3: View of the column of particles in suspension in the stratified fluid. (a) Front
view of the column. (b) Side view of the column. The fluid dragging the particles is
injected at constant flow rate (Q = 20 cm3min−1). The three blue squares in (a) illustrate
where the variations of concentration will be measured.

setting a small flow rate is that the initial velocity of the particles in the stratified tank
will be also small, allowing the sedimentation process to be rapidly reached. The copper
tube is immersed in the stratified fluid, 2 cm below the free surface, where the surrounding
fluid is denser than the dragging fluid. This allows the particles to rain out meanwhile
the dragging fluid stays in the copper tube or ascends to the surface. We recall that
when particles are introduced from above a stratified fluid, the particles will first form a
particle cloud that behaves as a plume, followed by a state in which the particles rain out
of the cloud as individuals, as previously mentioned in section 3.2.3. This description is in
agreement with what we observe experimentally. In order to contain the cloud in a confined
region, we installed two PVC plates at the sides along the copper tube, as illustrated in
the diagram of figure 5.2 (b), so that the particles rain down from a predefined region.
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The specifications for the creation of the particle column was the realization of a two-
dimensional localized homogeneous column. The results obtained by using the experi-
mental setup described, can be observed in figures 5.3(a) and (b). Figure 5.3(a) shows
a localized column, one can observe that the size of the column does not change with
the vertical location, given that the particles when settling descend vertically without any
important horizontal motion. Figure 5.3(b) shows the repartition of particles along the y
coordinate of the tank, where, as can be observed, the particles are homogeneously spread
at the center of the tank, and the column covers approximately two thirds of the width of
the tank. We make the assumption that this column will present the same features as if it
was completely two-dimensional.

5.2.4 Generation of the column

The dynamics of particle clouds in a stratified fluid has been extensively described by Bush
et al. [10], as previously mentioned in section 3.2.3. Nevertheless, our system differs from
Bush’s system by the fact that we are interested in generating a stationary and localized
column of particles, which implies a constant flow rate of particles injected in the system.
The particles introduced from above, form a particle cloud that behaves as a plume until it
reaches an equilibrium vertical location, after which, the particles rain out of the cloud as
individuals. Given the fact that in our experiments the particles are carried by a dragging
fluid which is lighter (ρ = 0.998 g cm−3) than the surrounding fluid at the vertical location
where the copper tube is located, the equilibrium vertical location of the plume is near the
free surface of the fluid, allowing to confine the particle cloud thanks to the PVC plates,
so that the particles rain out from a localized region.

The confinement of the particle cloud will depend among other things, on the depth
where the PVC plates are located, on the initial velocity of the particle injection, on
the concentration of particles in the dragging fluid and on the depth where the copper
tube is immersed. We have performed exhaustive experiments in order to find the correct
experimental parameters of our system, which permits the control of the region where the
particles rain from.

5.2.5 Particles distribution and concentration

The PVC particles injected in the tank have an average diameter of 250 µm, however, these
particles are strongly hydrophobic and can cluster in the injection process. In addition,
using an optical microscope we observed that the particles are widely distributed in size
and not spherical.

The settling particles are enlightened with a uniform LED screen located behind the
tank. A front view camera takes images of the column at 4 fps. The luminosity detected
by the camera will decrease in the positions where the concentration of settling particles
is not null. We have selected three square regions (50×50 pixel) of the column located
at different vertical locations, illustrated in figure 5.3 (a) with three blue squares, where
the average intensity in the squares is measured for each image. We have assumed a Beer
Lambert law, which states that the luminous intensity I depends exponentially on the
concentration of particles c in the fluid, that is,

I = I0e
−Γc (5.1)

where I0 is the detected intensity when no particles are in the fluid and Γ > 0. In
other words, the logarithm of the average intensity is proportional to the concentration
of particles within the fluid. We then have access to the change in concentration through
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Figure 5.4: ln(Ic/I0) as a function of time showing the different stages of the formation of
a column of particles. The black dashed vertical lines indicate the division of the formation
stages for the intensity of the center square. The intensity Ic is taken from the regions
illustrated by the three squares in figure 5.3(a).

the quantity ln(Ic/I0) as a function of time, where Ic is the average intensity in a selected
region of the column, of particles concentration c and, I0 is the average intensity of the
background screen.

5.3 Dynamics of the column

As we can intuit, the sedimentation of the particles in a stratified fluid is more complicated
than just a vertical drop. The particles will pass through different stages before reaching
the bottom boundary. In order to control the localization, homogeneity and stationarity
of the column, we will set the experimental parameters in a particular configuration by
using the particle cloud sedimentation described in section 3.2.3.

5.3.1 Formation of the column

In the first place, we studied the behavior of the column without any wave perturbation.
We focused on the evolution of the column formation, from the moment the first particles
start to sediment until the source of particle injection is stopped. The evolution of the
column is followed by measuring the particle concentration in the column.

5.3.2 Evolution of the concentration in the column

The variation of the concentration of particles in the column is measured for the three
regions illustrated with squares in figure 5.3(a). In figure 5.4 is plotted ln(Ic/I0) as a
function of time for these three different vertical positions. The three curves follow the
same dynamics shifted by a time interval ∆t. This time is equal to the time it takes the
particle to descend to the following point where the measurement is performed, from which
we can estimate the sedimentation velocity.
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(a) (b)

Figure 5.5: Depth of the particles front zp as a function of time, for (a) a stratification
with buoyancy frequency N = 0.8 rad·s−1 and (b) for N = 1.1 rad·s−1. The line shows
the result of a linear regression.

In the evolution of the formation of the column one can distinguish different stages.
Taking the intensity evolution for the intermediate vertical location (17 cm) we associate
the stages to:

1. No particles: The first stage is when no particles are present in the area where the
intensity is averaged, so that, ln(Ic/I0) = ln(I0/I0) = 0. This stage is related to the
initiation of the injection of particles.

2. Increasing amount of particles: This stage is associated to the fact that the parti-
cles form a cloud before dropping down. The first injected particles mix with the
surrounding fluid and eventually rain down. The injector keeps introducing particles
in the volume where the mixing occurs, and the rate of particles that rain down
increases. Given the fact that the mixing occurs in a confined volume (thanks to the
PVC plates illustrated in figure 5.2(b)), after the transient the rate of particles that
rain down will equal the rate of particles introduced by the injector.

3. Cloud saturation: Before reaching a stationary stage there is a sudden increase of the
concentration of particles in the column. This effect is consequence of a saturation
of particles that can be stored in the cloud, which is followed by the collapse of the
cloud and the ejection of a large amount of particles.

4. Stationary: Once the rate of particles injected and particles raining down are equal,
a stationary phase is reached.

5. Decreasing amount of particles: When the injection of particles is stopped, the con-
centration of particles will slowly decrease.

