
HAL Id: tel-01245066
https://theses.hal.science/tel-01245066v1
Submitted on 16 Dec 2015 (v1), last revised 18 Apr 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gaussian Sampling in Lattice-Based Cryptography
Thomas Prest

To cite this version:
Thomas Prest. Gaussian Sampling in Lattice-Based Cryptography. Cryptography and Security
[cs.CR]. École Normale Supérieure, 2015. English. �NNT : �. �tel-01245066v1�

https://theses.hal.science/tel-01245066v1
https://hal.archives-ouvertes.fr

Ph.D. Thesis

Gaussian Sampling in
Lattice-Based Cryptography

Thèse de doctorat présentée et soutenue publiquement le 8 décembre 2015 par

Thomas Prest

pour obtenir le grade de

Docteur de l’École Normale Supérieure

Comité de thèse

Directeurs de thèse : David Pointcheval École Normale Supérieure
Vadim Lyubashevsky IBM Zürich

Encadrant Industriel : Sylvain Lachartre Thales Communications & Security

Rapporteurs : Eike Kiltz Ruhr-Universität Bochum
Damien Stehlé École Normale Supérieure de Lyon

Président du jury : Jean-Sébastien Coron Université du Luxembourg

Thales Communications & Security École Normale Supérieure
Laboratoire Chiffre Équipe Crypto

Remerciements
“A Lannister pays his debts.”/“Un Lannister paye ses dettes.”

Tyrion Lannister — George R. R. Martin. A Song of Ice and Fire

I would first like to thank my advisor, Vadim Lyubashevsky. Adapting to his way of
research was tough, but fun and stimulating. I learned a lot from him, in particular
career-defining skills that I couldn’t have learned in books.

Je remercie David Pointcheval, directeur de l’équipe Crypto de l’École Normale
Supérieure, et Eric Garrido, directeur du laboratoire Chiffre de Thales, de m’avoir accueilli
dans leurs laboratoires respectifs. Grâce à leur bienveillance, j’ai toujours bénéficié de
conditions idéales pour effectuer ma thèse, et ce au sein de mes deux équipes.

I would like to thank Eike Kiltz and Damien Stehlé for reviewing my thesis. I know
it was a lot of work, and I am fortunate that they agreed to do it. J’aimerais également
remercier Jean-Sébastien Coron d’avoir accepté de faire partie de mon jury.

J’aimerais remercier mon encadrant de Thales, Sylvain Lachartre. Grâce à lui et à
Olivier Orcière, j’ai pu réaliser un stage en entreprise malgré mon profil très académique à
l’époque. Puis lors de ma thèse, ses nombreux conseils m’ont été très utiles. Un grand merci
également aux autres membres du laboratoire Chiffre: les permanents Alexandre, David,
Didier, Émeline, Éric, Olivier Bernard, Philippe, Renaud, Sonia et les (anciens) doctorants
Aurore, Christopher, Julia et Thomas. J’apprécie beaucoup l’ambiance chaleureuse de
l’équipe et c’est un plaisir de la rejoindre en tant qu’ingénieur cryptologue dès janvier
prochain.

J’ai également eu la chance d’effectuer ma thèse à l’ENS et d’être dans un milieu
propice à la recherche, parmi des thésards et chercheurs brillants: Adrian, Alain, Anca,
Angelo, Antonia, Aurore, Balthazar, Céline, Dahmun, Damien, Édouard, Fabrice, Florian,
Geoffroy, Guiseppe, Hoeteck, Houda, Itai, Jérémy, Léo, Liz, Louiza, Mario Cornejo,
Mario Strefler, Michel, Michele, Nuttapong, Pierre-Alain, Phong, Pierrick, Rafael, Razvan,
Romain, Simon, Sonia, Sorina, Sylvain, Tancrède, Thierry, Thomas et Yuanmi. J’aimerais
tout particulièrement remercier Aurore pour ses conseils avisés, et j’ai beaucoup apprécié
discuter de réseaux avec Tancrède, Rafael, Pierrick (qui, de manière assez paradoxale,
contribue beaucoup à l’âme du labo) et mon inénarrable multi-coauteur Léo. J’ai également
pu parler d’algèbre de Boole avec Adrian le spécialiste des petits fours, de PRF dans le
modèle standard avec mon voisin de bureau Alain, et de la vie avec Mario.

3

Les évènements auxquels j’ai assisté – notamment les journées C2 que je recommande
à tout doctorant en cryptographie – m’ont permis de rencontrer des thésards et jeunes
chercheurs sympathiques et intelligents. J’ai pris plaisir à discuter ou prendre (plus d’)un
verre avec Jean-Christophe Deneuville, Malika Izabachene, Adeline Langlois, Cécile Pierrot,
Frédéric de Portzamparc, Ange Martinelli, Vincent Grosso, Romain Poussier, Guillaume
Bonnoron, Pierre Karpman, Fabrice Mouhartem, Marie Paindavoine, Julien Devigne,
Raphaël Bost et bien d’autres, et si l’occasion se présente, je serai également ravi de
travailler avec eux. Merci également à Carlos Aguilar pour m’avoir invité quelques jours à
Toulouse, et pour sa librairie NFLlib qui m’a permis d’obtenir des résultats inespérés.

J’aimerais tout particulièrement remercier Damien Stehlé pour m’avoir reçu au sein de
son équipe à Lyon, pour ses remarques pertinentes qui ont très grandement amélioré la
qualité de certains passages de ma thèse, et pour avoir toujours été disponible malgré son
emploi du temps chargé. De manière plus générale, sa rigueur mathématique est bénéfique
pour la cryptographie, et l’exposé “Santa Claus doesn’t exist” restera mon souvenir le plus
mémorable de ces trois années de thèse.

I would like to thank the rest of the team AriC of ENS Lyon: Benoît, Fabien, Guillaume,
Gilles, Jinming, Sanjay, Sébastien, Shi, Somindu, Valentina and Weiqiang, as well as
Jung-Hee and Yong-Soo who were visiting at the same time as me. My stay at Lyon was
short but insightful, and it was a pleasure to exchange ideas with them.

J’en profite pour remercier pour leur aide précieuse Joëlle Isnard, Michelle Angely, Lise-
Marie Bivard, Valérie Mongiat de l’ENS, Lydie Pezant de Thales, Chiraz Benamor de l’ENS
Lyon et tout particulièrement Nathalie Gaudechoux de l’INRIA. Grâce à leur excellent
travail, j’ai pu naviguer sans encombre entre les couches du millefeuille administratif.

J’aimerais également remercier mon directeur de stage de Master I en 2010, Paul
Zimmermann, ainsi que toute l’équipe CARAMEL de Nancy de l’époque: Pierrick Gaudry,
Emmanuel Thomé, Jérémie Detrey, Nicolas Estibals, Gaëtan Bisson, et j’en oublie mal-
heureusement sûrement. Ce stage fut une très bonne expérience et m’a décidé à suivre
une carrière en cryptographie.

Merci à Pierrick, Léo et ma soeur Céline d’avoir relu une version préliminaire de ma
thèse.

Pendant mon Master II à Bordeaux, j’ai eu le plaisir de rencontrer des camarades de
promos qui sont devenus des amis, et avec qui j’ai pu découvrir ensemble les joies – métros
bondés, serveurs sarcastiques, restaurants de bobos, hipsters sur vélo à pignon fixe – de
Paris: Damien, Guillaume, notre maman Marie-Luce, Olivier, notre doyen Pierre-Arnaud,
Romain, ainsi que leurs pièces rapportées Mandine, Nicolas, Charlotte, Floriane et Malorie.
J’espère ne pas avoir été trop insupportable pendant ces trois ans (je ne garantis pas que
ça s’améliorera).

Enfin, j’aimerais remercier ma famille nucléaire+�: mes parents, ma soeur Céline et
son mari Daniel. Sans eux, jamais je n’aurais pu arriver jusque là.

4

Contents

Contents 6

1 Introduction 15
1.1 Public Key Cryptography . 15
1.2 Lattice-Based Cryptography . 16
1.3 This Thesis . 18

2 Preliminaries 19
2.1 Introduction to Lattices . 20
2.2 Babai’s Algorithms . 24
2.3 Discrete Gaussians . 30
2.4 Gaussian Samplers . 33
2.5 Gaussian Sampling in Cryptology . 36

I Improving Existing Gaussian Samplers 43

3 Improved Parameters by using the Kullback-Leibler Divergence 45
3.1 Introduction . 45
3.2 Preliminaries: The Kullback-Leibler Divergence 47
3.3 Reducing the Standard Deviation of Gaussian Samplers 49
3.4 Precision Analysis of Gaussian Samplers 51
3.5 Conclusion . 58

4 Gaussian Sampling in Quasilinear Space over Structured Lattices 61
4.1 Introduction . 61
4.2 Preliminaries . 64
4.3 Gram-Schmidt Orthogonalization over Isometric Bases 68
4.4 Gram-Schmidt Decomposition over Isometric Bases 71
4.5 Extending the Results to Block Isometric Bases 72
4.6 GSO and GSD in Exact Arithmetic . 74
4.7 NTRU Lattices . 76
4.8 Reversibility and Application to Linear-Storage Klein Sampling 77
4.9 Concrete Space Requirement of the Compact Klein’s Sampler 80
4.10 Conclusion . 81

6

Contents

II New Gaussian Samplers over Ring Lattices 83

5 A Hybrid Gaussian Sampler for Ring Lattices 85
5.1 Introduction . 85
5.2 Preliminaries . 87
5.3 Ring Variants of Klein’s and Peikert’s Samplers 90
5.4 Hybrid Algorithms for Sampling and Reduction 92
5.5 Precision Analysis of the Hybrid Sampler 94
5.6 Trade-offs Using Subfields . 96

6 Full-Domain-Hash Signatures over NTRU Lattices 99
6.1 Introduction . 99
6.2 Complements on NTRU Lattices . 100
6.3 Methodology and Global Results . 102
6.4 Sampling over NTRU Lattices: Bounds and Experiments 104
6.5 Sampling over NTRU Lattices: Heuristics and Asymptotics 108
6.6 Conclusion . 112

7 Fast Fourier Orthogonalization 113
7.1 Introduction . 113
7.2 Preliminaries . 117
7.3 Fast Fourier LDL Decomposition . 123
7.4 Fast Fourier Nearest Plane . 127
7.5 Extending the Results to Cyclotomic Rings 129
7.6 Implementation in Python . 130
7.A Proofs . 132

III Identity-Based Encryption 135

8 Efficient Identity-Based Encryption over NTRU Lattices 137
8.1 Introduction . 137
8.2 Preliminaries . 142
8.3 The IBE Scheme . 144
8.4 Optimizing the Setup and the Extract . 145
8.5 Optimizing the Encryption and Decryption 147
8.6 Security analysis of the IBE scheme . 149
8.7 Conclusion . 152

9 Applications of Identity-Based Encryption 155
9.1 Introduction . 155
9.2 Authenticated Key Exchange in a Constrained Environment 156
9.3 Selected Applications of Identity-Based Encryption 158
9.4 Botnets . 159
9.5 Conclusion . 162

IV Conclusion 163

Bibliography 167

7

List of Algorithms

2.1 GramSchmidtProcess(B) . 24
2.2 RoundOff(B, c) . 25
2.3 NearestPlane(B, c) . 26
2.4 SizeReduce(B) . 29
2.5 LLL(B, δ) . 29
2.6 KleinSampler(B, σ, c) . 33
2.7 PeikertSampler(B,

√
Σ, c) . 35

2.8 PeikertSampler_q(B,
√

Σ, c) . 35
4.1 IsometricGSO(B) . 69
4.2 FasterIsometricGSO(B) . 71
4.3 IsometricGSD(B, B̃, (Ci), (Di)) . 72
4.4 BlockGSO(B) . 73
4.5 IntegerIsometricGSO(B) . 75
4.6 IntegerIsometricGSD(B, (ck, dk)k=1...n) . 76
4.7 CompactKlein(B, σ, c, b̃n, vn, (Hi, Ii)i) . 78
5.1 RingKlein(R, B, B̃, σ, c) . 90
5.2 RingPeikert(R, Σ, c) . 92
5.3 Hybrid(R, B, B̃, Σ, c) . 95
6.1 KeyGen(N, q) . 102
6.2 Sign(B, m) . 102
6.3 Verify(h, m) . 102
7.1 LDLR(G) . 122
7.2 NearestPlane(B, L, D, c) . 122
7.3 ffLDLRd

(G) . 125
7.4 ffNearestPlaneRd

(t,L) . 127
8.1 Setup(N, q) . 144
8.2 Extract(B, id) . 144
8.3 Encrypt(id, m) . 145
8.4 Decrypt(SKid, (u, v, c)) . 145

9

Contents

Notations

This thesis contains a fairly large number of notations. To make its comprehension
easier to the reader, the following tables summarize all the notations we use.

Acronyms

Notation Brief definition See also
BLISS Bimodal Lattice Signature Scheme. [DDLL13]
C&C Command and control. Page 159
CCA Chosen-ciphertext attack. –
CPA Chosen-plaintext attack. –
CVP Closest vector problem. Page 20
ECC Error-correcting code. Page 148
FDH Full-domain hash (signature). Page 37
FRG Full-rank Gram (matrix). Page 121
FFT Fast Fourier transform. [Nus12]
GSD Gram-Schmidt decomposition. Page 66
GSO Gram-Schmidt orthogonalization. Page 23
GSR Gram-Schmidt reduction Page 65
GPV Gentry-Peikert-Vaikuntanathan. Denotes the sig-

nature and IBE framework of [GPV08].
Page 37

IBE Identity-based encryption (scheme). Page 39
IBS Identity-based signature (scheme). Page 156
KL Kullback-Leibler (divergence). Page 45
LLL Lenstra-Lenstra-Lovász (algorithm). Page 29
LWE Learning wirh errors (problem). Page 16
NIKE Non-interactive key exchange. Page 156
NTRU “N-th degree TRUncated polynomial ring” OR

“Number Theory Research Unit” OR “Number
Theorists R Us”. Usually denotes a cryptosys-
tem [HPS98] or, as in this thesis, a class of lattices.

Page 100

PKI Public key infrastructure. Page 155
SIS Short integer solution (problem). Page 16
SVP Shortest vector problem. Page 20
UAKE Unidirectional authenticated key exchange Page 157

11

Contents

Generic Notations

Notation Brief definition See also
Δ= a

Δ= b means “a is defined as b”. Page 19
C/R/Q/Z/N Complex/real/rational/integers/non-negative integers. Page 19
λ A security parameter (typically 80, 128 or 192). –
�a� Rounds a real number to a closest integer.† Page 19
a� The conjugate of a ∈ R[x]/(h(x)).† Page 117
log The natural logarithm. Page 19
O, Õ, o, ω, Ω,∼ Asymptotic comparison notations. Page 19
V ⊥ The orthogonal complement of V ⊥. Page 21
Proj(b, V) Projects a vector b onto a vector space V . Page 22
H A vector space over some field K. Page 19
�·, ·� A dot product H × H → R. Page 19
� · � A norm H → R+. Page 19
Λ A lattice. Page 20
λi(Λ) The i-th successive minima of Λ. Page 20
det(Λ) The determinant of a lattice Λ. Page 20
Λ⊥

q The orthogonal lattice of Λ mod q. Page 21
SpanX(B) The set of finite combinations �(xi,bi)∈X×B xi · bi. Page 19
L(B) The lattice spanned by the vectors of B. Page 20
Bk The k first vectors of B. Page 23
B� The conjugate transpose matrix of B. Page 25
B+ The Moore-Penrose pseudoinverse of B. Page 22
B̃ The Gram-Schmidt orthogonalization of B. Page 23
|B̃| The Gram-Schmidt norm of B. Page 25
s1(B) The largest singular value of B. Page 25
P(B) The fundamental parallelepiped generated by B. Page 25
L A matrix such that B = L · B̃.♥ Page 65
Δ The statistical distance. Page 31
ρσ,c The Gaussian function of standard deviation σ, centered

on the point c.
Page 31

DΛ,σ,c A discrete Gaussian distribution over Λ, parameterized
by σ and c.

Page 31

D1 The continuous spherical Gaussian centered on 0 and of
standard deviation 1.

Page 31

�c�σ The randomized rounding DZ,σ,c.† Page 32
η�

�(Λ) The smoothing parameter of Λ. Page 32
x

$← E x sampled from the uniform distribution over E. –
ζm A complex primitive m-th root of unity. Page 66
Ωm The set of complex primitive m-th roots of unity. Page 66
φm The m-th cyclotomic polynomial. Page 66
Z×

m The group of invertible elements of Zm
Δ= Z/mZ. Page 66

ϕ(m) Euler’s totient function on m: |Z×
m|. Page 66

Aφ(f) The anticirculant matrix associated to φ and f . Page 67

12

Contents

Notations Specific to Chapter 4

Notation Brief definition See also
r An isometry Page 64
vk b1 −Proj(b1, r(Span(Bk−1))).♥ Page 68
Ck, Dk Ck = �vk, r(b̃k� and Dk = �b̃k�2.♥ Page 70
λi,j, d̃bj, dvj, cj, dj Integral variants of det(Bj), bj, vj, Cj, Dj.♥ Page 74

♥We assume that B = {b1, ..., bn} is clear from context.

Notations Specific to Chapters 5, 6 and 8

Notation Brief definition See also
K A number field. Page 88
K+ The maximal real subfield of K. Page 88
R The ring of integers of K, in practice Z[x]/(xN +

1).∞
Page 88

�·, ·�K A dot product H × H → K. Page 88
� · �K A norm H → K+. Page 88
|B̃|K The generalized Gram-Schmidt norm of B. Page 89
Z The ring Z[x]/(xN + 1).∞ Page 100
K The field Q[x]/(xN + 1).∞ Page 100

∞We assume that N is implicit from context.

Notations Specific to Chapter 7

Notation Brief definition See also
Rd The convolution ring R[x]/(xd − 1). Page 117
c(a) The coefficients’ vector of a.† Page 118
C(a) The circulant matrix of a.† Page 118
gpd(d) The greatest proper divisor of d. Page 118
Vd\d�(a) The vectorization operator. “Breaks” a ∈ Rd into

a vector in Rd/d�

d� .†
Page 118

Md\d�(a) The matrixification operator. “Breaks” a ∈ Rd

into a matrix in R(d/d�)×(d/d�)
d� .†

Page 119

Zd The ring Z[x]/(xd − 1). Page 127
ψd The polynomial �ζd=1,ζ /∈Ωd

(x− ζ). Page 129
Fd The cyclotomic ring R[x]/(φd(x)). Page 129
ιd An inner-product preserving embedding of Fd in

Rd.
Page 129

†This operation extends to vectors and/or matrices.

13

Chapter 1

Introduction
“No one has yet discovered any warlike purpose to be served by the theory of
numbers or relativity, and it seems unlikely that anyone will do so for many
years.”

— G. H. Hardy. A Mathematician’s Apology, 1940

Introduction to Cryptology
Cryptology encompasses two different but closely intricate fields of studies. The first one
is cryptography, which aims to hide informations and protect communications. The second
one is cryptanalysis, and its goal is to recover or compromise information protected by
cryptography. This makes cryptology a dual science in essence which, like the mythological
snake Ouroboros, constantly feeds on itself.

Although the need to secure communications started more than two millenia ago,
prompted by military use, cryptology remained little studied and more an art that a
science until recently. In La Cryptographie Militaire [Ker83], Augustus Kerckhoffs edicted
six principles that layed some foundations for modern cryptography. The most important
one stated that a cryptographic scheme should remain secure even if its entire design is
known, as long as the key is kept secret.1

Cryptology really began to develop at the beginning of the XXth century, fueled by the
appearance of rudimentary machines and the increasing need for securing communications.
But it is arguably the Enigma machine that sparked the entry of cryptology in the modern
era. Created in the early 1920’s by a German engineer, it was extensively used by the
German army to encrypt their communications during World War II. The repeated efforts
of Polish and British mathematicians to break it, as well as the numerous modifications
subsequently done on the German side, marked the first effort on an industrial scale to
provide strong cryptography and efficient cryptanalysis, and the entry of cryptolophy in
the modern era.

1.1 Public Key Cryptography
Perhaps the most important development in the practice of cryptography is the paper of
Whitfield Diffie and Martin E. Hellman, New Directions in Cryptography [DH76], published

1 Despite the widespread consensus around this principle and standard bodies recommending it, many
protocols continue to partially rely on security through obscurity, with often disastrous outcomes. Two
examples are the CSS system for protecting DVDs and A5/1, A5/2 protocols for GSM communications.

15

1. Introduction

in 1976. Until then, essentially all encryption schemes had been using symmetric key
algorithms, which required the prior agreement of both parties on a common secret key.
In some cases, this led to cryptographic keys being sent via extremely impractical means
such as trusted couriers and diplomatic bags and made secure communication out of reach
for common people. With Diffie and Hellman’s protocol, two parties can securely agree
on a common private key even if they communicate on a completely insecure channel.
The following year, Ronald L. Rivest, Adi Shamir and Leonard M. Adleman published
A Method for Obtaining Digital Signature and Public-Key Cryptosystems [RSA78], where
they described how to sign electronic documents and send encrypted messages without
the need to share any common key. More precisely, by sharing their public keys, Bob
can send an encrypted message that can be read by Alice only, and conversely Alice has
the guarantee that no other than Bob wrote the message she received, all of this on an
unencrypted channel. Along with Diffie and Hellman’s paper, the work of Rivest, Shamir
and Adleman spawned a new branch of cryptology that soon became known as public key
cryptography and now has countless applications.

Public key cryptography relies heavily on one-way functions, that are functions easy to
evaluate on any input but hard to invert given an output. Most of the one-way functions
used in this context rely on the hardness of number theory problems and as a result,
cryptography and number theory have become closely connected. A quote by Hendrik
Lenstra in 2002 summarizes well the current situation:

Nowadays, when a number theorist applies for a grant, he says that number
theory is used in cryptography, and so doing number theory is good for
national security. Back then, since if was before the discovery of America,
they said number theory is used in music. But I won’t comment on the
progress of civilization since then.

which stands in stark contrast with the opening quote of G. H. Hardy. Over the years,
number theory proved to be a useful weapon to create one-way functions and trapdoor
functions, which similarly to one-way functions are easy to compute and hard to invert
except when provided some special information. Notably, hardness of problems in modular
arithmetic [Rab79, RSA78], cyclic groups [ElG84] and elliptic curves [Mil86, Kob89] have
provided very efficient constructions and continue to actively fuel cryptographic research
to this day.

1.2 Lattice-Based Cryptography
Lattices are repeating arrangements of points in a grid pattern. Figure 1.1 represents a
two-dimensional lattice, but they can be defined in any dimension strictly bigger than
0. Lattices are infinite sets but for any lattice Λ, there exist finite sets of the form
B = {b1, ..., bn} such that Λ can be represented by the set of integer combinations
z1b1 + ... + znbn.

A breakthrough work of Ajtai [Ajt96] in 1996 introduced the Short Integer Solution
problem, or SIS problem. He demonstrated how to construct instances of this problem
and unveiled connections between worst-case “natural” problems over lattices and the
average-case SIS problem. Around the same time, Hoffstein, Pipher and Silverman [HPS98]
presented NTRU, an extremely fast public key encryption scheme based on polynomial
rings but against which all practical attacks are based on lattices. Both works started the
construction of cryptographic primitives using lattices, or what is now called lattice-based

16

1.2. Lattice-Based Cryptography

Figure 1.1: A lattice and three bases.

cryptography. In 2005, Regev [Reg05] introduced the Learning With Errors problem, or
LWE problem, which was also shown to be as hard as standard lattice problems. Both
Ajtai’s SIS and Regev’s LWE problems proved to be extremely versatile building blocks
for a wide array of cryptographic schemes, including fully homomorphic encryption, a
construction which allows to perform an arbitrary number of operations on encrypted data
without having to know anything about the data.

Additionally, lattice-based schemes can rely on ring lattices. These have the same
form Λ = {z1b1 + ... + znbn} as standard lattices, but instead of being in Z, the zi’s and
the coefficients of the vectors bi are in some specific ring R. Concurrently introduced
by Lyubashevsky and Micciancio [LM06] and Peikert and Rosen [PR06], a series of
works [LM06, PR06, SSTX09, LPR10, LPR13b] showed that generalized versions of SIS
and LWE, called Ring SIS and Ring LWE (or simply RSIS and RLWE), admitted worst-case
reductions from standard lattice problems over ideal lattices (which are ideals of the ring
of integers of a number field). This allows efficient instantiations of lattice-based schemes.

1.2.1 Gaussian Sampling
A powerful tool in lattice-based is Gaussian sampling. Introduced in cryptography by
Gentry, Peikert and Vaikuntanathan [GPV08] in 2008, it consists, given an arbitrary point
c and a short basis B of a lattice Λ, to sample a point according to a Gaussian distribution
discretized on the lattice points and centered on c. A key point of Gaussian sampling is
that it doesn’t leak any information about the lattice, effectively behaving like an oracle
– although a weaker one than an oracle which returns the closest point to c. Under the
hypothesis that SIS and LWE are hard, [GPV08] showed how to use Gaussian sampling to
create lattice-based signature schemes, as well as lattice-based identity-based encryption,
a paradigm of public key encryption where a user’s public key is its own identity, resolving
many key-distribution problems.

Gaussian sampling has since allowed to realize advanced functionalities, such as hierar-
chical identity-based encryption schemes [CHKP10, ABB10b], standard-model signatures
[ABB10b, Boy10b], attribute-based encryption [BGG+14], and many other constructions.
Interestingly, by itself, the very problem of doing Gaussian sampling has also showed
recent connections with standard lattice problems [ADRS15, ADS15, Ste15].

17

1. Introduction

1.3 This Thesis
The versatility of Gaussian sampling as a black box tool is recognized and accordingly
used to create many constructions. However, except for [Kle00, GPV08, Pei10] and in
some sense [MP12], no work we are aware of proposes generic Gaussian samplers and
few works propose improvements on the existing samplers, with notable exceptions being
[DN12a, BLP+13].2 This thesis intend to fill the gap between the theory and practice of
Gaussian sampling in cryptography. This is done in three parts.

Improving Existing Gaussian Samplers. We will consider the existing Gaussian samplers
and try to improve them. This will be done by a statistical and geometrical analysis. In
Chapter 3, we will use a divergence measure known as the KullBack-Leibler divergence to
improve on proofs provided by the more classical statistical distance. This allows us to
sample shorter vectors, which results in more secure schemes. It also shortens the required
precision, which makes both existing samplers faster and easier to implement in software.
In Chapter 4, we show that a large class of structured lattices (which include all the ring
lattices used in efficient lattice-based cryptography) are compatible with an algorithm
called the Levinson recursion. Typically, for ring lattices over some ring R of rank n over
Z, this enables to orthogonalize a basis of the lattice essentially O(n) faster. In addition,
we can use this in conjunction with Klein’s sampler [Kle00, GPV08] to reduce its space
complexity by a factor O(n).

New Gaussian Sampler over Ring Lattices. In Chapter 5, we provide a generalization over ring
lattices of the sampling algorithm of Klein’s sampler. We then show that this generalized
sampler can use the one from [Pei10] – known as Peikert’s sampler – as a subroutine, which
results in a new and hybrid sampler for ring lattices. In Chapter 6, we assess the practical
interest of this sampler by comparing it with the two preexisting ones on an efficient
and widely used class of lattices called NTRU lattices. Our new algorithm provides a
quality-efficiency trade-off between Klein’s and Peikert’s sampler, and it turns out that
this trade-off is very favorable to our sampler. In Chapter 7, we mix together the ideas of
Fast Fourier transform and the nearest plane algorithm to obtain, for lattices over tower
of rings, a nearest plane algorithm that can run as fast as quasilinear time.

Identity-Based Encryption. In Chapter 8, we use the results from the preceding chapters to
provide an efficient identity-based encryption scheme (IBE) over lattices. This IBE uses
Gaussian sampling as a core procedure. Compared to the state of the art in (pairing-based)
IBE, our scheme does not perform as well in terms of ciphertext size, but the encryption
and decryption are faster by three orders of magnitude. To conclude, Chapter 9 lists a few
applications of IBE and cites a few cases where our lattice-based IBE could be particularly
useful.

2We consider as generic Gaussian samplers algorithms which sample over a lattice. However, many
works [Pei10, DN12a, DDLL13, Duc13, BCG+14, RVV14, Lep14, DG14] propose algorithms and improve-
ments in the special case Λ = Z.

18

Chapter 2

Preliminaries
“If you don’t know, the thing to do is not to get scared, but to learn.”

— Ayn Rand, Atlas Shrugged

Notations. This paragraph states the notation conventions that will be used through
this document except when stated otherwise. Alice and Bob are metasyntactic variables
which in this thesis denote (possibly interactive) participants trying to communicate
securely on an insecure channel. We note C the set of complex numbers, R the set of
integers, Q the set of rational numbers, Z the set of integers and N the set of non-negative
integers. m and n will be non-negative integers such that m � n � 0 and we will note
H = Km, where typically K = R but K may be a number field in later sections of this
thesis. Scalars will be usually noted in plain letters (such as a, b), vectors will be noted in
bold letters (such as a, b) and matrices will be noted in uppercase bold letters (such as
A, B). Vectors are mostly in row notation, and as a consequence vectors-matrix product
is done in this order when not stated otherwise. (a1, ..., an) denotes the row vector formed
of the ai’s, whereas [a1, ..., an] denotes the matrix whose rows are the ai’s.

The notation a
Δ= b means that a is defined as b. A basis will either be a set

B = {b1, ..., bn} ∈ Hn of vectors linearly independent in R or the n × m matrix whose
rows are the bi’s. We note SpanX(b1, ..., bk) (or SpanX(B)) the set {�1�i�k xibi, xi ∈ X}.
In particular, SpanZ(B) is an Z-module and Span(B) Δ= SpanR(B) is a R-vector space.
�·, ·� and � · � denote respectively the usual inner product H × H → R and the associated
norm. For a scalar a, �a� denotes the usual rounding over a. By rounding coefficient-wise,
one can extend this notation to vectors. log denotes the natural logarithm, and loga is the
logarithm in basis a.

For two real functions f, g : R→ R, we use the following asymptotic notations:

• f = O(g) if and only if (iff) ∃M > 0, x0 ∈ R such that ∀x > x0, |f(x)| � M |g(x)|.

• f = Õ(g) iff f = O(g log g).

• f = o(g) iff ∀� > 0,∃x0 ∈ R such that ∀x > x0, |f(x)| � �|g(x)|.

• f = Ω(g) iff g = O(f).

• f = ω(g) iff g = o(f).

• f ∼ g iff f/x→∞ 1.

19

2. Preliminaries

2.1 Introduction to Lattices
Definition 2.1 (Lattice). Let H = Rm. A lattice is a discrete subgroup of H. For a basis
B = {b1, ..., bn} ∈ Hn, we note L(B) and call lattice generated by B the set of vectors

�
n�

i=1
xibi|xi ∈ Z

�

A lattice is commonly noted Λ, or L(B) when provided with a basis B.

We note that L(B) = SpanZ(B). We will favor the former notation. The successive
minima and determinant of a lattice are useful invariants that help to understand its
geometry.

Definition 2.2 (Successive Minima of a Lattice). Let Λ ⊆ Rm be a lattice of rank n. For
i ∈ �1, n�, we note λi(Λ) and call i-th successive minimum of Λ the following value:

λi(Λ) = inf
r

{dim(Span(Λ ∩ B̄(0, r)) � i}

Definition 2.3 (Determinant of a Lattice). Let Λ = L(B) be a lattice of rank n. We note
det(Λ) and call determinant of Λ the value

�
det(BBt). In the special case where B is a

square matrix, it is immediate that det(Λ) = | det(B)|.

One can check that definition 2.3 is independent of the basis B chosen, and is therefore
consistent. Indeed, if two bases B1, B2 generate the same lattice, then B1 = UB2 for
some unimodular matrix U. By multiplicativity of the determinant, B1Bt

1 and B2Bt
2 have

the same determinant.

2.1.1 Problems over Lattices
For completeness, we recall the main problems over lattices. They can informally be
classified in two categories. The first arise “naturally” when studying lattices.

Definition 2.4 (SVP – Shortest Vector Problem). Given a n-dimensional lattice Λ, find
a lattice vector v such that �v� = λ1(Λ).

Definition 2.5 (ASVPγ – Approximate Shortest Vector Problem). Given a n-dimensional
lattice Λ and γ � 1 a function of n, find a lattice vector v such that �v� � γ · λ1(Λ).

Definition 2.6 (CVP – Closest Vector Problem). Given a n-dimensional lattice Λ and a
point c ∈ H, find a lattice vector v such that �c− v� = dist(c, λ) Δ= minz∈Λ �c− z�.

Definition 2.7 (ACVPγ – Approximate Closest Vector Problem). Given a n-dimensional
lattice Λ and γ � 1 a function of n, find a lattice vector v such that �c−v� � γ ·dist(c, Λ).

Definition 2.8 (SIVPγ – Approximate Shortest Independent Shortest Vector Problem).
Given a n-dimensional lattice Λ and γ � 1 a function of n, find n independent vectors vi

of Λ such that for any i ∈ �1, n�, �vi� � γ · λi(Λ).

Definition 2.9 (BDDα – Bounded Distance Decoding Problem). Given a n-dimensional
lattice Λ and a vector t such that dist(t, L) < α · λ1(Λ), find a lattice vector v such that
�v− t� < α · λ1(Λ).

20

2.1. Introduction to Lattices

The problems we just mentioned are hard on classical computers, and it is currently
not known whether quantum computers can significantly speed up their resolution. This
stands in contrast to problems such as the discrete logarithm and the factoring, which are
known to be solvable in (probabilistic) polynomial time by a quantum computer [Sho94].

The second class of lattice problems are ad hoc, as they arise from cryptographic
constructions. The SIS problem was introduced by Ajtai [Ajt96] and the LWE problem by
Regev [Reg05].

Definition 2.10 (SISn,m,q,β – Shortest Integer Solution). Let n and m, q = poly(n) be
integers. Given a uniformly random matrix A ∈ Zn×m

q , find a non-zero vector z such that
Az = 0 mod q and �z� � β.

Definition 2.11 (LWEn,m,q,χ – Learning With Errors). Let n, m, q be integers. Let
A ∈ Zn×m

q be a uniformly random matrix, and b = sA + e, where e ∈ Zm
q is sampled

from a distribution χ. Recover s ∈ Zn
q .

Since SIS and LWE are ad hoc, their hardness may be questioned. However, a series of
works showed that they are as hard as standard lattice problems [Ajt96, MR04, Reg05,
BLP+13]. Under certain conditions, their ring variants (where Z is replaced by a ring,
usually cyclotomic rings and in particular Z[x]/(xn + 1) for n a power of two) were also
shown [LM06, PR06, SSTX09, LPR10, LPR13b] to be as hard as variants of standard
lattice problem in ideal lattices. This means that cryptography based on LWE and SIS
can ultimately be made to rely of the hardness of standard lattice problems. In absence
of any quantum algorithm that can solve them efficiently, lattice-based cryptography is
expected to resist a potential advent of quantum computers. Cryptographic schemes that
are believed to withstand this threat are regrouped under the umbrella term post-quantum
cryptography. Other potential post-quantum areas of cryptography include code-based and
hash-based cryptography.

It is to be noted that quantum computers are no longer merely theoretical and are
being considered more and more seriously as a threat – although not an immediate one.
Standard bodies are actively researching post-quantum resilient cryptographic solutions1,2,
and state that they will “initiate a transition to quantum resistant algorithms in the not
too distant future” [NSA15].

2.1.2 Projections
Definition 2.12 (Orthogonal Complement). Let V be a subspace of H. We call orthogonal
complement of V and note V ⊥ the set of vectors orthogonal to all the vectors of V :

V ⊥ = {y ∈ H|∀x ∈ V, �x, y� = 0}

Similarly, for a lattice Λ ⊆ H, the orthogonal lattice of Λ modulo q is:

Λ⊥
q = {y ∈ H|∀x ∈ V, �x, y� = 0 mod q}

If B is a basis of V , one can verify that V ⊥ is the kernel of x �→ xBt, so it is a
(m− dim(V))-dimensional subspace of H. Since V ∩ V ⊥ = 0, it follows that V + V ⊥ = H
and that V and V ⊥ are in direct sum:

1http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
2http://www.etsi.org/news-events/events/770-etsi-crypto-workshop-2014

21

2. Preliminaries

Proposition 2.13. Let V be a subspace of H. Then for any x ∈ H, there exists a unique
couple (y, z) ∈ V × V ⊥ such that x = y + z.

Definition 2.14 (Orthogonal Projection). Let V be a subspace of H and x ∈ H. We call
orthogonal projection of x over V and note Proj(x, V) the only vector y ∈ V verifying
(x− y) ⊥ V .

Existence and uniqueness of the orthogonal projection comes from Proposition 2.13.
In Proposition 2.15, we give some properties of orthogonal projections that will be useful
for in the rest of this work.

Proposition 2.15. Let V be a subspace of H and p : x �→ Proj(x, V) be the linear map
which maps a point x ∈ H onto its orthogonal projection over V . The map p verifies:

• p(H) = V
• ker p = V ⊥

• p ◦ p = p
• p |V = id |V
• �x− p(x)� = min

y∈V
�x− y�

We clarify some terminology: the set of orthogonal projections (over subspaces) of H is
a subset of the more generic set of projections of H. In this thesis we only use orthogonal
projections, so we do not elaborate on projections and will abusively call “the projection
over V ” the unique orthogonal projection over V . We now recall a definition that will be
useful to compute projections.

Definition 2.16 (Moore-Penrose Pseudoinverse). Let n � m and B ∈ Rn ×m be a full-
rank matrix (meaning that its rank is equal to min(n, m), which is n here). We note B+

and call Moore-Penrose pseudoinverse of B the m × n matrix uniquely defined by:

B+ = Bt(BBt)−1

One can check that when n = m, A+ = A−1. For this work, the most useful property
of the pseudoinverse is that BB+ = In. Given a point x = x0B ∈ Span(B), it allows
to recover x0 easily: x0 = xB+. The following proposition also gives an effective way of
computing the projection over a finite subspace V .

Proposition 2.17. Let V be a n-dimensional subspace of H and B ∈ Kn×m be a basis of
V . For any x ∈ H, the projection of x over V is:

Proj(x, Span(B)) = xB+B = xBt(BBt)−1B

In particular, if y ∈ Rm, then the projection of x over Span(y) is:

Proj(x, Span(y)) = �x, y�
�y, y�y

With the convention �x,0�
�0,0�0 = 0.

Proof. Let us note p : x ∈ H �→ xB+B. It is obvious that p(x) = (xB+) B ∈ V . On the
other hand,

(x− p(x))Bt = xBt − x B+BBt
� �� �

=Bt

= 0

The result then follows from the definition of the projection.

22

2.1. Introduction to Lattices

Two vectors x, y are said to be orthogonal if their inner product is zero. A ba-
sis B = {b1, ..., bn} is said to be orthogonal if its vectors are pairwise orthogonal:
∀i �= j, �bi, bj� = 0. If in addition they are all unit vectors (meaning that their norm is 1),
then B is said to be an orthonormal basis.

Orthogonal and orthonormal bases are very useful: for a basis B = {b1, ..., bn} of
some subspace V and a point x ∈ V , they allow to compute a decomposition of x over the
vectors of B in a parallelizable and efficient way:

• If B is orthogonal, then x = �
i∈�1,n�

�x,bi�
�bi�2 bi

• If B is orthonormal, then x = �
i∈�1,n��x, bi�bi

2.1.3 The Gram-Schmidt Orthogonalization
As we just said, orthogonal bases are very useful to decompose a vector over a basis, which
leads to countless applications inside and outside the scope of this thesis. Fot this reason,
it is often desirable, given a basis B, to have an orthogonal basis B̃ that generates the
same space as B. An infinite number of such bases exist, but for lattices we are interested
in a very specific one described in the present section. We add the following notation: for
a basis B = {b1, ..., bn} and k � n, we note Bk

Δ= {b1, ..., bk}.

Lemma 2.18. Let H = Rm and B = {b1, ..., bn} ∈ Hn be a basis. For any k ∈ �1, n�,
we note Vk

Δ= Span(Bk). There is a unique basis B̃ = {b̃1, ..., b̃n} ∈ Hn verifying any of
these equivalent properties:

1. ∀k ∈ �1, n�, b̃k = bk −Proj(bk, Vk−1)
2. ∀k ∈ �1, n�, b̃k = bk −

k−1�
j=1

�bk,b̃j�
�b̃j ,b̃j� b̃j

3. ∀k ∈ �1, n�, b̃k ⊥ Vk−1 and (bk − b̃k) ∈ Vk−1

Noting Ṽk
Δ= Span(b̃1, ..., b̃k), we also have: ∀k ∈ �1, n�, Ṽk = Vk.

Proof. We first prove the equivalence of the conditions 1, 2 and 3. They are equivalent at
step 1. We suppose it is the case up to step k − 1 and prove the equivalence at step k:

• 1⇔ 2 First let us notice that Vk−1 = Ṽk−1 (see condition 2). Observing that for any
j < k, the b̃j’s are pairwise orthogonals (see condition 3), we get for any v ∈ H:

Proj(v, Vk−1) = Proj(v, Ṽk−1) =
k−1�

j=1

�v, b̃j�
�b̃j, b̃j�

b̃j

Where the second equality comes from the first equality of Proposition 2.17.

• 2⇒ 3 b̃k ⊥ Ṽk−1 is a simple computation, and (bk − b̃k) ∈ Vk−1 is straightforward.

• 3⇒ 1 We proved that (1⇒ 3), so bk = Proj(bk, Vk−1) + (bk−Proj(bk, Vk−1)) yields
a decomposition of bk over Vk−1 and V ⊥

k−1. Since Vk−1 and V ⊥
k−1 are in direct sum, such

a decomposition is unique.

The existence and uniqueness of B̃ come from the deterministic formula in condition 2, as
does the fact that Vk = Ṽk.

We now define the Gram-Schmidt Orthogonalization.

23

2. Preliminaries

Definition 2.19 (Gram-Schmidt Orthogonalization). Let B = {b1, ..., bn} ∈ Hn be a
basis. We call Gram-Schmidt orthogonalization (or GSO) of B and note B̃ the unique set
{b̃1, . . . , b̃n} ∈ Hn verifying one of the equivalent properties of Lemma 2.18. When clear
from context, we also note b̃i the i-th vector of B̃, which is also the orthogonalization of
bi with respect to the previous vectors b1, . . . , bi−1.

We have provided three equivalent definitions of the Gram-Schmidt orthogonalization
in Lemma 2.18. The first one is geometrical, the second one is a mathematical formula,
and the third one looks at each vector of the basis as its decomposition over two orthogonal
vector spaces. Although the two first definitions are standard and useful for comprehension
and computation, the third one is less common and we will mostly use it in proofs, to
show that a basis is indeed the GSO of another one. The second notations can easily be
translated into a constructive algorithm for the GSO, as shown by Algorithm 2.1.

Algorithm 2.1 GramSchmidtProcess(B)
Require: Basis B = {b1, ..., bn}
Ensure: Gram-Schmidt reduced basis B̃ = {b̃1, ..., b̃n}

1: for i = 1, ..., n do
2: b̃i ← bi

3: for j = 1, ..., i− 1 do
4: Li,j = �bi,b̃j�

�b̃j�2

5: b̃i ← b̃i − Li,jb̃j

6: end for
7: end for
8: return B̃ = {b̃1, ..., b̃n}

Gram-Schmidt orthogonalization also implicitly defines a lower triangular matrix
L = (Li,j)1�i,j�n which is also the unique matrix verifying B = L · B̃. This matrix is
used in lattice-based cryptography but also has applications beyond its scope. Faster
algorithms for computing B̃ and L when the basis B is geometrically structured are given
in Chapter 4. The Gram-Schmidt orthogonalization also helps to compute or bound lattice
invariants.

Proposition 2.20. Let Λ = L(B) be a lattice of rank n.

• det(Λ) = �
i �b̃i� = det(L(B̃))

• min
j�i
�b̃j� � λi(L(B)) � max

j�i
�b̃j�

2.2 Babai’s Algorithms
Given a lattice L(B) and a point c, Babai’s algorithms are used to find a point v ∈ L(B)
close to c. Although they were known before,3 Babai was the first to formalize them in
[Bab85, Bab86].

Both algorithms are deterministic and give approximate solutions to classical lattice
problems related to CVP. Before giving the algorithms, we recall some definitions that
will be useful to analyze them.

3The round-off algorithm is used in [Len82], and the Nearest Plane in [LLL82].

24

2.2. Babai’s Algorithms

Definition 2.21 (Gram-Schmidt Norm). Let B = (bi)i∈I be a finite basis, and B̃ = (b̃i)i∈I

its Gram-Schmidt orthogonalization. The Gram-Schmidt norm of B is the value

|B̃| = max
i∈I
�b̃i�

Definition 2.22 (Singular Value Decomposition). Let K be either the field of real or
complex numbers, and B ∈ Kn×m be a matrix. B can be decomposed as follows:

B = UΣV�

Where U ∈ Kn×n and V ∈ Km×m are unitary matrices, Σ ∈ Kn×m is a diagonal matrix
with real non-negative coefficients, and V� denotes the conjugate transpose matrix of V.
The diagonal entries of Σ are known as the singular values of B, and commonly noted
s1(B), ..., sn(B) in decreasing order.

Definition 2.23 (Spectral Norm). Let B ∈ Rn×m be a matrix. The spectral norm of B is
the value

max
x∈Rn\{0}

�xB�
�x�

One can check that this definition coincides with the operator norm induced on the
space of matrices of Rn×m by the euclidean norm. It also coincides with the maximal
singular value s1(B) of B. The literature about discrete Gaussian sampling use mostly
the notation s1(B), so we will keep this notation for the spectral norm.

Definition 2.24 (Fundamental Parallelepiped of a Basis). Let B = {b1, ..., bn} be a basis.
We note P(B) and call fundamental parallelepiped generated by B the set

��

i

xibi|xi ∈
�
−1

2 ,
1
2

��
= Span[− 1

2 , 1
2](B)

We now give the definition of the round-off algorithm, which provides a simple way,
given a point c and a short basis B, to find a “reasonably close” point of L(B) that is
close to c. We recall that �·� denotes the coefficient-wise rounding in Z of a vector.

Algorithm 2.2 RoundOff(B, c)
Require: Basis B = {b1, ..., bn} ∈ Zn×m of a lattice Λ, target c ∈ Span(B)
Ensure: v ∈ L(B)

1: v← �cB+�B
2: return v

Proposition 2.25. Let c ∈ Span(B). Algorithm 2.2 outputs a point v ∈ Λ such that

c− v ∈ P(B)

It follows that �c− v� �
√

n
2 · s1(B).

Proof. The fact that v ∈ Λ is immediate from its definition. We now prove the bound over
c− v. Let c = c0B for some c0 ∈ Rn. Then c0 = cB+ (since BB+ = In) and we have:

c− v = c0B− �cB+�B = (c0 − �c0�)� �� �
∈[− 1

2 , 1
2]n

B

25

2. Preliminaries

Following the notations of Proposition 2.25, one can notice that Algorithm 2.2 outputs
the same result for any input in c + Span(B)⊥.

Algorithm 2.3 NearestPlane(B, c)
Require: Basis B = {b1, ..., bn} ∈ Zn×m, its GSO B̃ = {b̃1, ..., b̃n}, target c ∈ Span(B)
Ensure: v ∈ L(B)

1: cn ← c
2: vn ← 0
3: for i← n, ..., 1 do
4: di ← �ci, b̃i�/�b̃i�2

5: zi ← �di�
6: ci−1 ← ci − zibi

7: vi−1 ← vi + zibi

8: end for
9: return v0

Proposition 2.26. Let c ∈ Span(B). Algorithm 2.3 outputs a point v ∈ Λ such that

c− v ∈ P(B̃)

It follows that �c− v�2 � 1
4
�n

i=1 �b̃i�2 � n
4 |B̃|2.

Proof. The fact that v ∈ Λ follows from the fact that c0 = �
i zibi for some (zi)i∈�1,n� ∈ Zn.

We now prove the bound over c− v by showing that at for any i ∈ �0, n�, the following
condition holds:

∀j ∈ �i + 1, n�, �ci, b̃j�
�b̃j�2

∈
�
−1

2 ,
1
2

�
(2.1)

Indeed, c0 ∈ Span(B̃) and B̃ is orthogonal so c0 = �
i

�c0,b̃j�
�b̃j�2 b̃j . It is then obvious that

having condition (2.1) hold at i = 0 is equivalent to proving the bound over c− v since
c0 = c− v. We show by descending induction over i that condition (2.1) holds for any
i ∈ �0, n�.

For i = n, the set �i + 1, n� is empty so condition (2.1) is a tautology. If condition (2.1)
is true at step i, then from ci−1

Δ= ci −
� �ci,b̃i�

�b̃i�2

�
bi it is easy to check that:

• For j > i, �ci−1,b̃j�
�b̃j�2 = �ci,b̃j�

�b̃j�2 since b̃j is orthogonal to bi, so adding a scalar multiple of
bi to ci doesn’t change its dot product with b̃j.

• For j = i, �ci−1,b̃j�
�b̃j�2 = �ci,b̃j�

�b̃j�2 −
�

�ci,b̃j�
�b̃j�2

�
∈
�
−1

2 , 1
2

�
using the fact that �bj, b̃j� = �b̃j�2

By induction, condition (2.1) holds as long as ci and the b̃j’s are defined, which is all the
way down to i = 0. This concludes the proof.

The bound over �c− v�2 is then given by the Pythagorean theorem.

26

2.2. Babai’s Algorithms

2.2.1 Comparing the Round-Off and Nearest Plane Algorithms
If we consider elementary operations in R to be of complexity O(1), then both RoundOff
and NearestPlane have a O(nm) complexity. They are deterministic and the qualities of
their outputs depend on the geometry of B (for RoundOff) and of B̃ (for NearestPlane),
as stated by propositions 2.25 and 2.26. However, even though P(B) and P(B̃) have
the same volume, B̃ is orthogonal so P(B̃) may not contain vectors as large as P(B)
do. A simple basis on which NearestPlane can perform arbitrarily better than RoundOff
is B = {[0, 1], [1, n]} when n → +∞. Some limitations of both algorithms are given in
Lemma 2.27 and illustrated in Figure 2.1. In a nutshell, the nearest-plane algorithm
outputs closer vectors than the round-off algorithm in the worst and average cases, but we
can find counterexamples where the round-off algorithm returns a closer vector for specific
bases and target points.

c c c

RoundOff (2.2) NearestPlane (2.3) Actual closest vector

In the worst and average cases, the nearest plane algorithm performs better than the
round-off algorithm. However, it may not always find a closest vector to c, even in small
dimension.

Figure 2.1: Comparing Babai’s algorithms.

Lemma 2.27. The following properties hold:

1. For any fixed basis B, the nearest plane algorithm outputs closer vectors than the
round-off algorithm in the worst case:

max
c∈Span(B)

�c− NearestPlane(B, c)� � max
c∈Span(B)

�c− RoundOff(B, c)�

2. For any fixed basis B, the nearest plane algorithm outputs closer vectors than the
round-off algorithm on average:

E
c $←Span(B)/L(B)

�
�c− NearestPlane(B, c)�2

�
� E

c $←Span(B)/L(B)

�
�c− RoundOff(B, c)�2

�

3. The nearest plane algorithm does not always output closer lattice points than the round-
off algorithm. More specifically, there exist a basis B and a point c ∈ Span(B) such
that:

�c− NearestPlane(B, c)� > �c− RoundOff(B, c)�

Proof. We prove the three propositions separately:

1. Let B = {b1, ..., bn} be a basis and c = 1
2
�

i∈�1,n� b̃i. As c ∈ P(B̃), NearestPlane(B, c)
outputs the point v = 0 and �c− v� then reaches the upper bound of Proposition 2.26
for the nearest plane algorithm.4
4Depending on the rounding conventions, the nearest plane might output another point, but the

conclusion regarding the bound �c− v� would be the same.

27

2. Preliminaries

We now construct d such that �d− RoundOff(B, d)� � �c− NearestPlane(B, c)�. We
proceed as follows: let dn = 1

2bn and for any i < n, di = di+1 + (−1)ki

2 bi where ki = 0
if �di+1, b̃i� > 0, ki = 1 otherwise. The point d = d1 verifies:

∀i,
�����
�d, b̃i�
�b̃i, b̃i�

����� �
1
2 (2.2)

As d is in P(B), applying RoundOff(B, d) outputs 0. From equation 2.2, it is immediate
that �d− 0� � �c− 0�. This yields a constructive proof that in the worst case, the
round-off algorithm outputs further vectors than the nearest plane algorithm.

