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Abstract.

In a first part, we focus on gradient dynamical systems governed by nonsmooth but also
nonconvex functions, satisfying the so-called Kurdyka- Lojasiewicz inequality. After obtaining
preliminary results for a continuous steepest descent dynamic, we study a general descent al-
gorithm. We prove, under a compactness assumption, that any sequence generated by this
general scheme converges to a critical point of the function to be minimized. We also obtain
new convergence rates both for the values and the iterates. The analysis covers alternating
versions of the forward-backward method, with variable metric and relative errors. As an ex-
ample, a nonsmooth and nonconvex version of the Levenberg-Marquardt algorithm is detailed.
Applications to nonconvex feasibility problems, and to sparse inverse problems are discussed.

In a second part, the thesis explores descent dynamics associated to constrained vector
optimization problems. For this, we adapt the classic steepest descent dynamic to functions
with values in a vector space ordered by a closed convex cone with nonempty interior. It can be
seen as the continuous analogue of various descent algorithms developed in the last years. We
have a particular interest for multi-objective decision problems, for which the dynamic make
decrease all the objective functions along time. We prove the existence of trajectories for this
continuous dynamic, and show their convergence to weak efficient points. Then, we explore an
inertial dynamic for multi-objective problems, with the aim to provide fast methods converging
to Pareto points.
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Résumé.

Dans une première partie, nous nous intéressons aux systèmes dynamiques gradients gou-
vernés par des fonctions non lisses, mais aussi non convexes, satisfaisant l’inégalité de Kurdyka-
 Lojasiewicz. Après avoir obtenu quelques résultats préliminaires pour la dynamique de la plus
grande pente continue, nous étudions un algorithme de descente général. Nous prouvons, sous
une hypothèse de compacité, que tout suite générée par ce schéma général converge vers un point
critique de la fonction à minimiser. Nous obtenons aussi de nouveaux résultats sur la vitesse de
convergence, tant pour les valeurs que pour les itérés. Ce schéma général couvre en particulier
des versions parallélisées de la méthode forward-backward, autorisant une métrique variable et
des erreurs relatives. Cela nous permet par exemple de proposer une version non convexe non
lisse de l’algorithme Levenberg-Marquardt. Enfin, nous proposons quelques applications de ces
algorithmes aux problèmes de faisabilité, et aux problèmes inverses parcimonieux.

Dans une seconde partie, cette thèse développe une dynamique de descente associée à des
problèmes d’optimisation vectoriels sous contrainte. Pour cela, nous adaptons la dynamique de
la plus grande pente usuelle aux fonctions à valeurs dans un espace ordonné par un cône convexe
fermé d’intérieur non vide. Cette dynamique peut être vue comme l’analogue continu de nom-
breux algorithmes développés ces dernières années. Nous avons un intérêt particulier pour les
problèmes de décision multi-objectifs, pour lesquels cette dynamique de descente fait décroitre
toutes les fonctions objectif au cours du temps. Nous prouvons l’existence de trajectoires pour
cette dynamique continue, ainsi que leur convergence vers des points faiblement efficients. Fi-
nalement, nous explorons une nouvelle dynamique inertielle pour les problèmes multi-objectif,
avec l’ambition de développer des méthodes rapides convergeant vers des équilibres de Pareto.

Resumen.

En una primera parte, nos interesamos en sistemas dinámicos de tipo gradiente goberna-
dos por funciones no diferenciables, también no convexas, que satisfacen la desigualdad de
Kurdyka- Lojasiewicz. Después de obtener resultados preliminares para la dinámica continua
del máximo descenso, estudiamos un algoritmo de descenso general. Demostramos, bajo una
hipótesis de compacidad, que cualquier sucesión generada según este esquema general converge
a un punto cŕıtico de la función. Además, obtenemos nuevas estimaciones sobre la velocidad
de convergencia para la secuencia y sus valores. Este análisis cubre versiones alternadas del
método forward-backward, con métrica variable y errores aditivos. Nos permite por ejemplo de
proponer una versión no diferenciable y no convexa del algoritmo de Levenberg-Marquardt. Por
fin, proponemos algunas aplicaciones de esos algoritmos para resolver problemas de viabilidad
non convexos, y problemas inversos.

En una segunda parte, la tesis explora una dinámica de descenso asociada con problemas
de optimización vectoriales con restricción. Para esto, adaptamos la dinámica del máximo
descenso clásica para los funciones con valores en un espacio vectorial ordenado por un cono
sólido cerrado convexo. Puede ser visto como el análogo continuo de varios algoritmos de de-
scenso desarrollados en los años pasados. Tenemos un interés particular por los problemas de
decisión multiobjetivo, por lo cuales cada función objetivo decrece con el tiempo. Demostramos
la existencia de trayectorias para esta dinámica continua, y mostramos su convergencia a pun-
tos débilmente eficientes. Después, investigamos una nueva dinámica inercial para problemas
multiobjetivo, con el propósito de proponer métodos rápidos que convergen a equilibrios de
Pareto.
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la communauté seront reconnus à leur juste valeur, et une statue à ton effigie trônera fièrement
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Primero entre todos, Cecio, hermano institucional, pero mas que todo, de corazón. Grazie para
tu buena onda comunicativa, perpetua e indefectible, y todas ese noches tontas que tuvimos.
Un agradezco también a todos los Sansanitos, gracia a quien me sent́ı como en casa en Valpo:
Pato (le plus génial de tous les canards), Andrei, Felipe, Laurent, Mathieu. Gracias a David y
su hospitalidad, que me hizo descubrir un poco su capital. Doy también a un grande abrazo
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Chapter 1

Introduction

The idea of using a descent method to solve an optimization problem goes back, at least,
to Cauchy and its gradient method [96]. This algorithm has been the object of an intense
research along the 20th century, considering for instance a line-search method for the choice of
the stepsize [123, 178, 16, 324]. The development of convex analysis in the 60-70s opened the
door to a nonsmooth version of the implicit gradient method, namely, the proximal algorithm,
introduced by Martinet [236], and further developed in [287, 86]. It appeared clear at that
time that the proximal algorithm is strongly connected to its continuous-time counterpart, the
steepest descent dynamic [291, 170, 82, 83, 119]:

(1.1) u̇(t) + ∂f(u(t)) 3 0,

where f : H −→ R∪{+∞} is a proper lower semi-continuous convex function defined on a Hilbert
space H. Clearly, the explicit and implicit versions of the gradient method can both be derived
from (1.1) after a time discretization. But the inter-connexions between the continuous and
discrete dynamics go beyond this simple observation. For instance, the trajectories of (1.1) can
be built from sequences generated by the proximal algorithm [119]. Furthermore, the equivalence
between the asymptotic behaviour of the proximal algorithm and the trajectories of (1.1) has
been recently established [13, 14, 269]. In practical, the connections between continuous and
discrete dynamics are fruitful for the optimizer. For example, finding a Lyapunov function for a
continuous dynamic is in general easier than for the discrete case. On the reverse, the discrete
dynamics benefit from the fact that their analysis do not require any derivability assumption
on the trajectory.

In this thesis, we develop descent dynamics, being discrete or continuous, for two opti-
mization problems which gained in interest these last years. Firstly, we deal with a tame
optimization problem, which consists in the minimization of a nonsmooth nonconvex function
being well-behaved, in some way. The growing interest for tame problems comes from the fact
that various problems in image and signal processing are tame, by nature. Secondly, we con-
sider a multi-objective (also multi-criteria) optimization problem. Such problem involves a finite
family of cost functions, which have to be minimized simultaneously, as far as possible. This
kind of problem arises naturally in engineering (shape optimization), or in decision sciences.
For these two problems, we adopt the same approach: building a descent dynamic, and proving
its convergence to a solution. As much as we can, we shall underline the connexions between
the continuous and discrete dynamics studied. We introduce now in detail the two parts of this
manuscript, corresponding to the two aforementioned problems.
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Part I: Dynamics for tame optimization

In classic analysis, it is known for a long time that there exists generically wild functions,
being for instance continuous but nowhere differentiable [45, 237]. In the more recent nonsmooth
analysis setting, such pathologic functions are also known to be pre-eminent. Consider for
instance, among the locally Lipschitz functions, the ones having a Clarke subdifferential constant
to the unit ball [78]. On this subject, Grothendieck [181] condemns “the wildness carried [by
the general topology] as an inevitable fate” and calls for a new “tame topology”, more adapted
to “the context in which we live, breath, work”. Indeed, most of the functions/sets encountered
in optimization problems (at least in finite dimensions) are not so much monstrous: least
squares, `p norms, functions being polynomial by parts, etc. In the literature, various notions
can be found that ensure the good behaviour of a function, in a setting broader than the
smooth or convex ones. Let us mention for instance the classes of semi-smooth [242], lower-C2

[289, 193, 262], primal-lower-nice [273], prox-regular [274], or partly smooth functions [221],
whose interest in optimization is not to be proved [278, 220, 306, 253, 226].

Tame optimisation, as mentioned in the title of this thesis, is a general term, referring to
optimization of functions being pathologic-free. We intentionally do not give a precise meaning
to the word ‘tame’, and prefer for now letting the reader keep in mind the picture of well-behaved
objects1.

According to van den Dries [141], the o-minimal structures provide the first known frame-
work in which Grothendieck’s tame topology could be developed. An o-minimal structure is a
collection of sets, stable under usual operations, and a function is said to be definable in this
structure, whenever its graph –or its epigraph– is a set lying in the structure. These structures
have been modelled to generalize the properties of two known collections of sets: the semi-
algebraic [318, 66, 140] and globally subanalytic sets [230, 166, 196]. While this theory was
originally designed as a model theory in the 80s [271], it appeared soon that these o-minimal
structures offer a good setting in which doing analysis. Indeed, the objects definable in these
structures enjoy a lot of finitude properties. For instance, the sets definable in these structures
admit a finite number of connected components. This implies for instance that the level sets of
definable functions have a finite number of connected components, which excludes pathological
functions like 1

xsin(x). The definable sets also admit a Whitney stratification, which means
that we can always decompose them into a finite number of smooth manifolds fitting together
in a regular way. These examples are far to be exhaustive, and can be found for instance in
[144].

Among all the properties satisfied by the functions definable in an o-minimal structure,
there is one which will keep our attention: the so-called Kurdyka- Lojasiewicz property. It is
a property describing the behaviour of function in the neighbourhood of its critical points.
Its main feature is that it ensures the finite length for the trajectories of descent dynamics
(being continuous or discrete). Thus, this Kurdyka- Lojasiewicz property is an excellent tool
in optimization, in order to validate the convergence of numerical methods. Let us give some
details on this property.

In 1984,  Lojasiewicz [231] is interested by the asymptotic behaviour of the trajectories being
solution of the steepest descent dynamic

(1.2) u̇(t) +∇f(u(t)) = 0,

where f : Rn −→ R is an analytic function. Analyticity is not a too strong hypothesis, since
it is known at this time that the gradient flow associated to a C∞ function can not converge
[257]. Lojesiewicz proves that any bounded trajectory of (1.2) has finite length, and converges

1We are aware of the fact that a notion of tame function is developed in [203, 204, 69], but we will not use it
here.
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to a critical point of f . The main tool in its proof is the following: for analytic functions, we
have a particular estimate, previously proved by  Lojasiewicz itself [230], linking the variations
of the values f(u(t)) and of the norm of ∇f(u(t)). More exactly, for any critical point x̄ of f ,
there exists C > 0 and θ ∈]0, 1

2 ], such that

(1.3) ∀x ∼ x̄, x 6= x̄, |f(x)− f(x̄)|1−θ ď C‖∇f(x)‖.

The equation above is nowadays known as the  Lojasiewicz inequality. If we assume that f(x) >
f(x̄) = 0, then the  Lojasiewicz inequality can be rewritten as

(1.4) ∀x ∼ x̄, x 6= x̄, 1 ď ‖∇(ϕ ◦ f)(x)‖, with ϕ(t) =
C

θ
tθ.

In other words, up to a polynomial reparametrization, f is sharp around x̄.

In parallel, Simon [296] studies the asymptotic behaviour of general nonlinear evolution
equations. For example, they can take the form{

u̇(t, x)−∆u(t, x) = φ(u(t, x)) on R+ × Ω,

u(t, x) = 0 on R+ × ∂Ω,

where φ : R −→ R is a source term. Assuming that the source term φ is analytic, and using
the  Lojasiewicz inequality (1.3), Simon proves under some conditions that the trajectories of
its dynamic converge strongly to an equilibrium. This approach will be reused later for the
asymptotic analysis of some PDE’s involving an analytic feature. Let us mention, among
others, some studies of the semilinear wave equation [187], degenerate parabolic equations [156],
the Cahn-Hilliard equation [197], equations for phase transition [155] or quasi-linear parabloic
equations [104]. See also [47] for an optimal control problem governed by a Schrödinger equation,
and [10] for an inertial gradient-like system involving a Hessian-driven damping.

In 1998, Kurdyka [216] considers the steepest descent dynamic (1.2), and adapts  Lojasiewicz’s
convergence result to any C1 function definable in an o-minimal structure. For this, he needs an

appropriate extension of  Lojasiewicz’s inequality. Indeed, the function x 7→ e
−1

x2 , which lies in
some o-minimal structure, cannot satisfy the  Lojasiewicz inequality, because it is exponentially
flat around its minimum. That is why Kurdyka proves in a first time that, for any differentiable
function definable in an o-minimal structure, the inequality (1.4) holds around critical points,
for a general definable function ϕ (not necessarily a polynomial). This inequality, which can be
rewritten as

ϕ′(f(x)− f(x̄))‖∇f(x)‖ ě 1,

is now called the Kurdyka- Lojasiewicz inequality. More recently, Bolte, Daniilidis and Lewis
[68] adapt the  Lojasiewicz inequality to nonsmooth subanalytic functions, and derive a finite
length property for the bounded trajectories of

(1.5) u̇(t) + ∂Ff(u(t)) 3 0.

Finally, in 2007, a strong result of Bolte, Daniilidis, Lewis and Shiota [70] asserts that any lower
semi-continuous function definable in an o-minimal structure satisfies a nonsmooth version of
the Kurdyka- Lojasiewicz inequality.

The convergence analysis of descent algorithms for functions satisfying the Kurdyka- Lojasiewicz
inequality is more recent. See [1] for gradient-related methods, and [253] for a nonsmooth
subgradient-oriented descent method. The proximal method is investigated in [18, 71], as well
as in [240, 174, 4] with a specific attention to applications for PDE’s discretization. The cel-
ebrated Forward-Backward algorithm, a splitting method exploiting the nonsmooth/smooth
structure of the objective function, has been studied in [20], and extended in [106] to take in
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account a variable metric. Another splitting approach comes from Gauss-Seidel-like methods,
which apply to functions with separated variables, and consist in doing a descent method rela-
tively to each (block of) variable alternatively. See [19, 321] for a proximal alternating method,
and [20] for a variable-metric version. Recent papers [321, 72, 107] propose to combine these
two splitting approaches in order to exploit both the smooth/nonsmooth character and the
separated structure of the function.

Let us now precise our contributions to this domain, which are presented in Part I. We
consider a proper lower semi-continuous function f : H −→ R ∪ {+∞}, where H is a Hilbert
space. Working in a Hilbert space setting allows to encompass the analytic functions, the
functions definable in an o-minimal structure, or even some energies underlying some nonlinear
PDE. Along all this part, we assume that f is a function satisfying the Kurdyka- Lojasiewicz
inequality around each point x̄ ∈ H. Such function will be called a K L function.

Chapter 3 contains the main theoretical results of Part I. We start in Section 3.1 by giving
some keys for the understanding of the Kurdyka- Lojasiewicz inequality, and its implications
in descent dynamical systems. After giving a proper definition of the Kurdyka- Lojasiewicz
inequality in the nonsmooth case, we revisit the result of [68] on the asymptotic behaviour of
(1.5). Under general hypotheses on f , and a compactness assumption on u, we recover the finite
length for the trajectories of this dynamic. The proof of this result for the continuous dynamic
is instructive, since it provides a sketch for the proof in the discrete case. We also prove in
Theorem 3.1.12 general convergence rates for both the trajectory and its image, in the line of
[104].

In Section 3.2, we are interested in descent algorithms to solve

min
x∈H

f(x).

Most of the algorithms studied in the papers mentionned above share the same asymptotic
behaviour: under a compactness assumption, the generated sequences converge strongly to crit-
ical points, and the affine interpolations have finite length. This is not surprising since the
algorithms described in [18, 240, 71, 20, 19, 72], together with the ones of [106, 321] (without
extrapolation step), fall into the general convergence result for abstract descent methods of At-
touch, Bolte and Svaiter [20]. Besides, these methods essentially share the same hypotheses on
the parameters with the abstract method of [20]: the step sizes (respectively the eigenvalues of
the matrices underlying the metric) are required to remain in a compact subinterval of the pos-
itive numbers. Moreover, they have little flexibility regarding to the presence of computational
errors. To our knowledge, vanishing step sizes (resp. unbounded eigenvalues) or sufficiently
general errors have never been treated in the K L context. For these reasons, we introduce an
abstract descent scheme, generating sequences (xk)k∈N ⊂ H verifying for all k ∈ N:

ak‖xk+1 − xk‖2 ď f(xk)− f(xk+1), ak > 0,

bk+1‖∂Ff(xk+1)‖− ď ‖xk+1 − xk‖+ εk+1, bk+1, εk+1 > 0.

This approach follows the ideas of [20], that we adapt to allow more flexibility for the parameters,
and to introduce an error term εk+1. Theorem 3.2.2 proves, under a compactness assumption,
that any sequence generated by this scheme has finite length and converges strongly to a critical
point of f . Then, provided that the sequence (xk)k∈N is initialized close enough to a minimum
of f , Theorem 3.2.3 ensures that the sequence converges to a minimum of the function. Such a
capture result is of particular importance, since we work with functions being non necessarily
convex.

In section 3.3, we focus on the convergence rates of this abstract method. An interesting fact
is that, in the literature, the convergence rates of several methods are essentially the same, and
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depend on the K L inequality rather than the nature of the algorithm. We give a theoretical basis
for this statement by proving general convergence rates in Theorem 3.3.2, under the assumption
that f satisfies the Kurdyka- Lojasiewicz inequality with a polynomial function ϕ. Furthermore,
in Theorem 3.3.4, we prove new convergence rates when a more general function ϕ is involved.
This result can be seen as the discrete counterpart of the convergence rates obtained for the
continuous steepest descent in Theorem 3.1.12.

Chapter 4 contains the most practical aspects of Part I. We introduce in Section 4.1 a
particular instance of the model defined in Chapter 3, which provides further insight into a
large class of known methods, and present some innovative variants. More exactly, we revisit
the Alternating Forward-Backward algorithm, already considered in [72, 107, 224], but allowing
inexact computation of the iterates, and a dynamic choice of metric. After a description of
the method in Section 4.1.1, we prove its convergence to critical points in Section 4.1.2. As
a by-product of the results of Chapter 4, we obtain in Theorems 4.1.6 and 4.1.8 a global and
local convergence result, respectively. In Section 4.1.3, we exploit the flexibility given by the
Alternating Forward-Backward method to propose a new projected-Newton-like algorithm, for
solving constrained optimization problems.

Section 4.2 is devoted to two particular applications of the Alternating Forward-Backward
method. In Section 4.2.1 a nonconvex feasibility problem, involving both ‘soft’ constraints
(like convex, smooth, or more generally prox-regular) and ‘hard’ constraints (no particular
assumption is made). In Section 4.2.2, we discuss some problems arising in signal processing,
such that the compressed sensing and the low-rank and sparse matrix decomposition problem.
In each case, we use the flexibility of the Alternating Forward-Backward method to design
algorithm for solving these problems. Some of the proposed methods are new, like the hard
shrinkage projection algorithm that we numerically illustrate in Section 4.2.2.3.

Part II: Dynamics for vector optimization

The problems for which a decider have to manage simultaneously different costs are common
in optimization: we want to maximize the correlation with respect to different data sets, together
with the minimization of some energy, and being close to a desired state, etc. This kind of
problem, called multi-objective (or multi-criteria) problem, arises a lot in shape optimization,
where we have to design a shape submitted to different constraints [211, 227, 189]. But it also
appears in various other domains, such that engineering [264], optimal control [229, 168], game
theory [238], medical treatment [210], finance [320, 302], management, and more generally in
decision sciences and operational research [41, 208]. Historically, it is in economy that multi-
criteria equilibrium has been studied for the first time, in the context of the utility theory and
welfare economics, introduced among others by Walras [314] and Edgeworth [152]. Pareto [258],
and then Barone [43], gave the first definition of what we call nowadays a Pareto equilibrium, a
state for which:

“It must be impossible by any allocation of resources to enhance the welfare of one
household without reducing that of another.” E. Barone [43]

The reader looking for more details on the historical development of these notions in mathe-
matics and economy can consult the complete survey of Stadler [300].

The mathematical formulation of this notion under its actual form is due to Debreu [131,
132]. Basically, we consider a finite family {f1, ..., fm} of functions from Rn to R, called objective
functions, and we look for points x̄ ∈ Rn for which no objective function can be improved without
penalizing an other. More precisely, points x̄ for which there is no x ∈ Rn such that

fi(x) ď fi(x̄) for all i ∈ {1, ...,m} and (f1(x), ..., fm(x)) 6= (f1(x̄), ..., fm(x̄)).
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Multi-objective optimization problems ((MOP) for short) are generally written under the form

(MOP) MIN
x∈Rn

(f1(x), ..., fm(x)).

These multi-objective optimization problems are part of a more general setting, the one of vector
optimization problems:

(VOP) MIN
x∈X

F (x),

where F is a function from some vector space X to an ordered vector space (Y,ĺY). In these
problems, we look for the efficient points of (VOP), that is, the points x̄ ∈ X for which there is
no x ∈ X such that

F (x) ĺY F (x̄) and F (x) 6= F (x̄).

The multi-objective problem can then be recovered by taking F := (f1, ..., fm) : Rn −→ Rm,
Rm being equipped with the usual partial order ĺRm induced by the positive orthant Rm+ .

These vector equilibrium and optimization problems were introduced by Debreu [131] to
model the preferences of a decider, and have been the object of various studies (see the survey
[128] and its references, or more recently [133, 245, 46]). From the applications point of view,
there is few vector optimization problems which are not simply multi-objective, except in econ-
omy. Let us mention for instance some recent developments on equilibrium in financial markets
[7, 8].

When we face a multi-objective problem, one of the purposes is to detect the set of Pareto
points. A well-known approach is the weighting method [323, 171], which minimizes some convex
combination of the objective functions. Its popularity comes from its easy implementation, since
it reduces to a classical optimization problem. It works well in the convex setting, since it is
known in that case that the minimizers of all the convex combinations cover the Pareto points
[139]. Nevertheless, in the general nonconvex case, this method does not recover well the
nonconvex parts of the Pareto front [126, 241]. Moreover, we cannot use the weighting method
if we look for a cooperative approach: for instance, in shape optimization, if we are given
an initial shape, we might want to reach a Pareto equilibrium by improving all the involved
criteria along time. But the objective functions corresponding to the weakest weightings will
suffer from consequent variations. Furthermore, this method requires the choice of an a priori
convex combination, which is not always easy when the objectives are not correlated.

Of course, other approaches exist, like the hierarchical minimization [158] which first mini-
mizes one objective function, then an other under the constraint of remaining in the minimizers
of the first, and so on. This hierarchy asks to make a choice among the objectives, and it is
easy to see on simple examples that the Pareto set cannot be entirely recovered like this. The
ε-constraint method [183] relies more or less on the same idea: we minimize one objective,
under a sublevel constraint concerning the other objective functions. Let us finally mention
other empiric methods, called evolutive or genetic methods [161, 129, 130], for which there is
no theoretical guarantee of convergence .

We detail now some works published in the 70s, which influenced our own work and were
precursor for multi-objective descent methods. These works have in common that they have
been written for economical purposes, in particular for modeling allocation of resources in
planned procedures.

Smale2 is the first to be interested in a continuous dynamic promoting the simultaneous
decrease of a finite family of objective functions {f1, ..., fm}, without introducing a subjective
choice or combination [297]. Its approach consists in defining a trajectory whose derivative is, at
each point, a common descent direction for all objective functions fi. Given a convex constraint

2Who was a co-worker of Debreu at the University of California, Berkeley.
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C ⊂ X = Rn, he defines at each x ∈ C the cone3 of common descent directions D(x), as the
intersection of the cones of admissible descent directions for each objective function fi, that is:

D(x) := {d ∈ TC(x) | 〈∇fi(x), d〉 < 0, ∀i ∈ {1, ..., n}}.

He defines then a Pareto critical point as a point x ∈ C ⊂ Rn such that D(x) is empty. Roughly
speaking, it is a point such that, at the first order, we cannot improve strictly all the objective
functions simultaneously, and remain in the constraint. It is a weaker notion than the one of
Pareto optimality (strictly weaker in general), and is well-known at this time [258, 293, 315].
Note that this first-order optimality condition is exactly the usual notion of critical point that
we are used to work with, when m = 1. Thus, Smale is interested in trajectories u : C −→ Rn
satisfying the following differential inclusion:

u̇(t) ∈ D(u(t)) if u(t) is not Pareto critical,
{0} else.

As it can easily be verified, such trajectories make each objective function decrease along time.
Moreover, this dynamic is defined in such a way that each stationary point is a Pareto critical
point (and so, candidate to be a Pareto point). These results are effectively proved by Cornet
[115] some years later. This last author proves also, under some (restrictive) conditions, the
existence of a smooth selection, that is, a function ψ : Rn −→ Rn verifying ψ(x) ∈ D(x) for all
x ∈ Rn, and such that u̇(t) = ψ(u(t)) admits a unique solution of class C1.

In its thesis, Cornet [116] defines explicitly a cooperative dynamic, which enters in the setting
of Smale’s, and generalizes to the multi-objective setting the classic steepest descent dynamic.
This dynamic writes as follows:

(SD) u̇(t) + ( NC(u(t)) + co∇fi(u(t)) )0 = 0,

where co∇fi(u(t)) denotes the convex hull of the family of gradients {∇fi(u(t))}i∈{1,...,m}, and
we use the notation A0 to indicate the element of minimal norm of a closed convex set A. Cornet
observes that the vector field governing its dynamic can be interpreted as an analogue of the
usual steepest descent direction. Indeed, if we note s(u) = − ( NC(u(t)) + co∇fi(u(t)) )0, then

s(u)

‖s(u)‖
= argmin

d∈TC(u)
‖d‖=1

max
i∈{1,...,m}

〈∇fi(u), d〉,

which generalizes a well-known property of the gradient in classic optimization. The author
gives also a proof of the existence of global trajectories (based on the Kakutani-Fan fixed point
theorem), together with their convergence to Pareto critical points when t→ +∞, in the convex
case. A very interesting aspect of this dynamic is that, at each instant t, there exists a convex
combination (θi(t))i∈{1,...,m} such that

u̇(t) +NC(u(t)) +∇

(
m∑
i=1

θi(t)fi

)
(u(t)) = 0,

m∑
i=1

θi(t) = 1, θi(t) ě 0.

In other words, the dynamic behaves like the steepest descent dynamic associated to a convex
combination of the objective functions, except that this combination evolves dynamically. The
weighting is chosen endogenously by the dynamic, to promote the common decrease of the
objective functions.

This idea of extending the steepest descent dynamic to vector optimization problems appears
also in the works of Malivert [234] and Pascoletti-Serafini [259]. Nevertheless, there has been
almost no works in this direction until the end of the century.

3In fact a strict cone, as defined later in Chapter 2, since it does not contain the origin.

7



In the 2000s, in a paper of Fliege and Svaiter [159], we observe a new interest for the steepest
descent method for multi-criteria optimization problems. These authors propose an algorithm
to solve an unconstrained smooth multi-objective optimization problem. For this, they define
on X = Rn the following vector field:

(1.6) s(x) = argmin
d∈Rn

{
1

2
‖d‖2 + max

i∈{1,...,m}
〈∇fi(x), d〉

}
.

This direction s(x) being a common descent4 direction at x for each objective function f1, ..., fm,
we can define a descent algorithm

xn+1 = xn + tns(xn),

where tn is a stepsize chosen by an Armijo-like rule. As we will see later in Chapter 5, s(x)
is nothing but the steepest descent direction at x, in the sense of Cornet, that is s(x) =
− ( co∇fi(u(t)) )0. Thus, we can see the algorithm of Svaiter and Fliege as a discretization
in time of the steepest descent dynamic, and we recover (up to some differences) the same
asymptotic behaviour.

In the next years, a series of papers will extend this steepest descent method to multi-
objective optimization problems with constraint, taking into account relative errors, and/or
adapting these methods to more general vector optimization problems [173, 176, 248, 63, 62,
165, 60]. Since this steepest descent method extends the usual gradient descent method to
the multi-objective case, some authors adapt other well-known optimization methods. Let us
mention for instance the Newton method [160, 175], or quasi-Newton [279, 277], the interior
point method [312, 313], the proximal algorithm [73, 99, 98, 61], and subgradient methods
[109, 59].

In parallel, other authors focus again on the continuous steepest descent dynamic. Schäffler-
Schultz-Weinzierl [295] consider5 a stochastic version of the steepest descent dynamic (SD).
Through the notion of vector pseudo-gradient, Miglierina [247] recovers the (SD) dynamic in
the unconstrained case. At the same time, Recchionni [282] introduces a dynamic close to (SD),
considering an interior penalization for a box constraint. This author is the first to verify nu-
merically that this steepest descent approach is efficient for recovering nonconvex Pareto fronts.
Miglierina-Molho-Recchionni [248] study a similar dynamic, and show that their approach is
more efficient than the weighting method. More recently, Attouch-Goudou [28] revisit also (SD)
in the convex case under a general convex constraint. They propose a new constructive proof of
the existence of the trajectories, based on Peano’s Theorem and a Moreau-Yosida regularization
of the nonsmooth operator NC .

Let us now describe our main contributions and the contents of Part II.

In a first place, we studied the (SD) dynamic by considering the multi-objective optimization
problem associated to Lipschitz continuous functions {f1, ..., fm}. The idea was to replace in
(SD) the gradients of the objective functions by their Clarke subdifferentials:

(SD) u̇(t) + ( NC(u(t)) + co ∂Cfi(u(t)) )0 = 0.

We studied this dynamic, but also the properties of the operator governing it, namely x 7−→
co ∂Cfi(x).

4Just take d = 0 in (1.6).
5Pay attention to the fact that one of their main lemmas is false. Indeed, the authors prove that the steepest

descent vector field s : Rn −→ Rn defined in (1.6) is locally Lipschitz continuous. We will see in Chapter 6,
Section 6.1.3, that this is false, through a counter-example.
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This guided us to think about the links between this operator x 7−→ co ∂Cfi(x), and the fam-
ily of objective functions {f1, ..., fm}. Indeed, why are involved the gradients (or subgradients)
of all convex combinations

(1.7)

{
fθ :=

m∑
i=1

θifi |
m∑
i=1

θi = 1, θi(t) ě 0

}
,

when we only look for the minimization of a finite family of functions? Why do we have to call
this larger family of functions?

By taking the more general point of view of vector optimization, we understood that the
minimization of F = (f1, ..., fm) : X −→ (Rm,ĺRm) expresses naturally as the simultaneous
minimization of the convex combinations in (1.7). Even better, we understood that the central
role given to the objective functions {f1, ..., fm} is essentially due to the extremely favorable
geometrical properties of the ordering cone Rm+ . This brought us to the study of descent dy-
namics associated to general vector optimization problems, which seems to be the good setting
to work in.

Our aim, in the second part of this thesis, is to give a new look on vector optimization
problems. For this, we place at the center of our analysis the notion of steepest descent direction,
and the dynamic(s) that it induces. The setting in which we will work is the following: we
consider a function F : X −→ Y between two Banach spaces, the space Y being equipped with a
partial order noted ĺ. We will always assume that the order on Y is induced by a closed convex
cone with nonempty interior. Given a nonempty closed convex set C ⊂ X which models the
constraints, we study the optimization problem

(VOP) MIN
x∈C

F (x).

Taking X as a Banach space allows to cover situations appearing in decision science, engineering
or economy, where the decision space can be taken as a space of integrable functions [281, 261].
Taking Y as an ordered Banach space allows of course to cover the muli-objective case, but
also to consider functions with values in a space of continuous functions, or L∞([0, 1],R). This
might lead to new modelisations in economy, or applications in optimal control.

In Chapter 5, we study the notions of descent direction for F , and of solution(s) for (VOP).
For this, we introduce in Section 5.1 the ordered (Clarke) subdifferential,

∂CF : X⇒ X∗,

which will give us some first-order local information on the behaviour of F with respect to the
order on Y. When we take place in the multi-objective setting with F = (f1, ..., fm), ∂CF (x)
reduces to co ∂Cfi(x), and we recover the operator introduced by Cornet. After giving some
calculus rules and basic properties for this ordered subdifferential, we show in Section 5.2 that
∂CF (x) has interesting properties for the analysis of (VOP):

• It verifies a Fermat’s rule, giving a first-order necesssary condition for the solutions of
(VOP), see Theorem 5.2.10.

• Like in the scalar case (Y = R), under some regularity conditions, ∂CF (x) spans the normal
cone of the sublevel set of F at x, see Theorem 5.2.12.

• When X is a Hilbert space, the ordered subdifferential gives us descent directions. It
suffices to consider at each point x ∈ X the element of minimal norm of −∂CF (x), see
Propositions 5.2.18 and 5.2.8. In fact, this direction is the steepest, in the sense given by
Theorem 5.2.20.
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For this two last properties, the key point is that, for x ∈ X, the ordered subdifferential ∂CF (x)
is a subset of X∗, related to the decision space X. This is in clear opposition with the usual
differentiability notions, or their generalizations to the nonsmooth setting, which give a subset
of L(X, Y) (see Remark 5.3.2 for more discussion on this subject).

In Chapter 6, we assume that X is a Hilbert space, and we use ∂CF to define the steepest
descent dynamic

(SD) u̇(t) + (NC(u(t)) + ∂CF (x))0 = 0, t ě 0.

In the smooth multi-objective case, we recover the dynamic introduced by Cornet. Furthermore,
a simple discretization in time of (SD) gives the descent algorithms developed in [159, 173, 176,
248, 63, 62, 165, 60], or even the proximal methods of [73, 99, 98, 61]. Being able to compare the
continuous and discrete dynamics is always fruitful, since they often share the same asymptotic
behaviour (see for instance the works of Peypouquet-Sorin [269] and Alvarez-Peypouquet [14]).
We discuss into more details this comparison in Section 6.3.1. Given a global solution of (SD)
(in a sense to precise), we prove in Proposition 6.1.7 that it has a descent property:

∀s, t ∈ [0,+∞[, s ď t⇒ F (u(t)) ĺ F (u(s)).

Then, we study the asymptotic behaviour of a trajectory u(·) in Theorem 6.2.6. We prove in
particular in the convex case that, when t goes to +∞, the trajectory u(t) weakly converges to
a weak efficient point of (VOP). Weaker results are obtained in the more general quasi-convex
setting. Section 6.3 is devoted to some numerical simulations of this dynamic in the multi-
objective setting. In particular, we agree with [248] which observe that the steepest descent
dynamic is efficient to recover nonconvex Pareto fronts. The fact that a convex combination of
the objective functions is chosen dynamically in (SD) seems to be an advantage, contrary to
the weighting method.

Chapter 7 is entirely devoted to the question of the existence of trajectories for (SD), in
the nonsmooth convex case. Our proof relies essentially on two ingredients, like in [28]: a
Moreau-Yosida regularization for ∂CF , and Peano’s theorem. In particular, because of Peano’s
existence theorem, we have to assume that X has finite dimension. We cannot hope to use
the Cauchy-Lipschitz theorem, because the vector field governing (SD) is not locally Lipschitz
continuous (see Remark 6.1.16). As a consequence, for now, the uniqueness of the trajectories
remain an open problem. In Section 7.1, we give a first result of existence in the smooth case,
using an abstract result from [28]. In Section 7.2, we prove the existence of trajectories of (SD)
in the nonsmooth convex multi-objective case. In this favorable setting, we only deal with a
finite number of objective functions, on which we can apply a Moreau-Yosida regularization. In
Section 7.3, we focus on the general vector case, and the main difficulty lies in the definition
of an appropriate regularization for ∂CF . This technical question (which has its own interest)
is addressed in Sections 7.3.1 and 7.3.2. This being done, we are able to prove Theorem 7.0.1
which establishes the existence of global trajectories for (SD).

Finally, in Chapter 8, we open a completely new road: an inertial approach to multi-
objective optimization problems. Indeed, generating a set of Pareto points asks the simulation
of a consequent number of trajectories (using the steepest descent dynamic (SD), or a weighting
method). The problem is that these methods are quite slow to converge, and we look for
fast methods, which arise in general by considering second-order methods. It already exists
methods involving second-order informations in space, using the curvature (second derivatives)
of the objective functions. These are the Newton (or quasi-Newton) methods for multi-criteria
optimization [160, 175, 277]. Nevertheless, they can be expensive, due to the necessity to solve
a quadratic problem at each iteration.