We have chosen to work in the stationary stage, given that the concentration of particles
is practically constant, allowing to reduce the number of parameters. This concentration
is controlled by the rate of injected particles, which we have kept equal for all experiments.

Sedimentation velocity

We have performed the measurement of the sedimentation velocity by using the time where
the front of the column arrives at points located at different vertical locations. This is done
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thanks to the easy identification of the instant where a region passes from having no parti-
cles to observing the first particles. This procedure has been repeated for two stratifications
with different buoyancy frequency N . The results can be observed in figure 5.5. A linear
regression to the experimental values allows to estimate the sedimentation velocity, that
is, ws = 0.14 cm.s−1 for the stratification with N = 0.8 rad·s−1 (see figure 5.5(a)), and
ws = 0.09 cm.s−1 for N = 1.1 rad·s−1 (see figure 5.5(b)). One can notice that a variation
of 25% in the value of N generates a change of 43% in the sedimentation velocity, for the
PVC particles. In addition, the linear adjustment is less accurate over the experimental
values in the experiment with N = 1.1 rad·s−1 than for N = 0.8 rad·s−1.

A theoretical approach can be performed in order to estimate the sedimentation velocity
of a particle in a homogenous fluid. We will use this result as an estimation of the order
of magnitude. For a particle of size d in a fluid with dynamic viscosity µ, the Reynolds
particle number is:

Rep =
ρwsd

µ
, (5.2)

where ρ is the density of the fluid (for a stratified fluid we consider, at the first order,
the averaged density), and ws the sedimentation velocity. For our experiments, Rep = 0.4,
therefore we are in the Stokes regime, for which the flow generated by the settling spherical
particles is laminar. In this regime, the dragging force exerted over the spherical particle
will be:

Fdrag = −3πµdu. (5.3)

Furthermore, the gravity force over the particle is Fg = (ρp − ρ)d3gπ/6, where ρp is the
density of the particle. The sedimentation velocity will be reached when these two forces
balance. The Stokes sedimentation velocity, wS

s will be,

wS
s =

d2g(ρp − ρ)

18µ
. (5.4)

The sedimentation velocity in the Stokes regime approximation in a homogenous fluid, for
our experimental conditions is wS

s = 0.17 cm.s−1. The Stokes model estimates a value of
the sedimentation velocity which is closer with the results of the experiment performed with
N = 0.8 rad·s−1, that in the case of the experiment performed with a steeper stratification
(N = 1.1 rad·s−1). For the latest, the experimental result for ws presents less agreement
with the linear fit. This can be evidenced in figure 5.5(b), where the sedimentation velocity
decreases for increasing depth as a consequence of the increase of the surrounding fluid
density ρ. As the buoyancy frequency N increases, the approximation that the fluid is
homogenous is not as good. As can be expected, we observed that an increase of the
buoyancy frequency N implies a decrease of the sedimentation velocity ws.

We recall that we estimated ws for the front of the column of particles. The velocity of
the particles inside the column, where group effects may affect the sedimentation velocity
of a particle has not been measured.

5.4 Effect of the column over waves

We will first study the effect of the column of particles over internal gravity waves. We will
perform this study by generating a beam of internal plane waves that propagate through
the column of particles as described in the sketch of figure 5.1.

If the column of particles would be solid or have a very large concentration of heavy
and large particles, then we expect the waves to bounce off the column and propagate
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Figure 5.6: Internal wave beam passing through a column of sedimentation particles. The
waves are generated in the upper-left corner and propagate to the right.

backwards, as if it would be a wall. On the other hand, if the column contains few small
and light particles, we expect the wave to pass through the column without noticing it. If
the concentration of particles in the column is such that it is between these two limit cases,
then we expect a fraction of the wave energy to be transmitted through the column, and
a fraction to be reflected on the column. In this case, there will be a loss in the intensity
of the transmitted wave.

In a linearly stratified fluid with constant buoyancy frequency N = 0.85 rad·s−1, we
have generated internal waves with a generator with fixed amplitude, A, and vertical
wavelength, λg. The same experiment is reproduced for several concentrations of the
particle column: c = 3 g·L−1, c = 6 g·L−1, c = 12 g·L−1, c = 20 g·L−1.

In figure 5.6 is shown the wavefield of an internal wave beam passing through a column
of sedimentation particles. We can notice that the wave passes through the column without
reflecting. This is true also for the column with largest possible concentration of particles
c. To be sure that no reflected wave is present, we applied the Hilbert transform to the
wavefield (not shown) in order to filter only the waves propagating to the left (direction of
a possible reflected wave) and we did not observe any perturbation in the wavefield.

In addition, the wave does not present any phase variation in the direction of propa-
gation of the wave after passing through the column of particles. This result is a indicator
that the buoyancy frequency N remains the same inside the column and outside of the
column.

In order to observe if there is an effect of dissipation of the waves when passing through
the column, we measured the decay of the amplitude of the wave in the direction of
propagation of the wave, η, through all the segment OP (indicated in figure 5.6). In
figure 5.7 is shown the evolution of the amplitude of the wavefield for three points selected
on the segment OP . One can observe that the three signals have the same phase, and
that the amplitude decreases for the points farther from the source. In order to measure
the decay of the intensity of the wave, the amplitude evolution of the wave is extracted
for each point in the segment OP . Then a temporal average is performed to the absolute
value of this signal, from where we can extract the intensity of the wave in each point.
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Figure 5.7: ∂xρ̃ as a function of time of the internal plane waves for three points of the
segment OP , illustrated in figure 5.6. The distance from O is indicated in the legend. The
signal with smallest amplitude corresponds to the wavefield at the right side of the column.

Figure 5.8: Normalized amplitude of the internal waves as a function of the position in the
segment OP (indicated with a white dashed line in figure 5.6) for several concentrations
c. In addition, the theoretical decay of the amplitude of the wave because of the viscosity
is plotted.

In figure 5.8 is shown the normalized intensity of the wave, A/A0 as a function of the
normalized position, η/λg, within the segment OP , where A0 is the intensity of the wave
in O. We can confirm from figure 5.8 that the intensity of the wave decays as moving away
from the source. The column is marked by a jump in the intensity for the experiments
performed with a concentration c not null. We can observe that there is no difference in the
waves amplitude for experiments performed with different concentrations. In fact, there is
no perceptible difference with the experiment in which no column is present. In addition,
is plotted the theoretical decay of the amplitude of the wave because of the viscosity of the

fluid, of the form exp(−Λη) where Λ = |k|3
2
√
N2−ω2

.

