
HAL Id: tel-01245077
https://theses.hal.science/tel-01245077v1

Submitted on 16 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving skewed data dissemination in structured
overlays

Maeva Antoine

To cite this version:
Maeva Antoine. Improving skewed data dissemination in structured overlays. Other [cs.OH]. Univer-
sité Nice Sophia Antipolis, 2015. English. �NNT : 2015NICE4054�. �tel-01245077�

https://theses.hal.science/tel-01245077v1
https://hal.archives-ouvertes.fr


UNIVERSITÉ NICE SOPHIA ANTIPOLIS

École Doctorale STIC
Sciences et Technologies de l’Information et de la Communication

THÈSE

pour l’obtention du grade de

Docteur en Sciences

de l’Université Nice Sophia Antipolis

Mention Informatique

présentée et soutenue par

Maeva ANTOINE

Improving Skewed Data Dissemination
in Structured Overlays

Thèse dirigée par Éric Madelaine

Soutenue le 23 septembre 2015

Jury

Examinateur Jean-Louis Pazat INSA Rennes

Rapporteurs Esther Pacitti Université de Montpellier 2

Pierre Sens Université de Paris 6

Directeur de thèse Éric Madelaine INRIA Sophia Antipolis

Encadrant scientifique Fabrice Huet Université Nice Sophia Antipolis

Invitée Françoise Baude Université Nice Sophia Antipolis



ii



iii

Résumé

De nombreux systèmes Pair-à-Pair structurés gérant des données sont confrontés
au problème du déséquilibre de charge entre machines. Ce phénomène s’est amplifié
avec l’émergence du Big Data où de larges volumes de données, aux valeurs souvent
biaisées, sont produits par des sources hétérogènes pour être stockés et/ou analy-
sés, souvent en temps réel. Les systèmes doivent donc être capables de s’adapter
aux variations de volume/contenu/provenance des données entrantes. Dans cette
thèse, nous nous intéressons aux données RDF, un format du Web Sémantique.
En partant du constat établi avec notre propre système de stockage RDF, nous
proposons une nouvelle approche pour améliorer la répartition des données, basée
sur l’utilisation de plusieurs fonctions de hachage préservant l’ordre naturel des
données dans le réseau. Cela permet à chaque pair de pouvoir indépendamment
modifier la fonction de hachage qu’il applique sur les données afin de réduire l’inter-
valle de valeurs dont il est responsable. Ainsi, nous montrons comment différentes
fonctions de hachage peuvent être appliquées par différents pairs sans nécessiter
que chacun connaisse toutes les fonctions utilisées et tout en maintenant la to-
pologie et le routage cohérents. Plus généralement, pour résoudre le problème du
déséquilibre de charge, il existe presque autant de stratégies qu’il y a de systèmes
différents. En outre, les solutions proposées sont souvent couplées à une API qui
leur est propre, ce qui rend difficile le portage d’une solution d’un système à un
autre. Dans cette thèse, nous montrons que de nombreux dispositifs d’équilibrage
de charge sont constitués des mêmes éléments de base, et que seules la mise en
œuvre et l’interconnexion de ces éléments varient. Partant de ce constat, nous dé-
crivons les concepts derrière la construction d’une API générique pour appliquer
une stratégie d’équilibrage de charge qui est indépendante du reste du code. Puis,
nous montrons comment l’API est compatible avec certains systèmes existants et
leur solution d’équilibrage de charge. Mise en place sur notre système, l’API a un
impact minimal sur le code métier et permet de changer une partie d’une stratégie
sans modifier d’autres composants. Nous montrons aussi comment la variation de
certains paramètres permet d’obtenir des différences significatives de résultat.
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Abstract

Many structured Peer-to-Peer systems for data management face the problem of
load imbalance between machines. With the advent of Big Data, large datasets
whose values are often highly skewed are produced by heterogeneous sources to
be stored and/or analysed, often in real time. Thus, distributed systems must
be able to adapt to the variations of size/content/source of the incoming data.
In this thesis, we focus on RDF data, a format of the Semantic Web. Based on
the observations made on our own distributed platform for RDF data storage, we
propose a novel approach to improve data distribution, based on the use of several
order-preserving hash functions. This allows an overloaded peer to independently
modify its hash function in order to reduce the interval of values it is responsible
for. We show how different hash functions can be used by different peers without
requiring that each peer knows all the hash functions used in the system, while
maintaining the same network topology and the overlay consistent. More generally,
to address the load imbalance issue, there exist almost as many load balancing
strategies as there are different systems. Besides, the proposed solutions are often
coupled to their own API, making it difficult to port a scheme from a system to
another. In this thesis, we show that many load balancing schemes are comprised of
the same basic elements, and only the implementation and interconnection of these
elements vary. Based on this observation, we describe the concepts behind the
building of a common API to implement any load balancing strategy independently
from the rest of the code. We then show how this API is compatible with famous
existing systems and their load balancing scheme. Implemented on our distributed
storage system, the API has a minimal impact on the business code and allows
to change only a part of a strategy without modifying its other components. We
also show how modifying some parameters can lead to significant improvements in
terms of results.
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Chapter 1

Introduction

Contents
1.1 Motivation and Problem Definition . . . . . . . . . . . . 1

1.2 Outline and Contributions . . . . . . . . . . . . . . . . . 3

1.1 Motivation and Problem Definition

Many applications need to integrate data at Web scale to extract information
and knowledge. The use of Web data can be related to social networking, media
sharing or even business intelligence. Among the new Web 3.0 technologies, the
Semantic Web brings meaning to every Web element and provides useful tools for
describing knowledge and reasoning on Web data. As the Internet is growing ex-
ponentially, more and more data is generated every day, which led to the notion of
Big Data, referring to large collections of heterogeneous data produced by various
sources. As a result, such data is usually loosely structured and hence the differ-
ences of size, popularity or content between resources can vary substantially. For
this reason, real world datasets, including those produced on the Web, are known
to potentially contain highly skewed values.

With the advent of Big Data, it becomes incredibly difficult to manage realistic
datasets on a single machine. To face the incredible amount of information to man-

1



2 CHAPTER 1. INTRODUCTION

age and capitalize on it, while providing sufficient performance to users in various
contexts, many distributed solutions are available, including Peer-to-Peer (P2P)
systems, distributed Not only SQL (NoSQL) databases, Cloud computing services
or stream processing engines. All these systems represent efficient and scalable
solutions for data storage and processing in large distributed environments. The
work behind this thesis was strongly motivated by the building in our research
team of a P2P-based system for Semantic Web data storage and retrieval, geared
towards situational-driven adaptability, taking the form of an event marketplace
platform.

This thesis covers some challenges associated with the dissemination of biased
data among nodes, which is a growing load imbalance problem for distributed
systems. With the emergence of the Semantic Web and Big Data, the storage of
items in an order-preserving way has become very frequent to retrieve sets of close
values faster from contiguous nodes, which limits the number of hops when solving
a query. Consequently, the same subset of nodes is systematically contacted for
incoming data/queries, which may overload these nodes. Based on the observa-
tions made on our distributed platform, using such architecture and facing this
problem of load imbalance, we propose in this thesis a novel approach to improve
data distribution among nodes in Structured Overlay Networks (SONs). Our tech-
nique preserves the ordering of data and does not require node migration, nor data
replication, which are common but costly solutions regarding the update of the
overlay topology or the consistency constraints on data. Our contribution aims at
dynamically managing load imbalance by allowing different peers to use different
hash functions, while maintaining consistency of the overlay. In SONs, the hash
function applied by peers to insert or retrieve an item is at the heart of data dis-
tribution. However, few load balancing solutions rely on multiple hash functions,
and usually these strategies aim at replicating popular data. In our approach, we
allow a peer to change its hash function to reduce its load. Since this can be done
at runtime, without a priori knowledge regarding data distribution, this provides
an efficient and adaptive load balancing mechanism.

Load balancing is a key factor for any distributed system, in particular for
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systems geared towards data dissemination. Imbalances are usually caused by an
unfair partitioning of keys/network identifiers, frequent node arrival and depar-
ture or heterogeneity in terms of bandwidth, storage and processing capacities
between nodes. As the produced data needs increasingly to be analysed/manipu-
lated/retrieved in real time by a potentially large number of users, addressing load
imbalance is necessary, especially to minimize response time and avoid workload
being handled by only one or few nodes. To do so, there exist almost as many
load balancing strategies as there are different systems. Besides, the proposed
solutions are often coupled to their own API, making it difficult to port a scheme
from a system to another. Yet when developing a distributed system, we believe it
would be useful to be able to try on different solutions, as it is often not so easy to
anticipate which strategy would be the most efficient and suitable for a particular
system. In this thesis, we propose to build a common API to implement any load
balancing strategy independently from the rest of the code. We show that many
load balancing schemes are comprised of the same basic elements, and only the
implementation and interconnection of these elements vary. By properly defining
these elements and their behavior, an unlimited number of possible load balancing
strategies may be conceived and implemented.

1.2 Outline and Contributions

This thesis relates to load balancing in distributed systems for data storage and
processing. The contribution is mainly organized into three chapters, which are
Chapters 4, 5 and 6. We first present our load balancing strategy using variable
hash functions for skewed data dissemination. Then, we propose an API to easily
implement any load balancing strategy in a distributed system. Finally, we detail
the experiments we performed using this API, in particular to implement our
variable hash functions strategy. Overall, this thesis is organized as follows:

• Chapter 2 gives an overview of the concepts covered by this thesis. We first
introduce the notion of Semantic Web, with a focus on how to represent and
query data. Then, we present the Peer-to-Peer paradigm and its different
types of overlays. Finally, we detail the EventCloud architecture, a Peer-to-
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Peer system for Semantic Web data storage and retrieval developed in our
research team, which provides the technical basis of this work.

• Chapter 3 presents a state of the art of load balancing solutions for dis-
tributed systems for Big Data storage and processing. We describe the main
existing techniques to address imbalances regarding workload distribution
among nodes. We especially consider P2P systems for storage and retrieval
of skewed/popular values and/or preserving the natural ordering of data, to
correlate with the architecture and the issues faced by the EventCloud.

• Chapter 4 describes the solution we propose to address load imbalances
regarding skewed data distribution in P2P systems preserving the natural
ordering of data. As hash functions are at the heart of data distribution
for Distributed Hash Table (DHT)-based overlays, we propose the use of
several hash functions at the same time in a network, to improve skewed
data dissemination. Our goal is to allow an overloaded peer to modify the
hash function it applies on data, in order to be responsible for a smaller
interval of values and hence store less items. This contribution has been
presented at the PDCAT conference in 2014 [1].

• Chapter 5 presents a generic API to implement most existing load balancing
strategies for distributed data storage systems. We show how any strategy
can be decomposed into criteria and how changing the behavior of these
criteria allows to create an unlimited number of different strategies. The
API is useful to switch from a strategy to another in a few lines of code,
which can be helpful when developing a system, to easily experiment various
behaviors. This work was first presented as part of the SBAC-PAD 2014
workshops [2]. A revised and expanded version was then published as a
special issue paper in Wiley’s Concurrency and Computation: Practice and
Experience journal in 2015 [3].

• Chapter 6 presents the experiments we performed using our generic API.
We show how load balancing was implemented on the EventCloud, as well
as the various strategies we tested before eventually choosing the most effi-
cient one to disseminate Semantic Web data among peers. Then, we present
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our simulated experiments in a CAN and a Chord overlay to improve data
distribution using variable hash functions.

• Chapter 7 concludes this thesis. It reviews the presented contributions and
opens the perspective for some new research initiatives resulting from this
work.
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Over the recent years, our research group has developed the EventCloud (EC)1,
that can be seen as a distributed database for Semantic Web data on an under-
lying P2P structure, allowing the continuous injection of large amounts of events
and their retrieval. The EC development was originally motivated by the PLAY
project2 which aimed at designing a platform that allows for “event-driven interac-
tion in large highly distributed and heterogeneous service systems”. The purpose
of this thesis was strongly influenced by the work carried out on the EC.

In this chapter, we first introduce a number of concepts essential to proper
understanding of this thesis. Then, we present the EC architecture. Further
details about the EC can be found in Laurent Pellegrino’s thesis [5]. Finally,
we review the existing solutions to store and retrieve Semantic Web data.

2.1 Semantic Web

The Semantic Web refers to the W3C’s vision of the Web of linked data3, provid-
ing machine-understandable information in order to build a kind of global Web
database. As such, the Semantic Web may be seen as a metadata provider to
Big Data, as it is meant to add a meaning to large collections of Web resources.
Figure 2.1, taken from [6], presents a concrete example of how powerful the Se-
mantic Web is. The goal of such concept is to add a meaning (semantics) to every
element that can be found on the Web, and correlate these elements based on
their semantics. Ultimately, this is meant to provide new reasoning capacities on
these elements. To achieve this, the Semantic Web relies on several well-known
Web standards and technologies. As Web data is mostly made of text and these
resources are accessed by links, the Semantic Web data is represented by Unicode

1“Event” because, ultimately, data is meant to represent events, and “Cloud” as the system
can be deployed on a Cloud infrastructure. The EventCloud has been deposited at the APP
(Agence pour la Protection des Programmes) [4]

2http://www.play-project.eu
3http://www.w3.org/standards/semanticweb/

http://www.play-project.eu
http://www.w3.org/standards/semanticweb/
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characters and frequently makes use of IRIs4 pointing to these Web resources.

Figure 2.1 – Presentation vs. Semantics (taken from [6]).

2.1.1 RDF data model

The Resource Description Framework (RDF) [7] is a W3C technology used to
represent machine-processable semantic data. RDF provides a powerful abstract
data model for structured knowledge representation and is used to describe se-
mantic relationships between data. Resources are represented as triples in the
form of < subject, predicate, object > expressions. The subject of a triple indicates
the resource that the statement is about, the predicate defines a property of the
subject, and the object is the value of the property. An example of a basic RDF
triple is shown in Listing 2.1. It represents a resource about the city of Vienna,
with which an abstract is associated. The subject and predicate values are in the
form of IRIs because they refer to online resources. These IRIs are made of a
prefix, representing the namespace to which the values belong. This triple is taken
from one of the DBpedia [8] datasets available online5. DBpedia is one of the most
popular provider of Semantic Web data to date. It is the semantic version of the
famous online encyclopedia Wikipedia, and provides datasets containing extracted

4Internationalized Resource Identifier (IRI) is an extension of Uniform Resource Identifier
(URI), created in order to represent any Unicode character, unlike traditional URIs that are
restricted to the ASCII characters.

5http://dbpedia.org/

http://dbpedia.org/
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information from Wikipedia, to which is added a layer of semantics, offering new
reasoning possibilities on such data. Nowadays, more and more organizations ex-
tract information from DBpedia to provide their users a new experience when
searching for information. A non-exhaustive list of such organizations includes the
BBC [9], New York Times6 and Thomson Reuters7.

PREFIX dbpedia : <http :// dbpedia .org/ resource />
PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
TRIPLE : ( dbpedia :Vienna , rdfs:abstract , " Vienna is the capital ...")

Listing 2.1 – RDF triple example taken from a DBpedia dataset.

The most interesting aspect of RDF lies in its linking structure. Predicate val-
ues act as links between resources, and these links bring semantics to data. When
processing the two triples of Listing 2.2, a machine should be able to understand
that Helen and Elsie are sisters and form a family along with John (i.e. semantic
relations). To help machines capture the meaning of a family and the links be-
tween siblings, the structure of a family must have been defined beforehand. In the
Semantic Web world, this is done in a so-called ontology. An ontology represents
a set of knowledge about a particular domain (e.g., medicine, cinema, linguistics)
and precises, among others, the interrelationships that exist between things in this
domain. Thus, very often, a predicate is defined in an ontology to add a meaning
(meta-data) to its value. The most common standards to design an ontology are
RDF Schema (RDFS) and Web Ontology Language (OWL).

TRIPLE 1: (Helen , hasFather , John)
TRIPLE 2: (Elsie , hasFather , John)

Listing 2.2 – RDF triple example taken from a DBpedia dataset.

When connected together, triples form a directed graph where arcs are always
directed from resources (subjects) to values (objects). The label associated to an
arc refers to the predicate value of the triple. For this reason, there exist fewer
distinct values of predicates than for the other parts of a triple, as a single predicate

6http://data.nytimes.com/
7http://www.opencalais.com/

http://data.nytimes.com/
http://www.opencalais.com/
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John

Helen

Elsie

hasFather

hasFather

Figure 2.2 – Example of an RDF graph for the triples of Listing 2.2.

value may be associated n times to n different resources. This low diversity among
terms makes RDF data very skewed. To support this claim, the authors of [10]
have shown a DBpedia dataset may contain the same popular term in up to 55%
of its triples.
A graph built using the triples of Listing 2.2 is depicted in Figure 2.2. Such graphs
can potentially extend massively, like social graphs, for instance. A graph may be
identified by a value (an IRI) to provide more information on data provenance. In
this case, the graph is called a named graph [11]. This explains why the notion of
triple is sometimes replaced by that of quadruple, that is composed of a triple to
which a graph value is associated.

2.1.2 SPARQL query language

1 PREFIX dc: <http :// purl.org/dc/terms/>
2 SELECT ? author
3 WHERE {
4 GRAPH ?g {
5 ?book dc: subject dc: Science .
6 ?book dc: creator ? author
7 }
8 }

Listing 2.3 – Basic SPARQL query example retrieving all authors of a scientific
book.

SPARQL Protocol and RDF Query Language (SPARQL) [12] is a W3C rec-
ommendation to query RDF data. This query language is based on the concept of
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triple patterns. A triple pattern refers to triple whose values are either constant
or variable. Two triple patterns may be linked with each other if they share a
common variable. Conjunctions can be performed on triple patterns sharing a
common variable in order to join values matching each independent triple pattern.
To support quadruples, the notion of triple pattern can be extended to that of
quadruple pattern in order to query for triples present in the same graph or not.

An example of a join query is presented in Listing 2.3. The SPARQL syntax is
similar to that of SQL: the SELECT clause returns the variables to retrieve. It is
worth mentioning that, in SPARQL, all variables are identified by the “?” character
preceding the variable name. The WHERE clause contains all the triple patterns
to match against RDF data. In the present case, two triple patterns are joined
using the “.” character, hence they are linked together on their common variable
?book. The dc prefix of the constants refer to the Dublin Core [13] namespace,
that provides an ontology for describing resources such as publications. Finally,
the GRAPH clause identifies the graph to which the values must belong. In our
case, they can belong to any graph as a variable (?g) is used to identify the graph.
Therefore, the query of Listing 2.3 returns all authors of a scientific book.

1 PREFIX dc: <http :// purl.org/dc/terms/>
2 SELECT ? author
3 WHERE {
4 GRAPH ?g {
5 ?book dc: subject dc: Science .
6 ?book dc: creator ? author .
7 ?book dc: dateCopyrighted ?date .
8 FILTER (? date >= 2012 && ?date < 2016)
9 }

10 }

Listing 2.4 – SPARQL query using the FILTER clause to retrieve the authors
of scientific books copyrighted between 2012 and 2015.

To add more constraints on the results, a FILTER clause may be added to
the WHERE clause. It is used to refine the results of a query in order to return
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only those that validate the constraints defined in the FILTER clause. Usually,
filtering is done on text, numbers or dates. An example of a SPARQL query using
the FILTER clause is presented in Listing 2.4. It sets a specific condition for the
authors of scientific books: only those that wrote a book copyrighted between 2012
and 2015 will be included in the results.

2.2 Peer-to-Peer Systems

2.2.1 Overview

A P2P system refers to a distributed architecture for applications like file sharing
(e.g., BitTorrent [14]), data storage (e.g., Dynamo [15]) or distributed computing
(e.g., SETI@home [16]). Unlike the client/server model, each machine (also de-
noted as peer or node) can be both client and server. The network is made of
interconnected nodes sharing their resources with each other. Among the main
benefits of P2P, we can highlight the scalability (new peers can be added to the
network to adapt to demand), fault-tolerance (should one peer fail, another one
will take over in a transparent way for the user) and a full decentralization (the sys-
tem can run without any central coordination). P2P overlays are usually classified
into three main categories: unstructured, structured or hierarchical overlays.

Unstructured overlays In these systems, there is no constraint regarding the
architecture. The overlay is built with peers joining at random locations, thus
creating random links between peers. This offers robustness to frequent peer arrival
and departure (also known as churn). Therefore, this is a very simple technique
to build a P2P overlay. However, data is also arbitrarily placed on peers, which
leads to a more complicated solution when searching for data. The most common
technique consists in flooding the whole network to lookup a resource, which results
in increased overhead, especially when searching for a very rare resource. Many
protocols for file sharing were based on unstructured overlays, like BitTorrent [14]
and Gnutella [17].
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Structured overlays In order to address the shortcomings of unstructured over-
lays, a new type of overlay was developed: the Structured Overlay Network (SON).
Many P2P systems are based on a SON, like Chord [18], CAN [19], Kademlia [20]
and Pastry [21]. Such overlays are organized into a geometrical topology (e.g.,
cube, ring) and usually implement a DHT to distribute and locate data. Each
node is assigned a set of identifiers from a common identifier space. A DHT maps
data into the identifier space by using a consistent hash function [22] (usually
SHA1 or MD5): each data item is associated with a key, and hashing this key
provides the coordinate in the identifier space to which this item belongs. Usually,
in an overlay, all peers apply the same uniform hash function to place and locate
data. Thus, a peer can more easily locate a resource than with unstructured over-
lays. To route a lookup query, peers use information they maintain about other
peers in the overlay, like their neighbors (the peers they are linked with). This
allows to build efficient routing strategies in order to minimize the number of hops
to reach the desired resource. However, this implies that peers always maintain a
consistent view of the network which may increase the overhead in case of a high
churn rate.

Hierarchical overlays These systems exploit properties of both unstructured
and structured overlays. Peers are organized into groups and these groups are
organized into overlays. A hierarchical architecture is made of several overlays
interconnected into a tree-like structure. The different overlays in this hierarchy
can use different routing mechanisms. Examples of hierarchical overlays can be
found in [23], [24] and [25].

In the following subsections, we introduce two types of structured overlays:
CAN and Chord.

2.2.2 CAN

A Content Addressable Network (CAN) network is a decentralized and structured
P2P infrastructure that can be represented as a d-dimensional coordinate space
containing n peers. Each peer is responsible for the zone it holds in the network
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(a set of intervals in this space). All dimensions have a minimum and a maximum
CAN-based value Cmin and Cmax (0 and 1 in Figure 2.3). Each peer p owns an
interval [mind

p; maxd
p[ delimited by 2 bounds (lower and upper bounds) between

Cmin and Cmax on each dimension d. A CAN-based interval is fixed and can only
be modified during join or leave node operations.

Figure 2.3 – Example of a 2-dimensional CAN.

(a) Overlay made of 4 peers. (b) Arrival of a fifth peer that
splits with p3.

Figure 2.4 – Node arrival process in a CAN overlay.

Node arrival The join procedure consists in adding a new peer pnew in the
network by splitting in two even surfaces z1 and z2 the randomly chosen zone z of
an existing peer pold. Half of z remains managed by pold in z1, while the other half
(z2) becomes pnew’s zone. As a result, all data items that were included in z2 are
now stored by pnew. This join operation also affects the network topology, as the
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peers holding the zones adjacent to z2 are no longer neighbors of pold but become
the neighbors of pnew. For more clarity, the node arrival process in a CAN overlay
is depicted in Figure 2.4.

(a) Overlay made of 5 peers. (b) After the departure of p5,
p3’s zone gets enlarged.

Figure 2.5 – Node departure process in a CAN overlay.

Node departure Conversely, the leave procedure consists in merging the zone
zleave of the leaving peer pleave with the zone zchosen of one of its neighbors pchosen.
If zleave and zchosen can be merged to create a new valid CAN zone, then pchosen is
definitely selected and both peers start merging. Otherwise, if merging with this
chosen neighbor does not work, pleave picks its neighbor with the smallest zone as
the new pchosen. Finally, pchosen hands over pleave’s data items along with pleave’s
neighbors on zleave. The node departure process is depicted in Figure 2.5.

Message routing Each peer can only communicate with its neighbors, thus
routing from neighbor to neighbor has to be done in order to reach remote zones
in the network. The CAN topology is a torus which means, in Figure 2.3, that
peers p1 and p3 are neighbors on the horizontal dimension. CAN provides a
DHT abstraction, with resources being indexed on keys. An item it, in a d-
dimensional CAN, is associated with a key that is a set of d coordinates (one
for each dimension) obtained by applying d uniform hash functions on it. The
obtained coordinates correspond to a point in the CAN coordinate space. Thus,
when a peer receives a new data item to insert or a query to execute, it has to
hash it to check whether it is responsible for it or not. If the hash value does not
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match the peer’s CAN coordinates, it means the peer is not responsible for the
corresponding item. In this case, the peer chooses a dimension and forwards the
item/query on the same dimension until it reaches the correct coordinate for this
dimension, then on another dimension and so on until the message reaches the
right peer.

2.2.3 Chord

In Chord, nodes are organized in a ring topology. Each node is identified by its
node identifier (obtained by hashing its IP address) and all nodes are ordered in
the circular identifier space according to their node identifier value. The neighbors
of a node are its predecessor and successor in the ring.
A key identifier is associated to each node and each item. By default, a node’s
key identifier corresponds to its node identifier under the consistent hash function
used in the overlay. A node is responsible for storing items whose key identifier
falls between its predecessor’s key identifier (excluded) and its own key identifier
(included). Thus, a key k is stored at the first node after k in the ring order,
i.e. successor(k). For example, in Figure 2.6, key k59 is located at node n60.
Chord uses a consistent hash function to distribute key identifiers on peers, that
is supposed to naturally balance the load evenly among nodes as each peer should
approximately be responsible for the same number of keys.

Message routing In Chord, routing is done in a clockwise direction, i.e. from
a peer to its successor. A node n that receives a lookup query for a key k has
to evaluate whether k is included in ]keyn; keyn.successor] or not. If so, it means
that n’s successor is responsible for k and routing will be stopped when reaching
n.successor. Otherwise, the same process will be executed by n.successor and
so forth until the peer managing k is found. In order to accelerate this routing
process, nodes also maintain links in a routing table called finger table that contains
the identity (node/key identifier, IP address) of other peers, located possibly far
away in the overlay. Thus, when receiving a lookup for k, if n’s successor is not
responsible for k, n can pick an entry in its finger table that is closer to k in
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Figure 2.6 – Example of a Chord overlay.

the identifier space than n’s successor. The message will be routed to the node
corresponding to this finger table entry instead of being routed to n’s successor.
For instance, in Figure 2.6, if node n10 is looking for key k59 (stored by n60), it
can send lookup(k59) directly to n50, because n50 is closer to k59 in terms of hops
than n10’s successor n20.

Node joins and departures Let us consider two existing nodes n10 and n30,
with n10 being the predecessor node of n30. When a new node n20 arrives in the
overlay between these two peers, n20 becomes the new successor of n10 and the
new predecessor of n30. Thus, n20 becomes responsible for all the keys comprised
between ]n10; n20]. This implies that n20 acquires n30’s items whose key is included
in this interval. The reverse process would be applied if n20 decided to leave the
network: the keys and data managed by n20 would be acquired by its successor
n30. In order to maintain up-to-date information about their neighbors and finger
table entries, all nodes periodically run a stabilization protocol. This protocol
verifies the correctness of a peer’s links and allows a peer to update its knowledge
if necessary, for example after a node has arrived or left.
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2.3 The EventCloud RDF Store

The EC is a Java software platform that offers the possibility for services to com-
municate in an asynchronous and loosely coupled fashion thanks to the publish-
subscribe paradigm but also to store and to retrieve past events in a synchronous
manner. The EC enables publish/subscribe interactions by means of its event-
driven architecture. Subscribers register their interest in some types of events
in order to asynchronously receive the ones that match their concerns. Events
are semantically described as a list of quadruples. Quadruples are in the form of
< graph, subject, predicate, object > tuples where each element is named an RDF
term in the RDF [7] terminology. All quadruples included in the same event are
closely related and share the same graph value that identifies the event. Alter-
natively, a synchronous mode allows to query for past events that were published
earlier and are now stored in the system. The underlying EC architecture is based
on a slightly modified version of the CAN [19] P2P infrastructure as described
next.