In scalar-valued optimization, inertial methods, which involve second-order information in
time, are very popular because they are quick to converge, and easy to implement. In the same
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spirit than [276, 29], we look for an inertial version of the steepest descent dynamic, called the
Inertial Steepest Descent with Friction:

(ISDF) ü(t) + γu̇(t) + ∂CF (u(t))0 = 0,

where γ > 0 can be interpreted as a friction parameter. We restrict ourselves in Chapter 8 to
the multi-objective case, and assume that F = (f1, ..., fm) is convex and of class C2. We prove
the existence of global trajectories for (ISDF) in Theorem 8.1.5, and study the asymptotic
behaviour of its solutions. In particular, we show in Theorem 8.2.8 that the trajectories of
(ISDF) weakly converge to weak Pareto points. We think that this first approach opens the
road to future studies of Nesterov-like algorithms for multi-objective optimization problems.

We end this introduction with some practical comments on the structure of the thesis. Since
it is separated in two independent parts, we chose not to write a general conclusion. Instead,
we placed at the end of each chapter a small concluding section, in which we discuss in detail
particular points of the chapter, or present some directions of research for the future.

This thesis resulted in two published papers [163, 27], and a preprint which should be
submitted soon [26].

The article [163] comes from a joined work with P. Frankel and J. Peypouquet. It has been
split in two parts, covering the Sections 3.2 and 3.3 of Chapter 3, and Section 4.1 of Chapter 4.
The rest of Chapters 3 and 4 are unpublished, and have been mostly written during the redaction
of [163]. Most of the contents of Chapters 5 to 7 for the multi-objective optimization problems,
results from a collaboration with H. Attouch and X. Goudou, published in [27]. Chapter 8
comes from a joint work with H. Attouch, whose preprint should be submitted soon [26]. The
notions and results of Chapter 5 to 7, concerning the general vector optimization problem are
new, in particular Section 7.3. Some developments for the multi-objective setting are also new,
such as Sections 5.2.2 or 6.3.
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Chapter 2

Variational analysis tools in Banach
spaces

In this introducing chapter, we present the basic notions and tools which will be needed along
this thesis. It is also the occasion to fix some notations. As much as we could, we avoided
the proofs in this chapter, referring properly to some textbooks. If a result is given without
reference, this means that its proof is putted into Appendix A. The idea is that the reader can
quickly browse through this introductory chapter, and focus only on what he could not know.

The content of this chapter is the following: In Section 2.1 we recall classic properties of
the convex sets and cones, which can be found in the textbooks of Aliprantis and Border [5]
and Fabian and al. [153]. In Section 2.2, we present some of the most standard tools used
in nonsmooth optimization, such as the Fréchet, limiting or Clarke subdifferentials, and the
corresponding tangent and normal cones. See the books of Clarke [111], Mordukhovich [244]
and Penot [263] for a wide account on this subject. Section 2.3 is devoted to the notions involved
in vector optimization problems, in particular the important notion of base for a cone. The
majority of the results there comes from the books of Dinh [139] and Jahn [206].

In this thesis, we will consider functions F : X −→ Y, where X will often be a Hilbert
space. While in Part I we will consider extended-real-valued functions, in Part II we will deal
with functions taking values in a general Banach spaces. This is why most of this introductory
chapter considers objects in a Banach space. Moreover, we will need to state some results which
applies for both the norm and weak topologies in X, or the weak∗ topology in X∗. This is why, in
this chapter, we will sometimes work in the general setting of a topological vector space (X, τ).
In the interest of the sanity of the reader, we will not recall here all the basic necessary notions
about topological vector spaces, and refer for this material to the excellent book [5].

Let us fix some notations which will be used throughout this thesis. Given a real Banach
space (X, ‖ · ‖X), we note X∗ its topological dual space, which is also a Banach space once
equipped with its operator norm ‖ · ‖X∗ . If there is no ambiguity on the space we work with, we
will just note ‖x‖ (resp. ‖x∗‖) instead of ‖x‖X (resp. ‖x∗‖X∗). We note BX and BX∗ the unit
balls of X and X∗, respectively.

The primal space X can be equipped with the weak topology w(X,X∗), which is the weakest
(or coarser) topology that makes all the linear forms x∗ ∈ X∗ continuous. We will also equip the
dual X∗ with the weak-star topology w∗(X∗,X), which is the restriction to X∗ of the pointwise
convergence topology of RX. In all this document, we will write w∗ instead of w∗(X∗,X), and w
instead of w(X,X∗).

If we have to mention some topological property (such as closedness, compactness, conver-
gence, continuity, ...), we shall precise for what topology it refers to, except for the case of the
norm topology. For instance, a set will be said weakly closed if it is closed for the weak topology.
If we just mention that it is closed, it means that we implicitly refer to the norm topology of
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the ambient space.
Given a topological vector space (X, τ), we will write clτ A for the closure of A ⊂ X with

respect to the topology τ . Whenever a sequence (xn)n∈N is τ -convergent to some x, we note
xn

τ−→
n→+∞

x. For such topological space, we also note X∗ its topological dual, and note w∗ the

corresponding weak∗ topology on X∗. We shall use the fact that, in that case, the topological
dual of (X∗, w∗) is X.

Since we deal with weak topologies in Banach spaces, which are not sequential, we are
going to use nets to characterize continuity or closedness. Generically, we will use nets (xα)α∈A
indexed by a directed set A. Sometimes, using for instance an argument involving weak∗

compactness in X∗, we will make use of subnets. A subnet of (xα)α∈A is (xf(β))β∈B, for some
directed set B and a final monotone function f : B → A. To lighten the notations, we will
abusively write (xβ)β∈B instead of (xf(β))β∈B when referring to such subnet.

2.1 Basic topology and differential calculus

2.1.1 Convex sets

Let (X, τ) be a Banach space. We recall that C ⊂ X is said to be convex if

for all x ∈ C, y ∈ C, λ ∈ [0, 1], λx+ (1− λ)y ∈ C.

According to Hahn-Banach separation theorem [325, Theorem 1.1.5], closed convex sets are
exactly the weakly closed convex sets. In particular, for any convex set C ⊂ X, the norm
closure and weak closure coincide: clC = clw C. An other consequence of the Hahn-Banach
theorem is that the convex sets in X can be written as the intersection of all closed half-spaces
which contain it [5, Corollary 5.83]. When a set C is defined as a finite intersection of closed
half-spaces, we say that C is a polyhedron.

Given A ⊂ X, its convex hull is defined by

(2.1) coA =

{
m∑
i=1

θiai | m ∈ N, (θi) ∈ ∆m, (xi) ⊂ A

}
,

where ∆m denotes the unit simplex in Rm

∆m :=

{
θ = (θi) ∈ Rm |

m∑
i=1

θi = 1 and θi ě 0 ∀i ∈ {1, ...,m}

}
.

If A =
m⋃
i=1

Ai, we just note its convex hull coAi instead of co

{
m⋃
i=1

Ai

}
, if there is no ambiguity

on the index i. If the sets (Ai)i∈{1,...,m} are convex, the convex hull of
m⋃
i=1

Ai admits the more

simple representation (see [5, Lemma 5.29]):

(2.2) coAi =

{
m∑
i=1

λiai | (λi) ∈ ∆m, ai ∈ Ai

}
.

The convex hull of a finite set is called a polytope. Polytopes are always compact [5, Corollary
5.30], and coincide with polyhedrons whether X has finite dimension1 [5, Theorem 7.79].

Are the topological properties of a set conserved after taking its convex hull? The answer
is in general negative:

1In fact, the fact that all polytopes are polyhedrons characterizes the finite dimension, since polyhedrons
cannot be compact in an infinite dimensional space.
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Example 2.1.1. The convex hull of a closed set is not necessary closed. Take for instance
A = {(0, 0)} ∪ R× {1} in R2.

Example 2.1.2. The convex hull of a compact set is not necessary compact. Take for instance
A = {0} ∪ {u1, u2, ...} in `2(N), where un = 1

nen. Here, (en)n∈N is the usual canonical basis.
Then it can be shown that A is compact but its convex hull is not even closed, for the norm
topology (see [5, Example 5.34]).

Nevertheless, the answer is yes in some cases. For instance the convex hull of a finite set (hence
compact) is compact. More generally, if A is structured as a finite union of convex compact sets
(see also [5, Theorems 5.35 and 6.35]):

Proposition 2.1.3 ([5, Lemma 5.29]). Let (X, τ) be a topological vector space. Suppose that

A =
m⋃
i=1

Ai with the Ai being convex and compact. Then coA is compact.

We note coA the closed convex hull of A ⊂ X, defined as the closure of coA for the norm
topology (or equivalently, the weak topology). It can also be defined as the intersection of all
closed convex sets containing A. Equivalently, we note co∗A := clw∗ coA the weakly∗ closed
convex hull of a set A ⊂ X∗.

Given a nonempty A ⊂ X∗, define the support function of A as

σA : X −→ R ∪ {+∞}
x 7−→ sup

x∗∈A
〈x∗, x〉,

where 〈·, ·〉 denotes the dual pairing between X∗ and X. It is lower semi-continuous and sublinear,
and even continuous if A is weakly∗ compact (see Proposition A.3.4). Clearly, σA = σco∗A, but
we have a stronger and very useful characterization:

Theorem 2.1.4. For all A,B ⊂ X∗ nonempty, σA = σB ⇔ co∗A = co∗B.

This theorem is a direct consequence of the bijection between weakly∗ closed convex sets and
lower semi-continuous sublinear functions (see [5, Theorem 7.51], or [111, Proposition 2.1.4]).

A last interesting notion about convex sets are the extreme points. Given a convex set C,
we say that x ∈ C is an extreme point of C if C \ {x} is still a convex set. The Krein-Milman
theorem [5, Theorem 7.68] ensures that in a locally convex separated topological vector space,
any convex compact set can be written as the closed convex hull of its extreme points. The
polytopes are exactly the sets having a finite number of extreme points [5, Lemma 7.76].

2.1.2 Cones and duality

A set K ⊂ X is said to be a cone if R+K ⊂ K, where R+ := [0,+∞[. A set S ⊂ X is said to
be a strict cone if R++S ⊂ S and 0 /∈ S, where R++ :=]0,+∞[. Once given an arbitrary set A,
one can consider its conical hull as R+A. As before, a natural question is to know whether if a
set remains closed by taking its cone hull (it is obviously false for the compact property since
a nontrivial cone is always unbounded). It is a question of interest, see for instance a direct
application in Theorem 5.2.12.

Example 2.1.5. Take X = R2 and consider A = {(x, y) ∈ R2
+ | xy = 1}. It is a closed set, but

R+A = R2
++ ∪ {(0, 0)} is not.

Example 2.1.6. Take X = R2 and take A as the closed disc of center (1, 0) and radius 1 in R2.
It is a closed (and even compact) set, but R+A = (R++ × R) ∪ {(0, 0)} is not closed.
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We see here that the conical hull of a closed set can fail to be closed. In Example 2.1.5, it
comes from a lack of boundedness of A. In Example 2.1.6, it comes from the infinite number of
rays arising from 0 ∈ bdA. In fact a positive result for compact sets can be obtained under a
finiteness assumption (see [5, Corollary 5.25]), or if 0 /∈ A (the proof is left in Appendix):

Proposition 2.1.7. In a Hausdorff locally convex topological vector space (X, τ), let A ⊂ X be
a compact set not containing the origin. Then R+A is closed.

The end of this section is devoted to dual objects. Given a Banach space (X, ‖ · ‖) and a
nonempty A ⊂ X, we define the polar set of A in X∗ by

(2.3) A∗ := {x∗ ∈ X∗ | 〈x∗, x〉 ď 1 ∀x ∈ A}.

One sees immediately that A∗ is a weakly∗ closed convex set containing the origin.

Example 2.1.8. Let A be the unit ball BX of a normed space X, then A∗ is the unit ball BX∗
of X∗. Indeed, x∗ ∈ (BX)∗ ⇔ sup

‖x‖ď1
〈x∗, x〉 ď 1⇔ ‖x∗‖ ď 1⇔ x∗ ∈ BX∗ .

If K is a cone, its polar is also a cone, called the polar cone, which can be equivalently defined
by

(2.4) K∗ := {x∗ ∈ X∗ | 〈x∗, x〉 ď 0 ∀x ∈ K}.

It can be also useful to consider its dual cone K+, which is just the opposite of the polar cone

K+ := −K∗ = {x∗ ∈ X | 〈x∗, x〉 ě 0 ∀x ∈ K}.

When X is a Hilbert space, we say that a cone is self-dual whenever K = K+.

Example 2.1.9.

• If A is a closed linear subspace of a Hilbert space, then A∗ is its orthogonal.

• If A = R+ × {0} in R2 then A∗ = R− × R.

• If A is the orthant cone Rm+ := {x ∈ Rm | xi ě 0} then A∗ = −A. It is an example of
self-dual cone.

• The cone of symmetric positive real matrices Sm+ (R) in Mm(R), or the cone of almost-
everywhere positive functions L2

+([0, 1],R) in L2([0, 1],R) are also examples of self-dual
cones.

Given a set B ⊂ X∗, we can naturally2 define its polar in X by

(2.5) B∗ := {x ∈ X | 〈x∗, x〉 ď 1 ∀x∗ ∈ B}.

It is a natural question to compare a set A and its bipolar (A∗)∗. For instance, a cone K ⊂ X
is closed and convex if and only if K = (K∗)∗. Equivalently, a cone K ⊂ X∗ is weakly∗ closed
and convex if and only if K = (K∗)∗ (see [153, Theorems 3.38, 3.45]).

Let us give a word on the particular case of (X, 〈·, ·〉) being a Hilbert space. In that setting,
a cone and its dual can be considered to live in the same space, and we can derive a direct sum
decomposition result, due to Moreau [246] (see also [51, Theorem 6.29]):

2In fact, given a general topological vector space (X, τ), we can define the polar of A ⊂ X as a set in (X, τ)∗.
Hence, when considering a set A in the dual of a Banach space X∗, it is enough to endow it with the weak∗

topology in order to obtain A∗ in the primal X, since (X∗, w∗)∗ = X.
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Theorem 2.1.10. (Moreau) Let X be a Hilbert space and K ⊂ X a closed convex cone. Then,
for all x ∈ X, there exists a unique couple (xK , xK∗) ∈ K ×K∗ such that

(2.6) x = xK + xK∗ and 〈xK , xK∗〉 = 0.

In that case, xK = projK(x) and xK∗ = projK∗(x). In particular, ‖x‖2 = ‖projK(x)‖2 +
‖projK∗(x)‖2.

In this Theorem, we used the projection operator proj : X⇒ X, which is defined as follows: for
a nonempty set A in a Banach space X and x ∈ X, the projection of x onto A is the set noted
projA(x) defined as

projA(x) := argmin
a∈A

‖x− a‖.

If X is a Hilbert space and A ⊂ X is a nonempty closed convex set, then projA(x) reduces to a
single point, which is the situation occurring in Moreau’s decomposition theorem.

We end with polyhedral cones in a topological space (X, τ). A cone K is said to be polyhedral
if there exists a finite family {x1, ..., xm} ⊂ X such that

K = R+co{a1, ..., am}.

In other words, a polyhedral cone is the cone hull of a polytope. According to a well-known result
(see [154, 317, 309, 102] or more recently [77, Theorem 5.1.7]), when X has finite dimension, a
cone K is polyhedral if and only if it is a polyhedron. Equivalently, if there is a finite number
of linear forms {x∗1, ..., x∗m} ⊂ X∗ such that

K = {x ∈ X | 〈x∗i , x〉 ď 0, ∀i ∈ {1, ...,m}}.

Exploiting both definitions, it is easy to see that in the finite dimensional setting, a cone K is
polyhedral if and only if its polar cone K∗ is polyhedral. Note that the finite dimension of X is
guaranteed as soon as K is a polyhedral cone with a nonempty interior.

2.1.3 Differential and directional derivative

We set here some differentiability notions for a function F : X −→ Y, where X and Y are two
Banach spaces.

We say that F is directionally derivable at x̄ ∈ X in the direction d ∈ X if the following limit
exists in (Y, ‖ · ‖)

lim
t↓0

F (x̄+ td)− F (x̄)

t
.

In such a case, this limit is noted DF (x̄; d), and called the directional derivative of F at x̄ in
the direction d. We shall say that F is directionally derivable at x̄ if DF (x̄; d) exists for all
d ∈ X. We directly see from the definition that, if F : X −→ Y is directionally derivable at x̄,
and A ∈ L(Y,Z) for some Banach space Z, then A ◦ F is also directionally derivable at x̄, with

∀d ∈ X, D(A ◦ F )(x̄; d) = A(DF (x̄; d)).

The function F is said to be Gateaux differentiable at x̄ ∈ X if it is directionally derivable
at x̄, and if the application

DF (x̄) : X −→ Y

d 7−→ DF (x̄; d)

is linear and continuous (for the norm topologies of X and Y). In that case, we say that DF (x̄)
is the differential (or Gateaux derivative) of F at x̄. We will also note D∗F (x̄) ∈ L(Y∗,X∗) the
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adjoint of DF (x̄). If F is Gateaux differentiable at each point of an open set U ⊂ X, we can
consider the differential of F

DF : U −→ L(X, Y).

We say that F is strictly Gateaux differentiable at x̄ if there exists A ∈ L(X, Y) which satisfies
the stronger property

lim
x→x̄
t↓0

F (x+ td)− F (x)

t
= A(d).

In that case, A is unique and equals DF (x̄). Since we ask the point x to ‘move’ around x̄, we
can interpret this stronger notion as a form of continuity of DF (·, d) around x̄. More precisely,
we have:

Proposition 2.1.11. Let F : X −→ Y be Gateaux differentiable on an open set U ⊂ X. Then,
for all x̄ ∈ U , the following is equivalent:

i) F is strictly Gateaux differentiable at x̄,

ii) DF : U −→ L(X, Y) is pointwise continuous at x̄, i.e. continuous with respect to the norm
topology of X and the pointwise3 topology of L(X, Y). In other words, for all converging

net (xα)α∈A ⊂ U converging to x̄, we have DF (xα; d)
‖·‖Y−−→
α∈A

DF (x̄; d) for all d ∈ X.

We will also use the differentiability in the sense of Fréchet. F is said to be Fréchet differ-
entiable at x̄ if there exist a continuous operator A ∈ L(X, Y) such that

lim
x→x̄

F (x)− F (x̄)−A(x− x̄)

‖x− x̄‖
= 0.

Similarly, F is strictly Fréchet differentiable at x̄ if there exists A ∈ L(X, Y) such that

(2.7) lim
x→x̄
x′→x̄

F (x)− F (x′)−A(x− x′)
‖x− x′‖

= 0.

In both cases, F is Gateaux differentiable and the operator A is equal to the differential DF (x̄).
Here also the strict Fréchet differentiability is somehow equivalent to the continuity of DF :

Proposition 2.1.12. Let F : X −→ Y be Fréchet differentiable on an open set U ⊂ X. Then,
for all x̄ ∈ U , the following is equivalent:

i) F is strictly Fréchet differentiable at x̄,

ii) DF : U −→ L(X, Y) is strongly continuous at x̄, i.e. continuous with respect to the norm
topology of X and the usual operator norm topology of L(X, Y).

We say that a function F : U ⊂ X −→ Y is of class C1 if it is Gateaux differentiable on U and
DF : U −→ L(X, Y) is strongly continuous. According to the Proposition above, functions of
class C1 on U are exactly the strictly Fréchet differentiable functions on U . We say moreover
that a function is of class C1,1 on U if its derivative DF : U −→ L(X, Y) is Lipschitz continuous.
Functions of class C1,1 enjoy the following property, very useful when studying descent methods
(see Chapter 4). Its proof can be found for instance in [268, Lemma 1.30].

Lemma 2.1.13. [Descent lemma] Let U be an open subset of X. Let f : X −→ R be a function
of class C1, its derivative being L-Lipschitz continuous on U . Then, for all x1, x2 ∈ X,

f(x2)− f(x1)− 〈Df(x1), x2 − x1〉 ď
L

2
‖x2 − x1‖2.

3The pointwise topology is the locally convex topology τpw on L(X, Y) defined by the family of seminorms
{px}x∈X, where px : A ∈ L(X, Y) 7→ ‖Ax‖Y . This topology is also called the weak operator topology.
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2.2 Nonsmooth analysis for extended-real-valued functions

All along this section, X is a Banach space and we consider a function f : X −→ R ∪ {+∞}.
The domain of f is

dom f := {x ∈ X | f(x) ∈ R}.

We say that f is proper whenever dom f 6= ∅. The epigraph of f is

epi f := {(x, λ) ∈ X× R | f(x) ď λ}.

A convex function is a function for which the epigraph is convex. Equivalently, a function f
satisfying

∀x, x′ ∈ X, ∀t ∈ [0, 1], f(tx+ (1− t)x′) ď tf(x) + (1− t)f(x′).

For A ⊂ X, we define the Lipschitz modulus of f on A by

Lip(f,A) := sup
x 6=x′∈A

|f(x′)− f(x)|
‖x′ − x‖

∈ [0,+∞].

We say that f is Lipschitz continuous on A if Lip(f,A) < +∞. If A = X, F is said to be
globally Lipschitz continuous. We say that f is locally Lipschitz continuous at x̄ ∈ X if there
exists some neighborhood U of x̄ on which f is Lipschitz continuous. In that case, we will note
Lip(f, x̄) instead of Lip(f, U).

2.2.1 Fenchel analysis

Given a nonempty set Ω ⊂ X and x ∈ Ω, we define respectively the radial tangent cone and the
admissible tangent cone by

T rΩ(x) := R+(Ω− x) = {d ∈ X | ∃t > 0, x+ td ∈ Ω},
T adΩ (x) := {d ∈ X | ∃ε > 0, ∀t ∈]0, ε[, x+ td ∈ Ω}.

An equivalent way to define the radial cone T rΩ(x) is to see it as the cone hull of Ω− x:

T rΩ(x) = R+(Ω− x).

According to Proposition 2.1.7 there is no particular reason for T rΩ(x) to be closed, since 0 ∈
Ω− x.

Example 2.2.1.

• Let Ω = R2
+ ∪ R2

− ⊂ R2, then T rΩ((0, 0)) = T adΩ ((0, 0)) = Ω. In particular these cones can
fail to be convex.

• Let Ω = {(x, y) ∈ R2 | (x − 1)2 + (y)2 ď 1} be a disc in the plane. Then T rΩ((0, 0)) =
T adΩ ((0, 0)) = {(x, y) ∈ R2 | x > 0}. We see here that these cones are not closed in general,
even if Ω is closed.

• Let Ω = {(x, y) ∈ R2 | (x − 1)2 + (y)2 = 1} be a circle in the plane. Then T rΩ((0, 0)) =
{(x, y) ∈ R2 | x > 0}, while T adΩ ((0, 0)) = ∅. Hence, these cones doesn’t coincide in
general.

It is clear that T adΩ (x) ⊂ T rΩ(x) always holds, and the equality between these cones will char-
acterize a geometrical property of Ω, as shown below (see Proposition A.2.1 in Appendix A.2).
We say that Ω is radial (or absorbing) at x if for all y ∈ Ω, there exists a neighborhood U of x
such that [x, y] ∩ U ⊂ Ω holds.
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Proposition 2.2.2. Let x ∈ Ω ⊂ X. Then T adΩ (x) = T rΩ(x) if and only if Ω is radial at x. In
particular T adC (x) = T rC(x) for all x ∈ C when C is convex.

Given the radial cone, we define the Fenchel tangent cone TΩ(x) as the closure of the radial
cone T rΩ(x), with respect to the norm topology of X. In other words,

TΩ(x) := clR+(Ω− x).

We also define the Fenchel normal cone NΩ(x) as the polar cone of TΩ(x), which is convex and
weakly∗ closed. It is quite immediate from the definitions to see that this normal cone admits
the equivalent formulation, involving an obtuse angle property:

(2.8) NΩ(x) = {x∗ ∈ X∗ | ∀y ∈ X, 〈x∗, y − x〉 ď 0}.

Consider now a function f : X −→ R ∪ {+∞}. Given x ∈ dom f and d ∈ X, we define the
lower Dini directional derivative of f at x in the direction d by

dD−f(x; d) := lim inf
t↓0

f(x+ td)− f(x)

t
,

which can possibly take infinite values.

We are now in position to define the Fenchel subdifferential of f at x ∈ dom f . For this,
consider the following sets:

i) {x∗ ∈ X∗ | ∀y ∈ X, f(y)− f(x)− 〈x∗, y − x〉 ě 0},

ii) {x∗ ∈ X∗ | x is a global minimum of y 7→ f(y)− 〈x∗, y〉},

iii) {x∗ ∈ X∗ | (x∗,−1) ∈ Nepi f (x, f(x))},

iv) {x∗ ∈ X∗ | ∀d ∈ X, 〈x∗, d〉 ď dD−f(x; d)}.

Hence the first three sets always coincide, and we call it the convex subdifferential of f at x,
noted ∂f(x). Moreover, the fourth set always contains ∂f(x), with equality when f is convex
(see Appendix A.2). We pose ∂f(x) = ∅ when x /∈ dom f , and define the domain of ∂f as

dom ∂f := {x ∈ X | ∂f(x) 6= ∅}.

Remark 2.2.3. These different presentations of ∂f(x) reunify almost all of the different classical
approaches to build a subdifferential in a nonconvex setting. In general, we will replace a global
property (characteristic of convex functions) by a local one.

The first set describes the elements of ∂f(x) as the slope of some global exact affine mi-
norant. In the nonconvex setting, we will drop the global assumption and ask for some lo-
cal/asymptotically affine minorant (Fréchet [244], Lipschitz-Smooth [36] subdifferentials). In-
stead of asking for exact affine minorant, we can also consider affine minorant, which are exact
up to a small constant ε, leading to the so-called approximate subdifferentials (approximate
Fréchet [244], Hadamard subdifferentials[201]).

In the second set, we can see the viscosity approach: we take x∗ as a subgradient at x if and
only if there exists some ‘smooth’ function g defined in the neighbourhod of x satisfying∇g(x) =
x∗ and x is a local minimum of f − g. For the convex subdifferential, we restrict ourselves to
linear functions, but with this general approach we could consider a broader class of functions.
The most important point is the following: what do we mean by ‘smooth’ function? We can take
for definition the Fréchet differentiability, or the Gateaux differentiability, but more generally
we can consider differentiability relatively to a given bornolgy. This construction leads to the
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family of the so-called viscosity subdifferentials, sometimes called bornology subdifferentials or
β-subdifferentials (in particular the Fréchet or Gateaux subdifferentials, see [202]).

The third set corresponds to what we call a geometric subdifferential. We built a geometric
tool which gives local informations of a set, namely a normal cone, and we derive local property
of f by looking at the local property of its epigraph in X × R. Here the convex normal cone
is built as the polar cone of a tangent cone, but one can consider other ways to define it, in
particular if one wants a normal cone not necessarily convex. It can be defined through a local
obtuse angle property like in (2.8) (see the Fréchet or Lipschitz-Smooth normals), or using the
subdifferential of the distance function (see the Clarke-Rockafellar normals [111], and also the
proximal normals in Hilbert spaces [202]).

The fourth set corresponds to what could be called an analytic subdifferential. We compute
some directional derivative and take ∂f(x) as the set of its linear minorants. See the family of
Dini derivative [36], Hadamard/Bouligand derivative [202], or the Clarke-Rockafellar derivative
[111, 38].

From its definition, the Fenchel subdifferential is clearly convex and weakly∗ closed, and
satisfies the following Fermat’s rule:

x is a global minimum of f ⇔ 0 ∈ ∂f(x).

Moreover, the Fenchel subdifferential is consistent with the Fenchel normal cone. Indeed, for
any set Ω ⊂ X and x ∈ X, the Fenchel normal cone NΩ(x) is exactly ∂δΩ(x), the Fenchel
subdifferential of δΩ the indicator function of Ω. It is also an easy exercise to show the following
closure properties of the graph of ∂f : X⇒ X∗.

Proposition 2.2.4. Let f : X −→ R ∪ {+∞} be lower semi-continuous at x ∈ X. Let
(xα, x

∗
α)α∈A be a bounded net in X× X∗ such that

xα
‖·‖−−→
α∈A

x and x∗α
w∗−−→
α∈A

x∗ with x∗α ∈ ∂f(xα).

Then x∗ ∈ ∂f(x). Suppose now that f : X −→ R ∪ {+∞} is weakly lower semi-continuous at
x ∈ X. If (xα, x

∗
α)α∈A is a bounded net in X× X∗ such that

xα
w−−→

α∈A
x and x∗α

‖·‖−−→
α∈A

x∗ with x∗α ∈ ∂f(xα),

then x∗ ∈ ∂f(x).

Remark 2.2.5. In the nonconvex setting, a common practical consists in enlarging a given
subdifferential by closing its graph, sequentially or topologically (see for instance the limiting
Fréchet/Mordukhovitch subdifferential [244], or the limiting Dini/Approximate subdifferential
[201]). These limiting subdifferentials are in general more robust and have better calculus rules,
see [244, 263].

The Fenchel subdifferential is essentially useful if f is convex4 , in which case it satisfies the
most interesting properties. For instance if f is convex, then the Gateaux differentiability at
x̄ ∈ int dom f implies

∂f(x) = {DF (x)}.

The reverse is also true as soon as we assume f being continuous at x [325, Theorem 2.4.4,
Corollary 2.4.10]. Still in the convex case, the Fenchel subdifferential enjoys the following sum
rule.

4In fact, we can even show that the Fenchel subdifferential of f coincides on dom ∂f with the Fenchel subdif-
ferential of its closed convex envelope, see [325, Theorem 2.4.1].
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Proposition 2.2.6 ([21, Theorem 9.5.4]). Let f, g : X −→ R ∪ {+∞} be two proper lower
semi-continuous convex functions. Then,

for all x ∈ X, ∂f(x) + ∂g(x) ⊂ ∂(f + g)(x).

If moreover f is continuous at some x̄ ∈ dom g, then

∂f(x̄) + ∂g(x̄) = ∂(f + g)(x̄).

In the convex case, we also have a nice relationship between the Fenchel subdifferential and the
sublevel sets (see [263, Proposition 5.48] together with Proposition 2.1.7):

Proposition 2.2.7. Let f : X −→ R be a continuous convex function. Let x̄ ∈ X be such that
0 /∈ ∂f(x̄), and note [f ď f(x̄)] := {x ∈ X | f(x) ď f(x̄)} be the sublevel set of f at x̄. Then,

N[fďf(x̄)](x̄) = R+∂f(x̄).

Remark 2.2.8. The fact that the Fenchel subdifferential is normal to the sublevel sets is
important in Hilbert spaces, since it helps to find descent directions. For instance, we can show
that the element of minimal norm of −∂f(x̄) is a descent direction for f at x̄ (see Chapter 5).

In the nonconvex setting, there has been some attempts to define a subdifferential satisfying
this relationship with the sublevel sets. This is the approach in [75, 37, 38], and it is well adapted
to the study of quasiconvex functions (whose sublevel sets are convex, see Section 2.2.5).

We will introduce in Chapter 5 a subdifferential for functions with values in ordered vector
spaces, which satisfies this same nice property.

2.2.2 Bouligand analysis

Given a nonempty set Ω ⊂ X, we define the Bouligand tangent cone (also called contingent
tangent cone) by:

(2.9) TBΩ (x) := {d ∈ X | ∃dn → d, ∃tn ↓ 0, x+ tndn ∈ Ω} if x ∈ Ω, TBΩ (x) = ∅ else.

It is a closed cone (see Proposition A.2.4), but not necessarily convex5. We compare the
Bouligand tangent cone to the previously seen radial, admissible and Fenchel tangent cones:

Proposition 2.2.9. Let x ∈ Ω ⊂ X. Then:

i) clT adΩ (x) ⊂ TBΩ (x) ⊂ clT rΩ(x) = TΩ(x),

ii) If Ω is radial at x, then the above inclusions become equalities. In particular TBΩ (x) =
TΩ(x).

Given the Bouligand tangent cone, we can introduce the corresponding Bouligand normal cone
by taking its polar cone:

NB
Ω (x) := {x∗ ∈ X∗ | 〈x∗, d〉 ď 0 ∀d ∈ TBΩ (x)}.(2.10)

It is clearly a weakly∗ closed convex cone in X∗. Observe that, since TBΩ (x) is not convex, the
polar cone of NB

Ω (x) is generally strictly bigger than TBΩ (x).

Now, through a classic ‘geometric’ procedure using the normal cone to the epigraph, we
define the Bouligand subdifferential of any function f : X→ R ∪ {+∞} at x ∈ X as:

(2.11) ∂Bf(x) := {x∗ ∈ X | (x∗,−1) ∈ NB
epi f (x, f(x))} if x ∈ dom f, ∂Bf(x) = ∅ else.

5Take Ω = R2
+ ∪ R2

− ⊂ R2, such that TBΩ ((0, 0)) = Ω.
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It is a weakly∗ closed convex set, and its definition is consistent with the previously defined
Bouligand normal cone, i.e. NB

Ω (x) = ∂BδΩ(x) (see [263, Proposition 4.13]). Moreover, according
to Proposition 2.2.9, the Bouligand subdifferential coincides with the Fenchel one whenever f
is a convex function.

Define now the Bouligand directional derivative (also called contingent, lower Hadamard or
lower Dini-Hadamard directional derivative) of f at x ∈ dom f in the direction d ∈ X:

(2.12) dBf(x; d) := liminf
d′→d, t↓0

f(x+ td′)− f(x)

t
.

From its definition, dBf(x; ·) is lower semi-continuous, but not convex in general6. As we can
expect from the notations, this partial derivative is directly related to the previous Bouligand
subdifferential (see [263, Corollary 4.15]):

(2.13) ∂Bf(x) = {x∗ ∈ X | ∀d ∈ X, 〈x∗, d〉 ď dBf(x; d)}.

Remark 2.2.10. The property ∂Bf(x) = {x∗ ∈ X | ∀d ∈ X, 〈x∗, d〉 ď dBf(x; d)} is generally
called geometric consistency of the subdifferential. As a direct consequence, one has

(2.14) sup
x∗∈∂Bf(x)

〈x∗, d〉 ď dBf(x; d).

Equality instead of inequality in (2.14) would be called analytic consistency, but it does not
hold in general. Take for instance f : x ∈ R 7→ −|x| ∈ R, then dB(0, d) = −|d| while ∂Bf(0) = ∅,
so sup

x∗∈∂Bf(0)

〈x∗, d〉 = −∞. In the light of [5, Theorem 7.51], and since ∂Bf(x) is defined as the

set of linear minorants of dBf(x; ·), one can see that analytic consistency holds if and only if
dBf(x; ·) is sublinear. See the example above where dBf(x; ·) is not even convex.

The Bouligand subdifferential enjoys the following chain rule, which will be useful in our
future study of dynamical systems (see Proposition A.2.5):

Proposition 2.2.11. Let u : I ⊂ R −→ X and f ◦ u : I −→ R ∪ {+∞}, where I is an open
interval of R. Suppose that both u and f ◦ u are derivable at t ∈ I, and that u(t) ∈ dom ∂Bf .
Then,

(f ◦ u)′(t) = 〈x∗, u̇(t)〉, ∀x∗ ∈ ∂Bf(u(t)).

2.2.3 Fréchet analysis

Given a function f : X −→ R∪ {+∞}, its Fréchet subdifferential at x̄ ∈ dom f is defined as the
set ∂Ff(x̄) of elements x∗ ∈ X∗ such that :

(2.15) lim inf
x→x̄
x 6=x̄

f(x)− f(x̄)− 〈x∗, x− x̄〉
‖x− x̄‖

ě 0.

As usual its domain dom ∂Ff is the (possibly strict or empty) subset of dom f of points x such
that ∂Ff(x) is nonempty. In the particular case of the indicator function of a closed set Ω ⊂ H,
we denote by NF

Ω := ∂FδΩ the Fréchet normal cone of F , which reduces to

NF
Ω(x̄) =

x∗ ∈ X∗ | Limsup
x

Ω−−→
x6=x̄

x̄

〈x∗, x− x̄〉
‖x− x̄‖

ď 0

 .

6Take for instance f : x ∈ R 7→ −|x| ∈ R, such that dB(0, d) = −|d|.
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For all x ∈ dom f , ∂Ff(x) is convex and closed for the norm topology, maybe empty7.
It is easy to see from the definitions that the Fenchel subdifferential ∂f is included in the

Fréchet one ∂Ff , and equality holds between them if f is convex [244, Theorem 1.93]. Now, by
taking x = x̄ + td′ in (2.15), we easily obtain the following dual relation between the Fréchet
subdifferential and Bouligand derivative:

(2.16) for all d ∈ X, sup
x∗∈∂Ff(x̄)

〈x∗, d〉 ď dBf(x; d).

We deduce directly from this inequality and Proposition 2.13 that, for all x ∈ X, ∂Ff(x) ⊂
∂Bf(x). In fact, Fréchet and Bouligand subdifferential coincide if X has finite dimension8 [290,
Proposition 6.5].