In conclusion, for the experimental parameters used in this work, we have not seen any
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(a) (b)

Figure 5.9: Front view of the column of sedimentation particles. (a) Snapshot at t/T = 0,
where no wave perturbations are present. (b) Snapshot of the column during the pass of
internal plane waves through the column, after 100 periods. The wave beam is located
between the two blue dashed lines. Three squares in (a) indicate the regions where the
intensity evolution is measured.

effect of the column over the internal waves. The direction of propagation of the wave
remains equal after passing through the column of particles. No reflected wave has been
observed. The column does not add any dissipation that can be perceptible in the intensity
of the wave. The width and concentration of the column of sedimentation particles are
increased to their maximum values acceptable for the experimental setup. For further
work, we suggest to develop a system which allows a larger column and a wider range of
particles concentrations that can be injected.

5.5 Effect of the waves over the column

When studying the effect of internal gravity waves over a column of sedimentation particles,
we founded two main effects over the motion of the column:

1. The boundaries of the column oscillate around the initial position of the column.

2. The column is displaced from its original position, indicating a net transport of the
particles in the column.

Even though these two processes can occur simultaneously, we will described them
separately.
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Figure 5.10: Oscillation of the concentration of particles in the column. ln(Ic/I0) as a
function of time, measured for the regions indicated with three squares in figure 5.9(a).

(a) (b)

Figure 5.11: View of the wavefield and column of sedimentation particles for two con-
figurations of the wave beam. (a) The wave beam is generated in the upper-left corner
and propagates downwards. (b) The wave beam is generated in the lower-left corner and
propagates upwards.

5.5.1 Oscillation of the column

In figure 5.9 is shown the column of sediment particles when no internal waves are generated
(a), and during the passage of internal waves (b). With blue dashed lines is marked where
the wave beam traverses the column. We can observe that the contour of the column
changes its shape, in fact, the boundaries oscillate with time. This oscillation is induced by
fluid particle motion attached to the wave, and one can see the projection of the wavelength
manifested at the boundaries of the column.

The motion of the particles can be also perceived inside the column. In order to study
the oscillation of the column of particles, we measured the concentration c of particles for
different regions of the column. This is performed by selecting a square region of 50× 50
pixels, within the column. Then, a spatial average of the intensity in the square is per-
formed for each time. This measurement is performed in three regions of the column, which
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Figure 5.12: Blue dashed line: temporal spectrum of the evolution of ln(Ic/I0), for the
experiment shown in figure 5.10. The signal corresponds to the intensity taken in the
center square. In addition, the red line shows the internal wave spectral content.

we name, top, center and bottom, indicated with three squares at the top, center and at
the bottom respectively in figure 5.9(b). Figure 5.10 shows the evolution of ln(Ic/I0) for
these three regions. The evolution of the concentrations is sinusoidal, and, in a rather
counter-intuitive way, the oscillations are present in the three regions of the column, in-
cluding the regions outside the wave beam. That is, the perturbation propagates inside the
column beyond the limits of the wave beam. This effect, we believe, is related to the wake
generated by the particles: each particle is slightly entrained by the wake of the particle
below, so that the motion of a particle is perceived by the particle above, and the dynamics
can by transmitted upwards in the column.

It is important to mention, that the same experiment has been performed by gener-
ating a wave beam propagating from the lower-left corner to the upper-right corner as
shown in figure 5.11(b). These two configurations have been used to generate a vertical
component of the group velocity with the same and opposite direction with respect to the
sedimentation velocity. We observe the same oscillatory effect over the column for these
two configurations. The column presents oscillations on top of the wave bean even when
the phase velocity is upwards. This effect is in agreement with the interpretation that the
particle wake is the responsible of causing the upwards motion beyond the limits of the
beam.

Spectral analysis

In order to obtain the frequencies related to the oscillations of the concentration of particles
in the column, we computed the time spectrum of these signals. In figure 5.12 is shown
an example of the spectrum of the evolution of the concentration of particles measured
in the center square of the column. In addition, the wave spectrum computed from the
Schlieren signal is plotted in the same graph. We can observe that the column oscillates
at the wave frequency ω0, that is, the particles act as a passive scalar in the stratified
medium where the waves propagate. Nevertheless, the wave frequency ω0 is not the only
frequency present in the column spectrum, another frequency always appear which we will
call natural frequency ωc of the column, in indication that this frequency is related to the
group behavior of the particles in the column. This frequency is present in the top, center
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Figure 5.13: Main frequencies present in the spectral content of the column oscillation
as a function of ω/N , where N = 0.85 rad·s−1. The experiment is repeated for different
amplitudes of the generator, that is, A = 0.3 cm, A = 0.6 cm and A = 0.9 cm. (a) Shows
all the main frequencies found in the spectrum. (b) shows only the frequencies that are
not present in the wave spectrum.

and bottom regions of the column.
This experiment has been performed for different experimental parameters. In particu-

lar, we changed the amplitude A and the forcing frequency of the generator ω0 for different
experiments. These experiments have been performed with the GOAL generator described
in section 2.1.3. The buoyancy frequency was kept constant, N = 0.85 rad·s−1, as well as
the characteristics of the column. Each pair (A,ω0) represents a different experiment. In
figure 5.13(a) are shown the frequencies present in the column for each experiment (A,ω0).
We can notice that the forcing frequency is present for all experiments. For the experiments
with larger amplitude, A = 0.9 cm, the first harmonic is always present.

If we suppress the frequencies shown in figure 5.13(a) that are present simultaneously
in the column and in the wave spectrum (forcing frequency ω0 and harmonics), we obtain
the graph shown in figure 5.13(b). We observe the appearance of a natural frequency ωc

independent from the forcing frequency ω0. The variations in the value of this natural
frequency, is probably related to the difficulty in repeating the exact same column between
two experiments. We observe that the natural frequency appears mostly for large ampli-
tudes of the wave, that is, for experimental configurations in which non-linearities are more
important.

It is important to mention that when this procedure is applied to the experiments with
N = 1.1 rad·s−1, the natural frequency of the column is not observed. We have not yet an
interpretation of this observation.

5.5.2 Displacement of the column

In addition to the oscillation of the column, we have observed that the column of particles
shifts its position with respect to its equilibrium position (position of the column when no
waves are present) as shown in figure 5.14. We will denote δx the length of displacement
in the horizontal, which is defined as the maximum incursion of the edge of the column
out of its equilibrium position. In order to measure δx we used a boundary detection
algorithm. The boundaries of the column are defined by a threshold in the gradient of
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5.5. Effect of the waves over the column

Figure 5.14: Front view of the column when it is displaced. The maximal displacement
δx will be defined as the maximal horizontal position where the edge of the column moves
away from its equilibrium position.

luminosity between the background screen and the column. The precision of the detection
of the boundaries rely on an iterative algorithm which optimizes the boundary detection in
each step by imposing a more accurate threshold in the gradient of luminosity, taking into
account the position of the boundaries in the previous step. An example of the boundaries
detection is shown in figure 5.15. The outcome is a 2D matrix indicating where the column
is located.

