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Wireless sensor networks are deployed to monitor physical phenomena. The accuracy of the information collected depends on the position of sensor nodes. These positions must meet the application requirements in terms of coverage and connectivity, which therefore requires the use of deployment algorithms.

This thesis focuses on the deployment of wireless sensor nodes: rstly when the nodes are autonomous, and secondly when they are static and the deployment is assisted by mobile robots. In both cases, this deployment must not only meet the application's coverage and connectivity requirements, but must also minimize the number of sensors needed while satisfying various constraints (e.g. obstacles, energy, fault-tolerant connectivity).

We propose several autonomous deployment algorithms, based on the virtual forces strategy to monitor 2D and 3D areas. Since the virtual forces strategy suers from the node oscillations problem, we have designed the ADVFA algorithm that adapts the distance between neighboring sensor nodes to the number of connected nodes. ADVFA avoids useless moves in order to reduce node oscillations. We also propose the GDVFA algorithm to cope with the node oscillations problem. GDVFA is a hybrid algorithm that combines the virtual forces strategy with the grid strategy to stop node oscillations. In addition, since the monitoring area may be unknown and contain obstacles, we propose the OA-DVFA algorithm. For a 3D area, we have designed the 3D-DVFA algorithm, based on a 3D version of the virtual forces algorithm.

Autonomous deployment may be expensive when the number of mobile sensor nodes is very high. In this case, an assisted deployment may be necessary: the nodes' positions being pre-computed and given to mobile robots that place a static sensor at each position. To compute the optimized number of nodes needed to fully cover a 2D area containing obstacles, we propose the OAD-Area algorithm. We also propose OAD-PoI, to optimize the relay node positions and ensure a fault-tolerant connectivity between each Point of Interest (PoI) and the sink. Once the sensor node positions have been computed, they can be given to mobile robots to carry out the actual deployment. We adopt two approaches to optimize the deployment duration. The rst one is based on game theory to optimize the length of the paths of two robots (TRDS), and the second is based on a multi-objective optimization, for multiple robots (MRDS). The objectives to be met are: optimizing the duration of the longest tour, balancing the durations of the robot tours and minimizing the number of robots used, while bypassing obstacles.
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Finally, this research would not have been possible without the nancial assistance of the Cluster CONNEXION (digital command COntrol for Nuclear EXport and renova-tION) project. Wireless Sensor Networks (WSNs) constitute an emerging technology that has caught the interest of many researchers over the last few years. An increasing number of applications are supported by wireless sensor networks, and cover areas as diverse as structural health monitoring, smart metering, industrial process monitoring, precision farming, smart cities, control of trac lights, smart homes, etc.

A WSN is a wireless network consisting of a set of static or mobile sensor nodes scattered over an area of interest to monitor physical or environmental conditions. These sensor nodes may be of dierent types such as seismic, thermal, infrared, radar etc, and they are able to monitor a wide variety of ambient conditions that include temperature, humidity, vehicular movement, lighting conditions, pressure, soil makeup, noise levels, etc.

Node deployment is a fundamental issue in WSNs. A proper node deployment scheme can signicantly improve the performance of the data gathering process. Furthermore, it can extend the lifetime of WSNs by minimizing energy consumption. Depending on the size of the entity (area, barrier or point of interest) monitored, a multi-hop network may need to be deployed to enable the monitoring of this area as well as the delivery of the collected data. To meet the application requirements, the deployment of sensor nodes must ensure coverage and connectivity properties. Roughly speaking, coverage refers to the ability to detect events occurring in the entity monitored, whereas connectivity refers to the ability to report this event to a special wireless node, called the sink, in charge of processing the data gathered from the sensor nodes.

In many applications, sensors are deployed randomly in a specic area. This random deployment results in some regions being highly covered while others have just a few scattered sensors. As a result, many regions of the deployed area cannot be monitored. Such a deployment may be suitable for some applications, such as forest re monitoring, which tolerates partial coverage in wet seasons. However, many other critical applications require full coverage of the area monitored such as monitoring temporary worksites or monitoring nuclear plants. Consequently, a redeployment algorithm is necessary to place sensors in appropriate positions to ensure full area coverage in order to detect each event occurring in this area.

Sensor deployments dier in their goals, their constraints and their implementation (e.g., centralized versus distributed). For cost reasons, most deployments aim at minimizing the number of sensor nodes deployed to achieve the application requirements. This goal is the same as minimizing the deployment cost, which mainly depends on the number of sensor nodes deployed. Another goal that is frequently encountered in crisis situations (e.g., after a disaster) is that a wireless sensor network must be deployed as quickly as possible in order to, on the one hand, help rescuers to save victims, and on the other hand, assist in damage assessment. In such cases, the goal is to minimize the time needed to deploy an operational wireless network. Since sensors are battery equipped, the minimum time spent in the deployment will help to save energy and prolong network lifetime. This goal is also targeted in hostile environments (e.g radiation), where the exposure duration must be reduced.

More precisely, in this work we focus on deployment algorithms in WSNs:

• Goal: to ensure full coverage (of an area or Points of Interest, PoI) and maintain network connectivity. • Under the following constraints:

Sensor nodes may be mobile and autonomous or they may be static. When sensor nodes are autonomous, the deployment is termed self deployment. In self deployment, sensor nodes cooperate together to compute their nal positions and move to them. However, when sensor nodes are static, the deployment is computed by a central entity. Then, a human or one or multiple mobile robot(s) should place sensor nodes in their nal positions. Minimum number of nodes to minimize the deployment cost. Connectivity: fault-tolerance. Network robustness can be ensured if at least two node-disjoint paths exist between each sensor node and the sink. Additional relay nodes may be needed between sensor nodes and the sink to enhance network robustness. Presence of obstacles. In many studies, it is assumed that the entity monitored does not contain obstacles. However, this assumption is not realistic. Then, deployment algorithms should be able to cope with obstacles since obstacles prevent the physical presence of sensor nodes and may prevent the connectivity between them. Obstacles may be transparent or opaque, and their positions and shapes may be known in advance or unknown.

Main contributions

Figure 1.1 depicts the positioning of the main contributions of this PhD thesis. The gure illustrates the problem tackled, the approaches adopted to solve it and the dierent solutions to meet our goal. Our contributions are presented in red rectangles.

Since deployment algorithms for wireless sensor networks, have been well studied, we start our study by analyzing the state of the art of coverage and connectivity problems and deployment algorithms proposed in the literature. We distinguish between dierent targets to monitor (i.e. area, barrier and point of interest), coverage problems (i.e. full or partial) and connectivity problems (i.e. permanent or temporary). For each problem we give a corresponding use case. Then, we propose a detailed analysis and classication of existing deployment algorithms. Following on from this study of the state of the art, we put forward some recommendations for designing a deployment algorithm. We then address two coverage problems in WSNs: the full area coverage problem and the Point of Interest (PoI) coverage problem with permanent connectivity. We propose two approaches to ensure full coverage and maintain network connectivity.

• Autonomous deployment approach, where sensor nodes are autonomous. To ensure full area coverage, we propose deployment algorithms based on the Virtual Forces strategy. We adopt the Virtual Forces strategy in order to take advantage of the spreading out of nodes over the whole area due to attractive and repulsive forces while maintaining network connectivity. First, we improve the Distributed Virtual Forces Algorithm (DVFA) to cope with node oscillations. We propose the Adaptative Distributed Virtual Forces Algorithm (ADVFA) to reduce node oscillations caused by the virtual forces and the border eects. Then, we propose a hybrid solution, Grid Distributed Virtual Forces Algorithm (GDVFA), based on the Grid strategy and the Virtual Forces strategy to eliminate node oscillations and save energy consumption. Since obstacles always exist in the real environment, we propose the Obstacle Avoidance Distributed Virtual Forces Algorithm (OA-DVFA) to avoid known and unknown obstacles. To deploy sensor nodes in a 3D area we propose the 3D Distributed Virtual Forces Algorithm (3D-DVFA).

• Assisted deployment, where sensor nodes are static and need to be deployed by a human or (multiple) mobile robot(s). We propose an optimized deployment that ensures full coverage of an irregular-shaped area containing obstacles while minimizing the total number of sensor nodes deployed. To ensure PoI coverage and connectivity, we propose an optimal deployment based algorithm that provides k-connectivity

where k node-disjoint paths from each PoI to sink are ensured. This algorithm provides a robust and fault-tolerant network.

In both cases of assisted deployment (i.e. area or PoI coverage), we dene an optimization problem called the Robot Deploying Sensor nodes problem (RDS) to optimize the delay needed by the robot to place sensor nodes in their positions. Depending on the number of robots available, we propose various approaches (e.g. game theory, multi-objective optimization problem (MRDS) with genetic algorithms) to optimize robot trajectories and minimize the deployment duration. Finally, we describe use cases in an industrial context (e.g. in nuclear power plants) where such algorithms can be applied, and we discuss how to improve their accuracy, taking into account real measurements made in the wireless sensor network. This dissertation is organized as follows:

• Chapter 1 introduces the context and the motivations of our work and describes our main contributions.

Part I: State of the art

To properly understand coverage and connectivity issues, the various constraints impacting the deployment, as well as the dierent types of deployment algorithms existing in the literature, we provide a comprehensive study of the state of the art in this part.

• Chapter 2 presents a state of the art on coverage and connectivity problems in WSNs.

• Chapter 3 analyzes deployment algorithms in WSNs.

Part II: Models and theoretical computation for an optimized deployment in 2D and 3D

An optimal deployment is a deployment that ensures full coverage and maintain network connectivity of the entity monitored while using the optimal number of sensor nodes. To obtain such a deployment, some constrains on sensing and communication range should be satised and sensor node positions should respect an appropriate pattern. In this part, we provide theoretical models and computations of the 2D and 3D optimal deployments.

• Chapter 4 presents the dierent models of sensing and communication ranges, area to be monitored and obstacles in both 2-dimension (2D) and 3-dimension (3D) deployments.

• Chapter 5 proposes a theoretical computation of on the one hand the optimal deployment in a 2-dimension area and on the other hand of the optimized deployment in a 3-dimension area.

Part III: Autonomous deployment When sensor deployment is autonomous, all sensor nodes are mobile, able to communicate and cooperate together to determine their nal position in the area considered. The virtual forces strategy is adopted in the autonomous deployment. Due to its principles, sensor nodes are able to spread in the whole 2D or 3D area and to be uniformly deployed. However, the virtual forces strategy suers from node oscillations, where sensor nodes still oscillate even if full coverage is ensured. Autonomous deployment based on virtual forces is studied in this part, where we propose algorithms to cope with node oscillations and the presence of known or unknown obstacles. We also extend the deployment algorithm based on virtual forces to operate in 3D space.

• Chapter 6 presents self deployment algorithms based on the virtual forces strategy: DVFA, ADVFA, GDVFA, OA-DVFA and 3D-DVFA. Three problems are studied in this chapter: the node oscillations problem, the presence of obstacles (known or unknown) and 3D deployment.

Part IV: Assisted deployment When the deployment is assisted, sensor node positions should be computed by a central entity and then given to mobile robots in charge of placing sensor nodes at their positions. In this part, we rst propose a solution to compute an optimized deployment that ensures area coverage and network connectivity. Then, we optimize the trajectory of robots deploying sensor nodes in an area containing obstacles.

• Chapter 7 proposes two centralized algorithms for an optimized deployment in the presence of obstacles: the rst one, called OAD-Area, aims at ensuring full area coverage and connectivity, whereas the second algorithm, called OAD-PoI, aims at ensuring PoIs coverage and connectivity.

• Chapter 8 describes two solutions to optimize the trajectory of the robot(s) in charge of placing sensor nodes in their positions and minimize the deployment duration. The rst solution, called TRDS, is based on game theory approach and the second one, called MRDS, is based on multi-objective optimization approach.

Part V: Discussion and conclusion

• Chapter 9 shows how to extend our solutions when some constraints due to the real environment exist, and then concludes this dissertation and presents our perspectives.

Introduction

A Wireless Sensor Network (WSN) consists of a number of sensor nodes working together to monitor a given entity (e.g. area, barrier, point of interest). The main functionalities of a sensor node are: sensing the environment and reporting the data it gathers to a special node called the sink. Hence, the monitoring task depends on two major issues:

• Coverage of the entity to allow sensor nodes to detect events,

• Network connectivity to allow the events detected to be reported to the sink.

In this chapter we focus on dierent types of coverage and connectivity problems in WSNs. We start by giving some representative use cases matching dierent monitoring applications. Then, we detail the dierent coverage and connectivity problems in WSNs. After that we present the relationship between coverage and connectivity based on the values of the sensing range and communication range. Finally, we conclude.

Denition of coverage and connectivity problems in WSNs

In this section, we detail the dierent coverage and connectivity problems in wireless sensor network.

Coverage problems

An area is said to be covered if and only if each location in this area is within the sensing range of at least one active sensor node.

In our work, we distinguish three types of coverage problems : Area coverage, Point coverage and Barrier coverage as illustrated in Figure 2.1.

Area coverage

In the area coverage problem, the goal is to cover the whole area. Depending on the application requirements, full or partial coverage may be required. However, if the number of sensors is not sucient, full coverage cannot be achieved and the goal becomes maximizing the coverage rate. • Partial coverage In some applications, full coverage of a given area is not required, in which case partial coverage ensuring a given degree of coverage is sucient and acceptable. Partial coverage can be dened as the set of sensor nodes that cover at least θ percent of the entire area and is referred to as θ-coverage where 0 < θ < 1. Generally, environment monitoring applications require only partial coverage. An example of such an application is temperature-sensing applications where it is sucient to sense the temperature of 80% of the region to know the temperature in this region. Another example is forest re applications where full coverage of the forest is required in the dry season whereas only an 80% coverage rate is required in the rainy season. Partial coverage is a way of reducing energy consumption of sensor nodes and prolonging network lifetime since the number of sensor nodes deployed is less than the number required to fully cover the area considered. Figure 2.3 depicts sensor deployment ensuring partial coverage.

Point coverage

In many applications, monitoring the whole area might be unnecessary and it is sucient to monitor only some specic points. Each specic point should be covered by at least one sensor node. Consequently, the deployment cost will decrease because of the smaller number of sensors used compared to the number required to cover the entire area. Examples of point of interest monitoring, include monitoring of enemy troops and bases, and capturing real-time video material of possibly mobile targets. In such applications, mobile • Mobile PoI A point of interest is considered mobile if it changes its location. We distinguish two solutions to cover such a mobile PoI. If mobile sensors are used, then they should be deployed in such a way as to cover this mobile PoI and keep track of it when it moves to a new position. If static sensors are deployed, they should be placed such that for each new position of the PoI there is at least one sensor node that can cover it. The monitoring of these points can be permanent (each point is permanently monitored by at least one sensor) or not. In the latter case, a mobile sensor should visit this point to collect its data.

Barrier coverage

In several important applications, sensors are not designed to monitor events inside the area considered but to detect intruders that attempt to enter this area. Examples of such applications involving movement detection are the deployment of sensors along international borders to detect illegal intrusion, around forests to detect the spread of forest re, around a chemical factory to detect the spread of lethal chemicals, and on both sides of a gas pipeline to detect potential sabotage. Barrier coverage, which guarantees that every movement crossing a barrier of sensors will be detected, is known to be an appropriate model of coverage for such applications. There are two types of barrier coverage: full barrier coverage or partial barrier coverage.

• Full barrier coverage A barrier is fully covered if every location along this barrier is covered by at least one sensor node, as it is shown in Figure 2.5. • Partial barrier coverage When the number of sensors is insucient to fully cover the barrier, sensor nodes will provide partial coverage. The deployment algorithm should ensure that by moving the sensor nodes along the barrier, they will be able to detect an intruder trying to cross this barrier, with a probability that is higher than a given threshold.

Connectivity problems

Two sensor nodes are said to be connected if and only if they can communicate directly (one-hop connectivity) or indirectly (multi-hop connectivity). In WSNs, the network is considered to be connected if there is at least one path between the sink and each sensor node in the area considered.

Considering only initial sensor deployment where all the nodes are connected to each other and to the sink, the deployment algorithm is said to preserve connectivity if and only if at any time during the deployment, there is a path connecting every sensor node to the sink. On the other hand, if the deployment algorithm ensures connectivity at the end of the algorithm, connectivity can be lost during the deployment process. However, at the end of its execution, the deployment algorithm should guarantee full connectivity.

Intermittent connectivity

In some applications, it is not necessary to ensure full connectivity in the area considered. It is sucient to guarantee intermittent connectivity by using a mobile sink that moves and collects information from disconnected nodes. There are two types of intermittent connectivity: the rst one uses only one or several mobile sinks and the second uses a mobile sink and multiple throwboxes (Cluster heads).

• Isolated nodes When the communication range, R, is less than the sensing range, r, full coverage can be achieved but without maintaining connectivity between neighboring nodes. Consequently, these nodes will be isolated. One solution to collect the information detected from isolated nodes is to use one or several mobile sinks. One or several nodes are in charge of visiting any sensor node that is not connected to the sink.

• Connected components In any connected component, all sensor nodes of this component are connected to each other. However, they are disconnected from nodes in another connected component and they may also be disconnected from the sink. To take advantage of the connectivity within a connected component, a throwbox, illustrated in Figure 2.7 by green nodes, can be assigned to each connected component. A throwbox has the task of collecting the information from each node belonging to its component. Then, one or several nodes, also called mobile sinks (the blue node in Figure 2.7) are in charge of visiting the throwbox of each connected component.

In this section, we studied the dierent coverage and connectivity problems in WSNs. In the following section, we give a representative use case for each of those problems.

Representative use cases

Depending on the application requirements, we can distinguish the following use cases (UC) dealing with coverage and connectivity, and representative of most applications: UC1 monitoring of a temporary industrial worksite requires full area coverage, permanent network connectivity and a uniform deployment of sensor nodes to reduce data gathering delays and provide a better balancing of node energy. UC2 forest re detection requires full area coverage in dry seasons and only 80% in rainy seasons. Permanent connectivity is required in both cases so reghters can be alerted.

Chapter 2. Coverage and connectivity issues in WSNs Figure 2.7: Intermittent connectivity using a mobile sink and throwboxes.

UC3 detecting and tracking of intruders in restricted areas. Such applications require full area coverage; furthermore, the most critical zones should be covered by more than one sensor node (i.e. multiple coverage). Permanent connectivity is also required. UC4 monitoring of endangered species at some water points: the idea is to obtain statistics about the number of individuals of this species from the number of individuals visiting the water point. A full or partial belt of sensor nodes is established along or around the water point, depending on its size. Intermittent connectivity is usually sucient. UC5 detection of intruders crossing a barrier (e.g. the border of a country, doors or windows in an apartment). Such applications require a barrier coverage with permanent connectivity. Depending on the application requirements, one or several barriers are needed, the latter case being called multiple barrier coverage. UC6 air pollution monitoring in a smart city. Partial area coverage is sucient and intermittent connectivity can be compliant with the application requirements. UC7 instantaneous snapshot of measures taken at locations predened by the application.

In precision agriculture, the goal is to detect the occurrence of diseases in the crops. In a smart city, the goal is to track an air pollutant. Such applications require the coverage of static points of interest. Permanent connectivity may be not needed. Intermittent connectivity can be provided by mobile robots (e.g. tractors for precision agriculture). UC8 tracking of wild animals or a truck eet with embedded sensors. In such a case, dierent technologies can be used to track these mobile points of interest (e.g. Argos beacons for animals, 3G/4G systems for trucks). Depending on the application requirements, connectivity may be intermittent (e.g. for animals) or permanent (e.g for a eet of trucks).

UC9 health monitoring of isolated workers, disabled people or elderly. They are considered as mobile Points of Interest (PoIs) that must be permanently covered. Permanent connectivity is required. All these uses cases will enable us to classify the coverage and connectivity problems encountered in the literature (see Table 8.1), according to the criteria dened more precisely in Section 2.2. With the emergence of smart cities, dierent use cases can coexist simultaneously. For instance, air pollution monitoring, surveillance of parking lots, public lighting control, and pollutant tracking are examples of sensor deployments that are likely to be very common in our cities in the near future. Some deployment algorithms only work when a given relationship exists between the radio range R and the sensing range r. For instance, if R ≥ 2r, it is sucient to ensure full coverage, and connectivity will be provided as a consequence. In the following, we study the dierent cases considered in the literature.

• Case R ≥ 2r: Full coverage implies connectivity In (1) and ( 2), the authors prove that when R ≥ 2r, the full coverage of a convex area implies full network connectivity. This result is extended to k-coverage and k-connectivity in (2). Then, using this assumption, it is sucient to ensure full coverage, and connectivity will be a consequence.

• Case R ≥ √ 3r: Full coverage implies connectivity In (3), it is proved that when R ≥ √ 3r, ensuring full coverage implies full connectivity. Moreover, the number of sensors needed is optimal when the triangular lattice is used as a deployment pattern. For instance, in (4), the authors propose a deployment algorithm where each sensor node should be placed in a vertex of an equilateral triangle of edge √ 3r.

• Case R = r An optimal deployment algorithm is proposed in (5) to ensure full coverage and 1-connectivity when R = r. In this algorithm, sensor nodes are deployed along a horizontal line, with each two neighboring nodes at a distance of r. Adjacent lines are at a distance of (

√ 3 2 +1)r.
In such a deployment, full coverage is ensured, but only sensor nodes located on the same line are connected. That is why the authors propose adding a sensor node between each two adjacent lines in order to connect them, such that these nodes form a vertical line, thereby ensuring 1-connectivity. The optimality of this deployment in terms of the number of sensor nodes is proved in (3).

• Case R < √ 3r
When R < √ 3r, full coverage does not imply network connectivity. Network connectivity is necessary to report information and it is a vital part of the monitoring task. Thus, ensuring connectivity while maximizing the area coverage becomes the goal of the deployment algorithm. The deployment algorithm proposed in (5) which deploys sensor nodes in horizontal lines and connects these lines by placing sensor nodes between two adjacent lines, is generalized in (3), as illustrated in Figure 2.8. In addition, this deployment is optimal when the distance between neighboring sensor nodes on the same line R and the distance between two adjacent lines is r + r 2 -R 2 4 .

Figure 2.8: Sensor deployment with added sensors to ensure connectivity.

• Case arbitrary R and r In (6), the authors propose an algorithm that aims at preserving network connectivity while maximizing area coverage. Starting with an initial deployment where all the sensor nodes are connected to the sink, a virtual force algorithm is applied in order to redeploy sensor nodes in the area considered. As the sensing and radio ranges do not meet the assumption R ≥ √ 3r, when sensor nodes move to their new positions they check whether they are still connected to the sink. If they are not, they move towards the sink until connectivity is established. This algorithm preserves full network connectivity during the deployment process and tries to maximize the area coverage with any given values of R and r. In (7), the authors propose a deployment algorithm that aims at ensuring full coverage and full network connectivity of an area containing obstacles of dierent shapes.

Coverage and connectivity with regard to regular optimal deployment21

The authors propose dividing the area into two dierent types of region: small regions or large regions which may contain boundaries and obstacles. As there are no assumptions concerning R and r, in the small regions (like a belt), sensors are deployed along the bisectors of this region and are separated by r min = min{R, r}. In the large region, sensor nodes are deployed in rows. The distances which separate sensor nodes and rows are determined according to the values of R and r.

Goal(s)
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Square grid (3) (Coverage implies connectivity)

√ 2 ≤ R r ≤ √ 3 Rhomboid pattern (3) R r ≥ √ 3
Triangular lattice (3)
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Coverage and connectivity with regard to regular optimal deployment

Sensor nodes can be deployed in a regular pattern. This pattern can be a triangular lattice, a square grid, a hexagonal grid or a rhomboid grid. For each pattern, the authors in (8) specify a condition that ensures coverage of the area and consequently guarantees network connectivity.

• If R ≥ r and the hexagonal grid pattern is used, then full area coverage is ensured and the network is connected.

• If R ≥ √
2r and the square grid or rhomboid pattern is used, then full area coverage is ensured and the network is connected.

• if R ≥ √
3r and the triangular lattice pattern is used, then full area coverage is ensured and the network is connected. The triangular lattice is the optimal deployment pattern to ensure full area coverage and guarantee network connectivity.

These conditions are studied in (3) with regard to the optimal number of sensor nodes and the regular pattern used. It was proved that when:

• 0 < R r ≤ 1 2 3 3/4
, the hexagonal grid is the best deployment pattern (i.e. it requires the minimum number of sensor nodes). See Figure 2.9c.

• 1 2 3 3/4 ≤ R r ≤ √ 2
, the square grid is the best deployment pattern. See Figure 2.9b. Figure 2.9: Regular deployment patterns.

• √ 2 ≤ R r ≤ √ 3 

Conclusion

Coverage and connectivity issues are well studied in the literature. Existing surveys (9; 10; 11; 8; 12; 13; 14) introduced basic concepts related to coverage and connectivity.

From these surveys we distinguished dierent problems related to coverage and connectivity in WSNs. In this chapter we provided comprehensive denitions of coverage and connectivity with their possible variants. These variants depend on the latency and robustness requirements that dier in the applications considered, leading to representative use cases. These denitions of coverage and connectivity are valid for both 2D and 3D problems.

The focus of the next chapter will be the deployment algorithms in WSNs. For each coverage and connectivity problem dened in this chapter, we will list some deployment algorithms found in the literature. The coverage and connectivity problems in WSNs depend on the locations of the sensor node. These locations determine the percentage of coverage in the entity monitored and whether network connectivity is maintained. Clearly, to meet the application requirements, the location of sensor nodes should be carefully studied. Many deployment algorithms are proposed in the literature to determine the appropriate sensor node locations. However, these deployment algorithms may vary according to the strategy used, the coverage problem, the connectivity problem, the number of sensor nodes needed, etc.

In this chapter, we give a global analysis of the deployment problem by discussing the impacting factors, detailing the common assumptions and models adopted in the literature. We also propose some performance criteria to evaluate deployment algorithms. Moreover, we discuss various deployment algorithms which cope with area coverage, barrier coverage and Points of Interest (PoIs) coverage. We dedicate an entire section to issues and recommendations regarding coverage and connectivity problems which may be helpful to choose the most suitable deployment algorithm.

Analysis of the criteria of deployment algorithms

In this section, we analyze the various factors that have a positive or negative impact on sensor deployment. We discuss the common assumptions and models found in the literature before focusing on the relationship between the sensing range, r, and the communication range, R, which have a great impact on the behavior of the deployment algorithm. We end this section by dening performance criteria for evaluation purposes.

Factors impacting the deployment

Several factors impact the deployment and determine how satisfactory the application is. They concern:

• The assumptions and models used concerning r the sensing range and R the communication range. Such assumptions and models are discussed in the next section. The discrepancy between these oversimplied models and reality may explain why the results obtained are not those which might be expected. The values of r and R determine the minimum number of sensors needed to fully cover the entity monitored (i.e. area, barrier or PoIs). The deployment algorithms that use exactly this number are said to be optimal. Depending on the relationship between r and R, detailed in Section 2.4 Chapter 2, some algorithms either work or they do not. Others are valid whatever the relationship between r and R may be, but are not, however, optimal in all cases. • The number of sensor nodes available for the deployment and the dimensions of the entity monitored will determine whether this number is sucient to fully cover the entity. It is usually assumed that this entity has a regular shape (e.g. rectangle, disk, etc). However, the reality is often more complex an involves irregular borders. • The sensor nodes' ability to move is a determining factor. If sensor nodes are unable to move, the only possible deployment is an assisted one, in which a mobile robot for example is used to place the static sensor nodes at their nal location. If on the other hand, each sensor node is autonomous and able to move, autonomous deployment is carried out, yet it should be noted that in such a case, the sensor nodes' movement will consume more energy than is used for communication during the deployment. • The initial topology may require some extensions to the deployment algorithm. For instance, if the initial topology comprises several disconnected components and a centralized deployment algorithm is used, a mobile robot should be used to collect the initial positions of the nodes needed by the centralized deployment algorithm to compute the nal positions of these nodes and this information should be disseminated to them. If on the other hand, a distributed deployment algorithm is chosen, this algorithm should include a neighborhood discovery phase as well as a spreading phase to allow sensor nodes to quickly discover other connected components. • The energy of sensor nodes is dicult or impossible to renew, and this fact is of great importance. In the deployment phase, the main reason for energy consumption is the movement of the nodes, whereas in the data gathering phase it is communication between the nodes. In both phases, energy-ecient techniques must be used. • The presence of obstacles makes the deployment more complex: no sensor node should be placed such that an obstacle prevents its being located. Hence, the obstacles must be detected and a strategy must be used by the deployment algorithm to bypass the obstacles. Furthermore, if the shape of the entity monitored is complex with irregular borders, some extensions to the deployment algorithm will be needed. • The quality of the data gathering required by the application may lead to a uniform and regular deployment. Such a deployment provides smaller data gathering delays [START_REF] Soua | Modesa: An optimized multichannel slot assignment for raw data convergecast in wireless sensor networks[END_REF], a better time and space consistency of the data gathered, which leads to a more accurate snapshot of the measures taken.

Analysis of the criteria of deployment algorithms

• The positioning system may introduce some inaccuracy in the position of the nodes; such a positioning error is very common with GPS. To meet the application requirements, the deployment algorithm should not accumulate positioning errors during the deployment.

Common assumptions and models

The common assumptions and models found in the literature concern:

• Communication:

-A unit disk graph model is generally adopted, where any two nodes whose Euclidean distance from each other is less than or equal to the communication range R, have a communication link: they are able to communicate in both directions. This binary model is, however, too simple and does not match the real world. Some authors have introduced more complex models where the probability of success falls less abruptly when the distance increases towards to R [START_REF] Wang | The generalized k-coverage under probabilistic sensing model in sensor networks[END_REF].

-A consequence of the unit disk graph model is that any wireless link is assumed to be symmetric. This assumption is not always true in the real world.

-A frequent assumption is that all sensor nodes have the same communication range. Sensor nodes may dier in their age, their manufacturer, and their communication capacity. Hence some sensor nodes may have a higher transmission range than others.