Let us give some calculus rules for this Fréchet subdifferential. We first observe that this
subdifferential is related to the Fréchet differentiability. Indeed, for f : X −→ R∪{+∞} Fréchet
differentiable at x̄ we have ([212, Proposition 1.1])

∂Ff(x̄) = {Df(x̄)}.

We now look at a sum rule. Given two functions f, g : X −→ R ∪ {+∞}, we have for all x̄ ∈ X

∂F(f + g)(x̄) ⊃ ∂Ff(x̄) + ∂Fg(x̄).

This comes immediately from the definition of ∂F (see also [263, Proposition 4.34]). If we assume
moreover that f is Fréchet differentiable at x̄ ∈ dom g, then we have equality ([263, Corollary
4.35])

∂F(f + g)(x̄) = {Df(x̄)}+ ∂Fg(x̄).

We introduce now the limiting Fréchet subdifferential (or just limiting subdifferential) by
taking the sequential closure of the graph of ∂Ff . More precisely, given f : X −→ R∪ {+∞}, it
consists in the set ∂Lf(x) of elements x∗ ∈ X∗ for which there exists:

• a sequence (xn)n∈N in X∗ such that xn
f−−→

n→+∞
x with xn ∈ dom ∂Ff ,

• a sequence (x∗n)n∈N in X∗ such that x∗n
w∗−−→

n→+∞
x∗ with x∗n ∈ ∂Ff(xn).

We used in this definition the notation xn
f−−→

n→+∞
x, which denotes the f -attentive convergence

of xn to x, and means that xn
‖·‖−−→

n→+∞
x, together with f(xn)

R−−→
n→+∞

f(x). As previously, we

define the domain dom ∂L, and the related limiting normal cone NL
Ω := ∂LδΩ. The limiting

subdifferential ∂Lf(x) is not necessarily weakly∗ closed9 neither convex10. Clearly, the Fréchet
subdifferential is included in the limiting one. Using Proposition 2.2.4, we also see that, if f is
a lower semi-continuous convex function, then its limiting subdifferential equals to the Fenchel
subdifferential.

Remark 2.2.12. It is important to notice that the Limiting subdifferential introduced here is
not the same than the one used for instance in the book of Mordukhovich [244]. In that case,
it involves approximate Fréchet subgradients in its definition, but both constructions coincide
in reflexive spaces [244, Theorem 2.34], which is far enough for our needs in Part I.

7Consider for instance f(x) = −|x|, for which ∂Ff(0) = ∅.
8In fact, in reflexive spaces, the Fréchet subdifferential can be seen as a weakly Bouligand subdifferential, since

it is exactly the set of linear minorants of a weak Bouligand derivative dBwf(x; d), see [212, Proposition 1.17] or
[244, Theorem 1.10].

9See [244, Example 1.7].
10Take f(x) = −|x|, whose limiting subdifferential at zero is ∂Lf(x) = {−1; +1}.
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If f is Fréchet differentiable at x̄, then DF (x̄) ∈ ∂Lf(x̄), but the limiting subdifferential
can be strictly larger (see [290, p. 304]). This is essentially because ∂Lf(x̄) “collects” some
information on f around x̄ and not at x̄. The strict Fréchet differentiability of f at x̄ guarantees
that ∂Lf(x̄) = {DF (x̄)} (see [244, Corollary 1.82]). In the same spirit, we have the following
sum rule:

Proposition 2.2.13 ([244, Proposition 1.107]). Let f, g : X −→ R ∪ {+∞}, with X being
reflexive. Assume that f is strictly Fréchet differentiable at x̄ ∈ dom g. Then,

∂L(f + g)(x̄) = {Df(x̄)}+ ∂Lg(x̄).

2.2.4 Clarke analysis

Given a locally Lipschitz continuous function f : X −→ R, its Clarke directional derivative at
x̄ ∈ X in the direction d ∈ X, is given by

(2.17) dCf(x̄; d) = limsup
x→x̄, t↓0

f(x+ td)− f(x)

t
.

Since f is locally Lipschitz continuous, for each x̄ ∈ X the function dCf(x̄; ·) : X→ R is globally
Lipschitz continuous. In particular the Clarke directional derivative has always finite values in
this context. Moreover, dCf(x̄; ·) is sublinear and, in particular, convex, and dCf(·; ·) : X×X→ R
is upper semi-continuous [111, Proposition 2.1.1].

As a dual notion, let us introduce the Clarke subdifferential ∂Cf(x) which is the subset of
X∗ defined for any x̄ ∈ X by

(2.18) ∂Cf(x̄) = {x∗ ∈ X∗ | 〈x∗, d〉 ď dCf(x̄; d) ∀d ∈ X}.

From (2.18) it is easily verified that this is a weakly∗ compact convex set, and Hahn-Banach’s
separation theorem guarantees that it is nonempty [111, Proposition 2.1.2]. Once again, if f
is convex it reduces to the Fenchel subdifferential [111, Proposition 2.2.7]. It must be noticed
that the Clarke directional derivative can be recovered from the Clarke subdifferential, since

(2.19) dCf(x̄; d) = max {〈x∗, d〉 | x∗ ∈ ∂Cf(x̄)}.

This max formula can be easily deduced from Theorem 2.1.4, see also Remark 2.2.10.

Let us give some calculus rules for the Clarke subdifferential. First of all, using basic
properties of the lim sup, we see that for two locally Lipschitz functions f, g : X −→ R, it always
holds

(2.20) for all x̄ ∈ X and all d ∈ X, dC(f + g)(x̄; d) ď dCf(x̄; d) + dCg(x̄; d).

By duality in (2.18), we also have

(2.21) for all x̄ ∈ X, ∂C(f + g)(x̄) ⊂ ∂Cf(x̄) + ∂Cg(x̄).

Similarly to the limiting subdifferential, the Clarke subdifferential is sensitive to the strict
Gateaux differentiability [111, Proposition 2.2.4]:

∂Cf(x̄) = {x∗} ⇔ f is strictly Gateaux differentiable at x̄ and Df(x̄) = x∗.

The Clarke subdifferential enjoys also an exact sum rule under a strict differentiability assump-
tion. If f, g : X −→ R are two locally Lipschitz functions such that f is strictly Gateaux
differentiable at x̄ ∈ X, then [111, Proposition 2.3.3]:

(2.22) ∂C(f + g)(x̄) = {Df(x̄)}+ ∂Cg(x̄).
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2.2.5 A last few things

Let us make some links between the subdifferentials we presented below. First note that, if
f : X −→ R is locally lipschitz continuous, we have for all x̄ ∈ X, and all d ∈ X,

lim inf
d′→d
t↓0

f(x̄+ td′)− f(x̄)

t
= lim inf

t↓0

f(x̄+ td)− f(x̄)

t
,

in other words,

(2.23) dBf(x̄; d) = dD−f(x̄; d).

Since we can easily compare lower Dini derivatives and Clarke derivatives, we deduce using
(2.18) and (2.13) that in the locally Lipschitz case,

(2.24) dBf(x̄; ·) ď dCf(x̄; ·) and ∂Ff(x̄) ⊂ ∂Bf(x̄) ⊂ ∂Cf(x̄).

In the Lipschitz case, we can also bound these subdifferentials [111, Proposition 2.1.1]:

Proposition 2.2.14. Let f : X −→ R be locally Lipschitz continuous at x̄. Then

∂Ff(x̄) ⊂ ∂Bf(x̄) ⊂ ∂Cf(x̄) ⊂ Lip(f, x̄)B.

We say that a locally Lipschitz continuous function f is Clarke regular at x̄ if f is direction-
ally derivable at x̄, and for all d ∈ X,

Df(x̄; d) = dCf(x̄; d).

Using (2.23) and (2.24), we see that f is Clarke regular at x̄ if and only if

dBf(x̄; ·) = dCf(x̄; ·),

which is also equivalent to

∂Bf(x̄) = ∂Cf(x̄).

We easily see in this Lipschitz case that strictly Gateaux differentiable functions are Clarke
regular. But it also true for convex functions, and any positive linear combination of Clarke
regular functions [111, Proposition 2.3.6].

Now, let f : X −→ R ∪ {+∞} be an arbitrary function. In [307, Theorem 6.1], Treiman
showed11 that for all x̄ ∈ X,

(2.25) co∗∂Lf(x̄) ⊂ ∂Cf(x̄),

the inclusion being an equality if X is reflexive. This implies in particular that

∂Ff(x̄) ⊂ ∂Lf(x̄) ⊂ ∂Cf(x̄).

An other concept of regularity is the lower regularity. We say that a function f : X −→ R
is lower regular at x̄ if ∂Ff(x̄) = ∂Lf(x̄). If X is reflexive and f locally Lipschitz, with the
representation formula (2.25) we can deduce that the lower regularity at x̄ is equivalent to ask
∂Ff(x̄) = ∂Cf(x̄). In that case, lower regularity implies Clarke regularity. Moreover, if X has
finite dimension, lower regularity and Clarke regularity coincide, because Bouligand and Fréchet
subdifferentials both coincide.

11Note that Treiman defines the limiting subdifferential trough ε-Fréchet subgradients, which gives a bigger
set than our, so the inclusion remains valid. For the equality in reflexive spaces, recall Remark 2.2.12.
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Equivalently, a closed set Ω ⊂ H is said lower regular at x̄ if NF
Ω(x̄) = NL

Ω(x̄). For instance (still
with X being reflexive), C2 manifolds, prox-regular sets, strictly Fréchet differentiable functions,
primal-lower-nice functions [118, Corollary 3.1] are lower regular.

It follows directly from its definition that the Fréchet subdifferential enjoys this Fermat’s
rule:

if x̄ is a local minimum of f, then 0 ∈ ∂Ff(x̄).

Of course, since ∂F is included in all other subdifferentials, the limiting and Clarke subdifferen-
tials enjoy also the same Fermat’s rule.

We end this section with a few words about quasi-convex functions. A function f : X −→
R ∪ {+∞} is said to be quasi-convex if for all x ∈ dom f , the sublevel set [f ď f(x)] is convex.
Equivalently,

∀x, x′ ∈ dom f, ∀t ∈ [0, 1], f(tx+ (1− t)x′) ď max{f(x), f(x′)}

These functions enjoy the following nice property, which generalizes a common fact for convex
functions (see Appendix A.2):

Proposition 2.2.15. Let f : X −→ R ∪ {+∞} be a quasi-convex function such that f(x2) ď

f(x1). Then 〈x∗, x2 − x1〉 ď 0 for all x∗ ∈ ∂Bf(x1) ⊃ ∂Ff(x1).

A similar property exists for the limiting and Clarke subdifferentials, under a slightly stricter
assumption:

Proposition 2.2.16. Let f : X −→ R ∪ {+∞} be a quasi-convex function such that f(x2) <
f(x1). Then 〈x∗, x2 − x1〉 ď 0 for all x∗ ∈ ∂Lf(x1). If f is locally Lipschitz then ∂L can be
replaced by ∂C.

2.3 Optimization for vector-valued functions

2.3.1 Ordered space

We say that a relation R on X is

• reflexive if {x ∈ X | xRx} = X,

• irreflexive if {x ∈ X | xRx} = ∅,

• transitive if ∀x, y, z ∈ X, xRy and yRz implies xRz,

• antisymmetric if ∀x, y ∈ X, xRy and yRx implies x = y.

We call order a reflexive and transitive relation12, strict order an irreflexive and transitive
relation. Observe that each order ĺ induces a strict order ň defined by x ň y iff x ĺ y and
x 6= y. In a similar way, each strict order ă induces an order 4 defined by x 4 y iff x ă y and
x = y.

If X is a vector space, we say that an order ĺ respects the vectorial structure of X if :

• ∀x1, x2, y1, y2 ∈ X, x1 ĺ y1 and x2 ĺ y2 implies x1 + x2 ĺ y1 + y2,

• ∀x, y ∈ X, λ ∈ R+, x ĺ y implies λx ĺ λy.

12In some books, reflexive transitive relations are called preorders, and antisymmetry is asked to be an order.
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In the same way, we say that a strict order ă respects the vectorial structure of X whether it
holds for the associated order 4. In the following, we will always assume that the considered
orders (resp. strict orders) respect the vectorial structure of X, without mentioning it.

In vector spaces, there is a natural correspondence between orders and convex cones. Con-
sider the following :

Given a relation R, define KR := {x ∈ X | 0Rx},

Given a set K, define xRKy ⇔ y − x ∈ K.

Then, it can be easily verified that the above constructions define a one-to-one correspondence
between the orders (resp. strict orders) on X and the convex cones (resp. convex strict cones)
of X. This is why we will say in the following that X is ordered by a given convex cone K’,
referring implicitly to the corresponding order ĺK , and will note this ordered vector space by
the couple (X,K).

Example 2.3.1.

• Let X = R, equipped with the usual order ď. It is characterized by the convex cone of
positive reals R+. The corresponding strict order < is characterized by the convex strict
cone of strictly positive reals R++. Note that there is no other orders in R than the ones
corresponding to the cones R+, R− and {0}.

• Let X = Rm, m ∈ N∗. It is usually ordered by a ĺ b ⇔ ai ď bi in R, for all i ∈ {1, ...,m}.
The corresponding convex cone is the positive orthant Rm+ := (R+)m. A common strict
order on Rm is a ă b iff ai < bi in R, for all i ∈ {1, ...,m}. The corresponding convex
strict cone is Rm++ := (R++)m = intRm+ . Rm can be equipped with other orders, like the
lexicographical order, which is characterized when m = 2 by the convex cone R2

++ ∪{0}×
R+. Let us also mention the order induced by the second order cone in Rm+1, which is
just the epigraph of the euclidean norm of Rm.

• Let X = Sm(R), the vector space of real symmetric matrices of size m ∈ N∗. In general,
it is ordered by the convex cone Sm+ (R) of positive symmetric matrices, which consists in
symmetric positive matrices.

• Consider some set Ω and X = F(Ω,R) the vector space of functions on Ω with real values.
It is ordered by the convex cone of positive functions F+(Ω,R) := {f ∈ F(Ω,R) | f(x) ě

0 ∀x ∈ Ω}. It induces a similar order on any subspace Y of F(Ω,R) by taking the
intersection Y ∩ F+(Ω,R).

• Suppose now that (Ω,Σ, µ) is a σ-finite measured space and consider L0(Ω,Σ) the space of
measurable functions on Ω with real values. We can quotient this space by the equivalence
relation f ∼ g ⇔ f(x) = g(x) for µ-a.e. x ∈ Ω, to obtain the vector space L0(Ω,Σ, µ).
It is ordered by the convex cone of µ-almost positive functions L0

+(Ω,R, µ) := {f ∈
L0(Ω,Σ, µ) | f(x) ě 0 for µ-a.e. x ∈ Ω}. Here again, this cone induces a similar order on
any subspace, including all Lp(Ω,Σ, µ) spaces, for p ∈ [1,+∞].

Of course, this list is non exhaustive, and we could also have define positive convex cones in
spaces of measures for instance. But it contains the ordered spaces which will be the most
interesting for us in the sequel. Rm+ will be our first object of study, because it is particularly
easy to handle and benefits from good “finite” properties : it is a finite-dimensional object,
and it is polyhedral. (Sm(R),Sm+ (R)) is also finite-dimensional, but has a more complicated
geometrical nature: it is for instance not polyhedral. Finally, (L∞(Ω,Σ, µ), L∞+ (Ω,Σ, µ)) is an
example of a “good” infinite-dimensional ordered space since, as we will see later, L∞+ (Ω,Σ, µ)
has a nonempty interior.
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2.3.2 Base of a cone

We focus now on the concept of base for a cone. Its interest is that the knowledge of the order
structure on (X,K) is equivalent to know a base of the dual cone K+ (see Theorem 2.3.7 below).

Definition 2.3.2. Let S ⊂ (X, τ) be a nonempty strict cone. We say that Θ ⊂ S is a base of
S if for all d ∈ S, there exists a unique (λ, θ) ∈ R++ ×Θ such that d = λθ. We say that Θ is a
base of a cone K, if Θ is a base of K \ {0}.

Observe that, by definition, a base do not contain the origin. Note also that any cone admits a
base, as a direct consequence of the axiom of choice. We give now some examples.

Example 2.3.3.

• Let (X, ‖ · ‖) be a normed space, and note SX its unit sphere. Then K ∩ SX is a base for
any cone K ⊂ X.

• Rm+ admits as a base the unit simplex ∆m := {θ ∈ Rm+ |
m∑
i=1

θi = 1}.

• Sm+ (R) admits as a base the set {M ∈ Sm+ (R) | tr(M) = 1}.

• Let (Ω,Σ, µ) be a finite measured space and consider Lp+(Ω,Σ, µ) for p ∈ [1,+∞]. It
admits as a base {f ∈ Lp+(Ω,Σ, µ) |

∫
Ω f dµ = 1}.

Note that the bases presented here share a common structure : it is the intersection of a cone
K with the level set of some function. The first example deals with the norm while in the three
others we intersect with an hyperplane. It can be also noticed that the last base can equivalently
be written as the intersection of Lp+(Ω,Σ, µ) with the unit sphere of L1(Ω,Σ, µ).

In Part II, we will need for our analysis to work with a weakly∗ compact and convex base
of K+. We follow then with some necessary and sufficient conditions on K for the existence of
such a base (see Appendices A.3 for a proof).

Theorem 2.3.4. Let K be a closed convex cone in a Banach space X. Then K has a nonempty
interior if and only if K+ admits a convex weakly∗ compact base Θ. In that case, there exists
e ∈ intK such that

Θ = {x∗ ∈ K+ | 〈x∗, e〉 = 1}.

Example 2.3.5. Let us briefly convince ourselves that this result is optimal. Take in X = R2

the closed convex cone K = R+ × {0}, which has an empty interior. Then K+ = R+ × R, and
it does not admit any convex base since such a base would contain the origin.

Example 2.3.6. We have already seen in Example 2.3.3 bases of convex cones built on the
model Θ = {x∗ ∈ K+ | 〈x∗, e〉 = 1} (that we will note Θe for short).

• The positive orthant Rm+ ⊂ Rm is self-dual for the euclidean scalar product, and intRm+ =
Rm++. By taking e = (1, ..., 1) ∈ Rm++, we recognize Θe as the unit simplex ∆m. It is
convex and compact.

• The cone of positive symmetric matrices is self-dual for the scalar product 〈X, Y〉 = tr tXY.
By taking e = Id ∈ intSm+ (R) = Sm++(R), we recognize Θe as the set of positive symmetric
matrices of trace one. It is convex and compact.

• Let (Ω,Σ, µ) be a finite measured space and consider the Banach space Lp(Ω,Σ, µ) for
p ∈ [1,+∞[. Let q ∈]1,+∞] be the conjugate13 of p. The dual cone of Lp+(Ω,Σ, µ) is

13That is, satisfying 1
p

+ 1
q

= 1 with the convention 1
+∞ = 0.
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Lq+(Ω,Σ, µ). We consider e = 1Ω, i.e., the function being constant to 1 on all Ω. It is clear
that e ∈ Lp+(Ω,Σ, µ), since Ω is finite and 〈e, f〉Lq×Lp =

∫
Ω fdµ for all f ∈ Lp(Ω,Σ, µ).

Then we recover the base Θe presented in Example 2.3.3. Nevertheless, note that it is
not bounded, because the L1 ball is not bounded in such Lp. This is not surprising in
the light of Theorem 2.3.4, since it is known that the interior of Lp+(Ω,Σ, µ) is empty for
p ∈ [1,+∞[.

• Let (Ω,Σ, µ) be a finite measured space and consider the Banach space L∞(Ω,Σ, µ).
Its dual is ba(Ω,Σ, µ), the Banach space of bounded additive measures which are ab-
solutely continuous with µ (see [5, Chapter 10.10]). The dual cone of L∞+ (Ω,Σ, µ) is
ba+(Ω,Σ, µ), the convex cone of such positive measures. By taking again e = 1Ω, it
is easy to see, for the same reasons as above, that e ∈ intL∞+ (Ω,Σ, µ). It gives us
Θe = {π ∈ ba+(Ω,Σ, µ) | π(Ω) = 1}. This is nothing but the set of additive probability
measures on Ω absolutely continuous with respect to µ, which is weakly∗ compact and
convex.

As announced, a base Θ of the dual K+ controls the monotonic properties in (X,K). In
fact, the extreme points of Θ are enough to characterize the monotonicity.

Theorem 2.3.7. Let K be a closed convex cone with nonempty interior in a Banach space X.
Let Θ be a weakly∗ compact convex base of a K+, and let Ξ be the set of its extreme points.
Note ĺ the order on X induced by K. Then for all x, x′ ∈ X:

i) x ĺ x′ if and only if 〈θ, x〉 ď 〈θ, x′〉 for all θ ∈ Θ,

ii) x ĺ x′ if and only if 〈ξ, x〉 ď 〈ξ, x′〉 for all ξ ∈ Ξ,

iii) If x ĺ x′ then σΘ(x) ď σΘ(x′). (monotonicity)

Note ă the strict order on X induced by intK. Then for all x, x′ ∈ X:

iv) x ă x′ if and only if 〈θ, x〉 < 〈θ, x′〉 for all θ ∈ Θ,

v) x ă x′ if and only if 〈ξ, x〉 < 〈ξ, x′〉 for all ξ ∈ Ξ,

vi) If x ă x′ then σΘ(x) < σΘ(x′). (strict monotonicity)

The proof of this result is left in the Appendice A.3. Let us give en exact formulation of σΘ for
some important examples :

Example 2.3.8.

• If X = Rm and Θ = ∆m the unit simplex, then it is easy to see that σΘ is the max function,
that is σΘ(x) = max

i∈{1,...,m}
xi.

• If X = Sm(R) and Θ = {M ∈ Sm+ (R) | tr(M) = 1}, then we can demonstrate that σΘ(A)
is the greatest eigenvalue of A ∈ Sm+ , that we note λmax(A). Indeed, by compactness of Θ,
there exists some M ∈ Θ such that σΘ(A) = tr(MA). Using Ky Fan’s inequality, we easily
see that this is bounded from above by λmax(A). On the other hand, λmax(A) = 〈Av, v〉
for some eigenvector v ∈ Rm such that ‖v‖ = 1. Since 〈Av, v〉 = tr(v tvA), and v tv ∈ Θ,
the conclusion follows.

• Take X = L∞(Ω,Σ, µ) as introduced in Example 2.3.6. LetΘ = {λ ∈ ba+(Ω,Σ, µ) | λ(Ω) =
1}. Then we can show, analogously to the previous examples, that σΘ corresponds to
the essential supremum on L∞(Ω,Σ, µ). For a given φ ∈ L∞(Ω,Σ, µ), use the weak∗

compactness of Θ to obtain a probability π ∈ Θ such that σΘ(φ) = 〈π, φ〉ba,L∞ :=
∫

Ω φ dπ.

30



Since φ is bounded from above by supess φ for µ-a.e. x ∈ Ω, and π is absolutely continuous

with respect to µ, then φ(x) ď supess φ for π-a.e. x ∈ Ω. Moreover π(Ω) = 1, then it

follows that
∫

Ω φ dπ ď supess φ. On the other hand, first suppose that φ reach its essential

supremum on non µ-negligeable A ⊂ Ω. Then we can see that π := 1A
µ(A) lies in Θ and

verify 〈π, φ〉ba,L∞ = supess φ. In the general case, write φ as the uniform limit of a

sequence of step functions φn. Each step function attains its essential supremum on a non
negligeable set and we can define πn as previously such that 〈πn, φn〉ba,L∞ = supess φn.

Passing to the limit, using the uniform convergence of φn in L∞(Ω,Σ, µ), and the strong
continuity of supess , gives supess φ ď lim

n
σΘ(φn). Using the strong continuity of σΘ gives

the conclusion.

We end with a final result concerning the bases of polyhedral cones (see Appendix A.3)

Theorem 2.3.9. Let K be a closed convex cone with nonempty interior in a finite-dimensional
Banach space X. Let Θ be a weakly∗ compact convex base of a K+. Then the following statements
are equivalent:

i) K is polyhedral,

ii) Θ is a polytope,

iii) Θ has a finite number of extremal points.

2.3.3 Vector optimization problem

Let X and Y be two Banach spaces, and F : X→ Y. Suppose that Y is equipped with an order
induced by a closed convex cone K, with nonempty interior. In the following, ĺ will denote the
order induced by K, and ň the associated strict order induced by K \ {0Y}. Moreover, we will
note ă the strict order induced by the strict cone intK. We recall from Section 2.3.1 that this
is equivalent to say that

• y1 ĺ y2 if and only if y2 − y1 ∈ K,

• y1 ň y2 if and only if y2 − y1 ∈ K \ {0},

• y1 ă y2 if and only if y2 − y1 ∈ intK.

We consider a nonempty closed convex set C ⊂ X, which will model the constraints. The
associated vector optimization problem ((VOP) for short) consists in solving

(VOP) MIN
x∈C

F (x),

where a precise meaning shall be given to MIN F .

Clearly, it would not be very useful to define a solution of (VOP) as a point x̄ ∈ C satisfying
F (x̄) ĺ F (x) for all x ∈ C. Indeed, the order ĺ is not total, and there is few chances that all
the elements of C can be compared. Instead, we say that x̄ is an efficient solution of (VOP)
(or that x̄ is an efficient point of F on C) if there is no x ∈ C such that F (x) ň F (x̄). We note
ARGMIN

x∈C
F the set of such efficient points. An other way to define the efficient points is to say

that it is the points x̄ ∈ C such that

[F ň F (x̄)] ∩ C = ∅,
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where [F ň F (x̄)] denotes a sublevel set of F at x̄, defined by

[F ň F (x̄)] := {x ∈ X | F (x) ň F (x̄)}.

If, instead of considering ň, we consider the strict order ă induced by intK, we obtain a
weaker notion of solution for (VOP). Indeed, we say that x̄ is a weak efficient solution of (VOP)
(or that x̄ is a weak efficient point of F on C) if there is no x ∈ C such that F (x) ă F (x̄). We
note ARGMINw

x∈C
F the set of such efficient points. Equivalently, x̄ ∈ C is weakly efficient if and

only if
[F ă F (x̄)] ∩ C = ∅.

Since intK ⊂ K \ {0}, all efficient points are in particular weakly efficient, the converse being
false in general. When facing a vector optimization problem, we usually look for its efficient
points, but usual methods generally provide only weak efficient points (see Section 6.3 of Chapter
6 for a discussion on this question).

Observe that, in the scalar-valued case (i.e. (Y,K) = (R,R+)), both notions of efficiency
and weak efficiency coincide with the usual notion of minimum. In other words, (VOP) reduces
to a classic optimization problem. An other essential case is the multi-objective optimization
problem ((MOP) for short), or Pareto optimization problem, where (Y,K) = (Rm,Rm+ ). In that
case, there exists a finite family (f1, ..., fm) of real-valued functions on X such that

for all x ∈ X, F (x) = (f1(x), ..., fm(x)).

With this notation, the multi-objective optimization problem writes as

(MOP) MIN
x∈C

(f1(x), ..., fm(x)),

and we can revisit the notions of efficiency (reps. weak efficiency). We say that a point x̄ ∈ C
is:

• Pareto efficient if there is no x ∈ C such that fi(x) ď fi(x̄) for all i ∈ {1, ...,m}, and
fI(x) < fI(x̄) for some I ∈ {1, ...,m},

• weakly Pareto efficient if there is no x ∈ C such that fi(x) < fi(x̄) for all i ∈ {1, ...,m}.

The guideline of this thesis is to use descent methods to solve optimization problems. For
solving (VOP), the idea essentially reduces to the following: given a current state x ∈ C, can
we improve the value F (x)? That is, can we find some x′ ∈ C such that F (x′) ň F (x) (resp.
F (x′) ă F (x))? If so, x′ becomes our new current state, otherwise x is by definition an efficient
(resp. weakly efficient) solution of (VOP).

Then it is clear that being able to compare two points x, x′ is essential, and that is why
Proposition 2.3.7 is really important. Suppose that we choose some e ∈ intK, and take

Θ = {y∗ ∈ K+ | 〈y∗, e〉 = 1}.

According to Theorem 2.3.4 and Proposition 2.3.7, we have for all x, x′ ∈ X

(2.26) F (x′) ĺ F (x)⇔ ∀θ ∈ Θ, (θ ◦ F )(x′) ď (θ ◦ F )(x),

where θ ◦ F : X −→ R is the composition between the linear form θ ∈ Θ ⊂ Y∗ and F . We will
generally use the notation fθ := θ ◦ F , and call these functions the cost functions associated14

14Of course these functions do not depend only on F , but also on K and the choice of a base for K+ (that is,
according to Theorem 2.3.4, the choice of an element e ∈ intK). But note that 1) we will always work with a
fixed cone K and a fixed base Θ, 2) the choice of a base for K+ has no influence on the main concepts which will
be used later (see Chapter 5).
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to F . What (2.26) means, is that controlling the descent of F is equivalent to control the
simultaneous descent of its cost functions {fθ}θ∈Θ. What is interesting in this approach is that
we went back from vector values to scalar values, so we will be able to use the tools we are
familiar with for scalar optimization.

Proposition 2.3.7 says also that it is not necessary to control all the cost functions {fθ}θ∈Θ,
but only the ones corresponding to Ξ, the set extreme points of Θ:

(2.27) F (x′) ĺ F (x)⇔ ∀ξ ∈ Ξ, (ξ ◦ F )(x′) ď (ξ ◦ F )(x).

We will call these functions {fξ := ξ ◦ F}ξ∈Ξ the extreme cost functions associated to F . They
are of particular interest when K is polyhedral, since it is exactly the case for which Θ has a
finite number of extreme points (see Theorem 2.3.9). This means a finite number of extreme cost
functions to manage. Take for instance the multi-objective case F = (f1, ..., fm) : X −→ Rm,
Rm being ordered by the usual posititve orthant Rm+ . We choose e = (1, ..., 1) ∈ intRm+ = Rm++,
whose corresponding basis is ∆m the unit simplex (see Example 2.3.6), and the extreme points
of ∆m corresponds to the canonical basis Ξ = {e1, ..., em}. The corresponding extreme cost
functions are exactly the family {f1, ..., fm}. In that case, (2.26) says that the decrease of F is
governed by the decrease of all convex combinations (the cost functions)

fθ =

m∑
i=1

θifi, θ = (θi) ∈ ∆m,

while (2.27) tells us that it is enough to have the decrease of the finite family {f1, ..., fm} (the
extreme cost functions).

We now discuss the convexity of a vector-valued function F : X −→ (Y,K) with respect to
K. Keep the notations that we used above. We say that F is convex (with respect to K) if

∀x, x′ ∈ X, ∀t ∈ [0, 1], F (tx+ (1− t)x′) ĺ tF (x) + (1− t)F (x′).

Applying the monotonicity Theorem 2.3.7, we see that F is convex if and only if each cost
function {fθ}θ∈Θ is convex. It is in fact sufficient for the extreme cost functions {fξ}ξ∈Ξ to be
convex, which is a quite useful characterization in the polyhedral case. We also say that F is
strictly convex (with respect to K) if

∀x 6= x′ ∈ X, ∀t ∈]0, 1[, F (tx+ (1− t)x′) ă tF (x) + (1− t)F (x′).

Convex functions enjoy a useful characterization of their weakly efficient points, which is
the base of all scalarization techniques mentionned in the introduction.

Theorem 2.3.10. Let F : X −→ (Y,K) be a convex function between two Banach spaces.
Suppose that C ⊂ X is convex and K is a closed convex cone with nonempty interior. Then,

ARGMINw
x∈C

F (x) =
⋃
θ∈Θ

argmin
x∈C

fθ(x).

This result can be found in the book of Dihn [139, Proposition IV.2.10], or in [73, Theorem
2.1]. We will see in Chapter 5 how this result can be simply interpreted as a Fermat’s rule for
functions with values in an ordered vector space.

We say that F : X −→ (Y,K) is quasiconvex (with respect to K) if

∀x, x′, x̄ ∈ X, ∀t ∈ [0, 1], F (x) ĺ F (x̄) and F (x′) ĺ F (x̄)⇒ F (tx+ (1− t)x′) ĺ F (x̄).

Equivalently, F is quasiconvex if and only if

∀x̄ ∈ X, [F ĺ F (x̄)] is convex,
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where [F ĺ F (x̄)] = {x ∈ X | F (x) ĺ F (x̄)} denotes as before a sublevel set of F at F (x̄). We
say moreover that F is scalarly quasiconvex whenever all cost functions {fθ}θ∈Θ are quasiconvex.
Scalar quasiconvexity entails quasiconvexity since we can write (use Theorem 2.3.7)

∀x̄ ∈ X, [F ĺ F (x̄)] =
⋂
θ∈Θ

[fθ ď fθ(x̄)].

But contrary to the what happens in the convex setting, the reverse is not true in general.

We end with a basic notion for functions with values in an ordered space. We say that
F : E −→ Y is bounded from below if there exists y ∈ Y such that y ĺ F (x) for all x ∈ E. In our
setting, where K has a nonempty interior, the boundedness of F is equivalent to the uniform
boundedness of the cost functions {fθ}θ∈Θ:

Proposition 2.3.11. Let F : X −→ Y, let e ∈ intK and θ the corresponding base of K+,
noting Ξ its set of extremal points. The following are equivalent :

i) F is bounded from below,

ii) ∃m ∈ R such that me ĺ F (x) for all x ∈ E,

iii) ∃m ∈ R such that m ď fξ(x) for all x ∈ E and ξ ∈ Ξ,

iv) ∃m ∈ R such that m ď fθ(x) for all x ∈ E and θ ∈ Θ.

Proof. Suppose that i) holds. Then there exists some y ∈ Y such that, for all x ∈ E and θ ∈ Θ,
〈θ, y〉 ď fθ(x). Let M > 0 be a bound for Θ in Y∗, then by using Cauchy-Schwarz’s inequality,
we obtain −M‖y‖ ď fθ(x). So item iv) holds, with m = −M‖y‖. The implication iv) ⇒ iii)
⇒ ii) follows Theorem 2.3.7 and the fact that 〈θ, e〉 = 1 for all θ ∈ Θ. Implication ii) ⇒ i) is
obvious. �
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Most analysts spend half their time
hunting through the literature for
inequalities they want to use, but cannot
prove.

Harald Bohr
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Chapter 3

The Kurdyka- Lojasiewicz inequality
and general descent methods

Along this chapter, we consider a Hilbert space (H, 〈·, ·〉), and a proper lower semi-continuous
function f : H −→ R ∪ {+∞}. We want to solve the associated optimization problem

min
x∈H

f(x).

For this, we look for descent dynamical systems corresponding to f , being discrete or continuous.
Our main tool in this chapter is the assumption that f satisfies the so-called Kurdyka- Lojasiewicz
inequality.

This notion is introduced and illustrated in Section 3.1: after an informal introduction
in Section 3.1.1, we properly define it in Section 3.1.2, and give some examples of functions
satisfying this inequality. In Section 3.1.3, we illustrate one of the main consequences of the
Kurdyka- Lojasiewicz inequality in Theorem 3.1.8. Considering the subgradient differential in-
clusion

(3.1) u̇(t) + ∂Ff(u(t)) 3 0,

any of its trajectories has finite length and converges towards a critical point of f , provided
that u satisfies some compactness assumption, and that f has the Kurdyka- Lojasiewicz property.
Then, we detail in Theorem 3.1.12 some rates of convergence for the trajectories.

In Section 3.2, we adapt this convergence result to a general abstract descent algorithm. It
is inspired by the work of [20], but we extend its setting in order to account for additive compu-
tational errors, and more versatility in the choice of the parameters. The strong convergence of
the iterates towards a critical point of f , with a finite-length condition is obtained in Theorem
3.2.2. A local convergence result to global minimum is also provided in Theorem 4.1.8, under
certain hypotheses. Then, in Section 3.3, we prove new and interesting general convergence
rates. They are similar to the ones obtained in the literature for various numerical methods,
see e.g. [18, 19, 321, 72, 107]. Surprisingly, an explicit form of the algorithm terminates in
a finite number of iterations in several cases, and shares the same convergence rates with the
continuous-time dynamical system.

39



3.1 The Kurdyka- Lojasiewicz inequality

3.1.1 Introduction

In a first time, we propose an informal and naive approach to the Kurdyka- Lojasiewicz inequal-
ity1.

Suppose that f : H −→ R is a continuously differentiable function, and consider the corre-
sponding steepest descent dynamic:

(SD) ẋ(t) +∇f(x(t)) = 0.

Given a classic global solution x : [0,+∞[−→ H of (SD), we focus on its asymptotic behaviour,
when t goes to +∞. What we aim to prove here is that the trajectory has finite length, i.e.∫ +∞

0
‖ẋ(t)‖ dt < +∞.

This is a strong property, which implies in particular that the trajectory strongly converges
when t→ +∞.

First observe that the function f is Lyapunov for the (SD) dynamic. Indeed, it suffices to
take the scalar product of (SD) with ẋ(t), and to use a chain rule, to obtain

(3.2)
d

dt
(f ◦ x)(t) = −‖ẋ(t)‖2 ď 0.

