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Abstract

Living cells undergo a series of active and passive processes occurring in a wide range of tem-
poral scales. From the dynamics of single macromolecules (micro to milliseconds) and up to
the cell cycle (hours), cells perform a temporal integration of all their internal processes. One
example that illustrates this interplay across the spatio-temporal scales, is mechanotrans-
duction, that is, how cells translate the mechanical properties of their environment into bio-
chemical signals. Since the mechanical properties of cells confer to them the ability to re-
spond temporally and spatially to their environment, we consider here the cell mechanics as
an essential factor to explain their regulation and modification in pathological situations. We
have developed a methodology that paves a broad frequency spectrum. It is based on two
techniques suited to study single-cell mechanics: Diffraction Phase Microscopy (DPM) and
Atomic Force Microscopy (AFM). DPM is a non-intrusive optical technique that quantifies the
optical phase of the object, proportional to the product of its refractive index and thickness.
We complement DPM, that covers a range of frequency from the microHz to kHz, with AFM,
that offers a greater spatial resolution with a frequency range from mHz to MHz, allowing also
to evaluate the cell response to a local mechanical perturbation.

In the first chapter of this thesis I discuss the importance of spatial and temporal scales in liv-
ing systems, and I review the main components involved in the mechanical response of living
cells. After this introductory chapter, the second one is dedicated to evaluating the mechan-
ical response of single-cells with AFM, and in particular, its dynamical aspect. I present the
analysis of force-indentation curves without any assumption on the linearity of the system,
contrary to more typical analysis based on Sneddon’s or Hertz models. Then, I propose an
alternative method to study the cell rheology based on the multi-frequency excitation of the
cantilever by thermal noise. DPM is discussed on chapter three. I revisit the phase recovery
method using the 2D wavelet transform, and I show how DPM can be used to characterise
the temporal fluctuations and the morphology of different types of blood cells and adherent
cells. Finally, chapter four is a conclusion chapter where I summarise our results by compar-
ing healthy and pathological immature blood cells. For instance I show that, in comparison
to healthy cells, leukaemic cells undergo morphological changes that are accompanied by a
stiffer and more elastic behaviour. Altogether, our results indicate that this cell transforma-
tion involves the whole cytoskeleton and its coupling to the nucleus rather than simply the
cell cortex.
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Résumé

Une cellule vivante présente une série de processus actifs et passifs qui ont lieu sur une large
gamme d’échelles temporelles. En commençant par la dynamique de macromolécules (al-
lant de la micro à la milliseconde) et jusqu’au cycle cellulaire (heures), la cellule réalise une
intégration temporelle de tous ses processus internes. Un exemple qui illustre cette inter-
action entre les différentes échelles spatio-temporelles, est celui de la mécanotransduction.
C’est à dire, comment la cellule traduit les propriétés mécaniques de l’environment aux sig-
naux biochimiques. Étant donné que les propietés mécaniques d’une cellule lui permettent
de répondre temporellement et spatialement à son environment, nous considérons la mé-
canique cellulaire comme un facteur essentiel pour expliquer leur régulation et modification
dans des situations pathologiques. Dans cette étude, nous avons developé une méthodologie
permettant de couvrir une large gamme de fréquences temporelles. Cette méthode est basée
sur deux techniques adaptées pour l’étude de la mécanique des cellules uniques: la micro-
scopie de diffraction de phase (DPM en anglais) et la microscopie à force atomique (AFM).
La DPM est une technique non-intrusive qui quantifie la phase optique de l’objet, propor-
tionelle à son indice de refraction et son épaisseur. Nous complémentons la DPM, qui per-
met d’étudier des dynamiques dans la gamme de fréquence [μHz, kHz], avec l’AFM. Cette
dernière offre une meilleure résolution spatiale avec un spectre de fréquence entre les mHz
et les MHz, et permet en autre d’évaluer ainsi la réponse cellulaire suite à une perturbation
mécanique.

Le premier chapitre de cette thèse traite de l’importance des échelles temporelles et spatiales
dans le contexte des systèmes vivants. J’y décris également les principaux composants de la
réponse mécanique des cellules vivantes. Après ce chapitre introductif, le deuxième chapitre
est dédié à la réponse mécanique des cellules évaluée avec l’AFM et en particulier, son as-
pect dynamique. Je présente d’abord l’analyse des courbes force-indentation, puis je propose
une méthode alternative pour l’étude de la rhéologie cellulaire qui est basée sur l’excitation
multi-fréquence du levier par bruit thermique. La DPM est l’objet du troisième chapitre où je
revisite la méthode d’extraction de phase en utilisant la transformation en ondelette à deux
dimensions. Ensuite je montre comment la DPM peut être utilisée pour caracteriser les fluc-
tuations temporelles et la morphologie de différents types de cellules du sang et de cellules
adhérentes. Finalement, le chapitre quatre est un chapitre de conclusion où je fais une syn-
thèse des résultats obtenus. Par exemple, je montre que, en comparaison avec des cellules
saines, les cellules leucémiques subissent des changements morphologiques qui sont accom-
pagnés par un comportement mécanique plus rigide et plus élastique. Cela indique que dans
cet exemple la transformation cellulaire n’est pas seulement donnée par son cortex mais aussi
par son cytosquelette et son couplage avec le noyau.
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Preamble

Experimental and theoretical studies on single cells have been the focus of cellular biological
and biophysical research during the past two decades. Being the simplest form of life, a living
cell provides the necessary information to understand the link between higher levels of or-
ganisation and molecular events. However, a single cell is highly complex in both space and
time, with emergent properties that will depend on the scale of study. A clear example of this
spatio-temporal dependence is the cell mechanical properties. They are related to the organ-
isation and dynamics of the cell structure, and they confer to the cell its ability to respond and
adapt in real time to intra-/extra stimuli. Indeed, one of the most active fields of research in
biophysics is the characterisation of cell mechanics. Generally, a living cell is considered as a
viscoelastic material with nonlinear dynamics. Beyond the questions that can arise regarding
the biomolecular nature of this behaviour, the mechanical description at the whole-cell level
remains a theoretical and experimental challenge.

There is an increasing number of mechanical models that aim to relate, using elastic and/or
viscous parameters, the cell response to an external stimuli. Given that we are working at
nano- and micro-metric scales, the thermal fluctuations become an important component
of the system. One of the main difficulties then encountered, is the evaluation of the contri-
bution from active and passive processes to the total cell response. For relatively simple cells
such as Red Blood Cells (RBCs), the separation of passive and active fluctuations has been
broadly studied. The homogeneous structure and well-defined geometry of RBCs permit to
model the membrane fluctuations due to thermal noise and to ATP, as well as to estimate the
range of frequencies where each type of response can be observed. In physiological condi-
tions, the model predictions are in good agreement with experimental data, but small dif-
ferences start to appear when cells are not in optimal conditions (ageing, solution tonicity,
pathologies...).

Most cell types, however, possess a more complex and dynamical structure, leading to very
interesting physical phenomena. For instance, the cell cytoskeleton and the plasma mem-
brane, that is, two of the main cell structural components, are systems far from equilibrium
with structural rearrangements and nonlinear dynamics principally driven by ATP. The fast
development of experimental tools suited to study the sub-/cellular structures, has offered
the possibility to measure the cell mechanical properties with an outstanding amount of tem-
poral and spatial resolutions. It is possible, for example, to apply a local mechanical stimuli
using atomic force microscopy or magnetic/optical tweezers; impose a mechanical constraint
at the whole-cell level using substrate stretching, microplates or microfluidic devices; follow
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the cytoskeleton rearrangements with fluorescence microscopy; or to passively study the cell
structure and deformation with non-intrusive optical techniques. With the vast amount of
information that can be accessed experimentally, it is now important to address the compati-
bility between results, and mainly, how they can be integrated to describe and understand the
cell behaviour. In the last decade, a consensus between techniques and cell types has started
to consolidate. Rather than assuming an a priori structure or mechanical model to retrieve
values of viscoelastic variables, such as the Young’s or shear modulus, the focus has been di-
rected to investigate the type of hierarchical structure that will best describe the observed cell
response.

The current thesis work aims to characterise the structure and dynamics of living cells using
two complementary techniques: on the one side an intrusive mechanical nanoscale deforma-
tion method (atomic force microscopy - AFM) and on the other side a non intrusive optical
interferometry method (diffraction phase microscopy - DPM). AFM allows to evaluate the cell
response to a precise mechanical stimuli with great spatial and temporal resolution, however
its high localization limits the field of observation to sub-micron regions and can hardly pro-
vide a spatial map of the cellular response at a reasonable speed. DPM on the contrary, is a
wide-field coherent optical technique that permits a non-intrusive quantification of the opti-
cal phase of the object, proportional to the product of its thickness and refractive index. When
its coupled to high speed cameras (kHz acquisition rate) it is possible to rapidly evaluate the
structure of a large set of cells, and to perform longer time recordings with an acquisition
speed limited only by the camera. However, the interpretation of a phase map extracted from
a single image is quite complex and challenging.

When I started my PhD work, I could have access to a commercial AFM and the DPM opti-
cal bench was not yet assembled and tested. Even if the AFM system was already providing
acquisition and analysis softwares, these data which were already filtered and transformed
by the manufacturer were not suited for our spectral analysis. We had to add another raw
data capture system and to develop our own analysis softwares to validate the calibration of
the nanocantilevers and to check the stability of the recorded signals. Concerning the opti-
cal system, it took us about one year to have the correct filtering and illumination systems
after several trials and error and special fabrication by an external company. The recovery of
the phase images from the raw interferometry images could not be performed with standard
Hilbert transform methods. Therefore, we tested different filtering methods and we finally
ended on the wavelet transform modulus method as the most efficient tool. Finally, after
more than one year of efforts we could finally test these two systems on calibrated samples
(polymer layers in air and in liquid for the AFM, and polymer and glass microparticles for the
DPM). These steps were also helpful for me to master the physical and technical principles
of these two methods. I could not describe in much details all these technical steps in this
document to let more space for the discussion of experiments with living cells.

The chapter 1 of this thesis introduces the context of this study. I start discussing the complex-
ity found in living systems, emphasising the importance of the spatio-temporal scales. Next,
I describe the main structural cell components that contribute to its mechanical and dynam-
ical behaviour: the nucleus, the cytoskeleton and the cell membrane. Rather than describing
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the biochemical composition of each component, I focus on their structural and temporal
organisation as well as their mechanical properties. I follow up with a synthesis of the current
progress in cell mechanics and the main questions being tackled: what type of material are we
dealing with? how well do the current mechanical models explain the cell response? how does
the intracellular structure dictates the cell mechanics? The chapter ends with a brief descrip-
tion of mechanotransduction, i.e., how the cell translates mechanical to biochemical signals
to adapt to its environment, exemplifying the coupling of processes across spatio-temporal
scales.

The evaluation of the response of living cells under AFM indentation is presented in chapter 2.
The characterisation of the cell mechanical response relies on its ability to deform under the
application of a given load. Therefore, the stress-strain response of single cells is a fundamen-
tal step in their characterisation. I recall the basic concepts of viscoelastic materials, such as
the Young’s and the shear modulus, and their time dependence due to viscosity. After describ-
ing simple spring-dashpot models, such as the Maxwell model or the Kevin-Voigt model, I re-
view briefly some of the continuum viscoelastic models for living cells, pointing out strengths
and weakness of each of them. One of the main reasons of the high variability between re-
ported values for the elastic modulus of cells in similar experimental conditions, is the ‘blind’
use of common mechanical models to fit experimental data. A majority of studies analysing
the force-indentation curves obtained with AFM, assumes that the cells behave as linear and
elastic systems, which is generally true only at very small indentations. Even if the validation
of such assumption is a crucial point on the analysis of force-indentation curves, it is often
ignored. Differently from other research groups working with force-indentation curves, we
have decided to make no hypothesis on the underlying mechanical model and to rather use
statistical and signal analysis tools (Fourier filtering and time-frequency decompositions) to
recover the local shear modulus and its potential variation during an AFM indentation exper-
iment. Considering the highly dynamic nature of living cells, we focus also on the dynamics
of these cells under constant load. One difficulty that arises on dynamic AFM measurements,
is the excitation of the cantilever by thermal noise, its correct choice and calibration is there-
fore crucial. We used a standard spring-dashpot model to describe the thermal excitation
of the cantilever, and I discuss several aspects that need to be considered on the cantilever
choice. Two type of experiments were performed with AFM on living cells: i) large amplitude
strain-to-stress response obtained for a fixed velocity of indentation, and ii) small amplitude
deformations driven by thermal noise for a fixed load. The first approach allows us to fol-
low in real time how a living cell responds to a large deformation and possibly to follow the
modification of its shear modulus depending on the depth of penetration of the cantilever.
The second approach remains a very local measure where the cantilever is pressed inside the
cell and maintained at a given load; in that case we record the thermal fluctuations of the tip
of the cantilever whose autocorrelation functions are shown to be related to the local shear
modulus G(ω) of the material, thanks to the fluctuation dissipation theorem (FDT). We ap-
ply both of these methods to compare the mechanical properties of hematopoietic stem cells
and their transformation by transduction with the chronic myelogeneous leukaemia onco-
gene BCR-ABL

On chapter 3, I present the implementation of a DPM setup to study the structure of living
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cells. This non-intrusive interferometric technique introduced by Popescu et al. in 2006 relies
on a common-path interferometer, providing a stable compact configuration with fast image
acquisition. I start by introducing the theory behind such technique and mainly, I discuss the
design principles of the setup, i.e., the diffraction grating and the spatial filter. I report first
the characterisation of calibrated systems, such as PMMA layers and polystyrene microbeads,
to validate the experimental setup. To retrieve the optical phase from the recorded interfer-
ograms, we use a two-dimensional filtering method based on anisotropic two-dimensional
wavelet transforms (Morlet). By applying this method to numerical models of microbeads,
and to experimental data, we show its ability to retrieve the phase even when there is a step
phase gradient and/or intensity variations, surpassing more traditional methods as the ones
based on the Hilbert transform or a simple Fourier filtering. I discuss the difficulties that arise
from the interpretation of the phase images, both for the cell contour and for the intracellu-
lar regions where the refractive index of the medium is integrated all along the cell thickness,
coupling both quantities. We then image different types of cells, such as RBCs, non-adherent
blood cells (primary cells, TF1 cell line characterised on the previous chapter), and adherent
cells (myoblasts C2C12 cell line, hepatocytes HepG2). We study the cell structure at the whole-
cell level via the characterisation of their contour and their internal structures. For the later
case, it was necessary to develop an analytical tool capable of retrieving the contours about
intra-cellular domains. We implemented a wavelet based contour detection method for that
purpose. This method identifies the cell regions where the OPD gradient is locally maximum,
thus, serving to characterise how complex or inhomogeneous is the intracellular structure.
We then apply the methodology presented with DPM to assess the optical properties of TF1
cells and their possible alteration when they are transformed with the chronic myelogenous
leukemia oncogene BCR-ABL. This characterisation is based on a statistical measure of the
cell morphology, i.e., geometrical parameters associated to the cell contour, estimation of the
cell refractive index thanks to their spherical geometry, and the evaluation of the homogene-
ity of the cell internal structure. Finally, I show some examples and preliminary results on the
temporal recordings of DPM. I analyse the cell movement on the x-y plane, the cell contour
deformation and the variations in the optical phase of the cell.

The last chapter, 4, is a conclusion chapter that summarises the results presented on this
thesis work, both on the experimental and analytical aspects, as well as their application to
the mechanics and dynamics of living cells, for instance hematopoietic stem cells and their
transformation by the oncogene of chronic myelogeneous leukaemia. I discuss the coherence
of the results obtained with both techniques, and how they are positioned in reference to
what has been reported in literature. The final part outlines the perspectives and the possible
research topics that could be addressed with the present methodology.
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Chapter 1

Complexity of living systems: from
scaling laws to single-cell mechanics

Biological processes span over several scales of space and time, covering more than 10 orders
of magnitude in length and up to 30 orders of magnitude in time. Traditionally, each level of
organisation has been studied in a separate and independent way from each other, having dif-
ferent sub-disciplines devoted to them (Fig.1.1) . The fast development and increased amount
of information obtained at the cellular and molecular level have led to an integrative vision
of biology, pointing out the interplay and communication across spatio-temporal scales, as
well as the need to extend our frame of observation of a given process. For instance, a living
cell performs a spatio-temporal integration of mechanical signals to respond and adapt to its
environment. Indeed, the mechanical properties of cells are crucial for their regulation and
their adaptation to their environment. When these properties are altered, pathological be-
haviours may occur. In recent years, the multi-scale approach of living systems has gained a
lot of interest, introducing ‘scaling’ or scale invariance to characterise their behaviour across
scales.

1.1 Biological systems and complexity

A living system can be described throughout several orders of magnitude. For example, a hu-
man being (100 m) is composed at the elementary level by molecules (10−9 m), involving pro-
cesses ranging from the ∼10−12 s (associated to molecular vibrations) up to 109 s (a lifetime).
Furthermore, most of these processes are somehow coupled. A single heartbeat, for example,
is the result of a series of signalling mechanisms happening at multiple levels of organisation:
a single ionic channel will open and close randomly at sub-milliseconds time scales, even-
tually leading to the opening of a group of channels and a collective flux of calcium within a
pulse during tenths of milliseconds; at a whole cell scale, the electrical stimulation will pro-
duce an action potential resulting on an electrical impulse propagating from the heart atrium
to the ventricles, causing synchronised contractions each second [5, 6]. Probably one of the
most fascinating examples of multi-scale functionality is illustrated in circadian rhythms, that
is, the oscillations in biological processes with a 24 hour period. The mammalian circadian
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Figure 1.1 – Biological processes in space and time. Spatio-temporal distribution of some examples of
biological processes. The colours highlight different groups of events accordingly to the sub-discipline
studying them. The oval encloses the range of scales and/or processes that are considered in our study.
Adapted from [1–4].

clock regulates essential functions such as metabolism, cell cycle and body temperature. An
alteration on the circadian clock will have an impact on diverse mood, sleep and neurode-
generative disorders, as well as cancer [6–9] . The circadian peacemaker is localised in the
suprachiasmatic nuclei (SCN) of the hypothalamus where nearly 20 000 neurones interact
and synchronise together with environmental cycles (particularly stimulated by light), each
one going through interlocked feedback loops in transcription and post-translational modi-
fications that generate oscillations on the core clock proteins. This integration and commu-
nication between different scales is also present in pathologies. Consider the case of cancer,
which may start from genetic mutations triggered by environmental factors. These mutations
are likely to produce modifications at a cellular level, which will may later form a malignant
cell population. This mass of cells will produce biochemical signals that affect the process of
creation of blood vessels, to in turn increase the blood supply for the tumour [10].

The structural and temporal complexity found on living systems can, under certain circum-
stances, be studied under the framework of the physics of complex systems. A complex sys-
tem is made up of a large number of simple elements interacting with each other. It should
also be thermodynamically open and most importantly, the system possesses emergent prop-
erties that cannot be explained solely by summing the individual properties [11, 12]. One
remarkable property in living systems is self-organisation, the spontaneous emergence of a
non-equilibrium structural organisation from self-driven active parts consuming energy usu-
ally produced by metabolism. Such structural organisation can be either spatial, temporal, or
both [13, 14]. As the emergent properties of the system are dependent on the scale of study, it
becomes necessary to observe what happens at different scales [15]. For example, if we want
to understand how the mechanical properties of a biological structure arise from its building
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parts, we need to describe a living dynamic structure that covers a range of time scales from
the milliseconds (molecular motors) up to several days (development of an organism) [3, 16].

1.1.1 Scaling laws in biology

Let’s consider the following function:

g (x) = Axα (1.1)

where A and α are real constants, with α ≤ 0, and x is a variable (the measured parame-
ter). When we represent eq.(1.1) in a log-log plot, this type of function follows a characteristic
straight line of slope α. From a mathematical point of view, this power-law or scaling expo-
nent α can have different interpretations: it can determine the long-range dependence, the
regularity or the self-similarity of a signal [17]. One of the oldest scaling behaviour reported
in biological systems refers to the one of allometric relations. We can find, for example, that
the basal metabolism, life span and heart-rate (Y) are related to the mass (M) of an organism
by allometric equations of the form Y = aM b [18–20].

There are numerous systems that follow a scale-invariant behaviour, in other words, they stay
quite the same no matter the scale we are looking at, as they have patterns repeating them-
selves on a whole range of scales [21]. For instance, fractals are geometrical patterns with
geometrical and topographical features that are repeated in miniature on smaller and smaller
length-scales. Such repetition independent of size or refinement level is called self-similarity
[22]. Self-similarity can go from the spatial branching of certain cardiac muscles, the lungs, up
to the dynamics of the human heart beat. The temporal recordings of heartbeats is one of the
most studied systems [23–26]. It has proven to be a system far from equilibrium presenting a
nonlinear complexity that involves coupled cascades of feedback loops. Another example is
the one of human gait dynamics [27]. The gait phenomenon refers to the step to step fluctu-
ations in human walking rhythm [23]. The scaling behaviour of these fluctuations becomes
more pronounced when the subject needs to adopt a different period than his own, with an
increase on the randomness of the fluctuations for children and elderly people. The scaling
behaviour of the dynamics of the heartbeat and human gait has proven to be an important
parameter on the characterisation of pathologies, providing an alternative way of diagnosis.

At the sub-cellular level, scaling laws have been suggested from experimental data for the sec-
ondary structure of rRNA [28], the nuclear organisation of chromatin [29], and in the coding
sequence of DNA [30], among others [31]. The scaling behaviour of the membrane flickering
of Red Blood Cells (RBCs) [32–34] has revealed differences between different morphological
states of erythrocytes, mainly between the discocyte shape and spherocytes. This difference
on the scaling behaviour of the membrane fluctuations with time has been related to a low
deformability of the membrane and hence, a higher stiffness assumed to be dependent on
cellular ATP. In a recent study, the fractal dimension of the cell membrane has proven to be ef-
ficient in distinguishing cancer cells from their healthy counterparts [22], providing a marker-
free diagnosis tool.
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1.2 Spatio-temporal description of a living cell

Single cells are often termed the building blocks of living organisms, positioning the study
of living cells as a key stage for understanding how molecular events can affect higher levels
of organisation. Even if we can consider single cells as the simplest form of life, they posses
a highly complex structure, both spatially and temporally. Furthermore, there is a remark-
able amount of molecules and proteins constantly interacting and responding to biochemi-
cal, electromagnetical and mechanical signals, conferring to the cell its ability to respond to
external stimuli from its environment. In the present work we consider the mechanical prop-
erties of the cells as a crucial factor to explain their regulation and alteration in pathological
situations. Therefore, in the following I will generally describe the structure of living cells con-
sidering only the main components involved on its mechanical behaviour. Furthermore, this
description will focus on the structural and material properties of each component, rather
than on its biochemical composition, with the objective of sketching the underlying basis
and principles of cell mechanics.

1.2.1 Nucleus

The nucleus is the biggest and stiffest cellular organelle. It encloses the genetic information
of the cell, separating the chromatin from the cytoplasm with a double lipid bilayer, known as
the nuclear envelope (NE). The NE is composed by an inner and an outer membrane, sepa-
rated by a gap of ∼ 50 nm, in contact only at nuclear pore complexes, where molecules under
∼ 40 kDa will freely diffuse from/to the cytoplasm, and the bigger ones will be actively trans-
ported [35] (Fig.1.2). The outer nuclear membrane is an extension of the endoplasmic reticu-
lum, both structurally and functionally, whereas the inner membrane adheres to the nuclear
lamina (NL), an underlying mesh structure of intermediate filaments [36].

The nucleus behaves as a viscoelastic material with very different mechanical properties from
those from the cytoplasm, suggesting that the nucleus may be the main contributor to the in-
homogeneity of the cell [37, 38]. The main techniques used to study the nuclear mechanics
include micropipette aspiration (MPA), atomic force microscopy (AFM), microplate compres-
sion and particle tracking. Interestingly, MPA experiments on isolated nuclei have revealed a
power-law rheology for the apparent elasticity E(t ) of the nucleus and its components [39]:

E(t ) = B

(
t

sec

)−α
(1.2)

where t is the time variable, B is a pre-factor in units of kPa and α is the scaling exponent
with values between 0.19-0.32, depending on the swallow state of the nucleus. This could ac-
count for the ability of the nucleus to respond differently on a broad range of timescales: at
short times the nucleus behaves as a stiffer structure protecting the nuclear interior from brief
alterations, and preventing any modification of the gene expression by sudden mechanical
changes; whereas at long timescales the lower stiffness allows nuclear deformation, hence af-
fecting the gene expression, and potentially cell spreading and crawling. Although the details
of how the mechanical forces sensed by the nucleus affect gene expression will be discussed
in section 1.3.2, it is important to say that the integrity and shape of the nuclear lamina is
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Microtubules

Actin filaments

Intermediate filaments

Nesprins

Sun proteins

Cytoplasm

Nuclear envelope

Nuclear lamina

Heterochromatin

Figure 1.2 – Nuclear envelope structure. Scheme of the interacting proteins at the nuclear envelope.
The inner and outer membrane are connected at nuclear pore complexes (shown in black). The cy-
toskeleton is anchored to the nucleus via the LINC complexes, composed by nesprins and sun pro-
teins, while on the intranuclear side, the heterochromatin enters in contact at some points with the
nuclear lamina.

crucial for the peripheral positioning of certain genome loci, as some mutations of lamina A
and lamina B, two of the main proteins of the NL perturb the intranuclear positioning and
compaction of chromosomes, altering the gene expression [40]. In fact, the nuclear lamina
is a stiff elastic network and a crucial element of the nuclear mechanics, as it contributes to
its stiffness and stability. There are more than 450 diseases associated to lamina mutations or
laminopathies, which are often related to highly tissue-specific disorders. It has been specu-
lated that the fact that laminopathies are found at a tissue level reflects the damage caused in
single cells who have a weak nuclear envelope [41], affecting the tissue-specific gene expres-
sion.

One can question, however, the relevance of the results found on isolated nuclei, as they are
unlikely to reflect a physiological situation since isolation techniques very often alter the nu-
clear mechanical properties. Indeed, at the cellular level shear stress affects the nucleus, its
positioning and its substructure, evidencing the existing connection between the nucleus and
the cytoskeleton. This coupling occurs via two main families of proteins of the nuclear enve-
lope: sun proteins and nesprins (Fig.1.2), which are part of the LINC complexes (Linkers of
Nucleoskeleton and Cytoskeleton) [42]. The interaction between the cytoskeleton and the
nucleus is central to regulate the nuclear positioning and shape, with the nucleus maintained
in a prestressed state by the cytoskeleton [43–45]. For example, a recent study used micropat-
terned PDMS covered with fibronectin, imposing geometrical constraints that revealed the
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relation between nuclear deformation and density and positioning of actin stress fibres [46].

1.2.2 Cytoskeleton

The cytoskeleton (CSK) is a network composed by several accessory and regulatory proteins,
and mainly, from three types of filaments: actin filaments, microtubules (MTs), and interme-
diate filaments (IFs). The highly dynamic nature of the cytoskeletal structure confers the cell
its ability to adapt and respond in real-time to several intra-/extracellular stimuli.

There are two essential processes responsible for the structural reorganisation of the cytoskele-
ton: the de-/polymerisation of actin filaments and MTs by the hydrolysis of ATP/GTP to AD-
P/GDP, and the dynamic cross-linking of filaments by ATP driven molecular complexes [47].
In mammalian cells, the actin filament turnover and the dynamics of molecular motors can
account for half of the ATP cell consumption. Furthermore, it is the energy consumption,
or GTP-‘chemical switch’ that makes the cytoskeleton a system far from equilibrium, being
crucial to explain the dynamic instability of MTs observed experimentally [48]. For instance,
it has been shown that in a 3-component in vitro CSK model, the non-equilibrium motor
activity controls the mechanical properties of the network [49]. Another study suggests the
ATP-dependence, and more precisely, the dependence on acto-myosin, of the spontaneous
structural rearrangements of the CSK, as observed by the positively correlated dynamics of
a bead moving inside the cell characterised by periods of confinement punctuated by hops
[50, 51].

Another interesting feature of the cytoskeleton is its emergent mechanical properties. On one
side, there is the dramatical influence of filament cross-linking on the cytoskeleton mechan-
ics [52], and on the other, there is recent theoretical evidence of a qualitatively and quan-
titative difference between the collective behaviour of several filaments and that of a single
filament, with the ATP/GTP dynamics playing a central role [48].

1.2.2.a Intermediate filaments

The intermediate filaments (IFs) are the most heterogeneous class of the large cytoskeletal
structures. They are encoded by more than 65 genes in humans, with a high cell-type and
differentiation-stage specificity [53]. As stated before, IFs form part of the nuclear lamina, but
they are also localised at cellular junctions (both cell-cell and cell-matrix junctions), where
they interact with multiple supramolecular complexes that are part of the mechanotransduc-
tion signalling pathways [54]. They are important to maintain cellular integrity and inter-
cellular connectivity, and they are thought to have a main part on the coordination of me-
chanical forces in specific tissues during embryogenic development. Diseases associated to
mutations on IF proteins are often characterised by the structural disruption or malfunction
of tissues. Besides the laminopathies mentioned in section 1.2.1, we can find, among others,
the desminopathies, a result of mutations of a muscle-specific IF protein called desmin. The
most common desminopathies are the ones affecting the skeletal muscle, and those related
to cardiac diseases [55].

Generally, the intermediate filaments are composed of rod-shaped subunits that assemble
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Dimer Tetramer Protofilament ULF IF

Figure 1.3 – Intermediate filaments assembly. Scheme of the intermediate states in IFs assembly. The
anti-parallel association of tetramers into protofilaments cause apolar structures. After a fast assembly
of unit length filaments (ULFs), the diameter is reduced in a slower phase to form IFs.

into parallel dimers (Fig.1.3). These dimers are highly stable, specially when compared to mi-
crotubules or actin filaments, resisting to non-optimal conditions as lower temperature and
different salt concentrations. The cytoplasmic filaments are first assembled into full-width
∼ 60 nm filaments, by a mechanism of lateral association. This form of assembly is rather
quick and can be completed in a few seconds. After a slower phase involving molecular rear-
rangements of these long filaments, there is an essential cooperative step where the filaments
diameter is reduced [56]. The mechanical properties of IFs are then given by the dimers and
the cohesive forces between them. As a result, the intermediate filaments network is a highly
flexible and nearly unbreakable structure, enabling the cells to support large deformations.
For instance, an AFM study on single IFs showed that they can resist strains up to 300 % [57].
Moreover, the association of IFs with microtubules and actin filaments has been shown to
reinforce the whole cytoskeletal network [58, 59].

1.2.2.b Microtubules

Microtubules (MTs) are polar polymers composed typically of 13 protofilaments with an α-
β heterodimer of the globular protein tubulin, all assembled into a tubular structure with
variable lengths but with a rather constant outer diameter of ∼ 25 nm and a wall thickness
of ∼ 4 nm [60]. They are involved in vesicle trafficking and transport, organelle positioning,
cell shape maintenance and in chromosome segregation. The MTs are found, for instance,
as part of mitotic spindles, which is the structure that forms in the mitosis process. At the
spindle mid-zone, MTs can be either linked to each other or bounded to chromosomes [61],
called kinetochore MTs (Fig.1.4B). It is thought that during anaphase shrinking kinetochore
MTs generate pulling forces that help to segregate chromosomes, as it is known that the poly-
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merisation of MTs causes pushing forces whereas pulling forces are a consequence of depoly-
merisation [60].

It has been shown that the mechanical stability of the microtubule cytoplasmic network is
partially due to the MT curvature, or bending, resulting from large non thermal force fluctu-
ations, such as the ones produced by myosin contractility or other ATP-driven motors that
affect the directionality of MT growth [62]. Nevertheless, probably the most interesting be-
haviour of MTs are the so-called dynamical instability and catastrophes (Fig.1.4A). The dy-
namical instability refers to the constant stochastic switching between growing and shorten-
ing states of MTs, probably allowing them to explore rapidly a variety of arrangements and
choosing the ones that protect them against depolymerysation [63]. A catastrophe refers to
the abrupt transition between the growing state and the shortening one. Interestingly, the
force-induced catastrophes are an intrinsic property of microtubules. It has been shown that
compressive forces increase the catastrophe frequency while decreasing the MTs growth ve-
locity [64], suggesting a possible local regulation mechanism of MTs dynamics at the cell cor-
tex. Additionally, a recent study observed that the microtubule dynamics are also affected
by the different conformations of αβ tubulin (curved, straight or helicoidal) as there will be a
selective interaction of other regulatory proteins that will affect the rate of GTP hydrolysis [65].

Finally, it is important to mention that the microtubules have a highly variable stiffness, with
an average value of at least three orders of magnitude more than actin filaments [47]. More-
over, contrary to what has been proposed with theoretical models [48], in vitro experiments
have found that the force of MT bundles increases linearly with the number of microtubules
present [66]. Perhaps such contradictory results arise from the different conditions consid-
ered, such as the GTP hydrolysis, filament cross-linking and/or isolated MTs.

1.2.2.c Actin filaments

Actin filaments play a crucial role in cell shape dynamics, as they are a key element to pro-
duce contractile forces in the cell. The globular protein actin, or G-actin, is the building block
of the double-stranded helical actin filament, or F-actin. In a similar way to microtubules
assembly, actin polymerisation is driven by ATP hydrolysis in a head-to-tail manner, pro-
ducing polar structures. Depending on the function and the cell structure where they are
found, the filaments can be organised into different architectures (Fig.1.5): branched/cross-
linked networks (lamellipodiums/membrane cortex), and anti-/parallel bundles (stress fi-
bres/filopodium) [67].

The mechanical properties of F-actin and the actin dynamics are often studied in vitro, us-
ing simple models of the actin network that consist of actin filaments, a cross-linker, and a
molecular motor. Actin filaments assemble into a stable network of stiff and rigid bundles in
the presence of the cross-linking molecule, whereas the addition of ATP and molecular mo-
tors can result in a highly dynamic structure. The activity of such heterogeneous system will
depend on its connectivity in order to molecular motors to produce force [68]. Actin filaments
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Figure 1.4 – Microtubules polymerisation and localisation. (A) MTs are polymerised into tubular
structures from GTP-αβ-tubulin heterodimers. Microtubules play an important role in mitosis (B)
and in maintaining the cell structure (C).

are usually coupled to myosin, a molecular motor that uses ATP to produce pulling forces on
actin filaments. When there are enough cross-linkers in the actin network, that is, when the
network has a sufficient level of connectivity, the forces exerted by molecular motors produce
contraction. According to the way actin filaments are anchored to the membrane cortex, this
contraction can result in changes on the cell shape and cortex remodelling [69, 70]. The actin
network contractility is specially important for cell adhesion, migration and during mitosis.

In interphase, cells undergo a structural remodelling where the actin network is rapidly dis-
mantled and reorganised, conferring the cell its round shape. Moreover, the separation of
centrosomes is dependent on the cortical flow of actin and the myosin activity [71]. At the
end of mitosis, actin is again rearranged into a structure known as the contractile ring that
constricts the cell membrane to separate the daughter cells. The formation of the contrac-
tile ring requires a group of cross-linking proteins called septins, which are involved in the
‘circularisation’ of actin bundles [72]. In cell adhesion, actomyosin bundles are coupled to
the extracellular matrix via focal adhesions, producing a force-transducing slip-stick friction
between the actin filaments and the extracellular matrix [73]. Adherent cells present an inter-
esting phenomenon of actin dynamics consisting of travelling waves. Wave-like actin patterns
are found on spreading, migrating and stationary cells, each one presenting different dynam-
ics and extending across subcellular domains [74, 75]. For example, a recent study has found
that in geometrically regulated cells, a type of actin waves called circular dorsal ruffles present
‘breathing’ modes and wave annihilation upon collision of wavefronts [76].
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Figure 1.5 – Actin filaments organisation. Actin filaments can organise into different structures with
distinct mechanical properties. The predominant architectures are cross-linked networks (A) and par-
allel or anti-parallel bundles (B).

The force generated by actin filaments has been measured on the order of picoNewtons using
an optical trap-based method [77]. Surprisingly, it was also found that small actin bundles
were similar to single F-actin, suggesting that there is no cooperation between the separate
filaments in the bundle to generate forces. It has been shown that the actin bundles establish
a mechanical feedback with microtubules in vitro: actin bundles can capture and guide MT
growth, while microtubules can determinate the F-actin spatial organisation, as they can pull,
stretch and bundle single actin filaments [78].

1.2.3 Cell membrane

The plasma membrane separates the cell interior from the environment, allowing the cells
to selectively control the import and export of ions and polar molecules. According to the
fluid mosaic model [79], the cell membrane can be though of as a two-dimensional liquid in
which lipids and proteins diffuse and interact, and as such, it cannot resist shear stresses in
the membrane plane, but it will resist normal stress or isotropic tension in the plane [80]. It
is composed of a bilayer of phospholipids with some embedded proteins. Furthermore, it is
highly heterogeneous with disordered and ordered phases, also known as lipid rafts, charac-
terised mainly by the presence of cholesterol, which is used to adjust the rigidity and structure
of the ordered domain. The line tension at the boundary of these domains plays a major role
in maintaining the non-spherical shape observed in some cell types. It has been shown that
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the bilayer stretching elasticity and chemical composition determine the order-disorder tran-
sition, the length of the boundary and the bending rigidities in both phases [81]. Indeed, the
membrane deformation, or curvature, is controlled by the proteins and lipids within, as either
the shape of the molecules themselves, or the differences in the two monolayers will result
in the membrane spontaneous curvature. Interestingly, this curvature induces the reorgani-
sation and remodelling of the ordered/disordered phases, guiding the spatial organisation of
proteins and lipids, thus, establishing a continuous feedback between both processes [82, 83].

An animal cell often deals with changes in the osmolarity of the external fluid which is re-
flected on pressure differences between the cell interior and the outside. Given that the
plasma membrane is quite thin and fragile, the cell stores some excess membrane in reser-
voirs, allowing the cell to increase its surface area by a factor of 3 to 10 times, hence, control-
ling the membrane tension to avoid breakage. This becomes particularly necessary in hypo-
tonic solutions, as the cells swell due to the influx of water [84, 85]. It has been found that the
hydrostatic pressure is non equilibrated along the plasma membrane of blebbing cells [86].
Blebs are almost spherical protrusions with a typical size of ∼ 2 μm that appear momentarily
from the surface of the cell, reappearing elsewhere in a repetitive asynchronous manner. They
originate from the detachment of the actin cortex from the membrane, which once a critical
threshold tension is reached, grows by filling up with cytosol and without any cytoskeletal
structure, in a process that lasts a couple of tenths of seconds. In the ∼2 min shrinking step,
the bleb passes from being a membrane similar to that of erythrocytes, to a membrane that is
coated with an actin cortex [87]. Given that the actin cortex plays a crucial role in blebbing, it
has been proposed that by modelling the cortex as an active elastic material, the main char-
acteristics of the bleb can be predicted [88].

One remarkable feature of cell membranes is that they are out-of-equilibrium structures. In-
deed, since ionic channels are active proteins that diffuse around in the membrane, there are
ATP-driven force fluctuations that become a source of non-thermal noise, producing inter-
esting membrane dynamics [89]. A recent study proposes a hydrodynamic theory based on
the forcing of a membrane by a fluid with motile elements, showing that the essential mecha-
nism lies in the interaction of the membrane with the cytoskeleton, driven by ATP [90]. In fact,
one of the most debated topics concerns the origin of the cell membrane fluctuations, and in
particular, to which extend they are caused by thermal fluctuations. It is often assumed that
rapid spontaneous oscillations are related to passive thermal fluctuations, such as the flicker-
ing of erythrocytes or even oscillations in lymphocytes, happening at ∼ 1 kHz and ∼ 0.2-30 Hz
frequency, respectively [91]. The slower membrane deformations, however, are often related
to an underlying cytoskeleton mechanism driven by ATP, and thought to be crucial for the cell
adhesion and motility [91–95].

To end this section, I will briefly mention two of the least studied properties of cell mem-
branes: its roughness, and the effect of electrostatic charges on its mechanical properties. The
membrane roughness can be a very sensitive marker of cell health, however, due to its chal-
lenging characterisation and experiment-dependent measurement, it has not been well ex-
ploited. In spite of that, experiments performed with AFM have proven to be successful when
a proper data analysis is involved [96, 97], perhaps fractal analysis being the most promising
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analysing tool. On the other hand, electromechanics of cell membranes have gain some re-
cent attention, acknowledging that the membrane potential and the negative charge on the
cytoplasmic side can induce modifications on the mechanical properties of the membrane
[98, 99].

1.3 Single-cell mechanics

The study of the mechanical properties of living cells imposes several challenges, both exper-
imentally and theoretically. With single cells being a highly complex material whose struc-
ture is constantly remodelling in order to adapt to its environment, the key question is: how
can we measure the mechanical properties of an object if it reacts to the measurement tools?
Furthermore, there is still an uncertainty about what is the most adequate manner of describ-
ing the cell mechanical behaviour as it is unclear what kind of material we are dealing with.
In general, a living cell can be considered as a viscoelastic object with nonlinear dynamics.
However, the details and mechanisms of this behaviour as well as its validity across temporal
scales remain elusive.

The central point for the characterisation of the cell mechanical properties is the deforma-
tion or resistance to deform of cellular and intracelullar structures when they are subjected
to external forces [100, 101]. There are numerous experimental tools that have been devel-
oped with this purpose, presenting a large choice of applied forces and spatial resolution:
uni-/biaxial tension or compression, pure shear, hydrostatic pressure, bending, twisting, and
any combination of them either in a local or global manner with an observation of the intra-
/extracellular structure (Fig.1.6). The vast set of experimental conditions and properties mea-
sured leads to a big variability on the results and what is more, on the interpretation of such
results. In spite of that, there seems to be a general agreement on some characteristics of cell
mechanics: it is mainly dictated by spatio-temporal organisation of the cytoskeleton, and it
depends greatly on the cell microenvironment. As a result, the cell mechanical properties
will be different during cell cycle [102], cell differentiation [103, 104], and they will impact the
ability for the cell to spread and/or migrate [105, 106].

There are several models that have been proposed to explain the mechanical behaviour of
living cells. The simplest models are perhaps those associated with a spring-dashpot system,
either arranged in series or in parallel. However, even if they do predict to some extent the
cell viscoelastic properties, they are very limited in what refers to the cell dynamics [107, 108].
In the last decade or so, there have been two models who have gained a lot of attention, par-
ticularly for their non-linear mechanical aspect: tensegrity and soft glassy materials. In the
tensegrity model the stability of the structures relies on the interaction of elements in ten-
sion, such as the stress fibres, with those elements who are under compression, as is the case
of microtubules. This balance of forces makes the structure extremely reactive to any outside
perturbation: when the structure is deformed the individual elements will reorient, while the
local force can result in an integrated structural response [109, 110]. Nevertheless, the in-
creased amount of results finding a power-law behaviour or scale-invariance of the cell vis-
coelasticity have put the spotlight on soft glassy materials (SGM) [111–117]. The SGM model
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Figure 1.6 – Experimental techniques to probe single-cell mechanics. Examples of the most fre-
quently used experimental approaches to asses the mechanical properties of single cells. The forces
are applied either at a whole cell level (B,D), with a local probe (C), or at an intermediate scale (A,E).

describes the cell cytoskeleton as a material close to a glass transition, in other words, as a
soft elastic solid with some relaxation processes driven by non-thermal stress fluctuations.
This implicates that the main features of the cell mechanical behaviour are a dynamical in-
terplay of structural disorder and rearrangements. A slight modification of SGM known as the
Glassy Wormlike Model (SWM) includes the retardation of filament relaxation due to sticky
interactions, and it has been proposed to explain the active tuning of cell stress stiffening and
fluidisation in response to large external forces [118].

With a general vision of the cell mechanical behaviour getting clearer, the questions currently
tackled refer to the detail mechanisms of this behaviour. Two of the most challenging research
axes include the measurement of intracellular forces at localised sub-cellular structures, and
the temporal evolution of the cell response to mechanical stimuli. The measurement of in-
tracellular forces requires experimental tools with high spatial resolution that do not disrupt
the intra-cellular structures. One of the most successful techniques is perhaps the study of
cells lying on a substrate conformed by flexible micropilars [119]. Depending on the chemical
composition of the surface and the stiffness of the micropilars, the cell will attach and exert
forces causing the deflection of the pre-calibrated posts. Another recent approach consists
on using FRET based sensors that have been genetically inserted in the cytoskeleton cross-
linking proteins, demonstrating that the changes in the intracellular tension are mediated by
myosin [120]. In what respects to the dynamical measurements, the difficulty lies in the lim-
ited temporal scales that can be accessed experimentally, thus requiring novel techniques and
methodologies to be developed. For instance, by implementing a two-parallel plate system
where one of them is flexible and capable of tuning in real time the effective stiffness experi-
enced by a cell, it has been shown that there is a fast response happening at sub-seconds time
scales, likely implying a purely mechanic response [121].
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1.3.1 Cell microenvironment

The main cell microenvironment is the extracellular matrix (ECM). It provides the scaffold
that gives physical support to cells and regulates the intracellular signalling. Cells are con-
stantly evaluating their environment and respond accordingly, producing intracellular forces
that act on the ECM. The extracellular matrix is a dynamic structure whose molecular com-
ponents include collagens, ellastins and fibronectins, among others [122]. It is known that
the rigidity of the ECM determines the cell proliferation and drives cell differentiation into
different lineages [103]. Additionally, the matrix elasticity is important for cell contraction,
migration and spatial organisation via a force feedback depending on actomyosin. It has been
shown that the cells apply higher forces on stiffer substrates [123], and that the cell-induced
deformation of the ECM propagates a certain depth into the matrix [124].

1.3.2 Mechanotransduction

Mechanotransduction refers to the process in which the cells sense their physical environ-
ment, translating mechanical properties into biochemical signals. In a general sense, the me-
chanical feedback that the cell establishes with its environment can be simplified into three
main stages: cells probe the physical properties of its environment by constantly applying
forces and evaluating its ability to deform; depending on the mechanical input that the cell
gets, a biochemical signalling pathway is triggered; as a consequence, the cell adapts and re-
acts to its environment in real-time. Although most of the molecular components involved
in each of these steps are known, it is still unclear how they interact and what is their precise
role within the feedback.

1.3.2.a Sensing the microenvironment properties

It has been proposed that the cell senses mechanical forces via two types of protein com-
plexes: stretch-induced ion channels, and integrins. In the former, the stress applied to the
cell membrane will result on a protein conformational change, switching between open and
closed states and causing a rapid increase on the intracellular calcium used as a second mes-
senger in diverse signalling pathways [125]. Integrins, on the other hand, are transmembranal
proteins that allow the interaction between the cytoskeleton and the ECM at focal adhesions
(FAs). The integrins sensing mechanism is dictated by four key parameters: the strength of
integrin binding to ECM ligands, the force, the speed of cell retractions and the sensitivity of
associated mechanosensors [126]. There is no actual evidence of a direct binding between
integrins and the cytoskeleton, instead it is assumed that they recruit and anchor a protein
complex that connects to actin. Furthermore, it is likely that this complex will be responsible
for the transformation of the mechanical force into a biochemical signal, as there are numer-
ous signalling proteins localised at FAs [127].

Focal adhesion sites are several microns long and structurally polarised. They evolve from
small dot-like adhesions that are continuously formed, eventually maturating into FAs, which
grow and extend centripetally and concomitantly with the formation of actin stress fibres
[128]. The formation and maintenance of FAs depends on the continuous application of local
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Figure 1.7 – Temporal mechanical response of a cell. Different active cell responses to mechanical
stimuli occur over a wide range of timescales from the moment the perturbation was made. Adapted
from [136].

force. Indeed, it has been shown that tension reinforces focal adhesions, with the direction of
the force applied correlating with the elongation axis of the FAs [129]. A recent study proposed
that the substrate rigidity regulates the loading rate of cell-substrate forces via the recruitment
of more integrins into FAs [130]. The recruitment of new bonds is in turn driven by cytoskele-
tal movements, resulting in a dynamical process of bond loading, dissosiation and formation
[93].

In recent years, the role of actomyosin contractility has been recognised to be crucial for rigid-
ity sensing [131]. The actin-mediated mechanosensing depends on the myosine contractile
stress, the speed of actin treadmilling, the elastic modulus and viscoelastic relaxation time of
the cortex, and implies that the system can tune its efficiency without altering its behaviour
[132].

1.3.2.b Integration of mechanical signals and cell response

One of the main advantages of cell regulation and adaptation depending on mechanical forces
is the ability to respond rapidly. Forces can propagate through a wave-like mechanism across
the cell body in a few microseconds as they travel at a velocity of several meters per second,
with the signal transduction networks activating on several seconds [122]. One of the most
intriguing parts of mechanotransduction is how the biomechanical signals are integrated at a
nuclear level. It is known that there are several genes that are affected by mechanical cell per-
turbations, although the mechanisms of force-regulated gene expression remain elusive. One
possibility is that the nuclear deformation can directly alter the positioning of heterochro-
matin, normally anchored to the nuclear lamina, modifying the genomic structure and its ac-
cessibility [133]. Interestingly, even though it has been proposed that the perinuclear actin
cap connected to the nucleus through LINC complexes is important for the fast mechan-
otransduction [134], it has also been demonstrated that the LINC complexes are not abso-
lutely necessary to activate the mechanosensitive genes upon a mechanical stimuli, suggest-
ing that stretch forces could also act directly on nuclear pore complexes affecting the nuclear
transport [135].
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Summary

Biological systems present an outstanding structural and temporal complexity. Not only are
the biological processes spanned over a wide range of scales, but they are also integrated
and coupled in feedback loops. A key point to understand the spatio-temporal integration
from molecules to tissues and their alteration in pathologies is the mechanical behaviour of
living cells. The mechanical properties of a single-cell are dictated by the organisation and
dynamics of its structure, with the cytoskeleton filaments being a central component in cell
mechanical responses. The study of emergent properties and scaling laws has proven to be a
complementary and useful tool to understand the underlying mechanisms of the cell struc-
tural remodelling and its adaptation to the environment.
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Chapter 2

Stress-strain response of single-cells
under AFM indentation

2.1 Mechanical properties of viscoelastic materials

2.1.1 Low deformation regime: Linear elastic materials

When the deformation is small, most materials deform elastically in a linear way. Typically,
the ability for a material to deform is described by a ‘stiffness’ modulus, defined as the ratio
between the stress and the strain. The Young’s modulus (E), for instance, is a measure of
stiffness in simple extension or compression, (Fig.2.1A) :

E = σ

ε
(2.1)

with the stress σ and the strain ε given by

σ= F

A0
, ε= Δl

L0
(2.2)

where F is the force applied to the object cross area A0, producing a change Δl on its total
length L0. A second type of stress, called shear stress, occurs when the deformation of a solid
is caused by a force parallel to one of its surfaces while its opposite face experiences an op-
posing force (such as friction) (Fig.2.1B). The shear modulus G is then defined as the ratio
between the shear stress and the shear strain (in Fig.2.1B, ε=Δlx /Ly ). In the case of isotropic
materials, the Young’s modulus E and the shear modulus G are related by the expression

G = E

2(1+ν)
(2.3)

with ν being the Poisson’s ratio of the material [137].

2.1.2 Viscoelasticity and the time dependence

Unlike pure elastic materials, where the strain is proportional to the stress, the viscous ma-
terial response will also introduce temporal dissipation during the deformation or strain-rate

21



Chapter 2. Stress-strain response of single-cells under AFM indentation

A
L0

Δl

F

B
Δlx

Ly

F

Figure 2.1 – Types of stress applied to deform a material. (A) Tensile stress. A force F is applied
perpendicular to the object cross area A0 (highlighted in dark grey), producing a change Δl0 on its
total length L0. (B) Shear stress. The force F is applied parallel to one of the object surfaces, producing
a shear strain ε=Δlx /Ly .

effects [138]. There are three major ways of describing viscoelastic behaviour: (i) the integral
representation, based on the Boltzmann superposition principle, (ii) the differential repre-
sentation, described by an assembly of Hookean springs and Newtonian dashpots, and (iii)
the molecular description [137]. We will focus on the differential representation, which is per-
haps the most intuitive approach for biological systems.

The elastic response is described by a spring of elastic constant E

σs = Eεs (2.4)

and the viscous response is described by a dashpot element of viscosity η

σd = η
dεd

dt
(2.5)

The total response of the system is therefore given by the combination of spring and dashpot
elements, arranged either in series (Maxwell model), in parallel (Kelvin-Voigt model), or in a
mixture of both (standard linear solid model).

2.1.2.a Maxwell model

In the Maxwell model, the same force is transmitted from the spring to the dashpot. The
force transmitted to the two mechanical elements is constant and the energy is shared into
the elastic and viscous components. As the two elements are in series, the total strain εT is
the sum of εs and εd :

dεT

dt
= dεs

dt
+ dεd

dt
= dσ

dt

1

E
+ σ

η
(2.6)

In a stress-relaxation experiment, the material is subjected to a sudden strain that is kept
constant over the duration of the test, and the stress is measured over time. Then, with dεT /dt
= 0, we can write eq.(2.6) as
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dσ

dt
=−E

η
σ (2.7)

Defining t = 0 as the starting point of the experiment, with σ = σ0 the initial stress, by a
straightforward integration of eq.(2.6), we get

σ(t ) =σ0e−
E
η

t =σ0e−t/τ (2.8)

meaning that the stress required to hold the material at a constant deformation fades away
with time, due to the viscous effect of the material: the stress decays exponentially with a
characteristic time constant τ= η/E .

While the Maxwell model works well for the stress-relaxation experiments, it is of no use for
modelling creep. The creep test is another transient experiment performed on viscoelastic
materials, where the material is loaded and the change of deformation with time is recorded.
The Maxwell model on these constant-stress conditions predicts that the strain will increase
linearly with time, in disagreement with experimental observations.

2.1.2.b Kelvin-Voigt model

The Kelvin-Voigt model connects a Newtonian dashpot and a Hookean spring in parallel, such
that the stress is distributed at each time into the two mechanical components

σT = Eεs +η
dεd

dt
(2.9)

For the creep experiment described earlier, we obtain

ε(t ) = ε∞
(
1−e−t/τ) (2.10)

Upon application of a constant stress, the material deforms at a decreasing rate, asymptoti-
cally approaching the steady-state strain ε∞.

As for the Maxwell model, the Kelvin-Voigt model has a limited application. It fails to predict
stress-relaxation experiments, since under such conditions the model behaves as an elastic
solid.

2.1.2.c Generalised Maxwell model

It is possible to obtain a frequency decomposition of the temporal strain-stress response (the
spectrum of characteristic times) by combining a number of Maxwell (or Voigt) elements. In-
deed, the relaxation spectrum is an important measure of viscoelastic behaviour, as it gives
an idea of the number of relaxation processes involved in the stress relaxation. Furthermore,
the relaxation spectrum can be derived from different types of experiments allowing compar-
isons between results.

Consider a number n of Maxwell elements joined in parallel. In the case of a stress-relaxation
experiment, the strain is constant and the total stress of the system is simply the sum of the
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Chapter 2. Stress-strain response of single-cells under AFM indentation

individual stresses

σ(t ) = ε
n∑

i=1
Ei e−t/τi (2.11)

where Ei and τi are respectively the stiffness and the relaxation time of the i th element.
Equivalently, we can write eq.(2.11) as

σ(t ) = [Gr ε]+ε

∫∞

0
f (τ)e−t/τdτ (2.12)

with Gr ε refers to the instantaneous stress. The function f (τ)dτ replaces En and defines the
concentration of Maxwell elements with relaxation times between τ and (τ+dτ). The relax-
ation modulus is then given by

G(t ) =Gr +
∫∞

0
f (τ)e−t/τdτ (2.13)

Therefore, the modulus at time t after the strain is imposed, is the sum of the initial modu-
lus and the relaxation function that describes how the material stores the deformation in a
viscous way to achieve the deformation at time t .