-The initial topology considered in centralized deployment algorithms is usually connected with the sink. This may not be the case in the real world (see the discussion in Section 3.2.1). In distributed deployment algorithms, the initial topology is generally random, as it facilitates the spreading of nodes, leading to shorter convergence delays. For instance, Figure 3.1a depicts an initial topology where some sensor nodes are unable to communicate with the sink. Figure 3.1b depicts another initial topology where all the sensor nodes are grouped at an entry point but unable to communicate with the sink. • Sensing:

-A unit disk graph model is used to model the sensing of a sensor node. It is assumed that any event occurring within the disk of radius the sensing range r, centered at the sensor node will be detected. This assumption may well, however, prove over optimistic in the presence of obstacles, for instance.

-The homogeneity of sensors (i.e. the same sensing model with the same sensing range) is generally assumed. Which may not be the case in the real world.

• The presence of obstacles:

-Most authors assume that the entity to be monitored is at and that nodes can move freely without obstacles. Such an assumption cannot be made for rescue applications after a disaster, for instance.

Criteria for performance evaluation

Each pattern may suit some application requirements. The question is then how to evaluate and select the best one. Dierent evaluation criteria have been introduced:

• coverage: (e.g. area, barrier, point of interest) is the main criteria to evaluate the eciency of the algorithm. Usually, coverage is computed as follows: the area to cover is divided virtually into LxW grid units, where L is the length and W the width of the area considered. A grid unit is considered to be covered if and only if its centered point is covered by at least one sensor node. The coverage rate is computed as the percentage of grid units covered. • connectivity: is also important. The type of connectivity (i.e. full or intermittent) is application dependent. For some applications, maintaining full connectivity is required in order to report any detected event immediately to the sink. Other applications with fewer constraints require intermittent connectivity: usually a data mule to collect data from disconnected sensor nodes. • convergence and stability: convergence is evaluated by the convergence time dened as the time needed to achieve the required coverage and connectivity. In distributed deployment algorithms, convergence may be dicult to reach because of node oscillations. In addition, the stability of the deployment is an important criterion that may be used to detect the completion of the deployment. • energy and distance traveled: during the deployment, the main cause of energy consumption is the movement made by the nodes. That is why the total distance traveled by the nodes must be measured, as this measure reects the energy consumed. Obviously, minimizing the total distance traveled leads to savings in energy.

Notice that the convergence and stability performance has a strong impact on the distance traveled and the energy consumed. Once the deployment has been carried out and the nodes are stationary, data gathering takes place. The main cause of energy consumption in this phase is communication. To maximize network lifetime, node activity scheduling can be used to make nodes sleep when they are not needed for data gathering.

• communication overhead: comes from the control messages exchanged between the nodes to organize the deployment and the data gathering. In the case of contentionbased medium access, collisions imply retransmission and increase the overall bandwidth and energy consumption. The aim is to reduce this overhead.

• uniformity, regularity and optimality of the deployment: if space consistency of the measures taken is expected, a uniform deployment is needed: all the nodes (except the border ones) should have the same number of neighbors. Similarly, if the measures should be taken at equidistant positions, a uniform and regular deployment is needed. Usually, such a deployment reproduces the same geometric pattern (e.g. triangle, hexagon, square, etc). Depending on the relationship between r and R, some patterns are optimal (see Section 2.4 in Chapter 2). This optimality is useful because it requires the smallest number of sensor nodes to meet the application requirements.

A uniform and regular deployment is also mandatory when the application requires time and space consistency of the data gathered.

Area coverage and connectivity algorithms

In this section, we study area coverage and connectivity algorithms with regards to analysis criteria presented above.

Full coverage

Many deployment algorithms aim to ensure full coverage of the area to be monitored. These algorithms are classied into three strategies. We distinguish the forces-based strategy, the grid-based strategy and the computational geometry-based strategy.

Forces-based strategy

The forces-based strategy is known for its simple deployment principle. This principle is based on virtual forces that can be attractive, repulsive or null. In this strategy, a sensor node should maintain a xed threshold distance called D th from its 1-hop neighbors. Then, if the distance separating two neighboring nodes is greater than D th , an attractive force is exerted, whereas if this distance is less than D th , a repulsive force is exerted. Otherwise, the force is null since the distance separating the neighboring sensor nodes is equal to D th , the required distance. This principle is illustrated in Figure 3.2, where -→ F ij denotes the force exerted by sensor node j on sensor node i.

The virtual forces algorithm (VFA) is proposed in [START_REF] Zou | Sensor deployment and target localization based on virtual forces[END_REF] as a centralized redeployment algorithm to enhance an initial random deployment. In the initial deployment, any sensor node is able to communicate with the sink in a one-hop or multi-hop manner. Then, the sink computes the appropriate new position of each sensor node based on the coverage requirements and using the virtual forces mechanism. In this work, obstacles exert a repulsive force and an area of preferential coverage exerts an attractive force on sensor nodes. During the execution of the virtual forces algorithm, sensor nodes do not move. It is only when they receive their nal positions from the sink that they move directly to them. VFA is a centralized algorithm that oers a good coverage rate of the area considered while maintaining network connectivity. However, a central entity must know the initial positions of all sensor nodes, compute their nal positions and disseminate these positions to all sensor nodes. This principle is problematic when network connectivity is not initially ensured. Furthermore, when the network is very dense, this algorithm can perform poorly due to the time required to gather the initial positions of the sensor nodes.

To cope with the scalability problem, distributed versions of VFA have been proposed in the literature. For instance, the extended virtual forces-based approach proposed in [START_REF] Li | An extended virtual force-based approach to distributed self-deployment in mobile sensor networks[END_REF] copes with two drawbacks of the virtual forces algorithm: connectivity maintenance and nodes stacking problems (i.g. where two or more sensor nodes occupy the same position). The connectivity maintenance problem occurs when the communication range is low, R r < 2.5. The authors therefore propose adding an orientation force which is exerted only if the node has fewer than 6 neighbors. This force aims to keep the angle formed by one node and its two neighbors equal to π 3 in order to provide reliable connectivity and eliminate coverage holes. The authors observe a stacking problem, where several nodes are located in almost the same position. This is because the coecient of the attractive forces is not well tuned. As a solution, the authors propose an exponential force model to adjust the distance between a node and its distant neighbors. However, the threshold value of R r = 2.5 is not explained and how connectivity is maintained is not specied. Furthermore, the additional orientation force may induce node oscillations. IVFA, Improved Virtual Force Algorithm, and EVFA, Exponential Virtual Force Algorithm are two distributed deployment algorithms proposed in [START_REF] Chen | Novel deployment schemes for mobile sensor networks[END_REF]. EVFA aims at speeding up convergence because forces increase exponentially with the distance between sensors. IVFA limits the scope of virtual forces: only nodes in radio range of a given node exert virtual forces on it. Furthermore, the stacking problem is solved by using a very small attractive force with regard to the repulsive force. IVFA converges to a steady state faster than the basic virtual forces algorithm, and denes a maximum movement at each iteration to reduce useless moves and save energy.

Usually, the virtual forces strategy is used to ensure full area coverage as the attractive and repulsive forces spread sensor nodes over the whole area and consequently achieve a high coverage rate rapidly. Furthermore, this strategy is used in (6) with the goal of preserving network connectivity. This deployment algorithm, called CPVF, Connectivity-Preserved Virtual Force, is used to monitor an unknown area with an arbitrary ratio R r . To achieve this, a sink periodically broadcasts a message to neighboring sensors which in turn ood the message to all connected nodes. A sensor node is considered to be disconnected from the network if it does not receive the ooding message. Then, it moves toward the sink in order to reconnect. This algorithm induces a high overhead in terms of messages broadcast over the network to check the connectivity of the nodes with the sink. This paper also proposes a oor-based scheme to improve global network coverage by reducing overlapping. This scheme is based on the division of the area into equidistant oors (distant of 2r) and encourages sensors to stay on the oor lines. Sensor nodes are added in a column between oor lines to ensure connectivity. Although this work aims at preserving network connectivity when the ratio R r is arbitrary, it requires a high number of sensor nodes, as illustrated in Figure 3.3, because the inter-oor distance is xed to 2r for any value of R and r. The grid-based strategy provides a deterministic deployment where the positions of the sensor nodes are xed according to a special grid pattern such as a triangular lattice, a square grid or a hexagonal grid (see Figures 3.4b, 3.5 and 3.6 respectively). Then, the area is divided into virtual cells and depending on the deployment algorithm used, sensor nodes are located either in cell vertices or at the cell center. The grid deployment is also a regular deployment pattern as all the generated grid cells have the same shape and size. The regular deployment pattern is studied in [START_REF] Kim | Regular sensor deployment patterns for p-coverage and q-connectivity in wireless sensor networks[END_REF] in order to provide multiple coverage (p-coverage) and multiple connectivity (q-connectivity) using the triangular lattice, square or hexagonal pattern. The value of p and q are provided by adjusting the distance separating sensor nodes and limiting the ratio R r . A comparative study of regular pattern performance in terms of the number of nodes required is also provided to achieve 1, 3 and 5-coverage and q-connectivity. With the ratio R r ≥ √ 3, the triangular lattice is better than the square grid, which, in turn, is better than the hexagonal grid. However, with the value of R r < √ 3, the triangular lattice becomes the worst. Multiple coverage and connectivity with regard to the regular deployment pattern is also studied in [START_REF] Yun | Optimal deployment patterns for full coverage and k-connectivity (k 6) wireless sensor networks[END_REF]. The authors propose optimal deployment patterns to ensure full coverage and q-connectivity when q ≤ 6 for certain values of R r . They consider the hexagonal deployment pattern as a universal basic pattern that can generate all optimal patterns. Then, they present dierent forms derived from the hexagonal pattern by changing the edge length and the angle between adjacent edges. When the applications require time and space consistency of the measures taken by sensor nodes regularly distributed over the area, the regular deployment pattern can be a good solution to provide a high level of coverage and connectivity with a minimum number of sensor nodes.

In the following we present some research studies proposing a regular deployment pattern based on a triangular lattice and a square grid.

Triangular grid

In [START_REF] Aziz | Coverage strategies for wireless sensor networks[END_REF], it was proved that the triangular lattice shown in Figure 3.4b oers the smallest overlapping area and requires the smallest number of sensor nodes. When the triangular lattice is used as a deployment pattern, each sensor node occupies a hexagonal cell. However, the deployment is not considered to be a hexagonal deployment (see Figure 3.6) since a sensor node is at the center of a hexagon and neighboring sensors form a triangular pattern (see Figure 3.4). The authors in [START_REF] Xiao | Hexagonal grid-based sensor deployment algorithm[END_REF], for instance, propose a deployment algorithm called HGSDA that deploys sensor nodes in a triangular lattice. This deployment starts by dividing the area into small hexagonal cells and each cell center corresponds to a sensor position. Although the cells are hexagonal, sensor nodes are deployed in a triangular lattice since the distance between two neighbors is √ 3r and there is a sensor node at the cell center. HGSDA identies redundant sensor nodes in order to place them in empty hexagonal cells. Since the size of a hexagonal cell is computed according to sensor sensing range and the area size, full coverage is achieved using the smallest number of sensor nodes. This algorithm is carried out by a sink. Then, all the sensor nodes receive their nal position from the sink and move to it. HGSDA is a centralized algorithm that ensures full coverage using the minimum number of sensor nodes while ensuring simple connectivity with the sink in the nal deployment. This centralized algorithm can only be used if connectivity with the sink is ensured in the initial deployment. The same deployment pattern is presented in [START_REF] Bartolini | Push & pull: autonomous deployment of mobile sensors for a complete coverage[END_REF], but in a distributed version. However, at the beginning of the deployment, the area has not yet been divided into hexagonal cells. An initiative sensor node starts by snapping itself at the center of the rst hexagonal cell and selects six sensor nodes in its vicinity to snap them in the adjacent hexagonal cells. The selected sensor nodes move to their cells and in turn select other sensor nodes to occupy their adjacent cells. Then, hexagonal cells are built progressively in a distributed way: the hexagonal side length is equal to the sensing range. Since the sensor occupies the center of the cell, the triangular lattice is used as the deployment pattern. The deployment algorithm C 2 proposed in (25) is a triangular lattice based strategy where a sensor node occupies a hexagonal cell. Hexagonal cells are built progressively in a distributed manner by sensor nodes. This algorithm proceeds in two phases. In the rst phase, called cluster heads selection, the sink which is the rst cluster head in the area considered, starts by building its hexagonal cell and denes its position as the cell center. The distance between the cell center and one of the vertices is R 3 and the distance between two neighboring cell centers is 2 R 3 in order to maintain network connectivity during the deployment process. Then, the sink determines the center of each neighboring cell and informs sensor nodes in its neighborhood. The nearest sensor node to the cell center is selected as a cluster head of its hexagonal cell, and it should move towards its cell center. In turn, the new cluster heads dene the center of their neighboring cells. The second phase is called node balancing and the goal is to improve area coverage by balancing the number of sensor nodes between cells. To do so, if the dierence between sensor nodes in two neighboring cells is greater than 1, some sensor nodes will move to the cells with a decit number of nodes. In this deployment algorithm, a hexagonal grid is used to ensure full coverage and maintain full connectivity. Energy saving is achieved by selecting a cluster head for each cell and balancing the number of sensor nodes between adjacent cells. This algorithm performs well when the sink is located at the center of the area and all the nodes are grouped around the sink.

Square grid

The square grid strategy is used in [START_REF] Park | A grid-based self-deployment schemes in mobile sensor networks[END_REF] where the area to be monitored is divided into square cells, as shown in Figure 3.5. Each cell represents the maximum square size that is covered by one sensor node. Each sensor node occupies a cell center to cover the corresponding square cell. If an empty cell exists, neighboring sensor nodes should decide to which one they will move in order to cover it, such that if new empty cells appear, they will be around the sink. Redundant nodes should move toward the sink so as to cover empty cells that can occur along the path to the sink. A grid-based approach is also used for robot-assisted sensor deployment. As an example in [START_REF] Fletcher | Back-tracking based sensor deployment by a robot team[END_REF], a robot places sensor nodes at the vertices of a square cell. Then, each sensor node colors itself white if it is adjacent to an empty cell and black otherwise. Neighboring sensor nodes exchange hello messages to inform each other about white nodes (empty cells) and maintain a back pointer corresponding to the nearest empty cell along the backward path of the robot. Then, the robot backtracks this back pointer to drop sensor nodes in the empty cells. This algorithm guarantees full coverage in a failure free environment using a mobile robot in a square grid. It is assumed that the robot carries enough sensors to heal any coverage hole (i.e. empty cell) that is detected. Such strategies are used when the sensor nodes are static, and a mobile robot is used to ensure coverage by repairing any coverage hole detected by the sensor nodes. The new problem is that of detecting coverage holes and optimizing the robot's trajectory. cover the whole area, node oscillations may occur.

Deployment algorithms based on Delaunay Triangulation

In [START_REF] Tan | Arbitrary obstacles constrained full coverage in wireless sensor networks[END_REF], a centralized algorithm is proposed to cope with the boundaries and obstacle coverage problem. In their paper, the authors propose a deterministic sensor node placement to ensure full coverage of an area containing obstacles of arbitrary shapes. Sensor nodes are deployed in a triangular lattice over the whole area as if there were no obstacles. Then, sensor nodes inside the obstacles are eliminated and so coverage holes may occur around these obstacles. To deal with this problem, Delaunay triangulation is used to partition these coverage holes into triangles of edges less than r, and then, a sensor node is placed in one of the triangle vertices to cover it.

Other computational geometry deployment algorithms

Another study based on a computational geometry strategy is proposed in [START_REF] Babaie | Hole detection for increasing coverage in wireless sensor network using triangular structure[END_REF] to detect any coverage hole and calculate its size. In this work, the authors do not rely on a Voronoi diagram or Delaunay triangulation, but, they propose a triangular oriented diagram called HSTT that connects static sensor nodes such that every three neighboring nodes form a triangle. Using a HSTT diagram, coverage holes can be detected and the required number of mobile sensors to heal these holes can be determined. Although this HSTT diagram presents some advantages compared to a Voronoi diagram, such as its simplicity and its accuracy when computing the size of the coverage holes, it requires a high level of energy consumption to achieve its goal. and connectivity required by the application. For this purpose, they employ optimization techniques, usually based on a linear programming of the problem considered. They discretize the area of interest and decide for each point in the area whether a sensor should be located there or not, taking into account the application requirements (e.g. maximum number of sensors, maximum cost, etc). See for instance (31).

Partial coverage

The area coverage problem has been widely studied in the literature. As we have pointed out previously, a great deal of eort has focus on the issues of full area coverage. However, only a few studies have focused on partial area coverage. Generally, partial coverage is one solution to prolong network lifetime when full coverage is not required. The foremost requirement in this case is that the coverage rate provided should be higher than some predened bound which is a specic parameter xed by the application. The goal is to cover at least θ percent of the area considered while maintaining a connected graph between these nodes. Partial coverage is useful to measure the temperature and humidity, to detect smoke and to provide early warning of a forest re [START_REF] Hefeeda | Wireless sensor networks for early detection of forest res[END_REF], for instance. In addition, to avoid a large area being uncovered (see Figure 3.8a), the uncovered areas should be regularly distributed (see Figure 3.8b). For that purpose, the authors in [START_REF] Liu | Approximate coverage in wireless sensor networks[END_REF] propose dividing the area to be monitored into subregions of equal size. The goal is then to cover θ-percent of each subregion.

Intermittent connectivity

The deployment algorithms presented above ensure full or partial coverage with permanent connectivity. When permanent connectivity is not required, intermittent connectivity is provided, exploiting the mobility of some nodes. The strategies dier in: • the number of mobile nodes: one mobile node or several. If several, how do the mobile nodes coordinate their action to visit nodes and gather their data?

• the trajectory type of mobile nodes: a xed predened geometrical trajectory like a line or a circle, for instance. This trajectory do not visit node positions but it allows mobile node to communicate with sensor nodes during its movement. a trajectory that depends on node positions. It should go through all the nodes or a subset of nodes depending on the deployment architecture (e.g. clustering). More particularly, we distinguish:

Mobile sink with multiple cluster heads (throwboxes): In [START_REF] Saad | A data gathering algorithm for a mobile sink in large-scale sensor networks[END_REF], a large number of sensor nodes are randomly dispersed in a square area. These sensor nodes are grouped into clusters and a cluster head is elected for each one. Obviously, sensor nodes are connected to their cluster head in order to report the detected information to it. The cluster head has the role of storing this information and waiting for the mobile sink. A moving strategy for the mobile sink is proposed to collect the information detected over the whole area while minimizing energy consumption. The mobile sink starts from a xed point, follows a specic trajectory to visit each cluster head and gathers information, and nally it returns to its starting point. Intermittent connectivity is provided using a mobile sink communicating with the cluster heads and coverage is maximized.

Ferries: a ferry is a mobile robot that has a geometrical trajectory like a line or circle. Sensor nodes can be randomly deployed with no connectivity with the sink. The ferry will act as a relay between sensor nodes and the sink to ensure communication, distribution and gathering of the data collected by the nodes. Based on this principle, [START_REF] Kavitha | Analysis and design of message ferry routes in sensor networks using polling models[END_REF] studies the ferry trajectory that may be a line, path (multiple) or annular, as depicted in Figure 3 Its goal is to optimize the route of the ferries that collect information from the sensor nodes.

Summary

Area coverage has been widely studied in the literature. Table 3.1, presents a summary of dierent studies that focus on area coverage. We have distinguished three deployment strategies: a force-based strategy, a grid-based strategy and a computational geometrybased strategy. Based on the studies cited previously, we can observe that force-based strategies exhibit many advantages:

• The simplicity of the basic principle, which performs well both in centralized and distributed versions. In the distributed version, all the nodes apply the same algorithm and play the same role. The distributed version is based only on local information (coordinates of the nodes and their neighbors). It allows nodes to progressively discover their environment and react to changes in this environment without the need for a central entity to manage these changes. • The uniformity of the redeployment obtained: the density obtained is nearly the same and the same distance is maintained between the neighboring nodes. • The coverage obtained is generally very good. However, in the distributed version it is achieved at the expense of nodes moving over large distances. This is due to node oscillations that occur even when maximum coverage has been reached. Such oscillations cause high energy consumption and are detrimental to the network lifetime.

• With the enhancements brought by many authors ((4), [START_REF] Li | An extended virtual force-based approach to distributed self-deployment in mobile sensor networks[END_REF] and [START_REF] Chen | Novel deployment schemes for mobile sensor networks[END_REF] for instance), maximum coverage is achieved more quickly. Nevertheless, some issues remain unsolved, such as the previously mentioned node oscillations and the detection of the end of the distributed algorithm.

The grid-based strategy has the following advantages:

• It provides a regular deployment with deterministic positions of sensor nodes (e.g. a triangular lattice, square pattern, etc), if a virtual grid is used. • It requires a minimum number of sensor nodes to achieve the required coverage.

The optimal deployment pattern (i.e. the pattern requiring the minimum number of sensor nodes) varies according to the relationship between R and r. • It can easily achieve k-coverage and connectivity.

• It exists in centralized and distributed versions. Generally speaking, the distributed version is more complex. If a virtual grid is not used, a sophisticated management of grid cells is needed (( 24),( 25)). The complexity of this strategy comes from managing the movement of the nodes and the positions of newly built cells. Coverage holes may appear. Computational geometry-based strategies aim at improving the area coverage by healing previously detected coverage holes. Like the other strategies, computational geometry based strategies exist in centralized and distributed versions. The main drawback lies in the complexity of detecting coverage holes and computing the new nodes' positions. Furthermore, the new deployment obtained is not always uniform.

In addition, all these strategies have been enhanced to deal with the existence of obstacles within the network area. A better adaptability to the environment is still a challenge.

There are two types of wireless sensor networks, depending on the mobility of sensor nodes. If the sensor nodes are mobile, all the redeployment strategies (virtual forces strategy, grid based strategy and computational geometry strategy) can be considered as autonomous deployment. Otherwise, sensor nodes are static and mobile robots are used to put the sensor nodes in their nal position. In this case the redeployment is said to be assisted.

Barrier coverage and connectivity algorithms

Intruder detection and border monitoring are two important applications of WSNs. Barrier coverage is considered to be an appropriate model for such applications. A deployment of sensor nodes along a barrier is necessary to detect an intruder crossing, for example, an international border, or a protected industrial area. Depending on the application requirements and the number of sensor nodes provided, this deployment can ensure either full barrier coverage or partial barrier coverage.

Full barrier coverage

Full barrier coverage can be either simple or multiple. It is simple, if there is just one barrier that is fully covered by sensor nodes. The barrier coverage is multiple if there are k successive barriers of sensor nodes. The authors in [START_REF] Kumar | Barrier coverage with wireless sensors[END_REF] were the rst to address the problem of providing the minimum number of deployed sensor nodes to ensure simple or multiple barrier coverage. They dene a simple barrier coverage by a belt of successive sensor nodes such that their sensing areas overlap. Multiple barrier coverage is dened by the fact that every two successive barriers have two overlapping sensor nodes, as depicted in Figure 3.11b. Based on a theoretical study, the authors prove that the optimal number of sensor nodes deployed along a barrier is l 2r , where l is the length of the barrier and r the sensing range. Then, every two successive sensor nodes are at a distance of 2r in order to optimize the overlapping (see Figure 3.11a). To ensure full barrier coverage, two types of deployment algorithms can be used, depending on whether the sensor nodes are static or mobile.

a Optimal 1-barrier coverage.

b The above zone is 2-barrier covered. When sensor nodes are static, they are generally deployed uniformly over the whole area based on a Poisson Point Process model. Using this kind of deployment, barrier coverage can be provided by selecting a chain of overlapping sensor nodes. However, when static sensor nodes are dropped from an aircraft, they will deviate from their expected location due to mechanical inaccuracy or environmental factors such as wind, terrain characteristics, etc. To cope with this problem, [START_REF] Saipulla | Barrier coverage of line-based deployed wireless sensor networks[END_REF] proposes a concentrated deployment of sensor nodes along the deployment line with some random osets, using for example aircraft (see Figure 3.12). This distribution is called LNRO, Line based Normal Random Oset distribution, and in terms of barrier coverage, it outperforms the Poisson model when the random oset in LNRO is relatively small compared to r.

Mobile sensor nodes

A deployment strategy to ensure (simple or multiple) barrier coverage using mobile sensor nodes is proposed in [START_REF] Saipulla | Barrier coverage with sensors of limited mobility[END_REF]. This strategy consists in dividing the area into virtual lines (i.e. barriers) where the number of virtual lines matches the desired robustness of barrier coverage. In each line, sensor nodes should occupy grid points at a distance of 2r. Starting from a random deployment in a rectangular area, mobile sensor nodes should execute two phases to reach their nal positions. In the rst phase, each sensor node moves vertically to reach a line. Then, in the second phase, it moves horizontally along the line to a predetermined grid point position. When each grid point is occupied by a sensor node, full barrier coverage is provided.

Figure 3.12: LNRO barrier deployment.

(45) focuses on nding and healing barrier holes using mobile sensor nodes. This work is an extension of [START_REF] Saipulla | Barrier coverage of line-based deployed wireless sensor networks[END_REF]. After the deployment, sensor nodes may fail due to many factors, such as battery depletion, environmental conditions or malfunctioning. Then, a redeployment is needed to heal coverage holes. The algorithm proposed proceeds in two phases. In the rst phase, it scans the network from the beginning to the end of the barrier to check for coverage holes. The second phase consists in computing which sensor nodes should move to which position such that the total distance traveled by the nodes is minimized. This algorithm takes advantage of the LNRO distribution as all the sensor nodes are concentrated along a line, as depicted in Figure 3.12, allowing quick and easy replacement of failed nodes. The monitored object may be dynamic, (i.e. changing its shape). As a consequence, sensor nodes have to move to modify the belts they form around the object to be monitored. In [START_REF] Kong | Mobile barrier coverage for dynamic objects in wireless sensor networks[END_REF] the problem of mobile barrier for dynamic coverage is formulated as: for a given number n of sensor nodes, how do sensor nodes move with the objective to minimize the total distance traveled under the constraint that the number of barriers is maximized at any time ? Sensor nodes are placed around the dynamic object, neighboring sensors are at a distance less than or equal to 2r forming a belt around the dynamic object without any coverage holes. The authors assume that R ≥ 2r, in order to ensure full connectivity. A dynamic belt region provides k-mobile barrier coverage if and only if there are k vertex disjoint belts in its coverage graph. The maximum number of barriers k changes in response to changes in the dynamic object: k becomes smaller when the dynamic object becomes larger, as illustrated in Figure 3.13.

Partial barrier coverage

In the barrier coverage problem, the optimal number of nodes (denoted m points) required to fully cover the barrier, can be determined based on the sensors' sensing range and the barrier length. However, if the number of available nodes is less than optimal, the barrier coverage problem will be formulated as how to move n mobile sensor nodes to monitor n points among the m points so as to maximize the average intruder detection while minimizing the average sensor movement distance. To solve this problem, two algorithms, PMS and CSP, are proposed in [START_REF] He | Cost-eective barrier coverage by mobile sensor networks[END_REF]. PMS, periodic monitoring scheduling, lets sensor nodes monitor each point of the barrier periodically, regardless of any arrival by an intruder and without any coordination between sensors. Each sensor moves to the point j and stays there for T time slots. Then, it moves to point mod(j + n, m) and stays there, also for T time slots. This is repeated until all the sensors run out of energy. CSP, Coordinated Sensor Patrolling, is a centralized algorithm that uses the temporal correlation of intruder arrival times. CSP runs in two steps. Firstly, it selects the point with the highest priority of intruder arrival to be monitored at the current time. Then, it determines how to move sensors to the selected point while minimizing the total distance traveled, using the information collected in the past time slot. It has been shown that the CSP algorithm outperforms PMS.

Summary

The barrier coverage problem generally relates to critical applications such as intruder detection which require special attention. A high degree of robustness (multiple barrier coverage) is normally chosen for critical applications to ensure the eciency and reliability of the monitoring task. Furthermore, the zone monitored, such as a battleeld or international borders very often includes obstacles and is not always at in such applications, and many environment constraints may be involved. Obstacles can also occur in the monitoring barrier. The solutions proposed in the literature do not take into account these constraints which have a negative impact on the deployment algorithm. The issue of connectivity is very important in critical applications since it allows information to be reported to the sink. All the papers cited in this section, assume that connectivity between neighboring nodes and with the sink is ensured: R ≥ 2r. However, in real deployments, this condition is not always met. Therefore, strategies to ensure connectivity should be provided. Sensor nodes may be dropped randomly, trying to follow a barrier line (e.g. ( 43)). In this case, coverage can be improved by a centralized algorithm, as in [START_REF] Saipulla | Barrier coverage with line-based deployed mobile sensors[END_REF] in charge of detecting and healing holes in barrier coverage. However, when coverage holes are present, the central entity may fail to collect all the sensor nodes' positions since these holes may produce disconnected components. Table 3.2 presents dierent studies that focus on barrier coverage.

Point coverage and connectivity algorithms

The last type of coverage is the coverage of Points of Interest (PoI). Examples of applications include the detection of some static or moving target, using the smallest number of sensors. We distinguish between static PoIs and dynamic PoIs.

Static PoI

In [START_REF] Erdelj | Covering points of interest with mobile sensors[END_REF], the authors are interested in the deployment of mobile sensors to cover predened PoIs, while maintaining connectivity with the sink. The sink has the task of disseminating information about the PoI locations to the sensors as well as collecting the information reported from the sensors about the events happening at the PoI. The basic idea of this deployment algorithm for PoI coverage is as follows: initially all the sensors are within radio range of the sink. All the sensors run the same algorithm but the motion decision is taken individually by each sensor node. The sensors move toward one predened point that could be the PoI or the barycenter of the PoIs. Then, they form straight lines between the PoI and the sink. The distance the sensors move is bounded in order to maintain connectivity. When all the sensors are in positions, the PoI is covered by one sensor in the line (i.e. the PoI is within the sensing range of a sensor in the line). The strategy of this deployment algorithm minimizes the number of sensors used to maintain connectivity by using the Relative Neighborhood Graph (RNG).