2. We first notice that for any fixed c and any c� ∈ c + L(B):

�c� − RoundOff(B, c�)� = �c− RoundOff(B, c)� (2.3)

Which makes it consistent to define E
c $←Span(B)/L(B)

[�c− RoundOff(B, c)�2]. Now let

P �(B) Δ= Span(− 1
2 , 1

2](B). We have:

E
c $←Span(B)/L(B)

[�c− RoundOff(B, c)�2] = E
c $←P �(B)

[�c− RoundOff(B, c)�2]

= 1
Vol(P �(B))

�

P �(B)
�c�2dnc

= 1
Vol(P(B))

�

P(B)
�c�2dnc

=
�

[− 1
2 , 1

2]n
�xB�2dnx

Hereinabove, the first equality holds because of equation 2.3. The second one is
straightforward once we notice that RoundOff(B, c) = 0 for c in the integration domain.
The third one notices that the measure of P(B)\P �(B) is zero, therefore the integral of
�c�2 over P �(B) or P(B) is the same. For the fourth one, we use the change of variable
c = xB, where x = (xi)i∈�1,n�. Similarly, we show that

E
c $←Span(B)/L(B)

�
�c− NearestPlane(B, c)�2

�
=
�

[− 1
2 , 1

2]n
�xB̃�2dnx

To conclude the proof, we now show by induction that for any k ∈ �1, n�, if we note
xk

Δ= (xi)i∈�1,k� and Bk
Δ= {b1...bk}, we have:

�

[− 1
2 , 1

2]k
�xkBk�2dkxk �

�

[− 1
2 , 1

2]k
�xkB̃k�2dkxk (2.4)

The inequality is trivial (and is an equality) for k = 1. Suppose it is true up to a given
k, we have:
�

[− 1
2 , 1

2]k+1
�xk+1B̃k+1�2dk+1xk+1 =

�

[− 1
2 , 1

2]k
�xkB̃k�2dkxk +

�

[− 1
2 , 1

2]
�xk+1b̃k+1�2dxk+1

(2.5)
On the other hand, the decomposition xk+1Bk+1 = xkBk + xk+1bk+1 yields:
�

[− 1
2 , 1

2]k+1
�xk+1Bk+1�2dk+1xk+1 =

�

[− 1
2 , 1

2]k
�xkBk�2dkxk +

�

[− 1
2 , 1

2]
�xk+1bk+1�2dxk+1

+2
�

[− 1
2 , 1

2]k+1
�xkBk, xk+1bk+1�dk+1xk+1

(2.6)

28

2.2. Babai’s Algorithms

From the fact that the dot product is an odd function in each term (ie �x,−y� =
�−x, y� = −�x, y�), the last integral in equation 2.5 is zero. This leaves two nonzero
terms in the right member of equation 2.5: the first one is larger than

�
[− 1

2 , 1
2]k �xkB̃k�2dkxk

by induction hypothesis and the second one is larger than
�

[− 1
2 , 1

2] �xk+1b̃k+1�2dxk+1

since �bk+1� � �b̃k+1�. This implies equation 2.4 at step k + 1 and therefore concludes
the proof.

3. Let � ∈ (0, 1/6) and

B =



1 0 0
� 1 0
1 −1/� 1




� �� �
L

·



1 0 0
0 � 0
0 0 1




� �� �
B̃

=



1 0 0
� � 0
1 −1 1




Let c = �b1+b2+�b3 = 3�b̃1+�b̃3. We have RoundOff(B, c) = b2 and NearestPlane(B, c) =
0, so that

�c− NearestPlane(B, c)�2 = 10�2 > 6�2 = �c− RoundOff(B, c)�2

2.2.2 Uses of the Nearest Plane Algorithm
One of the most notable uses of the nearest plane algorithm is in the LLL algorithm [LLL82]
(which ironically, was invented before Babai published [Bab85, Bab86]). More precisely, it is
an essential component of the size-reduction procedure. We recall that for B = {b1, ..., bn}
and k � n, we note Bk

Δ= {b1, ..., bk}. The size-reduction can very simply described using
the round-off algorithm:

Algorithm 2.4 SizeReduce(B)
Require: Basis B = {b1, ..., bn} ∈ Zn×m

Ensure: Size-reduction of B
1: for k ← 2, ..., n do
2: bk ← bk − NearestPlane(Bk−1, bk)
3: end for
4: return B

And the LLL algorithm can be defined using only the size-reduction and the orthogo-
nalization of a basis.

Algorithm 2.5 LLL(B, δ)
Require: Basis B = {b1, ..., bn} ∈ Zn×m

Ensure: δ-LLL-reduction of B
1: SizeReduce(B)
2: if δ�b̃k�2 > �b̃k+1�2 + �bk+1,b̃k�2

�b̃k�2 for some k then
3: bk ↔ bk+1
4: return LLL(B)
5: else
6: return B
7: end if

29

2. Preliminaries

The LLL algorithm has numerous applications in cryptanalysis but also beyond
(see [NV10]). As this algorithm is outside the scope of this thesis, we do not elabo-
rate on it. Nevertheless, it would be interesting to see if the techniques we develop in this
thesis could benefit to it. Given a point c ∈ Span(B), NearestPlane can also be used to
solve CVP-related problems over Λ(B) and c:

• For any lattice Λ ⊂ Rn of dimension n, there exists a basis B with which NearestPlane
solves BDD 1

2n
.

• One can show that NearestPlane solves ACVPγ for γ � √n · maxi �b̃i�
mini �b̃i� .

• If the basis B is δ-LLL-reduced with parameter δ = 3
4 , one can show that NearestPlane

solves ACVPγ for γ = 2n/2 [Bab85, Bab86]. While of theoretic interest, this value of γ

is in practice often much worse than the previous bound
√

n · maxi �b̃i�
mini �b̃i� .

2.2.3 Using Babai’s Algorithms in Public Key Cryptography
Given a short basis B, Babai’s algorithms can give, for any point c ← H(m), a lattice
point that is close to c in a reasonable time. In addition, it is in general hard to find a
short basis from a long basis. With these fact in mind, it is tempting to devise a public key
scheme where B would be a private key using Babai’s algorithms to answer queries. And
indeed, this was attempted by Goldwasser, Goldreich and Halevi with the GGH signature
scheme [GGH97], as well as Hoffstein, Howgrave-Graham, Pipher, Silverman and Whyte
with the NTRUSign scheme [HHGP+03]. In essence, the idea was the following:

• Sign : Hash a message m into a point c of the space and use RoundOff(B, c) to find a
lattice point s ∈ Λ close to c. Output s.

• Verify : Accept iff s ∈ Λ and �s− c� is small.

However, this idea fell short due to the fact that the signature s was not chosen
depending only of its closeness to c but also of the geometry of the private key. This is
obvious in Propositions 2.25, 2.26 as well as in Figure 2.1.

Nguyen and Regev exploited this leakage of the private key to perform a total break
of the schemes [NR06] with a statistical attack that can be synthesized in the ulterior
Figure 2.7. Perturbations countermeasures were proposed by the authors of [HHGP+03]
but their security was questioned in [Wan10] and they were subsequently broken by Ducas
and Nguyen [DN12b].

2.3 Discrete Gaussians
The point of failure in GGH and NTRUSign came from the fact that the signature depended
of the geometry of the basis B used for signing. We carefully note that the geometry of
the lattice and the geometry of the basis are two different things. The first one is a lattice
invariant, but two bases can have different geometries. In a hash-and-sign scheme à la
[GGH97, HHGP+03], a signature necessarily depends on the lattice, since it is a lattice
point. However, it doesn’t inherently have to depend of the basis. As an example, suppose
the signer is able to return the closest vector to any point. Then clearly the signature
would not depend on any basis.

30

2.3. Discrete Gaussians

Of course, returning the closest vector is NP-hard in general. However, returning a
point independent of the basis would be sufficient to thwart the aforementioned attacks.
In 2008, Gentry, Peikert and Vaikuntanathan [GPV08] showed how to return a point that
would not depend on the basis used. Instead of taking as a signature the intersection of
H(m) + P(B) and of the lattice L(B) (which is in essence what GGH and the original
NTRUSign did), [GPV08] sampled it from a spherical discrete Gaussian distribution. This
distribution requires some additional definitions which are given in this section.

2.3.1 The Statistical Distance
The statistical distance is a prevalent tool in cryptography and is used to measure the
“closeness” of two distributions.

Definition 2.28 (Statistical Distance). Let P and Q be two distributions over a common
countable set Ω. The statistical distance – also known as total variation distance – between
P and Q is noted Δ(P , Q) and defined as:

Δ(P , Q) = 1
2
�

i∈Ω
|P(i)−Q(i)|

One can check that Δ is indeed a distance. For cryptography, it is an interesting tool
as it gives bounds on the indistinguishability of two distributions.

Proposition 2.29. For any distributions over which it is defined, the statistical distance
verifies:

• Sub-additivity: Δ(P0 × P1, Q0 × Q1) = Δ(P0, Q0) + Δ(P1, Q1)

• Preservation under any transformation: for any function f , the following inequality
holds and is an equality when f is injective over the support of P and Q:

Δ(f(P), f(Q)) � Δ(P , Q)

The preservation property is very useful to assess the security of a scheme: replacing
f by an algorithm that takes as input a distribution PS depending of a scheme S and
outputs 1 if it breaks the scheme S, it allows one to argue that if f fails at breaking S,
then it also fails at breaking another scheme T as long as Δ(PS , PT) is small.

2.3.2 Gaussians
The Gaussian function ρ : Rn → (0, 1] is defined as follows:

ρ(x) Δ= exp
�
−�x�2/2

�

If B ∈ Rn×n is a nonsingular matrix, and c ∈ Rn, then we extend this definition:

ρB,c(x) Δ= ρ
�
(x− c)B−1

�

Let Σ = BtB. Then for any unitary matrix U, BtB = (UB)t(UB) = Σ. We therefore
also use the notation ρ√

Σ,c for ρB,c, where
√

Σ is an arbitrary matrix verifying
√

Σt√Σ = Σ.

31

2. Preliminaries

For a lattice Λ, we note ρB,c(Λ) Δ= �
x∈Λ ρB,c(x). We can now define the discrete Gaussian

distribution DΛ,
√

Σ,c over Λ:

∀x ∈ Λ, DΛ,
√

Σ,c(x) =
ρ√

Σ,c(x)
ρ√

Σ,c(Λ)

We also note DΛ,σ,c = DΛ,σ·In,c. We omit the subscript c when the Gaussian is centered
on 0 and the subscript Σ when Σ = 1. We will note D1 the special and very important
distribution that is the continuous spherical Gaussian over Rn centered on 0 and of
standard deviation σ = 1. For c ∈ R, σ > 0, we note �c�σ the distribution DZ,σ,c, and this
notation is generalized coefficient-wise when c is replaced with a vector c.

As an illustration, Figure 2.2 gives the continuous Gaussian D1 in R and its discretiza-
tion DZ = DZ,1,0 = �0�1 over Z.

D1 =⇒ DZ = �0�1

Figure 2.2: Continuous and Discrete Gaussians.

We also recall the definition of the smoothing parameter (and of a scaled version better
suited to our purposes), as well as two lemmas which will be very useful through this
thesis.

Definition 2.30 (Smoothing parameter [MR07]). Let Λ be any n-dimensional lattice and
� > 0, the smoothing parameter η�(Λ) is the smallest s > 0 such that ρ1/s

√
2π,0(Λ� \ 0) � �.

We also define a scaled version η�
�(Λ) Δ= 1√

2π
η�(Λ).

Lemma 2.31 (Corollary of [MR07], Lemma 4.4). Let Λ be any n-dimensional lattice.
Then for any � ∈ (0, 1), σ � η�

�(Λ) and c ∈ Rn, we have

ρσ,c(Λ) ∈
�1− �

1 + �
, 1
�

· ρσ(Λ)

Lemma 2.32 (Special case of [MR07], Lemma 4.4). For any � ∈ (0, 1):

η�
�(Zn) � 1

π

�
1
2 log

�
2n

�
1 + 1

�

��

32

2.4. Gaussian Samplers

2.4 Gaussian Samplers
Now that we know what a discrete Gaussian distribution over a lattice is, we will review
the current algorithms which allow to do that. Such algorithms are known as Gaussian
samplers, and prior to this thesis there were two main Gaussian samplers.

The first one is Klein’s sampler, which was introduced by Klein in [Kle00], and used in
a cryptographic context for the first time by Gentry, Peikert and Vaikuntanathan [GPV08].
The second one is Peikert’s sampler, introduced by the eponymous author in [Pei10].
They respectively generalize Babai’s nearest plane and round-off algorithms and turn
these solvers, who originally return one lattice point, into samplers, who return a point
according to a Gaussian discretized over the lattice.

Both samplers inherit some properties of the algorithms they are based on. Klein’s
sampler is inherently sequential and Peikert’s sampler is parallelizable, and in addition
Peikert’s sampler enjoys a quasilinear speed-up on several families of structured lattices.
On the other hand Peikert’s sampler outputs longer vectors, which lessens the security of
cryptographic schemes based on it as it becomes easier for an attacker to imitate someone
using this sampler.

2.4.1 Klein’s Sampler
Klein’s algorithm is a randomized version of Babai’s NearestPlane algorithm. Though
not stated in the paper in which it first appears [Kle00], it is explicitly acknowledged in
[GPV08]. The only difference between the two is that the rounding step is replaced by
a randomized rounding according to a discrete Gaussian over Z: instead of performing
zi ← �di�σi

, the new algorithms performs zi ← �di�σi
, where σi = σ/�b̃i�.

Algorithm 2.6 KleinSampler(B, σ, c)
Require: Basis B = {b1, ..., bn} ∈ Zn×m, its GSO B̃ = {b̃1, ..., b̃n}, a standard deviation

σ, target c ∈ Rm

Ensure: v sampled in DΛ(B),σ,c
1: cn ← c
2: vn ← 0
3: for i← n, ..., 1 do
4: di ← �ci, b̃i�/�b̃i�2

5: σi ← σ/�b̃i�
6: zi ← �di�σi

7: ci−1 ← ci − zibi

8: vi−1 ← vi + zibi

9: end for
10: return v0

In the new algorithm, for a fixed entry KleinSampler(B, σ, c) there is no longer one
possible output. Instead the output distributions is statistically close to a discrete Gaussian.
In Figure 2.3, we illustrate the transformation from NearestPlane to KleinSampler.

Figure 2.3 provides an informal explanation as to why σi = σ/�b̃i�: if one had chosen
σi = σ0 for some constant σ0 instead (as done in the middle figure), then one can show
that the output distribution would not be a spherical Gaussian but would instead leak the
geometry of the orthogonalized basis B̃. Using this imperfect sampler in a cryptographic

33

2. Preliminaries

context would expose it to statistical attacks à la [NR06, Wan10, DN12b], though it would
arguably be more difficult to recover the basis B. So σi is scaled in order to get a spherical
discrete Gaussian.

A more formal statement of KleinSampler’s correctness is given in Theorem 2.33.

Theorem 2.33 (Theorem 1 of [DN12a], Concrete version of [GPV08, Th. 4.1]). Let
m � n, λ be positive integers and � = 2−λ. For any basis B ∈ Zn×m and any target vector
c ∈ Rm, the statistical distance between the output distribution of KleinSampler(B, σ, c)
and the perfect discrete Gaussian DL(B),σ,c is upper bounded by 2−λ, provided:

σ � η�
�(Zn) · |B̃| where η�

�(Zn) ≈ 1
π

·
�

1
2 log

�
2n(1 + 1

�
)
�

.

We carefully note that Theorem 2.33 only guarantees that KleinSampler(B, σ, c) behaves
like a true Gaussian if σ is bigger than a fixed bound. This becomes false when σ becomes
small. Indeed, one can check that if that was the case, then KleinSampler(B, σ, c) would
behave like a CVP-solver when σ tends to 0, which would be very surprising since CVP is
NP-hard to approximate to a constant factor.

Instead, one can show – it is rather immediate from the description of both algo-
rithms – that KleinSampler(B, 0, c) = NearestPlane(B, c) which does not solve CVP, even
in dimension 2.

c c c

NearestPlane =⇒ KleinSampler

Figure 2.3: From NearestPlane to Klein’s sampler.

2.4.2 Peikert’s Sampler

Just like Klein’s sampler randomizes the nearest plane algorithm, Peikert’s sampler
randomizes the round-off algorithm.

34

2.4. Gaussian Samplers

c c c

�cB−1�B �cB−1�rB
�
(c−D√

Σ2)B−1
�

r
B

Figure 2.4: From Babai’s RoundOff algorithm (on the left) to Peikert’s sampler (on the
right).

Algorithm 2.7 PeikertSampler(B,
√

Σ, c)
Require: Basis B ∈ Zn×n of a lattice Λ, a rounding parameter r, a covariance matrix

Σ > Σ1 = r2BBt, a matrix C =
√

Σ2 ∈ Zn×n where Σ2 = Σ−Σ1 > 0, a target c ∈ Rn

Ensure: z sampled in DL(B),
√

Σ,c
1: y← D1 · C // Offline phase
2: return z← �(c− y)B−1�rB // Online phase

Peikert’s sampler outputs longer vectors than Klein’s but is faster on several families of
structured lattices. We do not elaborate here on this fact which is folklore and developed
in the ulterior Section 5.3.2. In a nutshell it follows from the fact that Peikert’s sampler
only performs matrix-vector multiplications, and that when the matrices are structured,
these multiplications can be done in time O(n log n) instead of O(n2).

In [Pei10], Peikert propose another slightly different algorithm, which he qualifies as
optimized for q-ary lattices (which are integral lattices mod q).

Algorithm 2.8 PeikertSampler_q(B,
√

Σ, c)
Require: Basis B ∈ Zn×n of a q-ary lattice Λ, a rounding parameter r, a covariance

matrix Σ > Σ1 = r2(4BBt + I), a matrix C =
√

Σ2 where Σ2 = Σ− Σ1 > 0, a matrix
Z = q · B−1 ∈ Zn×n a target c ∈ Zn

Ensure: z sampled in DL(B),
√

Σ,c
1: y← �D1 · C�r // Offline phase
2: return z←

�
(c−y)Z

q

�
r
B // Online phase

The correctness of PeikertSampler (Alg. 2.7) is given by the following theorem.

Theorem 2.34 (Theorem 3.1 of [Pei10], continuous case, adapted). Let Σ1, Σ2 > 0 be
positive definite matrices, with Σ = Σ1+Σ2 > 0. Let Λ1 be a lattice such that

√
Σ1 � η�

�(Λ1)
for some positive � � 1/2, and let c be arbitrary. Consider the following probabilistic
experiment:

Choose y ∼ D√
Σ2 , then choose z ∼ DΛ1,

√
Σ1,c−y.

The statistical distance between the distribution of z and DΛ1,
√

Σ,c is upper bounded by 8�.

35

2. Preliminaries

Similarly to Theorem 2.33 for Klein’s sampler, Theorem 2.34 means that the statistical
distance between PeikertSampler(B,

√
Σ, c) and the perfect Gaussian DL(B),

√
Σ,c is upper

bounded by 2−λ provided that resp.
√

Σ > η�
�(Zn) · s1(B), for � = 2−λ.

By following the definition of discrete Gaussians, one can check that for c ∈ Zn, c = c0B,
one gets the same distribution by doing either of the following:

1. Outputs x← DL(B),
√

Σ,c

2. Samples x0 ← DZn,
√

B−1ΣB−t,cB−1 and outputs x← x0B

A Note on Peikert’s Samplers Both Peikert’s samplers are much simpler when B = I,
it is therefore often more convenient to use them over Zn and to multiply the result by B,
since one spares a matrix-vector product in the process.

Moreover, proceeding like this brings out the difference between both samplers, which
in our opinion is much more subtle than stated in [Pei10]. Both samplers are online/of-
fline algorithms5. However, as illustrated by Figure 2.5, PeikertSampler_q performs a
randomized rounding in the offline phase, so that in the online phase the center of each
randomized rounding may only be in 1

q
Z (instead of R).

Generic basis B Special case B = I
PeikertSampler : �(c−D1 · C)B−1�rB �c−D1 · C�r
PeikertSampler_q : �(c− �D1 · C�r)B−1�rB �c− �D1 · C�r�r

Figure 2.5: The output of Peikert’s samplers. Here D1 = N (0, 1) is the standard normal
distribution. Offline computations are shown in blue.

In [Pei10], Peikert emphasizes that PeikertSampler_q (Alg. 2.8) is faster than
PeikertSampler (Alg. 2.7) for q-ary lattices if the algorithms are used in an offline/on-
line setting (this is clear on Figure 2.5). While we agree with this statement, this thesis
doesn’t consider offline/online properties of the samplers (despite the fact that one of
our algorithms is faster in this setting too). In this context, PeikertSampler is faster and
returns shorter vectors than PeikertSampler_q so we discard the latter and will only study
the former in the rest of this thesis.

2.5 Gaussian Sampling in Cryptology
Now that we have Gaussian samplers – which are (probabilistic) polynomial algorithms for
sampling discrete Gaussians – we will see some of their applications in cryptology. Most
of these applications are in cryptographic constructions, but they are also used as black
boxes in security reductions. They also have applications in cryptanalysis, with recent
developments on this front. For the rest of the thesis, Sample(B, σ, c) denotes an oracle
for the distribution DL(B),σ,c. Such an oracle can be ideal or simulated with a Gaussian
sampler.

5Online/offline digital signatures were introduced by Even et al. in [EGM90]. The idea is that a
significant part of the computation necessary to sign a message (or answer a challenge) is done prior to the
signer having knowledge of the message to sign. This property is useful when the signer is given queries at
an irregular rate and/or has limited computational power: such situations occur per example for web
servers and smart cards. A more detailed explanation can be found in [Yu08, Introduction].

36

2.5. Gaussian Sampling in Cryptology

2.5.1 Hash-and-sign Signature
The first use of Gaussian sampling in cryptographic constructions is in [GPV08], where it
was used for full-domain hash (FDH) signatures.

• KeyGen(1n): let (A, B) ← TrapGen(1n), where A ∈ Zn×m
q , and B ∈ Zm×m

q is a short
basis of Λ⊥

q (A). The verification key is A and the signing key is B.

• Sign(B, m): if (m, Sign(m)) is in local storage, output Sign(m). Otherwise:

1. Find c ∈ Zm
q such that A × ct = H(m).

2. Sample v← Sample(B, σ, c).
3. s(m)← c− v. Store (m, s(m)) and output s(m).

• Verify(A, m, s): if A × st = H(m) and �s� � σ
√

2πm, accept. Else, reject.

Figure 2.6: A Stateful Full-Domain Hash Signature Scheme

The framework proposed in [GPV08] is impervious to the statistical attacks that
broke NTRUSign and GGH (see Figure 2.7). Moreover, it was shown to be provably
secure.

Theorem 2.35. [GPV08, Propositions 6.1 and 6.2] The signature schemes described in
Figures 2.8 and 2.6 are strongly existentially unforgeable under a chosen-message attack
in the random oracle model if SIS is hard.

GGH [GGH97], NTRUSign[HHGP+03] “GPV” framework [GPV08]

Figure 2.7: Distribution of the (H(mi)− Sign(mi))i

The fundamental reason given in [GPV08] for the stateful nature of the scheme above is
that statefulness is needed to assert the security of their scheme under the SIS assumption.

While this reason alone is sufficient to make the scheme stateful, we show that the
danger in removing the statefulness is not only theoretical, but also practical: being able
to generate multiple valid signatures for the same hashed message poses a serious threat
to the security of the scheme.

37

2. Preliminaries

The strategy described below shows how allowing a user to query multiple signatures
for a same (hashed) message would weaken the existential unforgeability of the scheme
and leak information about the private key:

1. Query k signatures s1, ..., sk. With overwhelming probability, these signatures have a
norm �s� � σ

√
2πm.

2. Compute vi,j = si − sj. Each vi,j is a lattice point of Λ⊥
q (A) = Λq(B) and with

overwhelming probability, �vi,j� � 2σ
√

2πm.

3. Find m independent vectors vi,j’s to form a full-rank set V, ans use Lemma 2.36
(Lemma 7.1 of [MG02]) to form a basis basis B� of Λq(B).

4. Using Babai’s nearest plane algorithm, this new basis B� = {b�
1, ..., b�

m} can be used to
forge signatures s�(m) for any message m, verifying the following bound:

�s�(m)� � 1
2

��

i

�b̃�
i�2 � 1

2

��

i

�b�
i�2 � mσ

√
2π

We carefully note that the strategy described above does not explicitly break the security
of the stateless variant of the scheme, as the signatures forged are

√
m times bigger than

required to be accepted.
However, this is a worst-case behavior. The strategy can be refined in many ways: per

example, step 1 can be repeated to get signatures as small as possible, basis reduction
algorithms such as LLL or its randomized variant BKZ [SE94] can be applied to the basis
B� between steps 3 and 4, and at step 4 methods such as Kannan’s embedding technique
(see [Kan87], [LSL13] or [Gal12, Chapter 18]), may yield better results than the nearest
plane algorithm.

2.5.1.1 Stateless Variant

For the reasons we just stated, a straightforward stateless version of the scheme described
above may not be considered as secure. However, statefulness is often considered an
undesirable property. Here, the need to store all the signatures and the associated hashes
raises at least two issues:
1. A storage issue: memory-limited entities like embedded devices – such as a router –

may not be able to store thousands or millions of signatures. An unexpected loss of
those signatures – or the corresponding identities – would also be problematic.

2. A communication issue: in the case where a signing key is shared between two or more
entities, any of them asked to sign a message would need to make sure none of the
others has already provided a signature for it.
To avoid statefulness, [GPV08] proposed to derandomize the Sign procedure, as done

by [Gol87] for the Goldwasser-Micali-Rivest signature scheme. In our case, the internal
randomness used by the Sample subroutine is replaced by the output of a pseudorandom
function evaluated over the concatenation of the message (or its hash) and an additional
secret seed.

Another solution, also proposed in [GPV08], is to randomize the hash. It is less
constaining than the previous solution. However, when turning the GPV signature scheme
into an IBE scheme, this method no longer applies, as opposed to the previous one.

38

2.5. Gaussian Sampling in Cryptology

The idea is to add a salt r ∈ {0, 1}k to the message before hashing it. In [GPV08],
the authors propose to take k = m and claim that k = ω(log n) suffices for asymptotic
security. However, to avoid birthday attacks, it is also necessary that k � 2λ, where λ is
the security parameter. The solution is detailed in Figure 2.8.

• KeyGen(1n): let (A, B) ← TrapGen(1n), where A ∈ Zn×m
q , and B ∈ Zm×m

q is a short
basis of Λ⊥

q (A). The verification key is A and the signing key is B.

• Sign(B, m):

1. Choose r← {0, 1}k and find c ∈ Zm
q such that Act = H(m�r).

2. Sample v← Sample(B, σ, c).
3. s(m)← c− v. Output s(m).

• Verify(A, m, s): if Ast = H(m) and �s� � σ
√

2πn, accept. Else, reject.

Figure 2.8: A Probabilistic FDH Signature Scheme

Readers interested in the implementation of this signature scheme may read Chapter 6,
where we give a detailed study of this scheme over NTRU lattices.

2.5.2 Identity-Based Encryption
In addition to their signature schemes, Gentry et al. also propose an identity-based
encryption scheme in [GPV08], which can be can be viewed as an extension of their
signature scheme. Indeed, a good Gaussian sampler – i.e. which samples close vectors –
for Λ⊥

q (A) can be used to construct a partial trapdoor for any Λ(Ah), where Ah
Δ= (A�h).

More precisely, for any h ∈ Zn
q (in practice h will the hash of an identity), Gaussian

sampling allows to sample a short vector s� of Λ⊥
q (Ah), as outlined in Figure 2.9.

A

st

= h ⇒ A h

st

-1

= 0

Figure 2.9: Constructing a partial trapdoor for Ah
Δ= (A�h)

Gentry et al. proposed a variant of Regev’s encryption scheme [Reg05] that uses Ah
as an encryption key and s� as a decryption key, resulting in an identity-based encryption
(IBE) scheme. As their encryption scheme switches the key generation and encryption
parts of Regev’s original scheme, they call it Dual Regev.

Figure 2.10 gives Gentry et al.’s IBE scheme as described in [GPV08]. Readers
interested in this scheme may read Chapter 8, where we give further explanation of the
mathematics in action, as well as a complete instantiation and implementation of it over
NTRU lattices.

39

2. Preliminaries

• Setup(1n): let (A, B)← TrapGen(1n), where A ∈ Zn×m
q , and B ∈ Zm×m

q is a short basis
of Λ⊥

q (A). The master public key is A and the master private key is B.

• Extract(B, id): if (id, sk(id)) is in local storage, output sid. Otherwise:

1. Find c ∈ Zm
q such that Act = H(id).

2. Sample v← Sample(B, σ, c).
3. sk(id)← c− v. Store (id, sk(id)) and output sk(id).

• Encrypt(A, id, b): To encrypt the bit b for the identity id:

1. Let h = H(id) ∈ Zn
q .

2. Choose x← Zn
q uniformly, e← χm and e← χ.

3. Set p = x · A + e ∈ Zm
q and c = x · ht + e + � q

2�b ∈ Zq. Output (p, c).

• Decrypt(sk, (p, c)): Compute b� = c− p · skt. If b� is closer to 0 than to � q
2� modulo q,

output 0. Otherwise, output 1.

Figure 2.10: An Identity-Based Encryption Scheme

2.5.3 Basis Randomization and Applications to Standard
Model Signatures, Hierarchical IBE and Attribute-Based
Encryption

In 2010, Cash, Hofheinz, Kiltz and Peikert [CHKP10] used Gaussian sampling to create
even more powerful cryptographic primitives, namely hierarchical identity-based encryption
and standard model signatures. The underlying idea that allowed both primitives was
basis randomization using Gaussian sampling.

Lemma 2.36 ([MG02], Lemma 7.1, page 129). There is a deterministic polynomial-time
algorithm ToBasis(S, V) that given a full-rank set V = {v1, ..., vm} of lattice vectors in
L(S), outputs a basis T of L(S) such that �t̃i� � �ṽi� for all i.

Theorem 2.37. Let A ∈ Zn×m
q be a basis. There exists a polynomial-time algorithm

RandBasis(S, σ) which, given a basis S of the m-dimensional lattice L⊥
q (A) and a parameter

σ � |S̃| · ω(
√

log n), outputs a new basis S� of L⊥
q (A) such that:

• |S̃�| � σ ·√m with probability 1− 2−Ω(n)

• The distribution of S� is independent of the input S. More precisely, for any two valid
inputs (S1, σ) and (S2, σ), the random variables RandBasis(S1, σ) and RandBasis(S2, σ)
are statistically close.

The algorithm RandBasis can be briefly described as follows:

1. i← 0. While i < m:

• v← Sample(S, σ, 0)
• If v is independent of {v1, ..., vi}, set vi ← v and i← i + 1.

40

2.5. Gaussian Sampling in Cryptology

2. Use Lemma 2.36 to convert V = {v1, ..., vm} into a basis: S� ← ToBasis(S, V).

3. Output S�.

In addition, [CHKP10] provides an algorithm that extends a short basis of a lattice
into a short basis of another lattice closely related to the first one.

Lemma 2.38 ([CHKP10], Lemma 3.2). There is a deterministic polynomial-time algorithm
ExtBasis such that, given:

• A matrix A ∈ Zn×m
q whose columns generate the entire group Zn

q

• A basis B ∈ Zm×m
q of L⊥

q (A)

• A matrix Ā ∈ Zn×m̄
q

ExtBasis(B, A� = [A�Ā]) outputs a basis B� of L⊥
q (A�) ⊆ Zm+m̄ such that |B̃�| = |B̃|.

Given a (efficiently computable and non-necessarily short) solution W ∈ Zm̄×m to the
equation AWt = −Ā, the matrix B� of Lemma 2.38 is very simple to construct:

B� =
�

B 0
−W I

�

Lemmas 2.37 and 2.38 allow to build a short basis of L⊥
q (A�) given a short basis B of

L⊥
q (A), for any “extension” A� = [A�Ā] of A and, very importantly, in a way that does

not reveal any information B: first use Lemma 2.38 to extend B into a matrix B�, then
apply Gaussian sampling via Lemma 2.37 to randomize this basis.

We will not elaborate further but building on this technique – which makes a critical
use of Gaussian sampling – unlocks sophisticated cryptographic constructions over lattices
such as signatures in the standard model [CHKP10, Boy10b], hierarchical IBE [CHKP10,
ABB10a, ABB10b] and attribute-based encryption [Boy13, BGG+14].

2.5.4 Hardness of Lattice Problems
In addition to the aforementioned cryptographic constructions, Gaussian sampling – and a
naturally associated problem called DGS – has been used in many works as an intermediate
tool to assess the hardness of lattice-related problems. We first give the definition of the
Discrete Gaussian Problem:

Definition 2.39. For γ � 1 and � � 0, a distribution P is said to be (γ, �)-close to a
distribution Q is there is another distribution P � with the same support as Q such that

1. The statistical distance between P and P � is at most �

2. For any x in the support of Q, Q(x)/γ � P(x) � γ · Q(x)

Definition 2.40 (DGS – Discrete Gaussian Problem). Given a lattice basis B, a standard
deviation σ > 0 and a vector t ∈ Span(B), output a lattice vector v according to a
distribution (γ, �)-close to DL(B),σ,t.

If t = 0, then this is a special instance called centered DGS problem.

41

2. Preliminaries

Since this thesis focuses on reducing the time and space complexities of Gaussian
sampling algorithms which are already known to run in probabilistic polynomial-time, it
has little to no impact on the works presented in this section, which assume the existence
of an algorithm sampling a discrete Gaussian in polynomial time for some parameters –
such an algorithm is known to exist at least since [GPV08] – and use it as a black box.
However, these works help to put Gaussian sampling in a more generic context and to
grasp a better understanding of the problems it solves, we therefore list a few of them:

• Klein’s sampler was first used by himself in [Kle00] to solve BDDα with a factor
α = O(1/n) in polynomial time (under the condition that the lattice is already “pre-
processed”). Building on Klein’s work, Liu, Lyubashevsky and Micciancio [LLM06]
improved his result to α = O(

�
(log n)/n).

• Regev uses DGS – which he qualifies as a “non-standard” problem – in [Reg05, Reg09] to
show the quantum hardness of LWE, provided the hardness of standard worst-case lattice
problems. Brakerski, Langlois, Stehlé, Peikert and Regev use it again in [BLP+13] to
show the hardness of LWE, this time under classical reductions.

• Micciancio and Peikert [MP13] use Gaussian sampling as a subroutine to prove the
hardness of SIS with a small modulus.

• A recent series of works by Aggarwal, Dadush, Regev and Stephens-Davidowitz use
Gaussian sampling to solve in time 2n+o(n) the SVP [ADRS15] and CVP [ADS15]
problems. Stephens-Davidowitz showed [Ste15] that there is a dimension preserving
equivalence between the DGS and approximate-CVP problems (resp. the centered DGS
and approximate-SVP problem).

42

Part I

Improving Existing Gaussian
Samplers

In this part of the thesis, we aim to improve the two existing Gaussian samplers and
their understanding. A statistical analysis is performed in Chapter 3, and a geometrical
approach is adopted in Chapter 4.

Chapter 3 performs a statistical analysis of the Gaussian samplers. Instead of the
statistical distance, we rely on the KL divergence, which is a metric more suited to
Gaussian distributions. This change of metric leads to two improvements. The first one
is that we can sample with a standard deviation smaller by a factor

√
2 than previously

thought, which in ulterior parts of this thesis will allow to gain between approximately
10 and 20 bits of security. The second one is that we can lower the required floating-
point precision and even avoid completely the use of high-precision arithmetic for some
cryptographic parameters – assuming we can process in hardware floating-point numbers
with 64-bits significands, which is the case in many recent families of processors. This not
only makes the samplers faster but also easier to implement.

Practical lattice-based constructions always use specific families of lattices that are struc-
tured over rings. Chapter 4 analyzes the geometric structure of these lattices. It turns
out that we can use an algorithm known as the Levinson recursion [Lev47] to perform the
Gram-Schmidt orthogonalization O(n) times faster over these lattices. Moreover, reverting
the execution order of the Levinson recursion allows to divide the storage requirement of
Klein’s sampler by a factor O(n) ≈ 300 for cryptographic parameters, from about 100Mb
to less than 1Mb.

Chapter 3 develops ideas that were part of a joint paper with Léo Ducas and
Vadim Lyubashevsky, Efficient Identity-Based Encryption over NTRU Lat-
tices [DLP14], which was published at ASIACRYPT. Chapter 4 covers almost the to-
tality of a joint paper with Vadim Lyubashevsky, Quadratic Time, Linear Space
Algorithms for Gram-Schmidt Orthogonalization and Gaussian Sampling in
Structured Lattices [DLP14], which was published at EUROCRYPT.

43

Chapter 3

Improved Parameters by using the
Kullback-Leibler Divergence

3.1 Introduction
The statistical distance is an omnipresent tool in cryptography. One of its key properties
is that for any distributions P , Q over a common support X and any measurable event E,
we have the following inequality:

Q(E) � P(E)−Δ(P , Q) (3.1)

A very useful abstraction is to modelize a cryptographic scheme as relying on some
distribution P and the success of an attacker against this scheme as an event E: if
Δ(P , Q) is negligible, the same scheme will be equally hard to break if P is replaced by Q.
Combined with its other properties – described in Section 2.3.2 –, it makes the statistical
distance a powerful tool for security proofs.

However, other metrics exist that may be used in a similar way to make security
arguments. The one this chapter will focus on is the Kullback-Leibler divergence (or
KL divergence). It shares several properties with the statistical distance, like preservation
under any transformation and sub-additivity, as well as a weaker form of the equation 3.1.
This makes the KL divergence a viable candidate to replace the statistical distance in
many security arguments.

The intuition behind using KL-divergence can be described by the following example.
If Bc denotes a Bernoulli variable with probability c on 1, then trying to distinguish with
constant probability B1/2+�/2 from B1/2 requires O(1/�2) samples. Therefore if there is no
adversary who can forge in time less than t (for some t > 1/�2) on a signature scheme where
some parameter comes from the distribution B1/2, then we can conclude that no adversary
can forge in time less than approximately 1/�2 if that same variable were distributed
according to B1/2+�/2. This is because a successful forger is also clearly a distinguisher
between the two distributions (since forgeries can be checked), but no distinguisher can
work in time less than 1/�2. On the other hand, distinguishing B� from B0 requires only
O(1/�) samples. And so if there is a time t forger against a scheme using B0, all one can
say about a forger against the scheme using B� is that he cannot succeed in time less than
1/�. In both cases, however, we have statistical distance � between the two distributions.
In this regard, statistical distance based arguments are not tight; but the KL-divergence
is finer grained and can give tighter proofs. Indeed, in the first case, we can set 1/� to be

45

3. Improved Parameters by using the Kullback-Leibler Divergence

the square root of our security parameter, whereas in the second case, 1/� would have to
be the security parameter.

More concretely, just like the statistical distance, one can argue that a 2−λ-secure
scheme relying on a distribution P will be remain about 2−λ-secure if P is replaced by Q,
provided that their KL divergence is less than 2−λ.

The KL divergence is not fundamentally a “better tool” than the statistical distance for
evaluating the security of cryptographic constructions. There exists distributions for which
it is smaller than the statistical distance (and hence provides tighter security arguments),
but sometimes it is the other way around, as illustrated by Figure 3.1.

Figure 3.1: Distributions for which the statistical distance (resp. KL divergence) is smaller.

When studying discrete and continuous Gaussians, the KL divergence turns out to be
much smaller than the statistical distance in many cases. For Gaussian samplers, favoring
a KL divergence-based analysis over a statistical distance-based analysis allows to to:
• Sample with a standard deviation smaller by a factor

√
2 than a statistical distance-based

analysis (Section 3.3).
• Work with a floating-point precision smaller by a factor 2 (Section 3.4).

However, it is important to notice that the security arguments we will give – which can
be summarized with “a 2−λ-secure scheme using P remains so using Q if the KL divergence
between P and Q is less than 2−λ)” – hold only when breaking the scheme is a search
problem. More details are given in Section 3.2.1.

3.1.1 Roadmap
First, Section 3.2 recalls the definition and some properties of the KL divergence and give
security arguments based on it. Then in Section 3.3, we show how the KL divergence allows
to use Gaussian samplers with a smaller standard deviation. We evaluate in Section 3.4
the maximal precision necessary to run Gaussian samplers. Section 3.5 concludes this
chapter and gives some leads that could possibly improve the results of this work or of
other works.

3.1.2 Related Works
Ducas and Nguyen [DN12a] considered using lazy evaluation in Gaussian samplers to
ensure they use high-precision floating-point arithmetic only with a small probability, and
rely on low-precision arithmetic most of the time.

The use of alternative measures to the statistical distance has been widespread in
cryptography since several years, with a good introduction being [Cac97]. In the context

46

3.2. Preliminaries: The Kullback-Leibler Divergence

of lattice-based cryptography, the Kullback-Leibler divergence has recently been used
[PDG14] by Pöppelmann, Ducas and Güneysu to lower the storage requirements given in
[DDLL13].

A number of papers have also used Rényi divergence Ra, a generalized divergence
which coincides with the Kullback-Leibler divergence for a = 1. Among those works,
Lyubashevsky, Peikert and Regev [LPR13a] made use of the Rényi divergence in the search
to decision reduction of the RLWE problem [LPR10]. Langlois, Stehlé and Steinfeld [LSS14,
Lan14] employed it to reduce the parameters of the candidate multilinear map of Garg,
Gentry and Halevi [GGH13]. Ling, Phan, Stehlé and Steinfeld [LPSS14] used it to analyze
the k − LWE problem, a variant of the LWE problem.

More recently, Bai, Langlois, Lepoint, Stehlé and Steinfeld [BLL+15] proposed several
applications of the Rényi divergence in lattice-based cryptography, which include reducing
the parameters for the signature and encryption schemes of [GPV08], the BLISS signature
scheme [DDLL13, PDG14] and an alternative and tighter proof for the hardness of the
LWE problem with noise uniform (in an interval) [DMQ13].

3.2 Preliminaries: The Kullback-Leibler Divergence
In this section, we present the notion of Kullback-Leibler divergence (or KL divergence)
and explain how it can replace the statistical distance. We also state its limitations as a
security metric, and how to overcome them.

Definition 3.1 (Kullback-Leibler Divergence). Let P and Q be two distributions over a
common countable set Ω, and let S ⊂ Ω be the strict support of P (P(i) > 0 iff i ∈ S).
The Kullback-Leibler divergence, noted DKL of Q from P is defined as:

DKL(P�Q) =
�

i∈S

log
�

P(i)
Q(i)

�
P(i)

with the convention that log(x/0) = +∞ for any x > 0.

For complements the reader can refer to [CT91, Tsy08]. Just like the statistical
distance, the KL divergence is positive definite, sub-additive and preserved under any
injective transformation:

• DKL(P�Q) � 0, with an equality iff P = Q

• DKL(P0 × P1�Q0 × Q1) = DKL(P0�Q0) + DKL(P1�Q1)

• For any function f , the following inequality holds and is an equality when f is injective
over the support of P :

DKL(f(P)�f(Q)) � DKL(P�Q)

A useful lemma linking the KL divergence to the statistical distance is Pinsker’s
inequality, for which a proof can be found in [Tsy08, Chapter 2, Lemma 2.5].

Theorem 3.2 (Pinsker’s Inequality). Let P and Q be two distributions on a countable
set. Then

Δ(P , Q) �
�

1
2DKL(P�Q)

47

3. Improved Parameters by using the Kullback-Leibler Divergence

3.2.1 Security Argument from the Kullback-Leibler Divergence
Considering the example of the introduction, Pinsker’s inequality allows to get the bound

Q(E) � P(E)−
�

1
2DKL(P�Q) (3.2)

which is very similar to the one involving the statistical distance. To conclude a security
argument using KL divergence, we however rely on a slightly different formulation, which
is easier to use “in a black box”.

Corollary 3.3 (Bounding Success Probability Variations). Let EP be an algorithm making
at most q queries to an oracle distribution P, and DP the output distribution of EP . Let
� � 0, Q be a distribution such that DKL(P�Q) < �. Then

Δ(DP , DQ) �
�

q�

2
Proof. We have:

Δ(DP , DQ) � Δ(Pq, Qq) �
�

1
2DKL(Pq�Qq) �

�
q

2DKL(P�Q) �
�

q�

2
The first inequality comes from the preservation of the statistical distance under any
function (Prop. 2.29), the second one from Pinsker’s inequality (Thm. 3.2) and the third
one from the sub-additivity of the KL divergence.

Security Argument. This corollary lets us conclude that if a scheme is λ-bit secure
with access to a perfect oracle for distribution P , then it is also about λ-bit secure with
oracle access to Q if DKL(P�Q) � 2−λ.

Indeed, consider a search problem SQ using oracle access to a distribution Q, and
assume it is not λ-bit hard; that is there exists an attacker A that solve SQ with probability
p and has running time less than 2λp; this implies (by repeating the attack until success)
an algorithm A� that solves SQ in time ≈ 2λ with probability at least 3/4.

Such algorithms make q � 2λ queries to Q. If DKL(P�Q) � 2−λ, Corollary 3.3 ensures
that the success of A� against SP will be at least 1/4; in other word if SQ is λ-bit secure,
SP is also about λ-bit secure.
Remark 3.4. The security argument we give hold only for search problems, not decisional
ones. One can of course use Pinsker’s inequality to get a bound on the statistical distance,
which then gives security arguments for decision problems. However, in our usecases the
KL divergence’s value will typically be about the square of the statistical distance (so it
will be twice smaller on a logarithmic scale). Using Pinsker’s inequality directly would
cancel this square factor, rendering pointless the use of the KL divergence. Therefore the
KL divergence has to be handled with caution when used for arguing the security of a
cryptographic scheme: to have efficient proofs, one has to make sure that the problem
underlying the security of the scheme is a search problem.

3.2.2 Dealing with the Asymmetry and Lack of Triangle
Inequality

The KL divergence is not symmetric, neither does it verify the triangle inequality. Yet
that does not prevent us in any way to use it to use it in security arguments. Indeed,

48

3.3. Reducing the Standard Deviation of Gaussian Samplers

both Pinsker’s inequality and Corollary 3.3 turn a bound over the KL divergence of two
distributions into a bound over their statistical distance, which is symmetric and verifies
the triangle inequality.

As an example, let P , Q, R be three distributions such that (DKL(P�Q) � 2−λ or
DKL(Q�P) � 2−λ) and (DKL(Q�R) � 2−λ or DKL(R�Q) � 2−λ). Let EP be an algo-
rithm making at most q queries to P and having an output distribution DP . Applying
Corollary 3.3 twice yields Δ(DP , DR) �

�
2q2−λ, and the security argument following

Corollary 3.3 allows to argue that a cryptographic scheme 2−λ-secure with either P , Q or
R will stay about 2−λ-secure with any of the other distributions.

3.3 Reducing the Standard Deviation of Gaussian
Samplers

In Section 2.4, we recalled two theorems (Theorems 2.33 and 2.34) that can informally
be interpreted as follows: if a cryptographic scheme relying on a discrete Gaussian oracle
DL(B),σ,· (resp. DL(B),

√
Σ,·) is 2−λ-secure, then it remains so if we use KleinSampler(B, σ, ·)

(resp. PeikertSampler(B,
√

Σ, ·)) as an oracle for the discrete Gaussian, provided that
σ > η�

�(Zn) · |B̃| (resp.
√

Σ > η�
�(Zn) · s1(B)), for � = 2−λ.

This imposes a lower bound on the standard deviation that can be used with each
sampler. In this section, we show that in both cases, we can take σ smaller by a factor
of roughly

√
2. The statistical distance will no longer be upper bounded by 2−λ, but

the KL divergence will still be, so we can still sample with a smaller standard deviation
and have security arguments. Mechanically, this increases the security of cryptographic
schemes relying on these samplers.

With statistical distance With KL-Divergence

Figure 3.2: Using the KL divergence in a security analysis allows to sample smaller
Gaussians.

To study the KL divergence between the samplers and a perfect Gaussian, the following
lemma will be useful.

Lemma 3.5 (KL divergence for bounded ratio [PDG14]). Let P and Q be two distributions
of same countable support. Assume that for any i ∈ S, there exists some δ(i) ∈ (0, 1/4)

49

3. Improved Parameters by using the Kullback-Leibler Divergence

such that we have a bounded ratio Q(i)/P(i): |P(i)−Q(i)| � δ(i)P(i). Then

DKL(P�Q) � 2
�

i∈S

δ(i)2P(i).

For distributions with a bounded ratio δ < 1/4, Lemma 3.5 allows to get a KL divergence
of about 2δ2, which is much smaller

Section 3.3.1 show that we can take a standard deviation smaller by a factor
√

2 for
Klein’s sampler, and Section 3.3.2 does the same for Peikert’s sampler.

3.3.1 Klein’s Sampler
This section proves that we can use Klein’s Sampler with a standard deviation smaller (by
a factor of

√
2) than claimed in [DN12a].

Theorem 3.6 (KL Divergence of Klein’s Sampler). For any � ∈ (0, 1/4n), if σ � η�
�(Z)·|B̃|

then the KL divergence between DΛ(B),c,σ and the output of KleinSampler(B, σ, c) is bounded
by 2

�
1−

�
1+�
1−�

�n�2 ≈ 8n2�2.

Proof. The probability that Klein’s algorithm outputs x = x̃ on input (σ, B, c) is propor-
tional to

n�

i=1

1
ρσi,c�

i
(Z) · ρσ,c(x̃)

for σi = σ/�b̃i� and some c�
i ∈ R that depends on c and B. as detailed in [GPV08]. By

assumption, σi � η�(Z), therefore ρσi,c�
i
(Z) ∈ [1−�

1+�
, 1] · ρσi

(Z) (see [MR04, Lemma 4.4]).
The relative error to the desired distribution (proportional to ρσ,c(x̃)) is therefore bounded
by 1−

�
1+�
1−�

�n
; we can conclude using Lemma 2 from [PDG14].

As a direct consequence, we can use Klein’s sampler with a standard deviation σ ≈
η�

�(Zn)|B̃| with � = 2−λ/2 instead of � = 2−λ, which results in dividing σ by roughly
√

2.

3.3.2 Peikert’s Sampler
This section proves that we can use Peikert’s Sampler with a standard deviation smaller
(by a factor of

√
2) than claimed in [Pei10].

Theorem 3.7. Reprising the notations of Theorem 2.34, the statistical distance (resp.
KL divergence) between the distribution of z and DΛ1,

√
Σ,c is upper bounded by �

1−�
≈ �

(resp. 2
�

2�
1−�

�2 ≈ 8�2).

Proof. We only improve a specific point of the original theorem: namely, adding a bound
on the KL divergence and very slightly enhancing the bound on the statistical distance.
We invite the reader interested in the complete proof to read [Pei10].

Let z̄ ∈ Λ1. From the proof of theorem 3.1 of [Pei10], we have Pr[z̄ = z] ∝ ρ√
Σ(z̄) ·�

1, 1+�
1−�

�
(and not

�
1−�
1+�

, 1+�
1−�

�
like in the original proof, since in the continuous case we

need only in invoke Lemma 2.4 of [Pei10] once). It follows that Pr[z̄ = z] ∈
�

1−�
1+�

, 1+�
1−�

�
·

DΛ1,
√

Σ,c(z̄). A straightforward computation (resp. Lemma 3.5) yields the bound on the
statistical distance (resp. the KL divergence).

Just as for Klein’s sampler, we can divide σ by
√

2, as long as Peikert’s sampler is used
in a search problem.

50

3.4. Precision Analysis of Gaussian Samplers

3.4 Precision Analysis of Gaussian Samplers
In this section, we perform a KL divergence-based analysis of the precision required to
securely use Klein’s and Peikert’s samplers. Compared with a statistical distance-based
analysis (which can be trivially obtained using Pinsker’s inequality), this allows to get a
precision twice lower.

3.4.1 Ratio of Gaussians Sums in Z
In this section, we give a lemma which will be useful to evaluate the precision necessary
for Klein’s and Peikert’s samplers. First, we need the two following lemmas, first stated
by Micciancio and Regev in [MR07]. A generalization of the first one can be found in
[Lyu08].

Lemma 3.8. [MR07, Lemma 4.2] Let Λ be a n-dimensional lattice, c ∈ Rn, u ∈ Rn a
vector of norm 1 and reals � ∈ (0, 1), σ � 2η�

�(Λ). The following inequalities hold:
���Ex←DΛ,σ,c [�x− c, u�]

��� �
√

2π�σ

1− �

���Ex←DΛ,σ,c [�x− c, u�2]− σ2
��� � 2π�σ2

1− �

Lemma 3.9. [MR07, Lemma 4.4] Let Λ be a n-dimensional lattice, c ∈ Rn, and reals
� ∈ (0, 1), σ � η�

�(Λ). We have:

Px←DΛ,σ,c [�x− c� � σ
√

2πn] � 1 + �

1− �
2−n

The following lemma bounds the ratio of two Gaussian sums in Z with slightly different
centers and standard deviations.

Lemma 3.10. Let c, c̄ ∈ R, σ, σ̄ > 0. Let ρ(z) Δ= ρσ,c(z), ρ̄(z) Δ= ρσ̄,c̄(z), D(z) Δ= ρ(z)/ρ(Z)
and D̄(z) Δ= ρ̄(z)/ρ̄(Z). Let u(z) = (z−c̄)2

2σ̄2 − (z−c)2

2σ2 . Then

e−Ez←D[u] � ρ̄(Z)
ρ(Z) � e−Ez←D̄[u]

Proof. We first prove the left inequality. We have

ρ̄(z) = e−u(z)ρ(z)

⇒ ρ̄(z)
ρ(Z) = e−u(z)D(z)

⇒ ρ̄(Z)
ρ(Z) = Ez←D[e−u(z)]

⇒ ρ̄(Z)
ρ(Z) � e−Ez←D[u(z)]

(3.3)

Where the last inequality comes from Jensen’s inequality: since e is convex, E[e−u] � eE[−u].
Following the same reasoning, one gets

�
D̄(z)eu(z) = ρ(z)

ρ̄(Z)

�
⇒

�
Ez←D̄[eu] = ρ(Z)

ρ̄(Z)

�
⇒

�
ρ̄(Z)
ρ(Z) � e−Ez←D̄[u]

�

51

3. Improved Parameters by using the Kullback-Leibler Divergence

3.4.2 Analysis of Klein’s Sampler
In this section, we evaluate the precision necessary to run Klein’s sampler in finite precision
and get an output distribution indistinguishable from a sampler with infinite precision.