2.1.3 Viscoelastic models for living cells

There are several mechanical models that have been developed to characterise living cells
based on experimental observations [139]. We will review here in a non-exhaustive manner
the continuum mechanical models. The continuum approach is suited to study the mechani-
cal response at the level of a cell, as it treats the cell as the combination of continuum mechan-
ical elements at the expense of local molecular dynamics involved in the cell deformation.

• Linear viscoelastic solid model. Upon small strain deformation, the cell is assumed as
an homogeneous viscoelastic material, disregarding any structural organisation (Fig.2.2A).
Although initially developed for leukocytes, the model has proven to be more useful on
several types of anchorage-dependent cells including endothelial cells, fibroblasts and
chondrocytes.

• Maxwell liquid drop model. The cell is assumed as a pre-stressed cortical shell contain-
ing a Maxwell fluid (Fig.2.2B). This model explains the initial jump during micropipette
aspiration (MPA), the fast recoil of the projection inside the pipette upon unloading
(Fig.1.6 in section 1.3) and the initial rapid elastic rebound. However, upon a large
strain-deformation it fails to explain the experimental data.

• Newtonian liquid drop model. Unlike the Maxwell liquid drop model, the Newto-
nian model assumes that the cell interior is a homogeneous viscous liquid, with mea-
sured viscosity on the order of 100-200 Pa s. On the other hand, the cell cortex is taken
as an anisotropic viscous fluid layer with a static tension but without bending resis-
tance (Fig.2.2C). The membrane tension has been measured as 0.02-0.04 ·10−3 N/m.
This model cannot predict the elastic phenomena obtained with a Maxwell liquid drop
model and observed in MPA.
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A

Linear viscoelastic solid model

B

Maxwell liquid drop model

C

Newtonian liquid drop model

D

Shear thinning liquid drop model

E

Compound liquid drop model

Figure 2.2 – Viscoelastic models for living cells [139] .

• Shear thinning liquid drop model. It has been observed that several biological materi-
als present shear thinning, in other words, their viscosity decreases with an increasing
rate of shear stress. The shear thinning liquid drop model adds a power-law constitutive
relation to the cortical shell liquid core model: a positive feedback is established such
that an increase in shear rate will lead to a decrease in viscosity (Fig.2.2D). It is more
suited to model the large deformations than the small strain deformations.

• Compound Newtonian liquid drop model. The cell is modelled as a multilayered struc-
ture: (i) the plasma membrane and the ectoplasm compose the outer layer with a thick-
ness >100 nm, (ii) the middle layer is composed by the endoplasm, which is fluid like
and the softest region of the cell, (iii) the nuclear envelope is a cortex with constant
tension and (iv) the core layer is composed by the condensed region of the nucleus
(Fig.2.2E). It is perhaps the model that best describes the cell behaviour in transient ex-
periments1. The respective elastic/viscosity ratio of each layer leads to different time
scales that can explain the viscoelastic phenomena under small and large deformation.
Although it can explain some nonlinear experimental phenomena, different parame-
ters result in the same rheological behaviour, due to the impossibility to observe exper-
imentally each layer separately.

2.1.3.a Fractional scaling laws in cellular rheology

Recent studies of the microrheology of the intracellular medium have highlighted the fact
that this viscoelastic medium is complex and cannot be modeled by the association of a finite
set of elastic and viscous elements as reported above, despite it is a very common approach
in mechanical engineering [140, 141]. Actually, the viscoelastic complex modulus of the cell
body exhibits a weak power-law behavior over a wide frequency range.

1Transient experiments usually involve following the cell response upon deformation, for example, creep or
stress-relaxation experiments.
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Cell cortex rheology.
Using magnetic twisting cytometry (MTC) coupled to an optical detection of the motion of
a bead coupled to membrane RGD receptor, Fabry et al. [111, 142] succeeded in probing
the cell surface dynamics in the frequency range from 0.01 Hz to 1 kHz. During the bead
displacement on the cell surface (forced by a twisting magnetic field), the cell responds with
an opposing torque that reflects the cell mechanical strength. The ratio of the complex torque
T̃ to the complex bead displacement d̃ in Fourier space is defined as the elastic modulus G̃(ω):

G(ω) = fg
T (ω)

d(ω)
, (2.14)

where the proportionality geometrical factor fg depends on the shape, thickness of the cell
and the degree of embedding of the bead in the cell cortex; G(ω) = G ′(ω)+ iG ′′(ω), where G ′

is the storage modulus and G ′′ the loss modulus. The range of stress and deformation used
in this study was limited to the linear response regime for the cell. These authors found for
five types of adherent cell models that both G ′ and G ′′ increase with excitation frequency as
a weak power-law over the whole frequency range. These power-law dependences of G ′ and
G ′′ on frequency was also observed by other groups [50, 113, 143–146] and with other meth-
ods, such as atomic force microscopy [112, 147]. Except for a small additive viscous term that
emerges from this power-law regime at high frequencies, the mechanical responses collected
from the cell surface did not appear to be tied to any specific frequency and in that respect
was considered as (time) scale-invariant.

When a power-law behaviour emerges in the rheological response of a cell, a whole range of
frequencies is required to bring the experimental demonstration of the existence of scale in-
variance. Actually, given this finite range of frequencies, the apparent power-law could still
be parametrised by a combination of a large (but finite) number of viscoelastic elements, as a
crossover between two distinct viscoelastic regimes. The most impressive result of the above
studies is the fact that all the curves captured from different cells of various types could be col-
lapsed to single master curves typical of soft glassy materials (SGM) [141, 148], demonstrating
the universality of this behaviour [145, 149]. This universality law can be written as

G(ω) =G ′(ω)+ iG ′′(ω) =G0

(
i
ω

ω0

)x−1

+ iμω , (2.15)

where x is a unifying parameter, G0 and ω0 are cell type dependent scaling factors for stiffness
and frequency, and μ is an additive Newtonian viscosity term that is negligible for frequencies
lower than 30 Hz. This equation tells us that (below 30 Hz) the phase angle φ of G(ω),

φ= tan−1
(

G ′′(ω)

G ′(ω)

)
= π

2
(x −1) , (2.16)

is independent of the forcing frequency. This unifying parameter x depends on the cell state:
x decreases to 1 when the cell approaches an ideal elastic material (for instance by increas-
ing its contraction) whereas x increases towards 2 (limit of a Newtonian viscous fluid) when
the cell prestress is diminished (e.g. by disrupting the actin CSK). The common and generic
features of SGMs are due to the fact that they are composed of discrete, numerous elements
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which are inter-connected in a random way via weak interactions. These materials are out-
of-equilibrium metastable systems, very much like living cells.

Cytoplasm rheology.
Microparticles embedded inside living cells have been used as tracers of the internal cellular
activity [150–152]. Two different regimes of transport have been observed: on the one hand
passive fluctuations (local movements of the tracers) related to the local viscosity of the cyto-
plasm and on the other hand active trajectories which are driven by molecular motors such as
kinesins and dyneins along microtubules. The same type of experiments was also performed
more recently by nanoparticule tracing and manipulation inside A7 melanoma, MCF-10A and
MCF-7 cells [153] with optical tweezers leading again to the conclusion that the elastic mod-
ulus follows a power-law: | G(ω) |∼ ωβ. These optical tweezer measurements confirmed the
rubber-like elastic properties of the cytoplasm of these cells in two-dimensional adherent
conditions.

2.2 Principles of Atomic Force Microscopy

2.2.1 Experimental setup and operation modes

The Atomic Force Microscope (AFM) introduced in 1986 by Binnig et al. [154] has become a
powerful tool in biology, with applications going from topography of DNA [155] to the mea-
surement of elasticity in thin tissues [156]. The principle of its operation is to measure forces
as small as picoNewtons by monitoring the elastic deformation of a flexible cantilever beam.
At the free end of the cantilever there is a tip that serves as a probe, interacting with the object
of study (Fig.2.3A). The tip-sample contact forces produce the cantilever bending, and this de-
formation is captured with a position sensitive photodiode via a laser beam reflected on the
top of the cantilever (Fig.2.3B). The distance between the cantilever and the sample surface
or support, that is, the vertical position of the cantilever, is controlled using a piezoelectric
motor, while the (optional) scanning in the x-y plane is usually performed with a motorised
microscope stage.

Different operation modes exist depending on the feedback stablished between the cantilever
deflection and the vertical position, or height. Among them we can find

• Contact mode. The cantilever is in constant contact with the surface of the sample.
The feedback loop adjusts the height to maintain a constant cantilever deflection. The
topography image is obtained from the feedback loop signal while scanning in the x-y
plane. It is possible to obtain a measure of friction by monitoring the torsion signal of
the cantilever.

• Tapping mode. The cantilever is in intermittent contact with the surface. The intermit-
tency is obtained by exciting the cantilever at frequency close to its resonant frequency.
This mode is particularly suited to image very soft samples, as the force applied is very
small, keeping a low sample deformation. The feedback loop maintains the amplitude
of oscillation constant.
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Figure 2.3 – Atomic Force Microscopy. (A) Diagram of the basic setup of an Atomic Force Microscope.
A position sensitive photodiode registers the cantilever deflection via a laser diode that is reflected on
the top of the cantilever. (B) Scheme of the measured deflection. The photodiode is segmented in four
quadrants A, B, C, and D. The ‘zero’ position of the laser corresponds to the centre of the photodiode
(light grey circle). The cantilever deflection z deviates the laser spot (dark grey circle) by an angle
2θ=2z/r . For a clamped-free beam, r = 2L/3, with L being the cantilever length.

• Dynamic AFM. This mode is similar to tapping mode, but without establishing contact
with the surface. The cantilever is excited at its resonant frequency, and changes in the
frequency, amplitude of oscillation and phase are monitored as the cantilever is kept
close to the surface.

• Multi-harmonic AFM. This is a variant of dynamic AFM and/or tapping mode. The
cantilever is excited at multiple resonant frequencies and the signal is recorded simul-
taneously. The higher-harmonics signals can reveal more details about the sample, par-
ticularly when imaging in liquid.

2.2.2 Estimation of the cantilever spring constant

The cantilever spring constant kc can be calculated from the total cantilever deflection (Δz)
due to thermal fluctuations [157]. If the cantilever is modelled as a harmonic oscillator in ther-
modynamic equilibrium, the mean-square displacement of the cantilever tip from its neutral
position is described by [158]

〈Δz2〉 = kB T

kc
(2.17)

with kB the Boltzmann constant, and T the temperature. Since several vibration modes are
possible due to the geometry of the cantilever (Fig.2.4), to obtain the mean square deflection
of one mode 〈Δz2

n〉(often the first), one should use a correction factor βn ,

〈Δz2
n〉 =

kB T

kc
βn (2.18)

Usually, the deflection is detected using the optical lever technique, which in reality, is a mea-
sure of the inclination instead of the deflection. Therefore, if we are interested in the forces
acting at the end of the beam, another correction factor β∗

n should be introduced [159], and
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Figure 2.4 – Scheme of the first three symmetric modes for a rectangular cantilever

Mode n ωn/ω1 (rect.) β∗
n (rect.) ωn/ω1 (V-shape) β∗

n (V-shape)

1 1 0.8175 1 0.76
2 6.22 0.2511 5.23 0.297
3 17.55 0.0863 14.05 0.096
4 34.39 0.0441 27.16 0.06

Table 2.1 – Theoretical values of the correction factor βn for a free rectangular (rect.) and a V-shaped
cantilever [158, 159]. Only the symmetric modes are considered, with ω the resonant frequency.

kc is finally given by

kc =
β∗

nkB T

〈Δz∗2

n 〉
(2.19)

where z∗
n is the effective deflection measured with the instrument.

In practice, we record the effective cantilever deflection when it is oscillating far from the sur-
face, and we compute the power spectral density (PSD) of the temporal signal, obtaining the
resonant modes of the thermally-excited cantilever (Fig.2.5a). Then, we fit the first resonant
peak using a lorentzian function (Fig.2.5b), and we compute the area under the curve, which
is equivalent to 〈Δz∗2

n 〉, and we estimate the cantilever spring constant kc using eq.(2.19), with
the correction factor β∗

n corresponding to the cantilever geometry.

2.3 Materials and Methods

2.3.1 TF1 cell line and culture conditions

The TF1 cell line (ATCC CRL-2003) was maintained at 1x105 cells/mL in RPMI-1640 medium,
10% FCS and granulocyte macrophage colony-stimulating factor (GM-CSF, 10ng/mL) (San-
doz Pharmaceuticals). Engineered TF1-GFP and TF1-BCR-ABL-GFP cell lines were obtained
by transduction with an MSCV-based retroviral vector encoding either the enhanced green
fluorescent protein cDNA alone (EGFP) as a control or the BCR/ABL-cDNA upstream from an
IRES-eGFP sequence [160]. EGFP+ TF1 cells were sorted using a Becton Dickinson FACSAria.
Before force curve recording, cells were seeded at the concentration 5x105 cells/mL and incu-
bated for 24 hours. Adherent cells were prepared by letting non adherent cells adhere on glass
cover slips coated with fibronectin (Sigma) in culture treated plates (BD Biosciences/Falcon)
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Figure 2.5 – Power spectral density of the thermal-excited fluctuations of a rectangular cantilever
in air. (a) The first resonant peak (in blue) is selected from the whole PSD data (black curve). (b) The
selected data (blue curve) is fitted using a lorentzian function (in red). Nominal kc = 0.12N /m.

for 1 hour at 37oC, before removal of the non-adherent fraction. Finally, the glass coverslip
was mounted on the AFM stage and the cells were kept in their culture medium at room tem-
perature (24oC). We thank Bastien Laperrousaz and Véronique Maguer-Satta from the Centre
de Recherche en Cancerologie de Lyon for providing the cell samples.

2.3.2 Force indentation curves

2.3.2.a Data recording on the TF1 cell line

Force curves were recorded at z scan velocity 1 μm.s−1. Prior to each experiment, the de-
flection sensitivity of the cantilever was estimated on fused silica and the cantilever spring
constant was calibrated by the thermal noise method, the deflection set-point and feedback
control gains were chosen for optimum signal to noise ratio. Indentation was carried out at
the centre of each cell within 2 hours after removing cells from the incubator. In all the exper-
iments, cell sizes were evaluated from their microscopic images.

The experiments on section 2.4 were performed with an AFM/STM 5500 (Agilent Technolo-
gies distributed by Scientec, Les Ulis, France) mounted on an inverted microscope (IX71
Olympus) and with pyramidal shape tip cantilevers (SNL-10, Bruker) having a nominal spring
constant of 0.06 N.m−1. The experiments on section 2.5 were performed with a CellHesion 200
AFM system (JPK Instruments). Transparent pyramidal tip cantilevers with rectangular sec-
tion (qp-Cont from Nanosensors, Neufchatel, Switzerland) with a nominative spring constant
0.1 N.m−1 were used.

2.3.2.b Wavelet Transform Analysis of force-indentation Curves

Within the norm L 1, the one-dimensional WT of a signal F (x) reads:
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Wψ[F ](b, s) = 1

s

∫∞

−∞
F (x)ψ∗(

x −b

s
)d x , (2.20)

where b is a position and s (> 0) a scale parameter. A typical analyzing wavelet ψ(x), that is
admissible (of null integral) is the second derivative of a Gaussian g (0)(x) = e−x2/2, also called
the Mexican hat wavelet:

g (2)(x) =− d 2

d x2 g (0)(x) = e−x2/2(1−x2) . (2.21)

Via two integrations by part, we get that the WT of F with the second derivative of a Gaussian
wavelet Wg (2) [F ](b, s) at scale s is nothing but (up to a multiplicative coefficient s2) the second
derivative of Wg (0) [F ](b, s), i. e. a smoothed version of F by a Gaussian function at scale s:

Wg (2) [F ](b, s) = s2 d 2

db2 Wg (0) [F ](b, s) . (2.22)

Note that we can derive a similar relation with the first derivative of F . Given that g (1)(x) =
d

d x g (0)(x) =−xe−x2/2 [30, 161, 162]:

Wg (1) [F ](b, s) = s
d

db
Wg (0) [F ](b, s) . (2.23)

Let us point out that the validity of the WT definition (Eq. (2.33)) was further proved on distri-
butions including Dirac distributions and derivatives [162, 163].

The advantage of the WT method is to use the same smoothing function to filter out the ex-
perimental background noise and to compute first-order and second-order derivatives with
the same smoothing characteristic scale. In this study, we used modified versions of the defi-
nition (Eq. (2.33)) of the WT:

Tg (0) [F ](b, s) =Wg (0) [F ](b, s) , (2.24)

Tg (1) [F ](b, s) = 1
s Wg (1) [F ](b, s) , (2.25)

Tg (2) [F ](b, s) = 1
s2 Wg (2) [F ](b, s) , (2.26)

These formulae give directly a measure of F in nN, dF /d Z in nN/nm and d 2F /d z2 in Pascal·10−9

smoothed by a Gaussian window of width s. For more details on the wavelet-based analysis
of AFM force-indentation curves, please refer to the paper of Digiuni et. al [164] included in
Appendix A.

2.3.3 Thermally excited AFM

2.3.3.a Signal recording of cantilever fluctuations

A JPK CellHesion 200 system was used. The deflection sensitivity was estimated by perform-
ing force curves on the surface of an empty petri dish. The temporal signals were obtained by
recording the deflection and the torsion signals using a high-speed module of acquisition, at
a frequency of 2.5 MHz in segments of 2 s, repeating once for the recordings on the cells, and
five times for a total length of 10 s on the other cases. In the low frequency acquisition, we
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recorded at 100 kHz during approx. 300 seconds. For measurements in liquid, 2 ml of liquid
(distilled water or culture medium) are added in small sized petri dishes. Once the cantilever
reaches the loading force contact with the sample, its fluctuations are recorded after a time
delay of 5 s to avoid instabilities related to the cantilever movement of approach to the sam-
ple surface. The experiments on living cells where performed at a constant load of F= 2 nN.
After the fluctuations signals were recorded, a series of 20 force-indentation curves were per-
formed on the cell to estimate the shear modulus. The tip velocity was set to 1μm/s, and the
setpoint to 2nN.

2.3.3.b Data analysis

Spectral densities
The power spectral density (PSD) for the free oscillations of the cantilever was computed
using the Fast Fourier Transform (FFT) and averaging over 16 segments of a signal fraction
corresponding to 220 points, without overlapping (or sliding window). The PSD for the fluc-
tuation signals of the cantilever in contact with the cells was computed for the total length
of the signal (222 points) later filtering the PSD curve in loglog scale over frequency windows
Δ log10ω= 0.03. Recently we have computed wavelet spectra of the fluctuation signals using
Cauchy wavelet transforms. This work has been written for a publication this summer, and
a preprint has been added at the end of this manuscript (Appendix B) for those interested in
the rigorous equations for wavelet spectral decompositions.

Wavelet Transform of the fluctuation signals
The one-dimensional WT of the deflection signal z∗(t ) was computed using Eq.(2.33) given in
the section 2.4.2. The time-scale map for the detection of the change in dynamics of cantilever
was computed using the first derivative of a gaussian as a mother wavelet, for a range of scales
between [0.2 s: 1 s:10 s]. The filtering of the deflection signal was performed using a gaussian
window of 2 s width.

2.4 Quasi-static measurement of cell stiffness with atomic force mi-
croscopy

As emerging in the late 1990s from scanning tunneling microscopy (STM) technologies, atomic
force microscopy (AFM) was early recognized as providing a unique opportunity to investi-
gate the structure, morphology, micromechanical properties and biochemical signaling ac-
tivity of cells under physiological environment, and this with high temporal and spatial reso-
lutions [154, 165]. The principle of AFM is to bring directly in soft (or hard) contact a sharp tip
cantilever probe over a cell surface and to capture with piconewton sensitivity the interaction
force of the tip with the cell surface. AFM is a very powerful technique that has been used to
detect single biomolecules (receptors, lipids) on single cell surface without the need for fixa-
tion or staining. AFM has such a sensitivity that it can be used to measure interaction between
and within single biomolecules [166–168]. Beyond its preliminary application for imaging the
topography of biological objects [169–171], AFM has become a multitask scanning probe ver-
satile tool (antigen recognition, molecular and membrane flexibility, single molecule, gel, cell
and tissue elasticity, electric current, conductance, near field electromagnetic field) [172, 173].
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AFM force spectroscopy can be applied to probe the elastic properties of a cell, either adher-
ent or confined in a narrow chamber [174–177]. Its unique ability to detect and to map the cel-
lular elasticity of living cells with a few tens of nanometres resolution definitely outmatches
the performance of other techniques such as magnetic or optical tweezers. However it has
as a main limitation that it cannot probe cell internal structure without crossing before the
cell cortex. This difficulty has been partly overcome recently thanks to a singular space-scale
analysis of force-distance curves to disentangle the viscoelastic moduli of the cell cortex and
of the underlying CSK [164]. Interestingly, two-dimensional mapping of mean elastic mod-
ulus on a large variety of cells [174, 175, 178–181] were reconstructed, revealing for the first
time intracellular interplay of mechanical forces in living cells.

2.4.1 Large distance cell indentations with atomic force microscopy on living cells

Unlike AFM based microrheology measurements [112, 147] discussed in chapter 1, which
were limited to very small deformations (nanometer in scale), we consider now much larger
deformations (more than 1/10 of the cell size) and their temporal and/or frequency decom-
position [182]. A majority of previous studies of force-indentation responses of living cells
(performed at constant tip velocity) assumed that the cells behave as stationary visco-elastic
systems [174, 181], mainly because they operated in the limit of very small deformations
(δL/L < 0.01, where L is the characteristic size of the cell). This assumption allowed the use of
either the Hertz model [183] (for a spherical indenter), the Sneddon model [184] (for a pyra-
midal indenter) or a combination of these two models for blunted pyramidal tips [185].

The Sneddon’s variation of the Hertz model describes the evolution of the force F with the
indentation δz = z − zc , for the case of a pyramidal (or conical) and non-adhesive cantilever
tip [184]:

F (δz ) = 2tanθE

π(1−ν2)
δ2

z =
4tanθG

π(1−ν)
δ2

z (2.27)

where θ is the half angle of the indenter, E = 2G(1+ν). This Hertz-Sneddon model assumes
that the tested material is at equilibrium and does not change with the deformation, it gives
therefore an estimation of the static Young’s modulus E , or equivalently the shear modulus G .
When the sample visco-elasticity is not stationary (typical of an active material), differential
operators must be used in Eq.(2.27). Starting with the cantilever at rest position, z(t ) = 0, for
t < 0, and moving at constant rate, z(t ) = v0t for t ≥ 0, the force-indentation relationship
becomes [186]:

F (t ) = 8v2
0 tanθ

π(1−ν)

∫t

0
G(t ′)(t − t ′)d t ′ (2.28)

G(t ) is the time-dependent shear modulus of the material. Taking the second derivative of
F (t ) with respect to t , we obtain

d2F (t )

dt 2 = 8v2
0 tanθ

π(1−ν)
G(t ) (2.29)

Therefore, from a fixed velocity deformation experiment we can retrieve the shear modulus
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Figure 2.6 – Shear modulus extraction from AFM force curves on immature hematopoietic TF1 cells.
(a) Approach (red) and retract (green) curves on a suspended cell. The blue dashed line corresponds to
a parametrisation of F(Z) with a parabolic function (Eq. (2.27)). (b) G(I=δz ) curve computed from the
second derivative of the force curve (Eq. (2.29)), obtained with a fixed size (width 400 nm) second-
order analysing wavelet (Eq. (3)). (c) and (d) are the same curves obtained for an adherent cell.
(adapted from Laperrousaz et al. [160])

G(t ) by knowing the second order derivative of the applied force 2.

Figure 2.6 compares the temporal response of two immature hematopoietic TF1 cells. Fig.2.6(a)
and (c) shows the approach (red) and retract (green) force curves recorded from respectively,
a suspended and an adherent cell. The left-most curves are not treated or filtered, however
reaching low noise force-indentation curves without additional filtering (to keep the sensi-
tivity of this apparatus in force (a few pN)) requires a correct cantilever calibration (with the
thermal noise method [187]) and a fine tuning of the laser beam reflected on the cantilever tip
and collected on the photodiode detecting its flexural movements. In Fig.2.6(a,c) we use the
Sneddon model (eq.2.27) to parametrise the approach force curve with a parabolic function
with constant G (blue dashed line) within 3 μm indentation range. In Fig.2.6(b,d) we estimate
the local curvature of the force curve (eq.2.29) using a second derivative of a Gaussian (width
400 nm) as analysing wavelet. For the suspended TF1 cell (Fig.2.6a,b) the transition to con-
tact is smooth and the variation of G(δz ) is very progressive, reaching a plateau around 120
Pa that lasts about 2 μm, before an ultimate sharp increase. For the adherent TF1 cell, the
slope of the approach curve presents a discontinuity (from nearly zero to a finite value) when

2Changing the variable t for z, and using eq.(2.3), we obtain the more traditional form d2F
dz2 = 4tanθ

π(1−ν2)
E(z).
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2.4. Quasi-static measurement of cell stiffness with atomic force microscopy

the cantilever tip comes in contact with the cell (Fig.2.6c). This discontinuity of the derivative
of F appears as a hump in G of size given by the width of the analysing wavelet (Fig.2.6d).
At larger indentation I , the G(I ) curve reaches a plateau around 160 Pa that lasts over 2 μm
before increasing again. The last part of the G(I ) curves corresponds to the interaction of the
cantilever tip with the nucleus, that appears to be stiffer than the surrounding cytoskeleton.
Even though the values of G(I ) are not very different on the plateaus before the nucleus de-
formation, the way the suspended and adherent cells respond to the mechanical stress is very
different. The former responds as a volume body with a viscoelasticity that increases pro-
gressively with the deformation (Fig.2.6b), analogous to the linear viscoelastic solid model
(Fig.2.2A). The later responds as a stiffer cortex impeding the penetration of the cantilever tip
(Fig.2.6d), similar to the response of the Maxwell liquid drop model (Fig.2.2B). These robust
observations of change in local curvature of the force curves (i.e. in the local shear modulus
G) put into light the need of revisiting the analysis of the cell mechanical response.

2.4.2 Tracking the scaling-laws of AFM force-indentation curves

To investigate the larger indentation depth regime (0.01 < δL/L < 0.1), we cannot make an
assumption on the invariance of the shear modulus of the material during the indentation.
For exemple, if G(z) ∼ δ

ζ
z , we would expect a force curve with fractional power law behaviour

for F (z):
F (δz ) ∼ z2+ζ . (2.30)

Actually, as described in section 2.1.3 the cell is made of several structures (the extra-cellular
membrane, the actin cortex, the cytoskeleton, the endoplasmic reticulum, the Golgi appara-
tus, the mitochondrial network, the nuclear membrane and cortex, the nucleus territories,
the DNA and chromatin), separated or/not separated with a lipidic membrane, and each of
this internal structure may have its own mechanical response. We treated the force curves
with an empirical power-law equation, with an unknown exponent h:

F (δz ) = A0

[
δz

δz0

]h

, (2.31)

in a given range of indentation δz = z − zc , with zc the position where the cantilever comes in
contact with the cell (that we estimated at the z-value where both the slope and the curvature
of the force curve emerge from the background noise3). The pre-factor A0 has the dimension
of a force; it corresponds to the amount of force required to deform the cell by δz0 
 150 nm,
that we have fixed to this value for reasons. The first reason is that the tip of the cantilever
is usually rounded or friction-weared on several tens of nanometers which impacts the force
curve on distances of about 100 nm, the second reason is that this value corresponds to the
characteristic thickness of the actin cortex (∼ 100− 200 nm). We do not therefore expect to
have a very fine an local (3D) characterization of the cell cortex, but a rather global response.
In particular, if it stiffness is larger than underlying cytoskeleton, this will appear in the force
curve as a bump in the curvature of F (δz ), typical of a cortical shell [188].

3For more details on the method to detect the contact point, please refer to the article of Digiuni et. al in
Appendix A.
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The exponent h in eq.(2.31) is now considered as a variable quantity. Consistent with the
dynamical recording of AFM force-indentation curves, we are preferred to analyze the slope of
these curves because not only it could help us get rid of linear trends and also the force curve
derivatives were straightforwardly corrected for the stiffness of the cantilever. We assume that
the first derivative of F takes the following general power-law form:

F (1)(δz ) = ∂F (δz )

∂δz
= T

[
δz

δz0

∣∣∣∣α , (2.32)

α= h−1 (eq.(2.32)), and T = A0h/δz0 is a pre-factor that has the unit of a tension (nN/μm) and
which is proportional to the Young’s modulus. Here we do not assume any a priori scaling-law
exponent for cell strain-to-stress response [139] and we consider the exponent α as character-
ising how the cell reacts and adapts itself to the external stress via its cortex and cytoskeleton
mechanical properties. If the cell responds as a linear elastic material (like a soft ball), we get
α = 1, according to the Sneddon’s model (Eq.2.27) [184]. If instead the cell responds as an
elastic shell like cortex [188], we expect that α = 0 and in that case, A0/δz0 is proportional to
the shell cortex stretching modulus KS = WC E/(1−ν2), where WC is the shell thickness, E is
the Yound modulus of the cortex (3D). Note that if we fix δz0 ∼WC , we get A0 ∼ EW 2

C .

From a practical point of view, a reliable estimate of the power-law exponent α and pre-factor
T (eq. (2.32)) from experimental force-indentation curves requires an accurate determination
of the contact point zc . This detection was performed by computing both the first and the sec-
ond derivative of the force curve and by defining thresholds on the force, its first order and
its second order derivatives comparatively to their standard deviations far from the contact
point. The elaboration of this original method required first a full wavelet-based decomposi-
tion of the force curves (see section 2.3.2.b and Appendix A for details).

Within the norm L 1, the one-dimensional WT of a signal F (x) reads:

Wψ[F ](b, s) = 1

s

∫∞

−∞
F (x)ψ∗(

x −b

s
)d x , (2.33)

where b is a position and s (> 0) a scale parameter. A typical analyzing wavelet ψ(x), that is
admissible (of null integral) is the second derivative of a Gaussian g (0)(x) = e−x2/2, also called
the Mexican hat wavelet:

g (2)(x) =− d 2

d x2 g (0)(x) = e−x2/2(1−x2) . (2.34)

For a given width of the analysing wavelet, we compute the smoothed functions F and F (1)

and we estimate the contact position Zc for a given threshold of F and F 1. To fix these thresh-
olds, we look for a compromise in between a too strong smoothing of the derivative that
would wipe out the non contact - contact transition and a too mild smoothing that would
still suffer from a noisy estimation of the contact point. Once defined a range of indentation
I values where the power-law scaling is expected to apply (Eq. (2.32)), the α exponent is esti-
mated from a linear regression fit of F (1)(I ) in a logarithmic representation [189].
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Figure 2.7 – Illustration of the computation of the scaling exponent α from three model force-
indentation curves corresponding to three different α exponents. (a-c) Force indentation curves
F (δz ). (d-f) Derivatives of the force curves F (1)(δz ). (g-i) log10 F (1)(δz ) vs log10(δz ). The blue curves
correspond to α = 1, the green curves correspond to α = 0.5, the red curves correspond to α = 0. On
panels (a-c) we have performed a quadratic fit of the force curves assuming that the Sneddon’s model
(Eq. (2.35)) [184] is correct. On panels (g-i) we have performed a linear regression of F (1)(δz ) in a log-
arithmic representation. The slopes of these dotted-dashed lines give the reported estimates of the
scaling exponent α.

The performance of our method is illustrated in Fig.2.7, comparatively to standard fitting
methods like the Sneddon’s quadratic force model [184]. We report three model force curves
corresponding to three different values of the α exponents (Eq.2.32), namely α= 1 (Fig.2.7a),
α = 0.5 (Fig.2.7b) and α = 0 (Fig.2.7c), such that the force curves at the end of a deforma-
tion of 1 μm reach the same value (2.35 nN). We have also smoothed the force curves with a
smoothing window of 100 nm to reproduce the experimental situation, this smoothing may
change slightly the exponent close to the contact point. As commonly done in the literature,
let us first parametrise the three force curves with a Sneddon quadratic function (plotted with
dotted-dashed lines in Fig. 2.7a-c):

F (δz ) = γEδh
z with γ= 2tanθ

π(1−ν2)
∼ 0.31 , (2.35)

where θ is the half tip angle (∼ 20o) and h = 2.
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Chapter 2. Stress-strain response of single-cells under AFM indentation

The parametrisation of the three curves gives respectively E = 800 ± 10 Pa for α = 1, E =
560±20 Pa for α= 0.5, E = 400±40 Pa for α= 0. We note that the fitting of the force curve for
α= 1 is very good, but that it gets worse when α decreases. With this curve parametrisation,
we should be tempted to conclude that the green force curve (α= 0.5) in Fig. 2.7b gives a softer
response than the blue curve (α= 1) in Fig. 2.7a, since E is reduced by a factor of 0.7, and the
red force curve(α = 0) in Fig. 2.7c gives an even softer response, since E is now reduced by
a factor 0.5. Within a Sneddon model parametrisation of these theoretical force curves, we
would have concluded that the smaller α = 0 force curve (in red) would correspond to the
softer situation. This conclusion is indeed completely misleading since by a simple visual in-
spection of the force curves in Fig. 2.7d-f, we realise that the red force curve increases much
faster at low indentations than the blue force curve, meaning that it costs more strength to de-
form the cell. When investigating the derivative F (1)(δz ) of the force curves, we realise that the
three situations correspond to three different power law behaviours. From a linear regression
fit of F (1)(δz ) in a logarithmic representation (Fig. 2.7g-i) over the range of scales [150 nm;
1000 nm], as in the experiments, we get the following estimates for α: 1.08± 0.02 (α = 1),
0.51±0.02 (α= 0.5) and 0.001±0.01 (α= 0). The pre-factors T estimated at δz0 = 150 nm are
respectively: T = 0.07 nN/μm (α= 1) leading to E ∼ T ∗(1−0.52)/I0 ∼ 330 Pa, T = 0.13 nN/μm
(α= 0.5) giving E ∼ 630 Pa and T = 0.26 nN/μm (α= 0) giving E ∼ 1300 Pa. Comparing these
pre-factors leads to the conclusion that the α = 0 force curve model indeed corresponds to
a stiffer system (amplification by a factor of 3.85) than the α = 1 force curve model, in better
agreement with the faster increase of the force curve when α= 0.

These estimations are summarised in the following table:

α 1 0.5 0

h =α+1 2 1.5 1

E (Pa) (Sneddon ) 800 560 400
E (Pa) (T pre-factor) 330 630 1300

These numerical examples show that one has to be careful when using blindly standard para-
metrising methods to fit AFM force-indentation curves. As illustrated in Fig. 2.7, the conclu-
sions from the parametrisation by Sneddon’s model (Eq. (2.35)) may be completely mislead-
ing.

2.4.2.a Actin cortex stiffening as signature of leukaemic cells

In a recent study [189, 190] we have used a unique model of human immature Chronic Myel-
ogeneous Leukaemia (CML) cells (TF1 cell line, transduced with the BCR-ABL oncogene) that
reproduces early steps of stem cell transformation [160] to question the possible modifica-
tions of mechanical properties of immature hematopoietic cells upon oncogene expression.
Interestingly, in transformed cells, BCR-ABL was shown to bind actin filaments (F-actin) [191],
a major determinant of the cell mechanical behaviour [192], and to induce its redistribution
into punctate, juxtanuclear aggregates [193]. In addition, the binding to F-actin seems to be
involved in transforming ability of BCR-ABL.
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Figure 2.8 – Force indentation curve analysis of control and cancer TF1 cell lines, in adherent con-
ditions. (a) Force indentation curves F (δz ) on a TF1-GFP adherent cell: approach curve (red), retract
curve (green). (b) Logarithmic representation of the first derivative F (1) of the force curve. The black
dashed line corresponds to a linear regression fit estimate of the exponent α. (c) Histogram of T val-
ues computed from 240 TF1-GFP adherent cells (4367 force curves). (d) Corresponding histogram of
α-values; red: α< 0.25.(a’-d’) same as (a-d) for TF1-BCR-ABL adherent cells. The T and α histograms
where computed from 240 TF1-BCR-ABL adherent cells (4058 force curves). (adapted from Laper-
rousaz et al. [160])

Unlike adherent cells, non adherent hematopoietic cells raise a challenge for AFM studies be-
cause they tend to slip from the cantilever tip when performing the nano-indentation. We
have let the cells to adhere on a fibronectin-coated coverslip before AFM probing [194, 195] .
Interaction of the integrins at the membrane of cells with fibronectin-coated surface not only
confines cell movements on the glass surface but likely changes its cytoskeleton architecture,
inducing a cascade of molecular events leading to cell spreading phenomenon. In Fig. 2.8 are
reported the results of a comparative analysis on adherent transduced TF1 cells, respectively
the TF1-GFP cell line transduced with a MSCV-based retroviral vector encoding the enhanced
green fluorescent protein cDNA alone used as a control, and the TF1-BCR-ABL cell line trans-
duced by the same vector containing BCR-ABL cDNA upstream from an IRES-eGFP sequence
[160].

We observe on the sampled force curves in Fig.2.8a, a’ that F (δz ) is much flatter in the first mi-
crometer indentation range, which is confirmed by the computation of the scaling exponent
α = 0.35 for the TF1-GFP cell (Fig. 2.8b) and α = 0.13 for the TF1-BCR-ABL cell (Fig. 2.8b’).
These two cells have a cortex that is definitely stiffer than their internal cytoskeleton. We have
colour-coded in red the force curves with α< 0.25 as an indication that the cortical actin shell
behaves much stiffer than the underlying cytoskeleton. Note that we do not get the expo-
nent α = 1 predicted by the Sneddon’s model [184]. The fact that 0 < α < 1 means that if we
compare the forces required at large and small indentations, their ratio is smaller than ex-
pected from the Sneddon’s model. Another interesting observation is the difference between
the retract and approach curves which is much smaller for the TF1-BCR-ABL cell, suggesting
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Chapter 2. Stress-strain response of single-cells under AFM indentation

that the deformation of this cell involves less dissipative loss. The comparison of the his-
tograms of T and α values obtained from the analysis of 240 adherent cells of both kinds
is even more instructive, since it reveals that whereas the percentage of TF1-GFP cells with
a cortical shell signature (α < 0.25) is less than 3.5% of total cell responses, it reaches 14.6 %
with the TF1-BCR-ABL cells, which represents a 4-fold increase of these responses for the can-
cer cells. This difference is not so much marked on the T histograms. However, if we select
the force curves with α < 0.25 (red), we observe a drastic change in the T histograms, with a
significant increase of the median T value from 0.087±0.006 nN/μm to 0.120±0.004 nN/μm
respectively. When approximating T by Eδz0 /(1−ν2), where ν is the Poisson ratio (which is in-
correct since the exponent α is not strictly equal to zero), we get a median Young’s modulus at
150 nm indentation depth which confirms some increase from E = 435 Pa for the control cells
to E = 600 Pa for the cancer cells. We did this approximation to show that we recover the same
order of magnitude for these HSCs as previously reported in the literature [177]. We must in-
sist on the fact that the pre-factor T (as the Young modulus) only informs on the strength of
the cell, but does not precisely quantify its strain-to-stress dynamical response as given by the
power-law exponent α. The footprint of the cellular modifications produced by the transduc-
tion of these cells by the BCR-ABL oncogene is thus clearly revealed by their strain-to-stress
response (decrease of α and increase of T ) when they are confined to adherence. These trans-
formed cells have a stiffer shell cortex that protects them from deformation. In consequence,
these cells are also less motile because they loose their contractility and spreading ability.

When investigating mechanical responses of immature normal and cancer cells in adherent
and non-adherent conditions, we observe that when BCR-ABL interacts with actin cytoskele-
ton, the AFM force-indentation scaling-laws are impacted [190]. Tracking the scaling-law ex-
ponent α of these force curves with a wavelet-based computation of their local slopes, we
reconstruct histograms of α values that reveal for the first time that BCR-ABL expression in
immature cells modifies their mechanical responsiveness to stress through a decrease of α
towards zero. This is an indication that the first stages of TF1 transformation upon BCR-ABL
could likely involve a stiffening of the outer cortex of these immature cells relative to their
cytoskeleton.

2.5 Temporal survey of the cell mechanical fluctuations

We want to address here the question of contact of soft materials at the nanoscale, and more
precisely the contact of materials with ill-defined surfaces, or fluctuating surfaces. Indeed, at
the submicron-scale thermal fluctuations are no longer negligible and they may even drive
the mechanical response of a mechanical system. This situation is very common in biology
and sub micrometer soft matter structures since these systems are very sensible to external
fluctuations.

The impact of thermal fluctuations is decisive in intracellular dynamics as well as cell-to-
cell interaction mechanisms, from nuclear transcription, replication, repair and recombina-
tion machineries to acto-myosin molecular motors, mitochondrial fission-fusion processes,
transmembrane transport and sensing complexes, a very large set of macromolecular com-
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plexes are working stochastically while maintaining a global shape and biological function
of the cell. In particular if thermal fluctuations are diminished, the conformational change of
molecular motors by ATP to ADP that drives cell motility become inefficient and most cellular
mechanotransduction functions are cancelled.

In some situations the cooperative interplay of molecular machines can lead to the rising of
periodic or quasiperiodic dynamics from the background noise [196–198]. In other situations,
the local cell dynamics remains apparently stochastic and scale invariant be highlighted by
magnetic twisting cytometry [50, 142, 144, 146] or atomic force microscopy [112, 147].

2.5.1 Cantilever dynamics and thermal noise

Let us consider the AFM cantilever as a damped spring-mass system with N degrees of free-
dom (fig. 2.9), where N is given by the number of symmetric modes of vibration that can be
measured. The equation of motion in its matricial form is:

Mẍ(t )+Cẋ(t )+Kx(t ) = p(t ) (2.36)

where M, K, and C, are respectively the mass matrix, stiffness matrix, and damping matrix. All
of them are square matrices of N xN , and M is a diagonal matrix. The position vector is given
by x(t ) = x1(t ), ..., xN (t ), and p(t ) = p1(t ), ..., pN (t ) is the external force or excitation.

Assuming the vibration is simply harmonic, the resonance frequencies ωn for mode n are
obtained from the eigenvalue problem:

||K−ω2M|| = 0 (2.37)

This equation is called the frequency equation of the system. Expanding the determinant will
give an algebraic equation of the N th degree on the frequency parameter ω2 for a system
having N degrees of freedom. The N roots of this equation (ω2

1,ω2
2, ...,ω2

N ) represent the fre-
quencies of the N modes of vibration which are possible in the system. It can be shown that
for real, symmetric, positive mass and stiffness matrices, that is, for a stable structure system,
all roots of the frequency equation will be real and positive.

According to the orthogonality properties, which can be demonstrated by applying Betti’s law,
there is a coordinate system Yn (normal-coordinates) where the system can be written as N
uncoupled equations. Then, using the eigenvectors Φn, we can define the generalised mass
Mn = ΦT

nMΦn, the general stiffness Kn = ΦT
nKΦn, and assuming that the orthogonality con-

ditions also apply to the damping matrix, the generalised damping Cn =ΦT
nCΦn. In a similar

way we define the excitation for each mode n as pn(t ) =ΦT
np(t ).

The total response of the system now can be obtained by solving the N uncoupled modal
equations:

Ÿn(t )+2ξnωnẎn(t )+ω2
nYn(t ) = pn(t )

Mn
(2.38)
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where ξn = Cn
2ωn Mn

.

Assuming that Yn is of the form Yn = yneiωt , Eq.(2.38) becomes:

Yn(−ω2 −2iωξnωn +ω2
n) = pn(t )

Mn
(2.39)

Solving Eq.(2.38), the amplitude response function of mode n is given by:

y2
n = A2

n

(ω2
n −ω2)2 +ω2Δωn

2 (2.40)

with An := |pn |/Mn , andΔωn is the difference betweenωn and the frequency at y2
n = (y2

n)max /
�

2.
Additionally, a practical parameter to characterise the nth mode is the quality factor Q, de-
fined as Q =ωn/Δωn .

Note that experimentally we measure the frequency of resonance of the damped system, ωDn ,

and is given by ωDn =ωn

√
1−2ξ2

n .

(a)

(b)

Figure 2.9 – AFM cantilever as a damped spring-mass system. (a) Scheme of the first three symmetric
modes for a rectangular cantilever. (b) Scheme for a damped spring-mass system with 3 degrees of
freedom, where the mass is coupled in series

.
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Figure 2.10 – Oscillations from a clamped-free rectangular cantilever. (a) Thermal excitation of the
cantilever in air. A fraction of the recorded deflection signal was selected to show the oscillations cor-
responding to the first vibration mode. (c) Power Spectral Density (PSD) of the cantilever deflection
z∗(t ). The experimental data is plotted in solid line, and the fit using eq.(2.40) in dashed. (b) and (d)
same as (a) and (c) for the same cantilever oscillating in water.

2.5.1.a Parametrisation of experimental curves

The effective deflection signal was recorded for a rectangular cantilever (qp-CONT Nanosen-
sors, with nominative stiffness kc =0.08-0.15 N/m), oscillating freely in air (Fig.2.10a) or in
water (Fig.2.10b) far from the surface. The Power Spectral Density (PSD) was computed and
the data was fitted using eq.2.40, for each mode (see Table 2). The complete curve is the result
of the sum of all the modes (Fig.2.10c-d)

We can easily appreciate the damping effect on the resonant modes due to the liquid cham-
ber, as all the peaks become wider. The damping ratio is estimated by the curve parametrisa-
tion as at least one order of magnitude larger in the free oscillations in liquid (table 2.2). Note
that although we observe more resonant peaks in the PSD of the oscillations in water than for
the spectrum in air (Fig.2.10c-d), the ratio between the frequencies ωn/ω1 remains quite the
same (table 2.2), indicating that the cantilever still behaves as a campled-free beam.

The characteristic spectrum of the cantilever fluctuations is very informative about its poten-
tial utility to capture the dynamics of living cells. On one side we have to consider a cantilever
soft enough to be flexible and able to deform upon the cell movement, and on the other side
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n ωDn/2π
(kHz)

ωn/2π
(kHz)

Qn ξn Kn

(N/m)
Mn

(ng)
Cn

(ng/ms)
ωn/ω1

Air
1 30.19 30.19 47.94 0.0104 0.15 4.174 16.5 1
2 221.38 221.39 117.88 0.0042 0.67 0.347 4.0 7.32
3 641.9 641.9 183.88 0.0027 4.05 0.249 5.4 21.26

Liquid
1 7.41 7.81 2.25 0.22 0.12 50.700 1100 1
2 58.3 59.0 4.55 0.10 0.41 3.043 247.5 7.55
3 186.0 187.2 6.21 0.805 1.33 0.966 183.1 23.96
4 404.1 406.33 6.77 0.073 2.68 0.412 155.53 52.02

Table 2.2 – Values of the parameters obtained using eq. 2.40 to fit the experimental data recorded from
a rectangular cantilever oscillating free far from the surface (∼500μm).

we need to be careful about the background noise that the cantilever could capture. If the
cantilever is too soft, it will be oversensitive to the noise due to the liquid chamber and/or
AFM instrument, leading to a ‘contamination’ of the fluctuation signals. For this reason we
have made a comparison of different cantilevers normally used in experiments with soft cells.
Figure 2.11 shows the spectrum obtained from different triangular cantilevers (MLCT series,
from Bruker) oscillating in air (black curves) or in liquid (blue curves). From the resulting PSD
curves, we can see that a cantilever with a spring constant kc ≥ 0.2 will not be appropriate for
these type of dynamic experiments. Additionally, the problem that arises when considering a
triangular geometry is the importance of the torsion signal, requiring a very precise alignment
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Figure 2.11 – PSD comparison of v-shaped cantilevers oscillating free in air or in water. We recorded
the fluctuation signals of four different v-shaped cantilevers oscillating free in air (black curves) or in
water (blue curves). The data set was obtained on the same working conditions (instrument, support,
liquid chamber, temperature, etc..). The cantilevers used are Bruker’s MLCT probe, cantilever type A
(tip 1), B (tip 2), E (Tip 3), and F (tip 4).
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2.5. Temporal survey of the cell mechanical fluctuations

of the laser spot on the cantilever tip to avoid an undesired mixing of torsion and deflection,
as it can be seen on the side small peaks appearing notably on the spectrum in air of Tip 3,
and the spectrum in water of Tip 1. Although it has been widely accepted that triangular or
v-shaped cantilevers are more stable to lateral forces, our results are in agreement with the
work of Sader [199, 200], where he states via modelling and its experimental validation that in
fact, v-shaped cantilevers are more unstable to lateral forces than cantilevers with a rectan-
gular geometry.

We have chosen to work with a rectangular cantilever with a nominative spring constant
kc =0.08-0.15 N/m. Besides the advantages offered by its geometry, this cantilever has a thin
reflective gold coating only at the free end of the cantilever, where the tip is localised (sketched
in Fig.2.9). This type of coating has been designed to optimise the measurements in liquid
environments, and mainly, it allow us to have a clearer optical image of the cantilever and to
check if we have a proper beam (without any material stuck to its surface) during the full test.
This is particularly important when capturing the fluctuations of living cells, as there could
be floating cells that may stick to the cantilever surface, changing the way it deforms.

2.5.2 Dynamics of healthy and leukaemic HSCs

We have recorded the temporal fluctuations of two adherent healthy TF1 cells and two adher-
ent leukaemic cells (TF1-BCR-ABL). As it can be seen from the topography image shown in
Fig.2.12, and as it will be shown later on section 3.7.3 with experiments performed with DPM,
in forced-adhesion conditions the leukaemic cells are quite easy to distinguish from healthy
ones due to their more rounded shape.

1

2
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4

5

6

7

8

(a) (b)

Figure 2.12 – AFM topography image of an adherent TF1-BCR-ABL cell. (a) Height image (colour
coded in μm). (b) Deflection error image, colour coded in grey scale from -30 nm (black) to 30 nm
(white). Scale bar is 10μm.

For each cell, we have established a contact between the AFM cantilever and the surface of the
cell, maintaining the force constant at F ∼2 nN. The temporal evolution of the cantilever ver-
tical and lateral deflection were recorded using two data acquisition systems coupled to the
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Chapter 2. Stress-strain response of single-cells under AFM indentation

(a)

(b) (c)

Figure 2.13 – Positioning of the AFM cantilever tip on TF1-GFP cells. . Transmission images of the
AFM cantilever and the TF1-GFP cells (a), and the positioning of the tip over the cell 1 (b) and 2 (c).
In (b) and (c) the exposure time of the camera has been adjusted to be allow visibility on the coated
portion of the cantilever.

AFM instrument. This allows us to measure simultaneously the fluctuations at two different
frequency ranges. The low-frequency range refers to data recorded at 100 kHz during ∼300
seconds. The higher frequency range on the other hand, corresponds to data acquisition at a
rate of 2.5 MHz during 2 seconds.

We start by looking at the data obtained from a TF1-GFP cell. We have selected cells with an
elongated shape (Fig.2.13a), and we have tried to position the cantilever tip above the nuclear
area of the cell (Fig.2.13b,c). The tip positioning is performed using only the optical transmis-
sion microscope. The AFM setup that we use to measure the dynamics of single-cells (Cell-
Hesion from JPK instruments) does not perform topography images, allowing a more stable
system. Even if we would like to perform a topographic image of the cell, this would certainly
change dramatically the shape and the state of the cell. Since we want to capture the local cell
fluctuations, we do not need this information presently.

Figure 2.14 shows the vertical deflection signal at low frequencies from the cantilever in con-
tact with cell 1 (Fig.2.13b). This cell presents a very interesting effect, as it amplifies the move-
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Figure 2.14 – AFM vertical deflection from a cantilever in contact with an TF1-GFP cell. (a) Total
recording signal fro the cell shown in Fig.2.13(b). (b) and (c) Zoom of (a) at the beginning of contact or
at the end, respectively.

ment of the cantilever towards the end of the signal. This amplification occurs in a gradual
manner, as seen in Fig.2.14(a). At the end of the signal (Fig.2.14c) we can encounter fluctu-
ations that double the amplitude of the deflection at the beginning of the signal (Fig.2.14b).
This effect does not occur at the other cells that we have tested so far, and it could account for
an active response of the cell to the mechanical stimuli applied with the cantilever. Further
experiments are required to test whether this effect of amplification is recurrent or it was a
single-event. We emphasise here the importance of long-temporal recordings. If we would
have recorded just a part of the signal, in this case we would not have observed the ampli-
fication effect. Nevertheless, as we are applying a constant load on the cell, and we do not
establish any control of the environmental conditions (temperature, humidity, etc...), there
is a limitation on the maximum time that we can record the temporal signals. The chosen
time of 300 s is a compromise between relative high-frequencies, and a data size suited for an
efficient computation.

We present in Fig.2.15(a,c) the lateral deflection signal for the TF1-GFP cell 1 or 2, respectively.
We can easily observe the appearance of peaks at different positions in time, as indicated by
the arrows. These peaks could be the result of an instability of the cantilever, however, they
are rather too slow and appear in a quite regular manner to be the case. We have plotted
in Fig.2.15(b) the position in time where the peaks occur. We see that they follow almost a
straight line, with the cell 1 presenting a shorter time difference (Δt ) between peaks (shown
in royal blue) than for cell 2, with an average Δt ∼ 45 s, for cell 1, and Δt ∼ 22 s for cell 2. We
observe also that for cell 2, the peaks seem to have segregated in three different groups, of ∼
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Figure 2.15 – TF1-GFP cell dynamics extracted from the cantilever torsion signal. (a) and (c) Lat-
eral deflection signal z∗

l recorded from a cantilever in contact with the TF1-GFP cell 1(a) or cell 2
(c)(Fig.2.13b,c). The arrows indicate the detected peaks. (b) Temporal position of the detected peaks
detected in (a,c) The lines show the linear fit of the data. (d) Value of the torsion signal (lat. deflection)
of the detected peaks in (a,c). The dashed line corresponds to a value of 1 nm.

4 peaks each, occurring each ∼100 s. Given the temporal scales that we are dealing with, the
peaks could be reflecting a structural change of the cytoskeleton, and/or an active mechanical
response by the cell. As we do not know the spring constant for the torsional movement of the
cantilever, we cannot estimate properly the measured force at these events. However, most of
these peaks have a torsion value of ∼ 1 nm (Fig.2.15d). Note that in the case of cell 2, the am-
plitude of the peaks seem to increase with time, reaching a maximum value at peak number
8, where it breaks and continues with a peak of minimum amplitude, to start increasing again
by peak 12. Another interesting thing to notice about these peaks is that they are preceded
by an almost symmetric peak in the opposite direction. This implies that the cell experiences
first a process of relaxation followed by a mechanical response that causes the deformation of
the cantilever.

Although these events are not that clear on the deflection signal (Fig.2.14a), we should ob-
serve a change in the dynamics of the cantilever deflection. To detect the cell response on the
deflection signal, we have applied the Continuous Wavelet Transform, using the first deriva-
tive of a gaussian as mother wavelet. Figure 2.16(c-d) shows the scale-time representation of
the CWT, where the CWT modulus in log scale has been colour coded. Hence, the change
in the dynamics of the cantilever will be identified by the CWT modulus maxima (brightest
regions on the figure). We can see that the CWT modulus maxima regions occur all along the
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Figure 2.16 – Wavelet transform for the detection of the cell response in the deflection signal of TF1-
GFP cells. (a) Vertical deflection signal from the TF1-GFP cell 1. The yellow curve shows the filtered
signal using a gaussian window, taken at the scale shown in dashed in (c). (c) CWT of the deflection
signal, using the first derivative of a gaussian as mother wavelet. The yellow dashed line shows the
scale where the signal has been filtered. The modulus of the CWT has been colour coded in log scale,
from black to white (in a.u.). (e) Torsion signal from the TF1-GFP cell 1. (b,d,f) Same as (a,c,e) for the
TF1-GFP cell 2.

length of the signal, and they are enhanced at the same time points where we observe the
torsion peaks (Fig.2.16e-f). To get an estimated of the measured force, we have filtered the
deflection signal using a gaussian window with a width of 2 seconds. The resulting filtered
signal is shown in yellow in Fig.2.16(a-b). The detected peaks for cell 1 have an amplitude of
1 nm, whereas the cell 2 presents peaks with an average amplitude of nearly 0.5 nm, corre-
sponding to roughly 1.3 nN and 0.65 nN respectively.