The detection of the boundaries of the column allows to track the column in time.
If we compute the difference between the position of the column at equilibrium at every
moment, we can measure how much the position of the edges of the column changes in
time for all vertical positions z, that is, δx(z, t).

Relation between displacement and forcing frequency

In order to observe the effect of the forcing frequency, ω0, on the displacement of the
column, we fixed the buoyancy frequency at N = 1.1 rad·s−1 and the amplitude of the
generator, A = 0.9 cm. We will use the generator in the configuration so that the waves
go downwards. An example of the displacement of the column as a function of time,
δx(z, t), is shown in figure 5.16. During the first 200 s the column boundary oscillates
around the equilibrium position. The oscillations are mostly produced in the region where
the wave beam passes through the column, nevertheless, there are also oscillations present
above this section of the column. The oscillations are visible and marked by red and black
stripes. The slope of these stripes correspond to the group velocity cg of the waves. After
200 s the column begins to deform in the region of the wave beam. The displacement rises
the column through the oscillations (that are still present after the displacement process
begins), and therefore the upper limit of the displacement of the column is located above
the upper limit where the wave beam passes through the column. The largest displacement
is reached in the region of the wave beam, in this case δx = 3 cm in the direction of the
wave generator. This procedure has been repeated for experiments presenting different
forcing frequency ω0. The sign of the displacement is measured following the x coordinate
direction, positive values of δx indicate that the column deforms away from the wave
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(a) (b)

Figure 5.15: Example of the boundary detection algorithm for the column of sedimentation
particles. (a) With a green line is indicated the localization of the boundaries. (b) Outcome
of 2D matrix indicating where the column is located.

generator, and for negative values, the column deforms toward the wave generator. The
displacement is measured 750 s after the wave generator is started (around 25 periods of
the wave). In figure 5.17(a) is shown δx/dc as a function of ω0/N , where dc is the size of
the column. The displacement is always negative, that is, toward the wave generator. For
small values of ω0/N the displacement of the column is small. The displacement increase
as the frequency increases, until ω0/N = 0.2, from where the displacement decreases for
larger values of ω0/N . In order to study the dependency of the displacement of the column
with respect to the frequency only, it is important to notice that the amplitude of the
waves is not equal between experiments with different forcing frequency, given that the
amplitude of the waves depend on the amplitude of the wave generator and on the forcing
frequency ω0. Therefore, we defined δx′ as the displacement of the column corrected by
a factor (1 − (ω0/N)2)/ω0. This correction comes from the fact that the amplitude of
the internal waves will be AIW = A · ω0 · cosβ, where cosβ = 1 − (ω0/N)2, is a term
related to the transfer of energy of the wave generator for different orientations of the wave
beam. In figure 5.17(b) is shown δx′/dc as a function of ω0/N . The correction does not
strongly modify the dependency of δx with ω0/N , nevertheless the value of ω0/N where
the displacement is maximal slightly increases.

The fact that δx depends of ω, with a maximal value, is reminiscent of a resonance
phenomena.

We will now present the displacement results corresponding to a weaker buoyancy
frequency, N = 0.85 rad·s−1. In figure 5.18 is shown δx as a function of ω0/N for several
values of the amplitude of the wave generator A. Figure 5.18(a) shows this result for the
generator configuration in which the wave beam goes downward, whereas figure 5.18(b)
shows the result for the wave beam going upwards. We can observe that for the values
of ω0/N explored in this experiment we do not observe a bell shaped dependency of the
displacement with the frequency, as observed in the experiment with N = 1.1 rad·s−1.
Nevertheless, we observe that for the largest amplitude of the wave generator A = 0.9 cm
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5.5. Effect of the waves over the column

Figure 5.16: Displacement of the left boundary of the column for all vertical locations as
a function of time, δx(z, t). The colormap indicates the displacement in cm. With two
horizontal black dashed line is represent the position where the wave beam passes through
the column. For this experiment A = 0.9 cm and N = 1.1 rad·s−1.

(a) (b)

Figure 5.17: (a) Maximal displacement of the column δx/dc as a function of ω0/N , where
dc is the size of the column. (b) The displacement of the column is corrected by a factor
in consequence of the dependency of the internal wave amplitude with the frequency, that
is, δx′ = δx(1− (ω0/N)2)/ω0. For this experiment A = 0.9 cm and N = 1.1 rad·s−1.

the displacement increases for large values of ω0/N . This indicates the possibility of having
a resonance effect for higher values of ω0/N . This values have not been explored because
of experimental limitations in the geometrical configuration.

It is useful to study the displacement of the column through its displacement velocity
in the horizontal direction, uc. In order to estimate uc we measured the displacement of the
boundaries of the column as a function of time. In figure 5.19(b) is shown the variation in
the horizontal position of the boundaries of the column for several vertical locations of the
column (indicated in figure 5.19(a)). One can observe that the slope of the evolution of the
displacement changes slightly in time. We can estimate the mean displacement velocity of
the boundaries by averaging in time uc for the different selected vertical locations. From
this, we extract the value of the maximal displacement velocity of the column max(uc).
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5. Particles in suspension

(a) (b)

Figure 5.18: Displacement of the column δx/dc as a function of ω0/N , where dc is the size
of the column. (a) The wave beam propagates downward. (b) The wave beam propagates
upward. For this experiment N = 0.85 rad·s−1.

(a) (b)

Figure 5.19: Evolution of the horizontal position of the boundaries for several vertical
locations. (a) Shows the positions in the boundaries where the horizontal displacement
is measured. (b) Evolution of the horizontal displacement of the boundaries for several
vertical locations indicated in (a).

This procedure has been repeated for experiments with different forcing frequency ω0. In
figure 5.20 is shown max(uc)/ws as a function of ω0/N , where ws is the sedimentation
velocity, and N = 1.1 rad·s−1. We observe that the largest displacement velocity, max(uc)
(which is 10% of ws), is found at ω0/N = 0.2, and this value decreases as ω0/N departs
from 0.2. The maximal displacement velocity of the boundaries of the column is found at
the same frequency where the horizontal displacement δx is the largest (see figure 5.17(a)).

5.6 Drift generated by internal waves

In order to estimate if net flux exists when an internal wave propagates, we will estimate the
Lagrangian drift velocities. The non-dimensional Navier-Stokes equations for a stratified
fluid in the Boussinesq approximation allows to expand the streamfunction in terms of
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Figure 5.20: Horizontal displacement velocity of the column, uc/ws as a function of ω0/N ,
where ws is the velocity of sedimentation of the particles. For this experiment N =
1.1 rad·s−1.

