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Résumé

Aujourd’hui, de nombreux appareils sont capables de capturer des vidéos en
Full HD et d’utiliser une connexion réseau pour accéder a Internet. La pop-
ularisation des dispositifs et les efforts continus pour améliorer la qualité du
réseau ont apporté un environnement propice a ’essor de la diffusion en direct.
De part la grande quantité de contenu généré par les utilisateurs, la diffusion
de flux en direct présente de nouveaux défis. Dans cette thése, nous intéresons
a la fois a distribution et du transcodage des systémes de diffusion en direct.

Nous avons commencé par créer un ensemble de données de sessions de
streaming en direct. Pour étudier les aspects que nous ciblons des systémes
de diffusion en direct nous avons besoin de les caractériser et d’évaluer les so-
lutions proposées avec des traces pertinentes. Par conséquent, notre premiére
contribution est un ensemble de données et son analyse, contenant trois mois
traces de deux services de streaming en direct généré par les utilisateurs. Avec
des millions de sessions en direct et des centaines de milliers d’utilisateurs nous
avons rendu ces données librement disponibles pour la communauté.

Ensuite, nous avons exploré et développé une solution pour la distribution
du contenu massif produit par ces platesformes. L'un des défis est I'immense
variation du nombre total de téléspectateurs et la grande hétérogénéité des flux
populaires. Ceci implique généralement un surdimensioment des services et
par conséquent un important gaspillage de ressources. Nous proposons trois
solutions: (i) I'une basée sur une prévision de popularité afin de placer les
flux sur des plateformes telles que le nuage (cloud) ou des machines virtuelles
distribuées; (ii) l'autre utilisant une distribution hybride entre les serveurs
propriétaires et les reseaux de distribution de contenu (CDN pour Content
Delivery Network); (iii) nous discutons des aspects economics sur la diffusion
a basé de CDN.

Enfin, nous passé puis les difficultés posées par le transcodage des flux
en direct. Les opérations de transcodage sont cotiteuses en ressources CPU
et sont des étapes clés pour le Streaming a Débit Adaptatif (SDA). Nous
présent que le SDA est capable de réduire le colit en bande passante pour
la distribution et d’augmenter la qualité d’expérience des téléspectateurs en
échange d’un coiit en ressources CPU pour transcodage. Pour comprendre le
compromis entre les avantages et les cotits, nous formulons deux problémes
de gestion. Le premier est une version simplifiée dans laquelle nous concevons
deux stratégies pour décider quels flux devraient étre livrés par SDA. Pour la
deuxiéme formulation, nous présentons une programmation linéaire en nom-
bres entiers pour maximiser la qualité moyenne de I’expérience de 'utilisateur
et un algorithme heuristique capable de passer a échelle d’'un grand nombre
de vidéos et utilisateurs.
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Abstract

Today many devices are capable to capture full HD videos and use its network
connection to access Internet. The popularization of devices and continuous
efforts to increase network quality has brought a proper environment for the
rise of live streaming. Associated to the large scale of Users Generated Content
(UGQC), live streaming presents new challenges. In this thesis we target the
delivery and transcoding of live streaming systems.

First, we created a live streaming sessions data set. To study the aspects we
target of live streaming systems we need to characterize them and evaluate the
proposed solutions with relevant input traces. Therefore our first contribution
is a data set, and its analysis, containing three months traces of two UGC live
streaming services. With millions of live sessions and hundreds of thousands
broadcasters we made it freely available for the community.

Second, we explored and developed solutions for the delivery of the massive
content produced by these platforms. One of the challenges is the huge varia-
tion in the total number of viewers and the great heterogeneity among streams
popularity, which generally implies over-provisioning and consequently an im-
portant resource waste. In this thesis, we show that there is a trade-off between
the number of servers involved to broadcast the streams and the bandwidth
usage among the servers. We also stress the importance to predict streams
popularity in order to efficiently place them on the servers. We explore three
solutions, one based on platforms such as clouds or distributed virtual ma-
chines and uses popularity predictions to map live-streams on the servers,
another based on assisted delivered involving proprietary servers and Content
Delivery Network (CDN), and finally we discuss the economics aspects related
to CDN based delivery.

Lastly, we target the difficulties concerning transcoding of live streams.
The transcoding operations over streams are computing consuming and are
key operations on adaptive bit rate streaming. We show that adaptive stream-
ing is able to reduce the delivery bandwidth cost and to increase viewer qual-
ity of experience at the cost of computing resources for transcoding purposes.
To address the trade-off between benefits and costs, we formulate two man-
agement problems. The first is a simplified version in which we design two
strategies for deciding which online channels should be delivered by adap-
tive bit rate streaming. The second formulation we present an integer linear
program to maximize the average user quality of experience and a heuristic
algorithm that can scale to large number of videos and users.
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We are currently witnessing the emergence of two phenomena: the popu-
larization of video capture devices and the explosion of network quality with
a continually increasing number of Internet users. Indeed, nowadays, any lap-
top, netbook or even cell phone has a camera. Full HD devices have become
affordable, including their mobile version. It implies that a large portion of
the population has the necessary equipment to create streaming videos.

Regarding networks, we have seen in recent years an influx of users and
a globally better coverage. In parallel, network quality in terms of latency
and throughput improved significantly, and this improvement continues, in
particular with the arrival of very high speed networks like the optical fiber. In
addition, connection charges have become reasonable, and the vast majority of
Internet users has unlimited access. The mobile network coverage is extensive
and of good quality. The progression rate of the coverage of mobile broadband
(3G/4G) suggests that the population could have a permanent access to a
network of good quality at a reasonable price.

The increase of network quality allowed users to consume more video con-
tent through the Internet. Netflix, a Video on Demand (VoD) streaming
service, surpasses the 50 million subscribers mark on the second quarter of
2014 with a $1.34 billion revenue [Shal4|. Twitch, a live video streaming ser-
vice, becomes the fourth largest source of US peak Internet traffic in February,
2014 and was acquired on the same year by Amazon.com for near a billion
dollars [FW14]. Already by 2013 video content represented more than half of
global Internet traffic [Incl4].

Combined, these phenomena, and the tendency of users to expose portions
of their live led to a popularity rise of live video streaming systems. Many
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different actors are involved on User-Generated Content (UGC) live video
streaming services. Figure 1.1 illustrates a simplification of this rich environ-
ment. Live video streaming consists of users that both consume and produce
the video content, service providers responsible for the platform, and different
processes for transcoding and delivering the live content with time constraints
on large scale.

In this thesis we study many challenges involving these systems. We dis-
cuss the challenges raised by these systems in the next section. Further, we
present our contributions on this domain. Lastly, an organization of the re-
maining of this thesis is given.

broadcasters

~ :' 2\

viewers

Figure 1.1: Simplified live streaming architecture

1.1 Motivation

The core functionalities of different UGC live streaming platforms, for instance
Twitch and the live branch of YouTube, share a lot of similarities. Broadcast-
ers produce video content, upload it to the platform and the platform is then
in charge to deliver it to viewers. However, the infrastructure and solutions
designed by the services are different. Google uses multiple data centers dis-
tributed over the globe to deliver its services, including YouTube [AJCZ12].
A composition of Peer-to-Peer (P2P) assisted by Content Delivery Network
(CDN) to improve viewers Quality of Experience (QoE) was deployed on
LiveSky [YLZ'09a]. Twitch uses self own data center assisted by CDN [Hof12].

We target in this work two main live streaming components that are critical
for the services infrastructure: the delivery and the transcoding.
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The challenge of delivering multimedia content on a large scale is essen-
tially a problem related to the reservation of physical resources, specially
outgoing bandwidth (data flow from servers to viewers). To address this
problem, the scientific community has designed P2P algorithms to improve
the delivery performances [Pas12]. However, various constraints have limited
the deployment of P2P systems for commercial purpose, for example firewalls
and Network Address Translator (NAT) still prevent many direct connection
between users [JDMP11]. Common industry models use CDNs for delivery of
video content. Cisco claims that CDNs will carry over half of video Internet
traffic by 2018 [Inc14]|. Recent successes of major live event delivery [Fiel2]
demonstrate the reliability of CDN. Additionally studies have dealt with other
concerns, like economical costs [ASV11] of the delivery.

Large scale transcoding also requires an important reservation of pro-
cessing power resources. Adaptive Bit Rate (ABR) was conceived to sup-
port the growing video consumption over heterogenous devices and net-
work conditions. To prepare the different video representations, required by
ABR, the raw video must be processed by transcoding operations. Cloud-
based transcoding has been the subject of several studies. Most of these
works [GB06, JAL"13, LZG12, LZY*13, HMLW11] take advantage of mod-
ern video compression techniques by splitting the video content into parts that
can be processed individually. These techniques require video pre-fetching for
the processing and are hard to apply to on-the-fly transcoding required by live
streaming. Few works target real-time transcoding, for example a cloud-based
video transcoding framework was designed in the context of mobile video con-
ferencing [CWLC14] and the feasibility of low latency approach with ABR
was validated [BCF14|. However, no further application on large scale, as the
one found on UGC video streaming, were proposed.

1.2 Live Streaming Services Challenges

Although the importance of live video streaming systems and continuously
growing in terms of Internet traffic there are still remaining open challenges.
We consider the following important aspects that must be target for the im-
provement of live streaming systems.

Unreliable and Heterogeneous Content. The broadcasters of UGC live
streaming systems can be less reliable since at first there is no official con-
tent requirements. The introduction of programs like partnership, proposed
by Twitch, requires that the broadcaster maintains in its channel a constant
production of sessions (at least three times a week). This content reliability is
raised by certain problems associated to UGC live video streaming. First, a
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channel can switch from offline to online and vice versa at any time. Second,
the content produced by broadcasters are highly heterogeneous, the emitted
video streams have various bit rates and resolutions, as well as various encod-
ing parameters. Third, the broadcasters do not give much information about
their video streams.

Massive Scale Systems. Our focus is on the thousands of broadcasters
who use live streaming services such as Twitch, YouTube Live, Ustream,!
Livestream,? and Dailymotion® to broadcast live an event that they are cap-
turing from their connected video device (e.g., camera, smartphone, and game
console). Many challenges are still open when regarding to live video stream-
ing services. Although its relevance on nowadays, solutions for coping with the
massive data produced by UGC live video streaming services are not trivial.
Typically, Twitch announced in 2013 a significant increase in the delay [Stal3],
while the live service from YouTube, for more than 2 years, was only offered
to a subset of users [Youl3.

Data Set Inexistent. The first obstacle on when proposing new approaches
and solutions for live streaming services is the need to validate the proposal
with real traces from service providers. Although the multimedia community
have made efforts to make real data sets available, for example the collection of
raw video content |Xip14| and the Dynamic Adaptive Streaming over HTTP
(DASH) sessions [BSMM 14|, unfortunately no public data set comprising live
streaming sessions were existent when we started this work.

CDN Impact is Neglected. The major live video content providers, like
Twitch and YouTube Live have distinct organizations of their delivery struc-
ture. Despite the existence of multiple options for delivering the live video
content, no formal definition considering their differences have been made.
CDNs are notable actors over diverse delivery compositions. Whereas their
importance on the delivery chain, no evaluation considering the profit-driven
policies of CDNs were investigated, neither their impact on viewers quality of
experience.

Multiple Video Qualities. As opposed to the traditional TV providers and
the content owners from the entertainment industry, the broadcasters of UGC
systems usually do not emit ultra-HD video streams (2160p also known as 4k),
however they transmit diverse other video qualities. Besides source videos
having different qualities, viewers consume the video content with distinct
devices and network conditions. The implementation of ABR is a solution to
improve the delivery for heterogeneous clients conditions. On live streaming

‘http://www.ustream.tv/
’http://new.livestream.com/
Shttps://www.dmcloud.net/features/live-streaming
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services, it can diminish the needs of network capacity for the sessions delivery.
Viewers that have no capacity or smaller resolutions devices could with ABR
select lower video bit rates, leading to less bandwidth usage on the server
side. However, real-time constraints of the live scenario and high CPU costs
of transcoding operations needed to create distinct video representations make
the ABR implementation challenging. For instance, Twitch ABR streaming
is only offered to some premium broadcasters. That is, only a small subset
of channels is transcoded into multiple representations. Smarter selection of
channels to transcode and analyze of the trade-off between benefits and costs
when implementing ABR were not studied.

1.3 Summary of Contributions

This thesis presents contributions related to live video streaming services. We
organized them into three themes: Data Set, Delivery and Transcoding.

Live Streaming Video Services Data Set. We first create a data set
with real traces extracted from two major live video stream systems,
namely Twitch and YouTube Live. This is our first contribution: an
analysis over the created data set and the availability of the data set
and scripts for the community [PS15]. Over 10 millions live sessions
and more than a million broadcasters were registered over three months
of collected data, from January 6, 2014 to April 6, 2014 and are publicly
available.

Live Streaming Video Content Delivery. The delivery of live streaming
video content is done in various ways. We analyze benefits and weak-
nesses of different industry delivery compositions and literature stud-
ies. The first delivery composition we explore is based on cloud plat-
forms. The heterogeneity among channel popularity generally implies
over-provisioning, leading to an important resource waste. We show that
there is a trade-off between the number of servers involved in the delivery
of the sessions and the bandwidth usage among the servers. We present
an approach for delivering live stream videos tailored for the cloud, which
profits from the knowledge of channels popularity [PMS14a, PMS14b].
We then propose a hybrid composition based on CDNs and data cen-
ter. We define a formalization for hybrid delivery problem and perform
simulations using our real data set traces. In our results we compare
strategies to the optimal solution. Lastly we work on a CDN delivery

“http://dash.ipv6.enstb.fr/dataset/twitch-youtube/
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and its economical consequences to net neutrality [MPST14|. Using
our data set, we notice that a CDN remains a relatively neutral actor
even when one of the content providers it serves tries to monopolize the
CDN storage space by implementing an aggressive policy to harm its
competitors.

Transcoding of Live Streaming Video. The adoption of ABR on live
streaming services can increase viewers QoE and reduce delivery band-
width costs. However, this adoption adds to the platform new transcod-
ing costs required by the preparation of multiple representations of the
video session that enables the use of ABR. We contribute with an analy-
sis of the trade-off between benefits and costs when implementing ABR
for live streaming systems [PS14]. We formulate a management problem
and we design two strategies for deciding which online channels should
be delivered by ABR. Our evaluations, still based on our real traces,
show that these strategies can reduce the overall infrastructure cost by
40% in comparison to an implementation without adaptive streaming.
Next we provide a fine-grained analysis on the management problem
with two other data sets and a new heuristic strategy [APSB15|. Based
on the optimal results obtained from the problem optimization we offer
a new heuristic algorithm. We compare our heuristic with current indus-
try standards, showing that the latter are sub-optimal. Our heuristic
can satisfy a time varying demand by efficiently exploiting an almost
constant amount of computing resources.

1.4 Thesis Organization

This manuscript is organized into three distinct parts. First we present in
detail the characteristics of live streaming services. In Chapter 2 we describe
live streaming platforms and related work. We introduce in Chapter 3 the
first contribution of this thesis, the live streaming data set and its analysis.
This data set is composed by two major live streaming services traces, Twitch
and YouTube Live, with information about their broadcasters and viewers.
Our analysis points out important key elements of the live streaming systems
that we further explore on the following contributions.

The second part describes our contributions for the delivery of live stream-
ing video content. Chapter 4 presents our approach of delivery using popu-
larity aware solution based on cloud platforms. Chapter 5 explores hybrid
compositions of delivery, such as the one adopted by Twitch.

The third part exposes our contributions on the transcoding of live stream-
ing videos. In Chapter 6 we investigate the implementation impact of adaptive
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bit rate streaming in live streaming platforms.
We conclude and present future works of this thesis in Chapter 7.

Additionally, we describe other related contributions in Appendix C, which
we applied our data set introduced in Chapter 3. Section C.2 assumes entirely
delivery by CDN and analyses the economic impact of this delivery model.
We use our data set to make two services providers compete for the CDN
delivery resources. We study in Section C.3 the problem of preparing live
video streams for delivery using cloud computing infrastructure. In this work
we evaluate a new heuristic strategy with our data set.
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2.1 Introduction

Live video streaming has got the attention of both the academic and the indus-
trial community. This resulted on a high number of works. As we previously
discussed, the consumption of video streaming increase stress the previous
solutions and current infrastructures. Different restrictions were applied by
major live streaming services to cope with the scale problem. For example,
Twitch announced in 2013 a significant increase in the delay [Stal3], while the
live service from YouTube, for more than 2 years, was only offered to a subset
of users [Youl3|.

There is no consensus, both in the academia and the industry, on an ideal
infrastructure for these systems. In this chapter we present the state-of-the-art
associated to live streaming video services.

In the first section we explore related topics as Internet video consumption
and video streaming. Since our study is mainly based on traces of UGC
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services we introduce a discussion about the various studies related to UGC
services.

The following section relates to the delivery part of our work. It introduces
the multiple delivery models designed for the diffusion of video streaming. We
discuss models that focus on a unique technology, followed by hybrid delivery
models, which associate multiple technologies.

The last section presents works related to the transcoding of video content.
As previously mentioned, video transcoding is a key piece of the process for

delivering video streaming with ABR. Finally, we also discuss works related
to ABR.

2.2 Background

Many different actors are involved on UGC live video streaming services. This
rich environment consists of users that both consume and produce the video
content, service providers responsible for the platform, and different processes
for transcoding and delivering the live content with time constraints on large
scale. In the following we describe important aspects of live streaming systems.

User-Generated Content (UGC). We call UGC any form of content such
as blogs, tweets, images, videos, and other forms of media that are
created by users of an online system or service. This content is often
made available via social media websites. UGC is responsible for the
emergence of concepts such as citizen journalism, where public citizens
collect and report news and information. UGC is the central subject
of popular Internet services such as YouTube! and Wikipedia?. It is
generally created outside of professional routines and practices.

Broadcaster. The broadcasters are the users responsible for creating the
video content in UGC live streaming video services. Normally, each
broadcaster is authenticated on the service and owns a channel.

Channel. On live video streaming services, channel is the collection of videos
that a determined broadcaster have produced. The different videos pro-
duced on live are called sessions.

Session. A session is a video stream created by a broadcaster. On live stream-
ing systems, the channel can be either online or offline. Each online
period results in a video session that can be, or not, archived. In this
work we are interested by live sessions.

Thttps: //www.youtube.com/
Zhttps: //www.wikipedia.org/
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Viewer. Viewers are users that are not necessarily registered on the service
that watch the sessions produced by the broadcasters. The number
of viewers watching a session can change over time. We call channel
popularity the total number of viewers of an online channel at a given
moment in time. Figure 2.1 shows the evolution of the popularity of a
given channel over time, this channel contains two sessions.

nb. of viewers
N

> time
t1 tll to t/2

session 1 session 2

Figure 2.1: A life in a channel

Service Provider. The service provider is the platform where the broad-
caster can upload its produced video content. The service provider is
then responsible to process the content and deliver it to the interested
public, namely viewers. Normally service providers have ways to mone-
tize the platform, for example distributing in the beginning of the video
some paid advertisement.

Content Delivery Network (CDN). CDN is a large distributed system
of servers across the Internet. Normally deployed in the Internet edge,
inside Internet Service Providers (ISPs) network and close to the end-
users. The goal of a CDN is to serve content to end-users with high
availability and high performance. The service providers pays the CDN
to deliver its content to the users. The CDN then pays ISPs for hosting
its servers in their data centers.

Adaptive Bit Rate (ABR). ABR streaming is a technique of video
streaming. On ABR a single video content source is encoded at multi-
ple different resolutions and bit rates, called video representations. The
user video player can then switch between the different representations
depending on its device and network capacities. More specifically, the
current implementations, like DASH (standard created by Moving Pic-
ture Experts Group (MPEG)) and HTTP Live Streaming (HLS, imple-
mented by Apple Inc.), work over HTTP. The multiple representations
are segmented into small parts, typically between two and ten seconds.
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A manifest contains the information about all the multiple available rep-
resentations and segments. At the start, the client requests the segments
at lowest bit rate. If the client has enough bandwidth to download a
bigger bit rate it will request the next higher bit rate segment. If the
network conditions deteriorate, the player will request a lower bit rate
segment. ABR can achieve little video buffering and better user QoE.

Transcoding. Transcoding is the process that transforms a video source into
a different representation, i.e. a version of original video with a different
resolution and/or bit rate. This process is needed for ABR streaming.

The process to absorb and deliver the sessions varies among service
providers. Based on the live streaming services solutions, there are mainly
two general types of processes.

Traditional process. The traditional process consists in preparing the raw
live stream (e.g. for sanity check and better webpage integration), and
then delivering it directly to the viewers requesting it. Figure 2.2 illus-
trates this process. The raw video is produced by a broadcaster and
sent to the system by the ingest servers. The system is then in charge
to deliver this video among heterogeneous viewers.

Raw Ingest Delivery
Vi =4 .

Figure 2.2: Traditional process of live video delivering
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Transcoding process. The transcoding process is illustrated by Figure 2.3.
It consists of transforming the raw live stream into multiple live video
streams and of using ABR streaming to deliver the session to the viewers,
typically with a standardized technology like DASH [Stoll|. Using the
transcoding process the system is able to deliver different versions of the
initial raw video for each viewer, accordingly to its device capacities and
network conditions.

H

Raw Ingest Transcode
Vi = S

Figure 2.3: Transcoding process of live video delivering

u

Delivery
Servers

2.3 Live Video Streaming Traffic Studies

Many papers have studied video network bandwidth usage over the Inter-
net. In particular, the authors of [I[P11] have dealt with more than five years
of users web traffic data to examine different characteristics of Internet us-
age. They highlighted the increasing importance of video content (up to 28%
within the five years). In [FMM™11], the YouTube traffic generated by mo-
bile devices is compared to the traffic generated by regular desktop computers.
Their results showed access patterns, which are similar across the sources of
traffic. In the example illustrated by Figure 2.4 we observe that people using
different devices and networks are interested by the same type of content in
YouTube: short videos. In both environments, half of the population watches
videos shorter than 4 minutes and smaller than 20 MB. In [ZLAZ11] the total
amount of YouTube videos allows the authors to draw conclusions about the
bounds of total bandwidth and storage space that is necessary for YouTube.
This study emphasizes the critical needs of resources for video systems. The
video traffic generated by YouTube is analyzed from the standpoint of an ISP
in [AJZ10]. Overall, these studies have emphasized the importance of ser-
vices like YouTube over the whole Internet traffic and the exploding needs of
resources to serve the population. For our first contribution, we use similar
techniques to analyze the behavior of people who contribute to a live video
service as well as the bounds of total bandwidth usage for live videos delivery.
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Figure 2.4: CDF of video duration (top) and video size (bottom). Extracted
from [FMM™11].

Regarding live video streams, fewer works have been published. One of
them analyzed the Zattoo system [CIJWO09], one of the largest production live
streaming providers in Furope. In this paper, the authors had information
about the network architecture from the provider point of view. However,
regardless their claims for it, Zattoo cannot be considered as a large-scale
system. The peak load they presented from Zattoo is one order of mag-
nitude lower than what we observed in Twitch. An extensive study was
done over data collected from the largest CDN in China during 2008 Olympic
Games [YLQT09]. The authors highlight the new demands that such events
and dynamics impose over live systems. In particular, they characterize Inter-
net Protocol Television (IPTV) systems regarding time dynamics of content
provider and users activities. This work, however, focuses on regular con-
tent produced by a few well-established video channels. Similarly [QGL*09]
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shed some light at these time dynamics over data collection from a large scale
IPTV provider in the United States. Additionally, they proposed models for
probability distribution of user activities and an IPTV user activity workload
generation tool.

One of our contributions, a data set of live sessions from two real services,
differs from the previous works by exploring aspects of live video streaming
systems that are present in two different traces. The large scale produced by
the UGC component of these real services stress the importance of our data
set. We discuss further the works related to UGC platforms.

2.4 User-Generated Content

Many measurement campaigns have been conducted to understand the moti-
vations of contributors to UGC platforms. In particular, the YouTube system
has been extensively studied since 2007 [CKR07|. Typically, a study of
YouTube uploaders behavior is given in [DDHT11], where it is explained that
the most popular uploaders upload copied content. However, to the best of our
knowledge, only few papers have addressed data traces with user-generated in
live platforms. Two of them deal with “gamecasting”, i.e. gamers capturing
and broadcasting their activity within a game. In the first one [KSCT12],
eSport and Twitch users behavior are discussed. During a 100 days trace,
evidence of the relationship between peaks of popularity in the platform with
the major eSports events were shown and are illustrated by Figure 2.5. A pre-
diction of session popularity based on its early popularity is proposed, while
in our contribution we offer prediction based in the past sessions. Typically,
scheduling of tasks related to the session processing and delivering should be
done as soon as the session starts, therefore at this point of session life cycle
early popularity is not available. The authors of [SI11]| study XFire, which is
a social network for gamers featuring live video sharing. The authors focus on
analyzing the similarities between the activity of gamers in XFire and their
activity in the actual games. Another study dealing with live video shar-
ing is [VAJT06]. The authors analyzed 28 days of data from two channels
associated with a popular Brazilian TV program that aired in 2002. Our con-
tribution differs fundamentally in a quantitative manner since we evaluated
several thousands of channels.
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Figure 2.5: Average viewer count each day related with major eSport events.
Extracted from [KSC*12].