When we measure the fluctuations of the cantilever in contact with leukaemic TF1-BCR-ABL

(a) (b) (c) (d)

Figure 2.17 – Positioning of the AFM cantilever tip on TF1-BCR-ABL cells. . Transmission images of
the AFM cantilever and the TF1-BCR-ABL cells (a,c), and the positioning of the tip over the cell 1 (b)
and 2 (d).
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Figure 2.18 – TF1-BCR-ABL cell dynamics extracted from the cantilever deflection signal. (a) and
(b) show respectively the data obtained from cell 1 (Fig.2.17a,b) and cell 2 (Fig.2.17c,d). The pink line
shows the exponential fit.

cells (Fig.2.17) we do not observe the same type of signals as the ones for TF1-GFP cells. In
fact, in Fig.2.18 we recognise a typical viscoelastic creep response curves with relaxation times
of 110 s (for cell 1) and 70 s (for cell 2).

If we follow our hypothesis that the oncogene BCR-ABL causes a transformation in the cell cy-
toskeleton that results in less motility, as we saw in the quasi-static strain-stress response in
section 2.5.2, then it is possible that TF1-BCR-ABL cells loose their ability to respond immedi-
ately to the mechanical stimuli, because their cytoskeleton has lost it correct anchoring to the
external cortex (these transformed cells again have more difficulty to spread on fibronectin
coated surfaces [160]). It takes between 50 s - 100 s for the cell to respond and adapt to the
applied load, and once it starts relaxing, it is not able to respond immediately, as we saw for
TF1-GFP cells in Fig.2.15. We have parametrised the curves obtained for TF1-BCR-ABL cells
with an exponential fit, estimating the relaxation time as τ ∼ 110 s for cell 1, and τ ∼ 70 s for
cell 2 (Fig.2.18).

2.5.2.a From fluctuation signals to cell mechanics

Prior to spectral decomposition of the cantilever fluctuations in contact of TF1 cells, we have
computed their static shear modulus G0 of these cells from large scale force-indentation curves
(5 μm scan at 1μ/s velocity) for the 4 cells: TF1-GFP cell 1, G=144 ± 31 Pa; TF1-GFP cell 2, G=
410 ± 77 Pa; TF1-BCR-ABL cell 1 G= 160 ± 42 Pa; TF1-BCR-ABL cell 2, G= 295 ± 40 Pa.

Extraction of complex shear modulus by spectral analysis of cantilever fluctuations.
The complex shear modulus of the viscoelastic media surrounding the tip of an AFM can-
tilever can be retrieved from its thermal fluctuations given that this media [201, 202] behaves
as a causal memory function ζ = 0 for t < 0. This means that the energy stored in the media
due to random fluctuations can return to the tip dynamics in a later time. If z(t ) denotes the
vertical position of the cantilever tip, this temporal variable has a zero mean (in stationary
conditions), and is defined for positive values of t .

In AFM experiments, the cantilever tip is not completely immersed in the viscoelastic medium,
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so the continuum approach of Stokes equations must be modified to take into account dif-
ferent boundary conditions. When the motion of the probe is perpendicular to the surface
as in AFM or indentation experiments, the Hertz (resp. the generalised Sneddon) law applies
to a spherical (resp. conical or pyramidal) probe indenting a viscoelastic medium. This re-
lation describes the force required to move the tip by an infinitesimal quantity δz inside a
viscoelastic media with shear modulus G , it takes the following for for a conical tip:

F (ω) = 4 tanθ h0

π(1−ν)
G(ω)δz (ω) (2.41)

2∗θ is the angle of the conical tip, h0 is the depth of indentation of the tip (given that this
quantity, which depends on the load does not change during the experiment), ν the Poisson
ratio. G(ω) =G ′(ω)+ iG ′′(ω).
The spectral density of z fluctuations Ez (ω) which can be computed by Fourier transforming
its auto-covariance function Cz (τ) is therefore related to the loss modulus G ′′(ω) of the media
surrounding the tip[201]:

Ez (ω) =
∫∞

−∞
Cz (τ)e−iωτdτ= bkB T G ′′(ω)

h0 |G(ω)|2 ,

Cz (τ) = E{δz (t )δz (t +τ)} with E{u} the expectation of u. h0 is a characteristic length, it is pro-
portional to the depth of penetration of the cantilever tip inside the material, kB is the Boltz-
mann constant, b is a constant which depends on the property of the tip and the Poisson
ratio: b =π(1−ν)/(2tanθ).

If we take Ξ(ω) = 1/G(ω), Ξ′′ =G ′′/G(ω)|2, Eq. (2.42) reads:

Ez (ω) = bkB T Ξ′′(ω)

h0
, (2.42)

From the spectral density of the tip fluctuations we can therefore retrieve the behaviour of
Ξ′′(ω) and by a Kramers-Kronig transformation, compute the real part of Ξ′:

Ξ′(ω) = 2

π
P

∫∞

0

ζ Ξ′′(ζ)

ζ2 −ω2 dζ , (2.43)

where P denotes the principal-value of the integral.

The observation of power-law regimes in the frequency range [100 Hz, 10 kHz] of the spectral
density of cantilever fluctuations when indented inside the TF1 cells suggests therefore that
their rheology can be described by a structural damping or hysteric model (see also Chapter
1), of which we give here the full model:

G(ω) =G0

(
ω

ω0

)x−1

(1+ iη)cos(
π(x −1)

2
)+ iωμ , (2.44)

where η = tan(x − 1)π/2 has been called the structural damping coefficient [203], ω = 2π f
is the radian frequency, x is a scaling exponent, x = 1 for an ideal elastic material and x = 2
for a Newtonian viscous fluid, G0 and ω0 are material dependent scaling factors for stiffness

51



Chapter 2. Stress-strain response of single-cells under AFM indentation

1 2 3 4 5 6

lo
g

10
 E

z(ω
) 

-2

0

2

4 (a)

log
10

 ω/2π
1 2 3 4 5 6

lo
g

10
 E

z(ω
)

-2

0

2

4

β = -0.66

β = -1.

β = -0.62

(b)

Figure 2.19 – Comparison of periodograms νz (ω) and wavelet spectrums V (ω) of cantilever fluctua-
tions when placed in contact with a TF1-GFP cell. (a) Periodograms. (b) Wavelet spectral densities.
Correspondance of the curves color coding. Grey: free cantilever in liquid, blue, (resp. green and red):
cantilever in contact with a TF1-GFP for a 2 nN loading force.
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Figure 2.20 – Comparison of periodograms and wavelet spectra Ez (ω) of cantilever fluctuations
when placed in contact with a TF1-BCR-ABL cell. (a) Periodograms. (b) Wavelet spectral densities.
Correspondance of the curves color coding. Grey: free cantilever in liquid, blue, (resp. green and red):
cantilever in contact with a TF1-BCR-ABL for a 2 nN loading force.
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and frequency, G(ω) = G ′(ω)+ iG ′′(ω), μ is an additive Newtonian viscous term, i 2 = −1. If
the spectral density Ez (ω) behaves as ω−β, Eq. (2.42) tells us that we have a simple relation in
between β and x: β = 1− x. The spectral analysis (periodograms) of cantilever fluctuations,
when indented inside TF1 cells are reported in Fig. 2.19(a) for a TF1-GFP cell and Fig. 2.20(b)
for a TF1-BCR-ABL cell. We computed the power spectra from the square modulus of the
FFT of the AFM cantilever fluctuation signals (periodograms) with a total duration of 2 s to
discard transitory effects discussed in the previous section and we realised that it was very
difficult to extract correct exponents in the low frequency range (<10 kHz), very recently we
again choose a time frequency decomposition of these signals using Cauchy wavelet trans-
forms from which we computed wavelet spectra which are shown in Figs 2.19(b) and 2.20(b).
This work has been written in a publication this summer, and we have added this preprint
at the end of this manuscript (Appendix B) for those interested in the rigorous equations for
wavelet spectral decompositions.

The power law behaviours shown in Figs 2.19(b) and 2.20(b) suggest that in the frequency
range from 10 to 10 kHz these cells actually behave as structural damping systems with an ex-
ponent x that varies in the range [1.45 : 1.7]. This dispersion of x values and the fact that they
can get closer to the limit x = 2 is rather different from what has been observed on strongly
adherent cells [144] (x ∼ 1.26 for myoblasts, x ∼ 1.22 for macrophages, x ∼ 1.2 for fibroblasts),
for these later cases this exponent x seems to be an invariant, independently of their static
shear modulus G0. The TF1 cell line mimics hematopoietic stem cells, it is very immature,
and it is much softer than myoblasts or fibroblasts which have a important mechanical func-
tion in migration and tissular cohesion. Besides being softer, hematopoietic stem cells look
more like viscous balls than elastic balls when x > 1.5. It comes clearly from this preliminary
study that the exponent x is smaller for the few tested TF1-BCR-ABL cells than the few tested
TF1-GFP cells, suggesting that the TF1-BCR-ABL cells may have restored some elasticity after
their transformation by the oncogene. One may wonder if the static G0 extracted from large
scale indentation force curves is correlated to the exponent x or if, as observed for muscular
cells x may vary independently of G0. This would require a further study that we did not have
time to perform, since we preferred first to check the accuracy of this method on standard
polymer layers (PDMS, agar) and other cells (myoblasts) (see Appendix B).
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Summary

We have studied the strain-stress response of healthy and leukaemic TF1 cells over differ-
ent temporal scales. The quasi-static measurement of force-indentation curves confirms that
the cell response is not linear, contrarily to what is traditionally assumed using the Sned-
don’s or Hertz models. In fact, the cell behaves as a multi-layer viscoelastic object, where
the actin cortex plays the role of a mechanical barrier. By tracking the scaling law of force-
indentation curves, we showed that the introduction of the chronic myelogenous leukemia
oncogene BCR-ABL induces a stiffening of the cortex of TF1 cells when they are forced to ad-
here on fibronectin, resulting in a stress-strain response typical of shell-like structures. This
loss of motility and contractility of TF1-BCR-ABL cells is also reflected on the temporal record-
ings of the cell mechanical fluctuations. While TF1-GFP cells are able to respond to the me-
chanical stimuli in real time, likely involving cytoskeletal structural changes, the oncogene
transformed cells are incapable of respond rapidly to the applied load. The temporal signals
show that healthy cells present creep relaxation time ∼30 seconds, while TF1-BCR-ABL cells
present creep relaxation times τ∼ 85 seconds. The slower response found on leukaemic cells
suggests that their mechanotransduction pathway may have been transformed, besides the
previously reported actin redistribution in the litterature. Finally, the characterization of the
rheology of these cells in the frequency range [100 Hz : 10 kHz] showed that these cells locally
respond with a structural damping law, with a scaling exponent x in the [1.4 : 1.7] interval,
and that they are closer to viscous balls than muscle cells such as myoblasts. This study on a
few TF1 cells lead us to the preliminary conclusion that x would be smaller the transformed
TF1-BCR-ABL cells (x ∼ 1.4) than the normal TF1-GFP cells (x ∼ 1.6) , suggesting that the TF1-
BCR-ABL cells may have restored some elasticity after their transformation by the oncogene,
that could be produced by a reinforcement (stiffening) of their actin cortex.
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Chapter 3

Diffraction Phase Microscopy

In the past two decades Quantitative Phase Imaging (QPI) has become a rapidly emerging
field. QPI encloses a large set of interferometric and non-interferometric methods employed
to measure the optical phase of an object [204? –217]. The interest in measuring the phase
relies on the fact that the phase of light is much more sensitive to the specimen structure and
is less prone to artefacts than the amplitude. As electromagnetic fields emerging from the
illumination source interact with the specimen, it leads to a phase shift containing informa-
tion about the material topography and the morphology of the sample under investigation
[218, 219]. Then, the main difficulty when measuring the phase of an object with high sensi-
tivity is posed by the noise due to mechanical vibrations and air fluctuations that affect any
interferometric system.

Diffraction Phase Microscopy (DPM), introduced by Popescu et. al in 2006 [209], is a common-
path QPI method that significantly reduces the noise problem and it combines the main ad-
vantages of other current QPI techniques: it has a stable compact configuration with an ac-
quisition speed limited only by the speed of the camera, as it requires a single-shot for the
measurement [215, 220]. As DPM is a fast non-intrusive optical technique, it is particularly
suited to study the morphology and the dynamics of living biological specimens [221–223].

3.1 Principles of DPM

3.1.1 Phase objects

Very thin and transparent objects like cells or biological tissues, present a low light-absorption
resulting in small changes on the amplitude of the transmitted light and thus lack contrast to
recognise and distinguish image details such as intracellular structures. However, the object
interior may present small differences on its composition or density, leading to slightly vari-
ations of the refractive index. If lightwaves go through these variations, they will experience
a certain phase shift that is proportional to the optical path length, deforming the light wave-
front (Fig.3.1).

The optical phase of the object (φ) at a given position x, y is given by
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Figure 3.1 – Wavefront deformation induced by a phase object. Scheme of the deformation encoun-
tered by the illumination wavefront when light passes through a transparent object.

φ(x, y) = 2π

λ

∫zM (x,y)

zm (x,y)
Δn(x, y, z)d z (3.1)

where λ is the illumination wavelength, Δn = n −n0 is the difference between the refractive
indices of the object (n) and the external medium (n0). zm and zM are respectively the lower
and the upper bound of the object at position (x, y), with the total thickness of the object at
point (x, y) being h(x, y) = zM (x, y)− zm(x, y). Given that the optical phase (φ) depends on
the illumination wavelength, in practice it is more convenient to work with the Optical Path
Difference (OPD), defined as Φ = φλ/2π. As the OPD has an unit of length, it can be easily
compared and related to spatial characteristics of the object.

There are two important things to notice about the phase of the object measured by DPM: (i)
it is an integration across the object thickness, and as such, the direct measurement of φ(x, y)
will lose information on the z axis, (ii) the thickness and the refractive index of the object are
coupled, implying that if both quantities vary at the same time, φ(x, y) cannot distinguish be-
tween the variations of one or the other.

The uncoupling of refractive indices and thickness has been tackled by other experimental
techniques, usually at the expense of diminishing the acquisition speed. Among the pro-
posed methods we can find imaging from different points of view [224], spectroscopic phase
microscopy [225, 226] and changing the refractive index of the medium [227].

3.1.2 Theoretical background

The DPM interferometer designed by Popescu et al. [222] is composed basically of a diffrac-
tion grating coupled to a 4 f lens system. By placing the diffraction grating at the image plane
of an inverted microscope, multiple diffraction orders are generated containing the full spa-
tial information about the transparent object crossed by the light beam. We have recently
assembled a DPM setup based on this principle (Fig.3.2) [228]. After the transmission grating
G , the zeroth and first order components of the diffracted beams are separated in the conju-
gated Fourier plane of the image plane of the microscope. Then, the zeroth order is low-pass
filtered with a spatial filter and recombined with the first order, thanks to a second Fourier
lens L2 to give a spatially modulated interference image I (x, y).
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Figure 3.2 – Diffraction Phase Microscopy (DPM) setup. A transmission grating (G) is placed at the
image plane (IP) of the microscope objective lens (O). The zeroth-order beam (reference field) is low-
pass filtered and the first-order beam (imaging field) is selected by using a spatial filter at the Fourier
plane (FP) of lens L1. The two beams are recombined at the camera plane (CP) through a second lens
L2.

Starting at the grating plane (GP), we have

UGP (x, y) =U0(x, y)+U1(x, y)eiβx (3.2)

where U0 and U1 are respectively, the zeroth and first order fields 1. Here, β= 2π/Λ, where Λ

is the grating period [220]. The first 2 f lens system takes a Fourier transform of this field such
that before the filter in the Fourier plane (FP-) we have

ÛF P−(kx ,ky ) = Û0(kx ,ky )+Û1(kx −β,ky ) (3.3)

with

kx = 2π

λ f1
x1 =αx1; ky = 2π

λ f1
y1 =αy1 (3.4)

β= 2π/Λ= 2π

λ f1
Δx =αΔx (3.5)

and

Δx =λ f1/Λ (3.6)

where (x1, y1) are the coordinates at the FP, and the quantity Δx represents the physical spac-
ing between the two diffraction orders in the FP. As the zeroth order is filtered, immediately
after the spatial filter (FP+) we have

ÛF P+(αx1,αy1) = Û0(0,0)δ(αx1,αy1)︸ ︷︷ ︸
Spatial frequency domain

representation of the DC signal

+Û1(αx1 −β,αy1)︸ ︷︷ ︸
Unfiltered signal

with image information

(3.7)

The second 2 f system takes another forward Fourier transform, so the resulting field at the
camera plane (CP) is

1We consider here only the 0th and +1st orders, as the other ones either do not pass through the first lens, or
they are filtered out at the Fourier plane.
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UC P (x, y) = 1

|α|
[
U0 +U1(−x/M4 f ,−y/M4 f )eiβx/M4 f

]
(3.8)

where the magnification of the 4 f system, M4 f =− f2/ f1 has been substituted in the equation.
In deriving the irradiance on the camera, we can write

U0(x, y) = A0(x, y)eiφ0(x,y) ; U1(x, y) = A1(x, y)eiφ1(x,y) (3.9)

If we define

x ′ = −x/M4 f ; y ′ = −y/M4 f (3.10)

and

A′
0 = A0/|α| ; A′

1 = A1/|α| (3.11)

eq.(3.8) becomes

UC P = A′
0eiφ0 + A′

1(x ′, y ′)eiφ1(x ′,y ′)eiβx ′
(3.12)

Thus, at the camera plane we have the interference of two magnified copies of the image,
where one is filtered to DC, and both are inverted in x and y . The inversion results because
two forward transforms are taken by the lenses rather than a transform pair (forward and
backward).

Finally, the resulting intensity measured at the camera is

IC P (x ′, y ′) =UC P (x, y)U∗
C P (x, y)

= |A′
0|2 +|A′

1(x ′, y ′)|2 +2|A′
0||A′

1(x ′, y ′)|cos(βx ′ +Δφ) (3.13)

where

Δφ=φ1(x ′, y ′)−φ0 (3.14)

The phase information from the sample can be extracted from the modulation term (cosine)
which is a result of the interference between the image and the reference field.

3.1.3 Design considerations

The crucial components on the design of the DPM setup are the diffraction grating and the
spatial filter. Therefore, for a given microscope objective and taking into account the pixel
size of the camera, a correct combination of diffraction grating, 4 f lenses and spatial filter
must be chosen. The general guidelines for the design of the DPM system are the following
[220]:

• First, the grating modulation period is chosen based on the objective lens magnification
Mob j and numerical aperture NAob j . In order to perform at optimal resolution, the
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grating period Λ must be

ΛT ≤ λMob j

3N Aob j
(3.15)

• Second, the magnification of the 4 f lenses can be tuned according to the pixel size of
the camera to obtain a good sampling of the grating fringes.

• Third, the size of the spatial filter is chosen such that the reference beam contains only
the DC component, and that the interference pattern produces a uniform reference im-
age at the camera plane. The fringe contrast can be optimised by adjusting the intensity
of the diffraction orders.

• Finally, the numerical aperture of the second lens L2, needs to be large enough for the
lens to capture both beams and make them interfere at the camera plane.

3.2 DPM setup characterisation and phase extraction method

We use a low-coherence laser diode (Thorlabs, GmbH, Germany, λ=532nm) as a light source.
In order to have a spatially coherent field at the image plane (IP), the laser is directed to the
sample using Köhler illumination. A transmission grating (110 grooves/mm) is localised at the
IP of the microscope equipped with an objective (O) 40x (Olympus, France SPlan40, N.A.=0.7).
The first-order beam (imaging field) created by the grating is selected without any filtering,
while the zeroth-order beam (reference field) low-pass filtered, letting pass only the DC com-
ponent. This filtering is made through a custom made spatial filter (Thorlabs) placed at the
Fourier plane of lens L1. The design of the spatial filter consists of two circular apertures with
diameters of 1 mm and 15 μm. Our spatial filter has been made by making circular aper-
tures on a plastic-like material, which filters the reference field with a window of sharp edges.
The size of the small aperture has been chosen trying different pre-fabricated filters or pin-
holes, and a careful inspection of the Fourier transform of the intensity image obtained with
the same setup, where the diffraction grating was removed (see next section for details). The
two beams are recombined using a second Fourier lens L2, and the resulting interferogram is
recorded as an image of 2048x2048 or 1024x1024 pixels with a CMOS camera (Hamamatsu,
Japan, ORCA-Flash 4.0) with an acquisition speed of 10 kHz. The 4 f lens system adds a 5.9x
magnification ( f1=25.4 mm, f2=150 mm)(Fig.3.2).2

3.2.1 Spatial filter

We have used a set of four pinholes with different aperture sizes to determine empirically the
adequate spatial filter design for the reference beam. The reference beam is obtained by fil-
tering the 0th diffracted order at the Fourier plane of lens L1. To evaluate the quality of the
filtered image, we have imaged a fixed adherent cell while placing the different pinholes at
the Fourier plane of lens L1, in the same position as the final spatial filter.

2The data recorded on myoblasts was performed with an alternative setup consisting of a diffraction grating
of 70 grooves /mm, a spatial filter with circular apertures of 2 mm and 15 μm in diameter, and a 4 f lens system
( f1=50 mm, f2=250 mm) adding a 5x magnification.
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No

Filter

Filter

100 μm

Filter

50 μm

Filter

25 μm

Filter

15 μm

Figure 3.3 – Evaluation of the filtered image with different pinholes. Intensity images (left column)
and their corresponding 2D Fourier transform (right column, where the modulus has been colour
coded from white to black) for different pinholes of variable sizes placed at the Fourier plane of lens
L1, and where the grating has been taken-off. A fixed adherent cell has been captured in a 2048x2048
pixels image. The scale in real space corresponds to an image of 75 x75 μm.
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By evaluating both the intensity images and their corresponding 2D Fourier Transform (Fig.3.3)
we have chosen a filter with a circular aperture of 15 μm. This aperture size filters most of the
low-frequencies and it still allows to cover almost all of the field of view. As it can be seen at
the bottom row in Fig. 3.3, the intensity is not homogeneous over the full field of view, with
a noticeable decrease at the corners of the image. As it will be seen on the untreated DPM
images shown later on this chapter, even with this inhomogeneous intensity, we can still have
an interference pattern over the full field of view, although perhaps in some cases, the fringe
contrast is slightly diminished at the corners of the image.

3.2.2 DPM setup resolution

For a transmission microscope, the transverse resolution is given by Abbe’s formula:

Δp = 1.22λ

N Aob j
(3.16)

where plane wave illumination is assumed and Δp represents the diffraction spot radius or
the distance from the peak to the first zero of the Airy pattern. It follows that, in order to
get better resolution a higher NA is required, usually implying a higher magnification and a
smaller field of view.

Besides the transverse resolution of the transmission microscope, we need to take into ac-
count the fringe sampling, the magnification due to the 4 f lens system (M4 f ) and, as we use
the wavelet transform to retrieve the optical phase, we should also consider the width of the
analysing wavelet to have a full description of the resolution obtained with our DPM system.
Table 3.1 summarises the main characteristics of the optical setup and the phase extraction
method that determine the resolution of the system.

As seen in table 3.1, the resolution of our system is limited by the transmission microscope.
We can expect to resolve objects down to a size of ∼1 μm, without any additional information
loss introduced by the image processing method. In the context of living cells, this means

Parameter Variable Value
Transverse resolution of the transmission microscope Δp 927.2 nm
Magnification 4 f lens system M4 f 5.9x
Field of view - 75.68 μm
Required grating modulation period ΛT 10.13 μm
DPM setup grating modulation period ΛS 9.1 μm
Fringe sampling - ∼ 12 pixels/fringe
Fringe width - ∼ 440 nm
Morlet wavelet half width Δx 1

2 |ΨM |max
700 nm (in x)

Table 3.1 – DPM setup parameters determining the spatial resolution of the system. The reported
values are for a DPM setup using a 40x objective with NAob j = 0.7. The Morlet wavelet width has been
taken at the mid height of the gaussian envelope, 1

2 |ΨM |max.
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that we are concerned by the observations at a single-cell level, including the large intracel-
lular structures, such as the nucleus. In adherent cells, it could be also possible to observe
the perinuclear structures like the Golgi apparatus and the endoplasmic reticulum, as well as
large and complex mitochondrial networks. However, the capacity of resolving these struc-
tures will depend greatly on the distance between them. For example, we can be unable to
distinguish the nucleus from the cytoplasmic area if the distance between the nuclear and
the intracellular side of the cell membrane is too small. We have then chosen a compromise
between a field of view large enough to visualise large adherent cells, and a micrometric res-
olution that allows us to observe cells of a few micrometers in size, such as erythrocytes. If on
the contrary, the interest will be mainly on studying only small cells, and/or to resolve the in-
tracellular structure, an objective with a higher magnification should be used. In this way, the
resolution will be increased, having more fringes per micrometer, while keeping the fringes
pixel sampling.

Nevertheless, as it has been mentioned previously, diffraction phase microscopy measures
the optical path depth of an object, which is an integration of its internal structures along
the object thickness. Hence, given the complexity of a living cell, it is not straightforward to
identify individually the intracellular components. Having this difficulty in mind, it is more
useful to avoid interpreting the phase image of a cell based on the identification of cellular
organelles, and instead focus on the composition and/or density of the underlying structure.
Section 3.5 includes a more detailed discussion about the information obtained by the phase
measured with DPM and its interpretation in the context of living cells.

3.2.3 Revisiting the phase extraction method with the 2D wavelet transform

To retrieve the phase image associated with the sample object, different methods have been
proposed, including Hilbert transform followed by phase unwrapping, [206], derivative meth-
ods [223], and Fourier filtering to avoid unwrapping problems [229]. All these phase retrieval
algorithms rely on the assumption that the object phase does not alter the fringe carrier patter,
allowing a quasi one-dimensional analysis of interference patterns. To improve this approach
and delineate more precisely the validity of this assumption, we propose here to generalise
the Fourier filtering methods using a two-dimensional space-scale analysis based on Morlet
wavelet transform [228, 230].

The two-dimensional (2D) continuous wavelet transform (CWT) of an interferogram I (�x) with
�x = (x, y) is defined as [231]:

WΨ(b, a,θ) = a−η
∫2

ℜ
I (x)Ψ∗[a−1rθ(x−b)]d2x (3.17)

WΨ(b, a,θ) is the wavelet transform coefficient at position b, scale parameter a and rotation
angle θ. b = (bx ,by ) is a 2D translation parameter describing the position of the wavelet,
a > 0 is the scale dilation parameter (nondimensioned), θ is a rotation parameter, rθ is the
2x2 rotation operator matrix, Ψ∗ is the complex conjugate of the mother wavelet Ψ, and η is
a normalisation exponent.
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Figure 3.4 – 2D anisotropic Morlet wavelet. (a) Untreated DPM image of a glass coverslip coated with
polymer layer including a scratch in the diagonal direction. The scale bar is 10 μm. (c) Real part of
the symmetric two-dimensional Morlet wavelet ΨM with ε = 1. (e) Real part of the anisotropic two-
dimensional Morlet wavelet ΨM with ε = 10). (b,d,f) Modulus of the 2-D Fourier transforms of (a), (c),
and (e), respectively.

A typical mother wavelet commonly used to detect localised and oriented features is the 2D
Morlet wavelet:
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Figure 3.5 – Wavelet transform modulus maxima. (a) Theoretical DPM intensity image of a transpar-
ent microbead simulating a polystyrene bead immersed in glass matching oil. The scale bar is 5μm. (b)
and (c) Modulus of the 2D continuous wavelet transform using the anisotropic Morlet wavelet (ε= 10)
on the horizontal (b) or vertical (c) section shown in (a) by a dashed blue line. a=1 corresponds to
the fringe frequency fg . The dashed white lines outline the WTMM. the colour coding goes from zero
(white) to 0.8 (black).

ΨM (x) = ei k0·�x e−
1
2 |Ax|2 −e−

1
2 |A−1k0|2− 1

2 |A−1k|2 (3.18)

The parameter k0 is the wave vector and A = di ag [1,ε1/2] is a 2x2 anisotropic matrix (ε ≥ 1).
We use here the anisotropic 2D continuous Morlet wavelet transform with anisotropy factor
ε > 1 to extract the phase of the fringe patterns obtained with the DPM3, such as the one
shown in Fig.3.4(a). The Morlet wavelet is a complex function; the modulus of the Morlet
wavelet is a Gaussian, elongated in the x direction if ε< 1, and its phase is constant along the
direction orthogonal to ko , and linear in x,mod(2π/|k0|), along the direction of k0. In Fourier
space, the effective support of the function Ψ̂M is an ellipse centered at k0 and elongated in
the ky direction (Fig.3.4). Since the ratio of the axes is equal to

�
ε, the cone of the wavelet in

Fourier space elongates along ky direction as ε increases. This wavelet preferentially detects
edges perpendicular to the y-direction.

The advantage of taking a smooth wavelet and not a simply circular window in Fourier space
is not only to avoid the introduction of artificial oscillations produced by the sharp boundary
of such a window, but also to have the ability to use the mathematical formalism of wavelet
analysis, for instance the wavelet transform modulus maxima (WTMM). The WTMM can be
computed at each spatial point x (Fig.3.5); it corresponds to the wavelet ridge skeleton [? ]
where the optical phase φ produced by the object fulfils the equation

k0/ar (b) = fg +∇φ(b) (3.19)

3We have fixed the rotation angle θ = 0 and chosen η= 2
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where ar (b) is the scale at the wavelet ridge. It can be demonstrated analytically that the
WTMM detection method is independent of the modulation intensity of the original fringe
pattern. As a general remark, this wavelet-based method intrinsically eliminates background
intensity variations that do not affect the fringe pattern modulations.

We discuss the efficiency of the 2D WTMM method on a model system made of a microbead
particle (Fig.3.5a). Figure 3.5(b,c) shows a colour-coded representation of the modulus of the
2D CWT on the horizontal and vertical section shown in Fig.3.5(a). The horizontal section
shows a strong deformation on the fringe pattern that is reflected on the detected scale ar of
the WTMM: on the left side of the bead the fringes are compressed (smaller scale ar ), whereas
on the right side they are dilated(larger scale ar ). Close to the border of the bead, the CWT
modulus shows two maxima, corresponding to the existence of two local frequencies slightly
splitted apart from the carrier fringe frequency fg , corresponding to a = 1 here. From this 2D
CWT analysis, we can propose three methods for phase retrieval [228]:

• Fourier filtering method (I). It uses the 2D Morlet wavelet only as a Fourier filter, with
a fixed scale a = 1 corresponding to the fringe pattern modulation fg .

• WTMM integral method (II). It uses the WTMM method to compute the phase deriva-
tive of the fringe pattern (eq.3.19) and it makes an integration of this derivative along
x.

• WTMM argument method (III). It uses the WTMM method to compute the new com-
plex quantity WΨ[b, ar (�b)] on the WTMM and takes its argument to compute the phase.

The three methods are compared on Fig. 3.6, for two values of the anisotropy factor ε. The
Fourier filtering method does not succeed to recover the theoretical phase whatever ε (Fig.3.6a,b)
because on the border of the bead the local frequency of the fringes is too far from the fringe
carrier fg . The WTMM integral method (Fig.3.6c,d) can estimate correctly the phase of the
bead when ε is high enough (Fig.3.6d), but presents an accumulation of the computation er-
rors on φ(x) when integrating along x. When using an anisotropic morlet wavelet, the WTMM
argument method succeeds to reproduce the theoretical phase of the bead with a 10−3 rela-
tive error on the phase (Fig.3.6e,f). The possibility to adjust the anisotropy of the wavelet is,
therefore, important for analysing phase discontinuities. For more details on the phase ex-
traction with the wavelet transform, please refer to the Appendix C.

3.2.4 Homogeneity in the field of view

As we are interested in the study of living cells, the typical imaging conditions consist of a thin
closed chamber filled with liquid. The chamber is composed by two glass coverslips hold to-
gether by a spacer of a specific thickness. To test the typical intensity and phase variations that
we may encounter on this conditions, we have imaged a chamber filled with only deionised
water.
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Figure 3.6 – Phase extraction methods comparison. Three-dimensional representation of the recon-
structed phases from the fringe pattern of Fig.3.5(a), with methods I (a,b), II (c,d) and III (e,f). The
left column (a,c,e) shows the phase profiles computed with the isotropic Morlet wavelet (ε=1), and the
right column (b,d,f) with the anisotropic Morlet wavelet (ε=10).
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Figure 3.7 – Homogeneity in a liquid chamber. (a) DPM image of a chamber filled with deionised
water. Scale bar is 10μm. (b) Filtered intensity image where the modulus of the wavelet transform
maxima, WTMM, has been normalised and coded in grey scale. (c) WT scale image (ar ), where 1
corresponds to the fringe modulation. (d) OPD image Φ (in nm) .

Figure 3.7(a) shows a typical DPM image of a liquid chamber. We can note slight intensity
variations that are independent of the fringe modulations, but no appreciable fringe defor-
mation, consistent with the absence of any object. After applying the wavelet transform
modulus maxima (WTMM) method for phase recovery (section 3.2.3), the resulting filtered
intensity image (Fig.3.7b) seems to have damped the intensity variations. The distribution of
the filtered intensity values (Fig.3.8b) shows a rather narrow range, with most of the values
localised at the upper 20%. To compare with the intensity distribution of the original image
(Fig.3.8a), we have fitted a gaussian curve (shown in blue in Fig.3.8a-b), and taken the width
of the gaussian for each observed peak: δ1 = 0.085,δ2 = 0.152,δ3 = 0.088. We would have ex-
pected to find two well separated peaks for the intensity distribution of the original image, as
we get from the fitted curves, however the intensity variations enlarge the second peak and
provoke a slight asymmetry. The WTMM method manages to filter most of the intensity vari-
ations, with a small tail on the distribution seen on Fig.3.8(b), likely due to intensity variations
close to those coming from the fringe modulation.

The fringe modulation, although perceived as constant on the DPM image (Fig.3.7a), shows
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Figure 3.8 – Values distribution for a liquid chamber. Normalised distributions for the data shown
in Fig.3.7: (a) normalised image intensity, (b) normalised filtered intensity (WTMM), (c) WT scale (ar )
and (d) OPD (Φ). The blue curves on (a) and (b) show the gaussian fitted curve, with the vertical dashed
lines indicating the centre of the gaussian and the solid lines showing the gaussian widths, δ1,δ2,δ3.

small variations as shown by the WTMM scale image (Fig.3.7c). The scale of the WTMM (ar )
quantifies the relative frequency with respect to the carrier frequency fg given by the grating
(ar = 1 for fg ). To capture as much of the image details as possible, we have used a scale
step of Δa = 0.001 in the computation of the Wavelet Transform (WT). As expected, the scale
values follow a normal distribution centred at ar = 1 (Fig.3.8b), with a standard deviation of
3.9 · 10−3. Such width distribution is given by the experimental phase fluctuations (sample
and optical element defaults) as it is almost four times the fixed resolution step for the WT.

Finally, we evaluate the phase variations induced by the liquid chamber (Fig.3.7d) using the
WTMM argument method (see section 3.2.3). The optical path difference (OPD) distribution
(Fig.3.8c) is sligthly asymmetric with a standard deviation of 5.21 nm. If we assume that such
variations of the OPD image are due to inhomogeneities on the liquid contained in the cham-
ber (the thickness h is fixed by the spacer), that is, variations in the refractive index (Δn) of
the medium inside the chamber, taking h=270.8 μm, we can estimate differences in Δn of
∼ 1.5 ·10−4 for the total variation in Φ, roughly 40 nm, and of ∼ 1.9 ·10−5 for the standard de-
viation.

We can conclude from the data shown in Fig.3.7 and Fig.3.8 that the liquid chamber that is
normally used for imaging living cells is quite homogeneous within the field of view of our
microscope, even if there is no special cleaning or treatment of the glass coverslips. More-
over, the use of the WTMM method to retrieve the optical phase decouples the impact of the
intensity modulation on its computation [228]. Therefore, considering objects with an opti-
cal path depth ≥100 nm, the influence of the liquid chamber may be considered as a minor
influence when measuring the OPD of the object of interest. Nevertheless, the recording of
a reference image, although not necessary, can be particularly useful for removing different
artefacts, for example, imperfections of the optical components and dust particles on their
surfaces, as well as constant phase shifts in the image caused by a global tilt of the sample on
the x-y plane.
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3.3 Materials and methods: cell culture and sample preparation

3.3.1 Cell culture

TF1 cell line
The TF1 cell line (ATCC CRL-2003) was maintained at 1x105 cells/mL in RPMI-1640 medium,
10 % FCS and granulocyte macrophage colony-stimulating factor (GM-CSF, 10 ng/mL) (San-
doz Pharmaceuticals). Engineered TF1-GFP and TF1-BCR-ABL-GFP cell lines were obtained
by transduction with an MSCV-based retroviral vector encoding either the enhanced green
fluorescent protein cDNA alone (EGFP) as a control or the BCR/ABL-cDNA upstream from an
IRES-eGFP sequence. EGFP+ TF1 cells were sorted using a Becton Dickinson FACSAria. For
imaging, 65 μL of the solution were contained between two glass-coverslips glued by a Gene-
Frame (ThermoScientific). The data was taken within the next 15 minutes of preparation at
room temperature T ∼ 22◦C, and taking a reference image of the background next to the area
containing the cell. We thank Bastien Laperrousaz and Véronique Maguer-Satta (Centre de
Recherche en Cancerologie de Lyon) for providing the cell samples.

C2C12 cell line
C2C12 mouse cells (ATCC CRL-1772TM) were grown in high glucose (4.5 g/L) Dulbecco’s
modified Eagle medium (DMEM), (GE Healthcare Life Science, Dominique Dutscher, France)
supplemented with 20% fetal bovine serum (GE Healthcare Life Science) and 1% antibiotics
(penicillin/streptamicine). Adherent myoblasts on 50 mm petri dishes with a glass bottom
of 0.17 mm thickness were maintained at 37◦C and 5% CO2 up to 60% confluence until they
were used. The glass surface was not treated to avoid a too strong cell adhesion. We thank
Laura Streppa (Physics lab, ENS Lyon) and Laurent Schaeffer (LBMC, ENS Lyon) for providing
the cell samples.

HepG2 cell line
HepG2 cells (ATCC HB-8065) were grown in high glucose (4.5 g/L), with glutamine (GlutaMax,
0.862 g/L) and sodium pyruvate (0.11 g/L) Dulbecco’s modified Eagle medium (DMEM), (GE
Healthcare Life Science, Dominique Dutscher, France) supplemented with 20% fetal bovine
serum (GE Healthcare Life Science) and 1% antibiotics (penicillin/streptamicine). Adherent
hepatocytes on 50 mm petri dishes with a glass bottom of 0.17 mm thickness coated with col-
lagen were maintained at 37◦C and 5% CO2 up to 60% confluence until they were used.

Human primary cells
After informed consent in accordance with the Declaration of Helsinki and local ethics com-
mittee bylaws (from the Délégation à la recherche clinique des Hospices Civils de Lyon, Lyon,
France), peripheral blood and bone marrow samples were obtained from chronic myeloge-
neous leukaemia patients. Mononuclear cells were separated using a Ficoll gradient (Bio-
Whittaker) and were then subjected to CD34 immunomagnetic separation (Stemcell Tech-
nologies). The purity of the CD34+ enriched fraction was checked by flow cytometry and was
over 95% on average. Selected bulk CD34+ cells were seeded at 6x105 cells/mL and cultured
in serum-free Iscove’s Modified Dulbecco’s Medium (IMDM) (Invitrogen) in the presence of
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15% BSA, Insulin and Transferrin (BIT) (Stemcell Technologies) supplemented with 10 ng/mL
interleukin-6 (IL-6), 50 ng/mL stem cell factor (SCF), 10 ng/mL IL-11 and 10 ng/mL IL-3 (Pe-
protech). For imaging, 65 μL of the solution were poured between two glass-coverslips glued
by a GeneFrame (ThermoScientific). The data was taken within the next 15 minutes of prepa-
ration at room temperature T ∼ 22◦C, and taking a reference image of the background next
to the area containing the cell. We thank Bastien Laperrousaz and Véronique Maguer-Satta
(Centre de Recherche en Cancerologie de Lyon) for providing the cell samples.

Red Blood Cells
Red Blood Cells (RBCs) were extracted from blood samples of healthy donors or from patients
with CML. The blood sample was centrifuged for 30 min at 900g at room temperature, and
the pellet was recovered. The cells were sorted using the CD45 - marker. We thank Eve Mat-
tei, Adriana Plesa, and Charles Dumontet (Centre d’hematologie des hôpitaux Lyon sud) for
providing the cell samples.

3.3.2 Microbeads and polymer layers

Polystyrene beads preparation
1 μL of an aqueous solution containing polystyrene beads (FLUKA 72986, average size: 10μm,
refractive index: 1.59) was diluted in 10 mL of deionised water. 250 μL of the dilution were
deposited on a small petri dish with a glass bottom and let overnight in an oven at 70◦sC to
dry. Before imaging, 500 μL of glass index matching oil were added.

Low-refractive beads preparation
0.1 g of a powder containing polymethylsilsesquioxane microbeads (KOBO Diasphere KS1000,
average size: 10μm, refractive index: 1.41) was added in 25 mL of ethanol. For imaging, 65 μm
of the solution were contained between two glass-coverslips spaced by a GeneFrame (Ther-
moScientific).

PMMA layer preparation
A solution of 10% poly(methyl methacrylate) (PMMA, Sigma- Aldrich, France) in toluene was
spin coated over a glass coverslip at a speed of 1000 rpm during 50 s. A time of 10 s was fixed
to reach the nominal speed. After coating, the film was annealed for 1 h at 140◦C. Prior to
imaging, a portion of the PMMA layer was removed with a scalpel.

3.4 Imaging of model systems

In order to illustrate the performance of our DPM setup we will start by imaging two model
examples: PMMA layers and polystyrene microbeads. In the case of PMMA layers, a coverslip
has been coated with PMMA, and stripes of this layer have been scratched off using a scalpel.
We get a structure that is almost unidimensional on the x-y plane, and with the thickness
of the polymer layer imitating a step-like function. The polystyrene beads, on the contrary,
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present a true three-dimensional structure. Their spherical shape is of particular importance
as they will serve as a base model for comparing with cells in suspension.

3.4.1 PMMA layers

We imaged a sample of a PMMA layer covering a glass coverslip. The PMMA solution was spin
coated on the coverslip to obtain a homogeneous thin layer. After annealing, a scalpel was
used to remove the PMMA, resulting in thin stripes where the coverslip is no longer coated
with the polymer (Fig.3.9a-c). As it can be seen on the WTMM images (Fig.3.9d-f), the inten-
sity is quite inhomogeneous over the full image, very likely due to the beam shape. Therefore,
we also take a reference image, recorded in the absence of any object at the image plane of the
transmission microscope. The reference image is processed in the same manner as the sam-
ple image by the WTMM method. Hence, we retrieve the wavelet transform at the WTMM
scale (WΨ(b, ar )) from the sample (WΨ,ob j ) , and from the background (WΨ,r e f ). To remove
any effect due to the background, we normalise WΨ,ob j on its complex form by WΨ,r e f ,

WΨ,r− = WΨ,ob j (b, ar )

WΨ,r e f (b, ar )
(3.20)

where the subscript r− indicates that the wavelet transform has been normalised. From now
on we will adopt this notation, such that the subscript r− will mean that a reference image
has been used to remove effects from the background, and that the WTMM method has been
employed. Figure 3.9(g-i) shows the modulus of the normalised wavelet transform (|WΨ,r−|)
where the inhomogeneities on the intensity values have been drastically reduced, producing
a highly uniform image of the sample.

Next, we look at the WT scale image (Fig.3.10a-c), and the OPD image (Fig.3.10d-f) obtained
from the three different regions of the PMMA sample (Fig.3.9a-c). In general, the WTMM
scale ar is properly detected, with the exception of very irregular areas on the border of the
second sample (Fig.3.10b). However, since we are retrieving the OPD by the WTMM argument
method, that is, by taking the phase directly from WΨ,r− , the difficulties on the detection of
the scale ar at the indicated points have a small effect on the OPD profile, affecting only a
couple of pixels (Fig.3.10e), and thus they can be neglected.

Once we have retrieved the OPD map of the samples, we can estimate the thickness of the
PMMA layer, assuming the refractive index is known. We have used a scanning surface plas-
mon microscope to measure the refractive index of a PMMA layer prepared from the same
solution, but spin coated on a gold coated coverslip [232]. The measured value, n = 1.488 is in
good agreement with the literature [233], resulting in a relative refractive index Δn ∼ 0.08 for
the DPM imaging, given that we are working in air.

Figure 3.11(a,c,e) shows the estimated thickness h for an horizontal cross section taken at the
centre of the image of each of the three imaged areas of the PMMA layer (Fig.3.10d-e, respec-
tively). We can easily see in these thickness profiles the step-like function we were expecting
to obtain by ’cutting’ the layer with a scalpel. We have also computed the thickness profile
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.9 – Imaging of PMMA layers. (a-c) Untreated DPM image of three different regions from the
same sample of a PMMA layer. Scale bar is 10 μm. (d-f) Equivalent intensity image where the WTMM
(|WΨ,obj|) has been colour coded in grey scale. (g-i) Normalised intensity image where the |WΨ,r− | has
been colour coded in grey scale.

from the OPD retrieved with the Hilbert transform method (Fig.3.11a,c,e, dashed grey lines).
In general we obtain almost the same thickness profile regardless of the method, as this sam-
ple fulfills the requirements for a good performance of the Hilbert transform method, i.e., low
intensity variations and slow changes on the phase modulation.

To estimate the average thickness of the PMMA layer, we compute the distribution of the
thickness values (P (h)). As it can be seen on figure 3.11(b,d,f), the distributions present two
peaks, the first one corresponding to the part where the polymer has been scratched off, while
the right peak corresponds to the thickness on the part of the image where we find the PMMA
layer. The fact that the measured thickness on the stripped coverslip does not correspond to
0 nm, is because the measure done with the DPM system is relative, that is, the optical phase
that we extract is in fact a difference in the optical path of the wavefront, and as such is not an
absolute value. Thus, to get the actual thickness of the layer, we take the difference between
the values h(x, y) where the distribution is maxima for each peak, leading to an average layer
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(a) (b) (c)

(d) (e) (f)

Figure 3.10 – OPD maps of PMMA layers. (a-c) WT scale image for the DPM images shown in Fig.3.9(a-
c), where ar has been colour coded in the same grey scale for the three images. (d-f) OPD images,
where the background has been subtracted from the sample image, and Φ(x, y) (in nm) has been
colour coded in the same range for the three images.

thickness of < h >= 97 nm ±4 nm.

To verify if the thickness has been correctly estimated, we have used an Atomic Force Micro-
scope to check the height of the same polymer layer sample that we have imaged with DPM.
The height of the polymer has been measured on a region of 20x15 μm where the PMMA
layer has been scratched off using a scalpel as before (Fig.3.12a). However, note that this
region does not correspond strictly to those imaged with DPM, and thus can present some
differences. Figure 3.12(b) shows the distribution of the height values P (h), where we can
identify the two peaks corresponding to the stripped coverslip and to the polymer, as in fig-
ure 3.11(b,d,f). Taking the difference on the positions of the maxima from both peaks, we get
an average polymer layer of < h >= 115 nm ±3 nm. Even if the averaged height value might
seem far from the thickness estimated with DPM, the distribution of height is to some extend
close to the ones obtained for the three regions imaged with DPM (Fig.3.11b,d,f), resulting in
a overall good estimation of thickness for the polymer layer by DPM.

This simple example serves to illustrate how the OPD of the sample is measured with our DPM
system and the necessity of image correction by the background, which can be easily done by
taking a reference image. Moreover, it emphasises the advantages of looking at the changes
in the phase rather than the intensity variations induced by the object (Fig.3.9). Beyond the
information that we can obtain about the thickness and/or composition of the sample, the
improved contrast on the x-y plane of the phase related images (Fig.3.10) can also improve
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Figure 3.11 – Thickness distribution from a PMMA layer. (a,c,e) Thickness profile from horizontal
sections taken at the middle of the image of the PMMA layers shown in Fig.3.10(d-f), respectively.
Solid black line: WTMM method, dashed grey line: Hilbert transform method. The thickness has been
computed from the OPD maps assuming a relative refractive index Δn = 0.48. (b,d,f) Normalised dis-
tribution of the thickness values for the PMMA layers shown in Fig.3.10(d-f), respectively.

the data treatment and analysis of the object at the image plane.
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Figure 3.12 – PMMA layer thickness measured by AFM. (a) Height image measured by AFM, where
the height h(x, y) has been colour coded from 0 to 200 nm. (b) Normalised distribution of the height
values for the PMMA layer showed in (a).
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Figure 3.13 – Imaging of small polystyrene beads.(a) Untreated DPM image of a single polystyrene
bead with a diameter of 1 μm. Scale bar is 5 μm. (b) WTMM image without removing the back-
ground. (c) WTMM normalised by the background, |WΨ,r− |. (d) WT scale image. (e) OPDr− image,
where Φ(x, y) (in nm) has been colour coded. (f) Corrected OPDr− image.

3.4.2 Polystyrene beads

The importance of studying micro-spheres relies on the similar geometry found on a large
number of living cells, as is the case for several types of blood cells and living cells in suspen-
sion, who present a nearly spherical structure. The particular advantage of polymer beads is
their homogeneous structure and rigidity. Additionally, the relative easy access to synthetic
beads with controlled size and/or refractive index makes polymer beads a suitable model sys-
tem to test the performance of our DPM setup under very similar conditions to those encoun-
tered on the study of living single cells.

We start by imaging small polystyrene beads. Notice that we use the term of ’small’ relative to
the expected average size of single cells (∼ 5−10 μm). Figure 3.13 shows a representative ex-
ample of a small bead, with a nominative size of 1μm and refractive index n = 1.59. The high
refractive index requires to immerse the bead in a medium with a close RI. We have chosen
an oil with a refractive index n0 = 1.5167 as the immersion medium, resulting in a relative RI
of Δn = 0.0733 for the beads.

The bead DPM untreated image presents defects linked to particles deposed on the optical
components and the camera window (Fig.3.13a-b). Such defects are successfully removed by
taking a reference image, as it can be seen on Fig.3.13c, proving the utility of the WT normal-
isation step. Nevertheless, the reconstructed OPD image presents variations likely due to a
global tilt in the sample (Fig.3.13e), leading to an overestimation of the bead OPD. To correct
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Figure 3.14 – Intensity and phase profiles of a cross section from a small bead. (a) Intensity profile
for the horizontal (solid line) and vertical (dashed line) sections taken at the centre of the bead shown
in Fig.3.13(a), where the intensity has been normalised by the maximum intensity of the image. (b)
OPD profiles from the same sections as in (a), for the data shown in Fig.3.13(f). The blue line shows
the horizontal OPD profile obtained with the Hilbert transform method.

this tilt, we perform a linear fit of the OPD profile. The data used for this purpose is the first
and the last 50 pixels of each line, and we substract the fitted line from all the section. To take
into account the tilt in both directions, we first perform the correction along the x direction
for the full image, then for the y direction, and we repeat once more for the x direction, as
we have noticed that in our data this direction always presents a bigger tilt. Figure 3.13(f)
shows the corrected OPD image, where the bead OPD seems to be correctly estimated, giving
a value of Φ∼ 80 nm at the centre of the bead, which is in good agreement with the expected
Φ= 73.33 nm based on the nominative RI values of the bead and the immersion oil.

Note, however, that the bead appears slightly bigger than 1μm from the x-y plane. If we re-
call the spatial resolution of our system (Table 3.1), in the best case scenario, we can resolve
objects down to a size of about 1 μm, so we are working at the limit of our microscope reso-
lution. By looking at the untreated data from the vertical and horizontal cross sections that
pass by the middle of the bead (Fig.3.14a), we can observe that the bead has a great effect on
the intensity profile and, if we consider that the edge of the observed intensity peak corre-
sponds to the border of the bead, it presents a diameter larger than 1 μm. The bead profile
is further widened by the phase recovery process, as it can be seen from the OPD profile on
Fig. 3.14(b). This widening is not linked to the width of the analysing wavelet, as we observe
the same effect when using the Hilbert transform method (Fig. 3.14b, blue line). Besides the
wider OPD profile (particularly on the x direction), we also note a local minima at the middle
of the bead, reflecting either a defect on the bead, or more likely, a consequence of the limited
amount of fringes used to detect the phase of the bead. Therefore, we confirm that, even if
our DPM has a great resolution on the z axis and we can easily recover the OPD from small
objects, the transverse resolution of our microscope with this magnification does not allow us
to study objects on the order of 1 μm size.

We proceed now to image ‘normal’ sized polystyrene beads with the same RI as the small
beads and with a nominative size of 10 μm. Figure 3.15 shows the WT scale image and the
OPD image for a single bead in the same immersion oil. In this case we don’t encounter prob-

76



3.4. Imaging of model systems

(a) (b)

(c) (d)

a
r

Φ
(x
,y

c)
(n

m
)

x (μm) x (μm)

Figure 3.15 – OPD image of a 10 μm polystyrene bead. (a) WT scale image, where ar has been colour
coded in grey scale. Scale bar is 5 μm. (b) Corrected OPDr− image, where Φ(x, y) (in nm) has been
colour coded . (c-d) Horizontal sections taken at the middle of the bead in (a) and (b) respectively.

lems caused by the transverse resolution of the microscope, with a good agreement between
the estimated size from the x-y plane and the z axis. On the x-y plane we take the points
where the WT scale changes drastically with respect to 1, that is, the absolute minima and
maxima , corresponding to ∼ 9.4 μm for the section shown in Fig.3.15(c). On the z axis we
estimate the bead thickness from the OPD profile, taking the nominative RI difference, at the
centre of the bead we have then Φ ∼ 700 nm, which corresponds to h = 9.55μm, that is, an
overestimation of 1.5% in the bead thickness. We can observe on Fig. 3.15 the homogeneity
that we can typically find on these kind of polystyrene beads, showing a highly controlled size
with very small defects on its spherical structure.