Figure 5.21: System description of a propagating plane wave in the direction of the velocity
group, cg, with an angle β with respect to the horizontal. The coordinates (η, ξ) attached
to the wave are indicated, as well as the velocity components (e, f) in these directions
respectively. The direction of the acceleration of the gravity is also indicated.

the Froude number Fr = U/Nh, where U is the characteristic velocity, N the buoyancy
frequency and h a characteristic vertical length. It has been shown that at first order in
a expansion in the Froude number (Fr ≪ 1 for our experiments), the Lagrangian, uL and
the Eulerian, u, velocities are connected through the relationship [73]

uL(x, t) = u(x, t) + uS , (5.5)

where the Stokes drift uS is defined,

uS = ∇u(x, t) ·
∫ t

0
u(x, t′)dt′. (5.6)

We will study in particular, the Lagrangian drift generated by a plane wave propagating
in a linearly stratified fluid with constant buoyancy frequency, N . In the coordinate system
(η, ξ), a plane wave propagates with group velocity cg in the η direction and phase velocity
cϕ in the ξ direction, as shown in the figure 5.21. The wave described by a streamfunction
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in this coordinate system will be,

ψ = Ψ0Dp(η) cos(|k| ξ − ωt), (5.7)

where Dp(η) is a term representing viscous dissipation, that is,

Dp(η) = e−Λη, (5.8)

where Λ = ν|k|3
2N cosβ , ν is the kinematic viscosity, and ω/N = sinβ. Dp(η) preferentially

attenuates the higher wavenumbers (or shorter wavelengths).
The Stokes drift velocity defined in equation (5.6), can be rewritten in terms of the

streamfunction ψ. In the coordinate system attached to the wave, (η, ξ), the velocity is,
u = (−ψξ, ψη). We will name the velocities along the (η, ξ) coordinates, respectively (e, f).
Therefore, the Stokes drift velocity is expressed by the relation,

eS = ψξη

∫ t

0
ψξdt

′ − ψξξ

∫ t

0
ψηdt

′, (5.9)

fS = −ψηη

∫ t

0
ψξdt

′ + ψηξ

∫ t

0
ψηdt

′. (5.10)

By performing the time average over a period of the wave, T = 2π/ω, to equation (5.5),
we obtain that the period-averaged Stokes drift is equal to the period-averaged Lagrangian
drift, that is,

< uL >T = < u >T + < uS >T (5.11)

= < uS >T ≡ ω

2π

∫ 2π
ω

0
uSdt, (5.12)

since the Eulerian velocity is periodic and therefore has zero mean.
The velocity components averaged over a period of the wave, in terms of the stream-

function are,

< eS >T = 0, (5.13)

< fS >T =
Ψ2

0D
2
p|k|Λ2

ω
. (5.14)

The first order Stokes drift estimation for a dissipating plane waves gives us a zero drift
in the direction along the beam, and a non-zero drift in the direction of cϕ, as previously
computed by Hazewinkel [39]. In order to estimate how the Stokes drift evolves within a
wave period, we come back to the Lagrangian drift (equation (5.5)). The Lagrangian drift
written in terms of the streamfunction is,

eL(η, ξ, t) = −ψξ + ψξη

∫ t

0
ψξdt

′ − ψξξ

∫ t

0
ψηdt

′, (5.15)

fL(η, ξ, t) = ψη − ψηη

∫ t

0
ψξdt

′ + ψηξ

∫ t

0
ψηdt

′. (5.16)

For the plane wave defined in equation (5.7), the Lagrangian drift is,

eL(η, ξ, t) = Ψ0Dp|k| sin(|k| ξ − ωt)−
Ψ2

0D
2
p|k|2 Λ
ω

sin(ωt), (5.17)

fL(η, ξ, t) = −Ψ0DpΛcos(|k| ξ − ωt) +
Ψ2

0D
2
p|k|Λ2

ω
(1− cos(ωt)). (5.18)
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The results presented in equation (5.13) and (5.14) can be obtained by averaging equa-
tions (5.17) and (5.18) over t = 2π/ω.

The intensity of the drift generated by the wave will depend on the position (η, ξ)
and on time, t. By performing the spatial average over a wavenumber, λ = |k| /2π in the
direction ξ, that is,

< eL >λ =
1

λ

∫ λ

0
eL(η, ξ

′, t)dξ′, (5.19)

< fL >λ =
1

λ

∫ λ

0
fL(η, ξ

′, t)dξ′, (5.20)

we can estimate the drift generated by the wave in average, at any vertical position.
We will now be interested in estimating the Lagrangian drift produced in average, after

an arbitrary time τ,

< eL >τ =
1

τ

∫

τ

0
eL(η, ξ, t

′)dt′, (5.21)

< fL >τ =
1

τ

∫

τ

0
fL(η, ξ, t

′)dt′. (5.22)

(5.23)

When performing the spatial average over λ = |k| /2π in the ξ direction, and the
temporal average over τ, together we obtain,

< eL >λ,τ =
1

τλ

∫ λ

0

∫

τ

0
eL(η, ξ, t)dtdξ, (5.24)

< fL >λ,τ =
1

τλ

∫ λ

0

∫

τ

0
fL(η, ξ, t)dtdξ. (5.25)

For the plane wave these relations become,

< eL >λ,τ =
Ψ2

0D
2
p|k|2 Λ
ω2

τ

(cos(ωτ)− 1), (5.26)

< fL >λ,τ =
Ψ2

0D
2
p|k|Λ2

ω

(

1− sin(ωτ)

ωτ

)

. (5.27)

The horizontal drift, < eL(η) >λ,τ, is negative for all τ 6= 2πn, and null for τ = 2πn. The
vertical drift, < fL(η) >λ,τ, is positive for all τ > 0, where n is an integer number. This
result is illustrated in figure 5.21, where two orange arrows indicate the components in the
(η, ξ) coordinates, of the Lagrangian drift.

5.6.1 Analysis of the Lagrangian drift

We will study the temporal dependance of the Lagrangian drift within a period of the
wave, for which we will despise for the moment the amplitude of the drift. We define a
normalized drift averaged in time and space as,

êL =
cos(ωt)− 1

ωt
, (5.28)

f̂L = 1− sin(ωt)

ωt
. (5.29)
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Figure 5.22: (a) Phase portrait of f̂L as a function of êL. (b) Phase portrait of η as a
function of ξ. Where ωt ∈ [0, 2π], and ωt = 0 corresponds to (êL, f̂L) = (0, 0) for (a) and,
(ηL, ξL) = (0, 0) for (b). The inset graphics show the evolution in time of all the quantities.