If we assume that ẋ(t) is nonzero on [0,+∞[, (3.2) means that f ◦ x is strictly decreasing on
[0,+∞[. If we assume moreover that f is bounded from below, we obtain that f ◦ x realizes a
diffeomorphism between [0,+∞[ and ]s∞, s0], where s0 := f(x(0)) and s∞ := inf

tě0
f(x(t)).

Given the diffeomorphism f ◦ x : [0,+∞[−→]s∞, s0], consider the change of variables s =
(f ◦ x)(t), and the associated trajectory

∀s ∈]s∞, s0], y(s) := x
(
(f ◦ x)−1(s)

)
.

This trajectory verifies

ẏ(s)− ∇f(y(s))

‖∇f(y(s))‖2
= 0,

1Most of the contents presented here are strongly inspired by two oral presentations given by A. Daniilidis,
given at the SOMACHI 2014 and ISMP 2015.
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in other words, y(·) describes the same curve than x(·), but at reverse and with a different
speed.

We can use this reparametrized trajectory to rewrite the length of x(·):

(3.3)

∫ +∞

0
‖ẋ(t)‖ dt =

∫ s0

s∞

1

‖∇f(y(s))‖
ds.

Observe that the quantity in (3.3) is finite, as soon as ‖∇f(y(s))‖ ě C > 0 for all s ∈ [s∞, s0].
In other words, the question of the finite length of x(·) is essentially dependent on how ∇f
behaves around its zeroes, namely, the critical points of f .

Suppose now that there exists some smooth increasing function ϕ : [s∞, s0] −→ R+, such
that ϕ(s∞) = 0 and

(3.4)
1

‖∇f(y(s))‖
ď ϕ′(s) for all s ∈]s∞, s0].

Then, it follows from (3.3) that x(·) has finite length:∫ +∞

0
‖ẋ(t)‖ dt ď

∫ s0

s∞

ϕ′(s) ds = ϕ(s0) < +∞.

Clearly, the key point here is the inequality (3.4), which can be rewritten, after using the change
of variables s = f(x(t)), as

ϕ′(f(x(t)))‖∇f(x(t))‖ ě 1, ∀t ě 0.

As we said before, the question of the finite length of the trajectory only matters around the
critical points (points x such that ∇f(x) = 0).

Roughly speaking, the Kurdyka- Lojasiewicz inequality asks that, for any critical point x̄ ∈
H, there exists a smooth and increasing function ϕ : [0,+∞[−→ [0,+∞[ such that ϕ(0) = 0
and

(3.5) ϕ′(f(x)− f(x̄))‖∇f(x)‖ ě 1, for all x ∼ x̄ such that f(x̄) < f(x).

Assuming that f(x̄) = 0 and using a chain rule, we see that the Kurdyka- Lojasiewicz inequality
becomes

(3.6) ‖∇(ϕ ◦ f)(x)‖ ě 1, ∀x ∼ x̄.

In other words, we ask for the possibility to locally reparametrize f , in order to make it become
sharp around its critical points. That is why, in general, ϕ is called the desingularizing function
for f at x̄. Indeed, the more f is flat around its critical point, the more ϕ has to be steep
around 0.
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3.1.2 The Kurdyka- Lojasiewicz inequality

In the previous discussion, we took for convenience a smooth function f : H −→ R. Consider
now a real-extended valued function f : H −→ R∪{+∞}. In that case, the Kurdyka- Lojasiewicz
inequality will set a relation between the variations of f and the norm of its subgradients. More
exactly, we will consider the limiting subgradients of f , noted ∂Lf , introduced in Section 2.2.3.
We say that x ∈ H is a limiting critical point of f if 0 ∈ ∂Lf(x). We also consider the lazy slope
of f at x:

‖∂Lf(x)‖− := inf
x∗∈∂Lf(x)

‖x∗‖.

Let η > 0. We say that ϕ : [0, η[−→ [0,+∞[ is a desingularizing function if

i) ϕ(0) = 0,

ii) ϕ is continuous on [0, η[ and of class C1 on ]0, η[,

iii) ϕ′(t) > 0 for all t ∈]0, η[.

Typical examples of desingularizing functions are the functions ϕ(t) = C
θ t
θ, for C > 0 and

θ ∈]0, 1].

Definition 3.1.1. Let f : H −→ R ∪ {+∞}. We say that f satisfies the Kurdyka- Lojasiewicz
property at x̄ ∈ H if there exists a neighbourhood B(x̄, δ) of x̄, and a concave desingularizing
function ϕ : [0, η[−→ [0,+∞[, such that the Kurdyka- Lojasiewicz inequality

(KL) ϕ′(f(x)− f(x̄))‖∂Lf(x)‖− ě 1

holds, for all x in the strict local upper level set

Γη(x̄, δ) := {x ∈ B(x̄, δ) | f(x̄) < f(x) < f(x̄) + η}.

A proper lower-semicontinuous function having the Kurdyka- Lojasiewicz property (K L property
for short) at any x ∈ H is said to be a K L function.

Remark 3.1.2. In the following, we will give a special attention to the functions satisfying the
K L inequality with a desingularizing function of the form ϕ(t) = C

θ t
θ, θ ∈]0, 1]. In that case, f

will be said to be K L with the  Lojasiewicz exponent θ.

Remark 3.1.3. As mentioned before, for functions of class C1, the K L inequality holds auto-
matically at any regular point (i.e. being not limiting critical points), with a desingularising
function ϕ(t) = Ct. This property is also verified by all proper lower semi-continuous functions,
when H has finite dimension. Indeed, assume by contradiction that for some regular x̄ ∈ H
there exists (xk)k∈N in H such that

∀k ∈ N, ‖xk − x̄‖ ď
1

k
, f(x̄) < f(xk) < f(x̄) +

1

k
and ‖∂Lf(xk)‖− <

1

n
.

This sequence would satisfy xk
f−−→

k→+∞
x̄ and ‖∂Lf(xk)‖ − −−→

k→+∞
0. But in finite dimension, the

limiting subdifferential ∂Lf has a f -closed graph (see [290, Proposition 8.7]), so it would follow
that 0 ∈ ∂Lf(x̄), which contradicts the noncritical assumption on x̄. In more general Hilbert
spaces, the limiting subdifferential is no more guaranteed to have a f -closed graph (see [244,
Example 1.7]). In that case, we can assume that f is lower-regular, in which case the argument
above still works.

We present now some known classes of K L functions.
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Example 3.1.4 (Analytic functions).  Lojasiewicz [230] proved that, for any critical point x̄ of
an analytic function f : Rn −→ R, there exists an open ball B(x̄, δ) such that

|f(x)− f(x̄)|1−θ ď C‖∇f(x)‖,

for some C > 0 and θ ∈]0, 1
2 ]. This proves that analytic functions are K L functions, with a

 Lojasiewicz exponent θ ∈]0, 1
2 ]. Let us mention that  Lojasiewicz’s result applies only in finite

dimension. Indeed, in infinite-dimensional spaces, analytic functions need not have the K L
property, see [188] for a counter-example. In a similar fashion to  Lojasiewicz, Bolte-Daniilidis-
Lewis show that continuous subanalytic functions on Rn, with closed domain, are K L with a
 Lojasiewicz exponent θ ∈]0, 1], see [68, Theorem 3.1].

Example 3.1.5 (Functions definable in o-minimal structures). In the finite-dimensional setting,
the o-minimal structures provide a huge class of functions satisfying the K L property. O-
minimal structures were developed around the 90’s to generalize the good stability and regularity
properties of the class of semi-algebraic sets [271, 144]. These o-minimal structures includes
the semi-algebraic structure, in which are definable the polynomials, the linear maps, the `p

norms with p ∈ Q∗, and the counting function, among others. It is known that the lower semi-
continuous functions lying in this semi-algebraic structure are K L, with a  Lojasiewicz exponent
θ ∈]0, 1] [70, Corollary 16]. There also exists bigger o-minimal structures, containing for instance
the exponential function [143, 319], the `p norms with p ∈ R∗ [243] and the primitives of all the
aforementioned functions [145, 146, 298]. Note that besides being huge, these class of functions
are stable by usual operations which are very useful in optimization: addition, composition,
supremum, restriction to an o-minimal set. Furthermore, the distance function to an o-minimal
set and the indicator function of an o-minimal set are also o-minimal functions (this list is
far from being exhaustive). The fact that any lower semi-continuous function definable in an
o-minimal structure is a K L function is a strong result, due to Bolte, Daniilidis, Lewis and
Shiota [70, Corollary 15]. It extends a previous result of Kurdyka [216] on functions of class C1

definable on an o-minimal structures. Observe that, in the general case, a definable function

may not be K L for any  Lojasiewicz exponent θ ∈]0, 1]. Indeed, a function such that x 7→ e
−1

x2

needs a desingularizing function function ϕ with an exponential growth around the origin. For
more information about o-minimal structures, its definition and the properties they enjoy, the
reader shall consult [142, 141, 204].

Example 3.1.6 (K L inequality versus convexity). Let us mention the relationships between
convexity and the K L property. It is easy to check that strongly convex functions are K L with
a  Lojasiewicz exponent θ = 1

2 (see [19, Section 4.2]). But in general, convex functions are not
K L: see [71, Section 4.3], where the authors coined a counter-example of a convex function not
being K L. Nevertheless, it requires such a twisted construction that we can reasonably say that
‘common’ convex functions are K L. For instance, a convex function is K L as soon as it verifies
some growth condition around its critical points [71, Theorem 30].

Let us finally mention that the K L property can be derived from appropriate assumptions on
the Hessian D2f(x̄) ([103, 188]). It is also worth noticing that the K L inequality has strong
connexions with metric regularity, see [19, 71].

3.1.3 Asymptotic behaviour of a subgradient differential inclusion

Given a proper lower-semicontinuous function f : H −→ R ∪ {+∞}, consider the following
subgradient differential inclusion:

(3.7) u̇(t) + ∂Ff(u(t)) 3 0.

When f is smooth, this dynamical system specialises in the usual steepest descent dynamic:

(3.8) u̇(t) +∇f(u(t)) = 0.
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We saw in the previous section –at least formally– that in this smooth case, the trajectories
converge to a critical point of f , provided that f is a K L function. We shall verify below that
the subgradient dynamic (3.7) shares the same properties that the steepest descent one (3.8):
it is a descent dynamic, and its trajectories converge to critical points whenever f is a K L
function.

First of all, let us precise the notion of solution we will use for (3.7). Indeed, this dynamic
is governed by the set-valued mapping x ⇒ ∂Ff(x) which is not continuous, so we cannot use
a classical notion of solution. We recall here the definition of absolutely continuous functions
(see the monograph of Brezis [83, Appendix] for more details).

Definition 3.1.7. Given T ∈ R+, a function u : [0, T ] −→ H is said to be absolutely continuous
if one of the following equivalent properties holds:

i) there exists an integrable function g : [0, T ]→ H such that

u (t) = u (0) +

∫ t

0
g (s) ds ∀t ∈ [0, T ] ;

ii) u is continuous and its distributional derivative belongs to the Lebesgue space L1 ([0, T ] ;H);

iii) for every ε > 0, there exists η > 0 such that for any finite family of intervals Ik =]ak, bk[,
Ik ∩ Ij = ∅ for k 6= j and

∑
k |bk − ak| ď η =⇒

∑
k ‖u (bk)− u (ak) ‖ ď ε.

We can now make precise the notion of solution for the subgradient differential inclusion. We
say that u : [0,+∞[−→ H is a strong global solution of (3.7) if it is absolutely continuous on each
bounded interval [0, T ], T < +∞, and if it satisfies the inclusion (3.7) for a.e. t ∈ [0,+∞[. We
also introduce the notion of f -precompactness (or f -attentive precompactness) for a trajectory
(u(t))tě0, meaning that there exists a sequence tn → +∞ and some u∞ ∈ H such that

u(tn)
f−−→

n→+∞
u∞, meaning that u(tn) −−→

n→+∞
u∞ and f(u(tn)) −−→

n→+∞
f(u∞).

We are now ready to prove the announced result, which is a simple extension of the one obtained
by Bolte-Daniilidis-Lewis [68] for continuous subanalytic functions. A very similar result has
been obtained by Ioffe [204] in o-minimal structures, with a different proof.

Theorem 3.1.8. Let f : H −→ R∪{+∞} be a proper lower semi-continuous function, bounded
from below. Let u : [0,+∞[−→ H be a strong global solution of (3.7), and assume that f ◦ u is
absolutely continuous on each bounded interval [0, T ], T < +∞. Then, the following holds:

i) (Descent property) For a.e. t ∈ [0,+∞[, d
dt(f ◦ u)(t) = −‖u̇(t)‖2.

ii) (Laziness) For a.e. t ∈ [0,+∞[, u̇(t) + ∂Ff(u(t))0 = 0, where ∂Ff(u(t))0 denotes the
element of minimal norm of ∂Ff(u(t)).

Assume moreover that f is a K L function, and that (u(t))tě0 is f -precompact, then:

iii) (Strong convergence) The trajectory has finite length and converges, when t → +∞, to
some u∞. This limit point is ∂L-critical, in the sense that 0 ∈ ∂Lf(u∞).

Remark 3.1.9. Let us briefly discuss the hypotheses involved in Theorem 3.1.8. The absolute
continuity of f ◦ u can be directly derived from the absolute continuity of u, whenever f is
locally Lipschitz continuous on its domain. The f -precompactness assumption can be reduced
to simple precompactness, provided that f is continuous on its domain. It is worth noticing that
precompactness comes from boundedness if H is finite-dimensional. More generally, according
to the decrease property i), precompactness is guaranteed as soon as f has compact level sets.
In finite dimensions, the latter is equivalent for f to be coercive.
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Remark 3.1.10. We do not address here the question of the existence of such solutions. It is
well-known for C1,1 functions (it is the Cauchy-Lipschitz theorem), or for lower-semi continuous
convex functions [83]. For an existence result involving a wider class of functions, the reader
can consult [134, 235].

Remark 3.1.11. To prove the convergence of the trajectories, we will follow  Lojasiewicz’s
argument [231]. Roughly speaking, the proof is divided in three steps: in a first time, use a
compactness argument to prove that the trajectory will enter into Γη(u∞, δ) of u∞, at some time
t ě 0. In a second time, we prove that the length of the trajectory, when it lies in Γη(u∞, δ), is
independent of the time. Finally, prove that the set Γη(u∞, δ) captures the trajectory: once the
trajectory enters Γη(u∞, δ), it cannot escape from it. Once combined, these three facts entails
the finite length of the trajectory.

Proof. Items i) and ii) are quite immediate from the definition of the dynamic. For item ii), use
a chain rule (Proposition 2.2.11) together with the absolute continuity of f ◦ u and u to write
for a.e. t ∈ [0,+∞[:

(3.9)
d

dt
(f ◦ u)(t) = 〈x∗, u̇(t)〉, ∀x∗ ∈ ∂Ff(u(t)).

Since by definition we have −u̇(t) ∈ ∂Ff(u(t)), the decrease property d
dt(f ◦ u)(t) = −‖u̇(t)‖2

follows immediately. For the lazy property, let us start by recalling that in a Hilbert space,
the Fréchet subdifferential is closed and convex, so its element of minimal norm is well-defined,
provided it is nonempty. This being said, it suffices to show, for a.e. t ∈ [0,+∞[, that ‖u̇(t)‖ =
‖∂Ff(u(t))‖−. The inequality ‖u̇(t)‖ ě ‖∂Ff(u(t))‖− comes directly from −u̇(t) ∈ ∂Ff(u(t)).
For the reverse inequality, use (3.9) together with the Cauchy-Schwarz inequality to obtain

∀x∗ ∈ ∂Ff(u(t)), ‖u̇(t)‖2 = 〈x∗, u̇(t)〉 ď ‖x∗‖‖u̇(t)‖.

Thus, ‖u̇(t)‖ ď ‖x∗‖ for all x∗ ∈ ∂Ff(u(t)), and item i) follows.
We turn now on item iii). First of all, recall that the f -precompactness gives a sequence

tn → +∞ such that
u(tn) −−→

n→+∞
u∞ and f(u(tn)) −−→

n→+∞
f(u∞).

Moreover, we supposed that f is bounded from below, so we deduce from item i) that f(u(t)) ↓
f(u∞). We can assume, without loss of generality, that f(u(t)) > f(u∞) for all t ě 0. Otherwise,
we would have from item i) that u(t) ≡ u∞ for all t ě T , for some T ě 0. We invoke now the
Kurdyka- Lojasiewicz inequality at u∞, which holds on the local strict upper level set Γη(u∞, δ):

∀x ∈ Γη(u∞, δ), ϕ
′(f(x)− f(u∞))‖∂Lf(x)‖− ě 1.

The key element to obtain the convergence of the trajectory is the introduction of the Lyapunov
function h(t) := ϕ(f(u(t))−u∞). By definition of the desingularizing function, it is an absolutely
continuous function on bounded intervals, positive, nonincreasing, such that h(t) ↓ 0 when
t→ +∞.

For an arbitrary pair 0 ď t1 < t2 ď +∞, we claim that

(3.10) u(]t1, t2[) ⊂ Γη(u∞, δ)⇒
∫ t2

t1

‖u̇(t)‖ dt ď h(t1).

To see this, use item ii) together with the K L inequality to write for a.e. t ∈]t1, t2[:

‖u̇(t)‖ = ‖∂Ff(u(t))‖− ď ϕ′(f(u(t))− f(u∞))‖∂Ff(u(t))‖2−.

Since ‖∂Ff(u(t))‖2− = ‖u̇(t)‖2 = − d
dt(f ◦ u)(t), we deduce that

‖u̇(t)‖ ď −ϕ′(f(u(t))− f(u∞))
d

dt
(f ◦ u)(t) = − d

dt
h(t).
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Recalling that h is positive, (3.10) is proved after integrating the above equation on ]t1, t2[.
Now, we deduce from u(tn) −−→

n→+∞
u∞, f(u(t)) ↓ f(u∞) and h(t) ↓ 0, that there exists some

t1 ě 0 such that

(3.11) ‖u(t1)− u∞‖ ď
δ

3
and ∀t ě t1, h(t) ď

δ

3
, f(u(t)) < f(u∞) + η.

We also define
t2 := inf{t ě t1 | u(t) /∈ Γη(u∞, δ)} ∈]t1,+∞].

By definition of these two numbers, and according to the continuity of u together with the
monotonicity of (f(u(t)))tě0, we have u([t1, t2[) ⊂ Γη(u∞, δ) and u(t2) /∈ Γη(u∞, δ). The claim
(3.10), together with (3.11), imply

(3.12)

∫ t2

t1

‖u̇(t)‖ dt ď
δ

3
.

If we assume that t2 < +∞, we would obtain from (3.11) and (3.12):

‖u(t2)− u∞‖ ď ‖u(t2)− u(t1)‖+ ‖u(t1)− u∞‖ ď

∫ t2

t1

‖u̇(t)‖ dt+ ‖u(t1)− u∞‖ ď
2δ

3
,

which contradicts t2 /∈ Γη(u∞, δ) and f(u(t2)) ď f(u(t1)) < η.
Thus, we deduce that t2 = +∞, and obtain from (3.12) that u has finite length. In particular,

this means that the trajectory converges strongly to u∞. Furthermore, item ii) combined with
(3.12) gives ∫ ∞

0
‖∂Ff(u(t))‖− dt < +∞.

The latter implies the existence of some sequence tm −−→
m→+∞

+∞ and a corresponding sequence

of Fréchet subgradients x∗m ∈ ∂Ff(u(tm)) such that ‖x∗m‖ −−→m→+∞
0. This means, by definition

of the limiting subdifferential, that 0 ∈ ∂Lf(u∞). �

We can also derive for the solutions of (3.7) an estimate of the rate of convergence, depending
only on the behaviour of the desingularizing function around the origin. Next result generalises
[104, Theorem 2.7] to the nonsmooth case, and we recover the rates of [68] in the subanalytic
case.

Theorem 3.1.12. Let f : H −→ R ∪ {+∞} be a proper lower semi-continuous function. Let
u(·) be a strong global solution of (3.7), which f -converges when t→ +∞ to some u∞ ∈ H. We
assume that f has the K L property at u∞, with a desingularizing function ϕ : [0, η[−→ R+. Let
Φ :]0, η[−→ R be any primitive of −ϕ′2.

i) If lim
t→0

Φ(t) ∈ R, then the algorithm converges in a finite number of steps.

ii) If lim
t→0

Φ(t) = +∞, then there exists some t1 ∈ R such that:

ii.a) f(u(t))− f(u∞) = O
(
Φ−1 (t− t1)

)
, and

ii.b) ‖u(t)− u∞‖ = O
(
ϕ ◦ Φ−1 (t− t1)

)
.

Proof. Since we suppose that u(t) f -converges to u∞, there exists some t0 ∈ R+ such that,
for all t ě t0, u(t) lies in the local strict upper level set Γη(u∞, δ) where the K L inequality
holds. Assume that, for all t ě t0, f(u(t)) > f(u∞). Otherwise, as we seen in the previous
proof, the trajectory would stop in finite time. Define r(t) := f(u(t)) − f(u∞) and as before
h(t) := ϕ(r(t)). Observe that we can take t0 big enough, so that r(t) < η for all t ě 0, making
h well-defined on [t0,+∞[.
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We saw in the previous proof that, for all t ě t0, ‖u̇(t)‖ ď −h′(t). By integrating this
inequality, we obtain for all T ě t ě t0:

‖u(t)− u(T )‖ ď

∫ T

t
‖u̇(τ)‖ dτ ď −

∫ T

t
h(τ) dτ = h(t)− h(T ) ď h(t).

After taking the limit when T → +∞, we deduce that

(3.13) ‖u(t)− u∞‖ ď h(t) = ϕ(f(u(t))− f(u∞)).

Let now Φ be a primitive of −ϕ′2. Then, for all t ě t0, we can use Theorem 3.1.8 to write

(Φ ◦ r)′(t) = −ϕ′2(r(t))(f ◦ u)′(t) = ϕ′2(f(u(t))− f(u∞))‖∂Ff(u(t))‖2− ě 1.

Integrate the inequality above to obtain for all t ě t0:

(3.14) Φ(r(t))− Φ(r(t0)) =

∫ t

t0

(Φ ◦ r)′(τ)dτ ě t− t0.

Observe that, by definition, the function Φ is strictly decreasing on ]0, η[, hence invertible on
this interval. We consider now two cases. If lim

r→0
Φ(r) = Φ0 ∈ R, then we would obtain from

(3.14) that Φ0 ě +∞ by taking the limit when t→ +∞. This is a clear contradiction, meaning
that our assumption made in the beginning is false. As a consequence, the trajectory converge
in finite time. On the other hand, if lim

r→0
Φ(r) = +∞, we can assume that t0 is big enough so

that t− t0 + Φ(r(t0)) lies in the domain of Φ−1. Thus, we can deduce from (3.14) that

(3.15) f(u(t))− f(u∞) ď Φ−1(t− t1), where t1 := t0 − Φ(r(t0)).

The conclusion follows from the combination of (3.15) and (3.13). �

3.2 Convergence of an abstract inexact descent method

Throughout this section, f : H −→ R∪{+∞} is a proper function, lower semi-continuous for the
strong topology. We consider a sequence (xk)k∈N, computed by means of an abstract algorithm
satisfying the following hypotheses:

H1 (Sufficient decrease): For each k ∈ N, for some ak > 0,

f(xk+1) + ak‖xk+1 − xk‖2 ď f(xk).

H2 (Relative error): For each k ∈ N, for some bk+1 > 0 and εk+1 ě 0,

bk+1‖∂Ff(xk+1)‖− ď ‖xk+1 − xk‖+ εk+1.

H3 (Parameters): The sequences (ak)k∈N, (bk)k∈N and (εk)k∈N satisfy:

(i) ak ě a > 0 for all k ě 0.

(ii) (bk)k∈N /∈ `1;

(iii) sup
k∈N∗

1
akbk

< +∞;

(iv) (εk)k∈N ∈ `1.
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In Section 4.1, we complement this axiomatic description of descent methods by providing a
large class of implementable algorithms that produce sequences verifying hypotheses H1, H2

and H3. A simple example is:

Example 3.2.1. If f is differentiable, a gradient-related method (see [65, p.36]) is an algorithm
whose each iteration has the form

xk+1 = xk + λkdk,

where λk > 0 is a stepsize, and dk ∈ H is a direction agreeing with the steepest descent direction
−∇f(xk), in the sense that

〈dk,∇f(xk)〉+ C1‖∇f(xk)‖2 ď 0 and ‖dk‖ ď C2‖∇f(xk)‖,

with C1, C2 > 0. If ∇f is L-Lipschitz continuous on H, we can use a classic descent lemma
2.1.13 to obtain, after basic calculus, that H1 and H2 are satisfied with ak = C1

C2λk
− C2L

2 , and

bk+1 = (L + 1
C1λk

)−1. We easily deduce that H3 is satisfied if we assume for instance that

λk ∈ [λ, λ̄], with λ > 0 and λ̄ < C1

C2
2

2
L .

Sequences generated by the procedure described above converge strongly to critical points of f ,
and the piecewise linear curve obtained by interpolation has finite length. By finite length for
a sequence (xk)k∈N, we mean that

+∞∑
k=0

‖xk+1 − xk‖ < +∞.

This is stated in the main convergence result of this chapter:

Theorem 3.2.2. Let f : H −→ R ∪ {+∞} be a K L function and let H1, H2 and H3 hold. If
the sequence (xk)k∈N is f -precompact, then it has finite length, and f -converges to a ∂L-critical
point of f .

It is possible in Theorem 3.2.2 to drop the f -precompactness assumption and obtain a capture
result, near a global minimum of f . To simplify the notation, for x∗ ∈ H, η ∈]0,+∞] and δ > 0,
define the local upper level set by

(3.16) Γη(x̄, δ) := {x ∈ H : ‖x− x̄‖ < δ and f(x̄) ď f(x) < f(x̄) + η }.

We have then:

Theorem 3.2.3. Let f : H −→ R∪{+∞} having the K L property at a global minimum x̄ of f .
Let (xk)k∈N be a sequence satisfying H1, H2 and H3, with εk ≡ 0. Then, there exist δ > 0 and
η > 0 such that, if x0 ∈ Γη(x̄, δ), then the sequence (xk)k∈N has finite length, and f -converges
to a global minimum of f .

As mentioned in [20], Theorem 3.2.3 admits a more general formulation. For instance, if x∗ is
a local minimum of f , where a growth property is locally satisfied (see [20, Remark 2.11]).

The proofs of Theorems 3.2.2 and 3.2.3 rely on the Kurdyka- Lojasiewicz inequality, and we
adapt for this the  Lojasiewicz’s argument used in Section 3.1.3 for the continuous case. In a first
time, assuming that the sequence remains in a local strict upper level set Γη(x̄, δ), where the
K L inequality holds, we show that it has finite length. In a second time, we prove the existence
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of such a set Γη(x̄, δ) capturing the sequence. The adaptation of this argument to the discrete
case goes back to Absil, Mahony and Andrews [1], who studied algorithms satisfying

a‖xk+1 − xk‖‖∇f(xk)‖ ď f(xk)− f(xk+1).

Since then, this proof has been refined and adapted to different methods and settings [218, 18,
19, 71, 240, 4, 20, 72, 321, 106, 107]. From a technical point of view, our proof follows closely
the arguments in [20], adapted to the presence of errors and the variability of the parameters.

First, we prove below Proposition 3.2.4, which summarizes the first step mentioned above.
In view to express precisely the capture/stability property we need in Γη(x̄, δ), let us introduce
an auxiliary property. Given a point x̄ ∈ H, and two radius 0 < r < R < +∞, we say that
S(x̄, r, R) holds if:

i) for each k ∈ N, {x0, ..., xk} ⊂ Γη(x̄, r) implies xk+1 ∈ Γη(x̄, R),

ii) the initial point x0 belongs to Γη(x̄, r) and

(3.17) ‖x̄− x0‖+ 2

√
f(x0)− f(x̄)

a0
+Mϕ(f(x0)− f(x̄)) +

+∞∑
i=1

εi < r.

Basically, assuming S(x̄, r, R) means that the initialization x0 is close enough to x̄, and that we
can control how can xk+1 escape from Γη(x̄, r).

Proposition 3.2.4. Let f : H −→ R ∪ {+∞} be a lower semi-continuous function, satisfying
the K L inequality in Γη(x̄, R). Let (xk)k∈N be a sequence such that H0, H1, H2 and S(x̄, r, R)
hold. Then:

i)
∑∞

k=0 ‖xk+1 − xk‖ <∞.

ii) The sequence (xk)k∈N remains in the local upper level set Γη(x̄, r), and converges strongly
to some x∞ ∈ clB(x̄, r).

iii) lim inf
k→+∞

‖∂Ff(xk)‖− = 0.

iv) f(x∞) ď f(x̄) = lim
k→+∞

f(xk).

Proof of Proposition 3.2.4. The key point is obtaining the finite length property of item i). For
this, we will prove estimations on the sequence by using the involved hypotheses.

We start with the following claim: if xk and xk+1 belong to Γη(x̄, r), then

(3.18) 2‖xk+1 − xk‖ ď ‖xk − xk−1‖+
1

akbk

[
ϕ(f(xk)− f(x̄))− ϕ(f(xk+1)− f(x̄))

]
+ εk.

If xk+1 = xk this inequality holds trivially, so we can assume that xk+1 6= xk. Using H1 and
xk+1 ∈ Γη(x̄, r) gives us f(xk) > f(xk+1) ě f(x̄). With xk ∈ Γη(x̄, r) ⊂ Γη(x̄, R), we are
allowed to use the K L inequality, together with H2, to obtain:

(3.19) ϕ′(f(xk)− f(x̄)) ě
1

‖∂Ff(xk)‖−
ě

bk
‖xk − xk−1‖+ εk

> 0.

As a desingularizing function, ϕ is concave and ϕ′ is positive, which implies with H1 and (3.19):

ϕ(f(xk)− f(x̄))− ϕ(f(xk+1)− f(x̄)) ě ϕ′(f(xk)− f(x̄))(f(xk)− f(xk+1))

ě ϕ′(f(xk)− f(x̄))ak‖xk+1 − xk‖2

ě akbk
‖xk+1 − xk‖2

‖xk − xk−1‖+ εk
.
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Whence

‖xk+1 − xk‖2 ≤ [‖xk − xk−1‖+ εk]

[
1

akbk

[
ϕ(f(xk)− f(x̄))− ϕ(f(xk+1)− f(x̄))

]
.

Taking the square root on both sides, and using the fact that 2
√
αβ ď α+ β, we obtain (3.18)

as desired.

We are now ready to estimate the length of the sequence (xk)k∈N. For this, we claim that
for all K ∈ N∗, xK belongs to Γη(x̄, r), and
(3.20)
K∑
k=1

‖xk+1−xk‖+‖xK+1−xK‖ ď ‖x1−x0‖+M
[
ϕ(f(x1)−f(x̄))−ϕ(f(xK+1)−f(x̄))

]
+

K∑
k=1

εk,

where M := sup
k∈N∗

1
akbk

. We proceed for this by induction on K.

Initial step: Since it is assumed in S(x̄, r, R)(ii) that x0 ∈ Γη(x̄, r), we prove with S(x̄, r, R)(i)
that x1 ∈ Γη(x̄, R). Using in particular f(x1) ě f(x̄), coupled with H1, we can write

(3.21) ‖x1 − x0‖ ď

√
f(x0)− f(x1)

a0
ď

√
f(x0)− f(x̄)

a0
.

Using S(x̄, r, R)(ii) together with the triangle inequality and (3.21), we deduce that

‖x̄− x1‖ ď ‖x̄− x0‖+ ‖x0 − x1‖ ď ‖x̄− x0‖+

√
f(x0)− f(x̄)

a0
< r,

and so x1 ∈ B(x̄, r). Now we have x0, x1 ∈ Γη(x̄, r), so we can use (3.18) with k = 1, and
H3(iii), to obtain

2‖x2 − x1‖ ď ‖x1 − x0‖+M
[
ϕ(f(x1)− f(x̄))− ϕ(f(x2)− f(x̄))

]
+ ε1.

Induction step: Suppose now that x1, . . . , xK ∈ Γη(x̄, R), and assume that (3.20) holds. It is
immediate from S(x̄, r, R)(i) that xK+1 ∈ Γη(x̄, R). Using successively the triangular inequality,
the equations (3.17) and (3.21), and S(x̄, r, R)(ii), we obtain:

‖x̄− xK+1‖(3.22)

ď ‖x̄− x0‖+ ‖x0 − x1‖+

K∑
k=1

‖xk+1 − xk‖

ď ‖x̄− x0‖+ 2‖x0 − x1‖+M
[
ϕ(f(x1)− f(x̄))− ϕ(f(xK+1)− f(x̄))

]
+

K∑
k=1

εk

ď ‖x̄− x0‖+ 2

√
f(x0)− f(x̄)

a0
+M

[
ϕ(f(x1)− f(x̄))− ϕ(f(xK+1)− f(x̄))

]
+

K∑
k=1

εk

< r.

This last inequality (3.22) gives in particular xK+1 ∈ B(x̄, r), and so xK+1 ∈ Γη(x̄, r). Further-
more, if we write (3.18) with k = K + 1

2‖xK+2 − xK+1‖ ď ‖xK+1 − xK‖+M
[
ϕ(f(xK+1)− f(x̄))− ϕ(f(xK+2)− f(x̄))

]
+ εK+1,

and add it to (3.22), we obtain the desired result.
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We just proved that the sequence (xk)k∈N remains in the local level set Γη(x̄, r). Further-
more, we deduce from (3.20) and the positivity of ϕ that, for all K ∈ N∗:

K∑
k=1

‖xk+1 − xk‖ ď ‖x1 − x0‖+Mϕ(f(x1)− f(x̄)) +
K∑
k=1

εk.

Because of the assumption H3(iv), we can deduce by taking the limit when K → +∞ that

+∞∑
k=1

‖xk+1 − xk‖ ď ‖x1 − x0‖+Mϕ(f(x1)− f(x̄)) +

+∞∑
k=1

εk,

which proves item i). In particular, this finite length property entails the strong convergence of
the sequence to some x∞ ∈ H. Since we proved that the sequence remains in Γη(x̄, r), item ii)
follows. To prove item iii), use H2 to write

∞∑
k=1

bk+1‖∂Ff(xk+1)‖− ď

∞∑
k=1

‖xk+1 − xk‖+
∞∑
k=1

εk+1 < +∞,

and conclude with the assumption (bk) /∈ `1 in H3. To prove item iv), observe in H1 that f(xk)
is decreasing, and use the lower semi-continuity of f , to deduce that

f(x∞) ď lim
k→+∞

f(xk).

Defining ` := lim
k→+∞

f(xk), we need to show that ` = f(x̄). First observe that (xk)k∈N ⊂ Γη(x̄, r)

entails directly f(x̄) ď `. Moreover, if we assume by contradiction that f(x̄) < `, the K L
inequality together with the fact that ϕ′ is decreasing would give

ϕ′(`− f(x̄))‖∂Ff(xk)‖− ě ϕ′(f(xk)− f(x̄))‖∂Ff(xk)‖− ě 1

for all k ∈ N. This would contradict item iii), so ` = f(x̄). �

We are now in position to prove Theorems 3.2.2 and 3.2.3. For this, all we need is verifying
the stability assumption S(x̄, r, R), and apply Proposition 3.2.4. In both cases, the fact that
the abstract method described in H1 and H2 is a descent method for f is essential.

Proof of Theorem 3.2.2. Recall that a sequence is f -precompact if it admits a f -convergent
subsequence. Let xnk −−→

k→+∞
x̄ with f(xnk) −−→

k→+∞
f(x̄). Since f(xk) is nonincreasing and admits

a limit point, we deduce that f(xk) ↓ f(x̄). In particular, we have f(x̄) ď f(xk) for all k ∈ N.
The function f satisfies the K L inequality on Γη(x̄, R) for some η ∈]0,+∞] and R > 0, with
desingularizing function ϕ. Let K0 ∈ N be sufficiently large so that f(xK)−f(x̄) < min{η, aR2},
and pick r ∈]0, R[ such that f(xK)− f(x̄) < a(R− r)2. Hence, for all k ě K,

f(x̄) ď f(xk+1) < f(x̄) + η

and

‖xk+1 − xk‖ ď

√
f(xk)− f(xk+1)

ak
ď

√
f(xK)− f(x̄)

a
< R− r.

Now take K ě K0 such that

‖x̄− xK‖+ 2

√
f(xK)− f(x̄)

anK
+Mϕ(f(xK)− f(x̄)) +

+∞∑
k=K+1

εk < r.

Then, the sequence (yk)k∈N defined by yk = xK+k satisfies S(x̄, r, R), and so, the hypotheses
of Proposition 3.2.4. In particular, the sequence (xk)k∈N converges to some x∞, and Propo-
sition 3.2.4 gives us lim inf

k→+∞
‖∂Ff(xk)‖− = 0. We conclude from the definition of the limiting

subdifferential that 0 ∈ ∂Lf(x∞). �
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Remark 3.2.5. In the previous proof, it suffices for f to have the K L property at any x̄ such
that xnk −−→

k→+∞
x̄ and f(xnk) −−→

k→+∞
f(x̄).