We recall that the algorithm that we analyze, KleinSampler, is the Algorithm 2.6 of
Section 2.4.1. First, Lemma 3.11 bounds the value of the di’s computed at step 4 of the
algorithm.

Lemma 3.11. Let δ ∈ [0, .01). Let t ∈ Rm, b, b̄ ∈ Rm and the precomputed values
�b�, �b̄� ∈ R+ be such that:

• �b− b̄� � δ�b�
• |�b� − �b̄�| � δ�b�

In addition, let c = �t,b�
�b�2 (resp. c̄ = �t,b̄�

�b̄�2). then

|c− c̄| � 3.3 �t��b�δ

Proof.

c̄ =




�t, b�
�b�2
� �� �

c

+ �t, b̄− b�
�b�2

� �� �
|·|� �t��b�

�b�2 δ




· �b̄�2

�b�2
� �� �

∈[(1−δ)2,(1+δ)2]

Since |c| � �t�
�b� , we have |c̄− c| � |(|c| + �t�

�b�δ) · (1 + δ)2 − |c|| � 3.3 �t�
�b�δ.

The following lemma bounds the KL divergence between two instantiations of Klein’s
sampler over the same vector c: one instantiation using perfect precomputed values, and
one with imperfect values. Without loss of generality, we can admit that the output
v of the sampler is such that �v − c�2 � σ

√
2πm. For the parameters in the range of

Lemma 3.12, Lemma 3.9 guarantees that this happens with overwhelming probability.

Lemma 3.12. Let q, m, n ∈ N� such that m � n � 128, B ∈ Zn×m, c ∈ Zm
q , � ∈ (0, .01)

and σ � η�
�(Z) · |B̃|. Let E (resp. Ē) be KleinSampler(B, σ, c) executed with perfect

precomputed values B̃ = (b̃i)i, (σi)i (resp. imperfect precomputed values ¯̃B = (¯̃bi)i, (σ̄i)i).1
Let δ ∈ [0, .01) be such that:

1. 3.3q
√

m

mini �b̃i�δ � 0.01

2. ∀i ∈ �1, n�, �b̃i − ¯̃bi� � �b̃i� · δ

3. ∀i ∈ �1, n�, |σi − σ̄i| � |σi| · δ

Let D (resp. D̄) denote the output distribution of E (resp. Ē). Let

C = 12nq2mδ2

σ2 + 10δn

σ

�
q
√

m + σ
�

· (1 + �

1− �
)

The KL divergence between D and D̄ is bounded as follows:

DKL(D̄�D) � (eC − 1)2

1For each tuple, product or sum indexed by i, we implicitly consider i to span �1, n�.

52

3.4. Precision Analysis of Gaussian Samplers

Remark 3.13. In practice, the expression of the bound for the KL divergence can often be
simplified: if δ, �� 1, then

eC − 1 ≈ C ≈ 10δn

σ

�
q
√

m + σ
�

Proof. Let v = �
i ẑibi ∈ L(B) be a possible output of both samplers.To sample v,

there exist a unique n-tuple (ci)i (resp. (c̄i)i) such that at step i, E (resp. Ē) samples
a discrete Gaussian in Z around ci (resp. c̄i). The probability that v is output by E
is D(v) = �

i Di(ẑi) = �
i

ρi(ẑi)
ρi(Z) , where ρi

Δ= ρZ,σi,ci
is uniquely defined by v. Similarly,

D̄(v) = �
i

ρ̄i(ẑi)
ρ̄i(Z) , where ρ̄i

Δ= ρZ,σ̄i,c̄i
.

The subject of this proof is to upper and lower bound D(v)
D̄(v) , which then allows to use

Lemma 3.5. We have

D(v)
D̄(v)

=
�

i

ρi(ẑi)
ρi(Z)

ρ̄i(Z)
ρ̄i(ẑi)

=
�

i

ρi(ẑi)
ρ̄i(ẑi)

ρ̄i(Z)
ρi(Z)

For each i, let ui(z) Δ= (z−c̄i)2

2σ̄2
i
− (z−ci)2

2σ2
i

. Lemma 3.10 yields:

e−Ez←Di
[ui] � ρ̄i(Z)

ρi(Z) � e−Ez←D̄i
[ui]

So that we have:
�

i

[ui(ẑi)− Ez←Di
[ui]] � log

�
D(v)
D̄(v)

�
�
�

i

�
ui(ẑi)− Ez←D̄i

[ui]
�

(3.4)

We now bound the left part of equation 3.4. Let A = �
i[ui(ẑi)− Ez←Di

[ui]]. We write
σ̄i = (1 + δσi

)σi, where each |δσi
| � δ by hypothesis. Developing ui yields:

ui(zi) = 1
2(1 + δσi

)2σ2
i

�
(ci − c̄i)2 + 2(ci − c̄i)(zi − ci)− (2δσi

+ δ2
σi

)(zi − ci)2
�

(3.5)

Replacing each ui in A by the expression of equation 3.5 yields:

A = �
i

1
2(1+δσi)2σ2

i
[2(ci−c̄i)(ẑi−ci−Ezi←Di

[zi−ci]) −(2δσi +δ2
σi

)[(ẑi−ci)2−Ezi←Di
[(zi−ci)2]]

|A| ��
i

1
2(1+δσi)2σ2

i
[2|ci−c̄i|(|ẑi−ci|+

√
2π�σi
1−�

) +(2δσi +δ2
σi

)[(ẑi−ci)2+σ2
i + 2π�σ2

i
1−�

]]

|A| ��
i

1
2(1+δσi)2σ2 [6.6q

√
mδ(�b̃i�·|ẑi−ci|+

√
2π�σ
1−�

) +(2δσi +δ2
σi

)[�b̃i�2(ẑi−ci)2+σ2+ 2π�σ2
1−�

]]

|A| � 1
2(1−δ)2σ2 [6.6q

√
mδ(�v−c�1+

√
2π�nσ
1−�

) +2.2δ[�v−c�2
2+nσ2+ 2π�nσ2

1−�
]]

|A| � (1.1)2

σ
[3q

√
mδ(n

√
2π+

√
2π�n
1−�

) +δ[2nπσ+nσ+ 2π�nσ
1−�

]]

(3.6)

In equation 3.6, the first line simply develops the formula for A. For the second line,
we use Lemma 3.8 to bound the expected values. The third line uses the fact that
|ci − c̄i| � 3.3 �ci�

�b̃i�δ � 3.3q
√

m

�b̃i� δ. For the fourth line, we bound each 1
(1+δσi)2 with 1

(1−δ)2 and
notice that �i �b̃i� · |ẑi−ci| = �v−c�1 and �i �b̃i�2 · (ẑi−ci)2 = �v−c�2

2 (both equalities
follow directly from Lemma 4.4 of [GPV08]).

In the fifth line, we use the bounds �v− c�2 � σ
√

2πn, and �v− c�1 � σn
√

2π: the
first one comes from Lemma 3.9, and the second one follows from the fact that there exists

53

3. Improved Parameters by using the Kullback-Leibler Divergence

a vector u with coefficients being only ±1 such that �v− c�1 = |�v− c, u�|. Applying the
Cauchy-Schwartz theorem yields the bound.

We now bound the second part of equation 3.4. We can also write ui as follows:

ui(zi)= 1
σ̄2

i
[−(1+δσi)2(ci−c̄i)2+2(1+δσi)2(ci−c̄i)(zi−ci)−(2δσi +δ2

σi
)(zi−c̄i)2] (3.7)

Now, let B = �
i

�
ui(ẑi)− Ez←D̄i

[ui]
�

be the right term of equation 3.4. To bound B, we
replace the ui in each ui(ẑi) by the expression in equation 3.6, and the ui in each Ez←D̄i

[ui]
by the expression of equation 3.7. This yields:

|B| � �
i

1.1(ci−c̄i)2

σ̄2
i

+�
i

1.1
2σ2

i
[2|ci−c̄i|·|ẑi−ci|+|2δσi +δ2

σi
|·|ẑi−ci|2]

+�
i

1
2σ̄2

i
[2|ci−c̄i|·|Ez←D̄i

[zi−c̄i]|+|2δσi +δ2
σi

|·Ez←D̄i
[(zi−c̄i)2]]

� 12nq2mδ2

σ2 + (1.1)2

σ
[3qδn

√
2πm+2δnπσ]

+ (1.1)2

σ
[3q

√
mδ(

√
2π�n
1−�

)+δ[nσ+ 2π�nσ
1−�

]]

(3.8)

The bounds hereinabove are derived exactly as for |A|. This gives the bound |A|, |B| �
C, which in turns allows to bound D

D̄ : e−C � D
D̄ � eC . We can conclude using lemma 3.5.

Interpretation. If the inputs of Klein’s sampler are precise up to a given precision
δ, then the sampler with finite precision will be indistinguishable from the same sampler
with infinite precision. By the triangle inequality, this implies indistinguishability from a
perfect Gaussian if the standard deviation σ is taken large enough. Concrete numbers can
be found in Table 3.1.

Table 3.1: Precision for Klein’s sampler.

This table gives upper bounds on the precision sufficient for an imprecise Klein’s sampler
to be indistinguishable (i.e. DKL � 2−λ) from a perfect Klein’s sampler. The precisions
are computed for NTRU lattices of dimension 2N = 2048, modulus q = 1024.

Security Level λ Precision | log2 δ| for B̃
80 65
128 89
192 121

3.4.3 Analysis of Peikert’s Sampler
In this section, we analyze the precision requirements of Peikert’s sampler when sampling
from a spherical Gaussian. For the reasons explained before, we don’t distinguish the
offline and online phases, and therefore privilege the first version – namely PeikertSampler
– of the sampler (Algorithm 2.7 of Section 2.4.2).

Let us consider sampling from a discrete Gaussian: z ← DL(B),σ,c. As explained in
Section 2.4.2, Algorithm 2.7 is equivalent to these three steps:

54

3.4. Precision Analysis of Gaussian Samplers

Peikert(B,
√

Σ, c):
1. x← Dn

1
2. y← x · C, where C =

√
Σ− r2BBtB−1

3. z← �cB−1 − y�rB
Figure 3.3: Algorithm equivalent to PeikertSampler

Since in practice these operations are performed in floating-point arithmetic (FPA),
we prefer this description: less operations are involved, and therefore the analysis is much
simpler.

The only values that might induce FPA imprecisions are x and C.2 Indeed, x is
sampled from a continuous Gaussian. As for C, it is a square root matrix which has to be
computed by methods using either real or very large rational numbers.

To model the fact that in practice, Peikert’s sampler uses an oracle for D1 that truncates
the result to a finite number of bits of precision, we use the following definition.

Definition 3.14. We recall that D1 is the continuous centered Gaussian of standard
deviation 1: D1 ∼ N (0, 1). For any 0 � δ < 1/2, we note Nδ any distribution sampling
x← D1, and outputting some x̃ ∈ [1− δ, 1 + δ] · x.

Remark 3.15. We can assume without loss of generality that N n
δ samples a vector x of norm

lesser than
√

2n. Indeed, each coefficient of x is independently sampled from N (0, 1) so
�x�2 ∼ χ2

n, where χ2
n is the Chi-squared distribution with n degrees of freedom. Using tail

bounds, we determine that �x� �
√

kn with probability at most (ke1−k)n/2, so this sampler
will be indistinguishable from the classical PeikertSampler as long as (2e−1)n/2 < 2−λ.

N n
0 (resp. N n

δ) will be used to modelize oracles giving a sample from Dn
1 with infinitely

many (resp. �| log2 δ|�) bits of precision. Of course such N n
0 and N n

δ can be very easy to
distinguish, but we will show that instantiations of PeikertSampler using one or the other
are not.

The following lemma bounds the KL divergence between two instances of PeikertSampler
with slightly different inputs:

Lemma 3.16. Let n � 128, x = (xi)i ∈ Rn such that �x� �
√

2n, C ∈ Rn×n and
r � η�

�(Zn) for some � ∈ (0, 1). Let δ ∈ [0, .01), x̄ = (x̄i)i ∈ Rn and C̄ ∈ Rn×n be such
that:

• For any i�1, n�, |xi − x̄i| � δ · |xi|

• s1(C− C̄) � δ · s1(C)

In addition, let D (resp. D̄) be the output distribution of �x · C�r (resp. �x̄ · C̄�r). Let:

C = 8ns1(C)δ
r

·
�
1 + �

1− �
+ 2s1(C)δ

r

�

The KL divergence between D and D̄ is bounded as follows:

DKL(D̄�D) � (eC − 1)2

2cB−1 is rational but in typical cryptographic applications c ∈ Zn and L(B) is a q-ary lattice. There-
fore, if carefully handled, cB−1 ∈ 1

qZ
n can reasonably be expected to induce no significant imprecision.

55

3. Improved Parameters by using the Kullback-Leibler Divergence

Remark 3.17. The expression of the bound for the KL divergence can be simplified for
practical parameters: if δ, �� 1, then

eC − 1 ≈ C ≈ 8ns1(C)δ
r

.

Proof. We first notice that �x− x̄� � δ · �x�. Let y = x · C (resp. ȳ = x̄ · C̄). We have

ȳ = y + (x̄− x)C + x(C̄−C) + (x̄− x)(C̄−C)

From which it follows that

�ȳ− y� � �x�s1(C)(2δ + δ2) � 3
√

nδs1(C) (3.9)

We now note ρi
Δ= ρr,yi

, ρ̄i
Δ= ρ̄r,ȳi

, Di
Δ= �yi�r = ρi/ρi(Z), D̄i

Δ= �ȳi�r = ρ̄i/ρ̄i(Z) and
ui(z) Δ= (z−ȳi)2

2r2 − (z−yi)2

2r2 = 2z(yi−ȳi)+(ȳ2
i −y2

i)
2r2 . For a given output ẑ = (ẑi)i of PeikertSampler,

we have:

�

i

[ui(ẑi)− Ez←Di
[ui]] � log

�
D(ẑ)
D̄(ẑ)

�
�
�

i

�
ui(ẑi)− Ez←D̄i

[ui]
�

(3.10)

We note A (resp B) the left (resp. right) term of equation 3.10. Bounding A and B
will allow to conclude the proof by using Lemma 3.5.

A
Δ= �

i [ui(ẑi)− Ezi←Di
[ui]]

= 1
r2
�

i(yi − ȳi)[(ẑi − yi)− Ezi←Di
[zi − yi]]

⇒ |A| � 1
r2

��
i(yi − ȳi)2

��
i((ẑi − yi)− Ezi←Di

[zi − yi])2

� 1
r2�y− ȳ� ·

�
�ẑ− y�+

��
i Ezi←Di

[zi − yi]2
�

� 1
r2 · 3
√

nδs1(C) ·
�
r
√

2πn + r
√

2πn�
1−�

�

� 8ns1(C)δ
r

·
�
1 + �

1−�

�

(3.11)

The second equality develops the formula for each ui, the third one uses the inequality of
Cauchy-Schwartz: |�u, v�| � �u� · �v�. The fourth uses the triangle inequality: �u + v� �
�u�+ �v�. For the fifth one, we bound �y− ȳ� using equation 3.9, assume without loss of
generality that �ẑ− y� � r

√
2πn using Lemma 3.9 and bound each Ezi←Di

[zi − yi] using
Lemma 3.8. The sixth and last equation simplifies the penultimate one. To bound B, we
notice that

B = 1
r2
�

i(yi − ȳi)[(ẑi − yi)− Ezi←D̄i
[zi − ȳi] + (yi − ȳi)]

⇒ |B| � 8ns1(C)δ
r

·
�
1 + �

1−�
+ 2s1(C)δ

r

� (3.12)

The bound on |B| is obtained exactly as for |A|. We have |A|, |B| � C, which in turns
allows to bound D

D̄ : e−C � D
D̄ � eC . We conclude using lemma 3.5.

Corollary 3.18. Let n � 128, � ∈ (0, 1), r � η�
�(Zn), δ ∈ [0, .01) and C, C̄ ∈ Rn×n be two

matrices such that s1(C− C̄) � δs1(C). Let D (resp. D̄) be the output of Peikert(B,
√

Σ, c)

56

3.4. Precision Analysis of Gaussian Samplers

taking C (resp. C̄) as a (possibly imprecise) precomputed value for C and calling N n
0

(resp. N n
δ) as an oracle for Dn

1 . Let:

C = 8ns1(C)δ
r

·
�
1 + �

1− �
+ 2s1(C)δ

r

�

The KL divergence between D and D̄ is bounded as follows:

DKL(D̄�D) � (eC − 1)2

Proof. We can assume without loss of generality that D1 samples a vector x of norm
lesser than

√
2n. We fall in the conditions of Lemma 3.16, which gives the bound on the

KL divergence.

Table 3.2: Precision for Peikert’s Sampler

This table gives upper bounds on the precision sufficient for an imprecise Peikert’s sampler
to be indistinguishable (i.e. DKL � 2−λ) from a perfect Peikert’s sampler. Precisions are
computed for NTRU lattices of dimension 2N = 2048, modulus q = 1024.

Security Level λ Precision δ
80 60
128 84
192 116

3.4.4 A Note on Samplers over Z
Our analyses presuppose we have access to perfect oracles for N (0, 1) and DZ,c,σ for any
(c, σ) ∈ R × R+. However, in practice one has to resort to approximate distributions. In
both the continuous and discrete case, several methods exist, and depending on the goal
one wishes to accomplish (low storage, software efficiency, hardware efficiency, etc.), one
may use one or another.

• For continuous Gaussians, there exists a dizzyingly high number of methods. One of the
most efficient, documented and implemented is arguably the Ziggurat method [MT00].
Other well-documented methods are Marsaglia’s polar method [MB64] and the Box-
Muller transform [BM58].

• Methods for sampling over discrete Gaussians are less numerous than their continuous
counterparts. However, several methods have been proposed in the wake of lattice-based
cryptography which consider using cumulative distribution tables [Pei10], lazy rejection
sampling [DN12a], a discrete Ziggurat method [BCG+14], a Knuth-Yao based method
focused on hardware implementations [RVV14] and an algorithm [DDLL13, Duc13,
Lep14] developed for the BLISS signature scheme [DDLL13] but which can be adapted
to other cases. A nice survey of these methods – and others – can be found in [DG14].

Each of these samplers has its own properties, so when implementing Klein’s or Peikert’s
scheme in practice, these properties should be taken in account when considering the
divergence of these samplers from perfect samplers.

57

3. Improved Parameters by using the Kullback-Leibler Divergence

Figure 3.4: The statistical distance is more suited to analyze the distributions over S, and
the KL divergence is better over K.

3.5 Conclusion
In this work, we showed that we can use the Kullback-Leibler divergence instead of the
statistical distance as a metric to evaluate the security of schemes based on Gaussian
samplers, and that there are at least two advantages in doing so. First, we can sample
with a standard deviation about

√
2 smaller, second we can divide by about two the

required precision. For 80 bits of security, we can even eliminate the use of high-precision
numbers. This last statement assumes that the Gaussian samplers are run on a system that
can process efficiently floating-point numbers with a 64-bits significand. Several common
processors – such as IA32 (sometimes called i386), x86_64 and Itanium processors – already
implement an 80-bit extended precision format with a 64-bit significand in hardware, and
the trend seems to lean towards increased precision.3

It would be interesting to see if works obtained in this section could be improved by
using other metrics. A promising metric is the Rényi divergence Ra, which has already
found numerous applications in analyzing the security of lattice-based schemes. One could
argue that the Rényi divergence is necessarily better than the KL divergence since the
latter is just a particular case of the former for a = 1. Yet the Rényi divergence behaves
completely differently when a �= 1: in particular its probability preservation equation is not
linear as for the statistical distance (equation 3.1) and the KL divergence (equation 3.2),
but multiplicative.

A preliminary version of this work featured a “hybrid divergence” ∇S defined as the
statistical distance on a subset S of the support Ω, and as the KL divergence on its
complement Ω\S. This approach was chosen to study pairs of distributions which are
“statistical distance-close” on a part of their support, and “KL divergence-close” on another,
such as the ones on Figure 3.4.

We later discarded this idea since it turned out to be unnecessary in our case. However,
it would be interesting to see if cryptographic schemes (lattice-based or not) could benefit
from it. Applying this “hybrid approach” to the Rényi divergence could prove interesting

3 William Kahan, the primary architect behind the IEEE 754-1985 standard for floating-point
computation, stated: “For now the 10-byte Extended format is a tolerable compromise between the value
of extra-precise arithmetic and the price of implementing it to run fast; very soon two more bytes of
precision will become tolerable, and ultimately a 16-byte format... That kind of gradual evolution towards
wider precision was already in view when IEEE Standard 754 for Floating-Point Arithmetic was framed.”
[Hig02]

58

3.5. Conclusion

too as we would be able to combine not just two metrics, but an infinity, which could lead
to tighter security proofs.

More generally, as lattice-based cryptography is gaining more and more maturity, the
growing recourse to alternative and more ad hoc metrics than the statistical distance is a
natural evolution of this field.

59

Chapter 4

Gaussian Sampling in Quasilinear Space
over Structured Lattices

“ This time it ain’t just about being fast.”
Dominic Toretto — Furious 7

4.1 Introduction
Sampling lattice points is one of the fundamental procedures in lattice cryptography. It is
used in hash-and-sign signatures [GPV08], (hierarchical) identity-based encryption schemes
[GPV08, CHKP10, ABB10b], standard-model signatures [ABB10b, Boy10b], attribute-
based encryption [BGG+14], and many other constructions. Being able to output shorter
vectors leads to more secure schemes, and the algorithm that produces the currently-shortest
samples is the randomized version of Babai’s nearest-plane algorithm [Bab85, Bab86] due
to Klein [Kle00] and Gentry, Peikert, Vaikuntanathan [GPV08].

The main inefficiency of cryptography based on general lattices is that the key size is
usually (at least) quadratic in the security parameter, which is related to the fact that a
d-dimensional lattice is generated by d vectors. For security, the lattice dimension is usually
taken to be on the order of 512, and this results in keys that are larger than one megabyte
in size and unsuitable for most real-world applications. For this reason, all practical
implementations of lattice schemes (e.g. [HPS98, LMPR08, LPR13a, DDLL13, DLP14])
rely on the hardness of problems involving polynomial rings [PR06, LM06, LPR13a], in
which lattices can be represented by a few polynomials. Due to the fact that solving
certain average-case problems over polynomial rings was shown to be as hard as solving
worst-case problems in ideal lattices [SSTX09, LPR13a], building cryptographic systems
using polynomial rings is often referred to as ideal lattice cryptography, even though ring
lattice cryptography might be more accurate.

During its execution, the Klein/GPV algorithm is implicitly computing the Gram-
Schmidt orthogonalization of the input basis.1 Since the Gram-Schmidt procedure requires
Θ(d3) operations, the Klein/GPV sampler also requires at least this much time. For
improving the time-complexity, one can pre-compute and store the Gram-Schmidt basis,
which results in a sampling procedure that uses only Θ(d2) operations. The Gram-
Schmidt basis, however, requires the storage of Θ(d2) elements, and so the key size is,
as mentioned above, unacceptably large. One may hope that, again, using polynomials
results in a decrease of the required storage. In this case, unfortunately, such rings do

1We recall that the Gram-Schmidt procedure produces a pairwise-orthogonal set of vectors (b̃1, . . . , b̃d)
that span the same inner-product space as the input vectors (b1, . . . , bd)

61

4. Gaussian Sampling in Quasilinear Space over Structured Lattices

not help. The Gram-Schmidt orthogonalization procedure completely destroys the nice
structure of polynomial lattices. So while a polynomial lattice basis can be represented
by a few vectors, its Gram-Schmidt basis will have d vectors. Thus the Θ(d2)-operation
Klein/GPV algorithm requires as much storage when using polynomial lattices as when
using general lattices, and is equally unsuitable for practical purposes. Therefore the only
realistic solution is to not store the pre-processed Gram-Schmidt basis, which would then
allow for the ring lattice algorithm to be linear-space (since only the original, compact-
representation basis needs to be stored), but require at least Ω(d3) time due to the fact
that the Gram-Schmidt basis will need to be computed.

4.1.1 Our Results

Our main result is an algorithm that computes the Gram-Schmidt basis of certain ring
lattices using Θ(d2), instead of Θ(d3), arithmetic operations. We then show how this new
procedure can be combined with Klein’s sampler to achieve a “best-of-both-worlds” result
– a sampling algorithm that requires Θ(d2) operations, which does not require storing
a pre-processed Gram-Schmidt basis. In ideal lattice cryptography, this implies being
able to have keys that consist of just the compact algebraic basis requiring only linear
storage. Not pre-computing the Gram-Schmidt basis of course necessarily slows down our
sampling algorithm versus the one where this basis is already stored in memory. But our
new orthogonalization algorithm is rather efficient, and the slowdown in some practical
applications is by less than a factor of 4 (see the Table 4.2 in Section 4.9). In case of
amortization (i.e. sampling more than one vector at a time), the running time of our new
algorithm becomes essentially the same as that of the one requiring the storage of the
orthogonalized basis. As a side note, since Klein’s sampler is just a randomized version of
the classic Babai nearest plane algorithm [Bab85, Bab86], all our improvements apply to
the latter as well.

While analyzing the running-time of lattice algorithms, it is very important to not only
consider the number of arithmetic operations, but also the arithmetic precision required
for the algorithms to be stable. The run-time of algorithms that are not numerically stable
may suffer due to the high precision required during their execution. A second important
issue is understanding how the precision affects the statistical closeness of the distribution
of the outputted vectors versus the desired distribution. We rigorously show that in
order to have statistical closeness between the output distribution and the desired discrete
Gaussian one be at most 2−λ, the required precision of the Gram-Schmidt basis needs to be
a little more (in practice, less than a hundred bits) than λ. We then experimentally show
that our new Gram-Schmidt procedure is rather numerically stable, and the intermediate
storage is not much more than the final required precision. A third issue that also needs
to be considered in practice is the space requirements of the algorithm during run-time.
While the stored basis is very short, it could be that the intermediate computations require
much larger storage (e.g. if the intermediate computation requires storing the entire
Gram-Schmidt basis to a high precision). Our sampling algorithm, however, is rather
efficient in this regard because it only requires storing one Gram-Schmidt vector at a
time. The storage requirement during run-time is therefore less than 64KB for typical
dimensions used in cryptographic applications.

62

4.1. Introduction

4.1.1.1 Isometries and Ideal Lattices

Interestingly, our improved orthogonalization algorithm for polynomial lattices does not
have much to do with their algebraic structure, but rather relies on their implicit geometric
properties. The types of bases whose Gram-Schmidt orthogonalization we speed up
are those that consist of a set of vectors that are related via a linear isometry. In
particular, if H is a d-dimensional Hermitian inner-product space and r : H → H is a
linear map that preserves the norm and is computable using O(d) operations, then we
show (both theoretically and via implementations) that orthogonalizing a set of vectors
{b, r(b), r2(b) . . . , rd−1(b)} can be done using Θ(d2) floating point operations.

4.1.1.2 Chapter Organization

In Section 4.2, we set up the notations and definitions that will be used throughout the
chapter. In Section 4.3.1, we describe a simple version of our new algorithm that efficiently
orthogonalizes a given set of vectors, and in Section 4.3.2 we give the full, optimized algo-
rithm. In Section 4.4, we describe an algorithm that, given the orthogonalization, returns
the transformation matrix µ that converts the set {b, r(b), . . . , r(b)} to {b̃1, b̃2, . . . , b̃n}.
In Section 4.5, we extend our basic algorithms to those that can more efficiently orthogonal-
ize sets of vectors of the form b1, r(b1), . . . , rn−1(b1), b2, r(b2), . . . , rn−1(b2), b3, r(b3),
These types of sets are the ones that normally occur as secret keys in lattice cryptography.
A particular example of such a set is the NTRU lattice, which we discuss in Section 4.7. In
that section, we also give timing comparisons between the exact version of our orthogonal-
ization algorithm (which is analyzed in Section 4.6), and that of [GHN06], for computing
the Gram-Schmidt orthogonalization of NTRU lattices. Since the two algorithms use
different techniques to achieve speed-ups, we demonstrate that the two improvements can
complement each other in the form of an even faster algorithm. In Section 4.8, we show
how to implement Babai’s nearest plane algorithm and the Klein/GPV sampling in linear
space for lattices whose basis contains vectors that are related via an isometry. In Section
4.9 we focus on the implementation aspects of our results. In particular, we analyze the
required precision to insure the correct functionality of our sampling algorithm.

4.1.2 Related Work
Toeplitz Orthogonalization. Computing faster orthogonalization for vectors that are
somehow related has been considered in the past. For example, Sweet [Swe84] demonstrated
an algorithm that orthogonalizes d × d Toeplitz matrices using O(d2) operations.

One may imagine that it may be possible to somehow adapt the results of [Swe84] to
the orthogonalization of bases of ideal lattices. The idea would be to embed elements
of F = Q[X]/�Φm(X)� into C = Q[X]/�Xm − 1� and then try to use the fact that in
the coefficient representation, the elements b, bX, bX2, . . . in C form a Toeplitz matrix.
One would have to also take care to make sure that the norm in F corresponds to the
coefficient norm in C. We are not sure whether this direction is viable, and even if it
is, the algorithm would necessarily involve computations over dimension m, rather than
φ(m), which would unnecessarily increase the running-time of all algorithms.

Symplectic Orthogonalization. For the special case of NTRU lattices, Gama, Howgrave-
Graham, and Nguyen [GHN06] devised algorithms that take advantage of a structure of
NTRU bases called symplecticity. This allows them to be faster (by a constant factor)

63

4. Gaussian Sampling in Quasilinear Space over Structured Lattices

than standard Gram-Schmidt orthogonalization when performing orthogonalization in
exact arithmetic. We adapt our algorithms for the same application and they outperform
those from [GHN06].2 And since our algorithm and the one of [GHN06] rely on different
ideas, it turns out that we can combine the two techniques to achieve a greater overall
improvement (see Table 4.1 in Section 4.7).

Levinson Recursion. In a previous version of this work, we incorrectly assumed the
core algorithm that we use throughout this chapter to be new. In fact, it is equivalent to a
variant of the Levinson recursion performing the Arnoldi iteration for isometric operators.
This is developed in Section 4.1.3.

4.1.3 Equivalence with Levinson Recursion
The Arnoldi iteration [Arn51] orthogonalizes a set of vectors {b, f(b), ...fn−1(b)} where
f is a linear operator.3 Lanczos showed [Lan50] that when f is Hermitian, this process
could be sped up by a factor O(n). In Section 4.3, we do the same as Lanczos, but for f
isometric. The similarity of our setting with Lanczos’ led us to questioning whether such
an algorithm existed.

On the other hand, the Levinson recursion was discovered by Levinson [Lev47] and
improved by Durbin [Dur60]. This algorithm (sometimes called Levinson-Durbin recursion)
solves linear systems y = xM in time O(n2) when M ∈ Rn×n is a Toeplitz matrix, instead
of time O(n3) for generic methods like Gauss-Jordan elimination.

Gragg showed [Gra93] that Levinson recursion could be interpreted differently to give
an equivalent to Lanczos’ algorithm, but for f isometric, which is exactly what we do in
Section 4.3. Therefore, this section may not be considered as new material, however we
keep it in its current state as we believe it helps the comprehension and self-containedness
of this chapter.

Moreover, to the best of of knowledge, this work (more precisely, the article [LP15]
co-written with Vadim Lyubashevsky) is the first to discuss the applications of the Levinson
recursion to lattice-based cryptography, as well as its exact complexity.

We thank Gilles Villard for pointing us to Gragg’s paper.

4.2 Preliminaries
4.2.1 Notations
We recall that most of the notation conventions are stated in pages 11 to 19. Throughout
the chapter, we will be working over a d-dimensional inner product space H (usually
H = Rd or Cd), with �·, ·� and � · � being a scalar product and the associated norm over
H. Except when stated otherwise, vectors will be written in bold, matrices and bases in
uppercase bold, and scalars in non-bold letters. B = {b1, ..., bn} will be either an ordered
set of independent vectors, also called a basis, or the n × d matrix whose rows are the bi.
We also note Bk

Δ= {b1, ..., bk}.

2We mention that [GHN06] also contains other results which are independent of Gram-Schmidt
orthogonalization and are therefore not improved by our work.

3The subspaces generated by such sets of vectors are often called Krylov Subspaces Kn(f, b).

64

4.2. Preliminaries

Definition 4.1. A linear isometry is a linear map r : H → H such that for any x, y ∈ H:

�r(x), r(y)� = �x, y�,

or equivalently
�x� = �r(x)�.

For conciseness, we will sometimes say isometry instead of linear isometry. Since the
dimension of H is finite, it is immediate that r is invertible. We will be assuming throughout
the work that both r and r−1 are computable in time O(d).

We recall that Proj(x, F) is the orthogonal projection of x over F. We have the
following properties.

Proposition 4.2. Let r be an isometry and and F be a subspace of H. Then:
1. x ⊥ F ⇒ r(x) ⊥ r(F)
2. r(Proj(x, F)) = Proj(r(x), r(F))

Proof. We prove the two claims separately:
1. Since r preserves the dot product, it also preserves orthogonality between vectors.
2. r preserves the norm, so

�x− y� = min
z∈F
�x− z� =⇒ �r(x)− r(y)� = min

z∈r(F)
�r(x)− z�

4.2.2 The Gram-Schmidt Orthogonalization
We recall that the Gram-Schmidt orthogonalization (GSO) of a basis B = {bi, ..., bn} is
the unique basis B̃ = {b̃1, ..., b̃n} verifying one of these properties:

• ∀k ∈ �1, n�, b̃k = bk −Proj(bk, Span(Bk−1))
• ∀k ∈ �1, n�, b̃k = bk −

k−1�
j=1

�bk,b̃j�
�b̃j�2 b̃j

• ∀k ∈ �1, n�, b̃k ⊥ Span(Bk−1) and (bk − b̃k) ∈ Span(Bk−1)

For each k, b̃k is the Gram-Schmidt reduction (GSR) of bk. For random bases, the
most commonly known algorithm for computing their GSO is the Gram-Schmidt process,
which is given in Section 2.1.3. Other known methods rely either on Givens rotations,
Householder matrices or Cholesky decomposition [GVL96, Ste98] are are often preferred
in practice for stability reasons [Ste10]. However, they all achieve complexity Θ(n2d) (or
Θ(n3) for those who can be applied only when n = d).

4.2.3 The Gram-Schmidt Decomposition
The Gram-Schmidt decomposition (GSD) is a natural by-product of the Gram-Schmidt
orthogonalization which gives the relation between the input and output bases in the form
of a matrix L. Such a matrix is useful in many cases – for example, its role is critical in the
LLL algorithm [LLL82]. Outside cryptography, applications include solving undetermined
linear systems, least square problems and computing eigenvalues.

65

4. Gaussian Sampling in Quasilinear Space over Structured Lattices

Definition 4.3 (Gram-Schmidt Decomposition). Let B be a d × n matrix. B can be
uniquely decomposed as B = L × B̃, where B̃ is the GSO of B and L = (Li,j)1�i,j�n is the
lower triangular matrix such that

Li,j =





�bi,b̃j�
�b̃j�2 if i > j

1 if i = j
0 otherwise

This is called the Gram-Schmidt decomposition (or GSD) of B.

Notice that the matrix L is automatically constructed in Algorithm 2.1 while computing
the GSO. This, however, will not be the case in our improved GSO algorithm, and this is
why in this chapter we will differentiate between GSO and GSD.

4.2.4 Anticirculant Matrices and Isometries
In this section, we define anticirculant matrices and explain the geometric properties that
bound their row vectors. We first give the definitions of cyclotomic elements.

Cyclotomic Polynomials, Rings and Fields

Definition 4.4. Let m ∈ N� and ζm denote any primitive m-th root of unity in C, per
example ζm = e

2iπ
m . We note Ωm = {ζk

m, k ∈ Z×
m} the set of primitive m-th roots of unity.

We also note φm and call m-th cyclotomic polynomial the polynomial defined by

∀x ∈ C, φm(x) =
�

ζ∈Ωm

(x− ζ) =
�

k∈Z×
m

(x− ζk
m)

We call cyclotomic field associated to φm the number field Q(ζm) obtained by adjoining
ζm to Q. We also note call cyclotomic ring associated to φm the ring Z[ζm].

For some values of m – which are also the vast majority of values encountered in
lattice-based cryptography –, φm is easy to compute:

• For a prime p, φp(x) = �p−1
k=0 xk

• For a prime power m = pk, φm(x) = φp(xm/p)

• If m = 2k is a power of two, φm(x) = xm/2 + 1

We now cite a few useful properties of cyclotomic polynomials, rings and fields. Z[ζm]
is the ring of integers of Q(ζm), and conversely Q(ζm) is the field of fractions of Z[ζm].4
The field Q(ζm) (resp. the ring Z[ζm]) is isomorphic to Q[x]/(φm(x)) (resp. Z[x]/(φm(x))).
The polynomial φm has integer coefficients. Noting Z×

m the group of invertible elements
of Zm, the degree of φm is ϕ(m), where ϕ(m) Δ= |Z×

m| denotes Euler’s totient function
evaluated on m. One can show that

xd − 1 =
�

m|d
φm(x) (4.1)

which is a fact that we will use in Chapter 7, and is useful when working with cyclotomic
fields. Indeed, if p is prime, then it is much more practical to work in Z[x]/(xp − 1) rather
than in Z[x]/(φp(x)).

4This correspondence is not true in general.

66

4.2. Preliminaries

Anticirculant Matrices

In lattice-based cryptography, it is common to work with matrices which are structured
over cyclotomic rings, as defined hereunder.

Definition 4.5. For any n ∈ N�, φ a monic polynomial with n distinct roots over C and
f ∈ R[x], we note Aφ(f) the n × n matrix defined whose i-th row are the coefficients of
xi−1 · f mod φ:

Aφ(f) Δ=




f mod φ
x · f mod φ

...
xn−1 · f mod φ




When φ is clear from context, we note A(f) = Aφ(f).

We notice that if f �= 0 and φ is irreductible, then Aφ(f) is invertible and its row
vectors form a basis. We abusively call “anticirculant” the matrices of the form Aφ(f),
because they generalize circulant matrices: in particular, for m = 2k, Aφm(f) is a signed
variant of a circulant matrix. Just like their circulant counterparts, anticirculant matrices
have very useful properties. The most important one is that for a fixed φ, all the matrices
Aφ(f) are co-diagonalizable:

Aφ(f) = V−1 · diag({f(ω)}φ(ω)=0) · V

where V is the Vandermonde matrix associated to the roots ω of φ. As an immediate
consequence, the set Aφ

Δ= {Aφ(f)|f ∈ R[x]} is a commutative ring.

Link with Ideal Lattices and Isometries

We now explain the connection between isometries, ideal lattices and anticirculant matrices.
Consider F = R[x]/(φm(x)). Elements in F can be represented via a canonical embedding5

into Cφ(m), and in that case F becomes isomorphic, as an inner product space, to Rφ(m)

where the inner product �a, b� of a, b ∈ F is defined as

�a, b� =
�

ζ∈Ωm

a(ζ) · b(ζ) =
�

i∈Z×
m

a(ζ i
m) · b(ζ i

m),

where ζm ∈ C is a primitive mth root of unity (c.f. [LPR13b, Sections 2.2, 2.5.2]).6
With the above definition of inner product (which is in fact the usual inner product

over Cφ(m) when elements in F are represented via the canonical embedding), the norm of
an element b ∈ F is

�b� =
� �

ζ∈Ωm

|b(ζ)|2.

5The canonical embedding of a polynomial b ∈ F is a vector in Cφ(m) whose coefficients are the
evaluations of b on each of the φ(m) complex roots of Φm(X). Due to the fact that half of the roots of
Φm(X) are conjugates of the other half, the resulting embedded vector in Cφ(m) can be represented by
φ(m) real numbers.

6We point out that the actual computation of the inner product does not require any operations
over C. The reason is that �a, b� =

�
i∈Z×

m
a(ζi

m) · b(ζi
m) can be rewritten as (Va)�Vb = a�V�Vb for

a Vandermonde matrix V with coefficients in C. The matrix V�V, however, is a simple integer matrix,
multiplication by which can be performed in linear time for most “interesting” cyclotomic polynomials
(e.g. m is prime or a power of 2).

67

4. Gaussian Sampling in Quasilinear Space over Structured Lattices

One can check that �b� = �x · b�. Since the function r : F → F defined as r(b) = x · b
is linear, it is also an isometry (since it preserves the norm). Furthermore, since F
is a field, for any non-zero b ∈ F , the rows b, xb, x2b, . . . , xφ(m)−1b of Aφm(b) are all
linearly-independent. When b is an element of R = Z[x]/(φm(x)), the set

{b, xb, x2b, . . . , xφ(m)−1b} = {b, r(b), r2(b), . . . , rφ(m)−1(b)}

therefore generates the ideal �b� as an additive group. Such bases containing short elements
can serve as private keys in cryptographic schemes.7

4.3 Gram-Schmidt Orthogonalization over Isometric
Bases

In this section we present our improved isometric Gram-Schmidt algorithm. In Section 4.3.1,
we present a first simple version which we believe is very intuitive to understand, and then
present a slightly faster, more involved, version of it in Section 4.3.2.

Definition 4.6. Let B = {b1, ..., bn} be an ordered basis of a lattice Λ ⊆ H. We say that
B is isometric if there exists an isometry r such that

∀k ∈ �2, n�, bk = r(bk−1)

4.3.1 A Quadratic-Time algorithm
We now describe a simple algorithm that computes the GSO of any isometric basis in time
Θ(nd) (or Θ(n2) when n = d).

We briefly expose the general idea behind the algorithm before presenting it formally.
If b̃k is the GSR of bk, then r(b̃k) is almost the GSR of bk+1: it is orthogonal to
b2, ..., bk, but not to b1. However, reducing r(b̃k) with respect to b1 would break its
orthogonality to b2, ..., bk, so what we really need to do is to reduce it with respect to
b1 − Proj(b1, Span(b2, ..., bk)). Indeed, this latter vector is orthogonal to b2, ..., bk, so
reducing r(b̃k) with respect to it won’t break the orthogonality of r(b̃k) to b2, ..., bk.
Fortunately, b1 −Proj(b1, Span(b2, ..., bk)) can itself be updated quickly. Definition 4.7
and Algorithm 4.1 formalize this idea.

Definition 4.7. Let B = {b1, ..., bn} be an ordered basis and k ∈ �1, n�. We denote
vB,k = b1 − Proj(b1, r(Span(Bk−1))). When B is obvious from the context, we simply
write vk.

Proposition 4.8. Let B be an isometric basis with respect to r. Algorithm 4.1 returns
the GSO of B. Moreover, if r(v) can be computed in time O(d) for any v ∈ H, then
Algorithm 4.1 terminates in time O(nd).

Proof. We first prove the correctness of the scheme by proving by induction that for every
k ∈ �1, n�, we have the following:

7Normally, the bases used in schemes have slightly different forms, such as consisting of a concatenation
of elements from R, or being formed by several elements in R. Such bases still contain large components
that are related via an isometry, and we discuss this in more detail in Sections 4.5 and 4.7.

68

4.3. Gram-Schmidt Orthogonalization over Isometric Bases

Algorithm 4.1 IsometricGSO(B)
Require: Basis B = {b1, ..., bn}
Ensure: Gram-Schmidt reduced basis B̃ = {b̃1, ..., b̃n}

1: b̃1 ← b1
2: v1 ← b1
3: for k = 1, ..., n− 1 do
4: b̃k+1 ← r(b̃k)− �vk,r(b̃k)�

�vk�2 vk

5: vk+1 ← vk − �vk,r(b̃k)�
�b̃k�2 r(b̃k)

6: end for
7: return B̃ = {b̃1, ..., b̃n}

b1 b̃1 b̃2
... b̃n−2 b̃n−1 b̃n

f
v1 v2 ... vn−2 vn−1 vn

Figure 4.1: Computing all the orthogonalized vectors from the first one in Algorithm 4.1

• vk = b1 −Proj(b1, r(Span(Bk−1))) (1)

• b̃k = bk −Proj(bk, Span(Bk−1)) (2)

This is trivially true for k = 1. Assuming (1) and (2) are true at step k, we have:

• Since vk and b̃k are already orthogonal to r(Span(Bk−1)), vk+1 also is as a linear
combination of the two. But vk+1 is also the orthogonalization of vk w.r.t. r(b̃k), so
it is orthogonal to r(Span(Bk−1)) + Span(r(b̃k)) = r(Span(Bk)). On the other hand,
b1 − vk is in r(Span(Bk−1)) so b1 − vk+1 is in r(Span(Bk)). By applying Definition
2.19, we can conclude that (1) is true for k + 1.

• The same reasoning holds for b̃k+1: it is orthogonal to r(Span(Bk−1)) because both vk

and r(b̃k) are. But since it also is orthogonalized w.r.t. vk (in line 4 of the algorithm),
it then is orthogonal to r(Span(Bk−1)) + Span(vk) = Span(Bk). On the other hand,
bk+1 − b̃k+1 = r(bk − b̃k) + �r(b̃k),vk�

�vk,vk� vk is in Span(Bk). As before, we can conclude
that (2) is true for k + 1.

Since (2) is verified for any k ∈ �1, n�, B̃ is the GSO of B.
The time complexity of the algorithm is straightforward: assuming additions, sub-

tractions, multiplications and divisions are done in constant time, each scalar product
or square norm takes time O(d). Since there are 3(n− 1) norms or scalar products, and
2(n− 1) computations of r(.), the total complexity is O(nd).

69

4. Gaussian Sampling in Quasilinear Space over Structured Lattices

4.3.2 Making Isometric GSO Faster
Algorithm 4.1 is already O(n) times faster than the classical Gram-Schmidt process. In
this subsection, we show that intermediate values are strongly interdependent and that
this fact can be used to speed up our GSO implementation by about 67%.

Lemma 4.9. Let B be an isometric basis. For any k in �1, n�, we have the following
equalities:
• �v1, r(b̃k)� = �vk, r(b̃k)�
• �vk�2 = �vk, v1� = �b̃k�2

When implicit from context, we will denote Ck = �vk, r(b̃k)� and Dk = �b̃k�2. We have
the following recursive formula:

∀k ∈ �1, n− 1�, Dk+1 = Dk −
C2

k

Dk

Proof. We prove each of the three equalities separately:
• The equality �v1, r(b̃k)� = �vk, r(b̃k)� is equivalent to �vk − v1, r(b̃k)� = 0, which is

true since vk − v1 = Proj(b1, r(Span(Bk−1))) is in the subspace r(Span(Bk−1)) and
b̃k is orthogonal to r(Span(Bk−1))

• The equality �vk�2 = �vk, v1� is obtained by following the same reasoning as above
• The equality �vk�2 = �b̃k�2 is shown by induction: it is the case for k = 1. By observing

that b̃k+1 is orthogonal to vk from line 4 of Algorithm 4.1(resp. vk+1 is orthogonal
to r(bk) from line 5)), we can use the Pythagorean theorem to compute �b̃k+1�2 and
�vk+1�2:

�b̃k+1�2 = �b̃k�2 − �vk, r(b̃k)�2
�vk�2 and �vk+1�2 = �vk�2 − �vk, r(b̃k)�2

�b̃k�2

At which point we can conclude by induction that �vk+1�2 = �b̃k+1�2, and these
equalities also yield the recursive formula Dk+1 = Dk − C2

k

Dk
.

This result allows us to speed up further the GSO for isometric bases. At each iteration
of the algorithm IsometricGSO, instead of computing �vk, r(b̃k)�, �b̃k�2 and �vk�2, one only
needs to compute �v1, r(b̃k)�, and can instantly compute �b̃k�2 = �vk�2 from previously
known values. We choose �v1, r(b̃k)� rather than �vk, r(b̃k)� because v1 has a much smaller
bitsize than vk, resulting in a better complexity in exact arithmetic. Moreover, in the
case where we use floating-point arithmetic, v1 does not introduce any floating-point error,
unlike vk.
Algorithm 4.2 – which can be seen [Gra93] as equivalent to the Levinson Recursion
[Lev47, Dur60]– sums up these enhancements.

Proposition 4.10. If B is an isometric basis, then Algorithm 4.2 returns the GSO of
B. Moreover, if we disregard the computational cost of r, then Algorithm 4.2 performs
essentially 3n2 multiplications (resp. additions), whereas Algorithm 4.1 performs essentially
5n2 multiplications (resp. additions).

Proof. For the correctness of Algorithm 4.2, one only needs to show that at each step,
Ck = �vk, r(b̃k)� and Dk = �b̃k�2 = �vk�2. The first and third equalities are given by
lemma 4.9, and the second one by induction: assuming that Ck, Dk are correct, Dk+1 is

70

4.4. Gram-Schmidt Decomposition over Isometric Bases

Algorithm 4.2 FasterIsometricGSO(B)
Require: Basis B = {b1, ..., bn}
Ensure: Gram-Schmidt reduced basis B̃ = {b̃1, ..., b̃n}(, (Ck)1�k<n, (Dk)1�k<n)

1: b̃1 ← b1
2: v1 ← b1
3: C1 ← �v1, r(b̃1)�
4: D1 ← �b1�2

5: for k = 1, ..., n− 1 do
6: b̃k+1 ← r(b̃k)− Ck

Dk
vk

7: vk+1 ← vk − Ck

Dk
r(b̃k)

8: Ck+1 ← �v1, r(b̃k+1)�
9: Dk+1 ← Dk − C2

k

Dk

10: end for
11: return B̃ = {b̃1, ..., b̃n}

correct, once again from lemma 4.9.

4.4 Gram-Schmidt Decomposition over Isometric
Bases

In this section, we show that the computation of the matrix L from the Gram-Schmidt
decomposition (or GSD, see Definition 4.3) can be sped up by a O(n) factor in the case of
isometric matrices by using tricks similar to those which led to the speeding-up of GSO.
The proof of the following theorem explains how to compute the GSD of an isometric
basis/matrix in quadratic time.

Theorem 4.11. Let B = (b1, ..., bn) be an isometric basis and B̃ = (b̃1, ..., b̃n) its GSO.
For the sake of simplicity, we identify the basis B (resp. B̃) to the (not necessarily square)
matrix which rows are the vectors of the basis. Assume we already have B and B̃, along
with the values Cj = �vj, r(b̃j)�, Dj = �b̃j�2 for 1 � j < n. Then the matrix L associated
to B can be computed in time O(n2).

Proof. For 1 � i < j � n, let Xi,j = �bi, b̃j� and Yi,j = �r(bi), vj�. All the nontrivial
values of Li,j (that is, the values Li,j for 1 � j < i � n) can be expressed as Li,j = Xi,j

Dj
.

The values Xi,j, Yi,j satisfy these recursive formulae:




Xi+1,j+1 = Xi,j − Cj

Dj
Yi,j

Yi,j+1 = Yi,j − Cj

Dj
Xi,j

These formulae allow us to compute all the values of Xi,j, Yi,j from the 2(n − 1) values
Xi,1, Yi,1. Once all of these values are computed, one can simply obtain the Li,j from the
Xi,j. Algorithm 4.3 puts this idea into practice.

The idea of this algorithm is somewhat similar to the one behind Algorithms 4.1 and
4.2: the only values that we really need to compute are the Xi,j ’s, but in order to do that
efficiently we resort to a mutual recursion involving the Yi,j’s.

71

4. Gaussian Sampling in Quasilinear Space over Structured Lattices

Algorithm 4.3 IsometricGSD(B, B̃, (Ci), (Di))
Require: Basis B and its orthogonalization B̃, values Cj = �vj, r(b̃j)�, Dj = �b̃j�2 for

1 � j < n
Ensure: Matrix L = B × B̃−1

1: Set the diagonal values of L to 1 and the values above the diagonal to 0
2: for i = 2...n do // Computing the (Xi,1), (Yi,1)
3: Xi,1 ← �bi, b̃1�
4: Yi,1 ← �r(bi), b1�
5: for j = 2...i− 1 do
6: Xi,j ← Xi−1,j−1 − Cj−1

Dj−1
Yi−1,j−1

7: Yi,j ← Yi,j−1 − Cj−1
Dj−1

Xi,j−1
8: end for
9: end for

10: for i = 2...n do // Filling out the non-trivial values of Li,j

11: for j = 1...i− 1 do
12: Li,j ← Xi,j

Dj

13: end for
14: end for
15: return L = (Li,j)1�i,j�n

The time complexity is straightforward. Each Xi,j, Yi,j takes time O(1) to be computed,
except for 2n of them which need time O(n) each. So the overall cost is O(n2).

As an example, the matrices Xsteps and Xchrono below show, for n = 5, in which order
the matrices X, Y are filled. The two matrices use different metrics: Xchrono displays
the chronological order in which the matrices are filled by the algorithm, whereas Xsteps

display the minimal depth of the computational tree necessary in order to compute an
Xi,j (resp. Yi,j). If a box contains ×, it means that the corresponding value is trivial (see
step 1 of the algorithm).

Xsteps =

× × × × ×
1 × × × ×
1 2 × × ×
1 2 3 × ×
1 2 3 4 ×

Xchrono =

× × × × ×
1 × × × ×
2 3 × × ×
4 5 6 × ×
7 8 9 10 ×

As Xchrono shows, the algorithm fills the matrices X, Y row after row, but if necessary,
it could be rewritten in order to fill X, Y column after column, as shown by Xsteps.

4.5 Extending the Results to Block Isometric Bases
In previous sections, we showed that we can gain a factor O(n) improvement when
performing operations such as Gram-Schmidt decomposition on isometric bases. In this
section, we show that these results can be extended to block isometric bases, that is bases
that are concatenations of isometric bases.