Finally, to test our DPM setup and phase recovery method on a more complex structure we
look at aggregates of polystyrene beads. The difficulty on these type of images comes from
the fringe deformation at the regions where the edges of the beads are in contact or very close
to each other (Fig.3.16a). This is perhaps one of the most remarkable situations where we
can observe the potential and the advantages of the WTMM method with the choice of an
anisotropic wavelet. First of all, the anisotropy of the chosen mother wavelet allows a good
detection of the fringe deformation even at the points of contact between beads (Fig.3.16b).
Next, by taking a reference image we obtain a highly homogeneous intensity image |WΨ,r−|
(Fig.3.16c), as well as an outstanding recovery of the OPD map (Fig.3.16d) , especially when
we compare it to the OPD image obtained with the Hilbert transform method (Fig.3.16e). In
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(a) (b) (c)

(d) (e)

Figure 3.16 – Imaging of 10 μm polystyrene beads aggregates. (a) Untreated DPM image of an ag-
gregate of polystyrene beads of 10 μm diameter. Scale bar is 10 μm. (b) WT scale image. (c) |WΨ,r− |
(d) Corrected OPDr− image, where Φ(x, y) (in nm) has been colour coded. (e) Hilbert transform OPD
image.

this case, the Hilbert method fails to properly recover the phase due to the intensity modu-
lation produced by the light scattering by the bead. As established by Bedrosian [234], when
the intensity modulation contains frequencies that overlap with the fringe carrier frequency
fg , the extraction of the phase with the Hilbert method is biased and leads to a false estima-
tion. Indeed, from the Hilbert transform of a function I (�x) = Q(�x)cos[ fg x +φ(�x)], we would
like to recover a function like Q(�x)sin[ fg x +φ(�x)] from which the phase could be computed
straightforwardly. Bedrosian’s theorem shows that this is workable only if the amplitude mod-
ulation Q(�x) does not contain frequencies that mix with the carrier frequency fg . This con-
dition is not experimentally satisfied as illustrated in Fig.3.16(a). In that case, when using the
WTMM method, the WT offers the advantage of leading to a measure of the frequency from
the WTMM that considerably reduces the effects of fringe modulation amplitude on phase
retrieval [228].

3.5 Characterisation of living cells

Quantitative Phase Microscopy (QPM) has been proposed as a non-intrusive alternative to
fluorescence microscopies to characterise the internal complexity of living cells. The distri-
bution of refractive index of a living cell contributes in a non intuitive manner to its optical
phase image and quite rarely can be inverted to recover its internal structure. The interpreta-
tion of the optical phase image of a living cell remains a difficult task because (i) we still have
very little knowledge of the impact of its internal macromolecular complexes on the local re-
fractive index and (ii) phase changes produced by light propagation through the sample are
mixed with diffraction effects by the internal cell bodies. With the exception of red blood cells,
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Figure 3.17 – Geometrical description of living cells. 3D sketch of suspended (A) or adherent (B) cells.
Their geometrical characterisation is based on the 2D detected boundaries (C-D) from the OPD images
obtained with the DPM. The plane in (A) shows the cross-section corresponding to the 2D projected
contour shown in (C). The detected contours�r (x, y) have been mapped to polar coordinates�r (θ), with
θ increasing counterclockwise from 0◦ to 360◦, and interpolated to increase the spatial resolution in r
(dr =1.8 nm) and θ (dθ=4.4 ·10−3).

whose refractive index can be presupposed as homogeneous, the extraction of RIs from phase
images often requires the use of rather complex algorithms. However, when the 3D shape of
the cell can be established a priori, the computation of RIs from phase images is then possible.
For instance, non adherent cells in liquid generally adopt a spherical shape, which facilitates
the inversion problem. Because living cells are made of crowded macromolecules which may
condensate or dilute at some stages of their fate to assist global processes as growth, cell di-
vision, invasion, apoptosis and migration, their internal structure bears a rather high level of
complexity.

3.5.1 Geometrical parameters

Let’s consider a living cell as a three-dimensional object. When they are imaged with DPM,
what we observe is a two-dimensional projection on the x-y plane (Fig.3.17). We will focus
mainly on the boundary that separates the cell from its surrounding medium, whom we will
refer to as the cell outer boundary, as it contains all the information necessary to characterise
the type of cells that we study. However, under certain circumstances, the cell interior may
present other well defined structures, for example the nuclei, to whom we can also associate
additional boundaries. The cell outer boundary represents a cross section of the cell which
does not necessarily corresponds to an horizontal plane (Fig.3.17A), except in the rare case
where the cell geometry is invariant by rotation around its vertical axis. Since the DPM image
is an integration along the z axis of the whole cell body, we get an apparent 2D outer contour
of the cell projection on the x-y plane that may differ from the real cell boundary. This means
that, even tough the properties of the 2D outer contour are quite informative and useful for
the cell characterisation, they do not provide a direct measure of the whole cell morphology.
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Once the outer contour (�r0) has been identified, we proceed to change the coordinate system
from cartesian coordinates �r (x, y), to polar coordinates �r (θ), and interpolating the data to
avoid any bias from the x y grid (see section 3.6.3.a for details). We choose as origin the centre
of mass of the cell with θ increasing counterclockwise from 0◦ to 360◦ (Fig.3.17C-D). Having
�ri (θ) for the detected contour, we can compute the following geometrical characteristics of
the boundary:

• Perimeter (Pi ) of the detected contour�ri

Pi =
∫2π

0
ri (θ)dθ (3.21)

• Area (Ai ) of the surface enclosed by the detected contour �ri , which in the case of the
outer contour�r0 is equivalent to the surface of the object’s cross section

Ai = 1

2

∫2π

0
r 2

i (θ)dθ (3.22)

• The aspect ratio (Di ) is a function of the largest diameter (dmax ) and the smallest diam-
eter orthogonal to it (dmi n)

Di = dmi n

dmax
(3.23)

The normalised aspect ratio varies from approaching zero for a very elongated object,
to one for a circle.

• The circularity index Ci computes the perimeter ratio of the detected contour�ri to the
equivalent circle that covers the same surface

Ci = Pi

Peq
=

∫2π

0
ri (θ)dθ(

2π
∫2π

0
r 2

i (θ)dθ

)1/2
(3.24)

where Peq is the perimeter of the equivalent circle. It is used only to characterise round-
shaped cells.

• The signed curvature κi (θ) at each point p(r,θ) on the curve

�κi (θ) =− 1

Roc (θ)
r̂i(θ) (3.25)

where Roc is the radius of the osculating circle at p(r,θ), and r̂i(θ) is the unit vector
pointing from the origin towards p(r,θ). It is used to characterise only anisotropic cells,
such as adherent cells.

3.5.2 Composition and refractive index

There are a few subtleties on the interpretation of the phase image of a living cell that are
linked to its structure. As discussed on section 1.2 of the introductory chapter, a living cell
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Figure 3.18 – Cell composition and refractivity. (A) Representation of the cell as a three-dimensional
object. By taking small boxes of volume ΔV = ΔxΔyΔz and density ρi , we can discretise the cell as
N points of different refractive indices (ni ). (B) Scheme of a cell as an optical object, defined only by
point-like particles of refractive index ni , and taking as a physical barrier the plasma membrane.

has a highly complex and dynamical structure. Therefore, when integrating along the cell
thickness (z-axis), it is quite unlikely that we can observe any structure delimited by smooth
physical boundaries except, perhaps, for the nucleus. To have a more adequate interpreta-
tion of the cell OPD, it is important to relate the cell RI values based to its composition, i.e., its
density (Fig.3.18). We represent the cell as a three-dimensional object, assuming that it has at
least one physical barrier, which is the plasma membrane. This is the only component of the
cell that we consider a priori to form a closed boundary (Fig.3.18B). For the cell interior we
proceed as follows: we take a small volume ΔVi at position (xi , yi , zi ) with ΔVi = ΔxiΔyiΔzi

and density ρi (Fig.3.18A); if we take N boxes of volume ΔV to cover the full range on the
spatial coordinates (x, y, z), we can associate to each box i a point-like particle of refractive
index ni and position (xi , yi , zi ). The boundary of the object is precisely defined by an abrupt
change in the RI slope at the interface between the interior and the exterior media. Because
domain interfaces in biological matter will not be very sharp, we will rather consider them as
transitory zones.

It has been shown that the refractive properties of the cell exhibit a strong dependence on the
total cell protein concentration [235]

nc (x, y) = nw +αp Cp(x, y)+αl Cl(x, y) (3.26)

where nw is the RI of water, α is a constant know as the refractive index increment (in ml/g)
that depends on the RI of the protein (p) or the lipidic (l) component, and C is the number
of grams of dry protein (p) or lipids (l) per ml of solution. There is some uncertainty on the
value of α, particularly when dealing with complex mixtures of proteins. It normally takes
values between 0.18 ml/g and 0.21 ml/g, with αp = 0.193 ml/g for haemoglobin. However,
even if the absolute value cannot be measured precisely, it is possible to use relative values
for cell characterisation, taking an average value α that takes into account the contribution
from the protein and lipid components of the cell. For instance, by integrating the OPD over
the projected cell area Ac ,
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M = 1

α

∫
Ac

Φ(x, y)d A (3.27)

the total cell dry mass (M) of the the cell material can be used to quantify cell growth using
the OPD images [222, 235].

3.5.3 Optical path depth

It has been shown that parameters based on the OPD profile of the cell are biologically rele-
vant, serving for example, to characterise the cell cycle and as a marker for pathologies [236–
238]. Even in the case of cells with an heterogeneous refractive index, it is possible to char-
acterise them using OPD parameters without the need of uncoupling the cell thickness and
refractive index, leading to the survey of the global cell morphology, its temporal evolution,
and its alteration in pathologies. Note that in the case of round-shaped cells, such as cells
in suspension, an isotropic OPD profile (Fig.3.19) may allow to define additional parameters
accounting for the cell roundness and moreover, to uncouple the cell refractive index from
the thickness, as we can assume a spherical shape and estimate the three-dimensional ge-
ometrical parameters. Next, we will introduce the parameters that we will employ for the
characterisation of the morphology of single cells.

• Optical volume (VΦ) of the cell . It is computed based on the OPD directly and does not
require uncoupling of the cell thickness from the refractive index.

VΦ =
∫

Ac

Φ(x, y)d A (3.28)

The optical volume is proportional to the dry mass by a factor α. While both quantities
are equivalent, we will report both values as the optical volume has a more physical
notion whereas the dry mass can be more intuitive.

• In the case of rounded shape cells, it is possible to estimate the average cell refractive
index (〈Δnc〉), approximating the actual cell volume as the one of a sphere:

〈Δnc 〉 = VΦ

Vc
(3.29)
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Figure 3.19 – Characterisation based on the Optical Path Depth. (a) 3D representation of a solid
sphere. (b) OPD map from a solid sphere of radius R = 5μm and relative refractive index Δn = 0.03.
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where Vc is the physical cell volume.

• The projected area to optical volume ratio (AV) describes the flatness of the cell

AV = A0

VΦ
(3.30)

• Optical sphericity index (Sp ), defined as the ratio of the projected area of the cell and
the equivalent sphere with the same optical volume as the cell

Sp = A0

Aeq
= A0

(
3
�
π

4

VΦ

Δnc

)−2/3

(3.31)

where Aeq is the area of the equivalent sphere.

Additionally we can compute the OPD statistical parameters, such as the OPD kurtosis, skew-
ness and variance. As these parameters are based on changes in the OPD values, they reflect
structural changes.

• OPD variance (σ2
Φ)

σ2
Φ = 1

n −1

n∑
i=1

(
Φc (n)−μΦc

)2 (3.32)

where Φc (n) is the cell OPD values with mean value μΦc .

• The OPD skewness (SkΦ) is a measurement of the lack of symmetry of the cell OPD
values from their mean

SkΦ =
n∑

i=1

(
Φc (n)−μΦc

)3

σ3
Φ

(3.33)

• The OPD kurtosis (K rΦ) measures whether the cell OPD distribution is more peaked or
flatter

K rΦ =
n∑

i=1

(
Φc (n)−μΦc

)4

σ4
Φ

(3.34)

3.6 Methods for the characterisation of the cell structure

3.6.1 Image segmentation for object identification

Almost all of the analysis done on the DPM images requires a first step of image segmenta-
tion or object identification, which consists in separating the object from the background in
order to avoid the noise introduced by the surrounding medium that can lead to computation
errors. Additionally, by identifying the object on the initial steps, we can significantly reduce
the size of the area of the image analysed, which means less amount of stored data and faster
computation times. An important remark is that we base the object segmentation algorithm
on the phase data. As we have discussed before, the phase information is much more sensi-
tive and offers a more precise identification of the object contour. This implies, however, that
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Parameter Type of cells Formula Units

Perimeter All Pi =
∫2π

0
r (θ)dθ μm

G
eo

m
et

ry
o

ft
h

e
cr

o
ss

se
ct

io
n

Area All Ai = 1

2

∫2π

0
r 2

i (θ)dθ μm2

Aspect ratio All Di = dmi n

dmax
no units

Circularity index Round (suspended) Ci =

∫2π

0
ri (θ)dθ(

2π
∫2π

0
r 2

i (θ)dθ

)1/2
no units

Curvature Adherent �κi (θ) =− 1

Roc (θ)
r̂i(θ) μm−1

Optical Volume All VΦ =
∫

Ac

Φ(x, y)d A μm3

Area to Volume ratio All AV = A0

VΦ
no units

O
p

ti
ca

lP
at

h
D

if
fe

re
n

ce Sphericity Round (suspended) Sp = A0

(
3
�
π

4

VΦ

Δnc

)−2/3

no units

OPD variance All σ2
Φ = 1

n −1

n∑
i=1

(
Φc (n)−μΦc

)2
μm2

OPD skewness All SkΦ =
n∑

i=1

(
Φc (n)−μΦc

)3

σ3
Φ

no units

OPD kurtosis All K rΦ =
n∑

i=1

(
Φc (n)−μΦc

)4

σ4
Φ

no units

C
o

m
p

o
si

ti
o

n Cell dry mass All M =α−1 VΦ pg

Cell refractive index Round (suspended) 〈Δnc 〉 = VΦ

Vc
no units

Table 3.2 – Parameters used for the characterisation of living cells.

the phase recovery algorithm is implemented on the whole image, limiting the optimisation
of the computation time.

The segmentation method starts by taking the WT scale image (Fig.3.20a). Recall that the
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3.6. Methods for the characterisation of the cell structure

WT scale is the scale ar corresponding to the WTMM, and is directly related to the phase
derivative. The advantage of taking the WT scale image and not the phase derivative relies on
working with a less noisy data (although significantly discretised), and it avoids an extra step
on the computation time, as we already obtain the WT scale image from the phase recovery
with the WTMM method. We compute the histogram of the WT scale image (Fig.3.20b) where
we find a prominent peak at ar ∼ 1, the highest the ratio between the background area and
the object of our interest, the highest the peak. As the object contour will produce a modifi-
cation on the fringe modulation, the value of ar will be deviated from ar = 1, so we search for
the lowest and highest values of ar in the histogram. We determine these values by dividing
the histogram in two approximately equal parts, each one goes from one extreme towards the
centre of the distribution, that is, the peak around ar . For each half, we extract the part of the
curve that covers only 10% of the area under the curve (Fig.3.20b, area in black). Then, we
localise the pixels on the image that correspond to the selected values of ar and we obtain a
first coarse identification of the border of the object (Fig.3.20c).

We now consider the OPD image (Fig.3.20d), and to separate the object from the background,
we take as a threshold value the minimum Φ value localised on the object border detected
by the previous step (black contour in Fig.3.20d). Figure 3.20(e) shows the distribution of
OPD values found on the border of the object, where we observe a rather inhomogeneous
distribution, as compared to a single peak or hump that we will expect from a fine border.
Indeed, if we use look at the part of the image identified as the object shown in Fig.3.20(f),
we can see a very irregular contour that does not seem to correspond to the shape of our
object (Fig.3.20a) and that includes some parts of the background. Therefore, we proceed to
refine the border detection by using only the data contained in the identified are of the image
by the previous step (Fig.3.20g,j), extending it by 5 pixels in each direction, and we repeat the
proceeding by taking this time only 2.5% of the area under the curve of the WT scale histogram
(Fig.3.20h). As seen in Fig.3.20(i), this time we do obtain a quite narrow border, with a single
hump in the distribution of OPD values (Fig.3.20k). By taking the minimum OPD value found
at the detected border, we do recover the expected object (Fig.3.20l).

3.6.2 Multi-sphere boundary model: phase isocontours

Spherical objects are one of the simplest cases of study because they are described by rather
simple geometrical relations. In the following, three model examples will de discussed namely,
a solid sphere, an empty cortex and a cortex filled with a denser medium (Fig.3.21a,b). We
will also extend the model to a multi-layered spherical object (Fig.3.21c) to mimic spherical
mono-nucleated cells. Later on, we will present the algorithm that we will employ to detect
the contours of the internal structures on living hematopoietic stem cells, based on the dis-
tribution of their OPD values.

3.6.2.a One-dimensional case: Isotropic structures

In addition to the OPD profiles reconstructed from sections of the object, it is useful to de-
scribe the phase object from the distribution of the OPD values. As we are dealing with
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Figure 3.20 – Image segmentation method for object identification. (a) WT scale image of a living cell
in suspension (TF1-GFP cell line). (b) Distribution of the WT scale values ar , where Npix is the number
of pixels. The black line shows the full distribution, whereas the part of the curvedarkened, represents
the values taken for the border detection. (c) Binary mask of the detected border. (d) OPD image of the
same cell as in (a), where the black contour indicates the detected border. (e) Distribution of the OPD
values corresponding to the detected border shown in (c). (f) Binary mask identifying the detected
object. (g-j) Same as (a-d) for the refined step of the algorithm, where the input data has been chosen
with the binary mask shown in (f). (l) Final OPD image containing only the object of interest.

isotropic spherical structures, it is convenient to use a polar coordinate system and take ad-
vantage of the symmetry of the object. due to the rotational symmetry, we can simply take
a section at a certain angle θ. The OPD function Φ(x, y) then reduces to a one-dimensional
function: Φ(�r ), where�r is the radial vector taken at a given θ. The distribution of Φ, P (Φ), is
given by:

P (Φ) =
∣∣∣∣dr (Φ)

dΦ

∣∣∣∣ (3.35)

When a function f is monotonous (monotonously increasing or decreasing), the inverse of
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Figure 3.21 – 3D representation of the isotropic multilayer model structures: a solid sphere (a), a
cortex filled with an homogeneous medium (b), and a multi-sphere structure (c).

the derivative of f is actually the derivative of its reciprocal, so we can write P (Φ) as

P (Φ) =
∣∣∣∣
(

dΦ

dr

)−1∣∣∣∣ (3.36)

Solid sphere
Consider a solid sphere centred at the origin, with a radius R and a relative refractive index
(RI) Δn. The optical path depth (Φ) of the sphere at a given distance r to its centre is given by

Φ(r ) =Δn
(
2
√

R2 − r 2
)

, r ≥ 0 (3.37)

where the term inside brackets corresponds to the total thickness of the sphere at the point r
(Fig.3.22a). It follows that the derivative with respect of r (Fig.3.22b), is given by:

dΦ

dr
=−2Δn

r�
R2 − r 2

(3.38)

Substituting eq.(3.38) into eq.(3.36):

P (Φ) =
∣∣∣∣
(

dΦ

drΦ

)−1∣∣∣∣= 1

2Δn

√
R2 − r 2

Φ

rΦ
(3.39)

with rΦ = r (Φ), (Fig.3.22c).

Cortex filled with a denser medium
Following the same computation method we obtain the distribution of OPD values for a struc-
ture composed of a cortex where the interior is filled with an homogeneous medium (homo-
geneous RI). The OPD function is given by:

Φ(r ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2Δn1

√
R2

1 − r 2 for r > R2

2
[
Δn1

√
R2

1 − r 2 + (Δn2 −Δn1)
√

R2
2 − r 2

]
for r ≤ R2

(3.40)
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Figure 3.22 – OPD profile and OPD distribution for the radial section of a solid sphere. OPD section
for a solid sphere (a), its derivative (b) and the inverse of the derivative (c), which is equivalent to the
OPD distribution (eq.3.36). To appreciate how the distribution behaves, a zoom is shown on the inset.
R = 7.5μm and Δn = 0.03.
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Figure 3.23 – OPD profile and OPD distribution for the radial section of a cortex filled with a denser
medium. (a) OPD section for a cortex enclosing a denser material. R1 = 7.5μm, R2 = 5μm, Δn1 = 0.03,
and Δn2 = 0.045. (b) OPD derivative from the section shown in (a). (d) Distribution of the OPD values.

where R1 and R2 are respectively the outer and inner boundaries of the cortex, with Δn1

the relative RI of the cortex and Δn2 of the interior, both with respect to the outer medium
(Fig.3.23a). By inverting the the derivative of eq.(3.40) with respect to r (Fig.3.23b), we get the
OPD distribution as

P (Φ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2Δn1

�
R2

1−r 2

Φ for r > R2

∣∣∣∣∣ 1
2rΦ

√
R2

1−r 2
Φ

√
R2

2−r 2
Φ

(Δn1−Δn2)
√

R2
1−r 2

Φ−Δn1

√
R2

2−r 2
Φ

∣∣∣∣∣ for r ≤ R2

(3.41)

It is interesting to know how P (Φ) behaves at the centre of the sphere (rb0 = 0) and at the
boundaries, namely, rb1 = R1 and rb2 = R2, where the subscript bi denotes the i th boundary.
For this, we can estimate the limit when rΦ tends to rbi :

lim
rΦ→R1

P (Φ) = lim
rΦ→R2

P (Φ) = 0 (3.42)

and

lim
rΦ→0

P (Φ) =+∞ (3.43)

88



3.6. Methods for the characterisation of the cell structure

0 2 4 6 8
0

100

200

300

400

0 2 4 6 8
-1.5

-1

-0.5

0

0.5
Φ

(n
m
)

r (μm) r (μm)

d
Φ
/
d
r

R2

(a) (b)

Figure 3.24 – OPD profile for the radial section of an empty cortex.(a) OPD section of an empty cortex,
where the dashed line shows the inner boundary (R2) of the cortex. (b) Derivative of the OPD section
shown in (a)

Note that dΦ/dr presents a singularity that corresponds to the inner boundary of the cortex,
R2, that is, when Φ = Φ(R2) (Fig.3.23b), while the curve P (Φ) diverges toward the maximum
value of Φ, as expected for a ‘solid’ sphere (Fig.3.23c and Fig.3.22c).

Empty cortex
As stated before, eq.(3.36) is only valid when the OPD function is monotonous, otherwise to
perform the inversion, the OPD function must be partitioned into regions that are monotonous
increasing or decreasing. This is the case when we want to compute the OPD distribution for
an empty cortex. In fact, when we talk here about an empty cortex, we are truly referring to
a cortex whose interior medium has the same refractive index as the outer medium. Since
the OPD depends on the relative RI (Δni ), then the cortex can be considered of as an empty
structure. With Δn2 = 0, eq.(3.40) reduces to

Φ(r ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2Δn1

√
R2

1 − r 2
Φ for r > R2

2Δn1

[√
R2

1 − r 2
Φ−

√
R2

2 − r 2
Φ

]
for r ≤ R2

(3.44)

Then, the total distribution of OPD values will be simply the summation of the distributions
computed for each sub-interval (Fig.3.25). From eq.(3.41) we have for Δn2 = 0:

P (Φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣ 1
2Δn1

√
R2

1−r 2
Φ

rΦ

∣∣∣∣∣ for r > R2

∣∣∣∣∣ 1
2Δn1rΦ

√
R2

1−r 2
Φ

√
R2

2−r 2
Φ√

R2
1−r 2

Φ−
√

R2
2−r 2

Φ

∣∣∣∣∣ for r ≤ R2

(3.45)

As before, we compute the limit as r tends to R2 since it is the boundary that interests us the
most:

lim
rΦ→R+

2

P (Φ) =
√

R2
1 −R2

2

2Δn1R2
(3.46)
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In comparison to a cortex filled with a denser medium, we can associate a different feature of
the distribution to the inner boundary of the cortex by noting that Φ(R2) =Φmax (Fig.3.25a),
and knowing from eq.(3.46) that P (Φ) tends to a constant value when r → R2.

3.6.2.b Phase profiles on 2D

Isotropic structures
We will now extend the discussion made above for OPD radial sections to two-dimensional
OPD maps. The distribution of OPD values is given by the product of the probability P (Φ)
with the projected area of the surface which has this OPD (§Φ)

P2D (Φ) = P (Φ)
∫

SΦ

r dθdr (3.47)

As the OPD functions described above remain valid, the missing element is now the determi-
nation of the projected area. It is necessary then to define an angular variable θ in addition to
the already existent radial variable r . In the case of isotropic structures, Δθ = 2π, and recalling
eq.(3.36), eq.(3.47) becomes for a band of radius r and width dr

P(r,dr )(Φ) = 2πr

∣∣∣∣
(

dΦ

dr

)−1∣∣∣∣ (3.48)

From eq.(3.48) we can see that in order to obtain the OPD distributions in the two-dimensional
case, we use P (Φ) for the 1D sections discussed above, and multiply it by a factor of 2πr , which
eliminates the 1/r trend found in all the distributions (Fig.3.26d-f). This will, in general, re-
move the divergence of P (Φ) at Φ close to Φmax , the effect being more notorious for the OPD
distribution of a solid sphere. Substituting the OPD function, Φ(r ) for a solid sphere (eq.3.37)
in eq.(3.48), we obtain:

P (Φ) = π

Δn

√
R2 − r 2 (3.49)

Since
�

R2 − r 2 = Φ
2Δn ,
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Figure 3.25 – OPD distribution for the radial section of an empty cortex.. OPD distribution of an
empty cortex for the range r ≤ R2 (a) and r > R2 (b). (c) Sum of the two distributions shown in (a) and
(b). The inset shows a zoom on the curve.
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Figure 3.26 – OPD distributions from two-dimensional OPD maps. OPD distribution (d-f) of the
complete OPD map (a-c) from a solid sphere (a,d), a cortex filled with a denser medium (b,e), and an
empty cortex (c,f).

P (Φ) = π

2Δn2 Φ (3.50)

showing that the 2D distribution behaves as a linear function of Φ (Fig.3.26d).

It is now straightforward to compute the distribution of the OPD values for a multi-sphere
structure. The importance of such structure relies on the possibility of modelling a living
spherical cell as a multi-layered object, the layers being defined by regions with the same av-
erage refractive index. The considerations and implications of this model will be discussed in
detail on section 3.6.2.c. Therefore, in the following we will only describe the OPD function
and the distribution of its values, and more importantly, we will explain how is it possible to
detect the inner boundaries of the object by looking at the P (Φ) probability distribution.

We build our object by including four concentrical layers as follows: an outer cortex (Δn1)
filled with a slightly less dense medium (Δn2), and immersed on the inside another cortex
(Δn3) filled with a denser medium (Δn4)(Fig.3.27a), such that

R1 ≥ r > R2, Δn =Δn1

R2 ≥ r > R3, Δn =Δn2

R3 ≥ r > R4, Δn =Δn3

R4 ≥ r ≥ 0, Δn =Δn4

with

0 ≤Δn2 <Δn1 ≤Δn3 <Δn4
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Figure 3.27 – OPD map and OPD distribution of a multi-sphere structure.(a) OPD map of a multi-
sphere structure as the one represented in Fig.3.21c. With R1 = 7.5μm,R2 = 6.5μm,R3 = 4μm,R4 =
3μm; Δn0 = 0.025,Δn1 = 0.02,Δn2 = 0.025,Δn3 = 0.03. (b) Radial OPD section, where the vertical
lines separate the subintervals required to invert the function and compute the OPD distribution. (c)
OPD distribution for the complete 2D OPD profile, where P (Φ) has been computed as the sum of the
distributions of each subinterval separated on (b).

The OPD function Φ(r ) can be written as:

Φ(r ) = 2
3∑

i=1
Δni

(√
R2

i − r 2 −
√

R2
i+1 − r 2

)
+2Δn4

√
R2

4 − r 2 (3.51)

Following the same method used to compute the distribution of an empty cortex, we can
obtain the total probability function P (Φ) as the sum of the distributions for each interval
(Fig.3.27c). Note that, as before, each of the inner boundaries (R2,R3,R4) will be linked to a
feature characteristic on the OPD distribution curve: P (Φ) diverges when the boundary de-
limitates a region of lower refractive index, and P (Φ) → 0 at each of the other boundaries.
Thus, we can expect that, if we have enough resolution, we can identify such boundaries by
looking for these features of the OPD distribution.

Asymmetric structures
One important remark about the detection of isophase contours based on the OPD distribu-
tion is its validity for asymmetric structures. So far, we have shown that it is possible to identify
the inner borders of a multi-shell structure based solely on the features of its OPD distribu-
tion. This requires for the multiple spheres to be concentrical, such that there is an isophase
contour that can be associated to each of the spheres boundaries. However, as soon as there
is a displacement on the positioning of one of the inner spheres, the above description is no
longer true: there will be no isophase contour that can be associated directly to the border
of the inner sphere. Figure 3.28(a) and (b) shows respectively, the OPD profiles along the x
and y direction for a structure composed of two non-concentrical spheres. The solid black
lines in Fig.3.28 correspond to a structure whose inner sphere has been displaced a distance
of 1μm along the y direction (θ = π/2) (Fig.3.28b). As expected, this shift causes a change on
the value of Φ corresponding to the border of the sphere, which is more noticeable on the y
direction than on the x direction (Fig.3.28a). When the displacement of the sphere is more
important (2.75μm), it can cause a shift on the OPD values along both directions, even if the
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Figure 3.28 – OPD distribution of an asymmetric multi-shell structure. (a) OPD radial profile along
the x direction (θ = 0) for a bi-sphere structure, where the centre of the inner sphere is displaced with
rc2 = 1μm (black solid line) or rc2 = 2.75μm (dashed grey line). The vertical dotted line indicates the
position of the border of the inner sphere for the concentrical case (isotropic structure). (b) Same
as (a) for a section along the y direction (θ = π/2). (c) OPD distribution for the complete 2D OPD
profile, where P (Φ) has been computed using the function histc of MATLAB. R1 = 7.5μm, R2 = 5.5μm,
Δn1 = 0.02, Δn2 = 0.03.

position changed only in one (Fig.3.28a-b, dashed grey lines). This effect propagates to the
OPD distribution (Fig.3.28c), shifting the local minima and even causing the appearance of
an additional local minima (Fig.3.28c, dashed grey line), leading to a biased or false detection
of the inner boundaries of the multi-sphere structure.

Nevertheless, if we detect a pronounced local minima on the OPD distribution of the 2D OPD
profile, we will relate it to the boundary of a structural domain with a similar relative refractive
index and, if this contour on the x-y plane possesses a high degree of circularity, and is cen-
tred at less than 1μm away from the cell centre, we will make the assumption that it is a nearly
concentrical sphere, and thus, the multi-sphere model presented above can be applied.

3.6.2.c Application of the multi-shell model to single cells.

The detection of intracellular boundaries based on the multi-shell model proposed above is
relatively fast and easy to implement, as it requires only the detection of local minima present
on the curve of the distribution of OPD values. The difficulty comes, as in all the minima/-
maxima detection of experimental curves, on the correct data sampling and denoising. The
data sampling in our case, refers to the bin width to compute the histogram from the OPD
image. We choose the bin width to sample the full range of the data with 400 bins, on a typical
spherical cell, Φ has a range between [0,400 nm], leading to bin width of 1 nm. Figure 3.29(b)
shows the histogram curve for the OPD image of a TF1-GFP cell (see section 2.5.2 for the de-
scription of these cells), shown in Fig.3.29(a).

We smooth the data with a gaussian window with a 8 nm width, and we detect the local min-
ima simply by inverting the smoothed curve, and using the function findpeaks of MATLAB.
The position of the detected minima determines the threshold value of Φ (Fig.3.29b, vertical
lines) to segment the cell interior and detect the isocontours of the domain boundaries.
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Figure 3.29 – Phase isocontours of a living cell. (a) OPDr− image after image segmentation of a TF1-
GFP living cell, where Φ(x, y) (in nm) has been colour coded. The black contours indicate the detected
boundaries. (b) Distribution of OPD values for the cell shown in (a). The vertical coloured lines indi-
cate the detected local minima that determine the threshold values for the boundary detection.

The multi-shell model requires for the boundaries to be highly circular and concentrical.
Hence, we must evaluate if the detected contours fulfil these conditions if we want to apply
the multi-shell model to extract some information about the refractive index of the domain.
Although, we can still perform a geometrical characterisation of the detected contours since
it could provide interesting results when comparing different cell types if we are rather inter-
ested on the relative information than in absolute values.

For the cell shown in Fig.3.29, we detect three contours that we label going from the cell bor-
ders towards the centre i = 1,2,3. We start computing the circularity index C for each contour:
C1 = 0.997,C2 = 0.995,C3 = 0.988. Even if all the contours seem to have high circularity, if we
look at the third contour, it does not appear to be that circular, so we will choose as a criteria
for consider high circularity, that C ≥ 0.99. This discards contour 3 for the multi-shell model.
The other two contours are circular and concentrical with |rci − rc0 | ≤ 0.74μm, where rci and
rc0 are respectively the barycentre of the contour i and of the cell. We can, therefore, estimate
the refractive index of each domain, considering the cell as a structure composed of 3 con-
centrical spheres (cell border + two internal domains).

For a structure of N concentrical spheres with Δni ,i−1 the relative RI of sphere i of radius Ri−1,
we have:

Δn1,0 = Φ(R1)

2
√

R2
0 −R2

1

(3.52)

Δni ,i−1 = 1√
R2

i−1 −R2
i

(
1

2
Φ(Ri )−

i−1∑
j=1

Δn j , j−1

√
R2

j−1 −R2
i

)
(3.53)
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ΔnN ,N−1 = 1

RN−1

(
1

2
Φmax −

N−1∑
j=1

Δn j , j−1R j−1

)
(3.54)

Then, for the example shown in Fig.3.29, N = 3, counting the cell border (i = 0), we have:

Δn1,0 = 87.067nm

2
√

7.792μm −7.302μm
= 0.0160 (3.55)

Δn2,1 = 1√
7.32μm −5.292μm

(
1

2
331.43nm−Δn1,0

√
7.792μm −5.292μm

)
= 0.0148 (3.56)

Δn3,2 = 1

5.29μm

(
1

2
521.3nm−7.79μmΔn1,0 −7.30μmΔn2,1

)
= 0.005 (3.57)

giving a total Δnc ∼ 0.0361 compared to the RI obtained using the optical path volume, Δnc ∼
0.0337, which makes a difference of 3.7% between both methods.

3.6.3 Wavelet transform maxima chains

We develop here a method for the detection of optical path depth contours from single cells
based on local maxima chains of the OPD derivative in two dimensions. These maxima de-
fine interface chains where the RI and/or the cell shape vary and can be considered as domain
boundaries. Even if we do not know a priori which is the prominent variation (RI or thickness)
at each maxima, their connectivity, or maxima chains, gives us direct access to the complexity
of the cell interior.

The OPD function is an integral on the RI change through the cell, whose integration limits
depend on the point x=(x,y) :

Φ(x) =
∫zM (x)

zm (x)
Δn(x, z)d z =ΔN (x, z)

∣∣∣zM (x)

zm (x)
(3.58)

ΔN (x, z) is therefore the integral function of Δn(x, z). For example, if Δn(x, z) =Δnc , with Δnc

a constant,

ΔN (x, z) =Δnc z +B (3.59)

is a linear function of the variable z, and

Φ(x) =Δnc (zM − zm)(x) =Δnc h(x) (3.60)

The OPD function follows precisely the shape of the object and its derivative is proportional
to the derivative of its thickness h at each point (x,y). In general, the derivative of Φ along a
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radial coordinate on the x-y plane results from both RI and the topography variations

∂Φ(x)

∂r
= ∂ΔN (x, zM )

∂r
− ∂ΔN (x, zm)

∂r
(3.61)

If Δn is an integrable function, the two integral values ΔN (x, zM ) and ΔN (x, zm) exist and can
be derived again along r . The boundary of the object is precisely the domain in space where
the RI slope changes at the interface of the interior and the exterior media, if this interface
is fuzzy, the slope will not be sharp. Because domain interfaces in biological matter will not
be very sharp, we will rather consider them as transitory zones with a sharpness described
by the OPD gradient. The local maxima of this OPD spatial gradient will follow the boundary
zones wherever they can be detected, whether they correspond to the object boundary or its
internal structure. If we consider that the object is made of the assembly of different inter-
nal structures with RI variations, we will apply the same assumption as above for the internal
boundaries detection. The main difficulty will therefore be to compute correctly these spa-
tial gradients and extract local maxima lines. If the maxima lines are closed we will conclude
to the existence of well defined internal structures with a quite homogeneous composition.
On the contrary, if the maxima lines are not closed and rather randomly distributed, we will
rather conclude to a more complex organisation of the internal structure of the considered
object.

Let us take a theoretical example of a spherical object of radius R, with a radial RI function
varying from n0 (the outer medium) to nc (at the centre of the sphere):

Δnt1(x, z) =
{
Δnc |(R − r )/R|α for r ≤ R

0 for r > R
(3.62)

with r =
√

x2 + y2 + z2 the radial distance, and Δnc = nc −n0. The height of the sphere at
position x with x2 + y2 < R2 is given by

h(x, y) = 2
√

R2 − (x2 + y2) (3.63)

Centring the middle of the sphere at the origin (xc = 0, yc = 0, zc = 0), we plot in Fig.3.30(a)
the RI profiles along the x axis, for α= 0, 0.25, and 0.5 ( black solid, dashed, and dotted lines
respectively), superimposed to the sphere thickness profile (dashed blue line).

The OPD of this spherical object at position x with x2 + y2 < R2 is given by

Φ(x) =Δnc

∫h(x,y)

0
|1− r /R|α dz (3.64)

The three OPD functions corresponding toα=0, 0.25, and 0.5 are plotted in green in Fig.3.30(b),
with the same line style as in (a). When the RI is increasing monotonously from the border
to the centre of the sphere, the OPD keeps a global single humped shape, with a nonlinearity
that depends on the exponent α. The local maxima of the first derivative of the OPD functions
point to the sphere border (Fig.3.30b). Note also that the OPD functions are symmetric with
respect to the centre of the sphere, so they keep the object symmetry. In this example, we
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Figure 3.30 – OPD profiles from model spheres with radial RI profiles. (a) Horizontal section of the
monotonously increasing RI radial profiles, Δn(x, yc , zc ), described by Eq.3.62, for different values of
α: 0 (solid line), 0.25 (dashed line) and 0.5 (dotted line). (b) Φ(x) (black lines) and ∂Φ/∂x (yellow lines)
computed from the profiles shown in (a).

have computed the first derivative of the OPD with a smoothing first derivative of a gaussian
(see section 3.6.3.a for details) in a similar way as it will be done in the experimental situa-
tions. The slight shift of the maxima of the ∂Φ/∂x compared to the sphere borders (dashed
blue line) is due to the gaussian filtering.

To introduce an internal variation of the RI we construct another structure with the same
outer spherical shape, containing an internal concentric spherical shell with higher RI, the
boundary of this internal shell is also varying smoothly with the radius r :

Δnt2(x, z) =
{
Δnt1 +Δnc [cos (2π(1− r /R))−1]2 /6 for r ≤ R

0 for r > R
(3.65)

The corresponding RI profiles for α=0, 0.25, and 0.5 are shown in Fig.3.31(a). Note the two
supplementary local maxima at x =±2μm, which are superimposed to the smoothly increas-
ing profiles, similar to those of Fig.3.30(a). The corresponding Φ and ∂Φ/∂x profiles plotted
in black in Fig.3.31(b) are very instructive since they show that the combination of both the
spherical shape and non monotnous RI profile may lead to an unexpected behaviour. In this
situation, not only the underlying spherical shape of the object is smeared out but the lo-
cal maxima of the index profiles are also strongly damped, giving the place to a quasi OPD
plateau in the middle interval [-2μm,2μm]: the higher α, the flatter the plateau.

From this model, we conclude that trusting the OPD isocontours to delineate regions of dif-
ferent RIs from a reconstructed phase image may be completely misleading but that we can
still recover some information of the boundary (internal and external) properties with the
computation of the local derivative of the OPD function.

3.6.3.a 2D Gaussian derivative WT and local maxima detection

Given that the OPD images are two-dimensional, these derivative computations must be per-
formed along both directions x and y, and we must also include in the computation the pos-
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Figure 3.31 – OPD profiles from model spheres with non-monotonous radial RI profiles. (a) Horizon-
tal section of the non monotonously increasing RI radial profiles, Δn(x, yc , zc ), described by Eq.3.65.
α: 0 (solid line), 0.25 (dashed line) and 0.5 (dotted line). (b) Φ(x) (black lines) and ∂Φ/∂x (yellow lines)
computed from the profiles shown in (a).

sibility to smooth out the enhanced noise that could come from the derivative procedure. We
use a 2D Gaussian derivative wavelet to simultaneously compute the gradient and smooth
the signal.

As originally noticed by Mallat and collaborators [163, 239] the 2D wavelet transform [240,
241] can be used to revisit the Canny’s multi-scale edge detector [242]. The principle of this
analysis is to smooth the image by convolving it with a filter and then to compute the gradient
of the smoothed signal. Let us consider the two wavelet defined respectively as the partial
derivatives with respect to x and y of a 2D smoothing function ψ(x):

Ψ1 = ∂ψ(x)

∂x
and Ψ2 = ∂ψ(x)

∂y
(3.66)

The smoothing function ψ must be well localised (around x = y = 0), isotropic and dependent
on the modulus of (x) only. The Gaussian function is the mostly used function that fulfils these
conditions:

ψg (x, y) = e−(x2+y2)/2 (3.67)

For any function f (x, y) ∈ L2(R), where L2(R) consists of all square integrable functions, the

Figure 3.32 – 2D Gaussian derivative wavelet. 3D plot of the partial derivatives of the 2D Gaussian
wavelet function: (a) ΨG1 (x, y) ; (b) ΨG2 (x, y).
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continuous wavelet transform of f with respect to ΨG1 and ΨG2 is expressed as a vector [243,
244]:

TΨ(b, a) =
(

TΨG1
[ f ] = a−2

∫
d2xΨG1 (a−1(x−b)) f (x)

TΨG2
[ f ] = a−2

∫
d2xΨG2 (a−1(x−b)) f (x)

)
(3.68)

By a straightforward integration by parts [241], this 2D wavelet transform can be rewritten as:

TΨ(b, a) =∇{Tψg [ f ](b, a)} =∇{ψg ,b,a ∗ f } (3.69)

If ψ(x) is a smoothing filter like the Gaussian function (Eq.3.67), then Eq.(3.69) amounts to
define the 2D wavelet transform as the gradient vector of f (x) smoothed by dilated versions
of ψg (a−1x) of the gaussian filter. If ψ(x) has some vanishing moments, then Tψ[ f ](b, a)
in Eq.(3.69) is the continuous 2D wavelet (C2DWT) of f (x))[231], provided that ψ(x) is an
isotropic analysing wavelet. Further on, we compute its modulus and argument

TΨ(b, a) = (MΨ[ f ](b, a),AΨ[ f ](b, a)) (3.70)

where

MΨ[ f ](b, a) =
√

(TΨG1
[ f ](b, a))2 + (TΨG2

[ f ](b, a))2 (3.71)

and

AΨ[ f ](b, a) = Arg(TΨG1
[ f ](b, a)+ i TΨG2

[ f ](b, a)) (3.72)

In practice, at a given scale a, we first compute the 2D Fast Fourier Transform (FFT) of ΨG1

and ΨG2 and we multiply these images by the FFT of f : Ψ̃G1 · f̃ and Ψ̃G2 · f̃ , and from the
inverse FFT of these products we get the wavelet transforms TΨG1

[ f ] and TΨG2
[ f ]t We then

identify the so-called wavelet transform modulus maxima (WTMM) as the points where the
modulus of the WT, MΨ[ f ](b, a) is locally maximum.

To increase the resolution of the local maxima detection when applying the method to the
images obtained with DPM, we transform the pixelated images into radial representations.
To switch from cartesian to cylindrical geometry, we interpolate the WT argument and the
modulus on 1440 radial axes crossing the centre of the cell with angular shift of δθ = 4.4 10−3

radian. On each of these rotating axes with θ varying from 0 to 2π, we interpolate each pix-
elated image along the radial variable r with a spatial resolution dr = 1.8 nm. This allows a
very acute determination of the local angle θ and of the argument of the wavelet transform
vector. From the radial coordinates of the WTMMs, we reconstruct the maxima chains as 2D
curves made of sequences of neighbouring points (distant of less than 2rδθ).

When the maxima chain is circular (Fig.3.33a), and the wavelet transform vector TΨ[Φ](b, a) is
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Figure 3.33 – Wavelet transform argument for a spheroid and an ellipsoid contour. (a) Circular chain
model with outward (resp. inward) wavelet transform vectors TΨ[Ψ](r, a).(b) Δθ =AΨ[Φ]W T M M −θ on
the WTMM chain line of (a). The outward (resp. inward) correspond to black (resp. blue) dots. (c-d)
Same as (a-b) for an ellipsoidal chain model.

oriented outward (black arrows in Fig.3.33a), the argument of the wavelet transform is equal
to the radial angle θ, Δθ = AΨ[Φ]W T M M −θ = 0 (Fig.3.33b, black dots). If the wavelet trans-
form vector is oriented inward (blue arrows in Fig.3.33a), the argument is equal toπ (Fig.3.33b,
blue points). If we take an ellipsoidal shaped maxima chain (Fig.3.33c), the argument of the
wavelet transform is no longer a constant function versus the angle θ. Again we consider the
two cases of outward wavelet transform vector (black arrows in Fig.3.33c, and black dots in
Fig.3.33d) and inward wavelet transform vector (blue arrows in Fig.3.33c, and magenta dots
in Fig.3.33d). It is important to note that when the WTMM chain deviates from a circular
contour, the angle difference Δθ may oscillate versus the radial angle θ, with alternating in-
creasing (θ < 0.15π) and decreasing (0.15π < θ < 0.85π) intervals in Fig.3.33(d). The flatter
the shape of the chain the larger the slope of these curves (in absolute values). The positive
slopes of Δθ vs. θ curves (which may reach vertical lines) correspond to highly curved chains
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Figure 3.34 – WTMM chain detection from the OPD profile of a noisy RI spherical model. (a) OPD
(black line) computed from Eq.(3.73) for α=0.25 and its WTM modulus MΨ[Φ](b, a) estimated for two
scales a = 2 (yellow line), and a = 10 (brown line). (b) 2D colour coded image of MΨ[Φ] ·10−3 for a = 2.
(c) Local maxima of MΨ[Φ] for a = 2. (d) OPD image computed from the model on Eq.3.73, where Φ

has been colour coded. (e) and (f) same as (b,c) respectively, for a=10.

(compared to a circle), whereas the negative slopes correspond to flatter chains (compared to
a circle).
We illustrate the WTMM method for detecting the local maxima chains from the OPD gradi-
ent from noisy data, taking again the previous model of a spherical object with an internal
spherical shell of higher RI with an additive noise term to the RI function before computing
the OPD image:

Δn(x, z) =
{
Δnt2 +ζΔnc for r ≤ R

ζ for r > R
(3.73)

with ζ being a uniformly distributed random variable in the [-1/10,1/10] interval, giving a
standard deviation of ζ equal to 2.8%. We report in Fig.3.34 the wavelet transform modulus
and the local maxima for two scales a of the analysing wavelet computed on the noisy shell
model (Eq.3.73).

From the OPD image (3.34d) and its x-section through the middle of the sphere (Fig.3.34a,
black line) we do not see much difference with the noise-free profile (Fig.3.31a). However,
when computing the derivative with a small value of the scale parameter a (yellow curve in
Fig.3.34a and 2D image of Fig.3.34b), we notice that the background white noise that we have
added to the RI introduces fluctuations that perturb dramatically the detection of the local
maxima of the wavelet transform modulus (Fig.3.34c). To circumvent this problem, we in-
crease the scale parameter a in such a way that the number of local maxima chains and their
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structure no longer change. In this simple theoretical example, we simply increased the scale
a by a factor of five to get the three expected maxima chain lines corresponding respectively
to the outer boundary and the two (inner and external) boundaries on the internal concentric
shell of higher RI. Once the scale a is chosen correctly to smooth down the background noise,
the maxima lines predicted by the model are recovered.

3.6.3.b Application of the WTMM method to single cells

We choose first red blood cells (RBCs) to test the WTMM detection of phase boundary con-
tours because these anucleated cells have an almost homogeneous cytoplasm with a high
concentration of haemoglobin and a refractive index nc ∼ 1.4010 ± 0.006 [245–247]. Their
shape has also been fully described in the literature [225, 247–250], with a biconcave equation
in cylindrical coordinates (r,θ, z), derived from experimental observations in isotonic buffers:

h(r ) =
√

1− r 2/R2

(
0.72+4.512

r 2

R2 −3.426
r 4

R4

)
(3.74)

We recognise in Fig.3.35(a) the characteristic OPD ’donut’ shape of a red blood cell [225, 250],
with a central hole, and cylindrical symmetry. This example is particularly interesting to test
the performance of the local maxima detection with the wavelet transform method, as shown
in Fig.3.35(b-f). Fig.3.35(c) shows the corresponding sections of Φ (black line) and MΨ[Φ]
(yellow line) along the x direction, taken at the centre of the cell. The blue line in Fig.3.35(c)
gives the biconcave shape predicted by Eq.(3.74). This method detects two WTMM chains,
one exterior and one interior (Fig.3.35d). The detected chains are clearly separated, and as
seen in Fig.3.35(e), they conserve a radial geometry with a high circularity.

The plot of the evolution of Δθ =AΨ[Φ]−θ in Fig.3.35(f) for each WTMM chain shows a shift
of the internal chain from the external one. This shift corresponds to the direction of the
wavelet vector, who gives the direction of the steepest descent of the wavelet transform mod-
ulus: the internal chain will present an inward direction, contrary to the external chain.

Notice that in this case all the detected WTMM chains form a closed contour, and thus, we can
characterise them in the more ’traditional’ manner, using the geometrical and OPD-related
parameters reported on Table 3.2. However in general, for other types of cells the detected in-
ner boundaries will rarely delimit a closed domain, requiring additional parameters to char-
acterise the complex internal structure of a living cell. To illustrate this point and to show
how we can use the detected WTMM to study single cells exhibiting inhomogeneous struc-
tures, we will present one more example of living cells with an increased level of complexity
on its internal structure.

We consider now spherical mono-nucleated immature blood cells unforced to adherence (we
do not treat the glass coverslips after cleaning with ethanol). These CD34+ cells are sorted
from the bone marrow by the CD34 antigen, resulting in a mixture of hematopoietic stem and
progenitor cells with various degrees of maturity. In healthy conditions, these cells remain

102



3.6. Methods for the characterisation of the cell structure

(a) (b) (c)

(d) (e) (f)

Φ
(x
,y

c
)
(n

m
)

M
Ψ
[Φ
]

x (μm)

y
(μ

m
)

r
(μ

m
)

Δ
θ/
π

x (μm) θ/π θ/π

Figure 3.35 – WTMM chain detection on a living red blood cell. (a) Corrected OPDr− image, where
Φ (in nm) has been colour coded. (b) MΨ[Φ](b, a) for a=15. (c) Horizontal sections through the cell
centre. Black line: OPD profile, yellow line: MΨ[Φ], and blue line: biconcave shape predicted by
Eq.(3.74), with R=4.4 μm, and a relative RI Δn = 0.078. (d) WTMM chains for the RBC shown in (a),
where MΨ[Φ] has been colour coded with the same colour scale as in (b), on the range [0.0,0.055]. (e)
Radial position of the detected WTMM chains shown in (d). (f) Plot of Δθ = A [Φ]−θ as a function of
θ.

in the bone marrow, whereas in chronic myeloid leukaemia they may also be found in the
blood. These mono-nucleated cells have a rather high nuclear to cytoplasm ratio (N:C) in the
interphase, which indicates the maturity of the cell. For example for immature leukocytes
it may reach 4:1. If we assume that the nucleus is a concentric sphere of radius Rn inside
the cell of radius RC , a 4:1 N:C would give RN = (4/5)1/3 ·RC ∼ 0/93RC . If we take Rc = 4μm,
Rn = 3.7μm,leaving only 300 nm distance in between the outer cytoplasmic and the inner nu-
clear membrane. Such large nuclei should not be distinguishable from the outer membrane
shell in our DPM setup (Table 3.1). If the N:C drops to 3:1, the radius of the nucleus decreases
only by 70 nm, which should remain undetectable with our optical setup. The impact of the
nucleus should therefore only be visible on the amplitude of the OPD or its derivative. How-
ever, we should be able to detect internal structures of the nuclei on this type of cells.

Figure 3.36 illustrates the WTMM method on a living CD34+ cell. The outer boundary of this
spherical cell is detected straightforwardly by the chain with the maximum OPD gradient, or
MΨ[Φ]. From Fig.3.36(a) and (b) we can already observe the inhomogeneous structure of the
cell. This is clearer when we look at the horizontal section of Fig.3.36(c), where the OPD pro-
file is no longer a single dome corresponding to an homogeneous sphere, but it appears to
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Figure 3.36 – WTMM chain detection on a living CD34+ primary cell. (a) Corrected OPDr− image,
where Φ (in nm) has been colour coded. (b) MΨ[Φ](b, a) for a=15. (c) Horizontal sections through
the cell centre. Black line: OPD profile, yellow line: MΨ[Φ]. (d) WTMM chains for the cell shown in
(a), where MΨ[Φ] has been colour coded as in (b). (e) Radial position of the detected WTMM chains
shown in (d). (f) Plot of Δθ = A [Φ]− θ as a function of θ. In (e) and (f) the labelling of the chains
correspond to the nu,bering in (d),

have small ‘bumps’ added to the top, which are very likely zones with a higher density. Never-
theless, these zones do not form a closed domain, as the detected WTMM chains do not form
a closed contour (Fig.3.36d). Given the spatial distribution of the chains, its characterisation
becomes slightly more complicated. We have chosen the following parameters for the study
of the cell structure based on the WTMM chains, (who for simplification we will note Mci ) :

• Radial position of a given chain rMci
, taking r = 0, as the centre of the cell.

• Orientation of a given chain ΔθMci
, where ΔθMci

= 0, corresponds to a chain whose
normal vector is the same as the normal vector pointing from the origin (0,0) towards
(r,θ).

• Length of a given chain LMci
.

• Number of chains per cell NMci
.

We have labelled on Fig.3.36(d) the detected chains from the example of a CD34+ primary
cell. By imposing a lower limit to the chain length of LMc = 100 nm, we can account for 4
chains detected on this cell of similar length, except for chain number 2, which is relatively

104



3.7. Cell morphology characterisation

smaller. Although they are not equidistant from the cell centre, they do seem to be restrained
to a distance range between [1 μm,3μm], as seen in Fig.3.36(e), and again with the exception
of the chain number 2, presenting an orientation not so far from the one of a circle-like con-
tour (Fig.3.36f), probably indicating a domain who is not concentrical with the cell at the x-y
plane, and with some fuzzy boundaries that avoid the detection of a closed contour.

We have shown here that when the phase profiles are not monotonous nor smooth functions,
the OPD gradient may display local maxima that reflect a local change of RI or of the topog-
raphy of the cells. The introduction of the WTMM method to detect these maxima allows a
robust and automatised reconstruction of their outer and inner boundary chains, from which
morphological and global RI characterisation can be performed. Fore more illustrations on
this method, please refer to the Appendix D.

3.7 Cell morphology characterisation

In this section we employ the methods described above to characterise the morphology of
different types of cells. We start with blood cells including erythrocytes, primary CD34+ cells,
and a model for hematopoietic stem cells (TF1 cell line) for whom we discuss the cell trans-
formation in leukaemia by studying their morphology after transduction with an oncogene,
serving as a model for Chronic Myelogeneous Leukaemia (CML). We continue with the char-
acterisation of two adherent cell lines with very different properties: C2C12 mouse embryonic
myoblasts, and hepatocytes from the carcinoma cell line HepG2.

By covering a broad range of cell types we show the possibilities offered by DPM combined
with the analysis tools that we have described in the previous section. Furthermore, a better
understanding of the cell morphology and DPM imaging of some of these cell types will prove
to be very useful in the study of single cell dynamics.

We begin by looking at the morphology at the whole-cell level, since it provides a first survey
on the cell characteristics that can indicate already the cell state (healthy, stressed, adherent,
etc.) and hopefully highlight in a quantitative manner the differences between cell types.
Moreover, the detection of the cell contour is probably the part of our analysis that is less
prone to computation errors, and as it is the common point for the two presented methods
for boundary detection, the wavelet transform maxima chains and the phase isocontours, we
can make a direct comparison of both methods.