P2P is another line of research dealing with user-generated live streaming.
A survey is given in [ZH12|. Many papers claim to own traces from popu-
lar live streaming systems, for instance PPLive and PPStream, but none of
them make a thorough study of these traces. In most cases, authors cannot
have an accurate view of channel popularity due to the distributed nature of
these systems. These measurements, typically for PPLive, are also limited to
a small number of channels (320 in [HLL07]), for example our data set char-
acterizes millions of channels. Moreover, the most popular systems are almost
exclusively used in a specific region. Thus the population represented in these
systems is locally biased and is not representative for a global view. Finally,
many works focus on characterizing the P2P topologies and the behaviors of
peers in terms of bandwidth contribution [VGNT12|, but such studies are not
relevant in the context of our work.

We discussed the state of the art related to the importance our data set
contribution. The remaining of our contributions focus on solutions for de-
livery servers and transcode servers, essential components of the live video
streaming chain. We follow with a discussion of the state of the art regarding
these components.

2.5 Multimedia Delivery Architectures

As previously mentioned, the delivery servers are critical components of live
streaming services. In this section we present the various architectures present
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in literature and industry. We discuss as well, the benefits and weaknesses of
each type of delivery.

2.5.1 Video Delivery Models

We introduce the several options that service providers use to build their
“delivery cloud”.

Data Center (DC). The most common way to deliver content is to use a
DC, which is basically a large set of servers [BH09]. The DC can be
either owned or rented by the service provider. In the former case, the
infrastructure is almost exclusively paid at the construction, however it
has some fixed capacity limitations. In the latter case, usually referred
as cloud, the infrastructure can scale up and down on demand but the
service provider has to deal with another actor (the cloud provider).
Although DCs are attractive, easy-to-manage infrastructures, they do
not enable low response time for a large population of users because they
are located in one location (or few locations if the service provider deals
with several DCs) [CWSR14]. That is, the network latency is too high
for a vast fraction of the population because transit network between
final users and service providers are large. Moreover, the monetary
cost to transfer data is higher because the traffic should cross several
networks until the content eventually reaches the users.

Peer-to-Peer (P2P). The challenge of delivering multimedia content on a
large scale is essentially a problem related to the reservation of phys-
ical resources, such as outgoing network bandwidth. To address this
problem, the scientific community has advocated for years for a P2P
based infrastructure, where users themselves contribute to the delivery
by forwarding the content they received. A lot of algorithms have been
designed to improve the delivery performances [Pas12|. However, various
constraints have limited the deployment of P2P systems for commercial
purpose. First, firewalls and NAT still prevent many direct connec-
tion between users [JDMP11]. Second, P2P require users to install a
program on their computers. Such a “technical”, security-sensitive re-
quirement can prevent users from using the service. Moreover, despite
some new browser-based technologies (e.g., WebRTC), a P2P software
depends on the configuration of the computer of end-users, which is
a cause of many development difficulties. Third, the service provider
has a low control on the users QoE since it does not directly control
the performances. Finally, the complexity of P2P system can increase
the delay. Many initiatives have aimed at ensuring that peers connect
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preferentially with the other peers that are located in the same net-
work [SKS09|, which improves latency. However, a peer usually gets
data from multiple other peers. Even if the direct connection between
two peers has low latency, aggregating data from multiple peers requires
synchronization and buffering, which causes extra-delay.

Content Delivery Network (CDN). In the recent years, CDNs have

emerged as the privileged way for large-scale content delivery. For exam-
ple, Akamai, one of the largest CDNs, is responsible for 15% to 30% of
all web traffic [Inc|. CDN is composed of three types of communication
devices: a relatively small number of sources, which directly receive the
content from the service producer, a medium size network of reflectors,
and a large number of edge servers, which are deployed directly in the
access networks, close to the users. The proximity between the end-users
and the edge-servers makes network latency small.

For a decade, the CDN providers have met the demand of two families of
actors in the value chain of content delivery: service providers (because
large-scale Internet services have to be distributed for redundancy, scal-
ability and low-latency reasons) and network operators (because mini-
mizing inter-domain traffic while still fulfilling their own users’ requests
is a business objective). CDNs have thus emerged as a new category of
market players with a dual-sided business. They provide caching capac-
ities “as a service” to network operators and they provide a distributed
hosting capacity to service providers. The CDNs provide both scala-
bility and flexibility, they deal with the distribution complexities and
manage multiple Internet operators. They propose all of these services
at a unique selling point.

Several works confirm that edge-servers can be used for serving other
types of information besides static content. As studied in [Pas12|, cur-
rent CDNSs infrastructures have the ability to serve millions of end-users
and are well-positioned to deliver game content and software [Alel2].
However, CDN edge servers are generally built from commodity hard-
ware that have relatively weak computational capabilities and often lack
graphics processing units (GPUs), which can be restrictive for transcod-
ing operations.
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2.5.2 Composing Hybrid Delivery Models

There is no clear consensus about the best solutions to deploy. Typically for
video streaming, we observe that the main actors have made different choices.
To name a few:

Google uses multiple DCs distributed over the globe to delivery their ser-
vices, including YouTube [AJCZ12];

NetFlix used a composition of multiple CDNs on its delivery chain by
2012 [AGH'12]. In 2012 they started to deploy their own CDN [opel2];

LiveSky is a composition of P2P assisted by CDN to improve viewers QoE
was deployed on LiveSky [YLZ'09al;

Twitch is the major live streaming service, it uses its own private DC assisted
by CDN [Hof12].

A recent trend is to build hybrid delivery models that compose several
of the aforementioned models. We list hereafter some frequent compositions,
each one with its own pros and cons.

CDN-P2P. Such a composition is managed by either the service provider,
as shown in [MCABI12| or the CDN provider, as described in [AZL"12].
The CDN gives some guarantees on the QoE by offering a minimum
amount of resources and by reducing the response time. This composi-
tion is illustrated by Figure 2.6. The CDN also allows users behind NAT
to be properly served. On its side, the P2P system assists the CDN in
case of traffic peaks. The more users to be served by the system, the
more resources in the system. The potential problem with such a com-
position is that service providers can not control all parts of the delivery
chain. Indeed, most profits come from a clear understanding of the de-
mand from end-users and a capacity to adapt the delivered content to
every user (e.g., embedded advertisement). Another potential problem
comes from the lack of QoE guarantees. Finally CDN-P2P compositions
suffer from the same drawback as P2P alone, including the requirement
of installing a software on users’ computer.
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Service
Provide

Figure 2.6: CDN-P2P

Multi-CDN. The service provider is commonly the main manager of this

composition. A typical example of such a composition is depicted on
Figure 2.7. This composition has been thoroughly studied in [AGH"12].
The main idea is that the service provider relies on several CDNs to de-
liver the content. For each user, the service provider decides the CDN
in charge of serving this user. The main advantage in this composition
is the possibility to achieve the best QoE for the viewers with the lowest
cost by exploiting the different prices applied by each CDN. Another
advantage is that the delivery is more robust since a downtime from one
CDN provider can be mitigated by using another CDN. However, this
delivery is only based on third-party actors, which means that even the
consolidated background traffic is dealt in a pay-as-you-go way. There-
fore the overall price of this composition can be higher than others that
include self-own infrastructures.

Service
Provider

Figure 2.7: Multi-CDN
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Multi-DC. Service providers that want to provide features beyond the basic
delivery of the same content are interested in hosting the service in their
own servers in a DC. However, response time requirements force service
providers to deploy multiple DCs in order to serve the whole popula-
tion with low response times [BYGJ'09]. This composition is shown at
Figure 2.8. In this case, it becomes crucial to manage the traffic such
that the load is well balanced among the different DCs [LLSY11] and to
manage the sharing of content over the multiple DCs [LSYR11|. The ad-
vantage is a lower cost per gigabit per second (Gbps) than Multi-CDN,
the total control of the delivery chain, and a relatively low response time
since every end-users should have a DC nearby (so latency is reduced).
The cons include substantial high cost for the initial deployment for
multiple DCs.

Service Service
Provide Provider

—_— .
] .
— b4

Service

Figure 2.8: Multi-DC

DC-CDN. In order to mitigate the disadvantages of the aforementioned
models, it is frequent that video service providers deploy hybrid DC-
CDN compositions [Hof12|. Figure 2.9 illustrates this composition. DC-
CDN hybrid composition is expected to combine the main advantages
of both delivery solutions at a minimum cost. The high prices paid for
CDN are minimized by using the CDN resources only when the DC is
out of capacity, usually at traffic peaks. The DC dimension is adjusted
so that the consolidated background traffic (or valleys of usage) is dealt
by their own servers. In the cloud computing context such a compo-
sition is often called hybrid cloud where conventional data centers and
cloud solutions are deployed together to aim the same combined ad-
vantage [AFG™10]. Various studies have shown that it is not trivial to
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outsource tasks from the internal data centers to the external delivery in-
frastructure [BVB10], typically due to security [SSSL12|, QoE [ZJY09]
and economics [BVB10] reasons.

Service
Provider

stable
traffic

traffic
peak

users users

Figure 2.9: DC-CDN

We have presented diverse architectures found in both research papers
and the industry related to the delivery of video streaming. As shown, there
is no consensus regarding the delivery model. Each provider adapts its in-
frastructure accordingly to its resources or needs. In our contributions, at
Chapters 4 and 5, we explore this discussion further and present some ap-
proaches that benefit from the conclusions derived from the live streaming
data set, our first contribution.

2.6 Video Transcoding

As we previously described, transcoding operations are essential when imple-
menting ABR. Specially cloud-based transcoding has been the subject of sev-
eral papers. Most of these works [GB06, JAL"13, LZG12, LZY 13, HMLW11]
take advantage of the fact that some modern video compression techniques
divide the video stream into non-overlapping Group Of Pictures (GOPs) that
can be treated independently. The encoding time of each GOP depends on its
duration and on the complexity of the corresponding scene. The algorithms
exploit this fact to increase the utilization of each computing node at the ex-
pense of an increased complexity, including the time and resources needed to
split the input video into appropriately sized GOP.

One downside of these solutions is that they need to know the transcoding
time of each GOP in order to assign it to the most suitable computing node.
Some authors [GB06, JAL"13| propose fairly complicated systems to esti-
mate the encoding time of each GOP based on real-time measurements, while
others [HMLW11, LZG12, LZY 13| assume that this information is directly
available, for instance [HMLW 11| by profiling the encoding of a few represen-
tative videos of different types. Another downside of a GOP-based solution
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is that the encoding of each GOP can be completed out of order and then
need to be reordered before being delivered to the users. This out-of-order
problem is especially important when dealing with live content, which requires
real-time constraints. Only one work [HMLW11] explicitly considers real-time
constraints in a GOP-based system. Further, the cloud is explored for par-
allelizing multiple videos transcoding and scheduling algorithms to minimize
the overall encoding time [LZG12, LZY"13|.

Some studies have explored the CDN resources for transcoding. A
study [WSWT14] proposes to leverage underused CDN computing resources
to jointly transcode and deliver videos by having CDN servers transcode and
store the most popular video segments, illustrated by Figure 2.10. Such a
solution can offer significant gains, especially for non-live popular streams,
but it requires the cooperation of the CDN, which is not always owned and
operated by the cloud provider.

Adaptive _ _
streaming session

s3

Peering
servers

Backend
servers

— Segment delivery — — — - Transcoded segment replication

Figure 2.10: An illustration of joint online transcoding and geo-distributed
streaming. Extracted from [WSW*14].

Few papers have studied the relationship between Power consumption,
Rate and Distortion (often abbreviated as P-R-D). The first paper to investi-
gate the P-R-D model [HLCT05| contains a detailed analysis and correspond-
ing model of the video encoding process. The authors use this model to define
an algorithm that, given rate and power constraints, minimizes the distor-
tion of the compressed video. A different definition for the distortion is given
by [SLW 09| which proposes an algorithm to solve the P-R-D as an optimiza-
tion problem. These works deal with a single video flow and take the rate as
an input parameter, they do not address how to choose this value as in our
transcoding contributions.

Results of an empirical study based on the H.264 Scalable Video Coding
(SVC) reference software JSVM-9.19 [RSWO07| are presented by [YCWF11].
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While non-SVC H.264 can be considered as a special case consisting of only
one layer, the authors emphasize the results related to the SVC part. Since
their data is not publicly available, and is not possible to extract the numbers
from the paper, we run similar experiments with a wider range of parameters
(bigger video bit rates and video resolution) leading to the data set that is
presented in Appendix C.3.3.

2.7 Adaptive Bit Rate Streaming

The DASH standard [Stoll| is a popular ABR design. This standard has
been the common choice of various academic studies and industrial imple-
mentations. As we previously presented in Section 2.2, ABR can demand
extra computing power for the transcoding of different video representations.
This overhead was evaluated on DASH for low latency scenarios. The over-
head represents only 13% of the overall video streaming process [BCF14].
Even with a relatively small overhead for one live session, it can generate an
important stress on infrastructure in the case of UGC live streaming, where
the scale of concurrent sessions can be of thousands broadcasters. We explore
in our contributions the trade-off between the benefits of the ABR and this
overhead of computing power for the transcoding operations.

A CDN live DASH approach is analyzed by [LSRT14]. Both theoretical
formulation and practical implementation are given. The focus of this work is
to maximize viewers QoE subject to under provisioned CDN infrastructure.
An implementation of DASH assisted by P2P has reduced the servers outgoing
network bandwidth up to 25% thanks to the peer assistance [LMT12]. An
optimization based on viewers QoE for the DASH standard for VoD services
was explored in [JdV14]|. Similar our transcoding contributions aim viewers
QoE but on live services. We consider service providers assisted by CDN
that have the needed infrastructure to satisfy all viewers. And in one of our
contributions the bandwidth burden on the service providers servers is reduced
by migrating it to the CDN.

A dynamic scheduler for transcoding jobs of DASH that allows high-
priority process and load balance in a cloud environment was designed in
[MSZ14]. Although near to live transcoding, their objective was different
from ours. They aim for video completion time, system load balance, and
video playback smoothness while in our contributions we target viewers QoE
and resources costs reduction.

Regarding our contribution into analyzing DASH on Twitch, a similar
work have been done for the VoD videos of YouTube [KBZ13|. Using traces
collected on the University network, the implementation of DASH obtained
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considerable reduction in overall bandwidth usage. For the cases where the
viewers do not entirely watch the video the reduction of bandwidth was 95%
for lower quality videos and 83% for the high quality ones.

2.8 Conclusion

Video streaming and live services have been interesting topics of research for
decades. The challenges raised on such system have inspired many contri-
butions and yet many issues remain open. The ever increasing consumption
of video streaming have stressed the previous solutions and current infras-
tructure. Different restrictions were applied by major live streaming services
to cope with the scale problem. Finally, there is no consensus, both in the
academia and industry, on an ideal infrastructure for these systems.

Many studies had been made for VoD services, like YouTube. But, as we
presented, these studies are not extended to live services. Additionally, the
data sets used in these studies are generally not made publicly available, which
restraint the usage of the results. In terms of proposed solutions for delivery
and transcoding, academic works have addressed mostly P2P solutions, which
can restrict the implementation on real services. The targeted scale of the live
streaming solutions present in the literature are small compared to the one
present on UGC services.

Our contributions, which will be presented in the next chapters, target
large scale UGC live video streaming services. With a data set of millions live
sessions, which is publicly available, we hope to help the community to achieve
reproducible solutions. Our data set analysis reveals important live streaming
properties. We design solutions for delivery and transcoding of live streaming
that are tailored for the cloud or assisted by CDNs, which can enable the
implementation to real services.






CHAPTER 3

Live Streaming Sessions Data Set

Contents
3.1 Imtroduction . ... ............ ... ... 27
3.2 Live Streaming Providers . . . . . ... ... ...... 29
321 Twitch . . . . ... 29
3.22 YouTube Live . . . . . .. ... ... 30
3.3 DataRetrieval . ... ... .. .............. 31
3.4 Filters Used to Clean Up Traces . ... ........ 32
3.5 Status of Live Streaming Services . . . . . .. ... .. 32
3.5.1 How Big are the Systems? . . . . . .. ... ... ... 32
3.5.2  Are they 24/7 Services? . . . ... ... ... ... .. 34
3.5.3 Zipf’s Law in UGC Live Streaming . . . . . . .. ... 36
3.6 Identifying Popular Broadcasters Sessions. . . . . .. 38
3.6.1 Broadcasters Characteristics . . . . . . . ... .. ... 38
3.6.2 Video Quality and Popularity . . . . .. ... .. ... 41
3.7 Conclusion. . . . ... ... ... 0 0ol 42

3.1 Introduction

The flexibility of Internet communication to accommodate all types of con-
tent, including video media, has led to a considerable effort from the research
community, as discussed in the previous chapter. The popularity of UGC live
streaming services has however not grown as fast as some expected. Yet, the
last couple of years has seen a surge of interest for some new usages, includ-
ing crowdsourced journalism [MWNT13] and eSport [KSCT12]. The release
of the live version of YouTube [Youl3] by the end of 2013 has boosted the
attention on UGC live streaming services, especially on the current leader in
the sector, namely Twitch [Hof12]. Indeed, the growth of popularity for UGC
live streaming system has the potential to impact industrial actors in various
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areas, from CDN providers to TV broadcasters, so there is a need for a better
understanding of the main characteristics of these UGC services.

We present in this chapter a data set with two live streaming services. To
better understand these services, we started by collecting information of the
produced live sessions. This data set aims to provide the community traces
that allows anyone to replay the sessions that were diffused by the services
providers, namely Twitch and YouTube Live. The information present in the
data is the properties of each session and broadcaster, as well the amount of
viewers watching each session. We constantly fetched the Application Pro-
gramming Interface (API) information, further detailed in Section 3.3, each
five minutes during three months, January 6, 2014 to April 6, 2014.

This chapter also comprises an analysis of the two live streaming service
providers. Along with the description of the data set, we introduce parameters
that influence how video streams are prepared and delivered. With the data
fetch from their APIs we could determine many characteristics of the services.
We then developed solutions based on the findings of our analysis that are
presented in the next chapters.

To design solutions for live streaming services is essential to understand
the system behavior. In our simulations we use the data set to reproduce the
real services load and identify some key characteristics of UGC live streaming
services. The goal of this analysis campaign was in particular to give answers
to some critical questions:

How big are today’s main UGC live streaming? These services are
still frequently under-estimated. An answer to this question typically
matters for the Internet actors dealing with hardware infrastructure.
Statistics include the number of channels, the number of viewers and
most importantly the evolution of these numbers over time.

Are these services really 24/77 The TV broadcasters have a long expe-
rience of programming TV shows so that the right content is available
at the right time for the population. An UGC system can barely be
“programmed” since it depends on its broadcasters, who generously con-
tribute. There are still doubts about the sustainability of the offer (the
aggregated set of online channels).

How heterogeneous is the popularity of channels? The implementa-
tion of large-scale delivery services commonly relies on CDN, which
leverages the high heterogeneity of the popularity of content. Typi-
cally caches are efficient because the most popular content are highly
accessed. It has been shown that many large-scale services have a popu-
larity that can be modeled by a Zipf’s law |[AH02| where the parameter
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a can range from 0.5 (for the most homogeneous services) to more than
2 (for services with a high heterogeneity).

What is the behavior of broadcasters? The management of an UGC
service requires a good understanding of the behavior of broadcasters,
in particular how often a channel is online, how long does it stay online,
and how often it switches on. Characterizing broadcasters is critical
for UGC service providers, which need to predict behavior, typically to
adjust the infrastructure.

In this chapter we first introduce the live streaming services we crawled:
Twitch and YouTube Live. Then, we present the methodology of data re-
trieval. Following, details about applied filters are given, these filters clean
up testers and irrelevant sessions from the traces. Next, the answers to the
previous questions are explored and the results from our analysis are discussed.

3.2 Live Streaming Providers

We collected data from two platforms to build our data set, Twitch and
YouTube Live. Both platforms have an API available that allows to retrieve
information about the sessions that are delivered at any given moment. First,
we chose Twitch because it is the leader of the live streaming sector. Our sec-
ond choice, YouTube Live, was made because it represents a strong competitor
since YouTube is the leader of the VoD sector.

3.2.1 Twitch

Twitch is a live streaming video platform owned by Amazon.com Inc. It first
appeared in June 2011, as a side service from Justin.tv focused on video game
live streaming, including for example eSport competitions, coverage of gaming
conferences and users playthroughs of video games.

Justin.tv was a general content streaming platform created in 2007 by
Justin Kan, Emmett Shear, Michael Seibel and Kyle Vogt. On Febru-
ary 10, 2014, Twitch’s and Justin.tv’s parent company was rebranded from
Justin.tv Inc. to Twitch Interactive in order to align with the company fo-
cus on the gaming content. On August 5, 2014, Justin.tv was officially shut
down [Popl4]. In September 2014, Amazon.com acquired Twitch for $970
million [Amal4].

Figure 3.1a shows Twitch’s home page, taken at January 6, 2015. In its
home page are highlighted some Twitch partners. The program of partnership
is offered to broadcasters that have average of 500 or more concurrent viewers
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Figure 3.1: Twitch web interface

and regular schedule of at least 3 times a week. Moreover, Twitch also proposes
this partnership to broadcasters that are popular in other medias, as YouTube
or Twitter.

An example of a Twitch channel web page is given on Figure 3.1b, also
taken at January 6, 2015. Viewers can interact with the broadcaster and
other viewers by the chat aside the video. Past sessions and highlights can be
available for the viewers depending on the broadcaster choice of settings for
his channel. In our work we focus only on the live aspect of Twitch.

3.2.2 YouTube Live

YouTube Live is the live streaming service owned by Google Inc. Offered as
the live branch of the biggest VoD service, YouTube, it provided live sup-
port to global events, such as popular concerts, sports events, and interviews.
YouTube Live became available (in beta) to certain partners at April 8, 2011.
Two years later, the service became available for all YouTube verified accounts
(confirmed by phone SMS or call) and with good standings (by following the
community guidelines and copyright policies) at December 12, 2013.2

The YouTube Live interface follows the same design as the VoD YouTube.
[lustrated by Figure 3.2a taken at January 6, 2015 is the home page. It lists
channels that are online at the moment in time and some schedule sessions.
The channel web page, at Figure 3.2b, also taken at January 6, 2015, follows
as well the YouTube design for VoD channels. The difference between the
VoD video page and the live version is the chat addition (similar to Twitch
channel page) and the suppression of comments.

http://youtube-global.blogspot.fr/2011/04/youtube-is-going-live.html
Zhttp://youtubecreator.blogspot.fr/2013/12/now-you-can-live-stream-on-youtube.
html


http://youtube-global.blogspot.fr/2011/04/youtube-is-going-live.html
http://youtubecreator.blogspot.fr/2013/12/now-you-can-live-stream-on-youtube.html
http://youtubecreator.blogspot.fr/2013/12/now-you-can-live-stream-on-youtube.html
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(a) Home web page

(b) Web page of a channel

Figure 3.2: YouTube Live web interface

3.3 Data Retrieval

Twitch and YouTube Live provide two different APIs, which allow anybody
to fetch information about the current state of the systems. We used a set
of synchronized computers to obtain a global state every five minutes (in
compliance to APIs restrictions) between January 6, 2014 and April 6, 2014.
We fetched information about the total number of viewers, the total number
of concurrent online channels, the number of viewers per session, and some
channels metadata. The data set, containing more than five millions sessions,
is available on a public website.?

The YouTube Live API does not contain as many fields as the Twitch one.
We summarized in Table 3.1 the main information that we fetched from both

APIs.

Twitch YouTube Live

channel id

session id

number of viewers
video bit rate
video resolution

AU U U U G N
X X X < \

broadcaster country

Table 3.1: Summary of the APIs information

3http://dash.ipv6.enstb.fr/dataset/twitch-youtube/
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3.4 Filters Used to Clean Up Traces

We observed in the measurements that a significant number of channels were
typical from a broadcaster who tests the service. Two main behaviors were
identified. The first one is a broadcaster who launched a channel for only one
session with a duration lesser than ten minutes overall in the three months. In
other words, there is only one occurrence of this channel over the whole set of
traces. The second type of “tester” is the one who set a channel with sessions
longer than ten minutes, but the channel has remained with no viewer at all
during the analyzed period.

Twitch YouTube Live
Total number of broadcasters 1,570,844 248,563
Total number of sessions 12,352,691 818,857

Sessions with less than 10 minutes | 3,940,330 (32%
Sessions with no viewers | 1,692,233 (14%

Filtered number of broadcasters | 1,094,094 (70%
Filtered number of sessions | 7,763,331 (63%

219,959 (27%)
351,502 (43%)
129,310 (52%)
411,845 (50%)

~— — [— —

Table 3.2: Overview of Twitch and YouTube Live scale and impact of testers

As shown in Table 3.2, testers represent a significant part of both Twitch
and YouTube Live broadcasters with almost half of the registered sessions.
These testers impact the transcoding infrastructure of the services but they
harm the delivery infrastructure only on the up-link since no viewers request
these sessions.

In the following, the testers (30% of broadcasters on Twitch and 48% on
YouTube Live) are discarded from our measurements in order to keep attention
on the filtered broadcasters. Nonetheless, the ability of UGC live streaming
systems to prevent testers to harm the service, especially at activity peaks, is
a concern that deserves some further studies.