72

4.5. Extending the Results to Block Isometric Bases

Definition 4.12. Let B = {b1, ..., bkn} be a basis. We say that B is block isometric if
there exist k isometric bases B(1), ..., B(k) such that B is the concatenation of all these
bases.

The main idea of Algorithm 4.4 is to use the hypothesis that r(Span(B(i))) = Span(B(i))
(which in practice is always verified for ideal lattices) in conjunction with part 2 of
Proposition 4.2: if b̃ is the GSR of b w.r.t. a block B(i), then r(b̃) will be the GSR of
r(b) w.r.t. that same block B(i).

Lemma 4.13. Assume:
• B(1), ..., B(k) are isometric matrices for the same isometry r, and of same rank n.
• ∀i ∈ �1, k − 1�, r(Span(B(i))) = Span(B(i)).
Then Algorithm 4.4 compute the GSO of B = {B(1), ..., B(k)} = {b1, ..., bkn} in O(k2nd)
elementary operations over the scalars.

Algorithm 4.4 BlockGSO(B)
Require: Block isometric basis B = {B(1), ..., B(k)} = {b1, ..., bkn}
Ensure: Gram-Schmidt reduced basis B̃

1: for i = 0, ..., k − 1 do
2: b̃ni+1 ← bni+1
3: for j = 1, ..., ni do
4: b̃ni+1 ← bni+1 − �bni+1,b̃j�

�b̃j�2 b̃j // Make b̃ni+1 orthogonal to previous vectors
5: end for
6: B̃(i+1) ← {bni+1, r(bni+1), ..., rn−1(bni+1)}
7: B̃(i+1) ← FasterIsometricGSO(B̃(i+1))
8: end for
9: return B̃ = {B̃(1), ..., B̃(k)}

Proof. We prove correctness by showing inductively that at the end of each iteration i of
the outer loop, the n(i + 1) first vectors b̃1, ..., b̃n(i+1) are the GSO of b1, ..., bn(i+1):
• For i = 0, this is the case since B̃(1) is simply the GSO of B(i)

• If it is verified until step i−1, then at step i the vector b̃ni+1 computed in lines 2-5 of the
algorithm is exactly the GSR of bni+1. Its rotations are orthogonal to the vectors of the
previous blocks because r preserves the dot product and ∀i, r(Span(B(i))) = Span(B(i)),
and one can verify that bni+j − rj−1(b̃ni+1) ∈ Span{B̃(1), ..., B̃(i−1)}, so rj−1(b̃ni+1) is
exactly the orthogonalization of bni+j w.r.t. b1, ..., b̃ni. The basis computed at line 6 is
isometric, so applying FasterIsometricGSO effectively orthogonalizes it.

We now study the complexity of algorithm 4.4. At each iteration i of the algorithm, the
orthogonalization of bni+1 w.r.t. previous vectors (steps 3 to 5) take time O(nid), and
steps 6-7 take time O(nd). So the total complexity is O(k2nd), gaining a factor n when
compared to the complexity O((kn)2d) of the naive Gram-Schmidt orthogonalization.

The GSD can be sped up too. We will not detail it, but Fig. 4.2 gives the outline on
how to use Algorithm 4.3 on a two-blocks isometric basis.

73

4. Gaussian Sampling in Quasilinear Space over Structured Lattices

B̃ =
�
B(1)

B(2)

�
⇒

�
B̃(1)

B(2)

�
⇒

�
B̃(1)

{b̃n+1, ..., rn−1(b̃n+1)}

�
⇒

�
B̃(1)

B̃(2)

�

L =
�

In 0n

0n In

�
⇒

�
L1 0n

0n In

�
⇒

�
L1 0n

L3 In

�
⇒

�
L1 0n

L3 L4

�

Figure 4.2: Computing the GSD of a two-block isometric basis. B̃ and L always satisfy
L × B̃ = B

4.6 GSO and GSD in Exact Arithmetic
Generally, GSO and GSD are performed over real bases, so the standard way of implement-
ing it is by using floating-point arithmetic. However, this can result in rounding errors:
several books and articles discuss this problem with a good introduction being [Hig02].

When the input vectors are in Zd, as it is very often the case in lattice-based cryptogra-
phy, then the GSD can be performed using only exact arithmetic over Q. Moreover, some
algorithms such as the original LLL algorithm [LLL82] explicitly perform exact GSD.

However, this gain in precision comes at the cost of reduced efficiency: when an integer
basis undergoes GSO, the reduced vectors’ bitsize quickly escalates in the dimension of
the basis and of the underlying space. This phenomenon is called coefficient explosion and
impacts the space and computational cost of GSD. In this section, we adapt Algorithms
4.2 and 4.3 to the exact arithmetic setting and show that we still gain a O(d) factor
compared to classical GSO/GSD. Moreover, our adapted algorithms completely avoid
rational arithmetic.

Through this section, we make an additional “niceness” assumption over the isometry r,
namely we suppose that it maps integer vectors into integer vectors: ∀b ∈ Zd, r(b) ∈ Zd.

4.6.1 GSO in Exact Arithmetic
Definition 4.14. Let B = (bj)1�j�n be an isometric basis, and for j ∈ �1, n�, b̃j, vj, Cj, Dj

be defined as in Section 4.3. We then define, ∀i, j ∈ �1, n�, the following values:

• λj,j = �
1�k�j �b̃k�2

• d̃bj = λj−1,j−1b̃j

• cj = λj−1,j−1Cj

• λi,j = Li,jλj,j

• dvj = λj−1,j−1vj

• dj = λj−1,j−1Dj

Proposition 4.15. Using notations of Definition 4.14, ∀i, j ∈ �1, n�, we have:

1. λi,j ∈ Z

2. d̃bj, dvj ∈ Zd

3. cj, dj ∈ Z

Proof. Proofs for assertions 1 and 2 can be found per example in [Gal12, chapter 17,
theorem 17.3.2]. As for assertion 3, dj = λj,j and cj = �v1, r(d̃bj)�, where v1 and r(d̃bj)
are in Zd.

With these results in hand, we can now devise an integer version of Algorithm 4.2.
Instead of outputting rational values, Algorithm 4.5 outputs only integers and integer

74

4.6. GSO and GSD in Exact Arithmetic

vectors, and one can then retrieve any vector b̃k by computing b̃k = 1√
dk−1

d̃bk. Algo-
rithm 4.5 uses no rational number and all the internal operations, including exact divisions
in steps 6,7 and 9, output integer values. The following lemma shows that in the case we
use exact arithmetic, Algorithm 4.5 is still at least O(n) faster than standard GSO.

Algorithm 4.5 IntegerIsometricGSO(B)
Require: Basis B = {b1, ..., bn}
Ensure: (d̃bk, dvk, ck, dk)k=1...n as defined in Definition 4.14

1: d̃b1 ← b1
2: dv1 ← b1
3: c1 ← �r(b̃1), dv1�
4: d0 ← 1, d1 ← �b1�2

5: for k = 1, ..., n− 1 do
6: d̃bk+1 ←

�
dkr(d̃bk)− ckdvk

�
/dk−1

7: dvk+1 ←
�
dkdvk − ckr(d̃bk)

�
/dk−1

8: ck+1 ← �v1, r(d̃bk+1)�
9: dk+1 ← d2

k−c2
k

dk−1
10: end for
11: return (d̃bk, dvk, ck, dk)k=1...n

Lemma 4.16. Let B = {b1, ..., bn} ∈ (Zd)n be an integral isometric basis, |B| =
max

k=1...n
(�bk�) and M(X) denote the time complexity for multiplying two integers of at

most X bits. Suppose the isometry r associated to B can be computed in time and space
linear to the size of the input. Then Algorithm 4.5 performs in time O(dnM(n log |B|)).
Proof. By definition, dk = �

1�i�k �b̃i�2 so |dk| � |B|2k. Moreover, |Ck| < Dk implies
|ck| < dk and therefore ck, dk both have bitsizes O(k log |B|). On the other hand, d̃bk

(resp. dvk) has its norm less than |B|2k−1 so the four scalar-vectors products performed
on steps 6,7 have complexity O(dM(k log |B|)), as well as the two divisions of vectors
by scalars (we recall that euclidean division of X bit numbers can be performed in time
O(M(X))). Overall, each iteration k of the for loop takes time O(dM(k log |B|)), so the
total complexity of Algorithm 4.5 is O(dnM(n log |B|)).

4.6.2 GSD in Exact Arithmetic
The isometric GSD can also naturally be converted into an efficient, “rational-free” version.
Let xi,j

Δ= λj−1Xi,j = �bi, d̃bj� ∈ Z and yi,j
Δ= λj−1Yi,j = �r(bi), dvj� ∈ Z. The relations





Xi+1,j+1 = Xi,j − Cj

Dj
Yi,j

Yi,j+1 = Yi,j − Cj

Dj
Xi,j

then become 



xi+1,j+1 = djxi,j−cjyi,j

dj−1

yi,j+1 = djyi,j−cjxi,j

dj−1

The xi,j’s actually are the λi,j’s, but in Algorithm 4.6 we continue to write xi,j since it
highlights the natural transformation of Algorithm 4.3 to Algorithm 4.6.

75

4. Gaussian Sampling in Quasilinear Space over Structured Lattices

Algorithm 4.6 IntegerIsometricGSD(B, (ck, dk)k=1...n)
Require: Basis B and the values (ck, dk)k=1...n

Ensure: xi,j’s,yi,j’s as defined above
1: for i = 2...n do // Computing the (xi,1), (yi,1)
2: xi,1 ← �bi, b̃1�
3: yi,1 ← �r(bi), b1�
4: for j = 2...i− 1 do
5: xi,j ← [dj−1xi−1,j−1 − cj−1yi−1,j−1] /dj−2
6: yi,j ← [dj−1yi,j−1 − cj−1xi,j−1] /dj−2
7: end for
8: end for
9: return (xi,j, yi,j)1�i,j�n

Lemma 4.17. Following the notations of Lemma 4.16, the time complexity of Algo-
rithm 4.6 is O(n2M(n log |B|) + ndM(log |B|)).

Proof. The costliest operations of Algorithm 4.6 are either the 2(n− 1) dot products in
steps 2 and 3, which cost O(dM(log |B|)) each, or the essentially 3n2 multiplications and
divisions made at steps 5 and 6, which cost O(M(j log |B|)) each. Summing these costs
yields the result.

Note that in practice d is not much bigger than n, so the complexity of Algorithm 4.6
becomes O(n2M(n log |B|)). Even in exact arithmetic, our GSO and GSD algorithms still
perform O(n) times faster than standard GSD, which complexity is O(dn2M(n log |B|))
(implicit in the proof of [Gal12, Theorem 17.3.4]). Moreover, we manage to avoid the use
of any rational number, making our algorithms both efficient and easy to implement.

4.7 NTRU Lattices
NTRU lattices are a special class of lattices widely used in cryptography, because their
ring structure allows a gain of a factor n both in time and space when performing
usual operations over lattices. This results in efficient and compact cryptosystems (e.g.
[HPS98, LTV12, DDLL13]).

Let N, q ∈ N∗ and f, g, F, G ∈ Z[x]/(xN + 1) such that fG − gF = q mod (xN + 1).
The NTRU lattice generated by f, g, F, G is the lattice generated by the rows of the block
matrix �

A(f) A(g)
A(F) A(G)

�

Where A(p) = Aφ2N
(p) is the N × N matrix which i-th row is the coefficients of xi−1 ·

p(x) mod (xN + 1).
In [GHN06], Gama et al. considered exact GSD of NTRU bases. They showed that

these lattices verify an algebraic property called symplecticity, which allows them to
compute the exact GSD faster than with the standard algorithm, using [GHN06, Cor. 1].

But in addition to being q-symplectic, NTRU bases are also block isometric. So we
devised an algorithm to compute the exact GSD of a NTRU basis, by combining three
strategies:
• use Algorithms 4.5 and 4.6 in order to avoid rational arithmetic, as in [Gal12, GHN06].

76

4.8. Reversibility and Application to Linear-Storage Klein Sampling

Table 4.1: Timings for Gram-Schmidt over NTRU bases, in seconds. The implementation
was done on Sage 5.3. Timings were performed on an Intel Core i5-3210M laptop with a
2.5GHz CPU and 6GB RAM. Isometric GSD is “standard” GSD for block isometric bases,
whereas Iso.+Symp. GSD takes into account the observations from [GHN06].

Dimension n = 2N 128 256 512 1024
Standard GS [GHN06] 3.22 30.7 390 4536
Dual GS [GHN06] 2.39 17 214 2496
Symplectic GS [GHN06] 0.89 5.73 33.9 279
Isometric GSD 0.48 2.05 12.4 89
Iso.+Symp. GSD 0.312 1.4 8.18 57.8

• use the GSO/GSD strategies for isometric bases detailed in Section 4.5.
• use [GHN06, Corollary 1] to compute one half of the GSO and get the other for free.
We compared our exact reduction algorithm with the ones from [GHN06]. It turns out
that our algorithm is faster, both theoretically and in practice, despite computing more
information: it provides B̃ and L, whereas the algorithms in [GHN06] only provide L.
The timings are summarized in Table 4.1 and the full implementation can be found at:

https://github.com/tprest/Fast-GSD

4.8 Reversibility and Application to Linear-Storage
Klein Sampling

A drawback of applying Klein’s sampler (Section 2.4.1, Algorithm 2.6) over ring lattices
is that, even though the basis B of an ring lattice can be stored using O(1) vectors, this
is not the case for the reduced basis B̃, which needs n vectors. This can quickly impede
the practicality of Klein’s sampler: for example, for n = 1024 (a typical dimension for
cryptographic lattices), if B̃ is stored using 128 bits of precision, the bitsize of B̃ then
exceeds 128 Mbits.

The Levinson recursion allows to overcome this problem by computing the reduced
basis B̃ on-the-fly. An obstacle is that Klein’s sampler needs the vectors of B̃ in reverse
order, so a straightforward use of Algorithm 4.1 or 4.2 does not solve the problem since it
provides the basis in direct order. Fortunately, as Figure 4.1 suggests, we can reverse the
order in which the Levinson recursion performs its operations, as illustrated in Figure 4.3.
More importantly, this can be done in linear space, a property that Klein’s sampler can
take advantage of to be itself executed in linear space instead of quadratic.

Definition 4.18. For a basis B, we denote, for any i ∈ �1; n− 1�, Ci = �vi, r(b̃i)� and
Di = �b̃i�2. We also define Hi = 1

1−(Ci/Di)2 = Di

Di+1
and Ii = Ci/Di

1−(Ci/Di)2 = Ci

Di+1
.

77

4. Gaussian Sampling in Quasilinear Space over Structured Lattices

b1 b̃1 b̃2
... b̃n−2 b̃n−1 b̃n

f
v1 v2 ... vn−2 vn−1 vn

Figure 4.3: Reversing the execution of Algorithm 4.1

Algorithm 4.7 CompactKlein(B, σ, c, b̃n, vn, (Hi, Ii)i)
Require: Basis B = {b1, ..., bn}, center c ∈ Zm, precomputed vectors b̃n, vn, precom-

puted values (Hi, Ii)1�i<n from definition 4.18
Ensure: z sampled in DL(B),σ,c

1: cn ← c
2: for i← n, ..., 1 do
3: di ← �ci, b̃i�/�b̃i�2

4: σi ← σ/�b̃i�
5: zi ← �di�σi

6: ci−1 ← ci − zibi

7: b̃i−1 ← r−1(Hi−1b̃i + Ii−1vi)
8: vi−1 ← Ii−1b̃i + Hi−1vi

9: end for
10: return c− c0

Lemma 4.19. Algorithms 2.6 and 4.7 produce the same output when they have the same
input B and c (assuming the associated precomputed values are correct).

Proof. First, observe that ∀i ∈ �1, n− 1�, |Ci| < Di, because otherwise Di+1 would be
zero and B would not be a basis. One can see that the "linear system"
• b̃i+1 = r(b̃i)− Ci

Di
vi

• vi+1 = vi − Ci

Di
r(b̃i)

is invertible :
• b̃i = r−1(Hib̃i+1 + Iivi+1)
• vi = Iib̃i+1 + Hivi+1
Hi and Ii are always defined since |Ci| < Di. Therefore, the same way the values Ci, Di

allow to compute b̃i+1, vi+1 from b̃i, vi, Hi, Ii allow to compute b̃i, vi from b̃i+1, vi+1.

This allows us to use Klein’s sampler using O(m) memory space instead of O(mn) for
the classic version. The overhead in time is reasonable:
• Klein’s sampler: 2mn additions, 2mn multiplications, n samplings in Z
• Compact Klein’s sampler: 4mn additions , 6mn multiplications, n samplings in Z
Therefore, the compact Klein sampler is at most three times slower than the classic one.
This is confirmed by experiments summarized in Table 4.2. Moreover, in Algorithm 4.7, it
is possible to sample around several c’s at the same time: this then makes negligible the
overhead induced by the addition (in Algorithm 4.7) of lines 7 and 8. This time-memory

78

4.8. Reversibility and Application to Linear-Storage Klein Sampling

trade-off allows to use Klein’s sampler for k targets in space O(km) and in time at most�
1 + 2

k

�
times the time required by the classic Klein sampler.

4.8.1 Precision Analysis of the Compact Klein’s Sampler

In Section 3.4.2, we gave upper bounds on the precision required for Klein’s sampler to be
indistinguishable from a sampler with infinite precision. For the compact Klein’s sampler,
an additional variable has to be taken into account: the vectors of the orthogonalized basis
B̃ are not known in advance, but computed themselves on-the-fly, and therefore, they
may be subject to error propagation themselves. A precision analysis of the on-the-fly
computation of B̃ is therefore needed.

A standard approach would be to compute worst-case bounds on the precision with
which the inputs (b̃n, vn, (Hi, Ii)i) of Algorithm 4.7 must be known in order for the precision
of the computed matrix B̃ to fall in the bounds of Lemma 3.12. However, this approach is
inefficient here because the precision required in practice will be much less than in theory
due to the fact that theoretically, there could exist bases on which our “computing B̃
on-the-fly” procedure is rather unstable.

Instead, we favor a different approach: for a given basis B, we compute the associated
values (b̃n, vn, (Hi, Ii)i) at very high precision, and then estimate how many bits of
precision for (b̃n, vn, (Hi, Ii)i) are required in order that B̃ is in the bounds of Lemma 3.12
This can be done as a precomputation, and once we do it, we know for sure that every
time we run Algorithm 4.7, the matrix B̃ will be in the bounds of Lemma 3.12, because
computing it is a deterministic process which does not depend on the center c but only on
(b̃n, vn, (Hi, Ii)i).

Our practical experiments strongly suggest that for each coordinate of B̃, no more
than 30 bits of precision are lost in the case of NTRU lattices of dimension 2N � 4096.

4.8.2 Space Complexity of the Compact Klein’s Sampler

Suppose that B̃ needs to be known up to | log2 δ| bits, for some δ < 1. In order to be able
to run Algorithm 4.7 any time (without having to undergo the GSO beforehand), one only
needs to store (Hi, Ii, �b̃i�)i=1...n as well as b̃n, vn. However, it is straightforward to use
the relation �b̃i+1�2

�b̃i�2 = 1 −
�

Ci

Di

�2
to save even more space by just storing the �b̃i�’s and

deriving the Hi’s, Ii’s from them.
During the execution of Algorithm 4.7, one also needs to store the current b̃i, vi. So

overall the space requirement of Algorithm 4.7 is 5n(| log2 δ|+ b), where b is the “number of
bits lost” in steps 6, 7 of Algorithm 4.7: in other words, b is such that if b̃n, vn, (�b̃i�)i=1...n

are known up to | log2 δ| + b bits, then B̃ is guaranteed to be known up to | log2 δ| bits.
For NTRU lattices, this analysis can be refined: only half of the �b̃i� need to be known,

and b̃n, vn can be determined from b1 = b̃1 [GHN06, Corollary 1]. Instead of needing
to know 3n(| log2 δ| + b) bits beforehand, we just need n

2 (| log2 δ| + b), so the total space
requirement is 2.5n(| log2 δ| + b).

79

4. Gaussian Sampling in Quasilinear Space over Structured Lattices

4.9 Concrete Space Requirement of the Compact
Klein’s Sampler

In the previous sections, we showed that Klein’s sampler could be used in conjunction with
a “reversed” execution of the Levinson recursion to save space by a factor O(n). However,
to quantify in practice how much space we can save, it is important to know at which
precision this data needs to be stored.

Indeed, that for σ big enough, the output f of Algorithm 2.6 is statistically close to
the distribution DL(B),σ,c. However, the proof holds only when B, B̃, σ, c and the values
�b̃i�’s are known exactly. But in practice, one can not afford to do computations with the
exact representation of B̃ and of the �b̃i�’s, as it would be too costly in terms of space
and computational resources. Therefore, B̃ and the �b̃i�’s are stored up to some finite
precision, and this finite precision introduces errors which impact the output distribution
of the algorithm.

In a previous version of this work [LP15, Sections 9 and A], this was done by computing
directly how imprecisions in knowing B̃ and the �b̃i� affected the statistical distance
between the output of Klein’s sampler with exact input (that we will denote P0) or
input imprecise up to an uncertainty δ for each coordinate of B̃ (we denote the output
distribution Pδ). These computations were arguably tedious to read, so we use instead
the results from Section 3.4.2, which gives bounds on the KL divergence between P0 and
Pδ. Getting a bound on the statistical distance from the computations in Section 3.4.2 is
straightforward, so we do not detail them here.

In most applications, we could probably stick with the KL divergence as it allows to
roughly halve to required precision, but it gives slightly less generic security arguments
than statistical distance, so we chose to take the latter as our security metric. Besides,
choosing one metric or the other doesn’t affect significantly the ratio between the storage
requirements of our compact sampler and the classic one.

As an example, we took a NTRU basis for N = 1024, q = 1024. This allows some
simplifications to the formula of Lemma 3.12: m = n and we can assume that �b̃i� ≈
1.17√q (this is supported by facts in Chapter 6). This yields precisions that are given in
Table 4.2.

Table 4.2: Timings (in milliseconds) and space requirements (in bits and mega-bits) of the
classic and compact Gaussian Samplers (Classic GS and Compact GS). The implementation
was done in C++ using GMP. Timings were performed on an Intel Core i5-3210M laptop
with a 2.5GHz CPU and 6GB RAM.

Statistical distance from ideal 2−80 2−128 2−192

Precision needed Classic GS 115 bits 163 bits 223 bits
Compact GS 145 bits 193 bits 253 bits

Running time Classic GS 115 ms 170 ms 203 ms
Compact GS 446 ms 521 ms 523 ms

Space requirements Classic GS 115 Mb 163 Mb 223 Mb
Compact GS 0.35 Mb 0.47 Mb 0.63 Mb

As a test for the practicality of our compact Gaussian Sampler, we implemented
both the classic and compact Gaussian Samplers and compared their timings and space

80

4.10. Conclusion

requirements. As predicted by our computations, the compact Gaussian Sampler is not
much more than thrice slower (the slight precision growth makes it a bit slower than
predicted) than the classic one, while having space requirements smaller by between two
and three orders of magnitude. Our results are summarized in Table 4.2 and the complete
implementation can be found on https://github.com/tprest/Compact-Sampler.

4.10 Conclusion
In this work, we showed that the vast majority of bases used in efficient lattice-based
cryptography are compatible with an algorithm known as the Levinson recursion which
allows to orthogonalize them very efficiently. This led to orthogonalization of NTRU faster
than the prior art [GHN06], as well as reducing the quasiquadratic space complexity of
Klein’s sampler by a linear factor.

If would be interesting to see if the Krylov structure (see Section 4.1.3) that underlies
these bases can be exploited in other ways. Recent cryptanalytic works on these specific
bases have more focused on the algebraic number theoretic part [Ber14, CDPR15], but
this chapter has shown that exploiting “simple” algebraic and geometric properties can be
very efficient too.

81

Part II

New Gaussian Samplers over Ring
Lattices

After improving the existing Gaussian samplers, our goal is to build new ones. Many of
the most efficient cryptographic constructions are instantiated over ring lattices, which are
R-modules over some ring R. In this part of the thesis, we devise new Gaussian samplers
taking actively advantage of this structure over R and compare them to usual samplers.
This is done in three strongly interdependent chapters.

The Chapter 5 is our first take at exploiting the ring structure that underlies many families
of cryptographic lattices. In this chapter, we consider rings R that are the rings of
integers OK of a number field K – these include R = Z[x]/(xn − 1) and cyclotomic rings
R = Z[x]/(φm(x)), both of which are widespread in ring lattice-based cryptography. Our
sampler works for lattices over R, instead of usual lattices over Z. At a high level this
algorithm works like Klein’s sampler, but as a subroutine calls an instantiation of Peikert’s
sampler over R. The resulting Hybrid sampler is a quality-speed trade-off between Klein’s
and Peikert’s samplers. But as it is crafted specifically to take advantage of the ring
structure over R (unlike Peikert’s sampler which “passively” benefits from this structure),
one may hope that in practice it takes the best of each sampler. We verify this assumption
on a practical example in the next chapter.

In Chapter 6, we take the Full-Domain Hash signature scheme defined in [GPV08] and
instantiate it over NTRU lattices, a compact class of lattices that allow efficient instan-
tiations [DDLL13, DLP14]. As this signature scheme uses Gaussian sampling as a core
procedure, taking either Klein’s, Peikert’s or the Hybrid sampler will yield different trade-
offs between speed and security (assuming the dimension and modulus of the lattice
are fixed). After conducting extensive experiments and heuristics, it turns out that the
Hybrid sampler is close to taking the best of both worlds: it is about twice slower than
Peikert’s sampler and Õ(n) times faster than Klein’s sampler, but using it yields a scheme
whose security is closer to Klein’s. Additionally, the scheme we devised yields signatures
among the most compact in lattice-based cryptography, though its speed still needs to be
evaluated in practice.

83

4. Gaussian Sampling in Quasilinear Space over Structured Lattices

In Chapter 7, we discover that the ideas of the fast Fourier transform can be applied
to speed up the orthogonalization process of a circulant matrix. When d is composite, we
show that it is possible to proceed to the orthogonalization in an inductive way, leading
to a structured Gram-Schmidt decomposition. In turn, this structured Gram-Schmidt
decomposition accelerates the nearest plane algorithm, and makes it asymptotically as fast
as the round-off algorithm on circulant matrices. The results easily extend to cyclotomic
rings, and can be easily adapted to Gaussian Samplers.

A small part of Chapter 6 was published in Efficient Identity-Based Encryption
over NTRU Lattices [DLP14], a joint paper with Léo Ducas and Vadim Lyubashevsky
which was published at ASIACRYPT. All the rest is joint work with Léo Ducas.

84

Chapter 5

A Hybrid Gaussian Sampler for Ring
Lattices

5.1 Introduction
Currently, two main algorithms allow to do Gaussian Sampling over arbitrary lattices.
The first one is a randomized version of Babai’s nearest-plane algorithm [Bab85, Bab86]
due to Klein [Kle00] and Gentry, Peikert, Vaikuntanathan [GPV08]. It is also the one that
produces the shortest vectors but it has a sequential structure and runs in time Õ(n2),
even on ring lattices.

The second one is due to Peikert [Pei10] and can be seen as a randomized version of
Babai’s rounding algorithm [Bab85, Bab86]. In essence, Peikert’s sampler is very different
from Klein’s as its underlying idea essentially is that the convolution of two Gaussians
is also a Gaussian. In practice, it performs very differently from Klein’s sampler as it is
parallelizable. If the underlying lattice is endowed with a ring structure, Peikert’s sampler
can take advantage of it and run in quasilinear time Õ(n), where n is the dimension
of the lattice. However, its quality is worse than Klein’s sampler—that is, the size of
the outputted vector is significantly longer—which dilutes the security of underlying
cryptographic constructions.

5.1.1 Our Contribution
The main contribution of this chapter is a new discrete Gaussian sampler over ring lattices.
Our algorithm is constructed in two steps. First, we give ring variants for Klein’s and
Peikert’s samplers. Given a ring R, the ring variant of Klein’s sampler is a generalization
from sampling in lattices in Zm to lattices in Rm, whereas the ring variant of Peikert’s
sampler is simply an instantiation over R.

The ring variant of Klein’s sampler may run faster over ring bases than the original
algorithm. However, in order to do so it needs to invoke a fast sampler over R as an
internal oracle. So we use the ring variant of Peikert’s sampler to be this internal oracle.
The resulting algorithm is a hybrid sampler: at high-level it operates as Klein’s sampler,
but at low level it uses Peikert’s algorithm. Our hybrid sampler allows a trade-off between
the slow but high-quality sampler of Klein, and the fast but lower-quality sampler of
Peikert. As a by-product, we also obtain a hybrid between Babai’s nearest plane and
rounding algorithms.

85

5. A Hybrid Gaussian Sampler for Ring Lattices

The practical value of our hybrid sampler will then be assessed in the next chapter,
which also provides a practical signature scheme over NTRU lattices based on the Full-
Domain Hash signature framework of [GPV08].

5.1.2 Motivation
To understand the efficiency gain that lattices over rings allows, it is important to under-
stand the relation that this structure brings between vectors, matrices and polynomials,
which can be summarized as a “triple duality”.

A bit more formal explanation for the advantages provided by this ring structure
is that for any cyclotomic polynomial φm, there exists obvious isomorphisms between
Aφm(R[x]),Rϕ(m) and R[x]/(φm(x)). If we work with matrices and vectors in Aφm(R[x]),Rn

(where n = ϕ(m)), we can therefore gain a factor at least Õ(n) when performing some
operations (matrix addition, product, inversion, determinant and matrix-vector product
to cite the most common).

This is the fundamental reason that leads many ring lattice-based schemes to be very
efficient. What motivated this work was to devise a Gaussian sampler that would actively
take advantage of the ring structure. More explicitly, given a ring R, we wanted to craft a
sampler that would both be time-efficient and sample good quality vectors over R-lattices.

5.1.3 Choice and Implementation of the Ring
In essence, our techniques are independent of the choice of the number field and its ring
of integers, and they are relevant as long as the chosen field admits a fast multiplication
algorithm.

Our results are tested with typical rings used in lattice-based cryptography so far, that
is the ring of integers of the m-th cyclotomic field for m a power of 2. Other choices are of
course possible, but choosing a ring comes with the task of studying its geometry (that is
essentially finding a good Z-basis of that ring). The cyclotomic cases have been treated
extensively [LPR10, DD12, LPR13b].

In the light of recent cryptanalytic developments [Ber14, CDPR15], it is worth noting
that our result also applies to the so-called NTRU-prime rings R = Z[x]/(xp − x − 1)
as proposed by Bernstein [Ber14], yet the geometric aspect of such rings remains to be
studied.

5.1.4 Related Work
The seminal work of [GPV08] spawned a lot of papers trying to improve it. The most
notable may be [Pei10], which created a completely different sampler.

An important contribution is the work of [MP12], which introduces the use of a public
matrix G to generate a random matrix A along with some trapdoor information allowing
to do very efficient Gaussian sampling on L⊥

q (A). However, to the best of our knowledge
these techniques do not apply to specific families of lattices such as NTRU lattices. More
importantly, these techniques imply a blowup in the parameters of the lattice: the public
key is a matrix A ∈ Zn×m, where n is rank of the lattice and m > n log q. In comparison,
NTRU lattice only have m = 2n. It will however be interesting in future work to see if the
parameters of [MP12] can be relaxed to obtain lattices that approach NTRU lattices in
compactness.

86

5.2. Preliminaries

NP

H

R

O(n2)

O(n log n) Peikert’s Sampler

Hybrid Sampler

GPV/Klein’s Sampler

η��(Zn)s1(B)η��(Zn)�B̃�
σ

Running time

Our contributions and their performances compared to existing algorithms. On the left
are Babai’s algorithms: nearest plane (NP), hybrid (H) and rounding (R). On the right
are the Gaussian Samplers. For samplers, the lower σ can be set, the better.

Figure 5.1: Complexity and Quality Comparison of the Gaussian Samplers

Floating point arithmetic issues were partly addressed in [DN12a], which speeds up
both Klein’s and Peikert’s samplers to Õ(n2). For lattices over rings, [DN12a] also uses
the ring structure of the lattice to get Peikert’s offline phase to reach time and space
complexity Õ(n).

Rejection sampling techniques are used in [BLP+13] in order to use Klein’s sampler
with an even shorter standard deviation. The geometric properties of lattices over rings
are used in [LP15] to reduce the space requirement of Klein’s sampler to Õ(n).

5.1.5 Roadmap
In Section 5.2, we set up the definitions and notations that we will use throughout the
chapter. In Section 5.3, we define the ring variants of Klein’s and Peikert’s samplers. In
Section 5.4, we introduce our hybrid sampler and prove its correctness. In the ulterior
Chapter 6, we assess the practical interest of our new sampler by comparing its efficiency
and time complexity to those of Klein’s and Peikert’s algorithms.

5.2 Preliminaries
5.2.1 Notations
We recall that most of the notation conventions are stated in pages 11 to 19. Vectors will
be written with lowercase bold letters, matrices and bases in uppercase bold letters, and

87

5. A Hybrid Gaussian Sampler for Ring Lattices

scalars (which includes ring and field elements) in non-bold letters. A matrix B ∈ Km×n

may be viewed as the set of its row vectors B = {b1, ..., bn}. If B is non-singular, then its
set of row vectors form a basis.

5.2.2 Algebraic Background
Let K be a number field, i.e. an algebraic extension of Q of finite degree, and let d be
its degree over Q. Let ·� denote the complex conjugation over K, it is an involution and
an automorphism of K, which collapses to the identity if and only if K is a real number
field. We let R be the ring of integers of K (its maximal order), K+ be the maximal real
subfield of K and R+ ⊂ R be the ring of integers of K+ (we denote d+ the degree of K+).
We also define the completions K = R ⊗Q K and K+ = R ⊗Q K+. We note that those
completions are not necessarily fields.

The number field K comes with d complex embeddings K �→ C (forming a set S) ,
indexed by i ∈ {1, . . . , d}. Similarly K+ comes with d+ real embeddings K+ �→ R (forming
a set S+). Each σ in S (resp. S+) can be extended to the completion K (resp. K+).
An element e ∈ K (or K+) is invertible if and only if all its embeddings are non-zero.
Otherwise, e is said to be singular.

An element e of K+ is said totally positive (and we write e > 0) if for all the real
embeddings σ ∈ S+ we have σ(e) > 0. Note that if e is totally positive, then it is invertible.
If e is totally positive, it admits 2d+ square roots in K+, and we define its canonical square
root

√
e ∈ K+ as its unique square root that is totally positive :

√
e > 0. Note that

this implies σ(
√

e) =
�

σ(e) for all real embeddings σ ∈ S+. This extends naturally to
a definition of totally non-negative elements, noted e � 0. This also equips the field K+

(and its completion K+) with a partial order: e � e� ⇔ e− e� � 0.

Hermitian structure of K. Seen as a Q-vector space, K can be equipped with the
sesquilinear map �·, ·� : K × K → C, (a, b) = Tr(ab�) = �

σ σ(a)σ(b�). This sesquilinear
map extends to K. The associated norm x �→

�
�x, x� ∈ R is noted � · �.

Hermitian vector space over K. For vector spaces H = Kn, we can also define an
sesquilinear product �·, ·�K : H × H → K,

�a, b�K =
�

aib
�
i .

One indeed verifies that �a, a�K � 0 for any vector a ∈ K, and that �a, a�K �= 0 for any
non-zero vector a ∈ K \ {0} (we carefully note that it does not imply that �a, a�K > 0).
The associated norm is given by � · �K : a �→

�
�a, a�K. This map can be completed to

H × H → K where H = R⊗Q V .
The two sesquilinear maps compose nicely: denoting �·, ·�⊕n (resp. � · �⊕n) the

component-wise application of �·, ·� (resp. � · �), for all a ∈ Kn we have the follow-
ing commutative diagrams

88

5.2. Preliminaries

H Cn

K C

�a, ·�⊕n

�a, ·�K ��a�⊕n, ·�

��a�K, ·�

�a, ·�
H Rn

K+ R

� · �⊕n

� · �K � · �

� · �

� · �

that naturally defines a sesquilinear map H × H → C together with a norm � · � : H → R.

5.2.3 Lattice over a Ring
A lattice over the ring R is a discrete R-module of H = Kn equipped with the Euclidean
norm described above.

5.2.4 Gram-Schmidt Orthogonalization over Number Fields
Equipped with this algebraic background, we may now generalize the whole Section 2.1, in
particular notions related to the Gram-Schmidt orthogonalization (GSO) of a basis. For
a matrix B ∈ Kn×m, the conjugate transpose of B is, as the name suggests, the m × n
matrix B� whose coefficients verify (B�)ji = (Bji)�.

Definition 5.1. Let B = {b1, ..., bk} ∈ Hn and X ⊆ K. We note SpanX(b1, ..., bk) (or
SpanX(B)) the set {�1�i�k xibi, xi ∈ X}. In particular, SpanR(B) is an R-module and
and SpanK(B) is a K-vector space. If the vectors of B are linearly independent as elements
of a K-vector space, we say that B is a (K-)basis (of SpanK(B)).

We now have all the tools to generalize the Gram-Schmidt orthogonalization over
vectors of Km (instead of Rm).

Definition 5.2 (Generalized GSO). Let B = {b1, ..., bn} ∈ Hn. For any k ∈ �1, n�,
we note Vk

Δ= SpanK(b1, ..., bk). The (generalized GSO) of B is the unique basis B̃ =
{b̃1, ..., b̃n} ∈ Hn verifying any of these equivalent properties:

1. ∀k ∈ �1, n�, b̃k = bk −Proj(bk, Vk−1)
2. ∀k ∈ �1, n�, b̃k = bk −

k−1�
j=1

�bk,b̃j�K
�b̃j ,b̃j�K

b̃j

3. ∀k ∈ �1, n�, b̃k ⊥ Vk−1 and (bk − b̃k) ∈ Vk−1

Noting Ṽk
Δ= SpanK(b̃1, ..., b̃k), we also have: ∀k ∈ �1, n�, Ṽk = Vk.

As the matrix B̃ in the previous lemma is uniquely defined, we can also generalize
the Gram-Schmidt norm (Def. 2.19). Just as the usual Gram-Schmidt norm is useful for
Klein’s sampler, ours will be useful for its ring version.

Definition 5.3 (Generalized Gram-Schmidt norm). Let B = {b1, ..., bn} ∈ Hn be a basis,
and B̃ = {b̃1, ..., b̃n} its Gram-Schmidt orthogonalization. We call (K-)Gram-Schmidt
norm, and note

���B̃
���
K

, the smallest value in R+ such that

∀i ∈ �1, n�,
���B̃
���
K
� �b̃i�K

89

5. A Hybrid Gaussian Sampler for Ring Lattices

This definition subsumes and encompasses notions used in distinct Gaussian samplers.
For K = R, it matches the definition of the Gram-Schmidt norm from Definition 2.21
(and also from e.g. [ABB10b, AFV11, ADM12]). And for n = m = 1, the generalized
Gram-Schmidt norm coincides with the definition of the largest singular value s1(B), used
in [Pei10] to quantify the standard deviation of the output of Peikert’s sampler. We recall
that the largest singular value s1(B) of a real matrix B is defined by s1(B) = maxx�=0

�xB�
�x� .

5.2.5 Gaussians
The norm � · � : Kn → R+ defined at the end of Subsection 5.2.2 also allows to generalize
the entire Section 2.3. The Gaussian function ρ : Kn → (0, 1] is defined as follows:

ρ(x) Δ= exp
�
−�x�2/2

�

Replacing R with K, the rest of Subsection 2.3 is unchanged, except for the Lemma 2.32
which needs to be slightly rephrased:

Lemma 5.4 (Generalization of Lemma 2.32). Let K be a number field of degree d over Q,
and R be its ring of integers. For any � ∈ (0, 1):

η�
�(Rn) � 1

π

�
1
2 log

�
2nd

�
1 + 1

�

��

5.3 Ring Variants of Klein’s and Peikert’s Samplers
In this section, we present ring variants of Klein’s and Peikert’s samplers.

5.3.1 A Ring Variant of Klein’s Sampler
Here we present a ring generalization of Klein’s algorithm, where Z (resp. Q and R) is
replaced by R (resp. K and K). To get an intuition of why this could be faster than
Klein’s sampler, see that each output is of the form v = �

i zibi ∈ Rm, where the zi ∈ R.
Then this algorithm samples an entire zi at each step, whereas the original algorithm from
Klein can only sample one coordinate of one zi at each step.

Algorithm 5.1 RingKlein(R, B, B̃, σ, c)
Require: Basis B = {b1, ..., bn} ∈ Rn×m, its GSO B̃ = {b̃1, ..., b̃n} ∈ Kn×m, σ ∈ K+,

target c ∈ Km

Ensure: v sampled in a distribution close to DSpanR(B),σ,c
1: cn ← c ∈ Km

2: vn ← 0 ∈ Rm

3: for i← n, ..., 1 do
4: di ← �ci, b̃i�K/�b̃i�2

K ∈ K
5: Σi ← σ2/�b̃i�2

K ∈ K
6: zi ← Sample(R, Σi, di) ∈ R
7: ci−1 ← ci − zibi ∈ Km

8: vi−1 ← vi + zibi ∈ Rm

9: end for
10: return v0

90

5.3. Ring Variants of Klein’s and Peikert’s Samplers

In Algorithm 5.1, Sample is assumed to be a perfect discrete Gaussian sampler over R:
given a ring R, a covariance Σ ∈ K+ and a center d ∈ K, we assume Sample(R, Σ, d) =
DR,

√
Σ,d. This mirrors the sampler in [GPV08], which uses a discrete Gaussian sampler

over Z as an oracle. Here Z is replaced by R, which of course raises practicality issues,
but these questions will be addressed in Section 5.4.

The rest of this subsection is devoted to analyzing the correctness of Algorithm 5.1.
Since the lemmas and their proofs are mostly identical to similar counterparts in [GPV08,
DLP14], readers interested only in the practical applications may wish to acknowledge
Theorem 5.7 and then skip to the next section.

Lemma 5.5. For any input (R, B, B̃, σ, c) and output v = �
i ẑibi ∈ SpanR(B) of

RingKlein,
v− c =

�

i

(ẑi − di)b̃i

where the values ci, ẑi are as in RingKlein(R, B, B̃, σ, c)→ v.

Proof. The proof is identical to the proof of Lemma 4.4 in [GPV08]. The only difference is
that Z (resp. R) is replaced with R (resp. K), and therefore Λ(B) (resp. SpanR(b1, ..., bk))
has to be replaced with SpanR(B) (resp. SpanK(b1, ..., bk)).

Lemma 5.6. For any input (R, B, B̃, σ, c) and output v = �
i ẑibi ∈ SpanR(B) of

RingKlein, the probability that v is output is exactly

ρσ,c(v) ·
�

1�i�n

1
ρ√

Σi,di
(R)

Proof. For each i, the probability that zi = ẑi (conditioned on zj = ẑj for all j > i) is
exactly DR,

√
Σi,di

(ẑi). Therefore the probability that v is output is

�

1�i�n

DR,
√

Σi,di
(ẑi) =

�
1�i�n ρ√

Σi,di
(ẑi)�

1�i�n ρ√
Σi,di

(R)

In the expression above, the numerator is
�

1�i�n

ρ√
Σi,di

(ẑi) =
�

1�i�n

ρσ

�
(ẑi − di)�b̃i�K

�
= ρσ

�
Σi(ẑi − di)b̃i

�
= ρσ,c(v)

The first equality comes from the fact that Σi = σ2/�b̃i�2
K, the second one from the

pairwise orthogonality of the b̃i’s, and the last one from Lemma 5.5.

Theorem 5.7. Let B = {b1, ..., bn} ∈ Rn×m be a R-basis, B̃ = {b̃1, ..., b̃n} ∈ Kn×m

its GSO, c ∈ Rm. Let � ∈ (0, 1
2n

) and σ ∈ K+ such that σ � η�
�(R) · |B̃|K. The

statistical distance (resp. KL divergence) between DSpanR(B),σ,c and the output distribution
of RingKlein(R, B, B̃, σ, c) is upper bounded by 2n� (resp. 2

�
1−

�
1+�
1−�

�n�2 ≈ 8n2�2).

Proof. The proof is almost identical to the proof of Theorem 2 in [DLP14].
Let P = DSpanR(B),σ,c, and Q be the output distribution of RingKlein(R, B, B̃, σ, c).

By assumption,
√

Σi � η�
�(R), so from Lemma 2.31 we can infer that ρ√

Σi,di
(R) ∈�

1−�
1+�

, 1
�

· ρ√
Σi

(R). Applying Lemma 5.6 then gives us a relative error between P and Q:

∀v ∈ SpanR(B), |P(v)−Q(v)| �
�

1−
�1 + �

1− �

�n�
P(v)

91

5. A Hybrid Gaussian Sampler for Ring Lattices

At this point we get the statistical distance (resp. KL divergence) using a straightforward
computation (resp. Lemma 3.5).

5.3.2 A Ring Variant of Peikert’s Sampler
In this subsection, we present and analyze a ring variant of Algorithm 1 from [Pei10].
Although we do not introduce new techniques to allow such a transformation (which was
started in [Pei10] and completed in [DN12a]), we provide a complete description of a ring
variant and give an analysis of its divergence from a perfect sampler.

For this step, we require a Z-basis of the ring R, that we denote by (e1, . . . , ed).
For example, if R = Z[x]/(f(x)) one may take a power-basis 1, x, . . . , xdeg(f)−1, but
other choices may lead to better results (see [LPR13a]). One note that for the variance
Σe = �

eie
�
i ∈ K+, it is essentially trivial to sample a distribution close to DR,η·

√
Σe,ci

(where η = η�(Z) ∈ R), by computing �1�i�d aiei where each ai is drawn from DZ,η,ci
and

c = �
1�i�d ciei.

Algorithm 5.2 RingPeikert(R, Σ, c)
Require: A variance Σ ∈ K+, a target c ∈ K, a precomputed value b ∈ K such that

Σe(bb� + η2) = Σ
Ensure: z sampled according to DR,σ,c

1: y ← b · DK,
√

Σe
∈ K

2: z ← DR,η
√

Σe,c+p ∈ R
3: return z

This algorithm is a particular case of Peikert’s sampler, unlike RingKlein which is a
generalization of Klein’s sampler. Therefore the analysis is much easier as we already
studied Peikert’s sampler in the general case (Theorem 2.34 and Lemma 3.7).

Theorem 5.8. Let � ∈ (0, 1
2), b ∈ K such that Σe(bb� + η2) = Σ and η � η�

�(R). The
statistical distance (resp. KL divergence) between the output of RingPeikert(R, Σ, c) and
DR,

√
Σ,c is upper bounded by ≈ 2� (resp. ≈ 8�2).

Proof. Let us take Λ1 := R, Σ1 := η2Σe, Σ2 := bbΣe, c := c, y := y. We can apply
Lemma 3.7 and conclude.

5.4 Hybrid Algorithms for Sampling and Reduction
5.4.1 A Hybrid Sampler
In this section, we show that the two algorithms presented in Section 5.3 can be efficiently
combined: more precisely, using RingPeikert as a subroutine of RingKlein will give us a new
discrete Gaussian sampler.

Definition 5.9. Using the notations from Section 5.3, we call Hybrid sampler and note
HybridSampler(R, B, B̃, σ, c) the algorithm RingKlein(R, B, B̃, σ, c) where instead of calling
a perfect sampler Sample(R, Σi, di) in step 6, we call RingPeikert(R, Σi, di).

We now show that for carefully chosen parameters, the output distribution of the
Hybrid sampler is close (in the sense of either the statistical distance or the KL divergence)

92

5.4. Hybrid Algorithms for Sampling and Reduction

to a perfect discrete Gaussian. Given the nature of this sampler (it combines RingKlein and
RingPeikert), we have to take into account the divergence of both RingKlein and RingPeikert
from a “perfect behavior”.

It is tempting to first quantify the divergence between HybridSampler and RingKlein,
and then use the triangle inequality along with Theorem 5.7 to get the divergence between
HybridSampler and a perfect discrete Gaussian. This approach works in the case of statis-
tical distance but is useless for KL divergence since the latter does not verify the triangle
inequality. Instead, we directly compute the statistical distance (resp. KL divergence)
between both distributions.

Theorem 5.10. Let B = {b1, ..., bn} ∈ Rm×n be a R-basis, B̃ = {b̃1, ..., b̃n} ∈ Km×n its
GSO and c ∈ Rm. Let � ∈ (0, 1

6n
) and σ ∈ K+ such that σ � η�

�(R) · |B̃|K.
The statistical distance (resp. KL divergence) between DSpanR(B),σ,c and the output

distribution of HybridSampler(R, B, B̃, σ, c) is upper bounded by 1
2((1+�

1−�
)3n−1) ≈ 3n� (resp.

2((1+�
1−�

)3n − 1)2 ≈ 72n2�2).

Proof. This proof reprises elements from the proofs of Theorems 5.7 and 2.34.
Let Q be the output distribution of HybridSampler(R, B, B̃, σ, c) and P = DSpanR(B),σ,c.

Divergence between P and Q come from both the use of RingKlein and RingPeikert.
Theorem 5.7 (resp. 5.8) quantifies the difference between the output of RingKlein (resp.
RingPeikert) and a perfect Gaussian, upon the condition σ � η�

�(R) · |B̃|R (resp.
√

Σ1 �
η�

�(Λ1)). Coincidentally, in this case, the two conditions end up being exactly the same:
the � mentioned in Theorems 5.7 and 5.8 are actually the same here.

Let v = �
i ẑibi ∈ SpanR(B). For any i, let Qi be the output distribution of

RingPeikert(R, Σi, di), where the Σi, di are as in v ← Q. Qi(ẑi) ∈
�

1−�
1+�

, 1+�
1−�

�
DR,

√
Σi,di

,
as detailed in the proof of Theorem 2.34. Therefore

Q(v) = �
1�i�n Qi(ẑi)

∈
�
(1−�

1+�
)n, (1+�

1−�
)n
��

i DR,
√

Σi,di
(ẑi)

∈
�
(1−�

1+�
)n, (1+�

1−�
)n
�

ρσ,c(v)�
i

ρ√
Σi,di

(R)

∈
�
(1−�

1+�
)n, (1+�

1−�
)n
� �

1, (1+�
1−�

)n
�

ρσ,c(v)�
i

ρ√
Σi

(R)

Where the second equality comes from the fact that for each i, Qi(ẑi) ∈
�

1−�
1+�

, 1+�
1−�

�
DR,

√
Σi,di

,
the third one from Lemma 5.6 and the fourth from Lemma 2.31.

Let α = ρσ,c(SpanR(B))�
i

ρ√
Σi

(R) . We can then write Q(v) ∈ α
�
(1−�

1+�
)n, (1+�

1−�
)2n
�

P(v). Summing
Q(v) over SpanR(B) yields

1 ∈ α

��1− �

1 + �

�n

,
�1 + �

1− �

�2n
� =1� �� ��

v∈SpanR(B)
P(v)

This implies that α ∈
�
(1−�

1+�
)2n, (1+�

1−�
)n
�
, so we get a relative error bound between P and Q:

|Q(v)− P(v)| �
��1 + �

1− �

�3n

− 1
�

P(v)

We can then conclude using a straightforward computation (resp. Lemma 3.5).

The bound on the statistical distance (resp. KL divergence) can then be used to assert
the security of the scheme following a standard argument (resp. Lemma 3.3).

93

5. A Hybrid Gaussian Sampler for Ring Lattices

5.4.2 Hybrid Babai and Size-Reduction Algorithms
One could see Babai’s rounding (resp. nearest plane) algorithm as a specific instantiation of
Klein’s (resp. Peikert’s) sampler for a standard deviation σ = 0. While Babai’s algorithms
[Bab85, Bab86] were invented long before the aforementioned samplers and do not serve
the same purpose, it is nevertheless correct to view them like this, under the convention
that a Gaussian with standard deviation 0 behaves like an exact rounding. Therefore, the
method used to create a hybrid sampler from Klein’s and Peikert’s sampler can be used
to create a hybrid approximation algorithm for the closest vector problem from Babai’s
approximation algorithms, which can also be seen as a ring generalization of algorithm
NearestPlane.

Definition 5.11. Let B ∈ Rm×n be a R-basis, B̃ = its GSO and c ∈ Rm. We define

HybridBabai(R, B, B̃, ·) Δ= HybridSampler(R, B, B̃, 0, ·)

We now give a bound on the output of the algorithm. The proof can be done either by
generalizing the proof of Babai’s nearest plane algorithm (Proposition 2.26) or by reprising
the proof of Theorem 5.10.

Lemma 5.12. For any c ∈ Km, HybridBabai(R, B, B̃, c) outputs a point v verifying:

v− c =
�

1�i�n

εib̃i

where εi ∈ K are such that, for all i � n, −1
2 � εi � 1

2 (as inequalities of K).

Since size-reducing a basis of n elements consists of n − 1 sequential executions of
NearestPlane on this basis, this means we can also generalize the size-reduction over R-
modules. We then get a size-reduction algorithm for basis over R. A very similar and
actually slightly more generic algorithm already exists in [FS10, Figure 3], so we do not
elaborate further on this topic.

5.5 Precision Analysis of the Hybrid Sampler
In this section, we run a precision analysis of our sampler. Indeed, using it in exact
arithmetic is very costly, if ever possible (the subroutine samples from a continuous
Gaussian), so in practice it has to be executed floating-point arithmetic.