2.3.1 Architecture

An EC is defined with four dimensions to map each RDF term of a quadruple to
a dimension of the P2P network. The first dimension is associated to the graph

value, the second dimension to the subject value, and so on. The overall EC ar-
chitecture is depicted in Figure 2.7. Also, in contrary to the default CAN protocol
that makes use of consistent hashing to map data onto nodes, the EC uses the
lexicographic order to index data. Thus, a quadruple directly matches a point
in a 4-dimensional coordinate space. The lexicographic order helps cluster items
sharing similar values from a syntactic point of view, which often means that these
values are semantically close as well (e.g., if they share a common prefix). As a
result, range queries, for instance, can be resolved with a minimum number of
hops. In this way, as we consider an event is made of lexicographically close data,
we can expect all of an event’s quadruples to be stored by the same peer or at least
in contiguous peers in the CAN. As we consider that a user’s query/subscription
is likely to include a set of related information, the use of the lexicographic order
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simplifies range queries execution (e.g., when querying for a range of temperatures)
and data retrieval (e.g., content related to a city, a football match or even a friend
from a social network) by limiting communication between peers when solving a
query or matching a publication against a subscription.

Figure 2.7 – EC architecture. For clarity purposes, the graph value axis has been
occulted.

1 PREFIX foot : <http :// example .org/ football_matches />
2 SELECT ?event WHERE {
3 GRAPH ?g {
4 foot: Barcelona_vs_Bayern ? occurs ?event
5 }
6 }

Listing 2.5 – Example of a subscription notifying its subscriber about any event
occuring during the match Barcelona vs. Bayern Munich.

EVENT football_graph {
foot: Barcelona_vs_Bayern foot: goalScored foot: goal1234 .
foot: goal1234 foot: scorer player :Messi .
foot: Barcelona_vs_Bayern foot: currentScore ‘‘2-0’’

}

Listing 2.6 – Event pattern example.
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Listing 2.5 presents an example of subscription to retrieve information about
any event (e.g., goals, yellow cards, substitutions) that takes place during the
football match Barcelona against Bayern Munich. A subscription takes the form
of a SPARQL query made of one or more quadruple patterns (in the present
example there is one). An event is made of several quadruples (sharing the same
graph value). An example of event for a goal scored by Messi during this match
(Barcelona_vs_Bayern) is shown in Listing 2.6. The main advantage of using the
lexicographic order is that all of the triples that make up this event will necessarily
share identical values on some axis. Obviously, the graph axis is concerned as
there is only one value for the whole event, but also potentially other axis such as
the subject in Listing 2.6 (Barcelona_vs_Bayern is shared by two quadruples).
When using a randomizing hash function, these triples would have been scattered
across the network, making it more costly to bring them all together to answer a
query/subscription.

2.3.2 Unicode

To support the lexicographic order in the EC, and as RDF data is made of Unicode
characters, each CAN bound in the EC is associated with Unicode characters. This
allows to define the Unicode values that can be stored between two bounds. A
Unicode character is encoded as a 32-bit integer, also known as codepoint, whose
value may range from 0 to 10FFFF16 = 1114111. To date, the Unicode table of
characters includes nearly all of the world’s alphabets, along with symbols like
mathematical operators or emoticons. The interested reader can find more infor-
mation on these characters on the Unicode Consortium website8.
Table 2.1 provides an overview of the codepoint ranges associated with some of the
most used characters worldwide. Latin characters are the first in the Unicode table
of characters. For instance, the character “A” corresponds to the codepoint value
65. The basic ASCII subset includes about 100 characters, while East Asian char-
acters (Chinese, Japanese, Korean), located farther in the table, occupy a much
wider range, representing more than 70000 characters when including extensions9.

8http://unicode.org/
9An extension refers to a range of codepoints in the Unicode table that usually contains

uncommon characters only used in some regions of the world or in the past centuries.

http://unicode.org/
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The fact that Latin characters represent such a small interval of values among the
one million characters of the Unicode table makes the distribution of Latin data
very skewed when using the lexicographic order. To decrease this impact on dis-
tribution, the EC allows to define at startup the lower and upper Unicode bounds
of the CAN space. Hence, one may exclude non-Latin characters if the data to be
stored is known beforehand.

Script Range Number of
characters

Basic Latin (ASCII) 0000–007F 128
Greek 0370–03FF 144
Cyrillic 0400–04FF 256
Thai 0E00–0E7F 128
Mathematical Operators 2200–22FF 256
Emoticons 1F600–1F64F 80
CJK (Chinese, Japanese,
Korean) extension B

20000–2A6D6 42711

Table 2.1 – Unicode character ranges associated to some alphabets/symbols.

2.3.3 Subscription matching

For more clarity, we will consider a simplified subscription S that may be repre-
sented as a single quadruple pattern with some wildcards denoted by “?”, such
as S=(g, s, p, ?). Indexing this subscription in the EC simply consists in sending
S to all the peers that manage the fixed attributes g, s and p on the first three
dimensions. Unlike some other RDF stores (see Section 2.4.2), publications (i.e.
events) are indexed only once. However, a subscription that contains wildcard(s)
is indexed on several peers as all the peers on the wildcard(s) axis may potentially
match this subscription. Consequently, the number of peers concerned by a sub-
scription depends, in part, on the number of fixed attributes of the subscription:
the fewer fixed attributes, the more concerned peers there are.
The propagation of various subscriptions is shown in Figure 2.8. For example, in
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Figure 2.8(c), the subscription S=(s, ?, ?) aims at retrieving all data concerning
the specified subject s. To index this subscription on peers that may store such
data, S must be sent to peers whose bounds on the subject dimension include s. As
no particular value is specified for the predicate and object, the subscription could
match with any value and hence there is no constraint regarding the predicate
and object intervals of peers. Therefore, many peers may store this subscription
as it will be propagated on the whole predicate and object dimensions. The same
principles apply when synchronously querying for past events stored by one or
more peers [26]. In the standard implementation, each peer owns a Jena TDB [27]
component that acts as an RDF storage engine responsible for executing queries
and indexing data.

(a) S=(s, p, o): Fixed subject,
object and predicate.

(b) S=(s, p, ?): Fixed subject
and predicate.

(c) S=(s, ?, ?): Fixed subject. (d) S=(?, ?, ?): No fixed part.

Figure 2.8 – Peers potentially matching with a subscription S, depending on the
constant parts in S (taken from [26]).

2.3.4 Optimal broadcast algorithm

To solve queries like those presented in Figure 2.8, the initial peer sending a query
cannot know exactly how many peers potentially match the query criteria. Thus,
to propagate a query, a naive approach consists in using message flooding through
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each peer’s neighbors, which results in duplicate messages sent to peers. Although
such messages are ignored, their routing consumes bandwidth and they may over-
load peers processing them. In order to reduce the number of messages propagated
through the whole network to an absolute minimum, an optimal broadcast algo-
rithm for CAN [28] has been implemented in the EC. This algorithm is said to be
optimal because a peer receives a broadcasted message once and only once. In the
EC, this algorithm is also used for other purposes: for example, each peer periodi-
cally broadcasts information about its load state, which is useful when performing
a load balancing operation.

Algorithm 2.1 presents a simplified version of the optimal broadcast algorithm.
The behavior of this algorithm can be summarized as follows: when a peer wants
to broadcast a message, this peer selects all its neighbors and forwards them the
message if they validate two main constraints (lines 14 and 22). A message is
routed on a given direction in the CAN (backwards or forwards, regarding the
sender’s location). Initially, the routing process occurs on all dimensions and both
directions. Recipients continue routing the message following the same principle,
until none of their neighbors can validate the constraints or Cmin/Cmax has been
reached on a routing dimension. If so, the recipient continues routing only on
the lower dimension(s), until Cmin/Cmax has been reached on dimension 0 or no
neighbor matches the constraints.

2.4 Other Existing RDF Storage Systems

As the Semantic Web is growing in popularity, there exist more and more RDF
storage systems, consisting in either centralized or distributed repositories. A
non-exhaustive list of existing solutions includes Relational Database Management
Systems (RDBMS), NoSQL stores, structured or unstructured P2P systems. In
the following, we briefly describe the main concepts behind each of these solutions.



2.4. OTHER EXISTING RDF STORAGE SYSTEMS 25

1: function route_update_bound_message(msg, dim, direction)
2: if direction = forwards & maxdim

peer = Cmax then
3: stop routing
4: else if direction = backwards & mindim

peer = Cmin then
5: stop routing
6: else
7: for each neighbor ∈ peer.getNeighbors(dim,direction) do
8: if check_corner_constraint(neighbor, msg)

& check_spatial_constraint(neighbor, msg) then
9: route(msg, neighbor)

10: end if
11: end for each
12: end if
13: end function

14: function check_corner_constraint(neighbor, msg): Boolean
15: for all dim >msg.current_routing_dimension do
16: if mindim

neighbor <mindim
peer then

17: return false
18: end if
19: end for
20: return true
21: end function

22: function check_spatial_constraint(neighbor, msg): Boolean
23: for all dim <msg.current_routing_dimension do
24: if !(mindim

neighbor ≤mindim
peer ≤maxdim

neighbor) then
25: return false
26: end if
27: end for
28: return true
29: end function

Algorithm 2.1 – Default optimal broadcast algorithm. In this algorithm, peer
refers to the current peer processing the message.
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2.4.1 Centralized approaches

The first solutions for RDF data storage, like Oracle RDF Match [29], Sesame [30]
and 3store [31], consisted in converting triples into tuples in order to store them
like any other record in an RDBMS. Using this approach, the tables can take
different forms. A table can be made of an identity column along with three
columns corresponding to each part of a triple. Alternatively, the suject value
can be used as the key column of the triple with the other parts corresponding to
normal columns. Finally, another approach uses vertical partitioning [32], which
corresponds to creating a table for each distinct predicate (as they should be few
in number). These tables are made of two columns storing respectively subject
and object values. However, the structure of traditional RDBMS was created a
long time ago and these systems were not designed to store RDF data. They have
no notion of semantics, which may complicate the execution of queries based on
an RDF graph model (i.e. how to convert a SPARQL query into SQL). This is
why specific databases called native RDF stores, like Jena TDB [27], were created
to store and query RDF data. These native RDF stores are similar to RDBMS
but use an optimized structure for managing triples and support SPARQL, which
should provide better performance regarding their query processing mechanism.
However, storing RDF triples generally requires to manage large volumes of data,
thus scalability. This is why native RDF stores tend to be deployed on distributed
architectures, like the EC that uses a Jena TDB instance on each peer.

2.4.2 Distributed approaches

With the increasing amount of data to process, distributed solutions become more
and more popular as they provide scalability and are more reliable than centralized
solutions suffering from bottlenecks and a single point of failure.

NoSQL Over the last years has emerged the NoSQL movement. NoSQL databases
relax some of the relational and transactional constraints specific to RDBMS
(the ACID properties) in order to provide better scalability and fast access to
store and retrieve data. Solutions based on NoSQL include key/value-oriented
stores (e.g., Apache Cassandra [33]), column-oriented stores (e.g., HBase [34]),
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document-oriented databases (e.g., MongoDB [35]) and graph-oriented stores (e.g.,
AllegroGraph [36]). Some NoSQL databases use an underlying P2P structure, like
Cassandra, which is fully distributed and uses consistent hashing in a Chord-like
topology. In Cassandra, rows can embed several levels of nested key-value pairs.
In the overlay, rows are assigned to nodes depending on the hashed value of their
key: a row r will be located at successor(hash(rkey)).
NoSQL databases can be used to store RDF data. For instance, CumulusRDF [37]
is a distributed system for RDF data storage implemented on Cassandra. Cumu-
lusRDF uses Cassandra’s features to index triples. A triple is indexed three times
according to three different patterns: SPO (i.e. Subject-Predicate-Object), POS

and OSP . This technique is meant to help retrieve triples faster when performing
a lookup. For instance, to retrieve data matching the triple pattern (?s, ?p, o),
the OSP index should be used as only the object value is defined in the query.
For each different index, triples are stored in Cassandra using different nested key-
value pairs, for example {o: {s: {p: -}}} with the OSP index, where o is
the key for value {s: {p: -}} which is itself a key-value pair, too.

Pure P2P solutions There also exist many RDF stores based on pure P2P
solutions. As this thesis mainly focuses on structured P2P overlays, we give below
an overview of some existing distributed RDF stores built on top of a structured
P2P overlay. An exhaustive review of existing structured P2P storage systems for
RDF data can be found in [38]. We will not go into details on RDF stores based
on unstructured P2P overlays, like Bibster [39] and S-RDF [40].
Most DHT-based approaches index an RDF triple three times at three different
locations by hashing its subject, predicate and object. As all peers use the same
hash function to locate data, this eases the retrieval of triples matching a given
triple pattern, as presented above for CumulusRDF. Among the existing structured
P2P solutions, RDFPeers [41] is a distributed RDF repository built on Multiple
Attribute Addressable Network (MAAN) [42], an extension of Chord. In this sys-
tem, a triple is stored three times at the following locations: successor(hash(s)),
successor(hash(p)) and successor(hash(o)). RDFPeers benefits from an efficient
range queries resolution thanks to its order-preserving hash function. Another ap-
proach, proposed by Battré et al. [43], uses a DHT architecture where each node
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owns several RDF repositories. The first one acts as a local database used by a
peer to store triples that originate from it. As in most other papers for this topic,
peers also disseminate their local triples at three different locations by separately
hashing the three parts of a triple. These disseminated triples, when received by
the corresponding peer, are stored in a received triples repository. Finally, two
other triplestores are maintained by peers: a replica database for fault tolerance
and a generated triples database for reasoning on RDF data.
Very few distributed RDF repositories are implemented on a CAN overlay like the
EC. RDFCube [44] is one of the closest systems to the EC, from a topological
point of view. RDFCube is built on a 3-dimensional CAN (one dimension for each
part of a triple) and its coordinate space is split into cells of equal sizes. Each
cell contains an existence-flag, indicating if a triple is present or not in that cell.
However, RDFCube is not meant to store data. It is an indexation scheme of
RDFPeers to speed up the processing of join queries over an RDFPeers repository,
by reducing the amount of data that has to be transferred between nodes.

2.5 Load Balancing Challenge

Throughout this section, we have presented the notion of Semantic Web along
with technologies to represent and query Web data, namely RDF and SPARQL.
RDF data is known to be highly skewed, for several reasons. First, as it is meant
to represent Web data, most values are in the form of IRIs and hence potentially
many triples may share the same prefix. Secondly, the format representing data as
a resource-attribute-value triple (known as subject-predicate-object) necessarily im-
plies the redundant use of identical attributes when describing different resources.
Finally, RDF is made of Unicode-encoded values, and whereas the Unicode table
of characters contains about one million characters, very often only a very small
subset of these characters is found in a dataset.

The EventCloud (EC) that has been developed in our research team is a dis-
tributed platform for RDF data storage and retrieval. In the EC, data can take the
form of events, consisting in several quadruples semantically linked and published
together. Based on a CAN overlay, the 4-dimensional architecture of the EC uses
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the lexicographic order to place data among peers. This choice was motivated
by the fact that a randomizing hash function would destroy the syntactic links
between RDF quadruples (for example, the quadruples that compose an event) by
randomly placing these items in the overlay. Gathering this scattered data may
slow down query execution as the users requests very often imply to retrieve sets
of related data. On the contrary, when using an order-preserving hash function,
syntactically close values can be stored by contiguous peers. Thus, they can be
retrieved in a minimum number of hops, which eases range queries execution, for
instance.

Due to this architecture, the EC suffers from an important drawback regarding
data dissemination among nodes. It is common that a few peers manage most data
items, which may overload these peers regarding their storage and/or processing
capacities. Even though RDF data is made of Unicode characters, the size of a
single quadruple may be greater than one megabyte (e.g., DBpedia), which will
inevitably affect the disk space capacity and more generally the performance of
the peer managing such data. Regarding the processing capacity, the few peers
responsible for managing a large set of skewed data receive most subscriptions and
execute most queries. This necessarily has bad consequences, especially on the
overall system performance towards the users sending these queries/subscriptions.
These reasons naturally led us to implement load balancing in the EC. In the
next chapter, we present a state of the art of existing solutions that relate to
the challenges faced by the EC, namely the distribution of skewed values and the
preservation of the natural ordering of data.
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With the advent of Big Data, it becomes incredibly difficult to manage realistic
datasets on a single machine. To face the large volume of information to manage
and capitalize on it, while providing sufficient performance to users in various
contexts, many distributed solutions are available, encompassing P2P systems,
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distributed NoSQL databases, cloud computing services or stream processing en-
gines. However, one key issue with all these distributed systems concerns load
balancing, in particular for systems geared towards data storage and retrieval.
Some nodes may be overloaded compared to others, regarding various load crite-
ria like disk space, CPU or bandwidth consumption. These load imbalances may
be caused by one or several factors, including the specifics of a distributed sys-
tem and its architecture, differences of capacities between nodes, the variation of
the popularity of resources over time, and even the nature of the data being stored.

Current distributed systems for Big Data storage and processing exploit real
world datasets and, as presented in the previous chapter, these datasets, like Se-
mantic Web data, are known to be highly skewed [10]. The main reason for this
lies in the variation of size, popularity and lexicographic similarities among re-
sources. Information that is stored, shared or more generally manipulated can
come from different sources, be expressed in various languages (world wide data)
and be more or less structured using various formats providing reasoning capa-
bilities, like RDF [7]. A bad dissemination of skewed datasets can quickly create
a bottleneck since a biased data distribution can lead to large workloads sent to
very few nodes. Also, as more and more data is produced, often to be processed
in real time, it becomes crucial to dynamically adapt the allocation of resources
depending on the popularity of data (the so-called “trends”), i.e. the frequency
of some terms in the produced datasets or the amount of queries generated for
a particular resource. These issues typically correspond to the challenges facing
the EventCloud to balance skewed Web data (RDF) using non-randomizing hash
functions.

More generally, imbalances in distributed systems may also be caused by an
unfair partitioning of network identifiers, frequent node arrival and departure or
heterogeneity in terms of bandwidth, storage and processing capacities between
nodes. To address all these possible load imbalances, many load balancing strate-
gies have been proposed over the last decades, and new strategies still continue
to appear in the literature as new types of distributed systems arise. However,
regardless of the type of distributed system, most existing strategies usually rely
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on similar principles, like node/data relocation, replication, caching or keys reas-
signment.

In this chapter, we present the main load balancing solutions for distributed
storage systems. We first give a brief overview of those used by well-known non-
P2P architectures for Big Data storage and/or processing. Then, we discuss exist-
ing solutions used by structured P2P systems in more detail, as they are the main
topic of this thesis. We especially focus on load balancing strategies used in the
context of skewed/popular data storage and/or maintaining data placement in an
order-preserving manner, to remain in the context of the EventCloud architecture.

3.1 Load Balancing in non-P2P Systems for Data
Management

3.1.1 NoSQL

MongoDB

MongoDB [45] is a document-oriented NoSQL database using sharding (horizontal
scaling) to distribute datasets across many machines. Sharding consists in split-
ting these datasets into chunks to distribute them among several servers (shards).
Splitting is performed using either range based or hash based partitioning. A chunk
has a maximum size value, and whenever it is exceeded, the chunk gets divided
into two chunks. Routing instances (routers) are responsible for routing queries
to the right shard and provide results to the user. These routers use metadata in-
formation stored by special instances called Config Servers to find the right shard
responsible for storing a specific data item. Whenever a shard becomes respon-
sible for a chunk, this information is sent to Config Servers in order to keep the
database consistent. Routers also embark a balancer process that periodically ac-
quires a lock (so that there is no other router trying to rebalance at the same time)
and retrieve from Config Servers the number of chunks stored by each shard. A
rebalance will occur only if the heaviest shard stores x (migration threshold) more
chunks than the lightest shard. If so, the balancer starts migrating chunks from
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the heaviest to the lightest shard until reaching a balanced distribution among
the two shards (no more than a difference of one chunk between the number of
chunks stored by each shard). Such a rebalance process is likely to occur when a
new shard is added or large datasets are inserted. MongoDB users are allowed to
configure a few parameters of this strategy: the periodicity of the load balancing
actions, the migration threshold and some replication settings to be applied when
migrating data.

3.1.2 Stream processing

Stream processing engines, such as Storm [46], process real-time, large-scale data
(streams) very often continuously produced by sources of data (such as a Twitter
data flow). Incoming data is processed by a network of nodes where each node
runs an operation on the data it receives, like filtering, before the data is definitely
stored. Such mandatorily distributed systems, offering scalability and low latency,
are perfectly suited for social-networking applications, whose volume of informa-
tion is very high and continuously arriving. The main load balancing challenge in
stream processing engines consists in ensuring a balanced amount of load (data or
tasks) is sent/assigned to each node.

Nasir et al.

Nasir et al. [47] investigate the direct applicability of the power of two choices
paradigm [48] on distributed stream processing systems, focusing on the Apache
Storm event processor. The paper considers source instances producing data
streams, split into messages (sub-streams) sent to workers responsible for con-
suming and processing these sub-streams. The goal is to address load imbalances
in terms of sub-streams managed by each worker. A source that wishes to send a
new message of data applies two hash functions h1 and h2 on the message’s key k

and selects the least loaded worker among h1(k) and h2(k). To determine which
one is the least loaded, the source only relies on internal information it has previ-
ously stored about the amount of messages the source has already sent to each of
these two workers recently. Once load information is retrieved, the worker with the
lowest load is adopted for processing the message. The authors argue that as long
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as each source balances well its produced amount of load, no worker node can be
overloaded even though a source cannot be aware of the amount of load sent to a
node by the other sources. This technique offers good load balance by preventing
a worker from being overloaded or underloaded compared to other workers, which
can happen when using other partitioning schemes such as key grouping.

3.1.3 Cloud

Cloud computing separates the hardware side of a network from the software side
by using virtualization. Hence, applications running in the Cloud can automati-
cally scale depending on the amount of incoming requests or data to store. This
process is done while remaining completely transparent to users. Thus, Cloud
computing represents an efficient solution for Big Data storage, processing and
analysis. One of the most popular services for Cloud computing is the Amazon
Web Services (AWS) Cloud computing platform proposed by Amazon. Below, we
present Auto Scaling, one of the load balancing solutions offered by AWS.

Amazon Web Services Auto Scaling

AWS [49] provides Cloud computing services featuring an auto-scalable infrastruc-
ture, if needed. Users can rent virtual machines (instances) providing computing
and storage capacities. An Amazon CloudWatch sensor monitors instances to
retrieve their load periodically (the granularity is defined by the user), by send-
ing load state queries. Auto Scaling is a functionality responsible for adding or
terminating some instances associated to an application running in the Cloud, if
necessary. To do so, Auto Scaling relies on CloudWatch that is responsible for
detecting if an application running in the Cloud is overloaded or underloaded ac-
cording to the values (such as CPU utilization, network traffic and disk I/O usage)
retrieved by its sensor. A threshold is associated to each metric and whenever a
threshold is exceeded for a given time duration, CloudWatch triggers Auto Scaling
to ensure the application uses the right amount of Amazon instances. Overall, the
possible differences between the load balancing strategies used with Auto Scaling
may concern three parameters. The frequency of the probes to retrieve load infor-
mation may vary, as well as the metrics to monitor and the threshold associated
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to each metric, used to determine an instance’s load state.

3.2 Load Balancing in Structured P2P Systems
for Data Management

Structured P2P systems are an efficient and scalable solution for data storage and
retrieval in large distributed environments. However, many structured P2P sys-
tems for data management face the problem of load imbalance between nodes.
These imbalances may be caused by different factors, and hence many different
solutions have been proposed to address these issues.

In [50], Felber et al. propose to decompose into three main categories the exist-
ing load balancing solutions in structured P2P systems. The resulting taxonomy
suggested by the authors is presented in Figure 3.1 (taken from [50]). The first cat-
egory, object placement, refers to solutions for balancing the load caused by a bad
distribution of skewed data or popular items. These strategies consist in assigning
a given amount of keys/virtual servers to each peer so that they all store similar
volumes of data and/or handle a similar number of queries. This generally implies
either the replication of popular data items, the use of multiple hash functions to
choose the best location for storing an item or replicate this item several times, or
the reassignment of the identifiers managed by some peers. The second category,
routing, includes strategies that modify the way messages are routed between peers
in the overlay to prevent network traffic congestion. Typically, these approaches
aim at creating/modifying/duplicating/shortening a particular path used to link
two peers or to route a popular query. Finally, the third category, underlay, cor-
responds to building the overlay links according to the underlay topology, i.e.
physically close machines in the underlay become neighboring peers in the overlay,
to minimize the network traffic. We will not go into further details on this third
category as it is outside the scope of the issues we want to address, namely the
poor distribution of skewed/popular data that may overload some peers.

Throughout this section, we review some various and relevant load balancing
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strategies for structured P2P systems.

Figure 3.1 – Taxonomy of load balancing solutions in P2P systems (taken
from [50]).

3.2.1 Load balancing for RDF data

To our knowledge, there exist very few load balancing strategies set in the context
of RDF data storage. In the following, we present the two most well-known solu-
tions from the literature, that both aim at addressing the overload caused by the
bad dissemination of highly frequent RDF terms.

RDFPeers

In RDFPeers [41], two solutions are proposed to deal with load imbalances when
storing RDF triples in an order-preserving manner at three different locations:
successor(hash(s)), successor(hash(p)) and successor(hash(o)).
With such architecture, a biased data distribution may appear if some values of
s, p or o are more frequent than others. We argued in Chapter 2 that predicates
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usually have much less distinct values. The authors of RDFPeers relate that 16%
of the triples in one of the datasets1 used for their experiments contain the same
predicate rdf:type, used to represent the type of a resource. This means that all
these triples would be stored by the same peer when indexing them with their
predicate value. Consequently, to deal with the high popularity of some predicate
values, the authors propose to stop indexing a triple on its predicate if its value
becomes too frequent. Each node counts how many times it stores the same
predicate and if this counter exceeds a specified threshold, the node refuses to
store new triples indexed on this predicate value. If the node later receives a query
for this refused predicate, a refusal message is returned to the sender that will
have to solve its query using the other parts of the triple. This strategy, albeit
radical, offers the advantage of not overloading a peer with identical values to store
and also limits the load due to query processing on irrelevant and highly frequent
terms.
This first solution may not address all load imbalances in terms of triples stored
per peer as triples are stored in an order-preserving manner, thus they cannot be
uniformly distributed among nodes. To improve data dissemination, the authors
propose a successor probing scheme. This scheme consists in adding a peer at
the most loaded location among d sampled locations in the overlay. A peer that
wants to join the network computes d possible locations in the ring where it could
join and contacts the d existing peers at these locations in order to estimate how
many items the new peer would retrieve when becoming the predecessor of one of
these peers. Finally, the new peer joins as the predecessor of the most loaded peer
contacted in order to decrease its load.

Battré et al.

Battré et al. [43] propose a different approach to address the bad dissemination
issue for popular RDF terms like rdf:type. Their strategy consists in creating over-
lay trees onto the existing overlay. A peer can trigger load balancing when its load
exceeds a threshold. To balance its load, an overloaded peer po splits its current
dataset in half. One part remains stored by po and the other half is sent to pu, an

1http://www.dmoz.org/about.html

http://www.dmoz.org/about.html
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underloaded peer previously probed. In practice, these triples should not be stored
by pu because their hashed value in the identifier space refers to another peer (po).
Thus, po has to maintain a reference to pu in order to redirect queries for these
triples to pu. In order to keep pu consistent, and as peers can maintain several
databases in the proposed approach, pu stores po’s triples in a remote database,
containing triples that pu should not store according to the DHT. Therefore, this
strategy requires more hops to solve queries, as the peer matching the DHT rules
may have sent part of its data to another peer, and this peer may have also sent
part of this dataset to another peer, and so on and so forth. Nonetheless, this is an
interesting strategy because it allows to disseminate identical terms like rdf:type
across many peers, which is normally impossible when indexing rdf:type because
hash(rdf:type) always refers to the same coordinate in the identifier space. How-
ever, this implies that the peer responsible for hash(rdf:type) is the only one to
know where the rest of the triples featuring rdf:type are located, which may be
problematic in case this node fails. Also, this peer will necessarily continue to
receive all queries for rdf:type, which generates processing load for this peer, and
more communications are needed to retrieve all the desired triples, which increases
network traffic.

In the following, we expand our inverstigation to other load balancing strategies
used by distributed systems for data storage, not especially dedicated to RDF.

3.2.2 Virtual servers reassignment

Rao et al.