Proof of Theorem 3.2.3 . Since f has the K L property in x̄, there is a strict local upper level
set Γη(x̄, R), where the K L inequality holds with ϕ as a desingularising function. Take r = 2

3R
and, if necessary, shrink η so that

(3.23) 2

√
η

a
+Mϕ(η) <

r

2

This is possible since ϕ is continuous in 0, with ϕ(0) = 0.
Choose now to take x0 ∈ Γη(x̄,

r
2). It suffices to verify that S(x̄, r, R) is fulfilled and to use

Proposition 3.2.4. It is easy to see, under our assumptions on x0 and η, that S(x̄, r, R)(ii) is
verified. Indeed, use the monotonicity of ϕ and x0 ∈ Γη(x̄,

r
2), together with (3.23), to write

‖x0 − x̄‖+ 2

√
f(x0)− f(x̄)

a0
+Mϕ(f(x0)− f(x̄)) <

r

2
+ 2

√
η

a
+Mϕ(η) < r.

For item i), let us assume that x0, . . . , xk lie in Γη(x̄, r) and prove that xk+1 ∈ Γη(x̄, R). Since
x̄ is a global minimum, from H1 and the fact that (f(xk))k∈N is decreasing, we obtain

f(x̄) + a‖xk+1 − xk‖2 ≤ f(xk+1) + a‖xk+1 − xk‖2 ≤ f(xk) ď f(x0) < f(x̄) + η.

In other words,

‖xk+1 − xk‖ ď

√
η

a
<
r

2
.

It follows, using the inequality above and the triangular inequality, that

‖xk+1 − x̄‖ ď ‖xk+1 − xk‖+ ‖xk − x̄‖ <
r

2
+ r = R,

and so xk+1 ∈ Γη(x̄, R). �

3.3 Rates of convergence for an abstract descent method

Along this section, it is assumed that (xk)k∈N is a sequence f -converging to a point x∞, where
f verifies the K L property with a desingularizing function ϕ. We assume that H1, H2 and H3

hold, and for simplicity and precision, we restrict ourselves to the case where εk ≡ 0. We study
three types of convergence rate results, depending on the nature of the desingularising function
ϕ:

i) Theorem 3.3.1 establishes the relationship between the distance to the limit ‖xk − x∞‖
and the gap f(xk) − f(x∞), for a generic desingularising function. It is similar to the
result in [71, Theorem 24] for the proximal method in the convex case.

ii) Theorem 3.3.2 gives explicit convergence rates in terms of the parameters − both for
the distance and the gap − when the desingularising function is of the form ϕ(t) = C

θ t
θ

with C > 0 and θ ∈]0, 1]. Several results obtained in the literature for various methods
are recovered. In particular, according to [240], these convergence rates are optimal for
θ ∈]0, 1

2 ].

iii) Finally, Theorem 3.3.4 provides convergence rates when H2 is replaced by a slightly differ-
ent hypothesis that holds for certain explicit schemes, namely gradient-related methods.
This result is valid for a generic desingularising function ϕ. However, when ϕ is of the
form ϕ(t) = C

θ t
θ (C > 0, θ ∈]0, 1]) the prediction is considerably better than the one

provided by Theorem 3.3.2.

52



3.3.1 Distance to the limit in terms of the gap

Theorem 3.3.1. Set ϕ̃(t) := max{ϕ(t),
√
t}. Then, ‖x∞ − xk‖ = O (ϕ̃(f(xk−1)− f(x∞))) .

Proof. By assumption, xk
f−−→

k→+∞
x∞ and f satisfies the K L inequality on some Γη(x∞, δ). Let

rk := f(xk) − f(x∞) ě 0. We may suppose that rk > 0 for all k ∈ N, because otherwise the
algorithm terminates in a finite number of steps. For K large enough, we have xk ∈ Γη(x∞, δ)
for all k ě K. Then, we can use the estimation (3.18) to write (recall that εk ≡ 0):

2‖xk+1 − xk‖ ď ‖xk − xk−1‖+M [ϕ(rk)− ϕ(rk+1)].

Summing this inequality for k = K, . . . , N , we obtain

N∑
k=K

‖xk+1 − xk‖ ď ‖xK − xK−1‖+Mϕ(rK).

Using the triangle inequality and passing to the limit, we get

‖x∞ − xK‖ ď

∞∑
k=K

‖xk+1 − xk‖ ď ‖xK − xK−1‖+Mϕ(rK) ď

√
f(xK−1)− f(xK)

√
aK

+Mϕ(rK)

by H1. Then, using H0, along with the fact that f(xK) ě f(x∞) and that (rk) is decreasing,
we deduce that ‖x∞ − xK‖ ď 1√

a

√
rK−1 +Mϕ(rK−1), which gives the desired result. �

3.3.2 Explicit rates when ϕ(t) ∝ tθ with θ ∈]0, 1]

We assume now that the desingularizing function of f at x∞ has the form ϕ(t) = C
θ t
θ for

some C > 0, θ ∈]0, 1]. This holds for instance when f is semi-algebraic, or strongly convex
(see the end of Section 3.1.2). Theorem 3.3.2 below is qualitatively analogous to the results in
[18, 240, 19, 321, 72, 107]: we prove convergence in a finite number of steps if θ = 1, exponential
convergence if θ ∈ [1

2 , 1[ and polynomial convergence if θ ∈]0, 1
2 [. In the general convex case,

finite-time termination of the proximal point algorithm was already proved in [287] and [157]
(see also [266]).

Theorem 3.3.2. Assume ϕ(t) = C
θ t
θ for some C > 0, θ ∈]0, 1].

i) If θ = 1 and inf
k∈N

akb
2
k+1 > 0, then xk converges in finite time.

ii) If θ ∈ [1
2 , 1[, sup

k∈N
bk < +∞ and inf

k∈N
akbk+1 > 0, there exist c > 0 and k0 ∈ N such that:

ii.a) f(xk)− f(x∞) = O
(

exp
(
−c
∑k−1

n=k0
bn+1

))
, and

ii.b) ‖x∞ − xk‖ = O
(

exp
(
− c

2

∑k−2
n=k0

bn+1

))
.

iii) If θ ∈]0, 1
2 [, sup

k∈N
bk < +∞ and inf

k∈N
akbk+1 > 0, there is k0 ∈ N such that:

iii.a) f(xk)− f(x∞) = O

((∑k−1
n=k0

bn+1

) −1
1−2θ

)
, and

iii.b) ‖x∞ − xk‖ = O

((∑k−2
n=k0

bn+1

) −θ
1−2θ

)
.

Remark 3.3.3. Note that a simple sufficient− yet not necessary− condition for infk∈N akb
2
k+1 >

0 and infk∈N akbk+1 > 0 is that infk∈N bk > 0.
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Proof. As before, we use the notation rk := f(xk)− f(x∞) ě 0. We can assume that rk > 0 for
all k ∈ N, because otherwise the algorithm would terminate in a finite number of steps. Since
xk converges to x∞, there exists k0 ∈ N such that, for all k ě k0, xk remains in Γη(x∞, δ),
where the K L inequality holds. Using successively H1, H2 and the K L inequality, we obtain

∀k ě k0, ϕ′2(rk+1)(rk − rk+1) ě ϕ′2(rk+1)akb
2
k+1‖∂Ff(xk+1)‖2− ě akb

2
k+1.

Equivalently, using the fact that ϕ(t) = C
θ t
θ,

∀k ě k0, Cr2θ−2
k+1 (rk − rk+1) ě akb

2
k+1.(3.24)

Let us now consider different cases for θ:
Case θ = 1: Recall that we assume that rk > 0 for all k ∈ N, and deduced from that (3.24),
rewritten here with θ = 1:

∀k ě k0, C2(rk − rk+1) ě akb
2
k+1 ě inf

k∈N
akb

2
k+1 > 0.

Since rk converges, we must have inf
k∈N

akb
2
k+1 = 0, which is a contradiction. Therefore, it must

exist some k ∈ N such that rk = 0, which means that the algorithm terminates in a finite
number of steps.
Case θ ∈]0, 1[: This case covers both items ii) and iii). We only have to prove the convergence

rates on the values, and the rates for the iterates will follow Theorem 3.3.1. Write b̄ := sup
k∈N

bk,

m := inf
k∈N

akbk+1 and c = m
C2(1+b̄)

and, for each k ∈ N, βk := bkm
C2 . For each k ≥ k0, (3.24) can

be rewritten, after dividing by C2r2θ−2
k+1 :

(3.25) (rk − rk+1) ě
akb

2
k+1r

2−2θ
k+1

C2
ě βk+1r

2−2θ
k+1 .

Subcase θ ∈ [1
2 , 1[: Since rk tends to zero and 0 < 2− 2θ ≤ 1, we may assume, by enlarging k0

if necessary, that r2−2θ
k+1 ě rk+1 for all k ě k0. Inequality (3.25) implies (rk − rk+1) ě βk+1rk+1

or, equivalently, rk+1 ď rk

(
1

1 + βk+1

)
for all k ě k0. By induction, we obtain

rk+1 ď rk0

 k∏
n=k0

1

1 + βn+1

 = rk0 exp

 k∑
n=k0

ln

(
1

1 + βn+1

)
for all k ě k0. Moreover, using a classic estimation gives

ln

(
1

1 + βn+1

)
ď
−βn+1

1 + βn+1
ď
−1

1 + b̄
βn+1.

We can deduce the desired convergence rate by using the definitions of βk and c:

rk+1 ď rk0 exp


k∑

n=k0

(
−1

1 + b̄
βn+1

) = rk0 exp

−c k∑
n=k0

bn+1

 .

Subcase θ ∈]0, 1
2 [: Recall from inequality (3.25) that r2θ−2

k+1 (rk − rk+1) ě βk+1.

Set φ(t) := C
1−2θ t

2θ−1. Then φ′(t) = −Ct2θ−2, and

φ(rk+1)− φ(rk) =

rk+1∫
rk

φ′(t) dt = C

rk∫
rk+1

t2θ−2 dt ě C(rk − rk+1)r2θ−2
k .
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We distinguish now two cases. On one hand, if we suppose that r2θ−2
k+1 ď 2r2θ−2

k , then

(3.26) φ(rk+1)− φ(rk) ě
C

2
(rk − rk+1)r2θ−2

k+1 ě
C

2
βk+1.

On the other hand, assume that r2θ−2
k+1 > 2r2θ−2

k . Since 2θ − 2 < 2θ − 1 < 0, we have 2θ−1
2θ−2 > 0.

Thus r2θ−1
k+1 > qr2θ−1

k , where q := 2
2θ−1
2θ−2 > 1. Therefore,

φ(rk+1)− φ(rk) =
C

1− 2θ
(r2θ−1
k+1 − r

2θ−1
k ) >

C

1− 2θ
(q − 1)r2θ−1

k ě C ′,

with C ′ := C
1−2θ (q − 1)r2θ−1

k0
> 0. Since βk+1 ď b̄m

C2 , we can write

(3.27) φ(rk+1)− φ(rk) ě
C ′C2

b̄m
βk+1.

Setting c := min{C2 ,
C′C2

b̄m
} > 0 we can write by using (3.26) and (3.27)

∀k ě k0, φ(rk+1)− φ(rk) ě cβk+1.

This implies, after using φ(rk0) ě 0,

φ(rk+1) ě φ(rk+1)− φ(rk0) =
k∑

n=k0

φ(rn+1)− φ(rn) ě c
k∑

n=k0

βn+1,

which is precisely rk+1 ď D

(
k∑

n=k0

bn+1

) −1
1−2θ

with D =
(
cm(1−2θ)

C3

) −1
1−2θ

. �

3.3.3 Sharper results for gradient-related methods

Convergence rates for the continuous subgradient differential inclusion

(3.28) u̇(t) + ∂Ff(u(t)) 3 0,

are given in Theorem 3.1.12. For any desingularizing function ϕ on ]0, η[, this result states that
for some t1 ∈ R,

i) f(u(t))− f(u∞) = O
(
Φ−1(t− t1)

)
, and

ii) ‖u∞ − u(t)‖ = O
(
ϕ ◦ Φ−1(t− t1)

)
,

where Φ is any primitive of −(ϕ′)2 on ]0, η[. If the desingularising function ϕ is of the form

ϕ(t) = Ctθ

θ , we recover (see Remark 3.3.5 later) convergence in finite time if θ ∈]1
2 , 1], exponen-

tial convergence if θ = 1
2 , and polynomial convergence if θ ∈]0, 1

2 [. The same conclusion was
established in [68, Theorem 4.7] for a nonsmooth version of (3.28) when f is any subanalytic
function on H = Rn. This prediction is better than the one given by Theorem 3.3.2 above, as
well as the results in [18, 240, 19, 321, 72, 107], since it guarantees convergence in finite time
for θ > 1

2 . We shall prove that, for certain algorithms including gradient-related methods, this
better estimation remains true. To this end, consider the following variant of hypothesis H2:

H′2 (Relative error): For each k ∈ N, bk+1‖∂Ff(xk)‖− ď ‖xk+1 − xk‖.

Theorem 3.3.4. Let condition H′2 be satisfied instead of H2, and assume m := inf
k∈N

akbk+1 > 0.

Let Φ :]0, η[→ R be any primitive of −(ϕ′)2.
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i) If lim
t→0

Φ(t) ∈ R, then the algorithm converges in a finite number of steps.

ii) If lim
t→0

Φ(t) = +∞, then there exists k0 ∈ N such that:

ii.a) f(xk)− f(x∞) = O
(

Φ−1
(
m
∑k−1

n=k0
bn+1

))
, and

ii.b) ‖x∞ − xk‖ = O
(
ϕ̃ ◦ Φ−1

(
m
∑k−1

n=k0
bn+1

))
, with ϕ̃(t) := max{ϕ(t),

√
t}.

Proof. The following proof is inspired by the one of [104] in the continuous case. First, we claim
that, if rk := f(xk)− f(x∞) > 0 for all k ∈ N, then there is k0 ∈ N such that

(3.29) ∀k ě k0, Φ(rk+1) ě Φ(rk0) +m

k∑
n=k0

bn+1.

To see this, let k0 be large enough to have xk ∈ Γη(x∞, δ), where the K L inequality holds, for
all k ě k0. We apply successively H1, H′2, the K L inequality and H3 to obtain

ϕ′(rk)
2(rk − rk+1) ě ϕ′(rk)

2akb
2
k+1‖∂Ff(xk)‖2− ě akb

2
k+1 ě bk+1m.

Let Φ be a primitive of −(ϕ′)2 on ]0, η[. Then, because ϕ is increasing and concave, and using
the assumption rk > 0, we can write

Φ(rk+1)− Φ(rk) =

∫ rk

rk+1

ϕ′(t)2 dt ě (rk − rk+1)ϕ′(rk)
2 ě bk+1m.

Therefore,

Φ(rk+1)− Φ(rk0) =

k∑
n=k0

Φ(rn+1)− Φ(rn) ě m

k∑
n=k0

bn+1

as claimed. Let us now distinguish the two cases:
For item i), we argue by contradiction. If rk > 0 for all k ∈ N, then (3.29), together with

the hypothesis (bk)k∈N /∈ `1 in H3, imply lim
k→+∞

Φ(rk+1) = +∞. This contradicts the fact

that lim
t→0

Φ(t) ∈ R. Hence, rk = 0 for some k ∈ N and H1 ensures that the sequence remains

stationary there.
For ii), we may suppose that rk > 0 for all k ∈ N (otherwise the algorithm stops in a finite

number of steps), and so (3.29) holds for all k ∈ N. Since lim
k→+∞

Φ(rk) = +∞, we can take

k0 large enough to have Φ(rk0) > 0, whence Φ(rk+1) ě m
k∑

n=k0

bn+1. Since (bn) /∈ `1, for all

sufficiently large k, m
k∑

n=k0

bn+1 is in the domain of Φ−1 and we obtain the first estimation,

namely:

(3.30) rk+1 ď Φ−1

m k∑
n=k0

bn+1

 .

For the second one, since ϕ is concave and differentiable, we have by H1

ϕ(rk)− ϕ(rk+1) ě ϕ′(rk)(rk − rk+1) ě ϕ′(rk)an‖xk+1 − xk‖2.

The K L property and H′2 then give ϕ(rk)− ϕ(rk+1) ě m‖xk+1 − xk‖, which in turn yields

‖x∞ − xk‖ ď
1

m

∞∑
n=k

[ϕ(rn)− ϕ(rn+1)] ď
1

m
ϕ(rk).

We conclude by using (3.30). �
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Remark 3.3.5. Let us analyse the results of Theorem 3.3.4 when ϕ(t) has the form C
θ t
θ. We

assume that C = 1, for simplicity. In that case, we have ϕ′2(t) = −1
t2−2θ .

• If θ ∈]1
2 , 1[, then we can write ϕ′2(t) = −tα−1 with α := 2θ− 1 ∈]0, 1[. Hence, we can take

Φ(t) = 1− 1
α t
α, such that Φ(t) −−→

t↓0
1. This entails the convergence of the sequence in a

finite number of steps, which clearly improves Theorem 3.3.2. This convergence in finite
time is natural, if ones considers that the convergence rate is governed by Φ−1, which, in
that case, goes to zero in finite time.

• If θ = 1
2 , then we have ϕ′2(t) = −1

t . In that case, take Φ(t) = − ln(t) −−→
t↓0

+∞. Thus,

the convergence rates of the values and the iterates are respectively governed by

Φ−1(t) = exp(−t) and (ϕ ◦ Φ)(t) = exp(−1

2
t).

• If θ ∈]0, 1
2 [, we write ϕ′2(t) = −1

t1+α with α := 1 − 2θ ∈]0, 1[. So, consider Φ(t) = 1
α

1
tα ,

which tends to +∞ when t ↓ 0. We can deduce that, in that case, the convergence rates
of the values and the iterates are respectively governed by

Φ−1(t) = α
−1
α t
−1
α = O

(
t
−1

1−2θ

)
and (ϕ ◦ Φ)(t) = O

(
t
−θ

1−2θ

)
.

We clearly recover in the last two points the estimates of Theorem 3.3.2.

Figure 3.1: Asymptotic behaviour of Φ−1, for different values of θ

3.4 Comments and perspectives

Remark 3.4.1 (On the convergence in a finite number of iterations). In Theorem 3.3.4, we
obtained the convergence in finite time of xk to x∞, under the assumption that H2 is replaced
by H′2. It is clear that such hypothesis is verified if the sequence (xk)k∈N is generated by the
gradient method

(3.31) xk+1 = xk − λk∇f(xk),

or more generally by gradient-related methods (see Example 3.2.1). At first look, H′2 seems to
refer to explicit methods, in opposition with implicit schemes (like the proximal method).
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Obtaining convergence in finite time for an explicit scheme is quite surprising, since it is a
property that we usually know for implicit methods, under some conditions. Take for instance
f = δC , the indicator function of a closed convex set C, for which the proximal algorithm
converges in one single step. More generally, it is known that the proximal method converges in
a finite number of steps whenever f is a lower semi-continuous function, which is sharp around
its minimum points (see [287, 157, 266]):

∃σ > 0, ∀x̄ ∈ argmin f, ∀x ∈ H, f(x)− f(x̄) ě σ‖x− x̄‖.

In fact, it must be remembered that we also need the H1 assumption. For explicit methods
like in (3.31), we usually derive H1 from the descent lemma, which asks the function f to be
of class C1,1. So the question is the following: is it compatible for a function to be at the same
time of class C1,1, and satisfying the K L inequality with a  Lojasiewicz coefficient θ > 1

2 ? We
exhibit a simple example illustrating that these two properties are hardly compatible.

Let α ě 1 and fα : R −→ R be defined by fα(x) := α|x|α. Its derivative is given by
f ′α(x) = |x|α−1. Clearly,

• if α ě 2, fα is of class C∞,

• if 1 ď α < 2, fα is of class C1 but f ′α is not Lipschitz continuous around zero.

Thus, satisfying H1 would require α ě 2. On an other hand, let us discuss the K L property
around zero. We look for a constant C > 0 and a  Lojasiewicz exponent θ ∈]0, 1] such that

∀x ∼ 0, fα(x)1−θ ď C|f ′α(x)|,

or equivalently,
∀x ∼ 0, α|x|α(1−θ) ď C|x|α−1.

This can be rewritten as

∀x ∼ 0, |x|1−αθ ď
C

α

This boundedness assumption on |x|1−αθ around zero is satisfied if and only if αθ ď 1. Hence,
if we want the K L inequality to hold with θ > 1

2 , we would have in particular that α < 2.
From this example, and the fact that explicit gradient methods are not used to converge

in a finite number of steps, one can conjecture that the functions satisfying the K L inequality
with a  Lojasiewicz exponent θ > 1

2 cannot have a Lipschitz continuous gradient2.

Remark 3.4.2 (On the asymptotic equivalence between continuous and discrete dynamics).
Doing the comparison between a continuous dynamic and its discrete counterpart is always
fruitful, since each of them enjoys its own advantages/difficulties. In the convex setting, the
correspondence of the asymptotic behaviour between the proximal algorithm and the steepest
descent dynamic has been recently established [265, 13, 14, 269]. In our K L setting, we observed
in Section 3.3 that the convergence rates between the continuous and discrete dynamics are the
same. Furthermore, it is clear that the proofs of Theorems 3.1.8 and 3.2.2 work on the same
arguments. It is thus natural to wonder if some asymptotic equivalence can be established in
the K L context, like in the convex case.

In fact, such a correspondence does exist. In [71, Theorem 39], the authors consider a K L
convex function of class C1,1 f : H −→ R, which has compact level sets. Thus, they coined a
link between the finite length of the trajectories of

u̇(t) +∇f(u(t)) = 0

2I became aware only very recently of a work of Bégout, Bolte and Jendoubi, in which the authors verify
partially this conjecture [55, Proposition 2.8].
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and the sequences satisfying the abstract descent scheme

a‖xk+1 − xk‖‖∇f(xk)‖ ď f(xk)− f(xk+1).

In [71, Remark 40], the authors observe that the convexity assumption can be dropped, provided
that the desingularizing function ϕ of f is concave. Recall that this concavity is required in
our Definition 3.1.1, so this convex hypothesis on f is not necessary in our setting. It is an
interesting problem for the future to investigate whether this asymptotic equivalence can be
extended to nonsmooth functions.
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Chapter 4

Splitting methods for KL functions

As stressed in [20], the abstract scheme developed in Chapter 3 covers, among others, the
gradient-related methods (a wide variety of schemes based on the gradient method sketched in
[96], see also Example 3.2.1), the proximal algorithm [236, 86, 287], and the forward-backward
algorithm (a combination of the preceding, see [228, 260]). This last one is a splitting method,
used to solve structured optimization problems with the form

(4.1) minimize
x∈H

f(x) = g(x) + h(x),

where g is a nonsmooth, proper and lower semi-continuous function, and h is differentiable
with a L-Lipschitz gradient. Basically, the forward-backward method consists in performing a
gradient descent step with respect to h, followed by a proximal step with respect to g. It has
been studied in the nonsmooth and nonconvex setting in [20], and the algorithm was stated as
follows: starting with x0 ∈ H, consider (λk)k∈N ⊂ [λ, λ̄] with 0 < λ ď λ̄ < 1

L , and ∀k ∈ N

(4.2) xk+1 ∈ proxλkg (xk − λk∇h(xk)) .

It satisfies H1, H2 and H3 (see [20, Theorem 5.1]) and falls into the setting of Theorem 3.2.2.
In section 4.1, we shall extend this class of algorithms in different directions.

We allow the consideration of an alternative choice of metric for the ambient space, which
may vary at each step (see [11, 12] and the references therein). Let S++(H) denote the space of
bounded, uniformly elliptic and self-adjoint operators on H. Each A ∈ S++(H) induces a metric
on H by the inner product 〈x, y〉A := 〈Ax, y〉, and the norm ‖x‖A :=

√
〈x, x〉A. Thus, the

proximal operator of f in the metric induced by A is the set-valued mapping proxAf : H ⇒ H,
defined as

(4.3) proxAf (x) := argmin
y∈H

{
f(y) +

1

2
‖y − x‖2A

}
.

Observe that proxAf (x) 6= ∅ if f is weakly lower semi-continuous and bounded from below [21,
Theorem 3.2.5], which holds in many relevant applications. If f is the indicator function of a
set, then proxAf (x) is the projection mapping relatively to the metric induced by A. If A = 1

λ idH,

we just note proxλf instead of prox
1
λ
idH

f . Considering metrics induced by a sequence (Ak)k∈N
in S++(H), the forward-backward method becomes

(4.4) xk+1 ∈ proxAkg
(
xk −A−1

k ∇h(xk)
)
.

Observe that (4.4) can be rewritten as

(4.5) xk+1 ∈ argmin
y∈H

g(y) + h(xk) + 〈y − xk,∇h(xk)〉+
1

2
〈y − xk, Ak(y − xk)〉.
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At each step, an approximation of f , replacing its smooth part h by a quadratic model, is
minimized. See [106] for a similar algorithm called Variable Metric Forward-Backward, and
[253] for an approach considering more general models. Note that, when Ak = 1

λk
idH, one

recovers (4.2). Allowing variable metric can improve convergence rates, help to implicitly deal
with certain constraints, or compensate the effect of ill-conditioning. Rather than simply giving
a convergence result for a general choice of Ak, we handle, in Subsection 4.1.3, a detailed method
to select these operators, using a second-order information on h. It can be seen as a generalized
Levenberg-Marquardt algorithm, a Newton-like method adapted for nonconvex and nonsmooth
functions.

We also want to effectively solve structured problems as

(4.6) minimize
x1∈H1,x2∈H2

f(x1, x2) = g1(x1) + g2(x2) + h(x1, x2),

where g1, g2 are nonsmooth, proper and lower semi-continuous functions, and h is differentiable
with Lipschitz gradient. One approach is the regularized Gauss-Seidel method, which exploits
the fact that the variables are separated in the nonsmooth part of f [20, 19, 321]. It consists
in minimizing alternatively a regularized version of f with respect to each variable. In other
words, it is an alternating proximal algorithm, of the form:

x1,k+1 ∈ proxf(·,x2,k) (x1,k)

x2,k+1 ∈ proxf(x1,k+1,·) (x2,k) .

However this algorithm does not exploit the smooth nature of h. An alternative is to use an
alternating minimization method which can deal with the nonsmooth character, while it benefits
from the smooth features.

We present such a method, considering variable metrics, in Section 4.1. More exactly, we
revisit the Alternating Forward-Backward methods, already considered in [72, 107, 224], but we
point out that our setting differs from these two works on the following points:

• We allow more flexibility in the choice of parameters, accounting, in particular, for van-
ishing step sizes or unbounded eigenvalues for the metrics.

• We allow additive errors. Indeed, the computation of x̃k := xk − A−1
k ∇h(xk) and xk+1 ∈

proxAkg (x̃k) often require solving some subroutines, which may produce x̃k and xk+1 inex-
actly. To take these errors into account we introduce two sequences (rk)k∈N and (sk)k∈N,
and consider

(4.7) xk+1 − sk+1 ∈ proxAkg
(
xk −A−1

k ∇h(xk) + rk
)
.

Convergence of the Alternating Forward-Backward method with errors is given in Theorem
4.1.6. This result is the consequence of the convergence for the abstract scheme studied in
Section 3.2, as it is stated in Proposition 4.1.3.

The Alternating Forward-Backward method provides a framework suitable for the numerical
resolution of a wide variety of structured problems. Section 4.2 is devoted to a discussion on some
applications of this method. In Section 4.2.1, we adapt the AFB method to Feasability problems
involving eventually nonconvex constraints, considering semi-algebraic constraints, or doing a
regularity hypothesis on the intersection (see also [222, 20]). Consider for instance the problems
arising in image processing and data compression, which are generally semi-algebraic by nature
[149, 150, 127]. Indeed, they generally involve the semi-algebraic counting function ‖x‖0 :=
]{i | xi 6= 0}, whose proximal operator is easily implementable (see Section 4.2.2.1). Such
problems can also involve the rank function, like the sparse and low-rank matrix decomposition
problem (see Section 4.2.2.2). They are also well suited for our analysis since the proximal
operator of the rank function admits an explicit formulation [194]. We end with some numerical
results in Section 4.2.2.3, solving the data compression problem with a seemingly new Hard
Shrinkage Projection algorithm.
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4.1 Splitting methods with errors and variable metric

4.1.1 The Alternating Forward-Backward (AFB) Method

Let H1, . . . ,Hp be Hilbert spaces, each Hi provided with its own inner product 〈·, ·〉Hi and

norm ‖ · ‖Hi . If there is no ambiguity, we will just note ‖xi‖ instead of ‖xi‖Hi . Set H :=
p∏
i=1
Hi

and endow it with the inner product 〈·, ·〉 :=
p∑
i=1
〈·, ·〉Hi and the associated norm ‖ · ‖ :=

√
〈·, ·〉.

Consider the problem

(4.8) minimize
xi∈Hi

f(x1, . . . , xp) := h(x1, . . . , xp) +

p∑
i=1

gi(xi),

where h : H −→ R is continuously differentiable and each gi : Hi −→ R ∪ {+∞} is a lower semi-
continuous function. Moreover, we suppose that there is L ě 0 such that, for each (x1, ..., xp) ∈
H and i ∈ {1, ..., p}, the application

(4.9) x ∈ Hi 7→ h(x1, ..., xi−1, x, xi+1, ..., xp)

has a L-Lipschitz continuous gradient on bounded sets.
We shall present an algorithm that generates sequences converging to critical points of

f . The sequences will be updated cyclically, meaning that, given (x1,k, ..., xp,k), we start by
updating the first variable x1,k into x1,k+1, and then we use (x1,k+1, x2,k, ..., xp,k) to update the
second variable, and so on. In order to have concise and clear notations, throughout this section
we shall denote:

(4.10) Xk := (x1,k, ..., xp,k) and Xi,k := (x1,k+1, ..., xi−1,k+1, xi,k, ..., xp,k).

Observe that X1,k = Xk and that we can write Xp+1,k = Xk+1.

Let us now present the Alternate Forward-Backward (AFB) algorithm. As said before,
it consists in doing a forward-backward step relatively to each variable, taking in account a
possibly different metric. Then, for all i ∈ {1, ..., p}, consider a sequence (Ai,k)k∈N ⊂ S++(Hi)
which will model the metrics. Given a starting point X0 ∈ H, the AFB algorithm generates a
sequence (Xk)k∈N by taking, for all k ∈ N and i ∈ {1, ..., p},

(AFB) xi,k+1 ∈ prox
Ai,k
gi

(
xi,k −A−1

i,k∇ih(Xi,k)
)

.

Here ∇ih denotes the i-th component of ∇h in H =
∏p
i=1Hi. We shall consider some hypotheses

on the operators Ai,k. For A ∈ S++(Hi), we set α(A) as the infimum of the spectral values of
A, being the best constant ‖x‖2A ě α(A)‖x‖2 for all x ∈ H. We define then αk := min

i=1..p
α(Ai,k)

and βk := max
i=1..p

�Ai,k�, which give bounds on the spectral values of (Ai,k)i=1..p. We make the

following hypotheses on the parameters αk and βk:

(HP)
1. There exists α > 0 such that αk ě α > L

2. 1
βk

/∈ `1 3. sup
k∈N

βk
αk+1

< +∞.

Remark 4.1.1. Here HP1 is a bound on the spectral values by the Lipschitz constant of the
gradient of h, in order to enforce the descent property of the sequence. For operators of the
form 1

λi,k
idHi , we recover the classical bound Lλi,k ď Lλ̄ < 1. In [107], the authors prove that,

with an additional convexity assumption on the gi’s, and boundedness of the parameters, one

63



can consider Lλi,k ď Lλ̄ < 2. Item HP2 states that the spectral values may diverge, but not
too fast. Finally, HP3 can be seen as an hypothesis on the variations of the extreme spectral
values of the chosen operators. It clearly holds, for instance, if βk is bounded. It is also sufficient
to assume that the condition numbers

κi,k :=
�Ai,k�
α(Ai,k)

are bounded, with also min
{

αk
αk+1

, βk
βk+1

}
remaining bounded.

Remark 4.1.2. Even if ∇h is globally Lipschitz continuous, L is not the Lipschitz con-
stant of ∇h, but a common Lipschitz constant for the functions defined in (4.9). As a con-
sequence, the partial gradients ∇ih are

√
pL-Lipschitz continuous while ∇h is pL-Lipschitz.

This allows us to have a better bound in HP1 which is of particular importance in the ap-
plications (see Section 4.2). In [72], the authors give a more precise analysis: at each sub-
step Xi,k of the algorithm, they consider Li,k as the Lipschitz constant of the gradient of
x ∈ Hi 7→ h(x1,k+1, ..., xi−1,k+1, x, xi+1,k, ..., xp,k. Then they take step sizes equal to λi,k = εi

Li,k
where εi < 1 is a fixed and nonnegative constant. This approach can be related to the one in
[106, 107]. However, they suppose a priori that the values Li,k remain bounded. It would be
interesting to know if it is possible to combine the two approaches (a variable Lipschitz constant
and vanishing step sizes).

4.1.2 The AFB Method with errors

In order to allow for approximate computation of the descent direction or the proximal mapping,
we go further by considering an inexact AFB method. We introduce the sequences (ri,k) and
(si,k) for i ∈ {1, ..., p}, which correspond respectively to errors arising at the explicit and implicit
steps, relatively to the variable xi. The AFB method with Errors is computed from an initial
(x1,0, ..., xp,0) ∈ H by

(AFBE)
yi,k+1 ∈ prox

Ai,k
gi

(
xi,k −A−1

i,k∇ih(Xi,k) + ri,k

)
,

xi,k+1 = yi,k+1 + si,k+1.

We do specific hypothesis on the errors, in view to guarantee the convergence of the method.
Observe in particular that we do not assume -a priori- that the errors converge to zero:

(HE)

There exists σ ∈ [0,+∞[, ρ ∈]0, 1] with σ+1
ρ < αL−1 such that

1. ‖Si,k‖ ď σ
2 ‖yi,k+1 − yi,k‖, with Si,k defined from (si,k) as in (4.10),

2. ‖ri,k‖ ď σ
2 ‖yi,k+1 − yi,k‖+ µk, where µk ě 0 with µk ∈ `1,

3. 〈ri,k + si,k, yi,k+1 − yi,k〉Ai,k ď
1−ρ

2 ‖yi,k+1 − yi,k‖2Ai,k .

This AFB algorithm (with errors) is related to the abstract descent method studied in
Section 3.2, as stated in the next proposition.

Proposition 4.1.3. Any bounded sequence Yk = (y1,k, ..., yp,k) generated by the AFB algorithm
with errors, which verify HP and HE, satisfies H1, H2 and H3.

Proof. Since Xi,k = Yi,k + Si,k, we can rewrite the algorithm as

(4.11) yi,k+1 ∈ prox
Ai,k
gi (yi,k −A−1

i,k∇ih(Yi,k + Si,k) + ri,k + si,k).

We start by showing that H1 is satisfied. Let i ∈ {1, ..., p} be fixed; using the definition of the

proximal operator prox
Ai,k
gi in (4.11) and developing the squared norms gives

gi(yi,k)−gi(yi,k+1) ě
1

2
‖yi,k+1−yi,k‖2Ai,k+〈yi,k+1−yi,k,∇ih(Yi,k+Si,k)〉−〈yi,k+1−yi,k, ri,k+si,k〉Ai,k .
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Using HE3 in the inequality above, together with the definition of αk, it results in

(4.12) gi(yi,k)− gi(yi,k+1) ě
ραk

2
‖yi,k+1 − yi,k‖2 + 〈yi,k+1 − yi,k,∇ih(Yi,k + Si,k)〉.

For fixed k ∈ N and i ∈ {1, ..., p}, introduce the function

h̃i,k : yi ∈ Hi 7→ (y1,k+1, .., yi−1,k+1, yi, yi+1,k, .., yp,k) ∈ R,

which satisfies h̃i,k(yi,k) = h(Yi,k), h̃i,k(yi,k+1) = h(Yi+1,k) and ∇h̃i,k(yi,k) = ∇ih(Yi,k). Apply-
ing the descent lemma 2.1.13 to h̃i,k, we obtain

(4.13) h(Yi+1,k)− h(Yi,k)− 〈yi,k+1 − yi,k,∇ih(Yi,k)〉 ď
L

2
‖yi,k+1 − yi,k‖2.

Then, combining (4.12) and (4.13) we get

(4.14)
ραk − L

2
‖yi,k+1 − yi,k‖2 + 〈yi,k+1 − yi,k,∇ih(Yi,k + Si,k)−∇ih(Yi,k)〉

ď gi(yi,k)− gi(yi,k+1) + h(Yi,k)− h(Yi+1,k),

Using successively the Cauchy-Schwarz inequality, the Lipschitz property of ∇ih (see Remark
4.1.2) and HE1, one gets

− σL

2
√
p
‖yi,k+1 − yi,k‖2 ď 〈yi,k+1 − yi,k,∇ih(Yi,k + Si,k)−∇ih(Yi,k)〉.

By inserting this estimation in (4.14), we deduce that

(4.15)
ραk − L( σ√

p + 1)

2
‖yi,k+1 − yi,k‖2 ď gi(yi,k)− gi(yi,k+1) + h(Yi,k)− h(Yi+1,k).