3.7.1 Red Blood Cells

The shape of red blood cells (RBCs) is very sensitive to the environment [252, 253]. Under
physiological conditions, a normal human RBC assumes a biconcave discoid shape with a
∼ 8μm diameter. This shape is modified systematically by several conditions of the medium
[251], such as the salt content, pH level, ATP or even cholesterol, producing either concave
shapes called stomatocytes, or cells called echinocytes, which present convex rounded pro-
trusions or spicules, called crenated shapes [254](Fig.3.37).
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Figure 3.37 – Changes in shape of a human erythrocyte and flicker activity (Blowers et al.) [251]

We have imaged erythrocytes obtained from a single human blood sample, using Phosphate
Bovine Serum (PBS) 1x for dilution prior to imaging. It has been observed that on these slight
hypertonic conditions, the RBCs adopt different shapes, resulting in a mixture of biconcave
and crenate morphology [255]. Figure 3.38 shows some examples of OPD images for the cells
that we have imaged with DPM, where we can observe the different shapes that a living ery-
throcyte can adopt. We find that in general, both methods used to detect the border of the
cell are congruent with each other (Fig.3.39), displaying noticeable differences on the geo-
metrical parameters such as the mean radius, perimeter and area, as shown in Fig.3.39(a-c),
with the method of WT maxima chains tending to lower values than those obtained with the
isocontours. Probably for RBCs the most reliable method is the one of WT maxima chains, as
it shows a good agreement with the values found in the literature, i.e., < R >= 3.84±0.25μm,
and the distributions look overall more homogeneous than those obtained with the phase iso-
contours (Fig.3.39, WT maxima chains in dashed-dotted line, phase isocontours shown with
bars).Given that RBCs have been widely studied, there is not much that we can say about their
global morphology that hasn’t been reported yet in literature, so we will just make a few re-
marks on our results.

Perhaps one of the most informative quantities to look at is the optical volume VΦ (Fig.3.39e),
mainly because it can be used to estimate an averaged refractive index of the cell. Note that
as we are not dealing with spherical cells, we can not simply divide the optical volume with
the volume of a sphere with the equivalent mean radius, as it will be a complete erroneous
estimation of RI. However, we can use the average physical volume known for human RBCs,
namely, Vc ∼ 90μm3 to make a very coarse estimation of the global RI of the RBC. With this
assumption and using the WT maximas chain method, we obtain an average relative RI of

106



3.7. Cell morphology characterisation

A B C D E

1

2

3

4

5

Figure 3.38 – OPD images of living red blood cells. Some representative examples of the type of cells
imaged with DPM. The grid is composed of squares of 13μm, and Φ(x, y) has been colour coded as in
Fig.3.35(a), from 0 (black) to 180 nm (light red-white).

0.0611±0.008, that if consider the refractive index of the medium as 1.33, it leads to a RI of
1.391±0.008, in good agreement with literature [221, 225]. We can also use the optical volume
to estimate the cell dry mass M , considering that α=1.93x10−3 for haemoglobin [235], we get
M = 28.48±0.39 pg, finding again the expected value for healthy RBCs [221].

It is quite interesting that our results fall exactly within the values expected for healthy human
RBCs, specially considering the poor-controlled conditions in which we have performed the
experiment: slightly hypertonic solution by using PBS 1x instead of other more physiological
serum, no temperature control hence, imaging at room temperature T∼ 22◦C, and without
any rigorous cleaning of the coverslips used for imaging beyond cleaning the surface with
ethanol. Perhaps this is due to the high number of cells imaged, Ncells = 326 cells, or maybe it
is a reflect of the resistance of erythrocytes to non-optimal conditions. In any case, our results
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Figure 3.39 – Morphological parameters of RBCs. Distribution of the geometrical values for (a) mean
cell radius < R >, (b) perimeter P , (c) projected area A, (d) aspect ratio D , (e) optical volume VΦ, (f )
projected area to optical volume ratio AV , (g) sphericity index Sp , (h) circularity index C , (i) average cell
relative refractive index 〈Δnc〉, (j) OPD variance σΦ, (k) OPD skewness SkΦ, and (l) OPD kurtosis K rΦ.
The bars show the distribution obtained using the detection of phase isocontour, and the dashed-
dotted line the distribution obtained with the WT maxima chain detection. Total number of cells:
Ncells = 326.

suggest that the conditions in which we perform the DPM experiment are good enough to
maintain human RBCs in a healthy state. This is particularly important at the moment of
using our DPM setup to study the dynamics of single-cells, so we can be confident that if we
observe a single cell with a global shape not so far to those observed so far (Fig.3.38), it will be
a healthy cell.

3.7.2 Primary CD34+ cells

Now we pass to slightly more complicated cells, where we no longer encounter a quasi- ho-
mogeneous cytoplasm so we cannot assume a constant refractive index. As it has been said
before, the primary cells CD34+ are cells sorted with the CD34 antigen from the bone marrow,
resulting in a mixture of spherical mononucleated immature blood cells, with a high ratio be-
tween the nucleus and the cytoplasm. We show in Fig.3.40 some examples of CD34+ cells
that we have imaged with DPM. We can easily see their spherical shape with the exception of
some cases, like the cells on position E1 and E4, who seem to have lost their sphericity, maybe
due to a stressed and non-optimal state of the cell. We start by looking at the geometrical pa-
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Figure 3.40 – OPD images of living CD34+ primary cells. Some representative examples of the type
of cells imaged with DPM. The grid is composed of squares of 14.75μm, and Φ(x, y) has been colour
coded as in Fig.3.36(a), from -5 nm (black) to 325 nm (light pink-white).

rameters computed from the detected cell boundary with both methods (Fig.3.41a-d). We see
again the systematical shift to lower values and the narrowing of the distributions obtained
with the WT maxima method. The CD34+ cells are slightly bigger than RBCs and they also
show a higher dispersion in size (Fig.3.41a-c). They are in general more symmetric, as seen in
their aspect ratio and circularity values (Fig.3.41d,h), but they seem to be separated into two
groups, according to the two peaks observed on Fig.3.41(d), probably indicating two promi-
nent shapes: highly circular cells and in less proportion, the elongated shaped cells, as it can
be seen in the OPD images from Fig.3.40.

The division of cells into two subpopulations is observed again for the distribution of opti-
cal volume (Fig.3.41e). However, the two groups are not necessarily the same as the ones
obtained when looking at the cells aspect ratio (Fig.3.41d). The low values of optical vol-
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Figure 3.41 – Morphological parameters of CD34+ cells. Distribution of the geometrical values for (a)
mean cell radius < R >, (b) perimeter P , (c) projected area A, (d) aspect ratio D , (e) optical volume
VΦ, (f ) projected area to optical volume ratio AV , (g) sphericity index Sp , (h) circularity index C , (i)
average cell relative refractive index 〈Δnc〉, (j) OPD variance σΦ, (k) OPD skewness SkΦ, and (l) OPD
kurtosis K rΦ. The bars shown the distribution obtained using the detection of phase isocontour, and
the dashed-dotted line the distribution obtained with the WT maxima chain detection. Total number
of cells: Ncells = 70.

ume, VΦ < 10μm3, suggest that the cells falling in this group are not in good shape or even
dead. Let’s take as an example a cell with a mean radius < R >= 4μm (Fig.3.41a), for it to
produce an optical volume VΦ = 5μm3, which is the centre of the first peak at the distribution
in Fig.3.41(e), the cell needs to have a relative RI Δn ∼ 0.018, leading to the cell RI of ∼1.348,
which is very low for a living mono-nucleated cell, who usually present a relative RI of ∼0.03.

Note the quite big difference between the estimated relative RI from both methods (Fig.3.41i).
The WT maxima method easily doubles the values obtained by the phase isocontours. This
difference is a direct consequence of the detection of the border, and the tendency for the
WT maxima method to retrieve smaller values for the mean radius (Fig.3.41a). In this case,
we have a difference of at least 1μm for the mean radius computed from both methods, if
we take for example a cell with an optical volume VΦ = 10μm, and a radius of either 4 or 5
μm, the estimated RI changes from 〈Δn〉 = 0.0373 to 〈Δn〉 = 0.0191. Based on the criteria of
the estimated RI, it would seem that once again the WT maxima method surpasses the phase
isocontour detection.
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Figure 3.42 – OPD images of living TF1-GFP cells. Some representative examples of the type of cells
imaged with DPM. The grid is composed of squares of 22 μm, and Φ(x, y) has been colour coded from
-5 nm (dark purple -black) to 475 nm (light blue-white).

3.7.3 TF1 cell line: transformation induced by an oncogene and adherence

Primary CD34+ cells are much more difficult to maintain alive than laboratory cell lines. We
used the TF1 cell line as model of immature CD34+ cells because it displays clongenic abil-
ity similar to human bone marrow CD34+ cells and is able to differentiate into myeloid lin-
eages [256]. As compared to wild-type or transduced with an empty vector cells, BCR-ABL-
transduced (CML oncogene) TF1 cells (TF1-BCR-ABL, short name: TF1-BA) increase their
transcriptional levels of BCR-ABL and ABL [160]. These CML cell models were easier to main-
tain in culture and we have been able to increase therefore the statistics for comparing healthy
(TF1-GFP) and transduced (TF1-BA) cells.

Figure 3.42 shows some representative examples of healthy TF1 cells. Although they are sig-
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Figure 3.43 – Morphological parameters of TF1-GFP vs. TF1-BA cells Distribution of the geometrical
values for (a) mean cell radius < R >, (b) perimeter P , (c) projected area A, (d) aspect ratio D , (e)
optical volume VΦ, (f) projected area to optical volume ratio AV , (g) sphericity index Sp , (h) circularity
index C , (i) average cell relative refractive index 〈Δnc〉, (j) OPD variance σΦ, (k) OPD skewness SkΦ,
and (l) OPD kurtosis K rΦ. Bars: TF1-GFP cells, solid black line: TF1-BA cells. Total number of cells:
Ncells = 244 for TF1-GFP and Ncells = 327 for TF1-BA.

nificantly bigger than the CD34+ cells (Fig.3.43a-c), we find now a more uniform cell shape
with a high circularity and sphericity (Fig.3.43d,g,h). We show in Fig.3.43 the results obtained
using the WT maxima method for healthy cells (TF1-GFP, shown in purple bars) and for cells
transduced with an oncogene (TF1-BA, shown with a black solid line). The TF1-BA cells have
increased in size, with < R >= 8.027±1.79μm, with respect to < R >= 6.808±0.94μm for TF1-
GFP, which translates to an increase of nearly 18%.

(a) (b) (c) (d) (e)

Figure 3.44 – OPD images of TF1-BA cells clearly transformed by the oncogene. The grid is composed
of squares of 40μm, andΦ(x, y) has been colour coded from -5 nm (dark purple -black) to 800 nm (light
blue-white).
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Figure 3.45 – Morphological parameters of adherent TF1-GFP vs. TF1-BA cells Distribution of the
geometrical values for (a)perimeter P , (b) projected area A, (c) aspect ratio D , (d) projected area to
optical volume ratio AV , (e) optical volume VΦ, (f) OPD variance σΦ, (g) OPD skewness SkΦ, and (h)
OPD kurtosis K rΦ. Bars: TF1-GFP cells, solid black line: TF1-BA cells. Total number of cells: Ncells = 32
for TF1-GFP, Ncells = 91 for TF1-BA.

Surprisingly, even if the optical volume tends also to increase (Fig.3.43e), we see a slight de-
crease on the mean RI of TF1-BA cells (Fig.3.43i), with 〈Δn〉 = 0.0367±0.005, who compared
to the relative RI of TF1-GFP cells 〈Δn〉 = 0.0391±0.005 represents a difference of roughly -
3%. However, this difference takes into account all the population of cells, and it is very likely
that not all the cells have been transformed by the oncogene. If we base our first criteria on
the cell mean radius to distinguish between transformed and healthy cells, by choosing only
those cells with a mean radius bigger than 9 μm (Fig.3.43a, and Fig.3.44), the selected TF1-BA
(20% of the total cell population), present a mean relative RI of 〈Δn〉 = 0.0326±0.004, being a
difference of almost 9% with the RI of TF1-GFP cells.

It has been observed that some of the most noticeable differences between TF1-GFP and TF1-
BA cells occurs when they are cultured on a fibronectin-coated surface, as adhesion reveals
strong alterations of their cytoskeleton contractility, where the transformed cells loose their
ability to mature adhesion by the formation of actin stress fibres, empeded by the formation
of small actin aggregates [189], in agreement with the reported ability of BCR-ABL to decrease
progenitor cell adhesion to the BM stroma [257]. Therefore, we have imaged TF1-GFP and
TF1-BA cells that have been cultured on a fibronectin-coated glass surface. Indeed, we ob-
serve notable differences on the quantities that reflect the level of adhesion, that is, the aspect
ratio D , and the area to optical volume ratio AV (Fig.3.45c-d). It appears that TF1-BA cells
maintain a more rounded shape, meaning that they have lost their ability to spread, whereas
TF1-GFP cells do show a more flattened profile, as indicated by their high area to optical vol-
ume ratio (Fig.3.45d).

Figure 3.46 shows some examples of clearly transformed TF1-BA cells and adherent TF1-GFP
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Figure 3.46 – OPD images of adherent TF1-GFP vs. TF1-BA cells clearly transformed by the onco-
gene. The grid is composed of squares of 45 μm, and Φ(x, y) has been colour coded from -5 nm (dark
purple -black) to 450 nm (light blue-white). In the second row, the teal line indicates the contour de-
tected with the phase isocontour method, and the orange line shows the contour detected with the
WT maxima method.

cells. While the healthy cells (2nd line in Fig.3.46) present a very elongated form as a result
of mature adhesion and spreading, the transformed cells remain in a quite regular rounded
shape with small protrusions on the side, indicating that they may be adherent, but incapable
of spreading as their healthy counterparts.

When extracting the morphological parameter of adherent cells we have used the border de-
tection based on phase isocontours. As it can be seen on the second row of Fig.3.46, the
detection with the WT maxima method (orange contour lines) often detects incorrectly the
cell border, neglecting the thinner parts of the cell, such as the protrusions characteristic of
adherent cells, as they present a low OPD gradient, particularly compared to the nuclear part
of the cell. The phase isocontours, on the contrary (blue contour lines on Fig.3.46), appear to
have a much better performance on this kind of cells, as it is shown with the cell on position
C2.

It is important to say that the WT maxima method can be improved and adapted to correctly
detect the contours on adherent cells by, for example, applying a multi-scale approach, or by
imposing robust rules in a more complicated algorithm to enchain the WT maxima lines that
correspond to the outer contour. However, most of the solutions proposed will certainly in-
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Figure 3.47 – Cell segmentation of healthy and cancer TF1 cells based on isophase contours.(a) Dis-
persion plot of the relative RI Δni ,0 versus the mean radius < Ri >, for the first three intracellular re-
gions: blue - C1, green - C2, and orange C3. The darker colours show the data from TF1-BA cells, and
the light colours represent the TF1-GFP cells. (b-d) Same as (a) showing each region separately. (e-g)
Distribution of relative RI of each intracellular region.

crease significantly the computation time. Given that our main goal is the study of single-cell
dynamics, we will choose the detection of phase isocontours as a good compromise between
the quality of the border detection and the computation time.

3.7.3.a Intracellular structure characterisation

We start by detecting the phase isocontours to delineate the intracellular regions with a sim-
ilar RI, according to the method explained in section 3.6.2. To being able to apply the multi-
sphere model to estimate the RI of each region, we have chosen a circularity index C ≥ 0.99
as a validity criteria of the detected contour. Figure 3.47 shows the results obtained from 244
TF1-GFP cells and 327 TF1-BA cells. We have limited our analysis to the first three segmented
intracellular regions, and we report the total relative RI of each region, that is, the RI relative
to the extracellular medium n0, and not to the medium of the precedent layer.

As expected based on the previous results, we encounter a more spread distribution of values
for TF1-BA cells, when compared to TF1-GFP cells. However, we see almost no difference be-
tween both cell types on the estimated RI of the first two layers (Fig.3.47b,c,e,f). The third layer
on the contrary, shows a slight decrease on the estimated RI for TF1-BA cells, in agreement
with our previous observation on the smaller RI at the whole cell level (Fig.3.43i). Unfortu-
nately, it is not possible for us to conclude any transformation induced by the oncogene on
TF1-BA cells with this method, confirming that the heterogeneity of the intracellular struc-
ture on this type of cells (TF1 cell line) is poorly adapted for a proper characterisation with a
multi-sphere model.

We have performed the WTMM chain detection analysis on two large sets of TF1-GFP (294)
and TF1-BA (216) cells and we computed the statistical distributions of the angle difference
Δθ, the number of chains per cells NM , and the chain length LM (Fig.3.48). The oncogene
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Figure 3.48 – Statistical analysis of cell structural parameters from the WTMM analysis of control
and cancer TF1 cells. (a) Distribution of Δθ values. (b) Distribution of the numbers of chains per
cell NM =21±7 for TF1-GFP cells and NM =30±9 for TF1-BA cells. (c) Distribution of chain lengths,
log10(LM ) of the length in μm. The green lines are obtained from a set of 294 TF1-GFP cells, and the
red lines show the results from a set of 216 TF1-BA cells.

transduction seems to increase the variability of the cell structural properties.

The distribution of angle differences Δθ follows a power law distribution P (Δθ) ∝ |Δθ|−α,
with α= 1. The fact that the shape of this distribution does not change when switching from
control to oncogene-transduced TF1 cells means that the statistics of angular orientation of
the maxima chains are not immediately impacted by the cell transformation. In contrast, the
number of chains per cell is affected by oncogene transduction. The median value of the two
distributions in Fig.3.48(b) increases from 21 to 30 chains per cell (considering only the chains
of length larger than 100 nm). Again we observe that the distribution of these chain numbers
of TF1-BA cells is more spread than for control TF1-GFP cells. The distribution of length of
these chains (above 100 nm) follows a smoothly decreasing (logarithmic decrease) function
for chains smaller than 5 μm, which drops rapidly to zero for larger chains. The peak popping
up around 45 μm corresponds to the outer chain length, the slight flattening and shifting to
higher values of this peak for transduced TF1-BA cells means that the circumference of these
cells increases (as their radius) and is more variable than for non transformed cells. This
observation corroborates our previous remarks on the cell radius distribution (Fig.3.43a).

3.7.4 Adherent cells: Myoblasts C2C12 and hepatocytes HepG2

Myoblasts are precursors of muscle cells, upon differentiation they elongate and fuse to form
myotubes. C2C12 is a laboratory cell line of mouse myoblasts. These cells are naturally ad-
herent, they do not require a special treatment of the surface to be able to adhere and spread,
although as most of the adherent cells, a substrate closer to physiological conditions, such as
collagen, will promote adhesion maturation.

We have imaged a sample of myoblasts cultured on a glass-bottom petri dish, without any
treatment of the surface. Figure 3.49 shows some representative examples of C2C12 cells. No-
tice that we have inverted the colour coding, such that the darkest colours correspond to the
highest OPD. This choice of colour scale enhances our contrast perception and allows to ob-
serve with more detail the intracellular structures. Most of these cells show a very elongated
and almost uniaxial shape, with a clear distinction of their nuclear part, and in some cases we
can even appreciate the distribution of the intranuclear material.
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Figure 3.49 – OPD images of living myoblasts. Some representative examples of the type of cells im-
aged with DPM. The grid is composed of squares of 68 μm, and Φ(x, y) has been colour coded from -5
nm (light-grey) to 400 nm (dark purple-black).

As for the adherent TF1 cells, we use the border detection based on phase isocontours to char-
acterise the cell morphology (Fig.3.50). Unfortunately we did not imaged a high number of
cells (Ncells = 29) so we cannot conclude much about the results. We observe a wide disper-
sion on the distributions of the geometrical values of the projected cell area (Fig.3.50a-d), but
the optical volume shows a quite narrow range of values with the exception of some cases
(Fig.3.50e), resulting in <VΦ >= 68.85±18.6μm3, which is not that different from the TF1 cell
line. Probably the variability encountered on the morphological parameters is caused by an
asynchronous state on the cell cycle, as cells preparing to divide will start to loose adherence
and to adopt a more rounded shape.

Myoblasts present what is probably the most intuitive OPD image for an adherent cell, with
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Figure 3.50 – Morphological parameters of adherent C2C12 myoblasts. Distribution of the geomet-
rical values for (a) perimeter P , (b) projected area A, (c) aspect ratio D , (d) projected area to optical
volume ratio AV , (e) optical volume VΦ, (f) OPD variance σΦ, (g) OPD skewness SkΦ, and (h) OPD
kurtosis K rΦ. Total number of cells: Ncells = 29.

the OPD practically following the cell shape, in other words, the changes in the cell thickness
are far more important than the variations on the cell composition, or refractive index, with
the exception of the nuclear part. It is interesting to compare myoblasts to another type of
adherent cells that show a very different morphology.

To show in a qualitatively manner another type of cell morphology, we have imaged living
HepG2 hepatocytes cultured on a glass-bottom petri dish treated with collagen to enhance
adhesion. HepG2 is a human carcinoma cell line that presents a high concentration of lipidic
structures around the nuclear area. As it can be seen in Fig.3.51, these structures cause a
strong variation on the OPD image, and they can lead to an OPD higher than the one of the
nuclear part. This effect is quite interesting as we are faced with variations on the intracellular
material that might be as important as the variations of the cell thickness, challenging the
interpretation of the OPD image. Cells with this type of morphology are particularly difficult
to image with DPM. The small lipidic structures will produce a high and fast variation on the
optical phase that the phase recovery method might fail to follow, as it is the case for the cell 2A
on Fig.3.51. One possible solution is to increase the magnification of the microscope in such a
way that we have more fringes per μm and the changes on the phase will be slower. However,
this magnification implies reducing the field of view, and as hepatocytes are spreading on
the surface, this will likely imply to be able to image only a part of the cell. Thus, although
hepatocytes are a really intriguing type of cells, they require to revisit the design of our setup to
optimise the imaging conditions, and therefore, we are unable to present a proper statistical
study with our current setup.
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3.8. Living cell dynamics

A B

1

2

Figure 3.51 – OPD images of living hepatocytes. Some representative examples of the type of cells
imaged with DPM. The grid is composed of squares of 54 μm, and Φ(x, y) has been colour coded from
-5 nm (light-grey) to 300 nm (dark blue).

3.8 Living cell dynamics

3.8.1 Healthy and leukaemic Red Blood Cells

We recorded a temporal data series for a single healthy RBC and a RBC from a sample ob-
tained from a patient with CML. The DPM images were recorded in FBS serum, with an ac-
quisition rate of one image every 3 ms, with a total number of images of 8192. This implies
that we are looking at a frequency range of 10 Hz< f <300 Hz. All the images have been pro-
cessed using the WTMM method for phase extraction, corrected for a tilt on the xy plane, and
the cell contour has been detected using the WTMM chain method. Then, we can track the
cell movement on the xy plane by extracting the position of the cell centre of mass. Figure
3.52 shows the temporal evolution of the cell position in the x (black curve) and y direction
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Figure 3.52 – Temporal evolution of the cell position of healthy and leukaemic RBCs.(a) The cell
position from a healthy RBC in x (black curve) and in y (grey curve) is shown as a function of time. (b)
PSD of x(t ) (in black), and y(t ) (in grey). The blue line shows the linear fit. (c-d) Same as (a-b) for a
CML RBC.

(grey curve) separately, as well as the PSD curve of each trajectory. We perform a linear fit of
the log10(PSD) vs. log10( f ), in the form:

log10(PSD) =β log10( f )+ A (3.75)

therefore, β is a scaling exponent such that

PSD ∝ f β (3.76)

The scaling exponent β can be used to described the type of motion of our object. Let’s take
as an example three types of signals: white noise, 1/ f noise also called pink noise or flicker-
ing, and a brownian signal. White noise (β= 0) is a completely uncorrelated signal produced
by a random superposition of uncorrelated jumps (steps). Brownian motion (β=−2), on the
other extreme, is the integral of a white noise, it is obtained by a ‘random walk’ process: the
position of the particle at some time t +1 is the result of adding a random step to its previous
position, similar to the thermal effect of a fluid on a particle. In between we encounter pink
noise or flickering. β = −1 separates two different types of behaviours. When −2 < β < −1,
we have a trajectory, like a brownian walk, called fractional brownian motion, where the steps
of the walk are persistent. If −1 < β < 0 the signal is discontinuous, made of antipersistent
jumps.

We do not observe any major difference between the cell displacements. Both of them present
β ∼-2, typical of brownian motion. Although, the leukaemic RBC has a reduced frequency
range with this scaling exponent (Fig.3.52d).
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Figure 3.53 – Deformation of a healthy RBC. (a) Temporal map of the cell contour, where r (θ) has
been colour coded. (b) Mean radius < r (θ) > (t ). (c) PSD of the mean radius shown in (b). The blue
line shows the linear fit.

Next, we look at the deformation of the cell on the xy plane by measuring its mean radius
< r (θ) > (t ). We show in Fig.3.53(a) the complete detected cell contour, where the r (θ) has
been colour coded. We can notice a slight asymmetry of the cell, producing the two light/-
dark bands on the image. We see no noticeable cell rotation, and only a sudden increase in
size at t=15-20 s. As it can be seen in Fig.3.53(b), this sudden increase is inherent to the cell
and not a result of the contour detection method, as it occurs in a gradual manner, and not
as a single jump. For the leukaemic RBC we do not encounter this sudden increase in the
cell size, presenting a slightly more uniform mean radius along time. However, we find again
that both cells behave in a very similar way, with a scaling exponent β ∼ −1.5, indicating the
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Figure 3.54 – Deformation of a CML RBC. (a) Temporal map of the cell contour, where r (θ) has been
colour coded. (b) Mean radius < r (θ) > (t ). (c) PSD of the mean radius shown in (b). The blue line
shows the linear fit.
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Figure 3.55 – Spatial distribution of the OPD scaling exponent for a healthy RBC. (a) Φ(t ) for two
positions inside the cell: black line - cell centre, red line - left side on the maximum of the phase
profile shown in (c). (b) PSD(Φ) of the signals shown in (a). (c) RBC OPD image at the initial time t = 0,
where Φ (nm) has been colour coded. (d) Spatial distribution of the scaling exponent β.

presence of flicker noise, which is a characteristic behaviour of RBCs.

The deformation of the cell on the xy plane could also be analysed regarding the spatial fre-
quency, similar to the method developed by Evans et al [258]. They used a bright-field mi-
croscope to image the membrane fluctuations of RBCs, and they extracted the excursion of
the cell edge from the mean position, Uθ,t . Then, the Fourier transform of U in space gives
the mean-square amplitude as a function of the wave number mode q , following the general
form of 〈U 2

q〉∝ q−μ. The exponent μ indicates whether the fluctuations are dominated by the
bending modulus (μ∼ 3), or by the membrane tension (μ∼1). Using theoretical models, the
membrane fluctuations can be used to compute the bending modulus or membrane tension.
Unfortunately, we did not have time to complete this analysis, although preliminary results
show a power-law μ∼ 2.7 for 3<q<8, suggesting that the bending modulus is predominant, in
good agreement with the work of Evans et al [258].

The following step focus on the phase fluctuations. Figure 3.55(a) shows Φ(t ) for the position
at the centre of the cell (black curve), and at the left side (red curve), taken at the maximum of
the ‘donut’ shape. It is important to mention that we have chosen both cells with a discocyte
shape (Fig.3.55c), which is the most natural RBC shape, avoiding strange effects induced by
the morphological state of the cell.
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Figure 3.56 – Spatial distribution of the scaling exponents of a CML RBC. (a) PSD(Φ), where the green
line indicates the first fitted interval to extract β1, and the blue line indicates the second fit interval
(β2). (b) Spatial distribution of β1. (c) Spatial distribution of β2. In (b,c) β has been colour coded with
the same colour scale.

Recall that for each pixel we have an OPD(t) signal, we then compute the PSD of Φ(Fig.3.55)
at each pixel in the image, Hence, we can reconstruct an image showing the scaling exponent
found for that position, as shown in Fig.3.55(d). Notice that β seems to follow somehow the
cell morphology, as it is easy to recognise the ‘donut’ shape of the cell. The band around the
cell with β∼−1 reflects the fact that we are particularly sensible at this region of the cell, as it
has a strong OPD gradient. Inside the cell we encounter an exponent -1.5≤ β≤-2, consistent
with values reported in the literature [253, 259–261].

Interestingly, when we look at the leukaemic RBC, we find that the PSD of Φ is quite different
(Fig.3.56a). In this case we do not encounter only one scaling exponent, but two, with a clear
cutoff at f ∼ 2Hz. Moreover, there seems to be no morphology follow-up by the scaling expo-
nent, at any of the frequency intervals (Fig.3.56b-c). Additionally, we see the appearance of a
weak resonant peak at f ∼ 100Hz. Based on the results obtained from the OPD data, we find
three possible markers of CML RBCs: (i) a cross-over on the PSD curve, happening at f ∼ 2Hz,
with β going from -0.5 to -1.5, (ii) the loss of a morphological signature of the scaling expo-
nent β, and (iii) the appearance of a resonant peak at f ∼ 100Hz. It has been proposed that
the cut-off on the frequency dependence is related to thermodynamical equilibrium [262]. At
high frequencies ( f > 10Hz), the equilibrium thermodynamics is dominant, whereas at lower
frequencies, the nonequilibrium effects become apparent, and there is a bigger effect coming
from the composition of the membrane and its elasticity. This could implicate that LMC RBCs
have a different membrane elastic behaviour and/or composition. Further experiments are
required to conclude about the occurrence of any of these events.

3.8.2 TF1 cell line: round-shaped cells with a complex internal structure

A data set of DPM images for 4 different TF1-GFP cells was recorded at different acquisition
rates. For the first two cells (cell 1 and cell 2), the total time series is composed of 8100 images,
plus a reference image taken in a zone where there is no cell to subtract the effects of the back-
ground. The acquisition rate was set to either 50 images/second (cell 1) or 10 images/second
(cell 2).
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Figure 3.57 – Temporal evolution of the cell position of TF1-GFP cells. (a,c,e,g) The cell position in x
(black curve) and in y (grey curve) from different TF1-GFP cells is shown as a function of time. (b,d,f,h)
PSD of x(t ) (in black), and y(t ) (in grey) of the signals shown in (a,c,e,g). The blue line shows the linear
fit. Each line represents the data for one different cell.

To improve the detection of intracellular structures, we have increased the spatial transverse
resolution of our DPM setup by changing the microscope objective, from 40x to 100x. Using
this configuration, we have recorded a time series for two other TF1-GFP cells (cells 3 and 4)
with an acquisition rate of 10 images/second or 2 images/s, respectively. We reduced the ac-
quisition rate to have an efficient data processing, as the region of the image treated is now at
least twice as large, requiring more computation time. Also for this reason, we have reduced
the total number of images to 2000 (cell 3) and 1100 (cell 4). We employ the contour detection
using the WTMM method, and we correct the phase tilt for each image.

Figure 3.57 shows the temporal tracking of the cell position as well as its power spectrum,
where again we find a scaling exponent β∼−2 indicating brownian noise. Note that the cell
position in X shows in some cases a modulation at low frequencies (black curve in Fig.3.57c,e),
with the signal oscillating with a period ∼ 200-300 s for cell 2 (Fig.3.57c), and ∼ 30s for cell 3
(Fig.3.57e). For cell 4 we see an initial ‘steady’ state followed by a continuos drift (Fig.3.57g).
Perhaps this drift is compensated at longer times, resulting on the slow motion that we saw
before for the other TF1-GFP cells. However, when we look at the cell contour tracking in
Fig.3.58(b,d), we can recognise a rotation motion that seems consistent with the motion seen
for the cell displacement on the x direction. Unlike the scaling exponent, this low-frequency
motion is not robust enough to be present in the data collected from all the cells, perhaps for
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Figure 3.58 – Deformation of TF1-GFP cells. (a-d) Temporal map of the cell contour, where r (θ) has
been colour coded. (e-h) Mean radius < r (θ) > (t ) of the maps shown in (a-d). (i-l) PSD of the mean
radius shown in (e-h). The blue line shows the linear fit. Each column presents the data of one different
cell.

the limited duration of the recording. If other cells also show this slow displacement/rotation
motion, they could do so at even lower frequencies and thus it will be not measured with the
chosen recording time.

The fluctuations of the cell mean radius (3.58e-h) are significantly larger than those encoun-
tered for a RBC. It is not clear at this point if this fluctuations are truly the cell membrane
fluctuations, or they have been amplified by the contour detection method. Again we en-
counter a value β ∼ −2, with the exception of cell 2 (Fig.3.58j), which is closer to -1.5. This
scaling behaviour is limited to the frequency interval [0.01Hz,2Hz]. However, there seems to
be a difficulty to correctly detect the contour of this particular cell, as shown by the sudden
jumps in the mean radius signal of Fig.3.58(f).

In an unexpected result, the cell 4 which is less asymmetric (Fig.3.58d), appears to increase
continuously in size, as shown in Fig.3.58(h). In spite of that, we still recover a scaling expo-
nent consistent with the data from other cells. Interestingly, we see a clear frequency cut-off
at f ∼ 1 Hz for cell 3 (Fig. 3.59k). This cell also presents a quite homogeneous shape along
the whole time series (Fig. 3.59c,g), showing a slight different behaviour from the other cells,
likely related to a difference in their mechanical properties.

Figure 3.59 shows Φ(t ) for a point at the cell center. Notice that this time, the value of the ex-
ponent β and the range of frequencies where it occurs is far more variable between the cells.

125



Chapter 3. Diffraction Phase Microscopy

0 50 100 150
360

370

380

390

10-2 10-1 100 101 102

10-3

100

103

0 200 400 600 800
400

450

500

550

10-2 10-1 100 101 102

10-3

100

103

0 50 100 150 200
560

580

600

620

10-2 10-1 100 101 102

10-3

100

103

0 100 200 300 400 500
400

500

600

700

10-2 10-1 100 101 102

10-3

100

103

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Φ
(t
)
(n

m
)

Φ
(t
)
(n

m
)

Φ
(t
)
(n

m
)

Φ
(t
)
(n

m
)

t (s) f (Hz)

P
S
D

(n
m

2
/
H
z
)

P
S
D

(n
m

2
/
H
z
)

P
S
D

(n
m

2
/
H
z
)

P
S
D

(n
m

2
/
H
z
)

β1 = −1.32

β1 = −1.85

β1 = −1.91

β1 = −1.56

β2 = −0.5

β2 = −0.67

β2 = −0.94

Figure 3.59 – OPD scaling exponent for a TF1-GFP cells. (a,c,e,g) Φ(t ) for a point corresponding to the
cell centre. (b,d,f,h) PSD(Φ) of the signals shown in (a). Each line corresponds to a different cell.

Nevertheless, we find a quite robust frequency cut-off at f ∼ 1−3 Hz, which is more evident
for cell 3 (Fig.3.59f). We also note that the scaling exponent β has significantly increased, ap-
proaching more to a value -2, and less to a flicker noise, as it was the case for RBC cells. In
a surprising result, we observe a very noisy OPD signal for cell 4 (Fig.3.59g). This could be a
consequence of the improved resolution, such that we are more sensitive to small movements
of the intracellular structure. However, this is very unlikely, as fluctuations are too large too
be just the result of the intracellular movement. It is more probable that is an unwanted effect
of the cell re-positioning and/or the correction of the phase tilt. The scaling exponent of the
PSD, β∼-1.3 (Fig.3.59h) is smaller (in absolute value) than those estimated for the three other
cells. Although we cannot be confident about this estimation, given the noisy OPD signal.

The spatial distribution of the exponent β1 and the factor A present to some extend a struc-
tural organisation. This spatial distribution is not as clear as for RBCs probably due to the
complex internal structure of TF1 cells. As it was shown in section 3.7.3.a, the intracellular
cell structure presents in some cases clearly organised domains, but in general, these do-
mains and/or inner boundaries are randomly distributed.

We have imaged two other TF1-GFP cells with the same parameters as the cell 1 presented
above. However, the data was processed differently. There was no correction of the phase tilt,
and the cell contour was detected using the image segmentation method described in section
3.6.1, repositioning the cell at each frame. We did not employ the WTMM detection method
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Figure 3.60 – Spatial distribution of the scaling exponents of TF1-GFP cells at different frequency
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obtained from the linear fit, and indicating the intensity of the noise.

since it was not yet developed at the time the data was analysed, and due to the long compu-
tation time, we have not re-processed the data yet.

The shape of the power spectrum is very similar for all the three TF1-GFP cells observed at
this spatial and temporal resolution. We present in Fig.3.61 the spatial distribution of the
scaling exponent β1 (a,c) and the factor A (b,d) obtained from the linear fit for the two other
TF1-GFP cells. We can see in these examples a marked structural organisation of the scaling
exponent, very likely associated to the cell structure. It is difficult to conclude whether this

(a) (b) (c) (d)

Figure 3.61 – Spatial distribution of the scaling exponents of TF1-GFP cells. Spatial distribution of the
scaling exponent β (a,c) and the factor A (b,d) obtained from the linear fit. β has been colour coded in
grey scale from -2 (black) to -0.5 (white), and A from -1.5 (black) to 4 (white).
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spatial distribution is a robust feature of this type of cells. We have to keep in consideration
that it depends greatly on the temporal scale of observation. The longer the time of observa-
tion, the more likely this organisation will be lost, as the cell will be constantly re-structuring
its internal material. On the other extreme, if we focus at very high frequencies, it is proba-
ble that we will observe only the background noise of the liquid and/or setup, rather that the
fluctuations of the cell structure. Thus, it is important to determine the range of frequencies
where this effect may occur. Moreover, the detection of the WTMM chains on the time series
could be really helpful in understanding the dynamics of the cell internal structure.

We have recorded a time series of a TF1-BA cell for comparison. The cell was chosen using a
size criteria, as it has been shown that transformed cells tend to increase in size. The data con-
sists of 900 images taken each 0.5 s. We corrected the phase tilt and detected the cell contour
with the WTMM method. We have assembled the results obtained for this cell in Fig.3.62.
We find no big differences between this cell and TF1-GFP cells. In general we observe an
uncorrelated brownian motion for the cell displacement (Fig.3.62a-b) and contour tracking
(Fig.3.62c-e), and a lower scaling exponent for the OPD signals, with a very weak structural
organisation.

It is not surprising to obtain very similar results between TF1-GFP and TF1-BA cells, as it has
been shown that the main differences arise when the cells are forced to adhere. Nevertheless,
it is important to fully explore the frequency range accessible with this technique, as there
might be interesting mechanical behaviour of these cells at a different scales of time. By in-
creasing the range of temporal scales, the number of cells observed, and complementing the
global cell dynamics analysis that we have performed with the study of their internal structure
with the WTMM chain method, we should be able to conclude on the impact of the oncogene
BCR-ABL on the dynamical properties of suspended cells.

In fact, the temporal evolution of the cell WTMM chains could lead to a passive study of the
cell rheology. The chains would act as intracellular markers, offering the possibility to track
the cell rotation, and to apply the concepts used in other passive rheological techniques such
as magneto twisting cytometry or even thermally excited AFM, discussed on chapter 2. There-
fore, this chain tracking can be the direct link between a non-intrusive measurement of the
cell viscoelasticy and the mechanical properties measured with AFM on the previous chapter.
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3.8. Living cell dynamics
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Figure 3.62 – TF1-BA cell dynamics measured by DPM. (a) The cell position in x (black curve) and in y
(grey curve) from a TF1-BA cell is shown as a function of time. (c) Mean radius < r (θ) > (t ) of the map
shown in (d). (d) Temporal map of the cell contour, where r (θ) has been colour coded, from 10.5 μm
to 11.5 μm. (f) Φ(t ) for a point corresponding to the cell centre. (b,e,g ) PSD of the signals shown in
(a,c,f), respectively. The blue line shows the linear fit. (h) OPD image of the cell, where Φ(t = 0) (in nm)
has been colour coded. (i) Spatial distribution of the scaling exponent β.
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Summary

Diffraction phase microscopy is a powerful non-intrusive technique to study living cells. A
fast and stable common-path interferometer was constructed to measure the optical phase
of the micrometric objects in a single-shot. The optical phase has a high sensitivity to the
object structure, as it is given by the product of its thickness and refractive index.

We have revisited the method to extract the phase from the DPM interferograms. We propose
a 2D anisotropic Morlet wavelet transform that is capable of recovering the phase in extreme
cases. For instance, when the object is thick or dense enough to produce rapid phase varia-
tions. Additionally, the WT modulus maxima method can filter intensity variations that are
external to the object of interest.

We have employed DPM and this WTMM method to characterise the morphology of different
types of cells, both adherent and non-adherent. The results obtained on RBCs are consis-
tent with those reported in the literature, validating our methodology. In particular we have
focused our attention on the hematopoietic cell line TF1, transduced either with GFP or the
oncogene BCR-ABL. We have shown that their morphology is drastically altered when they
are forced to adhere on a fibronectin-coated surface. To characterise their internal structure,
we proposed a novel method based on the WTMM chain detection of the OPD gradient, using
the derivative of a gaussian as a mother wavelet. This WTMM chain method is capable of dis-
tinguishing leukaemic TF1 cells from their healthy counterparts when they are in suspension
and they adopt a spherical form.

Finally, we showed preliminary results about the dynamic of RBCs and TF1 cells. Once more,
our results on RBCs agree with the literature. Moreover, we have encountered possible differ-
ences between a leukaemic RBC and a healthy one, consisting on the frequency dependence
of their membrane fluctuations. The scaling exponent found on the power spectrum of the
OPD from these cells reveals a different behaviour for the LMC RBC. In an interesting result,
this scaling exponent seems to follow some structural organisation for TF1 cells, very likely
associated to the cell internal structure.
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Chapter 4

Conclusions and prospects

Experimental aspects and methodologies implemented in this work

One of the fundamental steps for characterizing cell mechanical properties is to capture their
ability to deform under a given load. Experiments performed with atomic force microscope
(AFM) usually address the cell deformation with the so-called force-indentation curves, where
the AFM cantilever moves at a fixed velocity and indents the cell until a given load is reached.
In the quasi-static approach, the velocity is constant and its value is empirically optimised to
minimise the hydrodynamic effects and viscosity of the sample1. At very small indentations,
that is, in the low deformation regime, the cell can be considered as a linear elastic system,
and either the Hertz or the Sneddon’s model can be used to compute the cell elastic modulus.
In the present work we were rather interested in the large deformation regime, as we wanted
to observe also the response of the underlying cell structure, and not only the cortex. There-
fore, we could no longer assume the linearity of the system, and we considered instead a more
general form of the strain-to-stress response:

F (δz ) ∝ T0z0

(
δz

z0

)h

(4.1)

We emphasise here that the cell mechanical response is characterised by two quantities: the
power-law h that describes the type of behaviour or structure, and the prefactor T0 that quan-
tifies the stiffness of the cortex 2. We implemented a wavelet-based method to overcome the
practical difficulties of the treatment of the force-indentation curves: determination of the
contact point, filtering the data, and extraction of the scaling exponents.

The second type of experiments that we performed with AFM, focused on the spectral char-
acterisation of cantilever fluctuations when it is excited by thermal noise, with and without
interaction with a soft sample. To our knowledge, there are only a few reported works where
AFM thermal noise spectra are analysed with the aim to extract the mechanical properties
of biological systems. In material and engineering sciences, this approach is more common,
although they are usually based on the parametrisation of the resonant peaks (change of reso-

1In animal cells, the cantilever tip velocity is typically set to values lower than 1μm s−1, with a single force-
indentation curve being recorded on the order of 5-30 seconds.

2We have chosen the actin cortex as a reference layer, with typical thickness z0 ∼ 150 nm.
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nant frequency, width, ... ), as they are related to the viscoelastic properties of the sample and
the medium. To perform the spectral analysis, the cell body has to be stationary, and if the
cell moves or remodels its internal structures during the experiment, the lower frequency part
of the spectrum will be biased. Under steady conditions, the autocorrelation function of the
thermal fluctuations of the cantilever pressed on a living cell is related to the local shear mod-
ulus G(ω) of the material, as can be shown using the fluctuation dissipation theorem (FDT)
and a generalised Stokes equation for sharp tip cantilevers. The main constraints to use this
approach are experimental and mainly due to limitation of the data recording and data pro-
cessing of commercial AFM systems. The data are frequently filtered by the manufacturer in
a frequency band that is sometimes difficult to know precisely from him, and whenever raw
data can be collected, the acquisition frequency and/or buffer memory sizes are not suited
for a correct spectral analysis of experiments with living cells. Therefore, it was necessary to
add to the AFM another board for collecting the signals with an external A/D converter board.
We believe that this approach has a great potential to study cells in real-time, as the data re-
quired for the spectral analysis can be recorded in less than 1 second, opening the possibility
to perform spatial maps of the cell mechanical properties in a very short time, compared to
traditional force-indentation curves. This method is also attractive because it gives access to
the ratio of storage to loss moduli and therefore on the percentage of viscous and elastic com-
ponents of the cell mechanics.

One may wonder, however, until what point does the cell get perturbed by the indentation
process. As it has been pointed out all along this document, a living cell will react to the mea-
surement tools, causing structural rearrangements. A remaining open question is if this re-
structuration of its interior will affect the cell behaviour. It is easy to imagine, for example, that
under a big perturbation, the cell structure will be reinforced to prevent any further damage,
specially if this perturbation is repetitive, such as in force-indentation curves. Although such
modification in the cell structure will require at least a couple of minutes to occur, it is not
clear yet if it can take place on a typical indentation experiment. With this question in mind,
we wanted to complement the AFM indentation experiments, with a non-intrusive study of
the cell structure. We chose a diffraction phase microscopy method fast enough to follow in
real-time the cell deformation and intracellular rearrangements. The advantage of DPM over
other quantitative phase microscopies, is precisely its high-acquisition speed limited only by
the camera (in our case up to 10kHz), and the high stability due to its common-path inter-
ferometer design. Although it is relatively easy and fast to build a home-made DPM setup,
compared to other optical set-ups, it takes a fair amount of time to optimise the design so it
can be suited for the desired application. Additionally, the typical methods used to retrieve
the phase of phase objects from the recorded interferograms are not necessarily adapted to
several types of cells, particularly for non-adherent cells. In our case, we wanted to apply
DPM to cells in suspension which keep a spherical geometry. When the phase gradient is
too high due to a high relative refractive index or a sudden increase in thickness, methods
like the Hilbert transform or Fourier filtering fail to correctly retrieve the phase of the object.
We developed a phase recovery method based on an anisotropic wavelet transform (Morlet)
whose performance surpasses the methods previously mentioned. Nevertheless, it does re-
quire more computing time, making the treatment of long video recordings quite challenging.
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To study internal cell structures, we implemented a wavelet based contour detection method
that, besides an easy identification of the cell contour, is also suited to detect intra-cellular
phase boundaries. The method is based on the OPD gradient, we showed that, when the
OPD gradient is locally maximum, there is a change in the composition of the structure (ei-
ther its refractive index or thickness). Hence, the identification of such points, which have
been shown in this work to organized into finite length and unclosed chains, were used to
characterise the homogeneity of the intra-cellular structure. Furthermore, these OPD chains
could serve as intracellular markers, opening the possibility to study the cell rheology, in a
similar way to what is done with literature, with microparticles, magnetic/optical tweezers or
intracellular fluorescence markers, in a non-intrusive manner. Beyond this aspect, the spatial
complexity of these chains, their statistics of lengths, their spatial arrangements and how they
reorganize dynamically could become a dynamical marker to compare healthy from patho-
logic cells.

Transformation of HSCs by the oncogene of chronic myelogeneous leukaemia

We have found clear differences between TF1-GFP and TF1-BCR-ABL cells that are enhanced
when the cells are forced to adhere. The confinement of cells on fibronectin coated sur-
face compels them to adhere and to spread. The cytoskeletal reorganisation of F-actin mi-
crofilaments was observed by fluorescence staining (Fig. 4.1). Whereas actin is mainly lo-
calised in the cortical cytoskeleton in non adherent normal cells, in transformed cells, BCR-
ABL binds actin filaments (F-actin) [191], a major determinant of cell mechanical behaviour
[192], and induces its redistribution into punctate, juxtanuclear aggregates [193]. In BCR-
ABL-transduced TF1 cells, juxtanuclear actin aggregates were found in almost 30% of the cells
in addition to the cortical F-actin staining (Fig. 4.1a,b). Very likely these structures were in-
duced by BCR-ABL since they were rarely observed in the parental or GFP-transduced cell
lines [189]. Consistently BCR-ABL-transduced cells show fewer actin stress fibres, as com-
pared to parental or GFP-transduced TF1 cells in adhesion. As expected, GFP proteins do not
co-localise with F-actin in TF1 cells. They exhibit a diffuse localisation in both the nucleus
and the cytoplasm. In contrast, GFP-BCR-ABL proteins are localised in both the nucleus and
the cytoplasm and a small fraction of the total proteins co-localises with actin stress fibres as
well as with juxtanuclear F-actin aggregates.

The re-distribution of actin in TF1-BCR-ABL cells results in strong alterations of their cy-
toskeleton contractility. The transformed cells loose their ability to mature adhesion by actin
stress fibres assembly. TF1-BCR-ABL cells maintain a more rounded shape when they are
cultured on a fibronectin-coated surface, whereas TF1-GFP cells do show a more elongated
form and a flattened profile as confirmed by DPM (section 3.7.3). It is important to point out
that the transformed cells do adhere to the surface, as shown by the small protrusions seen in
DPM images and AFM topography images (section 2.5.2). Thus, the rounded morphology is a
consequence of the altered or inhibited mature adhesion, which in normal conditions would
result in the cell elongation or spreading.

When the oncogene BCR-ABL interacts with the actin cytoskeleton, the mechanical response
of the cell is impacted particularly in the low frequency range. The expression of BCR-ABL in
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Figure 4.1 – BCR-ABL induces an alteration of F-actin distribution in TF1 cells. Filamentous actin (F-
actin) was labeled with phalloidin-rhodamin (red), GFP signal was amplified using a rabbit polyclonal
anti-GFP antibody-Alexa Fluor 488 conjugate (green) and the nuclei were labeled with DAPI (blue).
Immunofluorescence images representative of 6 different experiments were taken using a confocal
microscope on TF1, TF1-GFP and TF1-BCR-ABL cells either in a non adherent state a or in adhesion
to fibronectin b. Scale bar 20 μm. Magnification examples are presented in lower left panels for each
condition. Scale bar 5 μm. Figure courtesy of Bastien Laperrousaz.

immature cells modifies their strain-to-stress response when they are confined in adherence
(chapter 2). The quasi-static measurement of force-indentation curves confirmed that the
cell behaves as a multi-layer viscoelastic object, where the actin cortex plays a main role. By
tracking the scaling laws on AFM force-indentation curves (section 2.4.2.a) we have observed
that transformed cells present a marked shell-like response (α < 0.25). The stiffening of the
actin cortex could protect TF1-BCR-ABL cells from deformation, and is therefore a footprint
of the cellular modifications induced by this oncogene.

There seems to be a slower response to a constant stress of TF1-BCR-ABL cells. While TF1-
GFP cells are able to respond to a mechanical load in real time, the transformed cells require
a longer adaptation time (∼ 100 s) before creeping. The expected creeping relaxation of TF1-
GFP cells occurs very differently, with a progressive increase of the cantilever fluctuations
after ∼ 35 s, likely involving a whole cytoskeleton structural change (section 2.5.2). TF1-BCR-
ABL cells on the contrary, experience a single relaxation process with a relaxation time of 70
s - 110 s. The slower response found on transformed cells suggests that the mechanotrans-
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duction pathway has also been altered. Perhaps, as actin filaments are disrupted, there may
occur a modification of the mechanical coupling of the cell membrane, cytoskeleton, and/or
the nucleus. It would be interesting to see if these differences on time response are only re-
vealed by the applied stress, or if they also occur without mechanical perturbation. For in-
stance, the supervision of the intracellular OPD chains obtained with DPM could indeed give
further informations. Preliminary results have shown that at least, the number of chains TF1-
GFP cells changes with time, indicating an active intracellular structure. Further analysis has
to be done to conclude about the type of dynamics and mechanical properties that can be
obtained from this data, and to confirm if there is an alteration of TF1-BCR-ABL cells.

The power-law regimes revealed in the low frequency range of the spectral densities of the
cantilever fluctuations when loaded on TF1 cells pointed out their ressemblance to a struc-
tural damping model. Once again, the mechanical response of the transformed TF1-BCR-ABL
cells was different from their healthy counterparts, suggesting a more elastic behaviour. A
more complete statistical analysis of such power-laws is necessary to conclude about the vari-
ability of these values, as well as the degree of correlation between the static shear modulus
obtained from the force-indentation curves and the exponent x characterising their struc-
tural damping. We could also think about performing such rheology experiments during a
slow indentation and generalize the wavelet averaged spectra to a wavelet time-frequency
spectral decomposition to follow the modification of the power-law exponent x when the tip
encounter different structures. Again the wavelet method is a very powerful mathematical
tool, suited to tackle this multi-scale problems, furthermore it could help us to define dy-
namical extension of the fluctuation dissipation theorem.

The transformation induced by the BCR-ABL oncogene is less evident when the cells are in
suspension. Their morphology is slightly altered, with an increase in size of roughly 18% of
transformed cells in comparison with TF1-GFP cells (section 3.7.3). The lower refractive index
of TF1-BCR-ABL cells suggests that this change in size is due to the cell swelling. The modi-
fications on the internal structure of these cells is also revealed by DPM in combination with
a WTMM chain detection method of the OPD gradient (section 3.7.3.a). Even if we do not
encounter any closed domains on neither TF1-GFP or TF1-BCR-ABL cells, the later present a
larger number of WTMM chains, reflecting a more complex intracellular structure.

The dynamics of spontaneous phase fluctuations captured from DPM of suspended TF1-
BCR-ABL cells are not that different from their healthy counterparts. Globally, we encounter
that both cell types present an uncorrelated brownian motion (β∼−2) of planar (x, y) move-
ment of their center of mass, with some cells exhibiting low-frequency oscillations of their
position around 100 s (section 3.8.2). The deformation of the cell contour also behaves as a
brownian motion, although the amplitude of the fluctuations is quite variable between cells.
Finally, the scaling exponent of the OPD signals is not as robust as for the cell displacement or
contour deformation. We find values between [-2,-1], without any distinction between trans-
formed and TF1-GFP cells. However, we observe a clear cut-off in frequencies around f ∼ 1Hz
that could be a characteristic feature of TF1 cells. This frequency value may be related to dis-
tinct intracellular viscoelastic properties, or it could account for some active behaviour of the
cell (molecular motors) at higher frequency. The dependence of such behaviour with temper-
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Figure 4.2 – TF1 cell transformation by the oncogene BCR-ABL.

ature, tonicity, or ATP levels can be really informative about the type of fluctuations which are
observed (passive or active).

Finally, one of the most interesting perspectives for the methodology reported in this work,
is the possibility to combine both types of microscopy on the same setup. This would allow
the simultaneous observation of the cell structure and its response to indentation, providing
strong evidence to tackle questions that have remained unanswered on the present docu-
ment.
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ABSTRACT Individual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength
may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of
the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor
pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force
cantilever with a pyramidal tip, is also very sensitive to the culture media. To our knowledge, we develop here an original
analyzing method, based on a multiscale decomposition of force-indentation curves, that reveals and quantifies for the first
time the nonlinearity of the mechanical response of living single plant cells upon mechanical deformation. Further comparing
the nonlinear strain responses of these isolated cells in three different media, we reveal an alteration of their linear bending
elastic regime in both hyper- and hypotonic conditions.