Rao et al. [51] suggest three different strategies based on virtual peers to address
the issue of load imbalance in P2P systems that provide a DHT abstraction. Unlike
traditional P2P networks where one peer is deployed per node, virtual peers are
an abstraction allowing several peers to be hosted on a same physical node. Upon
the detection of an underloaded or overloaded peer, virtual peers are reassigned to
other nodes in order to maintain the machine load under a given threshold. This
paper proposes a general solution, not especially dedicated to data load balanc-
ing. The aim is to address any kind of load imbalance issue, whether it concerns
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storage, CPU or bandwidth, that may cause a bottleneck in the system.
Each physical node is responsible for one or more virtual servers, whose load is
bounded by a predefined threshold. A node is considered as imbalanced depend-
ing on this threshold: heavy if its load is above, light otherwise. The proposed
solutions are meant to transfer the load between heavy and light nodes by moving
virtual peers only. The first scheme, called one-to-one, involves two peers to de-
cide whether a load transfer should be performed or not. A peer simply contacts a
randomly chosen peer, and both exchange their load information. If one of them
is heavy and the other one is light, then a virtual server transfer is initiated. The
second scheme (one-to-many) relies on directories indexed on top of the existing
overlay. Some nodes store piggybacked load information from light nodes on these
directories. When a node holding a directory receives a message from a heavily
loaded node, it looks at the light nodes in its directory to transfer the heaviest
virtual server from the heavily loaded node to a lightly loaded one. Finally, the
third variant (many-to-many) matches many heavily loaded nodes to many lightly
loaded nodes, still using directories. A node holding a directory receives load in-
formation from both heavy and light nodes. This node periodically performs an
algorithm to calculate how to balance the load between all these nodes. Solutions
specifying which virtual servers should be transferred to which nodes are then sent
to the concerned nodes.
The load balancing strategies for virtual peers presented in this paper are simple
and provide satisfying results, especially for the schemes using directories. For
instance, the third strategy made 95% of the heavy nodes light after one probe to
a node holding a directory. On the negative side, the experiments are performed
in a static system, which means there is no data insertion/update/deletion during
experiments, as well as no peer joining or leaving the system. Furthermore, the
one-to-one scheme does not perform well concerning the time it takes to achieve
balance, as peers are randomly sampled, and requires up to 20000 probes (in a
network made of 4096 nodes) before all heavy peers become light, with 75% of
these probes being unsuccessful in finding an underloaded peer.
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Godfrey et al.

In [52], Godfrey et al. present their work consisting in a dynamic version of the
solution proposed by Rao et al.. Their goal is to provide an efficient load dissemi-
nation among nodes even in case of churn and frequent insertion/removal of items,
including skewed data. The proposed load balancing operations are performed ei-
ther periodically or under emergency. A periodic rebalancing is performed similarly
to the many-to-many scheme proposed by Rao et al.: a peer holding a directory
periodically computes an algorithm to decide which virtual server should be trans-
ferred to which node, based on load state information periodically sent by nodes.
Conversely, the emergency scheme, which is the main contribution of the paper,
is immediately triggered by a peer whenever its load (a combination of metrics
including disk space, processing and bandwidth consumption) exceeds an internal
threshold. Such situation may typically occur if a large dataset of skewed values is
inserted and has to be indexed by the same peer. Under these circumstances, the
overloaded peer contacts a directory that immediately computes a solution speci-
fying which underloaded nodes could receive some of the overloaded peer’s virtual
servers. Therefore, this is a more reactive approach than what is proposed by Rao
et al. with their load balancing solutions computed periodically only, regardless of
the possible events that might happen in the overlay (e.g., node arrival/departure
or insertion of large datasets).

3.2.3 Data/Node replication

HotRoD

In [53], Pitoura et al. present HotRoD, a locality-preserving DHT-based archi-
tecture for data storage. This system, based on a Chord-like ring, stores data
items in the form of tuples made of k attributes. Tuples are ordered in the overlay
according to the value of at least one of their attributes (k, at most). This value,
when hashed using an order-preserving hash function, becomes the key identifier
of the tuple. As in a Chord overlay, a tuple t is located at successor(tkey).

With such architecture, load imbalances may appear regarding data placement
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and some peers may become overloaded due to the popularity of some of their
items. Thus, to deal with popular queries execution, the authors introduce a
replication scheme. Their goal is to replicate popular items or ranges of popular
items while maintaining the natural ordering of data in order to still execute
range queries in a minimum number of hops. However, if an overloaded peer
places replicas in its neighborhood to preserve the order of values, this may not
be efficient if its neighbors are also overloaded. Hence, the proposed replication
scheme consists in creating virtual rings for storing replicas of popular items over
the regular DHT ring.
Load balancing is triggered when a peer is “hot”, i.e. when a peer estimates (this
is done periodically) it is overloaded because it has processed too many queries
in a given time interval. As the paper focuses on range queries execution, having
a “hot” peer in a defined arc of peers in the ring (including some of the “hot”
peer’s successors and/or predecessors) means this arc is “hot”, too. Consequently,
peers in this arc create replicas of some of their items at underloaded peers, in a
virtual ring that can be accessed from the regular ring. Arc of peers are replicated
instead of a single peer in order to avoid jumping from one ring to another too
often when processing popular range queries. In order to limit replication costs,
not all items of these peers are duplicated but only the most popular ones having
few or no replica yet. Concretely, this means that an underloaded peer, responsible
for storing a given range of values in the regular ring, may be responsible for a
different range of values (the popular ones) in the virtual ring in order to store
replicas. This architecture is depicted in Figure 3.2 (taken from [53]). This figure
considers a system made of two rings: Ring 1 is the regular ring and Ring 2
is the virtual one. Popular data items, ranging between values 604 and 1910,
are replicated in Ring 2 on underloaded nodes from Ring 1. For instance, node
14720 is underloaded in Ring 1 because it is responsible for non-popular values
comprised in [2862; 3916[. However, it manages a more popular interval in Ring 2:
[814; 1632[. When executing a range query on popular items, a peer in Ring 1 may
jump to Ring 2 in order to reach node 14720 instead of node 4912, when looking
for values comprised in [814; 1632[. For example, in Figure 3.2, node 11448 is
looking for a set of values ranging from 1000 to 2000. Solving this query on Ring
1 would mean that the query has to be forwarded to node 4912 which requires
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several hops whereas the query initiator has a neighbor (node 14720) that matches
the requested interval on Ring 2.

Figure 3.2 – HotRoD architecture (taken from [53]).

Although the use of replication increases fault-tolerance and may prevent some
peers from being overloaded by queries, this load balancing strategy suffers from
the usual drawbacks associated with replication schemes. Such an approach leads
to more disk space consumption and has high consistency constraints on updates.
Moreover, the use of virtual rings adds one more level of complexity to this strategy,
concerning updates on items and the way these new rings are added, especially
in the case of several overloaded peers concurrently asking for the creation of new
rings.

Meghdoot

In [54], Gupta et al. present Meghdoot, their publish/subscribe system. Data is in
the form of tuples of n attributes encoded as character strings, integers or floating-
point numbers. Users can specify subscriptions over one or more attributes that
match some constraints. Events are a set of values sent to the system, each of them
being associated to one of the n attributes managed by the system. Meghdoot is
based on a CAN overlay made of 2n dimensions, where dimensions 2i and 2i−1 are
dedicated to the possible values of attribute i. Thus, an event or a subscription is
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a point in the 2n-dimensional space, managed by the peer whose zone encompasses
this point.
As a peer storing subscriptions is also responsible for providing all the matching
events for these subscriptions to their subscribers, some peers may become over-
loaded if they manage too many subscriptions. Moreover, if similar events (same
attributes with similar values) are regularly sent to the system, similar paths will
be used when propagating these events to the concerned CAN zone. Consequently,
peers located on a popular propagation path may be too loaded because they have
too many events to route. Therefore, peers in Meghdoot can experience two dif-
ferent kinds of overload.
To address these issues, the authors exploit both the characteristics of CAN and
their publish/subscribe system properties to balance the load when new peers join
the system. Each peer periodically propagates information about its load state to
its neighbors. When a new peer wants to join the system, it contacts a known peer
in the system, responsible for locating the heaviest loaded peer. The authors dis-
tinguish subscriptions load from events load. To balance subscriptions matching
load, the idea is to split a heavy peer’s zone so that its number of subscriptions is
evenly divided with the peer that joins. This zone splitting strategy is similar to
the default load balancing scheme of CAN consisting in splitting the zone of an
overloaded peer into two zones of equal surfaces, managed by two peers. However,
the difference with Meghdoot is that the two new zones may not have even surfaces
as the goal is that they both contain the same number of subscriptions, which is
much more interesting regarding load balancing.
The second solution, to address event propagation load imbalance, creates alter-
nate propagation paths by using replication: when a new peer pj joins a peer pi

overloaded by events, the zone from pi is replicated on pj (including its subscrip-
tions). In addition, the neighbors are updated to keep track of pj in a replica list.
Finally, events are balanced during the propagation of an event to be matched
with candidate subscriptions by picking, on the peer that executes the routing de-
cision, one of the many possible paths (i.e. one of the replicated peers) by following
the round-robin principle. This replication strategy improves load balancing, data
availability and performance.
One of the main benefits of the solutions proposed by Meghdoot is that routing
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the load that has to be moved from an overloaded peer to a new peer only requires
one hop as they are neighbors. However, the arrival of the new peer modifies the
network topology, which has a cost. Also, with these solutions, there is no way to
offload an overloaded peer as long as no new peer joins the system.

3.2.4 Keys reassignment

Reassigning a set of keys to a peer may be used to create replicas of popular items,
as we have seen with the approach proposed by Pitoura et al. and their system
HotRoD. However, this technique can also be used for skewed data dissemination,
as discussed below. We present two different techniques based on key reassignment,
the first one implying to modify the network topology (leave-join mechanism) while
it is not mandatory in the second one.

Mercury

In [55], Bharambe et al. present Mercury, a system made to support range queries
on top of a structured P2P network constructed by using multiple interconnected
virtual ring layers where each ring is named a hub. In Mercury, data items are in
the form of tuples, made of several attributes with their associated schema. Each
hub manages the indexation of an attribute from this predefined schema. Thus, a
hub can be seen as one dimension in a d-dimensional virtual space, where d is the
number of attributes defined in the data schema. Consequently, a physical node
can be a member of several hubs.
Mercury does not use hash functions for indexing data and suffers from non-
uniform data partitioning among peers as data requires to be assigned continuously
for supporting range queries. Owing to this bad data distribution, the authors
propose load balancing mechanisms based on low overhead random sampling to
create an estimate of the data value and load distribution. Basically, each peer
periodically sends a probing request to another peer using random routing. This
offers a global system load assessment whose values are collected into histograms
maintained on peers. Using this information, a heavily loaded node can contact
a lightly loaded node and request it to leave its location in the routing ring (and



46 CHAPTER 3. EXISTING LOAD BALANCING STRATEGIES

hence hand over its data to a neighbor) and re-join near the location of the heavy
node (leave-join mechanism), to become its predecessor. Finally, the underloaded
peer captures half of the keys the heavy peer (its successor) is responsible for.
The authors show this approach is enough for effective load balancing because
their system topology is an expander graph with a good expansion rate. In other
words, with a small number of edges in their network topology, everyone can reach
other edges by many paths. However, due to the architecture of Mercury, the
leave-join mechanism implies many links to be repaired, especially when a node
leaves its location. In a classical ring overlay, successors/predecessors links have
to be changed when a node leaves. With Mercury, it is also necessary to update
inter-hub links and long-distance links (equivalent to finger table links in Chord).
Therefore, it may take some time before all links in the overlay are consistent in
case of many peers leaving their location in a short time interval, which may affect
query lookups.

Konstantinou et al.

In [56], Konstantinou et al. present their load balancing solution designed for P2P
range-queriable systems. Their mechanism works on top of a skip graph [57] where
peers are placed in an order-preserving way regarding the keys they manage. This
placement preserves the natural ordering of data in order to perform efficient range
query processing. However, as the use of an order-preserving storage technique
cannot evenly distribute data among peers (unlike when using a randomizing hash
function), some peers may become overloaded. To address this issue and maintain
good performance of the system, usually either data or node migration is used.
Both strategies have their drawbacks: data migration might take time to achieve
balance and requires to move large amounts of data, while node migration is also
costly as it modifies the network topology. The solution proposed in this paper
combines both strategies. The authors insist on the fact that combining both node
and data migration would be less costly in terms of data transfer and information
exchange than when using only one of the two schemes. Each peer has its own
internal load threshold (depending on its capacities) and whenever this threshold
is exceeded, a peer can transfer some of the keys it manages to its direct neighbor,
this is called the NIX approach in this paper, until it is not overloaded anymore.
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However, this may not always suffice if several neighboring peers are all overloaded.
In such a case, the overloaded peer sends probing messages throughout the network
until it finds an underloaded peer that can migrate close to it and capture some
of its keys: this is the MIG approach. Hence MIG also requires data migration in
the end, like NIX. For both approaches, the number of keys to be acquired by the
neighbor (NIX) or the underloaded peer (MIG) is calculated in such a way that
the number of items to be transferred between the two peers is minimized.

Figure 3.3 – NIXMIG approach proposed by Konstantinou et al. (taken from [56]).

Figure 3.3, taken from [56], describes the combined NIX and MIG approaches
proposed in this paper. Node N1 is overloaded and sends part of its data to its
neighbor N2, which becomes overloaded. The same happens when part of N2’s
data is moved to N3 and then from N3 to N4. As this neighborhood is well
overloaded and no local solution seems to be found, N4 contacts an underloaded
node, N10, which reserves nodes from N11 to N13, so that they leave their position
and re-join as N4’s successors to capture part of its keys. As a result, N4’s key
interval is reduced by 75% at Phase 3, while N10 takes charge of the range of values
previously managed by nodes N11 to N13.
In summary, this is a simple but efficient solution to balance the load in a “wave-
like” fashion when storing data in an order-preserving manner. Two common load
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balancing strategies, consisting in either moving data to a neighbor or asking an
underloaded peer to become the neighbor of an overloaded one, are combined in
this paper. However, a peer can only balance its load with one neighbor at a
time, hence it may take a long time before a full rebalancing of the network is
achieved. Moreover, as an overloaded peer mandatorily needs an underloaded
neighbor to move its data, this may imply to change the network topology very
often. Finally, this approach is particularly well-suited for skip graphs, whose
topology is quite simple, but may not be compatible with other P2P overlays
based on more complicated architectures, like Kademlia (binary tree using the
XOR metric) or CAN (n-dimensional torus).
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Pastry [21] and Kademlia [20]. This technique is also used by many distributed
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systems for data storage, like Cassandra [33], Oracle NoSQL Database [58] and
HBase [34]. In DHT networks, hash functions are responsible for data placement.
Many P2P systems use a DHT to locate where a data item should be stored in
the network. Each node only has a partial knowledge of other peers located in the
overlay. When a peer wants to insert or retrieve an item, it applies a hash function
on this item and looks at its DHT in order to find coordinates corresponding to
where in the overlay the item should be stored. Consequently, the hash function
being used is directly responsible for both determining the good distribution of
data across nodes and also the efficient retrieval of resources in the overlay.

The use of a single hash function is usually a natural solution to obtain a well-
balanced network regarding data distribution, especially when the hash function
randomly disseminates data over peers. However, under certain circumstances
that we detail in this chapter, like the use of an order-preserving hash function
and/or skewed key values to index, using a single hash function may lead to load
imbalances among peers. This is why the use of multiple hash functions is some-
times suggested in the literature, principally as a solution to address two issues
causing load imbalance, as described below in Section 4.1. Applying several hash
functions is usually proposed as a replication scheme for popular items, and more
rarely as a way to distribute data items among peers.

In this chapter, we first present existing load balancing strategies based on
multiple hash functions in structured P2P networks. Then, we introduce our own
approach using variable order-preserving hash functions to dynamically distribute
skewed datasets in structured overlays. Finally, we detail our solution along with
the rules to follow when implementing it in order to maintain a consistent overlay.

4.1 State of the Art

4.1.1 Multiple hash functions for popular items

Multiple hash functions are used in exising DHT networks as a solution to address
two load imbalance issues. The first issue concerns the popularity of items. A
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data item may be more popular than others and, consequently, the peer storing
this item has to face an important number of queries, which affects its processing
capacity. To speed up response time when a request for a popular item is made,
some load balancing strategies replicate a popular item by applying n different
hash functions on this item, in order to replicate it at n different locations. For
example, the original CAN paper [19] suggests this approach to improve data avail-
ability and also to reduce the path length when routing a query. This way, when
a peer is looking for an object obj, it can apply n hash functions on obj. Each
hash function maps obj to a different CAN coordinate and a peer looking for obj

can choose the hash function associated with the nearest coordinate to its location
in order to minimize the number of hops to retrieve obj. However, this technique
requires that all peers know all the different hash functions used to place data in
order to be able to choose from where to retrieve it afterwards.

Other papers propose similar replica placement strategies based on multiple
hash functions to deal with popular items. In [59], Xia et al. consider a P2P
system for file storage where a peer can replicate a popular file at a location found
by applying on the file a uniform hash function currently unused in the overlay.
The paper presents how to choose this new hash function along with mechanisms
allowing the other peers in the overlay to find existing hash functions they can
apply on the file they are looking for. The paper presents a system where at
most m uniform hash functions may be used to replicate a popular file. Let us
consider a popular file currently replicated at i different locations, using h1, ..., hi

hash functions. Every time a file f exceeds a popularity threshold on a peer p, p

has to replicate this file at another location using hi+1. As f ’s i replications may
have been triggered by different peers, p may not know the value of i and hence
what is hi+1 that it should apply on f . To find f ’s current number of replicas,
the paper proposes an algorithm that works as follows: p applies x hash functions
h1, ..., hx on f until hx points to a peer that does not store f , i.e. x = i + 1. Then,
p can create the i + 1th replica of f at the peer matching hi+1(f). To retrieve a
file f , peers use a random binary search algorithm: the peer applies hr(f) where
r is a random value comprised between 1 and m. If f is not found when using
this hash function, the peer applies hr2(f) where r2 is comprised between 1 and
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r, and so on until the peer finds f . Concretely, this algorithm consists in re-
ducing the number of possible locations for a resource after each iteration, until
narrowing down to the sequence of hash functions that were used to index the item.

In [60], Mu et al. present their approach to dynamically increase or decrease
the number of replicas for a popular object. The authors assume a peer can eval-
uate which of its items are the most popular, in terms of load consumption for
a set of predefined load criteria. Every time a node reaches a given load thresh-
old, it creates a ith replica of its most popular item by using hash function hi and
sends the replica to the corresponding peer. Each original object embeds a counter
number (equal to i) indicating the number of replicas existing for this object. The
authors also assume a peer can distinguish its own original items from those that
are replicas received from other peers. Whenever the load of a peer caused by
one of its own popular objects decreases under a given threshold (i.e. the object
becomes less popular), the peer can launch a removal process of one of its replicas.
Concerning the retrieval of items, a peer looking for an object obj for the first time
can only use the default hash function known by all peers in the overlay. When
retrieving the original item, the peer also retrieves its associated counter number
and thus knows the range of hash functions used to replicate this item. If, later,
the same peer wants to retrieve obj again, it will be able to contact one of the
i locations of obj by computing a hash function between h1 and hi. The main
drawback of such strategy is that peers can only benefit from the use of replicas
if they need to access the same popular item several times (assuming they do
not make a copy of it because its value varies) and the popularity of this item has
not decreased in the meantime (in this case some replicas might have been deleted).

In [61], Wu et al. use the concept of multiple hashes for data storage and
retrieval in the Kademlia [20] P2P network. The authors consider a system where
objects are indexed in the overlay according to a keyword value. If all peers use the
same hash function to index objects, a bad dissemination of objects occurs when
most of them are associated with the same subset of popular keywords. Indeed, a
popular keyword word, associated with n different objects, generates n identical
keys for all these objects if the same hash function is always applied on word,
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which may overload the peer responsible for the corresponding key. To address this
issue, the authors propose that the same keyword may be hashed different times
with the same hash function, in order to produce different keys. Each of these
keys refers to the same keyword but points to a different peer and hence objects
associated with the same keyword can be indexed on different peers instead of
only one. For example, hash(word) is the default hash function of the system for
keyword word and derived hash functions h2 and h3 would respectively correspond
to hash(hash(word)) and hash(hash(hash(word))). Up to N hash functions
can be used, thus the same keyword may be stored by N peers (assuming each
different hash function maps a different peer). The disadvantage of this method is
that when a peer is looking for resources associated with a given keyword, there
may be results in up to N peers in the system due to the fact that the desired
keyword might have been hashed up to N times. Thus, a query must be sent to N

peers and the simulation results presented in the paper show that as N increases,
the traffic overhead becomes more and more important. This is why the authors
estimate 7 different hash functions are enough to balance the load without causing
too much overhead.

4.1.2 Multiple hash functions for data dissemination

Byers et al. suggest in [62] the use of multiple hashing functions for a differ-
ent purpose than popular items replication. Their approach, presented on the
Chord [18] P2P network, aims at addressing load imbalances in terms of items
stored per peer, by trying different hash functions on an item to insert it at the
least loaded location. To do so, the paper presents a variant of the power of two
choices paradigm [48]. Basically, the power of two choices paradigm consists in
applying two hash functions picked at random on an item’s key to eventually pick
the least loaded node out of the two possible locations to store this item. This
paper extends this paradigm to the use of two or more hash functions to compute
the potential item locations.
A node that wishes to insert an item applies d hash functions picked at random
on the item’s key and gets back d identifiers (each hash function is assumed to
map items onto a ring identifier). Afterwards, a probing request is sent for each
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identifier computed previously and the peers managing the identifiers answer with
their load. Once load information is retrieved, the peer with the lowest load plow

is adopted for indexing the item. The other d − 1 peers that were contacted but
not selected receive a redirection pointer (key space identifier) to plow for the cor-
responding item.
When a peer wants to retrieve an object obj but does not know which hash function
has been used to index obj, the peer applies on obj’s key a random hash function
hr(objkey) among the d possible hash functions that were applied previously to
store obj. Even if hr does not point to the peer storing obj, the peer receiving
this query necessarily owns a redirection pointer to obj. Thus, a lookup can be
achieved by using only one hash function among d at random and it may take
only one more hop to reach the desired resource. However, this technique implies
that all peers are aware of the d possible hash functions applied when indexing
resources, in order to use one of them, albeit randomly chosen, when looking for
an item.
Following the same principle, load-stealing and load-shedding strategies can be
used, too. An underloaded peer should be able to take in its possession items for
which it owns a redirection pointer, whereas an overloaded peer can hand over an
item to a lighter peer using a redirection pointer. The experimental results show
that using two hash functions (d = 2) is enough to achieve a better load balancing
with their two choices strategy rather than using a limited number of virtual peers.
In summary, this is an effective solution to prevent load imbalances. Unlike many
load balancing strategies, this one does not exclusively focus on reducing the load
of overloaded peers. Instead, it prevents this situation from happening by evenly
distributing the load on peers from the beginning. It is also efficient to distribute
skewed datasets, although the use of a single randomizing hash function is gen-
erally sufficient. However, the natural ordering of data, which is important to
simplify range queries processing, cannot be preserved. Moreover, several probes
are necessary every time an item has to be inserted, which increases the number
of communications and may slow down the system when inserting a large number
of items.
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4.2 Principles and Interest of our Approach

The aforementioned solutions based on multiple hashes all use multiple random-
izing hash functions. Random hashing is commonly used because it is generally
an efficient technique to uniformly distribute the load among peers. However,
the use of a random hash function for placing data implies a random distribu-
tion of items, which also has drawbacks. Indeed, the execution of range queries
on non-contiguous peers necessarily increases query execution time to retrieve all
matching results, possibly distributed all over the network. This is why some dis-
tributed systems for data storage and retrieval tend to use an order-preserving
hash function to distribute data across nodes. These systems can be RDF repos-
itories like the EventCloud, RDFPeers [41] and GridVine [63] or, more generally,
P2P-based solutions for data storage like [64] [65] [42]. Data is no longer randomly
distributed, and syntactically close items can be retrieved in a minimum number of
hops. Peers still use a hash function to determine an item’s location: the function
is not random but uses the natural value of the item (e.g., its lexicographic value)
to generate its coordinates in the overlay’s identifier space. Unfortunately, this
technique cannot always guarantee a satisfying distribution of data among peers
since such a hash function cannot efficiently disseminate lexicographically skewed
data, like RDF terms [10], made of the same or close Unicode characters.

It is also interesting to note that, in most systems, all peers use the same hash
function. Thus, even though peers do not have an overall knowledge of the sys-
tem, they are all able to estimate where in the network an item should belong
to. Therefore, the use of the same hash function by all peers can be seen as a
centralization of information about items location, where peers act as if they were
asking an oracle to provide them an item’s coordinates. However, as the use of an
oracle is an obstacle to scaling, we believe it should be useful to take advantage
of some of the benefits offered by P2P systems, like decentralization, to build a
decentralized hash function as well. More concretely, we believe all peers should
not necessarily use the same hash function in the overlay to determine an item’s
coordinates.
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When using multiple hashes, we have shown that existing strategies require
that, when looking for a particular data item, a peer either statically picks one
(Byers et al.) or more (Wu et al.) hash functions among d known by all peers, or
dynamically learns about the hash functions used by other peers to index the item
(Xia et al. and Mu et al.). Unlike these existing strategies, we propose a solution
based on variable hash functions where each peer can use its own hash function to
place and retrieve data. Moreover, it is not required that all peers learn about all
the hash functions that can be used in the overlay. Using our approach, as peers
do not share the same hash function, routing is done on the go, from one peer to
another, and each peer applies its own hash function when receiving a message, to
determinate its next recipient. Therefore, the initial sender of the message poten-
tially has no precise idea about where in the system the message will be processed.
Like Byers et al., we propose the use of multiple hash functions to improve data dis-
tribution and avoid peers from being overloaded. Unlike Byers et al. and the other
strategies based on multiple hashes presented above in Section 4.1, we modify the
interval of keys a peer is responsible for, i.e. we perform keys reassignment on over-
loaded peers. However, to do so, we do not modify the network topology. Instead,
we modify the hash function used to map an interval in the overlay’s identifier space
so that less hashed keys map into this interval. Moreover, we aim at addressing the
skewed data dissemination issue in systems relying on non-randomizing hashing to
place data, by using variable order-preserving hash functions. We allow overloaded
peers to independently modify their own hash function for placing data, hence it
would be possible to provide a much more satisfying data distribution when hash-
ing skewed datasets according to the lexicographic order, while preserving this
natural ordering of data along with all its benefits. To our knowledge, this is the
first solution using multiple order-preserving hash functions in a structured overlay.

In this section, we present the benefits of our strategy to balance the load among
peers and how it can be applied on the CAN overlay. However, it is absolutely
conceivable to use this technique on other P2P systems based on a DHT, as we
will show later in this thesis.
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4.2.1 CAN for data storage

In this chapter, we will consider a 2-dimensional CAN only, and to show the in-
terest of our load balancing strategy, present how this system can improve the
distribution of data made of Unicode characters according to the lexicographic
order. We will consider data items made of 2 Unicode-encoded attributes in the
form of < attribute0; attribute1 >, each value of an attribute being associated to
one of the CAN dimensions (0 or 1). For all dimensions, minimum and maximum
Unicode values Umin and Umax are set to determine the Unicode range that can be
managed within the CAN (in Figure 4.1(a), Umin is equal to A and Umax is equal
to Z)1. A Unicode value is associated to each CAN bound of a peer and a peer
is responsible for storing Unicode values falling between these bounds on each di-
mension. For example, in Figure 4.1(a), p1 is responsible for data between [A; G[
(corresponding to CAN-based interval [0; 0.25[) on the horizontal dimension, and
[A; M[ (CAN interval [0; 0.5[) on the vertical one.

When a peer receives a new data item to insert or a query to execute, it has to
convert the Unicode-encoded values into numerical values to check whether it is
responsible for this item/query or not. For example, the string label in the context
of a CAN storing worldwide data (wide Unicode range, up to Unicode character
number 220) corresponds to Unicode value 108.00009632119509 (i.e. at the far-left
of the CAN). Basically, the function we use to obtain such value iteratively con-
verts each Unicode character into a codepoint value and divides these codepoints
by Umax. By default, strings made of Latin characters have a low value, whereas
strings made of any East Asian characters for example have high values (close
to Umax and hence by default close to Cmax as well) because such characters are
located towards the end of the Unicode table of characters.

To each CAN-based interval [mind
p; maxd

p[ of a peer p on a dimension d, cor-
responds a Unicode interval [Umind

p; Umaxd
p[. As a consequence, the mapping

1For more clarity, we use a single character to represent each bound’s value. However, the
real value is a numerical transformation (using the codepoint values) of a string of characters, for
example Z actually corresponds to ZZZZ... which gives a codepoint value approximately equal
to 90.
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(a) Example of a 2-dimensional Unicode CAN stor-
ing items in the form of < attribute0; attribute1

>.
Dimension 0 is dedicated to attribute0 values and
dimension 1 to attribute1 values.

(b) Standard hash function on dimension 0.