To simplify our analysis, we analyze our sampler for R-lattices where R = Z[x]/(xk +1):
all the operation over R-vectors and R-matrices can then be described using “usual”
matrices and vectors over R, and are less prone to error propagation than rings such as
Z[x]/(φp(x)) = Z[x]/(xp−1 + ... + x + 1) for a prime p (for these rings, one solution is to
embed them in Z[x]/(xp − 1)). We also consider that the center c has integer coefficients,
as it does in practice. To clarify the setting to readers, here is how the Hybrid sampler
can be described when R = Z[x]/(xk + 1):

94

5.5. Precision Analysis of the Hybrid Sampler

Algorithm 5.3 Hybrid(R, B, B̃, Σ, c)
Require: Basis B = {B1, ..., Bn} ∈ Zkn×km, its block GSO B̃ = {B̃1, ..., B̃n} ∈ Qkn×km,

Σ ∈ Qk×k, target c ∈ Zkm
q

Ensure: v sampled in a distribution close to DSpanR(B),
√

Σ,c
1: cn ← c ∈ Zkm

2: vn ← 0 ∈ Zkm

3: for i← n, ..., 1 do
4: di ← ciB̃+

i ∈ Qk

5: Σi ← Σ(B̃iB̃t
i)−1 ∈ Qk×k

6: xi ← Dk
1 ∈ Rk

7: yi ← xi · Ci, where Ci =
√

Σi − r2Ik ∈ Rk

8: zi ← �di − yi�r ∈ Zk

9: ci−1 ← ci − ziBi ∈ Zkm

10: vi−1 ← vi + ziBi ∈ Zkm

11: end for
12: return v0

PeikertSampler subroutine:
zi ← DZk,

√
Σi,di

Each of the matrices Bi, B̃i is a row concatenation of m anticirculant matrices. By
the canonical isomorphism between R and AN(R) (resp. between K and AN(K)), the
matrices Bi, B̃i may be viewed as the matrix form of the vectors bi, b̃i of Algorithm 5.1.

As the hybrid sampler mixes Klein’s and Peikert’s samplers, its precision analysis
also borrows elements from the analyses of both algorithms. Readers interested into
understanding the details of the proof of Lemma 5.13 should be familiar with the proof of
Lemma 3.16. It thoroughly explains some computations whose details are omitted in the
proof of Lemma 5.13 to keep the proof from being unnecessarily long.

Lemma 5.13. Let k, m, n, q ∈ N� such that k � 128. Let � ∈ (0, 1/4), B = {B1, ..., Bn} ∈
Zkn×km a basis, B̃ = {B̃1, ..., B̃n} its block GSO, Σ ∈ Qk×k and a target c ∈ Zkm

q . For
i ∈ �1, n�, we note Di

Δ= B̃+
i . Let r � η�

�(Zk) such that ∀i ∈ �1, n�, Σ > r2(B̃iB̃t
i). Let

δ ∈ [0, .01), (C̄i, D̄i)i such that for each i ∈ �1, n�:

• s1(Ci − C̄i) � δ · s1(Ci)

• s1(Di − D̄i) � δ · s1(Di)

Let E denote Algorithm 5.3 using perfectly precomputed values (Ci, Di)i and a perfect oracle
N0 to sample xi ← Dk

1 . Similarly, Ē denotes Algorithm 5.3 using (possibly imperfect)
precomputed values (C̄i, D̄i)i and an oracle Nδ (see Definition 3.14) to sample xi ← Dk

1 .
In addition, let D (resp. D̄) be the output distribution of E (resp. Ē). Finally, let:

δc = δ
√

k · max
i

[q
√

ms1(Di) + 3s1(Ci)]

C = n

r2 · δc ·
�
r
√

2πk + r
√

2πk�

1− �
+ δc

�

The KL divergence between D and D̄ is bounded as follows:

DKL(D̄�D) � (eC − 1)2

95

5. A Hybrid Gaussian Sampler for Ring Lattices

Remark 5.14. Once again, the expression of the bound for the KL divergence can be
simplified for practical parameters: if δ, �� 1, then

eC − 1 ≈ C ≈ 2.5nkδ

r
· max

i
[q
√

ms1(Di) + 3s1(Ci)].

Proof. The goal of this proof is to bound the ratio D(v)/D̄(v) for an overwhelmingly large
(in terms of probability) set of possibly outputs v ∈ L(B).

Let v̂ = �
i ẑiBi be a potential output of Algorithm 5.3. During the execution of E ,

each ẑi is sampled from �di−yi�r, where di = ciDi, yi = xiCi and xi is sampled from Dk
1 .

Similarly, during the execution of Ē , each ẑi is sampled from �d̄i − ȳi�r, where d̄i = ciD̄i,
ȳi = x̄iC̄i and x̄i is sampled from Dk

1 then rounded to a relative precision at least δ.
For any i, let Di (resp. D̄i) denote the output distribution of �di−yi�r (resp. �d̄i−ȳi�r),

so that we have D(v̂) = �
i Di(ẑi) (resp. D̄(v̂) = �

i D̄i(ẑi)). For the reason explained
in Remark 3.15, we have ∀i, �xi�, �x̄i� �

√
2k with overwhelming probability. Since x̄i

approximates xi with relative precision at least δ, we also have �x̄i− xi� � δ�xi� � δ
√

2k.
Therefore:

yi − ȳi = xiCi − x̄iC̄i

= xi(Ci − C̄i) + (xi − x̄i)C̄i

⇒ �yi − ȳi� � 2.1
√

2kδs1(Ci)
(5.1)

which is straightforward from the triangle inequality, the fact that �xC� � �x�s1(C)
and that s1(C̄i) � s1(Ci) + s1(C̄i −Ci) � (1 + δ)s1(Ci) � 1.1s1(Ci). As an immediate
consequence:

�(di − yi)− (d̄i − ȳi)� � �di − d̄i�+ �yi − ȳi�
� δ[q

√
kms1(Di) + 2.1

√
2ks1(Ci)]

� δc

(5.2)

Using the exact same reasoning and techniques as in the proof of Lemma 3.16, we have:

∀i, A � log
�Di(ẑ)

D̄i(ẑ)

�
� B (5.3)

Where |A| � 1
r2 · δc ·

�
r
√

2πk + r
√

2πk�
1−�

�
and |B| � 1

r2 · δc ·
�
r
√

2πk + r
√

2πk�
1−�

+ δc

�
. We have

|A|, |B| � C/n, therefore combining the relations D(v̂) = �
i Di(ẑi), D̄(v̂) = �

i D̄i(ẑi) and
equation 5.3 yields:

e−C � D(v̂)
D̄(v̂)

� eC (5.4)

Which allows to conclude using Lemma 3.5.

5.6 Trade-offs Using Subfields
Let us assume that we are working in a number field K of degree n that admits a subfield
J of degree b|n, and let d = n/b be the relative degree of K over J. The field K may then
be seen as a sub-algebra of the algebra of matrices Jd×d. That way, a basis B ∈ K may
be seen as a matrix of Jdk×dk, and one may run our algorithm over J rather than K to
improve the quality of our sampler, at the price of slowing it down. At the extreme case,
we may choose J = Q in which case we are simply back to running the original algorithm
of Klein.

96

5.6. Trade-offs Using Subfields

Such a trade-off exists for all cyclotomic number fields of non-prime conductor. Indeed,
if Kn denotes the n-th cyclotomic number field, then Kd is a subfield of Kn if and only if
d divide n.

Because such an algebraic description is not exactly straightforward to translate into
an implementation, in the next section we show explicitly how to realize this trade-off
when n is a power of 2 and d = n/2.

5.6.1 Explicit Trade-off for power-of-two Cyclotomic Fields

In this subsection, m will be a power of two, N = ϕ(m) = m/2, Km = Q[x]/(φm) =
Q[x]/(xN + 1) and Zm = Z[x]/(φm). The reader will notice, that, in this case, the
decomposition as a matrix over a subfield is extremely similar to the steps of a Fast Fourier
Transform.

Let f ∈ Km and suppose we want to sample a spherical Gaussian over the lattice
SpanZm

(f). This lattice is either generated by the N -dimensional Z-basis B Δ= AN(f) or
by the 1-dimensional Zm-basis f .

Using the Hybrid sampler here seems pointless at first sight, since we end up with
Peikert’s sampler if we use Zm as base ring (i.e. Km as base field).

Fortunately Km is a field extension of Km/2: Km
∼= (Km/2)2. More practically, if one

notes f(x) = f1(x2) + xf2(x2), a simple permutation of rows and columns transforms B
into another matrix B� with a structure over Km/2:

P t
π × B × Pπ =

�
Aφm(f1) Aφm(f2)
Aφm(xf2) Aφm(f1)

�
Δ= B�

Where Pπ is the permutation matrix associated to π, defined as:

�
π(2k + 1) = k + 1
π(2k) = N

2 + k + 1

Now we can use the Hybrid Sampler with the basis B� using Zm/2 as a base ring instead
of Zm. This process can of course be recursively iterated: one then obtains a basis with a
ring structure over Zm/4, then Zm/8, and so on, down to Z, which corresponds to Klein’s
sampler.

This is of course a trade-off: while breaking down Zm in smaller rings allows to sample
with a smaller standard deviation, the running time of the new sampler can be up to twice
longer, as Zm/2 is twice as small as Zm/2 but the basis now contains four times more ring
elements. In Chapter 7, taking a different representation will allow to avoid this caveat
and push this idea to its limit.

Figure 5.2 illustrates this trade-off: f is split between its even and odd coefficients,
and commuting the basis elements separates them.

97

5. A Hybrid Gaussian Sampler for Ring Lattices

P t
π×

0 1 2 3 4 5 6 7

-7 0 1 2 3 4 5 6

-6 -7 0 1 2 3 4 5

-5 -6 -7 0 1 2 3 4

-4 -5 -6 -7 0 1 2 3

-3 -4 -5 -6 -7 0 1 2

-2 -3 -4 -5 -6 -7 0 1

-1 -2 -3 -4 -5 -6 -7 0

×Pπ =

0 2 4 6 1 3 5 7

-6 0 2 4 -7 1 3 5

-4 -6 0 2 -5 -7 1 3

-2 -4 -6 0 -3 -5 -7 1

-7 1 3 5 0 2 4 6

-5 -7 1 3 -6 0 2 4

-3 -5 -7 1 -4 -6 0 2

-1 -3 -5 -7 -2 -4 -6 0

Figure 5.2: An example of trade-off: using Pπ as a change-of-basis matrix, with π =
(1 2 3 4 5 6 7 8

1 5 2 6 3 7 4 8), allows us to turn a Z[x]/(x8 + 1)-basis into a Z[x]/(x4 + 1)-basis with twice
as many elements.

98

Chapter 6

Full-Domain-Hash Signatures over
NTRU Lattices

6.1 Introduction

In the previous chapter, we devised a Hybrid algorithm for performing Gaussian sampling
over R-lattices for some ring R. This algorithm mixes Klein’s and Peikert’s samplers,
and as a result it yields a speed-quality trade-off between them. The goal of the current
chapter is twofold.

We perform a detailed instantiation of the Full-Domain Hash (FDH) signature scheme
from [GPV08], which we instantiate over the class of NTRU lattices. While proper use of
lattice trapdoors [GPV08] is quite recent, the design of compact lattices with quite a good
trapdoor comes from the NTRU-cryptosystems [HPS98, HHGP+03]. Unlike more recent
constructions [MP12], those lattices are not necessarily uniformly random (unless one
makes impractical choices of parameters [SS11]), in which case they may not benefit from
theoretical worst-case hardness [Ajt96, MR07]. Nevertheless, when it comes to practical
instantiation and concrete security, this type of construction remains to date the most
efficient one. The signature scheme that we obtain yields very compact signatures, whose
sizes are competitive with those of the BLISS [DDLL13] signature scheme. However, the
practical efficiency of this scheme still remains to be evaluated. While we expect the
verification running time will be similar to BLISS’, the signing procedure will very likely
be much slower.

Our instantiation of the FDH signature scheme of [GPV08] uses Gaussian sampling
as a central procedure. This is where we can compare the three samplers. Each of them
yields a different speed-security trade-off. Extensive experiments backed up by heuristics
strongly suggest that for fixed parameters N = 512, q = 1024, Klein’s sampler attains a
security of 192 bits, against 160 for our Hybrid sampler and 120 bits for Peikert’s. So
security-wise, we are closer to Klein’s sampler. But on the efficiency front, our sampler is
Õ(n) times faster than Klein’s sampler and only about twice slower than Peikert’s sampler.
While not being optimal on both fronts, our Hybrid sampler is closer in quality to Klein’s
sampler, and much closer to Peikert’s sampler.

99

6. Full-Domain-Hash Signatures over NTRU Lattices

6.1.1 Roadmap
This chapter is organized as follows. We first give complements on NTRU lattices in Sec-
tion 6.2. Then Section 6.3 details the signature scheme, gives parameters and summarizes
our results. For readers interested in the specificities of each sampler, Section 6.4 detail
briefly how the results were obtained for each of them. Additionally, Section 6.5 gives
heuristic explanations and asymptotic estimates to the quality gap between the different
samplers.

6.2 Complements on NTRU Lattices
NTRU lattices were briefly defined in Section 4.7 but we give a more formal definition of
them in this section. In the rest of the chapter, m ∈ N� will be a power of two, q ∈ N�,
N = ϕ(m), Z = Z[x]/(φm(x)) = Z[x]/(xN + 1) and K = Q[x]/(φm(x)).

Definition 6.1 (NTRU Lattices). Let f, g, F, G ∈ Z be such that

fG− gF = q mod (xN + 1) (6.1)

Then the NTRU lattice generated by f, g, F, G is the lattice generated by the rows of
the block matrix

Bf,g,F,G =
�

A(g) −A(f)
A(G) −A(F)

�

Where A(p) = Aφm(p) is the N × N matrix which i-th row is the coefficients of xi−1 ·
p(x) mod (xN + 1).

How to find (F, G) given (f, g) is not important for us since it is all done in the
key generation. It can be achieved efficiently [HHGP+03] and we describe one way
(which is not really new) of doing it in the ulterior Section 8.3, Algorithm 8.1. More-
over, for any fixed (g,−f) and distinct (G1,−F1), (G2,−F2) verifying equation 6.1,
Λ(Bf,g,F1,G1) = Λ(Bf,g,F2,G2) so in the rest of the chapter we can simply assume that
(G,−F) is reduced with respect to SpanR((g,−f)) using RoundOff (Algorithm 2.2) and
note Bf,g

Δ= Bf,g,F,G.
Some properties of anticirculant matrices A(·) are given in Section 4.2.4. In addition,

when m is a power of two, the embedding norm Q[x]/(φm(x)) coincides with the usual
norm and A(p)t = A(f �), which makes many operations simpler and more transparent.

Proposition 6.2. Let f, g, F, G ∈ R verifying equation 6.1 and h = gf−1 mod q. Then

Ah,q =
�
−A(h) IN

qIN ON

�
and Bf,g =

�
A(g) −A(f)
A(G) −A(F)

�
generate the same lattice

Λh,q = {(u, v) ∈ Z2|u + vh = 0 mod q}

Proof. Consider P = Ah,q × B−1
f,g the change-of-basis matrix between Ah,q and Bf,g. One

can check that qP = O2N mod q, so P ∈ Z2N×2N . Also, | det(P)| = 1 so P−1 ∈ Z2N×2N .
We can conclude that Ah,q and Bf,g both generate the same lattice.

If N, q are high enough and f, g are generated with enough entropy, we expect h to be
computationally indistinguishable from random and f, g to be hard to recover. Bf,g and
Ah,q then become ideal building blocks (as a private and public key) for building public
key cryptographic primitives.

100

6.2. Complements on NTRU Lattices

A Note on NTRU Signatures

The history of NTRU lattices is very interesting. As stated by Lyubashevsky [Lyu12a],
their construction naturally follows from a consequence of a series of recent works on (ring)
lattice-based cryptography [Reg05, LPR10, SS11]. Yet the original construction [HPS98]
predates all these works.

If the original NTRUEncrypt [HPS98] encryption scheme has successfully resisted years
of cryptanalysis and remains to date the most efficient public-key encryption key over
lattices, it has taken longer to obtain a secure signature scheme. Various attempts to
do Hash-and-Sign schemes on NTRU lattices [HPS01, HHGP+03, eHGH+08] have been
subsequently broken [GJSS01, GS02, NR06, DN12b]. Only recently have provably secure
constructions [GPV08, Lyu12b] led to secure signature schemes over NTRU lattices [SS11,
ABDG14], including the most efficient known signature scheme over lattices [DDLL13].

Sampling over NTRU Lattices

NTRU lattices are not only Z-modules of dimension 2N , but also Z-modules of dimension
2. This non-trivial structure is what allows us to use our Hybrid sampler. Depending if
we take Z, Z or Z2×2 as our base ring R, we can do Gaussian sampling in three different
ways:

1. Taking R = Z, our hybrid algorithm is simply the original Klein’s sampler. This
approach is developed in Subsection 6.4.1.

2. Taking R = Z, we get a sampler that is strictly different from Klein’s and Peikert’s
sampler. Indeed, L(Bf,g) can be seen as a Z-module of rank 2. This approach is
developed in Subsection 6.4.2.

3. Taking R = Z2×2, one gets Peikert’s sampler.1 This approach is developed in Subsec-
tion 6.4.3.

The Figure 6.1 explicits the differences between each approach.

b1

1

b2

2

b3

3

b4

4

b5

5

b6

6

b7

7

b8
8b9

9

b10

10

b11

11

b12

12

b13

13

b14

14

b15

15

b16

16

Original basis Klein

2

1

Hybrid

1

Peikert

Each sampler outputs a vector v = �
i zibi. The zi’s are computed one by one for Klein’s

sampler (the figure gives the order in which they are computed), all at the same time for
Peikert’s, and N at a time for our instantiation of the Hybrid sampler over NTRU lattices.

Figure 6.1: High Level Differences between the Gaussian Samplers

1To formally subsume that case with our algorithm, we would need to generalize our description to
non-commutative rings.

101

6. Full-Domain-Hash Signatures over NTRU Lattices

6.3 Methodology and Global Results
To compare the three samplers, we instantiate over NTRU lattices the provably secure
FDH signature scheme proposed in [GPV08], which is also described in Section 2.5.1,
Figure 2.6.

Algorithm 6.1 KeyGen(N, q)
Require: N, q
Ensure: Private key B ∈ Z2N×2N

q and public key h ∈ Zq

1: f, g ← D for some distribution D over Z
2: Compute F, G ∈ Z such that fG− gF = q mod (xN + 1)
3: h = gf−1 mod q

4: B =
�

A(g) −A(f)
A(G) −A(F)

�

5: SK← B, PK← h

Here, the signing key B is a short basis orthogonal to A =
�
I|A(h)t

�
, making it a

trapdoor for sampling short elements (s1, s2) such that s1 + s2h = t for any t, without
leaking any information about itself. We voluntarily do not precise which distribution D
we use in step 1, since this will depend on which sampler we choose.

Algorithm 6.2 Sign(B, m)
Require: Private key B ∈ Z2N×2N

q , hash function H : {0, 1}� → Zq, standard deviation
σ, message m

Ensure: Signature s(m) ∈ Zq

1: t← H(m) ∈ Zq

2: (s1, s2)← (t, 0)− Sample(B, σ, (t, 0)) \\ s1 + s2h = t
3: s(m)← (s1, s2)
4: return s(m)

In the Sign algorithm, we have omitted the statefulness for clarity reasons. Moreover,
the step 2 uses as a black box an algorithm Sample such that the output of Sample(B, σ, c)
is statistically close DL(B),σ,c. This is where we plug in either Klein’s, the Hybrid or
Peikert’s sampler.

Algorithm 6.3 Verify(h, m)
Require: Public key h ∈ Zq, hash function H : {0, 1}� → Zq, message m
Ensure: Signature (s1, s2) ∈ Z2

q

1: t← H(m) ∈ Zq

2: if s1 + s2h = t and �(s1, s2)� � 2σ
√

πN then
3: accept
4: else
5: reject
6: end if

We now fix the parameters N = 512, q = 220, and consider the FDH signature scheme
describes in the algorithms 6.1, 6.2 and 6.3. We try to find optimal NTRU bases – security-
wise – for each sampler. As the security decreases when the standard deviation increases,

102

6.3. Methodology and Global Results

we know a priori that Klein’s will yield the highest security level and Peikert’s the lowest,
due to equation 6.2.

√
q = det(Bf,g) 1

2N �
���B̃f,g

���
R
�
���B̃f,g

���
K
� s1(Bf,g) (6.2)

What we want is to quantify these security levels, which is equivalent to compute
���B̃f,g

���
R

for Klein’s sampler,
���B̃f,g

���
K

for the Hybrid and s1(Bf,g) for Peikert’s. This is what we do
in Section 6.4.

Once it is done, we use the techniques in [GN08, CN11, DDLL13] to evaluate the
concrete security of the schemes. The way lattice schemes are analyzed is to determine
the hardness of the underlying lattice problem, which is measured using the “root Hermite
factor” introduced in [GN08]. If one is looking for a vector v in an n-dimensional lattice
that is larger than the nth root of the determinant, then the associated root Hermite factor
is

�v�
det(Λ)1/n

= γn (6.3)

If one is looking for an unusually-short planted vector v in an NTRU lattice, then the
associated root Hermite factor, according to the experiments in [DDLL13] is

�
n/(2πe) · det(Λ)1/n

�v� = .4γn (6.4)

Based on the results in [GN08, CN11], one can get a very rough estimate of the hardness
of the lattice problem based on the value of γ (unfortunately, there has not been enough
lattice cryptanalysis literature to have anything more than just a rough estimate). For
values of γ ≈ 1.007, finding the vector is at least 280-hard. For values less that 1.004, the
problem seems completely intractable and is approximated to be at least 192-bits hard.

The results of our experiments are summarized in the Table 6.1.

Table 6.1: Comparison of the three approaches for NTRU lattices of fixed dimension
2N = 1024 and modulus q = 220

Sampler Klein Hybrid Peikert
Security level 192 160 120
Root Hermite factor γ 1.0042 1.0049 1.0060
Ring R Z Z Z2×2

rankR(Λ) 2N 2 1
Form of B R2N×2N R2×2 R1×1

Running time Õ(N2) Õ(N) Õ(N)
Smallest

���B̃
���
R

attained 1.17√q 2.5√q 8√q

One can see that in terms of standard deviation (and therefore of security), the hybrid
sampler is closer to Klein’s sampler than to Peikert’s sampler. However, its runtime
(assuming fast floating-point arithmetic operations) is much closer to the one of Peikert’s
sampler. In this setting the hybrid sampler is a trade-off between Klein’s and Peikert’s
samplers, however it manages to be close to getting the best out of each algorithm.

103

6. Full-Domain-Hash Signatures over NTRU Lattices

Moreover, Section 6.5 indicates that both phenomenons amplify when the dimension
increases: the security gets even closer to Klein’s than Peikert’s, and the other way around
for the running time.

6.4 Sampling over NTRU Lattices: Bounds and
Experiments

6.4.1 Klein’s Sampler (R = Z,K = Q)
We know that the norm of vectors sampled by Klein’s Sampler is proportional to |B̃f,g|.
This section analyses how to compute efficiently |B̃f,g|. This is done by Corollary 6.5,
which is a direct consequence of Lemmas 6.3 and 6.4.

Lemma 6.3. Let Bf,g be a NTRU basis, and b1, ..., b2N be the row vectors of Bf,g. Then
|B̃f,g| = max{�b̃1�, �b̃N+1�}

Proof. Bf,g is a block isometric basis (of block size N) with respect to the isometry
r : (u, v) ∈ K2 �→ (x · u, x · v). Therefore applying Algorithm 4.4 to it yields its GSO. As a
subroutine, Algorithm 4.4 uses Algorithm 4.2 on {b1, ..., bN} and {b̃N+1, ..., rN−1(b̃N+1)}.
As a result, �b̃1� � ... � �b̃N� and �b̃N+1� � ... � �b̃2N� (implicit from the recursive
formula in Lemma 4.9). The result follows.

Instead of computing 2N values �b̃1�, ..., �b̃2N�, there is now only two of them to
compute. The following lemma gives an exact expression for �b̃N+1�.

Lemma 6.4. �b̃N+1� =
���
�

qf�

ff�+gg� , qg�

ff�+gg�

����

Proof. b̃N+1 is given by the formula of Proposition 2.17:

b̃N+1 = bN+1 − bN+1B+
0 B0

Where B0 = [A(g)|−A(f)]. The result then follows from the fact that A(f)t = A(f �),
circulant matrices commute and fG− gF = q mod (xN + 1).

Combining Lemmas 6.3 and 6.4 yield a formula for |B̃f,g|.

Corollary 6.5. Let Bf,g be a NTRU basis. The classical Gram-Schmidt norm of Bf,g is:

���B̃f,g

��� = max
�
�(g,−f)�,

�����

�
qf �

ff � + gg�
,

qg�

ff � + gg�

������

�

We ran experiments and computed a heuristic (see Section 6.5.1) to evaluate how
small |B̃f,g| can be made. Both indicate that the optimal choice for �b1� is �b1� ≈

�
qe
2 ,

since we then get �b̃N+1� ≈ �b̃1�. Interestingly, neither show any correlation between
the dimension N and the minimal |B̃f,g|. Moreover, |B̃f,g| is very close to the theoretical
lower bound √q (see equation 6.2).

104

6.4. Sampling over NTRU Lattices: Bounds and Experiments

√
q

0
√

q 2√q

Norm of b1

N = 512, q = 1048576

�b̃1�
q/�b1�

◦

◦
◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦
�b̃N+1�

√
q

√
q

�
qe/2

Norm of b1

N = 512, q = 1048576

�b̃1�
q/�b1�

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦
�b̃N+1�

Figure 6.2: Values of candidates �b̃N+1� and �b̃1� for |B̃f,g|, with N = 512, q = 220.
q/�b1� is the lower bound for �b̃N+1� given in Lemma 6.6.

The following lemma provides a theoretical lower bound for �b̃N+1�, given q and �b1�.
In our case, �b̃N+1� is very close to its lower bound.

Lemma 6.6. Let B = (bi)1�i�2N be a NTRU basis. �b̃N+1� admits the following lower
bound: �b̃N+1� � q/�b1�. As a corollary, |B̃| � √q.

Proof. We have | det(Bf,g)| = | det(B̃f,g)| =
N�

i=1
�b̃i�. We know that | det(Bf,g)| = qN and

that for any k in �1; N�, �b̃i� � �b̃1� and �b̃N+i� � �b̃N+1�. So qN � �b1�N�b̃N+1�N .

6.4.2 Hybrid Sampler (R = Z,K = K)
In the case where R = Z, the vectors f = (g,−f), F = (G,−F) ∈ R2 then generate
Λ(Bf,g) as a R-module of rank 2: Λ(Bf,g) = SpanR(f , F).2 We then get

Lemma 6.7. Let Bf,g be a NTRU basis. The K-Gram-Schmidt norm of Bf,g is:
���B̃f,g

���
K

= max
ω∈Ωm

max
�

D(ω), q

D(ω)

�

Where D(x) Δ= �(f, g)�K(x)(=
�

|f(x)|2 + |g(x)|2 when x ∈ Ωm).

Proof. B = {f = (g,−f), F = (G,−F)} is the R-basis used for this sampler.
���B̃f,g

���
K

is by
definition the smallest value in R+ verifying

���B̃f,g

���
K
� f and

���B̃f,g

���
K
� F̃. A straightforward

computation using Proposition 2.17 gives us

F̃ =
�

qf �

ff � + gg�
,

qg�

ff � + gg�

�

Therefore
�F̃, F̃�K = q2

ff � + gg�
= q2

�f , f�K
2Note that in this setting, the equation 6.1 becomes det[f , F] = q ∈ R.

105

6. Full-Domain-Hash Signatures over NTRU Lattices

Evaluating �f , f�K and �F̃, F̃�K on all the ω ∈ Ωm then yields the result.

We then generate random NTRU bases to give an estimate on the maximum Gram-
Schmidt norm given by Lemma 6.7. When �f� increases, so do the values (D(ω))ω∈Ωm , but
the values (q

D(ω))ω∈Ωm decrease. The goal is to sample f with a standard deviation chosen
so that maxω∈Ωm(D(ω)) ≈ maxω∈Ωm(q

D(ω)), which should yield a reasonable small value
for

���B̃f,g

���
K

. Figure 6.3 summarizes these experiments for NTRU bases of size 2N = 1024.

2√q

4√q

6√q

8√q

.6√q 1.4√q

�(f, g)�

max
ω∈Ω2N

D(ω)

2√q

4√q

6√q

8√q

.6√q 1.4√q

�(f, g)�

max
ω∈Ω2N

q
D(ω)

Bf,g is a NTRU basis of dimension 2N = 1024, for a modulus q = 220. On the left,
max

ω∈Ω2N

D(ω) and on the right, max
ω∈Ω2N

q
D(ω) , where D(ω) is defined as in Lemma 6.7.

Figure 6.3: The potential values of
���B̃f,g

���
K

.

In our experiments, we managed to get
���B̃f,g

���
K
≈ 2.5√q. This is just 2.5 times the

theoretical smallest value that
���B̃f,g

���
K

can take. Also, a heuristic in Section 6.5, backed
up by experiments, suggest that

���B̃f,g

���
K

is minimized for the same choice of parameters
than |B̃f,g|, and that we then have |B̃f,g|K ≈ α

√
log N |B̃f,g| for some constant α that we

evaluate to be α ≈ 1.30. This means that
���B̃f,g

���
K

can be made as small as approximately
1.52
√

log N ·√q.

6.4.3 Peikert’s Sampler (Informally R = Z 2×2,K = K2×2)
We recall that s1(B) is the largest singular value of B. The standard deviation of the
discrete Gaussian output by Peikert’s sampler is η�

�(Z2N) · s1(Bf,g). The following lemma
gives the value of s1(Bf,g) for a NTRU basis.

Lemma 6.8. Let Bf,g be a NTRU basis. The maximal singular value of Bf,g is

s1(Bf,g) =
�

max
ω∈Ωm

(λω)

where C(x) Δ= (ff � + gg� + FF � + GG�)(x) and λω
Δ= 1

2

�
C(ω) + (−1)i

�
C2(ω)− 4q2

�
.

106

6.4. Sampling over NTRU Lattices: Bounds and Experiments

Proof. The matrices A(f), A(g), A(F), A(G) are co-diagonalizable in an orthonormal
eigenbasis: there exists a matrix P ∈ CN×N and a diagonal matrix Φm

Δ= diag
φm(ζ)=0

(ζ) such

that A(f) = P × f(Φm) × P�. We can therefore write

Bf,g =
�

P 0
0 P

�
×
�

g(Φm) −f(Φm)
G(Φm) −F (Φm)

�
×
�

P� 0
0 P�

�

The singular values of Bf,g are the positive square roots of the eigenvalues of Bf,gBt
f,g.

Since similar matrices share the same eigenvalues, we are therefore looking for the square
roots of the eigenvalues of

M =
�

(ff � + gg�)(Φm) (fF � + gG�)(Φm)
(f �F + g�G)(Φm) (FF � + GG�)(Φm)

�

We compute the characteristic polynomial of M:

χM(λ) = det[M− λI2N]
= det [q2IN − λ(ff � + gg� + FF � + GG�)(Φm) + λ2IN]
= �

ω∈Ωm

(q2 − λ(ff � + gg� + FF � + GG�)(ω) + λ2)

The second equality first uses the fact that det
�

A B
C D

�
= det[AD−BC] when B and C

commute, then the equation 6.1, at at last the fact that for any ω ∈ Ωm, (ff �)(ω) = |f(ω)|2.
Noting C(ω) Δ= (ff �+gg�+FF �+GG�)(ω), the eigenvalues are, for (ω, i) ∈ (Ωm, {0, 1}),

the values
λω,i = 1

2

�
C(ω) + (−1)i

�
C2(ω)− 4q2

�

Noticing that the maximal λω,i must have i = 0, this concludes the proof.

Just like in Subsection 6.4.2, we ran experiments on random NTRU bases to evaluate
how small we could get the singular value s1(Bf,g) to be. The results are summarized in
Figure 6.4.

0

4√q

8√q

12√q

16√q

20√q

24√q

0
√

q

�(f, g)�

Figure 6.4: Values of s1(Bf,g), where Bf,g is a NTRU basis of dimension 2N = 1024, for a
modulus q = 220.

107

6. Full-Domain-Hash Signatures over NTRU Lattices

The best values we managed to get in our experiments were s1(Bf,g) ≈ 8√q. Although
this could seem to be “not too big” compared to

���B̃f,g

��� and
���B̃f,g

���
K

(which condition
the quality of the vectors output by Klein’s and our Hybrid sampler), in practice it
decreases the security parameter of the Full-Domain Hash signature scheme using Peikert’s
sampler. Once again, Section 6.5 provides a heuristic consistent with experiments that
indicate that s1(Bf,g) can in practice be made as small as 1.52

�
N
3

�1/4√
log N · √q ≈

1.15N 1/4√log N ·√q.

6.5 Sampling over NTRU Lattices: Heuristics and
Asymptotics

This section is the conclusion of the previous one. In section 6.2, we compared the
hybrid/Klein’s/Peikert’s samplers over NTRU lattices and found out that our hybrid
sampler can sample with a standard deviation much closer to Klein’s sampler than
Peikert’s. However, one could arguably call this a stroke of luck and question the validity
of this assumption in high dimensions. In this section, we give heuristics to estimate
how small the standard deviation can be set for each sampler in high dimensions. These
heuristics are consistent with our experiments.

For convenience, we omit the smoothing parameter factor η�
�(Z2N) in the standard

deviation σ. The heuristics indicate that we can sample with σ around:

• 1.17√q for Klein’s sampler

• 1.52
√

log N ·√q for our hybrid sampler

• 1.15N 1/4√log N ·√q for Peikert’s sampler

Two trends emerge from these heuristics:

• There exist a large subset of NTRU lattices for which Klein’s sampler can be used with
σ very close to its best known theoretical bound. More precisely, Klein’s sampler can
securely use a σ proportional to the value |B̃f,g| which is known to be at least √q for
NTRU lattices, and we can get |B̃f,g| to be at most 1.17√q. Therefore, if one is not
concerned with the speed of sampling, then Klein’s sampler is the best choice.

• Regarding σ, there is a factor O(
√

log N) (with a small constant) between our sampler
and Klein’s, compared to a factor O(N1/4) between ours and Peikert’s. So the fact that
we got a security (and more precisely a root Hermite factor γ) closer to the one offered
by Klein’s sampler wasn’t a fluke but a phenomenon that amplifies as N increases.

The heuristics can be found in Section 6.5.1 for Klein’s sampler, and Section 6.5.2 for
the hybrid and Peikert’s samplers.

6.5.1 Optimal Bases for Klein’s Sampler
We now a heuristic argument explaining why |B̃f,g| = max(�b̃1�, �b̃N+1�) is minimized
for �b1� ≈

�
qe
2 . We first give a lemma that will be useful for our heuristic.

Lemma 6.9. Let (�1, �2) ∈ R2
+, and the two following sets of (RN)2 ∼= R2N :

108

6.5. Sampling over NTRU Lattices: Heuristics and Asymptotics

• E1 = {(x1, x2) ∈ (RN)2|�x1� = �1, �x2� = 0}.

• E2 = {(x1, x2) ∈ (RN)2|�x1� = 0, �x2� = �2}.

Let v1...vN
$← E1, w1...wN

$← E2. Then:

E[det(v1, ...vN , w1, ...wN)] = (2N)!
(2NN)N !�v1�N�wN�N

Proof. We first recall the definition of the Gram matrix:

Gram(v1...vk) Δ= (�vi, vj�)1�i,j�k ,

and the Gram determinant:

G(v1...vk) Δ= det (Gram(v1...vk))

For a full-rank basis, the Gram determinant verifies G(v1...vk) = det(v1...vk)2. We can
therefore write:

det(v1, ...vN , w1, ...wN)2 = G(v1, ...vN , w1, ...wN) = G(v1, ...vN) × G(w1, ...wN)

the second equality coming from the fact that the vectors vi are orthogonal to the vectors
wj. G(v1, ...vN) = G(ṽ1, ...ṽN) = �N

i=1 �ṽi�2, and since each ṽi is the projection of the
vector vi over a subspace of dimension 2N − i + 1, we have E[�ṽi�] =

�
2N−i+1

2N
�vi�. The

same reasoning applies to the vectors wj, and we can conclude.

Heuristic. We now use lemma 6.9 to estimate the value of �b1� for which
max(�b̃1�, �b̃N+1�) is minimized. For i ∈ �1, N�, we denote:

b̂N+i = bN+i −Proj(bN+i, Span(b1...bN)).

Since the basis Bf,g is block isometric, ∀i ∈ �1; N�, �b̂N+i� = �b̃N+1� and:

det(b1...b2N) = det(b1, ...bN , b̂N+1, ..., b̂2N) = qN .

Since the vectors bi are orthogonal to the b̂N+i, there exists an orthonormal basis
of R2N in which the N first coordinates of each bi and the N last coordinates of each
b̂N+i are zero. Plus, the bi (resp. the b̂N+i) have same norm so we assume they are
distributed with respect to the distribution E1 (resp. E2) of lemma 6.9 with �1 = �b̃1�
(resp. �2 = �b̃N+1�). Applying lemma 6.9 then yields

(2N)!
(2NN)N !�b̃1�N�b̃N+1�N ≈ qN

Stirling’s formula allows us to conclude that �b̃N+1� ≈ qe

2�b̃1� . Therefore, the value
max(�b̃1�, �b̃N+1�) is minimized for �b1� ≈

�
qe
2 ≈ 1.1658√q. This matches closely the

experimental results of Figure 6.2. For the key-generation algorithm to terminate faster,
we take a slightly larger value, and chose �b1� ≈ 1.17√q.

109

6. Full-Domain-Hash Signatures over NTRU Lattices

6.5.2 Optimal Bases for the Hybrid and Peikert’s Samplers
The goal of this section is to explain why our Hybrid sampler performs better than Peikert’s
sampler over NTRU lattices.

We first recall properties of the singular norm. For two matrices X and Y, and their
vertical concatenation {X, Y}, we have:

max(s1(X)2, s1(Y)2) � s1({X, Y})2 � s1(X)2 + s1(Y)2. (6.5)
The first inequality is an equality if and only if X and Y span orthogonal spaces. We

also have euclidean sub-additivity: s1(X + Y)2 � s1(X)2 + s1(Y)2.
We also recall that we write the NTRU basis as B = {f , F}, where

f = (g,−f) and F = (G,−F) = rf + F̃

for some r ∈ K and F̃ orthogonal to f . The key generation process of NTRU guarantees
that r has coefficients in [−1/2, 1/2], and we modelize them as uniformly random in this
range. Using our Hybrid sampler gives a quality of s1({f , F̃}) = max(s1(f), s1(F̃)), against
a quality of s1({f , F}) for Peikert’s.

We now give three heuristics (two new and one already tested) that we will use to
estimate the qualities of the samplers:

1. For x ∈ {f , F, F̃}, s1(x) ≈ α
√

log N�f� for some constant α. To justify this, we observe
that if y ∈ K’s coefficients are Gaussian (as in our experiments), then its embeddings
σi(y) are Gaussian as well. The singular s1(y) is the maximum absolute value of these
embeddings s1(y) = maxσ |σi(y)|, which is expected, according to order statistics to be
≈ α
√

log N�y� for some constant α. Assuming F, f and F̃ behave like y, this gives the
heuristic.

2. �F̃� ≈ qe
2�f� . This heuristic is at the end of Section 6.5.1, and we also provide experi-

mental confirmation in Section 6.4.1 and Figure 6.2.

3. �rf� ≈
�

N
12�f�. The heuristic can be found in [HHGP+03].

The quality of the Hybrid sampler is now discussed in points 1 and 2, and the one of
Peikert’s sampler in points 3 and 4.

1. Using heuristic 2, max(�f�, �F̃�) is minimized when �f� ≈ �F̃� ≈
�

qe
2 .

2. For the Hybrid sampler, the quality verifies:

s1({f , F̃}) = max(s1(f), s1(F̃)) ≈ α
�

log N max(�f�, �F̃�)

where the equality is coming from the orthogonality of f and F. How small we can
expect s1({f , F̃}) to be then comes from point 1.

3. We can assume that max(�f�2, �F�2) = �F�2 ≈ �f�2 + �F�2 since

�F�2 = �F̃�2 + �rf�2 ≈ q2e2

4�f�2 + N

12�f�
2

where the approximation comes from heuristics 2 and 3. �F� is expected to be minimal
for �f�2 ≈ qe

�
3
N

, which yields �F� ≈
�

qe
√

N

2
√

3 .

110

6.5. Sampling over NTRU Lattices: Heuristics and Asymptotics

4. Using equation 6.5 in conjunction with heuristic 1 and point 3, we approximate the
quality of Peikert’s sampler:

s1({f , F}) ≈ α
�

log N�F�

We can now estimate the ratio between the best qualities obtained for a given dimension
using the Hybrid and Peikert’s samplers:

σPeikert

σHybrid
= s1({f , F})

s1({f , F̃})
≈ minf �F�

minf max(�f�, �F̃�) ≈
�

N

3

�1/4

For N = 512, this ratio is about 3.6, which is close to the ratio of 3.2 that we observed
in our experiments when optimizing both samplers.

However, if the samplers are run on the same lattice, the difference can be much higher;
in particular, if �f� � �F̃� then from the heuristic we can expect Peikert’s sampler to
have a quality worse than the Hybrid by a factor

�
N/12, but in practice this factor is

even bigger, around
�

N/4 (see Figure 6.5).

0 3
√
q

0

24
√
q

Klein’s Sampler

0 3
√
q

0

24
√
q

Hybrid Sampler

0 3
√
q

0

240
√
q

Peikert’s Sampler

0 3
√
q

0

24
√
q

Peikert’s Sampler (vertical zoom)

Figure 6.5: Comparing the qualities of Klein’s/Hybrid/Peikert’s samplers for a NTRU
basis of dimension 2N = 1024 and modulus q = 220, with �(f, g)� (in abscissa) ranging in
(0, 3√q).

111

6. Full-Domain-Hash Signatures over NTRU Lattices

6.6 Conclusion
We have provided an comparison of our hybrid sampler with the existing ones on NTRU
lattices, which are the current most compact constructions. Klein’s and Peikert’s sampler
both have their advantages, and on the lattices we experimented on, our sampler has the
same complexity as Peikert’s sampler, and is closer to Klein’s sampler in terms of security.
However, its running time still has to be assessed in practice. Additionally, in future
works it would be interesting to evaluate our sampler in the context of the construction of
Micciancio and Peikert [MP12].

112

Chapter 7

Fast Fourier Orthogonalization
“To control this ring seems wise to me. But how, Loge, can I learn the art of
forging this gem?”

Wotan — Richard Wagner, Das Rheingold

7.1 Introduction
The nearest plane algorithm [Bab85, Bab86], which we studied extensively in this thesis in
its deterministic and randomized forms (notably Section 2.2, Chapters 4 and 5), is a central
algorithm over lattices. It allows, using a quadratic number of arithmetic operations, to
find a relatively close point in a lattice to an arbitrary target. It is a core subroutine
of LLL [LLL82], and can be used for error correction over analogical noisy channels. It
also found applications in lattice-based cryptography as a decryption algorithm, and a
randomized variant (called discrete Gaussian sampling) [Kle00, GPV08] provides secure
trapdoor functions based on lattice problems. This leads to cryptosystems (identity-based
and attribute-based encryption) with fine-grained access control [CHKP10, MP12, Boy13,
GVW13].

When it comes to using this algorithm for practical cryptography, its quadratic cost is
rather prohibitive, considering the lattices at hand have dimensions ranging in the hundreds.
For efficiency purposes, many cryptosystems (such as [HPS98, LMPR08, LPR10] to name
a few) chose to rely on lattices with some algebraic structure, improving time and memory
requirements by a factor quasi-linear in the dimension. This is sometimes referred as
lattice-based cryptography in the ring-setting. The core of this optimization is the Fast-
Fourier Transform (FFT) [CT65, GS66, HJB84, Nus12] allowing fast multiplication of
polynomials. But this improvement doesn’t apply in the case of the nearest plane algorithm
or its randomized variant [Kle00, GPV08]: Gram-Schmidt orthogonalization seems to
break the algebraic structure.

To circumvent this issue, Peikert [Pei10] proposed to switch to a simpler algorithm, the
so-called round-off algorithm [Len82, Bab85, Bab86], and using a perturbation technique,
properly randomized it to obtain a secure discrete Gaussian sampler. This simpler
algorithm is compatible with FFT-based acceleration techniques, but this comes at another
price: the quality of the solution is affected. In short, instead of reducing the target to the
cuboid associated with B̃, this algorithm instead provides an output in the parallelepiped
associated with B: the fundamental domain has been skewed. This is pictured in Figure 2.1.

Quality in the ring setting. For this discussion, let us focus on a simple case: let
B ∈ Rd×d be a circulant matrix of first row vector b1 = (f0, . . . , fd−1). Algebraically, it is

113

7. Fast Fourier Orthogonalization

Algorithm Nearest plane Round-off Klein Peikert
Quality

�
1
12
�

i �b̃i�2
�

d
12 · �b1�

√
d �b1�η�(Z)

√
d s1(B)η�(Z)

Table 7.1: Average output length for random target (B circulant of first row b1).

the matrix associated to the multiplication by the element f = �
fi · xi of the circular

convolution ring R = R[x]/(xd − 1). The typical case encountered in cryptography deals
with cyclotomic rings instead—and involves matrices with several blocks of this form—we
will address this point later.

The question is to quantify the loss of quality when switching from the slow nearest
plane to the fast round-off algorithm and their respective randomized variants, Klein’s
sampler and Peikert’s sampler. We measure this as the average euclidean length of its
output: the lower the better. This is summarized in Table 7.1. The factor s1(B) denotes
the largest singular value of B, which is also its spectral norm: s1(B) = max �xB�/�x�.
The factor η� is called the smoothing parameter [MR07], and some effort has been done to
tackle it [DLP14, BLP+13, BLL+15], but the details are out of the scope of this chapter.
For our matter, note that we have the inequalities:

��
i �b̃i�2 �

√
d · �b1� � s1(B),

and equalities holds if and only if the matrix B is orthogonal. We call orthogonal-
ity defect the ratio δ(B) = s1(B)/

√
d · �b1�—alternatively one can consider δ�(B) =√

d�b1�/
��

i �b̃i�2.
The theory of random matrices (see [Ver10, Thm. 5.39]) predicts that the orthogonality

defect δ(B) should tend to 1 as the dimension d grows, if the entries of B are centered
and independent. But should it be the case for circulant matrices ? A simple experiment
(see Fig. 7.1) shows it does not seem likely!

� ��� ��� ��� ��� ���

�����������

���

���

���

���

���

���

�
�
�
�
��
�
�
��
�
�
��
��

�

� ��� ��� ��� ��� ���

�����������

���

���

���

���

���

���

���

�
��
��
�
�
�
�
��
�
�
��
�
�
��
� �
�
�

.

Figure 7.1: Experimental orthogonality defect of circulant matrices, and prediction (7.1)

This phenomenon is easily explained by switching to an algebraic point of view.
Indeed, the singular values of a circulant matrix B are exactly the magnitudes of the
FFT coefficients of f : the FFT diagonalizes the matrix B, and this is the very reason
why FFT allows fast multiplication in those rings. Also, the FFT is a scaled isometry: if
the coefficients of f are independent Gaussians of variance σ2, then the FFT coefficients

114

7.1. Introduction

f̂i = �
j fjζ

ij have both their real and imaginary parts being independent Gaussians as well
with variance dσ2/2—except for f̂0. Their magnitudes |f̂i| follow a Rayleigh distribution
of parameter ς =

√
dσ2, whose density over [0,∞) is given by x

ς2 exp
�

−x2

2ς2

�
. Out of d/2

(half may be ignored as conjugates of the other half) such samples, we expect the largest
one to be as large as ≈ ς

�
log d/2. Hence

δ(B) ≈
�

log(d/2), (7.1)

and this closely matches our experiment.

Contribution. In this work, we discover chimeric algorithms, obtained by crossing
Cooley-Tukey’s [CT65] Fast-Fourier Transform algorithm together with an orthogonal-
ization and nearest plane algorithms (not exactly Gram-Schmidt orthogonalization, but
rather LDL decomposition). Precisely, we show that the nearest plane algorithm can
be performed using quasi-linear arithmetic operations for matrices with the appropriate
algebraic structures, coming from the d-th circular convolution ring when d is composed of
small factors. The precomputed orthogonalization can also be done using quasi-linear many
operations and produces the LDL decomposition in a special compact format, requiring
O(d log d) complex numbers.

At the core of this technique is the realization that the circulant representation of
matrices is not the appropriate one. Instead, switching to (mixed-)digit-reversal-order
allows to represent the matrix L of the Gram-Schmidt decomposition in a compact
inductive format, namely a tree of structured matrices, that get smaller and smaller
as one reaches the leaves. Once this hidden structure is unveiled (Theorem 7.14), the
algorithmic implications follow quite naturally. As a demonstration of the simplicity of
those algorithms, we also propose an implementation in python in the power-of-two case.
The code is strikingly short.

Most of the material of this chapter is very well known, but the authors are unaware
of any work proposing such a combination. We chose to go very thoroughly through the
details of both orthogonalization and Fast-Fourier Transform, to observe how nicely those
two operations fit together.

Gaussian Sampling. We will only present our acceleration for the (deterministic)
nearest plane algorithm. Generalizing our technique to the randomized algorithm of Klein
is just a matter of replacing each call to the rounding function �·�, by an appropriately
randomized rounding function—following a discrete Gaussian distribution over the integers.

Impact for lattice-based cryptography. The structure of matrices found for lattice-
based cryptography follow from cyclotomic rings Fd = R[x]/(φd(x)), and often d is chosen
as power of 2. In fact, our algorithm can be generalized to handle such a case, because
there is a ring morphism from Fd to Rd that is also an isometry. We merely chose the
circulant-convolution ring as it makes our exposition significantly simpler.

Our work makes the nearest plane algorithm reach the same time complexity as
the round-off algorithm for circulant matrices. The same phenomenon occurs to their
randomized variants, the Gaussian samplers.

For samplers, the factor
�

log(d/2) to be saved may seem small, but it turns out that in
practice the security of a cryptosystem is extremely sensitive to the quality of the Gaussian

115

7. Fast Fourier Orthogonalization

sampler. Chapter 6 illustrated this phenomenon: for the same parameters, the signature
scheme studied would have about 128 bits of security using Peikert’s sampler, against
up to 192 bits of security using Klein’s sampler, and the hybrid sampler we proposed in
Chapter 5 would reach 160 bits of security. In this study case, the seemingly anecdotal
factor corresponded to 32 bits of security.

Related work. The first Gaussian sampler is due to Klein [Kle00], as a tool to solve the
bounded-distance-decoding problem. Its use as a secure trapdoor algorithm was discovered
and analyzed in the seminal work of Gentry, Peikert and Vaikuntanathan [GPV08],
opening new horizons for lattice-based cryptography. In [LP15] it is showed how to
decrease the pre-computation from cubic to quadratic in the ring setting, and how to store
this pre-computation compactly without slowing the nearest plane algorithm. Alternatively,
a FFT-compatible Gaussian Sampler was proposed by Peikert [Pei10] with quasilinear
complexity but decreased quality. Optimization of the trapdoor basis generation (with
a security reduction to a worst-case lattice problem [Ajt96, Reg05], unlike the trapdoors
of [HPS98]) can be found in [AP11, MP12]. The question of fixed-point/floating-point
precision was studied in [DN12a, Duc13], and optimized subroutines for sampling in 1-
dimensional lattices were developed in [DN12a, DDLL13, Kar13, Duc13, BCG+14, RVV14,
DG14, Lep14]. Improvements on the smoothing parameter using statistical tools can be
found in [DLP14, BLL+15], and a dedicated algorithm was developed in [BLP+13].

Complexity. All the complexities are expressed in terms of number of arithmetic opera-
tion over the reals. Determining the required precision for a floating-point approximation
and therefore the bit-complexity of our algorithm is left for future works as this issue seems
rather orthogonal to our improvements. As a starting point in that direction, one might
remark that the asymptotic relative error growth of the FFT of a degree-d polynomial
is O(log d) in the worst case and O(

√
log d) in the average case [GS66, Sch96]. As our

algorithms are structurally very close to the FFT, it would be interesting to see if they
benefit from the same error growth.

Open Problems. On the theoretical side, a interesting problem would be to apply this
trick to the LLL [LLL82] algorithm, even if it weakens a bit the notion of reduction achieved.
On the practical side, it would of course be nice to see a secure and fast implementation of
lattice trapdoors based on this algorithm, combining the technique of [BLP+13, BLL+15]
to tackle the smoothing parameter. This would have a wide impact, since many advanced
cryptosystems as attribute-based encryption schemes [CHKP10, MP12, Boy13, GVW13]
become rather easy to implement once this primitive is provided.

Organization. The chapter is organized as follows. First, Section 7.2 introduces the
mathematical tools that we will use through this chapter. Section 7.3 shows that for
matrices over convolution rings, the LDL decomposition can be expressed in a compact,
factorized form, and gives a “Fast Fourier” algorithm for computing it in this form. This
compact LDL decomposition is further exploited in Section 7.4, which presents a nearest
plane algorithm that also has a “Fast Fourier” structure. Section 7.5 extends all our
previous results from convolution rings to cyclotomic rings, by reducing the latter to
the former. As a conclusion, Section 7.6 demonstrates the practical feasibility of our
algorithms by presenting python implementations of them in the case where d is a power

116

7.2. Preliminaries

of two. Appendix 7.A contains some proofs that were cut from the main body of the
present chapter.