INTRODUCTION

A plant cell wall is a composite polymeric structure made of
very stiff and high-persistence-length cellulose microfibrils
coated with heteroglycans (hemicelluloses such as xyloglu-
can), which are themselves embedded in a dense, hydrated
matrix of various neutral and acidic polysaccharides with
protein scaffolds. This maintains the cell wall’s cohesion
(1–3). Although mammalian cells also have a cross-linked
actin network cortex that coats the internal plasma mem-
brane and acts as a physical barrier for the penetration of
sharp cantilevers, a much wider variety of mechanical prop-
erties can be achieved by plant cells as related to the tissue
function and its environment. For instance, creep, stress
relaxation, and hysteresis of load-retract curves all reflect
the complex viscoelastic behavior of plant cell walls, apart
from the fact that this property may also gradually change
from inside to outside, depending on the aging of the cell
(4). The morphology and growth behavior of a plant cell
is driven by the hydrostatic turgor pressure that pushes
and stretches the wall by way of its cellulosic matrix relax-
ation. Typical turgor pressures in plants are ~0.3–1.0 MPa,
which is a range that translates to between 10 and 100
MPa of tensile stress in the walls (5). This tensile stress
within the wall is a function of the cell curvature, the wall
thickness Hw, and the pressure drop across the wall (6).
Different methods have been designed over the past decades
to characterize the single-cell-wall elastic modulus through

global compression (7,8) or bending strain (9) experiments.
The mechanical properties of single plant cells were also
tracked down locally, with nanotipped indentation systems
provided by an atomic force microscope (AFM) (10–17)
or by cellular force microscopes (18,19).

The mechanical characterization of a single plant cell
with an AFM cantilever depends on the tip shape. As for an-
imal cells, large spherical indenters are better suited to cap-
ture the internal pressure of the cell, whereas sharp conical
or pyramidal tips are more appropriate for characterizing the
local mechanics of the wall (15,17). This latter tip geometry
has been chosen in this work to study single-cell-wall
mechanics from Arabidopsis thaliana root calli. Working
with single plant cells of small size makes AFM measure-
ments trickier for two reasons (15): the first one is due to
the very low adhesion and spreading of these cells on solid
surfaces traditionally used for animal cells. The second one
is the lack of knowledge of both cell-wall thickness and
tension in single cells. Moreover, classical analysis of
AFM force curves requires a good determination of the con-
tact point at the surface of the cell—not always easy to
achieve. To help solving these issues, we develop here an
original wavelet-based analysis of the force-indentation
curves that reveals a succession of power-law mechanical
responses encountered by the AFM cantilever during the
cell penetration by the cantilever tip. These power-law
responses include an intermediate regime of interest that
accounts for the wall stretching and/or bending from which
we can extract information about cell-wall thickness and
tension. We show that this wavelet-based analysis does
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not need the knowledge of the contact point to efficiently
capture nonlinear departures from the expected linear
behavior for an elastic shell of a turgescent cell. Beyond
investigating the statistical distributions of the cell-wall
effective tension and maximum sustainable stress upon
penetration, we also develop a much deeper insight on the
mechanics of single plant cells, comparing turgescent cells
with hypo- and hyperosmotic culture media cells. It appears
from these experiments that when the turgor pressure is
reduced (hypertonic medium), the wall tension decreases
and even if the whole cell shape seems to be conserved,
the cell-wall mechanics is damaged. When increasing the
turgor pressure (hypotonic medium), the stretching of the
cell wall also changes its viscoelastic response, splitting
the mechanical response into two new regimes, below and
above the original scaling regime that was observed with
turgescent cells. Both hyper- and hypotonic media produce
a decrease of single-cell effective tension. We further show
that the cell-wall mechanical responses vary dramatically
from cell to cell and from point to point on single cells,
and we illustrate this inhomogeneous distribution on the
surface of these cells by cellulose fluorescence staining.

MATERIALS AND METHODS

Single cell preparation

Single cells were separated from undifferentiated calli derived from

A. thaliana Wassilewskija (WS-2) 35S GFP-MBD (green fluorescent

protein microtubule binding domain marker) plants (14,20). Calli were

grown on 4.4 g/L of MSARI-modified medium (Murashige & Skoog media

with vitamins, Cat. No. M0222), 30 g/L of sucrose (Cat. No. S08069),

KOH, and plant agar (Cat. No. P1001) from Duchefa Biochemie,

Amsterdam, The Netherlands; and 500 mg/L of MES (Cat. No. M8250),

0.5 mg/L of 2,4D (Cat. No. D7299), 2 mg/L of IAA (Cat. No. I2886),

and 7 g/L 2iPRiboside (Cat. No. D7257) from Sigma-Aldrich (Saint-Quen-

tin Fallavier, France), pH 5.8 at 25�C and transferred every 15–20 days.

Three-to-four callus pieces were placed in MS solution containing 4.4 g/L

of Murashige & Skoog media with vitamins (Cat. No. M0222) and 30 g/L

sucrose (Cat. No. S0809) from Duchefa Biochemie (Haarlem, The

Netherlands), and 500 mg/L of MES (Cat. No. M8250; Sigma-Aldrich),

pH 5.8 with KOH. After 4 h of constant agitation at 200 rpm, the cells

were filtered with a 100-mm nylon mesh. The cells in MS solution were

then allowed to settle down on petri dishes precoated with poly-L-lysine

(50 mg/mL) and placed under the AFM microscope. Once isolated from

their tissues, these cells acquire different morphologies, transitioning

from spherical to tubular shapes. For the purpose of analysis, we preferen-

tially selected cells with spherical shapes (Fig. 1 a) and performed the

force-indentation experiments at the cell centers to prevent a lateral slipping

while indenting. To generate hyperosmotic stress, 1 mL of a 1 mol/L

mannitol solution was added to 5 mL of MS solution containing the cells

to produce the cell plasmolysis. On the opposite, hypoosmotic stress was

generated by the addition of 2 mL water to 5 mL of MS solution containing

the cells.

Atomic force microscopy

Force curves on isolated cells were recorded with two different systems: a

Bioscope Catalyst (Bruker, Palaiseau, France and Coventry, UK) mounted

on a fluorescent macroscope and a CellHesion 15–200-mm motorized stage

(JPK Instruments, Berlin, Germany) mounted on an inverted microscope in

contact mode. We used model No. MPP-12220 triangular shape cantilevers

with a nominal spring constant of k ¼ 5 N/m (Bruker) with a sweeping

velocity of 1 mm/s. Force curves recorded on the bottom of a petri dish con-

taining the MS solution were used to calibrate the deflection sensitivity of

the cantilever in liquid. The effective spring constant k of these cantilevers

was estimated in between 2 and 3 N/m by directly recording their free fluc-

tuations in MS solution, computing their power spectrum distribution, and

fitting these curves with Lorentzian distributions (21–23).

Force-displacement curves were reconstructed from AFM cantilever

deflection signals recorded during the decrease of the vertical position Zk
of the cantilever with respect to the sample surface Zs. When the tip of

the cantilever comes precisely into cell contact without being deflected

(zero contact force), Zk ¼ Zk0. Once the cell is deformed by the cantilever

Zk< Zk0, the difference DZk¼ Zk0 – Zk is given by the sum of the cell defor-

mation dC ¼ hC0 – hC and the ratio of the force F over the cantilever spring

constant k (24) as

Zk0 � Zk ¼ hC0
� hC þ F=k: (1)

A typical set of force curves (approach curve in blue and retraction curve

in red) is shown in Fig. 1 b. On the right side of these curves, the canti-

lever is not yet in contact with the cell, so the force F does not change.

When the cantilever comes into contact with the cell surface, the force

curve abruptly changes its curvature and increases progressively as the

cell is deformed by the penetration of the cantilever tip. The nominal

spring constant of the cantilever (k ¼ 5 nN/nm) was chosen large enough

for the cantilever deflection to be small compared to the cell deformation.

This is illustrated by the black force curve in Fig. 1 b recorded on a stiff

glass coverslip, it corresponds to the correction term dk ¼ F/k in Eq. 1.

The loading (blue) and unloading (red) force curves do not overlap in

Fig. 1 b, suggesting a partial viscous-loss during this single cell indenta-

tion (12,13,25). This slight discrepancy of loading and unloading force

curves has been observed in all experiments performed in this work. In

the sequel of this article, we will exclusively focus on the loading force

curves.

We collected 3457 force curves from 92 A. thaliana cells in three

different media (60 cells in MS solution, 20 cells in MS solutionþmannitol

and 12 cells in MS solution þ water). We checked that the cantilever

stiffness was chosen adequately to be much larger (at least three times)

than the cell rigidity. All the curves were corrected, taking into account

the cantilever stiffness. When the range of the indentation length (Zk) was

<150 nm, we kept the force curves with a large enough (>0.3 in log10su0)

scaling domain for the computation of the b-exponent (obtained by plotting

Tg(2)[F](ZkM, S) along the WT maxima line ZkM(s), as described below).

a b

FIGURE 1 (a) Bright-field microscopy of a single cell from A. thaliana

root callus; the scale bar is 25 mm. (b) Untreated force curves recorded in

liquid on the bottom of a petri dish (black line) and on a single cell:

(blue line) loading force curve; (red) unloading curve. The slope of the

black line corresponds to the cantilever spring constant k; this slope k

is used to correct the force curves (see text). To see this figure in color,

go online.
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Confocal microscopy

Single cells in MS solution were stained using Pontamine Fast Scarlet 4B

(Aldrich Rare Chemicals Library S479896; Sigma-Aldrich,) according

to Anderson et al. (4). GFP and Pontamine Fast Scarlet 4B signals were

detected using a model No. LSM700 confocal microscope (Zeiss, Jena,

Germany) equipped with a 488-nm laser (to detect GFP signal) and a

555-nm laser (to detect Pontamine fast scarlet signal). Z-confocal series

were recorded using a 40� water immersion objective and a 500-nm

step size. The images and the three-dimensional z-stack projection were

analyzed using the software IMAGEJ (National Institutes of Health,

Bethesda, MD).

RESULTS

A wavelet-based method to analyze
force-indentation curves

The continuous wavelet transform (WT) is a mathematical
technique introduced in signal analysis in the 1980s (26).
Since then, it has been the subject of considerable theoret-
ical developments and practical applications in many do-
mains (27–31). In particular in the context of this study,
the WT has been applied to characterize AFM images of
rough surfaces (32) and to image living cells via diffraction
phase microscopy (33). It has proved very efficient to esti-
mate scaling exponents and multifractal spectra (34–38).
Within the norm L1, the one-dimensional WT of a signal
F(x) reads

Wj½F�ðb; sÞ ¼ 1

s

Z N

�N

FðxÞj�
�
x � b

s

�
dx; (2)

where b is a position and s (>0) is a scale parameter (see the
Supporting Material for further explanation).

The interest of the WT method is twofold. The first
advantage is to use the same smoothing function to filter
out the experimental background noise and to compute
first- and second-order derivatives with the same smoothing
characteristic scale. The second advantage relies on the
powerfulness of the WT to detect singularities in a signal
(29,30,34,35) and to quantify their force via the estimate
of the local Hölder exponent from the behavior across scales
of the WT modulus maxima (WTMM) (29–31,34–38). If
the wavelet has a compact support, it is straightforward to
show that the WT of F, Wj[F](x0, s), depends upon the
values of F(x) in a neighborhood of x0 of size proportional
to the scale s. More generally, for any admissible analyzing
wavelet j, one can show that if F(x) behaves as (x – x0)

h in
the neighborhood of x0, then the WT of F behaves as a
power law of the scale with the exponent h (34,35):

��Wj½F�ðx0; sÞjfAsh: (3)

This relation defines how jWj [F](x0, s)j decays when the
scale s goes to zero. From the WT, we can therefore recover
the local Hölder exponent of the function F, via a simple
linear regression fit in a logarithmic representation.

In this study, we use modified versions of the definition
(Eq. 2) of the WT that give directly a measure of F in nano-
Newtons, dF/dZ in nN/nm and d2F/dZ2 in Pascal, once
smoothed by a Gaussian window (g(0) (x)) of width s,

Tgð0Þ ½F�ðb; sÞ ¼ Wgð0Þ ½F�ðb; sÞ; (4)

Tgð1Þ ½F�ðb; sÞ ¼ 1

s
Wgð1Þ ½F�ðb; sÞ; (5)

Tgð2Þ ½F�ðb; sÞ ¼ 1

s2
Wgð2Þ ½F�ðb; sÞ; (6)

where g(1)(x) and g(2)(x) are the first- and second-order
derivatives of g(0)(x) (Supporting Material). Then the local
power-law exponent extracted from the WT (Eq. 3) is
shifted by �1 or �2, for the first- and second-order deriva-
tives, respectively:

TgðiÞ ½F�ðx0; sÞfAsh�i: (7)

For illustration, let us consider a piecewise linear function
F (Fig. 2 a):

FðZkÞ ¼ aZk for Zk<Z0;
FðZkÞ ¼ 0 for ZkRZ0;

(8)

with a > 0. This function is continuous, but its first deriva-
tive is discontinuous (jumping from a to 0) at Zk¼ Z0 and its
second derivative is a Dirac delta distribution. In Fig. 2 are

a b

c d

FIGURE 2 Computation of the first and second derivatives of a piece-

wise linear function using the WT method with a Gaussian function

(sw0 ¼ 10 nm). (a) The original force curve. (b) Tg(0)[F](Zk – Zk0, s ¼ 1),

where Zk0 corresponds to Tcontact ¼ 10�4 nN/nm (see text). (c) Tg(1)[F]

(Zk – Zk0, s ¼ 1) in nN/nm. (d) Tg(2)[F](Zk – Zk0, s ¼ 1) in MPa. To see

this figure in color, go online.
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illustrated the twoWTs of F computed at the scale s¼ 1 in a
w0 ¼ 10 nm unit, using Eqs. 5 (Fig. 2 c) and 6 (Fig. 2 d),
respectively. The value w0 is a constant value that corre-
sponds to the minimum wavelet size used in this study
(s ¼ 1). The jump in the first derivative of F and the sharp
peak (Dirac) in the second derivative of F at Zk ¼ Z0 are
smoothed by the Gaussian of width sw0 ¼ 10 nm. In this
theoretical example, we perfectly know the contact point
Zk0 ¼ Z0, which is a crucial issue in experimental situations.
Indeed the determination of Zk0 is a major limitation that
groups working on AFM have been facing for more than
a decade in their interpretations of experimental noisy
force-indentation curves (14,15,39–43). The wavelet-based
analysis that we propose here allows us to overcome this
difficulty, by simultaneous smoothing out the noise and
thresholding the force curve slope Tg(1)[F](Z, s ¼ 1) at the
value Tcontact beyond the contact defined at Zk0:

Tgð1Þ ½F�ðZk0; s ¼ 1Þ ¼ Tcontact: (9)

For the piecewise linear model in Fig. 2, we used
Tconnect ¼ �10�4 nN/nm, leading to a value of Zk0 slightly
above Z0 because the center of the jump in Tg(1)[F] in
Fig. 2 c and the position of the peak in Tg(2)[F] in Fig. 2 d
are slightly shifted toward negative Zk � Zk0 values.

To estimate the Hölder exponent of F at the discontinuity
point Zk0 of dF/dZ, we simply need to plot Tg(2)[F](ZkM, s)
along the WT maxima line ZkM(s) (Fig. 3). Fig. 3 a
shows the color-coded image of Tg(2)[F](b,s) in the
(b,s) half-plane, together with the so-called maxima line
(plotted in red) defined by the WTMM obtained at each
scale s (34,35). Along the maxima line, we should recover
the predicted scaling law Tg(2)[F](ZkM, s) f sb with b ¼
h – 2¼�1 (Eq. 7). This is verified in Fig. 3 c, when plotting
Tg(2)[F](ZkM, s) versus sw0 in a logarithmic representation
where, by linear regression fit, we get an estimate of the
exponent b ¼ �1.002 5 0.005, consistent with the theoret-
ical prediction for a Dirac delta distribution. The scaling law
Tg(2)[F](ZkM, s) f s�1 is actually observed over the whole
range of scales 10 < sw0 < 800 nm. Let us point out
that when fitting instead log10Tg(0)[F](Zk0 – Zk) versus
log10[Zk0 – Zk] as commonly performed in the literature
(39,41), we do not recover correctly a slope h ¼ þ1 due

to the sensitivity of this curve to the choice of the contact
point Zk0. For instance, taking Zk0 such that jTg(1)[F]
(Zk0, s ¼ 1)¼ �10�4j nN/nm (Fig. 3 b), we do not get
nice scaling and the expected h ¼ þ1 exponent is only
guessed at very large indentations. Because the WTMM
method amounts to tracing the local singularity across
scales without a priori knowledge of the contact point Zk0,
where the maxima line is expected to converge in the
limit s / 0þ, and without any need of precisely defining
this contact point, it proves to be very efficient to estimate
quantitatively the local Hölder exponent h ¼ b þ 2 ¼ 1
(Fig. 3 c).

WTMM characterization of force-indentation
curve models

Description of typical AFM force curves

Four force curves captured with the AFM on single plant
cells isolated from A. thaliana calli are shown in Fig. 4 a.
In this example, we have selected four different responses
taken from two cells (green and red) at two different posi-
tions (continuous and dotted-dashed lines) to underline the
inter- and intracellular variability that we have commonly
observed in our single plant cell experiments. Similarly to
the piecewise linear model in Fig. 2 c, when increasing
indentation, the first derivative of these force curves
(Fig. 4 c), computed with Eq. 5 for sw0 ¼ 10 nm, decreases
sharply from zero to reach a plateau. The flatter this plateau,
the closer the Hölder exponent to 1. The occurrence of a
plateau means that there is a whole range of Z values where
F(Z) behaves linearly. When this plateau occurs, its value
Tg(1)[F] ¼ �kE provides an estimate of an effective tension
of the cell wall in nN/nm (the dimension of a surface stress)
at the measurement point. However, for most cells, there is
not a strictly constant plateau of Tg(1)[F], so we have used
instead the second derivative of F to compute an effective
stiffness parameter for these cells. Within the linear
response theory, kE is proportional to E (the wall Young
modulus) times the wall thickness Hw. The width and the
height of the jump from zero to this plateau varies from
cell to cell but also with the position of the indentation point
on a given cell. The widening of the jump in Tg(1)[F] is

FIGURE 3 (a) WT representation Tg(2)[F] of

the piecewise linear function shown in Fig. 2 a.

The color map is chosen from 0 (dark blue) to

2 MPa (dark red). (Red line) WT modulus

maxima. (b) Log10Tg(0)[F](Zk0 – Zk) versus log10
[Zk – Zk0]. (Dashed line) Slope h ¼ þ1. (c)

Plot of log10Tg(2)[F](ZkM, s) versus log10(sw0),

on the WT modulus maxima line. (Dashed line)

Slope b ¼ h – 2 ¼ �1. To see this figure in color,

go online.
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correlated to the penetrability of the cell wall by the tip. It
can be quantified by looking at Tg(2)[F] versus Zk – Zk0
(Eq. 6) (Fig. 2 d), which displays a peak positioned at the
contact point whose (half) width gives an indication of
the thickness of the cell wall and its height quantifies the
maximum sustainable pressure upon penetration of the
wall by the cantilever tip. We can therefore recover an effec-
tive wall stiffness with the product of the local maxima of
Tg(2)[F] times the scale at which it is estimated. Because
the wall has a finite thickness, and because its mechanical
strength may vary during its indentation, following this
peak along the WTMM maxima line from large to small
scales (Fig. 3 a) will allow us to evidence and quantify
locally changes in the wall effective stiffness kE. According
to the wall thickness, the range of indentations of the wall
will be smaller or larger and the maximum sustainable
wall indentation will be attained earlier or later. From
Fig. 4, c and d, we therefore conclude that the wall of the
cell coded in dotted-dashed green is softer than the one of
the cell coded in dotted-dashed red, and the continuous
green curve suggests that the wall thickness penetrated by
the tip is ~100 nm (half the width of the jump).

Models of mechanical responses of a walled-cell

During its progression into the cell, the sharp pyramidal tip
of the AFM cantilever penetrates first into the cell wall with
a minor modification of its curvature (Regime A, Fig. 5 a)

and then bends the cell wall, acting on a thin viscoelastic
shell (Regime B, Fig. 5 b). For a given deflection of the
cantilever (the contact force), the total displacement of
the AFM piezo transducer is the sum of the cantilever
deflection dk ¼ F/k, the depth of penetration of the tip inside
the wall dp, and the deformation (change of curvature) of
the wall db. We use the first derivative of the force curve,
computed with the wavelet transform and Eq. 1, to subtract
the cantilever deflection term and recover a simple equation
for the total indentation dC of the cell:

dCðFÞ ¼ ½Zk0 � Zk�corr ¼ dpðFÞ þ dbðFÞ: (10)

Regime A: penetration of the cantilever tip inside the cell
wall (shallow indentations). The relation dp(F) depends on
the shape of the cantilever tip. With the pyramidal shape
cantilevers used in this work, we must consider two regimes
for the tip penetration inside the wall because the tip is not
infinitely sharp and has a finite curvature radius rt. Roughly
speaking, when the indentation is limited to dp ( rt, the
shape of the tip can be approximated by a hemisphere and
when the indentation increases beyond rt (dp T rt), the
cantilever must rather be considered as a square pyramid.
These two geometries give force-indentation power laws
known, respectively, as Hertz (44) and Sneddon (45)
equations.

For dp ( rt (Hertz),

F
�
dp
� ¼

�
4E

ffiffiffi
rt

p
3ð1� n2Þ

	
d3=2p : (11)

In the limit dp >> rt (Sneddon), and assuming that dp < Hw,

F
�
dp
� ¼

"
tanðqÞEffiffiffi
2

p ð1� n2Þ

#
d2p; (12)

where E is the Young modulus of the wall, n is the Poisson
ratio, and q is half the tip angle. These formulae predict
that if the wall is soft enough for being penetrated by the
cantilever tip, we should first observe a power lawd3/2

followed by a power law d2, assuming that the wall is thick
enough (Hw >> rt). A complete solution of the transition
from sphere to pyramid has already been reported in

a b

dc

FIGURE 4 Experimental force curves (approach) collected on two

different cells. (a) Force-indentation curves. (b) Plot of Tg(0)[F] versus

Zk – Zk0. The value Zk0 corresponds to Tcontact ¼ �10�3 nN/nm (Eq. 9).

(c) Plot of Tg(1)[F] versus Zk – Zk0. (d) Plot of Tg(2)[F] versus Zk – Zk0.

(Continuous and dotted-dashed red curves, continuous and dotted-dash

green curves, respectively) The same cell, but taken with the AFM tip at

different positions. The smoothing scale is s ¼ 1 (sw0 ¼ 10 nm). To see

this figure in color, go online.

FIGURE 5 Sketch of the indentation of the cell wall by a pyramidal

shape tip. (a) The tip penetrates the wall without noticeably changing its

curvature (Regime A). (b) For a deeper indentation, the wall curvature is

modified by the pyramidal tip (Regime B). To see this figure in color,

go online.
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Rico et al. (46). Because the wall has a finite thickness Hw,
the first power law F(dp) ~ dp

3/2 is more likely observed in
the experiments.

Regime B: global deformation of the cell wall (stretching
and bending). Assuming that the wall thickness is<1/10 the
cell radius, the theory of spherical shells predicts a linear
behavior for F(db), when the wall Young modulus can be
considered as homogeneous in space and invariant during
the deformation (47–49). Here we will consider a more gen-
eral form for F(db) with a nonlinearity exponent h that will
generalize these linear response models to strain-hardening
(h > 1) or strain-softening (h < 1) systems,

FðdbÞ ¼ kE d
h
b; (13)

where kE can be considered as an effective tension of the
wall.

Piecewise nonlinear model mimicking a force-indenta-
tion curve. To guide the interpretation of the experimental
force curves, we have generalized the piecewise model dis-
cussed above (Eq. 8), to a nonlinear model including a first
local penetration regime (F(dp) f dp

3/2) and a large-scale
deformation regime (F(db) f dp

h):

FðZkÞ ¼ 0 for ZkRZ0;

FðZkÞ ¼ AðZk � Z0Þ3=2 for Z1<Zk<Z0 : Regime A;
FðZkÞ ¼ kEðZk � Z�Þh for Zk<Z1 : Regime B :

(14)

The values of A, Z*, and F(Z1) are determined as functions
of the parameters kE (effective wall tension or stiffness) and
Z1 – Z0 (wall thickness), by fulfilling the continuity of F and
of its first derivative at Z0 and Z1. In consistency with the
values measured in the experiments reported in Fig. 4, we
set kE ¼ 0.1 nN/nm and Z0 – Z1 ¼ 100 nm. We show in
Fig. 6 the three (orders 0, 1, and 2) derivatives of F
computed with a smoothing Gaussian wavelet at the scale
s ¼ 1 with w0 ¼ 10 nm, for three Hölder exponent values:
h ¼ 1.2 (green curve), 1 (red curve), and 0.8 (brown curve).
The occurrence of a plateau in Tg(1)[F] (red curve in Fig. 6 c)
at large indentations means that the bending deformation db
of the cell wall prevails over the wall tip penetration length
dp. The curves corresponding to other Hölder exponents
differ only in the deformation regime B, because we keep
the same term for the penetration regime A (�100 nm <
Zk – Zk0 < 0). The first-order derivative of F is continuous
at Zk ¼ Z1 but its second-order derivative is discontinuous;
the smaller the exponent h, the larger the jump in Tg(2)[F]
at this transition point Z1. For h < 1, this second derivative
abruptly changes its sign when crossing Z1. Even if the
experimental force curves shown in Fig. 4 were selected
among the h > 1 class responses, we have also observed
many cell responses corresponding to h < 1.

In this ad hoc model (Eq. 14), we have assumed that the
wall deformation is nonlinear for large indentations, which
includes the possibility of changes of the cell-wall tension

during its deformation. Fitting the force curves to recover
the underlying scaling laws is again sensitive to the choice
of the contact point. As shown in Fig. 7 b for the two
force curves of Fig. 6 a corresponding to h ¼ 1 (red curve)
and h ¼ 1.2 (green curve), depending on our choice of
the contact point Zk0, the representation of the force curve
function in logarithmic scales may be more or less
convincing. We choose two different origins Zk0 to compute
the variable d¼ jZk� Zk0j to illustrate the high sensitivity of
the reconstruction of these curves (corresponding, respec-
tively, to Tcontact ¼ �10�4 nN/nm for the solid curves and
Tcontact ¼ �10�3 nN/nm for the dashed curves). We note
that the exponents h¼ 1 and 1.2 can be recognized for inden-
tation d¼ Zk0¼ Zk larger than 100 nm, whereas the penetra-
tion regime (d3/2) (Eq. 14) is also visible over a decade d %
100 nm. However, decreasing slightly the contact point Zk0
shortens dramatically the range of indentation values where
the 3/2 exponent can be estimated. With this noiseless theo-
retical case, we realize that if, for instance, the threshold
criteria on Tcontact were relaxed further, the shape of the
log10Tg(0)[F](Zk – Zk0, s ¼ 1) curve beyond Z1 would no
longer be fittable by a straight line, meaning that the esti-
mation of the exponent h would become intractable.

Wavelet-based multiscale analysis of theoretical force curves

For comparison, Fig. 7, a and c, show the color-coded space-
scale (b,s) representation of Tg(2)[F](Zk – Zk0, s) computed
from the same two theoretical force signals in Fig. 6 a

a b

c d

FIGURE 6 Computation of the first and second derivatives of the

nonlinear force-curve model (Eq. 14) using theWTmethod with a Gaussian

function (sw0 ¼ 1 nm with w0 ¼ 1 nm). (Green, red, and brown curves)

Hölder exponents h ¼ 1.2, 1, and 0.8, respectively. (a) The original

force curves. (b) Tg(0)[F](Zk – Zk0, s ¼ 1), Zk0 corresponds to Tcontact ¼
�10�4 nN/nm (see text). (c) Tg(1)[F](Zk – Zk0, s ¼ 1) in nN/nm. (d) Tg(2)
[F](Zk – Zk0, s ¼ 1) in MPa. To see this figure in color, go online.
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corresponding to the exponent values h ¼1 (red curve) and
h ¼ 1.2 (green curve). The local maxima line of Tg(2)
[F](Zk0 – Zk, s) points toward the point ZkM of maximum
stress of the tip of the cantilever with the shell cortex
when the scale sw0 tends to 1 nm (in the experiments we
cannot afford such a small scale, and we will limit our scale
analysis to 10 nm). The color code is the same in Fig. 7, a
and c; the larger the h, the larger the force for a given defor-
mation and the weaker the divergence of Tg(2)[F](Zk0 – Zk, s)
when s tends to zero. As shown in Fig. 7 d, not only are
the large-scale power laws expected from the deformation
regimes B (Tg(2)[F] f s�1 (and s�0.8) well recognized
now, but also the scaling regime (s�1/2) at low scales. This
new wavelet-based approach allows us to recover not only
the correct scaling exponents but also the whole interval
of scales where these scaling laws are expected to be
fulfilled. This gives us confidence in the chance to resolve
these two scaling domains s�1/2 and sb with b ¼ h – 2
(Eq. 7) in experimental situations.

Wavelet-based multiscale analysis of
experimental force-indentation curves

Turgescent cells

As a first experimental application of our wavelet-based
methodology, we report in Fig. 8 the results of a similar

analysis of two force curves shown in Fig. 4. Note that the
color-coding range of Tg(2)[F](b,s) in Fig. 8 a is 3.3 times
larger than in Fig. 8 c because the latter cell (green line)
is softer than the former (red line). Similarly to the theo-
retical case discussed just above, we can detect a WTMM
line (coded with the same color as the force curve) pointing
to the maximum stress at ZkM when sw0/ 10 nm. We again
compare in Fig. 8, b and d, the scaling behavior of the force-
indentation curves and of the WTMM along the maxima
lines, respectively. The affordable scaling regime B of Tg(0)
[F](Zk � Zk0, s ¼ 1) in Fig. 8 b is shifted toward larger
indentations (>400 nm) for the green curve and is barely
identifiable in the red curve. This distortion of the curve is
typically what we anticipated in the theoretical modeling.
Enhanced by the presence of noise, the practical incapacity
to have a precise estimation of Zk0 impairs the characteriza-
tion of the power-law regime. At low indentations, the shape
of the red force-indentation curve misses completely the
first penetration regime, and we cannot therefore have any
estimation of the cross-over scale in between the low and
large indentation regimes (Eq. 14). The green curve seems
more favorable, because we can delineate a low indentation
range with the scaling law F f d3/2, although it is hindered
by the experimental noise. Even though we suspect that this
green curve behaves with a power law F f d1/2 at larger
indentations, it is again impossible to trust the cross-over
indentation scale (~400 nm) where this power-law seems
to arise. The analysis with the WTMM lines (Fig. 8 d) gives

FIGURE 7 Wavelet-based analysis of two theoretical forces curves.

(a and c) Color-coded representation (from 0, dark blue to 2 MPa, red)

of Tg(2)[F](Zk – Zk0, s) computed from two of the force curves in Fig. 6

a, corresponding to the Hölder exponents h ¼ 1 (a) and h ¼ 1.2 (c). The

WTMM line is coded with the same color as the original force curve. (b)

Log10Tg(0)[F](Zk – Zk0, s ¼ 1) versus log(d) ¼ log(Zk0 – Zk) with Tcontact ¼
�10�4 nN/nm (solid curves) and Tconnect ¼ �10�3 nN/nm (dashed curves).

(Black-dashed, dashed-dotted, and dotted straight lines) Slopes 1, 1.2, and

3/2 corresponding to the scaling behavior F f d, F f d1.2, and F f d3/2,

respectively. (d) Logarithmic representation of Tg(2)[F] versus scale sw0

along the WT maxima lines shown in (a) and (c). (Black dashed,

dotted-dashed, and dotted straight lines) Scaling behavior of Tg(2)[F]

f s�1, s�0.8, and s�1/2, respectively. To see this figure in color, go online.

FIGURE 8 Wavelet-based analysis of two experimental force curves.

(a and c) Color-coded representation (from 0, dark blue to red, 500 kPa (a)

and 150 kPa (c)) of Tg(2)[F](b,s) computed from two force curves of Fig. 4

a with the same color and line coding. (b) Log(d) ¼ log10Tg(0)[F](Zk – Zk0,

s¼ 1) versus log(d)¼ log(Zk0 – Zk) with Tcontact¼�5.510�3 nN/nm. (Black

dashed, dashed-dotted, and dotted straight lines) Slopes 1.1, 1.2, and 3/2

corresponding to the scalingbehaviorFf d1.1,Ff d1.2, andFf d3/2, respec-

tively. (d) Logarithmic representation of Tg(2)[F] versus scale sw0 along

the WTMM lines shown in (a) and (c). (Black dashed, dotted-dashed, and

dotted straight lines) Scaling behavior: Tg(2)[F] f s�0.9, s�0.8, and s�1/2,

respectively. To see this figure in color, go online.
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a much clearer picture of the two indentation regimes
involved in these two force curves. We have plotted dashed
and dotted-dashed straight lines with slopes b ¼ �0.9 (red
curve) and b ¼ �0.8 (green curve) to highlight the range
of scales sw0 where these power-law behavior values of
h ¼ b þ 2 ¼ 1.1 and 1.2 appear, respectively. At scales
sw0 > 100 nm (respectively, 65 nm) for the green (respec-
tively, red) curve, the maxima line enters a power-law
regime outlined with a dashed line in Fig. 8 d. The minimum
scale where this scaling law occurs (noted as min(sw0) in the
following figures) is very important for this study, because it
provides an estimate of how far the cell wall is penetrated
by the tip, i.e., a measure of its softness. The experimental
examples reported in Fig. 8 confirm that the WTMM
method is very efficient to 1) reveal and delimit the range
of scales over which scaling operates and 2) estimate the
corresponding power-law exponents with good accuracy.

Practically, to compute the exponent b ¼ h � 2 from the
WTMM curves versus sw0, we do not take a fixed range
of scales. For each force curve, we first detect the largest
scale range where log10[max(Tg(2)[F])1 versus log10(sw0)
can be fitted with a linear function within 1% error. Because
our experimental force curves are limited in indentation
depth, we restrict this scale range from above to the maxi-
mum scale sw0 < 400 nm to avoid finite-size effects in
the WTMM computation.

Fig. 9 a represents the range of sw0 values where a linear
behavior (fixed b) has been detected from a sample of single

A. thaliana turgescent cells. The corresponding histogram of
b-values shown in Fig. 9 b is broadly distributed around a
mean value ~�0.9. We did not expect such a result because
we thought that when working on single cells extracted from
an undifferentiated tissue, the mechanical response would
be more homogeneous, and that, for instance, the distribu-
tion of b-values would be peaked at ~�1 (corresponding
to h ¼ 1). Another important observation is the variability
of the range of scales and more importantly of the minimum
scale min(sw0) where a power-law behavior of the WTMM
can be extracted along the maxima lines (Fig. 9 c). Note that
when b is <�1, the scaling range seriously shrinks down to
half a decade, meaning that there is probably not really a
scaling law in that case, but instead a global crossover
from a first-penetration regime A that extends to larger
depths, to a larger-scale regime B that cannot be attained
because we are limited in scales. These b < �1 scaling
responses correspond to h < 1 (Eq. 13), which is precisely
to strain-softening wall domains, where the cell wall may
lack cohesion in the cellulose architecture.

This large variability of the mechanical parameters of
A. thaliana single cells led us to perform confocal fluores-
cence microscopy to image the distribution of cellulose on
the cell cortex (Fig. 10). Fig. 10 a is obtained from a
confocal section and shows the boundary distribution of
cellulose and microtubules underneath. Fig. 10 b illustrates
the whole surface of the cell, observed from above, where
we clearly notice a nonhomogeneous distribution of cellu-
lose. The white arrow points to a hole of cellulose, and
the yellow arrows point to external cellulose deposits. If
we correlate the mechanical properties of the cell wall
to its cellulose content, this image conforms to the wide
distribution of b-exponents measured on turgescent cells
(Fig. 9 b). We also remark in Fig. 10 a that the microtubules

a b

c d

FIGURE 9 Statistical analysis of the mechanical properties of turgescent

A. thaliana cell walls (2,111 force curves captured on 60 cells). (a) b-expo-

nents plotted versus the range of scales sw0 (in log scale). (b) Histogram

of b-values. Two intervals of b-values are distinguished with different

color codings (b > �1 (h > 1) in blue, b < �1 (h < 1) in red). (c) Stacked

histograms of the minimum scale sw0 (in log10) delimiting the scaling

range from below. (d) Stacked histograms of effective stiffness kE
coefficient. To see this figure in color, go online.

FIGURE 10 Confocal images of turgescent single A. thaliana cells. (a)

Middle section of a cell expressing 35S:GFP-MBD (green) that marks

microtubules, and stained with Pontamine Fast Scarlet 4B (red) that marks

cellulose. (b) Three-dimensional z-stack projection (IMAGEJ software;

National Institutes of Health) of a half cell stained with Pontamine Fast

Scarlet 4B (gray). (White arrow) Region with less cellulose; (yellow

arrows) irregularities of the cell wall. Scale bar, 20 mm. To see this figure

in color, go online.
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are not distributed over the periphery of this cell wall but,
instead, strictly confined to it bottom part. These fluo-
rescence images (Fig. 10) corroborate our suspicion con-
cerning the heterogeneity in mechanical properties of
turgescent plant cells.

We choose two-color-coding in Fig. 9, a and b, to distin-
guish b-exponents below (in red) and above (in blue) �1,
and trace to which effective wall stiffness these part
of the b-histograms (Fig. 9 b) correspond. The histograms
of the effective stiffness kE in Fig. 9 d show that the
force curves of turgescent cells with b-exponents smaller
than �1 (h < 1) are stiffer than those with b-exponents
larger than �1 (h > 1). The value kE is computed for each
force curve from the second derivative modulus maximum
Tg(2) where the scaling law with exponent b is detected;
this wavelet maximum modulus is then multiplied by the
wavelet width at this scale to get an effective stiffness in
nN/nm. Fig. 9 d shows that the distribution of kE values
is limited to a bounded interval, kE < 0.2 nN/nm. Clearly,
the upper bound of this interval of kE values is far below
the nominal spring constant of the cantilever (~5 nN/nm),
suggesting that this maximum effective wall tension is
a characteristic of our 60-cell sample, including eight
different pools of cells. The observed variability of kE is a
strong characteristic of these cells. It results not only from
variations in the Young modulus, but also from the thickness
of their walls. Again the fluorescence images in Fig. 10 sup-
port this observation and suggest that the coefficient kE
commonly used to quantify the cell-wall rigidity is not
the most appropriate parameter to separate the different
cell domains corresponding to strain-hardening (b > �1,
h > 1), neutral (b ¼ �1, h ¼ 1), and strain-softening
(b < �1, h < 1) situations. Computing a standard deviation
on kE is not relevant either, because we do not have a
Gaussian distribution for kE (Fig. 9 d). The b-distribution
above �1 bears a stronger resemblance to a Gaussian distri-
bution (Fig. 9 b), which suggests that whatever the stiffness
of the different wall domains may be, the ability of the cell
to change its strain response during indentation (strain-
softening, neutral or strain-hardening) is a better indicator
of healthy turgescent cells when combined with their effec-
tive stiffness.

The histogram of b-values in Fig. 9 b led us to the con-
clusion that these single turgescent cells extracted from
A. thaliana calli respond to a mechanical stress through
a great variability of strain functions. Direct evidence on
how these mechanical properties are distributed in space
are obtained by mapping the cell by a grid of force curves,
as shown in Fig. 11. We captured 10 � 10 ¼ 100 force
curves on a 10 � 10 mm2 grid from a single turgescent
cell (Fig. 11 a) and we reconstructed in Fig. 11, b–d, the
maps of the three quantities—the Hölder exponent h,
the minimum scale sw0 delimiting the scaling range of the
WTMM line from below, and the effective stiffness kE,
respectively. The map of Hölder exponents in Fig. 11 b

shows that this cell wall has a strong heterogeneity of strain
responses, from h ¼ 0.8 to h ¼ 1.3, with the upper-left
corner behaving rather like a strain-stiffening domain (red
and dark red squares), and the diagonal of the map and
the lower-right corner behaving rather like strain-softening
zones (blue squares). In between these domains, we also
have neutral strain responses (light-green squares). This
strong variability is not reflected on the minimum scale
sw0 that serves to delimit the WTMM scaling range
(Fig. 11 c), suggesting that the tip penetration does not
change much in this example as an indication that the thick-
ness of the wall does not vary significantly. The map of
effective stiffness kE shows two patches with higher stiffness
(dark red > 0.2 nN/nm) separated by a diagonal line (light
green-blue) corresponding to kE values at ~0.18 nN/nm. The
spatial distribution of kE correlates quite well to h, large kE
values corresponding to large h values, meaning that the
regions where the cell wall is stiff also have the propensity
to stiffen even further upon deformation (strain-stiffening
regions). On the opposite, the softer regions would have
less ability to sustain the deformation (strain-softening
regions). The corresponding histograms obtained from these
100 force curves can be found in Fig. S2 in the Supporting
Material. From the histogram of b-values (Fig. S2 b), we see
that this cell has a range of Hölder exponents centered
at h x 1.1 (b x �0.9), with a narrower distribution than
the one previously obtained in Fig. 9 b. The peak in the
histogram of min(sw0) in Fig. S2 c is much finer than in
Fig. 9 c, and confirms that the penetration of this cell is
not changing much over the considered grid surface. Finally,
the distribution of wall tension kE values is globally shifted

FIGURE 11 Two-dimensional maps of the three quantities h¼ 2þ b (b),

minimum scale sw0 (in log10) delimiting the scaling regime sb of the

WTMM along the maxima line (c) and the effective wall stiffness kE
(in nN/nm) (d) captured from a single turgescent cell shown in (a). One-

hundred force curves were recorded from a 10 � 10 mm2 grid, superim-

posed to the bright-field microscopy image of this cell in (a). Scale bar,

10 mm. To see this figure in color, go online.
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to higher values, and somewhat peaked in the interval 0.18–
0.20 nN/nm. As already visible in Fig. 11 d, the variability
of kE can be considered negligible as compared to the
variability of the Hölder exponent. This observation indeed
makes sense because the shape of a turgescent cell is
completely determined by the mechanical property of its
wall. If this shape does not change rapidly in time (which
is actually what we observe on the systems we are consid-
ering in this study), the wall should be locally at equilibrium
and its tension should not change dramatically on the cell
surface. The variability of these cell responses comes from
the richness of their strain responses that ultimately would
maintain a stability of the wall tension despite some local
variations of the wall’s Young modulus. This Young
modulus would be directly proportional to the tightness
and compactness of the network of cellulose fibrils.

This variability cannot be explained solely by the separa-
tion process of the tissue into single cells, performed by a
gentle and smooth agitation. Fig. S3 shows a three-dimen-
sional reconstructed confocal image of the cellulose patches
of a piece of A. thaliana root callus. This image shows that
the calli are constituted by a disorganized agglomeration of
cells with a cellulose-rich matrix surrounding them. This
staining confirms that, at this stage, there are already patches
of cell walls with highly variable cellulose contents. This
strongly suggests that the inhomogeneity of the cell wall
cellulose fibrils is an intrinsic property of these undifferen-
tiated cells, which is maintained during the cell separation
process. The inhomogeneity of this living tissue makes a
direct estimation of the wall thickness by electron micro-
scopy a difficult task. Nevertheless, we succeeded in
capturing scanning electron microscopy images on frozen
root callus samples, untreated and unstained to avoid any
alteration of their wall structure. Fig. S4 brings additional
evidence of the strong variability of the wall thickness
(highlighted with colored stars). From both these character-
izing methods, we can only conclude that the wall thickness
of root callus ranges in between 100 and 1000 nm. However,
this estimation cannot be extrapolated to the single cells
isolated from the callus tissue.

Plasmolyzed cells

To push further the mechanical characterization of these
single plant cells, we have tested two different media—
one with a higher osmotic pressure (addition of a polyol:
mannitol) and the other with a lower osmotic pressure
(dilution with water). The characterization of hyperosmotic
cells is reported in Fig. 12. The range of scales where the
exponent b can be retrieved with 1% error is dramatically
reduced (Fig. 12 a). The difference with turgescent
cells is impressive; the b-exponent distribution is shifted
to higher b-values with a small percentage of b-values
<�0.9 (Fig. 12 b). The b < �1 responses have completely
disappeared. The fact that b is increasing beyond �0.9 is a
strong indication of strain-hardening responses. Indeed the

plasmolysis of the cells changes drastically the way they
adapt to a mechanical stress. The minimum scale values
sw0 are now grouped at ~100 nm (Fig. 12 c). The effective
tension coefficient kE is globally decreased (Fig. 12 d),
meaning that these cells behave as softer cells. Thus, if
the thickness of the wall penetrable by the tip increases,
its Young modulus must decrease—likely resulting in a
decrease of kE. But this variation of kE is not very large,
and cannot be used as a good criteria for comparing turges-
cent from plasmolyzed cells. A more discriminating criteria
turns out to be the b-exponent and the range of scales where
it can be detected, which, a posteriori, contributes to validate
the multiscale analysis performed with the WTMMmethod.

Cytolyzed cells

Finally, the characterization of cells in hypoosmotic media
(Fig. 13) is also very instructive. We may consider that
this hypoosmotic media pushes the internal turgor pressure
to higher values, and thus increases the tension of their
walls or destabilizes them if there is a local rupture.
The WTMM scaling analysis brings into light an amazing
result: b-values ~�0.9 (mild strain-hardening responses)
are diminished whereas the probability of neutral and
strain-softening responses (b ˛[�1.2;1]) is increased
(Fig. 13 b). The range of b-values is actually split in two
separate b-ranges, which can be made visible on the surface
of these cytolyzed cells with fluorescence staining of

a

c d

b

FIGURE 12 Statistical analysis of the mechanical properties of

A. thaliana single cell walls under hypertonic conditions (900 force curves

captured on 20 cells; for details, see Materials and Methods). (a) b-expo-

nents plotted versus the range of scales sw0 (in log scale). (b) Histogram

of b-values. Two intervals of b-values have been distinguished with

different color codings as in Fig. 9. (c) Stacked histograms of the minimum

scale sw0 (in log10) delimiting the scaling range from below. (d) Stacked

histograms of effective stiffness kE coefficient. To see this figure in color,

go online.
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cellulose (Fig. S5). On the one hand, there may be a
reinforcement of stronger, strain-hardening domains; on
the other hand, an enlargement of the weaker strain-
softening domains may result from stretching-induced
damage. The variability of the minimum of sw0 for the
strain-softening domains is actually wider than for turges-
cent cells (Fig. 13 c). The histogram of effective tensions
kE (Fig. 13 d) shows a global decrease, with a mean value
~0.03 nN/nm, with the smaller kE values corresponding
to smaller b-exponent values (strain-softening domains).

DISCUSSION

The walls of plant cells vary dramatically in their cellulose
fiber composition with plant type. More recently the hierar-
chical structure of plant materials (3,50–52) has raised
increasing interest among botanists and biologists to explain
the wide range of their mechanical properties. In this article,
we show that on a single plant cell, we have already a whole
variety of mechanical behavior that will likely be used
by the plant for further development. This high variability
requires a broader view of the mechanics of shells. Let us
review the energy terms involved in a shell indentation by
a sharp cantilever. At shallow indentations (Regime A),
the models of Hertz (Eq. 11) and Sneddon (Eq. 12) are
frequently used to extrapolate the Young’s modulus to
characterize cell-wall stiffness in plant cells (14,15,17,53).
When the tip of the cantilever penetrates further into the

cell wall, a larger deformation occurs that may stretch and
bend the wall on larger scales (Regime B) (Fig. 5). The
stretching energy per unit surface for a homogeneous expan-
sion of a sphere of radius R reads (54)

EstretchfKS

�
d

R

�2

; (15)

where A is the stretched surface, d is the displacement of
an elementary surface, and KS is the stretching modulus,
KS ¼ EHw/(1 – n2). The bending energy per unit surface is

EbendfKB

�
d

R2

�2

; (16)

where KB is the bending modulus,

KB ¼ 1

12
KSH

2
w ¼ EH3

w


�
12

�
1� n2

��
: (17)

The ratio of the stretching over the bending energies scales
therefore as

Estretch

Ebend

f

�
R

Hw

�2

: (18)

When the local radius of curvature R is less than the
wall thickness Hw, the bending energy is not negligible as
compared to the stretching energy. We can therefore suspect
that both these energies will impact the wall response. If the
cell wall is very stiff (large Young modulus E), the tip of
the cantilever will not penetrate very far inside the wall
and the wall will instead flatten and curve on large radius
R (Fig. 5 b), because it will cost much less to bend (Ebend

f EHw/R
2 � H2

w/R
2) than to stretch (Estretch f EHw/R

2)
the wall. The first regime A will therefore be very short
in penetration length, and the range of scales sw0 for
computing b will be larger. It is typically what is observed
for b-exponents larger than �1 for the turgescent cells.
For this set of responses, h > 1 means that the force implied
for the cell deformation increases faster than expected for a
linear response, and the deformation of the cell wall is less
and less easy (strain-hardening). This may be explained by
the fact that the wall texture and mechanics is not constant
over its thickness, with two (or more) layers of different
mechanical responses; to prevent wall deformations that
are too large, the inner layer could be stiffer than the outer
layer (15,50). On the other hand, if the wall Young modulus
is comparatively low, the cantilever tip will penetrate deeper
inside the wall, and the energy cost for bending it will be
much higher than for stretching. The range of scale sw0

where the WTMM behaves as a power law will be shifted
to larger scales, and it will be more difficult to have a correct
estimation of the scaling exponent b. There is a set of re-
sponses of turgescent cells that give a b-exponent smaller
than �1 (h < 1), where the range of sw0 is markedly dimin-
ished (both from below and above) (Fig. 9 b). The wall do-
mains corresponding to these responses are probably much

a b

c d

FIGURE 13 Statistical analysis of the mechanical properties of cyto-

lyzed A. thaliana cell walls (446 force curves captured on 12 cells; for

details, see Materials and Methods). (a) b-exponents plotted versus the

range of scales sw0 (in log scale). (b) Histogram of b-values. Two intervals

of b-values have been distinguished with different color codings as in

Fig. 9. (c) Stacked histograms of the minimum scale sw0 (in log10) delimit-

ing the scaling range from below. (d) Stacked histograms of effective

stiffness kE coefficient. To see this figure in color, go online.

Biophysical Journal 108(9) 2235–2248

Single Cell Nonlinear Strain Response 2245



softer, and their penetration by the tip is easier than expected
for a linear regime; we can call them ‘‘strain-softening’’
domains.

Note that although the heterogeneity of the mechanical
properties of plant cell walls was guessed in previous works
(14,15), the presence of strain-hardening and strain-soft-
ening domains, to our knowledge, has never been remarked
upon before. From the histogram of kE values and the range
of sw0, we can give an estimation of an effective cell wall
Young’s modulus E ~ k1/hsw0i: E ~ 0.49 5 0.25 MPa for
the turgescent cells, E ~ 0.325 0.18 MPa for the hypertonic
cells, and E ~ 0.16 5 0.12 MPa for the hypotonic cells.
These estimations of E are in quite good agreement with
other AFM force curve studies on isolated single cells
with sharp pyramidal tips (15,17). However, they are three
orders-of-magnitude lower than those obtained from whole
tissues such as leaves, for instance (7,16,19,53), suggesting
either that the cell wall structure is very different or that
beyond the wall of each cell, there are additional layers
that reinforce the whole tissue to maintain its cohesion.
We must also remark that the sharp tip indenter used
in this work allows very local measurements that do not
modify the cellulose fiber network over long distances.
This can therefore explain why this local perturbation leads
to much lower elastic modulus estimations. Note also that
we are working with undifferentiated call cells that have
not yet achieved the rigidity required by a whole tissue.

The loss of a wide b-scaling range is observed in plasmo-
lyzed cells (hypertonic mannitol medium) (Fig. 12). These
cells lose their wall bendability and elasticity, typically as
inflated balls (Fig. S5, a and b). The effective tension kE,
which is related to EHw in that case, is comparatively lower
in plasmolyzed cells than in turgescent cells. If one keep
computing the exponent b on a very narrow range of scales,
despite the lack of convincing scaling law, its shift to larger
values (closer to zero) is the signature of some further in-
crease of the h exponent, revealing again a strain-hardening
of these cells and the inhomogeneity of their wall. It is also
important to note that the plasmolyzed cells lack completely
the original b ¼ �1 (h ¼ 1) behavior of the turgescent cells,
confirming a strong modification of their bending elasticity.
Finally, when the cells are submitted to a hypotonic media
(Figs. 13 and S5, c and d), their internal water pressure is
increased, which strongly modifies their normal turgescent
response and likely destabilizes the wall mechanics. The
fact that we recover a scaling range that extends to values
<100 nm (compared to plasmolyzed cells) means that these
cells keep their ability to bend on large domains (as long as
such large homogeneous domains exist). However, they lose
the range of b-exponents in between �1 and �0.9, to keep
only the strain-hardening (b>�0.8, h> 1.2) and the strain-
softening (b < �1, h < 0.9) responses. Is it precisely the in-
termediate regime of b-values close to �0.9 (only observed
in turgescent cells) that would be the most active and the
easiest to remodel upon a mechanical stress? We note also

in Fig. 13 b that, contrarily to turgescent cells, a nonnegli-
gible fraction of cytolyzed cells behave as purely elastic
shells (b ¼ �1). Finally, the collapse of the effective stiff-
ness kE of cytolyzed cells could point out their progressive
destabilization under higher internal turgor pressure.

CONCLUSION

We have elaborated on an original approach to study the
mechanics of single plant cells, based on a multiscale
decomposition of force-indentation curves collected from
an atomic-force microscope. We have shown that the me-
chanical characteristics of living cells usually embodied
in their Young moduli are not sufficient to capture the
complexity of deformation response of walled-cells. It is
therefore necessary to develop new methods that help
understanding of the nonlinearities of these responses. The
wavelet transform modulus maxima method has been adapt-
ed here to quantify these nonlinearities on single cells,
isolated from A. thaliana calli, and examined in iso-,
hyper-, or hypotonic conditions. We have shown that the
well-known elastic response of plant cell walls is strongly
challenged by our methodology, which reveals that only a
finite percentage of cytolyzed cells can behave as purely
elastic shells (bending elasticity). This study also illumi-
nates the necessity of considering their nonlinear response
via the computation of the nonlinear exponent h, providing
additional information to the commonly used Young’s
modulus estimation. This could also help in distinguishing
cell domains that have stronger remodeling ability under a
mechanical stress.

SUPPORTING MATERIAL

Supporting Materials and Methods and five figures are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(15)00221-0.
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SUPPLEMENTARY MATERIAL
for

Single cell wall nonlinear mechanics revealed by a multi-scale analysis of AFM force-indentation curves
S. Diguini et al

Complement for the wavelet transformation method
A typical analyzing wavelet ψ(x), that is admissible (of null integral) is the second derivative of a Gaussian g(0)(x) =

e−x2/2, also called the Mexican hat wavelet:

g(2)(x) = − d2

dx2
g(0)(x) = e−x2/2(1− x2) . (18)

Via two integrations by part, we get that the WT Wg(2) [F ](b, s) of F with the second derivative of a Gaussian

wavelet at scale s is nothing but (up to a multiplicative coefficient s2) the second derivative of a smoothed version
Wg(0) [F ](b, s) of F by a Gaussian function at scale s:

Wg(2) [F ](b, s) = s2
d2

db2
Wg(0) [F ](b, s) . (19)

Note that we can derive a similar relation with the first derivative of F . Given that g(1)(x) = − d
dxg

(0)(x) = xe−x2/2

[30, 31, 35]:

Wg(1) [F ](b, s) = s
d

db
Wg(0) [F ](b, s) . (20)

Let us point out that the validity of the WT definition (Eq. (2)) was further proved for distributions including Dirac
distributions [34, 35].