If multiple PoIs exist in the area considered, two approaches can be adopted:

• Random PoI deployment: the sensor chooses one of the PoIs at random;

• Barycenter PoI deployment: Every sensor calculates the barycenter of all the PoIs and the sink to cover it. Then each sensor chooses a PoI at random and covers it. In (50), a distributed deployment scheme is proposed where mobile sensors nodes move following concentric circular paths (ferries with annular trajectories) that cover static PoIs (See Figure 3.14). The goal of this work is to ensure PoI coverage and that the events are reported to the sink. This sink is located at the barycenter. Two neighboring circular paths are at a distance of R. The authors assume that R ≥ 2r and mobile sensors have no global knowledge of the PoIs in the area. This work combines three aspects which are: PoI discovery, PoI coverage and connectivity with the sink. To achieve these three aspects, a mobile sensor should move constantly to execute the PoI discovery task. Then, it should adjust its movement velocity with sensors in the neighboring circular paths to satisfy the constraints regarding coverage and connectivity with the sink in order to be able to report the information it has gathered about the PoIs. Temporary coverage of Multiple PoIs is studied in [START_REF] Li | Sweep coverage with mobile sensors[END_REF] and is called the sweep coverage problem as sensor nodes sweep between PoIs and cover them periodically. The authors propose distributed algorithm DSWEEP to address this problem. A sensor node covers a PoI for a determined duration and then moves on to a new one. When a sensor node is moving, it encounters other sensor nodes and exchanges information that serves to decide which PoI should be monitored next. This deployment algorithm requires a small number of sensor nodes to cover a large number of PoIs. DSWEEP provides temporary coverage and partial network connectivity. In some applications, the PoI, as well as the area surrounding it, need to be covered. In (52) a localized autonomous deployment algorithm is proposed to meet this goal. This algorithm is based on a virtual triangular lattice grid of edge √ 3r to maintain connectivity since it is assumed that R ≥ √ 3r. Sensor nodes are autonomous and know the position of the PoI. They move through the triangular vertexes and organize themselves by respecting rules that avoid collisions between sensors, to reach the vertices around the PoI. Based on this principle no coverage holes will occur if all the vertexes around the PoI are occupied by sensor nodes. a Initial deployment.

b Final deployment.

Figure 3.15: PoI coverage using Grid.

Mobile PoIs

In the case of mobile PoIs, the authors of ( 49) propose three strategies to reach the mobile PoI:

• In the rst strategy, sensor nodes move back to the sink before deploying toward the new location of the PoI. This strategy provides a high coverage quality but increases the deployment duration and the amount of energy consumed.

• In the second strategy, sensors try to move directly toward the new location of the PoI without going back to the sink. This strategy reduces the time needed to cover the new PoI but also reduces the coverage quality as it requires a greater number of sensors to maintain connectivity.

• In the third strategy, a sensor moves to the straight line between the sink and the new location of PoI, then it follows the line toward the PoI. This strategy provides a higher coverage quality and reduces the time needed to cover the PoI.

Summary

Any PoI needs only one sensor to be covered. If permanent connectivity is required, a sucient number of sensor nodes are deployed to ensure connectivity with the sink. However, if intermittent connectivity is sucient, one sensor node will cover a PoI, and a mobile node (that could be the sink or a collector Robot) will operate like a data mule. This can be a solution to deploy a minimum number of sensor nodes and save energy. When the PoI is static, a static sensor node can be used to cover it. If the PoI is mobile, however, autonomous sensor nodes are deployed to track the PoI and avoid the need of a robot to pick up and deploy sensor nodes each time the position of the PoI changes.

Although any PoI can be covered by just one sensor, a zone of interest may require several sensors when the zone is larger than the disk covered by a sensor. When many sensor nodes are deployed to cover a zone (area) of interest, they are usually deployed in varying densities: a high density in the center of the zone of interest and then the density decreases with the distance to the center of the zone. Table 3.3 presents dierent studies that focus on PoIs coverage.

Node activity scheduling with regard to coverage

Assuming an initial deployment of static sensor nodes which meets the application requirements (e.g. full or partial coverage), the node activity scheduling problem consists in determining a connected set of active nodes to ensure the application requirement. Only the nodes in this set are active, the other nodes are in sleep state in order to save energy, thereby maximizing the network lifetime. The problem here is not to nd the appropriate sensor node positions but only to select which sensor nodes will be active to maximize coverage and connectivity. Figure 3.16 depicts an example where the blue sensor nodes are sleeping, while coverage and connectivity are ensured by the active sensor nodes in red.

We distinguish two categories of node activity scheduling with regard to coverage:

Node activity scheduling based on message exchanges between neighbors

Sensor nodes rely on message exchanges to decide which sensor nodes should be in an active state while others are sleeping, with the goal of ensuring full coverage and saving energy. This mechanism can either be centralized, where a central entity collects all the nodes' positions and assigns a state (active or sleep) to each node, or distributed, where neighboring sensor nodes exchange messages to decide which of them will be active while the others are sleeping. An example of a centralized algorithm is given in [START_REF] Carle | Energy-ecient area monitoring for sensor networks[END_REF]. This work is based on the construction of a connected subgraph of sensor nodes based on local information. It focuses on nding the smallest subset of sensor nodes that ensures full coverage of the area monitored while maintaining connectivity with the sink. Another centralized algorithm is proposed in [START_REF] Wang | Barrier coverage in camera sensor networks[END_REF] to build a camera barrier from an initial arbitrary deployment of camera sensors. The aim is to guarantee that each point of the barrier is fully covered visually. The method consists in building a graph of nodes where each of them covers a small subregion, and each two adjacent nodes are connected. The idea is to select a path from one boundary to another such that the nodes of the path are full-view covered. Only nodes belonging to that path are active. Node activity scheduling based on message exchanges is also adopted to ensure partial coverage. In [START_REF] Wu | p-percent coverage in wireless sensor networks[END_REF], a centralized algorithm is proposed to ensure partial coverage. It aims to select the smallest number of nodes to monitor p-percent of the area. The authors also propose a distributed algorithm that determines a set of nodes to cover p-percent of the considered area. The main idea of these two algorithms is to divide the whole area into sub-regions and select specic nodes, while respecting certain criteria (for example, a starter node selects its furthest neighbor) in order to cover p-percent of each sub-region. CCP, Coverage Conguration Protocol (2) is a distributed algorithm based on message exchanges to provide the degree of coverage required by applications when R ≥ 2r. In CCP, depending on information about its sensing neighbors, a sensor node can be in a sleep state to save energy, a listen state to collect neighboring messages and decide its new state, or an active state to sense the environment. Without assuming R ≥ 2r, CCP cannot guarantee network connectivity. In (2), CCP is combined with SPAN (53) to achieve both coverage and connectivity when R < 2r. SPAN is a connectivity maintenance protocol. This protocol connects all active nodes via a communication backbone, and connects inactive nodes to at least one active node. Then, when R < 2r, network connectivity is ensured.

Several other distributed protocols are proposed in [START_REF] Gallais | Localized sensor area coverage with low communication overhead[END_REF], to ensure area coverage with a low communication overhead. In these protocols sensor nodes select a waiting time for each round and receive neighboring messages which are used to compute the area coverage. If the sensing area of a sensor node is not fully covered, the node should stay in an active state during the current round and announce its state when its waiting time expires.

Sensing range and radio range may be dierent and they may also dier between sensor nodes. The authors in [START_REF] Sheu | A distributed query protocol in wireless sensor networks[END_REF] adopt this assumption and aim to minimize the number of active nodes queried in the region that is fully covered. Then, each sensor node should determine whether it switches to an active state to respond to the query request originating from the sink, based on information collected from its neighbors.

Node activity scheduling based on implicit coordination

Implicit coordination algorithms are proposed to save the energy of sensor nodes, assuming full coverage and connectivity. Such algorithms are distributed and based on a grid. Each node knows from its position in the grid whether it must be active or it can sleep. An example is given in [START_REF] Iyengar | Low-coordination topologies for redundancy in sensor networks[END_REF] for a square pattern and a hexagonal pattern: each sensor node located in the vertex of the grid switches to the active state, while the other nodes sleep. Another example of a square pattern is given in by VFCSO, Virtual Force-Based Coverage Optimization Strategy [START_REF] Xu | Coverage optimization deployment based on virtual force directed in wireless sensor networks[END_REF]. VFCSO is a dynamic deployment algorithm that aims at ensuring full area coverage using a minimum number of sensor nodes while reducing energy consumption. In this work, the area considered is divided into square cells with edges equal to r. Many sensor nodes may be in the same square cell. Starting from a random deployment, the virtual forces strategy is applied by sensor nodes belonging to the same square cell. Only one node in each cell will be active, the others should switch to the sleep state: the active node being the closest sensor node to the center of the cell with the highest residual energy. Both full coverage and network connectivity are guaranteed in this work as R ≥ √ 5r.

Guidelines for selecting a deployment algorithm

In this section we set out guidelines we used in our scientic approach presented in the following chapters. These guidelines may in general help the designers to select a deployment algorithm that meets their application requirements. We consider two main questions:

• What does the application require in terms of coverage and connectivity?

• Which assumptions and constraints are given? In the following we discuss various ways to answer these questions.

Denition of the coverage and connectivity problem that must be solved:

• Coverage -If the goal is to monitor an area, then the problem concerns area coverage, which may be full or partial. If it is to detect barrier crossing, the problem is barrier coverage, which, again, may be full or partial. If the goal is to track/monitor a target, the problem deals with point of interest (PoI) coverage. The PoI may be static or mobile.

-If coverage must be full and the degree of robustness required by the application is high, multiple coverage is needed, otherwise simple coverage is sucient.

-If long delays to detect an event are tolerated by the application, the coverage of any point can be temporary. Otherwise, it is permanent.

• Connectivity

-If short delays to report detected events to the sink are required by the application, permanent connectivity must be ensured. Otherwise, intermittent connectivity is sucient.

-If the application needs a high degree of robustness, multiple paths to the sink should be maintained. Otherwise, a simple path is sucient.

• Type of deployment depending on the application requirements, a uniform and regular deployment should be provided, based on a pattern (see Section 2.4).

Assumptions and constraints

In most cases, the designer will be faced with multiple assumptions and constraints that must be taken into account when selecting the appropriate deployment algorithm. These include:

• Environment -The dimensions and position of the area, barrier or PoI to cover should be provided in order to compute the minimum number of sensor nodes required. If this number is large, the deployment algorithm must be scalable. The initial topology inuences the deployment algorithm, especially when some sensor nodes are disconnected, or when they are all grouped together at an entry point (see the discussion in Section 3.2.1).

-The choice of the radio propagation model must be compliant with the environment (e.g. free space or conned) which may suer from perturbations caused by other wireless networks (e.g. WiFi) or electronic devices (e.g. microwaves), and may also contain obstacles.

-In the presence of obstacles, detection and bypassing techniques should be provided.

• Sensor nodes -Mobility: sensor nodes may be mobile and autonomous, and this condition is necessary for autonomous-deployment. On the other hand, static nodes should be assisted in their deployment by a mobile robot.

-The sensing range r, the communication range R and the associated models: for more details see Section 3.2.2. Furthermore, the relationship between r and R will be used to select the appropriate deployment algorithms in Table 2.2.

-The number of sensor nodes must be sucient to meet the application requirements, otherwise the problem is intractable.

-Energy: if sensor nodes are equipped with a battery, the deployment algorithm must be energy ecient.

• The sink

The sink is in charge of collecting the data generated by the sensor nodes deployed. It can be static or mobile. If the sink is static, either it is connected to sensor nodes, or a mobile robot visits the disconnected sensor nodes to collect their data and report them back to the sink. If the sink is mobile, it moves to collect data.

Recommendations:

• Coverage problem Depending on the application needs, the problem may be an area, barrier or PoI (Point of interest) coverage problem.

• Relationship between the transmission range R and the sensing range r

The relationship between R and r inuences the choice of the solution. If, for instance, R ≥ √ 3r, it is sucient to solve the coverage problem to obtain connectivity as a consequence of coverage. If the transmission range R is strictly less than the sensing range r, a distributed deployment would require a smaller target distance between sensor nodes than that required by full coverage of the area. Hence, a higher number of sensor nodes will be used, leading to a more expensive solution.

If the designer has a small budget, he/she will prefer a centralized solution with a mobile robot/agent to deploy the sensor nodes to their nal position, and to collect data from these nodes in the data gathering phase. Similarly, such a solution is also preferred when the application tolerates delays (e.g. delay tolerant networks, ferries). In contrast, if a permanent path must exist from any sensor node to the sink, additional sensor nodes will be required to ensure this permanent connectivity.

• Centralized versus Distributed solution Depending on the area/barrier size, a centralized/distributed solution will be preferable. If the monitoring requires a high number of sensors, a distributed solution is chosen because of its better scalability, provided that the energy constraints are taken into account, as discussed below. A centralized solution requires that the central entity in charge of the deployment computation has perfect knowledge of the positions of all the sensor nodes. If the initial topology is disconnected, a mobile robot is needed to collect the initial positions of all the disconnected nodes to compute the nal deployment. If all the sensor nodes are static, the centralized solution is the only possible one. A mobile robot is needed to deploy the sensor nodes to their nal positions.

• Energy constraints When sensor nodes are equipped with a battery, energy ecient techniques should be used, and it is important that the scheduling allows nodes to sleep, for energy saving purposes. Another advantage of node activity scheduling is to make the deployment adaptive to varying coverage requirements, ranging from full to partial. However, the energy consumed by nodes movements is considerable and should be limited. For instance, node oscillations occurring in some distributed solutions should be avoided.

If the designer wants to keep the energy of sensor nodes for data gathering, a mobile robot/agent should be used to deploy the sensor nodes to their nal positions.

• Uniform and regular deployment A uniform and regular deployment reduces the energy consumed during the data gathering phase and minimizes the data gathering delay. Moreover, it provides better time and space consistency of the measures reported to the sink.

• Obstacles An area/barrier with obstacles needs mechanisms to detect obstacles and strategies to bypass them, as well as ensuring the required coverage.

Conclusion

In this chapter, we focused on deployment algorithms dealing with coverage and connectivity in WSNs. We provided indications for analyzing deployment algorithms and evaluating their performances. We distinguish two types of deployment algorithms depending on the mobility of the sensor nodes: autonomous deployment for mobile sensor nodes and assisted deployment for static sensor nodes deployed by mobile robots. Deployment algorithms are designed to meet application requirements such as coverage, connectivity, latency and robustness. We established a classication of deployment algorithms based on these requirements. In fact, the deployment of sensor nodes and sinks can be considered as the rst step in the design of a data gathering application. As a second step, node activity scheduling is used to optimize energy consumption by switching o redundant nodes to maximize the network lifetime, while ensuring the coverage and connectivity required by the application. Finally, we gave some guidelines on selecting the deployment algorithms that are best-suited to the application requirements. With regard to these guidelines, we present in Table 3.4 the constraints and assumptions considered in our deployment algorithms proposed in the next chapters. In this chapter we present the sensing model and the radio transmission model which we adopted in our work for both 2D and 3D problems. We also present the models of the entity to be monitored and obstacles adopted for 2D and 3D deployments. For the sake of simplicity, we also assume that the condition R ≥ √ 3r is met. This condition guarantees that any deployment of wireless sensor nodes ensuring full coverage also ensures full connectivity.

The area considered and obstacles in 2D

The area to fully cover is considered as a polygon which may or may not be convex (see Figure 4.3). This polygon is dened by its edges. These edges constitute the borders of the area. We distinguish two types of borders:
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Theoretical computation of an optimized deployment in 2D and 3D An optimal deployment is a deployment which minimizes the number of sensors used. It is required in many applications where the number of available sensor nodes is limited. It is dened by the exact position of the nodes and their number.

In this chapter, we not only focus on optimal deployment in a 2D area but also optimized deployment in a 3D space. We start by proposing the computation of the optimal positions and number of nodes to cover a rectangle. Then, we show how to compute the optimized number of nodes to cover a cube.

Theoretical computation of an optimal 2D deployment

As proved in [START_REF] Aziz | Coverage strategies for wireless sensor networks[END_REF], an optimal placement of sensors in a 2D area oering full coverage can be obtained by a triangular lattice, as illustrated in Figure 5.1. If the targeted deployment is the optimal one, each sensor node will have six neighbors at a distance D th . The optimal deployment is obtained with an equilateral triangular lattice, (see Figure 5.1) where each sensor node has 6 neighbors at the same xed distance D th . Each sensor node occupies a vertex of an equilateral triangle. In Figure 5.1, a circle of radius r around a sensor node denotes its sensing area. 

Target distance in the optimal deployment

We now compute the target distance D th in the optimal deployment. Let M be the point of intersection of these three disks. AM is the radius r of the circle whose center is A. Since H is situated in the medium of AC then M H is the mediator of AC.

To compute the value of D th , we consider the angle (5.1) In the optimal deployment, the angle C AB is equal to π 3 , because of the equilateral triangle. Since α is half of the angle C AB = π 3 , we have α = π 6 . Consequently,

D th = √
3r in the optimal deployment (5.2) To ensure network connectivity, the communication range R must be higher than the distance separating two neighboring sensors (i.e R ≥ D th ) . Therefore, when the optimal deployment is reached, we have:

R ≥ √ 3r
Coverage and connectivity are closely related. In fact, if the sensing range r and the transmission range R meet R ≥ √ 3r, then it is sucient to ensure coverage, as connectivity is a consequence.

Optimal number of sensors to cover a given area

To determine the optimal number of sensors required to achieve the full coverage, we consider the optimal deployment illustrated in Figure 5.3 in an area of length L and width W . It is based on an equilateral triangular lattice of edge D th (see triangle ABC in Figure 5.3). Since in the optimal deployment of sensors, the pattern of the rst line is reproduced identically at each odd line and similarly the pattern of the second line is reproduced identically at each even line, we compute the number of sensors in odd lines and even lines (see Figure 5.3). We then compute the total number of lines and nally deduce the total number of deployed sensors. 3D Figure 5.3: Optimal deployment of sensors.

• Number of sensors in odd lines

In the rst line, and in any odd line, the rst sensor is located at a distance D th 2 (represented by N B in Figure 5.3) from the left boundary of the area. On a line all sensors are uniformly distributed at a distance of D th . Let N s,o be the number of sensors in odd lines. Let δ s,o be an integer equal to 0 or 1 computed as follows:

N s,o = L -D th 2 D th + 1 + δ s,o (5.3) 
with δ s,o = 1 if L -D th - L- D th 2 D th D th > 0 0 otherwise δ s,o
is equal to 1 when the distance between the last sensor in the line and the right boundary (represented by EF in Figure 5.3) is higher than D th 2 .

• Number of sensors in even lines

In even lines, the rst sensor is located at the left boundary of the given area.

Let N s,e be the number of sensors in even lines. We have

N s,e = L D th + 1 + δ s,e (5.4) 
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with δ s,e = 1 if L -D th 2 -L D th D th > 0 0 otherwise
δ s,e is equal to 1, if the distance between the last sensor and the right boundary is higher than D th 2 .

• Number of sensor lines

The rst line starts at a distance BM from the top of the area considered (see Figure 5.

3).

The computation of BM is done in the triangle N BM of Figure 5.3.

BM 2 + ( D th 2 ) 2 = r 2 As D th = 2rcosα, then BM 2 = r 2 (1 -cos 2 α)
And then, BM = rsinα.

The distance between lines is represented by BH in Figure 5.3.

BH = D th sin π 3 = √ 3 2 D th .
Finally, we get:

BH = √ 3rcosα
Consequently the number of lines denoted by N l is given by:

N l = W -rsinα √ 3rcosα + 1 + δ l (5.5) with δ l = 1 if W -2rsinα -W -rsinα √ 3rcosα √ 3rcosα > 0 0 otherwise • Number of sensors
The total number of sensors in a given area is the sum of the total number of sensors in odd lines and the total number of sensors in even lines denoted by N opt is:

N opt = N l 2 N s,e + N l 2 N s,o N opt = W -rsinα √ 3rcosα + 1 + δ l 2 ( L D th + 1 + δ s,e ) + W -rsinα √ 3rcosα + 1 + δ l 2 ( L -D th 2 D th + 1 + δ s,o )
(5.6)

Computation of the eective distance

We now assume that N , the number of operational sensor nodes, is given with N ≥ N opt . Our goal is now to obtain a uniform redeployment in a given area L * W , using all the N sensors. This uniform redeployment is also based on a triangular lattice, where any node is at a distance D ef f from its adjacent neighbors.

According to Equation B.1, we get:

N = W -rsinα √ 3rcosα + 1 + δ l 2 ( L D ef f + 1 + δ s,e ) + W -rsinα √ 3rcosα + 1 + δ l 2 ( L - D ef f 2 D ef f + 1 + δ s,o )
(5.7) In this work, we use the mathematical software Maple to solve Equation 5.7. Knowing the size of the area considered, we deduce the value of D ef f while varying N , the number of operational nodes. Figure 5.4 depicts the value of D ef f for a 500mx500m area and a sensing range r = 25m. The optimal value D th is equal to 43.3m and is obtained for 178 nodes. As expected, the distance D ef f decreases when the number of nodes increases. This corresponds to a higher density of nodes in the area considered.

Theoretical computation of an optimized 3D deployment

In 2D area coverage, triangular tessellation was proved to be the optimal strategy in terms of the number of sensor nodes number needed. This property cannot be generalized in 3D area coverage due to the big dierence between two 2D and 3D deployment problems. To determine the optimal 3D tesselation, we need to answer the following question: what is the best way to place nodes in 3D such that the number of nodes required to ensure full 3D coverage is minimized ? Unfortunately, the optimal tesselation has not yet been determined. However, a truncated octahedron tesselation has been proved to be the most ecient [START_REF] Alam | Coverage and connectivity in three-dimensional networks[END_REF]. The authors in [START_REF] Alam | Coverage and connectivity in three-dimensional networks[END_REF] demonstrated that the use of Voronoi tessellation to create truncated octahedron cells is the best strategy to achieve full coverage of a 3D area using the minimum number of nodes. The study was derived from Kelvin's conjecture. However, according to Kelvin and Kepler, the optimality proof for truncated octahedron tessellation is still not proven. The truncated octahedron (see Figure 5.5e) has 14 faces, of which are 8 are regular hexagons, and 6 are squares,so, a node has 14 neighbors. Other patterns including dierent polyhedra: rhombic dodecahedron, hexagonal prism and cube, are also presented in [START_REF] Alam | Coverage and connectivity in three-dimensional networks[END_REF], see Figure 5.5. The authors dene the volumetric quotient to determine the best polyhedron. Let V be the volume of the polyhedron and r the maximum distance from its center to any vertex, then the volumetric quotient is:

V 4 3 πr 3 (5.8)
The authors proved that the truncated ocatahedron gives the best volumetric quotient with the value of 0.68329 and provides the optimized number of nodes.

In addition to these polyhedra, we consider the regular dodecahedron where each node has 12 neighbors at the same distance, as illustrated in Figure 5.5d.

According to Equation 5.8, the volumetric quotient of the regular dodecahedron is equal to 0.666, which is very close to the value provided by the dodecahedron. We extracted Table 5.1 from (55) and completed it with the dodecahedron. This table presents a comparison between the dierent polyhedra in terms of volumetric quotient and the number of nodes compared to the truncated octahedron.

We observe that the regular dodecahedron requires a number of nodes that exceeds the number required by the truncated octahedron by only 2.59% which is a very interesting result that we will use in the next chapter. communicate. The truncated octahedron provides the highest values on the three axes x, y and z, immediately followed by the regular dodecahedron. The authors in [START_REF] Alam | Coverage and connectivity in three-dimensional networks[END_REF], propose equations to determine node positions for the cube, the hexagonal prism, the rhombic dodecahedron and the truncated octahedron placement strategies. However, they do not consider the border eects. Figure 5.6 depicts the truncated octahedron tessellation without considering the border eects.

To determine the optimized number of sensors required to achieve full coverage, we consider

a 2 √ 2a √ 6 a r = √ 10a 2 s = 2a l = a 2 3D
x-axis. The red plane is shifted by c = 1.281867a from the blue plane. The distance between two consecutive plans is b = 1.1019a.

The blue plane starts at m = c -√ 6a

2 on x-axis. Let L, W and H be the length, the width and the height of the rectangular parallelepiped considered.

• Computation of the number of nodes in the blue plane Number of nodes per column:

N node blue = L -m √ 6a + 1 + δ.
(5.9)

with δ = 1 if L -m -L √ 6a √ 6a > √ 6a 2 0 otherwise
Number of columns per blue plane:

N col blue = W -l 4a + 1 + δ.
(5.10)

with δ = 1 if W -l -W 4a 4a > 4a 2 + a 2 = 5a 2 0 otherwise
• Computation of the number of nodes in the red plane Number of nodes per column:

N node red = L - √ 6 2 √ 6a + 1 + δ.
(5.11)

with δ = 1 if L - √ 6 2 -L √ 6a √ 6a > √ 6a 2 0 otherwise
Number of columns per red plane:

N col red = W -l -2a 4a + 1 + δ.
(5.12)

with δ = 1 if W -l -2a -W 4a 4a > 4a 2 + a 2 = 5a 2 0 otherwise
• Computation of the number of nodes to cover a cube The number of planes

N plans = H 1.1019a + 1 + 2 + δ.
(5.13) The term + 2 accounts for the two plans inserted to avoid coverage holes on the top and bottom of the cube.

with δ = 1 if H - H 1.1019a 1.1019a > 0.36r 0 otherwise
The total number of sensors in a given cubic area, denoted by N 3D , is the sum of the total number of sensors in the red plane and the total number of sensors in the blue plane. It is equal to:

N 3D = N plans 2 N node red * N col red + N plans 2 N node blue * N col blue

Conclusion

The use of an optimized deployment to monitor a given area allows the network to be optimized in terms of the number of sensors used and the energy consumed.

In this chapter, we adopted the triangular lattice tessellation in 2D to provide an optimal deployment using the least number of sensor nodes. We proposed a computation of the exact number of nodes needed to cover a full rectangular area. We also proposed a 3D optimized deployment based on the truncated octahedron tessellation to cover a rectangular parallelepiped. These theoretical computations are used in the following chapters for optimized autonomous and assisted deployments.

Introduction

In the previous chapters, we studied the state of the art with regard to coverage and connectivity problems, dierent deployment strategies, assumptions, constraints and models adopted, which depend on the applications requirements. Here, we are interested in deployment algorithms, that ensure full coverage and connectivity of a given area, while taking into account many constraints such as, energy consumption and presence of known and unknown obstacles.

In this chapter, we focus on autonomous deployment based on virtual forces. There are many reasons for choosing virtual forces as a strategy to move mobile sensor nodes. First, the principle of virtual forces allows sensor nodes to cooperate and compute their appropriate positions in a distributed way, in which case, the deployment algorithm can be considered as being completely distributed. Second, virtual forces favor the spreading of nodes over the whole area, meaning that, full area coverage can be reached quickly. Third, if the target distance between neighboring sensor nodes is maintained, then, on the one hand, network connectivity will also be maintained and, on the other hand, the optimal deployment based on the triangular lattice can be established if a steady state is reached. Finally, the principle of the virtual forces is very simple, and has a low computation cost. Hence, the virtual forces strategy provides a distributed deployment that matches the optimal deployment and ensures full area coverage while maintaining network connectivity, as we will see in this chapter. As shown in the state of the art, many studies based on virtual forces exist. However, they may dier in the parameters adopted and the attractive and repulsive forces formula.

Starting from a previous version of DVFA (4), Distributed Virtual Forces Algorithm, designed by our team to deploy sensor nodes in the area considered, we study how to tune the parameters of this algorithm to obtain very good results.

Unfortunately, the virtual forces algorithm in its distributed version suers from some weaknesses:

• Node oscillations, due to the fact that each sensor node cannot have exactly 6 neighbors according to the triangular tessellation (3) at a distance of exactly D th (e.g. border eect, number of sensor nodes higher that the required number). • Tuning of parameters K a (attractive coecient) and K r (repulsive coecient): when K a is high, the attractive force is great and may cause the stacking problem (i.e. two or more sensor nodes occupy the same position). When K r is high, the new position of a sensor node can be at a distance greater than the communication range.

Hence, a sensor node may be disconnected from the sink due to a large value of the repulsive force. • End of the algorithm: the algorithm of the virtual forces ends when a steady state has been reached where all the nodes have stopped moving. However, due to node oscillations, the end of the virtual forces algorithm is its distributed version is still a problem. • Energy consumption: during the execution of the virtual forces algorithm, most of the energy consumed by the sensor nodes is due to the nodes movements. Node oscillations induce high energy consumption and do not contribute to increasing area coverage. We can conclude that many drawbacks of the virtual forces algorithm are related to node oscillations. In this chapter, we deal with these drawbacks and propose three variants of DVFA that cope with node oscillations. Since obstacles exist in a real environment, they should be taken into account when designing a deployment algorithm. That is why we propose a variant of DVFA that ensures full area coverage and network connectivity when known and unknown obstacles exist.

In this chapter, we start by presenting the principles of DVFA and its performance evaluation in Section 6.2. Then, in Section 6.3 we propose two deployment algorithms called ADVFA and GDVFA to cope with node oscillations. In Section 6.4, we propose a deployment algorithm called OA-DVFA that deals with both node oscillations and the presence of known and unknown obstacles in the area to be monitored. Finally, in Section 6.5, we show how to use virtual forces strategy in a 3D space and we propose 3D Distributed Virtual Forces Algorithm (3D-DVFA).

6.2 DVFA: Distributed Virtual Forces Algorithm 6.2.1 DVFA principles DVFA (4), Distributed Virtual Forces Algorithm, is a distributed sensors deployment algorithm applying the virtual forces approach. The goal of DVFA is to ensure full coverage of the area while maintaining network connectivity. Autonomous sensor nodes move according to the virtual forces exerted on them by their neighboring sensor nodes. The idea is to maintain the target distance D th , the distance threshold, between two neighbors. Knowing the dimensions of the area to cover, the algorithm computes D th as the result of Equation 5.2 in Chapter 5, assuming that the number of nodes is higher than or equal to N opt given in Equation B.1 in Chapter 5. It is worth noting that, if the number of operational sensors is smaller than N opt , DVFA maximizes the coverage that can be obtained with this number. In DVFA, each node repeats the following steps: neighborhood discovery, virtual forces computation and moves to its new position, as shown in Figure 6.1. More precisely, it proceeds as follows:

• Step 1: Each node s i periodically sends a Hello message that contains its position obtained from a GPS and its 1-hop neighbors with their positions. This message allows the node to discover the positions of its 1-hop and 2-hop neighbors. • Step 2: Each node s i computes the forces exerted on it by its 1-hop and 2-hop neighbors. The force exerted by s j on s i where s j is any 1-hop or 2-hop neighbor of

s i is: Attractive if d ij > D th
, where d ij is the Euclidean distance between s i and s j . We have

-→ F ij = K a (d ij -D th ) (x j -x i ,y j -y i ) d ij
, where K a is a coecient in [0, 1), (x i , y i ) and (x j , y j ) are the coordinates of s i and s j respectively; Repulsive if d ij < D th . We have

-→ F ij = K r (D th -d ij ) (x j -x i ,y j -y i ) d ij
, where K r is a coecient in [0, 1); Null if d ij = D th .