3.5 Status of Live Streaming Services

3.5.1 How Big are the Systems?

The first question to answer is how big the live streaming system can be. To
approximate how much bandwidth is used by each of the systems we summed
up the bit rates multiplied by the number of viewers. In the case of YouTube
Live, where the bit rates are not available, we attributed the average value
of 2 Megabit per second (Mbps) from Twitch sessions as the bit rate for all
YouTube Live channels.
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In Figure 3.3 we present the results of the bandwidth approximation. The
calculated line indicates, for both services, the sum of average bit rate (2 Mbps)
multiplied by the number of viewers in each channel. The estimation line
indicates for Twitch the sum of each session bit rate multiplied by the number
of viewers. It was not possible to make an estimation for YouTube Live
since its API does not offer the sessions bit rate. Both services had peaks of
bandwidth of more than 1 Terabit per second (Thps) on the 14" day. On
Twitch these peaks near and over 1 Thps are frequent. This information
about the volume of bandwidth consumption is not only important for the
live streaming services themselves but also for ISP and operators, who need
to deliver all this content information to end users. Also remind that this
content is live, and therefore it can not be pre-fetched or previously cached,
and there is new content at every moment.

calculated — cstimation
@ T @ T
2. 2.
< <
g 2 500
g 500 g
el el
g g
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M 0 | | | | | | | M 0
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(a) Twitch (b) YouTube Live

Figure 3.3: Bandwidth consumption estimation for live video delivery

Another characteristic we evaluate on the live streaming platforms is the
number of concurrent online channels. These platforms essentially differ from
other UGC systems by the fact that the content must be produced at the
same time viewers consume it. This imposes to the system a need of constant
amount of online broadcasters in order to provide an interesting range of
content to the viewers.

Figure 3.4 shows the minimum and maximum number of concurrent on-
line channels registered per day. This is a useful metric to estimate the limits
of computing power needed and thus the data-center dimensions. In Twitch
between 4,000 and 8,000 concurrent sessions always require data-center pro-
cessing. While YouTube Live concurrent sessions ranges from 200 to 350.

Furthermore, we are interested on the evolution over time of the channels
and in discovering how many different broadcasters were registered on the an-
alyzed data. Figure 3.5 shows the total number of different channels registered
(unique channel_ids) over the analyzed period. Twitch has a bigger number
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Figure 3.4: Number of minimum and maximum concurrent sessions by day

of unique channels over time when compared to YouTube Live. Moreover,
the detected growth of Twitch users is also significantly bigger than YouTube
Live. This can be explained by a consequence of YouTube Live decision to
give access to the live feature gradually to users [Youl3|. Although YouTube
Live had this restriction, the number of testers are similar to the ones found
on Twitch.
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Figure 3.5: Cumulative number of unique channels by day

3.5.2 Are they 24/7 Services?

We have to recall that live video streaming essentially differs from other UGC
services like VoD in the sense that the service depends on the activity of
broadcasters at every moment in time. There is a critical need for online
channels. Fortunately, both services have loyal broadcasters, who manage to
be more consistently active (here online) than on other typical UGC platforms.
It thus guarantees service continuity.
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Figure 3.7: Average number and confidence interval of simultaneous online
channels by weekday

We measured the number of simultaneous online channels over the col-
lected data. We then computed the average numbers per hour of a day (re-
spectively per day of the week). With these values we are able to measure
diurnal (respectively weekly) patterns. We show our results in Figure 3.6 and
Figure 3.7. In both figures, we normalize the results so that the peak of the
number of online channels is equal to 1.
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Our first observation is that Twitch is less sensitive to both diurnal and
weekly patterns than YouTube Live. For the weekdays, the difference between
the lowest number of online channels (0.9) and the peak (1) is not significant on
Twitch (we note it 0.90 : 1). At least two explanations can be advanced. First
the number of broadcasters in Twitch is one order of magnitude bigger than
in YouTube Live and they come from a wider number of countries spanning
the whole planet. The release of a closed beta of YouTube Live service was in
2013, and the full availability for all users was in late December of the same
year. Second, the fact that many Twitch channels are related to eSport can
have an impact too. Indeed, eSport are especially popular in Asia. Since both
Twitch and YouTube Live are already popular in Europe and America, all
continents are covered by engaged broadcasters.

We now compare the diurnal and weekly patterns globally. The main
important point to notice in Figure 3.6 is that the diurnal pattern is weaker
than what has been observed on other UGC platforms, such as VoD. We
indicate with a horizontal line the lowest number of new uploaded videos
as it was measured for the YouTube VoD service (discussed in [CKR*09]
and [CSF10]). The diurnal difference on Twitch is 0.65 : 1 although it is as
low as 0.37 : 1 on YouTube VoD.

3.5.3 Zipf’s Law in UGC Live Streaming

The distribution of popularity found on UGC systems and VoD typically fol-
lows the Zipf’s law [AHO02]. The Zipf’s law function is given by Equation 3.1.
The function variable « is the Zipf rank exponent. This exponent will dic-
tate the popularity homogeneity. The bigger is the exponent, the bigger is
the difference of content popularity. For example, the difference between 0.5
exponent and 2, is that the difference between the popularity of the content
ranked as first and second (as well for other ranks) is bigger for exponent 2.

Fi(z) = Ax™® (3.1)

We checked with our traces whether live videos followed Zipf’s law as well.
First, we represent in Figure 3.8 examples of popularity distribution found on
YouTube Live traces at two different hours picked on January 6, 2014. With
the traditional logarithmic scales, we then produced an approximation of the
Zipf parameters using a fitting curve process on the R software [R C14].
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Figure 3.8: Number of viewers by rank (dashed lines) and Zipf approximation
(solid lines)

To understand the evolution of the popularity pattern on both systems we
calculated, for every five minutes of our traces, the same Zipf approximation
formerly mentioned. We validate the results of the approximation by calculat-
ing the Normalized Root-Mean-Square Deviation (NRMSD) between the real
data and the fitted curve. The mean NRMSD value obtained for YouTube
Live was 0.0365 and the 95% confidence interval between 0.0362 and 0.0368,
meaning less than 4% error in our fittings. For Twitch NRMSD value obtained
was 0.0095 with confidence intervals of 0.0094 and 0.0096, i.e. less than 1%

error.
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Figure 3.9: Zipf « coefficient evolution over time

Figure 3.9 shows the results obtained for the Zipf « coefficient for the first
19 days of our data set, and as well a horizontal line indicating the value
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0.68198 found on classic VoD [GKMS13|. Figure 3.9 reveals an interesting
point: YouTube Live channels popularity are very heterogeneous and peak
hours have a big influence on it. While other UGC services ranges from 0.5
to 2, the Zipf a coefficient for YouTube Live is typically over 2, characterizing
a sharper difference between channel popularity and a shorter tail. Although
Twitch have also a high coefficient value (more than 1), the o parameter is con-
stant over time. This result confirms again the popularity of Twitch system,
with a larger range of channels and a more constant popularity distribution.
Also, as aforementioned, broadcasters are less affected by day/night patterns
on Twitch, which increases the homogeneity of the popularity distribution.

3.6 Identifying Popular Broadcasters Sessions

As previously explained, the most popular sessions should be identified as early
as possible, if possible immediately when they start, in order to decide the
delivery mean and to dimension the infrastructure (transcoding and delivery).
Furthermore, the results related to the Zipf distribution of popularity indicate
that the most popular channels are more popular (hundreds of thousands
more) than the long tail, which puts even more pressure on identifying them
early. We selected the 1% most popular channels of both services. We defined
them as simply popular.

3.6.1 Broadcasters Characteristics

The most obvious characteristics of channels are the length of their sessions,
the interval between sessions and the number of sessions that we observed
during the three months. Intuitively, the most popular channels can be iden-
tified from these three characteristics. For each characteristic, we distinguish
three “bins”. To select the partition bins, we took the total group of channels
and divided equally into three parts for each characteristic. We then applied
the same limits of the total division for the popular group. The description of
the characteristics and partition limits used are described at Table 3.3. The
results obtained by the partition are depicted by Figure 3.10.

Partition Limits

Characteristic Twitch YouTube Live
nb. of sessions 2,8 1,3
session length (minutes) | 10,20 20, 50
inter session (days) 5,16 12,30

Table 3.3: Limits for each channel characteristic
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The first remark in Figure 3.10 is that YouTube Live and Twitch popular
channels characteristics are not identical. While YouTube Live popular chan-
nels have influence of all the characteristics, Twitch popular group remains
equally distributed regarding the number of sessions and the inter-session
length. Another point is that popular channels on YouTube Live can be de-
fined as more frequent and longer than the full group of channels. Popular
channels of Twitch differentiate from the full group by having longer sessions.

We also evaluate the distribution of popular channels over the most repre-
sentative categories of each service. Figure 3.11 shows the distributions. The
picked categories are Entertainment, Games, News, Sports, and the remaining
categories grouped into Others. The categories are represented in the figure
as enter., games, news, sports, others, respectively. We see that categories
do not influence the popularity of both services, YouTube Live and Twitch.
When comparing "All" channels with the "Popular" channels in respect to
the selected categories, we noted that "All" channels and "Popular" channels
have similar distributions for each category. Another remark is that both data
sets are distinct in terms of partition over the same categories. YouTube Live
have a good representation of entertainment and games channels, while Twitch
have more than 90% of games channel. The category News on YouTube Live,
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although not very representative over the number of channels, attracts a high
volume of viewers to the service.

3.6.2 Video Quality and Popularity

To understand the high diversity of videos that UGC brings to live services,
Figure 3.13 shows the Cumulative Distribution Function (CDF) of the bit
rates of sessions for the three most popular resolutions. The key observation
is the wide range of the bit rates, even for a given resolution. For example,
the bit rates of 360p sources range from 200 kilobit per second (kbps) to more
than 3 Mbps.

CDF of the sessions

I
100 1000 10000

Video bit-rate (kbps)

Figure 3.12: CDF of the session source bit rates

Our data set also confirms that the better is the quality of the video, the
more popular it is. In Figure 3.13, we associate each range of video bit rate
with a determined video resolution based on the values of the YouTube Live
Stream Guide.? Sessions with better quality are more popular (720p being
the resolution for which sessions are the most popular) although these sessions
represent a small portion of the total. Typically, the sessions for videos with
a resolution lesser than 720p quality represent 40% of the total amount of
session but they attract only 8% of the total number of viewers.

We can see in Figure 3.14 the bit rates distribution between all Twitch
sessions. The majority of the sessions have bit rates ranging from 500 kbps to
3 Mbps. This result confirms our first estimation of 2 Mbps as video bit rate
average for live streaming services on the bandwidth calculation represented
on Figure 3.3. As seen in [SADF*12], the home broadband upload capacity is
averaging 1 Mbps which we indicated in the Figure 3.14 as a vertical line. The
lower half of the sessions have at most 1Mbps video bit rate. It indicates that
broadcasters are limited by their broadband capacity when transmitting their
live sessions. Users will not face this problem when uploading their videos to

4http://is.gd/BxG9hb
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VoD services, since restrict time constraints does not apply in this context.
Figure 3.14 also point out a crucial information for providers: the correlation
between video bit rates and broadband capacity, added to the growing of users
upload capacity over the next years, surely predicts that providers will face an
increasingly number of high quality videos, thus more bandwidth demanding
sessions. Therefore, studies about large scale live video streaming services,
like the one presented in this thesis, are important in order to make future
solutions to cope with the growing user demands.
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Figure 3.14: CDF of the session video bit rates

3.7 Conclusion

To the best of our knowledge this data set of Twitch and YouTube Live is the
first attempt to understand the behavior of UGC live streaming videos sys-
tems with comparison of two largely used systems. We explore in our study
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useful insights on what can be expected of a massive UGC live streaming
video service. We show that 1 Tbps of bandwidth is commonly achieved in
order to deliver the contents of such system. We also point out differences
between Twitch and YouTube Live, especially regarding the broadcaster be-
havior. Broadcasters on Twitch are clearly more engaged on producing live
streams than the ones found in YouTube Live. We detected many characteris-
tics that indicates the strong engagement of Twitch broadcasters. Compared
to VoD service, live streaming video services broadcasters are more active.
Aside from other systems, the popularity found on live is highly heteroge-
neous.

We use our findings and real data sets information in the following chap-
ters, as the design foundation of our solutions and as input to our simulations,
which provides a close to real simulation scenario. By offering this analysis
and making the data set public available we hope to enrich the community
and help to improve live streaming systems.
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4.1 Introduction

Live video streaming systems, such as Twitch or YouTube Live, offer to users
the possibility to broadcast or to watch live video sessions. The amount of data
to be processed and delivered to viewers is considerable. For example, every
minute, Twitch platform must absorb more than 30-hour live video sessions
created by thousands of broadcasters at 2014. Sessions must be delivered to
hundreds of thousands of viewers [twi].

The main difficulty in live video streaming delivery systems comes from:
(1) the scale, both in terms of video sessions and in terms of number of viewers;
and (ii) the live sessions diffusion is different from VoD: it is not possible to
replicate video files in advance on multiple servers, there is no video file before
the start of a session. It also differs from IPTV: compared to television, the
number of different sessions is greater and the number of users per session is
extremely variable, with some sessions having very few viewers. For example,
88% of Twitch sessions, over three months, have less than 10 viewers.

It is thus necessary to dynamically adjust the number of sessions of deliv-
ery servers to meet the demand. When a session becomes very popular, it is
possible that the server which distributes it reaches its maximum capacity, in
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that case it must share the load with another server. This induces an addi-
tional cost in terms of bandwidth consumption between servers. To minimize
this overhead, it is necessary to smartly map the video sessions on servers.
In this chapter, we describe POPS, a popularity-aware live streaming service.
This approach is based on the study of real traces from Twitch and YouTube
Live platforms, described in Chapter 3. It allows us to predict the popular-
ity of a video session. POPS is based on these predictions to dynamically
provision delivery servers. Our evaluation shows that when a history can be
used to estimate the popularity of a session, POPS can decrease the amount
of bandwidth used among servers without using too many servers.

The remainder of this chapter is organized as follows. The following Sec-
tion 4.2 defines the model considered for the live streaming delivery. Sec-
tion 4.3 presents our contribution: a placement strategy using popularity
predictions. Finally, Section 4.4 describes our evaluation before Section 4.5
that concludes the chapter.

4.2 Model

We focus on platforms broadcasting UGC live video. Remind from Section 2.2
that users of these services can play both roles: some create video sessions,
they are called broadcasters; some watch live sessions, they are called viewers.
At a given time, a user can play either one of the two roles, or both simulta-
neously. However, in our study, we focus on each role separately. It is also
possible for a user to watch multiple sessions simultaneously, even if it is not
norm.
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In our model, illustrated by Figure 4.1, when a user creates a video session,
he sends it to the service provider. We consider that the service provider
architecture is composed by a set of servers in a data center or cloud. We
discussed this architecture in Chapter 2. The number of involved servers may
evolve dynamically over time. Servers can be virtual machines in a cloud and
be provisioned according to the load. The servers can be in a same data center
but they can also be geographically distributed, in different data centers or
located at the edge of the network. We do not consider limits on the maximum
number of servers used by the service provider, and we neglect the time it takes
to allocate a new server (servers can be pre-allocated, by pool). Each session is
assigned to a server, which is responsible for delivering it to the set of viewers.
A server can be assigned to deliver multiple sessions. It is also possible that
a session is supported by more than one server, when its popularity (number
of interested viewers) exceeds its server’s outgoing bandwidth capacity.

We consider a dispatcher service, which can be either centralized or dis-
tributed. This service receives requests: (i) to deliver a new session, from a
broadcaster; (ii) to subscribe to a session, from a viewer. This service is re-
sponsible for assigning a server to deliver a new session, it may either choose
an already existing one that has outgoing bandwidth capacity left, or allocate
a new one. Then, the broadcaster uploads its session content directly to the
assigned server. While receiving a request from a viewer, the dispatcher ser-
vice identifies the delivering server in charge of its diffusion and returns it to
the user. The server then sends the session directly to the viewer.

We let the design of the dispatcher service architecture for future works.
We focus here on the study of placement choices that such a service has to do
and their consequences on the number of needed servers and on the amount
of inter-server bandwidth consumed.

The number of clients that can be served by one server depends on the
server capacity (in terms of outgoing bandwidth) and on the served sessions
bit rate. A server can therefore broadcast to a certain number of destinations
given by Equation 4.1.

server outgoing bandwidth

FWErs handwidth needed for viewer;

server destinations =

(4.1)

A destination can be either a viewer, or another server when a session
has to be served by multiple servers (see Section 4.3). For each session it
delivers, a server preserves enough bandwidth to be able to send one copy
of the session to another server in the case new viewers arrive and it does
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not have the capacity to deliver them. We do not consider the incoming
bandwidth limitation: in the systems we observed, Twitch and YouTube Live,
around two orders of magnitude more viewers than sessions. That means that
the scalability problem is at the level of the outgoing bandwidth, to serve a
high number of viewers. We thus consider that the incoming bandwidth is
always sufficient.

The scales are important in our problem. As we discussed in Chapter 3 the
number of users that these platforms must be able to handle at a given time is
of the order of several hundreds of thousands. Over one million different broad-
casters have been observed on Twitch and more than hundreds of thousands
on YouTube Live. There are always many video sessions (thousands), but also
many viewers (hundreds of thousands spread over the different sessions). And
the distribution of these viewers among the sessions is very heterogeneous: a
few units to thousands and even hundreds of thousands for some of the most
popular sessions.

4.3 Mapping live video sessions on broadcasting
servers

This section describes our contribution. We begin by briefly presenting the
lessons we have learned from the collection of Twitch and YouTube Live user
traces. We study different placement approaches to map video sessions on
delivering servers. We present our approach based on session popularity pre-
diction.

Twitch and YouTube Live are user-generated live video streaming plat-
forms. Twitch is very popular: cumulative over three months, there have
been more than five million sessions, generated by more than a million broad-
casters. Everyday, several hundreds of thousands of viewers are simultaneous
using the services. Furthermore, both platforms offers APIs providing the
ability to periodically collect sessions and users information.

A complete analysis of the collected data is presented in Chapter 3. The
main points, learned from the data, used in this chapter are:

Among video sessions, the popularity is highly heterogeneous. The
biggest part of the traffic being generated by the few most popular
ones, Figure 4.2 presents five different users and the heterogeneity
between their sessions. As previously discussed, we have shown that in
these systems, Twitch and YouTube Live, the Zipf coefficient is big and
implies a high popularity heterogeneity among all sessions.
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Figure 4.2: Broadcaster sessions over the days of the five users with biggest
peak viewers

The global system load varies a lot during time. Remind the band-
width consumption estimated for both systems in Chapter 3 have huge
variation. Both systems have peaks of 1 Tbps, while the valleys of usage
are less than half of this value in Twitch and less than a hundred Gbps
in YouTube Live.

There are always many video sessions. Orders of magnitude higher
than the number of channels offered by a classical cable TV. Specially
on Twitch, which in average has around 6,000 channels online.

Users behavior is predictable. It is possible to observe a night and day
oscillation, but also that a session popularity is highly correlated to
the broadcaster that creates it, and it tends to grow with the session
length. That means that, popularity among broadcasters is highly het-
erogeneous, but the sessions of a same broadcaster have a similar peak
popularity.

4.3.1 Popularity predictability discussion

The popularity prediction in live streaming services is a key aspect for resource
provisioning but it is far from being trivial. We extracted from the data that
the users (the broadcasters) popularity magnitude is predictable but not the
precise popularity (the number of viewers the future sessions will gather).

It is not trivial task since among all the broadcasters there are extremely
different behaviors. To illustrate this, Figure 4.2 shows the popularity evo-
lution over time for five selected users from both services. We select the
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five users that reached the highest peak of viewers over the collected period.
Notice that, between the two services (YouTube Live and Twitch) there is
already an important difference: on Twitch popular broadcasters broadcast
more frequently than on YouTube Live. The popularity differences between
broadcasters of a same service provider are clear. Taking as an example users
2 and 5 on Twitch, user 2 is about five times more popular than user 5.

However, sessions that are made by a same broadcaster have a tendency
to have similar popularity. While taking a closer look at users 2 and 5 of
Twitch, it is easy to identify such trend among each broadcaster’s sessions.
User 2 popularity stays around 250 000 viewers and user 5 around 80 000. To
present such a tendency we calculate the popularity coefficients of variation
presented by Figure 4.3. The coefficient of variation is defined as the ratio of
the standard deviation to the average value. The coefficient of variation among
all sessions is represented by a vertical line, while the coefficient of variation
for sessions of each broadcaster are presented by the cumulative distribution
curve. For simplicity, we only take into account broadcasters with more than
12 sessions, however cumulative distribution curves made with other minimum
numbers of sessions were similar. As previously discussed, the global variation
among all sessions is much higher than the popularity variation for sessions
of a same broadcaster. This result shows the importance to take into account
each broadcasters information to provide better popularity prediction for live
content. However, predicting the precise number of viewers a session will
gather is beyond our study reach, preventing us to be able to provision the
exact amount of needed resources.
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4.3. Mapping live video sessions on broadcasting servers 51

4.3.2 Number of servers versus bandwidth usage trade-
off

In our model, a server can only serve a limited number of viewers depending
on its bandwidth capacity and the bit rate of the served sessions. A naive
approach consists in assigning new sessions to a server until it reaches its
maximum capacity. However, video sessions popularity varies upon time. An
already loaded server can thus acquire new viewers for sessions it already
broadcasts, it may then exceed its capacity. In order to keep offering an
acceptable quality of service, it is necessary to use a secondary server, either
a new one, or one already serving other sessions (but with capacity left). The
original server still has to broadcast the session to the viewers it already served,
but it also has to send it to the secondary server, using a preserved bandwidth
dedicated to this use. This session replication mechanism is illustrated by
Figure 4.4, indicated by the curved arrow from Server S to Server T. Even if
all the viewers can have an acceptable quality of service using this mechanism,
it has a non negligible cost in terms of bandwidth. We can measure this extra
cost by summing the quantity of data transferred across servers for session
replication, in bytes transfered.
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Figure 4.4: Server S has reached its maximal load, a new viewer for session C
implies a transfer on a new server (T).

As the number of viewers for a session varies upon time (either increasing
or decreasing), it is possible that the phenomenon described above leads to
configurations for which many sessions have to be transferred among servers.
In this thesis, we do not take into account the possibility to reconfigure the
mapping: once a viewer is mapped on a server for a given session, it will
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always receive this session from this server. A reconfiguration would consist
in migrating viewers among servers, which will be considered in future works.

The simplest manner to limit the necessity to transfer/replicate sessions
among servers is to over-provision, to provide a margin as illustrated by Fig-
ure 4.5. It allows the server to accept new viewers for the sessions it already
broadcasts, diminishing the risk to replicate a session to a secondary server.
The extra bandwidths provisioned for different sessions on a same server are
merged: at the start of a session, extra bandwidth is provisioned, however,
this extra bandwidth can be used to serve any session broadcasted by the
server. Indeed, the goal is to avoid a much as possible to replicate a session
on a secondary server. If the margin provisioned for a very popular session is
already used and there is unused bandwidth capacity available on the server
(reserved for other sessions margin), it would be a bad idea not to use it for
the very popular session if it needs it (the other sessions on the server may
not need it).

Provisioning extra bandwidth reduces the number of sessions that can be
served by one server, it thus implies to allocate more servers. The trade-off
between the number of servers used and the inter-server bandwidth extra-cost
can be tune through the margin value. Other parameters are also important,
the server choice policy made by the dispatcher, bestfit, firstfit or worstfit, can
have an impact on the number of servers and on the inter-server bandwidth
consumption.
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Figure 4.5: The server S has reached its maximal load (taking margins into

Session A

account). It will not accept to serve a new session, however, a new client for
session A or session B can be served using part of the provisioned margins.
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4.3.3 Taking video sessions popularity into account

The value of the provisioned margin has an important impact on resources
consumption. If it is too low, many sessions have to be served by multiple
servers, consuming a lot of inter-server bandwidth, as argued above. On the
opposite, if it is too high, the system involve many servers using only a small
part of their capacity. Therefore it is important, for each session, to set a
margin close to what is effectively needed.

Our approach, POPS, is based on the use of an estimator. It gives an
estimation of the future popularity of a session which is used to set the mar-
gin. The goal is to have a margin large enough to diminish the risk to have
to transfer the session to another server during popularity peaks, but not too
large to limit resource (server) waste. This is based on the finding that the
popularity of the video sessions broadcasted by a same broadcaster does not
vary a lot. When a known broadcaster (having already at least one previous
uploaded session in the system’s history) uploads a new video session, our ap-
proach aims at provisioning enough resources to support its estimated viewer
peak. We consider four different estimators:

Replication is the core solution. It defines a fixed margin for each session
related to the maximum resource on the server. For example if margin
is defined as 10%, one server can deliver 10 different sessions.

POPS estimates that a video session will have the same popularity as the
previous video session uploaded by the same broadcaster.

A-POPS (for Adaptive POPS) has been designed to take into account broad-
casters having a growing popularity. If the history contains at least two
video sessions from one broadcaster, A-POPS expects the popularity
of this broadcaster to continue to grow exponentially and computes the
viewer peak of the next peak accordingly. If it can not estimate the
growth (e.g., missing historical data), A-POPS adds an arbitrary 10%
margin to the last popularity peak of the same broadcaster.

Oracle is the estimator that could be built if it was possible look in the
future. It knows in advance the number of viewers that a session will
gather, it can provision exactly the amount of resources that will be
needed.