Figure 4.1 – Standard hash function of a CAN, that determines Unicode values
between [A; Z] to be associated with the CAN bounds of peers on the interval
[0; 1].
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relation between p’s CAN interval and p’s Unicode interval can be seen as the
hash function applied by p for dimension d. By default, the function linearly
matches the minimum Unicode value that can be stored within the CAN Umin

(resp. Umax) to the minimum CAN-based value Cmin (resp. Cmax). The standard
hash function that can be associated with the CAN of Figure 4.1(a) for dimen-
sion 0 is shown in Figure 4.1(b). This CAN manages Unicode values from A to
Z within its interval [0; 1]. Representing this mapping on a graph means that A

has to be associated with 0 and Z with 1. The function describes which CAN
coordinate is associated with which Unicode value, hence each peer is associated
with a segment of the function (p2’s segment is highlighted in Figure 4.1(b)). For
instance, “G” corresponds to CAN coordinate 0.25 on the hash function graph,
which means G is a value managed by peer p2 on dimension 0 because its CAN
interval is [0.25; 0.5[. Thus, the hash function provides CAN coordinates that help
determine where a Unicode-encoded data item should be stored in the overlay2.

4.2.2 Skewed data, skewed distribution

Figure 4.2 – Default hash function inefficient to disseminate data items (repre-
sented as black dots at the top-left corner of the CAN).

2In the implementation, a peer does not need to perform a computation based on a segment
of this straight line to evaluate whether an item belongs to its zone or not. The peer can directly
compare the item’s codepoint value with the Unicode values of its bounds. However, this is a
equivalent alternative and we use this graphical representation to concretely show the impact of
our solution in the overlay.
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The order-preserving storage technique presented above suffers from a major
drawback regarding data distribution. Indeed, having a system covering the whole
Unicode range means potential overloaded areas may appear, depending on data
distribution. Figure 4.2 shows a system where only items made of Latin characters
are currently stored, which means only a very small area of the CAN is always
targeted when storing or querying data. The most basic (no accent) Latin Unicode
range only includes about 100 different characters whereas there are about one
million characters in the whole Unicode table, which makes Latin-encoded values
very skewed. In consequence, peer p1, whose zone includes the small Latin interval,
becomes overloaded, while the rest of the network stores nothing as it is dedicated
to other Unicode characters (Cyrillic, Thai, etc.). A solution could be to dedicate
the entire network to Latin Unicode data storage. However, as an efficient system
should be able to deal with any dataset from anywhere in the world, this could be
problematic in case of a burst of incoming large data sets in a different alphabet.
Moreover, there are also many symbols like mathematical operators and emoticons,
having their own range in the Unicode table of characters, that should necessarily
be admitted to the system.
Based on this observation, our goal is to allocate more space for skewed values in
the CAN, while maintaining the lexicographic order as well as an area for all other
Unicode scripts.

4.2.3 Variable hash functions for overloaded zones

Enlarging the CAN zone dedicated to Latin data would result in an improved
data dissemination among peers, as shown in Figure 4.3. By extending this zone
up to CAN coordinate 0.7 on both dimensions (Figure 4.3(b)), it is possible to
distribute the load over almost all peers in the overlay. Consequently, the areas
dedicated to other unused alphabets shrink. Concretely, this means that each peer
being fully included in the highlighted area on these figures becomes exclusively
responsible for a given subset of Latin-encoded values. Thus, extending the CAN
interval dedicated to a given Unicode subset requires peers in this CAN interval
to reduce the Unicode interval they manage. In the overlay, the highlighted CAN
interval [0; 0.7] is now associated with the Unicode interval [A; Z]. This implies
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that, on the horizontal dimension, peer p1 becomes only responsible for data be-
tween [A; J[, p2 between [J ; T [, while p3 manages [T ; Z] as well as other Unicode
scripts.
As this mapping between Unicode and CAN values differs from the standard map-
ping previously introduced, a non-standard hash function must be used to place
Latin data items over the enlarged area. The corresponding hash function for the
overlay in Figure 4.3 (to be applied on any "enlarged" dimension) is shown in Fig-
ure 4.4. Extending the Latin interval in the CAN leads to a different hash function
for all peers in the highlighted area, as the end of this interval (represented by the
character Z) is now located at CAN coordinate 0.7.

(a) Extension on the horizontal di-
mension.

(b) Extension on both dimensions.

Figure 4.3 – Possible enlargements of the CAN area for Latin Unicode data storage,
in order to disseminate skewed values over several peers while still dedicating a
part of the overlay to other Unicode scripts.

Therefore, by changing a hash function, a skewed Unicode interval can be man-
aged by more peers, and data distribution improved among them. As a matter
of fact, it is possible to statically define an optimal hash function if data distri-
bution is known beforehand. For instance, if we know we will never have to store
non-Latin characters, we can set the Latin interval between pre-defined CAN co-
ordinates, such as [0; 0.95]. However, we believe that such system should be able
to dynamically modulate its areas devoted to the storage of a specific Unicode
range at runtime. For example, after receiving a large dataset of which characters
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Figure 4.4 – Non-standard hash function to place data items over the enlarged
area for skewed values (highlighted on the graph).

are of a specific Unicode script, an enlarged CAN interval for this alphabet will be
calculated by the concerned peers, on the basis of some parameters that we will
introduce later in this thesis. Generally speaking, any system needing real-time
adaptation to incoming data should be able to adapt its hash function at runtime.

In summary, our contribution aims at dynamically adapting the size of areas
allocated to skewed values, by changing hash functions to determine where data
should be stored. As in any standard structured overlay, all peers initially use the
same uniform hash function. When a peer is overloaded because it stores too many
skewed values, we believe it should reduce the Unicode interval it is responsible for,
in order to store less data. As shown previously, changing this Unicode interval
implies for the peer to change the hash function it applies on data. For example,
in Figure 4.5(a), new hash functions successively applied by p1, p2 and p3 evenly
distribute data load between these peers, by enlarging the Latin interval on the
horizontal dimension of the CAN. As there is no non-Latin data to store, there is
no need to dedicate large areas in the CAN to other Unicode sets. Thus, these
empty areas are shrunk in order to give more space to the currently stored data.
If, for instance, large Thai datasets are later inserted, peer p5 will have to change
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(a) New hash functions applied by p1, p2 and p3 improve distribution
of data made of Latin characters.

(b) New adaptation of hash function after Thai data is inserted.

Figure 4.5 – Successive updates on hash functions to improve the skewed data
dissemination.
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its hash function in order to balance its load (with peer p6, in Figure 4.5(b)).

In the next section, we describe the hash function update process and rules
that must be followed.

4.3 Hash Function Update Process

In the following, we will describe the process that happens when a peer wants
to change its hash function. We will also present some of the constraints that
must be taken into consideration, in particular to maintain the same topology (i.e.
same neighboring links) and deal with concurrent hash function updates. This will
allow us to eventually identify the key rules to observe when using variable hash
functions in a CAN overlay.

4.3.1 Update propagation

When a peer decides to change its hash function, this corresponds to reducing
the Unicode interval it is responsible for. In other words, the peer modifies the
Unicode value associated to one of its bounds. The peer first applies the update
on itself, then sends a multicast update bound message. This message contains
the following information:

• The CAN coordinate of the bound whose Unicode value has been modified.
As CAN-based values always refer to the same coordinate in the overlay, this
is to ensure other peers receiving this message can immediately locate where
the update has been done.

• The new Unicode value associated to this CAN bound, in order for recipients
to either apply this new value on their corresponding CAN bound or at least
to be aware of this new hash function (we will detail both cases in the
following).

• The dimension on which the update has been done, as a peer can use different
hash functions on different dimensions.
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The message is propagated to all concerned peers on this CAN-based bound to
make them change their associated Unicode value. Indeed, all other peers hav-
ing one of their bounds on the same CAN-based value on the same dimension
must apply the new value, too. This is very important in order to keep the same
topology (same neighbors) and avoid inconsistency within the CAN. As shown in
Figure 4.6, if the new Unicode value on a given CAN bound is only propagated to
the peer’s direct neighbor on this bound, empty zones no one is responsible for, or
overlap zones managed by two peers may appear, causing trouble when inserting
or looking for a data item.

Figure 4.7 shows the scope of a hash function change in a CAN. Peer p1 decides
to change its hash function to reduce its Unicode interval on CAN-based bound
0.75. Thus, all peers on 0.75 (the grey area) should also apply this new hash func-
tion on 0.75. A multicast message is sent by p1 and routed to all concerned peers.
Some of them may include the concerned CAN coordinate in their CAN interval
while not having any of their CAN bounds precisely at this coordinate, like p3,
whose CAN interval [0.5; 1] comprises 0.75. As a result, p3 will not apply the
new hash function but must be reached in order to continue routing the multicast
message towards p4. But p3 is also included in the concerned peers because it
must be aware of the new hash function on 0.75, for two reasons. First, p3 has
to maintain its knowledge about its neighbors p1, p2, p4 and p5 up-to-date, like
in any standard CAN overlay. In the remaining of this thesis, we consider that
each peer knows its neighbors and the hash function they use for each dimension.
This is a realistic assumption as this information can be piggybacked on heartbeat
messages. Thus, the routing table of a peer can store several hash functions and
the peer associated to each of them. The second reason concerns the handling
of node arrival. If, later, a new peer wants to join p3 and split on its horizontal
interval, p3 and the new peer will both know which Unicode value to apply on
their new 0.75 CAN bound.

An overloaded peer cannot predict if its hash function change will overload
some of the concerned peers since they may not be its neighbors. However, this
can be easily addressed, as peers applying this new hash function can also induce
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(a) Case 1: P1 successively reduces its
Unicode intervals on both dimensions.

(b) P2 and P3 both end up
responsible for Unicode inter-
vals [E; M[ (horizontally) and
[K; M[ (vertically).

(c) Case 2: P1 reduces its horizontal in-
terval from [A; M[ to [A; E[ while P2
reduces its vertical interval from [A; M[
to [A; K[.

(d) There is no peer responsi-
ble for the zone between coor-
dinates (E,K) and (M,M).

Figure 4.6 – Consequences of not spreading the new Unicode value of a CAN
bound on a whole dimension (the new value is only propagated to the initiator
peer’s direct neighbor on this bound).
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Figure 4.7 – Hash function update message routing.

their own hash function change later on.

4.3.2 Bound reduction in a torus-like topology

Peers having their CAN-based upper bound equal to the maximum authorized
CAN value Cmax should also be able to reduce their upper Unicode bound. Other-
wise, if, for example, a large amount of Chinese data items is sent into the system,
they would probably be stored by the peer at the far-right of the CAN on each
dimension. This would offer no possibility for this peer to extend the CAN interval
for these items to the right of the CAN, as they are already nearly located at Cmax.
To avoid this situation, we allow peers located at the far-right of the CAN to re-
duce their upper Unicode bound like any other peer. To do so, we take advantage
of the tore-ring topology of the network, and consider Cmin = Cmax, which means
all Unicode updates associated to Cmax must also be applied to all peers on Cmin.
As a consequence, peers on Cmin can become responsible for two Unicode intervals
within a single CAN-based interval. This is shown in Figure 4.8(a), representing a
CAN where the minimum Unicode value allowed Umin is A and the maximum Umax

is Z. In Figure 4.8(a), p7 is overloaded by data located near Cmax. Although its
upper Unicode bound is currently equal to Umax, p7 is allowed to reduce its value,
from Z to V in Figure 4.8(b), in order to send its data between [V ; Z] forwards in
the overlay (i.e. to p6). Consequently, in Figure 4.8(c), peers p1, p5, and p6 own
two different intervals: respectively [[V ; Z]; [A; M[] for p6 and [[V ; Z]; [A; G[] for
p1 and p5. Therefore, when a peer is responsible for two Unicode intervals, the
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first interval must stop at Umax and the second one must start at Umin.

(a) p7 gets overloaded. (b) p7 reduces its upper
bound from Z to V, so does
p4.

(c) p1, p5 and p6 now own
two Unicode intervals.

Figure 4.8 – Unicode reduction process on the Cmax bound.

4.3.3 Optimal update propagation in a torus-like CAN

In order to efficiently propagate an update bound message, as introduced in Sec-
tion 4.3.1, an optimal multicast algorithm is used. The goal of such algorithm is
to ensure a message will be received only by concerned peers and only once. We
based our implementation on the optimal broadcast algorithm for CAN [28] intro-
duced in Chapter 2.3.4. However, two main differences with the original approach
occur in our case:

1. We needed to apply a multicast algorithm only concerning peers whose CAN
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interval includes the modified CAN bound, unlike the original algorithm
which is dedicated to broadcast.

2. As explained in Section 4.3.2, our CAN uses a torus-like topology, whereas
the optimal broadcast algorithm is based on a bounded CAN. This is an
important difference as the original algorithm is optimal (a peer receives one
and only one message) because routing on a given dimension stops when
reaching Cmin or Cmax on this dimension.

We describe thereafter the new algorithm implemented to multicast update
bound messages in our CAN, and present the main differences with the original
broadcast algorithm.

Optimal multicast algorithm

The optimal multicast algorithm presented in Algorithm 4.1 follows the same prin-
ciples as the optimal broadcast algorithm presented in Algorithm 2.1. However,
this time, only peers whose CAN interval includes the modified CAN bound are
concerned. Thus, the corner constraint (line 14) must concern the corner includ-
ing the modified CAN bound. By default, the corner constraint compares the
minimum CAN bound of a peer and its neighbor’s. This time, if the modified
CAN bound corresponds to the maximum CAN bound of the peer processing the
message, the corner constraint is checked using the maximum CAN value of peers
instead of the minimum. Concerning the spatial constraint (line 26), it is now nec-
essary to check if the neighbor’s CAN interval includes the modified CAN bound,
otherwise there is no need to route the message. Figure 4.7 shows more concretely
how a message propagates among peers when using this algorithm.

To implement this optimal multicast algorithm in an unbounded CAN (torus),
no change is necessary as long as the modified CAN bound is not Cmin nor Cmax.
If it is, a different behavior is required:

1. When routing a message on the dimension of the modified CAN bound,
the getNeighbors function (line 7) must also include neighbors from the
torus perspective. For other dimensions, only neighbors from the bounded
perspective are being considered (default behavior).
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1: function route_update_bound_message(msg, dim, direction)
2: if direction = forwards & maxdim

peer = Cmax then
3: stop routing
4: else if direction = backwards & mindim

peer = Cmin then
5: stop routing
6: else
7: for each neighbor ∈ peer.getNeighbors(dim,direction) do
8: if check_corner_constraint(neighbor, msg)

& check_spatial_constraint(neighbor, msg) then
9: route(msg, neighbor)

10: end if
11: end for each
12: end if
13: end function

14: function check_corner_constraint(neighbor, msg): Boolean
15: for all dim >msg.current_routing_dimension do
16: if dim =msg.dimension_of_update &

maxdim
peer =msg.modified_CAN_value then

17: if maxdim
neighbor <maxdim

peer then
18: return false
19: end if
20: else
21: original function behavior
22: end if
23: end for
24: return true
25: end function

26: function check_spatial_constraint(neighbor, msg): Boolean
27: d←msg.dimension_of_update
28: if !(mind

neighbor ≤msg.modified_CAN_value ≤maxd
neighbor) then

29: return false
30: else
31: for all dim <msg.current_routing_dimension do
32: original function behavior
33: end for
34: end if
35: return true
36: end function

Algorithm 4.1 – Optimal multicast algorithm. In this algorithm, peer refers to
the current peer processing the message.
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2. In order to avoid loops and also to keep the algorithm optimal, once a mes-
sage has crossed Cmin or Cmax (the one that is modified), the recipient must
stop routing on this dimension. Otherwise, routing might continue indef-
initely: let us consider two peers p1 and p2 respectively located on CAN
intervals [0; 0.5[ and [0.5; 1] on dimension 0. If p2 modified the Unicode
value associated to CAN value 1, p2 would route a message on dimension 0
asking p1 to update its CAN bound 0. Then, as p2 would match all con-
straints from the optimal multicast algorithm, p1 would forward the update
message to p2, and so on.

Obviously, such technique could also be used more generally to implement
optimal multicast for other purposes, either in a bounded or a torus CAN. This
algorithm allowed us to use optimal multicasting in our system, to avoid duplicate
communication messages and unnecessary broadcast.
In the next subsection, we will go further into our wish to limit the communication
between peers when balancing the load.

4.3.4 Concurrency and message filtering

For a given bound, a peer p receiving an update message will allow the new Unicode
value only if it is lower than p’s current Unicode value for the same CAN-based
bound. Thus, it is forbidden to ask for a forwards reduction of the minimum
bound, in order to avoid inconsistent concurrent reductions (i.e. on different di-
rections). For example, in Figure 4.9, if two peers (p1 and p4) decided in a short
time interval to modify their Unicode value (respectively Umaxp1 and Uminp4) for
the same CAN-based value (0.5) but on different directions (backwards for p1 and
forwards for p4), it would become difficult to tell which one has priority over the
other, especially since their multicast messages may not be received in the same
order by all the concerned peers (p1, p2, p3, p4). Therefore, only p1 should be
allowed to reduce its bound.
For even more safety regarding concurrent updates, we do not allow a peer to
modify its hash function while the peer has received update messages it has not
processed yet. Moreover, if update messages asking for different Unicode values
are sent by different peers at the same time and for the same CAN-based bound,
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we ensure all peers will end up choosing the same value: the lowest one. Thus,
peers will reject the other messages and stop their multicast routing. The only case
where a higher Unicode value would be accepted is when the reduction is made by
a peer already containing two continuous intervals on one dimension (as discussed
above in 4.3.2) and the new value is included in the first interval. In Figure 4.10(a),
if, later, p1 wants to reduce from G to Y , it would no longer be responsible for
two Unicode intervals (only [V ; Y [), but its neighbor p2 would ([[Y ; Z]; [A; M[]),
as shown in Figure 4.10(b).

Figure 4.9 – Inconsistent reductions for the same CAN-based value (0.5).

Our rule selecting the lowest value is very efficient as it guarantees the same
value will be picked by all concerned peers. The optimal multicast algorithm en-
sures that all peers having to apply the new Unicode value will receive the message.
Even if several peers initiated different update messages for the same CAN bound
in a short period of time, and no matter in which order the concerned peers would
receive the multicast message, all peers on this CAN bound will use the same
Unicode value after all messages with the lowest value have been processed. The
main benefit of such rule is that peers independently take the decision to apply
or reject a new bound value but they all end up choosing the same value, without
any mutual consultation. This solution is more convenient than those based on a
two-phase commit-like approach, such as mutual exclusion algorithms [66], using
lock mechanisms. Besides, these algorithms require the initial sender to know how
many peers are concerned by the message, in order to know how many replies
should be received by the sender prior to any action. The process ends when all
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(a) p1, p5 and p6 own two
Unicode intervals.

(b) p1 and p5 were allowed
to change their 0.25 bound
from G to Y because this
has reduced their Unicode
interval and they only man-
age one interval now. As a
result, p2 becomes responsi-
ble for two intervals: [Y ; Z]
and [A; M[.

Figure 4.10 – Bound reduction on peers responsible for two Unicode intervals.

nodes have applied the update and notified the initiator. This is very difficult to
implement on a P2P overlay such as CAN, because peers have no overall knowl-
edge of the system. Thus, a peer cannot estimate how many peers are also located
on the same CAN bound for the whole network.

During the bound update process, peers on a same CAN bound may use dif-
ferent Unicode values. In the next subsection, we show how this does not affect
data redistribution and lookup among nodes.

4.3.5 Data movement and lookup

After a peer p has changed its hash function, it has to send all data it is no longer
responsible for to its neighbor(s). To do so, p has to wait until they apply the
update as well (it should be done quickly as they are only one hop away from
p). After sending its triples, p waits until it receives a storage acknowledgement
message from its neighbor(s) before deleting triples, in order to ensure no triple is
lost during this process.
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As there is no coordination between peers and no mutual exclusion algorithm
is used, all peers on the same CAN bound may not apply the new Unicode value
at the same time. However, ultimately, all peers should use the same value. In the
meantime, this does not affect data lookup or insertion. Indeed, a peer forwards
a message once it has applied the update itself. Therefore, the optimal multicast
algorithm ensures a peer will receive an update bound message from a neighbor
that already applies the new value, which eases data movement between these
peers.

Figure 4.11(a) presents the routing paths followed during an update propaga-
tion. First, p2 applies the value G on its 0.5 CAN bound on dimension 0. Then,
p2 emits the update message towards p3 on dimension 0 and p6 on dimension 1,
following the optimal multicast algorithm constraints. Then, these peers apply the
update and try to forward the message as well. Peer p3 has received the message
on dimension 0 which means it cannot forward on a dimension higher than 0 and
its neighbor p4 is not concerned by the update, whereas p6 can forward to p7.
Therefore, the configuration proposed in Figure 4.11(b) will never happen. In-
deed, if the optimal multicast algorithm is used, there is no way for p7 to receive,
and hence apply, the update message before p6. This is because p6 is the only
peer that can forward the message to p7, according to the rules of this algorithm.
Thus, p6 would necessarily already use ”G” on 0.5 before p7. This considerably
enhances data transfer between peers and the overall consistency of the overlay.
In Figure 4.11(c), we focus on queries management during the update process on
dimension 0. We consider that p2 currently uses value G on 0.5 whereas its neigh-
bor p3 has not received or applied the update yet and still uses value M as Umin0

p3.
Several cases may occur if one of them receives a lookup/insertion message for a
data item:

1. If the item value is comprised between [M ; R[, p3 will obviously receive and
process the message.

2. If the value is between [E; G[, p2 will be responsible for the message.

3. If the value is comprised between [G; M[:



4.3. HASH FUNCTION UPDATE PROCESS 75

(a) Update Bound Message (UBM) propagation.

(b) Impossible configuration. (c) Possible intermediate configuration
showing which peer would be responsi-
ble for processing which lookup query
(denoted as ?(”item”)) when using dif-
ferent Unicode bounds, as peers p3, p6
and p7 have not applied the update yet.

Figure 4.11 – Propagation of a new Unicode value and its possible consequences
on query processing.
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(a) If p2 receives the message: as p2 still stores data between [G; M[ be-
cause p3 still hasn’t told p2 that it uses the new hash function, p2 should
process the query as its neighbor on the right on dimension 0 (i.e. p3)
still appears as managing data from the M value.

(b) If p3 receives the message: p3 still uses M on Umin0
p3, hence p3 considers

lower values must be located on the backwards direction on dimension
0. Thus, p3 will forward the query to p2, which is the right decision.

(a) Overall hash function used on dimension 0. (b) p1’s hash function knowledge.

Figure 4.12 – Overall hash function knowledge of p1 associated to the overlay
presented in Figure 4.11(c).

Using variable hash functions implies peers may not know where exactly in
the overlay an item should be located. Let us consider p1 (from Figure 4.11(c))
initiates a lookup query to retrieve a data item containing the value ”Nice” on
dimension 0. Figure 4.12(a) represents the overall non-linear function used in the
overlay, while Figure 4.12(b) shows p1’s knowledge about this hash function. As
stated in 4.3.6, p1 knows the hash functions used by its neighbors p2 and p4 (torus).
However, p1 has no idea about the hash function used between CAN coordinates
0.5 and 0.75 on dimension 0. As p1 cannot know to which CAN coordinates ”Nice”
is associated, p1 will route its query towards the closest coordinate to ”Nice” it
knows of. In our case, this corresponds to the value R associated to CAN value
0.75 on neighbor p4. Then, p4, whose hash function knowledge includes p3, will
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be able to estimate item ”Nice” should be stored by p3 and will route the query
to p3.

4.3.6 Main rules

On the basis of what was described throughout this section, we were able to
draw from all the constraints that we introduced some rules that summarize our
approach and that must be followed to use variable hash functions in a CAN
overlay.
As there is no central coordination in an overlay, it is very difficult to change the
overall hash function applied in the network. However, it is not necessary for all
peers to use the same hash function or to know all the different hash functions
used in the overlay to get a fully functional CAN. Peers can use different functions
as long as the following rules are observed:

(a) A peer should know the hash function of its neighbors for each dimension, and
should notify them as soon as it changes its hash function.

(b) Neighboring peers using different hash functions should have the same Unicode
value on their common bound.

(c) All peers on a given CAN-based bound should apply the same hash function
on this bound. Peers whose CAN interval includes this bound should also
know this hash function, without needing to apply it.

(d) When overloaded, a peer is only allowed to reduce the maximum Unicode
value it is responsible for.

Rule (a) is required to ensure the arrival of new peers (division of an existing zone
between two peers) is correctly handled. Also, when routing data in the network,
this allows a peer to choose among its neighbors which one will be the most efficient
for routing a particular data using the shortest path. Finally, this rule helps an
overloaded peer know when it can start sending part of its data to its neighbor(s),
i.e. when both of them apply the same new Unicode value on their common bound.
Rule (b) ensures overall consistency of the overlay: two peers sharing a common
CAN-based value should share a common Unicode-based value, even if they use
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different hash functions. Given two neighbor peers p1 and p2 using h1 and h2 as
their respective hash functions on dimension d, if h1(Umaxd

p1) = h2(Umind
p2) then

Umaxd
p1 = Umind

p2. For example, in Figure 4.11(c), p1 and p2 use two different
hash functions h1 and h2 on dimension 0 (depicted in Figure 4.12(a)), respectively
between CAN coordinates [0; 0.25[ and [0.25; 0.5[. However, they share the same
Unicode value (E) on their common bound (0.25), i.e. h1(E) and h2(E) both
correspond to coordinate 0.25.
Rule (c) keeps in line with rules (a) and (b) and prevents updates on hash functions
from creating overlap or empty areas in the CAN. It is also necessary to maintain
optimal routing in the overlay. Figure 4.13 describes what would happen otherwise,
if a peer modifying the Unicode value of one of its bounds does not propagate
this update. This figure considers a CAN where p1 modifies its 0.25 bound on
dimension 0 from E to C but this new value is not propagated on dimension 1
to p5 and p6 (only to p2, with whom p1 shares this bound). The same principle
happens when p2 and p3 also decide to reduce their intervals ([C; F [ for p2 and
[F ; H[ for p3). When p9 sends a lookup query for item < London; City > (London

being associated to dimension 0 and City to dimension 1), if routing starts on
dimension 0, then a long path has to be followed. Indeed, as p9 uses R on min0

p9,
it will continue routing the query backwards in order to reach values starting by
L, so will p7. When the query arrives on p6, as its interval [E; M[ on dimension
0 encompasses London but its interval [M ; Z] on dimension 1 does not include
City, p6 stops routing on dimension 0 and starts routing on dimension 1. Thus, p2
receives the query that matches its interval on dimension 1 but not on dimension
0, as p2 has modified its hash function. Hence, p2 restarts routing on dimension 0,
until the query arrives on p4, that is responsible for the desired item. In contrast,
if the new hash functions are propagated to all peers on the modified bound, p9
would use H on min0

p9, thus it would not route the query on dimension 0 and, in
the end, the routing path would require two hops instead of five3.

Finally, rule (d) is mandatory to maintain the overlay consistent in case of
concurrent updates on hash functions made by different peers. As we explained in
subsection 4.3.4, this rule helps peers choose the right new Unicode value for their

3One or several more hops may still be necessary until all the peers concerned by the bound
modification have processed the update.
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Figure 4.13 – Possible routing path associated to an item lookup when an update
is not propagated through the whole dimension.

bound and ensures all concerned peers will end up using the same hash function
on a given CAN bound, without any additional consultation message. This rule
is specific to the CAN architecture as peers manage a set of coordinates bounded
by a minimum and a maximum value, which means a peer could also reduce its
Unicode interval by increasing the minimum Unicode value it is responsible for.
On other P2P overlays, such as Chord, this rule would not be necessary as a peer
is only aware of the maximum value it can manage.

4.4 Summary

In this chapter, we have presented our load balancing strategy for improving
skewed data distribution among nodes. Hash functions are at the heart of data
distribution for DHT-based overlays. However, few load balancing strategies pre-
cisely tackle the issue of hash functions in order to improve data dissemination.
Moreover, these strategies aim at replicating data or destroy the natural ordering
of data. They do not directly address the skewed data problem whereas real world
datasets are known to be highly skewed [67] [10] [68]. Our approach is meant to
perform skewed data dissemination without a priori knowledge about data distri-
bution.



80 CHAPTER 4. VARIABLE HASH FUNCTIONS

In most P2P systems, peers do not have an overall knowledge of the overlay.
We have shown it is not necessary for all peers to use the same hash function, while
continuing to maintain optimal routing and consistency in the overlay. Peers do
not even need to be aware of the overall hash function used in the network. To do
so, few rules are needed to ensure peers receive enough information about changes
while being able to make right decisions without any prior communication with
other peers.