• Step 3: Each node s i computes the resulting force exerted on it:

- → F i = j -→ F ij . • Step 4: Each node s i moves to its new position (x i , y i ) with x i = (x i + x-coordinate of - → F i ) and y i = (y i +y-coordinate of - → F i ).
Before moving, each node s i sends a Bye message containing its new position. This message allows its neighbors to update their 1-hop and 2-hop neighbor table. The Bye message decreases the convergence time of DVFA. To maintain network connectivity and limit the total distance traveled by each node at each iteration, the distance to the new position can never exceed a xed threshold Lmax. Lmax reduces oscillations in sensor moves and then enables nodes to save energy. The Hello period must be larger than the time needed to compute DVFA and to travel the distance Lmax, as shown in Figure 6.1. We notice that DVFA does not need the knowledge of the exact number of operational nodes. For this reason, DVFA uses the value of D th computed for the minimum number of nodes needed to fully cover the given area. We implemented the DVFA algorithm as an agent in the NS2 simulator and performed simulations for dierent wireless sensor networks. Simulation parameters are given in Table 6.1. The values of Ka and Kr were experimentally determined to increase the area coverage and the convergence of the centralized virtual forces algorithm (4). We use the Hello period value of 2s. The IEEE 802.11b MAC protocol was used as many mobile robots are equipped with such an interface. Furthermore, this assumption makes sense, knowing that the evolution of the IEEE 802.15.4 MAC protocol and its performances are getting closer to the 802.11b protocols. Using these parameters, we compute the value of D th in the optimal triangular lattice using Equation 5.2. The obtained value is D th = 43.3m. From Equation B.1, we compute N opt = 178. For these simulations, we use a number of sensor nodes equal to 250 > N opt .

Simulated topologies

During the monitoring of the area, the data gathering process can partially fail if the network is disconnected, specially when sensor nodes have to cooperate to report the information detected to the controller robot. That is why we study the topologies depicted in Figures B.5b and B.5d. Each of them corresponds to a temporary worksite application considered in this PhD thesis.

• Disconnected topology: In the disconnected topology, several disconnected islands of connected nodes exist in the temporary worksite (see Figure B.5b). This topology corresponds to several groups operating in the same worksite, but in non contiguous zones. • Four entry points topology: The initial topology depicted in Figure B.5d, corresponds to a scenario where dierent teams organize themselves to monitor the worksite starting from dierent entry points (four entry points in our case). Moreover, the presence of coverage holes during deployment causes a problem for the data gathering process since data corresponding to coverage holes are missing. Hence, we will study, in addition, the two topologies depicted in Figures B.5a • Failed topology: The topology depicted in Figure B.5c presents a uniform deployment where some sensor nodes have failed. These failures are due to, for instance, battery depletion. For each initial topology, 30 random congurations are simulated. The gures given in this chapter show the average value with the standard deviation.

Computation of the coverage

To compute the coverage rate, we virtually divide the network area into LxW grid units. A grid unit is considered to be covered if and only if its centered point is covered by at least one sensor node. The coverage rate is computed as the percentage of grid units covered. In the performance evaluation, we evaluate the coverage rate dynamically as a function of time. This evaluation is done in a centralized way using the nodes' positions at the current time.

Computation of the distance traveled

During the deployment, most of the energy consumption is caused by the sensor nodes' movements. In our simulations, we did not directly measure the energy consumed during deployment; however, we did evaluate the total distance traveled by the sensor nodes.

As the energy is proportional to this distance, the values of the distance traveled in the following sections reect the energy consumed during deployment.

Simulation results

Figure 6.3 illustrates the nal deployment obtained with DVFA for an initial topology with four entry points (Topology d in Figure 6.9b), providing a quasi-uniform deployment with a 99.9% coverage rate. Figure 6.4a depicts the coverage rate over time for the four initial topologies. The rst 500s are crucial to improve the coverage rate. After this time, the additional gain is small and almost null. For all topologies, DVFA achieves a very good coverage, it reaches 99.9% for the four toplogies depicted in We now evaluate the total distance traveled by nodes in DVFA, as shown in Figure 6.4b. We observe a very big gap between the total distance traveled by nodes during the simulation and the distance traveled by nodes when the maximum coverage is reached for the rst time. This gap can be explained by node oscillations. In fact, even if the maximum coverage rate is reached, the nodes continue to run the DVFA algorithm and move accordingly. These oscillations lead to energy waste.

Summary

DVFA is a distributed algorithm that favors the spreading of sensor nodes over the whole area to provide full area coverage while maintaining network connectivity. However, it suers from a major problem. Nodes move continuously, oscillating between dierent nearby positions, even when the maximum coverage has been reached. This stems from the fact that a node does not know when the maximum coverage of the area has been reached. Indeed, it is dicult to distinguish between a local optimum and a global one, and this problem is still an open issue. To cope with the node oscillations problem, we made improvements to DVFA. In the following section, we propose two deployment algorithms called ADVFA and GDVFA.

How to cope with node oscillations

In this section we propose two virtual forces based deployment algorithms that deal with node oscillations. The rst one is called ADVFA, Adaptive Distributed Virtual Forces Algorithm. ADVFA reduces node oscillations. The second deployment algorithm is GDVFA, Grid Distributed Virtual Forces Algorithm, that stops node oscillations.

ADVFA: Adaptive Distributed Virtual Forces Algorithm

Simulations of DVFA, show that using an inappropriate D th independent of the number of nodes amplies the oscillation phenomenon. With this D th , it becomes impossible to obtain an equilibrium where virtual forces are null, leading to high energy waste. We try to overcome this problem by proposing ADVFA: an Adaptive Distributed Virtual Forces Algorithm, which adapts the distance between neighbors to the total number of nodes.

ADVFA principles

ADVFA is a fully distributed deployment algorithm ensuring full coverage of the area. Unlike DVFA, the target distance between two neighbors is not xed but varies as a function of the number of nodes discovered. ADVFA is highly adaptive to any environment: it adjusts its target distance according to the newly discovered connected components. The goal is to obtain a homogeneous deployment to avoid oscillations using the most appropriate distance between two neighbors depending on the number of nodes.

Like DVFA, ADVFA is based on the four steps dened in Section 6.2.1.An additional message, called Component, is exchanged periodically between 1-hop neighbors to compute the number of connected operational nodes discovered in the area. The Component message sent by a node s i determines the operational nodes already discovered in its connected component. These operational nodes are represented in the Component message by a bitmap: the j th bit represents the node s j . If it is equal to 1, node s j is present in the connected component of s i . See Figure 6.5 for an example of such a bitmap. Initially, each node s i marks the i th bit to 1 in its Component message and sends it. Upon reception of the Component messages, node s i makes an OR operation between its own message and all Component messages received and sends it in the next period. Consequently, node s i is able to determine N , the number of operational nodes in its connected component by counting the number of marked bits:

• If N ≤ N opt then D ef f = D th where N opt is the optimal number of nodes needed to fully cover the given area and computed according to Equation B.1 in Chapter 5, and D ef f is the expected distance between two neighbors. • If N > N opt then D ef f is the solution of Equation 5.7 in Chapter 5. ADVFA allows connected components to be discovered and merges of them. In fact, the rst contact between two disjoint components will allow the exchange of Component messages with their dierent bitmaps included. Thus, the corresponding D ef f is immediately deduced and broadcast in the new connected component resulting from the merge. Some nodes may fail due, for instance, to energy depletion. To take into account node failures occurring during the deployment algorithm, the bitmap is periodically recomputed from scratch to remove failed nodes. A re-computation of the bitmap of a connected component is triggered by an elected node (e.g., the node with the smallest address in this component). In this series of simulations, the period of Component messages is xed to 5s. A short period of Component messages is needed to track the number of connected nodes already discovered. ADVFA adapts its parameters to this number in order to maintain the appropriate distance between neighboring nodes, thereby avoiding useless moves. As long as new operational nodes are discovered, the target distance is updated. Depending on the adaptivity requirement, we may reduce the frequency of Component messages in order to save bandwidth.

The parameters used in the simulations are the same parameters as those dened in Table 6.1. We make a comparative evaluation between ADVFA and DVFA in terms of coverage rate and distance traveled. The coverage rate and distance traveled for ADVFA are computed as explained in Sections 6.2.2.3 and 6.2.2.4.

Random topology: Figure 6.6a shows that ADVFA and DVFA provide an excellent coverage rate of 99.9%. This is due to the principle of virtual forces that contributes to maintain the target distance between neighboring nodes, and results is sensor nodes occupy the whole area leading to this result. This result is achieved at the cost of a total distance traveled depicted in Figure 6.6b. We observe that ADVFA considerably reduces this distance by 64%. Disconnected topology: Figure 6.7a shows that, after a short time, full coverage is achieved by both DVFA and ADVFA. However ADVFA has the merit of reaching this coverage with a smaller total distance traveled. As shown in Figure 6.7b, this distance is reduced by 61% compared to DVFA. As a conclusion ADVFA maintains full coverage like DVFA, but increases the network lifetime by reducing energy consumption.

Topology with failed nodes: In the monitoring area, sensor nodes may fail due to their battery depletion. These failures are detected by both algorithms that use Hello messages to discover node neighborhood. However only ADVFA adapts the target distance to the new number of operational nodes. This is made possible by the exchange of the Component message that is periodically updated. We observe that ADVFA and DVFA achieve full coverage rate as depicted in Figure 6.8a. However, the distance traveled is considerably ). This is due to a target distance computed with the eective number of operational nodes, leading to a more stable redeployment.

ADVFA is robust with regard to node failures: it is able to adapt to the number of operational nodes that it progressively discovers. This quality of ADVFA can be very important for applications where sensors can be damaged during their initial drop or can fail because of energy depletion. Topology with four entry points: Figure 6.9a depicts a very good coverage rate for both ADVFA and DVFA. However ADVFA considerably reduces the total distance traveled by nodes.In Figure 6.9b, we can observe, that the distance traveled by DVFA increases rapidly to reach 300km at the end of the deployment, whereas the distance traveled by ADVFA does not exceed 140km. Hence, ADVFA is more energy ecient than DVFA. Figure 6.9: ADVFA evaluation: Four entry points topology ADVFA is a good solution to provide full area coverage and guarantee network connectivity while saving energy. As shown previously, ADVFA reduces node oscillations by adapting the target distance to the number of nodes deployed. Although the distance traveled by nodes is considerably reduced, nodes continue to oscillate. To cope with this problem, sensor nodes should stop moving when they are in the appropriate position. This goal can be met if the nal positions of the nodes are predetermined. To deal with this problem we propose a redeployment algorithm called GDVFA, Grid Distributed Virtual Forces Algorithm, which combines the virtual forces strategy to move sensor nodes with the grid-based strategy to stop them and save energy. The GDVFA algorithm is a hybridization of the virtual forces strategy and the grid strategy. GDVFA, like DVFA, is based on virtual forces to move sensor nodes and maintain the target distance D th between neighboring nodes. The new position of a sensor node is computed according to the sum of the forces exerted on it by its 1-hop and 2-hop neighbors. As we showed for DVFA, the distance the node can move is limited to a xed threshold called Lmax in order to reduce the distance the nodes travel at each iteration. The originality of GDVFA lies in the use of grid based strategy: we propose dividing the area into similar virtual cells. Our target is to incite nodes to occupy the centers of cells. Hence, redundant nodes are those that do not occupy the center of a cell. They can easily be detected and switched to a sleep state to save energy. Furthermore, any node whose neighboring cell centers do not change can stop moving. In this way, the energy consumed is reduced. These two enhancements are detailed in Subsection 6.3.2.3.

GDVFA proceeds in two phases, both of which consist of a set of iterations. At each iteration, each node executes the four steps dened in Section 6.2.1. Each iteration has a duration of a Hello-period.

Phase 1 executes the simple DVFA to spread sensor nodes over the whole area while ensuring a uniform density. During this phase, each node moves in step 4 to the new position computed by virtual forces. At the end of phase 1, the nodes are deployed over the whole area while oering a good coverage and uniform density. Nevertheless, DVFA suers from high energy consumption due to node oscillations. The aim of Phase 2 is essentially to cope with this drawback by adopting the grid strategy. In this phase, step 4 (see Section 6.2.1) is replaced by the following step:

• Step 4': each node determines the cell containing its new position. If the center of this cell is empty and this node has the smallest identier among all the nodes in this same cell, then it moves to the cell center. Otherwise, this sensor node moves to the new position determined by the resultant force. Notice that a node that occupies the center of a cell can leave it if and only if its neighbors exert on it an attractive or repulsive force. The benet of the rst phase is that is spreads the nodes over the whole area rapidly, in a predened amount of time (the spreading factor described in 6.3.2.5), before switching to the second phase oering stability and convergence. For example, in the performance evaluation in section 6.3.2.4, this spreading factor is equal to 100s for a topology where nodes are randomly scattered all over the network area. Any sensor node is assumed to know the value of the spreading factor, a parameter of GDVFA.

Cell denition

In this section, we explain how to dene the virtual grid in GDVFA by giving the equations used to determine the cell center relative to a sensor node of coordinates (x, y) in the grid. The size of the cells is computed with regard to the sensing range in order to ensure full area coverage. As shown in Chapter 2, when R ≥ √ 3r and full area coverage is ensured, network connectivity is consequently ensured. In our work, network connectivity is therefore guaranteed since we assume R ≥ √ 3r.

In GDVFA, we choose to use rectangular cells to simplify the computation of the cell which any node belongs to, knowing the coordinates (x, y) of the sensor node, the values of L and W of the network area and the value of the sensing range, r. Sensor nodes should occupy the center of these cells. Figure 6.10 depicts the grid cells with a rectangular shape. Each non-border cell has a length equal to D th and a width of 3r 2 . Furthermore, each nonborder cell has 6 neighboring cells. However, the sensor nodes are deployed in triangular lattice of edge D th . As the GDVFA algorithm deploys sensor nodes in a triangular lattice, then each three neighboring nodes, the vertices of the same triangle, should fully cover this equilateral triangle while minimizing their overlapping. This overlapping can be a single point which corresponds to the barycenter of the triangle. Since the distance between the barycenter of this triangle and each vertex of this triangle is r, the distance between two neighboring nodes, an edge of the triangle, is D th = √ 3r. This also corresponds to the 3r 2 • Case (line(x, y)modulo2) = 0: Then the node of coordinates (x, y) occupies the col o (x, y) th cell in an odd line computed as follows:

D th 2 r 2 (x, y) s i s i line(x, y) col(x, y) line(x, y) = y -r 2 3r 2 + 1 + δ l with δ l = 1 if y -5r 4 - y-r
col o (x, y) = x -D th 2 D th + 1 + δ o (6.3) with δ o = 1 if x -D th - x- D th 2 D th D th > 0 0 otherwise and D th = √ 3r.
Hence, the coordinates of the cell center are By denition a node is said to be in stop state in an iteration if and only if it does not move during this iteration due to the stopping condition. However, to keep the required property of reactivity to topology changes (e.g. node departure, empty cells detected), the stopping condition is always veried at each iteration.

Stopping condition: the nodes occupying the center of its 6 neighboring cells and its cell have not changed during three consecutive iterations.

At each iteration, any node computes the resultant of the virtual forces exerted on it, and checks the stopping condition. If the node has not stopped and the stopping condition is true, the node stops. Furthermore, a previously stopped node moves in an iteration if and only if: either the resultant of the virtual forces diers from the previous one (e.g. the arrival of a new neighbor), or the stopping condition is no longer true.

A node that has stopped without occupying a cell center is said to be redundant. Redundant nodes are used to replace failed or depleted nodes. For the initial deployment depicted in Figure 6.11a, GDVFA, provides the nal deployment shown in Figure 6.11b for 250 nodes. The red nodes are active nodes, whereas the blue nodes with small points are redundant nodes which sleep to save energy and prolong the network lifetime. f = 100s 100% 200 250 300

D th 100%
• the ones occupying the center of cells. These nodes are needed to ensure full coverage;

• the other ones are redundant nodes (see Figure 6.14b). GDVFA enables the distributed detection of redundant nodes (see Figure 6.14b). Such nodes can be turned o to save energy and increase the network lifetime. The detection of redundant nodes can also be used to repair coverage holes or replace energy depleted nodes. Figure 6.14c depicts the cumulative stopping time that allows nodes to save energy by reducing useless moves and prolonging network lifetime.

Impact of the spreading factor

Up to now, we have assumed that the initial deployment was random and the sensor nodes were scattered over the entire network area. Simulation results reported in Section 6.3.2.4, show that f = 100s is sucient to obtain a nal coverage rate of nearly 100% at the end of the simulation. For many applications, this initial deployment is not representative; initially all the sensor nodes are grouped together at a single entry point of the area. In this case, f = 100s may be insucient to obtain the full coverage, even if the number of sensors is sucient to obtain this full coverage. We can establish a lower bound for this factor in such an initial topology as follows. Let W * L be the length and the width of the rectangular area considered. In DVFA and GDVFA, any sensor node cannot move more than Lmax during each Hello-period. The lower bound on the spreading factor is computed, taking into account the time needed by a sensor to reach the furthest position from the initial one in the topology. For instance, in a topology with a single entry point at the corner of the rectangular area, which can be considered as one of the worst cases, we get:

√ L 2 +W 2
Lmax * Hello period With the simulation parameters given in Table 6.1, we get f ≥ 194s. We now study the impact of the spreading factor on the performances achieved by GDVFA. Figure 6.15a shows that a spreading factor of 100s is not sucient to ensure the nodes are spread over the whole area. Consequently, the area coverage remains limited to 63%. A spreading factor larger than 200s allows a 100% coverage rate to be reached. As illustrated in Figure 6.15b, the total distance traveled by the nodes increases with the spreading factor. This is due to the oscillations caused by DVFA, which occur even when full area coverage has been obtained. As a conclusion, the choice of the spreading factor is very important for the performances of GDVFA, expressed in terms of coverage rate and distance traveled. To save energy, we recommend choosing the smallest value that ensures full coverage, (e.g. 250s in our example).

Summary

In this section, we proposed two deployment algorithms based on virtual forces that enable the spreading of nodes as quickly as possible with the minimum energy consumption while • ADVFA is a deployment algorithm that adapts to the number of nodes and the presence of disconnected components. Due to its mechanism, ADVFA considerably reduces nodes oscillations.

• GDVFA is based on both virtual forces strategy and grid strategy. It is able to stop node oscillations and determine redundant nodes, so, they can be switched to sleep state. GDVFA is an energy ecient autonomous deployment algorithm. However, the area considered may contain obstacles. In the following section, we show how to cope with the presence of known and unknown obstacles. In the literature, many studies focus on the deployment of wireless sensor nodes in an area containing known obstacles. However, very few studies deal with unknown and unpredictable obstacles. This situation corresponds to the requirement of many applications such as monitoring a post-disaster area and damage assessment. The principle of virtual forces must be enhanced to cope with obstacles. For instance, the authors of ( 17) and ( 6) propose a virtual force algorithm as a sensor node deployment strategy to enhance the coverage rate of the area. In this study, a repulsive force is exerted by the obstacle on sensor nodes. Despite the high level of coverage rate obtained by this solution, the total knowledge of, on the one hand, the area considered and, on the other hand, the obstacles' shape and position is required. Two other solutions based on virtual forces and which cope with unknown obstacles, are presented in [START_REF] Tan | Connectivity-guaranteed and obstacle-adaptive deployment schemes for mobile sensor networks[END_REF]. Both solutions aim to maintain network connectivity between sensor nodes and the sink. Since obstacles may exist in the area, the authors propose using the right-hand rule to bypass the obstacles. The idea is to move a sensor node along a straight line toward its new position; when an obstacle is detected, the right hand maintains contact with the obstacle until this sensor node gets back to the straight line. The two solutions proposed are not only based on virtual forces but also on other strategies that require broadcasting messages to maintain network connectivity. These solutions therefore induce a high overhead in terms of messages broadcast in the network to check the connectivity of the nodes with the sink. Moreover, the right-hand rule proposed to avoid obstacles, may not be ecient with some shapes of obstacles. We notice that both solutions favor network connectivity at the expense of full area coverage. In this section, we focus on the deployment of autonomous sensor nodes, based on the virtual forces principle, in an area that may contain unknown obstacles. We propose OA-DVFA Obstacles Avoidance Distributed Virtual Forces Algorithm which not only avoids obstacles, but also deals also with node oscillations problem as it uses the grid strategy to stop nodes moving.

To be more representative of a real environment, we have to take into account the existence of obstacles. The principle of virtual forces in DVFA does not consider the presence of obstacles in the area. We distinguish two types of obstacles: transparent obstacles and opaque obstacles (see Chapter 4). Furthermore, obstacles may be known in advance and their position and shape can be taken into account before starting the placement of nodes at their appropriate positions. In contrast, unknown obstacles are discovered dynamically when a mobile node coming close to an obstacle detects it. The trajectory of the mobile node is then modied during the deployment. The mechanism used by OA-DVFA to cope with obstacles is valid for both transparent and opaque obstacles and also when obstacles are unknown. OA-DVFA, like DVFA, is based on virtual forces to move sensor nodes and maintain the target distance D th between neighboring nodes. The new position of a sensor node is computed according to the sum of the forces exerted on it.

To avoid node oscillations and stop the movement of sensor nodes, OA-DVFA uses a virtual grid strategy, like GDVFA. The idea is to divide the area into cells whose centers match the optimal deployment as if no obstacles were present. Nodes are incited to occupy these centers when they are reachable (i.e. not inside obstacles). Then, sensor nodes in cell centers should perform the monitoring task whereas, the others are considered as redundant nodes and can switch to a sleep state to save energy. However, in the presence of obstacles, not only the nodes in cell centers should be active, but so should some nodes which are around the obstacles and whose cell centers are inside the obstacle (see for instance Figure 6.16). The others can switch to a sleep state. More precisely, OA-DVFA proceeds in three phases: Phase 1: Node Spreading Nodes spread over the whole area based on the virtual forces principle while avoiding known or unknown obstacles. Then, like in DVFA, at each iteration, each node executes the four steps dened in 6.2.1. The fourth step is adapted to OA-DVFA to cope with obstacles. So, when the new position is within an obstacle, the sensor node will move toward this position until it detects the obstacle. Then, it stops at a certain distance from the obstacle's border.

Phase 2: Stop Node Oscillations

In a virtual cell matching the optimized deployment, the node with the smallest identier moves to the cell center if it is unoccupied. Phase 3: Node Activity Scheduling After a pre-computed time, each node decides to stay active or switch to sleep state to save energy. This decision is taken according to the following rules:

• Nodes in cell centers stay in an active state.

• Nodes whose cell centers are occupied by other nodes switch to a sleep state.

• For all nodes whose cell center is inside an obstacle:

Only the closest node to the cell center remains in an active state, The others switch to a sleep state. The neighborhood of a sensor node may change due to obstacles. Some neighboring nodes will no longer be neighbors due to the presence of opaque obstacles. The number of active nodes is not the same depending on whether obstacles are opaque or transparent. We do not propose an additional condition to deal with opaque obstacles since the OA-DVFA principle is still valid. Figures 6.16 and 6.17, show how OA-DVFA copes with both opaque and transparent obstacles. Small squares (red in the center of the cell, black otherwise) denote active sensor nodes, whereas redundant nodes in a sleep state are denoted by blue disks. In the case of a transparent obstacle (see Figure 6.16), only one sensor node per cell, the closest to the cell center, stays active, the others are considered to be redundant nodes and should switch to a sleep state. However, when the obstacle is opaque (see Figure 6.17), at least one node stays active in a cell. Since opaque obstacles block communication between nodes, two nodes may be in the same virtual cell without being neighbors. Then, both of them decide to stay active: see for instance the nodes within the orange circles. When obstacles are known, the spreading time, called P hase1_Spread_T ime and dened as the time needed to execute the node Spreading Phase, can be estimated in advance. All the nodes know the value of the spreading time, a parameter of OA-DVFA. They all enter Phase 2 after this time, followed by Phase 3. The P hase1_Spread_T ime is equal to 1500s for Topology 1 and 4000s for Topology 2. The execution of OA-DVFA is illustrated in Figure 6.18.

How to Run OA-DVFA for unknown obstacles

When obstacles are unknown, the spreading time cannot be estimated in advance. Sensor nodes should cooperate to decide when to stop the spreading phase. This decision strongly time (i.e. 4000s) to reach a 100% coverage rate, whereas the deployment in Topology 1 is much faster, requiring only 1000s. This highlights the impact of the number, shape and position of obstacles.

When we focus on unknown obstacles (in Figure B.9a), full coverage is reached with Topology 1. With Topology 2, OA-DVFA provides a coverage rate of 98%, which is a very good result for a complex topology.

When obstacles are unknown, sensor nodes do not know the number of virtual cells that should be covered (i.e they do not know how many cells are occupied by obstacles). Since Topology 2 is complex, the stopping condition in the node spreading phase of OA-DVFA may be true even if all the cells have not yet been visited. OA-DVFA stops even if coverage is 98%. This can be explained by the following observation. At the beginning of the algorithm, the density of the nodes is high and so the repulsive forces are high. Hence, the spreading of nodes is quick. Closer to the stability point, the virtual forces are lower and so the spreading of the nodes becomes slow. In addition, the spreading of the nodes can be slowed down by the presence of obstacles that create a narrow lanes in the area considered. To limit the distance traveled, and hence the energy consumed by the nodes, we prefer to stop sensor nodes prematurely rather than allowing them to move for a longer time and only gaining 2% of coverage. As a conclusion, OA-DVFA succeeds in providing a very good coverage rate, even when obstacles are discovered dynamically. As expected, obtaining a high coverage rate requires more time when the obstacles are unknown. Since the area may contain unknown obstacles, the number of sensor nodes required cannot be computed in advance. Consequently, the number of sensor nodes initially present is higher than the number that is actually necessary. To save energy, OA-DVFA includes node activity scheduling where only nodes needed to ensure full area coverage are active, and the others switch to a sleep state. As illustrated in When the obstacles are unknown, we get results that are very close to those with known obstacles, in terms of the number of active nodes as depicted in Figure 6.24b. However, the process may take more time.

Considering Phase 2 and Phase 3, we can conclude that OA-DVFA is an energy-ecient self-deployment algorithm. In this section, we proposed the OA-DVFA algorithm that spreads sensor nodes over the whole area as quickly as possible, while avoiding known and unknown obstacles and stopping node oscillations. In a 3D space, the virtual force strategy can be used to spread sensor nodes over a volume (e.g. such as a cube). In the following section we show how to extend virtual forces strategy to perform in 3D.

How to use virtual forces in 3D

The improvements made in WSNs have led to the emergence of new networks known as Mobile WSNs. These mobile WSNs are better able to meet the requirements of more realistic applications such as 3D applications. Some 2D deployment approaches could be extended to perform in 3D space. The virtual forces strategy, or our DVFA, can be extended to operate in 3D space. The 3D virtual forces strategy is like the 2D strategy: each sensor node can exert attractive and repulsive forces, on its neighbors, the strength of the force being dependent on the distance separating them. If this distance is higher than the distance threshold D th , then an attractive force is exerted. If it is smaller than D th , then a repulsive force is exerted. Otherwise, the exerted force is null. Each node moves according to the resultant force. Figure 6.25 illustrates an example of virtual forces exerted on sensor S 1 in 3D space. Figure 6.25: Example of 3D virtual forces exerted on node S1 As shown in Chapter 4, in a 3D space, the sensing zone and the communication zone of a sensor node are assumed to be spheres centered on the sensor node and of radius r and R, respectively.

3D-DVFA: 3D Distributed Virtual Forces Algorithm

The 3D-DVFA algorithm like DVFA is based on virtual forces strategy. However, it aims to deploy sensor nodes in 3D space to ensure coverage and maintain network connectivity.

3D-DVFA principles

The 3D-DVFA algorithm works as follows. Each sensor node within the network runs the following algorithm that proceeds by iterations but does not require node synchronization. Let s i denote any sensor node and (x i , y i , z i ) be its coordinates. At each iteration, each node broadcasts a Hello message. In the Hello message, each node sends its position and the node it hears in order to perform the neighborhood discovery. Then, each sensor node is able to determine its 1-hop neighbors and 2-hop neighbors, and compute its new position according to the forces exerted on itself by its 1-hop and 2-hop neighbors.

Let d ij denote the Euclidean distance between the sensor nodes s i and s j . d ij is given by (

x j -x i ) 2 + (y j -y i ) 2 + (z j -z i ) 2 .
The force exerted by sensor s j on sensor s i is • an attractive force if d ij > D th and is given by:

F ij = K a • (d ij -D th ) • (x j -x i , y j -y i , z j -z i ) d ij
• a repulsive force, if d ij < D th and is equal to

F ij = K r • (D th -d ij ) • (x i -x j , y i -y j , z i -z j ) d ij • null otherwise, (d ij = D th )
Hence, the resultant force F i on s i is computed as the sum of these forces exerted by its 1-hop and 2-hop neighbors:

F i = j F ij
Then, node s i moves according to the resultant force to its new position. The new position of sensor s i is given by (x i , y i , z i ) with

x i = x i + F ix , y i = y i + F iy and z i = z i + F iz .
Since the role of D th is very important in the principle of virtual forces, it should be well tuned. In 2D deployment, D th is computed according to the optimal deployment based on the triangular tessellation where each node, located at a triangle vertex, has 6 neighbors. However, in 3D space, the optimized deployment is provided by the truncated octahedron tessellation [START_REF] Alam | Coverage and connectivity in three-dimensional networks[END_REF]. The truncated octahedron (see Figure 6.26b) has 14 faces, of which 8 are regular hexagons, and 6 are squares, so, a node has 14 neighbors. If the neighbors are adjacent on a square face, the target distance is equal to 4R s / √ 5. In contrast, if they are adjacent on an hexagonal face, the target distance is

2R s √ 3/ √ 5.
When the truncated octahedron is used, two target distances are maintained between neighboring nodes depending on their respective positions. However, since in the virtual forces strategy, only one target distance is maintained between neighboring nodes, we do not adopt the truncated octahedron tessellation as a deployment pattern. We prefer a regular tesselation requiring a unique D th . The regular dodecahedron(see Figure 6.26a) is a regular polyhedron composed of 12 equally sized regular pentagons. Since it is regular, a node in the center of the dodecahedron has 12 neighbors at the same distance. In our study, we adopt the regular dodecahedron to determine the target distance in order to apply the virtual forces strategy. Figure 6.27 shows the regular dodecahedron tesselation where the node in the center of the dodecahedron has 12 neighbors.