To illustrate each approach decision, we formulate the figurative scenario
given by Table 4.1 and Figure 4.6 with two sessions. In this example we
define the maximal broadcasting capacity (MAX SERV) as 2 Gbps, to be
distributed between the sessions needs. In Table 4.1 we have the history of
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the sessions and the used capacity in the record. The broadcaster responsible
for session B had no previous session. Figure 4.6 shows the reserved capacity
calculation (margin) for each approach. Illustrated with dots is the amount of
reserved capacity that was not used by the sessions. The hatch lines sections
indicates the capacity needed but not reserved by the approaches. Replication
is set to 50% of maximal capacity the server, which yields to 1 Gbps for each
session. POPS assumes that this session popularity will be the same as the
previous one. For session A it sets the margin to 0.4 Gbps. For session B
without history it sets to 10% of server capacity, 0.2 Gbps. A-POPS adds the
growth to the forecasting of session A, setting to 0.4 Gbps with the 10% growth
added. For session B A-POPS acts just like POPS, setting 10% of server
capacity, 0.2 Gbps. For Oracle sessions A and B are set to their respective
peak popularities, 0.8 Gbps and 0.6 Gbps.

Session Previous Popularity Previous Growth Peak Popularity
A 0.4 Gbps 10% 0.8 Gbps
B No previous stream 0.6 Gbps

Table 4.1: Figurative sessions information used on margin calculation exam-
ple.
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Figure 4.6: Figurative example of margin calculation for each approach. Illus-
trated in plain gray color and numerically indicated is the capacity reserved.
The dotted sections are the amount of reserved capacity that were not used
by the sessions. The hatch lines sections indicate the capacity needed but not
reserved by the approaches.

It is important to notice that even with a perfect oracle, this solution does
not give the optimum: it could be possible to serve a short session outside the
peak load period using a portion of the provisioned margin. To do so, it would
be necessary to be able to predict sessions arrival times, sessions lengths and
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the evolution of the number of viewers during the session life. However, while
predicting an approximate popularity peak for a session is doable (because
the popularity linked with the broadcaster of the session), predicting when
the peak of viewers will occur in the session life and for how long remains a
very difficult task and beyond this thesis scope.

4.4 FEvaluation

As discussed in Section 4.3 we have identified some trends on the broadcaster
popularity. Our evaluation starts by showing how much taking the broadcaster
popularity into account is important. To do so, we compared two alternatives
for the broadcasters popularity prediction: (i) a very naive approach using
the global average number of viewers per session (called average), and (ii) an
approach that assumes that the next sessions of the same broadcaster will
have a similar popularity then the previous ones, based on A-POPS (called
history).

Figure 4.7 presents the comparison between the two approaches. We called
viewer error the difference between the prediction and the real values (the real
number of viewers). For the average approach, the prediction values are the
services averages which are 81 for YouTube Live and 21 for Twitch. For the
A-POPS the prediction for one session is calculated based on the previous
sessions from the same broadcaster. We consider that the popularity for one
session will be the same as the previous one times the increase (if any) between
the two previous sessions. We present in the figure the sum of the viewer
errors over the period. The positive values represents the over- provisioning
of both predictions and the negative values the viewers not served. This figure
confirms that a simplistic approach, such as using a global average, does not fit
live popularity prediction and that an broadcaster history can indeed improve
predictions and therefore the delivery provisioning.

Parameters Values
Traces Twitch, YouTube Live
MAX SERV 2 Gbps
Allocation Policy FirstFit, BestFit, WorstFit
Approaches | Replication, POPS, A-POPS, Oracle
Stream Margin 0%,10%,...,50% of MAX SERV

Table 4.2: Simulation parameters
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To further evaluate the approaches we set up several parameters sum-
marized by Table 4.2. We used the traces collected in the Twitch and the
YouTube Live platforms. The maximal broadcasting capacity MAX SERV
of each server has been set to 2 Gbps, which is a conservative value consid-
ering nowadays network cards. This limit is 2 Gbps of outgoing bandwidth
for each server where for each session we consider the bit rate as 2 Mbps. We
calculate the server cost in servers — h: one server used one hour counts for
1 server — h and the network cost in bytes transfered between servers. An
example of metrics calculation is given by Figure 4.8. In this example, there
are two servers running for one hour. There are three sessions being served:
A, B and C. The two servers running for one hour accounts for 2 servers — h.
Session C has 2 Mbps bit rate. The replication of session C from server S to
server T accounts for 900 megabyte (MB) transfered data.

To choose among multiple servers to which one a session will be given, we
have evaluated the three well known allocation policies: FirstFit, BestFit and
WorstFit. Concerning server provisioning, we have evaluated four approaches:
Replication, POPS, A-POPS, and Oracle. Replication consists in the basic
strategy using a fized margin for each session instead of a popularity estimator,
illustrated by Figures 4.4 and 4.5: when the bandwidth needed for a session
(viewers x bit rate) exceeds the fix margin, the server forwards the session
to another server. POPS is our approach in which the margin is estimated
considering that broadcasters have a constant popularity. A-POPS takes into
account broadcasters popularity growth as described in Section 4.3. Finally,
Oracle gives the results POPS could have if the prediction was perfect (for
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Servers running for 1 hour
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\ ‘ / Server count =

Server S Server T
2 Mbps

Replication count =
Data transfered
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00000 @0

Figure 4.8: Example of our evaluation metrics calculation on servers running
for one hour.

each session, we provision exactly the needed resources to face the viewer
highest peak). This is possible because we know in advance the trace used to
fit our simulator.

We vary the fixed margin from 0% to 50% of the total server capacity.
Those fixed margins are used for Replication, POPS, and A-POPS approaches.
In the case of POPS and A-POPS the fix margins are used when no prediction
can be done, in absence of broadcaster history. As our simulation started
with an empty history, a fixed margin is used for the first sessions of each
broadcaster. For the next sessions POPS and A-POPS will estimate the
margin. The traces we use are limited in time (two weeks). More the historical
data covers a long period, more POPS and A-POPS will be able to use an
estimated margin.

We compare all the strategies in Figure 4.9. For each one, we compute the
server cost (servers — h) and the inter-server bandwidth cost (bytes trans-
fered). An horizontal line shows the Oracle strategy cost.

The first result of Figure 4.9 is that the allocation policy (FirstFit, BestFit
or WorstFit) has a great impact. For the Oracle strategy, we only show the
best of the three policies, the WorstFit one, for legibility reasons. The BestFit
policy, as expected, has the lowest server cost. The FirstFit policy has a
similar performance. However, these two strategies lead to many inter-server
transfers.

Another observation is that increasing the fixed margin induces a propor-
tional increase of the number of broadcasting servers used. However, in terms
of bandwidth, above 20% of margin, the gain becomes negligible.

While comparing the results obtained with the different traces (Twitch
and YouTube Live) we see that they are significantly different. This stresses
the importance to work with multiple workloads. We can observe that the
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Figure 4.9: Comparing approaches.

gain bring by POPS in terms of server cost is more important in the Twitch
case. This is due to the fact that Twitch broadcasters tend to produce more
frequent sessions while in the YouTube Live case the inter-broadcast delay of a
given broadcaster is greater. In the case of Twitch, the proportion of sessions
for which the system already knows the broadcaster is thus greater, allowing
POPS to use more often its estimated margin instead of the fixed one.
However, we have detected that some Twitch broadcasters have an in-
creasing popularity. Which means that their consecutive sessions are more
and more popular. POPS does not add an extra margin, thus, it is not tai-
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lored for such an increasing popularity. It just considers that a session will
have the same popularity as the last session from the same broadcaster. This
affects the bandwidth (bytes transfered) for Twitch’s FirstFit and BestFit
policies. A-POPS, which takes into account the popularity growth, provides
the ability to decrease the amount of bandwidth used (specially in the case
of Twitch) while having a cost close to the Oracle one in terms of servers, as
illustrated by Figure 4.9.
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Figure 4.10: Approaches behavior upon time.

To better understand the first results, we studied the evolution of the
system with the four approaches. Figure 4.10 presents the evolution during
time. For each approach we selected their best set of parameters regarding
bandwidth cost (WorstFit allocation with 20% margin). As expected, POPS
and A-POPS efficiency improves along time, as the history becomes bigger,
allowing them to use an estimation instead of a fixed margin like with the
Replication strategy. In a real system, most broadcasters are already known.
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Users broadcasting a video session for the first time are rarely popular. How-
ever, our collected traces start at an arbitrary time in the system’s life.

The benefits of POPS are significant and the results are similar to the
ones obtain with the Oracle strategy on both traces. The Replication strategy
performs poorly on Twitch traces, where we have a large number of broadcast-
ers. The divergence between POPS and the Replication strategy, concerning
number of servers cost, is due to the growing number of sessions coming from
already known broadcasters; which is more important in the Twitch case than
in the YouTube Live one. A-POPS offers slightly better performances com-
pared to POPS, thanks to the fact that it takes into account the broadcasters
popularity growth.

Improvements can still to be done in future works. For instance, it should
be interesting to take into account an estimation of sessions length. A study of
growing popularity curves could also help the placement strategy by allocating
small sessions aside of longer sessions that grows slowly.

4.5 Conclusion

The popularization of both networks and video capture devices has lead to
the birth of user-generated content live streaming platforms. These platforms
have to face a high number of simultaneous video sessions that they have to
collect and distribute to an even higher number of viewers. In this chapter,
we show that taking into account the future popularity of incoming sessions is
important while mapping them to a set of servers. This may help to prevent
session partition across multiple servers, inefficient in terms of inter-server
network cost. We base our study on real data sets collected on the YouTube
Live and the Twitch platforms. We study the number of servers versus inter-
server bandwidth usage trade-off. Our new approach, POPS uses popularity
peak estimation of broadcasters while placing new sessions on broadcasting
servers.

In this work we did not consider the possibility to migrate viewers across
servers. At the end of viewer peaks, it should be interesting to migrate viewers
and sessions in order to be able to shutdown servers. This is part of our ongo-
ing work. Furthermore, we plan to use enhanced mechanisms (e.g. learning)
to try to predict the popularity evolution during the life of a session.
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5.1 Introduction

Major video streaming services have different architectures of their delivery
structure. As discussed in Chapter 2 the usage of multiple data centers, com-
position of multiple CDNs, P2P assisted by CDN and data center assisted by
CDN are some of the architectures chosen by real services. Although there
are multiple options for delivery of the live video content, no formal definition
considering such differences have been made so far. Specific cases of studies,
specially evolving P2P and CDN were explored [Pas12| and we previously
presented a discussion of the differences between the different delivery infras-
tructures. Also we explored a private cloud delivery in Chapter 4. However,
no evaluation comparing different delivery compositions was made, neither
hybrid solutions were explored.

In this chapter our contributions are therefore two folded. Our first con-
tribution is a formal presentation of the multiple delivery problem for live
streaming videos. With this formalization we are able to fully understand
the problem and retrieve optimal solution for any given scenario. The sec-
ond contribution is an analysis with experiments using our traces of Twitch
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and YouTube Live, presented in Chapter 3, which reveals the big gap be-
tween the optimal solution we found with the formalization and four intuitive
algorithms.

In this chapter we first introduce basic definitions and our model for the
hybrid delivery of live streaming videos in Section 5.2. Then, in Section 5.3,
we formalize the multiple delivery problem. Section 5.4 motivates a hybrid
delivery approach. Next, in Section 5.5, we evaluate the model with experi-
ments using real traces of two different live streaming services, and Section 5.6
concludes this chapter.

5.2 Model for Hybrid Delivery

Our objective is to explore the different options for live streaming delivery
systems. We consider, in the case of our hybrid delivery model, that the system
objective is to deliver live streaming video content produced by broadcasters
to a population of viewers.

Regarding the hybrid compositions of the delivery system for live streaming
videos, we study here four common types, CDN-P2P, Multi-CDN, Multi-DC
and DC-CDN, as described in Chapter 2. Therefore, in our model we consider
multiple components, including the Content Provider (CP). The CP initially
absorbs the live streaming video data to be delivered to viewers. The CP
can be assisted by other components to achieve the total distribution required
by the viewers. The assisting components can be either the viewers them-
selves, over a P2P based infrastructure; either DCs, an infrastructure owned
or pre-paid (therefore no extra cost) by the CP but it has limited boundaries
regarding the distribution capacity; either CDNs, an infrastructure that can

be paid accordingly to the consumption of resources but with higher costs
than DCs.

5.3 Theoretical Optimization Problem

To initially understand the problem of delivering live streaming videos, we de-
cided to define it as a costs minimization linear problem. In this formalization
we aim to include the previous cited types of compositions and components.
As we are here interested in the comparison of the different compositions we
defined P2P as well as a component with variable upload capacity, we do not
target specifics of P2P systems. Detailed analysis of specific P2P composi-
tions can be found in [YLZ*09b]. The notations used in the problem are
listed in Table 5.1. The variables S and v are used in the linear problem.
Equation (5.1) defines (,;, which represents a component i delivering video v
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at time ¢. Equation (5.2) defines 7,;, which indicates that a video v starts to
be delivered by component ¢ at time ¢. The linear problem itself is depicted
by equations (5.3a) to (5.3k).

Notations

Quyyit
Pvt

bvt

T
€;

Ci
Si

51)75

te 1,7

Number of users watching video v on component ¢ at time ¢
User Population at time ¢ for video v

Live videos set

Bit rate of video v in kbps at time ¢

Components of the system

1 if component ¢ is P2P, 0 otherwise

P2P efficiency of component i (kbps per user, P2P components only)
Upload capacity of the component i (non-P2P components only)
Cost in $ per kbps of the component i

Cost in $ for setting up a video into component 4

Number of components serving video v at time ¢

Penalty cost in $ for using multiple components for a video
Discrete time index ¢

Total time of the problem

Table 5.1: Notations

1 if video v is served by 7 at time

Bm't = t (51)
0 otherwise
1 if ¢ starts serving video v at

Vit = time ¢ (5.2)

0 otherwise
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The objective function (5.3a) minimizes the overall costs, which is the sum
of costs per kbps delivered, costs of setting up a video into a new component
and the penalty cost for using multiple components to deliver the same video.
The constraint (5.3b) set up the maximum capacity of the component i (Non-
P2P). The constraint (5.3c) set up the maximum capacity of the component 4
(P2P). The constraint (5.3d) set up the user video population. The constraint
(5.3e) set up a video v served by a component i. The constraint (5.3f) set up
a video v started to be served by a component i. The constraint (5.3g) set up
the penalty for v served by multiple components. The constraints (5.3h) to
(5.3k) define the limits of the variables.

5.4 Motivations for Hybrid Delivery

We recall a selection of insights, discussed at Chapter 3, that endorses the
usage of a hybrid DC-CDN delivery model for UGC live streaming systems.
First, a small number of contributors of UGC systems represents the vast ma-
jority of the global popularity of these platforms, typically following the Zipf’s
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Twitch Top YouTube Live Top

days range 10 20 50 10 20 50
1-30 487 1055 2425 557 1065 2923
Tg 31 - 60 518 1032 2426 515 1143 3275
f:i 61 - 90 462 956 2411 586 1197 3091
i 975 2013 4880 1167 2345 6409

1-90 (0.06%) (0.13%) (0.31%) (0.4%) (0.9%) (2.6%)

Table 5.2: Number of channels for top categories and percentage from total
number of channels. Total channels on Twitch = 1,570,844. Total channels
on YouTube Live = 248, 563.

law. Such a distribution simplifies the management of CDN infrastructures.
The provider is also interested in delegating the channels with the highest
resolution to the CDN, which can throttle the limited bandwidth capacity of
DCs. Finally, channels that are stable over time are easier to manage in CDN,
with less configuration of edge-servers.

Most of the traffic comes from a small proportion of broadcasters.

As discussed at our data set analysis, the popularity of live streaming
services follows a Zipf’s law. Few broadcasters have the majority of the global
system popularity and are, consequently, responsible for the most part of
delivery traffic.

We expand our previous analysis by collecting the k£ most popular channels.
We focus on values of &k in {10,20,50}. Please recall that there are around
5,000 simultaneous online channels for Twitch and 400 for YouTube Live.
These top channels represent a small fraction of all online channels. Overall,
for each month, we gathered more than 8,500 different lists (one list every five
minutes) of top-k channels.

We show that a small number of distinct channels appears in these top-
channel lists over the whole months. Table 5.2 shows the data over the months.
On Twitch only 975 channels (0.06% of the total) have appeared in the top-
10 channels in the three months. It means that 975 channels have occupied
the over 85,000 “spots” that were available. The same aspect is detected on
YouTube Live traces. Only 1167 (0.4%) channels have appeared on top-10.

As pointed out in our analysis the live services can reach peaks of outgoing
bandwidth traffic of 1 Tbps. This amount of bandwidth can justify the need
for interfacing the delivery system with a CDN.

We measure the popularity of the top channels and calculate their footprint
on the overall delivery bandwidth traffic. For Twitch we used the available bit
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rates, while for YouTube we considered, as previously discussed, the average
2Mbps. Thus, we extrapolate an approximation of the total bandwidth used
by the delivery systems. This information is depicted in Figure 5.1. First,
the popularity follows Zipf’s law, as expected the popularity of top channels
decreases fast. The gap between top-10 and top-50 channels is relatively small
in respect to the overall traffic. By adding in the top list 40 more channels
we have only 8% more created delivery traffic in average for YouTube Live.
Thus, the peak of global popularity can be exclusively credited to the most
10 (or even less) popular channels. There is a direct correlation between peak
of global system popularity and peak in popular channels.

Top 10 Top 50
1
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Figure 5.1: Bandwidth usage ratio (from the delivery bandwidth for all chan-
nels) on each hour for most 10 and 50 popular channels for the first 7 days of
our traces.

The most popular channels have high resolutions.

The video resolutions collected from the most popular channels are asso-
ciated to high-definition quality (720p and 1080p), as discussed in Chapter 3.
To deliver the video content of higher resolutions more bandwidth is con-
sumed. This stress the gain when usage of hybrid-delivery with data centers
and CDNs. Integrating CDNs to deliver the popular channels will diminish
the burden of such high consuming bandwidth channels from the data center

infrastructure.

The number of simultaneously online popular channels is stable.

Is interesting to have a stable set of channels on each part of the delivery
infrastructure (CDN and data center) in order to avoid extra costs of mi-
gration between parts. We explore the number of popular channels that are
simultaneously online at a moment in time. We measure the number of online
channels out of the overall population of top-k channels, every five minutes.
We present the average number of simultaneous popular channels by day in

Figure 5.2.
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Figure 5.2: Average number of simultaneously online popular channels.

The number of simultaneously online popular channels out of the entire
population of channels is both stable and small. Typically for the set of
around thousand channels that occurred at least once in the top-10 channels,
the average number of online channels is 98 for Twitch and 62 for YouTube
Live. These channels could be specifically assigned by the delivery algorithm
and handled to the CDN. To conclude, we believe that live streaming platforms
can easily interface with a hybrid DC-CDN model because a small and stable
population of channels is responsible of the traffic peaks.

5.5 Evaluation

In the evaluation of our model we perform comparisons of the DC-CDN com-
position. This composition, by definition, tries to minimize costs by using the
advantages of both CDN and DC components.

We implement the formalization model as a linear problem and solved it
with the generic solver IBM ILOG CPLEX [IBM14]|. We perform evaluations
on the first week of our real traces of Twitch and YouTube Live described at
Chapter 3.

To evaluate the scenario we implemented other four simple and intuitive
live strategies that could be used on real time by any live service. The strate-
gies do not consider the usage of multiple components for a given channel at
the same moment in time. They are responsible for deciding if a channel will
be delivery by DC or CDN, exclusively. The four strategies are:

Top-i migration. This strategy consists in delegating to a CDN the 7 most
viewed channels. For example, with ¢ = 1 we choose the most viewed
channel of each five minutes to be delivered by a CDN. In the case of
1 = 2, we select the two most viewed channels of each five minutes.
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The chosen channels will be migrated from one component to the other
accordingly to their popularity. For example, if a channel becomes un-
popular it can be assigned back to DC.

Top-i history. This strategy also consists in delegating to a CDN the ¢ most
viewed channels. Additionally channels that have once been delegated
to CDN in the past will directly be assigned to the CDN independently
of their popularity. In this strategy there is no migration of channels
back from CDN to DC. And only once channels are migrated to CDN.

Threshold-j migration. This strategy transfers to CDN channels that pop-
ularity is more than, or equals to, a defined value j. For example, if
7 = 10,000, a channel that arrives to, or more than, 10,000 simultane-
ous viewers at determined moment in time will be reallocated to CDN.
Migration is allowed from one component to the other accordingly to
their popularity.

Threshold-j history. As the strategy threshold-k, it delegates to CDN the
channels which popularity is more than, or equals to, a defined value j,
and additionally it keeps in CDN all the channels that have ever been
in CDN. In this strategy there is no migration of channels back to the
DC and only once channels are migrated to CDN.

To provide the comparison between the optimal model result and the in-
tuitive strategies we evaluate both total costs of the last day of the chosen
week (January 12, 2014). Since the strategies top-i history and threshold-j
history require the past information of the channels, we used the first days
of the week as training data to the algorithms. As we previously discussed
in this chapter, the most popular channels are stable and within few days of
traces the strategies can accumulate enough information about them.
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Settings
Input YouTube Live Twitch
P, Traces (1st week - January 6, 2014 to January 12, 2014)
byt 2 Mbps
I [Data Center, CDN]
T [0,0]
u; [44 Gbps, 4 Thbps| [652 Gbps, 4 Thps|
Ci [0.0017,0.1]
Si [0.1,0.2]
d 0.1

Table 5.3: Evaluation settings

Table 5.3 shows the settings we used for the evaluation with Twitch and
YouTube Live traces. These values were chosen based on real services pricing
such as Amazon Simple Storage Service (Amazon S3') and Twitch informa-
tion [Hof12]. We performed an evaluation of the strategies and retrieved the
optimal solution with the linear problem. Figure 5.3 shows the optimal result
achieved with CPLEX for the bandwidth distribution between DC and CDN.
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Figure 5.3: Optimal bandwidth usage on hybrid DC-CDN delivery composi-
tion.

On the optimal solution the usage of the DC bandwidth is always maxi-
mized, as expected. We defined the DC bandwidth capacity as the average
utilization of the services, 652 Gbps for Twitch and 44 Gbps for YouTube
Live. The cost for using the DC bandwidth is smaller than for the CDN’s
one. Therefore, deliver strategies should try to maximize the usage of the DC

Thttp://aws.amazon.com/s3/
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Figure 5.4: An example of DC and CDN bandwidth usage for the top-10
strategy over the week. We highlight the averages of total bandwidth usage
for Twitch (652 Gbps) and YouTube Live (44 Gbps).
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Figure 5.5: Comparison of DC bandwidth usage for the top-10 migration and
top-4 history strategies over the week.

but also respect the its maximum capacity. Depicted on Figure 5.4 is one
example of the bandwidth usage on DC and CDN for the top-10 migration
strategy. The usage of bandwidth on of the services is highly heterogeneous.
Peaks of usage are orders of magnitude bigger than the valleys, around 1 time
for Twitch and 4 times for YouTube Live. This simple strategy successfully

attributed the peak of bandwidth usage to CDN, specially on the traces of
YouTube Live.

Comparisons between a strategy (top) with migration and history are pre-
sented by Figure 5.5. More specifically we compare top-10 migration and
top-4 history strategies. The migration of sessions from one component to an-
other can have extra costs and affect the quality of experience of the viewers.
These results indicate that a history strategy can achieve a similar DC band-
width usage in comparison to the migration strategy with a lower selection of
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Figure 5.6: Normalized bandwidth and costs comparison of different channel
assignment strategies for hybrid DC-CDN delivery.

channels, for example i = 10 for migration and j = 4 for history.

At Figure 5.6 we show the normalized costs comparison between strategies
for Twitch and YouTube Live traces. We present the strategies regarding
migration and history with different line and marker types. The different
colors on each side of the axis are related to: on left side is the normalized DC
bandwidth; and on the right side is the normalized total costs. The normalized
bandwidth and costs were calculated by dividing the original values by the
maximum found on the analyzed day (January 12, 2014). We vary top-i and
threshold-j. We picked 7 from 1 to 20 on both traces. For Twitch we selected
j from 750 to 15,000, with steps of 750, totaling 20 different js. For YouTube
Live j ranges from 250 to 5,000, with steps of 250, also totaling 20 numbers.
We indicate the average bandwidth capacity for the services with an horizontal
line.

The results on Figure 5.6 indicate the correlation between DC bandwidth
usage and total costs. The costs are lower when the the load on the DC is big-
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ger. However the dimensioning of the DC must respect two conditions. First,
the DC normally has a fixed capacity (pre-paid cloud or physical constraints)
and the peaks of bandwidth usage should not excess its total capacity. Sec-
ond, the DC dimension should avoid valleys of usage and waste of resource, in
our formulation we do not consider the costs of having part of the DC unused.
Additionally, we have more evidence that costs of migration can be avoided
by the usage of history strategies that take into account the information of
channels past sessions.

5.6 Conclusion

In this chapter we formalized the delivery of live streaming channels. We
presented the results of the formal model as well as the comparison of other
four intuitive strategies. We show that simple strategies can successfully assign
peaks of bandwidth usage to CDN on a hybrid delivery composition. We also
detected that migration costs of sessions between the different components of
the delivery can be avoided using the past channel information.

As future works we aim to explore other comparisons, including other com-
positions of hybrid delivery, for example P2P-CDN and DC-P2P, considered
in our formalization. Also, we obtained different results from both system
traces. Such system particularities could be considered in the future in order
to define better delivery strategies.
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6.1 Introduction

In the recent years, video providers have deployed Adaptive Bit Rate (ABR)
streaming to cope with the heterogeneity of devices and network connections,
for instance mobile phones with 3G /4G network, tablets on WiFi, laptops
and TVs with ADSL and fiber. This technique consists in delivering multiple
video representations and besides being applied to live streams is also adopted
by the online services of TV companies [Weil4d|. However, as discussed at
Chapter 2, the implementation of ABR in live streaming services is limited to
a small number of video channels in dedicated servers. In the case of massive
live streaming platforms such as Twitch, both the large number of concurrent
channels and the use of commodity servers in data centers bring new issues.
Implementing ABR in massive live streaming platforms yields some ben-
efits and costs. The costs mainly come from the fact that for each video
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channel, the raw live video stream should be transcoded into multiple live
streams at different resolutions and bit rates. The consumption of comput-
ing resources needed for the transcoding induces significant costs, especially
with regards to the large number of concurrent video channels. On the other
hand, the benefits include the improvement of the QoE for the end-users and
a reduction of the delivery bandwidth costs.