Working recipe for the wavelet transformation computation
Here we describe the different computation steps of the wavelet transform modulus maxima lines and the scaling
exponent β, following the four panels of Supplementary Fig. 1.
(a) We take the force curve signal F (Z) on the investigated [Zmin, Zmax] indentation interval, together with the
Gaussian g(0)(Z) and its second order derivative g(2)(Z) at different scales.

The numerical code for implementing and computing the wavelet transform Tg(2) [F ](b, s) is given just below as a
matlab script for those who would be interested to test this method. Note that for logarithmic analysis of the modulus
maxima curves and extraction of the scaling exponent β it is best to use a geometric series of s values. We take in
this study w0 = 10 nm and [smin = 1, smax = 80 nm], which gives a scale varying in between sminw0 = 10 nm and
smaxw0 = 800 nm. Given Ns the number of scales to be computed, the index i of scales sw0 varies in between 1 and
Ns. For each scale we repeat the wavelet transform computation.

for i=1:Ns
s(i) = exp(log(max_scale/min_scale)*(i-1)/Ns);

% l2 is half the length of the force curve signal
l2 = uint64(length(Z)/2);

% Zmedium is the middle of the [Zmin, Zmax] positions recorded in the experiment
Zmedium = Z(l2);

% SQ_Z is the scaled quantity that will appear inside the exponential in g0 and in g2
SQ_Z = ((Z-Zmedium).*(Z-Zmedium))/(s(i)*s(i)*w0^2);

% if the first derivative g1 of g0 needs also to be computed, their the variable Z needs also to
% be rescaled

Z_norm = (Z-Zmedium)./(s(i)*w0);
Eexp_term=exp(-SQ_Z./2); % for g(0)
E2 = (SQ_Z - 1)/(s(i)*s(i)*w0*w0); % for g(2)

% Normalisation of the Gaussian (order 0) function
Mo0=Eexp_term/sum(Eexp_term);

% Mo0 is g(0)
Mo2 = Mo0.*E2;

% Mo2 is the second order g(2) analyzing wavelet (second derivative of a Gaussian)



% To compute the wavelet transform, we fast fourier transform the wavelet and the force curve Fc
Mo2fft = fft(Mo2);
Fcfft = fft(Fc);

% finally for each scale of index i, we inverse fourier transform the product Mo2fft.Fcfft
% to retrieve the wavelet transform:

CWT(1:length(Z),i) = ifft(Mo2fft.*FCfft);
% CWT corresponds to what we have noted T g(2) [F] (b,s) in the text, the first index
% corresponds to the space variable b and the second index corresponds to the scale parameter s

end

The length of the signals to be fast Fourier transformed should be taken as a power law of two to avoid automatic
zero-padding by the fft subroutine.

(b) Once the wavelet Tg(2) [F ](b, s) is computed, we look for the local positive maxima of this wavelet trans-
form. These local maxima are pointed out by circles in Supplementary Fig. 1b.

(c) Along the WT maxima line, defined by linking the maxima across scales, the wavelet transform behaves
as a divergent function of the scale parameter s when s tends to zero because we have normalized it on purpose
(Eq. (6)) (Supplementary Fig. 1c).

(d) Finally we plot the logarithm of the wavelet transform Tg(2) [F ] along the maxima line versus the loga-
rithm of s. In this representation, the range of scales where the curve can be approximated by a straight line of slope
β is estimated by a linear regression fit. In this example β = −0.93.
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Figure S1: Subsequent computation steps of the scaling exponent β. (a) A typical force curve (black) with the analyzing
wavelet g2 (Eq. (18)) represented for three values of the scale parameter: s = 4.9 (red), 10.8 (purple) and 24.9 (blue)). (b)
Second derivative of the force curve Tg(2) [F ] computed with the wavelet transform method (Eq. (6)), for the three scales

defined in (a). On each curve, the maximum is outlined by a colored circle; the position and amplitude of this maximum are
saved for further analysis. (c) Plot of the wavelet transform Tg(2) [F ] along the maxima line versus the scale parameter s. (d)
Logarithmic plot of the wavelet transform Tg(2) [F ] along the maxima line versus the scale parameter s. In this representation,
the range of scales where the curve can be approximated by a straight line of slope β is estimated by a linear regression fit. In

this example β = −0.93
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Compared to active microrheology where a known force or modulation is periodically imposed to a soft
material, passive microrheology relies on the spectral analysis of the spontaneous motion of tracers inherent
or external to the material. Passive microrheology studies of soft or living materials with atomic force
microscopy (AFM) cantilever tips are rather rare because, in the spectral densities, the rheological response of
the materials is hardly distinguishable from other sources of random or periodic perturbations. To circumvent
this difficulty, we propose here a wavelet-based decomposition of AFM cantilever tip fluctuations and we show
that when applying this multi-scale method to soft polymer layers and to living myoblasts, the structural
damping exponents of these soft materials can be retrieved.

Keywords: atomic force microscopy, spectral density, soft-glassy materials, wavelet transform analysis, scale
invariance

Local stiffness and internal friction of soft materials
(passive or active such as living cells) have lately been
addressed at the nanoscale thanks to the development
of pico- to nano-Newton force sensing systems and of
nanometer resolution position detection devices1. AFM
is one of these methods, where a sharply tipped flex-
ible cantilever is indented inside a material to extract
its local viscoelasticity from the shift and spreading of
the cantilever spectral resonance modes2–4. However,
these estimations are limited to rather narrow frequency
bands surrounding the cantilever resonance modes or
their higher harmonics. Spectral decomposition of can-
tilever fluctuations in contact with soft living tissues in
the low frequency range has more rarely been explored.
The few attempts which can be found in the litterature
were performed with small amplitude harmonic excita-
tions (50 nm) of the sample position driven by a piezo-
translator, in the 0.1 to 100 Hz frequency range, for a
small and finite number of frequencies5,6. Whereas pas-
sive (driven by thermal fluctuations) microrheology has
been performed for the past two decades by a variety of
techniques capturing micro-probe spatial fluctuations7,
it has not been applied yet to AFM cantilever fluctu-
ations. The limitation of AFM-based passive rheology
in the low frequency range comes from the mixing of
the background vibrations of the liquid chamber with
the cantilever fluctuations given by the rheological re-
sponse of the material which are difficult to disentangle
by standard FFT-based spectral averaging methods. In
this work, we show that in quasi-stationary situations,
these limitations can be circumvented using a wavelet-
based spectral analysis of micro-cantilever fluctuations
under passive excitation. Two experimental applications
to passive polymer layers and living adherent myoblast
cells are reported.

Based on the generalized Stokes-Einstein relation
(GSER) and associated generalizing assumptions8, pas-

sive microrheology of soft materials enables the extrac-
tion of the frequency-dependent complex modulus G(ω)
which is common to a large class of soft materials (foams,
emulsions, slurries, cells)9–11. The observed scaling laws
are explained by a characteristic structural disorder and
the metastability of these materials which are embodied
under the name of “soft glassy materials” or structural
damping model12. Their complex shear modulus behaves
as:

G(ω) = G0

(
ω

ω0

)α

(1 + iη)cos
(απ

2

)
, (1)

with η = tan(απ/2) the structural damping coefficient13,
ω = 2πf the radian frequency and α a scaling exponent.
G0 and ω0 are material dependent scaling factors for
stiffness and frequency and G(ω) = G′(ω) + iG′′(ω),
where G′(ω) is the storage modulus and G′′(ω) the loss
modulus (i2 = −1). An additional viscous term iωμ can
be added to Eq. (1) to include a linear viscous regime
at high frequency. Eq. (1) was established from frac-
tional calculus13,14 to interpolate between purely elastic
(α = 0) and purely viscous (α = 1) behaviours. When
α tends towards 0, the energy dissipated within a cycle
is independent of the frequency15 and is proportional to
the deformation amplitude ε2m: Δcycle = G0(π

2α/2) ε2m.

The local deflection signals of an AFM cantilever are
produced by different sources of fluctuations. At high
frequencies, the hydrodynamic coupling of the cantilever
with the surrounding liquid is exciting its resonance
modes. At low frequencies, the cantilever captures the
acoustic vibrations of the chamber, but also the local ran-
dom deformations of the material it is in contact with.
Each time the material in contact with the cantilever tip
breaks locally, or changes its ridigity by fluctuations, the
cantilever tip is displaced vertically by δz. In AFM ex-
periments, the cantilever tip is not completely immersed



2

in the viscoelastic medium, so the continuum approach of
Stokes equations must be modified to take into account
different boundary conditions. The linearized Hertz-
Sneddon16 equation defines the viscoelastic compliance of
the material as proportional to the ratio of the infinitesi-
mal displacement of the tip δz(ω) = h(ω)−h0 inside the
media and the cantilever deflection change δd(ω):

χ(ω) =
1

G(ω)
=

8 tan θ

π(1− ν)

h0 δz(ω)

kc δd(ω)
, (2)

where θ is the half cone tip angle (∼ 15◦), h0 the mean
depth of indentation of the tip, ν the Poisson ratio and
kc the stiffness constant of the cantilever.

Within the same approximations as those used in
GSER8, the spectral density Ez(ω) of the vertical tip posi-
tion z can be computed by Fourier transforming its auto-
covariance function Cz(τ). Ez(ω) is related to the imag-
inary part χ′′(ω) of the medium surrounding the tip17:

Ez(ω) = Ĉz(ω) =

∫ ∞

−∞
Cz(τ)e

−iωτdτ = −bkBTχ
′′(ω)

h0
,

(3)

where Ĉz(ω) denotes the Fourier transform of Cz(τ).
Cz(τ) = E{z(t)z(t + τ)} is even and integrable over R

and decreases fast enough to zero as τ → ∞. E{u}
is the expectation of u. h0 is a characteristic indenta-
tion depth depending of the loading force and the visco-
elasticity of the sample, kB is the Boltzmann constant
and b = π(1 − ν)/(8 tan θ). When the complex modulus
behaves as in Eq. (1), then

Ez(ω) ∝ ω−α . (4)

Thus, the spectral density Ez(ω) gives access to the imag-
inary part χ′′(ω) of χ(ω) and its real part χ′(ω) can be
obtained by the Kramers-Kronig transformation18:

χ′(ω) =
2

π
P

∫ ∞

0

ζ χ′′(ζ)
ζ2 − ω2

dζ , (5)

where P stands for Cauchy principal value. G(ω) is then
obtained by inverting χ(ω) (Eq. (2)).

As illustrated in Fig. 1, the spectral density19 of AFM
micro-cantilever fluctuations exhibits two different be-
haviours: at high frequencies we observe the cantilever
resonance modes with a characteristic Lorentzian shape,
and at low frequencies (from 150 to 10 kHz in air, and
from 10 to 1 kHz in liquid) the spectrum looks simi-
lar to white or coloured noise spectra. From the least
square fits of the resonance modes, mechanical parame-
ters of the cantilever (stiffness, quality factor, resonance
frequency, damping) are usually retrieved21? . The grey
(resp. black) FFT-based spectra plotted in Fig. 1 are
computed by FFT transform of the z signals captured at
2.5 MHz rate for 2 s (5 106 points), without averaging
(resp. averaging in log-log scales over frequency windows
Δ log10 ω = 0.003). It comes out from these two peri-
odograms that without averaging it is impossible to re-
trieve the shape of the resonance peaks. But let us point
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FIG. 1. Comparison of FFT-based spectra Ez(ω) and wavelet-
based spectra Ez,CWT (ω) of free cantilever fluctuations in two
different media. (a) Air. (b) Liquid aqueous chamber. The curves
correspond to raw FFT (grey), averaged FFT (black) and wavelet-based
(red) spectra. The wavelet scale a = ω0/ω.

out that the averaging is much less efficient at low fre-
quency due to the finite length of the z signal. Outside
the resonance regions, these spectra collect a combina-
tion of external sources of noise or vibrations which in-
crease considerably in liquid chambers (Fig. 1(b)) when
the cantilever tip is approached to the chamber bottom
wall. In the contact limit, the cantilever is used as a lo-
cal vibration sensor and no more as a vibrating structure
with intrinsic resonance modes20.
Separating all these sources of fluctuations is a rather

tricky problem at low frequencies22. The main drawbacks
of FFT-based spectral densities are amplified when scal-
ing laws must be retrieved. Only a sub-interval of the
frequencies can actually be used for the linear fit (in a log-
arithmic representation). The continuous wavelet trans-
form (CWT) is a time-frequency technique that turns
out to be very helpful for smoothing the power spectra19.
The CWT is defined by a convolution integral proposed
in the early eighties by A. Grossmann et al.23,24, using
L2 normalization:

Tz(b, a) =
1√
a

∫ ∞

−∞
ψ

(
t− b

a

)
z(t)dt . (6)

Tz(b, a) contains information on the signal z at the scale
a = ω0/ω around the point b, ω0 is a reference fre-
quency. We choose for this study the complex-valued
Cauchy analyzing wavelet of order n15,25: ψ(t) = ψn(t) =
(i/(t+ i))(n+1) with n = 31. The variance of Tz(b, a) can
be written as an integral19:

E{|Tz(b, a)|2} =
a

2π

∫ ∞

−∞
Ez(ω)|ψ̂(aω)|2dω , (7)

=
1

2π

∫ ∞

−∞
Ez(ω

a
)|ψ̂(ω)|2dω . (8)

From the variance of Tz(b, a), the wavelet spectral func-
tion is defined as:

Ez,CWT (a) =
1

‖ψ‖2E{|Tz(b, a)|2} . (9)
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FIG. 2. Comparison of FFT-based spectra Ez(ω) and wavelet
spectra Ez,CWT (ω) of cantilever fluctuations in contact with
PDMS thin layers. (a) FFT-based spectra. (b) Wavelet-based spec-
tra. Grey: free cantilever in liquid, black: cantilever in hard contact
with glass (1 nN contact force), blue, (resp. green and red): cantilever
in contact with a PDMS thin layer with 0.5 nN (resp. 1 and 2 nN)
contact force.

For a white noise z of common variance σ2, Ez,CWT (a) =
σ2 does not depend on the scale a. If the wavelet is
chosen such that ‖ψ‖2 = 1, the wavelet spectrum func-
tion yields an unbiased estimator of spectral power laws.
For instance, if Ez(ω) ∼ ω−β for ω ∈ Ω = [ω1, ω2],
then for a given interval [a1 = ω0/ω2, a2 = ω0/ω1],
Ez,CWT (a) ∼ aβ = (ω/ω0)

−β . The wavelet spectra of
free cantilever fluctuations are plotted in red over the
FFT-based spectra (averaged in black, non averaged in
grey) in Fig. 1(a) and (b) and follow very closely the
shape of the cantilever resonance peaks.

The advantage of the wavelet method is to get rid of
fluctuations more efficiently than FFT-averaging at low
frequencies (because the wavelet averaging window size
depends on the scale) and to facilitate the characteri-
zation of the out of resonance behaviour when the can-
tilever comes in contact with a soft material. This is
illustrated in Fig. 2 where we compare Ez and Ez,CWT

on five different spectra; the grey line corresponds to a
free cantilever in liquid, the black line to the same can-
tilever tip in hard contact with a glass coverslip, and the
blue, green and red spectra are obtained when the can-
tilever tip is in contact with a soft PDMS layer26. The
noticeable drawback of the wavelet method is the widen-
ing of the cantilever resonance modes but their maxima
are correctly estimated. The five spectra shown in Fig.
2 reveal some interesting features. When the cantilever
is oscillating freely in the liquid chamber (grey curve of
Fig. 2(b)), the wavelet spectrum from f = ω/2π = 10 Hz
to f = 1 kHz is much lower than when the cantilever
is pressed on the bottom coverslip (black curve), and
this spectrum changes very little with the frequency ω,
reminiscent of an uncorrelated white noise. When the
cantilever is placed in contact with the bottom cham-
ber coverslip (black curve), the background vibrations of
the liquid chamber are amplified, the largest one emerges
around f = 800 Hz. The spectral density of the cantilever

fluctuations when it is pressed on a soft layer (PDMS) is
drastically different at low frequency (< 8 kHz) from that
obtained for the same cantilever in contact with a solid
coverslip, in particular the chamber vibration peak is
partly damped by the PDMS layer. Its higher frequency
resonance modes are slightly shifted to lower frequen-
cies (order 2 mode: from f = 59 kHz to f = 53.4 kHz,
order 3 mode: from f = 187 kHz to f = 179 kHz),
and its broader resonance peak at 7.3 kHz is flattened in
its leftmost part to make place to a flat curve (power-
law behaviour). The slope of this line gives an exponent
β = 0.2, the hallmark of a coloured noise signal with per-
sistent correlations27–29. From the slope β, the exponent
α of Eq. (1) can be estimated, in the low frequency limit
(ω → 0), as α = β = 0.2. This value of α is characteristic
of a viscoelastic material with a more pronounced elas-
ticity than viscosity. Let us point out that this exponent
does not change much when increasing the loading force;
at this depth of indentation (less than a few micrometers)
the material complex modulus is robustly estimated over
the range of loading forces considered.

Finally we have performed the same spectral analysis
of the cantilever thermal fluctuations when pressed in-
side a living myoblast (C2C12 cell)26. Fig. 3(a) shows
consecutive approach (red) - retract (green) force curves
recorded above the nucleus of the adherent myoblast cell
shown in Fig. 3(b). We report in Fig. 3(c,d) the com-
parison of FFT-based spectra Ez(ω) with the wavelet-
based spectra Ez,CWT (ω) for a free cantilever in culture
media (grey) and for the same cantilever indented in-
side the cell, above its nucleus, for three loading forces
0.44 (blue), 1.1 (green) and 2.2 nN (red). Similarly to
the PDMS layer, we observe a drastic flattening of the
spectra, just below the first resonance mode of the can-
tilever (f ∼ 7 kHz) when the cantilever is pressed on the
cell. We note also that the FFT-based spectrum of the
free cantilever in the culture medium containing motile
adherent and floating non adherent cells (Fig. 3(c)) is
much more noisy than the spectrum recorded in pure
water (Figs 1(a) and 2(a)). The presence of cells inside
the chamber introduces extra hydrodynamic perturba-
tions that interact with the background vibration modes
of the chamber. The wavelet-based spectra are again
much smoother (Fig. 3(d)) and the characteristic scaling
behavior of structural damping material model emerges
again in the lower frequency range (< 6 kHz), with a
β exponent that significantly increases with the loading
force. The corresponding α values are 0.23 (low load) and
0.38 (higher load) as an indicator of some increase of the
viscous component when the cantilever is pressed deeper
inside the cell, closer to the nucleus. These cells are much
softer than the PDMS layer (G ∼ 480± 50 Pa), however,
when sensed at low loads, their cytoskeleton (including
the cell cortex) keeps a rather high elastic to viscous pro-
portion in their response to stress. For deeper indenta-
tions, the increase of α suggests that these deeper zones
(related to nucleus responses) are more viscous than the
outer parts. It is interesting to note that the three spec-
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FIG. 3. Comparison of FFT-based spectra and wavelet spec-
tra of AFM cantilever fluctuations in pressed within a living
myoblast. (a) Approach (red) -retract (green) force curves captured
on a living C2C12 myoblast cell. (b) Transmission image of the my-
oblast cell (left) with the cantilever (right) before the scan. Scale bar:
30 μm. (c) Averaged FFT-based spectra. (d) Wavelet-based spectra.
(e) Corresponding storage G′(ω) (plain lines) and loss G′′(ω) (dashed
lines) moduli computed with the GSER and Kramers Kronig integral.
Grey: free cantilever in liquid, blue: (resp. green and red): cantilever
in contact with a C2C12 myoblast cell with 0.44 nN (resp. 1.1 and 2.2
nN) loading force.

tra intersect around the frequency f = 1 kHz, suggesting
that the cantilever fluctuations do not depend on the
loading force, as the signature of the ability of the cell
to robustly respond to a stress independently of its mag-
nitude. Around f = 1 kHz, the energy dissipated inside
the cell does not vary with the load.

The values of α estimated at low loads with our passive
AFM rheology method are very close to those measured
with other techniques with adherent cells11 (α ∼ 0.26
for myoblasts, α ∼ 0.22 for macrophages, α ∼ 0.2 for
fibroblasts). It seems that this exponent α would be an
invariant of adherent cells, independently of their static
shear modulus G0. Then, using Eqs. (2) and (5), we can
compute the storage G′(ω) and loss G′′(ω) moduli of this
myoblast cell for the three loading forces (Fig. 3(e)). We
note that at frequencies lower that 1 kHz, the complex
moduli of the cell (real and imaginary parts) are larger
for shallow indentation depths (targeting the cytoskele-
ton) than for deep indentations (contacting the nucleus),
whereas at larger frequencies this behaviour is inverted,
the deeper indentations giving larger complex moduli.
This observation is very interesting since it suggests that
the elasticity and viscosity parameters of a cell depend
on both the speed at which it is stressed (the higher the
frequency, the faster the strain) and the depth of sensing.

It also points out the importance of performing spectral
studies that would allow us to investigate larger spectral
ranges. Our study shows that in the acoustic frequency
range (from 10 Hz to 20 kHz), the cell behaves as a ma-
terial with a broad range of delay times and that the
distribution of these delays behaves as a power law.

We have shown in this work that AFM can be used for
passive rheologic characterization of soft samples (poly-
mers, living cells) thanks to a wavelet-based computa-
tion of spectral density of AFM micro-cantilever fluctu-
ations. This method is fast since from a single fluctua-
tion signal, the elastic and viscous characteristics of the
sample can be obtained without need of modulating pe-
riodically the sample height for a finite set of frequen-
cies. The advantage of AFM, as compared to other par-
ticle tracing methods, is to provide some estimate of the
low frequency shear modulus G0 from force indentation
curves and to adapt the range of loading forces to inves-
tigate the rheology of soft materials. Furthermore, the
possibility to work with cantilevers with different stiff-
nesses should also allow to enlarge further the frequency
range for passive rheology. Indeed the full performance
of this time-frequency decomposition was not used in this
work, since we computed a time-averaged variance of the
wavelet transform coefficients. To perform a rheological
characterization of slowly varying systems, like migrat-
ing or dividing cells, a time-frequency decomposition of
the complex shear modulus would be very helpful. This
work is under progress
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Passive microrheology of soft materials with atomic force microscopy: a

wavelet-based spectral analysis

C. Martinez Torres, A. Arneodo, L. Streppa, P. Argoul and F. Argoul

Materials and Methods

AFM measurements The AFM experiments are performed with JPK CellHesion 200

system (JPK, Berlin), mounted on an inverted microscope. Transparent pyramidal tip

cantilevers with rectangular section (qp-Cont from Nanosensors, Neufchatel, Switzerland)

with a nominal spring constant 0.1 nN/nm are used. Prior to each experiment, the deflection

sensitivity of the cantilever is estimated on fused silica and the cantilever spring constant

is calibrated by the thermal noise method1,2, the deflection set-point and feedback control

gains are chosen for optimum signal to noise ratio. Approach-retract force curves (Fig. 3(a))

are recorded at 1 μ/s for a fixed force set-point (2 nN) on each sample.

The cantilever deflection raw signals are recorded separately from AFM CellHesion elec-

tronics with a high-speed acquisition board, at a frequency of 2.5 MHz in segments of 2 s.

For measurements in liquid, distilled water or culture medium (2 ml) is poured into petri

dishes with a glass bottom. Once the cantilever reaches the contact loading force with the

sample, its fluctuations are recorded. The set of following forces 0.5 nN / 1 nN / 2 nN for

PDMS and 0.44 nN / 1.1 nN / 2.2 nN for myoblasts are tested on different samples. We

consider the cantilever as free when it is far enough from the bottom surface of the chamber,

typically when the FFT spectrum no longer changes (for larger distances than the cantilever

length 200-300 μm).

Preparation of the PDMS layers RTV615 silicone rubber compounds (purchased from

Momentive Performance Materials) are mixed in a 20:1 ratio (agent A : agent B), and poured

in a medium sized petri dish to reach a gel thickness of about 2 mm. The gel is cured at

70◦C during 18 h, and let to rest at room temperature for 4 h before AFM experiments. The

mean quasi-static shear modulus of these PDMS layers is estimated by fitting indentation

curves with the Sneddon model3, to the value G0 = 14 ± 2 kPa (1 μm indentation depth

and 1 μm/s scan velocity ).

1



Cell cultures C2C12 mouse cells (ATCC CRL-1772TM) are grown in high glucose (4.5

g/L) Dulbeccos modified Eagle medium (DMEM - GE Healthcare Life Science) supple-

mented with 20% fetal bovine serum (GE Healthcare Life Science) and 1% antibiotics (peni-

cillin/streptamicine - Sigma Aldrich). Adherent myoblasts on cleaned glass bottom petri

dishes are maintained at 37◦C and 5% CO2, until they reach 60% confluence before rapidly

transferred to the AFM (Fig. 3(b)) for mechanical tests at room temperature. The quasi-

static shear modulus of these adherent myoblasts is estimated by fitting indentation curves

(Fig. 3(a)) with the Sneddon model3, to the value G0 = 480 ±50 Pa above the nuclear zone

and G0 = 500 ± 35 Pa above the cytoskeleton zone. The Young modulus is given by the

relation: E = 2G0(1− ν) with ν the Poisson’s ratio.
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Appendix C

Wavelet-based analysis to retrieve the
phase from DPM images.
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Abstract. We propose a two-dimensional (2-D) space-scale analysis of fringe patterns collected from a diffrac-
tion phase microscope based on the 2-D Morlet wavelet transform. We show that the adaptation of a ridge detec-
tion method with anisotropic 2-D Morlet mother wavelets is more efficient for analyzing cellular and high
refractive index contrast objects than Fourier filtering methods since it can separate phase from intensity
modulations. We compare the performance of this ridge detection method on theoretical and experimental
images of polymer microbeads and experimental images collected from living myoblasts. © The Authors.
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1 Introduction
During the past century, the attraction of biophysicists for
observing and characterizing living matter at cellular and
subcellular levels has been the prime mover for developing
sophisticated microscopic devices. Even if the concept of
diffraction-limited imaging and interferometry principles1 was
established for a long time, the actual development of micro-
scopic devices based on interferometric contrast was achieved
in the first part of the 20th century by Zernike2 and
Nomarski and Weill3 and further developed by Gabor,4 who pio-
neered the principle of holographic microscopy. Retrieving a
phase information from the light transmitted through transparent
objects, like living cells, has benefited from the development of
coherent sources, optoelectronic polarizing tools, and fast and
sensible cameras in the second part of the 20th century. It is
nowadays quite straightforward to design a compact, highly
sensitive phase microscope that can follow in real time the
dynamics of cells. In the last decade, different teams5–13 have
played a major role in disseminating the concepts of quantitative
phase microscopy (QPM) among the optical and biophysical
community. They have applied this technique to the real-time
characterization of cellular dynamics and their alteration in
cases of diseases.6,13–16

Other approaches that do not rely on interferometric princi-
ples have also been proposed to circumvent the constraint of
high degree of coherence. They rather start from a principle
of electromagnetic energy conservation, written as the diver-
gence of the wave flow vector being equal to zero.17–21 The

technique of transport of intensity is valid only for weak defocus
and reduces to a differential equation for field propagation.22,23

This method is interesting for partially coherent illumination
such as given by broadband polychromatic sources. For thick
samples, three-dimensional computation is required.24

The principle of diffraction phase microscopy (DPM) intro-
duced by Popescu and coauthors25–27 relies on both off-axis and
common-path principles in combination with fast acquisition
rate and high temporal sensitivity. The interference patterns pro-
duced by a DPM system correspond to the superimposition of a
simple carrier fringe pattern, given, for instance, by a diffraction
grating, with the image of the object through the objective lens.
To retrieve the phase image associated with the sample object,
different methods have been proposed, including Hilbert trans-
form followed by phase unwrapping,28,29 derivative methods,30

and Fourier filtering to avoid unwrapping problems.31 All these
phase retrieval algorithms rely on the assumption that the object
phase does not alter the fringe carrier pattern, allowing a quasi
one-dimensional analysis of interference patterns. To improve
this approach and delineate more precisely the validity of this
assumption, we propose here to generalize Fourier filtering
methods using a two-dimensional (2-D) space-scale analysis
based on Morlet wavelet transform.32 We first introduce the
DPM principle and illustrate it on simple physical objects,
such as micron-size particles. We then describe the space-
scale analysis and the possibility to measure directly the
phase of the interference pattern from the detection of the ridges
of the Morlet wavelet transform of the original image. Finally,
we illustrate this method on living myoblasts, showing that both
the modulus and the phase of the interference pattern can be
retrieved.*Address all correspondence to: Françoise Argoul, E-mail: fargoul@ens-lyon.fr
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2 Modeling the QPM System Response and
Its Space-Scale Analysis

Popescu and coauthors25–27 designed an elegant QPM by intro-
ducing an amplitude diffraction grating in the image plane of an
inverted microscope to generate multiple diffraction orders
containing the full spatial information about the transparent
object crossed by the light beam. This QPM setup, inspired
from this principle, was assembled in our laboratory. It is
described in the Sec. 7 and illustrated in Fig. 1. After the trans-
mission grating G, the zeroth- (U0) and first-order (U1) compo-
nents of the diffracted beams are separated in the conjugated
Fourier plane of the image plane of the microscope. Then,
the zeroth order is low-pass filtered with a spatial filter and
recombined with the first order, thanks to a second Fourier
lens L2 to give a spatially modulated interference image
Iðx; yÞ similar to the one shown in Fig. 2(a), captured from
a glass coverslip covered by a scratched polymer layer. The
vertical fringes of this image have a frequency fg that is related
to the grating period; they superimpose to the object phase
image. We propose here a method based on a 2-D continuous
wavelet transform (CWT) to retrieve the object phase informa-
tion from this type of image.

The intensity map Iðx; yÞ recorded on the CMOS camera is
directly proportional to the modulus square of the electric field
at this point.

Ið~xÞ ¼ jU0 þ U1j2ð~xÞ
¼ ½jU0j2 þ jU1j2 þ U0U�

1 þ U�
0U1�ð~xÞ: (1)

If fg is the spatial frequency of the grating, the phase differ-
ence betweenU1 andU0 includes both the grating and the object
phase information: Φð~xÞ ¼ fgxþ ϕð~xÞ, with ~x ¼ ðx; yÞ. This
gives a synthetic form of Ið~xÞ.

Ið~xÞ ¼ Pð~xÞ þQð~xÞ cos½fgxþ ϕð~xÞ�: (2)

ϕð~xÞ is the phase due to the object transmission at location ~x.
Pð~xÞ and Qð~xÞ are real valued; they correspond, respectively, to
the background and modulation intensities at location ~x. One
common assumption is that Pð~xÞ and Qð~xÞ vary much slower
than ϕð~xÞ. The local frequencies of the signal U can be

computed in both directions x and y from the partial derivatives
of the phase ϕð~xÞ.

fxð~xÞ ¼ fg þ ∂½ϕð~xÞ�∕∂x; (3)

fyð~xÞ ¼ ∂½ϕð~xÞ�∕∂y: (4)

These equations can be rewritten in the vectorial form.�
fx
fy

	
¼ ~∇½fgxþ ϕð~xÞ�: (5)

Equation (3) shows that the local frequency in x may deviate
from the carrier frequency fg depending on the strength of the
phase derivative with respect to x, the steeper ϕð~xÞ, the larger
this deviation.

By a simple computation, assuming that we are characteriz-
ing a homogeneous object of thickness d and index n imbedded
in a continuum medium of index n0, we can approximate the
optical path change Δpo at the center of the object with the rela-
tion Δpo ∼ dðn − n0Þ and Δϕ ¼ 2πΔpo∕λ. Assuming that the
microscope can achieve a 10−2 rad phase sensitivity, this gives
the possibility to detect objects of thickness 10−2λ∕ð2πΔnÞ,
which for a refractive index drop of 0.2 and wavelength
λ ¼ 532 nm gives a sensitivity to objects with thickness
down to 4 nm, along the optical axis.

The practical treatment of interference fringe patterns often
assumes that the background and the fringe modulation intensities
as well as the phase vary slowly across the fringe pattern.33,34 This
may no longer be true when the fringe pattern is produced by a
highly diffracting object, such as a highly structured living cell,
for instance, with thickness of several micrometers. A living cell
is not a homogeneous medium, but is made of compartments sur-
rounded by lipid membranes with high refractive index (plasmic
membrane, nuclear membrane, Golgi apparatus, mitochondrial net-
work) and highly dynamic proteic fiber network (cytoskeleton,
nuclear matrix). This situation requires a method that is able to cap-
ture the spatial variation of the local frequencies fx and fy, without
being biased by the spatial dependence of the fringe amplitudeQð~xÞ
[Eq. (2)]. The wavelet transform offers this possibility since it allows
a decomposition of a signal (uni- or multidimensional) into atoms

Fig. 1 Quantitative phase microscopy (QPM) setup. A transmission grating (G), positioned at the image
plane (IP) of the microscope objective lens (O), is used for beam division into a central beam (order 0) and
two symmetric beams (order 1) with respect to the optical axis. A spatial filter is placed at the Fourier
plane of the lens L1 to select the first-order beam (imaging field) and to low-pass filter the zeroth-order
beam.25–27 The two beams are recombined with the lens L2 and the interferogram is recorded on a CMOS
camera.
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(wavelets) that are well localized in space and frequency.35 The
CWT is a mathematical technique introduced in signal analysis
in the early 1980s.36,37 Since then, it has been the subject of consid-
erable theoretical developments and practical applications in a wide
variety of fields.38–54 An optical wavelet device has also been
designed that performs the CWT, thanks to Fourier optics princi-
ples.55,56 We choose here a 2-D Morlet wavelet32 because it is
particularly well suited for time (or space) frequency analysis.

3 Phase Map Reconstruction Using the CWT
Phase stepping and Fourier transform methods have been pro-
posed in the 1980s for interferogram analysis in one and two
dimensions.33,57 These methods, however, assume that the coef-
ficients Pð~xÞ andQð~xÞ vary slowly over one fringe cycle, so they
can be treated as constants. To our knowledge, the first attempt
to use a wavelet transform as a processing tool with white-light
interferometry dates back to 1997.58 Since then many teams
have used this tool with success, in one dimension59–67 as
well as in two dimensions.68–75

More than a simple signal filtering tool, the wavelet trans-
form analysis can also offer the possibility of a direct compu-
tation of the phase of the interferometry image, thanks to
a wavelet transform ridge detection algorithm.59–62,64,66,67,75

The 2-D CWT of an interferogram Ið~xÞ with ~x ¼ ðx; yÞ is
defined as52

WΨð~b; a; θÞ ¼ aη
Z
R2

Ið~xÞΨ�½a−1rθð~x − ~bÞ�d2~x: (6)

WΨð~b; a; θÞ is the wavelet transform coefficient, at position
~b, scale parameter a, and rotation angle θ. ~b ¼ ðbx; byÞ is a 2-D
translation parameter describing the position of the wavelet,

a > 0 is the scale dilation parameter (nondimensioned), θ is
a rotation parameter, rθ is the 2 × 2 rotation operator matrix,
Ψ is the mother wavelet, Ψ� is the complex conjugate of Ψ,
and η is a normalization exponent. In Fourier space, the wavelet
transform reads as

WΨð~b;a;θÞ ¼ aη
Z
R2

Îð~kÞei~b·~kΨ̂�½ar−θð~kÞ�d2~x: (7)

The symbol ^ denotes the Fourier transformation. A typical
mother wavelet commonly used to detect localized and oriented
features is the 2-D Morlet wavelet.52

ΨMð~xÞ ¼ ei~k0·~xe−
1
2
jA~xj2 − e−

1
2
jA−1~k0j2−1

2
jA~xj2 ; (8)

Ψ̂Mð~kÞ ¼
ffiffiffi
ε

p ½e−1
2jA−1ð~k−~k0Þj2 − e−

1
2jA−1~k0j2−1

2jA−1~kj2 �: (9)

The parameter k0 is the wave vector and A ¼ diag½1; ε1∕2� is
a 2 × 2 anisotropic matrix (ε ≥ 1).

We use here this anisotropic 2-D continuous Morlet wavelet
transform, with anisotropy factor ϵ, to extract the phase of
a fringe pattern obtained with the QPM, such as shown in
Fig. 2(a). The correction terms in Eqs. (8) and (9) enforce
the admissibility condition Ψ̂Mð~0Þ ¼ 0. However, they are
numerically negligible for jk0j ≥ 5.6, and one usually drops
them. Putting ε ¼ 1 and removing the correction terms gives
the Gabor function.

Fig. 2 (a) Untreated QPM image of a glass coverslip coated with polymer layer including a scratch in the
diagonal direction. The scale bar is 10 μm. (b) Real part of the symmetric two-dimensional (2-D) Morlet
wavelet ΨM with ϵ ¼ 1. (c) Real part of the anisotropic two-dimensional Morlet wavelet ΨM , with ϵ ¼ 10.
(d), (e), and (f) modulus of the 2-D Fourier transforms of (a), (b), and (c), respectively, coded with a gray
colormap.
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ΨGð~xÞ ¼ expði~k0 · ~xÞ exp
�
−
1

2
j~xj2

�
: (10)

The Morlet wavelet is a complex function; the modulus of
the truncated Morlet wavelet (without the correction term) is
a Gaussian, elongated in the x direction if ε > 1, and its
phase is constant along the direction orthogonal to ~k0, and linear
in ~x, mod(2π∕jk0j), along the direction of ~k0. As compared to the
1-D case, the additional feature of the 2-D Morlet (or Gabor)
wavelet function is its inherent directivity, entirely contained
in its phase. This turns to be a crucial advantage for studying
objects with directional properties. Indeed, since the wavelet
transform [Eq. (6)] is a convolution product of the fringe pattern
with the dilated wavelet, we see that the wavelet transform
smoothes the image in all directions, but detects the sharp tran-
sitions in the direction perpendicular to ~k0. In Fourier space, the
effective support (footprint) of the function Ψ̂M is an ellipse cen-
tered at ~k0 and elongated in the ky direction. In Figs. 2(b) and
2(c) we show two Morlet wavelets computed for ~k0 ¼ ð5.6; 0Þ,
and ε ¼ 1 and ε ¼ 10, respectively; their Fourier transforms are
shown in Figs. 2(e) and 2(f). Since the ratio of the axes is equal
to

ffiffiffi
ε

p
, the cone of the wavelet in Fourier space elongates along

ky direction as ε increases. This wavelet preferentially detects
edges perpendicular to the y-direction (i.e., parallel to ~k0),
and its angular selectivity increases with ~k0 and with the
anisotropy ε. For the optical image shown in Fig. 2(a) recorded
with the QPM from a glass coverslip coated with a scratched
polymer layer, the best selectivity is achieved with ~k0
perpendicular to the long axis of the ellipse in ~k − space,
that is ~k0 ¼ ðk0; 0Þ. We show in Fig. 2(d) the modulus of the
Fourier transform of the fringe image shown in Fig. 2(a).
The Morlet wavelet selects the right part of this Fourier trans-
form by performing a band-pass filtering around the grating fre-
quency. The advantage of taking a smooth wavelet and not a
simply circular window in Fourier space31 is not only to
avoid the introduction of artificial oscillations produced by
the sharp boundary of such a window, but also to have the ability
to use the mathematical formalism of wavelet analysis, for in-
stance, the ridge detection method.52 The Morlet wavelet ΨM is
then written as

ΨMð~xÞ ¼ exp

�
−
1

2
ðx2 þ εy2Þ

	
½expðik0xÞ − expð−k20∕2Þ�:

(11)

We notice the general form of the truncated Morlet wavelet.

ΨMð~xÞ ¼ VΨð~xÞ exp½iϕΨð~xÞ�; ϕΨð~xÞ ¼ k0x; (12)

where VΨð~xÞ is an anisotropic Gaussian function and ϕΨ is the
phase of the wavelet.

The ridge of the wavelet transform can be computed at each
spatial point ~x; it corresponds to a scale arð~bÞ such that the local
derivative of the wavelet phase ϕΨ compensates the local deriva-
tive of the object phase ϕ.

fg~∇ðx; 0Þ þ ~∇ϕð~xÞ − ~∇ϕΨ½a−1r ð~bÞrθð~x − ~bÞ� ¼ 0: (13)

If we consider only the modulated part of the fringe pattern
Qð~xÞ exp½iϕð~xÞ� (complex form), we can derive the equation
for its Morlet CWT, given that Qð~bÞ changes slowly compared
to the phase of the fringes; the rotation angle is fixed, θ ¼ 0. It is

important to note here that the choice of η ¼ 2 (norm L1)52,63,64,74

makes this computation straightforward.

WΨð~b;aÞ¼
Ψ̂Mfa½fgð1;0Þþ ~∇ϕð~bÞ�g

Cð~b;aÞ
Qð~bÞeiϕð~bÞ; (14)

up to a correction term Cð~b; aÞ that depends on the local varia-
tions of the phase ϕð~xÞ and the modulation amplitudeQð~xÞ of the
optical signal on the ridge skeleton. Note that this correction term
is constant in the approximation of a slow spatial variation Qð~bÞ.
Equation (14) is a local equation describing the shape of the
wavelet transform in the vicinity of the scale arð~bÞ that maxi-
mizes its modulus; this shape is Gaussian because Ψ̂M is a
Gaussian function.

Hence, from Eq. (9), the maxima of the modulus of the CWT
correspond to the wavelet ridge skeleton, where the optical
phase ϕ produced by the object fulfills the equation

~k0∕arð~bÞ ¼ fgð1; 0Þ þ ~∇ϕð~bÞ: (15)

It can be demonstrated analytically that this ridge detection
method is independent of the modulation intensity Qð~xÞ
[Eq. (2)] of the original fringe pattern (as long as the fringes
are detectable) using the properties of Gaussian functions in
real and Fourier spaces. This result can be intuitively understood
because the ridge detection method boils down to the compu-
tation of the position of a local maxima of the wavelet transform
with the scale parameter a, whatever the value of this maxima.
The modulus of the wavelet transform on the ridge skeleton
reads

WΨ½~b; arð~bÞ� ¼
Ψ̂Mð~k0Þ

C½~b; arð~bÞ�
Qð~bÞeiϕð~bÞ: (16)

According to Eq. (16), we could straightforwardly compute
ϕð~bÞ from the phase of the wavelet transform WΨ½~b; arð~bÞ�,
without using the derivative form of Eq. (15). This is not
true when the variations of the phase and their amplitude mod-
ulations are too fast compared to fg, giving a complex value to
C½~b; arð~bÞ�. In that case, Eq. (15) must be preferred. We also
note that the modulus of the wavelet transform on the ridge fol-
lows the fringe amplitude modulation Qð~bÞ. As a general
remark, this wavelet-based method intrinsically eliminates back-
ground intensity variations Pð~xÞ that do not affect the fringe pat-
tern modulations.

4 Validation of the CWT Ridge Detection
Method on Latex Microbeads

We discuss the efficiency of the 2-D CWT ridge detection
method on a model system made of a microbead particle (radius
R ¼ 5 μm) with refractive index nb ¼ 1.59 surrounded by a
matching index oil n0 ¼ 1.5167. Figure 3(a) shows the fringe
pattern computed with Eq. (2) for the 2-D phase of the bead.

ϕð~xÞ ¼ ½4πðnb − n0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ð~x − ~xcÞ2

q
�∕λ; (17)

where ~xc corresponds to the projection of the center of the bead
in the (X; Y) plane. This bead is a good model of the experimen-
tal fringe patterns that will be presented later on. It is a good
guide for defining the optimum wavelet parameters for
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retrieving the phase from a fringe pattern. We observe in Fig. 3
(a) that on the border of the bead there is a breakdown of the
fringe continuity because the phase derivative is not continuous
at these points, which makes the phase computation harder.
Figures 3(b) and 3(c) [respectively, Figs. 3(d) and 3(e)] show
a gray-coded representation of the modulus of the 2-D CWT
on the horizontal (respectively, vertical) section shown in
Fig. 3(a). The 2-D CWT of the horizontal section [Figs. 3(b)
and 3(c)] shows a strong deformation of the ridge arðbxÞ
when entering and exiting the bead. This is also visible on
the fringe pattern [Fig. 3(a)] since on the left side of the
bead the fringes are compressed (smaller scale a), whereas
on the right side they are dilated (larger scale a). Close to
the border of the bead, jWΨð:; aÞj is no longer a single humped
Gaussian function (reflecting the shape of the modulus of the
wavelet) since two maxima appear, corresponding to the exist-
ence of two local frequencies slightly splitted apart from the car-
rier fringe frequency fg, corresponding to a ¼ 1 here. When the
anisotropy of the 2-DMorlet wavelet is increased [see Fig. 3(c)],
the ridge detection is more acurate, improving the detection of
the border of the bead. The improvement provided by an aniso-
tropic wavelet is more visible on the 2-D CWT analysis of a
vertical section, shown in Figs. 3(d) and 3(e). jWΨðby; aÞj
keeps its single humped shape, except in a close neighborhood
of the bead border, where it vanishes. This evanescence of the
jWΨð:; aÞj curves prevents a precise determination of the scale
ar where it is maximum. With an anisotropic 2-D Morlet wave-
let (ϵ ¼ 10), this vanishing is more localized in by and damped
[Fig. 3(e)]. The evanescence of the wavelet transform modulus
maxima curves is explained by a rapid shift of the fringes along
the axis X and their summation by the wavelet transform, since
its width is ∼5.6 fringe periods along X. The 2-D CWT with a
Morlet analyzing wavelet is, therefore, particularly suited for the
detection of fringe compression or dilation along the X direc-
tion. It is less efficient to detect the shift of fringes along X,
especially with curved fringes. From this 2-D CWT analysis,
we can propose three methods for phase retrieval.

• 1. The firstmethod uses the 2-DMorletwavelet as a Fourier
filter, with a fixed scale a ¼ 1 corresponding to the grating

fringe modulation fg; it does not use the ridge detection.
We will call it the Fourier filtering method 1.

• 2. The second method uses the 2-D CWT ridge detection
method to compute the phase derivative of the fringe pat-
tern, described by Eq. (15), and makes an integration of
this derivative along X. We will call it the ridge integral
method 2.

• 3. The third method uses the 2-D CWT ridge detection
method to compute the new complex quantity
WΨ½b; arð~bÞ� on the ridge and takes its argument to com-
pute the phase [Eq. (16)]. We will call it the ridge argu-
ment method 3.

Figure 4 compares these three methods for phase retrieval on
the bead model, for two values of the anisotropy factor ϵ.
Figures 4(a) and 4(b) show the phase extracted with a simple
Fourier filtering of the fringe pattern, using a Morlet wavelet
at fixed scale a. This method does not succeed to recover the
theoretical phase whatever ϵ because on the border of the
bead, the local frequency of the fringes is too far from the fringe
carrier fg, and it is, therefore, impossible to estimate their phase
correctly. Figures 4(c) and 4(d) show the ridge integral method 2
on this bead model. In that case, the theoretical phase can be
estimated correctly on the central part of the bead, but compu-
tation errors remain on the top and bottom borders of the bead,
which come from the difficulty to capture the local CWT modu-
lus maxima position when this modulus vanishes. With method
2, the phase is computed by integration of the gradient ~∇ϕð~bÞ
along the axis bx, which produces an accumulation of the errors
on ϕð~xÞ on the right side of the bead. However, switching from
isotropic [Fig. 4(c) and ϵ ¼ 1] to anisotropic wavelet [Fig. 4(d)
and ϵ ¼ 10] corrects the errors on the top and the bottom borders
of the bead, but the integration errors remain. To improve this
aspect, a higher resolution in the modulus maxima detection
method is necessary at the expense of computation time.
Note, however, that if the fringe pattern is very noisy, method
2 avoids the unwrapping of the phase and may stabilize the
computation of the phase. Figures 4(e) and 4(f) show the
ridge argument method 3. This method is still sensitive to fringe
discontinuities [Fig. 4(e)] on the top and the bottom borders of

Fig. 3 (a) Theoretical QPM intensity image of a transparent micro-bead, computed with Eqs. (2) and (17).
The scale bar is 5 μm. (b) and (d) Modulus of the 2-D continuous wavelet transform (CWT) on the hori-
zontal (fixed Y ) section shown in (a) by a white dashed line. (c) and (e) Modulus of the 2-D CWT on the
vertical (fixed X ) section shown in (a) by a white dashed line. (b) and (d) have been computed with an
isotropic 2-D Morlet wavelet (ϵ ¼ 1). (c) and (e) have been computed with an anisotropic 2-D Morlet
wavelet (ϵ ¼ 10). a ¼ 1 corresponds to the fringe frequency f g . The dashed black lines outline the
ar ð~bÞ ridge functions. The gray coding is identical for all CWT modulus images, from zero (black) to
0.8 (white).
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the bead. With an anisotropic wavelet (ϵ ¼ 10), this method suc-
ceeds to reproduce the theoretical phase with a 10−3 relative
error on the phase. The possibility to adjust the anisotropy of
the wavelet is, therefore, important for analyzing phase discon-
tinuities; it has never been reported in that context.

To compare with the bead model, we have imaged a 5 μm
radius latex microbead with the QPM and applied the 2-D aniso-
tropic CWT (ϵ ¼ 10) to analyze the experimental fringe pattern
shown in Fig. 5(a). Unlike the theoretical model, the fringe inten-
sity modulation in the QPM is no longer constant, see the hori-
zontal section plotted in black in Fig. 5(b). This intensity
modulation is produced by the light scattering by the bead.
As established by Bedrosian,76 when this modulation contains
frequencies that overlap with the fringe carrier frequency fg,
the extraction of the phase with the Hilbert method is biased
and leads to a false estimation. Indeed, from the Hilbert trans-
form of the term Qð~xÞ cos½fgxþ ϕð~xÞ� in Eq. (2), we would like
to recover a function like Qð~xÞ sin½fgxþ ϕð~xÞ� from which the
phase could be computed straightforwardly. Bedrosian’s theo-
rem shows that this is workable only if the amplitude modulation
Qð~xÞ does not contain frequencies that mix with the carrier fre-
quency fg. This condition is not experimentally satisfied as illus-
trated in Fig. 5(b). In that case, when using the ridge detection,
the CWToffers the advantage of leading to a measure of the fre-
quency from the ridge that considerably reduces the effects of

fringe modulation amplitude on phase retrieval [Eq. (15)]. In
Fig. 5(c), we show the modulus of the 2-D CWT jWΨðbx; aÞj
on the horizontal section shown in Fig. 5(a). The ridge arð~bÞ
plotted in Fig. 5(c) with a black line is very similar to the theo-
retical curve shown in Fig. 3(c). The real part of the CWT com-
puted on the ridge shown in Fig. 5(d) is very impressive when
compared to the original image [Fig. 5(a)]. It looks as if the major
intensity modulations of the original images were damped out to
keep only the fringe distorsion, from which the phase is com-
puted. The same section of Fig. 5(d) is plotted in gray in
Fig. 5(b). The efficiency of the wavelet transform is well illus-
trated in this example. Figure 5(e) shows the modulus
jWΨ½~b; arð~bÞ�j computed on the ridge of the 2-D CWT on
this latex microbead; it is coded in gray from minimum
(black) to maximum (white). Figure 5(f) gives a 2-D gray-
coded image of the phase derivative ∂ϕð~bÞ∕∂b of the CWT
on the ridge, and Fig. 5(g) shows the three-dimensional (3-D)
representation of the phase ϕð~xÞ computed from the ridge of
the CWT with method 3. The modulus of the 2-D CWT on
the ridge preserves the intensity of the original fringe image,
whereas this intensity modulation disappears completely on
the phase derivative ∂ϕð~bÞ∕∂b. We also note that as for the
bead model, the anisotropic Morlet wavelet allows a very
nice detection of the phase derivative. The 3-D picture of the
phase in Fig. 5(g) is very appealing since it not only detects per-
fectly the phase drop due to this bead and reproduces the theo-
retical prediction, but also delineates some defects of the beads
that are visible as phase irregularities on the surface of the bead.
We have estimated the standard deviation of the background
phase on this image of ∼0.25 rad.

5 Application of the CWT Phase Retrieval
Method to Living Cell Imaging

We illustrate the performance of the CWT phase retrieval
method on a murine myoblast cell line C2C12, which can be
differentiated to give rise to plurinucleate syncytia (the myo-
tubes) by fusion. We will focus here on undifferentiated
C2C12 cell monolayers. Figure 6 reports the 2-D CWT ridge
analysis of a QPM image of a nonadherent myoblast that is pro-
gressively rounding and will detach from the glass to enter mito-
sis.77 The characteristic organization of the microtubule-actin
cytoskeleton with stress fibers has disappeared, the cell is
round, and it is no longer possible to delineate a nice nuclear
contour inside this cell. However, this spherical shape is inter-
esting because it allows us to perform the same parametrization
of the phase map as we have done previously for spherical par-
ticles. Compared to the previous example of the microbead in
Sec. 4, we observe on Fig. 6(a) that besides scattering effects on
the border of the bead, the internal structure of the cell also pro-
duces intensity modulations of the fringes that may make the
analysis more complex. We have plotted in Fig. 6(b) a profile
of the fringe image selected on the white dashed section of
Fig. 6(a) (black curve), which can be compared to the corre-
sponding profile of the real part of the 2-D CWT ridge on
the same section. Similar to the example of Fig. 5, the CWT
ridge analysis regularizes the fringe intensity modulation.
Figure 6(c) reports the modulus of the 2-D CWT jWΨðbx; aÞj
on the horizontal section shown in Fig. 6(a). The ridge arð~bÞ
plotted in Fig. 6(c) with a black line is reminiscent of the
one shown in Fig. 5(c). The real part of the CWT computed
on the ridge shown in Fig. 6(d) when compared to the original
QPM image [Fig. 6(a)] definitely flattens the intensity

Fig. 4 Three-dimensional (3-D) representation of the reconstructed
phases from the fringe pattern of Fig. 3(a) with methods 1 [(a) and
(b)], 2 [(c) and (d)], and 3 [(e) and (f)]. (a), (c), and (e) are computed
with the isotropic Morlet wavelet (ϵ ¼ 1). (b), (d), and (f) are computed
with the anisotropic Morlet wavelet (ϵ ¼ 10). The phase ϕ is given in
radians.
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Fig. 5 2-D CWT analysis of an experimental QPM fringe pattern captured from a 5 μm radius latex micro-
bead embedded in glass index matching oil. (a) The untreated QPM image. The scale bar is 5 μm.
(b) Intensity profile (black line) of the section marked with a white dashed line in (a). The gray line cor-
responds to the real part of the CWT ridge computed on this section. (c) Gray coded modulus of the 2-D
CWT on the horizontal section shown in (a). The ridge ar ð~bÞ is plotted with a black line. (d) Real part of the
CWT computed on the ridge. (e) Modulus of the 2-D CWT computed on the ridge. (f) ∂ϕð~bÞ∕∂x computed
from the ridge [Eq. (15)]. (g) 3-D representation of phase computed from the fringe pattern of (a) with
method 3. The anisotropic Morlet wavelet (ϵ ¼ 10) is used for this analysis. The gray coding is done from
black (minimum) to white (maximum).