When a peer is overloaded, we allow it to reduce the interval it is responsi-
ble for by modifying the hash function it applies on data, in order to send part
of its data to its neighbor(s). In the meantime, an optimal multicast algorithm,
presented in 4.3.3, is used to propagate this new hash function only towards peers
concerned by this update (Section 4.3.1). Recipients independently make the deci-
sion to accept or reject this update. However, they all end up opting for the same
decision, even in the case of multiple concurrent updates (Section 4.3.4). Thanks
to such rules, we can easily limit communication between peers while maintaining
the overlay consistent. Each peer applies its own hash function on data when
routing a lookup query. Therefore, evaluating an item’s location is done on the go:
each peer routing the message applies its own hash function on the item, which
addresses the lack of knowledge of peers regarding the overall hash function of the
overlay.

In order to evaluate our strategy, we had to implement the approach presented
in this chapter in the context of a distributed storage system. To this aim, we
developed a generic API for simplifying coding and maintenance by enabling the
integration of various strategies in a system, with minimal impact on the existing
business code.
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5.1 Motivation

Distributed systems for Big Data management very often face the problem of load
imbalance among nodes, especially regarding data distribution. To address this
issue, there exist almost as many load balancing strategies as there are different
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systems. Many load balancing strategies have been proposed based on replication
or relocation. The model followed by these strategies usually consists in controlling
resources and/or nodes location. However, many variants are conceivable based
on indirection, identifiers, range space reassignation or virtual peers1. Moreover,
designing a load balancing solution requires to consider parameters such as the
overload criteria to take into account, how an overload is detected, and how load
information is exchanged. This variety of parameters has led to the definition of
multiple solutions that often differ by minor but subtle changes.

When designing a scalable distributed system geared towards handling large
amounts of information, it is often not so easy to anticipate which kind of strat-
egy will be the most efficient to maintain adequate performance. This may refer
to performance concerning users (e.g., query response time) or the system (scala-
bility, reliability or even node failure prevention). Based on this observation, we
present in this chapter the main concepts behind a generic API for load balanc-
ing in distributed systems. We describe the methodology behind the building of
this API to implement and experiment any strategy independently from the rest
of the code. Our contribution simplifies coding and maintenance by enabling the
integration of different strategies in a system, with minimal impact on the existing
business code. More precisely, we will focus on the context of data management
systems. However, the general ideas presented in this chapter can be applied on
other types of truly distributed systems. To this aim, we provide a guide of what
criteria are important to define and the essential principles to think about before
implementing a load balancing strategy.

We propose to decompose into components the main features arising from a
load balancing mechanism. This enables changing only a part of a strategy without
having to impact the other components. Our contribution is to provide a synthetic

1Unlike traditional P2P networks where one peer is deployed per node, virtual peers are an
abstraction allowing several peers to be hosted on a same physical node. Upon the detection
of an underloaded or overloaded peer, virtual peers are reassigned to other nodes in order to
maintain the machine load under a given threshold. Some strategies based on virtual peers were
presented in Section 3.2.2. Other solutions relying on some of the other aforementioned concepts
can be found in Chapter 3.
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and operational vision of how the different bricks that form a load balancing strat-
egy articulate, and at which time in its life cycle these bricks are used. Therefore,
our solution is especially useful when it becomes necessary to experiment with var-
ious load balancing strategies in a system, prior to a definitive choice for instance.

In the following, we introduce differentiation criteria that we consider as the
main elements composing a load balancing strategy. Then, we present our com-
mon API to implement any kind of strategy. Finally, we show how this API is
compatible with some relevant load balancing strategies presented in Chapter 3,
either from the literature or used by famous Big Data systems. This work was
done in collaboration with Laurent Pellegrino.

5.2 Load Balancing Differentiators

By studying the state of the art of load balancing in distributed systems, we
identified the main differences between each strategy, in order to determine the
right level of abstraction to be able to implement them all. Although they seem
very different and are applied on various types of distributed systems, all the load
balancing strategies previously cited and most other existing solutions rely on the
same principle. A node moves a given amount of load to a certain target which
will become responsible for the load being moved. The decision to move load
always comes after a load comparison with a given source of information. It is
very common to trigger this load comparison during a specific state of the system
such as network construction, data insertion or periodically. Overall, we identified
the following differentiators to establish a load balancing strategy. They represent
the main concerns to focus on in order to develop a strategy.

(a) Criteria

Before fixing load imbalances, a disproportion in terms of load must be de-
tected. This implies to know which load criteria are involved and how their
variation is measured on nodes. This differentiator defines which load varia-
tions are considered and to which resource(s) (CPU, bandwidth or disk usage)
and operation(s) (e.g., item lookup, item insertion, response latency for a user
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request, etc.) they refer. Usually, few criteria, not to say only one, are taken
into consideration in practice.

(b) Load State Estimation Algorithm

This step consists in defining whether a node is experiencing an imbalance or
not, and how this decision is made. Usually, a node relies on a source of load
information containing aggregated remote information (see differentiatior (g)
to figure out how this source of information is populated with remote infor-
mation) or uses purely internal information by comparing its internal load(s)
with predefined threshold(s). Thus, this estimation algorithm can also implic-
itly specify the performance requirements (for instance, in terms of SLAs) of
a particular system for any criterion defined in differentiator (a).

(c) Load Balancing Decision

The decision to trigger load balancing often differs from a load balancing
strategy to another. This differentiator aims at identifying who triggers the
evaluation of the system/a node’s load state and when. Consequently, it is
related to the time at which the whole load balancing mechanism is triggered
by a node and will necessarily impact how a load balancing implementation is
welded to an existing system’s business code.

(d) Load Balancing Mechanism

The mechanism identifies which well-known solution is applied to move load
from a node to its target. As summarized in the introduction of this chapter,
it may consist in using virtual peers, redirection pointers or even range space
reassignation. It helps checking whether prerequisite abstractions, required to
define a given load balancing strategy, are available or not.

(e) Load to Move

Once an imbalance is detected, the next stage is to fix it. This implies to know
what is the load to move. This differentiator defines the amount of load to
move from a node to its target but also how this load is selected.
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(f) Target

Given an unbalanced node, its target is a set of nodes used to balance its
load with. In other words, it describes who receives the load when the load
balancing process is triggered.

(g) Load Information Exchange

A strategy optionally embeds a mechanism to exchange information. It is of-
ten used to compare the internal load with an average system load estimated
through exchanged information. This differentiator defines when the estima-
tions are transferred (if they are), from who and how. Once received on a
node, these estimations compose a source of information.

(h) Load Information Recipients

Given a node n, the recipients are nodes that share load information with n.
They are mainly used to build a source of information involved in the load
balancing decision process.

Tables 5.1 and 5.2 present how some of the strategies presented in Chapters 3
and 4, respectively applied by Big Data and P2P systems, match our differentia-
tors. It is interesting to note that systems for Big Data storage and processing,
like MongoDB and AWS, usually allow to customize very few of these differentia-
tors. The strategy applied in MongoDB may vary the behavior of the Load State
Estimation Algorithm and the periodicity of the Load Balancing Decision. With
AWS Auto Scaling, the periodicity of the Load Information Exchange and the way
to evaluate the load state of an instance (Load State Estimation Algorithm) based
on some load Criteria may change. Such strategies are effective in one specific case
but may no longer be as efficient after any change that might occur, for example
after a system update or to meet a fast-growing user demand. In such cases, it
may be complicated to modify a load balancing strategy if it is hard-coded. This
is why we propose a generic API that eases the development of load balancing
policies in distributed systems.
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MongoDB (NoSQL DB) Nasir et al. (stream) AWS (Cloud)

Criteria Number of chunks stored by a
shard

Number of messages sent by
each source to a worker

Some metrics among the fol-
lowing: CPU usage, latency,
number of I/O operations, ...

Load State
Estimation
Algorithm

Triggering rebalancing after a
new shard has been added or
if new chunks of data have
been inserted, causing an im-
balance among shards that
exceeds the migration thresh-
old

Always triggering rebalancing
when a source produces a new
message

Whenever a metric exceeds a
predefined threshold

Load
Balancing
Decision

Periodically, on each router When a source sends a mes-
sage

Periodically, depending on
CloudWatch’s granularity to
retrieve metrics

Load
Balancing
Method

Sharding (horizontal scaling) Power of two choices
paradigm

Registration of a new instance
(if overload), termination of
an existing one (underload)

Load to
Move

Part of the heaviest shard’s
chunks

The message sent by the
source

Part of the application’s fu-
ture requests/traffic

Target The lightest shard in the sys-
tem

The least loaded worker
among those selected by the
random hash functions

A new instance (if overload)
or an existing instance (if un-
derload)

Load
Information
Exchange

Periodic probes (pull) from
the balancer process of
routers to Config Servers and
push calls from a shard to
Config Servers whenever the
shard stores a new chunk

Internal to the source: the
source checks its local reg-
istry to retrieve the amount
of load it has previously sent
to the workers matching the
hash functions

Instances monitoring (pull)
from Amazon CloudWatch

Load
Information
Recipients

Config Servers None All instances

Table 5.1 – Load balancing strategies for Big Data systems mapped to the differ-
entiators.
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Rao et al. Meghdoot Byers et al.

Criteria Resource agnostic
(storage, bandwidth
or CPU) but only
one criterion

Subscriptions and
data popularity

Number of data
items per peer

Load State
Estimation
Algorithm

Given Li the load of
node i (sum of the
load of all the vir-
tual servers of node
i) and Ti a target
load chosen before-
hand, a node is heav-
ily loaded if Li > Ti,
lightly loaded other-
wise

Always triggering
rebalancing when a
new peer joins the
system

Always triggering re-
balancing when re-
ceiving an item to in-
sert

Load Balancing Decision Periodically, on each
peer

When a peer joins
the system

Upon the insertion of
an item (data) on the
entity that performs
the insertion

Load Balancing Method Virtual peers trans-
fer (with no virtual
peer split or merge)

Range space reassig-
nation or replication
(zone + subscrip-
tions)

Power of two choices
paradigm

Load to Move One of the over-
loaded peer’s virtual
server

Half of a heavy
peer’s subscriptions
or replication of a
heavily loaded peer

The item to be in-
serted

Target A random peer, an
underloaded peer or
the best underloaded
peer (depending on
the scheme)

The heaviest peer in
the system known by
the new peer joining
the system

The least loaded
peer among those
contacted for a given
item

Load Information
Exchange

Random probing
for the first scheme
(pull). Periodic load
advertisement from
lightly loaded peers
(push) and sampling
from heavily loaded
peers (pull) with
the second scheme.
The third scheme
implies information
exchange from peers
to a directory (push)

Periodically, peers
update neighbors
about their load
(push) and share
their list that con-
tains the k most
heavily loaded peers
detected

The peer that wants
to insert an item
computes d hash val-
ues and contacts the
associated peers to
retrieve their load
(pull)

Load Information
Recipients

A peer managing a
random id for the
first scheme. A
directory node for
the second and third
schemes

One hop neighbors For d hash functions
applied on an item
to insert, the n peers
managing the com-
puted hash values

Table 5.2 – Load balancing strategies for P2P systems mapped to the differentia-
tors.
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5.3 API Presentation

From the identification of the differentiators presented in the previous section, we
were able to determine the key requirements for our API. This allowed us to define
the essential methods to model any strategy. In this section, we define the compo-
nents and functions of our API, based on the differentiators presented above. An
approach based on hierarchical components was deliberately used because compo-
nents enable modularity and cohesion [69], which eases reusability.

Imbalance
Detector

Load
Balancer

Load Information
Registry

Load Information
Exchanger

Fix
Imbalance Register

loadMove
Load

Push / Pull / Receive
Load Information

Load
Information

Load Balancing Manager Load Information Manager

Run Load
Balancing Iteration

Run Load
Information Exchange

Figure 5.1 – Basic abstractions for a generic API.

5.3.1 High-level abstractions

The features associated with differentiators (a) to (f) relate to the management
of load balancing and could be gathered in a so-called Load Balancing Manager
component. By pushing our analysis deeper, we may argue that differentiators (b),
(c) and (e), (f) identify two separate subcomponents. Indeed, the first group of
differentiators relates to the detection of imbalances (Imbalance Detector), whereas
the second (Load Balancer) captures the method and the information required to
balance the load in case of imbalance. Finally, differentiators (g) to (h) are merely
involved in the process to give feedback about the resource utilization per criterion
to nodes. In a component-oriented approach, this could be modelized as a Load
Information Manager with a subcomponent, dubbed Load Information Exchanger,
in charge of exchanging load information.
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Figure 5.1 illustrates these components in charge of isolating these load bal-
ancing features on each node. In addition to the components presented above, the
figure sketches an additional one, named Load Information Registry, that aims at
linking the two main composite components (Load Balancing Manager and Load
Information Manager), since each may run in its own flow of control. The compo-
nents in Figure 5.1 represent the whole load balancing abstraction covered by our
API. However, depending on the system’s architecture and the chosen strategy, all
the nodes do not necessarily have to implement all these components. One such
example will be given in Section 5.4.2.

Components are wired together by calling actions on other components. Some
actions carry load information which contains the following values:

- node: the node sending its load information. Can be a node identifier, a
reference, etc.

- criterion: type of load (disk space, CPU consumption, bandwidth, etc.).

- load: load of the node for a given criterion.

These attributes and their value can be expressed in the form of a key/value
list. Optional elements such as an optimal load, internal threshold or timestamp

can also be included. Details about internal components actions and their behavior
are given in the next subsection.

5.3.2 Core API

The function calls defined below capture the core of load balancing strategies,
classified per component. The signature for the required functions is given in a
simple untyped pseudo language, thus allowing any particular implementation. We
describe in the following the usefulness of each method of our API. However, the
way each function is implemented is totally application dependent. Before entering
into the description of the API for each simple component, it is worth noting that
the two main composite components identified previously respectively expose a
run_load_balancing_iteration() and a run_load_information_exchange()
function. They act as entry points for node instances to execute one step of the
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two complementary composite components code, thus orchestrating in which order
the functions introduced below are run.

Load Information Exchanger

This component is responsible for sending the node’s load information and receiv-
ing load information from other nodes in the network.

● exchange_load_information(recipients, load_information)

→ load_information

A node sends and receives load information from other nodes, for a given
load criterion (storage, CPU, etc.) and a corresponding amount of load. The
exchange_load_information function may return load information from pull
calls or periodically sent by other nodes, that will be directly used by the Load
Balancer component or stored in the node’s Load Information Registry (see details
below). A push call is used when a node wants to unilaterally notify recipients (a
given number of nodes: neighbors, all nodes, a random node, etc.) about its load
state (load information). In some systems, like Cloud infrastructures, pull calls
may only be executed by load balancer nodes monitoring the other instances.

Load Information Registry

This registry stores all load information received by a node. Optionally, time
can be taken into account when storing information as it is possible to maintain
synchronous clocks using protocols such as NTP.

● register(load_information)

● get_load_report(criterion, nodes) → load_information

The register function writes into the registry load information received by the
node’s Load Information Exchanger. The get_load_report operation provides
load information for a given set of nodes according to a certain criterion. With this
method, the calling node can retrieve relevant information about either its own load
state only, or about the load state of other nodes. A node can also use this function
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to get estimates, averages and other statistics based on the information contained
in its registry. These estimates are calculated thanks to the load information
messages received and stored earlier. The returned load information can help
estimate the overall average load or the load of a given node, for example. There
can be no result if the calling node has not recently received any load information
message from the concerned node(s).

Imbalance Detector

The default behavior is to check if a load criterion is unbalanced (overload or
underload), in order to trigger a load balancing strategy.

● make_decision(criterion) → load_state

Using a given algorithm, this function determines whether to induce a load
balancing strategy or not, according to a given criterion. This operation is basically
meant to return an enumerated type: overloaded or underloaded if a rebalance is
necessary, normal otherwise. The returned value may depend on a threshold value
or not, typically to detect overload or underload. If a threshold value is used,
it can be calculated using load information provided by the Load Information
Manager (locally, from the Load Information Registry using get_load_report,
or remotely by contacting nodes with exchange_load_information). However,
depending on the strategy being used, it is not necessary that all nodes implement
make_decision, for example if a super node retrieves the load state of other
nodes and makes the decision to move workloads among them, which is typical for
systems like Cloud infrastructures.

Load Balancer

This component is responsible for balancing the load.

● select_load_to_move(load_information_manager, criterion,

load_state) → load_to_move

● select_target(load_information_manager, criterion, load_state)

→ target
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● rebalance(criterion, target, load_to_move)

The select_load_to_move operation returns the amount of load to move
from one node to another. Optionally, it is possible to use local or remote in-
formation from the Load Information Manager to determine how much load has
to be moved. As moving load throughout the network may impact system per-
formance, some systems may also call for their own cost function in the se-
lect_load_to_move implementation. This way, it would be possible to evaluate
whether moving load would be counterproductive or not, and if not, what would
be the right amount of load to move to maintain a system’s own performance re-
quirements.
The select_target function is responsible for finding which node(s) will receive
this load to move. To do so, it is possible to query the Load Information Manager
but it is not mandatory (target can be a random node, a new node, etc.).
Finally, rebalance is the only method used to concretely move some load between
a node and the target. This method can be implemented with any particular be-
havior defined by a load balancing strategy to describe the migration process in
itself as well as constraints to be observed during data migration. For instance,
rebalance may also include the instructions to be followed concerning data consis-
tency during the migration between nodes, in order to avoid read/write conflicts,
data loss or the creation of replicas between the two nodes involved in the data
transfer.

5.4 Case Studies

Many papers describe load balancing solutions for distributed systems, using var-
ious strategies. In the following, we focus on six different systems (three based
on P2P and three in the context of Big Data storage) presented in Chapter 3,
each implementing its own load balancing strategy. Although the chosen paper-
s/systems do not constitute an exhaustive list of load balancing solutions, they are
representative of existing works. Indeed, these strategies are applied on various
distributed systems used in different contexts (P2P for data storage or publish/sub-
scribe, NoSQL database, stream processing, Cloud computing). Load balancing
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is triggered at different states: periodically, after a new node has joined the sys-
tem (to implement horizontal elasticity for instance), when inserting data, or to
meet user service level expectations. Besides, and perhaps more importantly, these
strategies are either from papers among the most-cited for the topic, or pertain to
some of the most famous distributed infrastructures for data storage and process-
ing (MongoDB, Apache Storm, Amazon EC2). In the following, and based on the
taxonomy identified earlier in Tables 5.1 and 5.2, we describe how our API could
prove successful in implementing these strategies, although very different at first
sight.

5.4.1 Big Data management systems

MongoDB new shard insertion

Routers use a balancer process that periodically retrieves from Config Servers
load information about shards (Pull Load Information via Load Information Ex-
changer). Config Servers provide such information thanks to Push Load Informa-
tion calls sent by each shard every time it becomes responsible for a new chunk.
After a new shard has been added to MongoDB, a router will detect, thanks to
information retrieved by its Load Information Exchanger, an uneven chunk distri-
bution and will trigger load balancing (Imbalance Detector). The router’s Load
Balancer will then calculate the amount of chunks that should be removed from
the heaviest shard (select_load_to_move) in order to rebalance chunks dis-
tribution with the new light shard (select_target).

Nasir et al.

Sources producing streams of data maintain in their Load Information Registry an
estimate of the amount of load they sent to each worker. When a source produces
a new message containing data, it triggers the process (Imbalance Detector) by
applying two random hash functions on the message’s key. Then, the source looks
at its registry to retrieve (get_load_report) the amount of load it has recently
sent to the two workers corresponding to these hash functions. The Load Bal-
ancer then selects the lightest worker (select_target) and sends it the message



94 CHAPTER 5. GENERIC API FOR LOAD BALANCING

(select_load_to_move) to be processed (rebalance).

AWS Auto Scaling

An Amazon CloudWatch sensor periodically sends a pull request (Load Infor-
mation Exchanger) to the EC2 instances it monitors, in order to retrieve load
information for a given set of criteria (CPU and RAM usage, latency, incoming
network traffic, etc.). These metrics are collected into a repository (Load Infor-
mation Registry). A CloudWatch alarm tracks the value of metrics and triggers
an automatic scaling action whenever a threshold for a given metric is exceeded
for a specific time duration (Imbalance Detector). The Load Balancer component
will then be responsible for adding new EC2 instance(s) (select_target) that will
receive part of the requests/traffic instead of the overloaded instance: for example,
to decrease CPU utilization, part of the future requests received for the application
will now be directed to the new instance (select_load_to_move). On the op-
posite, in case of an underload detected by CloudWatch (Imbalance Detector), the
select_target method will pick an existing underloaded instance and terminate
it.

5.4.2 P2P systems

Rao et al.

Peers periodically push their load information (Load Information Exchanger) to
a set of nodes maintaining a directory (Load Information Registry). Load infor-
mation contains the load of each virtual server of a peer and the peer’s internal
threshold. Each peer p periodically compares its load loadp for a given load criteria
to its thresholdp (Imbalance Detector). Depending on the peer’s load state, the
paper proposes three rebalancing strategies (Load Balancer):

1. If loadp < thresholdp, p is underloaded and triggers a rebalancing. A random
node is picked (select_target) and its load information is sent to p (Pull
Load Information via Load Information Exchanger). If the random node
is heavily loaded, then a virtual server transfer (select_load_to_move)
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may take place between the two nodes (rebalance)2.

2. If loadp > thresholdp, p is overloaded and contacts one of the peers hold-
ing a directory to request a light peer (select_target) and which virtual
server (select_load_to_move) should be moved (Pull Load Information
via Load Information Exchanger). Then, rebalance is called.

3. If loadp > thresholdp, p can also send its load information to a peer dir hold-
ing a directory (Push Load Information via Load Information Exchanger).
After dir has received enough information from heavy and light nodes, dir

performs an algorithm to pick (select_load_to_move) which virtual server
p should send to which light node (select_target). The solution is then
sent back to p, to start the rebalance process.

P1
P2

P3
1. run_load_information_exchange()
2. exchange_load_information

(P2, load_information)

3. register(load_information)4. run_load_balancing_iteration()
5. make_decision(c) → overloaded
6. exchange_load_information(

P2, load_information)

7.1 select_target(
load_information_manager, c,

underloaded) → P37.1.1 get_load_report(c, all)
→ load_information7.2 select_load_to_move(
load_information_manager, c,

overloaded) → load_to_move

8. rebalance(c, P3, load_to_move)

Push Load Information

Pull Load Information

Move Load

(P3, load_to_move)

Figure 5.2 – Workflow associated with the second scheme proposed by Rao et al.

The workflow associated to the second strategy is depicted in Figure 5.2. Steps
are numbered to sketch the sequence of actions involved in a typical load bal-
ancing iteration with three peers. Arrows between function calls depict remote
communications. As a first step, the Load Information Manager component is
used by P3 to send its load state to P2 which then stores the information in
its directory (register, at step 3). Some time later, P1 evaluates its load state
(make_decision) as overloaded (steps 4-5). In consequence, at step 6, P1 asks
P2 for an underloaded peer which implies that P1 sends its load state to P2.
Then, P2 looks for an underloaded peer that it knows of (this implies to call

2The same process can also occur if loadp > thresholdp (in this case the heavy peer randomly
looks for a light peer).
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get_load_report at step 7.1.1), i.e. P3, and selects the amount of load that P1
should move to P3 so that both of them are well balanced. Finally, the result is
sent back to P1 which can then contact P3 to start moving its load (rebalance).
It is interesting to note the modularity offered by our API when implementing the
scenarios proposed in this paper. Indeed, as all nodes do not play the same role
(normal nodes or directory nodes), they do not all have to implement all compo-
nents of the API. For instance, normal nodes (like P1 and P3 in Figure 5.2) do not
need a Load Information Registry, thus it is only implemented on directory nodes
(P2).

Gupta et al. (Meghdoot)

Peers periodically exchange their load information with their neighbors (Load In-
formation Exchanger), as well as an estimated list containing the most heavily
loaded peers they know (from their Load Information Registry). Load balancing is
only triggered (Imbalance Detector) when a new peer p wants to join the system.
The first step of the rebalancing process (Load Balancer) is for p to find an over-
loaded peer in the system (select_target). To do so, p sends a pull request to a
random peer. Then, the random peer will look at its registry (get_load_report)
in order to tell p which node (target) is the most overloaded to its knowledge.
Finally, target is contacted by p. If the overload is due to the amount of subscrip-
tions, p will split its zone with target and receive half of target’s subscriptions.
Otherwise, if target is overloaded because of its processing load due to event prop-
agation, p will replicate target’s zone and subscriptions (select_load_to_move
and rebalance).

Byers et al.

A peer having to insert a data item into the system triggers the process (Imbalance
Detector). This peer applies n hash functions on this item. Then, it contacts each
peer associated to an hash function (Load Information Exchanger) to pull load
information concerning the amount of items already stored by each of these peers.
The Load Balancer then selects the lightest peer (select_target) and sends it
the item to be inserted (rebalance).
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5.5 Summary

In this chapter, we have described concepts behind the building of a generic API
for load balancing in distributed systems. By decomposing a strategy into es-
sential differentiators, we have shown how it is possible to abstract any behavior
to fit our model. To present how the API could match existing load balancing
strategies, we have used six different schemes from some representative solutions
for Big Data storage and processing, based on P2P systems or not. Their strate-
gies are triggered at various moments, consider different load criteria, require load
information from various sources before taking a decision, and impact more or less
nodes to rebalance the load. Although very different at first sight, most existing
load balancing strategies rely on the same principles, regardless of whether they
are implemented on a P2P overlay, a stream processing engine or even a Cloud in-
frastructure. We have shown it is possible to abstract and decompose any strategy
into diffentiation criteria by answering three main questions:

1. How is load information exchanged? (differentiators (g) and (h)) requires to
know who informs who (nodes) about what (load information), how (e.g.,
piggybacking, pull request) and when (periodically, or after some event).

2. How to trigger load balancing? (differentiators (a), (b) and (c)) gives in-
formation about what load criteria are taken into consideration (disk space,
CPU usage, etc.), how is the load state estimated (comparison with an in-
ternal threshold or remote information) and when is triggered the decision
to rebalance (periodically, or after new data is inserted, etc.).

3. What has to be moved? (differentiators (d), (e) and (f)) describes what and
how much load has to be moved, but also which node(s) will receive this
load.

Many different answers are possible for each of these questions, and hence an
unlimited number of load balancing strategies are conceivable, simply by chang-
ing the behavior of one differentiation criteria. Accordingly, this leads to many
possible implementations. Regarding the programming aspect, the API allows to
separate the code concerning load balancing from the rest of the system. Thus,
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implementing a different behavior for a strategy should be possible in a few lines
of code. This feature is especially useful when developing a system for which one
wants to try different load balancing strategies prior to a definitive choice, with the
aim of finding the most efficient scheme. Also, as it is sometimes hard to predict
the future performance of a system when designing, this makes it easy to adapt if
any imbalance ever appeared later on.

An approach based on hierarchical components was presented, whose methods
summarize the behavior of most existing load balancing strategies. This API is
meant to be compatible with a wide range of distributed systems for data storage
and retrieval. However, it is obvious that slight variations in the implementa-
tion of methods or the methods themselves might be necessary depending on the
specifications of each system.
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In this chapter, we present the various load balancing experiments we ran on
different systems. All strategies were implemented using the generic API intro-
duced in the previous chapter. First, we explain how we were able to easily add the
load balancing functionality to the EC without affecting its existing business code.
We also perform various experiments in order to find the most suitable strategy
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to distribute the load among peers. Then, we consider the variable hash functions
strategy presented in Chapter 4 and simulate some experiments to prove the ef-
ficiency of this solution in a CAN. We also show how performances can improve
when modifying a single line of code, thanks to the genericity of the API. Finally,
we perform similar experiments in a Chord overlay to show the same load balanc-
ing strategy (variable hash functions) can be implemented on a different overlay
using nearly the same code.

6.1 Load Balancing Implementation on Event-
Cloud

The work behind the generic API presented in the previous chapter was motivated
by the building of our distributed platform for data storage and retrieval: the EC
(introduced in 2.3). When developing this system, we found out load balancing
had to be implemented to enhance the overall performance of the EC. More pre-
cisely, we observed that some of the benefits of our architecture (lexicographic
order) also had their drawbacks, namely a poor data distribution among peers.
In this section, we assess the proposed API by extending the EC with the load
balancing abstractions introduced previously. We give details about the load bal-
ancing strategies implemented in the EC and explain how the variation between
each of them directly affects the behavior of three of the components presented
earlier: the Load Information Exchanger, the Imbalance Detector and the Load
Balancer. Then, some experiments are reviewed to gauge how flexible the generic
API is.

6.1.1 Variations on components

The load balancing scheme we want to use in the EC consists in picking a new peer
from a preallocated pool of peers to make it join an overloaded peer’s zone in the
network. For practical reasons, only one possible implementation of this strategy
is presented in Algorithm 6.1. However, we detail below the other variants, too.
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Load Information Exchanger

Load information exchange is an optional process. Two flavors are proposed: ab-
solute and relative. With the absolute version, threshold values are configured
per criterion and passed to peers when they are deployed and hence peers do not
have to implement the Load Information Exchanger component. These thresh-
olds are upper bound values that allow to signal an overload once they are ex-
ceeded. Concretely, defining such a behavior implies to set variables introduced
in Algorithm 6.1 to specific values. By setting k to 1 and e to the desired thresh-
old value (line 14), the make_decision function works with internal knowledge
only. The relative version requires periodic load information exchange between
neighboring peers to estimate the average load that each peer aims at remaining
close to. Implementing this variant would require to switch line 14 with Reg-
istry.get_load_report(c, local).