Let a be the edge length of a regular dodecahedron. The radius of the circumscribing sphere that intersects the dodecahedron at all vertices, represents the sensing range r and We evaluate the coverage ratio, provided by the 3D-DVFA algorithm, with regards to initial conguration and number of nodes deployed. To determine the coverage ratio, we divide the whole space into 100mx100mx100m unit cubes. Hence, the coverage ratio is calculated as the ratio of unit cubes whose center is covered by at least one sensor. As 3D-DVFA algorithm is run by mobile and autonomous sensor nodes, the energy consumption due to sensor moves may be high. That is why, we evaluate the total distance traveled by nodes.

We evaluate the coverage rate and the distance traveled using two initial congurations:

• Random conguration: Sensor nodes are scattered randomly in the whole space. See Evaluation of the total distance traveled by nodes Figure 6.30b illustrates the total distance traveled by nodes as a function of time. The value presented in Figure 6.30b is the cumulative distance. We can observe that the distance traveled by nodes increases rapidly until t = 100s with random conguration and t = 150s with centered conguration, after this time the curve of the distance traveled for both congurations increases very slowly. Then, when full coverage has not been reached yet, nodes move in order to reach their nal positions. However, when full coverage is ensured, nodes oscillate due to, for instance, border eects and the number of nodes deployed that may be higher than the optimal one. As expected, the distance traveled by nodes in random conguration is less than the one obtained in the centered conguration. This can be explained by the fact that in the centered conguration sensors are grouped in the center of the 3D area, and in the random conguration they are already spread in the whole 3D area. Thus, sensor nodes move much more with the centered conguration to reach full coverage than with random conguration.

Conclusion

In this chapter, we focused on the deployment of autonomous sensor nodes in the area considered. We adopted the virtual forces strategy to move mobile sensor nodes. We dealt with three problems, the rst being related to the virtual forces strategy and its main drawback: node oscillations. We proposed two deployment algorithms ADVFA and GDVFA that overcome with this drawback. The ADVFA algorithm reduces node oscillations by adapting the target distance maintained between neighboring nodes to the total number of connected nodes. The ADVFA algorithm has been published in [START_REF] Khou | Data gathering architecture for temporary worksites based on a uniform deployment of wireless sensors[END_REF]. GDVFA stops node oscillations by using the grid-based strategy. Then, sensor nodes are encouraged to occupy cell centers and stop moving. The GDVFA algorithm has been published in [START_REF] Mahfoudh | Gdvfa: A distributed algorithm based on grid and virtual forces for the redeployment of wsns[END_REF]. The second problem studied in this chapter is the presence of known or unknown obstacles in the area. We proposed OA-DVFA, a virtual forces based deployment that autonomously deploys sensor nodes while discovering and avoiding obstacles. OA-DVFA is a deployment algorithm that deals with both the node oscillation problem and the presence of obstacles. The third problem studied is the use of virtual forces in a 3D space. We proposed 3D-DVFA that deploys sensor nodes in a cube based on virtual forces. The 3D-DVFA algorithm has been published in [START_REF] Boufares | Three dimensional mobile wireless sensor networks redeployment based on virtual forces[END_REF]. Table B.2, summarizes the algorithms proposed in this chapter.

The deployment of autonomous sensor nodes is very important and useful in some situations, such as damage assessment and hostile environments (e.g. a radioactive zone). However, a high number of autonomous and mobile sensor nodes may be too expensive. For this reason, in the next chapter we focus on assisted deployment where sensor nodes are static and a human or a mobile robot is in charge of placing them in their appropriate positions which been computed previously. We focus not only on how to nd these positions but also on how to optimize the trajectory of a robot responsible for visiting these positions and placing sensor nodes. • For the area coverage problem, our goal is to deploy wireless sensor nodes in an arbitrary, realistic area of irregular shape, and containing obstacles that may be opaque. In Section 7.2, we propose a simple projection-based method, called OAD-Area, that tends to minimize the number of sensor nodes needed to fully cover such an area.

• For the PoIs coverage problem, we aim to ensure a fault-tolerant connectivity between each PoI and the sink, while minimizing the total number of relays deployed and the length of each path between the PoIs and sink. Obstacles are also taken into account. The problem is called RNP: Relay Nodes Placement and is described in Section 7.3. In order to achieve our goal, we propose a solution based on the optimal deployment, called OAD-PoI. Each position in the optimal deployment may be a position for relay node placement. This solution ensures fault-tolerant connectivity, even in the presence of obstacles.

First problem: full area coverage and connectivity

In our work, we consider wireless sensors that must be deployed to fully cover a given 2D area of irregular shape with the presence of obstacles.

Our goal is to minimize the number of sensors needed to achieve full coverage of the area given, denoted A. Full coverage of A means that any event occurring in A is detected by at least one sensor node. The deployment of wireless sensor nodes is computed by a single entity that takes as inputs the vertices of the polygon dening A, as well as for each obstacle, the vertices of its polygon.

We consider transparent and opaque obstacles (see Chapter 4). Opaque obstacles are much more complex to handle than transparent ones and require the deployment of additional sensors to eliminate coverage holes. That is why in this section, we focus on the deployment of wireless sensor nodes in an irregular area with transparent and opaque obstacles and propose a projection-based method, Optimized Assisted Deployment to monitor an Area (OAD-Area), that tends to minimize the number of sensor nodes needed to fully cover this area.

Related work

The vast majority of approaches encountered in the literature adopt the optimal deployment based on triangular tessellation. Then, sensors nodes located within an obstacle or outside the border of the area to cover are eliminated. This elimination usually causes coverage holes. The existing approaches dier in the way they heal the coverage holes. We distinguish the following two approaches:

• Contour-based approaches like (60; 61): these approaches deploy sensor nodes at a constant distance along the border of the area and along the border of each obstacle in order to heal coverage holes occurring on these contours. The distance between two successive sensor nodes deployed successively on a given contour is computed from the sensing range. Such approaches are simple but may require a high number of sensors when there are many irregular borders, as shown in [START_REF] Tan | Arbitrary obstacles constrained full coverage in wireless sensor networks[END_REF]. In contrast to the method we propose, coverage holes that are not adjacent to the area border or the obstacle border are not detected as shown in Figure 7.1. • Delaunay-triangulation-based approaches like (29): these approaches use Delaunay triangulation to detect coverage holes, and then place sensor nodes at some vertices of the triangles dened using a vertex coloring technique. However, the resulting complexity may be high, due to the presence of two modules: (a) determining of coverage holes followed by (b) computing sensor locations, which may be greedy in terms of computation resources. In contrast to this approach, our method determines the sensor locations without searching for coverage holes. To reduce the number of sensors, our method eliminates redundant sensor nodes.

Optimized deployment in an irregular area

In this section, we propose a deployment algorithm to cope with the irregular shape of an area. In this rst coverage problem, we consider any irregular 2D area and assume that there are no obstacles and that the border of the area is transparent.

Principle

Our projection-based method proceeds as follows:

1. We start with the optimal deployment in the rectangle circumscribing the given area A, see Figure 7.3a. 2. Sensor nodes that are outside A are eliminated, which may cause coverage holes: see Figure 7.3b. 3. For each sensor node s located outside the area at a distance strictly less than r from a border, we check whether the border segment initially covered by s is still covered by other sensor nodes within A, even if s is eliminated. Otherwise s is orthogonally projected on the border, see Figure 7.3c. Due to this projection technique, illustrated in Figure 7.2, we can guarantee that the zone initially covered by the eliminated sensor node s, is still covered after the projection of s. 4. Finally, to optimize the number of sensor nodes needed, we check whether some of them are providing redundant coverage, in which case, they can be eliminated in that case. They can be eliminated if and only if the intersection of A and the zone they covered is fully covered by other sensor nodes that are retained (see Figure 7.3d). It should be noted that the projection of a sensor node is not always on the border considered as shown in Figure 7.2b. In this case, the position of the projected node is shifted to the middle of the border segment covered by this node in order to heal coverage holes.

Upper bound on the number of sensors required

We now establish OurM ax N , an upper bound on the number of sensors needed by our method to fully cover an irregular-shaped area with transparent borders. This bound does not take into account the elimination of redundant sensor nodes done in step 4. Let Outr denote the set of sensor nodes outside A at a distance less than r from a border and N Outr In this section, we propose a deployment algorithm to cope with the hidden zone due to opaque obstacles. In this third coverage problem, we consider any irregular 2D area that includes obstacles and assume that some obstacles and/or some borders of the area are opaque. This may result in hidden zones (see Figure 4.2), and sensor nodes must be added to cope with them.

Principle

In the presence of opaque borders or opaque obstacles, our method checks whether a hidden zone (see step 4 below) exists. If so, sensor nodes are added. More precisely, the method proceeds according to the following steps:

1. We start with the optimal deployment in the rectangle circumscribing the given area We now extend our previous bound on the maximum number of sensor nodes needed by our method in the presence of opaque obstacles or opaque borders. To deal with obstacles, our method projects nodes within an obstacle at a distance less than r from an edge of the obstacle. That is why, we add a third term to account for obstacles.

We also add a fourth term to deal with opaque borders and opaque obstacles. P ∈In e∈Opaqueedge(A∪O)

1 distance(P,e)<r , (7.2) 
where In denotes the set of sensor nodes that remain after the elimination carried out in step 2 and 1 distance(P,e)<r = 1 if distance(P, e) < r and 0 otherwise.

Comparative evaluation

We consider dierent congurations with opaque obstacles to compare our method with the contour-based method. The congurations are varied:

• The boot conguration with obstacles, (see Figure 7.6a) with the circumscribing rectangle of size 20r x 18r. This conguration is the simplest one we study.

• The star conguration. This conguration is representative of an area having a complex shape with many salient angles. Its circumscribing rectangle is of size 24r x 28r (see Figure 7.6b).

• The warehouse conguration, (see Figure 7.6c) with the circumscribing rectangle of size 28r x 18r. This conguration is representative of an indoor area with several rooms and many obstacles. The contour-based method needs to deploy 93 sensor nodes in the boot conguration, 140 sensor nodes in the star conguration and 197 in the warehouse conguration. Notice that the contour-based method does not distinguish between opaque and transparent obstacles.

In the boot conguration, our method needs only 64 sensor nodes, 5 of which are used just to cover hidden zones. These sensor nodes are depicted in blue in Figure B.11d. Our method out performs the contour-based method by 48%.

In the star conguration, our method needs only 105 sensor nodes, 4 of which are used to cover hidden zones. Our method saves 33% of the deployment cost compared to the contour-based method.

In the warehouse conguration, our method needs 134 sensor nodes, 22 of which are added to cover hidden zones. Our method saves 47% of the deployment cost compared to the contour-based method.

When we vary the sensing range from r to r/2 and r/4, we still observe that our method outperforms the contour-based method, as depicted in Figures B.12, 7.8 and 7.9. The bound OurM ax N always provides a very good approximation of the number of sensors required by our method.

The comparative evaluation reported in Sections 7.2.1 and 7.2.2 has the merit of quantitatively evaluating the impact of the complexity of the area (i.e. with/without obstacles, opaque/transparent borders, opaque/transparent obstacles) on the number of sensor nodes needed to obtain full coverage. The bound we computed OurM ax N is very accurate, whatever the conguration, and our method always outperforms the contour-based method. Furthermore, we noticed the strong impact of border edges and obstacle edges whose length is smaller than r √ 3/2 on the number of edges required by a contour-based method. To tolerate k -1 failures of wireless links or nodes, k-connectivity has been introduced to tolerate k -1 node or link failures. The authors of (64) focus on k-connectivity in a WSN while minimizing the number of relay nodes. The solution proposed takes advantage of overlapping node communication areas to place a relay node at the intersection of overlapping communication areas in order to achieve connectivity. Hence, this relay node is within transmission range of at least two other nodes. We will see in Section 7.3.5 how this principle is adapted to cope with obstacles.

Another study [START_REF] Han | Fault-tolerant relay node placement in heterogeneous wireless sensor networks[END_REF] focuses on the problem of deploying fault tolerant relay nodes in heterogeneous wireless sensor networks where sensor nodes and relay nodes have dierent communication ranges. The authors use the Steinerization of edges to create a path between two sensor nodes. The idea is to start by deploying two relay nodes, each at a distance equal to the minimum communication range between sensor nodes and relay nodes, from each path extremity. Then, additional equidistant relays are added along the remaining path between the two relays deployed. Han et al. [START_REF] Han | Fault-tolerant relay node placement in heterogeneous wireless sensor networks[END_REF] formalized the relay node placement problem that minimizes the number of relay nodes deployed to ensure that there exist k ≥ 1 node-disjoint paths between every pair of nodes, a node being a sensor node or the sink. If k > 1, node placement is said to be fault-tolerant. The authors proposed approximation algorithms to solve these NP-hard problems.

Misra et al. [START_REF] Misra | Constrained relay node placement in wireless sensor networks to meet connectivity and survivability requirements[END_REF] studied constrained relay node placement, where the relay nodes can only occupy a set of candidate locations and calculated the number of relay nodes needed to connect each sensor node with k = 1 or 2 sink(s) through k node-disjoint paths. If k = 2 the relay node placement is said to be survivable. Misra et al. (66) propose approximation algorithms to solve these problems.

However, our problem is dierent: we are interested in ensuring ecient connectivity between each PoI and the sink. We do not focus on connectivity between PoIs but, for reasons of eciency we want to minimize the length of the paths connecting each PoI with the sink. Misra [START_REF] Misra | Constrained relay node placement in wireless sensor networks to meet connectivity and survivability requirements[END_REF] and Han (65) do not minimize the length of the path of each PoI to the sink, but rather the total weight of the tree including all the PoIs, where the weight between two nodes is equal to the number of relays needed to ensure connectivity between them.

Denition of relay node placement problems

In this section we focus on wireless sensor networks deployed to cover some given points of interest, achieve connectivity with the sink and be robust against link and node failures. More precisely, we want to minimize the number of relays deployed, as well as the maximum length of paths connecting each PoI with the sink, because the transfer of any message on a longer path consumes more bandwidth and more energy, and these resources are limited in a wireless sensor network. Since the reliability of a path is equal to the product of the reliability of each link composing it, a long path is less reliable than a short one, assuming that all the links have a similar reliability. Hence, to maximize robustness, we will favor short paths from any PoI to the sink. In addition, the end-to-end delivery delay depends on the number of hops involved. That is also why short paths are favored, provided that they are able to ensure the quality of service (QoS) required by the application.

Before dening the Relay Node Placement problem (RNP), we rst dene our notations. Let P denote the set of PoIs that must be covered. We have P = {P 1 , P 2 , P n }, with n ≥ 1. Let P 0 be the sink. Let R be the communication range of relays and sensor nodes. Let L(i) be the length of the path from any PoI P i to the sink, with i ∈ [1, n]. Let N r be the number of relay nodes deployed to ensure connectivity of each PoI with the sink.

With regard to relay node placement, we distinguish two types of problems:

• The relay node placement problem (RNP): to minimize the number of relay nodes deployed, as well as the maximum length of the paths connecting each PoI to the sink:

min{N r • max i∈[1,n] L(i)}. (7.
3) This is the simplest problem. We also dene a variant of this problem where relay nodes cannot be placed in certain locations: relay node placement is constrained by the presence of obstacles and the border of the area considered. On the one hand, the presence of obstacles constrains the placement of relay nodes: places within an obstacle are forbidden. On the other hand, the presence of obstacles may result in hidden nodes, which may break connectivity.

The constrained relay node placement problem (C-RNP): to minimize the number of relay nodes deployed in an area with obstacles, as well as the maximum length of paths connecting each PoI to the sink: (7.4) where obstacles are taken into account (i.e. inaccessible places and connectivity loss).

min obstacle {N r • max i∈[1,n] L(i)}.
• The fault-tolerant relay node placement problem (FT-RNP): to minimize the total number of relay nodes deployed, as well as the maximum lengths of primary paths and secondary paths connecting each PoI to the sink, respectively. Each PoI is connected to the sink via k node-disjoint paths:

min{N r • max i∈[1,n] Lp(i) • max i∈[1,n] Ls(i)}.
(7.5) where Lp(i) is the length of the primary path from PoI P i to the sink, Ls(i) is the length of the secondary path from PoI P i to the sink, and N r the total number of relay nodes deployed to ensure k-connectivity of each PoI with the sink. Similarly, we can dene a variant, where the fault-tolerant relay node placement is constrained by obstacles. The constrained fault-tolerant relay node placement problem (C-FT-RNP): to minimize the number of relay nodes deployed in an area with obstacles, as well as the maximum length of primary paths and secondary paths connecting each PoI to the sink, respectively: (7.6) where obstacles are taken into account(i.e. inaccessible places and connectivity loss). We assume a disk-based model for radio communication. All the nodes, (i.e. relay nodes and sensor nodes) have the same communication range R. Two nodes at a distance less than or equal to R are able to communicate with each other if no obstacles are present. Obstacles prohibit the presence of sensor nodes in certain locations and may prevent direct communication between sensor nodes. We distinguish two types of obstacles: opaque and transparent. The sensing and communication models are those presented in Chapter 4. Similarly, the obstacles are modeled as in Chapter 4. Thus, two sensor nodes that are within radio range may be unable to communicate with each other due to the presence of an obstacle.

min obstacle {N r • max i∈[1,n] Lp(i) • max i∈[1,n] Ls(i)}.

Solution for Relay Node Placement: RNP

In this section, we assume there is neither link/node failures, nor obstacles. We will see later how to relax these assumptions. We present three solutions based on heuristics: an intuitive solution based on the straight line, a solution based on the Steiner point and, nally, our proposed solution based on the optimal deployment grid. However, this solution has two main drawbacks. First, it is not robust: the failure of a single node or link on any path to a PoI may disconnect the PoI concerned. Second, no relay nodes are shared between the PoIs which means that the number of relays deployed may be very high. denotes the distance between A and B, see Figure 7.11 for an illustration. Notice that the Steiner point of the three points A, B and C is B itself if the angle (A,B,C) is higher than or equal to 120 degrees. The Steiner-Point-based algorithm builds a path from each PoI represented in red to the sink in green using the closest neighbor which may be another PoI, a Steiner Point (in blue) or simply a relay node, as illustrated in Figure B.13b where 14 PoIs in red are connected to the sink in green. An initial consequence is that this algorithm enables PoIs to share some relay nodes, thereby reducing the total number of relay nodes needed, as we will see in Section 7.3.3.4. The second consequence is that the path from a PoI to the sink may lead away from the sink before getting closer to it, like, for instance, the path originating at node 78 in Figure B.13b. This phenomenon is evaluated by the path length from each PoI to the sink in Section 7.3.3.4.

Our solution: the Optimal-Deployment-Based Algorithm

The Optimal-Deployment-based algorithm uses the virtual optimal deployment in the circumscribing rectangle which includes all the PoIs. In this deployment, nodes are placed according to a triangular lattice (see Chapter 5). For each PoI, the shortest path is built only from relay nodes belonging to the optimal deployment grid. In the nal deployment, only relay nodes that are used by at least one PoI are retained. This solution favors both For the performance evaluation of the three solutions described above, we developed our own simulation tool in Java and implemented the three solutions. The choice of a Java simulation tool was motivated by the need to obtain fast performance results, bearing in mind that these results do not depend on the network communication protocols used by the WSN in question. We consider dierent congurations where the number of PoIs + the sink varies from 8, 15, 22, 35 to 45. These PoIs are deployed in a 500m x 500m area. The communication range R satises R ≥ √ 3r, where r is the sensing range of the nodes. We x R = 34.64m. In this performance evaluation, the sink is assumed to be at a xed location, at the center of the area.

a) Performance metrics

We compare the three solutions using the following metrics:

• Total number of nodes deployed: we want to know the number of additional relays deployed to ensure connectivity of each PoI with the sink.

• Number of shared nodes: if a node belongs to at least two paths originating at dierent PoIs, it is considered to be shared.

• Path length to the sink: we measure the average and maximum length of the paths connecting each PoI to the sink.

• Average node degree: we evaluate the average number of one-hop neighbor nodes per node (i.e. the average number of nodes located within the transmission range of the node considered).

• RNP index: we dene the RNP index of a relay node placement as

RN P index = N r • max i∈[1,n] L(i).
This gives an indication on both the number of relays used and the maximum length of the paths connecting the PoIs to the sink.

b) Number of Sensor Nodes Needed Figure 7.14 depicts the total number of nodes deployed for each conguration, highlighting the number of additional nodes, also called relay nodes because they are deployed only to provide connectivity with the sink. Simulation results show that the Straight-Linebased algorithm deploys the highest number of relay nodes, whatever the number of PoIs. For instance, for 45 PoIs, the number of additional nodes deployed by the Straight-Linebased algorithm is 3.7 times higher than that needed by the Optimal-Deployment-based algorithm.

Figure 7.14: Total and additional nodes deployed. With regard to this metric, the Optimal-Deployment-based algorithm minimizes the total number of nodes deployed. We also notice that when the number of PoIs increases, the number of additional nodes may decrease. This can be observed in Figure 7.14 for 35 and 45 PoIs.

Unlike the Steiner-Point and the Optimal-Deployment based algorithms, the Straight-Line based algorithm does not share any relay nodes between paths connecting dierent PoIs to the sink. As a consequence, the total number of nodes deployed is higher, see Figure 7.15. Simulation results depicted in Figure 7.16, show that the Steiner-Point-based algorithm always provides longer paths than the Straight-Line and Optimal-Deployment based algorithms, both in terms of maximum and average path lengths. This is due to the principle of the Steiner-Point algorithm that connects PoIs together. In other words the connectivity of each PoI with the sink is a consequence and not the goal of this algorithm, the main goal being to reduce the number of nodes deployed. However, the Optimal-Deployment based algorithm provides results very close to those given by the Straight-Line algorithm; which gives the shortest routes. d) Computation of the RNP index Table 7.1 shows that the RNP index strongly increases with the number of PoIs for the straight line solution. It increases less strongly with the Steiner point solution, whereas the increase is only moderate for the optimal deployment based solution. In all the congurations tested, the optimal deployment based solution provides the smallest RNP index. For instance, for 45 PoIs it is 3 times less than the straight line solution. Assuming that link and/or node failures may occur, we now show how to improve the robustness of the three algorithms described in Section 7.3.3. To cope with node and/or link failures, an additional path is built from each PoI to the sink. For any PoI and for any algorithm considered, the rst path to the sink obtained by the algorithm is called the primary path, whereas the others, obtained as explained in this section, are called secondary paths. a petal, whose other end is the sink, as depicted in Figure 7.17a, where 2-connectivity is provided. This algorithm remains very simple but no relay node is shared by the PoIs to reach the sink. Furthermore, we observe a high concentration of nodes around the sink when the number of PoIs increases. This may induce, a high level of interference.

The Steiner-Point-Based Algorithm

Since in the basic version presented in Section 7.3.3, no redundancy is provided, there is no robustness: the failure of a link or node prevents data from at least one PoI reaching the sink. To achieve 2-connectivity, the straight line path from each PoI to the sink is added (see Figure 7.17b). Hence, there are no additional shared nodes compared with the basic version with only one path per PoI.

The Optimal-Deployment-Based Algorithm

This solution is made robust by adding one node-disjoint shortest path for each PoI to the sink. This new path shares no nodes with the primary path of the PoI in question, as shown in Figure 7.18a. However, it may share nodes or links with the primary or secondary path of another PoI, thus reducing the total number of nodes deployed. Figure 7.18b depicts shared nodes in black circles: at least two paths originating from dierent PoIs use this node to reach the sink.

In the triangular lattice of the optimal deployment, each non-border node has 6 neighbor nodes. Consequently, we can obtain any k-connectivity with k ≤ 6. If a higher connectivity is required, another grid structure should be used.

Performance Evaluation

Having enhanced these these three solutions to achieve 2-connectivity, we now compare their performances for various congurations. In addition to the metrics given in Section 7.3.3.4, we add a new metric: the node degree. The RNP index is modied to take .14b shows that for each algorithm considered, the maximum path length is identical when maintaining one path or two-paths with either the Steiner-Point or the Straight-Line algorithm. For the Optimal-Deployment algorithm, the secondary path has a length that is either equal to that of the primary path or greater by one hop. To reduce the data gathering delays in a WSN deployed according to the Steiner-Point algorithm, we recommend exchanging the role of primary and secondary paths by using the Straight-Line path as the primary path. In the optimal deployment based on a triangular lattice, each non-border node has exactly 6 neighbor nodes. As a consequence, the degree of any node is upper bounded by 6 for any number of paths k ≤ 6. Simulation results depicted in Figure 7.22 show that for one path, the average node degree remains in the interval [2,3] for all the numbers of PoIs tested, whereas for two paths, it remains in the interval [4,5]. However, with the Straight-Line algorithm, the node degree strongly increases with the number of PoIs, even for a single path. This is due to the very high density of nodes close to the sink and the non-sharing of nodes between the paths. Furthermore, the Steiner-Point algorithm provides the smallest average node degree, because paths are not built toward the sink but between PoIs and relay nodes. More precisely, the sink is considered as a PoI and not as the target destination of any path originating at a PoI. For this reason, there is no concentration of nodes around the sink with the Steiner Point algorithm, which is not the case with the Straight-Line and the Optimal-Deployment algorithms, as depicted in 7.2 shows that the optimal deployment based solution provides the smallest FT-RNP index in fault-tolerant RNP. This is due to the sharing of relay nodes and the minimized length of both primary and secondary paths. In the previous sections, the PoIs and the sink were located in an area that did not contain any obstacles. However, in some applications, this assumption should be relaxed since obstacles may exist. In this section, we focus on ensuring k-connectivity between PoIs and the sink in an environment where obstacles are present. The Straight-Line algorithm, which provides the minimum number of relay nodes, cannot be applied to ensure network connectivity in the presence of obstacles since obstacles may exist on the straight line between the PoI and the sink. However, this solution can be enhanced to cope with obstacles. Retaining the basic principle of this method, the relay nodes are deployed along a straight line between the PoI and the sink. The presence of an obstacle on this line is analog to the problem of void handling in geographic routing [START_REF] Chen | Geographic routing in wireless ad hoc networks[END_REF]. One possible solution would be to follow the left-hand rule to bypass the obstacle(s). However, such a solution is not optimal in terms of path length and the number of additional nodes deployed. The Steiner-Point based algorithm cannot cope with the presence of obstacles. Since the computation of the Steiner Point position takes no account of the shape of the area or the presence of obstacles, the Steiner Point position could be inside an obstacle. If this position is changed, the mathematical property is lost. Therefore, we do not consider any enhancement of this solution to cope with obstacles. When there are no obstacles in the area considered, the virtual grid of the optimal deployment ensures full area coverage and network connectivity. In this case, at least one path to the sink can be ensured. On the other hand, in the presence of obstacles, not only coverage and connectivity holes may occur, but isolated PoIs may also exist. In fact, when we compute the optimal deployment in an area containing obstacles, nodes that belong to the virtual grid and whose location is inside obstacles are removed, which may lead to coverage and connectivity holes occurring around obstacles. Depending on the PoI's position and the sink's position, these coverage holes may result in isolated PoIs, particularly if the PoI is surrounded by obstacles. In Section 7.2, we proposed a solution based on the optimal deployment to ensure full area coverage and network connectivity in the presence of opaque obstacles. We healed coverage holes caused by obstacles by deploying additional nodes in these coverage holes. This nal deployment which can cope with obstacles is used as our new virtual grid. Using this virtual grid and the principle of the Optimal-Deployment based algorithm, network connectivity can be ensured between each PoI and the sink, as depicted in Figure 7.23. in order to support k-connectivity in the presence of obstacles, we may obtain a network like that depicted in Figure 7.24 for 2-connectivity. There are two paths with disjoint nodes to connect each PoI to the sink, and so, the failure of nodes on a single path does not disconnect a PoI. However, we can observe two problems:

-RNP index = N r • max i∈[1,n] Lp(i) • max i∈[1,n] Ls(i).
bypassing the obstacle leads to a secondary path that is much longer than the primary path (see, for instance, PoI 5 at the bottom right in Figure 7.24).

there is a gap between the primary and the secondary paths preventing any node on the primary path from communicating with a node on the secondary path. In Figure 7.24 we can see a relay node on the primary path of PoI 4 that has no neighbor on the secondary path due to the gap between the two paths.

For each relay node on the secondary path we need to have at least one neighbor on the primary path. As a consequence, any node on the primary path can bypass its successor using a node on the secondary path. To cope with the gap problem, the secondary path should be built using the neighbors of all the relay nodes on the primary path instead of all the deployed nodes. Due to the presence of obstacles, some neighbors of the virtual grid may not exist or may not be able to communicate with each other. That is why we propose the rule depicted in Figure 7.25, where a relay node is added to build the secondary path. The location of this node is critical. First, it should communicate with its downstream neighbor on the secondary path. Second, it should communicate with a relay node of the primary path. Finally, it should communicate with:

• either its upstream neighbor on the secondary path, if one exists, as depicted in Figure 7.25 case 2,

• or the upstream neighbor of the relay node or the primary path, as illustrated in Figure 7.25 case 3. Figure 7.26 shows the nal deployment of relay nodes after applying this rule. We can observe that for all the PoIs, any node on the primary path can communicate with a node on the secondary path. Also, we can see the relay node added in orange on the secondary path of PoI 5 which solves two problems: bypassing the obstacle and overcoming the gap between the two paths. path. This is due to the number and location of the neighbors of all the relay nodes of the primary path. Table 7.3 shows the strong impact of the presence of obstacles on the RNP index. In addition, maintaining several paths is much more expensive since paths must bypass obstacles. In this section, we studied the relay node placement problem. We proposed OAD-PoI to ensure full coverage and maintain fault tolerant connectivity while optimizing the total number of relay nodes deployed. OAD-PoI is ecient in the presence of opaque obstacles.