In this chapter, we study the trade-off between benefits and costs for the
implementation of ABR in live streaming video platforms. In our simulations
we target specifically Twitch because YouTube Live does not provide infor-
mation about sessions bit rate, which is an information needed to evaluate
the implementation of ABR. Also in our live sessions data set no specific in-
formation about the viewer individual information is available. For this ABR
study we have a need for such detailed information, which lead us to explore
a third-party data set presented in this chapter.

Our live sessions data set contains only the total number of viewers watch-
ing a channel. To better understand how viewers could benefit from ABR so-
lutions, and evaluate the gain of transcoding operations, we introduce a more
grained data for the users. We adopted the data set provided by [BSMM14].
This data set is a collection of DASH sessions from thousands of users ge-
ographically distributed. To have a more realistic scenario in the study, an
association of each viewer from the live sessions data set to a given user of this
data set was made. By doing that we were able to evaluate the end-to-end
(from live service provider to final viewers) benefits and trade-offs of ABR
solutions and video transcoding. This data set is used in two studies, this
current chapter and further on the Appendix C.3.

The chapter is organized as following. First we describe the DASH sessions
data set. Next, we highlight some characteristics of Twitch in Section 6.3. We
highlight that one key problem is to decide which video channels should be
broadcasted as usual (i.e. by directly forwarding to the viewers the raw video
received from the broadcaster) and which channels should be delivered with
ABR streaming. We then present two strategies, according to whether the
decision of delivering a given channel by ABR can be taken while this channel
is online (on-the-fly strategies) or only when the channel starts broadcasting
(at-the-startup strategies). In Section 6.4 we compare both strategies in a
realistic scenario based on our live sessions traces from Twitch, detailed at
Chapter 3, and the DASH sessions data set for the viewers population.
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6.2 DASH Sessions Data Set

The viewers bandwidth distribution is a fundamental information to create
realistic scenarios for the ABR problems we target in our work. A data set
that captures the characteristics of a real population of viewers, and in par-
ticular its heterogeneity, was needed. The APIs of the service providers does
not provide any individual information about the viewers. In order to re-
trieve this information we analyzed the public available data set provided by
[BSMM14]. This data set contains thirty seconds DASH sessions information,
with chunks of two seconds, of thousands of users geographically distributed.
It was collected by a DASH module built on top of Neubot. Neubot is a re-
search project based on an open source program that runs in the background
on thousands of Internet clients and periodically performs tests, for example
the one in the DASH module. Figure 6.1 shows examples of three sessions of
different users.
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Figure 6.1: Example of three sessions from the viewers data set. The figure on
the left represents the amount of data received for each chunk. In the middle
figure, the time to download each chunk is illustrated. The right figure shows
the download rate of users, calculated by the amount of data received (left)
divided by the download time (middle).

Different metrics are available in the data set, for example: server time
stamp; program version; client Operating System (OS);, we selected the ones
described by Table 6.1a.

In this data set a unique user can connect from different places, for ex-
ample at work and at home. Therefore, this user will have very inconsistent
bandwidth rates among its sessions. To avoid such inconsistency, we decided
to consider a user as its identification and IP address combined. In this case,
for our simulations, a user accessing from home and from work will be con-
sidered as two different users. The amount of users found in the data set is
described at Table 6.1b.
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Name Description ) Total Number
client _uuid user identification Selection of Viewers
client real address user IP address )
client iteration chunk number inside a session unique IDs 1911
client received data received in bytes .unlque L 22 330
client:elapsed time in seconds to download the chunk unique TDs+1Ps 23 028

(a) Used fields (b) Unique users

Table 6.1: Summary of information and amount of unique viewers provided
by viewers data set

Another consistency filter that we considered was regarding the DASH
adaption impact on the user’s downloading rates. As we can see in Figure 6.1,
the initial chunks of each session are far too small to provide an accurate
download rate. Accordingly, to consider the stable bandwidth and to avoid
any impact of the data set DASH adaption algorithm we assume as noise the
initial five chunks of each session by excluding these points in our simulations.
Our simulation sessions have 10 chunks each, totaling 20 seconds sessions.

Each one of the 23 028 users have a different amount of sessions in the data
set. The 5 plot in the Figure 6.2 presents the users CDF for the number
of sessions found in the data set. Is worth to note that, more than 30% of
unique users (7 221) have ten or more sessions.

As input for our simulations we decided to consider a population of 500
users. We selected the users with most high number of sessions and with 75
percentile of the download rate lower or equal to 8 Mbps (from the entire
number of users, 19 359 attend this condition). Figure 6.2 illustrates different
metrics over the download rate (bandwidth) of the 500 users we selected and
the overall collection of users. From this collection of 500 users we collected
100 sessions each and thus obtain 500,000 samples of realistic download rates.

Scripts, made in Python and R, for parsing and extracting statistical in-
formation from this data set are public available.!

6.3 Which Channels to Transcode

We recall in the following four main characteristics from the Twitch data set
presented in Chapter 3 that are relevant for this chapter.

Delivery Needs. We evaluate the overall bandwidth needed to deliver video
channels to the viewers (we do not take into account the bandwidth required

'https://github.com/karinepires/neubot-dash-parser
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Figure 6.2: Different statistical metrics of all and selected users

from the broadcasters to Twitch data center). Twitch is a regular Over-The-
Top (OTT) service with unicast transmission to viewers, so we sum up the
bit rates of each session multiplied by the number of viewers for this session.
We presented in Chapter 3 that the daily bandwidth peak is often more than
1.5 Thps with a peak at more than 2 Tbhps. Moreover, the delivered traffic is
sustained with minimum daily bandwidth always above 400 Mbps.

Computing Needs. Another infrastructure cost is the data center, which,
among others, processes the incoming raw video from broadcasters and pre-
pares the streams to be delivered. We consider the average number of con-
current online channels as a metric for estimating the data center dimen-
sions. Between 4,000 and 8,000 concurrent sessions always require data center
processing in Twitch. Such sustained incoming traffic requires a computing
infrastructure that, to our knowledge, is unique in the area of live streaming.

Channel Popularity. We confirmed in Chapter 3 that Twitch popularity
follows a Zipf law. What is important here is the high value of the Zipf
coefficient a for Twitch when compared to other services. Although « is
often lower than 1 in other UGC platforms, it is always larger than 1.3 over
the three months, and even sometimes above 1.5. Such a large a coefficient
characterizes both a sharp difference between the most popular channels and
the others, and a long tail of unpopular channels.

Raw Videos. The raw live stream is the video encoded at the broadcaster
side and transmitted to the data center of Twitch. This video can be en-
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coded in various resolutions and bit rates. Our data set analysis confirms the
compromise between quality and popularity of the sessions. As described at
Chapter 3, sessions with videos at a resolution lesser than 720p represent 40%
of the total amount of sessions but they attract only 8% of the total viewers.
While considering the bit rates found in Twitch data set, the ones of 720p and
1080p channels are significantly higher than for 480p channels. For example,
only half of the video sessions at both 720p and 1080p have a bit rate lower
than 2Mbps although such a bit rate is larger than 90% of the bit rates of
480p channels.

From these characteristics we extract three main ideas. First ABR stream-
ing is required to cope with high delivery cost and with the inaccessibility of
the most popular channels for a fraction of the population. Second, applying
ABR to all channels requires a significant amount of computing resources be-
cause the number of concurrent sessions is high. Third, all channels should
not be treated equally since only a few ones are popular. In the following,
we introduce the problem of deciding the subset of channels to which ABR
should apply. We then present two strategies.

6.3.1 Trade-off and Problem Definition

We introduced in Chapter 2 two types of process when the raw live video of
an online channel is received by live streaming services. First the traditional
process that consists of preparing the raw live stream and then delivering
it directly to the viewers requesting it. Second the transcoding process that
consists of transcoding the raw live stream into multiple live video streams
and of using ABR streaming to deliver the sessions to the viewers.

We envision that only a fraction of online channels should use ABR stream-
ing: the popular channels with high bit rate and resolution. For a given
channel, ABR streaming generates two main benefits.

First, it improves the QoE for all the viewers having a downloading rate
inferior to the raw video bit rate. We call them the degraded viewers. Without
ABR, the degraded viewers experience video buffering at a frequency that
depends on the difference between their downloading rate and video bit rate.
Such a bad QoE causes churn and degrades the reputation of the platform.

Second, ABR streaming reduces the overall needed bandwidth for serving
a population. Without ABR, Twitch should deliver the raw live video to all
viewers (including the degraded viewers since the delivery of the overall video
session is delayed in time but the overall amount of data to be transferred
is roughly the same). On the contrary with ABR, the degraded viewers are
served with a video stream at a lower bit rate than the raw live stream.

The problem is to decide which process should apply for every online chan-
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nel at a given time with respect to the trade-off between extra-cost induced
from the transcoding process and the gains. To make it harder, switching from
one process to another while the channel is online is not trivial. A possible
implementation is to use ABR streaming technologies for both decisions. The
representation set of a channel in the transcoded process contains the multiple
live video streams while it contains only the raw live stream for channels in the
traditional process. Thus, switching from one process to another on-the-fly
requires a revision of the ABR manifest with the new set of video representa-
tions and the notification of all users about the manifest revision. Both actions
are not always possible with respect to the ABR streaming technology.

Due to this uncertainty, we distinguish:

On-the-fly strategies, where the decision of whether an online channel
should be transcoded or not can be taken at anytime during a session.
For example, the session 1 in Figure 6.3 starts at time ¢; and ends at
). An on-the-fly strategy can decide to transcode or not the channel at
anytime between t; and ¢].

viewers
AN
transcoding decision
i time
th t]
B3 transcoding EH traditional

Figure 6.3: On-the-fly strategy

At-startup strategies, where the decision of whether an online channel
should be transcoded or not can be taken only when the session starts.
An example is depicted by Figure 6.4. The decision at start time ¢,
applies for the whole session 1.
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viewers
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transcoding decision

> time

t #
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Figure 6.4: At-startup strategy

In the following, we present a simple implementation for each strategy
type. One of our goals is to keep the strategy as simple as possible for a fast
implementation.

6.3.2 An On-the-Fly Strategy

An on-the-fly strategy is supposed to perform well since it is reactive to any
event, including unexpected events like flash crowd on a video channel or
abrupt disinterest on another. That is, it is possible to build a strategy that
is close to the optimal (with respect to the ability of the platform provider
to quantify the QoE of degraded viewers). Our goal is not to define the best
strategy but rather to highlight the performances of on-the-fly strategies in
general. We thus design a simple strategy as follows.

First, we filter the broadcasters so that only broadcasters with a raw live
video at resolutions 480p, 720p, and 1080p are considered as candidates for
ABR streaming. Then, we define a value j which is the threshold on the
number of viewers. Every five minutes, all candidate broadcasters with more
than j viewers are selected to be transcoded. We call this strategy threshold-j.

6.3.3 An At-Startup Strategy

An at-startup strategy requires to foresee the popularity of a channel in the
near future. Predicting video popularity has become an important research
topic with connection to massive data treatment, artificial intelligence, and
social network observations. However, with the same motivations as for the
on-the-fly strategy, we rather stay simple in this work and left for future works
the design of sophisticated efficient strategies.



6.4. Evaluation 81

To predict the popularity of channels, we only use the history. The strategy
comes from the observation that a channel that has been popular in the past
will be popular in the future. To estimate how popular was a past session
with respect to the context at that time, we focus on a simple measure: the
top-k channels, i.e. the k£ most popular channels. Every five minutes, we
collected the k£ most popular channels. Overall, for each month, we gathered
more than 8,500 different sets of top-k channels. We analyzed these sets and
observed that the number of distinct broadcasters is low. Typically for top-10
sets, around 500 broadcasters occupy the over 85,000 “spots” that are available
every month.

We derive from this observation an at-startup strategy, which we call top-
k. On a periodic basis, we get the k most popular broadcasters and we insert
them to a list of candidate broadcasters. When a new session starts, the
decision to apply the transcoding process to the broadcaster is taken if the
broadcaster is in the list of candidates and if the raw live video has a resolution
of 480p, 720p, or 1080p. Notice that we do not implement any mechanism
for removing broadcasters from the candidate list after a while, so this list
continuously inflates with time. We expect to implement such a mechanism
in future works.

6.4 Evaluation

We now evaluate the performances of both threshold-j and top-k strategies
and also show the feasibility of the implementation of ABR for Twitch.

6.4.1 Settings

We use two real data sets for the setting of our evaluation. The first data set is
our Twitch data set as described in Chapter 3. One time unit is five minutes,
as the time needed to refresh the API at Twitch. We use the information
of sessions (video bit rate, video resolution) and broadcasters (number of
viewers). Simulations were done with three months of data and the figures
present results of the last month.

Population Download Rate Settings. The second data set comes
from [BSMM14], which was previously presented. Since the Twitch API does
not provide any information about the viewers (neither their geographic po-
sitions, nor the devices and the network connections), we need real data to
set the download rates for the population of viewers. The data set presented
in [BSMM14]| gives multiple measurements over a large number of 30s-long
DASH sessions from thousands of geographically distributed IP addresses.
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From their measurements, we infer the download rate of each IP address for
every chunk of the session and thus obtain 500,000 samples of realistic down-
load rates. After filtering this set to remove abnormal rates, we randomly
associate one download rate for every viewer.

Multi Bitrate Video Transcoding. When a session is selected for a deliv-
ery by ABR streaming, the raw video is transcoded into multiple live streams.
We consider the creation of one stream per resolution, only in smaller resolu-
tions than the one of the raw video. The bit rate of each live stream depends
on the bit rate of the raw video, as given in Table 6.2. For example, let the
raw video have a bit rate of 2,000 kbps and resolution 720p. The transcoded
streams have a bit rate of 1,400 kbps for the 480p stream, of 1,000 kbps for
the 360p, and of 600 kbps for the 224p.

input resolution
480p 720p 1080p

224p | 0.5xn 03xn 025xn

output 360p | 0.7xn 05xn 03xn
ros. 480p n 0.7xn 05xn
720p n 0.7xn

1080p n

Table 6.2: Bitrate of the streams transcoded from a raw video stream having
bit rate n kbps

Strategies. We evaluate the top-k and threshold-j strategies against two
naive and extreme strategies: the none strategy with no ABR implementation,
and an all strategy where all online channels are delivered by ABR. The former
represents the current state of live game streaming platforms while the latter
is an upper-bound of an implementation of ABR streaming. For top-k and
threshold-j, we set k = 50 and 7 = 100 by default.
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6.4.2 FEvaluations
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Figure 6.5: Bandwidth needed for streams delivery

In our evaluation we adopt three metrics (bandwidth, viewers QoE and com-
puting needs) that highlight the trade-off related to the implementation of
ABR on live streaming services. In Figure 6.5, we measure the average daily
bandwidth that is needed to deliver the video channels. The first observation
is that implementing ABR generates a non-negligible reduction of the delivery.
The aggregation of bandwidth savings on every degraded viewers can nearly
halve the bandwidth between both extremes none and all strategies. The
top and threshold strategies are close to the all strategy, which validates our
strategy of implementing ABR streaming only for the most popular channels.
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Figure 6.6: Ratio of addressed degraded viewers

In Figure 6.6, we measure the gain in QoE for the viewers. As this being
our initial study, we focus on only one simple metric, which is the ratio of
degraded viewers that can find in ABR streaming a video stream with a bit
rate lower than their download rate. In the next chapter we introduce a
more precise metric. We observe in the data set that, even with ABR, some
degraded viewers have still a download rate lesser than the bit rate of the 224p
stream. What we measure here is the ratio of the “addressable” degraded
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viewers. Again the all strategy gives an upper-bound, and both top and
threshold strategies allow most of these viewers to enjoy a video stream that
fits with their network connection.
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Figure 6.7: Transcoding hours

Finally in Figure 6.7, we measure the computing needs with a metric
in transcoding hours inspired from the current practice in commercial cloud
transcoding offers (e.g. Zencoder?). Both input and output resolutions are
used to determine the amount of transcoding hours. For example, a given
stream with 1 hour length and resolution 480p transcoded to 360p and 224p
is counted as 3 hours of transcoding (1 input + 2 output). High-definition
resolutions (720p and 1080p) double the transcoding hours. In Figure 6.7, the
main observation is that we have to use a log scale on the y-axis to keep it
readable. It means that the transcoding hours of the all strategy is one order
of magnitude larger than for the top and threshold strategies.
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Figure 6.8: Estimation of the total infrastructure costs

To summarize our results in a more practical way, we estimate the overall
infrastructure cost for the four strategies. We use the publicly available prizes

’http://zencoder. com/
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of Zencoder and Amazon CloudFront? to estimate the cost of the transcoding
hours and the delivered bandwidth, respectively. We present in Figure 6.8 the
synthesis. We see on the all strategy that the gain in delivery are unfortu-
nately counter-balanced by the costs in transcoding. Both top and threshold
strategies find a better trade-offs with a significant reduction of delivery cost
at a negligible transcoding cost. Finally, we show that the performance gap
between top and threshold strategies does not necessarily justify the implemen-
tation of on-the-fly strategies. Sophisticated at-startup strategies are expected
to even reduce the gap.

6.4.3 Playing with Strategies Parameters

We evaluate the impact of parameters k£ and j for the top and threshold strate-
gies respectively. In Figure 6.9 we represent the total estimation costs for
different values of k£ and j. What is interesting here is that these parame-
ters allow Twitch to adjust the trade-off between delivery and transcoding
according to any external constraint (e.g. price variation, data center load
and maintenance operation).
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Figure 6.9: Estimation of the total infrastructure costs for different values of
k and j in top and threshold strategies

6.5 Conclusion

This chapter presents our work in the more general context of implementing
interactive multimedia services at a massive scale. We introduce an infras-
tructure management problem and we reveal that some simple strategies can

3http://aws.amazon.com/cloudfront/
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significantly cut the overall infrastructure costs while increasing the QoE of
end-users.

Many future works can derive from this study. The first derivation is
presented in Appendix C.3. In this appendix we evaluate a formalization of
the transcoding problem with our live sessions data set.

Other works like more efficient strategies can be designed. We present here
simple strategies but more sophisticated strategies are expected to yield bet-
ter performances, especially for at-startup strategies. A more comprehensive
analysis of the levers that make a session become popular as well as recent
statistical approaches to deal with popularity forecasting represent appealing
research. As well, the integration in practical platforms and real implemen-
tation also bring additional difficulties, from a technical perspective with, for
example, the integration of standard, but also from a business perspective.
Typically, Twitch has recently started offering ABR for some “partner” pre-
mium broadcasters.
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The popularization of devices capable of capturing videos, the continuing
efforts to increase network quality and the success of the live streaming ser-
vices have lead these services to be responsible for an important share of the
Internet traffic. In this thesis we have explored approaches to improve live
video streaming services. Our objectives are to diminish resource waste, such
as server computation and network bandwidth, and to improve the quality
experienced by users using these services.

Live streaming services stresses the actual Internet infrastructure. Twitch
had to increase the delay in their platform and limit the adaptive bit rate
delivery to partners. YouTube Live restricted the service access to a selection
of users for 2 years. These decisions limiting the services emphasize the de-
mand for improvements. In our work we focus on two main challenges raised
specifically by the massive amount of content produce by users the delivery
and transcoding of live streaming systems.
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7.1 Synthesis

We explored and developed solutions for the delivery of the massive content.
One of the challenges is the huge variation in the total number of viewers and
the great heterogeneity among streams popularity, which generally implies
over-provisioning and consequently lead to an important resource waste. In
this thesis, we show that there is a trade-off between the number of servers in-
volved to broadcast the streams and the bandwidth usage among the servers.
We also stress the importance to predict streams popularity in order to effi-
ciently place them on the servers. We propose three solutions that address
different aspects concerning the delivery of live sessions.

We target the difficulties concerning transcoding of live streams. The
transcoding operations over streams are computational intensive and are key
operations on adaptive bit rate streaming. We show that adaptive bit rate
streaming is able to reduce the delivery bandwidth cost and to increase viewer
quality of experience at the cost of computing resources for transcoding pur-
poses. To address the trade-off between benefits and costs, we formulate two
management problems. The main contributions of this thesis are: (i) live
streaming sessions data set; (ii) approaches for cloud delivery; (iii) hybrid
delivery solutions; (iv) analysis of ABR on live streaming; (v) data set appli-
cation on CDN delivery and cloud transcoding.

7.1.1 Live Sessions Data Set

First, we created a live streaming sessions data set. To study the aspects we
target of live streaming systems we need to characterize them and evaluate the
proposed solutions with relevant input traces. Therefore our first contribution
is a data set and its analysis. The data set contains three months traces of two
UGC live streaming services. We made it freely available for the community.
It has millions of live sessions and hundreds of thousands broadcasters. To
the best of our knowledge this data set of Twitch and YouTube Live is the
first attempt to understand the behavior of UGC live streaming videos sys-
tems with comparison of two largely used systems. We bring with our study
useful insights on what can be expected of a massive UGC live streaming
video service. We show that 1 Thps of bandwidth is commonly achieved in
order to deliver the contents of such system. We also point out differences
between Twitch and YouTube Live, especially regarding the broadcaster be-
havior. Broadcasters on Twitch are clearly more engaged on producing live
streams than the ones found in YouTube Live. We detected many character-
istics that indicates the maturity of Twitch environment. Compared to VoD
service, live streaming video services broadcasters are more active. Aside from
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other systems, the popularity found on live systems is highly heterogeneous.
We then use the findings of our analysis to conceive our solutions and the real
data set information as input to our simulations, which provides a close to
real simulation scenario. By making the data set public available we hope to
enrich the community and help to improve live streaming systems.

7.1.2 Cloud Delivery

This solution is designed for platforms such as clouds or distributed virtual
machines and uses popularity predictions to dynamically provision servers,
and map live sessions on the servers. The user-generated content live stream-
ing platforms have to face a high number of simultaneous video sessions that
they have to collect and distribute to an even higher number of viewers. We
show that taking into account an estimation of the future popularity of incom-
ing sessions is important while mapping them to a set of servers. This may
help to prevent session partition across multiple servers, inefficient in terms
of inter-server network cost. We base our study on real data sets collected
on the YouTube Live and the Twitch platforms. We study the number of
servers versus inter-server bandwidth usage trade-off. Our approach, POPS,
uses popularity peak estimation of broadcasters while placing new sessions on
broadcasting servers.

7.1.3 Hybrid Delivery

This solution is assisted delivery involving proprietary servers and Content
Delivery Network (CDN). We first formalized the delivery of live streaming
channels. We have then presented the results of the formal model as well as
the comparison of this theoretical optimal with other four intuitive strategies.
The results of our study reveal a real need for exploring and designing smart
strategies for the delivery of live streaming videos.

7.1.4 DASH on Live Streaming

We design two strategies to decide which online channels should be delivered
by adaptive bit rate streaming. We focus in the more general context of imple-
menting interactive multimedia services at a massive scale. We introduce an
infrastructure management problem and we reveal that some simple strategies
can significantly cut the overall infrastructure costs while increasing the QoE
of end-users.
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7.1.5 Data Set Applications

One of our presented contributions is a live session data set. This data set
opens opportunities to introduce real traces on simulations regarding live
streaming systems. In Appendix C we describe two collaborative works, which
we applied the live session data set.

First, we discuss the economics aspects related to CDN based delivery.
We propose a model to analyze of the policy that a profit-driven CDN should
implement when delivering live video content. This model is especially sig-
nificant with regard to the multiple recent debates about network neutrality.
To the best of our knowledge, this is the first attempt to model CDN from an
economic standpoint with the ambition to understand the impact of CDN on
the content delivery market.

Second, we present an integer linear program to maximize the average user
quality of experience and a heuristic algorithm that can scale to large number
of videos and users. We study the management of new live adaptive stream-
ing services in the cloud from the point of view of streaming providers using
cloud computing platforms. All the simulations we conducted make use of real
data from three data sets covering all the actors in the system. The study is
focused on the interactions between the optimal video encoding parameters,
the available CPU resources and the QoE perceived by the end-viewers. We
use an Integer Linear Program (ILP) to model this system and we compare
its optimal solution to current industry-standard solutions, highlighting the
gap between the two. Due to the ILP computational limitations, we propose a
practical algorithm to solve problems of real size, thanks to key insights gath-
ered from the optimal solution. This algorithm finds representations beating
the industry-standard approaches in terms of the trade-off between viewers
QoE and CPU resources needed. Furthermore, it uses an almost-constant
amount of computing resources even in the presence of a time varying de-
mand.

7.1.6 Additional Contributions

Additionally to the main contributions, presented in this thesis and the ap-
pendix, we have also collaborated with minor contributions to other two re-
lated challenges to video streaming alongside this thesis studies.