Imbalance Detector

This component is responsible for detecting whether a node is experiencing a load
imbalance or not. We wanted to use a policy that allows to consider the unbalance
of multiple different load criteria. Since run_load_balancing_iteration() is
the entry point of the Load Balancing Manager, but also because imbalance de-
tection is assumed to be performed periodically in the EC, the management of
multiple load criteria is made at this level. The content of this function is summed
up by Algorithm 6.1 along with its crucial subcalls. The entry point function de-
tects (through the make_decision function) a peer as imbalanced if its load l for
a criterion c is k times greater than a load estimate e associated to the criterion
c that is observed. The retrieval of a meaningful e value is possible thanks to an
internal threshold or information exchanged between peers (as presented in the
previous paragraph). Variable k is a static variable scoped to the lifecycle of the
system, like variable C which is a list of criteria defined before the system starts.
The order in which the criteria are added matters since it defines priorities in
which imbalances are detected. Besides, the detection process is sequential for the
simple reason that load measurements are not necessarily expressed in the exact
same unit but also the fact that the actions required to fix imbalances depend on
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1: function run_load_balancing_iteration()
2: for c ∈ C do
3: load_state← make_decision(c)
4: if load_state ≠ Normal then
5: target← select_target()
6: load_to_move← select_load_to_move()
7: rebalance(c, target, load_to_move)
8: end if
9: end for

10: end function
11:
12: function make_decision(c)
13: l ← Registry.get_load_report(c)
14: e← get_internal_threshold(c)
15: k ← get_coefficient(c)
16: if l ⩾ e × k then
17: return Overloaded
18: end if
19: return Normal
20: end function
21:
22: function select_target()
23: return Pool.get_new_peer()
24: end function
25:
26: function select_load_to_move()
27: return get_data_from_middle()
28: end function

Algorithm 6.1 – One of the possible implementations of the EventCloud load
balancing algorithm relying upon the generic API. This implementation works as

follows: each peer periodically runs the run_load_balancing_iteration
function to compare its load for a set of criteria with an internal threshold. If the
peer is overloaded, it asks a new peer (from a preallocated pool) to join its zone

by splitting at the middle coordinate.
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each criterion. Upon imbalance detection (line 4) for a single criterion at a time
(in our case the first one relates to disk consumption due to the insertion of RDF
data), the algorithm calls for functions from the Load Balancer component.

Load Balancer

This component is responsible for moving some load from a node to another. In
Algorithm 6.1, the select_target function is used to pick a peer from a pre-
allocated pool of peers (line 5). Then, the load to move is selected with se-
lect_load_to_move (line 6). We implemented two different behaviors to parti-
tion the load between two peers: one that uses the middle value of the zone an over-
loaded peer is responsible for1 and one that takes advantage of the centroid value,
considering the number of items per peer and the RDF terms size (i.e. the num-
ber of characters). Figure 6.1 describes both methods, which may be seen as two
different Load Balancer component implementations. These two variants apply
to the select_load_to_move function description (lines 26-28). Algorithm 6.1
presents the variant implementing the middle split. However, when switching
to the centroid split strategy, the select_load_to_move implementation would
only require changing a single line of code (get_data_from_centroid() instead
of line 27). Once the target and the load to move are identified, a rebalance is
performed (line 7).

In summary, while remaining simple, the proposed load balancing strategy can
lead to different implementations for the methods involved in the standard load
balancing workflow and easily supports the definition of multiple independent cri-
teria. For this reason, we propose to evaluate these variants in the next subsection
to prove they can fit with the proposed API and lead to significant improvements
in the distribution of data in the EC.

6.1.2 Experiments

Implementing our API on the EC has allowed us to try different load balanc-
ing policies during our experiments, corresponding to various implementations for

1This is the default CAN rule applied when adding a peer.



104CHAPTER 6. LOAD BALANCING IMPLEMENTATION AND EXPERIMENTS

(a) Middle split strategy. (b) Centroid split strategy.

Figure 6.1 – Middle vs. Centroid split strategies. Dots represent data items in the
coordinate space managed by peers. In this example, we assume all data items are
of a similar size. When using the middle split to add a new peer, peer P1’s zone
is divided into two zones of equal size: P1 will keep the left half of its zone and
the new peer will become responsible for the other half. On the other hand, the
centroid split is made according to the volume of data stored by P1, so that P1
and the new peer manage approximately the same amount of load.

some of the above-mentioned components. Variants of the proposed load balanc-
ing solution have been implemented and assessed with benchmarks using real data
extracted from a Twitter data flow and up to 32 peers deployed on the French
Grid’5000 testbed [70]. The workload is about 105 quadruples. The scheme con-
sists in injecting the workload on a single peer and once all quadruples have been
stored to start load balancing iterations.

Load Balancer variants

We ran a first experiment to evaluate various Load Balancer component behaviors.
Each load balancing iteration is run by an oracle and consists in picking a new peer
from a preallocated pool of peers to make it join the most loaded one in the net-
work. The action is repeated until having a network containing 32 peers, which is
still representative of existing applications. The number of peers was deliberately
low as we first aimed to assess the usefulness of the API, not the load balancing
strategies. To show the interest of using the centroid, the experiments have been
performed by using zones cutting based on their middle or centroid values recorded
on the fly. As shown in Figure 6.2, by cutting zones at their middle, the workload
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is distributed on 4 peers only. However, the same experiment using centroid values
distributes the load on all peers with almost two thirds having their load close to
the ideal distribution. Although the distribution is not perfect, it is greatly im-
proved. The main reason for such a difference between results for both strategies
lies in the fact that RDF data is highly skewed. As depicted in Figure 6.1, when
storing highly biased data like RDF terms using the lexicographic order, the dis-
tribution of data among the coordinate space is consequently highly biased as well.
Although the middle split technique is the basic CAN load balancing operation and
has already proven successful for some systems [54], in our case splitting a peer’s
zone in half according to the coordinate space does not improve the load distribu-
tion (Figure 6.1(a)). As shown in Figure 6.2, one of the four peers storing data
still owns nearly all data items after 31 peers have been added. This is due to the
fact that data covers a tiny area in this peer’s zone and hence if it is located near
a corner, many new peers will have to split with this node before actually starting
moving data. A simplified version of this issue is depicted in Figure 6.3. On the
contrary, when taking the specific context of our system into account by using the
centroid split strategy (Figure 6.1(b)), data is necessarily distributed among peers.
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Figure 6.2 – Load balancing partitioning using middle vs centroid.

To compare results for a same configuration (i.e. same workload and number
of peers), a good estimator is the coefficient of variation, also known as the relative
standard deviation. It is expressed as a percentage by dividing the standard devia-
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tion by the mean times 100. The smaller the percentage, the less there is disparity
in terms of number of items stored by each peer. In the following, we use this es-
timator to compare strategies. As shown in Table 6.1, the coefficients are 559.4%
and 69.5% when the middle and centroid methodologies are respectively applied
to the load balancing experiments presented above. This clearly shows that the
centroid performs better because its value is eight times lower than the middle
value. Therefore, we used the centroid split strategy for our next experiment.

(a) At the beginning of ex-
periments, the overlay is
made of one peer storing all
skewed data (P1).

(b) After several new peers have
split with P1, P1 is still over-
loaded because of the data skew-
ness.

Figure 6.3 – Middle split strategy unable to move data (the highlighted area) until
many peers have been added.

Load Information Exchanger variants

We ran a second experiment based on a dynamic configuration to compare the two
Load Information Exchanger variants. This time, each peer periodically estimates
its load state using an internal threshold (absolute scheme) or load information
received from its neighbors (relative scheme). Thus, peers do not rely on an oracle
anymore to add the new peers. For the absolute strategy, the threshold value is
set to the number of quadruples divided by the final number of peers, which gives
3125. For the relative strategy, k was set to 1.1, so that an overload is detected
when local measurements on peers are greater than or equal to 1.1 times the
estimate value computed by receiving load information from immediate neighbors.
The parameter k was set according to empirical evaluations that let suppose the
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best distribution is achieved for this value. For both strategies, an overloaded peer
asks a new peer to join its zone by splitting at the centroid value.

Oracle configuration Dynamic configuration

Middle Centroid Absolute Relative

Relative stddev 559.4% 69.5% 119.75% 96.57%

Table 6.1 – Load balancing strategies comparison in the EC.

Table 6.1 shows the results obtained according to the strategy applied, when
correlated with the results obtained for the previous experiments that exhibit the
best distribution that can be achieved (69.5%) due to the “oracle” assumption.
The relative standard deviation is almost twice as large (119.75%) as the best
when the absolute strategy is applied. Similarly, the relative strategy performs
worse than the oracle-based load balancing solution but achieves a better distribu-
tion (96.57%) than the absolute strategy and this without using overall knowledge.
These results are still satisfying and also more interesting because peers can rely
on their own knowledge to make decisions.

Although the analysis of the results is not the central point of this section, it
shows that investigating different implementations for the functions identified in
Section 5.3 may have a strong impact on results. Thanks to the proposed API, the
behavior of the different load balancing stages can be simply changed by writing
a new method with less than 10 lines of code in our case. The main reason is that
the key features of the load balancing workflow are clearly identified. Obviously,
the examples shown in this section still require one line of code change and a full
code recompilation to switch from a component implementation to another (and,
consequently, the need to restart the distributed system from scratch). In our case,
an alternative based on dynamic class loading could be used [71]. In this situation,
some code redeployment is required but a whole system restart could be avoided.
However, the synchronization between nodes has to be taken into consideration to
prevent inconsistent states due to stale information that could transit during the
transition from a component implementation to another on peers.
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Although not measured during our experiments, we believe the possible overhead
due to using the API when implementing load balancing remains negligible for its
intended use in large infrastructures for Big Data storage and processing. More-
over, the aim of the API is rather to minimize the cost of development for experi-
menting various load balancing scenarios when compared to the cost of modifying
a single large bloc of code.
Finally, two interesting perspectives are possible. The first is about the flexibility
of the proposed API which can lead to implement adaptive load balancing strate-
gies, for example, by changing one of the key features in a load balancing workflow
at run-time [72]. The second is related to the properties of our system. Although
it provides scale-up load balancing only, since events (RDF data) are stored in a
sustainable manner, supporting scale-down load balancing (at the cost of an in-
crease of the amount of data stored by each peer) by extending our solution would
enable better resource usage through (even autonomic [73]) elasticity.

6.2 Experiments on Variable Hash Functions

In this section, we first explain how adaptive hash functions presented in Chapter 4
can be calculated to manage load imbalance, depending on various strategies.
Throughout this section, we will consider a 3-dimensional CAN for RDF triples
(in the form of <subject,predicate,object>) storage.

We propose variants of the load balancing strategy to implement with our ap-
proach. Then, we show how these variants are implemented using the generic
API and how we can slightly vary their behavior. Finally, we present the experi-
ments we ran to validate our approach. Thus, this section allows to validate in an
experimental way both contributions of Chapters 4 and 5.

6.2.1 Computing a new hash function

Following the principles set out in Chapter 4, we present in this subsection several
possibilities for an overloaded peer to calculate the new hash function it wants
to apply (i.e. the new value of its maximum Unicode bound). We consider the
number of RDF triples a peer stores as the imbalance criterion, assuming all triples
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are of a similar data size. A peer’s load state will be either normal or overloaded

if it stores too many RDF triples.
Let p be a peer storing a given number of triples noted as loadp on a Unicode
interval [Uminp, Umaxp[. If p is overloaded, it has to send all triples above a
certain limit, lim, to its neighbor(s) on the forward direction on a dimension2

d, such as the new value of loadp ≤ lim. Basically, p has to move its upper
Unicode bound backwards, such as only lim data items remain in p’s zone. This
is achievable by simply changing p’s hash function from h1 to h2 such that the
new value of Umaxd

p is equal to the Unicode value of p’s (lim + 1)th triple (as we
consider p can sort triples alphabetically) and h2(Umaxd

p) = maxd
p. An example

is shown in Figure 6.4, where we consider a peer is overloaded if it stores more
than 6 triples. Thus, in Figure 6.4(a), peer p1 is overloaded and has to change
its hash function on maxd

p1, corresponding to Unicode value mango. A new hash
function h2 should transform p1’s 7th triple fig (as lim is equal to 6) into maxd

p1.
In Figure 6.4(b), p1 and p2 have changed their hash function to h2 respectively on
maxd

p1 and mind
p2, and their load is evenly balanced. However, it is important to

note that Figure 6.4 depicts the best possible case where each peer ends up storing
the same amount of items, which is much more complicated to achieve in practice,
as we will explain later in this chapter.

6.2.2 Load balancing policies

We propose hereafter three different load information exchange strategies for the
Load Information Exchanger component and their corresponding load state esti-
mation behaviors a peer can use to check whether it should induce a rebalancing or
not in its Imbalance Detector component. Then, we describe how the limit intro-
duced above can be calculated for each scheme, corresponding to several possible
implementations of the select_load_to_move function of the Load Balancer
component.

2The dimension to reduce follows the same ordering as the default CAN ordering to handle
node arrival: a peer first modifies its hash function on dimension 0, then if it is overloaded again
dimension 1 will be reduced, and so on.
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(a) Load imbalance between p1 and
p2.

(b) Even data distribution after p1
has induced an hash function update.

Figure 6.4 – Load distribution before and after rebalancing. In this example, a
peer is said to be overloaded if it stores more than 6 items.

Load Information Exchanger and Imbalance Detector

The proposed three different ways for peers to exchange load information di-
rectly affect, in our case, the way peers estimate their own load state in the
make_decision function. Therefore, we present below these two aspects of a
load balancing strategy together:

• No information exchange between peers
Peers rely on an internal threshold to determine if they are overloaded or
not. Thus, they do not need to implement the Load Information Exchanger
component. A peer is said to be overloaded when it stores more RDF triples
than the limit set by a threshold which has the same value for all peers (as
we consider them all equal) within the network during our experiments. This
threshold implementation of the Imbalance Detector component is presented
in Algorithm 6.2.

• Local exchange with neighbors
Local information exchange with immediate neighbors on a given dimension.
Each peer p periodically contacts all its forward neighbors Fneighborsd

p on a
dimension d to calculate the average data load localAvgd in its neighborhood
for this dimension. If p finds out it stores more data than localAvgd and
more data than a given threshold localThres, then p can induce a rebalance.
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1: function make_decision()
2: l ← Registry.get_load_report()
3: t← get_internal_threshold()
4: if l > t then
5: return Overloaded
6: end if
7: return Normal
8: end function

Algorithm 6.2 – “Threshold” variant of the load state estimation algorithm when
using variable hash functions.

1: function make_decision()
2: l ← Registry.get_load_report()
3: e← Registry.get_estimate(local)
4: t← get_internal_threshold()
5: if l > (t + e) then
6: return Overloaded
7: end if
8: return Normal
9: end function

Algorithm 6.3 – “Local” variant of the load state estimation algorithm when
using variable hash functions.

1: function make_decision()
2: l ← Registry.get_load_report()
3: e← Registry.get_estimate(overall)
4: n← get_coefficient()
5: if l ⩾ e × n then
6: return Overloaded
7: end if
8: return Normal
9: end function

Algorithm 6.4 – “Overall” variant of the load state estimation algorithm when
using variable hash functions.
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We use localThres to ensure a peer storing very few triples will not be
allowed to change its hash function if it is surrounded by peers storing few
triples, too. Indeed, we want to avoid unnecessary changes in the network
whenever possible. However, as the data distribution and load are not known
in advance, relying on a threshold may be problematic. One way to address
this would be for peers to independently update their threshold value at
runtime, depending on their knowledge of the system’s overall or local load
state. It is worth noting that localAvg always refers to one dimension, so
that p does not need to take into account the load of all its neighbors on all
dimensions. This is due to the fact that a peer’s hash function is modified
on only one dimension at once, making it impossible for p to balance its load
with all its neighbors at once. This local implementation of the Imbalance
Detector component is presented in Algorithm 6.3.

• Overall information exchange
In the present case, we assume each peer knows an estimate of the average
network load, thanks to a gossip protocol or by asking a machine having an
overall knowledge on the system. As the average overall load overallAvg

may be very low in a network made of thousands of nodes, we also use a
coefficient n to consider a peer p is overloaded if it stores at least n times
more triples than overallAvg. This overall implementation of the Imbalance
Detector component is presented in Algorithm 6.4.

Load Balancer

When using variable hash functions, the way the select_load_to_move func-
tion is implemented in the Load Balancer component plays a crucial role as it is
directly responsible for calculating the new hash function of a peer. Indeed, by
deciding how many RDF triples it wants to move, an overloaded peer also im-
plicitly determines its new hash function. To do so, we propose three different
implementations:

• Locally-based limit
A local rebalance means that a peer p will calculate how many triples triplesToMovep



6.2. EXPERIMENTS ON VARIABLE HASH FUNCTIONS 113

it has to send so that it roughly stores as many triples as Fneighborsd
p. Then,

maxd
p would be associated to the Unicode value of p’s (loadp−triplesToMovep)

th

triple.

• Threshold-based limit
If a peer p is overloaded, it has to send all its triples above an internal thresh-
old thres to its neighbor(s) on a given dimension d. This approach is similar
to the implementation on top of a skip graph proposed by [56]: maxd

p would
be associated with the Unicode value of p’s (thres + 1)th triple (i.e. p’s first
element above thres). This way, p would store thres triples, and triples
whose value on d is equal or above Umaxd

p would be sent forwards in the
network. For instance, in Figure 6.5, peer p1 is overloaded and has to get
its data load under the specified threshold. To do so, p1 calculates it has to
change its upper Unicode bound from M to K, such that h2(”K”) =maxp1.
Then, all triples between K and M stored by p1 are moved to p2, whose
data load will increase.
During our experiments, thres is the same value that determines both whether
a peer is overloaded (load state) and how much load has to be moved (cor-
responding to the limit value introduced in 6.2.1). However, two different
values of thres could be used, too.

Figure 6.5 – Threshold-based limit strategy.

The threshold-based approach is more geared towards storage systems under-
going periodic bulk inserts, as it may trigger a new hash function calculation quite
often in the case of continuous data insertion. In order to avoid repetitive rebal-
ancing, alternatives based on a value lower than thres can be used to determine,
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and thus to increase, the amount of data to move. Such value can correspond for
instance to the median or the centroid value of the data stored by the concerned
peer.

• Median-based limit
In the present case, the overloaded peer p uses the Unicode value of its
median triple as its new value for Umaxd

p. This way, half of p’s triples would
be sent forwards in the network, without underloading p. Alternatives using
the average or the centroid value of a peer’s data items could also work
similarly.

To summarize, infinite possibilities may be considered to calculate the amount
of load to move. For our experiments, we will focus on the three different behaviors
previously introduced. They correspond to three possible implementations of the
select_load_to_move function and each one is presented in Algorithm 6.5. To
show the influence of this method on the choice of a peer’s new hash function, we
describe a simplified version of the whole hash function update algorithm in the
run_load_balancing_iteration method. If a peer estimates it is overloaded
(make_decision), it first selects the amount of load to move using one of the three
presented behaviors. The first item of this list (alphabetically sorted) corresponds
to the new upper Unicode bound of the overloaded peer on the chosen dimension
to reduce Umaxdim. Then, the peer starts routing the information about this
update (propagate_new_hash_function) over the concerned CAN bound on
this dimension maxdim. Finally (lines 8-11), the peer attempts to forward each
item in load_to_move to the right neighbor as soon as its neighbor(s) on maxdim

use the correct hash function (this is not carried out immediately as it may take
some time before they update).

6.2.3 Experiments

Experimental set-up

To validate our approach, we ran extensive experiments in a cycle-based simulator:
PeerSim [74]. A cycle represents the time required by a peer to perform a basic
operation (message routing, load checking, etc.). We simulate a 3-dimensional
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1: function run_load_balancing_iteration()
2: load_state← make_decision()
3: if load_state ≠ normal then
4: dim← get_next_dimension_to_reduce()
5: load_to_move← select_load_to_move(dim)
6: Umaxdim

← load_to_move[0]
7: propagate_new_hash_function(dim, maxdim, Umaxdim

)

8: for each item ∈ load_to_move do
9: target← select_target(item)

10: rebalance(target, item)
11: end for each
12: end if
13: end function
Threshold-based limit implementation
14: function select_load_to_move(dim)
15: return get_data_from_threshold(dim)
16: end function
Locally-based limit implementation
17: function select_load_to_move(dim)
18: local_avg ← Registry.get_load_report(local, dim)
19: even_avg_load← compute_even_avg_load(local_avg)
20: return get_data_from(even_avg_load)
21: end function
Median-based limit implementation
22: function select_load_to_move(dim)
23: return get_data_from_median(dim)
24: end function

Algorithm 6.5 – Hash function update algorithm.
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CAN composed of 1000 peers. It is iteratively built by starting with a single peer,
and new peers always split with the largest available zone. This ensures that the
network is as balanced as possible, i.e. all zones are of similar sizes. Although
being modelled on the EventCloud architecture, our system is implemented on a
simulator in order to perform large-scale experiments with many peers concurrently
modifying their hash function at the same time.

Our CAN uses the lexicographic order to disseminate data: the maximum Uni-
code value supported Umax is set to character number 220 on all dimensions, to
encompass the whole Unicode characters table. In order to make realistic exper-
iments, we used a dataset made of triples from three different sources. The first
two are only composed of Latin Unicode characters, from the Berlin BSBM bench-
mark [75] and the LC Linked Data Service3. The third source is extracted from
DBpedia [8] and contains Japanese Unicode characters. One million triples are
inserted into the network in the space of 15 cycles, to simulate bursty traffic with
a continuous insertion of data. As load balancing should occur periodically, the
run_load_balancing_iteration function of peers was called every 5 cycles, in
order to allow time for overloaded peers to send part of their data before evaluating
their load state again.

A perfect data distribution would correspond to all 1000 peers storing 1000
triples. However, this is not achievable in practice for two reasons. First, the
CAN topology may not be perfect (some zones larger than others). Secondly,
real RDF data is often very skewed, due to the large scope of the whole Unicode
and the fact that RDF triples may contain very similar values, like ID values
that differ by a single character. For instance, many triples in the Berlin bench-
mark contain values like ProductFeature1, ProductFeature2, which can go up to
ProductFeature4745 in the data file we use. This makes balancing even harder,
especially considering the specificity of RDF triples, whose predicate values are
often not very distinct. For instance, thousands of different triples could share
the same predicate: typeOf , specifying the RDF type of the subject. Overall, our
datasets contained less than 50 different values of predicate.

3http://id.loc.gov/

http://id.loc.gov/
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Originally, we ran experiments for each of the three load information exchange
strategies described in 6.2.2, to first validate our approach. For the threshold-
based approach, we set a threshold of 8000 triples and also used this value as
the limit of load to move (threshold-based limit). For the locally-based approach,
we set a threshold of 30000 triples and applied the locally-based limit. For the
overall-based strategy, we used a coefficient of 15, which means a peer was over-
loaded if it stored more than overallAvg × 15 triples, and used the median-based
limit to move triples. Threshold/coefficient values were set according to empirical
evaluations that let suppose a satisfying distribution is achieved for these values.
Lower values could be used but would require more time and communications to
obtain results. Conversely, higher values could be chosen in order to achieve bal-
ance sooner. Depending on the chosen load information exchange strategy, peers
periodically multicast (to their neighbors) or broadcast their load state (i.e. the
number of items they store).

Reference algorithm

In order to show the efficiency of our solution, we also ran an experiment to com-
pare our results with those obtained when using a commonly used load balancing
strategy relying on a unique and linear hash function. The scheme consists in
adding a new peer at the location of an overloaded peer. This technique is the
default CAN load balancing strategy and is used by famous storage systems such
as Meghdoot [54]. We chose this strategy because it is commonly used by CAN
overlays. Also, it is natively compatible with the architecture of our simulated
system and the EC, unlike node or data replication solutions that would require
some adjustments due to the use of the lexicographic order on all dimensions.
To perform experiments using this reference algorithm, we consider an overlay
composed of a single peer, at the beginning. Then, periodically (every 5 cycles in
our case), PeerSim adds a new peer to the system at the most loaded peer’s loca-
tion. To find this peer, we simulated an oracle providing this information, as this
is not the central point of our experiments. When a new peer arrives, the middle
split strategy (previously introduced in Figure 6.1) is used and data that does not
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belong to the overloaded peer anymore is moved to the new peer. We performed
our experiments by starting with one peer receiving the one million triples, then
new peers were periodically added until having a network made of 1000 peers. For
this strategy, there is no particular balance to achieve as peers do not compare
their load with a threshold. Load balancing is triggered by an external event (a
new peer joining), thus experiments were stopped once all peers were added.

Results

Strategy Peers
storing
data

Changes
of hash
function

Moved
triples

Cycles to
achieve
balance

Standard
deviation
(triples)

None 2 0 0 n/a 235702
Threshold 652 156 10333076 80 1618
Local 818 170 5153092 100 2675
Overall 602 90 4626023 45 1900
Add peers 407 0 9334233 n/a 1487

Table 6.2 – Data dissemination over peers and cost of each load balancing strategy
to achieve balance.

Table 6.2 summarizes results obtained for each load balancing strategy at the
end of simulations. Results are expressed in terms of number of peers storing data
(out of 1000), hash functions updates sent by overloaded peers4, cumulated total
number of triples moved from peers in order to balance their load, cycles to achieve
balance5 (after all triples are stored by the very first peer) and standard deviation
in terms of RDF triples stored.

Without applying any load balancing strategy, results show that only 2 peers
would store data, because of the large bias between datasets (Latin vs. Japanese

4This value does not necessarily represent the number of updates uniformly applied in the
overlay: some updates may be rejected by peers while routing, due to a concurrent update.

5By achieving balance, we mean no more peer is overloaded, according to a given strategy.
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characters). These two peers respectively correspond to the one at the far-left of
the CAN on each dimension, responsible for storing all Latin triples, and the peer
at the far-right of the CAN on each dimension, responsible for storing all Japanese
triples.
When using variable hash functions, the threshold-based strategy distributes the
load over 652 peers and offers the lowest standard deviation between the load
of peers, but requires moving a large number of triples (over 10 million). The
locally-based strategy distributes data across more peers than the other strategies
(818), but has a higher standard deviation and requires slightly more updates on
hash functions (170). As a consequence, it takes more time to achieve balance.
The overall-based strategy distributes the load over 602 peers, thus requires less
communication between nodes (only 90 changes of hash function and 4626023
triples moved). This also means peers will store more data, but balance will be
achieved sooner.

(a) Standard CAN. (b) CAN with peers iter-
atively added at the most
loaded location.

(c) CAN using variable hash functions.

Figure 6.6 – Load distribution depending on the strategy used.
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When adding peers at the most loaded locations, i.e. when using a linear hash
function shared by all peers, data is far less well distributed (407 peers). The main
reason for this lies in the fact that the skewed data is mapped to an extremely
small area in the CAN, as shown in Figure 6.6(b), depicting a simplified version
of the CAN after several peers have joined the most loaded peer. This brings us
back to the skewed distribution issue known by standard CAN overlays presented
in Figure 6.6(a) and also earlier in Chapter 4. Even though many peers are added
to this area, this solution still remains less efficient than when using variable hash
functions (Figure 6.6(c)). By adding new peers, data is moved from one peer to
another but the items’ CAN coordinates still remain the same as the hash func-
tion applied by all peers on data does not change. This considerably limits data
dissemination and, at some point, becomes ineffective.

Using variable hash functions required to move an important volume of data
to balance the load. However, our results show that a more conventional strategy
fails to achieve better results in terms of data items moved between peers: around
9 million triples were moved when adding peers against approximately 4.5 and 5
million for the local and overall schemes. Therefore, our solution, although not
perfect, is not more costly regarding data transfer than other existing load bal-
ancing strategies. Moreover, it has the advantage that it does not require data
to be moved far away in the overlay because only one hop is necessary to move
data to a direct neighbor. To date, generally speaking, it remains impossible to
address the load imbalance issue regarding data storage without having to move
large amounts of data.
Regarding the communication cost related to the periodic load information ex-
change between peers (except when using an internal threshold), our solution re-
quires peers to send information either to their neighbors only or to all peers.
When using the add peers strategy, although we simulated an oracle for our exper-
iments, a similar process to ours would be needed in a real system (like Meghdoot)
to help a new peer find an overloaded zone. Thus, when a peer joins the system, it
usually contacts an existing peer that must have some knowledge about the load
of other peers in the network. This necessarily implies periodic load information
exchange between peers with the add peers strategy as well. Consequently, both
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strategies (variable hash functions or new peers added) should approximately re-
quire the same amount of communications throughout the network.