Conclusion

In this chapter, we studied two coverage problems: area coverage and PoI coverage in a constrained environment (e.g. an irregular area, presence of obstacles that may be opaque, node failures). For area coverage, we propose a projection-based method, OAD-Area, to ensure full area coverage and maintain network connectivity. OAD-Area has been published in [START_REF] Khou | A simple method for the deployment of wireless sensors to ensure full coverage of an irregular area with obstacles[END_REF]. For PoI coverage we propose an optimal deployment-based algorithm, OAD-PoI, to solve the RNP problem and ensure a fault-tolerant connectivity. In addition, we dene a new metric, called the RNP index, to evaluate the number of relays needed multiplied by the maximum length of the path from any PoI to the sink. If fault-tolerant connectivity is required, the new metric is called the FT-RNP index and takes into account the maximum length of both the primary path and the secondary path. Table B.3, summarizes the algorithms proposed in this chapter. The positions of sensor nodes computed for the area coverage problem and the PoI coverage problem can be given to one or multiple mobile robot(s) in charge of placing the static wireless sensor nodes at their optimized location. This will be the focus of the following chapter. The assisted deployment can be divided into two steps: the rst step consists in the computation of the deployment (i.e. computing the appropriate node positions) and the second step consists in the placement of sensor nodes by human(s) or mobile robot(s) in the area to be monitored. The problem of the rst step is how to optimize the deployment in terms of the number of nodes while satisfying coverage and connectivity requirements (e.g. full, partial). We solved this problem in the previous chapter by proposing two optimized deployments: the rst one to ensure area coverage and connectivity, and the second one to ensure PoI coverage and connectivity. The problem of the second step, is how to optimize robot trajectories, in terms of duration, when placing the sensor nodes at their precomputed positions. This is the focus of this chapter. We aim to minimize the time needed by multiple robots to deploy static sensor nodes in an area that may contain obstacles. We propose two approaches to solve this problem:

• Assisted deployment with two robots; we provide a solution based on a game theory approach in Section 8.3 called Two Robot Deploying Sensor nodes (TRDS).

• Assisted deployment with multiple robots; we propose a formal denition of the multi-objective optimization problem called Multi Robot Deploying Sensor nodes (MRDS), and we provide a solution based on genetic algorithms in Section 8.4. In the case of a single robot, we give a formal denition of the optimization problem called Robot Deploying Sensor nodes, RDS (see Appendix A), and then a solution computed by the 2-Opt heuristic and the genetic algorithm.

Related work

The cost of the deployment may be very expensive due to the large number of mobile sensors needed to cover the whole area. In such a case, it is worth using mobile robots which are able to place this large number of static nodes at their appropriate positions.

In assisted deployment, we distinguish between two dierent situations where mobile robots are in charge of deploying static sensor nodes. In the rst situation, the robot has two tasks: on the one hand it should move and discover the area considered, and on the other hand, place sensor nodes at their position to ensure the required coverage and maintain network connectivity. A robot has to follow predened rules to move in the area and place the sensor nodes. This strategy is proposed in [START_REF] Chang | An obstacle-free and power-ecient deployment algorithm for wireless sensor networks[END_REF] where one robot follows a spiral movement policy to deploy static sensor nodes along its trajectory. The goal is not to optimize the robot's trajectory but to ensure full area coverage and network connectivity using the minimum number of sensor nodes. In addition, some movement policies are dened to enable the robot to bypass obstacles. In a similar context, the authors in [START_REF] Chang | Obstacle-resistant deployment algorithms for wireless sensor networks[END_REF], propose a serpentine movement policy with an obstacle handling policy and a boundary policy. The robot has to follow the serpentine movement policy while placing static sensor nodes separated by the optimal distance to reduce the total number of sensor nodes. To conclude, in such a situation, the policies proposed in the two papers cited enable the robot to visit the whole area, while avoiding obstacles and placing sensor nodes. In the second situation, sensor node positions are precomputed and given to the robot(s). In this situation, each position should be visited by exactly one robot and one sensor node should be placed at each position computed. Here, the problem is dierent: the goal is no longer to discover the area and compute sensor node positions, but rather how to optimize the duration necessary to deploy these sensor nodes.

In this chapter, we are interested in the second situation. We focus on minimizing the time needed by the robots to deploy all the sensor nodes in an environment with known obstacles, and to return to their starting position.

In the next section, we show how to minimize the deployment duration using two robots. A game theory approach is proposed.

Assumptions and denitions

• We assume that each robot R i , i = 1 or 2, knows:

n, the number of PoIs. Each PoI is denoted

P i , for i ∈ [1, n].
The position of each PoI.

The number, position and shape of the obstacles. The area considered.

• Each mobile robot is able to know its position and to move to a given position.

• Both robots have the same linear speed ls and the same angular speed as. As an example, in the simulation we take ls = 1m/s and as = 10 • /s.

• Each robot R i has the capacity to carry C max,i sensor nodes.

• Each robot R i has the capacity to carry C relaymax,i relay nodes.

• Both robots have the same starting position, the sink denoted P 0 for simplicity, and should return to this position.

• Let S i denote the set of strategies played by robot R i . Any strategy ∈ s i played by R i is dened by the ordered set of PoIs visited by R i . • To cope with obstacles, a bypassing approach is adopted as explain in the next section.

Deployment duration and obstacles

The deployment duration D i of robot R i depends not only on the time needed to travel a distance but also on the time needed to carry out changes in direction. Hence, we compute D i for any strategy s i as follows:

D i = j∈s i d j,j+1 /ls + j∈s i a j-1,j,j+1 /as. (8.1) 
Where j and j + 1 are two successive PoIs in s i . d j,j+1 is the distance between two successive PoIs in s i . a j-1,j,j+1 is the angle formed by the segments [j -1, j] and [j, j + 1] corresponding to three successive PoIs in s i . We notice however that the tour duration is the same when the robot visits the same nodes but in reverse order. One or several obstacles may exist between two consecutive PoIs in the robot's tour. The tour duration increases when obstacles exist since the robot has to bypass these obstacles. We use the strategy to bypass the obstacles with the minimum duration. For each obstacle, we dene as many intermediate points as the number of obstacle vertices. Then, we select the path that goes through intermediate points until reaching the PoI destination, having the minimum duration. For instance, in Figure 8.2, a direct path from A to B is impossible. The intermediate points I 1 , I 2 and I 3 are the best combination in

A B A B s R 1 R 2 {P 1 , P 2 , .., P n } n P i (s i , s -i ) R i s i s -i • •
Algorithm 1 shows how to calculate the payo of one robot in charge of ensuring PoIs coverage. We use a weight factor α higher than D i to model positive outcome values. Consequently each player R i wants to maximize its payo P i (s i , s -i ). Under the constraints:

• C i ≤ C max,i
, where C i is the number of sensor nodes carried by the robot R i .

Algorithm 1 Calculate P i (s i , s -i ) for Coverage problem if (N umber of P oIs visited by both R i and R -i <> 0) then

P i (s i , s -i ) = -1 else if ((C max,i + C max,-i ) >= n) then if (N umber of P oIs visited by neither R i nor R -i ) <> 0) then P i (s i , s -i ) = -1 else P i (s i , s -i ) = α D i else if (N umber of P oIs visited by R i < C max,i ) then P i (s i , s -i ) = -1 else P i (s i , s -i ) = α D i 8.3.3.

Coverage and connectivity problem

In the coverage and connectivity problem, each robot places a relay node each time it travels a distance Dist. The coverage and connectivity problem diers from the coverage problem by an additional constraint on C relay,i the number of relay nodes placed by a robot R i . We must have:

• C relay,i ≤ C relaymax,i . Strategies violating this constraint are eliminated. The payo of any strategy is computed as in Algorithm 1.

Problem resolution

In both games, the payo computed for player R i depends not only on s i the strategy chosen by R i but also on the strategy s -i chosen by the other player R -i .

A strategy prole (s * i , s * -i ) is a Nash equilibrium if and only if no unilateral deviation of the strategy of a single player is protable for that player. Hence, ∀i, ∀s i ∈ S i , P i (s * i , s * -i ) ≥ P i (s i , s * -i ).

Nash proved the existence of at least one Nash equilibrium when mixed strategies are allowed in a game with a nite number of players and each player chooses among pure strategies.

Both problems are solved in a similar way:

• Determining all the strategies for each player.
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• Eliminating all the strategies that violate the constraints. The remaining strategies are the valid strategies of any player. • Computing the payo for all the possible combinations of valid strategies for all the players. • Computing the Nash equilibrium using the Gambit tool [START_REF]Gambit: Software tools for game theory[END_REF]. The number of strategies for robot R i visiting q PoIs with q ≤ min(C max,i , n) is:

C q n * q!
2 . This is because the strategies {P j , P j+1 ...P j+m } and {P j+m ..., P j+1 , P j } have the same payo. Hence the total number of valid strategies for robot R i is equal to:

q∈{1,C max,i } C q n * q! 2 .

Coverage problem

For any given strategy s -i , the strategy s i of robot R i that maximizes P i (s i , s -i ) in the coverage problem consists in visiting only all the PoIs that are not visited by R -i , provided that R i meets the constraint C max,i , and selects the visit order that minimizes the deployment duration Di.

We rst notice that if C max,i < n/2 for any i ∈ [1,2], it is impossible to cover all the PoIs with two robots.

In any other case, we obtain a Nash equilibrium where each PoI is visited exactly once, ensuring full coverage of all the PoIs without any redundancy.

In this section, we evaluate the tour duration of the two robots deploying sensor nodes in an area with and without obstacles. We start by computing the tour duration for various values of C max,i and C max,-i . The sum of C max,i and C max,-i should be higher than or equal to the number of PoIs to be covered. Then, we evaluate the duration of both tours in dierent congurations. These congurations are dierent in terms of the number and shape of the obstacles in the area.

Area without obstacles

To evaluate the impact of the robot's capacity to carry sensor nodes, we vary the values of C max,i and C max,-i . 

C max,i = 3 C max,-i = 3 C max,i = 4 C max,-i = 2 C max,i = 4 C max,-i = 4 C max,i C max,1 C max,2 C max,i C max,i = 3 C max,-i = 3 C max,i = 3 C max,-i = 3 50% 1071s 1077s 1056s C max,i s -i s i R i P i (s i , s -i ) R -i R i C max,i C maxrelay,i Di C max,i = 3 C max,-i = 3 C maxrelay,i C maxrelay,i = 22 C maxrelay,i C maxrelay,i C max,i C maxrelay,i C relay,i C maxrelay,i = 23 C maxrelay,i = 24 C maxrelay,i C maxrelay,i 24 C maxrelay,i C max,i = 3 C max,-i = 3 C max,i = 3 C max,-i = 3 C max,i
C maxrelay,i C relay,i 8.4. Multi-robot assisted deployment: based on a multi-objective optimization approach 149 game with two players, to nd the Nash equilibria for various congurations. We studied the impact of obstacles on the deployment duration. The robot tours may dier depending on whether obstacles are present or not. However, obtaining the Nash equilibrium, provides the best combination of the two robot tours that satisfy the various constraints considered in this work.

In the next section, we study the use of a higher number of robots (i.e. > 2) to solve the same problem. However, the objective is no longer to minimize the duration of both robot tours; we focus on achieving three objectives: minimizing the longest tour duration, balancing the duration of the dierent tours and using the smallest number of robots. The problem of multiple robots to deploy sensor nodes can be seen as The Vehicle Routing Problem (VRP) [START_REF] Baker | A genetic algorithm for the vehicle routing problem[END_REF], generalizes the Traveling Salesman Problem. The vehicle routing problem aims to nd a set of tours that visits all positions at a minimal cost by nding the shortest path, the minimum number of vehicles, etc. The vehicles start and end their tours at the depot. Each position is visited only once, by only one vehicle, and each vehicle has a limited capacity. Our problem, called the Multi-Robot Deploying wireless Sensor nodes (MRDS)problem, presents many similarities to the VRP problem: mobile robots correspond to vehicles and Points of Interest (PoIs) where sensor nodes should be placed to ensure the monitoring task, correspond to the positions to be visited. However, there are dierences in the objectives to optimize, as we will see in the next section.

Our goal is to minimize the deployment duration of static sensor nodes, at Points of Interest (PoIs), in a given environment by K ≥ 1 mobile robots. Since, on the one hand, robots are battery-operated, and on the other hand, the environment may be hostile (e.g. deployment in a post-crisis situation), the duration of the deployment must be as short as possible. In addition, the best balancing between robot tour duration is required. Sensor node positions are computed such that PoI coverage and network connectivity are ensured, meaning that there is at least one path from each sensor node to the sink in order to forward the collected data.

Problem formalization

The Multi-Robot Deploying wireless Sensor nodes (MRDS) problem is dened as follows:

Let {1, . . . N } be the set of PoIs to be visited by robots. By convention, 0 is called the depot. It is the departure and arrival point of the robots. Let K ≥ 1 be the number of available robots. The problem is to design a set of k tours, one tour per robot with 1 ≤ k ≤ K, that:

• minimizes the longest tour duration,

• minimizes the number of robots used,

• minimizes the standard deviation of the robot tour duration. The constraints are:

• Any robot k, with 1 ≤ k ≤ K, has a limited capacity Q k : it is unable to carry more than Q k sensors. • Each robot starts and ends its tour at the depot.

• Each PoI should be visited by exactly one robot. The MRDS problem can be formulated as follows. N : is the total number of PoIs to be visited, K ≥ 1 is the number of available robots and K * is the number of robots actually used. Thus, we have 1 ≤ K * ≤ K. The depot is denoted by 0, and the PoIs are denoted by 1, 2 or N . Q k : is the capacity of robot k. d i,j : is the distance required to travel from node i to node j. l s : is the linear speed of each robot. a s : is the angular speed of each robot. a i,j,t : is the angle formed by the segments [i, j] and [j, t]. The decision variables of the model are:

X k ij :
is the decision variable that is equal to 1 if robot k visits PoI j immediately after PoI i, and is equal to 0 otherwise. Y k i : is the decision variable that is equal to 1 if PoI i is visited by robot k and is equal to 0 otherwise.

Let T T k be the tour duration of robot k. This duration combines the duration due to the distance traveled and the duration due to direction changes.

T T k = N i=0 N j=0 d i,j * X k ij /ls + N i=0 N j=1 N t=0 θi,j,t * X k ij * X k jt /as (8.2) 
First objective: minimizing the longest tour T T :

M inimize T T = max k∈[1,K] T T k (8.3)
Second objective: minimizing the number of robots used N T (i.e. the number of tours):

M inimize (N T = K * ) (8.4) Third objective: minimizing the standard deviation σ of the robot tour duration:

M inimize(σ = 1 K * K * k=1 T T 2 k - 1 K * K * k=1 T T k 2 ) (8.5) 
Constraints:
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• Each PoI is visited by exactly one robot

K k=1 Y k i = 1 ∀i ∈ [1, N ] (8.6) 
• The number of robots used is equal to

K * ≤ K K k=1 N i=1 Y k i = K * k=1 N i=1 Y k i = N (8.7) 
• Each robot visits a number of PoIs that is less than its capacity

N i=1 Y k i ≤ Q k ∀k ∈ [1, K * ] (8.8) 
• Subtours are eliminated

N i=0 N j=0 X k ij ≤ N i=1 Y k i ∀k ∈ [1, K * ] (8.9) 
• Decision variables ∈ {0, 1}

X k ij ∈ {0, 1}, Y k i ∈ {0, 1}, ∀i ∈ [1, N ]; ∀k ∈ [1, K]
(8.10) Thus, from equations 8.3, 8.4 and 8.5, the new MRDS problem is dened as follows,

M inimize f {T T,N T,σ} = max k∈K (T T k ), K * , 1 K * K * k=1 T T 2 k - 1 K * K * k=1 T T k 2    (8.11)
under the constraints 8.6 to 8.10 described above.

Property 1 A necessary feasibility condition of the MRDS problem is given by: Multi-objective optimization (also known as multi-objective programming, vector optimization and multi-criteria optimization) is an area of multiple criteria decision making, that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously. Optimizing a group of objective functions is not a simple task. The Multi-objective Optimization Problem (MOP) can be formulated as follows:

K k=1 Q k ≥ N. ( 8 
(M OP )    min f i (x), i ∈ [1, m] s.t x ∈ D
Where the vector x = (x 1 , . . . , x n ) T ∈ D is the vector of n decision variables and m is the number of objectives. D is the feasible solution space, and f i (x) is the objective function, and the vector y = (y 1 , y 2 , . . . , y m ) is a solution, with y i = f i (x).

Denition 1 For any MOP minimization, a solution x ∈ D is said to be dominated by solution x ∈ D (it is denoted by x ≺ x ) if the following conditions are satised:

i)f i (x) ≤ f i (x ) ∀ i ∈ [1, m] ii)∃ i ∈ [1, m] such that f i (x) < f i (x )
The set of optimal solutions is composed of the non-dominated vectors, often called the Pareto front and also denoted

P F * = {x ∈ D | ∃ x ∈ D, x ≺ x}.
In other words, the Pareto front provides the best trade o for the objectives considered. The goal of the multi-objective optimization is to nd the Pareto front for a given problem. NSGA-II (73), Non dominated Sorting Genetic Algorithm, is often used to solve multiobjective optimization problems. This algorithm is a multi-objective version of the genetic algorithm in which the solutions explored are classied into Pareto-optimal fronts. 8.4.2.2 NSGA-II algorithm for the MRDS problem NSGA-II begins with an initial population P made up of solution vectors called individuals. At each iteration, an auxiliary population Q is formed by applying the crossover and mutation operators (lines 8 to 15). Then, both the current P and the new population Q are merged together to form one set of solutions R, which will be sorted according to the non-domination and crowded comparison (line 17). Finally, only the best individuals in R can be included in the next generation and will participate in the production step while the other individuals are deleted (lines 19 to 25). These steps are repeated until the maximum number of iterations is reached. parents ← selection(P Itr ) 10:

Child ← crossover(P c , parents)

11:

E ← mutation(P m , Child) 

P Itr+1 ← P Itr+1 ∪ F i 20: i ← i + 1 21:
ranking(F i , crowding_distance)

22:

Itr ← Itr + 1 Our goal is to evaluate the solutions provided by both NSGA-II and Hybrid in terms of the three objectives considered in the MRDS problem. Each simulation run gives a Pareto front. We then build the nal Pareto front of each conguration from the 30 Pareto fronts previously obtained. Furthermore, we quantify the simulation time needed to obtain these results.

In the real environment, obstacles are always present,and their presence has a big impact on the robot tour and the deployment duration. One or several obstacles may exist between two consecutive PoIs in the robot tour, and the strategy adopted to bypass them is presented in Section 8.3.2. In large congurations, for instance when 30 or 40 PoIs should be deployed and whether obstacles are present or are not, the Pareto fronts obtained by the Hybrid algorithm outperform those obtained by NSGA-II in terms of tour duration and tours balanced. This is due to the use of the 2-Opt algorithm that prevents edges crossing in the same tour, leading to smaller tour durations and better balancing between these tours.

To demonstrate the distribution of non-dominated individuals on the objective space for NSGA-II and Hybrid algorithms, we considered 4 congurations (10, 20, 30 and 40 PoIs) both with and without obstacles. Figures 8.11a, 8.12a, and 8.13a depict the Pareto front obtained by gathering all the non-dominated solutions found by each algorithm in the 30 independent runs corresponding to these congurations. Wireless Sensor Networks are usually deployed to monitor real-world phenomena. How accurate the information gathered will actually be, greatly depends on the manner in which the sensors are deployed and, in particular, the positions of the sensor nodes themselves. Bearing in mind that these positions must satisfy the coverage and connectivity requirements of the application in question, deployment algorithms are needed to determine the optimal positions of the sensor nodes.

Synthesis

This thesis mainly focuses on the deployment of sensor nodes, both when the nodes are able to position themselves autonomously, and when their deployment is assisted using mobile robots. In both cases, not only must this deployment meet the coverage and connectivity requirements of the application, but it should also minimize the number of nodes needed while meeting various constraints (e.g. obstacles, energy consumption, fault-tolerant connectivity).

An optimal deployment implies that the sensor nodes are in the best positions, such that full coverage of the area is ensured, and network connectivity is maintained. This deployment is based on a geometric pattern. In our study, we made a theoretical computation of optimal deployments in both a 2D space and a 3D space. In a 2D space, it is based on a triangular lattice; in a 3D space, it is based on a truncated octahedron tessellation. An optimal deployment cannot, however, be achieved when the area to be covered is unknown and contains obstacles. In such a case, an autonomous deployment may well be suitable. Autonomous deployment implies that the sensor nodes are mobile, that they are able to cooperate with their neighbors to compute their nal positions, and that they are capable of avoiding obstacles. In our work, we adopted a virtual forces strategy to enable the sensor nodes to spread quickly over the entire area, while maintaining network connectivity. We proposed the ADVFA, GDVFA and OA-DVFA algorithms to operate in a 2D space, and the 3D-DVFA algorithm to deploy sensor nodes in a 3D space. OA-DVFA has the advantage of being able to cope with known and unknown obstacles and also with node failures while ensuring full coverage and connectivity. OA-DVFA is based on a virtual grid corresponding to the optimal deployment to decide which sensor nodes, already spread over the whole area, are redundant and should be turned o to save energy. Therefore, OA-DVFA is an autonomous deployment algorithm that optimizes the number of active sensor nodes. On the other hand, the area to be monitored may be known. In this case, the position and shape of the obstacles are also known, and it is preferable to compute an optimized deployment in terms of sensor nodes and coverage rate in a centralized way rather than using a large number of autonomous sensor nodes. The optimized deployment is close to the optimal deployment, but, some additional nodes may be needed to cover the irregular borders of the area and the obstacles. To monitor the whole area, we proposed a projection-based algorithm, called OAD-Area, that computes the sensor node positions in the presence of opaque obstacles, based on a virtual grid of the optimal deployment. In addition, we proposed the OAD-PoI algorithm to place sensor nodes at some specic Points of Interest (PoIs) in the area considered by building paths of relay nodes between each PoI and the sink. The OAD-PoI algorithm is also based on virtual grid of the optimal deployment to select the positions of relay nodes. This strategy favors the sharing of relay nodes between node-disjoint paths and optimizes the length of each path. Thus, the total number of relay nodes deployed is optimized. The OAD-PoI algorithm, not only determines relay node positions but also ensures a fault-tolerant connected network even in the presence of obstacles. When the deployment is computed in a centralized way, mobile robots can be used to deploy the sensor nodes at their precomputed positions. However, due to energy constraints, the duration of these robots' trajectories should be optimized. To optimize the robot trajectories duration, we formalized our problem based on two approaches: the rst model, called TRDS, following a game theory approach, to deploy sensor nodes using two robots. The second one, called MRDS, following a multi-objective optimization approach, to deploy sensor nodes using more than two robots. We solved MRDS by implementing a multi-objective version of the genetic algorithm, NSGA-II, and the Hybrid algorithm that combines NSGA-II and 2-Opt. Both TRDS and MRDS are able to cope with the presence of obstacles. This thesis was done as a part of the Cluster CONNEXION (digital command COntrol for Nuclear EXport and renovatION) project which aims to propose and validate an innovative architecture suitable for control systems in nuclear power plants in France and abroad. The solution set out in this manuscript could be used to tackle some of the industrial problems targeted by the Cluster CONNEXION project, notably:

The cartography of a radioactive zone in a post-crisis situation. In this context, the area where sensor nodes must be deployed is unknown and usually is hostile (e.g. presence of dangerous radiations). The goal is to set up an operational network as quickly as possible. If mobile robots are used to discover the area and place sensor nodes at positions that are considered as points of interest, the TRDS (for two robots) and MRDS (for ≥2 robots) algorithms are of particular interest. On the other hand, if the sensor nodes are mobile and autonomous, an autonomous deployment can be envisioned, using the OA-DVFA algorithm.

The instrumentation of a temporary worksite. Since wiring is very expensive in nuclear power plants, it is usually kept to the strict minimum and always for permanent networks. That is why to achieve the necessary security requirements, temporary worksites are instrumented by means of wireless sensor networks which must be deployed and maintained operational as long as the temporary worksite itself. Here, we can apply the same solution as in the previous application.

The control system can detect a deviation from normal behavior. In such a case, wireless sensor nodes are deployed at some points of interest to help the control system to determine the exact cause of this deviation. An example of such a situation is the detection of a leaking valve: wireless sensor nodes are deployed upstream and downstream of the valve to be investigated. The OAD-PoI algorithm could be used to compute the relay node positions to ensure network connectivity, and the MRDS algorithm would determine the robot trajectories that minimize the deployment duration.

It is worth mentioning that although, these applications originate from control command in nuclear power plants, similar applications exist in many other industrial contexts.

Perspectives and Discussion

The deployment algorithms proposed in this manuscript have shown a very good performance. Nevertheless, several future research directions could be followed in order to enhance these algorithms, enabling them to perform eciently in real life situations.

We consider four future directions, three concern the sensor deployment aspect: improving the accuracy of our algorithms in the real environment with regard to sensing and communication models, 3D deployment, and implementing them in real robots. The last one deals with data gathering: even if our algorithms were originally designed for sensor deployment, however, they may be used to collect data from sensors.

All these future directions are detailed in the following.

More realistic models

All the algorithms proposed are based on the theoretical models presented in Chapter 5 namely, a sensing and communication range modeled by a disk and a sphere for 2D space and 3D space, respectively. However, due to the constraints imposed by a real environment; these models may fall somewhat short of reecting reality. Then the crucial question is how can we improve the accuracy of our algorithms in a real environment?

Heterogeneous sensing and communication ranges We distinguish two cases where the sensing range, r, and communication range, R, may be heterogeneous. In the rst case, they may be heterogeneous due to the coexistence of various types of sensor nodes, each one being deployed to achieve a specic task; for instance, sensors for re detection and sensors for temperature measurement. These sensors have dierent values for r and R.

In such a case, making these sensors cooperate together to ensure network connectivity is better than ensuring network connectivity for each type of sensor separately. However, unlike with OAD-PoI, relay nodes cannot be placed at equidistant positions, and therefore, when computing the relay node positions, the dierent existing communication ranges should be taken into account.

In the second case, they may be heterogeneous due to environment constraints such as multipath fading. In this situation, the expected r and R do not match those computed in the area considered. To cope with this problem, real measurements of r and R may be done in dierent zones of the area, and so, the minimum values of r and R, in each zone, could be used in order to ensure area coverage and network connectivity. In our deployment algorithm: OA-DVFA, OAD-Area and OAD-PoI, the target distance, D th , maintained between neighboring nodes is based on the values of r and R. These algorithms can be improved to operate in a real environment, by adapting D th to the minimum value of r and R in each zone of the area.

Computation and measurement Using TRDS or MRDS, mobile robots do not check whether network connectivity is maintained when they place sensor nodes at their precomputed positions. Since network connectivity may be lost due to environment constraints, TRDS and MRDS could be improved to guarantee network connectivity. The idea is, when the robot reaches the position of a PoI, it should check whether the communication with its previously deployed neighbors is ensured. If not, the robot should either add a new relay node or shift the position of the sensor.

Machine learning Based on machine learning, the values of r and R could be predicted using information and measurements of the area considered. The predicted values of r and R could be used in our algorithms to improve the model accuracy. 9.2.2 From 2D toward 3D

In our work, we mainly focused on sensor deployment to ensure coverage and maintain connectivity of a 2D area. However, 3D deployment is required by many applications.

The question is how can we improve our 2D deployment algorithms to perform in 3D space?

Interconnection of dierent oors in buildings To interconnect dierent oors, our proposed algorithms, OA-DVFA, TRDS or MRDS may be used to deploy sensor nodes on each oor, and then, additional relay nodes can be deployed to maintain network connectivity between each two consecutive oors.

Surface covering Surface covering is similar to 2D deployment since sensor nodes should follow the shape of the surface that is no longer at. The OA-DVFA algorithm can be used, for example, to monitor the snow level on a mountain. Based on the OA-DVFA algorithm, a mobile sensor node only needs to compute the direction and the distance to travel to reach its nal position by following the shape of the surface.

Real 3D In our work, we proposed 3D-DVFA, which is based on virtual forces, to ensure the coverage of a cube. However, 3D-DVFA could be improved to form a 3D barrier coverage or to build a dome over the area to be protected. Such 3D deployment is required by intruder detection applications.

Implementation on real robots

The OA-DVFA algorithm is based on mobile and autonomous robots to ensure full area coverage and maintain network connectivity. Performance evaluations of OA-DVFA have shown that it provides very good results. Then, the question is how can we implement OA-DVFA on real robots?

To run OA-DVFA on real robots, certain requirements should be met. Real robots should be able to communicate with each other, and should also be equipped with the appropriate technology to detect obstacles, such as Sonar, Lidar or Radar. The same type of robot may be used to run TRDS and MRDS. Moreover, the trajectories of the robots may intersect, and so, an algorithm to handle intersecting robot trajectories is required.

Use of our algorithms to collect data

To collect the data sensed by sensor nodes, we can distinguish two approaches. The rst one is based on network connectivity ensured by deploying relay nodes. The second one uses mobile robots that visit sensor nodes. In our work, we proposed TRDS and MRDS to determine the trajectory of the robots to deploy sensor nodes at their precomputed A Robot Trajectory Optimization

A.1 Introduction and motivation

A mobile robot can be used to deploy static wireless sensor nodes to achieve the coverage and connectivity requirements of the applications considered. To save energy and reduce the deployment duration, the tour delay of the robot should be minimized. This delay must take into account not only the time needed by the robot to travel the tour distance but also the time spent in the rotations performed by the robot each time it changes its direction. This problem is called the Robot Deploying Sensor nodes problem, in short, RDS.

Our problem has many analogies with the well-known Traveling Salesman Problem (TSP), where the goal is to nd the smallest tour visiting all the sensor node positions (representing the cities) only once, and going back to the initial position. This problem has been proved NP-hard.