We utilized the DASH session data set, presented in this thesis, to eval-
uate the proposed solution performance in [TAPT14|. First an integer linear
program that maximizes users’ average satisfaction is formulated, taking into
account network dynamics, type of video content, and user population char-
acteristics. The solution of the optimization is a set of encoding parameters
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corresponding to the representations set that maximizes user satisfaction. We
evaluate this solution by simulating multiple adaptive streaming sessions char-
acterized by realistic network statistics, the DASH session data set, showing
that the proposed solution outperforms commonly used vendor recommenda-
tions, in terms of user satisfaction but also in terms of fairness and outage
probability. The simulation results show that video content information as
well as network constraints and users’ statistics play a crucial role in selecting
proper encoding parameters to provide fairness among users and to reduce
network resource usage. Finally a few theoretical guidelines are proposed and
can be used, in realistic settings, to choose the encoding parameters based on
the user characteristics, the network capacity and the type of video content.

We participated to a work concerning the enforcement of average bi-
trate through CDN Service Level Agreement (SLA) contracts in [SBP*15]
to achieve better user’s quality of experience. In this work, WiseReplica is
introduce, an adaptive replication scheme for peer-assisted VoD systems that
enforces the average bitrate for Internet videos. Using an accurate machine-
learned ranking, WiseReplica saves storage and bandwidth from the vast ma-
jority of non-popular contents for the most watched videos. Simulations using
YouTube traces suggest that this approach meets users expectations efficiently.
Compared to caching, WiseReplica reduces the required replication degree for
the most-watched videos by two orders of magnitude, and under heavy load,
it increases the average bitrate by roughly 85%.

7.2 Perspectives

We describe three main research efforts that should, in our opinion, advance
the current state of our proposed solutions for live streaming systems: (i)
model extension, (ii) statistical and learning mechanisms, and (iii) middleware
integration.

7.2.1 Model Extension

Several models we presented are simple representations of our studied target
scenario. We believe that these studies open new perspectives and conse-
quently the need of extensions for the presented models.

For example, our hybrid delivery model, presented in Chapter 5, consid-
ers that all viewers have enough bandwidth to download the video content,
neglecting its heterogeneity. We could extend the model and include the het-
erogeneity by using the information provided by DASH sessions data set, as
we applied on the model in [APSB15].
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7.2.2 Statistical and Learning Mechanisms

The prediction of session popularity is an important aspect in the presented
solutions for both delivery (Chapters 4 and 5) and transcoding (Chapter 6).
Therefore, enhanced mechanisms could be used to try to predict the popularity
evolution before and during the life of a session. More specifically, we could
consider two mechanisms: more sophisticate statistical models and machine
learning.

Statistical models, such as time series analysis, have been implemented on
VoD systems in order to forecast the videos popularity. For example, ARIMA
and GARCH time series techniques was studied by [NXLZ12] in order to
save bandwidth and storage costs on a VoD system running on the cloud.
We believe that more sophisticated strategies are expected to yield better
performances, especially for the transcoding at-startup strategies presented
at Chapter 6.

Different types of machine learning mechanisms exists. In [BSAT13| they
show that a delivery infrastructure that uses their machine learning model to
choose CDN and bitrates can achieve more than 20% improvement in overall
user quality of experience compared to naive approach. We believe that these
mechanisms could improve our results as well, and we discuss more specifically
the application of classification and clustering.

Classification learning involves a machine learning from a set of pre-
classified (also called pre-labeled) examples, from which it builds a set of
classification rules (a model) to classify unseen examples. In our solutions we
could classify sessions and broadcasters into popular or not. With this dis-
tinction we could for example, in the hybrid delivery in Chapter 5, attribute
to the CDN all sessions labeled popular.

Clustering is the grouping of instances that have similar characteristics
into clusters, without any prior guidance. Similarly to the classification, for
our delivery solutions we would aim to the construction of two groups: popular
and unpopular. For the solutions of transcoding we could profit from different
popular groups.

7.2.3 Middleware Integration

The solutions conceived in this thesis could be integrated to real systems.
Such an integration can be performed by the implementation of middleware.
With this implementation we could perform realistic experiments on test beds
such as PlanetLab!, moreover we would provide the community the means
to integrate our proposed solutions to their systems. Also, we could benefit

Thttps: //www.planet-lab.org/
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from the real implementation by validating our simulation models, which have
typically considered simplified scenarios.

For example, our strategies proposed to solve the transcoding at Chapter 6
neglect the assignment of transcoding jobs to machines. Would be interesting
to make the integration of the Virtual Machine (VM) assignment policy into
middleware such as OpenStack.?

Another aspect that we could explore with the middleware integration is
the impact of VM live migration on the cloud. OpenStack offers three types
of live migration: shared storage-based live migration (both VMs have access
to shared storage), block live migration (no shared storage is required) and
volume-backed live migration (VMs are backed up by hard disks rather than
RAM and no shared storage is required).

All these options of live migration provide extreme versatility of manage-
ment, although it comes at a price of degraded service performance during
migration. Such degradation of quality of service when performing a live mi-
gration in the cloud has been studied on the scenario of web content delivery
[BKR10]. We could improve our work on Chapter 4 by similarly evaluating
the live migration at the end of viewer peaks, reducing the total costs. One
important difference regarding our scenario is that, contrary to static web
content, live video delivery is highly impacted by the migration downtime.

Zhttp:/ /www.openstack.org/
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Algorithms in Pseudo-code

In this section we give the pseudo-code of all the elements of the transcoding
heuristic algorithm proposed in Chapter C.3.

Algorithm 1: Main routine

Data: channelsSet: Channels metadata (e.g. number of viewers, id) sorted by decreasing
channel popularity.
Data: totalCPU: total CPU Budget in GHz.
representations < emptySet()
foreach channel € channelsSet do
cpu +— channel.viewersRatio x total C PU
cpu < min(cpu, MAX CPU)
w_video < getVideoTypeW eight(channel.video)
w_resol < getResolutionW eight(channel.resolution)
cpu < maz(cpu * (1 +w_video+ w_resol),0)
representations.append(findReps(channel, cpu))
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return representations

Algorithm 2: findReps Find the channels representations set meeting a
budget

Data: channel: Channel metadata (e.g. number of viewers, id).
Data: CPU: calculated channel CPU Budget in GHz.

1 representations < emptySet()
2 freeCPU + CPU
3 repeat
4 newRep < false
5 foreach resolution < channel.resolution € resolutionsSet do
6 foreach bitrate € bitratesSet[resolution] do
7 thisRep < (resolution, bitrate)
8 if bitrate < channel.bitrate and thisRep ¢ representations then
9 thisRep.cpu < getC PU (thisRep, channel)
10 if thisRep.cpu < freeCPU then
11 reps <— representations + thisRep
12 thisRep.qoe + getQoE(reps, channel)
13 if not newRep or newRep.qoe < thisRep.qoe then
14 | mnewRep < thisRep
15 if newRep then
16 representations.append(new Rep)
17 freeCPU— = newRep.cpu

18 until not newRep
19 return representations
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Algorithm 3: getQoE Obtain an estimation of Peak Signal-to-Noise Ratio
(PSNR) for a given representation set of one channel

Data: channel: Channel metadata (e.g. number of viewers, id).
Data: repSet: Set of representations for a given channel.
total PSNR < 0
foreach rep € repSet do
ranges < get ResolutionsRanges(rep)
foreach viewersRange € ranges do
v_ratio < getViewersRatio(viewersRange)
v_resol < getViewersResolution(viewersRange)
partial PSNR < calcPSNR(rep, channel,v_resol)
total PSNR+ = v_ratio * partial PSN R

0N O Gk WwN

9 return total PSNR
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B.1 Introduction

Nous sommes actuellement témoins de 1’émergence de deux phénoménes : la
popularisation des appareils capable de capturer des vidéos, et 1'accroissement
de la qualité des réseaux engendrant un nombre toujours croissant
d’utilisateurs de I'Internet. En effet, de nos jours, chaque ordinateur portable
ou méme téléphone posséde une caméra. Les appareils en résolution haute déf-
inition sont devenus accessibles, incluant leur version mobile. Cela implique
qu'une large portion de la population a le moyen nécessaire pour faire de la
vidéo directe.
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En ce qui concerne les réseaux, nous avons vu dans ces derniéres années
un afflux d’utilisateurs et une meilleure couverture du réseau. Parallélement,
la qualité du réseau en termes de latence et bande passante a été améliorée
de maniére significative, et cette amélioration continue, en particulier avec
larrivée des réseaux a trés haut débit comme la fibre optique. De plus, les frais
de connections sont devenus abordables, et la vaste majorité des internautes
possédent un accés illimité. La couverture du réseau mobile est vaste et de
bonne qualité. La vitesse de progression de la couverture du réseau mobile
(3G/4G) suggere que la plus grande partie de la population aura un accés
quasi permanent a un réseau de qualité a un prix raisonnable.

L’accroissement de la qualité du réseau a permis aux utilisateurs de con-
sommer plus de contenu vidéo par internet. Netflix, un service de diffusion
VoD (vidéo a la demande), dépasse 50 millions d’abonnés mensuels au sec-
ond quart de I'année 2014 avec un revenu de 1.34 millions de dollars [Shal4].
Twitch, un service de distribution de direct vidéo en ligne, est devenu la qua-
trieme source génératrice de bande passante internet aux Etats Unis en Février
2014 et a été racheté par Amazon la méme année pour prés d’un billion de dol-
lars [FW14]. En 2013 les les contenus vidéos représentaient plus de la moitié
du trafic internet [Incl4].

La combinaison de ces phénoménes et la tendance des utilisateurs a ex-
poser des portions de leur vie a conduit a cette augmentation de popularité
des services de direct vidéo en ligne. Dans cette thése nous étudions de nom-
breux challenges crées par ces systémes. Les services de diffusion de vidéos
en direct sont décrits dans la section suivante. Ensuite, nous présentons nos
contributions dans ce domaine. Enfin, nous conclurons ce résumé.

B.2 Service de diffusion directe de vidéo en
ligne

De nombreux acteurs sont impliqués dans les UGC (contenus générés par
I'utilisateur) diffusés en direct. Cet environnement riche est illustré par la
Figure B.1. Les services de diffusion en direct sont constitués non seulement
d’utilisateurs qui consomment et produisent du contenu, mais également des
fournisseurs de services et leurs procédés de conversion/livraison du contenu
a grandes échelles. Nous décrivons ci-dessous les aspects importants des sys-
témes de diffusion en directe.
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diffuseurs

spectateurs

Figure B.1: L’architecture simplifi¢ de streaming en direct

User-Generated Content (UGC) Les UGC correspondent a quelque
forme de contenu crée par un utilisateur, que ce soit blogs, tweets,
images, vidéos, etc. Ce contenu est souvent ensuite mis & disposition
sur internet par le biais de sites type réseaux sociaux. Les UGC sont a
I’origine de nouveau phénomeénes émergeants comme le journalisme civil,
ou les civils capturent et font des rapports sur les actualités locales avec
leurs appareils connectés. Les UGC sont au coeur de plusieurs grands
services Internet tel que Youtube! et Wikipedia?. Ce contenu est en
général créer en dehors de toute cadre professionnelle.

Diffuseur Les diffuseurs sont les utilisateurs responsables de créer des UGC
et de les diffuser en direct sur Internet. Normalement ces utilisateurs
sont authentifiés sur la plateforme par laquelle ils diffusent leurs contenus
et possédent une « chaine » qui leur est propre.

Session Une session est un direct diffusé par un diffuseur. Dans une plate-
forme de diffusion de direct en ligne, une chaine peut étre en ligne ou
hors ligne. Chaque période durant laquelle la chaine est restée en ligne
peut étre archivée ultérieurement. Dans nos travaux, nous ne nous in-
téressons uniquement aux sessions directes.

Spectateur Un spectateur est un utilisateur qui n’est pas forcément enreg-
istré sur le service et va regarder les sessions crées par les diffuseurs.

thttps:/ /www.youtube.com/
Zhttps://www.wikipedia.org/
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Le nombre d’utilisateurs regardant une session peut évoluer au cours du
temps. Le nombre total de spectateur d’une chaine a un instant donné
est appelé la popularité de la chaine. La figure B.2 montre ’évolution
de la popularité d’une chaine sur une durée. Cette chaine contient deux
sessions.

nombre de spectateurs

A

» temps
ty tll to tl2

session 1 session 2

Figure B.2: La popularité d’une chaine avec deux sessions en direct pendant
une période de temps.

Service Provider Le « service provider » (fournisseur de service) est la
plateforme sur laquelle le diffuseur peut mettre en ligne son contenu
UGC. Le fournisseur de service est ensuite responsable pour le proces-
sus de livraison du contenu aux utilisateurs et plus particuliérement aux
spectateurs. En régle générale les fournisseurs de services possédent un
moyen de monétiser leur plateforme, souvent sous forme de publicités
présentes au début de session.

CDN Un CDN (réseau de distribution de contenu) est un immense systéme
distribué de serveurs disposés un peu partout dans la toile. Normalement
déployés dans les bordures de I'Internet, chez les fournisseurs d’acceés
(ISP) et proche des utilisateurs. Le but d’'un CDNest de délivrer du con-
tenu aux utilisateurs tout en assurant une forte disponibilité et perfor-
mance. Les fournisseurs de services payent les CDN pour délivrer leurs
contenus aux utilisateurs. Le CDN paye ensuite les ISP pour héberger
des serveurs dans leur centres de données.

Adaptive Bit Rate (ABR) Le débit adaptatif des flux en direct est une
technique employée a la diffusion de la vidéo. En utilisant ’ABR la
vidéo diffusée est encodée en différentes versions chacune & un débit dif-
férent. Les versions sont nommeées représentations. Un spectateur peut
ensuite utiliser son lecteur de contenu pour choisir la qualité souhaitée
en fonction de son appareil et de la capacité de sa bande passante.
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Plus précisément, les implémentations actuelles, comme DASH (un stan-
dard de conversion crée par MPEG) et HLS (implentation faite par
Apple co.) , normalement fonctionnent en dessus d’Hypertext Trans-
fer Protocol (HTTP). Les débits multiples sont segmentés en plusieurs
parties, typiquement de deux a dix secondes. Un manifeste contient
I'information nécessaire concernant les différents débits et segments
disponibles. Au début, le client demande les segments de débits les
plus faibles par définition. Si le client posséde suffisamment de bande
passante pour télécharger un segment plus volumineux, son lecteur va
alors faire une requéte de ce segment dés que possible. Si les conditions
se détériorent ensuite, le lecteur vidéo fera la requéte du segment de
plus faible débit. ABR permet de ce fait de limiter les temps de mise en
tampon et d’améliorer la QoE (qualité de I'expérience) des utilisateurs.

Encodage L’encodage est la tache de transformer une source vidéo dun for-
mat donné vers une représentation différente, qui sera une version annexe
de la vidéo possédant une résolution et/ou un débit différent. L’encodage
est un procédé vital a ’ABR.

La maniére d’absorber la charge imposée par la transmission de ces sessions
différe parmi les fournisseurs de services. Basés sur la diffusion en direct il y
a en général deux types de processus.

Processus traditionnel Il consiste a préparer le flux direct brut (pour véri-
fication de cohérence et une meilleure intégration a la page web par ex-
emple) et ensuite le délivrer directement aux spectateurs. La figure B.3
illustre ce processus. La vidéo brute est produite par le diffuseur et est
envoyée au systéme par les serveurs. Le systéme est ensuite en charge
de délivrer le contenu de cette vidéo aux spectateurs hétérogénes (dif-
férences d’appareils/conditions).

Flux ' Serveurs Serveurs de
Brut d’Ingestion Livraison

Figure B.3: Processus traditionnel de livraison de flux video en direct.

Processus d’encodage Illustré par la Figure B.4, le processus d’encodage
consiste a transformer le flux brut dans de multiples flux vidéo en util-
isant ABR pour la livraison des sessions aux spectateurs. Cette livraison
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ce ferma en utilisant une technologie telle que DASH [Stoll|. Pendant
le processus d’encodage le systéme est capable de fournir les différentes
versions du flux brut de I'utilisateur & chaque spectateur, en fonction de
la taille de leur écran ou de la capacité de leur bande passante.

> v D
Flux Serveurs Serveurs Serveurs de E
Brut I d’Ingestion d’Encodage Livraison
3
Figure B.4: Processus d’encodage et livraison de flux video en direct.

B.3 Contributions

Les contributions principales de cette thése sont les suivantes : (i) un ensemble
de données des directs en ligne ; (i7) des approches pour le distribution du
contenu en utilisant le cloud ; (7i7) des solutions hybrides de distribution ;
(tv) une analyse du direct a débit adaptatif (ABR) ; (v) une application de
I’ensemble de donnée a la distribution par le cloud et I’encodage.

B.3.1 L’ensemble de données des sessions en direct

Premiérement nous avons rassemblé un ensemble de données de sessions en
direct. Pour étudier les aspects que nous visons a propos des systémes de
diffusion en direct, nous avons besoin de caractériser et évaluer nos solutions
que nous proposons avec injection de traces réelles en entrée. Ainsi, notre
premiére contribution est cet ensemble de données et son analyse, contenant
trois mois de traces de deux services majeurs d’UGC direct en ligne. Avec
des millions de sessions directes et des centaines de milliers de diffuseurs nous
I’avons rendu disponible en ligne gratuitement pour la communauté. A notre
connaissance ce travail est le premier & fournir non seulement cette quan-
tité de données mais également la comparaison et la compréhension des deux
services majeurs de diffusion en ligne YouTube et Twitch. Nous apportons
par notre étude des éléments précieux de compréhension de ce que peuvent
étre ces services a grande échelle que sont les services d’UGC direct en ligne.
Nous montrons qu’ 1 Thps de bande passante est souvent atteint de maniére
a délivrer ce type de contenu. Nous montrons également les différences entre
YouTube et Twitch , particuliérement en ce qui concerne les habitudes de leurs
diffuseurs. Les diffuseurs sur Twitch sont plus engagés sur la plateforme pour
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produire des directs que ceux de YouTube. Nous avons détecté de nombreuses
caractéristiques qui indiquent la maturité de I'’environnement Twitch. Com-
paré a un service VoD | les diffuseur des services en ligne de direct sont plus
actifs. A la différence des autres systémes, la popularité au sein des directs
est trés hétérogéne. Nous utilisons les éléments que nous avons trouvés ainsi
que les informations décrites dans les chapitres suivants pour nos simulations,
nous fournissant un environnement proche du réel. En rendant ’ensemble de
données publiquement disponible nous espérons enrichir la communauté et
aider a améliorer les plateformes de diffusion de contenu direct.

B.3.2 Livraison par le nuage

Cette solution est basée sur des systémes comme le nuage ou des machines
virtuelles distribuées et utilise les prédictions de popularité pour héberger
les directs sur les serveurs. Les services de distributions directes d’'UGC ont
besoin de faire face a un grand nombre de sessions vidéo simultanées que ces
plateformes ont besoin de collecter puis distribuer & un nombre encore plus
grand d’utilisateurs. Nous montrons qu’en prenant en compte la popularité
future des sessions nous pouvons allouer les directs plus efficacement sur les
serveurs. Cela pourra également réduire le partitionnement des directs entre
différents serveurs et limiter ainsi les couts intra serveurs qui sont au final
une perte de bande passante. Nous basons notre étude sur les ensembles de
données précédemment présentés. Nous nous intéressons particulierement au
nombre de serveurs nécessaire pour diffusion les sessions ainsi qu’au nombre
d’échanges intra serveurs. Notre approche, POPS, utilise une estimation du
pic de popularité des sessions au moment de les placer dans les serveurs de
diffusion.

B.3.3 Livraison hybride

Cette solution est basée sur une livraison assistée mettant en pratique non
seulement les serveurs privés de la compagnie mais également les CDN. Nous
avons en premier formalisé la livraison de ces chaine de directs. Ensuite,
nous présentons les résultats du model formel ainsi que la comparaison de
cet optimal théorique avec quatre autres stratégies intuitives. Les résultats
de notre étude montrent un besoin d’explorer et de trouver des solutions
intelligentes pour la livraison des sessions vidéo.
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B.3.4 Direct avec DASH

Nous avons congu deux stratégies pour décider quelles chaines devraient étre
délivrées par ABR. Ceci est notre travail préliminaire en tant qu’intégration
dans un contexte d’implémentation large échelle d'un service multimédia.
Nous introduisons un probléme li¢ au management de l'infrastructure et nous
révélons des stratégies simples qui peuvent facilement réduire les couts globaux
de l'infrastructure tout en améliorant la QoE des utilisateurs.

B.3.5 Applications de I’ensemble de données

Une de nos contributions présentée est un ensemble de données concernant
les direct en lignes. Cet ensemble de données offre 'opportunité de pouvoir
introduire des traces réelles dans nos simulations en relation avec les directs
en ligne. Nous décrivons deux travaux en collaboration, dans lesquels nous
avons appliqué cet ensemble.

En premier, nous discutons les aspects économiques reliés a la distribution
basée sur les CDN. Nous proposons un modéle pour analyser la politique
quun CDN basé sur le profit devrait implémenter pour délivrer des vidéo
en direct. Ce modéle s’est montré particulierement efficace surtout mis en
relation avec les débats récents a propos de la neutralité des CDN. A notre
connaissance, nous sommes les premiers a modéliser un CDN d’un point de
vue économique avec pour ambition de comprendre 'impact qu’un CDN peut
avoir sur le marché de la distribution.

Dans un deuxiéme temps, nous présentons une optimisation linéaire en
nombres entiers pour maximiser la qualité moyenne que les utilisateurs ob-
tiendront et une heuristique visant a obtenir un résultat analogue tout en
permettant de passer a I’échelle en nombre d’utilisateurs. Nous étudions la
gestion de nouveaux services de direct en ligne dans le nuage en considérant
que les fournisseurs utilisent le nuage comme plateforme de calcul. Toutes les
simulations nous avons conduites utilisent des données réelles des trois majeurs
acteurs dans ce domaine. L’étude est concentrée sur les interactions entre les
paramétres d’encodage optimaux, 'utilisation CPU et la qualité pergue par les
utilisateurs. Nous utilisons un Programmation Linéaire en Nombres Entiers
(PLNE) pour modéliser ce systéme et nous comparons cette solution optimale
aux solutions actuelles de I'industrie, mettant en avant ’écart entre les deux.
Du a la limite de calcul du PLNE, nous proposons un algorithme alternatif
pour résoudre des problémes de taille a échelle réelle que nous avons congus
grace a des indices donnés par le PLNE. Cet algorithme trouve des représen-
tations capables de battre les approches standards aussi bien en termes de
qualité que d’usage CPU. En plus, il utilise un taux ressources quasi constant
méme en présence de variance de la demande.
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B.3.6 Contributions additionnel

En plus de nos contributions principales, présentées dans cette thése et dans les
appendices, nous avons également collaboré dans des contributions mineures
visant deux autres grands challenges du direct vidéo en ligne en paralléle des
études liées a cette theése.

Nous avons utilisé ’ensemble de sessions DASH, présenté précédemment
dans cette these, pour évaluer la solution proposée dans [TAP*14]. Dans un
premier temps les co-auteurs ont formulé un PLNE maximisant la satisfaction
moyenne des utilisateurs, prenant en compte les dynamiques réseaux, les types
de vidéos, et la population visée. La solution de I'optimisation est un ensem-
ble de représentations correspondant a la maximisation de la satisfaction des
utilisateurs. Nous évaluons ensuite cette solution en simulant de multiples
sessions de direct ABR caractérisés par des statistiques réseaux réelles. Les
résultats ont montré que la solution proposée est meilleure que les recom-
mandations actuelles des fournisseurs de services aussi bien pour la qualité
moyenne, le partage équitable des ressources et la résistance aux éventuelles
pannes. La simulation a montré que les informations apportées par les vidéos
mais également les statistiques concernant les utilisateurs sont des paramétres
cruciaux a prendre & compte pour choisir les parameétres d’encodage pour of-
frir une équité entre utilisateurs mais également réduire le cout total en bande
passante. Enfin, des instructions théoriques sont données et peuvent étre util-
isées dans des conditions réelles afin de choisir les paramétres d’encodage basés
sur la base d’utilisateurs, la capacité réseau et le type de contenu vidéo.

Nous avons participé a la discussion a propos du renforcement de I’ABR
en utilisant un accord avec un CDN dans [SBPT15] afin d’améliorer la qualité
de I'utilisateur. Dans cette partie, les co-auteurs introduisent WiseReplica, un
systéme de réplication ABR pour des systémes VoD assistés par les pairs du
réseau. Utilisant un algorithme d’apprentissage, WiseReplica économise de
I’espace de stockage mais également de la bande passante pour la plus grande
majorité des contenus non populaires et l'utilise ensuite pour les vidéos les
plus regardées. Les simulations utilisant les traces de YouTube suggérent que
cette approche satisfait les utilisateurs de maniére efficiente. Comparé a un
systéme de cache, WiseReplica réduit le degré de réplication pour les vidéos
les plus regardées par un ordre de magnitude de deux et sous forte charge
WiseReplica permet une augmentation du débit moyen obtenu de 85%.

B.4 Conclusion

Dans cette thése nous avons exploré des solutions pour améliorer les services
de diffusion de direct vidéo. Nos objectifs sont la diminution des ressources
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perdues, du temps de calcul ou de bande passante ainsi que d’améliorer
I'expérience des utilisateurs. La popularisation d’appareils capables de cap-
turer des vidéos, les efforts continus d’améliorer la qualité des réseaux et le
succes des services en ligne de direct ont conduit ces derniers & étre respons-
ables d'une grande partie du trafic internet.