Figure 6.7 – Load distribution (excluding peers storing no data)

Figure 6.7 represents the load distribution at the end of our experiments, ex-
cluding peers storing no data. We divided the number of triples stored by each
peer into 4 intervals ([1; 100[, [100; 1 000[; [1 000; 10 000[; [10 000; 1 000 000]) and
reported the percentage of peers storing the corresponding amount of data. For
example, using the threshold-based strategy, 31% of peers storing data hold be-
tween 1 and 99 triples, 32% store between 100 and 999 triples, 37% between 1000
and 9999, while no peer stores more than 9999 triples. The aim of Figure 6.7 is
to show the efficiency of our solution for disseminating data using variable hash
functions, with almost no peer storing more than 1% of the total amount of data
stored in the network at the end of experiments, for all strategies.
However, in practice, such a wide dissemination might not be necessary for some
reasons. Indeed, such dissemination requires to move a lot of data items through-
out the overlay, which brings us to the cost issues of our solution, especially re-
garding communication, data transfer and overall system performance. In a real
system, moving large amounts of data to achieve a perfect balance state would take
some time and might impact the performance of the system while rebalancing, re-
garding bandwidth or processing capacities. Nonetheless, this issue is experienced
with any load balancing strategy as it is inevitably necessary to move load when
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trying to lessen the load of a peer. Finding a good tradeoff between the cost of
moving data and the cost of having overloaded peer(s) in the network is challeng-
ing and mostly depends on which aspect has the strongest effects on the system
performance. Moreover, we try to show in our experiments what could be the best
possible distribution, while it is often necessary to offload only a small number of
peers to improve performance, which means this would imply less communication
and data transfer than in our experiments. By doing so, fewer communications
between peers would be necessary to solve range queries for instance, rather than
when having a wide range of values disseminated over a wide range of peers. Once
again, it is a matter of finding the optimal, or at least the right degree of dissem-
ination for a particular system. This problem raises the more general question
of oscillation when trying to balance the load. In our case, this effect would not
be exclusively caused by the load balancing scheme being used but also by the
whole environment around the system like the periodicity of data insertion, the
threshold/coefficient being used, or even the number of peers and their respective
storage, bandwidth and processing capacities. Furthermore, load balancing might
not have to happen with great frequency, depending on how in the existing code
is triggered the run_load_balancing_iteration function call. In our case, this
method was called periodically but it would have been possible to call it only after
the insertion of a large volume of data on a peer, for example. The oscillation
effect is outside the scope of this thesis and will not be further discussed later on.

To ensure that the load balancing operations do not affect the consistency of
the overlay, 200 random queries were sent to random peers throughout the exper-
iments. For all of them, the correct result was received within a reasonable time
(an average of 15 hops to route queries or results, hence 15 cycles). The number
of update bound messages created by peers and the fact these updates may not
be applied by all peers at the same time did not affect the resolution of queries
within our system. This is because a triple is always stored at least on one peer.
Moreover, moving data is only done once an update bound message is applied by
both the sender and the receiver. Thus, reaching the new responsible peer for a
given triple should not require more than a few hops in the network, at the very
most.
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None of our strategies offers a perfect load balance which would correspond
to all 1000 peers storing 1000 triples. Alternatives to these problems could be to
remove the predicate dimension in our CAN, or even to reduce the Unicode scope
of the network (Umax) and redirect non-matching triples (i.e. triples outside this
reduced interval) to specific peers. For example, in a CAN entirely dedicated to
the Latin Unicode interval, a peer could be responsible for storing all data made
of non-Latin characters in case of rare non-Latin data insertion.

Generic API benefits

To show the interest of implementing a load balancing strategy using our generic
API, we performed, in a second phase, experiments to determine how to improve
the results of Table 6.2. We switched the various behaviors regarding how the load
information is exchanged, how a peer estimates its load state and how an over-
loaded peer selects its load to move. Previously, in 6.2.2, the ways to evaluate the
load state and the amount of load to move were both directly linked to the Load
Information Manager component implementation, i.e. the way load information
was exchanged (or not). This time, it is interesting to note that a peer may rely
on a particular source of load information to estimate its load state (neighbors, all
peers or none), while using another source to select the load to move.

For our experiments, based on the same context as 6.2.3, we focused on the
number of peers storing data at the end of simulations, as this represents one of
the most significant values to evaluate the efficiency of a load balancing strategy.
However, the same principles could be applied to measure other parameters, such
as the amount of transferred data or the elapsed time to achieve balance. Such
information may also be very useful in order to choose the most suitable strategy
for a particular system.

Table 6.3 presents the different results regarding data distribution among peers,
depending on the two behaviors chosen for estimating the load state of peers and
selecting the load to move. Results show that the data distribution can be notably
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PPPPPPPPPPPPPPPP

Load to
Move

Load State
Estimation Threshold Local Overall

Threshold 652 433 508
Local 715 818 945
Median 672 577 602

Table 6.3 – Variation regarding the data distribution when using various imple-
mentations based on the generic API. This table shows the number of peers (out
of 1000) storing data at the end of experiments depending on how a peer evaluates
its load state, associated to how an overloaded peer selects the amount of load to
move.

improved depending on these two behaviors. Therefore, by modifying a minor pa-
rameter at first glance (e.g., is the load to move selected depending on a threshold
or the median value), important variations in terms of distribution may appear be-
tween strategies. Regarding the programming aspect, switching from one strategy
to another is trivial, thanks to the genericity of our API. In our case, usually only
a few lines of code had to be modified to do so (see Algorithms 6.2, 6.3, 6.4 and 6.5).

As regards the results of these experiments, it is interesting to note that a
better distribution occurs when taking into account the load information of other
peers to calculate the amount of load to move. When being associated to an overall
knowledge of the network load to estimate a peer’s load state, the distribution is
almost perfect, with 945 peers storing data out of 1000. As such knowledge might
not be achievable in practice, relying only on the load information received from
neighbors or even on no external information to estimate a peer’s load state also
seems to offer a convincing data dissemination (respectively 818 and 715 peers
concerned). This means we could consider a strategy with no load information
exchange before a peer gets oveloaded and, only in this case, messages would then
be exchanged with neighbors to estimate their load and hence, the amount of load
to move. Such strategy could be regarded as efficient for a system whose peers
only know a very small subset of the network (their neighbors), and have few or no
contact with other peers. Indeed, with this strategy, no communication between
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peers is needed to exchange load information as long as no peer gets overloaded.
Moreover, the load information exchange would be restricted as an overloaded peer
would only contact its neighbors to determine the best amount of load to move.
In contrast, when using external information to determine a peer’s load state but
relying on an internal threshold (median or a set limit), the benefits of having exter-
nal knowledge are lost when comes the time to rebalance the load. Consequently,
these configurations offer the lowest dissemination: 433 peers when estimating the
load state according to the neighbors load and the load to move according to a
threshold. When relying only on internal information to determine the load to
move, it seems more efficient to also rely on internal information to estimate a
peer’s load state. However, these results could vary in a system where peers have
different capacities, and hence different thresholds.
Many other variants are possible depending on what are the key issues for a par-
ticular system: conversely, it is conceivable to opt for a variant offering a lower
dissemination in order to offload some machines while avoiding large data transfers.

6.3 Variable Hash Functions on a Chord Ring

So far, we have presented our approach using several hash functions on a CAN
overlay and how to implement it with different behaviors using a generic API.
In this section, we will show it is also possible to use the API for implementing
the same load balancing solution (variable hash functions) on a different overlay
(Chord).

6.3.1 Concept and specificities

Presentation

Let us consider a Chord [18] ring for Unicode-encoded data storage. More pre-
cisely, we will consider a system for RDF data storage, to keep in line with the
work presented so far. Each node n, represented by a fixed Node Id, is associated
with a key identifier, and should store all items whose hashed value is comprised
between ]keyn.predecessor; keyn]. The default hash function used in Chord destroys
the natural ordering of data that we want to preserve. Thus, our default hash
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function will maintain the lexicographic order. On the ring, this means that nodes
are assigned key identifiers ordered according to the lexicographic order. Conse-
quently, it becomes impossible to guarantee an efficient skewed data dissemination,
as we introduced earlier in the context of CAN, hence the need to use variable
hash functions. Other Chord-based solutions to deal with this issue while using a
non-randomizing hash function include virtual rings [53] or the use of a leave-join
mechanism [55].

In our Chord, the key refers to an attribute of the data being stored, hence this
technique may be applied more generally for any NoSQL data storage for instance.
In our example, the key corresponds to the value of an RDF triple’s object. We
chose the objects as their values are not as biased as predicates, hence this should
result in a better distribution. A triple t will be located at successor(tobject):
the successor peer of t’s object value. As keys correspond to only one part of a
triple, routing a query or a triple can be made according to this part only. We
opted for this simple architecture because our main goal is to show our variable
hash functions strategy can be compatible with other overlays. However, other
alternatives could be considered to determine how data should be stored, such as
having several virtual rings [76] for each part of a triple, or indexing a triple three
times (i.e. each time indexed using a different part of a triple), as proposed by
[41].

Variable hash functions

Previously, we introduced our notion of hash function in a CAN overlay, corre-
sponding to the mapping between Unicode values and CAN coordinates. Using
variable hash functions means that a given CAN coordinate, which is fixed, is
associated to a Unicode value that may change over time. As there is no notion
comparable to a fixed CAN interval in a Chord overlay, we use the node identifier
(Node Id) as the fixed value to be associated with the node’s key identifier, which
can vary. Unlike the default Chord implementation that assigns node and key
identifiers using a consistent hash function, we separate the assignment of node
identifiers from the assignment of key identifiers. By default, the key identifier
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of a node is computed using its node identifier and, very often, the ambiguous
notion of identifier is used when referring to either a node or key identifier. In our
implementation, both terms refer to two different notions. A node identifier refers
to a node and its value can be computed by applying a consistent hash function
on the node’s IP address (we consider this value should not change), like in any
Chord overlay. The key identifier of a node refers to the maximum key value
managed by this peer. We allow a peer’s key identifier to change over time by
using variable hash functions. This implies, among other things, that peers should
dissociate node and key identifiers when routing a message: in our overlay, routing
should only be done according to a peer’s key identifier. Therefore, the knowledge
maintained by peers about their neighbors or finger table entries should include
both node and key identifiers. More precisely, a finger table entry in our Chord
implementation should contain the node identifier and the IP address of a peer (as
in any Chord overlay) to identify a node, but also the key identifier associated to
this peer in order to resolve lookups.

Whenever a peer is overloaded, according to a given load balancing strategy
(the same as those described in 6.2.2), this peer can reduce its key identifier value
in order to store less data. For example, in Figure 6.8, Node 160 (N160) has
reduced its key identifier to store only triples whose object value is between interval
]Football; Golf]. As a consequence, its successor Node 180 has a wider Unicode
interval to manage (]Golf ; Tennis]).

Propagation and stabilization

As presented in 4.3.6, a peer updating its hash function must notify its neighbors.
On a Chord ring, this means N160 has to notify all its successor(s). As there is
no notion of dimension in Chord, there is no need to propagate this information
any farther to maintain the overlay consistent. The new hash function, depicted in
Figure 6.8(d), requires N180 to capture part of N160’s keys (hence also data items)
between ]Golf ; Rugby]. Unlike a propagated update in a d-dimensional CAN that
may require to move data on the whole modified dimension, a hash function change
in a Chord overlay only requires data movement between a peer and its successor.
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Node Id: 160
Key: Rugby

Node Id: 180
Key: Tennis

Node Id: 60
Key: Football

(a) Default Chord. (b) Default hash function.

Node Id: 160
Key: Golf

Node Id: 180
Key: Tennis

Node Id: 60
Key: Football

(c) Chord after Node 160 has reduced
its key from Rugby to Golf .

(d) New hash function.

Figure 6.8 – Variable hash functions on a Chord overlay.
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However, other peers might still include N160 in their finger table associated
with key value Rugby. As the finger table link is unidirectional, N160 does not
know which peers are concerned, thus cannot directly inform them of its new key
identifier (i.e. its new hash function). A similar problem is experienced by the
default Chord overlay when a new peer joins the system and captures some keys
but existing nodes’ finger table entries are not up-to-date. To address this issue,
Chord uses a stabilization protocol to help peers maintain correct information
about their successor, predecessor and finger table entries. By default, each node
periodically runs this protocol to learn about new nodes. In our case, they also
learn about new hash functions (i.e. new key identifiers). The stabilization scheme
is composed of two main functions:

• stabilize() consists for a peer in checking whether what it knows about
its successor (node, and hence key identifier) is correct, otherwise the peer
updates its knowledge. In Figure 6.8(c), this means N60 will have to update
its information about its successor N160’s key now equal to Golf .

• A fix_fingers() method proceeds similarly to refresh finger table entries.
In our case, this method also updates the key identifier associated with a
peer in the finger table, if necessary.

As stabilization occurs periodically, it may take some time before a key update
propagates to all the concerned finger table entries. Nevertheless, in the meantime,
this has minor impact on lookup performance. If a query for item Handball is
received by N160 from a peer that does not know about the new hash function
yet, N160 will forward the query to its successor N180 which is responsible for
Handball. In this simple case, routing will require one more hop. In a more
complex configuration, that is to say if x successors of N160 also reduce their key
identifier before all fingers on N160 are adjusted, routing may require up to x

more hops. In this case, the best recommendation to maintain adequate lookup
performance is to repeatedly verify fingers correctness, as suggested by the original
Chord paper.
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Torus topology

Regarding the last peer in the Chord ring (the one with the highest Node Id),
its default key identifier should correspond to the maximum Unicode character
supported Umax. Nonetheless, this peer is also allowed to reduce its key identifier
thanks to a process similar to the one presented for CAN in Section 4.3.2. Let
Pn be the last peer in a ring made of n peers. Thus, Pn manages values up
to Umax, that corresponds to its key identifier keyP n. Let P1 be the first peer
in the ring order, managing values from Umin to its key identifier keyP 1. If Pn

gets overloaded, it can reduce its key identifier and P1 will then be responsible
for two intervals of keys (just like the CAN approach), for keys comprised in
]keyP n; Umax] or [Umin; keyP 1]. On the ring, this has little impact as keys are still
ordered according to the lexicographic order. More generally, this should not affect
the network consistency as long as a peer p’s predecessor has a key identifier lower
than keyp or p is responsible for the Umin key.

6.3.2 Experiments

Experimental set-up

Our experiments aim at showing it is also possible to implement the variable hash
functions strategy to balance the load of a Chord overlay. The same context of the
CAN experiments in Section 6.2.3 was used: the same datasets were inserted in
a network made of 1000 peers. The original Chord paper recommends that each
node maintains a list of successors to increase robustness in case of a node failure,
in our case we used three successors per node. At the beginning of experiments, the
default key identifiers are evenly assigned to peers by following the lexicographic
order, such as all peers are responsible for approximately the same number of keys
between Umin and Umax. Then, each peer would periodically compare its load state
using either the internal, local or overall estimation scheme. The internal threshold
was set to 1000 items. The local scheme would consider a peer as overloaded if
it stored more than 1300 items and also more items than the average load of its
three successors. Finally, the overall scheme would trigger load balancing if a
peer stored more than twice the average network load. We were able to use lower
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threshold/coefficient values than for the CAN experiments as the distribution is
based on the object values of triples only, which are not as biased as the very few
distinct values of predicates, for instance.

Results

Strategy Peers
storing
data

Changes
of hash
function

Moved
triples

Standard
deviation
(triples)

None 2 0 0 235702
Threshold 1000 1328 23589693 3743
Local 806 1874 23098537 6353
Overall 760 1339 21313525 1141

Table 6.4 – Load balancing results for each strategy applied on a Chord ring.

Table 6.4 summarizes results when considering keys based on the object value
of triples. The threshold strategy allows to share workload among all peers as we
consider only one dimension based on the object of triples, whose value is much
more distinct than the predicate value. Such perfect distribution was obtained as
the volume of data to be inserted was known beforehand, which helped us esti-
mate the perfect threshold. The goal of such experiment was to show how efficient
variable hash functions can be to disseminate data in a Chord overlay. However,
in practice, it might be harder to distribute data over 100% of the nodes if the
amount of data to store is not known in advance.
The local strategy, which measures the load of a peer’s successors to decide whether
to induce a rebalance or not, was able to distribute data among 806 peers. The
overall strategy offers the lowest standard deviation between the 760 peers storing
data at the end of experiments. These two schemes were less effective to distribute
data as too low threshold/coefficient values would have caused an infinite oscilla-
tion, hence the need to use higher values that may not trigger load balancing as
often as expected to obtain a perfect distribution.
For all strategies, the number of triples to move and the number of hash functions
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changes were higher than those obtained when using a CAN overlay, for several
reasons. First, the better distribution among peers consequently involves more
triples to be moved between peers. More importantly, triples are moved from suc-
cessor to successor, as they have to apply the new hash function, which may lead
them to rebalance their load as well. Finger tables, that would help save some
hops, are not updated as quickly and hence are not as efficient as usually. Finally,
in a CAN overlay, a hash function update is propagated on the whole dimension,
which means many peers may potentially benefit from this change. Indirectly,
a single overloaded peer may prevent many other peers from being overloaded
when asking them to modify their hash function, and hence these peers will not
need to initiate their own update later on. In our Chord approach, such saving
is impossible and each overloaded peer has to trigger its own hash function update.

To conclude, we have shown it is possible to implement, thanks to the generic
API, the same load balancing strategy presented in Algorithm 6.5 on a different
overlay (Chord). To do so, no major modification is needed: neighbors become
successors and the propagation is done towards successors only.
These experiments allowed us to evaluate if the variable hash functions strategy
is as efficient in Chord as in CAN. Results have shown it appears more costly in
Chord than in CAN as concerns the amount of load to move and the number of
hash function updates induced by peers. From another point of view, we tried to
distribute the load as much as possible while it may not be necessary to try and
evenly balance the whole network (offloading some peers might suffice). Moreover,
existing load balancing alternatives based on peer duplication or relocation are not
cost-free either. Thanks to the genericity of the API, one may implement these
other schemes in order to evaluate which one offers the best tradeoff between
efficiency and cost, for a particular system.

6.4 Summary

Throughout this section, we have presented various experiments performed to eval-
uate various load balancing strategies on P2P-based storage systems. All schemes
were implemented using our generic API introduced in Chapter 5. Using this
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generic API, an unlimited number of different load balancing strategies may be
implemented, by slightly modifying a strategy. This change can concern the way
load information is exchanged, when is load balancing triggered, how much load
is moved, who receives the load to move, and so on. Our goal was to improve
data distribution, which is meant to increase the number of nodes involved to an-
swer queries/subscriptions and hence also improve performance towards end-users.

The work behind the API was motivated during the development of our own
distributed system for Semantic Web data storage and retrieval: the EC. Due to
the natural skew of RDF data and the specificities of the EC architecture, we found
out load balancing had to be implemented on the EC. To do so, we did not want
to affect the existing business code while being able to try on various strategies in
order to choose the most efficient one to disseminate data among peers. We have
shown in this chapter that components behaviour can easily vary by implementing
a function differently in the API. On the EC, we mainly focused on two aspects
of a load balancing strategy for which we varied the implementation: how is the
load to move selected and do peers exchange load information to help them deter-
mine their load state. Significant differences were observed in terms of distribution
among peers, especially regarding the ways to select the load to move.

In the second section of this chapter, we presented how to implement the vari-
able hash functions strategy introduced in Chapter 4 in a CAN overlay using the
generic API. We presented various possible implementations to calculate a new
hash function and estimate a peer’s load state. Some of them require external
knowledge about the load of peers in the overlay while others only rely on inter-
nal thresholds. We performed experiments in order to validate our approach and
compare it with an existing famous load balancing scheme consisting in adding a
new peer at the location of an overloaded peer. Results have shown variable hash
functions can distribute data over twice as many peers as this famous strategy,
and represented a 400-fold increase over when using no load balancing strategy.
Regarding the cost of our scheme, it does not require more communication between
peers or data transfer than existing strategies to rebalance storage load and, un-
like some of them, has the benefit of not changing the overlay topology (i.e. we
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maintain the same neighboring links).
Then, we performed another set of experiments to show how to easily improve such
performances when varying some components behavior. By changing a couple of
lines of code, we were able to double the number of peers storing data in some
cases. Interestingly, this shows how essential are some parameters that at first
sight may seem of absolutely minor importance.

Finally, we implemented the same variable hash functions strategy in a Chord
overlay. The purpose of this was to show the same scheme, and hence the same
code, could be deployed in a different overlay thanks to the genericity of the
API. Even though each overlay/system has its own specificities, we believe the
separation of concerns offered by the API can also ease the deployment of an
existing strategy onto another system. Results in Chord have shown that data
can also be well distributed but at a higher cost regarding the amount of data
transfer and the time to achieve balance, as many more hash function updates
had to be initiated than in CAN. Although we tried to distribute data as much as
possible while it may only be necessary to offload some machines in a real system,
these results also suggest that the same load balancing strategy might not have
the same efficiency on different systems. Therefore, it should be useful to be able
to try and experiment various load balancing strategies in a particular system in
order to choose the most satisfying one, which is the main purpose of our API.
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7.1 Summary

This thesis proposed contributions around load balancing in structured overlays.
This work was motivated during the development in our research group of the
EventCloud, a distributed platform for Semantic Web data storage and retrieval.
We have presented a new solution based on the use of multiple order-preserving
hash functions to improve the dissemination of skewed values. To easily implement
and modify it, as well as any other load balancing scheme, a generic API was also
presented.

Variable hash functions

When storing highly skewed values like Semantic Web data in an order-preserving
manner, the distribution of data among peers is consequently highly skewed as well.
Since hash functions are at the heart of data distribution in DHT-based overlays,
we proposed to address this issue by allowing an overloaded peer to modify the
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hash function it applies on data, so that it can reduce the interval of values it is
responsible for. This results in the coexistence of several different hash functions
used by different peers. In order to maintain optimal routing and consistency in
the overlay, we have shown that it is not necessary for all peers to use the same
hash function as long as some rules are observed. To our knowledge, this is the
first load balancing solution for structured overlays based on the coexistence of
multiple order-preserving hash functions to improve data dissemination. To eval-
uate the effectiveness of this solution, we simulated an overlay composed of 1000
peers and injected 1 000 000 highly skewed RDF triples. Results have shown that
the number of peers storing data is 2 out of 1000 when using no load balancing
strategy. When implementing the variable hash functions solution, up to 945 peers
store data at the end of experiments. We also compared our solution with a well-
known strategy consisting in adding a peer at the location of an overloaded node.
Our solution appeared more efficient to disseminate the load and also less costly
regarding the amount of data to move to achieve balance.

Generic API

Implementing a load balancing strategy in a distributed system is not as simple as
one might think. There exists a wide range of load balancing solutions. However,
each system has its own architecture and also its own performance requirements
regarding various criteria. Thus, implementing an existing strategy may not give
the desired results as each system is different and hence better solutions may
be implemented and evaluated, for instance by fine-tuning a strategy until the
performance requirements are met. To do so, we presented in this thesis a generic
API for implementing load balancing in distributed systems. The API has been
built after the analysis of existing solutions which led us to identify differentiation
criteria like how is the load state of nodes evaluated? or how is the load to move
selected?. These criteria represent the right level of abstraction to model any
strategy and led us to determine some components exposing a set of well-defined
functions. Modifying a strategy usually consists in modifying the behavior of one
or few differentiation criteria. When using our API, this simply consists in re-
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implementing the functions corresponding to these differentiators. Therefore, this
does not affect the existing business code and, from a development point of view,
eases the possible changes when compared to modifying a hard-coded strategy. The
experiments we performed to implement, among others, the variable hash functions
strategy have shown that results can be significantly improved depending on the
behavior of some components. Moreover, switching from one behavior to another
is trivial as it usually consists in re-implementing a function of the API, which
required in our case to modify only a few lines of code.

7.2 Perspectives

We performed our experiments on both CAN and Chord overlays but we believe
that the use of variable hash functions could be applied to other DHT-based over-
lays. Likewise, we only used RDF data in our experiments but the same principles
could be followed with any other Unicode-encoded data representation (e.g., key-
value pairs, tuples). We presented this strategy in the context of a system placing
data in the overlay according to the lexicographic order. Other types of sorting
could be considered like the ascending or descending order for numerical values.
Also, the bound(s) associated with each peer may not be based on the value of
data items but on their format or size. Thus, it might be possible to use this
technique for non Unicode-encoded data, as long as the hash function is able to
return a coordinate/identifier to locate the item in the overlay.
We have shown variable hash functions can help improve data dissemination. Con-
cerning some possible future experiments, it might be interesting to evaluate with
some use cases the benefits of this improved data dissemination on the processing
load of peers. Also, we considered as our main load criterion the number of items
stored by a peer to estimate its load state but another criterion could be consid-
ered: the popularity of the items stored by each peer. Indeed, the popularity of
some particular sets of items being frequently accessed may generate processing
load for the peer storing them. An alternative to replication would be to allow a
peer storing few items but overloaded because these are popular items to modify
its hash function so that part of them are sent to its neighbor(s) that may store
many items but with low access frequency.
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Finally, throughout this thesis, we mainly considered load balancing for overloaded
peers. However, the variable hash functions strategy could be extended to under-
loaded peers as well. The scheme would consist in allowing an underloaded peer to
modify its hash function in order to enlarge the interval of values it is responsible
for.

Currently, we envision to explore the use of variable hash functions in the
context of stream processing. Our research team works on the building of a dis-
tributed architecture for analyzing RDF streams. The resulting architecture could
look like what is presented in Figure 7.1. This system considers streams of RDF
data produced by various sources like Twitter flows or sensor networks. The goal
of the system is to evaluate in real time whether this incoming data matches some
queries (e.g., subscriptions). To achieve this faster, a query is divided into sub-
queries taking the form of a triple so that subqueries can be executed in parallel
and their respective results are then merged to answer the initial query. Each
subquery is associated with a worker node responsible for matching the incoming
triples against this subquery. To efficiently process the streams and the queries,
each of these nodes is exclusively responsible for triples and subqueries containing
a defined value of predicate. The data streams would be randomly received by the
machines in Layer 1, then sent to dispatcher nodes in Layer 2 that could be or-
ganized into a structured overlay like Chord or a skip list. Each dispatcher would
be responsible for a given interval of predicate values and hence would receive all
incoming triples matching this interval (in Figure 7.1, the letter written into each
node represents the node’s upper bound). Finally, these dispatchers would send to
workers (Layer 3) the triples containing the predicate value they are responsible
for in order to start the subquery matching process to eventually merge the results.

We are exploring the possibility of implementing a load balancing scheme on
this future system to prevent some workers or dispatchers from becoming over-
loaded by streams or even by too many subqueries with the same popular predi-
cate. Since one of the main advantages of using variable hash functions is to help
balance the load among nodes to adapt in real time to incoming data, this strategy
may be considered as a load balancing solution in this context. For example, if a
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node at Layer 2 receives too many triples because it manages the most popular
interval of predicate values, it may modify its hash function to receive less triples
and hence reduce its processing load (as data is not meant to be stored). Alter-
natively, other load balancing solutions could be experimented using our generic
API, such as those proposed by Nasir et al. [47] (power of two choices paradigm
to pick the least loaded node to receive the stream), Meghdoot [54] (adding nodes
at the locations being overloaded by subscriptions) or even a brand new solution
designed according to the principles proposed with the generic API.

Figure 7.1 – Possible RDF stream processing architecture.
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A.1 Introduction

A.1.1 Motivation et Problématique

De nombreuses applications ont besoin d’intégrer des données du Web pour en
extraire de l’information et des connaissances. L’utilisation de données du Web
peut se rapporter aux réseaux sociaux, au partage de contenu multimédia ou en-
core en intelligence d’affaires. Parmi les nouvelles technologies du Web 3.0, le Web
Sémantique apporte une signification à chaque élément du Web et propose des
outils utiles à la représentation des connaissances et au raisonnement sur les don-
nées du Web. Comme l’Internet grandit de manière exponentielle et que de plus
en plus de données sont générées chaque jour, la notion de Big Data a vu le jour
pour faire référence à de larges collections de données hétérogènes produites par
diverses sources. Par conséquent, ces données sont généralement faiblement struc-
turées, d’où la possibilité que les différences de taille, popularité ou contenu entre
les ressources puissent varier de manière importante. Pour cette raison, les jeux
de données du monde réel, y compris ceux produits sur le Web, sont connus pour
potentiellement contenir des données fortement biaisées.