7.2 Preliminaries
We recall that most of the notation conventions are stated in pages 11 to 19.

7.2.1 The Convolution Ring Rd

Definition 7.1. For any d ∈ N�, we note Rd the ring R[x]/(xd − 1), also known as
circular convolution ring, or simply convolution ring.

When d is highly composite, elementary operations in Rd can be performed in time
O(d log d) using the Fast Fourier transform [CT65].

We equip the ring Rd with a conjugation operation as well as an inner product, giving
it an inner product space structure over R. The definitions that we give also encompass
other types of rings that will be used in later sections of this chapter.

Definition 7.2. Let h ∈ Q[x] be a monic polynomial with distinct roots over C, R Δ=
R[x]/(h(x)) and a, b be arbitrary elements of R.

• We note a� and call conjugate of a the unique element of R such that for any root ζ of
h, a�(ζ) = a(ζ), where · is the usual complex conjugation over C.

• The inner product over R is defined by �a, b� Δ= �
h(ζ)=0 a(ζ) · b(ζ), and the associated

norm is �a� Δ=
�
�a, a�.

One can check that if a(x) = �
d∈Zd

aix
i ∈ Rd, then

a�(x) = a(1/x) mod (xd − 1) =
�

i∈Zd

aix
d−i

We extend the conjugation to matrices: if B = (bij)i,j ∈ Rn×m, then the conjugate
transpose of B is noted B� ∈ Rm×n and is the transpose of the coefficient-wise conjugation
of B.

While the inner product �·, ·� (resp. the associated norm � · �) is not to be mistaken
with the canonical coefficient-wise dot product �·, ·�2 (resp. the associated norm � · �2),
they are closely related. One can easily check that for any f = �

0�i<d fix
i ∈ Rd, the

vector (f(ζ)){ζd=1} can be obtained from the coefficients’ vector (fi)0�i<d by multiplying
it by the Vandermonde matrix Vd = (ζ ij

d)0�i,j<d. Vd verifies VdV�
d = d · Id and as an

immediate consequence: �f, g� = d · �f, g�2.

Definition 7.3. Let m � n and B = {b1, ..., bn} ∈ Rn×m
d . We say that B is full-rank (or

is a basis) if for any linear combination �
1�i�n aibi with ai ∈ Rd, we have the equivalence

(�i aibi = 0)⇐⇒ (∀i, ai = 0).

We note that since Rd is not an integral domain, a set formed of a single nonzero
vector is not necessarily full-rank.

117

7. Fast Fourier Orthogonalization

7.2.2 Coefficient Vectors and Circulant Matrices
Definition 7.4. We define the coefficient vector c : Rm

d → Rdm and the circulant matrix
C : Rn×m

d → Rdn×dm as follows. For any a = �
i∈Zd

aix
i ∈ Rd where each ai ∈ R:

1. The coefficients’ vector of a is c(a) = (a0, ..., ad−1) ∈ Rd.

2. The circulant matrix of a is

C(a) Δ=




a0 a1
. . . ad−1

ad−1 a0
. . . ad−2

.
a1 a2 . . . a0




=




c(a)
c(xa)

...
c(xd−1a)



∈ Rd×d.

3. c and C generalize to vectors and matrices in a coefficient-wise manner.

We give a few properties which are either folklore or trivial to verify.

Proposition 7.5. The coefficients’ vector and the circulant matrix verify the following
properties:
1. C is a ring isomorphism onto its image. In particular C(a)C(b) = C(ab).
2. c(a)C(b) = c(ab).
3. C(a)� = C(a�).

7.2.3 Vectorize and Matrixify Operators
In this section, we introduce the “vectorize” and “matrixify” functions. Informally, they
“break” elements of a convolution ring Rd into many elements of a smaller ring Rd� , with
d�|d. From a matricial point of view, they can also be seen as permuting rows and columns
of a circulant matrix to turn it into a concatenation of smaller circulant matrices.

Definition 7.6. Let d ∈ N� be a product of h (not necessarily distinct) primes. We
note gpd(d) the greatest proper divisor of d. When clear from context, we also note h

the number of prime divisors of d (counted with multiplicity), dh
Δ= d and for i ∈ �1, h�,

di−1
Δ= di/ gpd(di) and ki

Δ= di/di−1, so that 1 = d0|d1|...|dh = d and �
j�i kj = di.

The di’s defined in Definition 7.6 form a tower of proper divisors of d. For any composite
d, there exist multiple towers of proper divisors: per example , 1|6, 1|2|6 and 1|3|6 for
d = 6. In this thesis, each time we mention a tower of proper divisors of d it will refer to
the unique one induced by Definition 7.6.

Definition 7.7. Let d, d� ∈ N� such that d�|d. We define the vectorization Vd\d� : Rn×m
d →

Rn×m(d/d�)
d inductively as follows:

1. Let k = d/ gpd(d). For d� = gpd(d) and a single element a ∈ Rd, a = �
0�i<k xiai(xk)

where ai ∈ Rd� for each i. Then

Vd\d�(a) Δ= (a0, ..., ak−1) ∈ Rk
d�

In other words, Vd\d�(a) is the row vector whose coefficients are the (ai)0�i<k.

118

7.2. Preliminaries

2. For a vector v ∈ Rm
d or a matrix B ∈ Rn×m

d , Vd\d�(v) ∈ R(d/d�)m
d and Vd\d�(B) ∈

Rn×(d/d�)m
d are the componentwise applications of Vd\d�.

3. For d��|d�|d and any element a ∈ Rd,

Vd\d��(a) Δ= Vd�\d�� ◦ Vd\d�(a) ∈ Rd/d��

d��

When d is clear from context, we simply note Vd\d� = V\d�.

Interpretation.

In practice, an element a ∈ Rd is represented by a vector of d elements corresponding to the
d coefficients of a. In this context, the vectorization operation simply permutes coefficients.
As highlighted by Figure 7.2, when d = 2h is a power of two, Vd\1 permutes the coefficients
according to the bit-reversal order,1 which appears in the radix-2 Fast Fourier transform
(FFT). More generally, one can show that for an arbitrary d, Vd\1 permutes the coefficient
according to the more general mixed-radix digit reversal order, which appears in the
mixed-radix Cooley-Tukey FFT.

0 1 2 3 4 5 6 7 ⇒ 0 2 4 6 1 3 5 7 ⇒ 0 4 2 6 1 5 3 7
c(a) c(V\4(a)) c(V\2(a))

The vectorization operation “breaks” the element 0 + x + ... + 7x7 of R8 into two elements
0 + 2x + 4x2 + 6x3 and 1 + 3x + 5x2 + 7x3 of R8, then into four elements of R2.

Figure 7.2: Vectorizations of a = 0 + x + 2x2 + . . . 7x7

Similarly, one can define an operation which we call “matrixification”. Like the
vectorization breaks any element of Rd into a vector, the matrixification breaks it into a
matrix.

Definition 7.8. Following the notations of Definition 7.7, we define the matrixification
Md\d� : Rn×m

d → Rn(d/d�)×m(d/d�)
d� as follows:

1. For d� = gpd(d), k = d/d� and a single element a = �
0�i<k xiai(xk) where each ai ∈ Rd�:

Md\d�(a) Δ=




a0 a1
. . . ak−1

xak−1 a0
. . . ak−2

.
xa1 xa2 . . . a0




=




Vd\d�(a)
Vd\d�(xka)

...
Vd\d�(x(d�−1)ka)


 ∈ Rnk×mk

d�

In particular, if d is prime, then Md\1(a) ∈ Rd×d is exactly the circulant matrix C(a).

2. For a vector v ∈ Rm
d or a matrix B ∈ Rn×m

d , Md\d�(v) ∈ R(d/d��)×(d/d�)m
d and

Md\d�(B) ∈ R(d/d�)n×(d/d�)m
d are the componentwise applications of Md\d�.

3. For any element a ∈ Rd,

Md\d��(a) Δ= Md�\d�� ◦Md\d�(a) ∈ R(d/d��)×(d/d��)
d��

1https://oeis.org/A030109

119

7. Fast Fourier Orthogonalization

When d is clear from context, we simply note Md\d� = M\d�.

Proposition 7.9. Let d ∈ N�, a, b (resp. a, b, resp. A, B) be arbitrary scalars (resp.
vectors, resp. matrices) over Rd, and d�|d. For concision, we note V Δ= Vd\d� and M Δ= Md\d�.
The vectorization and matrixification verify the following properties:

1. The matrixification is an algebra isomorphism onto its image, and in particular
M(A · B) = M(A) · M(B)

2. The vectorization is a vector space isomorphism onto its image.
3. V(ab) = V(a) · M(b)
4. The vectorization is an isometry for the canonical coefficient-wise scalar product �·, ·�2:

�V(a), V(b)�2 = �a, b�2

5. B is full-rank if and only if M(B) is full-rank.

Since the proofs are rather straightforward to check from the definitions, we leave them
in Appendix 7.A.1.

Interpretation.

In lattice-based cryptography, cryptosystems using ring lattices rely on the hardness of
problems on lattices over convolution rings.2 In this setting, the basis is constituted of
the rows of (concatenations of) circulant matrices. A prevalent example are the NTRU
lattices generated by bases of the form

� C(f) C(g)
C(F) C(G)

�
.

If we identify an element a ∈ Rd with its circulant matrix C(a), all the matrixification
does is permute rows and columns of C(a). Permuting the rows clearly leaves invariant
the lattice generated by the matrix. On the other hand, permuting the columns changes
the lattice generated, but since it preserves the scalar product, the geometry of the lattice
isn’t affected.

0 1 2 3 4 5 6 7
7 0 1 2 3 4 5 6
6 7 0 1 2 3 4 5
5 6 7 0 1 2 3 4
4 5 6 7 0 1 2 3
3 4 5 6 7 0 1 2
2 3 4 5 6 7 0 1
1 2 3 4 5 6 7 0

⇒

0 2 4 6 1 3 5 7
6 0 2 4 7 1 3 5
4 6 0 2 5 7 1 3
2 4 6 0 3 5 7 1
7 1 3 5 0 2 4 6
5 7 1 3 6 0 2 4
3 5 7 1 4 6 0 2
1 3 5 7 2 4 6 0

⇒

0 4 2 6 1 5 3 7
4 0 6 2 5 1 7 3
6 2 0 4 7 3 1 5
2 6 4 0 3 7 5 1
7 3 1 5 0 4 2 6
3 7 5 1 4 0 6 2
5 1 7 3 6 2 0 4
1 5 3 7 2 6 4 0

C(a) C(M\4(a)) C(M\2(a))

Figure 7.3: Matrixifications of a = 0 + x + 2x2 + . . . 7x7

2In reality, the underlying rings used are more often cyclotomic rings. However, we reduce the
cyclotomic ring case to the convolution ring case in the ulterior Section 7.5.

120

7.2. Preliminaries

Computing the Vectorization and Matrixification in the Fourier Domain.

An interesting observation about the “vectorize” and “matrixify” operators that we defined
is that they can be computed very efficiently when an element a ∈ Rd is represented by its
coefficients but also when it is represented in the Fourier domain. In the first case, it is
obvious that since these operations permutes coefficients of a, they can both be performed
in time O(d).

If a is represented in FFT form, computing its vectorization and matrixification over
Rd� in FFT form can naively be done in time O(d log d) by computing its reverse FFT,
permuting its coefficients and computing d/d� FFT’s over Rd� . However, we observe
that it can be done faster, since it is essentially equivalent to a step of the original
Fast Fourier transform. This is formalized in Lemma 7.10, a reformulation of a simple
lemma that is at the heart of Cooley-Tukey’s FFT.

Lemma 7.10 ([CT65], adapted). Let d � 2, d� = gpd(d), k = d/d� and a ∈ Rd be uniquely
written as a = �

0�i<k xiai(xk) where each ai ∈ Rd�. One can compute the FFT of a
from the FFT’s of the ai’s (and reciprocally) in time O(dk). In particular, Vd\d�(a), its
inverse and M−1

d\d�((ai)i) (resp. Md\d�(a)) can be computed in FFT form in time O(kd)
(resp. O(k2d)).

Proof. In [CT65, equations 7 and 8], Cooley and Tukey show that one can switch from
the FFT of a to the FFT of the ai’s (and conversely) in time O(kd). Since the ai’s are the
coefficients of Vd\d�(a) and Md\d�(a), the result follows.

Lemma 7.10 allows us to gain a factor O(log d) when computing the vectorization
and matrixification of a, compared to a naive approach. In Sections 7.3 and 7.4, we will
define algorithms which heavily rely on these operators, and will therefore benefit from
this speedup as well.

7.2.4 The LDL Decomposition
In this section and the next one, R Δ= Rd for some d � 1. We recall the LDL decomposition,
which is widespread inside and outside the scope of lattice-based cryptography. First, we
define the notion of lower triangular unit matrix, which will be prevalent in the rest this
chapter.

Definition 7.11. We say that a matrix L ∈ Rn×n is lower triangular unit (or LTU) if it
is lower triangular and has only 1’s on its diagonal.

The LDL decomposition is complementary to the Gram-Schmidt decomposition. It
writes any symmetric definite positive matrix – which is symmetric matrix G ∈ Rn×n such
that for any x �= 0, xGx� >R 0 – as a product LDL�, where L ∈ Rn×n is lower triangular
with 1’s on the diagonal, and D ∈ Rn×n is diagonal.

To properly define the notion of definite positiveness, we would need to define a
semi-order �R over elements of R.3 To avoid it, we resort to the notion of full-rank Gram
matrix, which is essentially equivalent to definite positiveness.

Definition 7.12. We say that a matrix G ∈ Rn×n is full-rank Gram (or FRG) if it is
full-rank and there exists m � n and B ∈ Rn×m such that G = BB�.

3The usual semi-order over R = R[x]/(h(x)) is: (a �R b)⇔ (|a(ζ)| � |b(ζ)| for any root ζ of h).

121

7. Fast Fourier Orthogonalization

One can show that a matrix is FRG if and only if it is symmetric definite positive.
However, the former notion requires less definitions and is much simpler to manipulate
from an algorithmic viewpoint, so we will rely on it instead of the latter.

Algorithm 7.1 LDLR(G)
Require: A full-rank Gram matrix G = (Gij) ∈ Rn×n defined over a ring R
Ensure: The decomposition G = LDL� over R, where L is LTU and D is diagonal

1: L, D← 0 n×n

2: for i from 1 to n do
3: Lii ← 1
4: Di ← Gii −

�
j<i LijL

�
ijDj

5: for j from 1 to i− 1 do
6: Lij ← 1

Dj

�
Gij −

�
k<j LikL�

jkDk

�

7: end for
8: end for
9: return ((Lij), diag(Di))

We now explicit the relation between both decompositions. For a basis B, there exists
a unique Gram-Schmidt decomposition B = L · B̃ and for a FRG matrix G, there exists a
unique LDL decomposition G = LDL�. If G = BB�, then G is FRG and one can check
that G = L · (B̃B̃�) · L� is a valid LDL decomposition of G. As both decompositions are
unique, the matrices L in both decompositions are actually the same.

7.2.5 Babai’s Nearest Plane Algorithm and Klein’s Sampler
We give here an alternative definition of the nearest plane algorithm. Unlike the one
we considered until now, all the internal computations are done not on a vector c, but
on the vector t ← c · B−1, which represents c as a combination of vectors of B. This
slight difference will allow, in Section 7.4, to get a speed-up on a recursive variant of this
algorithm.

Algorithm 7.2 NearestPlane(B, L, D, c)
Require: The decomposition B = L · B̃ over R, a vector c ∈ SpanR(B)
Ensure: A vector v ∈ L(B) such that c− v ∈ P(B̃)

1: t← c · B−1

2: for j = n, ..., 1 do
3: t̄j ← tj +�

i>j(ti − zi)Lij

4: zj ← �t̄j�
5: end for
6: return v← z · B

Proposition 7.13. Algorithm 7.2 outputs v ∈ L(B) such that c− v ∈ P(B̃).

The proof of Proposition 7.13 is standard and deferred to Appendix 7.A.2.

122

7.3. Fast Fourier LDL Decomposition

7.3 Fast Fourier LDL Decomposition
7.3.1 A Compact Representation for the LDL Decomposition
Theorem 7.14. Let d ∈ N and 1 = d0 < d1 < ... < dh = d be a tower of proper divisors
of d. Let b ∈ Rm

d be a full-rank vector. There exists a Gram-Schmidt decomposition of
Md\1(b) as follows:

Md\1(b) =
�

h−1�

i=0
Mdi\1(Li)

�
· B0

where B0 ∈ Rd×dm is orthogonal and each Li ∈ R(d/di)×(d/di)
di

is a block-diagonal matrix
whose (d/di+1) diagonal blocks are lower triangular unit (LTU) matrices of R(di+1/di)×(di+1/di)

di
.4

As a toy example, the matrix L of the Gram-Schmidt decomposition of M4\1(a) for an
element a ∈ Rm

4 would look like this:



1
1

a b 1
b a 1


 ·




1
c 1

1
d 1


 .

Proof. If d is prime, the theorem is trivial. We suppose that d is composite and that
the theorem is true for any Ri with i < d. By Proposition 7.9, item 5, the matrix
Bh−1

Δ= Md\dh−1(b) is full-rank too. We can therefore decompose it as Bh−1 = Lh−1B̃,
where Lh−1 ∈ Rkd×kd

dh−1
, B̃ ∈ Rkd×mkd

dh−1
and kd

Δ= d/ gpd(d). Lh−1 is LTU and B̃ is orthogonal.
Noting B̃ = [b1, ..., bkd

], each vector bj is full-rank and orthogonal to the other bj� ’s. By
inductive hypothesis, they can be decomposed as follows:

∀j ∈ �1, n�, Mdh−1\1(bj) =
�

h−2�

i=0
Mdi\1(Li,j)

�
B̃j (7.2)

Where each B̃j ∈ Rdh−1×mdh−1 is full-rank orthogonal and for i < h − 1, each Li,j ∈
R(dh−1/di)×(dh−1/di)

di
is a block-diagonal matrix whose (dh−1/di+1) diagonal blocks are lower

triangular unit (LTU) matrices of R(di+1/di)×(di+1/di)
di

. For concision, we now note M Δ=
Mdh−1\1 and V Δ= Vdh−1\1. We have:

Md\1(b) = M(Lh−1) · M(B̃h−1)
= M(Lh−1) · M[b1, ..., bkd

]
= M(Lh−1) · [M(b1), ..., M(bkd

)]

= M(Lh−1) · diag
�

h−2�
i=0

Mdi\1(Li,j)
�

[B̃1, ..., B̃kd
]

= M(Lh−1) ·
�

h−2�
i=0

Mdi\1(Li)
�

B0

=
�

h−1�
i=0

Mdi\1(Li)
�

B0

The first equality simply uses the fact that M is a ring homomorphism. The second
and third ones are immediate from the definitions. The fourth one uses the inductive

4The indexed products are to be read
�k

i=0 αi = αkαk−1...α0.

123

7. Fast Fourier Orthogonalization

hypothesis (equation 7.2) on each bj . In the fifth equality, we take Li
Δ= diag(Li,1, ..., Li,kd

)
and B0

Δ= [B̃1, ..., B̃kd
] and just need to check that they are as stated by the theorem:

• Since each Li,j is block diagonal with (dh−1/di+1) LTU diagonal blocks, Li is block
diagonal with kd(dh−1/di+1) = (d/di+1) LTU diagonal blocks.

• We also need to show that B0 is orthogonal. Each submatrix B̃j of B0 is the orthogo-
nalization of M(bj) by induction hypothesis. Therefore, for two distinct rows u, v of
B0:

– If they belong to the same submatrix B̃j , they are orthogonal by induction hypothesis.
– Suppose they belong to different submatrices: u ∈ B̃j, v ∈ B̃� and j �= �. Then u

(resp. v) is a linear combination of rows of M(bj) (resp. M(b�)): v = aj · M(bj) and
v = a� · M(bj) for some aj, a� in Rdh−1 . Noting aj = V−1(aj) and a� = V−1(a�), we
have:

�u, v� = �V(aj)M(bj), V(a�)M(b�)�
= �V(ajbj), V(a�b�)�
= �ajbj, a�b�� = 0

Where the second equality comes from Proposition 7.9, item 3, the third one from
the fact that V is a scaled isometry and the fourth one from the fact that bj, b� are
orthogonal.

Therefore B0 is orthogonal.

The theorem we stated gives the Gram-Schmidt decomposition of Md\1(b) for a vector
b ∈ Rm

d , but can be easily generalized from a vector b to a matrix B, and also yields a
compact LDL decomposition.

Corollary 7.15. Let d ∈ N and 1 = d0 < d1 < ... < dh = d be a tower of proper divisors
of d. Let B ∈ Rn×m

d be a full-rank matrix. There exist h + 1 matrices (Li)0�i�h where:

• Lh ∈ Rn×n
d is LTU.

• For each i < h, Li ∈ Rn(d/di)×n(d/di)
di

is a block-diagonal matrix whose n(d/di+1) diagonal
blocks are LTU matrices of R(di+1/di)×(di+1/di)

di
.

Such that, if we note L =
��h

i=0 Mdi\1(Li)
�

and B0
Δ= L−1 · Md\1(B):

1. The Gram-Schmidt decomposition of Md\1(B) is Md\1(B) = L · B0.

2. The LDL decomposition of Md\1(BB�) is Md\1(BB�) = L · (B0Bt
0) · Lt.

Proof. We have B = LhB�, where Lh is given by either the Gram-Schmidt or LDL
decomposition algorithm. B� = {b�

1, ..., b�
n} is orthogonal. Applying Theorem 7.14 to each

row vector b�
j of B� yields n decompositions (Li,j)0�i<h and n orthogonal matrices B̃j , each

spanning the same space as Bj
Δ= Md\1(b�

j). Taking Li
Δ= diag(Li,j) and B0

Δ= [B̃1, ..., B̃0,n]
yields the Gram-Schmidt decomposition.

The LDL decomposition is then given “for free” by the correspondence between it and
the Gram-Schmidt decomposition, and indeed, one can check that since B0 is orthogonal,
(B0Bt

0) is diagonal.

124

7.3. Fast Fourier LDL Decomposition

Theorem 7.14 and Corollary 7.15 state that for any full-rank matrix B ∈ Rn×m, the L
matrix in its Gram-Schmidt and LDL decompositions can be represented in a factorized
form, where each of the factors Li is a sparse, block-diagonal matrix. Figure 7.4 synthesizes
this factorization.

Lh Rd

Lh−1,1 ... Lh−1,n Rdh−1

Lh−2,1 ... L
h−2,

dh−1
dh−2

... Lh−2,... ... L
h−2,

ndh−1
dh−2

Rdh−2

...

...

�b̃�
1�2 �b̃�

n�2 R

Lh ∈ Rn×n
d is a LTU matrix, and for each i < h, every Li,j is a lower triangular unit

matrix in R(di+1/di)×(di+1/di)
di

. Each of the matrices Li mentioned in Theorem 7.14 is the
block-diagonal matrix whose blocks are the (Li,j)1�j�nd/di+1 .

Figure 7.4: Tree L of precomputed matrices Li,j such that L = �
i Mdi\1(diagj(Li,j))

7.3.2 A Fast Algorithm for the Compact LDL Decomposition
Theorem 7.14 and Corollary 7.15 are constructive: more precisely, their proofs give an
algorithm to compute the compact factorized form of L quickly. Algorithm 7.3 performs
the compact LDL decomposition in the form of the tree given in Figure 7.4.

Algorithm 7.3 ffLDLRd
(G)

Require: A full-rank Gram matrix G ∈ Rn×n
d

Ensure: The compact LDL decomposition of G
1: if d = 1 then
2: return (G, [])
3: end if
4: (L, D)← LDLRd

(G)
5: for i = 1, ..., n do
6: Li ← ffLDLRgpd(d)(Md\ gpd(d)(Dii))
7: end for
8: return (L, (Li)1�i�n)

Algorithm 7.3 computes a “Fast Fourier LDL”, instead of the “Fast Fourier Gram-
Schmidt” hinted at in Theorem 7.14 and Corollary 7.15. The reason why we favor this

125

7. Fast Fourier Orthogonalization

approach is because it allows a complexity gain. This gain already occurs in the classic
versions of the aforementioned algorithms.

As a simple example, consider the L in the Gram-Schmidt decomposition of B ∈ R2×m
d ,

which is exactly the L in the LDL decomposition of BB� ∈ R2×2
d . Computing it with the

LDL algorithm will be O(m) times faster than with the Gram-Schmidt algorithm. The
same phenomenon happens with their recursive variants.

Lemma 7.16. Let d ∈ N and 1 = d0 < d1 < ... < dh = d be a tower of proper divisors of
d, and for i ∈ �1, h�, let ki

Δ= di/di−1. Let G ∈ Rn×n
d be a full-rank Gram matrix. Then

Algorithm 7.3 computes the LDL decomposition tree of G in FFT form in time

O(n2d log d) + O(n3d) + O(nd)
�

1�i�h

k2
i

In particular, if all the ki are bounded by a small constant k, then the complexity of
Algorithm 7.3 is upper bounded by O(n3d + n2d log d).

Proof. Let C(k, d) denote the complexity of Algorithm 7.3 over a matrix G ∈ Rk×k
d . We

have the following recursion formula:

C(n, d) = O(n2d log d) + O(n3d) + O(dk2
h) + nC(kh, dh−1) (7.3)

Where the first term corresponds to computing the FFT of the n2 coefficients of G, and
the second term to performing (L, D)← LDLRd

(G) in FFT form. For each i ∈ �1, n�, we
know from Lemma 7.10 that Md\ gpd(d)(Dii) can be computed in time O(dk2

h), hence the
third term. The last one is for the n recursive calls to itself. We then have

C(kh, dh−1) = �
1�i�h

d
di

O(di−1k
3
i) + d

d1
C(k1, d0)

= O(d) �
1�i�h

k2
i

(7.4)

Where the first equality is shown by induction using equation 7.3, except the first term
O(n2d log d) which is no longer relevant since we are already in the Fourier domain.
Combining equations 7.3 and 7.4, we conclude that the complexity of the total algorithm
is

C(n, d) = O(n2d log d) + O(n3d) + nC(kh, dh−1)
= O(n2d log d) + O(n3d) + O(nd) �

1�i�h
k2

i

126

7.4. Fast Fourier Nearest Plane

7.4 Fast Fourier Nearest Plane
In this section, we show how to exploit further the compact form of the LDL decomposition
to have a Fast Fourier variant of the nearest plane algorithm. It outputs vectors of the
same quality as its classical, iterative counterpart, but runs Õ(d) times faster.

Definition 7.17. We note Zd the ring Z[x]/(xd − 1) of elements of Rd with integer
coefficients.

Algorithm 7.4 ffNearestPlaneRd
(t,L)

Require: t ∈ Rn
d , a precomputed tree L, (implicitly) a matrix B ∈ Rn×m

d such that L is
the compact LDL decomposition tree of BB�

Ensure: z ∈ Zn
d such that

1: if t is a 1-dimensional vector in R then
2: return �t�
3: end if
4: L← L.Node()
5: for j = n, ..., 1 do
6: tj ← tj +�

i>j(ti − zi)Lij

7: zj ← V−1
d\ gpd(d)

�
ffNearestPlaneRgpd(d)(Vd\ gpd(d)(tj),L.Child(j))

�

8: end for
9: return z

Lemma 7.18. Let B = {b1, ..., bn} and B̃ = {b̃1, ..., b̃n} be its GSO in R. The vectors
z = (z1, ..., zn) and t = (t1, ..., tn) in Algorithm 7.4 verify

(z− t) · B = (z− t) · B̃

Proof. We recall that for each i ∈ �1, n�, b̃i = bi −
�

j<i Lijb̃j. We have:

(z− t) · B̃ = �
j=1...n(zj − tj) · b̃j

= �
j=1...n

�
(zj − tj) + �

i>j(zi − ti) · Lij

�
· b̃j

= �
1�i�j�n(zi − ti) · Lij · b̃j

= �
i=1...n(zi − ti) · bi

= (z− t) · B

(7.5)

The first and last equalities are trivial, the second one replaces the tj ’s by their definitions,
the third one simplifies the sum and the fourth one is another way of saying that L · B̃ =
B.

Theorem 7.19. Let M Δ= Md\1 and V Δ= Vd\1. Algorithm 7.4 outputs z ∈ Zn
d such that

V((z− t)B) ∈ P(B0), where B0 is the orthogonalization of M(B).

Proof. The result is trivially true if n = d = 1. We prove it in the general case. By
definition, each L.Child(j) is the LDL decomposition tree of Md\ gpd(d)(b̃j). By induction hy-
pothesis, we therefore know that V((zj−tj)b̃j) ∈ P(B̃j), where B̃j is the orthogonalization
of Bj

Δ= M(b̃j). From Lemma 7.18, we have:

(z− t)B =
�

j=1...n

(zj − tj) · b̃j

127

7. Fast Fourier Orthogonalization

so V((z − t)B) ∈ P([B̃1, ..., B̃n]). Now, from the proof of Corollary 7.15, we know that
B0 = [B̃1, ..., B̃n] is actually the orthogonalization of M(B), which concludes the proof.

Equivalently, Theorem 7.19 states that Algorithm 7.4 outputs z such that (z− t)B ∈
V−1P(�M(B)). This behavior is slightly different from the usual nearest plane algorithm.
When instantiated for maximal efficiency from a quality point of view (therefore completely
ignoring the ring structure), the latter outputs z such that (z− t)B ∈ c−1P(�C(B)).

Although (z− t)B is in a different cuboid in each case, both algorithms are essentially
identical in terms of quality. Ignoring the action of V−1, c−1 (since they are isometries), the
cuboids P(�M(B)) and P(�C(B)) predictably have the same volume. But more importantly,
they are generated by nd orthogonal vectors, and one can easily show that the length
of the longest one is the same in both cases. Therefore, Algorithm 7.4 is essentially as
good as the nearest plane algorithm in terms of output quality. In addition, it can be run
significantly faster over convolution ring lattices, as demonstrated in Lemma 7.20.

Lemma 7.20. Let d ∈ N and 1 = d0 < d1 < ... < dh = d be a tower of proper divisors
of d, and for i ∈ �1, h�, let ki

Δ= di/di−1. Let B ∈ Rn×m
d and L be its LDL decomposition

tree. The complexity of Algorithm 7.4 is upper bounded by:

O(nd log d) + O(n2d) + O(nd)
�

1�i�h

k2
i

In particular, if all the ki are bounded by a small constant k, then the complexity of
Algorithm 7.4 is upper bounded by O(n2d + nd log d).

Proof. Let C(k, d) denote the complexity of Algorithm 7.4 over input t ∈ Rk
d. We have

this recursion formula:

C(n, d) = O(nd log d) + O(n2d) + O(ndk2
h) + nC(kh, dh−1)

Where the first term corresponds to computing the FFT of the n coefficients of t, the
second term to performing computing the tj’s (step 6) in FFT form, the third one to the
n calls to V−1

d\ gpd(d), Md\ gpd(d) (see Lemma 7.10) and the fourth one to the n recursive call
to itself. We have:

C(kh, dh−1) = �
1�i�h

d
di

O(di−1k
3
i) + d

d1
C(k1, d0)

= O(d) �
1�i�h

k2
i

(7.6)

Where the equalities are obtained using the same reasoning as in the proof of Lemma 7.16.
Similarly, we can then conclude that:

C(n, d) = O(nd log d) + O(n2d) + O(nd) �
1�i�h

k2
i

128

7.5. Extending the Results to Cyclotomic Rings

7.5 Extending the Results to Cyclotomic Rings
In this section we argue that our result also applies in the cyclotomic case. It turns out
that all the previous arguments can be made more general. The required ingredients are
the following:

1. A tower of unitary rings endowed with inner products onto R.

2. For any rings S, T of the tower, injective maps M� : S → T k×k and V� : S → T k, with
S of rank d over R, and T of rank d/k over R.

3. M� is a ring morphism.

4. V� is a scaled linear isometry.

5. V�(ab) = M�(a)V�(b).

6. Computing V�, V�−1, M� and M�−1 takes time O(dk).

It remains to prove the existence of such maps for towers of cyclotomic rings. We give
explicit constructions in this section, using both our maps from the previous sections and
a generic embedding from cyclotomic rings Fd to convolution rings Rd.

7.5.1 Cyclotomic Rings
Definitions and properties of cyclotomic elements are given in Section 4.2.4. We introduce
a few additional definitions.

Definition 7.21. Let d ∈ N�. We recall that for d ∈ N�, ζd denotes an arbitrary primitive
d-th root of unity in C, Ωd = {ζk

d |k ∈ Z×
d } is the set of primitive d-th roots of unity and

φd is the d-th cyclotomic polynomial. We define the polynomial ψd as follows:

ψd(x) =
�

ζd=1,ζ /∈Ωd

(x− ζ) =
�

k∈(Zd\Z×
d

)
(x− ζk

d)

We also note Fd the cyclotomic ring R[x]/(φd(x)).

One can check that φd(x) · ψd(x) = xd − 1.

7.5.2 Embedding the Ring Fd in the Ring Rd

We now explicit an embedding of Fd into Rd.

Definition 7.22. Let ed be the unique element in Rd such that ed = 1 mod φd and
ed = 0 mod ψd. We define the embedding ιd from Fd into Rd as follows:

ιd : Fd → Rd

f �→ f · ed.

When clear from context, we simply note ι = ιd.

Equivalently, ι(f) is the only element in Rd verifying:

ι(f)(ζ) =
�

f(ζ) if φd(ζ) = 0
0 if ψd(ζ) = 0 (7.7)

129

7. Fast Fourier Orthogonalization

Proposition 7.23. Let d ∈ N� and ι = ιd. The embedding ι:

1. is a ring isomorphism onto its image.

2. is an isometry : for any f, g ∈ Fd, �ι(f), ι(g)� = �f, g�.

Proof. Let us first prove item 1. The element ed is idempotent in ι(Fd): e2
d = ed.

From this, one can easily show that ι is a ring homomorphism. In addition, for any
element g ∈ ι(Fd), g mod φd is the unique antecedent of g with respect to ι, so ι is
bijective and ι−1(g) = g mod φd, which proves the point 1. Items 2. and 3. follows from
equation (7.7).

Lemma 7.24. Let d � 2, d�|d, k = d/d� and a ∈ Rd. Then

(a ∈ ι(Fd))⇔ Vd\d�(a) ∈ ι(Fd�)k

For readability, the proof of Lemma 7.24 is left in Appendix 7.A.3.

7.5.3 Conclusion for Cyclotomic Rings
We now check that the 6 conditions stated at the beginning of Section 7.5 are verified. For
d�|d, Fd� and Fd� are unitary rings endowed with the dot product defined in Definition 7.2,
which gives the condition 1. The embeddings ιd trivialize the construction of maps M� and
V� from Fd to Fd� :

V� = ι−1
d� ◦ Vd\d� ◦ ιd M� = ι−1

d� ◦Md\d� ◦ ιd.

This gives the condition 2. Lemma 7.24 allows to argue that the image of Vd/d� ◦ ιd

is in the definition domain of ι−1
d� : V� is well defined, and similarly for M�. Conditions 3

and 5 follow from the fact that ιd, ιd� are ring morphisms and that similar properties hold
for Md\d� and Vd\d� . Condition 4 is true because ιd, Vd\d� and ιd� are isometries. Finally,
condition 6 holds in the FFT representation, from Lemma 7.10 and the from the fact that
ι in the Fourier domain simply consist of inserting some 0 at appropriate positions.

7.6 Implementation in Python
In this final section, we give the core of the python implementation of our algorithm when
d is a power of 2. This complete, public-domain implementation can be found at:

https://github.com/lducas/ffo.py

It includes a verifier verif.py, that is based on the (slow) Gram-Schmidt algorithm.
The file ffo.py is the full version of the simplified algorithms given below. The file
ffo_NaN.py is a slightly more evolved version that also handles the non-full rank case. The
file cyclo.py implement the embedding technique of Section 7.5 to apply our algorithms
to the cyclotomic ring setting. The file test.py runs test in the rings R64 and F64.

Conventions. In python.numpy, the arithmetic operations +,-,*,/ on arrays denotes
coefficient-wise operations. The functions fft and its inverse ifft are built in. The
symbol j denotes the imaginary unit.

130

7.6. Implementation in Python

Modified extract of ffo.py
from numpy import *

Inverse vectorize operation V^-1, i/o in fft format
def ffmerge(F1,F2):

d = 2*len(F1)
F = 0.j*zeros(d) # Force F to complex float type
w = exp(-2.j*pi / d)
W = array([w**i for i in range(d/2)])
F[:d/2] = F1 + W * F2
F[d/2:] = F1 - W * F2
return F

Vectorize operation V, i/o in fft format
def ffsplit(F):

d = len(F)
winv = exp(2.j*pi / d)
Winv = array([winv**i for i in range(d/2)])
F1 = .5* (F[:d/2] + F[d/2:])
F2 = .5* (F[:d/2] - F[d/2:]) * Winv
return (F1,F2)

ffLDL alg., i/o in fft format, outputs an L-Tree (sec 3.2)
def ffLDL(G):

d = len(G)
if d==1:

return (G,[])
(G1,G2) = ffsplit(G)
L = G2 / G1
D1 = G1
D2 = G1 - L * G1 * conjugate(L)
return (L, [ffLDL(D1),ffLDL(D2)])

ffLQ, i/o in fft format, outputs an L-Tree (sec 3.2)
def ffLQ(f):

F = fft(f)
G = F*conjugate(F)
T = ffLDL(G)
return T

ffBabai alg., i/o in base B, fft format
def ffBabai_aux(T,t):

if len(t)==1:
return array([round(t.real)])

(t1,t2) = ffsplit(t)
(L,[T1,T2]) = T
z2 = ffBabai_aux(T2,t2)
tb1 = t1 + (t2-z2) * conjugate(L)
z1 = ffBabai_aux(T1,tb1)
return ffmerge(z1,z2)

ffBabai alg., i/o in canonical base, coef. format
def ffBabai(f,T,c):

F = fft(f)
t = fft(c) / F
z = ffBabai_aux(T,t)
return ifft(z * F)

131

7. Fast Fourier Orthogonalization

7.A Proofs
This section contains the proofs that were cut from the main body of Chapter 7 in order
to improve readability.

7.A.1 Proof of Proposition 7.9
Proof. We show the properties separately:

1. We first prove this statement for d� = gpd(d) and for elements a, b ∈ Rd. All the
requirements for showing that M is a homomorphism are trivial except for the fact that
it is multiplicative. First, one can check from Definition 7.8 that M(ab) = M(a) · M(b).
Let A = (aij) ∈ Rn×p

d and B = (bij) ∈ Rp×m
d . Since AB Δ= (�1�k�p aikbkj)1�i�n,1�j�m,

we have
M(AB) = M

���
1�k�p aikbkj

�
i,j

�

=
��

1�k�p M(aik)M(bkj)
�

i,j

= M(A)M(B)

Multiplicity then seamlessly transfers to any d��|d:

Md\d��(A · B) = Md�\d�� ◦Md\d�(A · B)
= Md�\d��(Md\d�(A) · Md\d�(B))
= Md�\d�� ◦Md\d�(A) · Md�\d�� ◦Md\d�(B)
= Md\d��(A) · Md�\d��(B)

To show injectivity, it suffices to see that if d� = gpd(d), then (Md\d�(a) = 0)⇔ (a = 0).
From the definition, this property seamlessly transfers to any d�|d and any matrix A.

2. This item is immediate from the definition.

3. It suffices to notice that for any a, V(a) is the first line of M(a). As M is a multiplicative
homomorphism, the result follows.

4. It suffices to prove it for elements a, b ∈ Rd (instead of vectors) and for d� = gpd(d),
the generalization to vectors and to arbitrary values of d� is then immediate. Let a =�

i xiai(xgpd(d)), b = �
i xibi(xgpd(d)), where ∀i, ai = �

0�j<i ai,jx
j and bi = �

0�j<i bi,jx
j.

Then
�a, b�2

Δ=
�

i,j

�ai,j, bi,j�2 =
�

i

�ai, bi�2
Δ= �V(a), V(b)�2

5. We have:

(B FR) ⇔ (∀a, aB = 0 iff a = 0) ⇔ (∀a, V(aB) = 0 iff V(a) = 0)
�

(M(B) FR) ⇔ (∀a�, a�M(B) = 0 iff a� = 0) ⇔ (∀a�, V(a)M(B) = 0 iff V(a) = 0)

The left equivalences are simply the definition, the middle ones uses the fact that V is
a vector space isomorphism and the right one uses Proposition 7.9, item 3.

132

7.A. Proofs

7.A.2 Proof of Proposition 7.13
Proof. Let L · D · L� be the LDL decomposition of BB�. We have:

(v− c) · B̃� = (z− t)B · B̃�

= (z− t)LD (7.8)

One can check that for any j ∈ �1, n�,

((z− t)L)j =
�

i�j

(zi − ti)Lij = t̄j − zj ∈
�
−1

2 ,
1
2

�
(7.9)

where the second (resp. third) equality comes from the way the t̄j’s (resp. zj’s)
are computed in Algorithm 7.2. We note b̃1, ..., b̃n the row vectors of B̃. Combining
equations 7.8 and 7.9 yields |�v − c, b̃j�| � 1

2�b̃j�2. Since the vectors b̃1, ..., b̃n are
orthogonal and (v− c) ∈ Span(B̃), we can write

v− c = �
1�j�n

�v−c,b̃j�
�b̃j�2 b̃j

∈ �
1�j�n

�
−1

2 , 1
2

�
b̃j

∈ P(B̃)

Where the second equality comes from the fact that |�v− c, b̃j�| � 1
2�b̃j�2, and the third

one from the definition of P . This concludes the proof.

7.A.3 Proof of Lemma 7.24
Proof. We prove the lemma for d� = gpd(d), extension to the general case is straightforward.
a can be uniquely written as a = �

0�i<k xiai(xk) where each ai ∈ Rd� . Let ζd be an
arbitrary d-th primitive root of unity. We recall that Ωd = {ζj

d|j ∈ Z×
d } and note

Ud
Δ= {ζ ∈ C|ζd = 1} = {ζj

d|j ∈ Zd}. One can check that:

(ζ ∈ Ud\Ωd)⇔ (ζk ∈ Ud�\Ωd�) (7.10)
Which is immediate by writing ζ = ζj

d, with j ∈ Zd\Z×
d . We recall that evaluating a

on each ζj
d ∈ Ud yields the linear system

a(ζj
d) =

�

0�i<k

ζ ij
d ai(ζkj

d) =
�

0�i<k

ζ ij
d ai(ζj

d�) (7.11)

As a step of the FFT (see Lemma 7.10), the system 7.11 is invertible. In addition,
one can check in equation 7.10 that if ζ ∈ Ud\Ωd, then a(ζ) depends only of the ai(ζ �) for
ζ � ∈ Ud�\Ωd� . Similarly, if ζ ∈ Ωd, then a(ζ) depends only of the ai(ζ �) for ζ � ∈ Ωd� . So the
linear system can be separated in two independent systems. Noting a(E) Δ= {a(e)|e ∈ E}:

�
a(Ωd) a(Ud\Ωd)

�
=
�

(ai(Ωd�))0�i<k (ai(Ud�\Ωd�))0�i<k

� � M1 0
0 M2

�

Since the whole system is invertible, both matrices M1 and M2 are invertible too.
We can conclude that a(Ud�\Ωd�) = 0d−ϕ(d) iff all the ai(Ud�\Ωd�)’s are zero too. This is
equivalent to saying that a ∈ ι(Fd) iff ∀i, ai ∈ ι(Fd�), which proves the lemma.

133

Part III

Identity-Based Encryption
Overview
Identity-Based Cryptography (IBC) is a paradigm of cryptography where an users’ public
key can be directly derived from their public information, like emails or IP addresses.
The cost of the Public Key Infrastructure is therefore greatly reduced, since there is
no need to distribute the public keys. A drawback is that the private-key generation
is assured by a Private-Key Generator (PKG) which has knowledge of all the private
keys. The first example of IBC has been proposed to solve key management issues by
Shamir [Sha84], who achieved identity-based signatures using the existing RSA function.
However, identity-based encryption remained an open question for 16 years.
The first IBE schemes were concurrently introduced by Sakai, Ohgishi and Kasa-
hara [SOK00], Boneh and Franklin [BF01] and Cocks [Coc01] and were based respectively
on pairings and quadratic residues. This was followed by several IBE construction over
pairing groups. Recently, [GPV08] have proposed a framework for realize identity-based
encryption using lattice-based cryptography, but no efficient instantiation of this framework
had been realized. This part of the thesis intend to fill this gap.

In Chapter 8, we propose an efficient identity-based encryption scheme over lattices. To
accomplish this, we take the framework from [GPV08] and instantiate it over NTRU
lattices. Incidentally, this IBE scheme is a natural extension from the signature scheme
proposed in Chapter 6 – which is expected since this is already the case for the IBE and
signature schemes of [GPV08] that they are derived from.
This allows us to reuse results from the previous chapters to optimize the parameters of
the scheme. Chapter 3 allowed to sample narrower Gaussians while still be able to claim
the same level of security and Chapter 6 provided distributions for the NTRU lattices that
are nearly optimal for Gaussian sampling. In addition, we propose some tweaks to the
scheme that in particular allow to use our KL divergence-based argument and divide the
ciphertexts size by two.
To conclude, we implemented our IBE scheme and compared it to a reasonably fast
implementation of the Boneh-Franklin [BF01] IBE scheme. While our scheme has bigger
users’ key and ciphertext sizes – respectively about 40 times and twice bigger –, its
encryption and decryption operations are faster by three orders of magnitude. We believe
this gap is so huge that it makes lattice-based IBEs a viable alternative to their pairing-
based counterparts, especially for constrained device whose computational power is low.

135

7. Fast Fourier Orthogonalization

The Chapter 9 gives a few reminders on identity-based encryption as well as a few
applications. In addition, we propose a potential new application: botnets. These
networks of infected computers are faced with unusual constraints, including an openly
hostile environment. We believe that IBE – and in particular lattice-based IBE – may
provide an answer for some of the challenges that botnets face.

The Chapter 8 develops ideas originally mentioned in Efficient Identity-Based
Encryption over NTRU Lattices [DLP14], a joint work with Léo Ducas and Vadim
Lyubashevsky that was published at ASIACRYPT. The Chapter 9 is independent work.

136

Chapter 8

Efficient Identity-Based Encryption over
NTRU Lattices

8.1 Introduction

Recent improvements in efficiency have firmly established lattice-based cryptography
as one of the leading candidates to replace number-theoretic cryptography after the
eventual coming of quantum computing. There are currently lattice-based encryption
[HPS98, LPR13a, LPR13b], identification [Lyu12b], and digital signature schemes [PDG14,
DDLL13] that have run-times (both in software and in hardware), key sizes, and output
lengths that are more or less on par with traditional number-theoretic schemes. But
unfortunately, the extent of practical lattice-based cryptography stops here. While number-
theoretic assumptions allow for very efficient constructions of advanced schemes like
identity-based encryption [BF01], group signatures [CS97, BBS04], etc. none of these
schemes yet have practical lattice-based realizations.

One of the major breakthroughs in lattice cryptography was the work of Gentry, Peikert,
and Vaikuntanathan [GPV08], that showed how to use a short trap-door basis to generate
short lattice vectors without revealing the trap-door by using an algorithm by Klein [Kle00].
In [GPV08], this was used to give the first lattice-based construction of secure hash-and-sign
digital signatures and identity-based encryption schemes. This vector-sampling algorithm
has since become a key component in many other lattice constructions, ranging from
hierarchical identity-based encryption schemes [CHKP10, ABB10b] to standard-model
signatures [ABB10b, Boy10b], attribute-based encryption [BGG+14] and many other
constructions.

Unfortunately, even when using improved trap-doors [AP08, MP12] and instantiating
with ideal lattices [LPR13a], signature schemes that used the GPV trapdoor approach
were far less practical (by about two orders of magnitude) than the Fiat-Shamir ones
[PDG14, DDLL13], and identity-based encryption had ciphertexts that were even longer -
having ciphertexts on the order of millions of bits.1

1The only works that we are aware of that give actual parameters for candidate constructions that
use trapdoor sampling are [MP12, RS10].

137

8. Efficient Identity-Based Encryption over NTRU Lattices

8.1.1 Our results
Our main result is showing that the GPV sampling procedure can in fact be used as
a basis for practical lattice cryptography. The two main insights in our work are that
one can instantiate the GPV algorithm using a particular distribution of NTRU lattices
that have nearly-optimal trapdoor lengths, and that a particular parameter in the GPV
algorithm can be relaxed, which results in shorter vectors being output with no loss
in security. As our main applications, we propose identity-based encryption schemes
that have ciphertext (and key) sizes of two and four kilobytes (for approximately 80-bit
and 192-bit security, respectively) and digital signatures that have outputs (and keys)
of approximately 5120 bits for about 192-bits of security. We believe that this firmly
places GPV-based cryptographic schemes into the realm of practicality. The IBE outputs
are orders of magnitude smaller than previous instantiations and the signature sizes are
smaller by about a factor of 1.3 than in the previously shortest lattice-based scheme based
on the same assumption [DDLL13].

Our schemes, like all other practical lattice-based ones, work over the polynomial ring
Zq[x]/(xN + 1), where N is a power of 2 and q is a prime congruent to 1 mod 2N . For
such a choice of q, the polynomial xN + 1 splits into N linear factors over Zq, which
greatly increases the efficiency of multiplication over the ring. Our hardness assumption
is related to the hardness, in the random oracle model, of solving lattice problems over
NTRU lattices. These assumptions underlie the NTRU encryption scheme [HPS98], the
NTRU-based fully-homomorphic encryption scheme [LTV12], and the recent signature
scheme BLISS [DDLL13]. And even though this assumption is not related to the hardness
of worst-case lattice problems via some worst-case to average-case reduction2, in the
fifteen years that the assumption has been around, there were no serious cryptanalytic
threats against it. The work of [DDLL13] also provided experimental evidence that the
computational complexity of finding short vectors in these special NTRU lattices was
consistent with the extensive experiments of Gama and Nguyen on more general classes
of lattices [GN08], some of which are connected to the hardness of worst-case lattice
problems.

We implemented our schemes in software (see Table 8.1), and most of the algorithms
are very efficient. The slowest one is user key generation, but this procedure is not
performed often. More important is the underlying encryption scheme, which in our
case is the Ring-LWE scheme from [LPR13a, LPR13b], which already has rather fast
hardware implementations [PG14b]. And as can be seen from the tables, decryption and
encryption are very fast in software as well and compare very favorably to state-of-the-art
implementations of pairing-based constructions.

The timings were performed on an Intel Core i5-3210M laptop with a 2.5GHz CPU
and 6GB RAM. Our implementation relies on the NFLLib library, which allows fast
implementation of lattice-based cryptography. More details on this library can be found
on [ABFK14, GAGL15] but our implementation is unfortunately not publicly available
at this time. A less efficient but open source implementation in C++ can be found on:

https://github.com/tprest/Lattice-IBE/

2The work of [SS11] showed a connection between problems on NTRU lattices and worst-case problems,
but for choices of parameters that do not lead to practical instantiations.

138

8.1. Introduction

Table 8.1: Comparing our IBE (GPV) with a recent implementation [Gui13] of the
Boneh-Franklin scheme (BF).

Scheme GPV-80 GPV-192 BF-128 BF-192
User Private key size 11 kbits 27 kbits 0.25 kbits 0.62 kbits
Ciphertext size 13 kbits 30 kbits 3 kbits 15 kbits
User Key Generation 8.6 ms 32.7 ms 0.55 ms 3.44 ms
Encryption 0.016 ms 0.033 ms 7.51 ms 38.7 ms
Decryption 0.007 ms 0.012 ms 5.05 ms 32.7 ms

Table 8.2: IBE scheme parameters (see Section 8.6).

Security parameter λ 80 192
Root Hermite factor [GN08] γ 1.0075 1.0044
Polynomial degree N 512 1024
Modulus q ≈ 223 ≈ 227

User Public key size 13 Kbits 30 Kbits
User Private key size 11 Kbits 27 Kbits
Ciphertext size 13 Kbits 30 Kbits
Ciphertext expansion factor 26 30

8.1.2 Related Work
Following the seminal work of [GPV08], there were attempts to improve several aspects of
the algorithm. There were improved trap-doors [AP08], more efficient trap-door sampling
algorithms [Pei10, MP12], and an NTRU signature scheme proposal [SS11]. All these
papers, however, only considered parameters that preserved a security proof to lattice
problems that were known to have an average-case to worst-case connection. To the best
of our knowledge, our work is the first that successfully utilizes GPV trapdoor sampling
in practice.

8.1.3 Identity-Based Encryption Scheme
In a public-key IBE scheme, the public key of every user in the system is a combination
of the master authority’s public key along with an evaluation of a publicly-computable
function on the user’s name or i.d.. The private key of each user is then derived by the
master authority by using his master private key. We now give a brief description of the
IBE in this chapter, which is built by using the GPV algorithm to derive the user’s private
keys from an NTRU lattice [GPV08, SS11], and then using the Ring-LWE encryption
scheme of [LPR13a, LPR13b] for the encryption scheme.

The master public key in the scheme will be a polynomial h and the private key
will consist of a “nice basis” for the 2N -dimensional lattice generated by the rows of

Ah,q =
�
−A(h) IN

qIN ON

�
, where A(h) is the anti-circulant matrix whose ith row consists

of the coefficients of the polynomial xi ∗ h mod (xN + 1). A user with identity id will
have a public key consisting of h as well as t = H(id), where H is some publicly-known
cryptographic hash function mapping into Zq[x]/(xN +1). The user’s private key will consist

139

8. Efficient Identity-Based Encryption over NTRU Lattices

Table 8.3: Signature scheme parameters (see Section 8.6.7).