By summing (4.15) for i ∈ {1, ..., p}, we obtain

ραk − L( σ√
p + 1)

2

p∑
i=1

‖yi,k+1 − yi,k‖2 ď

p∑
i=1

gi(yi,k)− gi(yi,k+1) + h(Yi,k)− h(Yi+1,k),

which is exactly H1 with ak =
ραk−L( σ√

p
+1)

2 :

ραk − L( σ√
p + 1)

2
‖Yk+1 − Yk‖2 ď f(Yk)− f(Yk+1).

To prove H2, fix i ∈ {1, ..., p} and use Fermat’s rule for the Fréchet subdifferential in (4.11) to
get:

(4.16) 0 ∈ ∂Fgi(yi,k+1) + {Ai,k(yi,k+1 − yi,k)−Ai,k(ri,k + si,k) +∇ih(Yi,k + Si,k)} .

Define wi,k+1 := ∇ih(Yk)−∇ih(Yi,k + Si,k)−Ai,k(yi,k+1 − yi,k) +Ai,k(ri,k + si,k), which lies in
∂Fgi(yi,k+1) +∇ih(Yk+1), by (4.16). The triangle inequality gives

(4.17) ‖wi,k+1‖ ď βk (‖yi,k+1 − yi,k‖+ ‖ri,k‖+ ‖si,k‖) + ‖∇ih(Yi,k + Si,k)−∇ih(Yk+1)‖.

Using the error estimations from HE, and the
√
pL-Lipschitz continuity of ∇ih in (4.17), we

obtain:

(4.18) ‖wi,k+1‖ ď (βk(1 + σ) +
√
pLσ)‖yi,k+1 − yi,k‖+

√
pL‖Yk+1 − Yk‖+ βkµk.
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Define now Wk+1 := (w1,k+1, ..., wp,k+1) ∈ ∂Ff(Yk+1) (recall the definition of wi,k+1). Then,
through the sum over i ∈ {1, ..., p} of inequality (4.18), we deduce (using

√
p ď p ď p2)

‖Wk+1‖ ď

p∑
i=1

‖wi,k+1‖ ď pβkµk + p2(βk + L)(1 + σ)‖Yk+1 − Yk‖.

Hence H2 is verified with bk+1 = 1
p2(1+σ)(βk+L)

and εk+1 = βkµk
p(1+σ)(βk+L) .

Now we just need to check that the hypotheses H3 are satisfied with our hypotheses on αk,

βk and µk. Clearly H3(i) holds since we’ve supposed that αk ě α > (σ
√
p
p + 1)Lρ . Then H3(ii)

asks that bk /∈ `1, which is equivalent to 1
βk+L /∈ `1 in our context. This holds since we’ve

supposed that 1
βk

/∈ `1. Hypothesis H3(iii) is satisfied because βk
αk+1

is supposed to be bounded.

Finally, H3(iv) asks the summability of βkµk
βk+L which is bounded by µk ∈ `1. �

Given this result, one could directly apply Theorem 3.2.2 to obtain convergence of the
sequence (Yk)k∈N to a critical point of f . However this result would suffer from some drawbacks.
First, we are expecting that (Xk)k∈N converges to a critical point, not (Yk)k∈N. So we should
make the assumption that the errors Sk := Xk − Yk tend to zero. Moreover we would suppose
that (Yk) is f -precompact, while we may only have an access to (Xk). To handle this, we make
the link between the asymptotic behaviour of (Yk) and (Xk):

Proposition 4.1.4. For any bounded sequence generated by the AFB method with errors
satisfying HP and HE:

i) If (Yk)k∈N has finite length, then so does (Xk)k∈N.

ii) If (f(Yk))k∈N is bounded from below, then for all i ∈ {1, ..., p}, ‖si,k‖ and ‖ri,k‖ lie in `2.
In particular, (Yk)k∈N and (Xk)k∈N share the same limit points.

iii) (Yk)k∈N is precompact if and only if (f(Yk))k∈N is bounded from below and (Xk)k∈N is
precompact.

Proof. Item i) comes directly from HE1. To prove item ii), we use Proposition 4.1.3: from H1

and H3(i), we have

(4.19) a‖Yk+1 − Yk‖2 ď f(Yk)− f(Yk+1),

whence (f(Yk)) is a decreasing sequence. Then we can sum (4.19) to obtain that

(4.20) a
∑
k∈N
‖Yk+1 − Yk‖2 ď f(Y0)− inf

k∈N
f(Yk) < +∞.

Since we have ‖ri,k‖ ď σ
2 ‖yi,k+1−yi,k‖+µk where µk ∈ `1, and ‖yi,k+1−yi,k‖ ď ‖Yk+1−Yk‖ which

is in `2, we deduce that ‖ri,k‖ ∈ `2, and the same holds for ‖si,k‖. So the errors converge to zero,
and (Xk) and (Yk) have the same limit points. Item iii) follows from item ii) and the following
argument: suppose that we have a subsequence (Ynk) converging to some Y∞ = (y1,∞, ..., yp,∞)
in H. Since f is lower semi-continuous and (f(Yk)) is decreasing, we have that inf

k∈N
f(Yk) is

bounded from below by f(Y∞). �

An other disadvantage of the direct application of Theorem 3.2.2 to Proposition 4.1.3 is that
it asks the f -precompactness of (Yk)k∈N. In some cases, precompactness of a sequence can be
deduced using compact embeddings between Hilbert spaces. Sequences remaining in a sublevel
set of an inf-compact function f are also precompact. However, f -precompactness is harder
to obtain without further continuity assumption on f . Actually, both limit and f -limit points
coincide whenever the parameters are bounded:
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Proposition 4.1.5. If either βk ď β̄, or f is continuous on its domain, then (Yk)k∈N is
f -precompact if and only if it is precompact.

Proof. Suppose that we have Ykn converging to Y∞, and show that f(Ykn) converges also to
f(Y∞). Since f(Yk) is decreasing and f is lower semi-continuous, we know that Y∞ must
lie in the domain of f . If f is continuous on its domain, the conclusion is immediate. On
the other hand, suppose that βk ď β̄. Since h is continuous, we only need to verify that

lim
n→+∞

gi(yi,kn) = gi(yi,∞) for each i ∈ {1, ..., p}. By lower semi-continuity of gi, we just have to

prove that lim sup
n→∞

gi(yi,kn) ď gi(yi,∞), following the ideas of [20].

Let n ∈ N∗ and k = kn − 1; by using the definition of the proximal operator, we have

gi(y
k+1
i ) + 1

2‖yi,k+1 − yi,k +A−1
i,k∇ih(Yi,k + Si,k)− ri,k − si,k‖2Ai,k

ď gi(y
∞
i ) + 1

2‖y
∞
i − yi,k +A−1

i,k∇ih(Yi,k + Si,k)− ri,k − si,k‖2Ai,k ,

and the latter implies (using Cauchy-Schwarz and �Ai,k� ď β̄):
(4.21)

gi(yi,k+1) ď gi(yi,∞) +
β̄

2
‖yi,∞ − yi,k‖2 + ‖yi,∞ − yi,k+1‖

[
‖∇ih(Yi,k + Si,k)‖+ β̄‖ri,k + si,k‖

]
.

Now recall that yi,k+1 = yi,kn tends to yi,∞, while ri,k + si,k goes to zero (see Proposition 4.1.4).
Observe also that ∇ih(Yi,k + Si,k) is bounded since Yi,k+1 + Si,k converges to Y∞. Moreover,
‖yi,∞− yi,k‖ goes to zero since ‖yi,∞− yi,k‖ ď ‖yi,∞− yi,kn‖+ ‖yi,k+1− yi,k‖, with yi,kn → yi,∞
and ‖yi,k+1 − yi,k‖ ∈ `2 (see (4.20)). Passing to the upper limit in (4.21) leads finally to
lim sup
n→+∞

gi(yi,kn) ď gi(yi,∞). �

As a direct consequence of Propositions 4.1.3, 4.1.4, 4.1.5, together with Theorem 3.2.2, we
finally obtain our convergence result for the AFB algorithm with errors. It extends the results
of [107] (when taking a cyclic permutation on the variables) in two directions: the functions gi
need not be continuous on their domain, or the step sizes can tend to 0.

Theorem 4.1.6. Let f be a K L function. Let (Yk)k∈N be a bounded precompact sequence
generated by the AFB algorithm with errors, with HP and HE satisfied. Suppose that either
βk remains bounded, or that f is continuous on its domain. Hence, the sequence (Xk)k∈N has
finite length, and converges toward a ∂L-critical point of f .

Remark 4.1.7. In the particular case where Sk ≡ 0, we know furthermore that the sequence
(Xk) is convergent with respect to f . This is no longer true in general if f is not continuous
and Sk 6= 0. As a simple counterexample, take f : x ∈ R 7→ |x|0 ∈ R, where |x|0 = 0 if x = 0,
|x|0 = 1 else. By taking as parameters Ak ≡ 2id, rk ≡ 0, sk = 1

k and x0 = 0, it is easy to see,
after applying the AFB algorithm, that f(yk) ≡ 0 but f(xk) ≡ 1.

An analog of the capture result in Theorem 3.2.3 can also be deduced:

Theorem 4.1.8. Suppose that the K L property holds at a global minimum X̄ of f . Let (Xk)k∈N
be a bounded sequence generated by the AFB algorithm with errors, satisfying HP and HE with
µk ≡ 0. Hence, there exist δ > 0 and η > 0 such that, if X0 ∈ Γη(X̄, δ), then (Xk)k∈N has finite
length and converges to a global minimum of f .

To prove this theorem, it suffices to use Y0 = X0, and to see at the end of the proof of Proposition
4.1.3 that µk = 0 iff εk = 0, where εk is the parameter involved in H3. Then, apply Theorem
3.2.3 together with Propositions 4.1.3 and 4.1.4.
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4.1.3 Variable metric: Towards generalized newton methods

We focus here on the problem of minimizing a C1,1 function h : RN −→ R over a closed and
nonempty set C ⊂ RN . The AFB algorithm reduces in this case to a projected-gradient method,
and allow us to compute in the explicit step a descent direction governed by a chosen metric
Ak. As an example, take h(x) = 1

2〈Ax, x〉−〈b, x〉 with A ∈ S++(RN ) being a symmetric definite
positive matrix. In the unconstrained case, the Newton method (that is, taking Ak ≡ A) is
known to solve in a single step the problem. If we add a constraint C, it is easy to see that the
Newton-projected method

(4.22) xk+1 ∈ projAkC
(
xk −A−1

k ∇h(xk)
)

gives the minimum of h over C in one single step. For a general function h, (4.22) reduces to
the minimisation over C of a quadratic model of h, as stressed in (4.5). One can see on this
example that computing the proximal operator relatively to the metric An, used in the explicit
step, (and not the ambient metric !) is of crucial importance in this method.

The spirit here is to use second-order information from h in order to improve the convergence
of the method. In the unconstrained case, a popular choice of metric is given by Newton-like
methods, where the metric at step k is induced by (an approximation of) the Hessian ∇2h(xk).
Since it is often impossible to know in advance whether or not the Hessian is uniformly elliptic
at each xk, a positive definite approximation has to be chosen.
We detail here a natural way to chose this positive definite Ak ∼ ∇2h(xk) in closed loop,
and show that this method remains in the setting of Theorem 4.1.6. Since it generalizes the
Levenberg-Marquardt method used in the convex case (see [31]), we will refer to the Generalized
Levenberg-Marquardt method for this way of designing Ak. One of the interesting aspect of
the method is that such a matrix can be defined even if h is only C1,1 and not C2, since the
differentiability of ∇h is not necessary in Theorem 4.1.6. Another interesting aspect is that the
splitting approach led us to solve constrained minimization problems with a Newton-projected
approach.

We set S+(RN ) as the closed convex cone of nonnegative N × N matrices. Consider the
generalized Hessian of h, by taking the generalized Jacobian of ∇h in the sense of Clarke:

∂2h(x) := co{ lim
n→+∞

∇2h(xn), where ∇h is differentiable at xn and xn → x}.

This set contains symmetric matrices bearing second-order information on h. Hence, the Gen-
eralized Levenberg-Marquardt method to compute Ak ∈ S++(RN ) from a given xk ∈ RN is the
following: for ε > 0,

Take Hk ∈ ∂2h(xk),
Project Pk := projS+(RN )(Hk),

Regularize Ak := Pk + εIN .

A globalized version of the method can be considered by taking step sizes ensuring descent.
Then, the following convergence result holds:

Proposition 4.1.9. Let f(x) := h(x) + δC(x) be a K L function, where C ⊂ RN is closed and
nonempty, and h is differentiable with a L-Lipschitz gradient. Let x0 ∈ H and suppose that
(xk) is a bounded sequence generated by

xk+1 ∈ projAkC
(
xk − λkA−1

k ∇h(xk)
)
,

where Ak is selected with the Generalized Levenberg-Marquardt process detailed above, and
the stepsizes λk satisfy:

0 < λk ď λ̄ <
ε

L
, λk /∈ `1 and sup

k∈N

λk+1

λk
< +∞.

Then, the sequence (xk)k∈N has finite length and is converging to a critical point of f .
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Proof. Start by observing that projAkC = proj
λ−1
k Ak
C , so the algorithm falls in the setting of

the AFB algorithm. According with the previous notations, ∇h being L-Lipschitz continuous
implies that the sequence (�Hk�)k∈N is bounded by L, and so (�Pk�)k∈N remains bounded by 2L.
To conclude through Theorem 4.1.6, we just need to check the hypotheses HP on the parameters
1
λk
Ak. We have here αk = α( 1

λk
Ak) ě ελk

−1 ě ελ̄−1 > L and βk = � 1
λk
Ak� ď (2L + ε)λ−1

k .
Thus HP1 is satisfied, while items HP2 and HP3 follow directly from the hypotheses made
on (λk)k∈N. Since the indicator function δC is continuous on its domain, the hypotheses of
Theorem 4.1.6 are satisfied. �

This extends, in a way, results from the convex setting to the nonconvex one, enforcing
moreover the strong convergence (see [31, Theorem 7.1]).

A drawback of this method is that the Hessian increases the complexity of implementation
since a matrix must be inverted in the explicit step. An alternative is the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) update scheme (see [65],[299]), using only first-order information to
compute the inverse of the Hessian. On the other hand, the implicit step gains also in complexity
since one must project onto a constraint relatively to a given metric, which is nontrivial even
for simple constraints. For linear constraints, a particular second-order model of the Hessian
can be taken in order to reduce the implicit step in a trivial orthogonal projection step (see
[299, 167, 64]).

Newton-like methods are expected to have good convergence rates in exchange for a more
expensive implementation. An interesting question is whether one can obtain convergence rates
beyond the results in Subsection 3.3, by exploiting, not only the K L nature of the function, but
also the specific properties of the matrices selected by the Generalized Levenberg-Marquardt
process.

4.2 Some problems arising in the KL context

4.2.1 Nonconvex Feasibility

We present here a method to solve

Find x ∈
s⋂
i=1

Ci,

where each Ci is a closed nonempty subset of a Hilbert space H. This problem is called a
feasibility problem. We suppose that each constraint Ci is well-known: we can easily access
its elements, and the projection operator projCi take nonempty values and can be computed.
We emphasize the fact that the sets might be non-convex, which implies that projCi can be
set-valued. A natural approach to solve this problem consists in designing an iterative scheme
involving projections onto each constraint Ci.

For instance, we can chose to successively project the current iterate onto one constraint,
chosen in a cyclic way. This is the alternate projection method, designed by von Neumann
for closed subspaces [252]. There is an abundant literature on this algorithm, see for instance
[48, 49, 136] in the convex setting, and more recently [222, 19] for tame constraints. An other
approach is the averaged projection algorithm, which works in two steps: first, project in parallel
the current iterate onto each constraint, and then, define the new iterate as a convex combination
of each projected point. The first convergence proof for this method is due to Auslender [34],
see also [35, 135, 120, 49, 222]. There exists various other methods to solve the feasibility
problem, let us mention for instance Dykstra’s method [136, Chapter 9], or Haugazeau’s method
[190, 50, 112]. In this section, we will focus on relaxations and combinations of the averaged
and alternate projection methods, invoking special instances of the Alternate Forward-Backward
algorithm. In Theorem 4.2.8, we obtain a local convergence result.
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We chose to approach this feasibility problem by introducing a penalization function. Con-
sider for instance the following weighted sum of the distance functions to the constraints:

(4.23) minimize
x∈H

1

2

s∑
i=1

widist 2(x,Ci) where wi ∈]0, 1[,
m∑
i=1

wi = 1.

If the functions x 7→ 1
2dist 2(x,Ci) are of class C1,1 on bounded sets (for instance if the sets are

convex), we fall into the setting of the AFB method. Their gradient are x 7→ x − projCi(x),
which are 1-Lipschitz continuous, so the algorithm is written as follows:

(4.24) xk+1 = (1− λk)xk + λk

(
s∑
i=1

wiprojCi(xk)

)
,

with (λk)k∈N in [λ, λ̄] ⊂]0, 1[. It is a relaxed version of the averaged projection algorithm of
Auslender. Nevertheless, we cannot implement exactly the averaged projection method, without
violating the constraint λk � 1 due to the Lipschitz constant of x 7→ x− projCi(x).

It might happen that the functions dist 2(·, Ci) are not regular enough, in which case we say
that the constraints are hard (in the previous case, we can talk about soft constraints). In that
case, there is an other way to turn the original feasibility problem into a minimization problem
solvable by the AFB method. It suffices to separate the variables, and solve

(4.25) minimize
(x1,...,xs)∈Hs

s∑
i=1

δCi(xi) +
1

4(s− 1)

∑
1ďi,i′ďs

‖xi − xi′‖2.

The AFB method is written in that case as:

(4.26) xi,k+1 ∈ projCi

(
(1− λi,k)xi,k + λi,k

(
x1,k+1 + ..+ xi−1,k+1 + xi+1,k + ..+ xs,k

s− 1

))
,

with (λi,k)k∈N in [λ, λ̄] ⊂]0, 1[. Here, we obtain an algorithm combining averaging and parallel
projections.

In both cases, if the function to minimize satisfies the K L property, Theorem 3.2.3 guarantees
the convergence to a solution, if the starting point is close enough to the solution set. The
behaviour of the algorithms (4.24) and (4.26) is described in the following simple example.

Example 4.2.1. Consider two closed half-planes C1, C2 in R2, with nonempty intersection.
The algorithm (4.24) writes in that case

xk+1 = (1− λk) + λk

(
projC1

(xk) + projC2
(xk)

2

)
.

If we take λk close to one, this scheme is very close to an averaged projection algorithm. It is
illustrated in Figure 4.1, where we take λk ≡ 0.9.
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Figure 4.1: An relaxed averaged projection algorithm.

The algorithm (4.26) looks more to an alternating projection method. It generates two
sequences (xk)k∈N and (yk)k∈N, defined by

xk+1 = projC1
((1− λ1,k)xk + λ1,kyk),

yk+1 = projC2
((1− λ2,k)yk + λ2,kxk+1).

It is illustrated in Figure 4.1, where we also take λ1,k = λ2,k ≡ 0.9.

Figure 4.2: An relaxed alternate projection algorithm.

Remark 4.2.2. At first glance, it seems that the alternating projection method is slightly
faster than the averaged projection method. This fact is observed in [222, Remark 7.5], under
some regularity assumptions on the intersection.

Remark 4.2.3. In Example 4.2.1, we take m = 2, and observe that the algorithm (4.26) is
very close to the classic alternating projection algorithm. Nevertheless, this is no more the case
when m ě 3, even if λi,k = 1. We do not know if it is possible to find a functional f for which
the AFB method would lead to a ‘pure’ alternating projection algorithm. According to a recent
result of Baillon-Combettes-Cominetti [40], we are tempted to conjecture that such a function
does not exist.
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Remark 4.2.4. When the distance functions dist 2(x,Ci) are not of class C1,1, we said that we
cannot use the averaged projection method (4.24). In fact, there exists an other penalization
leading to an averaged projection-like method, and which is tractable even if the functions
dist 2(x,Ci) are not regular. It suffices to consider

(4.27) minimize
X,Y ∈Hs

δC(X) + δ∆(Y ) +
1

2
‖X − Y ‖2,

where C :=
s∏
i=1

Ci and ∆ := {(x, . . . , x) ∈ Hs | x ∈ H}. Using the fact that

projC(X) =
s∏
i=1

projCi(xi) and proj∆(X) =
1

s
(
s∑
i=1

xi, . . . ,
s∑
i=1

xi),

the AFB method applied to (4.27) writes as

xi,k+1 = projCi ((1− λk)xi,k + λkyk) for all i ∈ {1, ..., s},

yk+1 = (1− µk)yk + µk
s∑
i=1

1
sxi,k+1.

This algorithm can also be seen as a relaxation of the averaged projection algorithm.

We propose in the following a method to solve mixed feasibility problems, involving both
soft and hard constraints. This will result in an algorithm combining the averaged projection
algorithm and the alternate projection method.

4.2.1.1 Mixed feasibility problem

Let s ě 1, p ě 0 and C1, ..., Cs, D1, ..., Dp be a family of weakly closed nonempty subsets of H,
having nonempty intersection. Consider the problem:

(4.28) Find x ∈ S := C1 ∩ .. ∩ Cs ∩D1 ∩ .. ∩Dp.

Here the Ci’s plays the role of the hard constraints (no regularity will be imposed), and we
will always suppose that s ě 1, taking if necessary C1 = H. The Dj ’s are assumed to be
prox-regular: a prox-regular set D ⊂ H is a closed set admitting for each x̄ ∈ D a neighborhood
U such that the projection projD : U → D is well defined (single-valued) and strong-to-weak
continuous. For instance convex sets, as well as manifolds of class C2, are prox-regular. The
prox-regular sets are interesting in our setting since the corresponding distance functions enjoy
a good regularity property:

Proposition 4.2.5. [275] Let D ⊂ H be a nonempty closed prox-regular se. Then, for all
x̄ ∈ D, there exists δ > 0 such that:

i) the projection projD(x) reduces to one element for all x ∈ B(x̄, δ),

ii) the function h(x) := 1
2dist 2(x,D) is of class C1,1 on B(x̄, δ), with a 1-Lipschitz-continuous

gradient given by ∇h(x) = x− projD(x).

To solve (4.28), we introduce a cost function, penalizing the prox-regular sets with their
distance functions, and the hard constraints with their indicator functions:

(4.29) f(x1, ..., xs) =
s∑
i=1

δCi(xi) +
1

2

p∑
j=1

wjdist 2(xi, Dj) +
1

4

s∑
i′=1

w‖xi − xi′‖2
 .
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Here w,w1, ..., wp are nonnegative weights satisfying

(s− 1)w +

p∑
j=1

wj = 1.

Note that (x1, ..., xs) is a global minimum for f if and only if x1 = ... = xs ∈ S, and that we
recover (4.23) (respectively (4.25)) if there is only soft (respectively hard) constraints. This
penalization function fits well with the setting of the previous chapter, since it is the sum of
nonsmooth functions with separated variables (namely, δCi(xi)), and of a smooth function

(4.30) h(x1, ..., xs) :=
s∑
i=1

1

2

p∑
j=1

wjdist 2(xi, Dj) +
1

4

s∑
i′=1

w‖xi − xi′‖2
 .

Note nevertheless that, under the prox-regularity assumption, this function h is not differentiable
on the whole space Hs, but only in a neighborhood of the solution set:

Proposition 4.2.6. Let D1, ..., Dp be nonempty, weakly closed and prox-regular subsets of H.

Let s ě 1 and consider the function h defined in (4.30) with (s−1)w+
p∑
j=1

wj = 1. Then, for all

x̄ ∈
⋂p
j=1Dk, there exists a neighborhood U of x̄ in H such that h is continuously differentiable

on U s. Its partial gradients are

∀i ∈ {1, ..., s},∀(x1, ..., xs) ∈ Hs, ∇ih(x1, ..., xs) = xi −
p∑
j=1

wjprojDj (xi)−
∑
i′ 6=i

wxi′ ,

and satisfy the following Lipschitz property:

∀(x1, ..., xs), (y1, ..., ys) ∈ Hs, ‖∇ih(x1, ..., xs)−∇ih(y1, ..., ys)‖ ď

s∑
i=1

‖xi − yi‖.

Proof. For each j ∈ {1, . . . , p}, let Uj be the neighborhood of x̄ given by (4.2.6) for the function

x ∈ H 7→ 1
2dist 2(x,Dj). Thus, we can take U =

p⋂
j=1

Uj on which h is continuously differentiable.

The computation of ∇ih is direct, coming directly from (4.2.6) and (s− 1)w +
p∑
j=1

wj = 1.

Now, let x := (x1, . . . , xs) and y := (y1, . . . , ys) be in U s. Using the definition of ∇ih
together with the triangular inequality and Proposition 4.2.6, one obtains

‖∇ih(x)−∇ih(y)‖

= ‖w(s− 1)(xi − yi) +
p∑
j=1

wj

[
xi − projDj (xi)− yi + projDj (yi)

]
−
∑
i′ 6=i

w(yi′ − xi′)‖

ď w(s− 1)‖xi − yi‖+
p∑
j=1

wj‖xi − projDj (xi)− yi + projDj (yi)‖+
∑
i′ 6=i

w‖yi′ − xi′‖

ď w(s− 1)‖xi − yi‖+
p∑
j=1

wj‖xi − yi‖+
∑
i′ 6=i

w‖yi′ − xi′‖.

Using again (s− 1)w +
p∑
j=1

wj = 1 and w ď 1 we obtain:

‖∇ih(x)−∇ih(y)‖ ď ‖xi − yi‖+ w
∑
i′ 6=i
‖yi′ − xi′‖

ď
s∑
i=1
‖xi − yi‖.

�
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We can now define an alternating average projection algorithm, by applying the AFB method
to (4.29). Each iteration of this algorithm consists in two steps: first, we compute a convex
combination of the points lying in the hard constraints with some projections on the prox-
regular sets. Next, we project onto a hard constraint, cyclically. More precisely, start with

(x1,0, ..., xs,0) ∈
s∏
i=1

Ci and for all k ∈ N, i ∈ {1, ..., s}, take λi,k ∈ [λ, λ̄] ⊂]0, 1[ and apply

(4.31)

xi,k+1 = projCi

(1− λi,k)xi,k + λi,k

∑
i′<i

wxi′,k+1 +

p∑
j=1

wjprojDj (xi,k) +
∑
i′>i

wxi′,k


The idea to obtain local convergence for this algorithm is to use Proposition 4.1.4 together

with Theorem 3.2.3, under the hypothesis that f is K L and that the starting points are suf-
ficiently close to an element of S. Nevertheless, the hypotheses of Proposition 4.1.4 are not
directly satisfied here since in this case the gradient of h is not Lipschitz continuous on bounded
sets but only in a neighborhood of any point of S. Then we shall verify that the sequence
generated by this algorithm stays in an appropriate neighborhood of S. This is the purpose of
the following technical lemma:

Lemma 4.2.7. Let x̄ ∈ S and U its neighborhood given by the previous proposition. We note
z̄ = (x̄, ..., x̄) ∈ Ss. Then, for any R > 0 satisfying B(x̄, R) ⊂ U , there exists r < R such
that the stability hypothesis S(z̄, r, R)(i) holds for the algorithm given by (4.31), provided that
(x1,0, . . . , xs,0) is taken close enough to z̄.

Proof. Let us start by defining a ‘good’ radius r < R. Given arbitrary r > 0 and R1 > 0, we
define (R2, ..., Rs) by:

Ri+1 = 4s(s+ p)Ri + (2 + 4s(s+ p))r, for i ∈ {2, . . . , s}.

This progression being arithmetic-geometric, we can choose r and R1 small enough to have

r < R1 and Rs <
R√
s

.

By definition of these numbers, we easily see that R1 < ... < Rs. Moreover, we have this
estimation which will be useful in the following:

(4.32) for all 1 ď i < s,
(Ri+1 − 2r)2

8s(s+ p)
ě

(Ri+1 − 2r)2

16s(s+ p)
= (r +Ri)

2.

Set X̄ := (x̄, ..., x̄) and, for all k ∈ N, let Xk = (x1,k, . . . , xs,k). We assume that the initial
point (x1,0, . . . , xs,0) is close enough to X̄, in the following sense (recall that f is continuous):

f(X0) <
(R1 − 2r)2

32(s+ p)
and ∀i ∈ {1, ..., s}, ‖x0,i − x̄‖ < r.

In view to prove S(X̄, R, r)(i), we assume that X0, ..., Xk lies in B(X̄, r), and show that Xk+1 ∈
B(X̄, R).

We start by giving a first estimation on ‖yi,k+1 − xi,k‖, where yi,k+1 is defined by:

yi,k+1 = (1− λi,k)xi,k + λi,k

 p∑
j=1

wjprojDj (xi,k) +
∑
i′<i

wxi′,k+1 +
∑
i′>i

wxi′,k

 .
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Using the triangle inequality and the fact that λi,k, w and wj are strictly smaller than 1 for
each i ∈ {1, . . . , s} and j ∈ {1..p}, one obtains:

‖yi,k+1 − xi,k‖2 ď ‖
p∑
j=1

wj(xi,k − projDj (xi,k)) +
∑
i′<i

w(xi,k − xi′,k+1) +
∑
i′>i

w(xi,k − xi′,k)‖2

ď (s+ p)

[
p∑
j=1

wj‖xi,k − projDj (xi,k)‖
2 +

∑
i′<i
‖xi,k − xi′,k+1‖2 +

∑
i′>i

w‖xi,k − xi′,k‖2
]

Since ‖xi,k − projDj (xi,k)‖
2 = dist 2(xi,k, Dj), we can write that

(4.33) ‖yi,k+1 − xi,k‖2 ď 4(s+ p)f(zk) + (s+ p)
∑
i′<i

‖xi,k − xi′,k+1‖2.

We assumed that X0, ..., Xk ∈ B(X̄, r), where f is of class C1,1. We can use the descent lemma
4.1.4, as in the proof of Proposition 4.1.3, to obtain that f(Xk) ď f(Xk), where f(X0) <
(R1 − 2r)2

32(s+ p)
. Recalling (4.33), we deduce

(4.34) ‖yi,k+1 − xi,k‖2 ď
(R1 − 2r)2

8
+ (s+ p)

∑
i′<i

‖xi,k − xi′,k+1‖2.

We shall prove now that ‖xi,k+1 − x̄‖ ď Ri, by using a recurrence on i ∈ {1, . . . , s}.

If i = 1 then, by (4.34), we have ‖y1,k+1 − x1,k‖2 ď
(R1 − 2r)2

8
ď

(R1 − 2r)2

4
, so

(4.35) ‖y1,k+1 − x1,k‖ ď
(R1 − 2r)

2
.

On the other hand, x1,k+1 being the projection of y1,k+1 onto C1 3 x̄, we have ‖xk+1
1 − x̄‖ ď

2‖y1,k+1 − x̄‖. This last inequality, combined with (4.35), gives:

‖x1,n+1 − x̄‖ ď 2‖y1,k+1 − x1,k‖+ 2‖x1,k − x̄‖ ď (R1 − 2r) + 2r = R1.

Suppose now that ‖xi′,k+1 − x̄‖ ď Ri′ for any i′ < i. In inequality (4.34) we have, using the
recurrence hypothesis, that for all i′ < i,

‖xi,k − xi′,k+1‖ ď ‖xi,k − x̄‖+ ‖x̄− xi′,k+1‖ ď r +Ri′ .

Thus (recalling the monotonicity of the Ri′ ’s):∑
i′<i

‖xi,k − xi′,k+1‖2 ď
∑
i′<i

(r +Ri′)
2 ď

∑
i′<i

(r +Ri−1)2 ď s(r +Ri−1)2

where s(r+Ri−1)2 ď
(Ri − 2r)2

8(s+ p)
by definition of Ri. Combining this last inequality with (4.34)

gives

‖yi,k+1 − xi,k‖2 ď
(R1 − 2r)2

8
+

(Ri − 2r)2

8
,

where
(R1 − 2r)2

8
ď

(Ri − 2r)2

8
since r < R1 < Ri.

Thus ‖y1,k+1 − x1,k‖ ď
(Ri − 2r)

2
, and using exactly the same arguments as for the case i = 1

we can deduce that ‖xi,k+1 − x̄‖ ď Ri.
Hence, we obtain

‖Xk+1 − X̄‖2 =

s∑
i=1

‖xi,k+1 − x̄‖2 ď

s∑
i=1

R2
i ď sR2

s < R2,

which completes the proof. �
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We can now state our capture result:

Theorem 4.2.8. Let C1, ..., Cs, D1, ..., Dp be a collection of nonempty weakly closed subsets of
H with D1, ..., Dp supposed to be prox-regular. Suppose that f , defined by (4.29), satisfies the
K L property at some x̄ ∈ S. Then if each xi,0 is close enough to x̄, the sequence generated by
(4.31) has finite length and converges to some (x∞, ..., x∞) ∈ Ss.

Proof. Let X̄ = (x̄, ..., x̄) ∈ Hs. By Proposition 4.2.5 there is δ > 0 such that h is of class C1,1,
and f has the Kurdyka- Lojasievicz property at x̄ both in a set Γη(x̄, δ) = {x ∈ B(x̄, δ) : 0 <
f(x) < η}. Therefore, Lemma 4.2.7 tells us that if each starting point is close enough to x̄, then
S(X̄, δ, r)(i) holds. We can even be sufficiently close to have S(X̄, δ, r)(ii). So the sequence
remains in a ball where ∇h is Lipschitz continuous, and it can be shown that H0, H1 and H2

are satisfied, following the lines of the proof of Proposition 4.1.3. Thus Proposition 3.2.4 allows
us to conclude. �

4.2.1.2 The KL property for the penalization function

The convergence result of Theorem 4.2.8 holds under the assumption that the cost function f ,
defined by (4.29), has the K L property. This property holds, for instance, if all the involved
sets are defined in an o-minimal structure. We focus in this section on geometric sufficient
conditions on the sets ensuring that f is K L.

Definition 4.2.9. Let F1, . . . , Fm be a family of nonempty closed subsets of H. Its intersection
S is said to be strongly regular at x̄ ∈ S if there exists α > 0 and δ > 0 such that

(4.36)

√√√√ m∑
i=1

‖x∗i ‖2 ď α‖
m∑
i=1

x∗i ‖

holds, for all xi ∈ Fi ∩B(x̄, δ) and x∗i ∈ NL
Fi

(xi), i ∈ {1, ...,m}. If the intersection S is strongly
regular at any of its points, we just say that it is strongly regular.

Remark 4.2.10. Note that this notion is local, which means that the strong regularity at x̄ is
affected by the behaviour of the limiting normal cones NL

Fi
at x ∼ x̄. Observe also that, in finite

dimension, we can equivalently replace the limiting normals by the Fréchet ones in Definition
4.2.9.

Remark 4.2.11. In its survey on regularity of collections of sets, Kruger [214] defines the
strong regularity of F1, ..., Fm at x̄ ∈ F1 ∩ · · · ∩ Fm as follows: there exists R > 0 and α > 0
such that ∀xi ∈ Fi ∩B(x̄, R), ∀r ∈]0, R], ∀εi ∈ B(0, αr),

m⋂
i=1

(Fi − xi − εi) ∩B(0, r) 6= ∅.

Actually, these two notions of strong regularity are the same in finite dimensions spaces (see
[214, Proposition 10, Corollary 2] and Remark 4.2.10).

In finite dimensions, the strong regularity also coincides with a well-known notion:

Proposition 4.2.12. Let F1, . . . , Fm be a family of nonempty closed subsets of H, and assume
that H has finite dimension. Let x̄ ∈ F1∩· · ·∩Fm. Then, the strong regularity of the intersection
at x̄ is equivalent to the following linear regularity:

(4.37) ∀x∗i ∈ NL
Fi(x̄),

m∑
i=1

x∗i = 0⇒ x∗1 = · · · = x∗m = 0.
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Proof. Assume that the intersection is strongly regular at x̄, i.e. there exists α > 0 and δ > 0

so that (4.36) holds. Let (x∗1, . . . , x
∗
m) ∈

∏m
i=1N

L
Fi

(x̄) such that
m∑
i=1

x∗i = 0. By definition of

the limiting normal cone, there exists sequences (xi,k)k∈N ⊂ Fi and (x∗i,k)k∈N ⊂ H such that
x∗i,k ∈ NF

Fi
(xi,k), with

xi,k
Fi−−→

k→+∞
x̄ and x∗i,k

‖·‖−−→
k→+∞

x∗i .

Because of the convergence of xi,k to x̄ in Fi, we can assume, taking eventually a subsequence,
that the sequence (xi,k)k∈N remains in Fi ∩B(x̄, δ). Hence, we can invoke the strong regularity
at x̄ to write, for all k ∈ N: √√√√ m∑

i=1

‖x∗i,k‖2 ď α‖
m∑
i=1

x∗i,k‖.

Passing to the limit when k goes to +∞, together with the fact that
∑m

i=1 x
∗
i = 0, we deduce

that
m∑
i=1
‖x∗i ‖2 = 0, which proves the linear regularity.