Avec l’avènement du Big Data, il devient très difficile de gérer des volumes
de données réalistes sur une seule machine. Pour faire face à cet incroyable vo-
lume d’information et en tirer parti, tout en offrant des performances suffisantes
aux utilisateurs dans des contextes différents, de nombreuses solutions distribuées
existent, dont les systèmes Pair-à-Pair (P2P), les bases de données NoSQL dis-
tribuées, les services dans les nuages ou les moteurs de traitement de flux. Tous
ces systèmes représentent des solutions efficaces à large échelle pour le stockage et
le traitement de données dans des environnements distribués. Le travail derrière
cette thèse a été largement influencé par le developpement dans notre équipe de
recherche d’un système P2P pour le stockage et la récupération de données du
Web Sémantique, orienté vers l’adaptabilité situationnelle sous la forme d’une pla-
teforme de publication d’évènements.
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Cette thèse traite de la question liée à la dissémination de données biaisées
entre les nœuds, qui est un problème de plus en plus fréquent dans les systèmes
distribués. Avec l’émergence du Web Sémantique et du Big Data, les données sont
souvent stockées d’une manière qui préserve leur ordre afin de permettre la récu-
pération de valeurs proches sur des nœuds voisins, ce qui limite le nombre de sauts
nécessaires à l’exécution d’une requête. En conséquence, le même sous-ensemble
de nœuds est systématiquement contacté pour les données/requêtes entrantes, ce
qui peut surcharger ces nœuds. En se basant sur les constats observés sur notre
plateforme distribuée, qui utilise une telle architecture et doit faire face à ce pro-
blème de déséquilibre de charge, nous proposons dans cette thèse une nouvelle
approche pour améliorer la distribution des données parmi les nœuds d’un Réseau
Structuré (en anglais : SON pour Structured Overlay Network). Notre technique
préserve l’ordre des données et ne requiert pas de déplacer de nœud, ni de ré-
pliquer des données, qui sont des solutions communes mais coûteuses en ce qui
concerne la mise à jour de la topologie du réseau ou le maintien de la cohérence
des données. Notre contribution vise à gérer dynamiquement les déséquilibres de
charge en permettant à différents pairs d’utiliser différentes fonctions de hachage,
tout en maintenant le réseau consistant. Dans les SONs, la fonction de hachage
appliquée par les pairs pour insérer ou récupérer un objet est au cœur de la distri-
bution de données. Cependant, peu de solutions d’équilibrage de charge reposent
sur l’utilisation de plusieurs fonctions de hachage, et habituellement celles-ci visent
à répliquer des données populaires. Dans notre approche, nous autorisons un pair
à changer sa fonction de hachage dans le but de réduire sa charge. Puisque cela
peut être réalisé pendant l’exécution, et sans connaître au préalable la distribu-
tion naturelle des données, cela représente un mécanisme d’équilibrage de charge
efficace et adaptif.

L’équilibrage de charge est un facteur clé pour n’importe quel système distribué,
en particulier ceux orientés vers la dissémination de données. Les déséquilibres sont
souvent causés par une répartition inégale des clés/identifiants réseau, l’arrivée et
le départ fréquent de nœuds, ou encore l’hétérogénéité entre ces derniers en termes
de bande passante, de capacité de stockage ou CPU. Comme les données produites
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ont un besoin grandissant d’être analysées/manipulées/récupérées en temps réel
par un nombre potentiellement très élevé d’utilisateurs, s’attaquer au problème du
déséquilibre de charge est nécessaire, surtout pour minimiser les temps de réponse
et éviter que le travail ne soit réalisé que par seulement un ou quelques nœuds.
Pour ce faire, il existe presque autant de stratégies d’équilibrage de charge qu’il
y a de systèmes différents. De plus, les solutions proposées sont souvent couplées
à leur propre API, ce qui rend difficile le portage d’une stratégie d’un système
à un autre. Pourtant, lorsque l’on développe un système distribué, nous pensons
qu’il serait utile de pouvoir essayer différentes solutions, car il n’est pas toujours
aisé d’anticiper quelle stratégie serait la plus efficace et adaptée à un système
particulier. Dans cette thèse, nous proposons de définir une API commune pour
implémenter n’importe quelle stratégie d’équilibrage de charge indépendamment
du reste du code. Nous montrons que beaucoup de stratégies sont constituées
des mêmes éléments, et que seules l’implémentation et l’interconnexion de ces
éléments varient. En définissant correctement ces éléments et leur comportement,
un nombre illimité de possibles stratégies d’équilibrage de charge pourrait être
conçu et implémenté.

A.1.2 Plan et Contributions

Cette thèse traite de l’équilibrage de charge dans les systèmes distribués pour le
stockage et le traitement de données. Sa contribution est principalement organisée
autour de trois chapitres, qui sont les chapitres 4, 5 and 6. Nous présentons d’abord
notre stratégie d’équilibrage de charge basée sur des fonctions de hachage variables
pour la dissémination de données biaisées. Ensuite, nous proposons une API pour
facilement implémenter n’importe quelle stratégie d’équilibrage de charge dans un
système distribué. Enfin, nous détaillons les expériences que nous avons effectuées
avec cette API, en particulier pour implémenter notre stratégie des fonctions de
hachage variables. Globalement, cette thèse est organisée comme suit :

• Le Chapitre 2 donne une vue d’ensemble des concepts évoqués dans cette
thèse. Nous présentons d’abord la notion de Web Sémantique, en nous foca-
lisant sur les moyens de représenter et requêter les données. Ensuite, nous
présentons le Pair-à-Pair et ses différents types de réseaux. Enfin, nous décri-
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vons l’architecture de l’EventCloud, un système Pair-à-Pair pour le stockage
et la récupération de données du Web Sémantique développé dans notre
équipe de recherche.

• Le Chapitre 3 présente un état de l’art de solutions pour équilibrer la
charge dans les systèmes distribués orientés Big Data. Nous décrivons les
principales techniques existantes pour contrer les déséquilibres touchant à la
distribution des tâches parmi les nœuds. Nous nous focalisons surtout sur les
systèmes P2P pour le stockage et la récupération de données biaisées/popu-
laires et/ou préservant l’ordre naturel des données, pour rester en corrélation
avec l’architecture et les problèmes connus par l’EventCloud.

• Le Chapitre 4 décrit la solution que nous proposons contre les déséquilibres
de charge concernant la distribution de données biaisées dans les systèmes
P2P préservant l’ordre naturel des données. Comme les fonctions de hachage
sont au cœur de la distribution des données dans les systèmes basés sur une
DHT (Table de Hachage Distribuée), nous proposons d’utiliser différentes
fonctions de hachage en même temps pour améliorer la dissémination des
données biaisées. Notre but est de permettre à un pair surchargé de modi-
fier la fonction de hachage qu’il applique sur les données, afin qu’il réduise
l’intervalle de valeurs dont il est responsable et donc qu’il ait moins d’ob-
jets à stocker. Cette contribution a été présentée à la conférence PDCAT en
2014 [1].

• Le Chapitre 5 présente une API générique pour implémenter la plupart des
stratégies d’équilibrage de charge dans les systèmes distribués pour le sto-
ckage de données. Nous montrons comment n’importe quelle stratégie peut
être décomposée en critères et comment le changement de comportement
de ces critères permet de créer un nombre illimité de stratégies différentes.
L’API est utile pour passer d’une stratégie à une autre en quelques lignes de
code, ce qui peut être utile lorsque l’on développe un système, pour facile-
ment expérimenter différents comportements. Ce travail a tout d’abord été
présenté dans le cadre des ateliers SBAC-PAD 2014 [2]. Puis, une version
étendue a été publiée dans un numéro spécial du journal édité par Wiley
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Concurrency and Computation : Practice and Experience en 2015 [3].

• Le Chapitre 6 présente les expériences que nous avons effectuées avec notre
API générique. Nous montrons comment l’équilibrage de charge a été implé-
menté sur l’EventCloud, ainsi que les différentes stratégies que nous avons
testées avant de finalement choisir la plus efficace pour distribuer des données
du Web Sémantique entre les pairs. Puis, nous présentons nos expériences
simulées dans des réseaux CAN et Chord pour améliorer la distribution des
données en utilisant des fonctions de hachage variables.

• Le Chapitre 7 conclut cette thèse. Il passe en revue les contributions pré-
sentées et ouvre la perspective vers de nouvelles initiatives de recherche qui
pourraient résulter de ce travail.

A.2 Résumé du contenu de la thèse

Le travail abordé dans ce manuscrit de thèse est principalement développé dans
trois chapitres. Ci-après est présenté un résumé de chacun de ces chapitres.

A.2.1 Fonctions de Hachage Variables

Dans le Chapitre 4, nous présentons notre stratégie d’équilibrage de charge vi-
sant plus particulièrement à améliorer la distribution de données biaisées parmi
les nœuds. Les fonctions de hachage sont au cœur de la distribution des données
dans les systèmes basés sur une DHT. Cependant, peu de stratégies d’équilibrage
de charge s’attaquent précisemment à la question des fonctions de hachage dans
l’idée d’améliorer la dissémination des données. De plus, ces stratégies visent à
répliquer des données ou détruisent l’ordre naturel des données. Elles ne visent
pas directement le problème des données biaisées alors que les données du monde
réel sont connues pour être fortement biaisées [67] [10] [68]. Notre approche a pour
but de disséminer des données biaisées sans connaître à l’avance la distribution
naturelle de ces données.
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Dans la plupart des systèmes P2P, les pairs n’ont pas une connaissance globale
du réseau. Nous avons montré qu’il n’est pas nécessaire que tous les pairs utilisent
la même fonction de hachage, tout en continuant de maintenir le routage optimal
et le système cohérent. Les pairs n’ont même pas besoin de connaître la fonction
de hachage globale utilisée dans le réseau. Pour ce faire, quelques règles sont né-
cessaires pour s’assurer que les pairs reçoivent suffisamment d’information sur ces
changements tout en restant capables de prendre les bonnes décisions sans aucune
communication préalable avec d’autres pairs.

Lorsqu’un pair est surchargé, nous lui permettons de réduire l’intervalle dont il
est responsable en modifiant la fonction de hachage qu’il applique sur les données,
afin qu’il puisse en envoyer une partie vers son ou ses voisins. Entre temps, un
algorithme de multicast optimal présenté en Section 4.3.3 est utilisé pour propa-
ger cette nouvelle fonction de hachage seulement vers les pairs concernés par cette
mise à jour (Section 4.3.1). Les destinataires prennent indépendamment la déci-
sion d’accepter ou de rejeter cette mise à jour. Cependant, ils finissent tous par
prendre la même décision, même dans le cas de plusieurs mises à jour concurrentes
(Section 4.3.4). Grâce à ces règles, nous pouvons facilement limiter les communica-
tions entre pairs tout en maintenant le système consistant. Chaque pair applique
sa propre fonction de hachage lors du routage d’une requête pour une donnée.
Ainsi, localiser la position d’un objet se fait dynamiquement, à la volée : chaque
pair routant le message applique sa propre fonction de hachage, ce qui règle le
problème du manque de connaissance des pairs concernant la fonction de hachage
globale du système.

A.2.2 API Générique pour l’Equilibrage de Charge

Dans le Chapitre 5, nous décrivons les concepts derrière la création d’une API gé-
nérique pour l’équilibrage de charge dans les systèmes distribués. En décomposant
une stratégie en critères de différenciation, nous avons montré qu’il est possible
d’abstraire n’importe quel comportement pour se conformer à notre modèle. Afin
de présenter comment l’API pourrait être compatible avec des solutions d’équili-
brage de charge existantes, nous avons utilisé six stratégies différentes représenta-



148 ANNEXE A. VERSION FRANÇAISE

tives de celles utilisées par des systèmes pour le Big Data, basés sur du P2P ou
non. Ces stratégies sont déclenchées à divers moments, prennent en comptes diffé-
rents critères de charge, nécessitent de l’information provenant de diverses sources
avant de prendre la moindre décision, et impactent plus ou moins de nœuds lors
du rééquilibrage. Bien que très différentes à première vue, la plupart des stra-
tégies existantes reposent sur les mêmes principes, peu importe qu’elles soient
implémentées sur un système P2P, un moteur de traitement de flux ou même une
infrastructure de type Cloud. Nous avons montré qu’il est possible d’abstraire et de
décomposer n’importe quelle stratégie en critères de différenciation en répondant
à trois questions essentielles :

1. Comment est échangée l’information sur la charge ? (critères de différen-
ciation (g) et (h)) permet de savoir qui informe qui (nœuds) sur quoi (in-
formation sur la charge), comment (par exemple avec du piggybacking ou
des requêtes envoyées à des nœuds) et quand (périodiquement, ou après un
certain évènement).

2. Comment déclencher l’équilibrage de charge ? (critères de différenciation (a),
(b) et (c)) permet de savoir quel(s) critère(s) de charge est pris en consi-
dération (espace disque, utilisation CPU, etc.), comment est estimé l’état
de charge (comparaison avec une limite interne fixée ou avec de l’informa-
tion récupérée à distance) et quand est déclenchée la décision de rééquilibrer
(périodiquement, après que de nouvelles données aient été insérées, etc.).

3. Quelle est la charge à déplacer ? (critères de différenciation (d), (e) et (f))
décrit la charge à déplacer, mais aussi quel(s) nœud(s) recevra cette charge.

Beaucoup de réponses différentes sont envisageables pour chacune de ces ques-
tions, et donc un nombre illimité de stratégies d’équilibrage de charge sont conce-
vables, simplement en changeant le comportement d’un critère de différenciation.
Par conséquent, de nombreuses implémentations sont possibles. En ce qui concerne
l’aspect programmation, l’API permet de séparer le code concernant l’équilibrage
de charge du reste du système. Ainsi, implémenter un comportement différent pour
une stratégie doit pouvoir se faire en quelques lignes de code. Cet aspect est utile
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par exemple lorsque l’on développe un système pour lequel on veut essayer diffé-
rentes stratégies d’équilibrage de charge avant de faire un choix définitif, dans le
but de trouver la solution la plus efficace. Aussi, comme il est parfois difficile de
prévoir à l’avance les futures performances d’un système, cela permet de s’adapter
plus facilement si des déséquilibres devaient apparaître par la suite.

Une approche basée sur des composants hiérarchiques a été présentée, dont les
méthodes résument le comportement de la plupart des stratégies existantes. Cette
API a été conçue pour être compatible avec un large éventail de systèmes distribués
pour le stockage et la récupération de données. Cependant, il est évident que de
légères variations dans l’implémentation des méthodes ou les méthodes elles-mêmes
pourraient être nécessaires en fonction des spécificités de chaque système.

A.2.3 Implémentation et Expériences

A travers le Chapitre 6, nous avons présenté diverses expériences effectuées pour
évaluer differentes stratégies d’équilibrage de charge sur des systèmes de stockage
P2P. Chacune d’entre elles a été implémentée avec notre API générique présentée
dans le Chapitre 5. Grâce à cette API, un nombre illimité de stratégies d’équili-
brage de charge différentes peut être implémenté, en appliquant de légères modifi-
cations à chaque fois. Ces changements peuvent concerner la façon d’échanger de
l’information sur la charge, quand est déclenché l’équilibrage de charge, combien
de charge doit-on déplacer, qui reçoit cette charge, et ainsi de suite. Nous recher-
chons à améliorer la distribution des données, ce qui est censé faire augmenter le
nombre de nœuds impliqués dans les réponses aux requêtes/souscriptions, et donc
agit sur les performances vers les utilisateurs finaux.

Le travail derrière cette API a été motivé durant le développement de notre
propre système de stockage distribué pour des données du Web Sémantique :
l’EventCloud (EC). A cause du fait que les données RDF sont naturellement
biaisées et aussi dû à l’architecture spécifique à l’EventCloud, il fut nécessaire
d’implémenter un mécanisme d’équilibrage de charge sur l’EC. Pour ce faire, nous
ne voulions pas affecter le code métier existant mais nous voulions être capables
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de tester plusieurs stratégies afin de trouver la plus efficace pour disséminer les
données entre les pairs. Nous avons montré dans ce chapitre que le comportement
des composants peut facilement varier en implémentant une fonction différemment
dans l’API. Sur l’EventCloud, nous nous sommes principalement intéressés à deux
des aspects d’une stratégie d’équilibrage de charge dont nous avons fait varier
l’implémentation : comment est sélectionnée la charge à déplacer et est-ce que les
pairs échangent de l’information avec d’autres pairs pour les aider à évaluer leur
propre état de charge. Des différences significatives ont été observées en termes
de distribution, surtout en ce qui concerne la façon de sélectionner la charge à
déplacer.

Dans la seconde section de ce chapitre, nous avons présenté comment implémen-
ter avec l’API générique la stratégie des fonctions de hachage variables présentée
dans le Chapitre 4 dans un réseau CAN. Nous avons décrit diverses implémen-
tations possibles pour calculer une nouvelle fonction de hachage et estimer l’état
de charge d’un pair. Cela peut requérir ou non des connaissances externes sur la
charge de certains pairs dans le système. Nous avons réalisé des expériences afin de
valider notre approche et de la comparer avec une stratégie d’équilibrage de charge
existante et connue qui consiste à ajouter un nouveau pair dans la zone d’un pair
surchargé. Les résultats ont montré que les fonctions de hachage variables peuvent
distribuer les données sur deux fois plus de pairs qu’avec cette stratégie célèbre, et
400 fois plus que si aucune stratégie n’est employée. En ce qui concerne le coût de
notre solution, elle ne requiert pas plus de communication entre les pairs ni plus
de transfert de données que des stratégies existantes et, contrairement à certaines
d’entre elles, a l’avantage de ne pas changer la topologie du réseau (les mêmes liens
de voisinage sont maintenus).
Par la suite, nous avons également réalisé des expériences pour montrer comment
facilement améliorer ces performances en faisant varier le comportement de certains
composants. En changeant quelques lignes de code, nous avons pu dans certains
cas doubler le nombre de pairs stockant des données. Il est intéressant de voir
à quel point certains paramètres, pourtant de faible importance à première vue,
peuvent se révéler essentiels.
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Enfin, nous avons implémenté la même stratégie des fonctions de hachage va-
riables dans un réseau de type Chord. L’intérêt était de montrer que la même
solution, et donc le même code, peut être déployé dans un système différent grâce
à la généricité de l’API. Même si chaque système a ses propres spécificités, nous
pensons que la séparation d’avec le reste du système qu’offre l’API peut faciliter
le déploiement d’une stratégie existante vers un autre système. Les résultats avec
Chord ont montré que les données peuvent aussi être distribuées convenablement
mais à un coût plus élevé en termes de transfert de données et de temps écoulé
avant d’arriver à l’équilibre, car il y a davantage de changements de fonctions de
hachage initiés qu’avec CAN. Bien que nous ayons essayé de distribuer les don-
nées autant que possible alors que, dans un vrai système, il est parfois seulement
nécessaire de décharger certaines machines, ces résultats laissent suggérer que la
même stratégie d’équilibrage de charge peut ne pas avoir la même efficacité sur
des systèmes différents. Par conséquent, il semble utile de pouvoir tester diverses
stratégies dans un système donné afin de pouvoir choisir la plus efficace, ce qui est
la finalité de l’API.

A.3 Conclusion

A.3.1 Résumé

Cette thèse a présenté des contributions autour du thème de l’équilibrage de charge
dans les réseaux structurés. Ce travail a été influencé par le développement dans
notre équipe de recherche de l’EventCloud, une plateforme distribuée pour le sto-
ckage et la récupération de données du Web Sémantique. Nous avons présenté
une nouvelle solution basée sur l’utilisation de plusieurs fonctions de hachage pré-
servant l’ordre naturel des données pour améliorer la dissémination de valeurs
biaisées. Afin de pouvoir facilement implémenter et modifier cette stratégie, ainsi
que n’importe quelle autre, une API générique a également été présentée.

Fonctions de hachage variables

Stocker des valeurs très biaisées comme celles des données du Web Sémantique
de manière à préserver leur ordre naturel rend par conséquence la distribution de
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ces valeurs parmi les pairs très biaisée elle aussi. Puisque les fonctions de hachage
sont au cœur de la distribution des données dans les systèmes basés sur une DHT,
nous proposons de nous attaquer à ce problème en autorisant un pair surchargé
à modifier la fonction de hachage qu’il applique sur les données, afin de réduire
l’intervalle de valeurs dont il est responsable. Il en résulte la cœxistence de plusieurs
fonctions de hachage différentes utilisées par différents pairs. Afin de maintenir le
routage optimal et la consistance du système, nous avons montré qu’il n’est pas
nécessaire que tous les pairs utilisent la même fonction de hachage du moment
que certaines règles sont respectées. A notre connaissance, ceci est la première
solution d’équilibrage de charge pour réseaux structurés basée sur l’utilisation de
plusieurs fonctions de hachage préservant l’ordre naturel et qui vise à améliorer
la distribution des données. Pour évaluer l’efficacité de cette solution, nous avons
simulé un système composé de 1000 pairs et injecté 1 000 000 triplets RDF aux
valeurs fortement biaisées. Les résultats ont montré que le nombre de pairs stockant
des données est de deux sur mille lorsqu’aucune stratégie n’est employée. Lorsque
la solution des fonctions de hachage variables est utilisée, jusqu’à 945 pairs stockent
des données à la fin des expériences. Nous avons également comparé notre stratégie
avec une autre bien connue et qui consiste à ajouter un pair dans une zone gérée
par un pair surchargé. Notre solution est apparue plus efficace pour répartir la
charge et aussi moins coûteuse en ce qui concerne le volume de données à déplacer
pour atteindre l’équilibre.

API générique

Implémenter une stratégie d’équilibrage de charge dans un système distribué n’est
pas aussi simple que ce que l’on peut croire. Il existe un large éventail de solutions.
Cependant, chaque système a sa propre architecture et aussi ses propres exigences
de performance concernant différents critères. Ainsi, implémenter une stratégie
existante peut ne pas donner les résultats escomptés puisque chaque système est
différent et donc de meilleures solutions pourraient être implémentées et testées,
par exemple en affinant une stratégie jusqu’à atteindre les performances voulues.
Pour ce faire, nous avons présenté dans cette thèse une API générique pour im-
plémenter l’équilibrage de charge dans les systèmes distribués. L’API a été conçue
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suite à l’analyse de solutions existantes qui nous a permis d’identifier des critères
de différenciation tels que comment est évalué l’état de charge des nœuds ? ou
encore comment est sélectionnée la charge à déplacer ?. Ces critères représentent
le bon niveau d’abstraction pour modéliser n’importe quelle stratégie et nous ont
permis de définir des composants proposant un ensemble de fonctions bien défi-
nies. Modifier une stratégie consiste habituellement à modifier le comportement
d’un ou quelques critères de différenciation. En utilisant notre API, cela consiste
simplement à réimplémenter les fonctions correspondant à ces critères. Donc, cela
n’affecte pas le code métier existant et, d’un point de vue développement, facilite
les possibles changements par rapport aux modifications sur des stratégies codées
en dur. Les expériences que nous avons effectuées pour implémenter, entre autres,
la stratégie des fonctions de hachage variables ont montré que les résultats peuvent
être nettement améliorés en fonction du comportement de certains composants. De
plus, passer d’un comportement à un autre est trivial puisque cela consiste géné-
ralement à ré-implémenter une fonction de l’API, ce qui dans notre cas a nécessité
de modifier seulement quelques lignes de code.

A.3.2 Perspectives

Nous avons réalisé nos expériences sur CAN et Chord mais nous pensons que l’uti-
lisation de fonctions de hachage variables pourrait s’appliquer à d’autres systèmes
basés sur une DHT. De même, nous avons uniquement utilisé des données RDF
mais les mêmes principes pourraient être suivis avec n’importe quel type de don-
nées encodées en Unicode (par exemple, des paires clé-valeur ou des tuples). Nous
avons présenté cette stratégie dans le contexte d’un système plaçant les données se-
lon l’ordre lexicographique. D’autres types de tri pourraient être envisagés comme
l’ordre croissant ou décroissant pour des valeurs numériques. Egalement, la ou les
borne(s) associée(s) à chaque pair pourrait ne pas être basée sur la valeur des don-
nées mais sur leur format ou leur taille. Ainsi, il pourrait être possible d’utiliser
cette technique pour des données non encodées en Unicode, tant que la fonction
de hachage permet de retourner une coordonnée ou un identifiant pour localiser
une donnée dans le réseau.
Nous avons montré que les fonctions de hachage variables peuvent aider à amélio-
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rer la répartition des données. Concernant de possibles futures expérimentations,
il serait peut-être intéressant d’évaluer à l’aide de cas d’utilisation les avantages
de cette distribution améliorée sur la charge de traitement des pairs. Aussi, nous
avons considéré comme notre principal critère de charge le nombre d’objets sto-
ckés par un pair pour estimer son état de charge mais un autre critère pourrait
être utilisé : la popularité des données stockées par chaque pair. En effet, certains
ensembles particuliers de données peuvent être fréquemment accédés ce qui génère
de la charge de traitement pour le pair qui les stocke. Une alternative à la répli-
cation serait d’autoriser un pair stockant peu d’objets mais surchargé à cause de
la popularité de ces derniers à modifier sa fonction de hachage pour qu’une partie
soit envoyée vers un ou plusieurs de ses voisins stockant potentiellement beaucoup
d’objets mais avec une fréquence d’accès plus faible.
Enfin, dans cette thèse, nous avons principalement pris en compte l’équilibrage
de charge pour les pairs surchargés. Cependant, la stratégie des fonctions de ha-
chage variables pourrait aussi être étendue aux pairs sous-chargés. Le principe
consisterait à autoriser un pair sous-chargé à modifier sa fonction de hachage afin
d’agrandir l’intervalle de valeurs dont il est responsable.

Actuellement, nous envisageons d’explorer l’utilisation de fonctions de hachage
variables dans le contexte du traitement de flux. Notre équipe de recherche tra-
vaille sur la construction d’une architecture distribuée pour l’analyse de flux RDF.
Le résultat pourrait ressembler à ce qui est présenté sur la Figure A.1. Ce système
considère des flux de données RDF produites par diverses sources comme des flux
Twitter ou des réseaux de capteurs. Le but est de pouvoir évaluer en temps réel
si ces données entrantes permettent de répondre à des requêtes (par exemple des
souscriptions). Pour accélérer ce processus, une requête est divisée en sous-requêtes
prenant la forme de triplets de telle sorte qu’elles puissent être exécutées en paral-
lèle et que leurs résultats respectifs puissent être ensuite regroupés pour répondre
à la requête initiale. Chaque sous-requête est associée avec un nœud travailleur
responsable de tester la correspondance entre les triplets entrants et celle-ci. Pour
traiter efficacement les flux et les requêtes, chacun de ces nœuds est exclusive-
ment responsable de triplets et de sous-requêtes contenant une valeur de prédicat
bien définie. Les flux de données sont reçus aléatoirement par des machines de la
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Couche 1, puis envoyés aux nœuds de répartition de la Couche 2 qui pourraient
être organisés en un réseau structuré de type Chord ou skip list. Chaque nœud
de répartition serait responsable d’un certain intervalle de valeurs de prédicat et
recevrait donc tous les triplets entrants associés à cet intervalle (sur la Figure A.1,
la lettre écrite à l’intérieur de ces nœuds représente la borne maximale du nœud).
Enfin, les nœuds de répartition enverraient aux travailleurs (Couche 3) les triplets
contenant la valeur de prédicat dont ils sont responsable afin de commencer à éva-
luer la correspondance triplets/sous-requête et de finalement combiner les résultats.

Figure A.1 – Architecture envisagée pour le traitement de flux RDF.

Nous envisageons la possibilité d’implémenter une stratégie d’équilibrage de
charge sur ce futur système afin d’empêcher que des nœuds travailleurs ou de
répartition soient surchargés par des flux ou même par trop de sous-requêtes ayant
le même prédicat populaire. Puisque l’un des principaux avantages des fonctions de
hachage variables est d’aider à équilibrer la charge entre les nœuds pour s’adapter
en temps réel aux données entrantes, cette stratégie pourrait être envisagée comme
une possible solution dans ce contexte. Par exemple, si un nœud de la Couche 2
reçoit trop de triplets car il gère l’intervalle des prédicats les plus populaires, celui-
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ci pourrait modifier sa fonction de hachage afin de recevoir moins de triplets et
donc de réduire sa charge de traitement (puisque nous supposons que les données
ne sont pas stockées). Sinon, d’autres solutions d’équilibrage de charge pourraient
être testées avec notre API générique, comme celle proposée par Nasir et al. [47]
(choix du nœud le moins chargé pour recevoir le flux), Meghdoot [54] (ajout de
nœuds aux endroits surchargés par les souscriptions) ou même une toute nouvelle
solution conçue selon les principes proposés avec l’API générique.
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