Security parameter λ 80 192
Root Hermite factor γ 1.0069 1.0042
Polynomial degree N 256 512
Modulus q ≈ 210 ≈ 210

Signature size 2560 bits 5120 bits

of a small polynomial s2 such that s1 + s2 ∗ h = t, where s1 is another small polynomial
(how one generates these keys is explicited in Alg. 8.2 in Section 8.3). Encryption and
decryption will proceed as in the Ring-LWE scheme of [LPR13a]. To encrypt a message
m ∈ Z[x]/(xN + 1) with binary coefficients, the sender chooses polynomials r, e1, e2 with
small coefficients and sends the ciphertext

(u = r ∗ h + e1, v = r ∗ t + e2 + �q/2�m).

To decrypt, the receiver computes v − u ∗ s2 = r ∗ s1 + e2 + �q/2�m − s2 ∗ e1. If the
parameters are properly set, then the polynomial r ∗ s1 + e2 − s2 ∗ e1 will have small
coefficients (with respect to q), and so the coordinates which will decrypt to 0 will be
small, whereas the coordinates which will decrypt to 1 will be close to q/2. Notice that for
decryption, it is crucial for the polynomial r ∗ s1 + e2 − s2 ∗ e1 to have small coefficients,
which requires s1 and s2 to be as small as possible.

While the above follows the usual encryption techniques based on LWE, we need a
little tweak to make the security proof based on KL-divergence work (see Section 8.5),
since this argument only applies to search problems (while CPA security is a decisional
problem). To do so we use a key-encapsulation mechanism, that is we encrypt a random
key k rather than m, and then use it as a one-time-pad to send m⊕H �(k) where H � is a
hash function.

8.1.4 Interlude: A Hash-and-Sign Digital Signature Scheme

The first part of the above IBE is actually a hash-and-sign digital signature scheme, as
illustrated by Figure 8.1. The public (verification) key corresponds to the master authority’s
public key, the private (signing) key is the master private key, messages correspond to
user i.d.’s, and signatures are the user private keys. To sign a message m, the signer uses
his private key to compute short polynomials s1, s2 such that s1 + s2 ∗ h = H(m), and
transmits s2. The verifier simply checks that s2 and H(m)− h ∗ s2 are small polynomials.

In the IBE, the modulus q is set deliberately large to avoid decryption errors, but this
is not an issue in the signature scheme. By selecting a much smaller q, which allows one
to sample from a tighter distribution, the signature size can be made more compact than
the user private key size in the IBE.

140

8.1. Introduction

Alice

Carol

SignMSK(m)

Signature Scheme

Alice

Carol

Bob

SKAlice = ExtractMSK(Alice)
≈ SignMSK(Alice)

EncryptAlice(m)

IBE

Figure 8.1: From a signature scheme to an IBE scheme

We can reprise our analysis from Chapter 6, the only thing that we add is concrete
parameters for such a signature scheme in Table 8.3. The size of the keys and signatures
compare very favorably to those of the BLISS signature scheme [DDLL13]. For example,
for the 192 bit security level, the signature size in BLISS is approximately 6500 bits,
whereas signatures in this work are approximately 5000 bits. In fact, further improvements
to the signature size may be possible via similar techniques that were used for BLISS.

The main drawback of the hash-and-sign signature scheme is that signing requires
sampling a discrete Gaussian over a lattice, whereas the Fiat-Shamir based BLISS scheme
only required Gaussian sampling over the integers. At this point, the signature scheme in
this chapter yields smaller signatures but BLISS is much faster. Since both BLISS and
this current proposal are very new, we believe that there are still a lot of improvements
left in both constructions.

8.1.5 Techniques and Chapter Organization
The main obstacle in making the above schemes practical is outputting short s1, s2 such
that s1 + s2 ∗ h = t while hiding the trap-door that allows for this generation. [GPV08]
provided an algorithm where the norms of s1, s2 crucially depend on the length of the
Gram-Schmidt orthogonalized vectors in the trap-door basis of the public lattice. In
the previous Chapter 6 we showed, by experimental evidence backed up by a heuristic
argument, that there exist distributions of NTRU lattices that have trap-doors whose
lengths are within a small factor of optimal. Once we have such short trap-doors (which
correspond to the master private key in the IBE), we can use the GPV algorithm to sample
s1, s2 such that s1 + s2 ∗ h = t. In order for (s1, s2) to reveal nothing about the trap-door,
it’s important that s1, s2 come from a distribution such that seeing (h, s1, s2, t) does not
reveal whether s1, s2 were generated first and then t was computed as s1 + h ∗ s2 = t,
or whether t was first chosen at random and then s1, s2 were computed using the GPV
sampler.

To prove this, [GPV08] showed that the distribution of s1, s2 produced by their sampler
is statistically-close to some trapdoor-independent distribution. In Chapter 3, we showed
that the requirement of statistical closeness can be relaxed, and we can instead use
Kullback-Leibler divergence to obtain private keys shorter by a factor

√
2.

141

8. Efficient Identity-Based Encryption over NTRU Lattices

8.2 Preliminaries
As this is the last technical chapter, most of the tools have already been previously defined.
We give a quick reminder for the most important of them.

8.2.1 Identity-Based Encryption
In the model of Boneh and Franklin [BF01], an IBE scheme is composed of one authority
having extended powers, at least two users and four algorithms:

• Setup: This algorithm is run only one by the authority who creates the IBE environment.
It creates the master private key MSK, which is kept secret, as well as a master public
key MPK, which is rendered public to all users of the IBE scheme and may consist of a
set of parameters including the message space and ciphertext space.

• Extract(MSK, id): Given an identity id ∈ {0, 1}�, the authority (an no one else) uses its
master private key to derive a private key SKid associated to id.

• Encrypt(MPK, id, m): To send a message m to id, anyone can encrypt it using only the
master public key MPK and the identity id.

• Decrypt(SKid, C): Given a private key SKid associated to an identity id, anyone (presum-
ably the owner of the identity, or in some cases the authority) can decrypt a message C
sent to id.

8.2.2 Notations
For the rest of the chapter, N will be a power-of-two integer. We will work in the cyclotomic
ring R Δ= Z[x]/(φ2N(x)) = Z[x]/(xN + 1) (and occasionally the field K Δ= Q[x]/(xN + 1)).

We recall that most of the notation conventions are stated in pages 11 to 19. Let
f = �

i∈ZN
fix

i and g = �
i∈ZN

gix
i in K.

• r(f)(x) = (x · f(x)) mod φ2N . r is called a rotation because it results in an almost
perfect circular rotation of the coefficients of f : r(f)(x) = −fN−1 +�N−1

i=1 fi−1x
i. As a

side note, r is an isometry and thus allows to use the techniques discussed in Chapter 4.

• (f, g) is the vector whose coefficients are f0, ..., fN−1, g0, ..., gN−1.

• f �(x) = f(1/x) mod (xN + 1) = f0 −
�

i∈ZN
fix

(−i mod N) is the conjugate of f in K.

• �f� is the coefficient-wise rounding of f . The same notation applies for vectors.

As many other cryptographic constructions over ring lattices, our IBE scheme gains
efficiency from the duality vector-polynomial. To avoid any ambiguity, when considering
two vectors u, v ∈ K ∼= QN , their dot product as vectors is written �u, v�, consistently
with the notations of the previous chapters, and their multiplication as elements of K –
that is, as polynomials mod(xN + 1) – is written u ∗ v.

142

8.2. Preliminaries

8.2.3 Anticirculant matrices
We recall that for N a power of two and f ∈ R[x] Aφ2N

(f) is the N -dimensional anticirculant
matrix defined by:

Aφ2N
(f) =




f0 f1 f2
. . . fN−1

−fN−1 f0 f1
. . . fN−2

.
−f1 −f2

. f0




=




(f)
(x ∗ f)

...
(xN−1 ∗ f)




When N is clear from context, we just write A(f). Anticirculant matrices verify the
following properties:

1. A(f) + A(g) = A(f + g), and A(f) × A(g) = A(f ∗ g)

2. Aφ2N
(f)t = Aφ2N

(f �)

Complementary information can be found in Section 4.2.4.

8.2.4 Gaussian Sampling
At this point, we assume that readers are familiar with Gaussian sampling and the various
algorithms developed to perform it. We recall that it was introduced in [GPV08] as a
technique to use a short basis as a trap-door without leaking any information about the
short basis; in particular it provably prevents any attack in the lines of [NR06, DN12b]
designed against the NTRUSign scheme. In this chapter, we will use Gaussian sampling
to sample user keys for our IBE scheme, in the same way we used it to sample signatures
in Chapter 5, Section 6.2.

8.2.5 Hardness Assumption
We can base the hardness of our IBE scheme on two assumptions that have been previously
used in the literature. The first assumption deals with NTRU lattices and states that if we
take two random small polynomials f, g ∈ Rq, their quotient h = g/f is indistinguishable
from a sample from the uniform distribution in Rq. This assumption was first formally
stated in [LTV12], but it has been studied since the introduction of the NTRU cryptosystem
[HPS98] in its computational form (i.e. recovering the polynomials f and g from h).
Despite more than fifteen years of cryptanalytic effort, there has not been any significant
algorithmic progress towards solving either the search or decision version of this problem.
As a side note, Stehlé and Steinfeld [SS11] showed that for large enough f and g generated
from a discrete Gaussian distribution, the quotient g/f is actually uniform in Rq. Thus if
one were to use larger polynomials, the NTRU assumption would be unnecessary. Using
smaller polynomials, however, results in much more efficient schemes.

The second assumption we will be using is the Ring-LWE assumption [LPR13a] stating
that the distribution of (hi, hi ∗ s + ei), where hi is random in Rq and s, ei are small
polynomials, is indistinguishable from uniform. When the number of such samples given
is polynomial (with respect to the degree of s), the coefficients of ei cannot be too small
[AG11], however, if we only give one or two samples (as is done for Ring-LWE encryption),
there have been no specific attacks found if the coefficients of s, e1, e2 are taken from a

143

8. Efficient Identity-Based Encryption over NTRU Lattices

very small set like {−1, 0, 1}. In our work, we choose to sample them from such a small
set, but the scheme can be changed to sample from any other slightly larger set at the
expense of slightly increasing the size of the modulus.

8.3 The IBE Scheme
In this section, we present our IBE scheme.

Algorithm 8.1 Setup(N, q)
Require: N, q
Ensure: Master Private Key B ∈ Z2N×2N

q and Master Public Key h ∈ Rq

1: σf = 1.17
�

q
2N

\\ σf chosen s.t. E[�b1�] = 1.17√q

2: f, g ← DZN ,σf

3: Norm ← max
�
�(g,−f)� ,

���
�

qf�

f∗f�+g∗g� , qg�

f∗f�+g∗g�

����
�

\\ We compute |B̃f,g|
4: if Norm> 1.17√q, go to step 2
5: Using the extended Euclidean algorithm, compute ρf , ρg ∈ R and Rf , Rg ∈ Z s.t.

• ρf ∗ f = Rf

• ρg ∗ g = Rg

6: if GCD(Rf , Rg) �= 1 or GCD(Rf , q) �= 1, go to step 2
7: Using the extended Euclidean algorithm, compute u, v ∈ Z s.t. u · Rf + v · Rg = 1
8: F ← qvρg, G← −quρf

9: k =
�

F ∗f�+G∗g�

f∗f�+g∗g�

�
∈ R

10: Reduce F and G:
• F ← F − k ∗ f
• G← G− k ∗ g

11: h = g ∗ f−1 mod q

12: B =
�

A(g) −A(f)
A(G) −A(F)

�

Algorithm 8.1 generates a short basis B of Λh,q, making it a trapdoor for sampling
short elements (s1, s2) such that s1 + s2 ∗ h = t for any t, without leaking any information
about itself. Steps 5 to 12 of the algorithm is just completing (f, g) into a full NTRU
basis B.

Algorithm 8.2 Extract(B, id)
Require: Master secret key B ∈ Z2N×2N

q , standard deviation σ � |B̃|·η�
�(Z), hash function

H : {0, 1}� → ZN
q , user identity id

Ensure: User secret key SKid ∈ Rq

1: if SKid is in local storage then
2: Output SKid to user id
3: else
4: t← H(id) ∈ ZN

q

5: (s1, s2)← (t, 0)− KleinSampler(B, σ, (t, 0)) \\ s1 + s2 ∗ h = t
6: SKid ← s2
7: Output SKid to user id and keep it in local storage
8: end if

144

8.4. Optimizing the Setup and the Extract

Here the Extract is exactly the Sign procedure of Section 6.3, Algorithm 6.2, with
Klein’s sampler as the chosen sampling procedure.

Algorithm 8.3 Encrypt(id, m)
Require: Hash functions H : {0, 1}� → ZN

q and H � : {0, 1}N → {0, 1}N , message
m ∈ {0, 1}N , master public key h ∈ Rq, identity id

Ensure: Encryption (u, v, c) ∈ R2
q of m under the public key of id

1: r, e1, e2 ← {−1, 0, 1}N ; k← {0, 1}N (uniform)
2: t← H(id)
3: u← r ∗ h + e1 ∈ Rq

4: v← r ∗ t + e2 + �q/2� · k ∈ Rq

5: Drop the least significant bits of v: v← 2�
�
v/2�

�

6: Output (u, v, m⊕H �(k))

Note that encryption is designed using a key-encapsulation mechanism; the hash of
the key k is used to one-time-pad the message. If H � is modeled as a random oracle, this
makes the CPA security (a decisional problem) of the scheme as hard as finding the key k
exactly (a search problem). Basing the security argument on a search problem is necessary
for our KL Divergence-based security argument to hold, as explained in Section 3.2.1.

Before sending the ciphertext (u, v, m⊕H �(k)), we drop the the least significant bits
of v in step 5 to save space. However, it won’t have any practical impact over the scheme.

Algorithm 8.4 Decrypt(SKid, (u, v, c))
Require: User secret key SKid, encryption (u, v, c) of m
Ensure: Message m ∈ {0, 1}N

1: w← v− u ∗ s2
2: k←

�
w

q/2

�

3: Output m← c⊕H �(k)

In Algorithm 8.4, if the message m to be decrypted is much shorter than N bits, then
we can use the remaining bits to embed m into an error-correcting code. This allows a
small number of decryption errors, which in turn allows to reduce the modulus q by a few
bits. This is discussed in Section 8.5.3.

8.4 Optimizing the Setup and the Extract
In this section, we first optimize the Setup and Extract procedures of our IBE. We recall
that these are exactly the KeyGen and Sign procedures of the Full-Domain Hash (FDH)
signature scheme presented in Section 6.3.

The IBE is affected in the same way as the FDH signature scheme by the performance
of these algorithms: the shorter the key (resp. signature in the FDH scheme) sampled,
the more secure the scheme. Therefore we ignore for now the Encrypt/Decrypt parts. To
optimize space and security, we have two leverages: the choice of the family of lattices and
of the sampler.

145

8. Efficient Identity-Based Encryption over NTRU Lattices

NTRUEncrypt

�(f, g)� minimal

(f, g)

(F,G)

(f, g)

(F,G)

This work

�(f, g)� ≈ 1.17
√
q

(f, g)

(F,G)

Provably Secure NTRU

�(f, g)� > 2n
√
q

Gram-Schmidt ⇓ Orthogonalization

NTRUEncrypt This work

|B̃|

|B̃|

σ > 1√
2

�
λ ln 2
2π2 · |B̃|

|B̃|

Provably Secure NTRU

Our choice of distribution for NTRU lattices is very different from preexisting ones. We
note that there is no distribution “better” than the others: the one from the NTRUEncrypt
scheme [HPS98] is used for different purposes, ours optimizes Gaussian sampling and the
one from Stehlé and Steinfeld [SS11] aims at provable security.

Figure 8.2: Comparison with other choices of distributions for NTRU lattices

• For the family of lattices, we choose the NTRU lattices for the reasons previously given:
they have a very compact representation and have resisted extended cryptanalysis over
the last years.

• For the choice of the sampler, we can neglect its running time since the Extract is realized
only once per user, as opposed to an arbitrary number of Encrypt/Decrypt. Without
this constraint, Klein’s sampler (or its fast Fourier variant described in Chapter 7)
becomes the only logical choice when opposed to the Hybrid and Peikert’s.

Fortunately, we already analyzed the use of Klein’s sampler with NTRU lattices in
Section 6.2. It showed that taking �(f, g)� ≈ 1.17√q allows to sample very short vectors
using Klein’s sampler with NTRU lattices: the standard deviation σ of the vectors we
sampled are within a factor 1.17 of the best theoretical σ known for Klein’s sampler, and
both our heuristic and experiments suggest that it is the best achievable in practice for
NTRU lattices.

We also have to compute |B̃f,g| in practice. For general lattices, this is done by applying
the Gram-Schmidt process to the basis and computing the maximum length of the resulting
vectors. However, in the case of NTRU lattices, Corollary 6.5 allows to compute |B̃f,g|
much faster, in time O(N log(N)) instead of O(N3). Moreover, this verification step is
done before completing (f, g) into a full NTRU basis (f, g, F, G). Since the latter operation

146

8.5. Optimizing the Encryption and Decryption

is by far the costliest part of the Setup, it can in practice be an appreciable feature to be
able to check the “quality” of a private key (f, g, F, G) before completing it. We would
also have this property if we used the hybrid sampler, but it doesn’t seem to apply to
Peikert’s sampler.

8.4.1 Parameter Improvement in the Case of Bounded Queries
An idea brought up by Bai et al. in [BLL+15] is to consider the security of the signature
scheme from [GPV08] for a finite number of queries. Combined with replacing the statistical
distance by the Rényi divergence, this allows them to use the GPV signature scheme with
a much smaller standard deviation.

Their analysis transfers seamlessly to the extract part of our IBE scheme, and if there
is one situation where it is perfectly reasonable to consider as bounded the number of
queries, it is precisely IBE. For most of the applications of IBE – like secure mail, secure
phones, wireless sensors and botnets which are all detailed in the next Chapter 9 – it
is reasonable to assume that no more than 220 user key extracts are performed, and 233

(more than the current number of living humans on Earth) seems almost out of reach.
Therefore, taking the number of extract queries as a variable can be used as a leverage

to further reduce the parameters of the IBE. Expanding on the idea of [BLL+15] might
even lead to a reduction of the required precision. However, we don’t elaborate on both
ideas and leave this for future work.

8.5 Optimizing the Encryption and Decryption
In this section, we explain a few choices in our scheme related to the encryption and
decryption parts. Some choices are related to security, some others for optimization, and
one serves both.

First, Section 8.5.1 evaluate how big the modulus q must be set to ensure that users
decrypt correctly. Then, in Section 8.5.2, we explain the security reason behind the use
of a key-encapsulation mechanism in the encryption. We elaborate how to reduce the
ciphertexts’ size using bit dropping in Section 8.5.3. To finish, Section 8.5.4 considers
using error correcting codes to gain about an extra 15% on the size of the ciphertexts.

In addition, the scheme we described is only CPA-secure. Fortunately, works by
Yang et al. [YKH+06] and Kitagawa et al. [KYH+06] have already documented how to
make IND-CCA2 any IND-CPA IBE in the random-oracle model.

8.5.1 Correctness of Decryption
In order for an user to decrypt correctly, y = r∗s1 +e2−e1∗s2 must have all its coefficients
in (− q

4 , q
4)3, so we need to set q big enough. In practice, this gives q ≈ 224 for λ = 80, and

q ≈ 227 for λ = 192.
Proof outline. We use Lyapunov’s Central Limit Theorem to approximate each yi with the
Gaussian N (0, σy), where σy =

�
2
3(�s�2 + 1) ≈ 2σ

�
N
3 , since �s� is expected to be about

σ
√

2N . Then we use a tailcut inequality for Gaussians.

3In fact we take q
8 instead of q

4 to account for bit dropping.

147

8. Efficient Identity-Based Encryption over NTRU Lattices

8.5.2 CPA Security and Kullback-Leibler Divergence
During this work, we used the KL divergence to argue that if a scheme is λ-bit secure
with access to a perfect oracle P , then it as also λ-bit secure with access to an imperfect
oracle Q as long as DKL(P�Q) � 2−λ.

Compared to a statistical-based analysis, this allowed us to sample with a standard
deviation smaller by a factor

√
2 and to cut the required precision in half.

However, the security argument we gave is tight only for search problems (see Remark
3.4). We can base the unforgeability of FDH schemes on it, since forging a signature is a
search problem, but it is unclear if it could be directly applied to any CPA scheme: CPA
security is a decisional problem, not a search problem.

Yet our IBE design makes this argument valid: we designed encryption using a
key-encapsulation mechanism, the random key k being fed into a hash function H � to
one-time-pad the message. Modeling H � as a random oracle, one easily proves that breaking
CPA security with advantage p is as hard as recovering k with probability p, which is a
search problem.

8.5.3 Drop the Bit
The step 5 of Algorithm 8.3 drops the least � significant bits of v. The goal of this operation
is not to make the scheme more secure (although this is arguably the case since it gives an
attacker less information), but simply to reduce the size of the ciphertexts.

Of course dropping bits can also lead to incorrect decryption. However, for � �
�log2 q� − 3, it doesn’t significantly affect the correct decryption rate of the scheme, so we
take this value of � as standard.

This allows to divide the size of the ciphertexts by a bit less than 2.

8.5.4 Error-Correcting Codes
To further reduce the size of the ciphertexts, we can resort to error-correcting codes (or
ECC). This idea was first proposed in [GFS+12], but to the best of our knowledge no one
developed it – including the authors of the aforementioned paper.

Normally, the modulus q needs to be set big enough so that all the bits of y are smaller
(in absolute value) than q

8 . However, in practice public-key cryptography is typically used
to encapsulate a private key or to proceed to a key-exchange, and IBE is no exception to
this rule (see Chapter 9). In these conditions, it is reasonable to assume that only the first
λ bits of the message store relevant information, therefore only these need to be correctly
decrypted.

In addition, the N − λ remaining bits can be used to store redundant information
about the encapsulated key. In other words, one can use a correcting code C : Fλ

2 �→ FN
2

to encode the information i being sent.
Let C : Fλ

2 �→ Fn
2 a [n, k, d]-error correcting code, that is a correcting-code encoding

k bits of information into a n-bits codeword, whose Hamming distance is d. C is able
to detect at most d − 1 errors and to correct at most �d/2� errors. We consider three
scenarios:

• Plain. The information i ∈ Fλ
2 is simply encoded on the first λ bits of m. We require

that these λ first bits all decrypt correctly with overwhelming probability.

148

8.6. Security analysis of the IBE scheme

Table 8.4: Comparing how small �log2 q� can be set, in function of the parameters of the
scheme and the encoding of the messages.

Parameters
Encoding Plain Constrained ECC Relaxed ECC

d = 7 d = 17 d = 45 d = 7 d = 17 d = 45
λ = 192, N = 1024 27 25 24 23 24 23 22
λ = 80, N = 512 24 22 21 20 21 20 19

• Constrained ECC. The information i is encoded into a codeword C(i) ∈ Fn
2 using an

error-correcting code C that can correct �d/2� errors. We require that at most �d/2�
errors occur with overwhelming probability. In this setting, we don’t lose in generality
compared to the plain setting.

• Relaxed ECC. This setting is the same as constrained ECC, except that we require
the numbers of errors to be at most �d/2� with high probability (say more than 1−2−10),
instead of overwhelming. However, we require to be negligible the probability that
more than d− 1 errors occur. Meeting both these conditions allows Alice to ask Bob
to resend her the information i in the (rare) case that she cannot decrypt it correctly,
while making sure (with overwhelming probability) that she cannot decrypt incorrectly
without her knowledge.

These three scenarios allow for a various number of decryption errors, which leads to
various sizes for the modulus q. This is summarized in Table 8.4.

8.6 Security analysis of the IBE scheme
We now proceed to analyze the security of the scheme. If we only consider the setup and the
extraction, then the security of the scheme is equivalent to that of the underlying signature
scheme. This scheme was already studied in Chapter 6. In particular, equations 6.3 and
6.4 tell us which parameters we can choose so that the scheme isn’t vulnerable to user’s
key recovery through lattice attacks.

However, the most vulnerable part of our IBE scheme will be the actual encryption. Still,
we will first run through the best attacks on the master public key and user private keys
because these correspond exactly to attacks on the key and signature forgery, respectively,
in the hash-and-sign digital signature scheme.

Our master public key polynomial h is not generated uniformly at random, but rather
as g ∗ f−1. The best-known attack for distinguishing an NTRU polynomial from a random
one is to find the polynomials f, g that are “abnormally short”. This involves finding the
short f and g such that h ∗ f − g = 0 mod q. This is equivalent to finding the vector (f, g)
in a 2N -dimensional lattice with determinant qN . From Sections 6.4.1 and 6.5.1, we know
that the euclidean norm of the vector (f, g) is approximately 1.17√q and so calculating
the value of γ using (6.4), we get

�
2N/(2πe) ·√q

1.17√q
= .4γ2N =⇒ γ = (

√
N/1.368)1/2N ,

which is 1.0054 for N = 256 and 1.0027 for N = 512, which is already beyond the realm of
practical algorithms. The private user keys (s1, s2) are generated with standard deviation

149

8. Efficient Identity-Based Encryption over NTRU Lattices

of about σ = 1.17η�
�(Z) · �B̃�, which gives σ ≈ 1.5√q for N = 256 (resp. σ ≈ 2.24√q for

N = 512), and so the vector has length σ
√

2N , which by (6.3) results in a value of γ,

σ
√

2N√
q

= γ2N =⇒
�

γ = (2.137
√

N)1/2N for N = 256
γ = (3.162

√
N)1/2N for N = 512

which is 1.0069 for N = 256 and 1.0042 for N = 512.
We now move on to the hardness of breaking the CPA-security of the scheme. En-

cryption (disregarding the message) consists of (u = r ∗ h + e1, v = r ∗ t + e2), where the
coefficients of r, e1, e2 have coefficients chosen from {−1, 0, 1}. In order to avoid decryption
errors, the value of the modulus q has to be set fairly high (see Table 8.1). The best-known
attack against the encryption scheme involves essentially recovering the errors e1, e2. From
the ciphertext (u, v), we can set up the equation (t∗h−1)∗e1−e2 = (t∗h−1)∗u−v mod q,
which can be converted into the problem of finding the 2N +1-dimensional vector (e1, e2, 1)
in a 2N + 1-dimensional lattice with determinant qN . Using (6.4), we get

�
2N/(2πe) ·√q

�(e1, e2, 1)� = .4γ2N =⇒ γ = (.74√q)1/2N ,

which gives us γ = 1.0075 for N = 512 and γ = 1.0044 for N = 1024.
The attacks we just described are the best known against our scheme. For completeness,

we list a few other attacks in the rest of this section.

8.6.1 Master Secret Key recovery by Brute-force and
Meet-in-the-Middle

Brute-force key recovery. This is the most basic and full-frontal attack : the attacker
samples a polynomial f � of norm � √0.6q, computes g� = h ∗ f � and hopes that
�(f �, g�)� � 1.17√q. He will then have obtained with very high probability (f, g) or one
of its rotation rj(f, g).

f is sampled from DN
Z,σf

, with σf =
�

3q
5N

. For each i, P(fi = f �
i) � 1

σf

√
2π

=
�

6πq
5N

, so
the randomly sampled polynomial f � will actually be equal to f with probability at most�

5N
6πq

�N/2
. Doing the same analysis for each of the rj(f) ensures us that the attack will

succeed with probability at most N
�

5N
6πq

�N/2
.

Meet-in-the-Middle key recovery. Odlyzko described a Meet-in-the-Middle attack
against NTRUEncrypt, which also applies to [DDLL13] and the present scheme. The
details can be found in [HG07], and the attack runs in time equal to the square root of
the brute-force attack running time. The cost of this attack in time and memory is equal
to about

1√
N

�6πq

5N

�N/4

8.6.2 Master Secret Key recovery by primal lattice attack
This attack consists in applying lattice reduction to Λh,q and hope to find the private
key as a short vector. As already explained in [DDLL13], experiments show that even

150

8.6. Security analysis of the IBE scheme

though there are N short vectors (f, g), r(f, g), ..., rN−1(f, g), it doesn’t affect the behavior
of BKZ, and therefore also use the BKZ 2.0 methodology. This ensures us that the scheme
is secure against primal lattice attack provided that

�
q · 2N

2πe
< 0.4γ2N�(f, g)�

Since �(f, g)� = 1.17√q, this gives us γ >
�

N
0.192πe

�1/4N

8.6.3 User private key forgery with approached collision attack
This attack is very similar to the one presented in [HGHPW05]. In this attack, A chooses
a number of si

2 ← D1, computes si
1 = H(id)− h ∗ si

2 and hopes that one of the si Δ=
�si

1
si

2

�

has its norm less than �s�max = 2σ
√

πN , where σ = η�
�(Z) ·√1.2q. Assuming the attacker

cannot control the norm of si
1 more than if he was sampling a random vector in ZN

q , the
probability that

P
�
�x� � �s�max|x $← ZN

q

�
≈ V ol(BN(2σ

√
πN))

V ol(RN
q) ≈ 1√

πN
·
�

4π2σ2e

q2

�N/2

The attacker can also try to find "collisions" that yields valid user private keys : if (si
1, si

2)
and (sj

1, sj
2) verify the equation

s1 = H(id)− h ∗ s2 (1)

then (si
1 + sj

1 −H(id), si
2 + sj

2) also verifies (1). It then suffices that si
1 and H(id)− sj

1 are
at a close distance for (si

1 + sj
1 −H(id), si

2 + sj
2) to be a valid signature.

This attack is similar to the birthday attack, with the difference that the attacker
don’t look for exact collisions, but close neighbors, which is much more complicated to do
: unlike in the exact collision case, the attacker cannot simply sort the si

1, H(id)− si
1 in

order to find a collision.
However, we assume that there is an analogous algorithm for finding close neighbors,

therefore assuming the attacker is stronger than he actually is. The attacker can then
hope to find a collision with a number of samples equal to :

P
�
�x� � �s�max|x $← ZN

q

�−1/2
≈ (πN)1/4 ·

�
q2

4π2σ2e

�N/4

Therefore, to get a security parameter λ, it is sufficient to set

q � 2 4λ
N

+7(η�
�)2(Z)

8.6.4 User private key recovery by solving SIS
As our security proof explains, being able to forge an user private key implies being able
to solve the NTRU-SIS problem.

If one is able to attain a Hermite factor γ, then it is hard to forge user private keys
provided that the maximum accepted norm �s�max for user private keys verify

�s�max � γ2N√q

In practice, �s�max = η�
�(Z)
√

4.8qπN , so this gives us γ �
�
η�

�(Z)
√

4.8πN
�1/2N

. We note
that this is a stronger condition than the one from Section 8.6.2.

151

8. Efficient Identity-Based Encryption over NTRU Lattices

8.6.5 Plaintext message recovery via Brute-force and
Meet-in-the-Middle

Brute-force message recovery. This attack is almost exactly like the one from Section 8.6.1.
Having intercepted an encrypted message (u, v), the attacker samples a polynomial r� and
hopes that �h ∗ r− u� is small.

Let each coefficient of r, e1 be in {−1, 0, 1}, and equal to 0 with probability p, and to 1
(resp. -1) with probability 1

2(1− p). Then σr =
�

2
3(1− p)

Re-using the same analysis, this attack succeeds with probability at most NpN .
Meet-in-the-Middle message recovery. The MitM attack applies once again, and its

cost in time and memory is equal to about 1√
N

p−N/2.

8.6.6 Plaintext message recovery via lattice attacks
Let e = (e1, e2). In the following subsection, we figure out how big �e� has to be in
order to prevent its recovery by lattice attacks. In our scheme, we do bit dropping, which
virtually adds a huge error (0, e3) to e. We will however act like there is no bit dropping
and will not take (0, e3) into account : even though the error added is tremendous, it is
asymmetric (it affects only the second half) and deterministic. These specificities make it
unclear how much bit dropping hinder lattice attacks, therefore we will choose to ignore
bit dropping, giving the adversary more information that it actually has.

In order to prevent recovery of the e, we need
√

2qN
2πe

�e� < 0.4·γ2N . In practice, taking �e� ≈
σr

√
2N , with σr = 3q

16
√

2λ log 2�s�
ensures correct decryption. This gives the (simplified)

condition:
η�

�(Z)
√

λN < 0.17γ2N

8.6.7 Analysis of the signature scheme
In our signature scheme, the keygen is provided by Algorithm 8.1, the signature by
Algorithm 8.2 and the verification by checking the norm of (s1, s2) as well as the equality
s1 + s2 ∗ h = H(m). Since there is no encryption, we can discard the CPA-security
analysis at the end of the previous section, as well as the issues regarding correctness of
the encryption. This leads to much smaller values for N and q, which can be found in the
Table 8.3 of Section 8.1.

We now analyze the bitsize of the private key, public key and signature. The public
key is h ∈ Rq, as well as the signature s1, so their bitsizes are N�log2 q�. The private
key is f such that f ∗ h = g mod q. Given the procedure to generate b1 = (f, g), with
high probability each coefficient of f has absolute value at most equal to 6σf (if it isn’t
the case, one just needs to re-sample the coefficient). f can therefore be stored using
N(1 + �log2(6σf)�) bits, where σf = 1.17

�
q

2N
.

Using Huffman coding, as in BLISS [DDLL13], may also be appropriate here for
reducing the key length by several hundred bits, but we do not expand on this idea.

8.7 Conclusion
Trapdoor sampling is at the heart of many “advanced” lattice constructions, yet it has not
been previously considered to be viable in practice. In this thesis, we showed that with a

152

8.7. Conclusion

proper distribution on the trapdoor as well as analyzing the outputs using KL divergence
instead of statistical distance, one can have schemes that are rather efficient and have
their security based on the hardness of lattice problems over NTRU lattices. We believe
that this opens the door to further practical implementations of lattice primitives having
the GPV trapdoor sampling algorithm at their core.

Our work used a distribution over NTRU lattices that is somewhat new – rather
than having very short vectors, our private key has vectors with a small Gram-Schmidt
maximum. It is unclear how this compares in terms of difficulty to the hardness of lattice
problems under the “standard” NTRU distribution. On the one hand, the vectors in our
private key are longer, but on the other hand, our private key is more “orthogonal”. General
lattice algorithms (such as BKZ) don’t seem to exploit this feature, but it is an interesting
open problem whether other techniques could be used for improved cryptanalysis of our
schemes.

153

Chapter 9

Applications of Identity-Based
Encryption

9.1 Introduction
In the previous chapter, we presented an efficient identity-based encryption (IBE) scheme
based on lattices. In this chapter, we will take look at the bigger picture and consider its
potential applications.

Figure 9.1 gives a simplified illustration of an identity-based infrastructure (on the right).
The Setup and Decrypt steps are omitted for clarity and since they create no communication
costs (except a single broadcast feed at the end of Setup). More importantly, Figure 9.1
compares the communication costs of a classical public key infrastructure (PKI) versus an
identity-based infrastructure in the simple two-users setting, and the latter boasts reduced
communication costs compared to the former.

Alice Bob

Carol

PKA SignSKC
(PKA)

PKA, SignSKC
(PKA)

EncryptPKA
(m)

A Classical PKI

Alice Bob

Carol

SKAlice = ExtractMSK(Alice)

EncryptAlice(m)

An identity-based PKI

Figure 9.1: IBE PKI versus Classical PKI

From the model we described, we can see three immediate properties inherent to
identity-based encryption, which are also clear in Figure 9.1:

• The communication costs of an identity-based infrastructure are lower than for a
classical PKI. This is not only a gain in communication, but also in security, as less
communication means a lesser number of possible attacks (e.g. man-in-the-middle
attacks).

155

9. Applications of Identity-Based Encryption

• A user Alice doesn’t have to send any information to receive an encrypted message. Two
notable consequences are that Alice doesn’t need any outward communication ability,
and Bob can send a message to Alice before an account is even created for her on an
IBE infrastructure.

• The authority (Carol in the figure) holds in escrow all the user keys it generated. This
property may be viewed as undesirable (from a user’s point of view), desirable (for
the authority) or neutral (e.g. when the user is a non-sentient entity) and contextual
factors may also influence the desirability of key escrow.

Taking time as a parameter also unlocks interesting features such as revocation [BF01,
BGK08] and blocking decryption until a fixed date.

9.2 Authenticated Key Exchange in a Constrained
Environment

In many situations (more thoroughly described in Section 9.3), it is desirable to exchange
keys in a non-interactive way. This can be achieved by the notion of ID-based non-
interactive key exchange.

Definition 9.1 (ID-NIKE). Reprising the setting and notations of Section 8.2.1, we define
an ID-based non-interactive key exchange (ID-NIKE) by three distinct algorithms:

• Setup and Extract are identical to their counterparts of Section 8.2.1.

• Exchange(MPK, SKidA
, idB): Given a private key SKidA

associated to idA, and idB �= idA,
outputs a key KA,B. We require that for identities idA �= idB and valid private keys
SKidA

, SKidB
, we have the following equality:

Exchange(MPK, SKidA
, idB) = Exchange(MPK, SKidB

, idA) (9.1)

Equation 9.1 allows two users to share a session key in a non-interactive manner,
knowing each other’s identities and their own private keys. Pairing-based IBEs allow to
construct ID-NIKE [SOK00, DE02, PS07].

While it would be great to achieve ID-NIKE from a lattice-based IBE, it is unclear
at this point if one can achieve that with our scheme. One can generically construct
an IBE from an ID-NIKE [PS09], but it is unknown if the converse is true.1 Works by
Ding et al. [DXL12], Fujioka et al. [FSXY13], Peikert [Pei14] and Bos et al. [BCNS15]
have considered transposing Diffie and Hellman’s key exchange [DH76] in the RLWE setting,
resulting in some very efficient implementations [BCNS15, GAGL15]. However, following
this idea with our IBE leads to the following (non-interactive) key-exchange:

Alice
H(Alice)=h∗s1+s2

−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−
H(Bob)=h∗s�

1+s�
2

Bob

where each coefficient of s1, s2, s�
1, s�

2 is expected to have absolute value about σ >
√

q,
which is too big for Alice and Bob in the example above to share a secret K ≈ s1 ∗ h ∗ s�

1
as done in [Pei14, BCNS15].

1[PS09] suggests that it is not.

156

9.2. Authenticated Key Exchange in a Constrained Environment

However, instead of ID-NIKE, we can achieve ID-based unidirectional authenticated
key exchange, which we believe is powerful enough in many practical settings.

Definition 9.2 (ID-UAKE). Reprising the setting and notations of Section 8.2.1, we
define an ID-based unidirectional authenticated key exchange (ID-UAKE) by four distinct
algorithms (the last three implicitly take MPK as an argument):

• Setup and Extract are identical to their counterparts of Section 8.2.1.

• Send(SKidA
, idB, K): Given a private key SKidA

associated to idA, and idB �= idA, outputs
an encrypted message C.

• Recover(SKidB
, idA, C)): Given (SKidB

, idA) and an encrypted message C, outputs ⊥ or
a key K.

We require that for identities idA �= idB and valid private keys SKidA
, SKidB

, we have
(with overwhelming probability) the following equality:

Recover(SKidB
, idA, Send(SKidA

, idB, K))) = K

This allows a user A to send a key K to another user B, which they then share.

Consider a scenario where Bob wants to securely send a session key K to Alice, but
Alice is unable to communicate with Bob and none of them can communicate with the
authority. Such a situation can occur to wireless sensor networks, email users (Section 9.3)
or botnets (Section 9.4). Using IBE in conjunction with an identity-based signature scheme
(IBS), Bob can send an encrypted and authenticated session key to Alice by following the
protocol described in Figure 9.2.

• Setup(1n): Generate an infrastructure for IBE as well as for IBS.

• Extract(id): Extract a private key SKid which contains a decryption key for the IBE
and a signing key for the IBS (so SKid can be used either with Sign or Verify).

• Send(SKBob, Alice, K): If Bob wants to send to Alice a session key K authenticated under
his name and readable by Alice alone, he does the following:

1. S← SignSKBob(Alice�K)
2. C← EncryptAlice(K�S)
3. Output C

• Recover(SKAlice, Bob, C)): To authenticate and recover an encrypted session key K sent
by Bob, Alice does the following:

1. (K��S�)← DecryptSKAlice(C)
2. b← VerifyBob

�
S� = SignSKBob(Alice�K�)?

�

3. If b = 1, output K�. Else, output ⊥.

Figure 9.2: An ID-based unidirectional authenticated key-exchange

157

9. Applications of Identity-Based Encryption

The UAKE described in Figure 9.2 follows an ID-based Sign-then-Encrypt paradigm.2
We do not provide a formal security analysis, however, provided that the IBE used has
indistinguishability of ciphertexts under adaptive chosen-ciphertext attacks (IND-CCA2)
and that the IBS used is existentially unforgeable under chosen-message attacks (UF-CMA),
its security follows from Theorem 1 of [ADR02]. This analysis seamlessly transfers to the
ID-based setting [Boy10a].

A generic and simple transformation to turn any signature scheme into an IBS is
for the signer to be provided by the authority with a signing key and a certificate for
the associated verification key, and to append the verification key and certificate to the
signature he sends to Alice. More details about this transformation – and others more
efficient – can be found in [KN09]. For complete post-quantum resilience, we suggest
taking certificated BLISS [DDLL13] as the IBS scheme.

There exist more efficient constructions of key-exchange from IBE and IBS [Boy10a,
DZ10] or of IBS from signature schemes [KN09], but we voluntarily settled with a “naive”
approach to show the feasibility of UAKE from the available lattice-based primitives.

In the two next sections, we give a few applications of IBE and indicate use cases
for which we believe our ID-UAKE can accomplish the same functionalities as would an
ID-NIKE.

9.3 Selected Applications of Identity-Based
Encryption

We now give a few applications of identity-based encryption. As explained before, even
without ID-NIKE, identity-based encryption can solve interesting challenges for any of
these applications as ID-UAKE is sufficient for the use cases we will mention.

9.3.1 Wireless Sensor Networks
Wireless Sensor Networks (WSNs) are – the denomination is rather transparent – networks
of wireless sensors able to gather and transmit environmental data in an autonomous way.
They have numerous applications: most notable application include using them to monitor
toxic gases or radioactivity level in cities or industrial sites, detect natural disasters, survey
military sensible areas, monitor tire pressure (TPMS) and for health care.

From a cryptographic point of view, the main challenge of WSNs is to provide a
safe cryptographic environment to devices whose computational, storage, power and
communication abilities may be very limited. Identity-based encryption has stirred a
wide interest in the WSN community for its ability to elegantly solve non interactive
key distribution and key-exchange problems [SOK00]. Several constructions have been
proposed [YRV+06, ODL+07, GRL08, SC09, CLZ+10, PS12a], as well as implementations
of pairing computations [OAG+11, OAM+07, SC09, XWD10]

Many WSNs have a multi-hop mesh network topology. In this case, communication
between the authority and a node, or between two nodes of the WSN can be uncertain.
In addition, wireless communication is energy consuming and nodes typically have very
limited power or may even be devoid of transmission abilities. With our scheme, a node that

2We in fact use a slightly hardened Sign-then-Encrypt because of the vulnerability of the original
paradigm to “surreptitious forwarding” [Dav01]. That being said, the attack in the aforementioned paper
applies to RSA-like schemes and it is unclear whether it applies in our case.

158

9.4. Botnets

is energy-limited and/or isolated from the authority can receive authenticated encrypted
messages from another node. Very efficient hardware implementations of the encryption
and decryption parts already exist, speed-wise [RVM+14, LSR+15, POG15, CMV+15] and
area-wise [PG14a]. Since in our scheme the encryption and decryption are much faster
than their pairing-based counterparts, we believe that using IBE in WSNs would benefit
from our IBE (or similar lattice-based IBEs).

9.3.2 The Voltage SecureMail™ Service
The first industrial application of IBE was proposed by Voltage Security, a company
co-founded by Dan Boneh. This security solution, SecureMail™, provides its users with
an encrypted mail service using Identity-Based Encryption.

A main selling point of this service is its simplicity: official documents by Voltage
Security [Sec, Spi04] state it can provide companies with a key management system that is
much lighter than usual public-key infrastructures and can be easily integrated in current
architectures.

While it is hard to find independent evaluations of Voltage’s IBE solution, it is worth
noting that Hewlett-Packard has currently acquired Voltage Security and currently propose
Identity-Based Encryption as a security feature3.

As an application of our scheme, a customer using the Voltage SecureMail™ could
send a mail to another user even if the authority server is down.

9.4 Botnets
The recent years have seen a surge of botnets, which are networks of virus-infected
computers who obey to a distant server. The spread of botnets is a very recent and
still-changing phenomenon. Out of the many definitions, we chose the one given by Rajab,
Zarfoss, Monrose and Terzis [RZMT06]:

The term botnets is used to define networks of infected end-hosts, called
bots, that are under the control of a human operator commonly known as
the botmaster. While botnets recruit vulnerable machines using methods
also utilized by other classes of malware (e.g., remotely exploiting software
vulnerabilities, social engineering, etc.), their defining characteristic is the
use of command and control (C&C) channels to connect bots to their
botmasters.

We briefly recall the lifecycle of botnets, which follows essentially four phases:

1. Spread. A bot operator – or botmaster – sends out viruses and worms on the internet
to infect computers.

2. Infect. Those viruses infect computers who then become partially or totally controlled
by bots.

3. Command & Control. The bot in an infected computer connects to a server – often
called C&C server – controlled by the botmaster to receive instructions.
3https://www.voltage.com/technology/data-encryption/identity-based-encry

ption/

159

9. Applications of Identity-Based Encryption

4. Attack. The botmaster can issue any order to the bots connected.

Readers interested in more details may read [SSPS13] as an introduction. Frequent uses
of botnets include distributed denial-of-service (DDoS) attacks, spamdexing (ie spamming
requests over a web search engine in order to influence the ranking of a site), network
scanning, email address harvesting (bots doing so are called spambots) bitcoin mining and
the theft of valuable information such as credit card numbers, login ID’s and application
serial numbers.

Botnets’ illegal nature give them some properties that are desirable to achieve:

� Stealth. The bots must be stealthy. To avoid detection by an antivirus or an intrusion
detection system (IDS), it is preferable to keep the storage, energy and bandwidth
consumption low whenever possible.

� Autonomy. The ability for a botnet to autonomously maintain its activities without
communicating with a C&C server is desirable in at least two scenarios:
1. A C&C server is identified and taken down.
2. Part or totality of the bots is suddenly isolated from the internet. This may happen

when a local network is quarantined under discovery or suspicion of infection.
We stress that the two scenarios given above happen in real life on a monthly (resp.
daily) basis. Recent botnets have adapted to the first scenario by using peer-to-peer
networks [ARSG+13].
This (semi-)autonomy requirement can be useful in particular for botnets aiming at
DDoS attacks, spamdexing, network scanning, email harvesting and bitcoin mining,
since these activities can be performed more efficiently when participants coordinate
their actions.

� Resilience. Compromise of a single bot should leave the rest of the botnet unharmed.

9.4.1 Botnets and Encryption
Malware developers have always been enthusiastic users of encryption, and botnet develop-
ers are no exception. The first motivation was to encrypt (parts of) the program to hide
its maliciousness and to prevent its detection and reverse-engineering as much as possi-
ble. Popular encryption algorithms feature TEA[WN95] (Storm, SilentBanker [CPKS09]),
AES [AES01] or RC4 (Sality [Zak10]). As a result, reverse-engineering malwares to
recover cryptographic keys and/or primitives has become an active area of research
[LMW09, GWH11, CFM12].

More recently, a threat originally envisioned by Young and Yung [YY96] under the
name of cryptoviral extortion became in a few years a significant part the cybercrime
landscape under the name of ransomwares. Upon infection of a computer, ransomwares
proceed to encrypt its whole content and to erase the original content along with the
encryption key. Without the key, the user of the infected computer has no way to recover
its data, unless he or she pays a ransom to the operator of the ransomware.

Ransomwares have been witnessed to use more robust cryptographic schemes than
other malwares, such as AES-256 alone (Teslacrypt4 [ACT15]), or in conjunction with

4Teslacrypt claimed to rely on RSA-2048 but was discovered to use only AES-256. As a result, it was
reverse-engineered by researchers from Cisco and subsequently dismantled [ACT15].

160

9.4. Botnets

RSA-2048 [RSA78] (Cryptowall, Cryptolocker [KW14], Torrentlocker [Lév14]). Two recent
and seemingly independent ransomwares, OphionLocker and Critroni (a.k.a. CTB-Locker
– for Curve-Tor-Bitcoin) even use elliptic-curve cryptography to encrypt the infected users’
files [Sch14].

For C&C communication, encryption is less sophisticated: most botnets either use
no encryption, the RC4 cipher (Cryptowall, Zeroaccess [Mor12]) or (variants of) XOR
encryption [RD13, PSY]. However, recent botnets have been using stronger cryptography
on this aspect too. Torrentlocker uses SSL [Lév14], Waledac uses AES to encrypt its
C&C traffic [CDB09] and Nugache uses variable-length RSA key exchange with Rijndael-
256 [DR02] session keys for each peer connection.

9.4.2 Identity-Based Encryption for Botnets
Botnets face analog challenges to WSNs. They need to maintain a cryptographically secure
infrastructure with low storage, power and bandwidth abilities. In addition, the topology
of the network may change due when part of the botnet is discovered and taken down.
We review the possibility of relying on “basic” cryptography:

1. Relying on symmetric key cryptography alone is insecure. A captured botnet can be
reverse-engineered and the key exposed – see Section 9.4.1 and footnote 4.

2. Each bot may have its own certified public key, and store its private key. This works
most of the times – but not all the time. We explain why below.

The illegal nature of botnets make their environment fundamentally hostile. The
botmaster may be taken down or part of the network may be isolated. For this reason,
botnets have moved from centralized architectures to mesh networks or peer-to-peer
networks. Recent botnets even use social networks to obtain C&C instructions. In these
configurations, a bot may have to send a message to another one without the latter being
able or willing to answer – because they are too many hops away or because they don’t
want suspicious network activity to be discovered.

This places us exactly in the situation that we described in Section 9.2. In this setting,
an IBE can provide secure authenticated key exchange with minimal communication. In
addition, some properties specific to lattice-based IBEs may be desirable:

1. In pairing-based IBE, encryption and decryption are costly and rely on multi-precision
arithmetic. These operations are done by the bots and may make them easier to detect.
On the other hand, the encryption and decryption operations in our lattice-based IBE
are very fast and use only standard, small-precision arithmetic.

2. Our IBE is anonymous, which is a very useful feature for botnets. We note that is is
also the case of some other IBEs [BW06].

161

9. Applications of Identity-Based Encryption

B

B

B

BB B

B

Clean Server

Bot

Botmaster

The botmaster gives private keys and orders to each bot via a channel that might be
interrupted (symbolized by). The bots can securely send messages to each other even
if part of the botnet is suddenly isolated (blue broken line circle) from the rest of the
network.

Figure 9.3: A botnet using IBE.

9.5 Conclusion
We have presented a few applications of identity-based encryption. ID-based non-interactive
key exchange as done in pairing-based IBEs [SOK00, DE02, PS07] is very useful, but for
many of the considered applications, a slightly relaxed form of it suffices, and it can be
provided with our lattice-based IBE. In the future years, many of the aforementioned
applications are very likely to become widespread, especially wireless sensor networks
and botnets. Identity-based protocols will be very useful then, and the efficiency of our
lattice-based encryption scheme may ease and accelerate the adoption of such protocols.

162

Part IV

Conclusion

163

9. Applications of Identity-Based Encryption

Practical Lattice-Based Cryptography. For anyone interested in bringing lattice-based cryp-
tography closer to “the real world”, the last three years have proved to be particularly
exciting. New efficient schemes have been proposed for signature [DDLL13] and authen-
ticated key exchange [Pei14, BCNS15], along with (open-source) implementations that
confirm their efficiency [DDLL13, BCNS15, GAGL15]. In addition, hardware implementa-
tion have shown that this efficiency transfers to constrained devices.

Identity-based encryption is certainly not a primitive as vital as the two mentioned
above (as well as simple encryption), but its importance may grow stronger in the future.
It is already seriously considered to be implemented in wireless sensor networks – see
Section 9.3.1 – and such networks, as well as all the other systems encompassed by the
umbrella term Internet of Things are expected to significantly develop in the years to
come. With hacking of wireless sensors already being demonstrated as a way to disrupt
cars, drones, pacemakers and even rifles, securing sensor networks already appear of vital
importance. And this security issue will become even more acute if human bodies start to
become embedded with wireless sensors and connected limbs, which I believe will happen
in a few decades’ time. Lattice-based identity-based encryption may then play a major
role, not only because it is identity-based, but because the efficiency and post-quantum
resilience of lattices will play in their favor when compared to pairing-based cryptography.

Hardware Implementation. The main immediate selling point of lattice-based cryptography
at this current time may not be its post-quantum resistance, but its speed efficiency.
Unlike RSA-like and elliptic-curve cryptography, there is no costly operation such as
exponentiation. In addition, for many schemes no multi-precision integers are needed
outside of the key generation, which once again stands in stark contrast with the classical
schemes aforementioned. For these reasons, lattice-based cryptography seems like an ideal
candidate for implementation on embedded devices.

And indeed, these last few years have seen a growing enthusiasm of the cryptographic
hardware community towards lattices, which has led to recent efficient implementations
of lattice-based schemes [PG12, GLP12, PG14b, DBG+15, PG14a, RVM+14, POG15,
CMV+15], including the NTRU encryption scheme [BCE+01, ABF+08, KY09] and the
BLISS signature scheme [PDG14]. I believe that lattice-based cryptography is now ready
for the next logical step to its deployment in real life, that might also prove one of the
most challenging ones. This step is withstanding fault attacks.