On the reverse way, suppose that the linear regularity holds at x̄, and assume, by con-
tradiction, that there exists two converging sequences (xi,k)k∈N ⊂ Fi and (x∗i,k)k∈N ⊂ H such
that

x∗i,k ∈ NL
Fi(xi,k) and xi,k

Fi−−→
k→+∞

x̄

and √√√√ m∑
i=1

‖x∗i,k‖2 > k‖
m∑
i=1

x∗i,k‖.

Adapting the proof in [222, Proposition 8.5], we define

y∗i,k :=

√√√√ m∑
i=1

‖x∗i,k‖2

−1

x∗i,k ∈ NL
Fi(xi,k)

which satisfies

(4.38)
m∑
i=1

‖y∗i,k‖2 = 1 and ‖
m∑
i=1

y∗i,k‖ ď
1

k
.

Since the sequences (y∗i,k)k∈N are bounded and that H is finite-dimensional, we can suppose that
it converge to some y∗i when k goes to +∞. Moreover, the limiting normal cones have a closed
graph in finite dimension, so y∗i ∈ NL

Fi
(x̄) by construction. By taking the limit in (4.38), we

obtain moreover
m∑
i=1

‖y∗i ‖2 = 1 and ‖
m∑
i=1

y∗i ‖ ď
1

k
.

This clearly in contradiction with the linear regularity assumption. �

Example 4.2.13. In finite dimensions, we can derive from (4.37) the following simple charac-
terization of the strong regularity between two sets:

NL
F1

(x̄) ∩ −NL
F2

(x̄) = {0}.

In [222, Proposition 8.5], the authors consider a collection of closed prox-regular setsD1, . . . , Dm

in Rn having a strong regular intersection, and derive the K L property of f . The same approach
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is used in [20, Theorem 5.8], where the authors take a family of closed convex sets D1, . . . , Dm

in Rn (one of them being compact), together with a general closed set C. We extend their
approach to family of closed prox-regular sets in a Hilbert space, together with a general closed
set.

Proposition 4.2.14. Let D1, . . . , Dp be a collection of closed prox-regular subsets of H, and
let C ⊂ H be closed and nonempty. Assume that the intersection S = C ∩D1 ∩ · · · ∩Dp 6= ∅

is strongly regular at x∗ ∈ S. Then, the function f(x) := δC(x) + 1
2

p∑
j=1

wjdist 2(x,Dj), has the

Kurdyka- Lojasievicz property at x̄ with a  Lojasiewicz exponent θ = 1
2 .

Remark 4.2.15. Note that in this setting, we know precisely from Theorem 4.2.8 that the
convergence rate of the algorithm (4.31) is exponential.

Remark 4.2.16. Note that the strong regularity of an intersection of sets is equivalent to the
metric regularity of an appropriate set-valued mapping (see the works of Kruger [213, Section
8], [214, Section 3.3] or [222, Section 3]). On the other hand, the Kurdyka- Lojasiewicz property
of a function is also equivalent (under some assumptions) to the metric regularity on an (other)
set-valued mapping. Thus, we can see –at least informally– that the result of Proposition 4.2.14
is not surprising.

Proof. We will find δ > 0 such that the K L inequality holds in Γ+∞(x̄, δ) = {x ∈ B(x̄, δ) :
0 < f(x) < +∞}. The strong regularity of the intersection implies the existence of parameters
α > 0 and δ > 0 such that

(4.39)

√√√√‖x∗‖2 +

m∑
i=1

‖x∗i ‖2 ď α

∥∥∥∥∥x∗ +

p∑
i=1

x∗i

∥∥∥∥∥
for each x∗i ∈ NL

Di
(xi) with xi ∈ Di ∩ B(x̄, δ), i = 1, . . . , p, and each x∗ ∈ NL

C(x) with x ∈
C ∩ B(x̄, δ). If necessary, shrink δ to be in the context of Proposition 4.2.6 so that each
projection projDi for i = 1, . . . , p, is single-valued on B(x̄, δ). Observe that

∂Lf(x) = NL
C(x) +

{
p∑
i=1

wi

(
x− projDi(x)

)}
.

Take x ∈ C ∩B(x̄, δ) and set xi := projDi(x) ∈ Di ∩B(x̄, δ). Note that x∗i := wi(x− xi) lies in
NL
Di

(xi). We have

‖∂Lf(x)‖2− = inf
x∗∈NL

C (x)

∥∥∥∥∥x∗ +

p∑
i=1

x∗i

∥∥∥∥∥
2

ě
1

α2

[
inf

x∗∈NL
C (x)
‖x∗‖2 +

p∑
i=1

‖x∗i ‖2
]

by (4.39). Whence

‖∂Lf(x)‖2− ≥
1

α2

p∑
i=1

‖x∗i ‖2 =
1

α2

p∑
i=1

w2
i ‖x− xi‖2.

If we note w := min
i=1..p

wi > 0, then we obtain as desired

‖∂Lf(x)‖2− ě w
2

α2
f(x) = w

2

α2
[f(x)− f(x̄)].

�
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4.2.2 Inverse problems and sparsity

With the increase of data’s size in signal or image processing, the research for sparse solutions
gained in interest. The sparsity of a solution is generally expressed by means of the counting
function1:

∀x ∈ RN , ‖x‖0 := ]{i ∈ {1, . . . , N} | xi 6= 0}.

When dealing with matrices, a natural analogue to the counting function is the rank function.
These functions are lower semi-continuous and semi-algebraic, so they enter in the setting of
the Alternate Forward-Backward algorithm. We present in this section some inverse problems
involving sparsity, and provide different algorithms for solving them.

4.2.2.1 Compressed sensing

The search for sparse solutions of under-determinated linear systems is an important problem
in compressive sensing and appears naturally when studying signal denoising, deblurring or
compression processes. Consider the following problem:

(P0) min
x∈RN

‖x‖0 such that Ax = b,

where b ∈ RM with M < N and A ∈ RM×N . The interest of (P0) in data compression is simple:
suppose we have a measurement b := Ax̄ of a signal x̄, which we know to be sparse (meaning
that ‖x̄‖0 is small). If ‖x̄‖0 < M

2 , and the columns of the matrix are supposed to be in general
position, then x̄ is the only solution of problem (P0) (see [149, 150]). This property holds in
RN×M with probability 1 and can be obtained by considering a matrix with random entries.

Solving (P0) by means of combinatorial techniques is very difficult, because it is an NP-hard
problem [249]. This is why this problem is generally handled with an iterative method. In order
to solve (P0), which can be rewritten as

min
x∈RN

‖x‖0 + δ{Ay=b}(x),

we could apply the proximal algorithm to the lower-semicontinuous function x 7→ α‖x‖0 +
δ{Ay=b}(x). But the proximal operator associated to this sum is not easy to compute while the
proximal operator associated to each summand is well known. Indeed, proxα‖·‖0 is the hard
shrinkage operator, that we will note Hα(x), and is defined by:

for all i ∈ {1, . . . , N}, (Hα(x))i =


0 if |xi| <

√
2α,

{0, xi} if |xi| =
√

2α,

xi if |xi| >
√

2α.

On the other hand, proxδ{Ax=b}
(x) is the projection of x onto the linear set {Ax = b}. In other

words,
proxδ{Ax=b}

(x) = proj{Ax=b}(x) = (IN −A†A)x+A†b,

where A† is the pseudo-inverse of A. Thus, it only remains to apply the splitting method seen
in Section 4.1. Let us give some relaxations of (P0), which leads to different algorithms:

• Penalize quadratically the constraint, and consider for some α > 0:

(P
(1)
0 ) minimize

x∈RN
α‖x‖0 +

1

2
‖Ax− b‖2.

1Sometimes called the `0 norm, which is not really an appropriate name.

79



The AFB algorithm becomes the Hard-Shrinked Gradient algorithm, defined as follows:

xk+1 ∈ Hαλk(xk − λkA∗(Axk − b)),

where (λk)k∈N are step sizes lying in [λ, λ̄] ⊂]0, �A∗A�−1[. This method appears in [20],
and can be seen as an adaptation of the Thresholded Landweber algorithm [127], where
the `1 norm is replaced by the counting function.

• Separate the variables by introducing the problem, for some α > 0:

(P
(2)
0 ) minimize

x∈RN
α‖x‖0 + δ{Ay=b}(y) +

1

2
‖x− y‖2.

The AFB algorithm becomes the Hard-Shrinkage Projection method:

yk+1 = proj{Ax=b}(µkxk + (1− µk)yk),
xk+1 ∈ Hαλk(λkyk + (1− λk)xk+1),

with parameters (λk)k∈N,(µk)k∈N lying in [τ , τ̄ ] ⊂]0, 1[. To our knowledge, this algorithm
for solving (P0) is new. See Section 4.2.2.3 for a practical implementation of this algorithm.

As a consequence of Theorem 4.1.6, together with the fact that the problem (P
(1)
0 ) (resp.

(P
(2)
0 )) is semi-algebraic, we obtain that any bounded sequence generated by this algorithm

converges. Moreover, Theorem 4.1.8 guarantees that the limit point is a solution of (P
(1)
0 )

(resp. (P
(2)
0 )), provided that the initial point is close enough to the solution.

4.2.2.2 Sparse and Low-rank Matrix Decomposition

The problem of recovering the sparse and low-rank components of a matrix arises naturally in
various areas, such as model selection in statistics or system identification in engineering (see
[101] and references therein). Denote by ‖X‖0 the number of nonzero components of a matrix
X ∈ Mm,n(R). Given A ∈ Mm,n(R), the low-rank sparse matrix decomposition problem
consists in finding X,Y in Mm,n(R) such that A = X + Y , with X having a low rank, and Y
being sparse:

(Prk,0) minimize
X+Y=A

rank (x) + ‖Y ‖0.

An approach to solve this problem consists in doing a convex relaxation of the objective function:
the counting norm and the rank functions are replaced by `1 and nuclear norms, respectively
(see [283, 169, 322]). Nevertheless, the K L framework is well adapted to this nonconvex (but
semialgebraic!) problem, and offers convergent numerical methods. Moreover, the AFB method
is well suited for its structure in separated variables.

If we know some estimate on the desired rank (resp. sparsity) for X (resp. Y ), a tractable
relaxation is:

minimize
X,Y ∈Mm,n(R)

δ{rank (·)ďr}(X) + δ{‖·‖0ďs}(Y ) +
1

2
‖A−X − Y ‖2F ,

where ‖ · ‖F denotes the Frobenius norm inMm,n(R), and r, s ∈ N. Applying the AFB method
to this problem leads to an Alternating Averaged Projected Method :

Xk+1 ∈ proj{rank (·)ďr} (λk(A− Yk) + (1− λk)Xk),

Yk+1 ∈ proj{‖·‖0ďs} (µk(A−Xk+1) + (1− µk)Yk),

where (λk)k∈N, (µk)k∈N are two sequences of parameters in [τ , τ̄ ] ⊂]0, 1[. This algorithm involves
two projections at each step. To project onto {‖ · ‖0 ď s}, one simply sets all the coefficients
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to zero, except for the s largest ones (in absolute value). The projection of M ∈Mm,n(R) onto
{rank · ď r} is given by Eckart-Young’s Theorem [151]: writes the Singular Value Decomposition
M = UΣV , and put all the coefficients of the diagonal matrix Σ to zero, except for the s largest
ones (in absolute value).

An other way to relax the problem (Prk,0) is the following: take some α, β > 0 and

minimize
X,Y ∈Mm,n(R)

α rank (x) + β‖Y ‖0 +
1

2
‖A−X − Y ‖2F .

The AFB algorithm applied to this problem leads to a similar algorithm:

Xk+1 ∈ proxαrank (λk(A− Yk) + (1− λk)Xk),
Yk+1 ∈ proxβ‖·‖0 (µk(A−Xk+1) + (1− µk)Yk),

with (λk)k∈N, (µk)k∈N in [τ , τ̄ ] ⊂]0, 1[. Here, two proximal operators are involved. The proximal
operator of the counting norm for the matrices is exactly the same than for the vectors, the
hard-shrinkage operator. Recently, Hiriart-Urruty and Le [194] gave an explicit description of
the elements of proxαrank(M). It suffices, for instance, to write the singular value decomposition
M = UΣV , and to apply the hard-shrinkage operator to Σ.

4.2.2.3 Numerical results on data compression

Let x̄ ∈ RN be an original signal with sparsity s := ‖x̄‖0, and b = Ax̄ the compressed signal
through A ∈ RM×N generated with i.i.d. Gaussian entries2. The purpose is to recover x̄ from
b, by solving

(P
(2)
0 ) minimize

x∈RN
α‖x‖0 + δ{Ay=b}(y) +

1

2
‖x− y‖2

with the Hard Shrinkage Projection method. Rather than competing with the vast literature on
compressive sensing, our principal aim here is to illustrate a new method from tame optimization
to tackle problems involving sparsity. However, this clearly opens the door to new ideas from
nonconvex optimization and maybe future works could focus on the enhancement of these
algorithms, and their comparison to specific methods such as LASSO or Matching Pursuit.

Let us precise how we run the Hard Shrinkage Projection method. We generate randomly
x0 = y0 and run 10 steps of the algorithm with parameters µk ≡ 10−3, λk ≡ 10−2 and α = 105.
Then, we do a restart at the current point for 10 more steps, with parameters µk ≡ 10−3, λk ≡ 1

3
and α = 130. Finally, we let the algorithm run with µk ≡ 10−3, λk ≡ 1

3 and α = 3. The choice
of this initialization can be understood as follows: in a first time we use the hard shrinkage
operator Hαλ with a high value for αλ, which enforces xk to keep a large number of zeroes.
Then, we diminish αλ progressively, which allows xk to capture new nonzeros coefficients. All
our numerical experimentations tend to show that a decreasing α improves the convergence of
the method.

2A = (ai,j) with ai,j ∼ N (0, 1
M

).

81



Let us start by evaluating the performance of this algorithm. For this, we generate random
initial signals x̄ ∈ [0, 255]100, that we try to recover for different values of s and M . We define
δ := M

100 and ρ := s
M , being respectively the levels of compression and sparsity. We let δ and

ρ taking values between 0 and 1, and take for each couple (δ, ρ) the values M = b100δc and
s = b100ρδc. For each couple of M and s, we run 10 instances of the Hard Shrinkage Projection

algorithm with 100 steps, and take e(δ, ρ) the average of the relative errors ‖x̄−x100‖
‖x̄‖ . Figure

4.3 plots the values e(δ, ρ) for (δ, ρ) ∈ [0, 1]2, in a gray scale: an exact recovery e(δ, ρ) = 1
corresponds to a black pixel, while e(δ, ρ) = 0 corresponds to a white pixel.

Figure 4.3: Values of e(δ, ρ) for (δ, ρ) ∈ [0, 1]2.

We obtain a phase transition diagram: below a certain limit, the performance of the algo-
rithm decreases dramatically. This behaviour is well-known for methods based on the `1 norm,
see the works of Donoho [147] and Donoho-Stodden [148]. Observe nevertheless that our phase
transition lies in a higher part of the diagram than the ones of [147, 148]. This tends to show
that our method based on the direct minimization of the counting norm ‖·‖0 is more demanding
in terms of the couple (δ, ρ).

We illustrate now the compression/decompression process by applying it to some picture
X ∈ R512×512. In general, images of every-day life are not sparse, so we cannot directly work
with them. Instead, we will work in a wavelet space, applying to X a wavelet transform W .
Thus, WX is almost sparse, in the sense that WX contains a lot of nearly zero coefficients. By
taking X̄ = Hε(WX) for some ε ∼ 0, we obtain a sparse matrix, such that W−1X̄ is close to
the original image (see Figure 4.4 below).
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Figure 4.4: Top line: the original picture X and a representation of its wavelet transform WX.
Bottom line: the matrix X̄ obtained after putting to zero 90% of the coefficients of WX, and
the corresponding picture W−1X̄.

Once we have a sparse matrix X̄ to work with, we can compress it. For computation purposes,
we do not compress directly X̄ through a huge matrix A of size ∼ 5124, but decompose X̄ into
several vectors of size 200, that we can compress/decompress in parallel: X̄ = (x̄1, . . . , x̄1311).
The decompression of these fragments x̄i is done by using exactly the same method as described
above. Recall that the exact recovery is not guaranteed for each run of the Hard-Shrinkage
Projection method. Hence, we keep in memory the sparsity of the original fragment si := x̄i,
and restart eventually the algorithm until it converges to a vector having the same sparsity si.

Figure 4.5: Left: original image. Right: Image obtained after compression to 57% of the original
size, and then decompression using 100 iterations of the Hard-Shrinkage Projection algorithm.
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Figure 4.6: Left: original image. Right: Image obtained after compression to 60% of the original
size, and then decompression using 100 iterations of the Hard-Shrinkage Projection algorithm.

Figure 4.7: Reconstruction of the Shepp-Logan image, after compression to 60% of the original
size. From left to right, top to bottom, reconstructed pictures after 0, 1, 5, 10, 25 and 32 iterations
of the Hard-Shrinkage Projection algorithm.

4.3 Comments and perspectives

Remark 4.3.1 (On the additive/relative errors). In Section 4.1, we presented a general splitting
method, admitting additive errors. The convergence of the method is guaranteed under the set
of assumptions HE, which is difficult to satisfy in practical. It would be of interest to design
an algorithm admitting relative errors.

Consider for instance the gradient-like method

xk+1 = xk − λkA−1
k ∇f(xk), λk > 0, Ak ∈ S++(H),

which covers the gradient or Newton-like methods. At each iteration, the direction dk :=
−A−1

k ∇f(xk) must be computed. It can be obtained by solving, for instance, a quadratic
program:

(4.40) dk = argmin
d∈H

1

2
〈Akd, d〉+ 〈∇f(xk), d〉.

The approach adopted for instance by Fliege and Svaiter [159] consists in solving (4.40) inexactly.
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Define for this the optimal value

vk := inf
d∈H

1

2
〈Akd, d〉+ 〈∇f(xk), d〉 =

−1

2
‖∇f(xk)‖2A−1

k

ď 0.

Given a tolerance σ ∈]0, 1], take xk+1 = xk + λkdk, where dk is a descent direction such that

(4.41)
1

2
〈Akdk, dk〉+ 〈∇f(xk), dk〉 ď σvk.

The interest of this approach is that it allows an inexact computation of −A−1
k ∇f(xk), with an

error estimation depending only on the parameter σ. It can be derived from (4.41) that such
direction dk satisfies

〈∇f(xk), dk〉+
σ

2�Ak�
‖∇f(xk)‖2 ď 0 and ‖dk‖ ď

2

α(A)
‖∇f(xk)‖,

which means that this method is gradient related, as defined in Example 3.2.1. As a consequence,
this inexact method satisfies the hypotheses H1 and H2, and enters into the setting of the
convergence Theorem 3.2.2.

It would be of interest to take into account such relative errors for the proximal (or Forward-
Backward) method. In that case, the analysis should rely on a perturbed proximal operator, for
nonconvex functions. See the work of Rockafellar [287], or more recently the study of Salzo-Villa
[292] (and the references therein), for examples of perturbed proximal methods.

Remark 4.3.2 (Compressed sensing in optimal control). From the applications point of view,
the counting norm ‖·‖0 evoked in Section 4.2.2 has a natural extension to an infinite-dimensional
functional setting, namely, the measure of the support of a function u defined on some Ω ⊂ RN .
An interesting –but challenging– issue is to apply our algorithm to this extension in order to solve
the problem of sparse-optimal control of partial differential equations. From the implementation
point of view, it suffices to apply the one-dimensional hard shrinkage operator at each point.
Nevertheless, the verification of the K L inequality for this function has not been established
and will probably rely on sophisticated arguments concerning the geometry of Hilbert spaces.
Then, there is the natural question whether this approach is more efficient than those using the
L1 norm (see, for instance, [94]).

Remark 4.3.3 (On numerical methods for solving semilinear PDE’s). Let Ω be an open
bounded subset of RN of class C2. We aim to study the following semilinear heat equation
with Dirichlet boundary conditions:

u̇(x, t) = ∆u(x, t) + g(x,u(x, t)) for (x, t) ∈ Ω× R+

u(x, t) = 0 for (x, t) ∈ ∂Ω× R+,

where g : Ω × R −→ R is a source term. As usual, we can use a variational approach for this
parabolic PDE. Thus, consider trajectories u(t) = u(·, t) satisfying

(4.42) for all t ∈ R+, u̇(t) = ∆u(t) + g(·, u(t)),

this equation being understood in H−1(Ω). A natural problem when facing this equation evo-
lution is the following: how to numerically implement the evolution of this dynamic, given an
initial state u0 ∈ H1

0 (Ω).
A popular approach consists in discretizing in time the equation (4.42). This leads to the

following Euler scheme:

(4.43) ∀k ∈ N,
uk+1 − uk

λk
= ∆unk + g(·, unk) in H−1(Ω),
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where λk is some nonnegative stepsize, and nk ∈ {k, k + 1}. Here too, this equation shall be
understood in a variational sense. When nk = k (respectively nk = k + 1), we talk about an
explicit (resp. implicit) Euler scheme. The explicit Euler scheme is easy to implement, since
uk+1 is computed through an explicit formula, but this method is not satisfactory since it suffers
from a lack of stability, see for instance [200, Example 2.3]. On the contrary, the implicit Euler
method enjoys a good stability property, see for instance the seminal work of Crandall-Liggett
[119], or also Bénilian-Crandall-Pazy [57].

This is the approach adopted by Merlet and Pierre [240], which interpret the implicit Euler
scheme as a ‘proximal’ method, applied to the underlying energy of the system:

E : H1
0 (Ω) −→ R

u 7−→ 1

2

∫
Ω
|∇u(x)|2 dx −

∫
Ω

∫ u(x)

0
g(x, t) dtdx.

Under some growth conditions on g, we are ensured that E is of class C2 (see [209, Proposition
I.17.6] and [97, Corollary 5.5.7]). Moreover, assuming g(x, t) to be analytic in t, uniformly with
respect to x ∈ Ω, a result of Haraux and Jendoubi [187] states3 that E inherits the K L property.
Thus, the convergence of the implicit Euler method follows (see [240, Theorem 5.4]).

In the light of the work done in this chapter on splitting methods, it seems natural to adopt
an explicit-implicit4 Euler scheme (see [304, 121, 256, 184]):

(4.44) ∀k ∈ N,
uk+1 − uk

λk
= ∆uk+1 + g(·, uk) in H−1(Ω).

This method would be interesting, since it reduces the cost of computing uk+1, (we only have
a linear equation to solve), and we can hope that this method keeps some stability. Thus, it
looks like it suffices to apply the Forward-Backward method to E , to obtain the convergence of
this explicit-implicit Euler scheme (4.44).

In fact, things are more complicated here. This is essentially due to the fact that the heat
equation can be seen as a gradient flow for E with respect to the L2(Ω) scalar product. In
particular, the implicit Euler method corresponds to a proximal algorithm with respect to the
L2(Ω) norm:

uk+1 ∈ H1
0 (Ω) and

uk+1−uk
λk

= ∆uk+1 + g(·, uk+1) in H−1(Ω)

⇔ uk+1 = argmin
u∈H1

0 (Ω)

E(u) + 1
2λk
‖u− uk‖2L2 .

Nevertheless, there is still some information to exploit there, like the decrease property:

1

2λk
‖u− uk‖2L2 ď E(uk)− E(uk+1).

When applying the Forward-Backward algorithm to E , even a basic property like the descent
property becomes complicated to obtain. To see this, define

J : H1
0 (Ω) −→ R and G : H1

0 (Ω) −→ R

u 7−→ 1

2

∫
Ω
|∇u(x)|2 dx u 7−→

∫
Ω

∫ u(x)
0 g(x, t) dtdx.

3In fact, [187, Theorem 2.1] only states that E verifies the K L inequality at the critical points having the
regularity H2(Ω). But an elliptic regularity argument ensures that all critical points of E does have this regularity
(see [97, Theorem 4.4.3] and [172, Theorem 8.12]).

4Sometimes written IMEX for short, see [200, 184].
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The explicit-implicit Euler scheme (4.44) can then be rewritten as

uk+1 = argmin
u∈H1

0 (Ω)

J (u) +
1

2λk
‖u− uk + g(·, uk)‖2H−1 .

As usual, we derive from the optimality condition above this first inequality (use the compact
embedding L2(Ω) ↪→ H−1(Ω)):

1

2λk
‖uk+1 − uk‖2L2 + 〈g(·, uk), uk+1 − uk〉H−1×H1

0
ď J (uk)− J (uk+1).

Assuming that the derivative DG : H1
0 (Ω) −→ H−1(Ω) is L-Lipschitz continuous (use for in-

stance [209, Proposition I.17.6]), we can use the descent lemma 2.1.13 to obtain:

1

2λk
‖uk+1 − uk‖2L2 −

L

2
‖uk+1 − uk‖2H1

0
ď E(uk)− E(uk+1).

We see that we cannot derive the descent property by means of usual methods, which is a clear
obstacle. Thus, the study of this splitting method in this setting provides a good challenge for
the future.

Remark 4.3.4 (Going further). Although the set of hypotheses considered in Section 3.2
account for a wide variety of numerical methods described in this Chapter, there exist some
algorithms that do not fit into this framework. An interesting task would be to extend the
present convergence analysis to such methods:

• Acceleration schemes, like the ones studied in [251, 53, 54], have been proved to have a
remarkable performance at least in terms of the values of the objective function. We point
out a recent work [254] containing a first attempt in this direction.

• Dealing with on-line rules for updating certain parameters − such as (limited) minimiza-
tion, Armijo, Goldstein, or Wolfe line search for the step sizes − may be quite useful. See
for instance [89] for a gradient method with an inexact line-search satisfying H1 and H2.

• Bregman distances provide a relevant alternative to Newton methods, as variable-metric
schemes. A first attempt in this direction are the works of Quiroz-Oliveira [280] and
Lageman [218], which study descent methods on manifolds.

• Gradient-type methods usually require Lipschitz-continuity of the gradient, at least in
sublevel sets. The possibility to consider an asymptotic degeneration of this condition
will broaden the scope of these methods.

• Finally, a challenging open problem is to obtain convergence results general primal-dual
methods following a Lagrangian approach. Recent preprints give a first advance in this
direction, providing convergence results for the ADMM method [225, 198, 316].
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Part II

Dynamics for Vector optimization
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Each individual always seeks to climb the
hill of pleasure, to increase his
ophelimity.

Vilfredo Pareto
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Chapter 5

An ordered subdifferential for
vector-valued functions

We study a general vector optimization problem associated to a locally Lipschitz function F :
X −→ Y, where X and Y are two Banach spaces. We consider a nonempty closed convex set
C ⊂ X, which will model the constraints, and we equip Y with an order induced by a pointed
closed convex cone K, with nonempty interior. In the following, ĺ will denote the order induced
by K, and ň the associated strict order induced by K \ {0Y}. Moreover, we will note ă the
strict order induced by the strict cone intK. We recall from Section 2.3.1 that this is equivalent
to:

• y1 ĺ y2 if and only if y2 − y1 ∈ K,

• y1 ň y2 if and only if y2 − y1 ∈ K \ {0},

• y1 ă y2 if and only if y2 − y1 ∈ intK.

Here we try to solve

(VOP) MIN
x∈C

F (x),

and look for the set of its efficient points

ARGMIN
x∈C

F = {x ∈ X | [F ň F (x)] = ∅},

or weak efficient points

ARGMINw
x∈C

F = {x ∈ X | [F ă F (x)] = ∅}.

From now, and until the end of this chapter (and in fact, until the end of Part II), we fix
an element e ∈ intK, which gives us a base Θ of K+ by taking:

(5.1) Θ := {θ ∈ K+ | 〈θ, e〉 = 1}.

As seen in Section 2.3, Θ is weakly∗ compact and convex, and the family of real-valued cost
functions

{fθ := θ ◦ F | θ ∈ Θ}

controls the monotonicity of F (see Theorem 2.3.7). It is also matters to consider Ξ the set of
extreme points of Θ in Y∗, and the corresponding subfamily of extreme cost functions

{fξ := ξ ◦ F | ξ ∈ Ξ}.
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The reader can keep in mind along its reading the essential case of multi-objective opti-
mization. When (Y,K) = (Rm,Rm+ ) and F = (f1, ..., fm), we recover from the definitions of
efficiency the usual notions of Pareto and weak Pareto optimality (see Section 2.3). Moreover,
if we take e = (1, ..., 1), the family of extreme cost functions is exactly {f1, ..., fm}, while the
cost functions {fθ}θ∈∆m corresponds to all the convex combinations{

fθ =
m∑
i=1

θifi |
m∑
i=

θi = 1, θi ě 0

}
.

In Section 5.1 we introduce the ordered Clarke subdifferential of F as a set-valued mapping
∂CF : X⇒ X∗, defined trough the Clarke subgradients of the cost functions:

∂CF (x) = co∗
⋃
θ∈Θ

∂Cfθ(x).

In particular, in the multi-objective setting F = (f1, ..., fm), we show that the ordered Clarke
subdifferential reduces to the convex hull of the subgradients of the fi’s:

∂CF (x) = co{∂Cf1(x), ..., ∂Cfm(x)}.

We study in Section 5.1.2 some basic properties, such as its computation in the convex or smooth
cases, in Proposition 5.1.8. In Propositions 5.1.11 and 5.1.13 we show some closure properties
of the graph of ∂CF : X ⇒ X∗. This will be useful in the next chapters, when considering
the asymptotic behaviour of a dynamic governed by ∂CF . In Section 5.2 we study the descent
directions provided by this ordered subdifferential, defined through the notion of ordered Clarke
derivative

dCF (x, d) := sup
θ∈Θ

dCfθ(x, d) < 0.

In Section 5.2.1, after some definitions, we derive an Armijo’s rule in Proposition 5.2.9. We also
provide a Fermat’s rule in Theorem 5.2.10, which relates the critical points satisfying

0 ∈ NC(x) + ∂CF (x)

to the weak Pareto points. In Section 5.2.2 we show that the ordered Clarke subdifferential
∂CF (x) spans the normal cone to the sublevel set [F ĺ F (x)]. Dually, the set of descent
directions defined before is exactly the interior of the tangent cone to [F ĺ F (x)]. In Section
5.2.3, we take X = H as a Hilbert space, and design one particular choice of descent direction,
by considering the element of minimal norm in −∂CF (x) (or −NC(x) − ∂CF (x), if there is a
constraint). In a sense specified in Theorem 5.2.20, this direction is the steepest among the
descent directions at x. That is why we call it the steepest descent direction at x, and note1 it
s(x). This steepest descent vector field s : H −→ H generalises the steepest descent vector field
∇f : H −→ H usually involved in the minimization of a smooth real-valued function f . This will
naturally led us to study, in the next chapters, dynamics governed by s. The Figure 5.1 below
sums quickly up the situation, for a bi-objective smooth function F = (f1, f2) : R2 −→ (R2,R2

+).

1Letter s stands for steepest.
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Figure 5.1: First-order analysis at x for a bi-objective function. Thin circles represents the level
sets of two functions f1 and f2. The sublevel set [F ĺ F (x)] is in thick lines, and its tangent
and normal cones are in thin dotted lines. The ordered Clarke subdifferential at x is the thick
segment relying the gradients at x.
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5.1 An ordered Clarke subdifferential for vector-valued func-
tions

5.1.1 Definition

We introduce what will be the central tools for our study of vector optimization problems.

Definition 5.1.1. For any x ∈ X, and d ∈ X, we define the ordered (Clarke) directional
derivative of F at x in the direction d by

dCΘF (x, d) := sup
θ∈Θ

dCfθ(x, d).

In general, if there is no ambiguity, we will omit the mention of the base Θ and just write
dCF (x, d).

We easily see that dCF (x, ·) is sublinear, as the supremum of a family of sublinear functions.
Moreover, since Θ is bounded and F is locally Lipschitz, we also see that dCF (x, ·) takes finite
values and is Lipschitz continuous (see Proposition A.3.4).

Remark 5.1.2. Pay attention to the fact that dCF (x, d) is a scalar, and must not be taken for
the directional derivative DF (x, d) ∈ Y. When F is strictly Gateaux differentiable, we show in
Proposition 5.1.8 that dCF (x, d) and DF (x, d) are related through the support function of Θ.

Like in the classic construction of the Clarke subdifferential, we derive from the ordered
Clarke directional derivative above a dual object:

Definition 5.1.3. For any x ∈ X, we define the ordered (Clarke) subdifferential of F at x by

(5.2) ∂CΘF (x) := {x∗ ∈ X∗ | ∀d ∈ X, 〈x∗, d〉 6 dCF (x, d)}.

Again, if there is no ambiguity, we will omit the mention of the base Θ and just write ∂CF (x).

It is a nonempty weakly∗ compact convex set. So, by applying [5, Theorem 7.51] we see that
the following max formula is satisfied for all x, d ∈ X :

(5.3) dCF (x, d) = max
x∗∈∂CF (x)

〈x∗, d〉.

From this max formula we can deduce an explicit expression for ∂CF (x), involving the subgra-
dients of the cost functions {fθ}θ∈Θ:

Proposition 5.1.4. For all x ∈ X,

∂CF (x) = co∗
⋃
θ∈Θ

∂Cfθ(x).

Proof. From the sum rule for the Clarke subdifferential of scalar-valued functions, we know that
for all θ ∈ Θ,

dCfθ(x, d) = max
x∗∈∂Cf(x)

〈x∗, d〉.

It follows that dCF (x, d) is, by definition,

max
x∗∈

⋃
θ∈Θ

∂Cfθ(x)
〈x∗, d〉.

From the max formula (5.3) and Proposition 2.1.4 on support functions, the conclusion follows.
�
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Next proposition shows that ∂CF (x) is simpler in the polyhedral case: it only involves the
subgradients of the extreme cost functions, corresponding to the extreme points of Θ.

Proposition 5.1.5. (Polyhedral case) Suppose that K is polyhedral. Write Θ = co{ξ1, ..., ξm}
and let fi := ξi ◦ F for i ∈ {1, ...,m}. Then

∂CF (x) = co ∂Cfi(x) and dCF (x, d) = max
i∈{1,...,m}

dCfi(x, d).

Example 5.1.6. This Proposition applies in particular to the multicriteria optimization con-
text: if (Y,K) = (Rm,Rm+ ) and F (x) = (f1(x), ..., fm(x)), then

dCF (x; d) = max
i∈{1,...,m}

dCfi(x; d),

and ∂CF (x) is the convex hull of the subdifferentials ∂Cfi(x). We see that we recover here the
set studied by Cornet for smooth functions in [116], and revisited in [28]. In particular, ∂CF (x)
reduces to the classical Clarke subdifferential when m = 1.

Figure 5.2: The ordered Clarke subdifferential of F = (f1, f2) at x with respect to R2
+ is the

convex hull of ∇f1(x),∇f2(x).

Proof of Proposition 5.1.5. First, recall that, since it is assumed that intK is nonempty, K
being polyhedral implies that Y is finite dimensional. It follows from Section 2.1.2 that K+ is
also polyhedral, so we can indeed write Θ = co{ξ1, ..., ξm}.

Let us start by proving that dCF (x, d) = max{dCfi(x, d) | i = 1, ...,m}. Fix x and d in X,
then it is clear from the definition of the fi’s that

(5.4) max
i∈{1,...,m}

dCfi(x, d) ď sup
θ∈Θ

dCfθ(x, d) = dCF (x, d).

Let (θn)n∈N be a sequence in Θ such that dCF (x, d) = lim
n→+∞

dCfθn(x, d). For each n ∈ N, there

exists (λn1 , ..., λ
n
m) in the simplex unit ∆m such that θn =

∑m
i=1 λ

n
i ξi. Hence, using the sum rule

for the Clarke directional derivative :

(5.5) dCfθn(x, d) = dC(θn ◦ F )(x, d) = dC

(
m∑
i=1

λni (ξi ◦ F )

)
(x, d) ď

m∑
i=1

λni dCfi(x, d).

Using the fact that
∑m

i=1 λ
n
i = 1, we see that the right member in (5.5) is bounded from above

by max{dCfi(x, d) | i = 1, ...,m} for all n ∈ N. By taking the limit when n→ +∞, we conclude
that

(5.6) dCF (x, d) = max
i∈{1,...,m}

dCfi(x, d)

Now, we use the max formula (5.3) for the ordered subdifferential to see that (5.6) means

that the sets ∂CF (x) and
m⋃
i=1

∂Cfi(x) have the same support functions. Applying Theorem 2.1.4,

we deduce that

∂CF (x) = co∗
m⋃
i=1

∂Cfi(x).

Since ∂Cfi(x) is convex and compact for all i ∈ {1, ...,m}, it follows from Proposition 2.1.3 that

co
m⋃
i=1

∂Cfi(x) is compact, hence closed. In other words,

∂CF (x) = co
m⋃
i=1

∂Cfi(x).

�
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In Section 5.2 we will study in details the descent directions induced by the directional
derivative dCF (x; ·), exploiting the duality between dCF (x; ·) and ∂CF (x). But first, we will
focus on topological and geometrical properties of ∂CF which will be needed later.