In figure 5.22 is shown the phase portrait of the velocities êL and f̂L (a), and the phase
portrait of the drift positions (b), generated by êL and f̂L. The initial velocities and
positions correspond to (êL, f̂L) = (0, 0) and (η, ξ) = (0, 0) respectively. After a period
of the wave is completed, the time averaged drift velocity is null for êL and positive for
f̂L. Similarly, after a period of the wave, the mean position is, ηL = 0 and ξL > 0. The
displacement ξL will be positive for all times. On the other hand ηL will be negative for
all times different than a complete period of the wave.

5.6.2 Drift estimation for experiments

In order to estimate the mean motion of a particle when passing through a wave beam.
We will make the assumption that the drift of a particle will be related to the intensity
of the drift generated by theses waves times the time the particle stays in the wave beam
before sedimentation.

Order of magnitude of the intensity of the Lagrangian drift for experiments

We first compute an order of magnitude of the Lagrangian drift velocities of the wave (equa-
tions (5.26) and (5.27)). In these equations, we can notice that the factor Ψ2

0D
2
p|k|Λ/ω

repeats in both equations. Therefore, neglecting the temporal dependency, the ratio be-
tween the Lagrangian drift in the direction η and in the direction ξ is simply k/Λ.

The distance between the wave generator and the column is the same for all the beam
in the direction η, given that both, the wave generator and the column are extended in
the same direction, z. Therefore the dissipation of the wave, given by Dp(η) = e−Λη, will
be equal at all the vertical locations of the column, and so will it be the intensity of the
wave. For simplicity, we will assume that Dp is constant within the column, given that
the column is thin enough with respect to the dissipation length, that is, dc ≪ 1/Λ. The
velocity of the wave at the position of the column is:

e(ηc) = Ψ0Dp(ηc)|k| , (5.30)
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Figure 5.23: Phase portrait of the position (a) and the velocity (b) of the averaged La-
grangian drift in (x, z) coordinates, where the initial position and velocity are respectively
(x, z) = (0, 0) and (u,w) = (0, 0). This drifts are plotted for several angle of propagation
of the wave, β. The relative intensity between the drift in the directions (x, z) is computed
taking into account the experimental parameters (equation (5.32)).

where ηc is the position of the column along the coordinate η. The intensity of the averaged
Lagrangian drift < eL >λ,t becomes,

Ψ2
0D

2
p|k|2 Λ
ω

= (e(ηc))
2Λ

ω
, (5.31)

For the characteristic experimental parameters used in the experiments presented in this
chapter,

Ψ2
0D

2
p|k|2 Λ
ω

≈ 1

10
e(ηc), and

Ψ2
0D

2
p|k|Λ2

ω
≈ 1

400
e(ηc), (5.32)

that is, the intensity of the Lagrangian drift along the direction η and ξ, is roughly 10%
and 0.25% respectively, of the wave velocity intensity, e(ηc).

Trajectory of the Lagrangian drift for experiments

Taking into account the relative intensity of the Lagrangian drift velocity in the directions
(η, ξ) (equation (5.32)) for our experimental parameters, we will estimate the displacement
generated by the drift in the (x, z) coordinate system, by rotating counterclockwise the
velocity obtain in equations (5.28) and (5.28) by an angle β = sin−1(ω/N). The variation
in the angle β implies a variation of the frequency ω and therefore a difference in the
amplitude of the drift, nevertheless, this variation will represent a small difference, for the
angles explored here and will be therefore neglegted. In figure 5.23 is shown the phase
portrait of the velocities (u,w) (a) and the positions (x, z) (b). The initial velocities
and positions correspond to (u,w) = (0, 0) and (x, z) = (0, 0). The Lagrangian drift is
estimated for several propagating angles β. We observe that the drift will be positive in the
z direction for all times and all angles β. The drift in x will be principally negative, and it
will be positive only for a small interval of time, and for small angles β practically never.
The behavior for the Lagrangian velocity drift is equivalent to the Lagrangian spatial drift,
as shown in figure 5.23(a).
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Lagrangian drift for different sedimentation velocity

As mentioned we will estimate the particle drift as proportional to the fluid drift intensity
times the interval of time that the particle spends in the wave beam. The time the particle
stays in the beam will depend on the sedimentation velocity. The characteristic time that
the particle will spend in one wavelength is τs = λg/ws, where λg is the vertical wavelength
of the wave generator, and ws the sedimentation velocity of the particle. Where the vertical
drift, smaller than the sedimentation velocity, is neglected.

If the particle does not settle and stays in the fluid, each period of the wave the
particle will be dragged upwards and slightly to the right. On the other hand, if the
particle sediments very fast, then it will not spend enough time in the wave to feel the
drift generated by the wave. In the intermediate case, the most probable case is that the
particles perceive a drift towards the upper left direction. How much this drift affects the
motion of the particle, will depend on the time the particle stays in the wave, and the
magnitude of the drift. The largest drift to the left will be generated when the particle
stays a time τ in the wave, so that ωτ ∼ π. If the particle stays more time, let us say
more than several periods T = 2π/ω of the wave, then we can decompose this time in
the form, τ = nT + τ ′, where n is an integer number and τ ′ < T . The term nT adds
a drift to the right (which increases linearly with n), while τ ′ adds a drift to the left.
We neglect the upwards drift velocity, since experimentally this velocity is always smaller
than the sedimentation velocity of the particles by several orders of magnitude. The time
the particle stays in the wave depends, as mentioned, on ws, whereas ws depends on the
stratification, characterized here by the buoyancy frequency N . In addition, the frequency
ω plays a part as crucial as the time τ , as the horizontal drift is largest for ωτ ∼ π.

Comparison with sedimentation velocity and frequency

We will use the hypothesis mentioned previously to make an attempt to predict the de-
pendency of the displacement of the column with the forcing frequency ω0.

Two sedimentation velocities concerned in the experiments performed in this chapter,
ws = 0.14 cm/s for N = 0.85 rad·s−1, and ws = 0.09 cm/s for N = 1.1 rad.s−1. The
time the particles spend in the wave is, τ = 28 s for N = 0.85 rad.s−1, and τ = 44 s for
N = 1.1 rad·s−1. We explored a range of frequencies ω between 0.17 s−1 and 0.25 s−1 (T
between 25 s and 37 s) for N = 0.85 rad·s−1, and between 0.12 s−1 and 0.6 s−1 (T between
10 s and 50 s) for N = 1.1 rad·s−1.

In figure 5.24 is shown the computed horizontal velocity and horizontal position drift
as a function of ω0/N for two buoyancy frequencies, where the parameters are set equal
to the experimental parameters. Figures (a) and (b) correspond to the experiment with
N = 1.1 rad·s−1 and therefore smallest sedimentation velocity. We can observe the hor-
izontal velocity and horizontal position drift oscillate between negative values, and for
some reduced intervals of ω0/N slightly positive values. The amplitude of the oscillations
decreases for increasing time. The largest negative drift is found at ω0/N ≈ 0.2. On
the other hand, the computed drift for the experimental parameters corresponding to the
experiment with N = 0.85 rad·s−1, show less number of oscillations for the same forcing
frequency interval.