Nous avons exploré et développé des solutions pour délivrer le contenu
massif produit par ces plateformes. Un des défis est la grande variation du
nombre total de spectateurs et la grande hétérogénéité de la popularité des
directs, qui implique généralement un sur provisionnement et de conséquentes
pertes de ressources. Dans cette thése nous montrons qu’il y a une balance
entre le nombre de serveurs employés pour diffuser le contenu et la bande
passante utilisée pour diffuser le contenu aux utilisateurs pour chaque serveur.
Nous mettons aussi ’accent sur l'importance de prédire la popularité des
directs afin de placer ces derniers de maniére efficace sur les serveurs. Nous
proposons trois solutions qui adressent les différents aspects concernant la
livraison des sessions en direct.

Nous visons également les difficultés concernant l’encodage des directs.
L’encodage des directs est vorace en termes de temps de calcul et est une
opération clé du direct utilisant I’ABR. Nous montrons qu’un direct adaptatif
est capable de réduire le cout en bande passante et d’améliorer la qualité pour
les utilisateurs en échange d’un cout en termes de CPU pour I’encodage. Pour
adresser ce choix entre bénéfices et couts, nous avons formulé en réponse deux
PLNE afin de manager ce choix.



APPENDIX C
Live Sessions Data Set
Applications

C.1 Introduction

In Chapter 3 we presented a live session data set. This data set open opportu-
nities to introduce real traces on simulations regarding live streaming systems.
In this appendix we describe two collaboration works, which we applied the
live session data set.

C.2 CDN Fairness on Live Delivery

C.2.1 Introduction

The delivery model we explored in this section is entirely formulated with
CDN, as first introduced at Chapter 2. The term CDN refers to both an infras-
tructure designed to deliver content at large scale over an underlying network,
and the economic actor providing that service. Previously we discussed the
infrastructure aspect but in this section we also include the economic aspect.

CDN have a huge economic weight (the annual revenues of Akamai, the
CDN leading company, are over two billion dollars), and a growing im-
pact on the Internet ecosystem: i) CDN activities affect the traffic ex-
changed between network providers, and consequently their economic relation-
ships [Kov12, Saul2|; ii) on many aspects (per-volume charging, connectivity
service) CDN actors compete with transit providers, which explains why some
major transit network operators such as Level 3 have shifted a fraction of their
activities to CDN; and 4ii) other actors in the value chain of content delivery
have started developing a CDN activity, including ISPs, content providers,
and equipment vendors [Bon10, Sch13|. This fast-moving and business-driven
environment exacerbates the concerns among user and regulation communi-
ties regarding service quality and economic fairness, epitomized by the net
neutrality debate [Croll, LME06, MRT12, Wu03|.
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The scientific literature provides models and analyses of the interactions
between content providers and ISPs in order to address network neutrality, and
sometimes to propose regulation remedies [ALX11, CMT12, CMT13, Fri07,
NOSMW10], but the role of CDNs is barely mentioned. To the best of our
knowledge, the only official report mentioning CDNs is from the Norwegian
regulator [Sor|, where it is stated that “the ordinary use of CDN servers is
not a breach of net neutrality”. In this section, we show that CDNs that
are “normally” managed (i.e., by rational actors) can nevertheless lead to
differences in the perceived Quality of Service (QoS) among content providers,
which goes against neutrality principles.

More generally, the performance analysis community has barely considered
the economics of CDN actors so far. Among the few notable works, we can
mention [HKSC04, Hos08, HCKS08] where the authors consider a single CDN
over a time period of interest. The best pricing strategy is studied, but the
complex relationships between actors, and their consequences on fairness and
social welfare are ignored.

We focus on the management problems faced by a CDN having to dimen-
sion and optimally use its infrastructure, sharing it among its clients (con-
tent /service providers) so as to maximize its revenue. We propose a model
to analyze the behavior of a profit-maximizing CDN, and assess the impact
of a CDN policy on the quality perceived by users and on the fairness among
content providers. We illustrate these theoretical results with an analysis
based on our real data from Twitch and YouTube Live, presented at Chap-
ter 3, which we artificially make compete for the resources of a CDN. We
show that a CDN implementing a revenue-maximizing policy tends to favor
incumbent content providers, but at an extent that is not dramatic, even if
the said incumbent tries to take advantage of the profit-driven CDN policy
by over-paying for a better service.

The work presented in this section has been published on CNSM
2014 [MPST14]|. While I participate to the discussion with the co-authors
for the mathematical model and theoretical results, my main contribution is
the application of the model to the real data with the traces described at
Chapter 3 and the analysis of service providers competition for the CDN.

This section is organized as follows. Next the mathematical model is pre-
sented. Further, we describe a theoretical analysis of the model. Then we
have an application of the model to data from our real traces. Lastly, we
conclude this section.
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C.2.2 Model

A CDN is a multi-tenant infrastructure: its resources are shared among mul-
tiple Service Providers (SPs). For simplicity reasons, we consider here two
SPs (referred to as SP1 and SP2) but the model can be extended to more
SPs. We depict the configuration/topology in Figure C.1.

We distinguish two classes of CDN resources: some privileged resources
that are located close to the clients in the ISP, and the remaining resources,
which often correspond to the origin data centers. Since the resources that
are the most often offered by CDN are storage, we will hereafter call cache the
privileged resources in the ISP and we will use other wording related to storage
management. Note however that the services that are offered by today’s CDNs
extend to other types of resources, typically computing. Figure C.1 represents
only one ISP, but multiple ISPs can be considered, each one being studied
independently.

SP, SP,

p(23 p£ <— Revenues from SPs

! ) <— Transit costs

CDN 'ds— [
/\7—Y/f\ <— Storage costs
ISP (connected to users)
= g g =

Figure C.1: Costs and revenues for a CDN located within an ISP’s network.

The economic flows involving the CDN, depicted at Figure C.2, are as
follows:

Revenues. Each SP subscribes to the CDN service to reach its customers.
The CDN charges the SPs a different price per unit of data volume
delivered to users, according to whether users are served from the cache
server (unit price p§ for SPi, i = 1,2) or from the SP origin data center,
hence with lower QoS (unit price plf < p§ for SPi).

Costs. The CDN is responsible for sending the data to users (those covered
by the considered ISP). There are two cases. If the data are taken from
the origin data center of SPi, the cost is the transit cost ¢; per unit
of volume for the CDN (which can be low if the CDN owns the transit
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network, but large otherwise). Remark that those transit costs can differ
among SPs (i.e., ¢1 # ¢2) since the path to reach the ISP of interest may
differ. The second case is when the data are delivered by the CDN
cache, the quality experienced by users is better, and no transit costs
are incurred. On the other hand, storage in the CDN cache incurs a
unit cost gs.

Figure C.2: Economic flows involving the CDN. A flow that the requested
data is in the CDN (cache hit) will have storage cost ¢. and delivery revenue

. A flow that the requested data is not cached in the CDN (cache miss) will
have transit cost SPi — CDN ¢; and delivery revenue pt,-f.

If we consider those prices fixed (from long-term contracts), the decision
variables of the CDN;, illustrated at Figure C.3, are:

e The capacity C of the server in the ISP.

e The implemented caching strategy, i.e., the management of the stor-
age space in the cache. With two service providers, the only decision
variable for the CDN regards the choice of whose content to favor in the
cache, summarized by the volume C; < C of cached SP1 content (the
volume of SP2 content cached being Cy = C — ).

We do not deal with the extensive literature on the subject that involves
time variations of the download frequency of content items. We rather consider
a static problem, with content popularity values as constant and known to
the CDN operator. Let us denote by Fj(x),i = 1,2 the minimum download
frequency (number of requests per time unit) for the 2 most popular units
of content of SPi, and assume that F; is continuous and strictly decreasing.
Knowing the popularity values, the CDN stores the content of each provider
that yields the largest revenues, which may result in an “unfair" strategy with
respect to SPs.

The incomes of the CDN from SP payments equal
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Figure C.3: Decision variables of the CDN. The capacity C is the CDN cache
storage capacity in the ISP. The caching strategy, involving C'; and C (Cy =
C - (}), manages the storage space in the cache.

ZQ: (Pf/j Fi(x)da + p] /Vi E(x)dx>

=0 Zl‘:Ci

= ZQ: (pzféz' + (pf — pZ)Gz(Cz)>

ﬁ
Il
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where V; is the total volume of content proposed by SPi (i = 1,2), Gi(y) :=
fj:o F;(z)dx is the cumulated user download throughput from requests for the
volume y of the most popular content from SPi, and G; = G;(V;) is the total
user download throughput of SPi content. Without loss of generality, we
ignore content with no demand, so that we can assume F;(z) > 0 for all
x <V; (i=1,2).

Storage costs equal g;C. We assume C' < min(V3, V,), i.e., the CDN cannot
cache all the content from any SP.

For the transit costs, we neglect the one-shot costs for the content stored
in the CDN cache: therefore transit costs only correspond to content that is
not in the cache, and for each SP they are proportional to the aggregated
download rate for that content. Since Cy = C' — (', the total transit costs
equal

@1 (G1— G1(C1)) + q2(Gy — Go(C — O)).

Overall, the net revenue of the CDN per time unit is

R(C,C1) = Y (rGi+ (0 = 1))GH(C) - aC (CBY

=1

with rzf = pf — @q; for © = 1,2. We limit ourselves to rlf > 0 Vi to ensure
that the CDN makes some non-negative revenue.
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Finally, let us denote the quality experienced by users by Q). for the cached
content, and by Q; < . for content retrieved from SPi. The average user
experienced quality is then

3" (QuGi(Cy) + Qra(Gi — GiCy)) -

i=1

1
@ G+ Gy

C.2.3 Maximizing the CDN revenue

In our analysis, we first focus on the caching strategy, i.e., determine the
revenue-maximizing sharing of the storage space C' (treated as fixed) among
SP1 and SP2 content. Then we discuss the optimal value of the cache capacity
C.

C.2.3.1 Whose content to cache?

We assume the total storage capacity C'is fixed, and look for the best caching
strategy decision (the value C* of C} maximizing the net revenue in (C.1),
where Cy = C' — CY).

By construction, each function G; (i = 1,2) is continuously differentiable
(with derivative Fj), strictly increasing and strictly concave on [0, V;], hence
R(C, () is a strictly concave function of C; for C fixed. The first-order
optimality condition is thus sufficient, and the optimal C; equals:

o Cif (0 = r)FI(C) = (5 — 1) Fa(0)
o 0if (pf —r)F1(0) < (5 — ) F2(C)

e the unique solution in (0,C) of

f

Fy(x) _p§—7"2

B(C—x)  pf—rf

otherwise. (C.2)

It therefore exists and is unique. Remark that for given popularity dis-

: : : . ps—rd Ps+a2—p)
tributions, the optimal C then only depends on the ratio = .
’ pi—r{  pft+a—p]

Due to the decreasingness in z of the left-hand term in (C.2), the optimal C}
decreases with the value of that ratio.

Notice also that when prices are fixed, the solution of (C.2) strictly in-
creases with C: take C' > C, the corresponding optimal values CPP* and C{*
of €1 must satisfy

F(CYPYE(C — O = F(CYP Ry (C — CFP). (C.3)
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Assuming C" < C" leads to Fy(CPP") < Fy(CP') and Fy(C' — CY) <
Fy(C — CP), contradicting (C.3).

Example. Following the literature on content popularity [AH02], let us
consider a Zipf or power-law distribution of the request rates among pieces
of content: Fj(z) = A;x™® with a > 0, for > Z; min > 0. The values x; min

indicate the domain of validity of the power law, and we assume they are
F>(C—x1,min) Pf—T{ F>(x2 min)
F1(21,min) pg—TQf F1(C—22 min

value of C} is in (21 min, C' — Tomin). Solving (C.2) then leads to C; being the
solution = of

small enough, so that L and thus the optimal

1/a
v (Apita—p which gives
C—z  \A2ps+q—p)

C

1/a”
14 (&pﬁ-&-%—pé) /
A1 pStq1—p!

opt __
Ccy7 =

(C.4)

C.2.3.2 Dimensioning the cache

We can similarly determine the optimal storage capacity C for the CDN, by
differentiating R(C, C;™") in terms of C, with C{*" a function of C'. Rewriting
the conditions not to end up with (C.2):

m«nzk5m><m.@anz%mm>

with & = (p5 — )/ (p¢ — r]), we remark that none is satisfied (since the F
are decreasing functions) when

C > max(F, ' (kF1(0)), Fy 1 (Fy(0)/k)), (C.5)

in which case the solution of C{*" is inside (0,C). For C' smaller, it may
happen that the optimal value C*" is 0 or C. Assuming (C.5), the envelope
theorem yields

OR(C, CT™(C))
oC

= (5 —r))R(C = C7(C)) — g
= (i — rDR(CP(C)) — s,
where the last equality comes from (C.2). From that last expression and

due to the strict increasingness of C7? " in C, the revenue is a strictly concave
function of C' for C' sufficiently large. From (C.1), it is also strictly concave
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when CP" € {0,C}. Since R(C,C{*'(C)) is differentiable for all C' (its “inte-
rior” derivative when C{**(C) tends to 0 or C being equal to the derivative
with a fixed C{®"), it is then strictly concave over the whole interval [0, C].

Hence, since the derivative of R gets negative for C' sufficiently large, there
exists a unique cache capacity C' maximizing revenue (that is strictly positive
if ¢, is not too large, i.e., if ¢, < max,_1 o(pS — /) F;(0)).

Example. Considering again the case of power-law distributions, the
above derivative is

—

C
(pg - Tg)AZ C— iN1/a — (s,
1+ (ﬂp—g‘”)
A p§—r]

which gives the optimal dimensioning of the storage space

((pf = rDADY + (95 —r) An)

1/a
qs/

C:

C.2.4 Analysis

We restrict the numerical analysis of our model to one situation closely linked
to the problems of fairness (and neutrality) of CDNs, where we apply our
model to popularity distributions obtained from real traces, and consider two
SPs competing for one CDN.

We study two wuser-generated liwe video aggregators. These service
providers offer a service such that anybody can become a broadcaster, who
uploads a video session to the aggregator, which is then in charge of prepar-
ing and delivering the video to a potentially wide population. Two main
players compete: (i) an incumbent, namely Twitch, which has been a well-
established service for years, with a stable population of engaged broadcasters
(more than five thousands simultaneously broadcasting at any time), and (i)
a challenger, namely YouTube Live, which has released this feature to the
all regular YouTube users in December 2014. Recall that the population of
broadcasters of YouTube Live is one order of magnitude smaller than Twitch
but, at peak hours, both services have approximately the same population of
viewers. In the following, SP2 refers to Twitch while SP1 is YouTube Live.
For both services, we consider the traces of the activities described at Chap-
ter 3. In the following, we study one randomly chosen date and we abusively
consider that both services use the same CDN to deliver their live streams (for
such service, the resources that the CDN offers are transcoding and delivering
in the access network).
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Our goal is to highlight the role of CDN in three representative scenarios:
(1) both service providers pay the same price for the CDN service. The transit
costs are the same. In this regular scenario, the main question is whether
the dominance of the incumbent prevents the growth of the challenger. (i)
the incumbent player deploys an aggressive strategy where it pays ten times
what its competitors pays for the CDN service. It is one of the most critical
question in the net neutrality debate: can a well-established player prevents
one competitor from growing? Finally (zi¢) the challenger is now the one
that is aggressive. Regarding the parameters adopted in the scenarios, we
extracted from the traces the information about the videos, meaning V;, G;
and G;. Based on CDNs and Amazon pricing', the remaining parameters
are: p{ = 0.005, pf = 0.5, gs = 0.0000053, ¢; = 0.94, Q. = 2, Qs; = 0.5 and
C' = 50. For scenarios (i7) and (iii), we defined p{ = 5 and p§ = 5 respectively.

We show in Figure C.4 the QoE of end-users from both service providers
with regard to the evolution of the ratio of the cache that is filled with SP1
content (recall that SP1 is the challenger YouTube). The QoE of SP1 users
is represented by @); (black line), while users on SP2 by @), (gray line). We
show with thin vertical lines the optimal values of % for the three considered

OPT OPT
regular SP1 aggr.
. -

1 —

scenarios.

0.8 |- |
§ 0.6 .
0.4
0.2 |- |
0 l l l l |
0 0.2 0.4 0.6 0.8 1
(&1
C

Figure C.4: Normalized quality of experience for both service providers SP1
and SP2 according to the ratio of the cache filled with content from SP1

Our main observation is that, due to the heterogeneity of video popular-
ity, the impact of aggressive strategies is limited in all cases. By choosing to
maximize its revenues, the CDN serves more content from SP2 in the regular
scenario, which in turn leads to a better overall QoE for users of SP2. But the
QoE remains excellent for SP1 as well (more than 0.9 of the best possible).
More interestingly, both aggressive policies are not worth the price. In both
cases, the CDN adjusts the ratio % accordingly to maximize its revenues, but

'http://is.gd/CArKkn, http://aws.amazon.com/s3/pricing/


http://is.gd/CArKkn
http://aws.amazon.com/s3/pricing/

116 Appendix C. Live Sessions Data Set Applications

in both cases, the overall QoE of the competitor is not significantly affected.
Even when the incumbent player pays ten times the price paid by the chal-
lenger, the users of the latter service have a QoE which is more than 0.8 of
the best possible.

C.2.5 Conclusion

We propose in this section a model to analyze of the policy that a profit-driven
CDN should implement when delivering live video content. This model is es-
pecially significant with regard to the multiple recent debates about network
neutrality. To the best of our knowledge, this is the first attempt to model
CDN from an economic standpoint with the ambition to understand the im-
pact of CDN on the content delivery market.

This study opens perspectives. Fairness can be further analyzed thanks to
our model. We would also like to study more generic versions of this model
with multiple ISPs, players and resources within the CDN. The competition
among players, and ways to regulate it toward the benefit of the whole popu-
lation, are among the very first studies that we envision. We would also like
to integrate more complex monetary agreements between service providers
and CDN; including Service Level Agreement (SLA). In addition, we plan to
significantly extend the study based on real data that is introduced in Sec-
tion C.2.4.

C.3 Transcoding Live Adaptive Video Streams
in the Cloud

C.3.1 Introduction

The management of live video services is a complex task due to the demand
for specialized resources and to real-time constraints. In the previous chapter
we concluded that the optimization problem requires a formal definition and
analysis. Previously we neglect many details in our formulation in order to
provide the global picture. However a more formal and accurate formulation
should include a more precise estimation of the QoE gain for the degraded
viewers, a better model for the transcoding computing needs, and the man-
agement of different hardware computing resources.
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Figure C.5: Live streaming in the cloud

To guarantee the QoE for end-users, live streaming service providers (e.q.,
TV operators and multimedia broadcasters) have traditionally relied on pri-
vate data centers (with dedicated hardware) and private networks. The
widespread availability of cloud computing platforms, with ever decreasing
prices, has changed the landscape [Red14]. Significant economies of scale can
be obtained by using standard hardware, VM, and shared resources in large
data centers. As illustrated in Figure C.5, live streaming providers use these
services in combination with widely available CDN to build an elastic and
scalable platform that can adapt itself to the dynamics of viewer demand.
The only condition is to be able to use the standardized cloud computing
platforms to prepare the video for delivery.

The emergence of cloud computing platforms has enabled some new
trends, including: (7) the adoption of ABR streaming technologies to ad-
dress the heterogeneity of end-users. ABR streaming requires encoding mul-
tiple video representations, and thus increases the demand for hardware re-
sources. Modern cloud computing platforms can meet this demand. And
(17) the growing diversity of live video streams to deliver. The popularity
of services like Twitch [DiP14] illustrates the emergence of new forms of
live streaming services, where the video stream to be delivered comes from
non-professional sources (e.g., gamers, teachers of online courses, witnesses of
public events). Instead of a few high-quality well-defined video streams, live
streaming providers have now to deal with many low-quality unreliable video
streams.

The preparation of a given video channel includes deciding the number
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of representations to encode, setting the encoder parameters, allocating the
transcoding jobs to machines, and transcoding each raw video stream into
multiple video representations. Even though solutions have already been pro-
posed for these subproblems, as we discussed at Chapter 2, it is non-trivial to
combine them to form a single solution and there is no guarantee that a com-
bination of optimal solutions of each subproblem is an optimal and feasible
solution of the global problem. For example, selecting the available represen-
tations (resolution and bit rate) without considering the available computing
resources is likely to lead to unfeasible solutions.

In this chapter we are interested in maximizing the average user QoE by
selecting the optimal encoding parameters under given computing and CDN
capacity constraints. More specifically, we present two contributions.

First, we formulate an optimization problem for the management of a
data center dealing with a large number of live video streams to prepare for
delivery at Section C.3.4. The goal is to maximize the QoE for the end-users
subject to the number of available machines in the data center and the CDN
delivery budget. With this problem, they highlight the complex interplay
between the popularity of channels, the required computing power for video
transcoding, the satisfaction of end-users, and the delivery bandwidth. The
problem is formulate as an ILP. Then they use a generic solver to compare
the performances of standard stream preparation strategies (where all the
channels use the same encoding parameters for the transcoding operation) to
the optimal. The results highlight the gap between the standard preparation
strategies and the optimal solution.

Second, we propose a heuristic algorithm for the preparation of live ABR
video streams at Section C.3.5. This algorithm can decide on-the-fly the en-
coding parameters. Our results show that our proposal significantly improves
the QoE of the end-users while using almost constant computing resources
even in the presence of a time varying demand.

C.3.2 Current Industrial Strategies

Today’s live service provider have to implement a strategy for stream prepa-
ration. To the best of our knowledge, no provider has yet implemented an
optimal strategy. Typically one of the following two options is implemented.
In the first one, used by Twitch, ABR streaming is only offered to some pre-
mium broadcasters. That is, only a small subset of channels is transcoded
into multiple representations. For the other broadcasters, the raw video is
forwarded to the viewers without transcoding. The problem of this solution is
that many viewers of standard broadcasters cannot watch the stream because
their downloading rate is too low. This problem was discussed in Chapter 6.
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The second option consists in delivering all channels with ABR streaming.
This is the option we study in this chapter. To the best of our knowledge, the
live streaming providers apply the same transcoder settings for all channels
although it has been shown in [TAST14| that such a strategy is sub-optimal.
Therefore, we consider two possible strategies.

Full-Cover Strategy. This corresponds to a strategy with one represen-
tation per resolution smaller than or equal to the resolution of the source.
The bit rate is chosen such as to be the lowest possible for this resolution
(100 kbps for low resolutions and 1000 kbps for the high resolutions). With
this strategy, viewers with a display size smaller than or equal to the source
resolution are guaranteed to find one representation in their display resolu-
tion. Moreover, since the Central Processing Unit (CPU) requirements are
low for low bit rates, this strategy is the least CPU-hungry possible strategy
(among the strategies with at least one representation per resolution).

Zencoder Strategy. We follow here the recommendations of one of the
main cloud transcoding providers, namely Zencoder. The recommendations
are given on their public website.? We give in Table C.1 the characteristics of
the set of representations. Again, only representations with a bit rate and a
resolution smaller than or equal to the video source are produced.

Video Resolution Bitrates (in kbps)

224p 200, 400, 600
360p 1000, 1500
720p 2000
1080p 2750

Table C.1: Zencoder encoding recommendations for live streaming (adapted
to our bit rate ranges).

C.3.3 Transcoding CPU and PSNR Data Set

As part of the responsibilities considered for live streaming services is the
transformation of incoming raw video into a multimedia object that can be
delivered to a large number of users. This phase is called preparation. The
preparation comprises multiple tasks, such as content sanity check, implemen-
tation of the Digital Rights Management (DRM) policies and transcoding.
This thesis explores problematics associated to the transcoding operations
performed by service providers. This task is CPU consuming and the live
scenario adds even more challenge. The transcoding task prepares the raw

’http://zencoder.com/en/hls-guide
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video stream into a set of ABR video streams for delivery. By focusing on
the transcoding task we consider for each session the following twofold service
provider goal:

e Decide the set of video representations to be transcoded. The decision
includes the number of representations, and, for each representation, the
bit rate and the resolution;

e Assign the transcoding jobs to the machines of the data center.

A key information for the study is the amount of CPU cycles that are
required to transcode one raw video into a video stream in a different format.
This quantity depends on various parameters, but mostly on (i) the bit rate
and the resolution of the source, (ii) the type of the source, and (iiz) the
bit rate and the resolution of the target video stream. To obtain a realistic
estimate, we have performed a set of transcoding operations from multiple
types of sources encoded at different resolutions and rates to a wide range of
target resolutions and rates. For each one of the transcoding operations, there
is a QoE estimation of the transcoded video, and measured the CPU cycles
required to perform it. This data set is publicly available.> In the following
paragraphs we describe each one of the many parameters considered for this
data set.

Source Types. Four types of video content are considered, corresponding
to four test sequences available at [Xip14]. Each of these four test sequences
corresponds to a representative video type as given in Table C.2.

Video Type Video Name

Documentary  Aspen, Snow Mountain

Sport Touchdown Pass, Rush Field Cuts
Cartoon Big Buck Bunny, Sintel Trailer
Video Old Town Cross

Table C.2: Test videos and corresponding type.

Source Encoding. In current live streaming systems, the encoding of the
source is done at the broadcaster side. As shown in Chapter 3, the raw video
that is emitted by the broadcaster can be encoded with different parameters.
Based on the analysis of the Twitch data set, only four resolutions, from 224p
to 1080p were considered. Also the video bit rates were restricted to be in
ranges covering 90% of the sources observed in the Twitch data set. Table C.3
have more details on the resolutions and bit rates evaluated.

3http://dash.ipv6.enstb.fr/dataset/transcoding/
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Target Videos. The format of the target videos depends on the source
video. For each input video all the resolutions that are smaller than, or equal
to, the input video are considered and for each resolution all the rates that
are smaller than, or equal to, the rate of the input video. Again, Table C.3
lists all the specifics combinations for target videos.