However, our problem diers from the classical traveling salesman problem in that the objective is not to minimize the distance traveled but the duration of the tour, taking into account the angular speed of the robot. Consequently, the cost associated with a tour is equal to the time needed by the robot to perform its tour. It is signicantly more complex to evaluate than simply the distance between two cities, B and C, visited successively, as illustrated in Figure A.1a. It should take into account the angle made by the direction the robot is traveling in, when arriving from A to B, and the direction given by BC. Let us consider an example of deployment assisted by a mobile robot. Figure A.1c shows the optimal tour of the robot obtained when only the distance is taken into account: this is the optimal tour of the TSP. We observe many direction changes in this tour. Figure A.1b depicts the optimal tour when both the distance and angle are taken into account: this is the optimal tour for RDS. This tour is smoother than the optimal TSP tour. This example clearly illustrates the dierence between the optimal TSP tour and the optimal RDS tour. The optimal tour has a duration of 271.55 seconds and a distance of 2035 meters in the RDS problem, whereas it has a longer duration of 385.66 seconds, but a shorter distance of 1924 meters in the TSP problem.

A.2 Formalization of the RDS problem

The Robot Deploying Sensor nodes problem can be formulated as an Integer Linear Program (ILP).

The robot tour is modeled as a graph G = (V, E) where V is the set of vertices representing the node positions to be visited during the robot tour and E is the set of edges the tness function. The tness of an individual is equal to one over the time needed by the robot to perform this tour. The K/2 best individuals (i.e., maximizing the tness function) among the P i ∪ P new are selected, and they are completed by K -K/2 individuals randomly selected from the unselected ones to constitute P i+1 , the population considered in the next iteration. This principle enables the algorithm to always keep the K/2 best individuals it has found during the Imax iterations.

In [START_REF] Kumar | A comparative analysis of pmx, cx and ox crossover operators for solving traveling salesman problem[END_REF], a genetic algorithm is built to solve the TSP. The mutation operator exchanges two genes, selected at two random positions, of an individual. The three crossover operators considered, PMX (for Partially Matched Crossover), CX (for Cyclic Crossover) and OX (for Ordered Crossover), ensure that the crossover of any two individuals is still an individual (i.e. a permutation of the C cities to visit). Furthermore, it is shown that PMX outperforms the two other crossover operators CX and OX. Hence, we select PMX as our crossover operator, using two randomly selected cross points.

A.3.4 Hybrid algorithm

The Hybrid algorithm combines the 2-Opt algorithm with a genetic one. More precisely, instead of starting with an initial random population, the Hybrid algorithm applies the 2-Opt algorithm to optimize each individual of the initial population. In addition, at each iteration, the children obtained with the crossover operator are mutated with the gene mutation probability and then optimized by applying again the 2-Opt algorithm.

A.4 Comparative evaluation

We evaluate the dierent algorithms presented in Section A.3 on dierent congurations ranging from 10 sensor nodes to 154 sensor nodes. These congurations may meet various application requirements. For instance, small congurations with less than 30 nodes are representative of temporary industrial worksites, where coverage of some interest points and connectivity with a sink must be achieved. Medium to large congurations, from 50 to 150 nodes, can represent industrial warehouses where full coverage and connectivity with a sink must be met. Small and medium congurations with less than 70 nodes can also be encountered to improve data gathering for an industrial process, to detect leakages for example.

For this performance evaluation, we take the following parameters values: ls = 10 meters per second, as = 10 degrees per second for the robot linear and angular speeds, respectively; P mut = 0.15, Imax = 1000 iterations for Genetic and Imax = 100 for Hybrid, K ≥ 2 * C individuals, where C is the number of sensor nodes to deploy. Sensor nodes are deployed in the area depicted in Figure A.1c. The dimensions of the circumscribing rectangle are 530m x 300m, the sensing range varies from 140m to 20m to match a number of sensor nodes from 10 to 154.

First, we compute the solutions to the TSP and RDS problems for a number of sensor node positions ranging from 10 to 154, using 2-Opt. Figure A.2 clearly shows that for very small congurations (i.e., congurations with at most 10 sensor nodes), the tours found by TSP and RDS may be the same. This is no longer the case when the number of sensor with 22 sensor nodes. Hybrid needs the second largest time. This is due to the calls to the 2-Opt algorithm applied rst on each individual of the initial population and then on each child generated by the crossover operator. For example, it takes 636 seconds (about 6.5mn) to generate the nal solution of the RDS problem with 22 sensor nodes. The fastest algorithms are 2-Opt and, to a lesser extent Genetic. In all the congurations tested, 2-Opt is at least 10 times faster than Genetic, and this ratio reaches 100 times in small congurations. Since Genetic may provide a solution that is far from the optimal one, 2-Opt is preferred. For larger congurations, (more than 31 nodes), we did not obtain the optimal solution with CPLEX after 24 hours of computation. Since in congurations with more than 30 nodes, CPLEX needs over 24 hours, we take as a nal solution, the best solution found by CPLEX in 24 hours. This solution may be a non-optimal one, as depicted in Figure A.4 by a star symbol. In all these congurations, Hybrid provides the best results. We recommend the Hybrid algorithm for large congurations because it provides the best trade-o between the optimal closeness and an acceptable computation time.

A.5 Discussion

In this section, we show how to relax the assumptions A4 (no obstacle), A5 (enough capacity) and A6 (enough energy).

A.5.1 Obstacles

Up to now we have considered a sensor deployment in an area without obstacles. However in the real life, obstacles may well be present. In this section, we show how to relax assumption A4 and extend the solutions given previously to cope with obstacles. In Chapter 7, we proposed the OAD-Area algorithm that copes with transparent and opaque obstacles, and ensures full coverage. This algorithm computes the sensor node positions that are given as input to the RDS algorithm. It is hard to compute an optimized robot trajec-tory when taking obstacles into account. If there exist obstacles between two consecutive sensor node positions, a direct path between these two positions is impossible. Therefore, we propose a strategy to bypass these obstacles while minimizing the trajectory duration. This strategy is explained in Section 8.3.2 in Chapter 8.

A.5.2 Capacity constraint

Up to now we have assumed that the robot has the capacity to carry all its sensor nodes at the same time. If this is not the case, assumption A5 is no longer true. In such a case, the robot has to perform subtours starting at its initial position. How can we solve this new problem?

In order to handle the new carrying capacity constraint, we enhance the integer linear program of Section A.2 as follows:

Let cap be the robot carrying capacity in terms of the number of sensor nodes. The objective is the same as before and only three constraints are modied. Constraints A.1 and A.2 specifying that there is only one arrival at and departure from each city are relaxed to enable multiple arrivals and departures in the initial robot position. In fact, the robot must come back to its initial position to replenish its sensor node stock. Furthermore, the capacity constraint A.6 must be updated according to the capacity parameter cap. ∀i ∈ V, ∀j ∈ V \ {i}, z i,j ≤ cap * x i,j (A.10) Figure A.5 depicts an optimal RDS tour when the robot has to deploy 13 sensor nodes and its capacity is limited to 6 sensor nodes. This optimal tour comprises 3 subtours depicted in blue, each of them starting at the initial position of the robot. A.3 gives the number of subtours done by the mobile robot when its capacity is 6, 5, and 4 sensor nodes respectively. When the robot capacity decreases, the number of subtour increases, as expected, leading to a longer tour duration.

Résumé B.1 Introduction

Les réseaux de capteurs sans l sont généralement déployés pour assurer la surveillance des phénomènes physiques de l'environment. La précision de l'information recueillie dépend fortement des positions des capteurs deployés. Ces positions doivent satisfaire les exigences de l'application en terme de couverture et de connectivité. Par consequent, les algorithmes de déploiement sont nécessaires pour déterminer les positions optimales des capteurs (i.e. positions permettant de minimiser le nombre de capteurs utilisés). Cette thèse se concentre sur le déploiement de noeuds capteurs, d'une part lorsque les noeuds sont capables de se positionner de manière autonome, et d'autre part lorsque leur déploiement est assisté par des robots mobiles. Dans les deux cas, ce déploiement doit, non seulement répondre aux exigences de l'application en termes de couverture et connectivité, mais aussi minimiser le nombre de capteurs nécessaires tout en satisfaisant diverses contraintes (e.g. obstacles, énergie consommée, connectivité tolérant les défaillances). B.1.1 Les problèmes de couverture et de connectivité Un réseau de capteurs sans l (WSN) se compose d'un certain nombre de noeuds capteurs qui travaillent ensemble pour contrôler une entité donnée (par exemple zone, barrière, point d'intérêt (PoI)). Les principales fonctionnalités d'un noeud capteur sont: la détection de l'environnement et l'acheminement des données détectées à un noeud spécial appelé Puits. Par conséquent, la surveillance d'une entité dépend de deux problèmes principaux:

• La couverture de l'entité pour permettre aux noeuds capteurs de détecter les événements survenant dans cette entité,

• La connectivité du réseau pour permettre aux événements détectés d'être acheminés au Puits. 
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Attractive si d ij > D th , où d ij est la distance euclidienne entre s i et s j .

-→

F ij = K a (d ij -D th ) (x j -x i ,y j -y i ) d ij
, où K a est un coecient dans [0, 1), (x i , y i ) et (x j , y j ) sont les coordonnées de s i et s j respectivement; Répulsive si d ij < D th .

-→

F ij = K r (D th -d ij ) (x j -x i ,y j -y i ) d ij
, avec K r désignant un coecient dans [0, 1); Nulle si d ij = D th .

• Etape 3: Chaque noeud s i calcule - → F i la résultante des forces exercées sur lui

- → F i = j -→ F ij .
• Etape 4: Chaque noeud s i se deplace vers sa nouvelle position (x i , y i ) avec x i = (x i + coordonnée en x de - → F i ) et y i = (y i + coordonnée en y de - → F i ). Chaque noeud s i envoie un message Bye contenant sa nouvelle position avant de se deplacer. Ce message permet à ses voisins de mettre à jour leurs listes de voisins a 1-saut et à 2-sauts. Le message Bye réduit le temps de convergence de DVFA. DVFA a montré de très bonnes performances en terme de couverture, mais en raison des oscillations des noeuds, la distance parcourue est très élevée. Avec DVFA, les noeuds continuent à osciller car ils n'arrivent pas à établir un état d'équilibre oà la distance D th est maintenue entre tous les noeuds voisins dans toute la zone. Cela est dû, d'une part aux eets de bords et d'autre part au nombre de noeuds déployés qui est plus grand que le nombre optimal et qui est utilisé avec un D th calculé pour le nombre optimal.

Pour résoudre le problème des oscillations des noeuds nous avons proposé ADVFA, une amélioration de DVFA. ADVFA, adapte la distance cible D ef f au nombre de noeuds connectés (i.e. noeuds eectivement présents et appartenant à la même composante connexe). Par conséquent, si le nombre de noeuds connectés est plus petit que le nombre optimal, D ef f est égal à D th . Dans le cas contraire, D ef f < D th et D ef f est calculé pour le nombre de noeuds connectés. Le nombre de noeuds connectés est déterminé en utilisant un message Bitmap échangé périodiquement. Dans ce message, chaque noeud met à 1 le bit qui correspond à son identiant. Chaque noeud qui reçoit ce message, met à jour à sa Bitmap et la transmet à ses voisins. Le nombre d'occurence des bits à 1 correspond au nombre total de noeuds connectés.

Nous avons évalué ADVFA en terme de taux de couverture et distance parcourue pour les topologies initiales illustrées dans la ADVFA est un algorithme de déploiement qui s'adapte au nombre de noeuds pour réduire les oscillations et par conséquent l'énergie consommée. Mais arrêter complètement ces oscillations reste un objectif à atteindre. Dans ce contexte, nous avons proposé GDVFA, un algorithme de déploiement qui combine la stratégie des forces virtuelles et la stratégie de la grille. GDVFA procède comme DVFA pendant un certain laps de temps appelé Spreadingtime pour permettre aux noeuds mobiles de se répandre dans toute la zone. Lorsque le Spreadingtime expire, la grille virtuelle du déploiement optimal est calculée par chaque noeud an de déterminer le centre de la cellule à laquelle ce noeud appartient. Comme plusieurs noeuds peuvent appartenir à la même cellule, celui qui a le plus petit identiant doit se positionner au centre de la cellule. Lorsque chaque centre de cellule de la grille est couvert par un noeud, tous les noeuds arrêtent de se déplacer. Seuls, les noeuds qui sont dans les centres des cellules restent à l'état actif, les autres sont des noeuds redondants et doivent être mis en sommeil pour réduire leur consommation d'énergie.

Nous avons évalué les performances de GDVFA en terme de taux de couverture et distance parcourue pour la topologie aléatoire (voir GDVFA est un algorithme de déploiement qui, d'une part, prote des avantages des forces virtuelles pour permettre aux noeuds de se répandre dans toute la zone et d'assurer la couverture totale, d'autre part, utilise la grille virtuelle pour faire face à l'inconvénient des forces virtuelles en arrêtant les oscillations des noeuds. Après avoir résolu le problème des oscillations, nous avons proposé OA-DVFA, une amélioration de GDVFA qui permet le déploiement des capteurs dans une zone qui contient des obstacles connus ou inconnus. Puisque la zone peut ne pas être connue, il n'est pas possible de déterminer le temps nécessaire pour assurer la couverture totale. Avec GDVFA ce temps s'appelle Spreadingtime et est xé selon le nombre de noeuds déployés. Pour résoudre ce problème, OA-DVFA utilise un message bitmap comme ADVFA. Contrairement à ADVFA, les bits correspondent aux identiants des cellules de la grille virtuelle du déploiement optimal (calculée lorsque la zone ne contient pas d'obstacles). Au cours du déploiement, si une cellule est visitée par au moins un noeud, son bit correspondant est mis à 1. Le nombre d'occurences des bits à 1 correspond au nombre de cellules couvertes. Si ce nombre ne change pas pendant un certain temps, les noeuds arrêtent de se déplacer. Comme avec GDVFA, dans chaque cellule le noeud qui a le plus petit identiant doit se positionner au centre de la cellule et rester actif. Comme les obstacles existent dans la zone, quelques centres de cellules de la grille virtuelle peuvent ne pas être accessibles pour les noeuds capteurs à cause des obstacles. Cependant, une partie de ces cellules doit être couverte. Pour ces cellules exceptionnelles, le noeud avec le plus petit identiant ne va pas se déplacer vers le centre mais il va garder sa position tout en restant en état actif. Par la suite, tous les noeuds arrêtent de se déplacer. Il y a exactement un seul noeud en état actif par cellule. Les autres noeuds sont redondants et peuvent être mis à l'etat sommeil pour économiser leur énergie.

Nous avons évalué OA-DVFA avec deux congurations : la première contient un seul obstacle et la deuxième contient plusieurs obstacles (voir Figures B.8a Lorsque le déploiement est assisté, un ou plusieurs robots sont nécessaires pour placer les noeuds capteurs dans leurs positions pré-calculées par OAD-Area ou OAD-PoI. Pour optimiser la durée de déploiement, nous avons déni formellement MRDS, un problème d'optimisation multi-objectif pour optimiser les trajectoires des robots. Nous avons résolu MRDS en utilisant la version multi-objectif de l'algorithme génétique NSGA-II et un algorithme hybride qui combine NSGA-II et 2-Opt.

B.5.2 Perpectives

Tous les algorithmes de déploiement proposés dans cette thèse ont montré de très bonnes performances en simulation. Plusieurs directions de recherche peuvent être explorées pour améliorer le bon fonctionnnement de nos algorithmes dans un environnement réel.

• Pour mieux adapter nos algorithmes à l'environnement réel, des modèles plus réalistes pour les zones de capture et de communication des capteurs peuvent être adoptés. Dans cette thèse, ces modèles sont des disques en 2D et des sphères en 3D. Cette modélisation peut ne pas être toujours valide dans un environnement réel fortement contraint. • Nous avons proposé des algorithmes de déploiement pour placer des noeuds capteurs sur une surface plane. Cependant, la zone à couvrir n'est pas toujours plane (e.g. détection de la hauteur d'enneigement dans une zone montagneuse). Nous pourrions étendre nos algorithmes pour fonctionner en 3D. • Nous avons également proposé des solutions pour optimiser les trajectoires des robots chargés de déposer aux capteurs dans les positions précalculées. Nous avons évalué le fonctionnement de nos algorithmes par des simulations. Une perspective intéressante serait d'implémenter ces algorithmes sur des robots réels pour les valider dans un environement réel. Par ailleurs, les algorithmes d'optimisation des trajectoires des robots proposés dans cette thèse sont conçus pour le déploiement de capteurs. Ces algorithmes peuvent également être utilisés dans le contexte de collecte de données. Ainsi, en utilisant MRDS, les trajectoires des robots seront optimisées en terme de durée de collecte de données.

  to provide fault tolerance and allow the right decisions to be made. The k-coverage deployment is dened as a sensor deployment pattern where each point in the area is covered by at least k deployed sensor nodes, which means that, k-coverage tolerates at least k -1 node failures while maintaining coverage. a Simple coverage. b Multiple coverage.
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 2 4 depicts an example of static PoI monitoring. In this example sensor nodes do not only cover the PoI but also maintain connectivity with the sink in order to report detected events.
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 3 , the rhomboid pattern is the best deployment pattern. See Figure 2.9d. the triangular lattice is the best deployment pattern. See Figure 2.9a. a Triangular deployment. b Square deployment. c Hexagonal deployment. d Rhomboid deployment.
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  Random Topology. b Entry point topology.
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  Triangular lattice with hexagonal cells. b Triangular lattice.
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  Sensors in cell centers. b Sensors in cell vertices.
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 314 Other deployment strategies Other deployment strategies exist. They include o-line optimization algorithms which compute o-line the best position of each sensor node with the goal of ensuring the coverage a A large uncovered area. b Regular distribution of uncovered area.
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  Big object: 1-barrier coverage. b Small object: 2-barrier coverage.
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 316 Figure 3.16: Node Activity Scheduling.
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 2 Models for 2D deployment 4.2.1 Sensing range and communication range in 2D In a 2D area, the wireless sensors are all assumed to have the same sensing range denoted r and the same radio range R. The sensing model and the radio transmission model are the classical disk see Figure B.3a.
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Figure 5 . 1 :

 51 Figure 5.1: Triangular lattice deployment.

Figure

  Figure B.4a represents three sensors A, B and C in the optimal deployment. The coverage area of each sensor is represented by a disk of radius r. The centers of these three disks form an equilateral triangle ABC since these sensors are neighbors and are separated by the same distance D th .

  H AM , denoted by α (see Figure B.4a). As cos α = AH AM = D th 2 r , we can deduce:
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 52 Figure 5.2: Basic pattern in an optimal deployment.
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 54 Figure 5.4: The eective optimal distance.
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 3 Theoretical computation of an optimized 3D deployment 67 5.3.1 Best polyhedron tessellation for 3D space

Figure 5 . 5 :

 55 Figure 5.5: 3D geometric shapes.
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 61 Figure 6.1: The three steps in an iteration of DVFA.

  and B.5c. • Random topology: In the random topology, sensor nodes are randomly scattered over the worksite (see Figure B.5a).
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 62 Figure 6.2: Initial topologies.
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 63 Figure 6.3: Final deployment of topology 4 with DVFA.
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 64 Figure 6.4: DVFA evaluation: coverage rate and distance traveled.
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 65 Figure 6.5: Bitmap of node 1 in its Component message.
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 312 Comparative evaluation between ADVFA and DVFA

ab

  Coverage rate as a function of time. Distance traveled by nodes.

Figure 6 . 6 :

 66 Figure 6.6: ADVFA evaluation: Random topology

ab

  Coverage rate as a function of time. Distance traveled by nodes.
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 67 Figure 6.7: ADVFA evaluation: Disconnected topology smaller with ADVFA (see gure 6.8b). This is due to a target distance computed with the eective number of operational nodes, leading to a more stable redeployment. ADVFA is robust with regard to node failures: it is able to adapt to the number of operational nodes that it progressively discovers. This quality of ADVFA can be very important for applications where sensors can be damaged during their initial drop or can fail because of energy depletion.

b

  Distance traveled by nodes.

Figure 6 . 8 :

 68 Figure 6.8: ADVFA evaluation: Failed topology

ab

  Coverage rate as a function of time. Distance traveled by nodes.
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 3 .2 GDVFA: Grid Distributed Virtual Forces Algorithm 6.3.2.1 GDVFA principle

1 + δ e 6 . 3 .

 163 y) col e (x, y) th col e (x, y) = x √ 3r + How to cope with node oscillations 89 with δ e = 1 if x -D th 2 -x D th D th > 0 0 otherwise Hence, the coordinates of the cell center are (x c , y c ) with    x c = (col e (x, y) -1)D th y c = (line(x, y) -1) 3r 2 + r 2
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 2323 (x c , y c ) with    x c = (col o (x, y) -1)D th + D th 2 y c = (line(x, y) -1) 3r 2 Stopping condition and detection of redundant nodes
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 612 Figure 6.12: Coverage with GDVFA and DVFA.

c

  Distance traveled by 300 nodes.
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 613 Figure 6.13: GDVFA evaluation: Total distance traveled by nodes with GDVFA and DVFA.

Figure 6 . 14 :

 614 Figure 6.14: GDVFA evaluation: Stopped and redundant nodes.

Figure 6 . 15 :

 615 Figure 6.15: GDVFA evaluation: Impact of the spreading factor on the coverage rate and the total distance traveled by nodes. avoiding node oscillations.• ADVFA is a deployment algorithm that adapts to the number of nodes and the presence of disconnected components. Due to its mechanism, ADVFA considerably reduces nodes oscillations.
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 4 How to cope with the presence of known or unknown obstacles 6.4.1 Obstacles and deployment algorithms
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 42 OA-DVFA: Obstacles Avoidance Distributed Virtual Forces Algorithm 6.4.2.1 OA-DVFA principles

Figure 6 . 16 :

 616 Figure 6.16: Transparent Obstacle.
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 617 Figure 6.17: Opaque Obstacle. 6.4.2.2 How to Run OA-DVFA for known obstacles

Figure 6 . 20 :

 620 Figure 6.20: Intial deployment.
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 621 Figure 6.21: Final deployment.

  : coverage with all nodes (topology 1) OA-DVFA: coverage with all nodes (topology 2) OA-DVFA: coverage with only active nodes (topology 1) OA-DVFA: coverage with only active nodes (topology 2) a Known obstacles.

  : coverage with all nodes (topology 1) OA-DVFA: coverage with all nodes (topology 2) OA-DVFA: coverage with only active nodes (topology 1) OA-DVFA: coverage with only active nodes (topology 2) b Unknown obstacles.

Figure 6 . 22 :

 622 Figure 6.22: Coverage as a function of time.We now focus on the distance traveled by nodes. We depict the accumulated distance traveled by all nodes during their deployment. We can see that in Figure B.10a when the obstacles are known, and in FigureB.10b when the obstacles are unknown, all the nodes stop moving according to Phase 2 of OA-DVFA. Hence the total distance traveled remains constant after this time. We conclude that OA-DVFA avoids node oscillations, an inherent drawback in virtual forces-based algorithms.Since the area may contain unknown obstacles, the number of sensor nodes required cannot be computed in advance. Consequently, the number of sensor nodes initially present is higher than the number that is actually necessary. To save energy, OA-DVFA includes node activity scheduling where only nodes needed to ensure full area coverage are active, and the others switch to a sleep state. As illustrated in Figure B.9b and Figure B.9a, the coverage rate obtained by only active nodes (i.e. 151 active nodes in Topology 1 and 155 active nodes in Topology 2 in Figure 6.24a) is the same as if all the nodes (i.e. 250 nodes for both topologies in Figure 6.24a) were active.

  Figure 6.22: Coverage as a function of time.We now focus on the distance traveled by nodes. We depict the accumulated distance traveled by all nodes during their deployment. We can see that in Figure B.10a when the obstacles are known, and in FigureB.10b when the obstacles are unknown, all the nodes stop moving according to Phase 2 of OA-DVFA. Hence the total distance traveled remains constant after this time. We conclude that OA-DVFA avoids node oscillations, an inherent drawback in virtual forces-based algorithms.Since the area may contain unknown obstacles, the number of sensor nodes required cannot be computed in advance. Consequently, the number of sensor nodes initially present is higher than the number that is actually necessary. To save energy, OA-DVFA includes node activity scheduling where only nodes needed to ensure full area coverage are active, and the others switch to a sleep state. As illustrated in Figure B.9b and Figure B.9a, the coverage rate obtained by only active nodes (i.e. 151 active nodes in Topology 1 and 155 active nodes in Topology 2 in Figure 6.24a) is the same as if all the nodes (i.e. 250 nodes for both topologies in Figure 6.24a) were active.
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 623 Figure 6.23: Total Distance traveled by nodes as a function of time.

2 b

 2 Unknown obstacles.

Figure 6 . 24 :

 624 Figure 6.24: Number of active nodes.
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 6 Figure 6.30a illustrates the coverage rate obtained with 3D-DVFA as a function of time using 250 nodes in random conguration and centered conguration. In both congurations, sensor deployment based on 3D-DVFA provides full coverage of the 3D area considered (see

Figure 6 . 28 :

 628 Figure 6.28: Initial Congurations.

Figure 6 . 29 :

 629 Figure 6.29: 3D deployment based on Virtual forces and regular dodecahedron.

Figure 6 . 29

 629 Figure 6.29). Figure6.30a shows that the coverage rate reaches 99, 99% at time t = 150s in both congurations and this rate is still maintained during the remaining simulation time. This can be explained by the spreading of nodes caused by virtual forces. Due to virtual forces, sensor nodes are able to spread in the whole 3D area, reach very quickly full coverage, while maintaining network connectivity.
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 630 Figure 6.30: Performance evaluation of 3D-DVFA.
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 71 Figure 7.1: Coverage hole that is undetected by a contour-based method.
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 7 ax N = N In + P ∈Outr e∈edge(A) 1 distance(P,e)<r 1 distance(P,e)<r = 1 distance(P, e) < r Optimized deployment in the presence of obstacles 7.2.2 Optimized deployment in an irregular area with opaque obstacles
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 75 Figure 7.5: Principles of our method.
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 76 Figure 7.6: Congurations studied (Boot, Star, Warehouse).
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 73 Second problem: PoI coverage and connectivity 121 obtained at iteration i + 1. Many other algorithms based on the Steiner points principle exist in the literature (63).
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 331 An intuitive solution: The Straight-Line heuristic The straight-line-based algorithm is the simplest solution and being the most intuitive one, we propose it as a baseline for comparison. It is based on classical wired deployment where each PoI is linked to the sink by a straight line cable. Here we simply propose to replace wires by a set of relay nodes along the path between each PoI and the sink. This algorithm deploys a relay node every R meters on the straight line between a PoI and the sink. Hence, each PoI is connected to the sink by the shortest path, as illustrated in Figure B.13a where 14 PoIs are connected to the sink.

7. 3 . 3 . 2 A

 332 solution based on relay sharing: the Steiner-Point By denition, the Steiner point S of three points A, B and C is the point that minimizes the sum of the distance to the three vertices of the triangle ABC. Hence, we have, for any point P , d(A, S) + d(B, S) + d(C, S) ≤ d(A, P ) + d(B, P ) + d(C, P ), where d(A, B)

Figure 7 . 10 :

 710 Figure 7.10: The Straight-Line Algorithm for 14 PoIs.

Figure 7 . 11 :

 711 Figure 7.11: The Steiner point S of A, B and C. The Steiner-Point-based algorithm builds a path from each PoI represented in red to the sink in green using the closest neighbor which may be another PoI, a Steiner Point (in blue) or simply a relay node, as illustrated in Figure B.13b where 14 PoIs in red are connected to the sink in green. An initial consequence is that this algorithm enables PoIs to share some relay nodes, thereby reducing the total number of relay nodes needed, as we will see in Section 7.3.3.4. The second consequence is that the path from a PoI to the sink may lead away from the sink before getting closer to it, like, for instance, the path originating at node 78 in Figure B.13b. This phenomenon is evaluated by the path length from each PoI to the sink in Section 7.3.3.4.
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 712 Figure 7.12: The Steiner-Points-Based Algorithm for 14 PoIs.
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 713 Figure 7.13: The Optimal-Deployment-Based Algorithm for 14 PoIs.
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 334 Performance Evaluation

Figure 7 . 15 :

 715 Figure 7.15: Total and shared nodes deployed.

Figure 7 . 16 :

 716 Figure 7.16: Maximum and average path length to the sink.Table 7.1: RNP index for RNP solutions RNP index Number Straight-Line Steiner point Optimal deployment of nodes based based based 8 232 390
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 341 The Straight-Line AlgorithmThe robustness of the Straight-Line algorithm is ensured by providing k-connectivity. This algorithm replicates each shortest path k -1 times. Each PoI appears to be at the end of a Straight-Line.b Steiner-Point.

Figure 7 .

 7 Figure 7.17: 2-connectivity.

130 Chapter 7 .

 7 Optimized deployment in the presence of obstacles a Two paths. b Shared nodes.

Figure 7 .

 7 Figure 7.18: 2-connectivity with the Optimal-Deployment.

a)

  Figure B.14b shows that for each algorithm considered, the maximum path length is identical when maintaining one path or two-paths with either the Steiner-Point or the Straight-Line algorithm. For the Optimal-Deployment algorithm, the secondary path has a length that is either equal to that of the primary path or greater by one hop. To reduce the data gathering delays in a WSN deployed according to the Steiner-Point algorithm, we recommend exchanging the role of primary and secondary paths by using the Straight-Line path as the primary path.
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 719 Figure 7.19: Total and additional nodes deployed for 2-connectivity.