We have neglected that the intensity of the drift will decrease for decreasing forcing
frequency, as the intensity of the wave will be uo ∝ Aω cosβ. The corrected drift will
present slightly smaller values for ω0/N small, and slightly larger values for ω0/N large.

When comparing the computed drift with the experimental drift, we observe for the
experiment with N = 1.1 rad·s−1, the horizontal position and velocity displacement of the

108



5.6. Drift generated by internal waves

ω0/N
0.1 0.2 0.3 0.4 0.5

u
L
[a
rb
it
ra
ry

u
n
it
s]

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

(a)

ω0/N
0.1 0.2 0.3 0.4 0.5

x
L
[a
rb
it
ra
ry

u
n
it
s]

-16

-14

-12

-10

-8

-6

-4

-2

0

2

(b)

ω0/N
0.1 0.2 0.3 0.4 0.5

u
L
[a
rb
it
ra
ry

u
n
it
s]

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

(c)

ω0/N
0.1 0.2 0.3 0.4 0.5

x
L
[a
rb
it
ra
ry

u
n
it
s]

-20

-15

-10

-5

0

5

(d)

Figure 5.24: Horizontal velocity ((a) and (c)) and horizontal position ((b) and (d)) drift as
a function of ω0/N . Figures (a) and (b) correspond to the experiment with buoyancy fre-
quency N = 1.1 rad·s−1. Figures (c) and (d) correspond to the experiment with buoyancy
frequency N = 0.85 rad·s−1.

column is maximal for ω0/N ≈ 0.22 (figures 5.17 and 5.20). For smaller values of ω0/N we
observe a decrease of the displacement followed by an increase. For larger values of ω0/N
the drift decreases continually. The computed drift presents agreement with the maximal
displacement frequency, and for smaller values of ω0/N . On the other hand, although the
displacement decreases in the computed drift, the oscillations are not measured in exper-
iments. For the experiment with N = 0.85 rad·s−1 the displacement of the column has
been studied for the frequency interval 0.2 . ω0/N . 0.32. The experiments performed
with the upwards and downwards beam do not present much differences. Almost no dis-
placement has been observed with the exception for the largest wave amplitude for values
of frequency ω0/N ≈ 0.28. For the computed drift, there will be no difference between
considering that the beam propagates upward or downward, as we are only considering the
horizontal drift. Contrary to what observed in the experiment, the computed displacement
drift will be almost null for ω0/N ≈ 0.28, and will increase for increasing and decreasing
values of ω0/N .

This hypothesis will be further investigated by taking into account the modification of
the sedimentation time because of the vertical drift. In addition, we will compute the drift
of the particles considering their size and their inertia.
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5. Particles in suspension

5.7 Conclusions

We have developed a particle injector which allows to generate a column of particles in
sedimentation. The column is two-dimensional, conserving the same symmetry as the in-
ternal waves. The concentration of particles c in the column and the size of the column can
be easily adjusted. The dynamics of the column present a stage in which the concentration
of particles is fairly constant.

We observed a dependency of the sedimentation velocity with respect to the buoyancy
frequency N . In particular, the sedimentation velocity varies with depth for largest N
used, and it remains constant in depth for the smallest N used. The column of particles
will not generate any added dissipation to the propagation of the internal plane waves, for
the range of concentrations explored in this work.

The waves will generate oscillations of the boundaries of the column and in its inside.
The oscillations are mostly induced by the forcing frequency and harmonics. However, in
some cases a natural frequency of the column seems to emerge for amplitudes of the wave
large enough. The oscillations of the column exceeds the limits of the wave beam. The
oscillations are perceived above and below the beam. The upper oscillation, we believe is
related to the wake generated by the particles: each particle is slightly entrained by the
wake of the particle below, so that the motion of a particle is perceived by the particle
above, and the dynamics can by transmitted upwards in the column. This effect is not
related to the phase velocity as the same experiment has been performed with the group
velocity going upwards and the phase velocity going downwards. We believe that the
downwards oscillations, is given by a group behavior of the particles that manifests as an
elasticity of the column.

In some cases the boundaries of the column oscillate around an equilibrium position,
and in some cases the column as a whole is displaced, manifesting a net transport of the
settling particles. In particular, the displacement is always towards the source of waves.
For a particular value of the buoyancy frequency N we found that the displacement of the
column increases when approaching a particular frequency. The fact that the displacement
depends of the forcing frequency, with a maximal value, is reminiscent of a resonance
phenomena.

We computed the Lagrangian drift generated by unbounded internal plane waves prop-
agating in a stratified fluid. We considered that the drift of the particles is given by the
intensity of the wave induced drift, times the time the particles stays inside the wave beam.
We obtained a result that could explained the displacement direction of the column. For
our experimental parameters we attempt to estimate the frequency dependency of the
displacement of the column and observed some qualitative agreements.

The further investigation will be based on performing a more extensive study of the
effect on the suspension time given by the vertical Lagrangian drift generated by the waves.
In addition, the particle size and inertia will be included in the estimation of the particle
drift.
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Chapter 6

Conclusion

The principal objective of this work was to understand different mechanism related in the
transport properties of internal gravity waves. In a first stage we studied the bed load
motion induced by internal gravity waves.

• In order to produce a large shear stress over settled grains, we have performed several
explorative experiments contemplating different configurations of both the wave type,
and the disposition of the particles. For the experiments explored, we have not
observed bed load transport of particles, indicating that overcoming the threshold of
particles motion is not a trivial task in our experimental conditions.

• In the particular case where a mountain of particles in the bottom of the tank was
build, we observed a change in the shape of a mountain after the passage of a vertical
mode wave, in particular, when the non-linearities in the wavefield increased. Never-
theless, we inferred that the change of shape and size of the mountain is consequence
of avalanches in the slope of the mountain and compaction in its interior.

• The particular intense focalization produced by a critical reflection was used to gen-
erate strong shears in a solid boundary and therefore generate transport of settled
particles. Despite that fact that no particle motion was produced we observed an
intensification of the mean velocities near the boundary.

• We performed high resolution measurements of internal waves near-critical reflec-
tions, in order to determine the conditions in which the reflection process will increase
the shear stress σ at the boundary, enough to generate erosion of grains disposed in
a bed.