Fig. 6 2-D CWT analysis of a QPM fringe pattern collected from a round myoblast. (a) The untreated
QPM image. The scale bar is 10 μm. (b) Intensity profile (black line) of the section marked with a white
dashed line in (a). The gray line corresponds to the real part of the CWT ridge computed on this section.
(c) Gray coded modulus of the 2-D CWT on the horizontal section shown in (a). The ridge ar ð~bÞ is plotted
with a black line. (d) Real part of the CWT computed on the ridge. (e) Modulus of the CWT computed on
the ridge. (f) ∂ϕð~bÞ∕∂x computed from the ridge of the CWT. (g) 3-D representation of phase computed
from the fringe pattern shown in (a) with method 3. The anisotropic Morlet wavelet (ϵ ¼ 10) is used for this
analysis. The gray coding is done from black (minimum) to white (maximum).
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modulations. Figure 6(e) shows the modulus jWΨ½~b; arð~bÞ�j
computed on the ridge of 2-D CWT; it is coded in gray from
minimum (black) to maximum (white). The intensity modula-
tion that remains in Fig. 6(e) is eliminated in the derivative
of the phase shown in Fig. 6(f) (ridge method 2). Finally,
using method 3, we reconstruct a 3-D profile of the phase of
this myoblast in Fig. 6(g). This representation confirms the
round shape of this cell in the third direction Z and points
out a central part where smaller objects are identified, which
may be attributed to condensed chromosomes. We use the
same model as proposed for a spherical bead as a first approxi-
mation to extract the mean refractive index of this cell and delin-
eate one of the protruding object and its refractive index. The
interpolation of the whole cell by a spherical phase shape
[Eq. (17)] is reported in Fig. 7. This interpolation leads to an
estimation of the overall refractive index of the cell as
nc ¼ 1.36� 0.005, given that the buffer refractive index is
n0 ¼ 1.33. Moreover, subtracting this mean spherical phase
contour from the total phase contour (see Fig. 7), we can
also compute the phase drop of the small spherical object
that pops up on the upper part of the cell and estimate its
index to be 1.4� 0.005.

In Fig. 8, we show the image of an adherent myoblast cell,
where we can recognize thin lamellipodia extensions that exhibit
filopodia projections on the leading edge: a characteristic pattern
of cell motility. It has been shown in the literature that differ-
entiation and fusion of myoblasts into multinucleated myotubes
is accompanied by a dramatic reorganization of the Golgi com-
plex.78 Here we rather have the classic compact juxtanuclear
Golgi complex of an undifferentiated myoblast that we can rec-
ognize as small granular objects on both the derivative of the
phase ϕ reported in Fig. 8(c) and on the phase ϕ shown in
a 3-D representation in Fig. 8(d). The phase response of this
adherent cell is different from that shown for the round cell
[Fig. 6(g)]; the nucleus looks more like a phase plateau, flat-
tened by the mechanical tractions of the lamellipodia. On the
border of the nucleus, the QPM detects a necklace of phase
droplets and a central part with higher phase [Figs. 8(c) and
8(d)]. At this stage, it is difficult to conclude if these small
bodies are essentially Golgi complex or a combination of peri-
nuclear organelles as rough and smooth endoplasmic reticulum,
Golgi, vesicles, and mitochondrial network.

6 Summary
We have shown that a wavelet-based space-scale analysis can be
used to decode the fringe images recorded from living cells with

a QPM. The implementation of the ridge detection method is
more successful than Fourier filtering methods when imaging
cellular and high refractive index contrast objects since it
can discriminate intensity from phase changes. This technique
has been applied to undifferentiated myoblast cells and revealed
internal structures of these cells, which were confirmed by fluo-
rescence imaging. This microscope is coupled to a high-speed
camera, and we hope in the near future that besides capturing the
optical phase changes produced by the cell internal structures,
the record of the dynamics of these internal bodies will provide a
complementary way to distinguish these structures without the
need of fluorescence staining.

7 Materials and Methods

7.1 Quantitative Phase Microscope

A low-coherence laser diode (Thorlabs, GmbH, Germany,
λ ¼ 532 nm) is used as a light source and is directed to the sample
(S) usingKöhler illumination, such that the field at the image plane
(IP) is spatially coherent over the entire field of view (Fig. 1).
Different diffraction orders are then created with a transmission
grating (G) (70 grooves∕mm) localized at the IP of themicroscope
equipped with an objective (O) 40× (Olympus, France, SPlan40,
N:A: ¼ 0.7). A spatial filter (Thorlabs, custom-made) is placed at
the Fourier plane of lensL1 to select the first-order beam (imaging
field) and to low-pass filter the zeroth-order beam (reference). The
spatial filter has been designed with two circular apertures with
diameters of 15 μm and 2 mm. The two beams are recombined
using a second Fourier lens (L2), and the resulting interferogram
is recorded as an image of 2048 × 2048 pixels with a CMOS cam-
era (Hamamatsu, Japan, ORCA-Flash 4.0). The 4f lens system
adds a 5× magnification (f1 ¼ 50 nm, f2 ¼ 250 mm).

7.2 Polymer Layer Preparation

A solution of 10% poly(methyl methacrylate) (PMMA, Sigma-
Aldrich, France) in toluene was spin coated over a glass cover-
slip at a speed of 1000 rpm during 50 s. A time of 10 s is fixed to
reach the nominal speed. After coating, the film was annealed
for 1 h at 140°C. Prior to imaging, a portion of the PMMA layer
was removed with a scalpel.

7.3 Polystyrene Beads Preparation

1 μL of an aqueous solution containing polystyrene beads
(FLUKA 72986) was diluted in 10 mL of deionized water.

(a) (b) (c)

Fig. 7 Decomposition into spherical phase shapes of the myoblast phase map shown in Fig. 6. (a) The
original 2-D phase map computed from the fringe pattern with ridge method 3. The gray coding is done
from black (minimum) to white (maximum). (b) Horizontal sections corresponding to the colored crosses
shown in (a) and their spherical phase contour envelope [Eq. (17)] in dashed line. (c) The subtraction of
the original phase map with the spherical phase contour envelopes, revealing other phase contours of
smaller objects, inside the cell. The red curve can again be parametrized by a spherical phase contour to
estimate the index of this small protruding object, marked with a red cross in (a).
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250 μL of the dilution were deposited on a small petri dish with a
glass window and let overnight in an oven at 70°C to dry. Before
imaging, 500 μL of glass index matching oil were added.

7.4 Cell Culture

C2C12 mouse cells (ATCC number CRL-1772™) were grown in
high glucose (4.5 g∕L) Dulbecco’s modified Eagle medium
[(DMEM), GE Healthcare Life Science, Dominique Dutscher,
France] supplemented with 20% fetal bovine serum GE
Healthcare Life Science and 1% antibiotics (penicillin/streptami-
cine). Adherent myoblasts on 50 mm petri dishes with a glass
bottom of 0.17 mm thickness were maintained at 37°C and 5%
CO2 up to 60% confluence until they were used. The glass surface
was not treated to enhance cell adhesion. The growth medium
was replaced by phosphate buffered saline solution before imaging.
No further sample preparation was required.
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Appendix D

Detection of internal boundaries from
optical path difference gradients.

195
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Abstract. The distribution of refractive indices (RIs) of a living cell contributes in a nonintuitive manner to its
optical phase image and quite rarely can be inverted to recover its internal structure. The interpretation of the
quantitative phase images of living cells remains a difficult task because (1) we still have very little knowledge on
the impact of its internal macromolecular complexes on the local RI and (2) phase changes produced by light
propagation through the sample are mixed with diffraction effects by the internal cell bodies. We propose to
implement a two-dimensional wavelet-based contour chain detection method to distinguish internal boundaries
based on their greatest optical path difference gradients. These contour chains correspond to the highest image
phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their sta-
tistics and spatial distribution are the morphological indicators suited for comparing cells of different origins and/
or to follow their transformation in pathologic situations. We use this method to compare nonadherent blood cells
from primary and laboratory culture origins and to assess the internal transformation of hematopoietic stem cells
by the transduction of the BCR-ABL oncogene responsible for the chronic myelogenous leukemia. © 2015 Society of

Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.9.096005]
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Paper 150441R received Jun. 30, 2015; accepted for publication Jul. 31, 2015; published online Sep. 3, 2015.

1 Introduction
During the last several decades, identification of the physical
properties of single living cells has been a subject of consider-
able interest for cytopathology diagnoses.1–5 In particular, quan-
titative optical microscopic methods3,6,7 have shown that the
refractive index (RI) of a cell can be used as an indicator for
cell transformation in cancer processes. By offering the possibil-
ity of recovering the global and local RIs of a living cell without
any a priori treatment by staining agents,8–12 the development of
quantitative phase microscopy (QPM) techniques is likely to
shed a new light on the internal organization of different cell
types.1,3,7,8,13–20 In addition to the measurements of the averaged
RIs over the whole cells, the intracellular distribution of RIs
revealed by QPM provides quantitative information concerning
the internal heterogeneous complexity of living cells.8–12,21

In recent years, cell imaging has seen the emergence of
diverse microscopic setups suitable for living cell morphology
capture.1,9,17,20,22,23 Among them, diffraction phase microscopy
(DPM)23–25 has become a powerful tool for real-time analysis of
single cell morphology and the alteration of cells in diverse path-
ologies.20,23,26 However, with the exception of enucleated mature
red blood cells (RBCs), whose RI can be presupposed as homo-
geneous (at the resolution of optical microscopy), the extraction
of RIs from phase images often requires the use of rather complex
algorithms. Converting the optical phase computed from the

images of a QPM to an RI distribution in three dimensions
(3-D) is quite impossible with a single wavelength measure-
ment. Two-wavelength microscopes have been proposed to cir-
cumvent this limitation.27 In some conditions, it is possible to
include the effect of diffraction in the reconstruction process
of high-resolution 3-D images throughout the entire sample
volume.7,28,29 More recently, elegant and relatively simple and
low-cost methods have been proposed30–32 for tomographic
reconstruction of living cells. When the 3-D shape of the cell
can be established a priori, the computation of RIs from
phase images is then possible. Nonadherent cells in liquid gen-
erally adopt a spherical shape, which facilitates the inversion
problem. We will use this assumption in this study for the char-
acterization of blood cells.

Here, we aim at developing an original method for the detec-
tion of optical path difference (OPD) contours from living cells.
The underlying idea is to look for local maxima of the OPD
derivative in the two-dimensional (2-D) optical phase image.
These maxima define interface chains where the RI and/or
the cell shape vary abruptly and can be considered as domain
boundaries. Even if we do not know a priori which is the promi-
nent variation (RI or thickness) at each maximum, the connec-
tivity of these maxima provides a direct access to the complexity
of the cell interior. Because living cells are made of crowded
macromolecules which may condensate or dilute at some stages
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of their lifespan, to assist global processes, such as growth, chro-
matin condensation, cell division, invasion, apoptosis, and
migration, their internal structure bears a rather high level of
complexity. Our study shows that except in some rare cases
(RBCs), living blood cells are not partitioned into subdomains
by isotropic and smooth contours, but rather look like randomly
distributed contours with a broad distribution of lengths.

2 Materials and Methods

2.1 Diffraction Phase Microscope

Our DPM (Fig. 1) is directly inspired from the system published
in Ref. 24. This interference microscope combines both off-axis
and common-path interferometry techniques to produce fringe
patterns [Fig. 1(a)] from which the phase images [Fig. 1(d)] can
be reconstructed. The optical system is very compact and stable
and does not require an expensive laser source [for instance, a
laser-diode (Thorlabs, GmbH, Germany) with a wavelength
λ ¼ 532 nm]. It can be coupled to a fast image recording system
(e.g., a CMOS camera, Hamamatsu, Japan, ORCA-Flash 4.0)
with a 2048 × 2048 pixel grid. A Köhler illumination33 is
required to obtain an extremely even illumination and to
avoid any perturbation of the sample image by the image of
the light source at the image plane (IP) [Fig. 1(f)]. The interfer-
ences are obtained by combining a transmission grating (G)
(110 grooves∕mm), localized at the IP of the microscope, with
a spatial filter (Thorlabs, custom-made) placed at the Fourier
plane of lens L1 that selects the first-order beam (imaging
field) created by the grating and low-pass filters the zeroth-order

beam (reference). The two beams are recombined through a sec-
ond Fourier lens L2. This 4f lens system adds a 5.9× magnifi-
cation (f1 ¼ 25.4 mm, f2 ¼ 150 mm). The spatial filter consists
of two circular apertures with diameters of 1 and 15 μm [Fig. 1
(f)]. The objective lens (O) 40× (Olympus, SPlan40, NA ¼ 0.7)
allows a field of view of 75 μm. Prior to image capture, 65 μL of
the solution containing the cells are poured between two glass
coverslips glued by a Gene Frame Seal (Thermo Scientific
AB-0577). Images are captured on the CMOS camera within
the next 15 min of preparation at room temperature T ∼ 22°C.
A reference image of the background next to the area containing
the cell is also recorded for each image.

2.2 Cell Culture

2.2.1 Hematopoietic cell line model

The immature CD34+ TF1 cell line (ATCC CRL-2003) was
maintained at 1 × 105 cells∕mL in RPMI-1640 medium, 10%
fetal calf serum, and granulocyte macrophage colony-stimulat-
ing factor (10 ng∕mL) (Sandoz Pharmaceuticals). Engineered
TF1-GFP and TF1-BCR-ABL-GFP cell lines were obtained
by transduction with a murine stem cell virus-based retroviral
vector, encoding either the enhanced green fluorescent protein
(EGFP) cDNA alone as a control or the BCR/ABL-cDNA
upstream from an IRES-eGFP sequence, as described in Ref. 34.
EGFP+ TF1 cells were sorted using a Becton Dickinson
FACSAria. For imaging, 65 μL of the solution were poured
between two glass coverslips glued by a Gene Frame
(ThermoScientific). The images were taken from two different

Fig. 1 Diffraction phase microscopy (DPM) principle: (a) untreated DPM image of a nonadherent imma-
ture myeloid cell (TF1-GFP). Scale bar: 5 μm; (b) intensity profile of the section marked with a white
dashed line in (a); (c) space-scale representation of the modulus of the wavelet transform (WT)
jTΨ½I�jðb; aÞ of the section shown in (b); with a black dashed line we distinguish the wavelet transform
modulus maxima (WTMM) profile. Note that we label the horizontal axis with the same variable x to align
the two signals (image section and WT), in that representation b ¼ x ; (d) ∂ϕðbÞ∕∂x computed for each
line of the original phase image with the method illustrated in (c), the gray coding spans the interval [−2.7
to 5.4] rad∕μm; (e) color-coded optical path difference (OPD)Φ ¼ ϕλ∕2π (in nm) computed from the argu-
ments AΨ½I�ðb; a�Þ of the WT at the scale a� corresponding to a maximum of its modulus; and (f) DPM
optical setup (see text).
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cell batches per cell line type (TF1-GFP or TF1-BCR-ABL-
GFP), and the total numbers of cells analyzed were 298
TF1-BCR-ABL-GFP (short name: TF1-BA) cells and 263
TF1-GFP cells.

2.2.2 Human primary cells (nucleated immature cells and
red blood cells)

After informed consent in accordance with the Declaration of
Helsinki and local ethics committee bylaws (from the
Délégation à la recherche clinique des Hospices Civils de Lyon,
Lyon, France), peripheral blood and bone marrow samples were
obtained from chronic myelogeneous leukemia patients.
Mononuclear cells were separated using a Ficoll gradient
(Bio-Whittaker) and were then subjected to CD34 immunomag-
netic separation (Stemcell Technologies). The purity of the
CD34+-enriched fraction was checked by flow cytometry and
was over 95% on average.

3 Diffraction Phase Microscopy Image
Analysis with a Wavelet-Based Multiscale
Analyzing Method

3.1 Diffraction Phase Microscopy Principle for Cell
Imaging

DPM23–25 allows a fast, nonintrusive, and high-sensitive meas-
urement of the OPD produced by a transparent object embedded
inside a homogeneous medium. The DPM optical setup
sketched in Fig. 1(f) produces 2-D images with parallel fringe
patterns [Fig. 1(a)] corresponding to a periodic modulation of
the intensity:

EQ-TARGET;temp:intralink-;e001;63;391IðxÞ ¼ PðxÞ þQðxÞ cos½fgxþ ϕðxÞ�; (1)

where ϕðxÞ is the optical phase due to light transmission through
the object at point x ¼ ðx; yÞ, PðxÞ and QðxÞ are, respectively,
the unmodulated and modulated intensities at the same point of
the image, and fg is the spatial frequency of the diffraction gra-
ting. One common assumption is that PðxÞ and QðxÞ vary much
more slowly than ϕðxÞ.9,17,20,23,26 However, this is rarely the case
with thick spherical cells, since they produce modulations of
both the optical phase ϕ and the amplitude Q [Figs. 1(a) and
1(b)]. To circumvent this difficulty, we computed the ridges
[wavelet transform modulus maxima (WTMM) lines] from
the wavelet transform (WT) of the fringe image with a 2-D
anisotropic Morlet analyzing wavelet.35–40 The implementation
of this method on DPM has been recently published36 and
shown to surpass more traditional Hilbert methods41 when the
amplitude modulation QðxÞ spans the frequencies that mix with
the carrier frequency (fg). In Fig. 1(c), we show the space-scale
representation of the WTmodulus computed from the horizontal
section [Fig. 1(b)] of the fringe image in Fig. 1(a) (a ¼ 1 cor-
responds to the fringe carrier frequency). The black dashed line
outlines the position of the WTMM line. The scale a of the
WTMM is proportional to the inverse of the derivative of the
object phase f∂½fgxþ ϕðxÞ�∕∂xg and directly gives the
image of the phase derivative shown in Fig. 1(d). The optical
phase ϕ at position x is given by the integral:

EQ-TARGET;temp:intralink-;e002;63;95ϕðxÞ ¼ 2π

λ

Z
zMðxÞ

zmðxÞ
Δnðx; zÞdz; (2)

where λ is the illumination wavelength, Δn ¼ n − n0 is the dif-
ference between the RIs of the object (n) and the external
medium (n0), and zM (respectively, zm) is the upper (respec-
tively, lower) bound of the object at position x. The total thick-
ness of the object at point x is hðxÞ ¼ zMðxÞ − zmðxÞ. The
recovery of ΔnðxÞ from the phase map ϕðxÞ amounts to solving
an inverse problem.21,42 This is quite difficult without any
assumption on the topography of the object, except in the
case where the internal RI of the object is constant. This actually
occurs for RBCs, for which we will be able to recover the shape
of the cell from its fringe pattern26 (see below). Nucleated cells
involve a much more heterogeneous internal structure that
requires a more complex reconstruction algorithm. Given that
the optical phase ϕ depends on the illumination wavelength, in
practice it is more convenient to work with the OPD:
Φ ¼ ϕλ∕2π. The OPD is equivalent to the retardation path
length of the light after crossing the cell. According to Eq. (2),
the OPD function is the integral on the RI drop through the cell
whose limits of integration depend on the point x:

EQ-TARGET;temp:intralink-;e003;326;525ΦðxÞ ¼
Z

zMðxÞ

zmðxÞ
Δnðx; zÞdz ¼ ½ΔNðx; zÞ�zMðxÞ

zmðxÞ

¼ ΔNðx; zMÞ − ΔNðx; zmÞ; (3)

where ΔNðx; zÞ is the integral function of Δnðx; zÞ. For exam-
ple, if Δnðx; zÞ ¼ Cst, ΔNðx; zÞ ¼ Cstzþ B is a linear function
of the variable z and ΦðxÞ ¼ Cst½zMðxÞ − zmðxÞ� ¼ CsthðxÞ.
The OPD function precisely follows the shape of the object and
its derivative is proportional to the derivative of its thickness h at
each point x. In general, the derivative of Φ along a radial coor-
dinate of the ðx; yÞ plane results from both RI and topography
variations:

EQ-TARGET;temp:intralink-;e004;326;378

∂ΦðxÞ
∂r

¼ ∂ΔNðx; zMÞ
∂r

−
∂ΔNðx; zmÞ

∂r
: (4)

If Δn is an integrable function, the two integral values
ΔNðx; zMÞ and ΔNðx; zmÞ exist and their derivatives with
respect to r can be computed. The boundary of the object is pre-
cisely defined by an abrupt change in the RI slope at the inter-
face between the interior and the exterior media. Because
domain boundaries in biological matter are not very sharp,
we will rather consider them as transitory zones with a sharpness
described by the gradient of the OPD. The local maxima of this
OPD spatial gradient will follow the boundary zones wherever
they can be detected (external and internal). If we consider that
the object is made of the assembly of different internal structures
with RI variations, we will apply the same assumption as above
for the domain boundary detection. The main difficulty will,
therefore, be to correctly compute these spatial gradients and
extract local maxima lines. If the maxima lines are closed, we
will infer the existence of well-defined internal structures with a
quite homogeneous composition. On the contrary, if the maxima
lines are unclosed and randomly distributed curves, we will
rather infer a more complex organization of the internal structure
of the considered object.

3.2 Diffraction Phase Microscopy Analysis of Model
Spherical Cells

Let us first consider as a theoretical example, a spherical object
of radius R with a radial RI function varying from n0 (the outer
medium) to nC (at the center of the sphere):
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EQ-TARGET;temp:intralink-;e005;63;734Δnðx; zÞ ¼
� jðR − rÞ∕RjαΔnC for r ≤ R;
0 for r > R;

(5)

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
the radial distance, ΔnC ¼ nC − n0,

and α a real positive exponent. We consider only the positive
values of z [the object is symmetric in respect to the equatorial
plane ðx; yÞ]. The boundaries of the sphere at position x are such
that x2 þ y2 ≤ R2 are

EQ-TARGET;temp:intralink-;e006;63;644

zmðxÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðx2 þ y2Þ

q
and

zMðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðx2 þ y2Þ

q
: (6)

Centering the three vector bases (~ex, ~ey, and ~ez) at the center of
the sphere (xC ¼ 0, yC ¼ 0, and zC ¼ 0), we plot in Fig. 2(a) the
RI profile along the x (y ¼ 0) axis in green for different values
of the exponent α in Eq. (5), namely α ¼ 0 (solid line), 0.25
(dashed-dotted line), 0.5 (dotted line), and superimposed to
the sphere height profile (black dashed-dotted line).

The OPD of this spherical object at position xwith x2 þ y2 ≤
R2 is given by

EQ-TARGET;temp:intralink-;e007;63;493ΦðxÞ ¼ ΔnC
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2−ðx2þy2Þ
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−ðx2þy2Þ

p
����
�
R −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

q �
∕R

����αdz:
(7)

The three OPD functions corresponding to α ¼ 0, 0.25, and 0.5
are plotted in green in Fig. 2(b) with the same line style as in
Fig. 2(a). When the RI is increasing monotonously from the

border to the center of the sphere, the OPD Φðx; y ¼ yCÞ retains
a global single humped shape, with a nonlinearity that depends
on the exponent α. The local maxima of the first derivative of the
OPD functions with respect to x are close to the position of the
sphere’s border. Note also that the OPD functions are symmet-
rical with respect to the center of the sphere, retaining the cen-
trosymmetry of the object. In that example, we have computed
the first derivative of the OPD with a smoothing first derivative
of a Gaussian function, as further used in the experimental sit-
uations reported hereafter. Thus, the slight shift of the maxima
of the red curves ∂Φ∕∂x from the sphere borders (dashed blue
line) is due to the smoothing scale of this Gaussian filtering.

To mimic an internal variation of the RI, we have constructed
another structure with the same outer spherical shape, but con-
taining an internal concentric spherical shell with a higher RI,
the boundary of which also varyies smoothly with the radius r:

EQ-TARGET;temp:intralink-;e008;326;558Δnðx; zÞ

¼
� ½jfðrÞjα þ fcos½2πfðrÞ� − 1g2∕6�ΔnC for r ≤ R;
0 for r > R;

(8)

where fðrÞ ¼ ½R −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
Þ∕R�. As shown in Fig. 2(c),

the corresponding RI profiles for α ¼ 0, 0.25 and 0.5 bear two
supplementary local maxima at x ¼ −2 μm and 2 μm, which
are superimposed to the smoothly increasing profile [similar to
those in Fig. 2(a)]. The corresponding Φ and ∂Φ∕∂x profiles
plotted in Fig. 2(d) are very instructive, since they show that
the combination of both the spherical shape and nonmonotonous
RI profiles may lead to an unexpected behavior. In the situation

(a) (b)

(c) (d)

n(
x,

y=
y C

,z
=

z C
)

n(
x,

y=
y C

,z
=

z C
)

Fig. 2 OPD and OPD derivative functions for spherical shell models with radial RI profiles: (a) monoto-
nously increasing (or constant) RI profiles Δnðx; y ¼ yC ; z ¼ zCÞ (from the border to the center) given by
Eq. (5); (b) corresponding ΦðxÞ (green lines) and ∂Φ∕∂x (red lines) computed from the profiles in (a),
using the first derivative of the Gaussian function as smoothing analysing wavelet (see text); (c) nonmo-
notonously increasing RI profiles Δnðx; y ¼ yC; z ¼ zC Þ described by Eq. (8); and (d) ΦðxÞ (green lines)
and ∂Φ∕∂x (red lines) computed as before from the profiles in (c). α ¼ 0 (respectively 0.25 and 0.5) is
plotted with a green solid (respectively dashed-dotted and dotted) line. The underlying sphere shape is
reported with a black dashed-dotted line. xC ¼ 0, yC ¼ 0, and zC ¼ 0 correspond to the center of the
sphere.
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shown here, not only the underlying object spherical shape is
smeared out, but the local maxima of the index profile are
also strongly damped, giving place to a quasi OPD plateau in
the middle interval [−2 μm, 2 μm]; the higher α is, the flatter
this plateau.

From this last model, we conclude that trusting the OPD iso-
contours to delineate regions of different RIs from a recon-
structed phase image may be totally misleading even though
we can still recover some information on the boundary (internal
and external) properties with the computation of the local
derivative of the OPD function.

3.3 Multiscale Method Based on the Continuous
Two-Dimensional Wavelet Transform

Given that the OPD images are 2-D, computation of the deriv-
atives must be performed along both directions x and y and
ideally we must also include in the computation the possibility
to smooth out the enhanced noise that could come from the
derivative procedure. As originally noticed by Mallat and
coworkers,43,44 the 2-D WT45–47 can be used to revisit
Canny’s multiscale edge detector.48 The principle of this analy-
sis is to smooth the image by convolving it with a filter and then
to compute the gradient of the smoothed image. Let us consider
the two wavelets defined respectively as the partial derivatives
with respect to x and y of a 2-D smoothing function ψðxÞ:

EQ-TARGET;temp:intralink-;e009;63;451Ψ1 ¼
∂ψðxÞ
∂x

and Ψ2 ¼
∂ψðxÞ
∂y

: (9)

The smoothing function ψ must be well localized (around
x ¼ y ¼ 0), isotropic, and dependent on the modulus of x
only. The Gaussian function is the mostly used function that ful-
fills these conditions:

EQ-TARGET;temp:intralink-;e010;63;363ψðxÞ ¼ e−ðx2þy2Þ∕2: (10)

The WT of any 2-D function ΦðxÞ [which is embedded in
L2ðRÞ] with respect to the analyzing wavelets Ψ ¼ ðΨ1;Ψ2Þ
has two components and can be expressed in a vectorial form:

EQ-TARGET;temp:intralink-;e011;63;298TΨ½Φ�ðb; aÞ ¼
�
TΨ1

½Φ� ¼ a−2
R
d2xΨ1½a−1ðx − bÞ�ΦðxÞ

TΨ2
½Φ� ¼ a−2

R
d2xΨ2½a−1ðx − bÞ�ΦðxÞ

�
:

(11)

By a straightforward integration by parts,45 this 2-D WT can be
rewritten as

EQ-TARGET;temp:intralink-;e012;63;217TΨ½Φ�ðb; aÞ ¼ a−2∇
�Z

d2xψ ½a−1ðx − bÞ�ΦðxÞg

¼ ∇fTψ ½Φ�ðb; aÞ
�

¼ ∇fψb;a �Φg: (12)

If ψðxÞ is a smoothing filter like the Gaussian function
[Eq. (10)], then Eq. (12) amounts to the computation of the
gradient vector of ΦðxÞ smoothed by dilated versions ψða−1xÞ
of this filter. If ψðxÞ has some vanishing moments, then
Tψ ½Φ�ðb; aÞ in Eq. (12) is the continuous 2-D wavelet (C2DWT)
of ΦðxÞ,35 provided that ψðxÞ is an isotropic analyzing wavelet.
Further on, we will compute the 2-DWTmodulusMΨ½Φ�ðb; aÞ
and its argument AΨ½Φ�ðb; aÞ:

EQ-TARGET;temp:intralink-;e013;326;734

MΨ½Φ�ðb; aÞ ¼ jTΨ½Φ�ðb; aÞj;
¼ f½TΨ1

½Φ�ðb; aÞ�2 þ ½TΨ2
½Φ�ðb; aÞ�2g1∕2;

(13)

and

EQ-TARGET;temp:intralink-;e014;326;665AΨ½Φ�ðb; aÞ ¼ Arg½TΨ1
½Φ�ðb; aÞ þ iTΨ2

½Φ�ðb; aÞ�: (14)

In practice, at a given scale a, we first compute the 2-D fast
Fourier transform (FFT) of Ψ1 and Ψ2 and we multiply these
images by the FFTofΦ: Ψ̃1 · Φ̃ and Ψ̃2 · Φ̃ and from the inverse
FFT of these products, we get the WTs TΨ1

½Φ� and TΨ2
½Φ�. We

then identify the so-called WTMM as the points b, where the
modulus MΨ½Φ�ðb; aÞ is locally maximum for a given scale
a�. To increase the resolution of this local maxima detection,
we transform the pixelated images into radial representations.
To switch from Cartesian to cylindrical geometry, we interpolate
the WT argument and modulus on 1440 radial axes crossing the
center of the cell with an angular shift of δθ ¼ 4.410−3 rad. On
each of these rotating axes with θ varying from 0 to 2π, we inter-
polate each pixelated image along the radial variable r with a
spatial resolution dr ¼ 1.8 nm. This allows a very acute deter-
mination of both the local angle θ and the argument AΨ of the
WT vector. From the radial coordinates of the WTMMs, we
reconstruct maxima chains as 2-D curves made of a sequence
of neighboring points (distant of less than 2rδθ).

When the maxima chain is circular [Fig. 3(a)] and the
WT vector TΨ½Φ�ðb; aÞ is oriented outward [blue arrows in
Fig. 3(a)], the argument of the WT is equal to the radial angle
θ, Δθ ¼ AΨ½Φ�WTMM − θ ¼ 0 [Fig. 3(b), blue circles]. If the
WT vector is oriented inward [magenta arrows in [Fig. 3(a)],
the argument is equal to π [Fig. 3(b), magenta circles]. If instead
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Fig. 3 WT argument for a spheroid and an ellipsoid cell model: (a) cir-
cular chain model with outward (respectively inward) WT vectors
[TΨ½Φ�ðr; aÞ�; (b) Δθ ¼ AΨ½Φ�WTMM − θ on the WTMM chain line in
(a); (c) ellipsoidal chain model with outward and inward wavelet vec-
tors; and (d) Δθ ¼ AΨ½Φ�WTMM − θ on the WTMM chain line in (c). The
outward (respectively inward) vectors in (a) and (c) correspond to blue
(respectively magenta) circles in (b) and (d).
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we take an ellipsoidal-shaped maxima chain [Fig. 3(c)], the
argument of the WT is no longer a constant function versus the
angle θ. Again we consider the two cases of outward WT vector
[blue arrows in Fig. 3(c) and blue circles in Fig. 3(d)] and inward
WT vector [magenta arrows in Fig. 3(c) and magenta circles in
Fig. 3(d)]. It is important to note that when the WTMM chain
deviates from a circular contour, the angle difference Δθ may
oscillate versus the radial angle θ, with alternating increasing
(θ < 0.15π) and decreasing (0.15π < θ < 0.85π) intervals in
Fig. 3(d). The flatter the shape of the chain, the larger the
slope of these curves (in absolute values). The positive slopes
of Δθ versus θ curves (which may reach vertical lines) corre-
spond to highly curved chains (compared with a circle), whereas
the negative slopes correspond to flatter chains (compared with a
circle).

3.4 Wavelet-Based Analysis of Model Spherical
Cells with Noise

We illustrate the WTMMmethod for detecting the local maxima
chains from noisy data, taking again the previous model of a
spherical object with an internal spherical shell of higher RI
[Eq. (8)], adding a white noise term to the RI function before
computing the OPD image:
EQ-TARGET;temp:intralink-;e015;63;473

Δnðx; zÞ

¼
�fjfðrÞjα þfcos½2πfðrÞ�− 1g2∕6þ ζgΔnC for r ≤ R;

ζ for r > R
:

(15)

ζ is a uniformly distributed random variable (MATLAB random
generator rand) in the ½−1∕10;1∕10� interval, giving a standard

deviation of ζ that we fix to 2.8%. We report in Fig. 4 the WT
modulus and the local WTMM for two scales a of the analyzing
wavelet computed from the noisy shell model [Eq. (15)]. From
the OPD image [Fig. 4(d)] and its x-section through the central
point (x ¼ xC, y ¼ yC) [Fig. 4(a), green line], we do not see
much difference from the noise-free profile in Fig. 2(d).
However, when computing the derivative with a small value of
the scale parameter a [red curve in Fig. 4(a) and 2-D image of
Fig. 4(b)], we notice that the background white noise that we
have added to the RI introduces fluctuations that dramatically
perturb the detection of the local maxima of the WT modulus
[Fig. 4(c)]. To circumvent this problem, we follow a strategy
recommended in Ref. 49 which amounts to increasing the
scale parameter a until the number of local maxima chains no
longer changes and their structure becomes more regular and
robust. In that simple theoretical example, by simply increasing
the scale a by a factor of 5 [Fig. 4(e)], we get the three expected
maxima chain lines corresponding respectively to the outer
boundary and the two (internal and external) boundaries on
the internal concentric shell of a higher RI [Fig. 4(f)]. In this
example, once the scale a is chosen correctly to smooth down
the background noise, the maxima lines predicted by the model
are recovered.

4 Application of the Wavelet Transform
Modulus Maxima Method to Diffraction
Phase Microscopy Images of Living Cells

To test the WTMM detection of phase boundary contours on
DPM images of living cells, we first considered RBCs as an
example of anucleated cells with an almost homogeneous cyto-
plasm (RI ∼ 1.401� 0.006)50–52 with a high concentration of
hemoglobin. The shape of healthy, unstressed RBCs has been
fully described in the literature26,52–55 with a biconcave equation

Fig. 4 WTMM chain line detection from the OPD of a spherical cell model with noise: (a) OPD ΦðxÞ
(green line) computed from model [Eq. (15)] for α ¼ 0.25 and its WT modulus MΨ½Φ�ðb; aÞ estimated
for two scales a ¼ 2 (red) and 10 (magenta dashed line); (b) two-dimensional (2-D) color-coded
image of MΨ½Φ� for a ¼ 2, color coded from dark blue to red in the interval [0, 0.001]; (c) local maxima
of MΨ½Φ� for a ¼ 2; (d) 2-D color-coded representation of Φ (in the interval [0, 133 nm]), computed from
model [Eq. (15)]; (e) 2-D color-coded image of MΨ½Φ� for a ¼ 10, color coded in the interval [0, 0.001];
and (f) local maxima of MΨ½Φ� for a ¼ 10.
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for their thickness h versus the radial coordinate r, as observed
experimentally in isotonic buffers:
EQ-TARGET;temp:intralink-;e016;63;712

hðrÞ ¼ zM − zm ¼
�
1 −

�
2r
d

�
2
	
1∕2

×
�
0.72þ 4.512

�
2r
d

�
2

− 3.426

�
2r
d

�
4
	
: (16)

4.1 Red Blood Cells

A typical healthy RBC has a maximum and minimum thick-
nesses of 2.84 and 1.44 μm, respectively, and a diameter d ¼
7.5� 0.5 μm. We recognize in Fig. 5(a) the characteristic
OPD “donut” shape of a RBC,26,55 with a central hole and cylin-
drical symmetry. This example is particularly interesting to test
the performance of WTMM detection method, as shown in
Figs. 5(b)–5(d). Figure 5(c) shows the corresponding sections
of Φ (green) and MΨ½Φ� (red) along the x direction, taken at
the barycenter of the cell. The experimental green profile in
Fig. 5(c) is in very good agreement with the biconcave shape
(black line) predicted by Eq. (16). This method detects two
WTMM chains, one exterior and one interior. Note that the
exterior WTMM chain is color coded in hot (red to brown
red) colors in Fig. 5(d) as an indicator of larger modulus values
than the interior WTMM chain coded in cold (dark blue to blue)
colors. The plot of the argument of the WT AΨ½Φ� versus θ
along each of the two WTMM chains shows a clear separation
of the two chains [Fig. 5(e)]. The exterior chain corresponds
roughly to the diagonal (red to brown red color) and the interior
chain is globally shifted from the diagonal by π. This shift cor-
responds simply to the inward direction of the wavelet vector (as
already illustrated in Fig. 3). The two plots of the evolution of
Δθ ¼ AΨ½Φ� − θ in Fig. 5(f) for each WTMM chain confirm the
reversal of the direction of the wavelet vector from the outer to

the inner WTMM chain. Indeed this vector gives the direction of
the steepest descent of the WT modulus. More interestingly, we
note that the fluctuations of Δθ on the inner chain are much
larger than on the outer chain, meaning a more irregular shape
(loss of circularity) distribution of the internal part of this cell.
Given the predicted minimal thickness of a RBC,26,52–55

hmin ∼ 1.44 μm, we can use the averaged Φ values in the hole
of this RBC Φmin ¼ 90� 5 nm ¼ hminΔn to estimate the RI
drop: Δn ¼ 0.063� 0.004, leading to the following estimate
of the RBC RI: n ¼ 1.333þ 0.063 ¼ 1.396� 0.004.

4.2 Primary Immature Blood Cells

We consider now spherical mononucleated immature blood cells
(nonadherent). These CD34+ cells are sorted from the bone mar-
row or peripheral blood by the CD34 antigen; they are a mixture
of hematopoietic stem and progenitor cells with various degrees
of maturity. In healthy conditions, these cells remain mostly in
the bone marrow. In chronic myeloid leukemia (CML), these
immature cells can also be found in the blood. These cells
have a rather high nuclear:cytoplasmic ratio (N∶C) in the inter-
phase.56–58 This ratio indicates the maturity of the cell; for exam-
ple for immature leukocytes, it may reach 4∶1.59 If we assume
that the nucleus is a concentric sphere (which can be applied to
CD34+ cells) of the cell of radius RN , a 4∶1 N∶C would give
RN ¼ ð4∕5Þ1∕3 · RC ∼ 0.93RC (RC is the cell radius). If RC ¼
4 μm, this would give RN ¼ 3.7 μm, leaving only a 300-nm dis-
tance in between the outer cytoplasmic and the inner nuclear
membranes. Such a large nucleus should not be distinguishable
from the outer membrane shell in our microscope device, since
one fringe produced by the grating is too thick ∼400 nm (in the
scale of the cell). If the N∶C ratio drops to 3∶1, the radius of
the nucleus decreases only by 70 nm, which should also be
undetectable with our optical setup. The impact of the nucleus
should, therefore, only be visible on the amplitude of the OPD
Φ and/or its derivative. However, we should be able to detect

Fig. 5 WTMM chain detection from the OPD of a living red blood cell (RBC): (a) OPD phase image, color
coded from dark blue (Φ ¼ 0 nm) to brown red (Φ ¼ 163 nm); (b)MΨ½Φ�ðb; aÞ for a ¼ 15, color coded in
the interval [0, 0.09]; (c) horizontal sections through the barycenter of the cell of the OPD Φ (green line)
and of MΨ½Φ� (red line). The black line corresponds to the biconcave shape predicted by Eq. (16);
(d) WTMM chains of the RBC cell shown in (a), color coded according to the value of MΨ½Φ�;
(e) plot of the argument AΨ½Φ�WTMM of the WTMM chains versus θ [same color coding as in (d)];
and (f) plot of Δθ ¼ AΨ½Φ�WTMM − θ versus θ.
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internal structures of the nuclei on this type of cells. Figure 6
illustrates the WTMM boundary detection on a rounded nonad-
herent living CD34+ cell. The outer boundary of this spherical
cell is detected straightforwardly by the maxima chain with
maximum mean hMΨ½Φ�WTMMi. While the external contour
of the cell is very circular [AΨ½Φ�WTMM versus θ is a straight
line in Fig. 6(e)], with few fluctuations [Fig. 6(f)], the internal
shape of Φ [Fig. 6(a)] presents a single slightly off-centered
small bump, leading to the conical shape of the Φ profile in
Fig. 6(c) (green line). If we fit the outer part of this Φ profile
by the prediction for a homogeneous sphere with radius RC ¼
4.5� 0.08 μm [α ¼ 0 in Eq. (7)]:

EQ-TARGET;temp:intralink-;e017;63;602ΦðxÞ ¼ 2ΔnC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðx2 þ y2Þ

q
; (17)

we get the following estimate for its internal index: n ¼ 1.365�
0.004 [black line in Fig. 6(c)]. Another way to obtain an estimate
of the internal cell index is to compute the optical path volume
(OPV):

EQ-TARGET;temp:intralink-;e018;63;521OPV ¼
Z

yM

ym

Z
xM

xm

Z
zMðxÞ

zmðxÞ
Δnðx; y; zÞdz dx dy: (18)

For the discretized Φ images, we simply compute

EQ-TARGET;temp:intralink-;e019;63;465OPV ¼ Sxy

X
intra

OPD; (19)

where Sxy is the area of a pixel. For a homogeneous sphere with
RI drop Δn, the OPV is that of an oblate ellipsoid with height
RΔnC (z direction) and radius R in the ðx; yÞ plane:

EQ-TARGET;temp:intralink-;e020;63;389OPV ¼ 4

3
πR3

CΔnC ¼ VSΔnC; (20)

with VS the formal volume of the perfect spherical cell of the
same radius RC. From the OPD image of Fig. 6(a), we obtain

OPV ¼ 13.84 μm3, which with RC ¼ 4.5 μm leads to ΔnC ¼
0.0365� 0.005 and thus to a cell averaged RI n ¼ 1.369�
0.005. This estimation is better when matching the averaged
cell RI than the above estimation obtained from a single ΦðxÞ
profile since it embraces the whole cell phase topography.
Globally, we can conclude from this example that this primary
blood cell has an average RI which is not much larger than what
is known for eukaryotic cell cytoplasmic zones.60 This OPV is
an interesting quantity that will help us comparing different
cells. In particular, by dividing this OPV [Eq. (20)] by the pro-
jected area of the cell to the power 3∕2: S3∕2C ¼ ðPintraSxyÞ3∕2,
we get a dimensionless quantity that can be computed to com-
pare adherent and nonadherent cells:

EQ-TARGET;temp:intralink-;e021;326;591hΔn;effi ¼
�
3

ffiffiffiffiffi
4π

p
OPV∕S3∕2C

ΔnC; for spherical cells
: (21)

This quantity gives the same prediction for the cell RI as pre-
viously estimated, if the cell is spherical. If the cell is not spheri-
cal, this quantity provides some estimate of the effective density
of the cell and its flattening under adhesion; the flatter the cell
the smaller hΔn;effi gets.

The small off-centered dome of the CD34+ cell shown in
Fig. 6 corresponds to a higher density zone of the nucleus
which is mainly detectable by the WTMM method on its border
oriented toward the center of the cell image (computed from the
center of mass of the projected shadow of the cell image onto the
x plane, where its gradient is stronger). The outer contour of this
small dome is shrouded in the nuclear-extracellular borders and
is hardly detectable due to a limited number of fringes per
micrometer.

It is interesting to compare this WTMM analysis of a domed
CD34+ cell with a flatter CD34+ cell from the same bone mar-
row sample (Fig. 7). This new cell has an average radius of
5.53� 0.18 μm and is only 23% larger than the previous
CD34+ cell (Fig. 6). Its OPD topography is drastically different,
since its internal nucleus is more inhomogeneous with a larger

Fig. 6 WTMM method analysis of the OPD of a living domed CD34+ cell: (a) OPD phase image, color
coded from dark blue (Φ ¼ 0 nm) to brown red (Φ ¼ 320 nm); (b)MΨ½Φ�ðb; aÞ for a ¼ 15, color coded in
the interval [0, 0.16]; (c) horizontal sections through the barycenter of the cell of the OPD Φ (green line)
and of MΨ½Φ� (red line). The black line corresponds to the OPD profile for a homogeneous sphere with
radius 4.5 μm and index n ¼ 1.365; (d) WTMM chains of the CD34+ cell shown in (a), color coded
according to the value of MΨ½Φ�; (e) plot of the argument AΨ½Φ�WTMM of the WTMM chains versus θ
[same color coding as in (d)]; and (f) plot of Δθ ¼ AΨ½Φ�WTMM − θ versus θ.
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set of WTMM chains. One may wonder if this roughening of the
internal core of the cell could be accounted for by its larger size,
which would facilitate the local maxima detection. Actually, the
threshold for local maxima detection is chosen to be small
enough (1 × 10−3) to collect all the local events given the wave-
let scale a. The occurrence of these WTMM chains is really
reflecting a modification of the internal structure of the cell.
Another way to confirm this transformation is to compare the
OPVs: in that latter case,OPV ¼ 13.3 μm3, which, surprisingly,
is very close to the OPVof the previous CD34+ cell. According
to Eq. (20), if we divide the OPV by the volume of the ideal
sphere with the same radius RC ¼ 5.53 μm (VS ¼ 708 μm3),
we get an average RI drop: ΔnC ¼ 0.0188� 0.005, leading to
a much smaller averaged RI of the cell: nC ¼ 1.352� 0.005.
Since the OPV remains invariant, we know that the total material
of the cell is not changed. This means that its apparent surface
and its internal structure have changed, possibly due to a local
condensation of the intranuclear material. Since we did not stain
the nucleus to avoid any alteration of the cell with an external
agent that could also modify the interferometric measure, we
cannot conclusivelydetermine this possibility. Further experi-
ments could be needed to confirm this hypothesis, in particular
by following the transformation of a living cell during a whole
division cycle.

4.3 Cell Models for Hematopoietic Stem Cells

Primary CD34+ cells are much more difficult to maintain alive
than laboratory cell lines. We used the TF1 cell line as a model
of immature CD34+ cells, because it displays clonogenic ability
similar to human bone marrow CD34+ cells and is able to differ-
entiate into myeloid lineages.61 As compared with a wild-type or
GFP-transduced TF1 cells, BCR-ABL-transduced (CML onco-
gene) TF1 cells (TF1-BCR-ABL) increase their transcriptional
levels of BCR-ABL and ABL.34 These cells could bring infor-
mation on the impact of BCR-ABL oncogene transduction on

immature cells. Figure 8 shows the results of the WTMM analy-
sis of the OPD of a nontransformed (control) TF1-GFP cell.
Immediately, we notice that the size of this cell (RC ¼
8.22� 0.2 μm) is definitely larger than that of the CD34+ pri-
mary cells. This cell looks rather homogeneous in its composi-
tion because we do not detect so many WTMM chains. The
parametrization of the OPD section [Fig. 8(c)] and the compu-
tation of the OPV ¼ 76 μm lead to a mean RI, nC ¼
1.363� 0.004, which is not very far from the one estimated
for the first domed CD34+ cell (Fig. 6). It seems that even if
this cell has significantly increased its size compared with pri-
mary cells, its optical properties are not very different. In the
sampling of these control and transformed cells, we have
observed very drastic changes, as illustrated in Fig. 9, for the
TF1-GFP-BCR-ABL cell line whose morphology is dramati-
cally different from the TF1-GFP cell shown in Fig. 8. This
type of transformation occurs in less than 10% of the cells trans-
duced by the BCR-ABL oncogene, but since it is accompanied
by a drastic reorganization of the cytoskeleton, we think it is
important to show how the QPM-WTMM method can interpret
and quantify this transformation. BCR-ABL has previously
been demonstrated to bind actin filaments (F-actin),62 one of
the major force transducers in cellular adhesion and motility,63

and to induce its redistribution into punctate, juxtanuclear aggre-
gates,64 implying a reorganization of the whole cytoskeleton. In
Fig. 9, we immediately notice that the cell radius has increased
by a factor ∼3∕2. The number of chains detected by the WTMM
method has also increased by a factor ∼5 (we count only the
chains with a length larger than 100 nm, as smaller chain detec-
tion may be spoiled by background noise). The mean RI of this
TF1-GFP-BCR-ABL cell, computed from the OPV∕VS ratio
[Eq. (20)], is not distinguishable from the mean RI of the
previous TF1-GFP cell. When comparing Figs. 8(b) and 8(c)
and 9(b) and 9(c), we realize that the difference between the
2-D OPD derivatives of control and cancer cells is higher in the
inner cell structures (MΨ½Φ� ¼ 0.011� 0.009 for TF1-GFP

Fig. 7 WTMMmethod analysis of the OPD of a living flattened shape CD34+ cell: (a) OPD phase image,
color coded from dark blue (Φ ¼ 0 nm) to brown red (Φ ¼ 230 nm); (b) MΨ½Φ�ðb; aÞ for a ¼ 15, color
coded in the interval [0, 0.092]; (c) horizontal sections through the barycenter of the cell of the OPD
Φ (green line) and ofMΨ½Φ� (red line). The black line corresponds to the OPD profile for a homogeneous
sphere with radius 5.53 μm and index n ¼ 1.35; (d) WTMM chains of the CD34+ cell shown in (a), color
coded according to the value ofMΨ½Φ�; (e) plot of the argumentAΨ½Φ�WTMM of theWTMM chains versus θ
[same color coding as in (d)]; and (f) plot of Δθ ¼ AΨ½Φ�WTMM − θ versus θ.
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cell and 0.035� 0.02 for TF1-GFP-BCR-ABL cell) than along
the outer contour (MΨ½Φ� ¼ 0.061� 0.047 for TF1-GFP cell
and 0.07� 0.0085 for TF1-GFP-BCR-ABL cell). This internal
reorganization of the TF1-GFP-BCR-ABL is also visible on
the higher dispersion of the WT arguments [Figs. 8(e) and 8(f)
and 9(e) and 9(f)]. If this preliminary discussion on these two
cells does not allow us to make general conclusions on the trans-
formation of TF1 cells upon BCR-ABL oncogen transduction, it

simply illustrates the fact that the internal structure of these cells
may appear very different through QPM analysis.

We repeated this analysis on two large sets of TF1-GFP (294)
and TF1-GFP-BCR-ABL (216) cells, and we computed the stat-
istical distributions of the mean radius of the outer chain, the
OPV, the mean RI drop [computed from Eq. (20)], the angle
difference Δθ, the number of chains per cells, and the chain
length (Fig. 10). The cell radius distribution is clearly shifted

Fig. 8 WTMMmethod analysis of the OPD of a living hematopoietic model cell TF1-GFP: (a) OPD phase
image, color coded from dark blue (Φ ¼ 0 nm) to brown red (Φ ¼ 507 nm); (b) Mψ ½Φ�ðb; aÞ for a ¼ 15,
color coded in the interval [0, 0.2]; (c) horizontal sections through the barycenter of the cell of the OPD Φ
(green line) and of MΨ½Φ� (red line). The black line corresponds to the OPD profile for a homogeneous
sphere with radius 8.22 μm and index n ¼ 1.363; (d) WTMM chains of the TF1-GFP cell shown in (a),
color coded according to the value of MΨ½Φ�; (e) plot of the argument AΨ½Φ�WTMM of the WTMM chains
versus θ [same color coding as in (d)]; and (f) plot of Δθ ¼ AΨ½Φ�WTMM − θ versus θ.

Fig. 9 WTMM method analysis of the OPD of a living TF1-BCR-ABL cell: (a) OPD phase image, color
coded from dark blue (Φ ¼ 0 nm) to brown red (Φ ¼ 1050 nm); (b)MΨ½Φ�ðb; aÞ for a ¼ 15, color coded in
the interval [0, 0.2]; (c) horizontal sections through the barycenter of the cell of the OPDΦ (green line) and
ofMΨ½Φ� (red line). The black line corresponds to the OPD profile for a homogeneous sphere with radius
13.77 μm and index n ¼ 1.36; (d) WTMM chains of the TF1-GFP-BCR-ABL cell shown in (a), color
coded according to the value ofMΨ½Φ�; (e) plot of the argumentAΨ½Φ�WTMM of the WTMM chains versus
θ [same color coding as in (d)]; and (f) plot of Δθ ¼ AΨ½Φ�WTMM − θ versus θ.

Journal of Biomedical Optics 096005-10 September 2015 • Vol. 20(9)

Martinez-Torres et al.: Deciphering the internal complexity of living cells with quantitative phase microscopy. . .

Downloaded From: http://biomedicaloptics.spiedigitallibrary.org/ on 09/05/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



and spread to larger values with RC ¼ 7.2� 1.2 μm for the
TF1-GFP cells and RC ¼ 8.2� 2.1 μm for the TF1-GFP-
BCR-ABL cells. The OPV follows the same trend with OPV ¼
56� 3 μm3 for the TF1-GFP cells and OPV ¼ 89� 5 μm3 for
the TF1-GFP-BCR-ABL cells (we use the error of the mean for
these quantities). Again, we note that the OPV values are much
more dispersed for the transformed cells. The oncogene trans-
duction seems to increase the variability of the cell structural
properties. One more surprising result is that the mean RI
drop (inner to outer media) of these cells is slightly decreasing
from 0.0351� 0.0075 to 0.0331� 0.019, suggesting that the
apparent swelling of the TF1-GFP-BCR-ABL cells is not
followed by an adapted increase of the intracellular concentra-
tion of proteins to keep the mean RI invariant. The distribution
of angle differences Δθ follows a power law distribution
PðΔθÞ ∝ jΔθj−α, with α ¼ 1. The fact that the shape of this dis-
tribution does not change when switching from control to onco-
gene-transduced TF1 cell means that the statistics of angular
orientation of the maxima chains are not immediately impacted
by the cell transformation. In contrast, the number of chains per
cell is affected by oncogene transduction. The median value of
the two distributions in Fig. 10(e) increases from 21 to 30 chains
per cell (considering only the chains of length larger than
100 nm). Again, we observe that the distribution of these chain
numbers for TF1-GFP-BCR-ABL cells is more spread out than
for control TF1-GFP cells. The distribution of length of these
chains (above 100 nm) follows a smoothly decreasing (logarith-
mic decrease) function for chains smaller than 5 μm, which
drops rapidly to zero for larger chains. The peak popping up

around 45 μm corresponds to the outer chain length, and the
slight flattening and shifting to higher values of this peak for
transduced TF1-GFP-BCR-ABL cells mean that the circumfer-
ence of these cells increases (as their radius) and is more variable
than for nontransformed cells. This observation corroborates our
previous remarks on the cell radius distribution.

5 Conclusions
The interpretation of quantitative phase images of living cells
and their inversion for recovering index profiles is a very
tough task, since a living cell is rarely a homogeneous media,
and even worse its internal bodies (cytoskeletal networks of fil-
aments, endoplasmic reticulum, golgi, mitochondrial network,
and intranuclear structures) are not invariant during the cell
cycle. It is, therefore, very difficult to predict a well-established
distribution of the RIs of a living cell. For instance, the inte-
grated RI values over the cell thickness extracted from the
phase images are not systematically organized along closed
domains, strongly challenging traditional interpretation of phase
images by phase isocontours. When the phase profiles are not
monotonous nor smooth functions, the derivatives of the phase
may display local maxima that reflect a local change of RI or the
topography of the cells. We show here that the detection of these
local maxima may help us deciphering the internal complexity
of living cells. The introduction of the WTMMmethod to detect
the maxima of the derivative of the phase allows a robust and
automatized reconstruction of their outer and inner boundary
chains. From these chains, morphological and global RI char-
acterizations of living blood cells can be performed. The
reported comparison of the results obtained for erythrocytes, pri-
mary immature hematopoietic (CD34+), and model (TF1) cells
provides a good survey of the efficiency of this method to dis-
tinguish healthy from cancer cells. In particular, this study sug-
gests that the RI and its intracell roughening may serve as a
quantitative marker for cancer cell detection.
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