Figure 7 . 20 :

 720 Figure 7.20: Total and shared nodes deployed for 2-connectivity.

Figure 7 . 21 :

 721 Figure 7.21: Maximum and average path length to the sink for 1 and 2-connectivity.

  Figures B.13b, B.13a and B.13c respectively. d) Computation of the FT-RNP index Table
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 35 Solution for Constrained fault-tolerant RNP: CFT-RNP
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 722 Figure 7.22: Node Degree.Table 7.2: FT-RNP index for fault-tolerant RNP solutions. FT-RNP index Number Straight-Line Steiner point Optimal deployment of nodes based based based 8 3712 9152
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 352 The Steiner-Point based Algorithm
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 353 The Optimal-Deployment based algorithm

Figure 7 . 23 :

 723 Figure 7.23: Connectivity between each PoI and the sink in the presence of obstacles.in order to support k-connectivity in the presence of obstacles, we may obtain a network like that depicted in Figure7.24 for 2-connectivity. There are two paths with disjoint nodes to connect each PoI to the sink, and so, the failure of nodes on a single path does not

Figure 7 . 24 : 2 -

 7242 Figure 7.24: 2-Connectivity between each PoI and the sink in the presence of obstacles, with problems caused by missing relay nodes.
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 727 Figure 7.27: Evaluation of the impact of obstacles.
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 4 Multi-robot assisted deployment: based on a multi-objective optimization approach
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 442 Simulation resultsWhen the number of PoIs is small, (e.g.[START_REF] Kim | Regular sensor deployment patterns for p-coverage and q-connectivity in wireless sensor networks[END_REF] PoIs) both NSGA-II and Hybrid algorithms provide close Pareto fronts. For instance, Figure 8.11a depicts the Pareto fronts obtained when 20 PoIs are deployed in an area without obstacles. However, when obstacles are present, the Pareto front obtained by the Hybrid algorithm is better in terms of tour duration and balanced tours (i.e. standard deviation), as shown in Figure B.16a. Figures 8.10a and 8.10b illustrate the best solutions from the Pareto front for 20 PoIs and 3 robots with the smallest maximum tour duration with the NSGA-II and Hybrid algorithms. NSGA-II provides a maximum tour duration of 1416s and a standard deviation of 25.32, whereas the Hybrid algorithm gives 1328s and a standard deviation of 3.7, respectively, so, the solution from the Pareto front obtained by Hybrid dominates that obtained by NSGA-II.

Figure 8 . 12 :

 812 Figure 8.12: Pareto front obtained by 30 PoIs.

Figure 8 . 13 :

 813 Figure 8.13: Pareto front obtained by 40 PoIs.
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 12 Application to the Cluster Connexion project

Figure A. 3 :

 3 Figure A.3: Final solutions of Optimal, 2-Opt, Genetic and Hybrid for small congurations.

Figure A. 4 :

 4 Figure A.4: Final solutions of Optimal, 2-Opt, Genetic and Hybrid for large congurations.

Figure A. 5 :

 5 Figure A.5: Optimal RDS tour with a limited capacity of 6 sensor nodes. TableA.3 gives the number of subtours done by the mobile robot when its capacity is 6, 5, and 4 sensor nodes respectively. When the robot capacity decreases, the number of subtour increases, as expected, leading to a longer tour duration.
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 111 Les problèmes de couverture Une zone est considerée couverte si et seulement si tout événement survenant dans cette zone est détecté par au moins un noeud capteur. Nous distinguons trois problèmes de couverture : la couverture d'une zone, la couverture d'une barrière ou la couverture des PoIs, comme illustré par la Figure B.1. La couverture d'une zone peut être soit totale comme pour par la detection d'intrusion, soit partielle comme par exemple la détection d'incendie dans une forêt pendant les saisons

  k

Figure B. 5 .

 5 La gure B.6a montre que la couverture de la zone est totale avec ADVFA et DVFA. Concernant la distance parcourue, ADVFA réduit considérablement la distance parcourue cumulée pour tous les noeuds et ce pour les 4 topologies initiales (voir Figure B.6b).
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 5 Figure B.5: Topologies initiales.

a

  Couverture avec ADVFA et DVFA.

b

  Distance totale parcourue par les noeuds avec ADVFA et DVFA.

Figure B. 6 :

 6 Figure B.6: Taux de couverure et distance totale parcourue avec ADVFA et DVFA.

  Figure B.5a) en faisant varier le nombre de noeuds (200, 250 et 300). La gure B.7a montre que GDVFA assure la couverture totale de la zone. Pour cette couverture de 100%, GDVFA arrête les déplacements des noeuds. Après l'expiration du Spreadingtime, la distance parcourue par les noeuds reste constante avec GDVFA contrairement à DVFA où la distance parcourue augmente en fonction du temps (voir Figure B.7b).

b

  nodes) DVFA (250 nodes) DVFA (300 nodes) GDVFA (200 nodes) GDVFA (250 nodes) GDVFA (300 nodes) a Couverture avec GDVFA et DVFA. Distance totale parcourue avec GDVFA et DVFA.

Figure B. 7 :

 7 Figure B.7: Taux de couverture et distance totale parcourue avec DVFA et GDVFA.

  et B.8b). Les Figures B.9a et B.9b montrent que OA-DVFA assure la couverture totale pour les deux

Figure B. 10 :

 10 Figure B.10: Distance totale parcourue en fonction du temps.Table B.2: Déploiement autonome assurant une couverture totale et la connectivité du réseau.

  utilisant un nombre optimisé de noeuds. Ces positions sont ensuite communiquées à des robots mobiles en charge de placer un capteur dans chaque position. B.4.1 Calcul du déploiement optimisé Dans cette thèse, nous avons étudié deux types de problèmes : la couverture d'une zone et la couverture des points d'intérêt (PoIs). B.4.1.1 OAD-Area Nous avons proposé OAD-Area, une méthode qui se base sur la grille virtuelle du déploiement optimal pour optimiser le déploiement dans une zone avec contour irregulier contenant des obstacles opaques. OAD-Area s'exécute en 5 étapes : Etape 1 Le déploiement optimal dans le rectangle englobant la zone A est calculé, voir la Figure B.11a. Etape 2 Les noeuds qui sont à l'extérieur de A ou à l'intérieur des obstacles O sont éliminés. Par conséquent, des trous de couverture peuvent apparaitre, voir la Figure B.11b. Etape 3 Pour chaque noeud s dont la position est à l'exterieur de la zone et à une distance inférieure à r du bord de la zone, nous vérions si le segment du bord initialement entre noeuds est adaptée au nombre de noeuds, ce qui réduit considérablement les oscillations des noeuds. Le deuxième algorithme proposé est GDVFA, qui combine la stratégie des forces virtuelles et la stratégie de la grille pour arrêter les oscillations des noeuds. De plus, GDVFA permet de détecter facilement et mettre en sommeil les noeuds redondants an d'économiser leur énergie. Nous avons aussi proposé OA-DVFA pour déployer des capteurs mobiles dans une zone qui peut contenir des obstacles connus ou inconnus. Pour le déploiement assisté par des robots mobiles, nous avons proposé OAD-Area qui calcule un déploiement optimisé dans une zone au contour pouvant être irrégulier et contenant des obstacles. Nous avons aussi proposé OAD-PoI pour calculer un déploiement optimisé de points d'intérêt, assurant une connectivité vers le Puits qui tolère les défaillances.
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1: Classication of use cases. 2.4 Coverage and connectivity problems with regard to R and r
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 2 

2: Relationship between r and R.

Table 3 .

 3 1: Area coverage.

	Protocol VFA (17)	Area coverage Coverage problem Connectivity problem Full coverage Permanent connectivity Forces based Strategy	Cent/Dist Specic assumptions Centralized
	Extended VFA(18)	Full coverage	Permanent connectivity	Forces based	Distributed R r > 2.5 and R r < 2.5
	IVFA (19)	Full coverage	Permanent connectivity	Forces based	Distributed		
	EVFA (19) DVFA (4) (36) Full and uniform Full coverage	Permanent connectivity Permanent connectivity	Forces based Forces based	Distributed Distributed R ≥	√	3r
		coverage					
	CPVF (6)	Maximized coverage	Permanent connectivity	Forces based	Distributed arbitrary R and r
	Push&Pull (24) Maximized coverage	Permanent connectivity	Forces based	Distributed Triangular lattice
	VFCSO(37)	Full coverage	Full connectivity	Forces based Grid based	Square grid Centralized R ≥ √ 5r
						Node	activity
						scheduling
	(20)	Full coverage	Permanent connectivity	Grid based	Distributed		
		Multiple	Multiple				
	(21)	Full coverage	Permanent connectivity	Grid based	Distributed		
		Multiple	Multiple				
	HGSDA (23)	Full coverage	Permanent connectivity	Grid based	Centralized Triangular lattice R ≥ √ 3r
	C 2 (25)	Full coverage	Permanent connectivity	Grid based	Distributed Triangular lattice
						Energy saving
	(26)	Full coverage	Permanent connectivity	Grid based	Distributed Square pattern
						Square pattern
	(27)	Full coverage	Permanent connectivity	Grid based	Distributed Static node
						Assisted by robot
	(33)	Partial coverage	Permanent connectivity	Grid based	Cent/Dist		
	VEC, VOR	Maximized coverage	Permanent connectivity	Computational Distributed Voronoi diagram
	and						
	Minimax (28)			geometry based			
	(29)	Full coverage	Permanent connectivity	Computational Centralized Delaunay triangula-
						tion	
				geometry based		Obstacles
	(30)	Full coverage	Permanent connectivity	Computational Centralized Static nodes
				geometry based			
						Robot collector
	(34)	Full coverage	Intermittent connectivity Random	Centralized Cluster head
						Energy saving
	(35)	Full coverage	Intermittent connectivity Random	Centralized Ferries
	(38)	Full coverage	Permanent connectivity	Random	Distributed Node	activity
						scheduling
	(39)	Full coverage	Permanent connectivity	Random	Centralized Node	activity
						scheduling
						Connected	graph
						based
	(2)	Full coverage	Permanent connectivity	Random	Distributed R ≥ 2r
		Simple-Multiple				Node	activity
						scheduling
	(40)	Full coverage	Permanent connectivity	Random	Distributed Arbitrary R and r
						Node	activity
						scheduling
	(41)	Partial coverage	Permanent connectivity	Random	Dist/Cent	Node	activity
						scheduling

Table 3 .

 3 2: Barrier coverage.

	Protocol (44)	Coverage problem Connectivity problem Full coverage Permanent connectivity	Strategy Grid based	Cent/Dist Specic assumptions Distributed Mobile sensors
		Simple-Multiple				
	(43)	Full coverage	Permanent connectivity	Random	Centralized Random oset < r
	(45)	Full coverage	Permanent connectivity	Random	Centralized	
	MBC (46)	Full coverage	Permanent connectivity	Deterministic Distributed R ≥ 2r	
		Simple-Multiple			Dynamic object
	CSP (47)	Partial coverage	Intermittent connectivity Probabilistic	Centralized	
	PMS (47)	Partial coverage	Intermittent connectivity Probabilistic	Centralized	
	(48)	Full coverage	Permanent connectivity	Random	Centralized Node	activity
					scheduling	

Table 3 .

 3 3: Point of Interest coverage.

	Protocol (49)	Coverage problem Connectivity problem Full coverage Permanent connectivity	Strategy Forces based Distributed RNG for connectiv-Cent/Dist Specic assumptions
					ity		
					Static PoI
	(50)	Temporary cover-	Intermittent connectivity Random	Distributed Ferries	
		age					
					R ≥ 2r
	DSWEEP (51) Temporary cover-	Intermittent connectivity		Distributed		
	(52)	age Full coverage	Permanent Connectivity	Grid based	Distributed R ≥	√	3r

Table 3 .

 3 4: Constraints and assumptions considered in our deployment algorithms Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Denition of coverage and connectivity problems in WSNs . . . 11 2.2.1 Coverage problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

	Coverage Connectivity R versus r Deployment algorithm Type of deployment Energy Sensor nodes Obstacles Strategy	Area Full; Simple Full; Simple R ≥ √ 3r Centralized; Distributed Based on the optimal deployment (Triangular tessellation) PoIs Full; Simple Full; Multiple R ≥ √ 3r Centralized -optimizes deployment duration -optimizes deployment duration -avoids node oscillations minimize the length of the path -turns o redundant nodes betwwen each PoI and the sink Mobile; Static Static Known; unknown Known Virtual Forces; Grid based Grid based
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Table 5 .

 5 To meet the connectivity requirement, we study the constraint on transmission range in 3D for each polyhedron. Table5.2 depicts the minimum value for the transmission range to ensure that two nodes occupying the center of adjacent polyhedra are able to

	1: Volumetric quotient and number of nodes
	Polyhedron Cube Hexagonal Prism Rhombic Dodecahedron Regular Dodecahedron Truncated Octahedron	Volumetric quotient 0.36755 0.477 0.477 0.666 0.68329	Number of nodes needed compared to truncated octahedron 85.9% more 43.25% more 43.25% more 2.59% more

Table 5 .

 5 

	2: Transmission range in terms of sensing range
	Polyhedron Cube Hexagonal Prism Rhombic Dodecahedron 1.4142 r 1.4142 r 1.4142 r 1.4142 r x axis y axis z axis Minimum R 1.1547 r 1.1547 r 1.1547 r 1.1547 r 1.4142 r 1.4142 r 1.1547 r 1.4142 r Regular Dodecahedron 1.5893 r 1.5893 r 1.5893 r 1.5893 r Truncated Octahedron 1.7889 r 1.7889 r 1.5492 1.7889 r
	5.3.2 Optimized number of nodes to cover 3D space

Table 6 .

 6 1: Simulation parameters.

	Topology	
	Sensor nodes 250 or 220 for dierent initial topologies Area size 500m x 500m Speed 5m/s
	Simulation	
	Result Simulation time 5000s average of 30 simulation runs
	MAC	
	Protocol Throughput 2 Mb/s IEEE 802.11b Radio range R 50 m Sensing range r 25 m
	DVFA	
	Ka Kr Hello period 2s 0.001 0.56
	Lmax	D th /6

Table 6 .
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	3: Simulation parameters
	Toplogy Sensor nodes Area size MAC Layer Protocol Throughput Transmission range R c Sensing range R s Simulation Result Simulation time 3D-DVFA Ka Kr Hello period Dth	250 100mx100mx100m IEEE 802.11b 2 Mb/s 26m 14m average of 20 simulation runs 500s 0.004 0.25 2.4s 22.27m
	Distmax	4

  ). Figure6.30a shows that the coverage rate reaches 99, 99% at time t = 150s in both congurations and this rate is still maintained during the remaining simulation time. This can be explained by the spreading of nodes caused by virtual forces. Due to virtual forces, sensor nodes are able to spread in the whole 3D area, reach very quickly full coverage, while maintaining network connectivity.

a Coverage rate as a function of time.

b Total distance traveled by nodes.

Table 6 .

 6 4: Autonomous deployment for area coverage and network connectivity

	Area ADVFA unknown GDVFA known OA-DVFA unknown known/ -stops node oscillations -link and node failures Obstacles Energy-eciency Fault-tolerant with regard to coverage and connectivity -reduces node oscillations -link and node failures -adapts to the number -disconnected network of nodes component -stops node oscillations -link and node failures unknown 3D-DVFA known no no -link and node failures

In this chapter, we focus on two types of coverage problem: area coverage and Points of Interest (PoIs) coverage.

  A, see Figure B.11a. 2. Sensor nodes that are outside A or inside the obstacles O are eliminated, which may cause coverage holes, see Figure B.11b. 3. For each sensor node s outside the area at a distance strictly less than r from a border of the area, we check that the border segment initially covered by s is still covered by sensor nodes within A, even if s is eliminated. Otherwise s is orthogonally projected on the border. We proceed similarly with any sensor node s inside an obstacle at a distance strictly less than r from a border of the obstacle, see Figure B.11c. 4. For each sensor node s remaining after step 2, we check whether it is the only sensor node covering a zone in A\O that becomes hidden because of the opacity of a border or an obstacle. If so, a new sensor node is added as the projection of s in the zone it should cover (see Figure B.11d). 5. Finally, redundant sensor nodes are eliminated. 7.2.2.2 Upper bound on the number of sensors required

Table 7 .

 7 

	1: RNP index for RNP solutions
	RNP index Number Straight-Line Steiner point Optimal deployment of nodes based based based 8 232 390 216 15 522 518 342 22 568 403 240 29 1107 969 550 35 1260 1311 520 45 1566 1664 470
	7.3.4 Solution for Fault-tolerant RNP: FT-RNP

Table 7 .

 7 

	2: FT-RNP index for fault-tolerant RNP solutions.
	FT-RNP index Number Straight-Line Steiner point Optimal deployment of nodes based based based 8 3712 9152 3672 15 9396 19278 5508 22 9088 17992 3888 29 19926 50787 10200 35 22680 69759 9600 45 28188 115200 9300
	7.3.5.1 The Straight-Line Algorithm

Table 7 .

 7 

	3: Comparison of the RNP index for constrained and unconstrained FT-RNP solutions.
	RNP index One path of nodes Without With Without With FT-RNP index Number Two paths obstacles obstacles obstacles obstacles 6 168 403 2107 14144 15 530 663 8500 23166
	7.3.6 Summary

Table 7 .

 7 4: Computation of an optimized deployment to ensure area/PoI coverage and network connectivity

	Entity considered OAD-Area known area known Obstacles Energy-eciency Fault-tolerant with regard to connectivity -Minimizes the number of sensor -no nodes deployed -Minimizes the OAD-PoI known PoIs known number of relay -≥ 2 paths nodes deployed toward the sink

Table 8 .

 8 1: Impact of C max,i on the deployment duration.

		Case 1 g. 8.3a	Case 2 g. 8.3b	Case 3 g. 8.3c
		Robot 1 Robot 2 Robot 1 Robot 2 Robot 1 Robot 2
	C max,i	3	3	4	2	4	4
	Deployment duration (s)	644	1056	1090	366	1090	366
	PoIs visited	3	3	4	2	4	2

  Itr = r i=1 F i where F i is a Pareto front meeting F 1 < F 2 < . . . < F r

	12:	compute_objective_values(Child)
	13:	Q Itr ← Q Itr ∪ {Child}
	14:	t ← t + 1
	15:	
	17:	P Itr+1 ← {∅}; i ← 0
	18:	

R Itr ← P Itr ∪ {Q Itr } 16: R while (|P Itr+1 | + |F i | < N ) do 19:

23 :

 23 P Itr ← P Itr ∪ {N -|P Itr | f irst solutions in F i }

	8.4. Multi-robot assisted deployment: based on a multi-objective
	optimization approach	157
	k th Number of Number of Robot NSGA-II NSGA-II k th nodes robots capacity iterations population size 10 3 10 500 40 20 4 10 500 60 30 5 10 500 80 40 6 10 500 100
		Table 8.5: Simulation parameters
	k th 8.4.4.1 Deployment duration and presence of obstacles k th
		1, 2, . . . N	
	N		
			K
			8 th
			6
	30	{10, 20, 30, 40}	500m 500m
			0.1

Table 8 .
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	8.4.4.3 Summary
	In Section 8.4, we formalized the multi-objective optimization problem for MRDS. We solved it with the genetic algorithm NSGA-II and a Hybrid algorithm combining NSGA-

II and the 2-Opt heuristic for various congurations

(10, 20, 30 and 40 

PoIs visited) both with and without obstacles. We showed that the Hybrid algorithm provides the Pareto front that, in most cases, dominates the Pareto front given by NSGA-II.

Table A .

 A 1: Computation time for Optimal, 2-Opt, Genetic and Hybrid for small congurations. Table A.2: Computation time for Optimal, 2-Opt, Genetic and Hybrid for large congurations.

	Number of nodes 10 13 Optimal (s) 11.18 217.35 10866.24 87387.77 * 22 31 2-Opt (s) 0.005 0.003 0.014 0.029 Genetic (s) 0.396 0.505 0.845 1.161 Hybrid (s) 2.808 6.788 44.319 276.9
	Number of nodes 44 Optimal (s) 174828.61 * 103910.62 * -68 105 154 -2-Opt (s) 0.114 0.339 2.051 3.689 Genetic (s) 2.857 7.065 18.969 39.8 Hybrid (s) 870.45 3743.66 27111.4 41267.3

  Table B.2: Déploiement autonome assurant une couverture totale et la connectivité du réseau. réduit les oscillations des noeudsdéfaillances des liens et noeuds ADVFA inconnu s'adapte au nombre réseau initialement de noeuds déconnecté GDVFA connu arrête les oscillations des noeudsdéfaillances des liens et noeuds OA-DVFA inconnu connu/ -arrête les oscillations des noeudsdéfaillances des liens et noeuds inconnu

	Zone	Obstacles Ecacité energétique	Tolérance aux fautes pour couverture et connectivité

-

I. Khou, P. Minet, A. Laouiti OA-DVFA: A Distributed Virtual Forces-based Algorithm to Monitor an Area with Unknown Obstacles.
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Chapter 9. Conclusion and perspectives

positions. The question is how can we improve TRDS and MRDS to ensure the data gathering task?

In the case of a 2D area In a 2D area, the TRDS and MRDS algorithms could ensure both sensor deployment and data gathering. First, the robots place a sensor node at each PoI position. The dierent PoIs may be at a distant higher than the communication range of sensor nodes. When the connectivity is not maintained by relay nodes, TRDS and MRDS could ensure an intermittent connectivity by collecting data from each sensor node. Since, TRDS and MRDS optimize the robot trajectory durations, the data gathering duration will also be optimized.

In the case of dierent oors Collecting data from dierent oors is similar to collecting data from several 2D areas. In such a situation, relay nodes may be needed to interconnect the dierent oors. Then, TRDS and MRDS could be used to collect data from each oor, as in the previous case, and then, communicate with the relay nodes to collect the data from the other oors.

In the case of a 3D area In a 3D area, sensor nodes may be deployed at any location in the 3D space, and our algorithms could be applied to collect data from these sensors. In this case, drones may be used to collect data from the sensor nodes in a 3D space. representing the path between node positions. The cardinal of V is n. Let d i,j denote the distance between the node positions i ∈ V and j ∈ V. Let a i,j,k denote the angle between the edges (i, j) ∈ E and (j, k) ∈ E. Let ls and as be the robot linear speed and the robot angular speed, respectively.

List of Publications

We dene x i,j , where i ∈ V and j ∈ V \ {i}, the utility of a path p ∈ E, i.e. x i,j = 1 if and only if p belongs to the robot tour and x i,j = 0 otherwise. Furthermore, let y i,j,k , where i ∈ V, j ∈ V \ {i} and k ∈ V \ {i, j}, be the robot rotation required at a node position. In other words y i,j,k = 1 if and only if the rotation at node j position is eective and y i,j,k = 0 otherwise. Finally, we denote z i,j , where i ∈ V and j ∈ V \ {i}, the robot's stock of sensor nodes available on the edge (i, j).

The objective is to minimize the time used by the robot to visit all the sensor node positions. This time takes into account the time due to both the distance and the rotation angle towards the next sensor node position:

This objective is subject to the following constraints: i∈V j∈V\{i} k∈V\{i,j}

. Formalization of the RDS problem 173

Constraint A.3 means that the robot tour includes n -1 rotation costs to make a complete tour.

Constraint A.4 ensures that any rotation cost corresponds to a pair of consecutive edges followed by the robot.

∀i ∈ V \ {1}, ∀k ∈ V \ {i, 1}, y i,1,k = 0 (A.5) Constraint A.5 guarantees that the rotation cost of the robot in its start position is not accounted for. In fact, when the robot comes back to its start position, it does not need to rotate toward any next node position, since the tour is complete.

∀i ∈ V, ∀j ∈ V \ {i}, z i,j ≤ (n -1) * x i,j (A.6) Constraint A.6 denotes the maximum capacity of the robot in terms of sensor nodes.

Constraint A.7 expresses that the robot carries a certain number of sensor nodes. This number decreases with the number of node positions visited by the robot.

The ILP formulation of the RDS problem diers from that of the TSP problem on the following points:

• The second term in the objective function has been added to account for the time lost in rotations.

• Constraints A.3, A.4, A.5 have been introduced to deal with the robot rotation constraints. This model of RDS adopts the following assumptions: A1: The robot knows its location, and is able to move autonomously to any specied location in the area. A2: The set of sensor node positions as well as the initial location of the robot, are given. A3: The connectivity graph of sensor node positions is assumed to be complete. In other words, it is always possible for the robot to go from any sensor node position to any other sensor node position. For each pair of sensor node positions, the distance is given. For each triple of sensor node positions, the rotation angle is given.

The next three assumptions are adopted for the sake of simplicity. They will be relaxed in Section A.5. A4: There is no obstacle in the paths between any two sensor node positions. A5: The robot has enough capacity to carry all the sensor nodes it has to deploy. A6: The robot has enough energy to visit all the sensor node locations in a single tour.

A.3 Proposed algorithms

We now describe the algorithms designed to solve the RDS problem, and we will compare them in the next section. We consider a algorithm that provides the exact solution and three algorithms that provide approximated solutions.

A.3.1 The exact solution

The exact solution of the RDS problem is provided by the CPLEX solver (77) using the problem formulation given in Section A.2. This exact solution will be used as a reference to evaluate the closeness to the optimal of approximated solutions. Various approximated solutions are used. The rst one, called 2-Opt, is based on iterative improvement, the second one uses a genetic approach; and the third one is hybrid algorithm combining both.

A.3.2 2-Opt algorithm

We adapt the well-known 2-Opt algorithm [START_REF] Croes | A method for solving traveling-salesman problems[END_REF] to the RDS problem. 2-Opt starts with an initial solution and tries to iteratively improve it by replacing two edges with two new ones that reduce the tour duration. This algorithm provides a local optimum based on the initial solution.

A.3.3 Genetic algorithm

A genetic algorithm takes its inspiration from the biological evolution process. To dene a genetic algorithm, we have to dene a selection of the initial population, the operators we use for the selection of parents, the crossover and the mutation, and, nally, the make up of the population used in the next iteration as well as the tness function. In the traveling salesman problem, an individual is dened by an ordered sequence of the cities visited by the robot. The initial population is given by K individuals; K is a non-null natural integer, each individual being a random permutation of the C cities to visit. The rst city is the initial location of the robot. Hence, it is given as an input.

Let P i denote the population at the beginning of any iteration i > 0. The Genetic algorithm randomly selects K/2 pairs of parents among the current population P i , applies the crossover operator on each pair to generate two children. Each gene (i.e. a city visited) of a child is subject to a mutation with a gene mutation probability of P mut . A new population P new is then generated. All individuals of P i ∪ P new are evaluated by nodes increases: the dierence between the TSP solution and the RDS solution increases considerably.

Figure A.2: Solutions found by 2-Opt for the RDS and TSP problems. Secondly, we compare the accuracy (i.e., closeness to the optimal) of the solutions provided by each algorithm tested with small congurations (≥ 31 sensor nodes). Figure A.3 depicts the solutions given by 2-Opt, Genetic and Hybrid versus the optimal one in small congurations. When the number of nodes is higher than 13 sensor nodes, the Genetic algorithm fails to nd the optimal tour in 1000 iterations. This is due to the fact that it generates many tours that are not useful. On the other hand, 2-Opt provides a solution that is close to the optimal for the congurations tested. Hybrid provides the best results as an approximation algorithm.

For large congurations, Hybrid improves on the solution found by 2-Opt as shown in Figure A.4. For instance, for 103 and 154 nodes, Hybrid decreases the tour duration from 629.1s to 628.15s and from 752.95s to 749.41s, respectively. This can be explained by the fact that 2-Opt can be blocked in a local optimal, whereas Hybrid uses mutations and crossovers to explore other tours. However, 2-Opt is better to exploit a given solution. We also observe that Genetic is very sensitive to the choice of the initial population: if it is far from the optimal, the nal solution remains far from the optimal. In the congurations tested, 2-Opt improves the initial solution by at least 50%.

Another interesting result is given by the time needed by each algorithm to compute its nal solution. CPLEX is run on a Quad-core Intel Xeon W3565 3.2GHz platform, whereas the other algorithms are run on a 8-core Intel i7-2760QM 2.4GHz platform. Tables A.1 and A.2 depict the computation time for each algorithm tested.

As expected, Optimal needs the largest computation time in all the congurations tested, except for 10 nodes. For example, it takes about 3 hours to solve the RDS problem What happens if the maximum energy level of the robot does not allow it to visit all the sensor node locations in a single tour? Assumption A6 is no longer true. Here again, the robot proceeds by subtours, relling its battery at its initial position which is also the starting point of each subtour. One idea could be to group sensor nodes into clusters, such that the robot deploys all the sensor nodes of the same cluster in a single subtour.

It should be noted that the number of cluster members may dier from one cluster to another, since the robot consumes more energy to visit a distant cluster than to visit a close one.

A.6 Conclusion

In this appendix, we proposed RDS problem to optimize the delay needed by a mobile robot to deploy sensor nodes, taking into account the rotations performed by the robot to change its direction. The delay-optimized tour of a mobile robot may result in a reduction of at least 50% in the time needed to deploy its wireless sensor nodes. This smaller deployment time may be crucial not only in emergency applications, but also in industrial process control because the latency before the rst data gathering is reduced. This benet is obtained by using the optimal solution that can be provided by an integer linear program solver like CPLEX, for instance, in small and medium congurations. For larger congurations, however, the time needed to obtain the optimal solution using an integer linear program solver may become prohibitive. That is why we use the Hybrid algorithm, which successfully combines the exploration of the Genetic algorithm with the exploitation of 2-Opt algorithm. RDS is the subject of the publication [START_REF] Khou | Optimized trajectory of a robot deploying wireless sensor nodes[END_REF].

In large congurations, the use of multiple robots rather than a single robot will decrease the deployment duration and avoid sub tours. However, when several robots are used, our objective is not only to optimize the deployment duration but also to balance the robot tours and minimize the number of robots required. In this context, our problem is formalized as a multi-objective optimization problem, called MRDS, and solved using the NSGA-II algorithm, the multi-objective version of the genetic algorithm; and the Hybrid algorithm, which combines NSGA-II and 2-Opt, (see Chapter 8). b Déploiment optimal dans un rectangle.

Figure B.4:

Motif du déploiement optimal. Le nombre optimal de noeuds (N opt ) déployés est donné par :

(B.1) Nous avons étendu cette étude sur le déploiement optimal en 2D au 3D.

B.3 Déploiement autonome

L'algorithme DVFA se base sur la stratégie des forces virtuelles pour déployer les noeuds capteurs dans toute la zone considérée. Dans DVFA, chaque noeud répète les étapes suivantes :

• Etape 1: Chaque noeud s i envoie périodiquement un message Hello qui contient sa position et la liste de ses voisins à 1-saut. Ce message permet au noeud de découvrir ses voisins à 1-saut et à 2-sauts.