Input and Output Rates. Only the rates covering 90% of the sources
observed in the Twitch live sessions data set were considered, as detailed in
Table C.3. For low resolutions (224p and 360p), the set of bit rates ranges from
100 kbps up to 3000 kbps with steps of 100 kbps, while for high resolutions
(720p and 1080p), the set of bit rates ranges from 1000 kbps up to 3000 kbps
with steps of 250 kbps. Thus, each video sequence from Table C.2 can be
encoded into 78 different combinations of rates and resolutions. To obtain
these 78 sources, the original full-quality decoded videos were considered from
Table C.2 and then encoded into each of the 78 videos that was considered as
possible raw videos.

Resol. Width x Height Min—-Max Rates Rate Steps

224p 400 x 224 100-3000 kbps 100 kbps
360p 640 x 360 100-3000 kbps 100 kbps
720p 1280 x 720 1000-3000 kbps 250 kbps
1080p 1920 x 1080 1000-3000 kbps 250 kbps

Table C.3: Resolutions and ranges of rates for the raw videos.

Transcoding. The transcoding operations were performed on a standard
server, similar to what can be found in most public data centers. The debate
about whether GPU can be used in a public cloud is still relevant today. Those
who do not believe in a wide availability of GPU in the cloud emphasize
the poor performance of standard virtualization tools on GPU [SL13] and
the preferences of the main cloud providers for low-end servers (the so-called
wimpy servers) in data centers [BCH13|. On the other hand, new middleware
have been developed to improve GPU sharing and VM-GPU matching in data
centers [Gonl3|, so it may be possible to envision a wider deployment of GPU
in a near future. Nevertheless, in this data set, a conservative position was
adopted, which is the choice made by today’s live streaming service providers,
and only the availability of CPU in the servers are considered.

As for the physical aspect of the CPU cycles measurements, no perfor-
mance impact by virtualization was considered, i.e. a transcoder running in
a VM on a shared physical machine is as fast as if the same transcoder ran

directly on the physical machine. The server used was an Intel Xeon CPU
E5640 at 2.67GHz with 24 GB of RAM using Linux 3.2 with Ubuntu 12.04.



122 Appendix C. Live Sessions Data Set Applications

The transcoding operation performed is summarized in Figure C.6. This
operation has been done 12,168 times in total. This corresponds to 4 (the
number of video types) multiplied by 78 (the number of possible sources)
multiplied by 39 (the average number of possible target videos). Recall that,
for each input video, were produced only videos with resolutions and bit rates
lower than or equal to those of the input. That is, only a subset of the 78
possible representations are created from a given raw video.

For the transcoding ffmpeg was used with the same parameters as
in [BCF14|, which is a study conducted by the leading developers of the
popular GPAC video encoder. The command is

ffmpeg —i source name —vcodec |ibx264 —preset
ultrafast —tune zerolatency —s target resolution —r 30 —b
target rate —an target name

Measuring CPU cycles. As discussed above, many transcoding operations
were performed using an Intel Xeon CPU E5640 at 2.67GHz with 24 GB of
RAM using Linux 3.2 with Ubuntu 12.04. To measure the number of used
CPU cycles, the perf tool*, a profiler for Linux 2.6+ based systems was used,
with the next command:

perf stat —x —e CYCLES

This command provides access to the counter collecting the number of
CPU cycles at the Performance Monitoring Unit (PMU) of the processor.
Then, this number is divided by the duration in s of the video sequences to
obtain the frequency of CPU (in GHz) required to perform the transcoding
during a running time equal to the play time of the video, that is, the frequency
of CPU required to do a live transcoding.

original encoding Houlige transcoding target
video —) 720p 7—} 360p
measure CPU cycles

Figure C.6: Measuring the CPU cycles for the transcoding of any source to
any target video. Here an example with a source at 720p and 2.25 Mbps and
a target video at 360p and 1.6 Mbps.

Figure C.7a shows the experimental results for all the target videos gen-
erated from a source of type “movie,” 1080p resolution and encoded at
2,750 kbps. The empirical CPU cycles measurements are depicted as cir-
cles. Overall, 588 curves similar to these ones were prepared to cover the
12,168 transcoding operations. For the sake of brevity, here only these four

‘https://perf.wiki.kernel.org
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Figure C.7: Results obtained from the transcoding operations performed. Sat-
isfaction of viewers and CPU cycles needed to transcode from source 1080p,
2750 kbps, and type movie to various target videos. Up-scaling penalties
curves from the source video 224p, and type mouie.

are shown. The full set of curves are publicly available for consult with the
data set.

Estimating QoE. The QoE was evaluated by means of the Peak Signal
to Noise Ratio (PSNR) score [SYDN'10|, which is a full-reference metric
commonly used due to its simplicity. We apply the PSNR filter® provided by
ffmpeg in two different cases illustrated in Figure C.8.

source estimating target
360p & > 360p
3 Mbps QoE 1.6 Mbps
1
up-scaling
h 4
source estimating upscaled
720p & > 720p
S 4
3 Mbps QoE 1.6 Mbps

Figure C.8: Estimating the QoE for a target video. On top, a target video
at 360p and 1.6 Mbps watched on a 360p display. On the bottom, the same
target video upscaled to be watched on a 720p display.

The first case, depicted on top of Figure C.8, corresponds to the scenario
where a target (transcoded) video at a given spatial resolution is watched on
a display of the same size. The PSNR filter compares the target video against
a reference video. The reference is the source encoded at the same resolution
as the target but with the largest encoding bit rate considered in the study
(3,000 kbps). The measurement was repeated as many times as target videos,
i.e., 12,168 times. As in the case of the live transcoding CPU curves, only one

Shttps://www.ffmpeg.org/ffmpeg-filters.html#psnr
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example corresponding to the PSNR curves is depicted in Figure C.7b. All
other set of curves are available at the public site hosting the data set.

The second scenario, shown on bottom of the Figure C.8, refers to the
situation when a target (transcoded) video at a given resolution need to be
upscaled to be watched on a display with a higher size. This up-scaling intro-
duces a penalty on the final QoE for the viewer. To estimate these penalties, a
new battery of transcoding operations was carried out, using the same ffmpeg
command as before, but the input and output video are the target and the
upscaled video, respectively. The upscaled video is compared against a refer-
ence with an encoding rate of 3,000 kbps but with the same resolution as the
upscaled target. The penalty, using the example of up-scaling from 360p to
720p in Figure C.8, can simply be computed by subtracting from the PSNR
measure on top of the Figure the PSNR measurement on the bottom. In Fig-
ure C.7, the up-scaling penalties for a 224p source of type movie is depicted.

C.3.4 Optimizing Stream Preparation

We first address the problem of live video stream preparation with an op-
timization approach. As previously said, the preparation includes both the
decision about the encoding parameters of the video representations and the
assignment of transcoding jobs to the machines. Our goal is to maximize
the QoE of viewers subject to the availability of hardware resources. In the
following we first provide a formal formulation of the problem, and then we
present the ILP model that we use to solve the optimization problem. Fi-
nally, we compare the performance of the industry-standard strategies with
the optimal.

C.3.4.1 Notations

Let Z be the set of raw video streams encoded at the broadcaster side. Each
video stream ¢ € 7 is characterized by a type of video content v; € V, an
encoding bit rate r; € R and a spatial resolution s; € S, where V, R and S
are the sets of video types, the set of encoding bit rates (in kbps) and the set
of spatial resolutions, respectively. We have shown in Chapter 2 the diversity
of raw videos.

Let O be the set of the possible video representations that are generated
from the source by transcoding jobs. Each representation o € O corresponds
to a triple (v,, 74, So), that is, to a video representation of type of content
v, € V encoded at the resolution s, € S and at the bit rate r, € R.

Let M be the set of physical machines where the transcoding tasks should
be performed. Each machine m € M can accommodate transcoding jobs up
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a maximum CPU load of P,, GHz.

To reduce the size of the problem, and make it more tractable, we introduce
the notion of viewer type. Let U be the set of viewers types. All viewers in
a given viewer type u € U have the same display resolution (i.e., the spatial
resolution at which the video is displayed on the device) s, € S, request
the same video type v, € V, and use an Internet connection with the same
minimum bandwidth of at least ¢, kbps. However, viewers of the same type
u watch different channels. We denote by d;, the number of viewers of type
u watching a given channel 7. Note that a viewer of a given type u can play
segments encoded at resolutions lower than its display size s, by performing
spatial up-sampling before rendering.

A viewer from viewer type u watching a video representation o transcoded
from a stream ¢ experiences a satisfaction level of f;,,, which is an increasing
function of the bit rate r,. Based on the transcoding CPU and PSNR data set
presented in Section C.3.3, we know that the satisfaction function depends on
the video content type v,, the resolution s, and the original raw video stream
1. As previously said, the satisfaction f;,, also depends on whether the video
should be up-scaled or not, since up-scaling introduces a penalty on the final
satisfaction value. We incorporate this up-scaling penalty into the satisfaction
computation by the following definition of the satisfaction f;y,:

. _ fi07 lf SO = Su .
fwu_ { fio—qo,l“ ]f 50<5u ZGI;OGOMJJEU (C6)

where f;, is the satisfaction level when the display resolution and the target
video resolution match, and g,, is the penalty of the up-scaling process from
resolution s, to the viewer display size s,. Table C.4 summarizes the notation
used throughout the chapter.

C.3.4.2 Integer Linear Program Model

We now describe the ILP. The decision variables in the model are:

Qiow € Z>o : Number of viewers of type u watching a representation o
transcoded from a stream .
1, if machine m transcodes stream 7 into
Biom = representation o
0, otherwise.
With these definitions, the optimization problem can be formulated as
shown in (C.7).
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Name

Description

fiou € Rt

f’io S R

qou € RT

diu € Z+
ro € RT

cu € RT

vy €V
sy €S
Nezt
R e [0,1]
pio€R+

P, € Rt

Satisfaction level for a representation o transcoded
from a stream 7 watched on a display of size s,
Satisfaction level for a representation o transcoded
from a stream i 1 when display size s,, and target
resolution s, match

Up-scaling penalty from resolution s, to the viewer
display size sy

Number of viewers of type u watching a stream 1
Value in kbps of the encoding bit rate of the
representation o

Maximum Internet connection capacity in kbps

of viewer type u

Video stream requested by viewer type u

Display size (spatial resolution) of viewer type u
Overall number of viewers

Minimum fraction of viewers that must be served
CPU requirement to perform the live transcoding
from stream ¢ to representation o in GHz

CPU capacity of a virtual machine m in GHz

Table C.4: ILP notation.

Integer Linear Programming formulation
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0, otherwise
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$; = 8, &
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0, otherwise
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meM
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(C.7a)
(C.7b)

(C.7¢)

(C.7h)

(C.70)
(C.7j)

(C.7K)
(C.71)
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The objective function (C.7a) maximizes the average viewer satisfaction.
The constraints (C.7b) and (C.7c) set up a consistent relation between the
decision variables o and . The constraint (C.7d) establishes that a viewer of
type u can play only the transcoded representations o with spatial resolutions
equal or smaller than the viewer display size s,, that is, those susceptible to
experience an up-sampling operations at the rendering. The constraints (C.7e)
ensures that the sum of all the viewers of type v watching any representation
o transcoded from a given stream 7 does not exceed the number of viewers
of type u originally watching the stream i. The constraint (C.7f) limits the
viewer link capacity. The constraint (C.7g) force us to serve at least a cer-
tain fraction R of viewers. The constraint (C.7h) forces that only transcoding
operations defined over the same video content type are allowed and it for-
bids senseless transcoding operations, like transcoding to higher bit rates or
higher resolutions or transcoding to the same rate-resolution pair. The con-
straint (C.7i) guarantees that a given transcoding task (i,0) is performed in
one unique machine m. Finally, (C.7j) sets the CPU capacity of each machine
m.

C.3.4.3 Settings for Performance Evaluation

To find the exact solution of the optimal problem, we use the generic solver
IBM ILOG CPLEX [IBM14] on a set of instances. Unfortunately, this ap-
proach does not allow solving instances as large as the ones that live service
providers face today. Thus, we have built problem instances based on the
data sets introduced in Chapter 3 and Section C.3.3 but of a smaller size.

Incoming Videos from Broadcasters. We restrict the size of the set of
sources by picking only the 50 most popular channels from the Twitch data
set. More precisely, we take 66 snapshots from the data set, corresponding to
those ones extracted every 4 hours along 11 days since April 10, 2014 at 00:00.
For each snapshot, we use the channel information (bit rate and resolution),
which we modify slightly to match the spatial resolutions and bit rates from
Table C.3. Each channel is randomly assigned to one of the four video types
given in Table C.2.

QoE for Target Videos. We use the transcoding CPU and PSNR data set
presented in Section C.3.3 to obtain the QoE (estimated as a PSNR score)
fio of a target video o obtained from transcoding a source i. The up-scaling
penalties ¢, are fixed using PSNR measures from the situation shown on
bottom of the Figure C.8 (target resolution lower than display one).

CPU for the Transcoding Tasks. Still to reduce the size of the instances,
and thus the complexity of the problem, we fit an exponential function to the



128 Appendix C. Live Sessions Data Set Applications

set of CPU measurements:

p=a-r° (C.8)

where p is the number of GHz required to transcode a source into a target,
a and b are the parameters used in the curve fitting and the parameter r is
the bit rate in Mbps of the target video. The values of the parameters a and
b depend on (i) the source video (content type, bit rate and resolution), and
(77) the resolution of the target video. The fitting curves are identified by
continuous lines in Figure C.7a. Table C.5 gives the parameters a and b used
in the curves shown in Figure C.7a.

Target Resol a b
224p 0.673091  0.024642
360p 0.827912  0.033306
720p 1.341512  0.060222
1080p 1.547002  0.080571

Table C.5: Parameters of the fitting model of the transcoding CPU curves.
Source stream: 1080p, 2,750 kbps, movie

Viewers. The viewers set U is based on the DASH sessions data
set [BSMM14]| presented in Chapter 6. However, the number of viewers is
too large and we implement the concept of user type. To build the types,
we divide the range of bandwidth into bins, whose limits are selected so that
each bin contains an equal number of viewers. A viewer type corresponds to
a bin, with a display spatial resolution set according to the lower bandwidth
in the bin, and the downloading rate of the viewer type is equal to the higher
bandwidth in the bin. The number of viewers d;, watching a raw video 7 is
proportionally set up according to the popularity of the channel in the Twitch
data set.

C.3.4.4 Numerical Results

We now show the results of our analysis. Our motivation is to determine how
far from the optimal are current industry-standard strategies. In Figure C.9,
we represent the average QoE, expressed as the PSNR in dB, as a function of
the number of machines. The line represents the results obtained from solving
the optimization problem with CPLEX. We show with gray pins the results
for both industry-standard strategies. The results are the average over all the
snapshots we took from the Twitch data sets.
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Figure C.9: Optimal average QoE for the viewers vs. the number of machines
that are used in the data centers. The 50 most popular channels from several
snapshots of the Twitch data set are transcoded.

We first emphasize that the amount of hardware resources in the data
center has a significant impact on the QoE for the viewers. The difference
of PSNR reaches 4dB between 10 and 100 machines. This remark matters
because it highlights the need of being able to reserve the right amount of
resources in the data center. However, the ability to forecast the load and to
reserve the resources is not trivial for elastic live streaming services such as
Twitch.

Our second main observation is that, on our data set, the Full-Cover strat-
egy is more efficient than the Zencoder one in terms of trade-off QoE-CPU.
The Full-Cover strategy is close to the optimal, and thus represents an efficient
implementation with respect to its simplicity. Note however that Full-Cover
needs 48 machines, while there exists a solution with the same QoE but with
only 35 machines. Therefore, a significant reduction of resources to reserve can
be obtained. The Zencoder strategy is outperformed by the Full-cover one, as
it consumes nearly twice the CPU cycles for a tiny increase of the QoE. For a
similar amount of CPU, the QoE gap between the Zencoder strategy and the
optimal is more than 0.9 dB, which is significant.

To complete this study, we provide another view of the choices to be taken
in Figure C.10. Here, we show the ratio of served users and the amount of
delivery bandwidth that is required to serve the users. In our ILP, we optimize
the average QoE so the solutions that are found by CPLEX are not optimal
on other aspects. In Figure C.10b, we see that the delivery bandwidth of
the optimal solution is significantly higher than the Full-Cover, which may
annihilate the gains obtained by using fewer machines. Please note that both
parameters of Figure C.10 can also be the objective of the ILP. In the same
vein, the ILP can also be re-written so that the parameter to be optimized is
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the amount of CPU needed, subject to a given QoE value.
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Figure C.10: Other views on the optimal solution of Figure C.9

C.3.5 A Heuristic Algorithm

We now present and evaluate an algorithm for massive live streaming prepa-
ration. Our goal is to design a fast, light, adaptive algorithm, which can be
implemented in production environments. This algorithm should in particular
be able to absorb the variations of the streaming service demand while using
a fixed data center infrastructure.

C.3.5.1 Algorithm Description

The purpose of the algorithm is to update the set of transcoded representations
with respect to the characteristics and the popularity of the incoming raw
videos. The algorithm is executed on a regular basis (for example every five
minutes to stick to the Twitch API) by the live streaming service provider in
charge of the data center. You can find in Appendix A the pseudo-code of the
algorithms.
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In our algorithm we process each channel iteratively in a decreasing order
of their popularity. For a given channel, the algorithm has two phases: First,
we decide a CPU budget for this channel. Second, we determine a set of
representations with respect to the CPU budget computed during the first
phase.
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Figure C.11: CPU information for a given channel popularity rank. Data
comes from the average optimal solution with 100 machines. From the average
total CPU % according to the rank (top figure), we derive the difference
between distinct video types (middle figure) and between distinct channel
input resolutions (bottom figure).

Set a CPU Budget Per Channel. We base our algorithm on the observa-
tions of the optimal solutions found by CPLEX. Four main observations are
illustrated in Figure C.11: (i) on average, the ratio of the overall CPU budget
of a given channel is roughly proportional to the ratio of viewers watching
this channel; (77) the CPU budget per channel is less than 10 GHz; (¢ii) on
average, some video types (e.g., sport) require more CPU budget than others
(e.g., cartoon); and (iv) the higher is the resolution of the source, the bigger
the CPU budget.

We derive from these four observations the algorithm shown in Algo-
rithm 1. We start with the most popular channel. We first set a nominal
CPU budget according to the ratio of viewers and the maximal allowable
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budget. Then we adjust this nominal budget based on a wvideo type weight
and a resolution weight to obtain a CPU budget for this channel.

The values we used for both wideo type weight and resolution weight are
given in Tables C.6. These values correspond the average of the curves plotted
in Figure C.11, which we obtain from the optimal solutions computed by
CPLEX on the 50 most popular channels and 100 machines. The z-axis is the
rank of the channels according to their popularity. On the top we show the
average distribution of CPU budget per channel. On the bottom, we show
the average difference between the average CPU budget when a channel from
a given type (respectively resolution) is at a given rank and the average CPU
budget for channels at this rank. This difference allows us to compute the
adjustment of CPU budget according to the video type and the resolution.

Video Type Weight Resolution Weight
Cartoon -0.176 224p -0.917
Documentary 0.072 360p -0.657
Sport 0.190 720p -0.108
Video -0.076 1080p 0.432

Table C.6: Video type and resolution weights

Decide the Representations for a Given CPU Budget. The pseudo-
code is detailed in Algorithm 2. This algorithm builds the set of representa-
tions by iteratively adding the best representation. At each step, the needed
CPU budget to transcode the chosen representation should not exhaust the
remaining channel budget. To decide among the possible representations, we
need to estimate the QoE gain that every possible representation can provide
if it is chosen. To do so, we estimate the assignment between the represen-
tations and the viewers in Algorithm 3. In short, this algorithm requires a
basic knowledge on the distribution of downloading rates in the population of
viewers. (In our simulations, we have considered that the service provider has
no information, so it considers a uniform distribution of downloading rates
in the range between 100 kbps and 3,000 kbps). The idea is then to assign
subsets of the population to representations and to evaluate the overall QoE.

To estimate the QoE gain when choosing one representation, we need
to consider all the assignments representations-viewers. In Algorithm 3, we
evaluate the representations in the set in descending order of their bit rates. At
each iteration, we identify the fraction of viewers whose bandwidth is between
the rate of the considered representation and the closest representation with
superior bit rate. Then, we also have to take into account the display sizes
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of the viewers (it also depends on the knowledge of the service provider; we
again considered it a minimal knowledge of the population). Therefore, this
fraction of viewers is again split into one or more sub-fractions corresponding
to their display resolutions. A different value of PSNR is then computed for
each sub-fraction. This value is multiplied by the ratio of viewers belonging
to the sub-fraction. When all the representations have been assessed, the sum
of the PSNR contributions of all the sub-fractions of viewers is returned as
the estimated QoE of the set.

C.3.5.2 Simulation Settings

Our simulator is based on the data sets presented in Chapter 3 and Chapter 6,
and the extra settings given in Section C.3.4.3. However, in contrast to the
ILP, our heuristic is expected to scale. Therefore we evaluate the heuristic
and the aforementioned industry-standard strategies on the complete data set
containing all online broadcasters at each snapshot. Regarding the viewers,
we consider now each viewer, to which we randomly assign a bandwidth value
of the DASH session data set and a display resolution accordingly. We use
the actual number of viewers watching channels according to the Twitch data
set.

Please note also that we focus here on the decision about the representa-
tions (number of representations and transcoding parameters), and we neglect
the assignment of transcoding jobs to machines. This does not impact the eval-
uation since all tested strategies (our heuristic and both industry-standard
strategies) can be evaluated without regard to this assignment. We let for
future works the integration of the VM assignment policy into middleware
such as OpenStack.®

C.3.5.3 Performance Evaluations

In the following, we present the same set of results from two different per-
spectives; first, we show how the performances evolve throughout the eleven
days we consider. Then, we present the results in order to highlight the main
features of the algorithms.

In Figure C.12 we show the three metrics during our 11-days data set.
The combination of the three figures reveals important characteristics of the
strategies. The main point we would like to highlight is that our heuristic keeps
a relatively constant, low CPU consumption without regard to the traffic load
in input. Our heuristic also succeeds in maintaining a high QoE. To achieve
this excellent trade-off, our heuristic adjusts with the ratio of served viewers.

Shttp://www.openstack.org/
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Figure C.12: Different metric results over time for the distinct solutions: Full-
Cover strategy, Zencoder encoding recommendations and our Heuristic.

Yet, this ratio maintains a high value since it is always greater than 95%. Our
heuristic thus demonstrates the benefits from having different representation
sets for the different channels according to their popularity. The industry-
standard strategies are less capable of absorbing the changing demand. In
particular, the CPU needs of the Zencoder strategy ranges from 1,000 GHz
to 18,000 GHz while the average QoE is always lower than for our heuristic.
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Figure C.13: Total required CPU (in GHz) by the perceived QoE for strategies
Full-Cover, Zencoder encoding recommendations and Heuristic. The markes
shape indicates the percentage of satisfied viewers. Each point corresponds to
one of the 66 snapshots.

To highlight the relationship between CPU needs and QoE for the popu-
lation, we represent in Figure C.13 a cloud of points for each snapshot. The
Full-Cover has most points in the southwest area of the Figure, which corre-
sponds to a low CPU utilization but also a low QoE. We also note that the
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distance between two points can be high, which emphasizes an inability to ab-
sorb load variations. This inability is even stronger for the Zencoder strategy,
for which the points are far from each other, covering all areas of the Figure.
On the contrary, our heuristic absorbs well elastic services, with points that
are concentrated in the northwest part of the Figure, which means low CPU
and high QoE.

C.3.6 Conclusion

This chapter studies the management of new live adaptive streaming services
in the cloud from the point of view of streaming providers using cloud comput-
ing platforms. All the simulations we conducted make use of real data from
three data sets covering all the actors in the system. The study is focused on
the interactions between the optimal video encoding parameters, the available
CPU resources and the QoFE perceived by the end-viewers. We use an ILP to
model this system and we compare its optimal solution to current industry-
standard solutions, highlighting the gap between the two. Due to the ILP
computational limitations, we propose a practical algorithm to solve problems
of real size, thanks to key insights gathered from the optimal solution. This
algorithm finds representations beating the industry-standard approaches in
terms of the trade-off between viewers QoE and CPU resources needed. Fur-
thermore, it uses an almost-constant amount of computing resources even in
the presence of a time varying demand.
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C.4 Appendix Conclusion

In this appendix we have discussed works related to the application of our live
session data set. With our data set we are able to create scenarios that are
based on real traces for two studies.

On the first work, the data set was fundamental in order to have relevant
inputs for the competition among service providers over the CDN delivery
resources. Moreover, we analyzed different aspects in the competition, by
identifying one service, Twitch, as an incumbent, well-established service with
thousands of broadcasters, and another one, YouTube Live, as a challenger.
We show that even if the bigger competitor tries to monopolize the CDN
resources, the CDN remains relatively neutral in the delivering process.

On the second study, we analyze the benefits of the a heuristic algorithm
with our data set and the possibility of usage of this algorithm on large scale
systems present on UGC live streaming service. The ILP relies on multiple
generalizations of the real scenario to cope with the scale. The proposed
heuristic algorithm is able to handle all the inputs from our data set. Also it
is able to provide better QoE for viewers by wisely choosing which channels
to be delivered with ABR.

We hope that other works can derive or benefit from our data set and its
analysis, which are publicly available for community.
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