• We have developed, in a collaborative work, and applied to our experimental mea-
surements, an image processing technique which allows to decompose the wavefield
in the various wave components involved in an internal wave reflection by using its
particular spectral content. This method minimizes the boundary effects in the field
of view and satisfactorily decomposes the waves involved. It allows to decompose
the wavefield in as many modes as desired. This feature has been used in order to
identify for the first time when a near critical reflection involves two (incident and
reflected) or three (incident, reflected upward and reflected downward) wave com-
ponents. This allows to identify not only the angle interval β − γ where the linear
theory fails in predicting a single reflected wave, but also allows to have a precise
identification of the reflected wave in this interval composed by both the upward and
downward reflected wave.
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6. Conclusion

• The high resolution measurements of the velocity field of an internal wave reflection
near the slope, together with the capability of decomposing the wavefield in a incident
and reflected wave, allowed to compare for the first time experimental results with a
theoretical solution of the velocity field near the boundary in an internal wave critical
reflection developed by Dauxois & Young. We observed that the theory manages to
represent the main features of the velocity field near the boundary.

• Through the theoretical solution of the velocity field in a critical reflection, we esti-
mated the shear stress σ as a function of the experimental parameters. The shear
stress obtained experimentally is in good agreement with the theory for the exper-
imental parameters explored in this work. This allows to estimate under which
condition erosion in a bed of grains is predicted for a given particle and experimental
configuration, as well as for an oceanic situation.

In a second stage we performed experiments in order to study the effect of internal
waves over particles in suspension.

• We have developed a particle injector which allows to generate a column of particles
in sedimentation, conserving the same symmetry as the internal waves. The concen-
tration of particles in the column and the size of the column can be easily adjusted.
The dynamics of the column present a stage in which the concentration of particles
is fairly constant.

• The column of particles will not generate any added dissipation to the propagation
of the internal plane waves, for the range of concentrations explored in this work.

• The waves will generate oscillations of the boundaries of the column and in its in-
side. The oscillations are mostly induced by the forcing frequency and harmonics.
However, in some cases a natural frequency of the column seems to emerge for large
enough amplitudes of the wave.

• The oscillations of the column exceeds the limits of the wave beam. The oscillations
are perceived above and below the beam. The upper oscillation, we believe is related
to the wake generated by the particles: each particle is slightly entrained by the wake
of the particle below, so that the motion of a particle is perceived by the particle
above, and the dynamics can by transmitted upwards in the column.

• In some cases we observed that internal waves displace the column, manifesting a
net transport of the suspended particles. In particular, the displacement is always
towards the source of waves. For a particular value of the buoyancy frequency N we
found that the displacement of the column increases when approaching a particular
frequency. The fact that the displacement depends of the forcing frequency, with a
maximal value, is reminiscent of a resonance phenomena.

• We computed the Lagrangian drift generated by unbounded internal plane waves
propagating in a stratified fluid. We considered that the drift of the particles is
given by the intensity of the wave induced drift, times the time the particles stays
inside the wave beam. We obtained a result that could explained the displacement
direction of the column. For our experimental parameters we attempt to estimate
the frequency dependency of the displacement of the column and observed some
qualitative agreements.
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Perspectives

Many questions remain open. In particular, we can highlight what we consider the most
relevant.

• Through the comprehensive study of internal waves near-critical reflection we where
able to compare our results with a theory for internal waves reflection, and therefore,
through this theory interpolate the experimental values to predict erosion of parti-
cles. Nevertheless, the experimental conditions required, overpasses the limits of our
experimental setups. Performing internal waves reflections in a enlarge setup in order
to observe bed load motion would allow to compare experimental values above the
threshold motion with the theory of internal wave reflections and the measurements
performed in this work.

• For the study of particles in suspension, the further investigation will be based on
performing a more extensive study of the effect of the vertical Lagrangian drift gener-
ated by the waves over the particle suspension time. In addition, the size and inertia
of the particles will be included in the estimation of the particle drift.

This work allowed us to understand the main limitations of transport properties of
internal waves generated in laboratory conditions. We observed and measure accurately
first time observed processes which may serve to understand the transport of sediments
and nutrients in oceanic conditions.
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Abstract

Internal waves are produced as a consequence of the dynamic balance between buoyancy and gravity
forces when a particle of fluid is vertically displaced in a stably stratified environment. Geophysical
systems such as ocean and atmosphere are naturally stratified and therefore suitable for internal
waves propagation. Furthermore, these two environments stock a vast amount of particles at their
boundaries and in their bulk. Therefore, internal waves and particles will inexorably interact in
these systems.

In this work, exploratory experiments are performed to study wave generated erosive transport
of particles. In order to determine a transport threshold, the peculiar properties of internal waves
(“critical reflection”) are employed to increase the intensity of the wave field at the boundaries. A
method was developed in collaboration with a signal processing team to improve the determination
of the wave components involved in near-critical reflection. This method enabled us to compare
our experimental results with a theory of critical reflection, showing good agreement and allowing
to extrapolate these results to experiments beyond ours and to oceanic conditions.

In addition, we study the interaction of internal waves with a column of particles in sedimen-
tation. Two main effects are observed: the column oscillates around an equilibrium position, and
it is displaced as a whole. The direction of the displacement of the column is explained by com-
puting the effect of the Lagrangian drift of the waves. This effect could also explain the frequency
dependence of the displacement.

Résumé

Les ondes internes sont produites par suite de l’équilibre dynamique entre les forces de flottabilité
et la gravité quand une particule de fluide est déplacée verticalement dans un milieu stratifié
stable. Les systèmes géophysiques tels que océan et l’atmosphère sont naturellement stratifiés et
donc favorables à la propagation des ondes internes. En outre, ces deux environnements stockent
une grande quantité de particules tant dans leur intérieur que sur les bords. Par conséquent, les
ondes internes et les particules vont inévitablement interagir dans ces systèmes.

Au cours de ce travail, des expériences exploratoires sont réalisées pour étudier le transport
par érosion des particules, généré par les ondes internes. Afin de déterminer un seuil de transport,
les propriétés particulières des réflexions d’ondes internes («réflexion critique ») sont utilisées pour
augmenter l’intensité du champ d’ondes à la surface de réflexion. Une méthode a été développée
en collaboration avec une équipe de traitement du signal pour améliorer la détermination des
composantes de l’onde impliquées dans une réflexion quasi critique. Cela nous a permis de comparer
nos résultats expérimentaux avec une théorie de la réflexion critique, montrant un bon accord et
permettant d’extrapoler ces résultats à des expériences au-delà de la nôtre et à des conditions
océaniques.

Nous avons aussi étudié l’interaction des ondes internes avec une colonne de particules en
sédimentation. Deux effets principaux ont été observés : la colonne oscille autour d’une position
d’équilibre, et elle est déplacée dans son ensemble. La direction du déplacement de la colonne
est expliquée par le calcul de l’effet de la dérive Lagrangienne produite pour des ondes. Cet effet
pourrait également expliquer la dépendance en fréquence du déplacement.
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