A large part of lattice-based cryptography – including hardware implementations –
relies on discrete Gaussians and/or rejection sampling. Compromising one of these two
steps could prove devastating to unprotected lattice-based cryptography. As an example,
consider an output �i zibi of a Gaussian sampler (that we consider centered on 0 for
clarity). The zi’s are supposed to be distributed according to a Gaussian, but a fault
attack that makes them uniform in an interval would open the door to attacks in the
line of [NR06, DN12b] and expose the private basis. Similar attacks would apply to
unprotected BLISS, and would be extremely powerful as an attacker would not need to
flip or control one single bit, but to randomize an array of bits, which is generally easier
for fault attacks.

164

9.5. Conclusion

Post-Snowden Cryptography. A scheme is only as secure as the assumptions it lays upon.
The bombshell revelations made by Edward Snowden in 2013 have shown a somewhat
surprising ability of the NSA to circumvent many of these assumptions. Standout examples
include tampering with standard bodies to promote weak cryptography, implementing
backdoors where no one can detect them or subpoenaing firms into handling them keys or
valuable data.

From a cryptographer’s perspective, I think it should push us out of our comfort zone
and consider that from the design of a cryptographic scheme to the context (user, provider,
country, machine, etc.) of its use in real life, any step can potentially be compromised.

In the field of this thesis, it raises some intriguing questions: is there a way to
introduce a backdoor in a lattice-based cryptographic scheme? Can a logical or hardware
pseudo-random number generator (or a Gaussian generator!) be altered in a way that a
lattice-based scheme using it would be insecure unbeknownst to its users?

A governmental entity can also do a quantum bet: collect and store as much pre-
quantumly encrypted information as possible, and decrypt it when a quantum computer
is available. It would then be in possession of information ranging over as many years
(or even decades) as its target neglected to move to cryptography resilient to quantum
computers. If we look at the NSA, it released an official statement recommending its
partners to move to post-quantum cryptography [NSA15] and has invested $79.7 million to
research the possible realization of a quantum computer[RG14]. Moreover, it is currently
building a data center in Utah that is speculated to be able to store 50 times the current
yearly contents of all voice communications in the United States [Hil13]. Given all this,
there seems to be no is no technical reason that would prevent the NSA, or an equivalently
powerful entity, to do such a bet.

Cryptanalysis. This is maybe the least understood part of lattice-based cryptology now,
which is very unfortunate in my opinion. Lattices are a powerful tool that allows to create
a wide range of cryptographic primitive, but many proposed schemes don’t feature concrete
parameters, which from a cryptanalyst’s standpoint is not very attractive. This is why I
strongly support the papers that propose practical parameters: by giving the community
specific challenges to attack, they help making lattice-based cryptography safer.

For this same reason, I have to mention the works of Chen, Gama and Nguyen [GN08,
CN11] which helped lattice practitioners to have a better understanding of the hardness
of lattice problems. State-of-the-art reports such as the ones of Laarhoven, van de Pol
and de Weger [LvdPdW12] about practical security of lattice-based cryptosystems, and of
Albrecht, Player and Scott [APS15] about LWE are also very valuable tools for the whole
community. And of course the recent efforts [CHL+15, FLLT15] to break lattice-based
schemes play an essential role.

165

9. Applications of Identity-Based Encryption

Quantum Computers. When I started my PhD, I often heard post-quantum resilience as
the main selling point of lattice-based cryptography compared to classical cryptography.
Quantum computers would wipe away the old number-theoretic schemes and post-quantum
cryptography – such as lattice-based – would take their place. But quantum computers
don’t only promise to bring the long-announced cryptocalypse that may break most of
the public-key cryptosystems we currently use. Their fundamentally different nature is
supposed to revolutionize the treatment of many difficult tasks. However, promises are
what they are and the advent of quantum computers could be stopped by many factors –
including the law of physics. Nietzsche said:

There are two different types of people in the world, those who want to
know, and those who want to believe.

I enjoyed these three years playing with lattices, independently of the existence of quantum
computers. And I cannot just take their advent for granted. For this reason, I would like
to see a practical quantum computer in two decades from now.

166

Bibliography

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model. In
Gilbert [Gil10], pages 553–572.
→ Cited on page 41.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In Rabin [Rab10], pages 98–115.
→ Cited on pages 17, 41, 61, 90, and 137.

[ABDG14] Carlos Aguilar Melchor, Xavier Boyen, Jean-Christophe Deneuville, and Philippe Gaborit. Sealing
the leak on classical NTRU signatures. Cryptology ePrint Archive, Report 2014/484, 2014. http:
//eprint.iacr.org/2014/484.
→ Cited on page 101.

[ABF+08] Ali Can Atici, Lejla Batina, Junfeng Fan, Ingrid Verbauwhede, and Siddika Berna Örs. Low-
cost implementations of NTRU for pervasive security. In 19th IEEE International Conference on
Application-Specific Systems, Architectures and Processors, ASAP 2008, July 2-4, 2008, Leuven,
Belgium, pages 79–84. IEEE Computer Society, 2008.
→ Cited on page 164.

[ABFK14] C. Aguilar, J. Barrier, L. Fousse, and M.O. Killijian. Xpire : Private information retrieval for
everyone. 2014.
→ Cited on page 138.

[ACT15] Andrea Allievi, Earl Carter, and Emmanuel Tacheau. Threat spotlight: Teslacrypt – decrypt it
yourself, 2015. http://blogs.cisco.com/security/talos/teslacrypt.
→ Cited on page 160.

[ADM12] Michel Abdalla, Angelo De Caro, and Karina Mochetti. Lattice-based hierarchical inner product
encryption. In Hevia and Neven [HN12], pages 121–138.
→ Cited on page 90.

[ADR02] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature and encryption. In
Knudsen [Knu02], pages 83–107.
→ Cited on page 158.

[ADRS15] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving the shortest
vector problem in 2n time using discrete gaussian sampling: Extended abstract. In Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, pages 733–742, 2015.
→ Cited on pages 17 and 42.

[ADS15] Divesh Aggarwal, Daniel Dadush, and Noah Stephens-Davidowitz. Solving the closest vector prob-
lem in $2ˆn$ time - the discrete gaussian strikes again! CoRR, abs/1504.01995, 2015.
→ Cited on pages 17 and 42.

[AES01] Advanced encryption standard (aes). National Institute of Standards and Technology (NIST), FIPS
PUB 197, U.S. Department of Commerce, November 2001.
→ Cited on page 160.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional encryption for
inner product predicates from learning with errors. In Lee and Wang [LW11], pages 21–40.
→ Cited on page 90.

167

Bibliography

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In Luca Aceto,
Monika Henzinger, and Jiri Sgall, editors, ICALP 2011, Part I, volume 6755 of LNCS, pages 403–
415. Springer, Heidelberg, July 2011.
→ Cited on page 143.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In 28th ACM
STOC, pages 99–108. ACM Press, May 1996.
→ Cited on pages 16, 21, 99, and 116.

[AP08] Joel Alwen and Chris Peikert. Generating shorter bases for hard random lattices. Cryptology ePrint
Archive, Report 2008/521, 2008. http://eprint.iacr.org/2008/521.
→ Cited on pages 137 and 139.

[AP11] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. Theory of
Computing Systems, 48(3):535–553, 2011.
→ Cited on page 116.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors.
Cryptology ePrint Archive, Report 2015/046, 2015. http://eprint.iacr.org/2015/046.
→ Cited on page 165.

[Arn51] Walter Edwin Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue
problem. Quarterly of Applied Mathematics, 9(1–2):17–29, 1951.
→ Cited on page 64.

[ARSG+13] D. Andriesse, C. Rossow, B. Stone-Gross, D. Plohmann, and H. Bos. Highly resilient peer-to-
peer botnets are here: An analysis of gameover zeus. In Malicious and Unwanted Software: "The
Americas" (MALWARE), 2013 8th International Conference on, pages 116–123, Oct 2013.
→ Cited on page 160.

[Bab85] L Babai. On lova´sz’ lattice reduction and the nearest lattice point problem. In Proceedings
on STACS 85 2Nd Annual Symposium on Theoretical Aspects of Computer Science, pages 13–20,
New York, NY, USA, 1985.
→ Cited on pages 24, 29, 30, 61, 62, 85, 94, and 113.

[Bab86] László Babai. On lovász’ lattice reduction and the nearest lattice point problem. Combinatorica,
6(1):1–13, 1986.
→ Cited on pages 24, 29, 30, 61, 62, 85, 94, and 113.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidelberg, August 2004.
→ Cited on page 137.

[BC84] G. R. Blakley and David Chaum, editors. CRYPTO’84, volume 196 of LNCS. Springer, Heidelberg,
August 1984.
→ Cited on pages 171 and 179.

[BCE+01] Daniel V. Bailey, Daniel Coffin, Adam J. Elbirt, Joseph H. Silverman, and Adam D. Woodbury.
NTRU in constrained devices. In Çetin Kaya Koç, David Naccache, and Christof Paar, editors,
CHES 2001, volume 2162 of LNCS, pages 262–272. Springer, Heidelberg, May 2001.
→ Cited on page 164.

[BCG+14] Johannes Buchmann, Daniel Cabarcas, Florian Göpfert, Andreas Hülsing, and Patrick Weiden.
Discrete ziggurat: A time-memory trade-off for sampling from a gaussian distribution over the
integers. In Lange et al. [LLL14], pages 402–417.
→ Cited on pages 18, 57, and 116.

[BCNS15] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum key exchange
for the TLS protocol from the ring learning with errors problem. In 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 553–570. IEEE Com-
puter Society, 2015.
→ Cited on pages 156 and 164.

[Ber14] Dan Bernstein. A subfield-logarithm attack against ideal lattices. http://blog.cr.yp.to/
20140213-ideal.html, Febuary 2014.
→ Cited on pages 81 and 86.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, Heidelberg, August
2001.
→ Cited on pages 135, 137, 142, and 156.

168

Bibliography

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod
Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In Nguyen and Oswald [NO14], pages 533–556.
→ Cited on pages 17, 41, 61, and 137.

[BGK08] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based encryption with efficient
revocation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 08, pages 417–426.
ACM Press, October 2008.
→ Cited on page 156.

[BLL+15] Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron Steinfeld. Improved security
proofs in lattice-based cryptography: using the rényi divergence rather than the statistical distance.
ASIACRYPT, 2015.
→ Cited on pages 47, 114, 116, and 147.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical hard-
ness of learning with errors. In Boneh et al. [BRF13], pages 575–584.
→ Cited on pages 18, 21, 42, 87, 114, and 116.

[BM58] G. E. P. Box and Mervin E. Muller. A note on the generation of random normal deviates. Ann.
Math. Statist., 29(2):610–611, 06 1958.
→ Cited on page 57.

[Boy10a] Xavier Boyen. Identity-based signcryption. In Dent and Zheng [DZ10], pages 195–216.
→ Cited on page 158.

[Boy10b] Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure short signatures
and more. In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010, volume 6056 of LNCS,
pages 499–517. Springer, Heidelberg, May 2010.
→ Cited on pages 17, 41, 61, and 137.

[Boy13] Xavier Boyen. Attribute-based functional encryption on lattices. In Amit Sahai, editor, TCC 2013,
volume 7785 of LNCS, pages 122–142. Springer, Heidelberg, March 2013.
→ Cited on pages 41, 113, and 116.

[BR14] Lejla Batina and Matthew Robshaw, editors. CHES 2014, volume 8731 of LNCS. Springer, Heidel-
berg, September 2014.
→ Cited on pages 177 and 178.

[BRF13] Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors. 45th ACM STOC. ACM Press, June
2013.
→ Cited on pages 169 and 173.

[BW06] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without ran-
dom oracles). In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 290–307.
Springer, Heidelberg, August 2006.
→ Cited on page 161.

[Cac97] Christian Cachin. Entropy Measures and Unconditional Security in Cryptography. PhD thesis,
1997.
→ Cited on page 46.

[CDB09] Joan Calvet, Carlton R. Davis, and Pierre-Marc Bureau. Malware authors don’t learn, and that’s
good! In 4th International Conference on Malicious and Unwanted Software, MALWARE 2009,
Montréal, Quebec, Canada, October 13-14, 2009, pages 88–97. IEEE, 2009.
→ Cited on page 161.

[CDPR15] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short generators of principal
ideals in cyclotomic rings. Cryptology ePrint Archive, Report 2015/313, 2015. http://eprint
.iacr.org/.
→ Cited on pages 81 and 86.

[CFM12] Joan Calvet, José M. Fernandez, and Jean-Yves Marion. Aligot: cryptographic function identifi-
cation in obfuscated binary programs. In Ting Yu, George Danezis, and Virgil D. Gligor, editors,
ACM CCS 12, pages 169–182. ACM Press, October 2012.
→ Cited on page 160.

[CG13] Ran Canetti and Juan A. Garay, editors. CRYPTO 2013, Part I, volume 8042 of LNCS. Springer,
Heidelberg, August 2013.
→ Cited on pages 170 and 176.

169

Bibliography

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a
lattice basis. In Gilbert [Gil10], pages 523–552.
→ Cited on pages 17, 40, 41, 61, 113, 116, and 137.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Cryptanalysis
of the multilinear map over the integers. In Oswald and Fischlin [OF15], pages 3–12.
→ Cited on page 165.

[CLZ+10] Cheng-Kang Chu, Joseph K. Liu, Jianying Zhou, Feng Bao, and Robert H. Deng. Practical ID-
based encryption for wireless sensor network (short paper). In Dengguo Feng, David A. Basin, and
Peng Liu, editors, ASIACCS 10, pages 337–340. ACM Press, April 2010.
→ Cited on page 158.

[CMV+15] Donald Donglong Chen, Nele Mentens, Frederik Vercauteren, Sujoy Sinha Roy, Ray C. C. Cheung,
Derek Pao, and Ingrid Verbauwhede. High-speed polynomial multiplication architecture for ring-
lwe and SHE cryptosystems. IEEE Trans. on Circuits and Systems, 62-I(1):157–166, 2015.
→ Cited on pages 159 and 164.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Lee and Wang
[LW11], pages 1–20.
→ Cited on pages 103 and 165.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In Bahram
Honary, editor, Cryptography and Coding, 8th IMA International Conference, volume 2260 of LNCS,
pages 360–363, Cirencester, UK, December 17–19, 2001.
→ Cited on page 135.

[CPKS09] Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn Xiaodong Song. Dispatcher:
enabling active botnet infiltration using automatic protocol reverse-engineering. In Ehab Al-Shaer,
Somesh Jha, and Angelos D. Keromytis, editors, ACM CCS 09, pages 621–634. ACM Press, Novem-
ber 2009.
→ Cited on page 160.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups (extended
abstract). In Kaliski Jr. [Kal97], pages 410–424.
→ Cited on page 137.

[CT65] James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of computation, 19(90):297–301, 1965.
→ Cited on pages 113, 115, 117, and 121.

[CT91] Thomas M. Cover and Joy Thomas. Elements of Information Theory. Wiley, 1991.
→ Cited on page 47.

[Dav01] Don Davis. Defective sign & encrypt in s/mime, pkcs#7, moss, pem, pgp, and XML. In Yoonho
Park, editor, Proceedings of the General Track: 2001 USENIX Annual Technical Conference, June
25-30, 2001, Boston, Massachusetts, USA, pages 65–78. USENIX, 2001.
→ Cited on page 158.

[DBG+15] Özgür Dagdelen, Rachid El Bansarkhani, Florian Göpfert, Tim Güneysu, Tobias Oder, Thomas
Pöppelmann, Ana Helena Sánchez, and Peter Schwabe. High-speed signatures from standard lat-
tices. In Diego F. Aranha and Alfred Menezes, editors, LATINCRYPT 2014, volume 8895 of LNCS,
pages 84–103. Springer, Heidelberg, September 2015.
→ Cited on page 164.

[DD12] Léo Ducas and Alain Durmus. Ring-lwe in polynomial rings. In Public Key Cryptography–PKC
2012, pages 34–51. 2012.
→ Cited on page 86.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice signatures and
bimodal gaussians. In Canetti and Garay [CG13], pages 40–56.
→ Cited on pages 11, 18, 47, 57, 61, 76, 83, 99, 101, 103, 116, 137, 138, 141, 150, 152, 158, and 164.

[DE02] Régis Dupont and Andreas Enge. Practical non-interactive key distribution based on pairings.
Cryptology ePrint Archive, Report 2002/136, 2002. http://eprint.iacr.org/2002/136.
→ Cited on pages 156 and 162.

[DG14] Nagarjun C. Dwarakanath and Steven D. Galbraith. Sampling from discrete gaussians for lattice-
based cryptography on a constrained device. Appl. Algebra Eng. Commun. Comput., 25(3):159–180,
2014.
→ Cited on pages 18, 57, and 116.

170

Bibliography

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22(6):644–654, 1976.
→ Cited on pages 15 and 156.

[DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based encryption over NTRU
lattices. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of
LNCS, pages 22–41. Springer, Heidelberg, December 2014.
→ Cited on pages 43, 61, 83, 84, 91, 114, 116, and 136.

[DMQ13] Nico Döttling and Jörn Müller-Quade. Lossy codes and a new variant of the learning-with-errors
problem. In Johansson and Nguyen [JN13], pages 18–34.
→ Cited on page 47.

[DN12a] Léo Ducas and Phong Q. Nguyen. Faster gaussian lattice sampling using lazy floating-point arith-
metic. In Wang and Sako [WS12], pages 415–432.
→ Cited on pages 18, 34, 46, 50, 57, 87, 92, and 116.

[DN12b] Léo Ducas and Phong Q. Nguyen. Learning a zonotope and more: Cryptanalysis of NTRUSign
countermeasures. In Wang and Sako [WS12], pages 433–450.
→ Cited on pages 30, 34, 101, 143, and 164.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Secaucus, NJ, USA, 2002.
→ Cited on page 161.

[Duc13] Léo Ducas. Lattice Based Signatures: Attacks, Analysis and Optimization. Phd thesis, Ecole
Normale Supérieure de Paris - ENS Paris, 2013.
→ Cited on pages 18, 57, and 116.

[Dur60] J. Durbin. The fitting of time-series models. Revue de l’Institut International de Statistique /
Review of the International Statistical Institute, 28(3):pp. 233–244, 1960.
→ Cited on pages 64 and 70.

[DXL12] Jintai Ding, Xiang Xie, and Xiaodong Lin. A simple provably secure key exchange scheme based
on the learning with errors problem. Cryptology ePrint Archive, Report 2012/688, 2012. http:
//eprint.iacr.org/2012/688.
→ Cited on page 156.

[DZ10] Alexander W. Dent and Yuliang Zheng. Practical Signcryption. New York, NY, USA, 1st edition,
2010.
→ Cited on pages 158 and 169.

[EGM90] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital schemes. In Gilles Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 263–275. Springer, Heidelberg, August 1990.
→ Cited on page 36.

[eHGH+08] William Whyte (editor), Nick Howgrave-Graham, Jeff Hoffstein, Jill PIpher, Joseph H. Silverman,
and Phil Hirschhorn. IEEE p1363.1 draft 10: Draft standard for public key cryptographic techniques
based on hard problems over lattices. Cryptology ePrint Archive, Report 2008/361, 2008. http:
//eprint.iacr.org/2008/361.
→ Cited on page 101.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
In Blakley and Chaum [BC84], pages 10–18.
→ Cited on page 16.

[FLLT15] Pierre-Alain Fouque, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Cryptanalysis of the
co-acd assumption. In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology
- CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science, pages 561–580, 2015.
→ Cited on page 165.

[FS10] Claus Fieker and Damien Stehlé. Short bases of lattices over number fields. In Guillaume Hanrot,
François Morain, and Emmanuel Thomé, editors, Algorithmic Number Theory, 9th International
Symposium, ANTS-IX, Nancy, France, July 19-23, 2010. Proceedings, volume 6197 of Lecture Notes
in Computer Science, pages 157–173, 2010.
→ Cited on page 94.

[FSXY13] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. Practical and post-
quantum authenticated key exchange from one-way secure key encapsulation mechanism. In Kefei
Chen, Qi Xie, Weidong Qiu, Ninghui Li, and Wen-Guey Tzeng, editors, ASIACCS 13, pages 83–94.
ACM Press, May 2013.
→ Cited on page 156.

171

Bibliography

[GAGL15] Adrien Guinet, Carlos Aguilar, Serge Guelton, and Tancrède Lepoint. Quatre millions d’échanges
de clés par seconde. In SSTIC 2015, 2015.
→ Cited on pages 138, 156, and 164.

[Gal12] Steven D. Galbraith. Mathematics of Public Key Cryptography. Cambridge University Press, New
York, NY, USA, 1st edition, 2012.
→ Cited on pages 38, 74, and 76.

[GFS+12] Norman Göttert, Thomas Feller, Michael Schneider, Johannes Buchmann, and Sorin A. Huss. On
the design of hardware building blocks for modern lattice-based encryption schemes. In Prouff and
Schaumont [PS12b], pages 512–529.
→ Cited on page 148.

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from lattice reduction
problems. In Kaliski Jr. [Kal97], pages 112–131.
→ Cited on pages 30 and 37.

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In
Johansson and Nguyen [JN13], pages 1–17.
→ Cited on page 47.

[GHN06] Nicolas Gama, Nick Howgrave-Graham, and Phong Q. Nguyen. Symplectic lattice reduction and
NTRU. In Vaudenay [Vau06], pages 233–253.
→ Cited on pages 63, 64, 76, 77, 79, and 81.

[Gil10] Henri Gilbert, editor. EUROCRYPT 2010, volume 6110 of LNCS. Springer, Heidelberg, May 2010.
→ Cited on pages 167, 170, and 175.

[GJSS01] Craig Gentry, Jakob Jonsson, Jacques Stern, and Michael Szydlo. Cryptanalysis of the NTRU
signature scheme (NSS) from Eurocrypt 2001. In Colin Boyd, editor, ASIACRYPT 2001, volume
2248 of LNCS, pages 1–20. Springer, Heidelberg, December 2001.
→ Cited on page 101.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-based cryptogra-
phy: A signature scheme for embedded systems. In Prouff and Schaumont [PS12b], pages 530–547.
→ Cited on page 164.

[GN08] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 31–51. Springer, Heidelberg, April 2008.
→ Cited on pages 103, 138, 139, and 165.

[Gol87] Oded Goldreich. Two remarks concerning the Goldwasser-Micali-Rivest signature scheme. In An-
drew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 104–110. Springer, Heidelberg,
August 1987.
→ Cited on page 38.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC,
pages 197–206. ACM Press, May 2008.
→ Cited on pages 11, 17, 18, 31, 33, 34, 37, 38, 39, 42, 47, 50, 53, 61, 83, 85, 86, 91, 99, 101, 102,
113, 116, 135, 137, 139, 141, 143, and 147.

[Gra93] William B Gragg. Positive definite toeplitz matrices, the arnoldi process for isometric operators,
and gaussian quadrature on the unit circle. Journal of Computational and Applied Mathematics,
46(1–2):183 – 198, 1993.
→ Cited on pages 64 and 70.

[GRL08] David Galindo, Rodrigo Roman, and Javier Lopez. A killer application for pairings: Authenti-
cated key establishment in underwater wireless sensor networks. In Matthew K. Franklin, Lucas
Chi Kwong Hui, and Duncan S. Wong, editors, CANS 08, volume 5339 of LNCS, pages 120–132.
Springer, Heidelberg, December 2008.
→ Cited on page 158.

[GS66] W Morven Gentleman and Gordon Sande. Fast fourier transforms: for fun and profit. In Proceedings
of the November 7-10, 1966, fall joint computer conference, pages 563–578. ACM, 1966.
→ Cited on pages 113 and 116.

[GS02] Craig Gentry and Michael Szydlo. Cryptanalysis of the revised NTRU signature scheme. In Knudsen
[Knu02], pages 299–320.
→ Cited on page 101.

172

Bibliography

[Gui13] Aurore Guillevic. Arithmetic of pairings on algebraic curves for cryptography. Theses, Ecole Normale
Supérieure de Paris - ENS Paris, December 2013.
→ Cited on page 139.

[GVL96] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd Ed.). Johns Hopkins University
Press, Baltimore, MD, USA, 1996.
→ Cited on page 65.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for circuits.
In Boneh et al. [BRF13], pages 545–554.
→ Cited on pages 113 and 116.

[GWH11] Felix Gröbert, Carsten Willems, and Thorsten Holz. Automated identification of cryptographic
primitives in binary programs. In Robin Sommer, Davide Balzarotti, and Gregor Maier, editors,
Recent Advances in Intrusion Detection - 14th International Symposium, RAID 2011, Menlo Park,
CA, USA, September 20-21, 2011. Proceedings, volume 6961 of Lecture Notes in Computer Science,
pages 41–60, 2011.
→ Cited on page 160.

[HG07] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack against NTRU.
In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 150–169. Springer, Heidel-
berg, August 2007.
→ Cited on page 150.

[HGHPW05] Nick Howgrave-Graham, Jeff Hoffstein, Jill Pipher, and William Whyte. On estimating the lattice
security of NTRU. Cryptology ePrint Archive, Report 2005/104, 2005. http://eprint.iacr.
org/2005/104.
→ Cited on page 151.

[HHGP+03] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman, and William Whyte.
NTRUSIGN: Digital signatures using the NTRU lattice. In Marc Joye, editor, CT-RSA 2003,
volume 2612 of LNCS, pages 122–140. Springer, Heidelberg, April 2003.
→ Cited on pages 30, 37, 99, 100, 101, and 110.

[Hig02] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2nd edition, 2002.
→ Cited on pages 58 and 74.

[Hil13] Kashmir Hill. Blueprints of NSA’s ridiculously expensive data center in utah suggest it holds less
info than thought. http://www.forbes.com/sites/kashmirhill/2013/07/24/blueprin
ts-of-nsa-data-center-in-utah-suggest-its-storage-capacity-is-less-impre
ssive-than-thought/, 2013.
→ Cited on page 165.

[HJB84] Michael T Heideman, Don H Johnson, and C Sidney Burrus. Gauss and the history of the fast
fourier transform. ASSP Magazine, IEEE, 1(4):14–21, 1984.
→ Cited on page 113.

[HN12] Alejandro Hevia and Gregory Neven, editors. LATINCRYPT 2012, volume 7533 of LNCS. Springer,
Heidelberg, October 2012.
→ Cited on pages 167 and 177.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key cryptosys-
tem. In Algorithmic Number Theory, Third International Symposium, ANTS-III, Portland, Oregon,
USA, June 21-25, 1998, Proceedings, pages 267–288, 1998.
→ Cited on pages 11, 16, 61, 76, 99, 101, 113, 116, 137, 138, 143, and 146.

[HPS01] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NSS: An NTRU lattice-based signature
scheme. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 211–228.
Springer, Heidelberg, May 2001.
→ Cited on page 101.

[JN13] Thomas Johansson and Phong Q. Nguyen, editors. EUROCRYPT 2013, volume 7881 of LNCS.
Springer, Heidelberg, May 2013.
→ Cited on pages 171, 172, and 175.

[Kal97] Burton S. Kaliski Jr., editor. CRYPTO’97, volume 1294 of LNCS. Springer, Heidelberg, August
1997.
→ Cited on pages 170 and 172.

173

Bibliography

[Kan87] Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res.,
12(3):415–440, August 1987.
→ Cited on page 38.

[Kar13] Charles FF Karney. Sampling exactly from the normal distribution. arXiv preprint arXiv:1303.6257,
2013.
→ Cited on page 116.

[Ker83] Auguste Kerckhoffs. La cryptographie militaire. Journal des Sciences Militaires, 1883.
→ Cited on page 15.

[Kle00] Philip N. Klein. Finding the closest lattice vector when it’s unusually close. In SODA, pages 937–
941, 2000.
→ Cited on pages 18, 33, 42, 61, 85, 113, 116, and 137.

[KN09] Eike Kiltz and Gregory Neven. Identity-based signatures, 2009.
→ Cited on page 158.

[Knu02] Lars R. Knudsen, editor. EUROCRYPT 2002, volume 2332 of LNCS. Springer, Heidelberg,
April / May 2002.
→ Cited on pages 167 and 172.

[Kob89] Neal Koblitz. Hyperelliptic cryptosystems. Journal of Cryptology, 1(3):139–150, 1989.
→ Cited on page 16.

[KW14] Uttang Dawda Kyle Wilhoit. Your locker of information for cryptolocker decryption,
2014. https://www.fireeye.com/blog/executive-perspective/2014/08/your-locke
r-of-information-for-cryptolocker-decryption.html.
→ Cited on page 161.

[KY09] A.A. Kamal and A.M. Youssef. An fpga implementation of the ntruencrypt cryptosystem. In
Microelectronics (ICM), 2009 International Conference on, pages 209–212, Dec 2009.
→ Cited on page 164.

[KYH+06] Takashi Kitagawa, Peng Yang, Goichiro Hanaoka, Rui Zhang, Hajime Watanabe, Kanta Matsuura,
and Hideki Imai. Generic transforms to acquire CCA-security for identity based encryption: The
cases of fopkc and REACT. In Lynn Margaret Batten and Reihaneh Safavi-Naini, editors, Informa-
tion Security and Privacy, 11th Australasian Conference, ACISP 2006, Melbourne, Australia, July
3-5, 2006, Proceedings, volume 4058 of Lecture Notes in Computer Science, pages 348–359, 2006.
→ Cited on page 147.

[Lan50] Cornelius Lanczos. An iterative method for the solution of the eigenvalue problem of linear differ-
ential and integral, 1950.
→ Cited on page 64.

[Lan14] Adeline Langlois. Lattice - Based Cryptography - Security Foundations and Constructions. Theses,
Ecole normale supérieure de lyon - ENS LYON, October 2014.
→ Cited on page 47.

[Len82] Arjen K. Lenstra. Lattices and factorization of polynomials over algebraic number fields. In Jacques
Calmet, editor, Computer Algebra, EUROCAM ’82, European Computer Algebra Conference, Mar-
seille, France, 5-7 April, 1982, Proceedings, volume 144 of Lecture Notes in Computer Science,
pages 32–39, 1982.
→ Cited on pages 24 and 113.

[Lep14] Tancrède Lepoint. Design and Implementation of Lattice-Based Cryptography. Theses, Ecole Nor-
male Supérieure de Paris - ENS Paris, June 2014.
→ Cited on pages 18, 57, and 116.

[Lev47] Norman Levinson. The Wiener RMS (root mean square) error criterion in filter design and predic-
tion. J. Math. Phys. Mass. Inst. Tech., 25:261–278, 1947.
→ Cited on pages 43, 64, and 70.

[Lév14] Marc-Étienne M. Léveillé. Torrentlocker - ransomware in a country near you, 2014. http://www.
welivesecurity.com/wp-content/uploads/2014/12/torrent_locker.pdf.
→ Cited on page 161.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients.
Math. Ann., 261:515–534, 1982.
→ Cited on pages 24, 29, 65, 74, 113, and 116.

174

Bibliography

[LLL14] Tanja Lange, Kristin Lauter, and Petr Lisonek, editors. SAC 2013, volume 8282 of LNCS. Springer,
Heidelberg, August 2014.
→ Cited on pages 168, 177, and 178.

[LLM06] Yi-Kai Liu, Vadim Lyubashevsky, and Daniele Micciancio. On bounded distance decoding for
general lattices. In APPROX-RANDOM, pages 450–461, 2006.
→ Cited on page 42.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact Knapsacks are collision resis-
tant. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, ICALP
2006, Part II, volume 4052 of LNCS, pages 144–155. Springer, Heidelberg, July 2006.
→ Cited on pages 17, 21, and 61.

[LMPR08] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. SWIFFT: A modest
proposal for FFT hashing. In Kaisa Nyberg, editor, FSE 2008, volume 5086 of LNCS, pages 54–72.
Springer, Heidelberg, February 2008.
→ Cited on pages 61 and 113.

[LMW09] Felix Leder, Peter Martini, and André Wichmann. Finding and extracting crypto routines from
malware. In 28th International Performance Computing and Communications Conference, IPCCC
2009, 14-16 December 2009, Phoenix, Arizona, USA, pages 394–401, 2009.
→ Cited on page 160.

[LP15] Vadim Lyubashevsky and Thomas Prest. Quadratic time, linear space algorithms for Gram-Schmidt
orthogonalization and gaussian sampling in structured lattices. In Oswald and Fischlin [OF15],
pages 789–815.
→ Cited on pages 64, 80, 87, and 116.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors
over rings. In Gilbert [Gil10], pages 1–23.
→ Cited on pages 17, 21, 47, 86, 101, and 113.

[LPR13a] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors
over rings. J. ACM, 60(6):43, 2013. Preliminary version appeared in EUROCRYPT 2010.
→ Cited on pages 47, 61, 92, 137, 138, 139, 140, and 143.

[LPR13b] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-LWE cryptography. In
Johansson and Nguyen [JN13], pages 35–54.
→ Cited on pages 17, 21, 67, 86, 137, 138, and 139.

[LPSS14] San Ling, Duong Hieu Phan, Damien Stehlé, and Ron Steinfeld. Hardness of k-LWE and applica-
tions in traitor tracing. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I,
volume 8616 of LNCS, pages 315–334. Springer, Heidelberg, August 2014.
→ Cited on page 47.

[LSL13] Laura Luzzi, Damien Stehlé, and Cong Ling. Decoding by embedding: Correct decoding radius
and DMT optimality. IEEE Transactions on Information Theory, 59(5):2960–2973, 2013.
→ Cited on page 38.

[LSR+15] Zhe Liu, Hwajeong Seo, Sujoy Sinha Roy, Johann Großschädl, Howon Kim, and Ingrid Verbauwhede.
Efficient ring-lwe encryption on 8-bit AVR processors. In Tim Güneysu and Helena Handschuh,
editors, Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th International Work-
shop, Saint-Malo, France, September 13-16, 2015, Proceedings, volume 9293 of Lecture Notes in
Computer Science, pages 663–682, 2015.
→ Cited on page 159.

[LSS14] Adeline Langlois, Damien Stehlé, and Ron Steinfeld. GGHLite: More efficient multilinear maps
from ideal lattices. In Nguyen and Oswald [NO14], pages 239–256.
→ Cited on page 47.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In Howard J. Karloff and Toniann Pitassi,
editors, 44th ACM STOC, pages 1219–1234. ACM Press, May 2012.
→ Cited on pages 76, 138, and 143.

[LvdPdW12] Thijs Laarhoven, Joop van de Pol, and Benne de Weger. Solving hard lattice problems and the
security of lattice-based cryptosystems. Cryptology ePrint Archive, Report 2012/533, 2012. http:
//eprint.iacr.org/2012/533.
→ Cited on page 165.

175

Bibliography

[LW11] Dong Hoon Lee and Xiaoyun Wang, editors. ASIACRYPT 2011, volume 7073 of LNCS. Springer,
Heidelberg, December 2011.
→ Cited on pages 167 and 170.

[Lyu08] Vadim Lyubashevsky. Towards Practical Lattice-Based Cryptography. PhD thesis, University of
California, San Diego, 2008.
→ Cited on page 51.

[Lyu12a] Vadim Lyubashevsky. Lattice-based encryption. http://www.di.ens.fr/~lyubash/talks/L
WEcrypto.pdf, 2012.
→ Cited on page 101.

[Lyu12b] Vadim Lyubashevsky. Lattice signatures without trapdoors. In Pointcheval and Johansson [PJ12],
pages 738–755.
→ Cited on pages 101 and 137.

[MB64] G. Marsaglia and T. A. Bray. A convenient method for generating normal variables. SIAM Review,
6(3):pp. 260–264, 1964.
→ Cited on page 57.

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems: a cryptographic perspec-
tive, volume 671 of The Kluwer International Series in Engineering and Computer Science. Kluwer
Academic Publishers, Boston, Massachusetts, March 2002.
→ Cited on pages 38 and 40.

[Mil86] Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams, editor, CRYPTO’85,
volume 218 of LNCS, pages 417–426. Springer, Heidelberg, August 1986.
→ Cited on page 16.

[Mor12] John Morris. Cracking the encrypted c&c protocol of the zeroaccess botnet. http://www.viru
sbtn.com/pdf/conference_slides/2012/Morris-VB2012.pdf, August 2012.
→ Cited on page 161.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
Pointcheval and Johansson [PJ12], pages 700–718.
→ Cited on pages 18, 86, 99, 112, 113, 116, 137, and 139.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small parameters. In Canetti
and Garay [CG13], pages 21–39.
→ Cited on page 42.

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian
measures. In 45th FOCS, pages 372–381. IEEE Computer Society Press, October 2004.
→ Cited on pages 21 and 50.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput., 37(1):267–302, 2007.
→ Cited on pages 32, 51, 99, and 114.

[MT00] George Marsaglia and Wai W. Tsang. The Ziggurat Method for Generating Random Variables.
Journal of Statistical Software, 5(8), 2000.
→ Cited on page 57.

[NO14] Phong Q. Nguyen and Elisabeth Oswald, editors. EUROCRYPT 2014, volume 8441 of LNCS.
Springer, Heidelberg, May 2014.
→ Cited on pages 169 and 175.

[NR06] Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU
signatures. In Vaudenay [Vau06], pages 271–288.
→ Cited on pages 30, 34, 101, 143, and 164.

[NSA15] NSA. NSA suite B cryptography. https://www.nsa.gov/ia/programs/suiteb_cryptogra
phy/, 2015.
→ Cited on pages 21 and 165.

[Nus12] Henri J Nussbaumer. Fast Fourier transform and convolution algorithms, volume 2. 2012.
→ Cited on pages 11 and 113.

[NV10] Phong Q. Nguyen and Brigitte Vallée, editors. The LLL Algorithm - Survey and Applications.
Information Security and Cryptography. 2010.
→ Cited on pages 30 and 179.

176

Bibliography

[OAG+11] Leonardo B. Oliveira, Diego F. Aranha, Conrado Porto Lopes Gouvêa, Michael Scott, Danilo F.
Câmara, Julio López, and Ricardo Dahab. Tinypbc: Pairings for authenticated identity-based non-
interactive key distribution in sensor networks. Computer Communications, 34(3):485–493, 2011.
→ Cited on page 158.

[OAM+07] Leonardo B. Oliveira, Diego F. Aranha, Eduardo Morais, Felipe Daguano, Julio López, and Ricardo
Dahab. Tinytate: Computing the tate pairing in resource-constrained sensor nodes. In Sixth IEEE
International Symposium on Network Computing and Applications (NCA 2007), 12 - 14 July 2007,
Cambridge, MA, USA, pages 318–323. IEEE Computer Society, 2007.
→ Cited on page 158.

[ODL+07] L.B. Oliveira, R. Dahab, J. Lopez, F. Daguano, and A.A.F. Loureiro. Identity-based encryption
for sensor networks. In Pervasive Computing and Communications Workshops, 2007. PerCom
Workshops ’07. Fifth Annual IEEE International Conference on, pages 290–294, March 2007.
→ Cited on page 158.

[OF15] Elisabeth Oswald and Marc Fischlin, editors. EUROCRYPT 2015, Part I, volume 9056 of LNCS.
Springer, Heidelberg, April 2015.
→ Cited on pages 170 and 175.

[PDG14] Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced lattice-based signatures on recon-
figurable hardware. In Batina and Robshaw [BR14], pages 353–370.
→ Cited on pages 47, 49, 50, 137, and 164.

[Pei10] Chris Peikert. An efficient and parallel gaussian sampler for lattices. In Rabin [Rab10], pages
80–97.
→ Cited on pages 18, 33, 35, 36, 50, 57, 85, 86, 90, 92, 113, 116, and 139.

[Pei14] Chris Peikert. Lattice cryptography for the internet. In Michele Mosca, editor, Post-Quantum
Cryptography - 6th International Workshop, PQCrypto 2014, Waterloo, ON, Canada, October 1-3,
2014. Proceedings, volume 8772 of Lecture Notes in Computer Science, pages 197–219, 2014.
→ Cited on pages 156 and 164.

[PG12] Thomas Pöppelmann and Tim Güneysu. Towards efficient arithmetic for lattice-based cryptography
on reconfigurable hardware. In Hevia and Neven [HN12], pages 139–158.
→ Cited on page 164.

[PG14a] Thomas Pöppelmann and Tim Güneysu. Area optimization of lightweight lattice-based encryption
on reconfigurable hardware. In IEEE International Symposium on Circuits and Systemss, ISCAS
2014, Melbourne, Victoria, Australia, June 1-5, 2014, pages 2796–2799. IEEE, 2014.
→ Cited on pages 159 and 164.

[PG14b] Thomas Pöppelmann and Tim Güneysu. Towards practical lattice-based public-key encryption on
reconfigurable hardware. In Lange et al. [LLL14], pages 68–85.
→ Cited on pages 138 and 164.

[PJ12] David Pointcheval and Thomas Johansson, editors. EUROCRYPT 2012, volume 7237 of LNCS.
Springer, Heidelberg, April 2012.
→ Cited on page 176.

[POG15] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. High-performance ideal lattice-based
cryptography on 8-bit atxmega microcontrollers. In Kristin E. Lauter and Francisco Rodríguez-
Henríquez, editors, Progress in Cryptology - LATINCRYPT 2015 - 4th International Conference on
Cryptology and Information Security in Latin America, Guadalajara, Mexico, August 23-26, 2015,
Proceedings, volume 9230 of Lecture Notes in Computer Science, pages 346–365, 2015.
→ Cited on pages 159 and 164.

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case assumptions on
cyclic lattices. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages
145–166. Springer, Heidelberg, March 2006.
→ Cited on pages 17, 21, and 61.

[PS07] Kenneth G. Paterson and Sriramkrishnan Srinivasan. On the relations between non-interactive
key distribution, identity-based encryption and trapdoor discrete log groups. Cryptology ePrint
Archive, Report 2007/453, 2007. http://eprint.iacr.org/2007/453.
→ Cited on pages 156 and 162.

[PS09] Kenneth G. Paterson and Sriramkrishnan Srinivasan. On the relations between non-interactive key
distribution, identity-based encryption and trapdoor discrete log groups. Des. Codes Cryptography,
52(2):219–241, 2009.
→ Cited on page 156.

177

Bibliography

[PS12a] Harsh Kupwade Patil and Stephen A. Szygenda. Security for Wireless Sensor Networks Using
Identity-Based Cryptography. Auerbach Publications, Boston, MA, USA, 1st edition, 2012.
→ Cited on page 158.

[PS12b] Emmanuel Prouff and Patrick Schaumont, editors. CHES 2012, volume 7428 of LNCS. Springer,
Heidelberg, September 2012.
→ Cited on page 172.

[PSY] P. Porras, H. Sadi, and V. Yegneswaran. A Multi-perspective Analysis of the Storm (Peacomm)
Worm.
→ Cited on page 161.

[Rab79] Michael O. Rabin. Digital signatures and public key functions as intractable as factorization. Tech-
nical Report MIT/LCS/TR-212, Massachusetts Institute of Technology, January 1979.
→ Cited on page 16.

[Rab10] Tal Rabin, editor. CRYPTO 2010, volume 6223 of LNCS. Springer, Heidelberg, August 2010.
→ Cited on pages 167 and 177.

[RD13] Christian Rossow and Christian J. Dietrich. Provex: Detecting botnets with encrypted command
and control channels. In Konrad Rieck, Patrick Stewin, and Jean-Pierre Seifert, editors, Detection
of Intrusions and Malware, and Vulnerability Assessment - 10th International Conference, DIMVA
2013, Berlin, Germany, July 18-19, 2013. Proceedings, volume 7967 of Lecture Notes in Computer
Science, pages 21–40, 2013.
→ Cited on page 161.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N.
Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May 2005.
→ Cited on pages 17, 21, 39, 42, 101, and 116.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6), 2009.
→ Cited on page 42.

[RG14] Steven Rich and Barton Gellman. NSA seeks to build quantum computer that could crack most
types of encryption. https://www.washingtonpost.com/world/national-security/ns
a-seeks-to-build-quantum-computer-that-could-crack-most-types-of-encrypt
ion/2014/01/02/8fff297e-7195-11e3-8def-a33011492df2_story.html, 2014.
→ Cited on page 165.

[RS10] Markus Rückert and Michael Schneider. Estimating the security of lattice-based cryptosystems.
Cryptology ePrint Archive, Report 2010/137, 2010. http://eprint.iacr.org/2010/137.
→ Cited on page 137.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signa-
ture and public-key cryptosystems. Communications of the Association for Computing Machinery,
21(2):120–126, 1978.
→ Cited on pages 16 and 161.

[RVM+14] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen, and Ingrid Ver-
bauwhede. Compact ring-LWE cryptoprocessor. In Batina and Robshaw [BR14], pages 371–391.
→ Cited on pages 159 and 164.

[RVV14] Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. High precision discrete gaussian
sampling on FPGAs. In Lange et al. [LLL14], pages 383–401.
→ Cited on pages 18, 57, and 116.

[RZMT06] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. A multifaceted approach to
understanding the botnet phenomenon. In Jussara M. Almeida, Virgílio A. F. Almeida, and Paul
Barford, editors, Proceedings of the 6th ACM SIGCOMM Internet Measurement Conference, IMC
2006, Rio de Janeriro, Brazil, October 25-27, 2006, pages 41–52. ACM, 2006.
→ Cited on page 159.

[SC09] Piotr Szczechowiak and Martin Collier. Tinyibe: Identity-based encryption for heterogeneous sensor
networks. In Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2009 5th
International Conference on, pages 319–354. IEEE, 2009.
→ Cited on page 158.

[Sch96] James C. Schatzman. Accuracy of the discrete fourier transform and the fast fourier transform.
SIAM J. Scientific Computing, 17(5):1150–1166, 1996.
→ Cited on page 116.

178

Bibliography

[Sch14] Shane Schick. Ophionlocker ransomware uses advanced encryption to hold data hostage,
2014. https://securityintelligence.com/news/ophionlocker-ransomware-uses-a
dvanced-encryption-to-hold-data-hostage/.
→ Cited on page 161.

[SE94] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and
solving subset sum problems. Math. Program., 66:181–199, 1994.
→ Cited on page 38.

[Sec] Voltage Security. The identity-based encryption advantage - a proven standard for protecting in-
formation. https://www.voltage.com/resource/the-identity-based-encryption-a
dvantage-a-proven-standard-for-protecting-information.
→ Cited on page 159.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In Blakley and Chaum [BC84],
pages 47–53.
→ Cited on page 135.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In 35th
FOCS, pages 124–134. IEEE Computer Society Press, November 1994.
→ Cited on page 21.

[SOK00] Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems based on pairing. In SCIS
2000, Okinawa, Japan, January 2000.
→ Cited on pages 135, 156, 158, and 162.

[Spi04] Terence Spies. Identity based encryption. http://csrc.nist.gov/archive/pki-twg/y2004/
Presentations/twg-04-09.pdf, 2004.
→ Cited on page 159.

[SS11] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems over ideal
lattices. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 27–47.
Springer, Heidelberg, May 2011.
→ Cited on pages 99, 101, 138, 139, 143, and 146.

[SSPS13] Sérgio S. C. Silva, Rodrigo M. P. Silva, Raquel C. G. Pinto, and Ronaldo M. Salles. Botnets: A
survey. Computer Networks, 57(2):378–403, 2013.
→ Cited on page 160.

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient public key encryption
based on ideal lattices. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages
617–635. Springer, Heidelberg, December 2009.
→ Cited on pages 17, 21, and 61.

[Ste98] G. W. Stewart. Matrix Algorithms: Volume 1, Basic Decompositions. Society for Industrial Math-
ematics, 1998.
→ Cited on page 65.

[Ste10] Damien Stehlé. Floating-point LLL: theoretical and practical aspects. In Nguyen and Vallée [NV10],
pages 179–213.
→ Cited on page 65.

[Ste15] Noah Stephens-Davidowitz. Discrete gaussian sampling reduces to CVP and SVP. CoRR,
abs/1506.07490, 2015.
→ Cited on pages 17 and 42.

[Swe84] D.R. Sweet. Fast toeplitz orthogonalization. Numerische Mathematik, 43:1–21, 1984.
→ Cited on page 63.

[Tsy08] Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. 1st edition, 2008.
→ Cited on page 47.

[Vau06] Serge Vaudenay, editor. EUROCRYPT 2006, volume 4004 of LNCS. Springer, Heidelberg,
May / June 2006.
→ Cited on pages 172 and 176.

[Ver10] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.
→ Cited on page 114.

179

Bibliography

[Wan10] Andrew Wan. Learning, Cryptography, and the Average Case. Phd thesis, Columbia University,
2010.
→ Cited on pages 30 and 34.

[WN95] David J. Wheeler and Roger M. Needham. TEA, a tiny encryption algorithm. In Bart Preneel,
editor, FSE’94, volume 1008 of LNCS, pages 363–366. Springer, Heidelberg, December 1995.
→ Cited on page 160.

[WS12] Xiaoyun Wang and Kazue Sako, editors. ASIACRYPT 2012, volume 7658 of LNCS. Springer,
Heidelberg, December 2012.
→ Cited on page 171.

[XWD10] Xiaokang Xiong, Duncan S. Wong, and Xiaotie Deng. Tinypairing: A fast and lightweight pairing-
based cryptographic library for wireless sensor networks. In Wireless Communications and Net-
working Conference (WCNC), 2010 IEEE, pages 1–6, April 2010.
→ Cited on page 158.

[YKH+06] Peng Yang, Takashi Kitagawa, Goichiro Hanaoka, Rui Zhang, Kanta Matsuura, and Hideki Imai.
Applying fujisaki-okamoto to identity-based encryption. In Applied Algebra, Algebraic Algorithms
and Error-Correcting Codes, 16th International Symposium, AAECC-16, Las Vegas, NV, USA,
February 20-24, 2006, Proceedings, pages 183–192, 2006.
→ Cited on page 147.

[YRV+06] Geng YANG, Chun-ming RONG, Christian VEIGNER, Jiang tao WANG, and Hong bing CHENG.
Identity-based key agreement and encryption for wireless sensor networks. The Journal of China
Universities of Posts and Telecommunications, 13(4):54 – 60, 2006.
→ Cited on page 158.

[Yu08] Ping Yu. Direct Online/Offline Digital Signature Schemes. PhD thesis, Denton, TX, USA, 2008.
AAI3376067.
→ Cited on page 36.

[YY96] Adam L. Young and Moti Yung. Cryptovirology: Extortion-based security threats and countermea-
sures. In 1996 IEEE Symposium on Security and Privacy, pages 129–140. IEEE Computer Society
Press, 1996.
→ Cited on page 160.

[Zak10] V. Zakorzhevsky. A new version of sality at large, 2010. http://www.securelist.com/en/bl
og/180/A_new_version_of_Sality_at_large.
→ Cited on page 160.

180

Abstract

Although rather recent, lattice-based cryptography has stood out on numerous
points, be it by the variety of constructions that it allows, by its expected resistance
to quantum computers, of by its efficiency when instantiated on some classes of
lattices.

One of the most powerful tools of lattice-based cryptography is Gaussian sampling.
At a high level, it allows to prove the knowledge of a particular lattice basis without
disclosing any information about this basis. It allows to realize a wide array of
cryptosystems. Somewhat surprisingly, few practical instantiations of such schemes
are realized, and the algorithms which perform Gaussian sampling are seldom studied.

The goal of this thesis is to fill the gap between the theory and practice of
Gaussian sampling. First, we study and improve the existing algorithms, by both
a statistical analysis and a geometrical approach. We then exploit the structures
underlying many classes of lattices and apply the ideas of the fast Fourier transform
to a Gaussian sampler, allowing us to reach a quasilinear complexity instead of
quadratic.

Finally, we use Gaussian sampling in practice to instantiate a signature scheme
and an identity-based encryption scheme. The first one yields signatures that are
the most compact currently obtained in lattice-based cryptography, and the second
one allows encryption and decryption that are about one thousand times faster than
those obtained with a pairing-based counterpart on elliptic curves.

Résumé

Bien que relativement récente, la cryptographie à base de réseaux euclidiens
s’est distinguée sur de nombreux points, que ce soit par la richesse des constructions
qu’elle permet, par sa résistance supposée à l’avènement des ordinateurs quantiques
ou par la rapidité dont elle fait preuve lorsqu’instanciée sur certaines classes de
réseaux.

Un des outils les plus puissants de la cryptographie sur les réseaux est le Gaussian
sampling. À très haut niveau, il permet de prouver qu’on connaît une base particulière
d’un réseau, et ce sans dévoiler la moindre information sur cette base. Il permet de
réaliser une grande variété de cryptosystèmes. De manière quelque peu surprenante,
on dispose de peu d’instanciations pratiques de ces schémas cryptographiques, et les
algorithmes permettant d’effectuer du Gaussian sampling sont peu étudiés.

Le but de cette thèse est de combler le fossé qui existe entre la théorie et la
pratique du Gaussian sampling. Dans un premier temps, nous étudions et améliorons
les algorithmes existants, à la fois par une analyse statistique et une approche
géométrique. Puis nous exploitons les structures sous-tendant de nombreuses classes
de réseaux, ce qui nous permet d’appliquer à un algorithme de Gaussian sampling les
idées de la transformée de Fourier rapide, passant ainsi d’une complexité quadratique
à quasilinéaire.

Enfin, nous utilisons le Gaussian sampling en pratique et instancions un schéma
de signature et un schéma de chiffrement basé sur l’identité. Le premier fournit des
signatures qui sont les plus compactes obtenues avec les réseaux à l’heure actuelle,
et le deuxième permet de chiffrer et de déchiffrer à une vitesse près de mille fois
supérieure à celle obtenue en utilisant un schéma à base de couplages sur les courbes
elliptiques.