5.1.2 Properties of the ordered Clarke subdifferential

Let us start by showing that ∂CF : X ⇒ X∗ is locally bounded, as a consequence of the local
Lipschitz continuity of F .

Proposition 5.1.7 (Local boundedness). For all x̄ ∈ X, there exists a neighbourhood U of x̄,
and M ě 0 such that

∀x ∈ U, ∀x∗ ∈ ∂CF (x), ‖x∗‖ ď M.

Proof. Let U be a neighborhood of x̄ on which F is Lipschitz continuous. Since Θ is bounded,
the family {fθ = θ ◦ F | θ ∈ Θ} is equi-Lipschitz continuous on U , for some Lipschitz constant
M ě 0. From Proposition 2.2.14 we have

∀x ∈ U, ∀θ ∈ Θ, ∀x∗ ∈ ∂Cfθ(x), ‖x∗‖ ď M.

The conclusion follows the formula ∂CF (x) = co∗
⋃
θ∈Θ

∂Cfθ(x) proved in Proposition 5.1.4, and

the weak∗ lower semi-continuity of the norm in X∗. �

We study now some hypotheses under which the ordered Clarke subdifferential has a simpler
form. More exactly, we are interested on the cases for which ∂CF (x) is exactly the reunion of
the subgradients of the cost functions {fθ}θ∈Θ. In other words, we look for conditions insuring
that we can remove the closed convex hull in the expression

∂CF (x) = co∗
⋃
θ∈Θ

∂Cfθ(x).

We will say that F : X −→ Y is positively Clarke regular if,

for all θ ∈ Θ, fθ := θ ◦ F : X −→ R is Clarke regular, i.e. ∂Bfθ = ∂Cfθ.

It is equivalent to ask the directional derivatives dBfθ(x, ·) and dCfθ(x, ·) to be equal. Recall also
from Section 2.2.5 that, if X is reflexive, it is also equivalent to ask ∂Ffθ = ∂Cfθ for all θ ∈ Θ. It
happens for instance if F is the sum of a convex and a strictly Gateaux differentiable functions.

Proposition 5.1.8 (Ordered Clarke subdifferential in regular cases).

i) If F is the sum of a convex function and a strictly Gateaux differentiable function at
x ∈ X, then ∂CF (x) =

⋃
θ∈Θ

∂Cfθ(x) and dCF (x; d) = max
θ∈Θ

dCfθ(x; d) for all d ∈ X.

ii) If F is positively Clarke regular, with X being a reflexive Banach space and Y finite
dimensional, then the same conclusion than item i) holds.

iii) When F is strictly Gateaux differentiable at x ∈ X, then

dCF (x, d) = σΘ(DF (x; d)) and ∂CF (x) = Θ ◦DF (x) = D∗F (x;Θ).

Remark 5.1.9. When F is smooth, according to item iii), taking an element in ∂CF (x) is
equivalent to take some θ ∈ Θ and compute θ ◦ DF (x). For instance, in the multi-objective
setting, it corresponds to the choice of some convex combination of the derivatives Dfi(x). We
will see later in Theorem 7.3.3 that it is also equivalent to chose a Radon probability µ over Θ,
and compute

∫
Θ Dfθ dµ(θ).

100



Proof. We start with item iii). Considering that F is strictly Gateaux differentiable, we have
for all θ ∈ Θ and d ∈ X that dCfθ(x; d) = D(θ ◦ F )(x; d) = θ ◦DF (x; d). It follows that

dCF (x; d) = sup
θ∈Θ

θ ◦DF (x; d) = σΘ(DF (x; d)).

In other words, dCF (x; d) = σΘ◦DF (x)(d), where Θ ◦ DF (x) := {θ ◦ DF (x) | θ ∈ Θ}, which is
also equal to D∗F (x;Θ). From the definition of ∂CF (x), and the characterization of support
functions in Theorem 2.1.4, we deduce that ∂CF (x) = co∗Θ ◦ DF (x). Since Θ is convex and
weakly∗ closed, item iii) follows.

We turn now on items i) and ii). The whole point is to prove that
⋃
θ∈Θ

∂Cfθ(x) is convex and

weakly∗ closed. Note that, in both items i) and ii), the cost functions fθ verify ∂Ffθ = ∂Cfθ.
Hence, it is enough to prove that

⋃
θ∈Θ

∂Ffθ(x) is convex and weakly∗ closed.

Let us prove first that it is convex. Consider x∗1 and x∗2 be in
⋃
θ∈Θ

∂Ffθ(x), and let x∗ :=

λx∗1 +(1−λ)x∗2 for some λ ∈ [0, 1]. By definition, there exists θ1, θ2 ∈ Θ such that x∗1 ∈ ∂Ffθ1(x)
and x∗2 ∈ ∂Ffθ2(x). Let θ := λθ1 + (1− λ)θ2, from convexity of Θ we know that θ ∈ Θ. We still
have to verify that x∗ ∈ ∂Ffθ(x). Using fθ = λfθ1 + (1− λ)fθ2 , we obtain

lim inf
x′→x

fθ(x
′)− fθ(x)− 〈x∗, x′ − x〉

‖x′ − x‖

= lim inf
x′→x

λ
fθ1(x′)− fθ1(x)− 〈x∗1, x′ − x〉

‖x′ − x‖
+ (1− λ)

fθ2(x′)− fθ2(x)− 〈x∗2, x′ − x〉
‖x′ − x‖

> λ lim inf
x′→x

fθ1(x′)− fθ1(x)− 〈x∗1, x′ − x〉
‖x′ − x‖

+ (1− λ) lim inf
x′→x

fθ2(x′)− fθ2(x)− 〈x∗2, x′ − x〉
‖x′ − x‖

> 0.

Now that the convexity of
⋃
θ∈Θ

∂Cfθ(x) is proved, we study its weak∗ closedness, distinguishing

items i) and ii).

Suppose first that the hypothesis of item i) is satisfied, i.e. that F = G + H, where G
is convex and H is strictly Gateaux differentiable at x. Let (x∗α)α∈A be a net in

⋃
θ∈Θ

∂Cfθ(x),

weakly∗ converging to some x∗ ∈ X∗. For all α ∈ A, there exists some θα ∈ Θ such that

x∗α ∈ ∂Cfθα(x) = ∂gθα(x) + θα ◦DH(x),

where gθα := θα ◦ G is a convex function. We can assume, without loss of generality, that θα
weakly∗ converges to some θ ∈ Θ. Define z∗α := x∗α − θα ◦ DH(x) ∈ ∂gθα(x), which is a net
weakly∗ convergent to z∗ := x∗− θ ◦DH(x). Let us show that z∗ ∈ ∂gθ(x). Using z∗α ∈ ∂gθα(x),
we have for all x′ ∈ X :

(θ ◦G)(x′)− (θ ◦G)(x)− 〈z∗, x′ − x〉 = lim
α∈A

(θα ◦G)(x′)− (θα ◦G)(x)− 〈z∗α, x′ − x〉 ě 0.

So z∗ ∈ ∂gθ(x), and it follows that x∗ ∈ ∂Cfθ(x) ⊂
⋃
θ∈Θ

∂Cfθ(x).

Suppose now that the hypotheses of item ii) are satisfied. Since X is supposed to be reflexive,
and given that

⋃
θ∈Θ

∂Cfθ(x) is convex, it is enough to verify that it is closed for the norm topology

in X∗. Take then a sequence (x∗n)n∈N in
⋃
θ∈Θ

∂Cfθ(x) such that x∗n tends to some x∗ ∈ X∗ for the

norm topology. There exists a corresponding sequence θn ∈ Θ such that x∗n ∈ ∂Cfθn(x). Since Θ
is compact in Y (which is supposed to be finite-dimensional), we can assume, taking eventually
a subsequence, that θn converges to some θ ∈ Θ. We just need to show now that x∗ ∈ ∂Cfθ(x),
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which is equal to ∂Ffθ(x), according to the positive Clarke regularity of F and the reflexivity of
X. Start by writing, for all n ∈ N:

lim inf
x′→x

fθ(x
′)− fθ(x)− 〈x∗, x′ − x〉

‖x′ − x‖

= lim inf
x′→x

(θn ◦ F )(x′)− (θn ◦ F )(x)− 〈x∗n, x′ − x〉
‖x′ − x‖

+
〈θ − θn, F (x′)− F (x)〉

‖x′ − x‖
+
〈x∗n − x∗, x′ − x〉
‖x′ − x‖

> lim inf
x′→x

〈θ − θn, F (x′)− F (x)〉
‖x′ − x‖

+ lim inf
x′→x

〈x∗n − x∗, x′ − x〉
‖x′ − x‖

,

where we used x∗n ∈ ∂Ffθn(x) in the last inequality. Using the Lipschitz property of F around
x, together with the Cauchy-Schwarz inequality, we deduce that

(5.7) lim inf
x′→x

fθ(x
′)− fθ(x)− 〈x∗, x′ − x〉

‖x′ − x‖
> −‖θ − θn‖YLip(F, x)− ‖x∗n − x∗‖.

Passing to the limit when n→ +∞ in (5.7), we finally obtain that x∗ ∈ ∂Ffθ(x) = ∂Cfθ(x). �

Example 5.1.10. We give a simple example for which Proposition 5.1.8 fails. Take F =
(f1, f0) : R2 −→ (R2,R2

+), defined by

f1(x) := ‖x‖1 + 〈(2, 0), x〉,
f0(x) := −‖x‖1 + 〈(0, 2), x〉,

where ‖ · ‖1 denotes the usual `1-norm

∀x = (x1, x2) ∈ R2, ‖x‖1 := |x1|+ |x2|.

We have in particular (we also note 0 for the origin in R2):

∂Cf1(0) = [−1, 1] + (2, 0) and ∂Cf0(0) = [−1, 1] + (0, 2).

We consider now the convex combinations of f1 and f0. For all λ ∈ [0, 1], we note fλ :=
λf1 + (1− λ)f0, that is

fλ(x) = |2λ− 1|‖x‖1 + 〈aλ, x〉, with aλ := 2(λ, (1− λ)).

The Clarke subdifferential of these functions is given by

∂Cfλ(0) = |2λ− 1|[−1, 1] + aλ.

Thus, it is easy to see that

∀λ ∈ [0,
1

2
], ∂Cfλ(0) ⊂ ∂Cf0(0) and ∀λ ∈ [

1

2
, 1], ∂Cfλ(0) ⊂ ∂Cf1(0).

In other words (see Figure 5.3 below),⋃
λ∈[0,1]

∂Cfλ(0) ( ∂CF (0) = co{∂Cf1(0), ∂Cf0(0)}.

This is essentially due to the lack of Clarke regularity of f0.

Figure 5.3: A counterexample to Proposition 5.1.8.
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We end now by studying the closed-graph properties of ∂CF : X⇒ X∗. More generally, and
because we shall want to take into account some constraints, we study the sum of ∂CF and NC ,
where NC(x) denotes the normal cone to C at x.

Proposition 5.1.11 (Bounded weak-strong outer semi-continuity, convex case). Suppose that
F is convex, and let (xα, x

∗
α)n∈N be a bounded net in X× X∗ such that

(5.8) xα
w−−→

α∈A
x, x∗α

‖·‖−−→
α∈A

x∗, and x∗α ∈ NC(xα) + ∂CF (xα).

Then x∗ ∈ NC(x) +∂CF (x) holds, provided that one of the two following hypotheses is satisfied
:

i) dim Y < +∞ and F is Lipschitz continuous on bounded sets;

ii) for all α ∈ A, F (x) ĺ F (xα).

Remark 5.1.12. The case covered by item ii) will be of particularly interest when considering
descent dynamics associated to NC + ∂CF , in Section 6.2.

Proof. Take nets as in (5.8), and use the convexity of F together with Proposition 5.1.8, to
write ∂CF (xα) =

⋃
θ∈Θ

∂fθ(xα). Then, for all α ∈ A, there exists θα ∈ Θ such that

x∗α ∈ NC(xα) + ∂Cfθ(xα).

Since fθ is a scalar-valued convex continuous function, we can use the sum rule (Proposition
2.2.6) and equivalently say that x∗α ∈ ∂(δC + fθ)(xα), where δC is the indicator2 function of C.
From the compactness of Θ, we can assume that (θα)α∈A weakly∗ converges to some θ ∈ Θ. We
write now, for all α ∈ A, that x∗α ∈ ∂(δC + fθα)(xα) is equivalent to :

(5.9) ∀x′ ∈ C, fθα(xα) ď fθα(x′)− 〈x∗α, x′ − xα〉.

Look at the right member in (5.9). The first term fθα(x′) = 〈θα, F (x′)〉 converges to 〈θ, F (x′)〉 =

fθ(x
′) because θα

w∗−→ θα. The second term 〈x∗α, x′ − xα〉 converges to 〈x∗, x′ − x〉, since x∗α
strongly converges to x∗ and xα is a bounded net weakly convergent to x. So, we have, passing
to the limit in (5.9), that

∀x′ ∈ C, lim sup
α∈A

fθα(xα) ď fθ(x
′)− 〈x∗, x′ − x〉.

So, all we need to prove now is

(5.10) fθ(x) ď lim sup
α∈A

fθα(xα),

since we would have

∀x′ ∈ C, fθ(x) ď fθ(x
′)− 〈x∗, x′ − x〉,

and x∗ ∈ ∂(δC + fθ)(x) = NC(x) + ∂fθ(x) would follow.

We prove now (5.10) using the hypotheses. Suppose first that dimY < +∞ and F is Lipschitz
continuous on bounded sets. Using the convexity of fθ, and so, its weak lower-semicontinuity,
we can write for all α ∈ A :

fθ(x) ď lim inf
α∈A

fθ(xα) ď lim sup
α∈A

(θα ◦ F )(xα) + lim sup
α∈A

〈θ − θα, F (xα)〉.

2The indicator function of C is a function taking as values δC(x) = 0 if x ∈ C, +∞ otherwise.
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In the last term, we have (θ−θα) which converges to zero for the norm topology (recall dim Y <
+∞). Moreover, (xα)α∈A is bounded in X and F is Lipschitz continuous on bounded sets, so
F (xα) is also bounded. It follows that (θ − θα)(F (xα)) goes to zero, and (5.10) is proved.

Suppose now that F (x) ĺ F (xα) is satisfied. In particular (see Proposition 2.3.7), for all
α ∈ A,

(θα ◦ F )(x) ď (θα ◦ F )(xα).

Taking the limsup over α ∈ A on the inequality above, leads to

fθ(x) ď lim inf
α∈A

fθα(xα)

and proves again (5.10). �

We now study the strong-weak outer semi-continuity of ∂CF . In the following, we will use
of this set of hypotheses :

One of the three following properties is satisfied :
H 1) K is polyhedral,

2) Y has finite dimension, X is reflexive and F is positively Clarke regular,
3) F is the sum of a convex function and a strictly Gateaux differentiable function.

Observe that there is in these three hypotheses some trade-off between the regularity of the
function F and the properties of X, Y,K).

Proposition 5.1.13 (Strong-weak sequential outer semi-continuity, without constraint). Sup-
pose that H holds, and let (xα, x

∗
α)n∈N be a net in X× X∗ such that

(5.11) xα
‖·‖−−→
α∈A

x, x∗α
w∗−−→
α∈A

x∗, and x∗α ∈ ∂CF (xα).

Then x∗ ∈ ∂CF (x).

Proof. Because of the hypothesis, we will prove this statement in two times: first we will consider
that F is the sum of a convex and a strictly Gateaux differentiable function, and in a second
time that either H1) or H2) holds.

Suppose then that F = G+H, with G being convex and H strictly Gateaux differentiable.
Thanks to Proposition 5.1.8, and applying the sum rule for the convex subdifferential, we have
for all α ∈ A that there exists θα satisfying x∗α ∈ ∂gθα(xα) + θα ◦ DH(xα). Without loss of
generality, we can assume that θα weakly∗ converges to some θ ∈ Θ.

We know from Proposition 2.1.11 that the strict Gateaux differentiability of H in a neigh-
bourhood of x implies that DH : U → L(X, Y) is continuous, L(X, Y) being endowed with the
topology of the pointwise convergence. In other words,

(5.12) for all d ∈ X, DH(xα; d)
‖·‖Y−−→
α∈A

DH(x; d).

Hence, for all d ∈ X, we can use the boundedness and weak∗ convergence of (θα)α∈A to obtain :

(5.13) lim
α∈A

θα ◦DH(xα)(d) = lim
α∈A
〈θα,DH(xα; d)〉Y∗×Y = 〈θ,DH(x; d)〉Y∗×Y = θ ◦DH(x)(d).

The latter being true for any d ∈ X, it means that θα ◦DH(xα) converges weakly∗ to θ ◦DH(x).
Write now x̃α := x∗α− θα ◦DH(xα) ∈ ∂gθα(xα). From what we just have shown, x̃α weakly∗

converges to x̃ := x∗ − θ ◦DH(x). Use the convexity of gθα to write, for all α ∈ A,

(5.14) ∀y ∈ X, gθα(y)− gθα(xα)− 〈x̃α, y − xα〉 ě 0.
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The first term gθα(y) = 〈θα, G(y)〉 tends to gθ(y), using the weak∗ convergence of (θα)α∈A. The
second term gθα(xα) converges to gθα(x) because of the weak∗ convergence of the bounded net
(θα)α∈A, and the strong convergence of F (xα) to F (x). In the third term, we use strong-weak∗

convergence of (xα, x
∗
α) to (x, x∗), together with the fact that (x∗α)α∈A is bounded, this being a

consequence of the local boundedness of ∂CF (see Proposition 5.1.7). We finally obtain

(5.15) ∀y ∈ X, gθ(y)− gθ(x)− 〈x̃, y − x〉 ě 0,

and it follows that x̃ ∈ ∂gθ(x). Hence, x∗ = x̃+ θ ◦DH(x) ∈ ∂gθ(x) + θ ◦DH(x) ⊂ ∂CF (x).

Now we suppose that either H1) or H2) holds. In both cases, the outer semi-continuity of
∂CF will be a direct consequence of the upper semi-continuity of dCF (·, d), that we prove first.

Let then d be in X, consider a converging net xα
‖·‖X−−→
α∈A

x, and show that

(5.16) limsup
α∈A

dCF (xα, d) ď dCF (x, d).

We claim that there exists for all α ∈ A some θα ∈ Θ such that dCF (xα; d) = dCfθα(xα; d). To
see this when H1) holds, use Proposition 5.1.5, and if H2) holds, use Proposition 5.1.8. We
assume that θα converges to some θ ∈ Θ, taking eventually a subnet. Consider a subnet (αβ)β∈B
for which the limsup is attained in (5.16), i.e.

(5.17) lim
β∈B

dCfθαβ (xαβ ; d) = lim sup
α∈A

dCfθα(xα; d) (and so = lim sup
α∈A

dCF (xα; d)).

What we aim to show now is that

(5.18) lim sup
β∈B

dCfθ(xαβ ; d)− dCfθαβ (xαβ ; d) ě 0.

Note c the limsup appearing in (5.18). By definition of Clarke’s directional derivative,

(5.19) c = lim sup
β∈B

lim sup
x̃(β)→xαβ

t↓0

fθ(x̃
(β) + td)− fθ(x̃(β))

t
− lim sup
x̃(β)→xαβ

t↓0

fθαβ (x̃(β) + td)− fθαβ (x̃(β))

t
.

For all β ∈ B, let x̃
(β)
γ −−→

γ∈Γ
xαβ and tγ −−→

γ∈Γ
0 be two nets such that

lim sup
x̃(β)→xαβ

t↓0

fθαβ (x̃(β) + td)− fθαβ (x̃(β))

t
= lim

γ∈Γ

fθαβ (x̃
(β)
γ + tγd)− fθαβ (x̃

(β)
γ )

tγ
.

Injecting the latter in (5.19), we obtain

c = lim sup
β∈B

lim sup
x̃(β)→xαβ

t↓0

fθ(x̃
(β) + td)− fθ(x̃(β))

t
− lim
γ∈Γ

fθαβ (x̃
(β)
γ + tγd)− fθαβ (x̃

(β)
γ )

tγ

ě lim sup
β∈B

lim sup
γ∈Γ

fθ(x̃
(β)
γ + td)− fθ(x̃

(β)
γ )

tγ
−
fθαβ (x̃

(β)
γ + tγd)− fθαβ (x̃

(β)
γ )

tγ

= lim sup
β∈B

lim sup
γ∈Γ

〈
θ − θαβ ,

F (x̃
(β)
γ + tγd)− F (x̃

(β)
γ )

tγ

〉
Y∗×Y

.
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Now, use the fact that F is Lipschitz continuous around x to write

(5.20) c ě lim sup
β∈B

lim sup
γ∈Γ

−‖θ − θαβ‖YLip(F, x)‖d‖X.

Since Y has finite dimension, the right member in (5.20) tends to zero, so c ě 0 and (5.18) is
proved.

Now, use (5.17), (5.18), together with the upper semi-continuity of dCfθ(·, d) (see Section
2.2.4) to deduce

lim sup
α∈A

dCF (xα; d) = lim sup
α∈A

dCfθα(xα; d) = lim
β∈B

dCfθαβ (xαβ ; d)

ď lim sup
β∈B

dCfθ(xαβ ; d) ď dCfθ(x; d) ď dCF (x; d),

which proves the upper semi-continuity of dCF (·; d). As an immediate consequence, simply using
its definition, we obtain the outer semi-continuity of ∂CF . �

Corollary 5.1.14 (Bounded strong-weak sequential outer semi-continuity). Suppose H holds,
and let (xα, x

∗
α)n∈N be a bounded net in X× X∗ such that

(5.21) xα
‖·‖−→ x, x∗α

w∗−→ x∗, and x∗α ∈ NC(xα) + ∂CF (xα).

Then x∗ ∈ NC(x) + ∂CF (x).

Proof. For all α ∈ A, we can write x∗α = η∗α + u∗α, where η∗α ∈ NC(xα) and u∗α ∈ ∂CF (xα).
Because of the strong convergence of xα to x, and using Proposition 5.1.7, we know that
(u∗α)α∈A is bounded. Hence, taking eventually a subnet, it weakly∗ converges to some u∗, and
we know from Proposition 5.1.13 that u∗ ∈ ∂CF (x). Define now η∗ := x∗ − u∗, which is the
weak∗ limit of η∗α. From η∗α = x∗α − u∗α, we know that (η∗α)α∈A is bounded. So, we deduce from
the upper semi-continuity of NC that η∗ ∈ NC(x) (see Proposition 2.2.4). �

5.2 Descent directions

5.2.1 Descent direction and Fermat’s rule

Recall that C ⊂ X is a nonempty closed convex set, which models the constraints.

Definition 5.2.1 (Vector descent direction). We say that d ∈ X is a K-descent direction for F
at x ∈ C if dCF (x, d) < 0. For convenience, we will just say that d is a descent direction. We
say that it is an admissible descent direction if, moreover, d lies in the tangent cone TC(x).

Because of the positive homogeneity of dCF (x, ·), we see that the set of descent directions at x
form a strict cone. It is important to note that the definition of decent direction is independent
of the choice of Θ:

Proposition 5.2.2. Let Θ and Θ′ be two w∗-compact bases of K+. Then for all x, d ∈ X,
dCΘF (x, d) < 0 if and only if dCΘ′F (x, d) < 0.

Proof. Suppose by contradiction that there exists some d ∈ X such that dCΘF (x, d) < 0 and
dCΘ′F (x, d) ě 0. Let θ′n be a sequence in Θ′ such that 0 6 dCΘ′F (x, d) = lim

n→+∞
dCfθ′n(x, d).

Since Θ′ ⊂ K and Θ is a base of K, there exists λn > 0 and θn ∈ Θ for all n ∈ N such that
θ′n = λnθn. In particular, fθ′n = λnfθn .

Let us verify that the sequence (λn)n∈N is bounded from above. Indeed, suppose that λn
tends to +∞ (taking eventually a subsequence). Since λnθn lies in Θ′, which is bounded, the
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sequence (λn‖θn‖)n∈N is bounded from above by some M > 0. Hence, ‖θn‖ ď M
λn

tends to zero.
But Θ is w∗-closed, thus ‖ · ‖-closed, so 0 ∈ Θ would follow, which is impossible for a base.

Now we are assured that λn ď λ̄ for all n ∈ N, for λ̄ > 0. So

0 6 dCΘ′F (x, d) = lim
n→+∞

dCfθ′n(x, d) = lim
n→+∞

λndCfθn(x, d) 6 λ̄ lim
n→+∞

dCfθn(x, d) 6 λ̄dCΘF (x, d) < 0,

which is a contradiction. �

Example 5.2.3. If F = (f1, f2) : R2 −→ R2 is smooth, the strict cone of descent directions at
x ∈ R2 consists in the vectors d satisfying

〈∇f1(x), d〉 < 0 and 〈∇f2(x), d〉 < 0.

In other words, it is the intersection of the interiors of the tangents cones to [f1 ď f1(x)] and
[f2 ď f2(x)]. We will see in Theorem 5.2.12 that under some conditions, it is exactly the interior
of the tangent cone to [F ĺ F (x)] = [f1 ď f1(x)] ∩ [f2 ď f2(x)].

Figure 5.4: In dotted lines: the strict cone of descent directions for F = (f1, f2) at x.

We say that x ∈ C is a critical point of F if 0 ∈ NC(x)+∂CF (x). According to the following
result, this notion coincide with the one introduced by Smale [297]. In other words, critical
points are exactly the points on which there is no admissible descent direction available.

Theorem 5.2.4 (Pareto alternative). Let x ∈ C. Then one and only one of the following
statements is true :

• x is a critical point,

• there exists an admissible descent direction at x.

Remark 5.2.5. As a consequence of this Theorem and Proposition 5.2.2, the fact that x is
critical does not depend on the choice of the base Θ.

Proof. Suppose first that 0 ∈ NC(x) + ∂CF (x). Then there exists some x∗ ∈ ∂CF (x) such that
−x∗ ∈ NC(x). Since NC(x) is defined as the polar cone of TC(x), for all d ∈ TC(x) we have
〈−x∗, d〉 ď 0. From this we can deduce that

dCF (x; d) = sup
x∗∈∂CF (x)

〈x∗, d〉 ě 0 for all d ∈ TC(x).

As a consequence, there is no admissible descent direction at x.
Suppose now that 0 /∈ NC(x) + ∂CF (x). Since ∂CF (x) is convex and w∗-compact and NC(x)

is weakly∗ closed convex, we have that NC(x) + ∂CF (x) is closed and convex in (X∗, w∗). Using
Hahn-Banach’s separation theorem [325, Theorem 1.1.5], we obtain some d ∈ X and α ∈ R such
that

(5.22) ∀x∗ ∈ NC(x) + ∂CF (x), 〈x∗, d〉 ď α < 0.

Since 0 ∈ NC(x), it follows directly that dCF (x; d) = σ∂CF (x)(d) ď α < 0. Moreover, using the
weak∗ compactness of ∂CF (x) and the weak∗ continuity of d as a linear functional over X∗, we
can deduce that σNC(x)+∂CF (x)(d) = σ∂CF (x)(d) + σNC(x)(d). As a direct consequence of (5.22),
σNC(x)(d) ď α − σ∂CF (x)(d). Since ∂CF (x) is compact, σNC(x)(d) < +∞ follows. We can see,
using (NC(x))∗ = TC(x), that this is equivalent to d ∈ TC(x).

�
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Figure 5.5: Illustration of the Pareto alternative in Theorem 5.2.4, for a bi-objective optimiza-
tion problem. We take two points x1 and x2, and we plotted the two corresponding strict cones
of descent directions at x1 and x2 respectively. The thick dashed line represents the set of
critical points. One can see that the closer x is to the set of Pareto points, the smaller is the
strict cone of descent directions.

Remark 5.2.6. Note that in the smooth multi-objective case, this alternative theorem is exactly
Gordan’s alternative theorem [179],[77, Theorem 2.2.1].

We define now a stronger notion of descent direction, useful for designing algorithms. Recall
that in all this Chapter, e denotes the element of intK, generating the base Θ of K+.

Definition 5.2.7 (Armijo descent direction). Let d ∈ X be a descent direction at x ∈ C. We
say that d is an Armijo descent direction at x if

(5.23) ∀β ∈]0, 1[, ∃ε > 0 such that ∀t ∈]0, ε[, F (x+ td) ĺ F (x) + βtdCF (x, d)e.

We say that d is an admissible Armijo descent direction, if moreover x+ td ∈ C for all t ∈]0, ε[.

Observe that admissible Armijo directions are exactly Armijo directions which lie in T adC (x),
the admissible tangent cone to C at x (see Section 2.2.1). Note also that e being in intK, an
Armijo descent direction d satisfies in particular

F (x+ td) ă F (x) for all t ∈]0, ε[.

In a way, Armijo descent directions for F can be seen as vectors satisfying a kind of uniform
Armijo condition for the family of cost functions {fθ}θ∈Θ:

Proposition 5.2.8. Let x ∈ C and d ∈ X be a descent direction for F at x. Consider the
following statements :

i) ∀β ∈]0, 1[,∃ε > 0 s.t. ∀θ ∈ Θ, ∀t ∈]0, ε[, fθ(x+ td) 6 fθ(x) + βtdCfθ(x, d).

ii) ∀β ∈]0, 1[,∃ε > 0 s.t. ∀θ ∈ Θ, ∀t ∈]0, ε[, fθ(x+ td) 6 fθ(x) + βtdCF (x, d).

iii) d is an Armijo descent direction for F at x.

iv) ∃β̄ ∈]0, 1[, ∀β ∈]0, β̄[, ∃ε > 0 s.t. ∀θ ∈ Θ, ∀t ∈]0, ε[, fθ(x+ td) 6 fθ(x) + βtdCfθ(x, d).

Then, i) ⇒ ii) ⇔ iii) ⇒ iv).

Proof. From the definition of dCF (x, d) = sup
θ∈Θ

dCfθ(x, d), we see that i) implies ii). In order to

prove the equivalence between ii) and iii), use Proposition 2.3.7. Indeed, let β ∈]0, 1[ and t > 0,
then

F (x+ td) ĺ F (x) + βtdCF (x, d)e

⇔ ∀θ ∈ Θ, fθ(x+ td) 6 fθ(x) + tβdCF (x, d) (because θ(e) = 1).

Assume now item ii), and define

α :=
inf
θ∈Θ

dCfθ(x, d)

dCF (x, d)

which is bounded by Lipschitz property of F and boundedness of Θ. By definition, α > 1. Let
then β ∈]0, 1

α [, and show that item iv) holds for this β. Since αβ ∈]0, 1[, we can apply item ii)
to have some ε > 0 such that for all t ∈]0, ε[ and θ ∈ Θ,

fθ(x+ td) 6 fθ(x) + αβtdCF (x, d).

But, for all θ ∈ Θ, we have αdCF (x, d) ď dCfθ(x, d), so the desired result follows with β̄ = 1
α . �
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We show now that, under assumptions, the Armijo descent directions coincide with the
descent direction, and that they characterize the critical points of F (recall Theorem 5.2.4).

Proposition 5.2.9. Let x ∈ C, and suppose that either dim Y < +∞, or F is the sum of a
convex function and a directionally derivable function.

i) If d ∈ X is a descent direction at x, then it is an Armijo descent direction at x.

ii) There exists an admissible descent direction at x if and only if there exists an admissible
Armijo descent direction at x.

Proof. i) Let d ∈ X be a descent direction at x, that is, dCF (x, d) < 0. We argue by contradiction,
using Proposition 5.2.8: suppose that there exists β ∈]0, 1[ such that ∀ε > 0, there exists t ∈]0, ε[
and θ ∈ Θ satisfying

(5.24) fθ(x+ td) > fθ(x) + βtdCF (x, d).

In other words, there exists a net (tα)α∈A in R++ converging to zero, and a net (θα)α∈A in Θ
weakly∗ converging to some θ ∈ Θ (use the compactness of Θ), such that for all α ∈ A

(5.25) βdCF (x, d) <
fθα(x+ tαd)− fθα(x)

tα
.

Suppose in a first time that dimY < +∞, and write

(5.26)
fθα(x+ tαd)− fθα(x)

tα
=
fθ(x+ tαd)− fθ(x)

tα
+

〈
θα − θ,

F (x+ tαd)− F (x)

tα

〉
.

Using the Lipschitz property of F , we see that the second term of the right member of (5.26)
is bounded from above by ‖θα − θ‖Lip(F, x)‖d‖ when tα is close enough to zero. So, using the
norm-convergence of θα to θ, we deduce that

lim sup
α∈A

fθα(x+ tαd)− fθα(x)

tα
ď lim sup

α∈A

fθ(x+ tαd)− fθ(x)

tα
6 dCfθ(x, d) 6 dCF (x, d).

It follows that βdCF (x, d) 6 dCF (x, d) which is in contradiction with the facts that dCF (x, d) 6 0
and β ∈]0, 1[.

Suppose now that F = G+H, with G being convex and H being directionally derivable at
x. Then, (5.25) rewrites as (we note gθ := θ ◦G as usual)

(5.27) βdCF (x, d) <
gθα(x+ tαd)− gθα(x)

tα
+

〈
θα,

H(x+ tαd)−H(x)

tα

〉
, for all α ∈ A.

Consider any fixed t > 0. Using the convergence of tα to zero, we obtain some ᾱ ∈ A such that
for all α � ᾱ, t > tα. Write

(5.28) x+ tαd =
tα
t

(x+ td) + (1− tα
t

)x, with
tα
t
∈]0, 1[ for all α � ᾱ.

The convexity of G in (5.27) together with (5.28) leads to:

(5.29) βdCF (x, d) <
gθα(x+ td)− gθα(x)

t
+

〈
θα,

H(x+ tαd)−H(x)

tα

〉
, for all α � ᾱ.

Since (5.29) holds for all α � ᾱ, we can take the liminf over α ∈ A :

(5.30) βdCF (x, d) ď lim inf
α∈A

gθα(x+ td)− gθα(x)

t
+

〈
θα,

H(x+ tαd)−H(x)

tα

〉
.
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Using the bounded weak∗ convergence of (θα)α∈A to θα, together with the directional derivability
of H at x, we deduce from (5.30) that

(5.31) βdCF (x, d) ď
gθ(x+ td)− gθ(x)

t
+ 〈θ,DH(x, d)〉.

This being true for any fixed t > 0, we obtain by taking the limit when t ↓ 0, together with
(2.24):

(5.32) βdCF (x, d) ď dC(θ ◦G)(x, d) + 〈θ,DH(x, d)〉 6 dCF (x, d).

As before, we see here a contradiction, and item i) is proved.
ii) From Definition 5.2.7 and T adC (x) ⊂ TC(x), it is obvious that the admissible Armijo

descent directions are admissible descent directions. We prove here the reverse statement. Let
d ∈ X be an admissible descent direction at x, that is d ∈ TC(x) and dCF (x, d). Since C is
convex, we know from Proposition 2.2.2 that TC(x) = clT adC (x). Hence, there exists a sequence
(dn)n∈N in T adC (x) converging in norm to d. Moreover, dCF (x, ·) is continuous, s there must exist
some N ∈ N such that dCF (x, dN ) < 0, which proves the claim. �

As a consequence, we derive a natural Fermat’s rule for vector optimization problems, giving
a necessary condition for weak efficiency. In the convex setting, it becomes a necessary and
sufficient condition, and we recover a known description of weak efficient points [139, Theorem
2.10].

Theorem 5.2.10 (Fermat’s rule). Suppose that either dim Y < +∞, or F is the sum of a convex
function and a directionally derivable function. Then any weak efficient point x is critical, i.e.
0 ∈ NC(x) + ∂CF (x).
If F is convex, then critical points coincide with weak efficient points, and we have

(5.33) ARGMINw
x∈C

F =
⋃
θ∈Θ

argmin
x∈C

fθ.

If F is strictly convex, then critical points are efficient points.

Remark 5.2.11. According to (5.33), a good approach for generating the set of Pareto points
of a convex function F , is to take a sample among the cost functions {fθ}θ∈Θ, and minimize
them. In the multi-objective setting F = (f1, ..., fm), this is exactly the weighting method,
which consists in the minimization of arbitrary (or chosen) convex combinations of the fi’s. We
discuss some drawbacks of this method later in Section 6.3.

Proof. Let x ∈ C be a weak efficient point. We argue by contradiction and suppose that x is
not critical. By Theorem 5.2.4, there would exist an admissible descent direction at x. Because
of the hypotheses, we can apply Proposition 5.2.9, so there exists d ∈ X an admissible Armijo
direction. In particular, there exists ε > 0 such that for all t ∈]0, ε[,

(5.34) x+ td ∈ C and F (x+ td) ă F (x).

Take y := x+ td for some t ∈]0, ε[ and sees that it contradicts the weak efficiency of x.
Suppose now that F is convex, and show that critical points are weakly efficient. We know

from Proposition 5.1.4 that in the convex case,

(5.35) ∂CF (x) =
⋃
θ∈Θ

∂fθ(x).

If x is critical, there must exist θ ∈ Θ such that 0 ∈ NC(x) + ∂fθ(x). Using the classic Fermat’s
rule for convex scalar functions, we see that it is equivalent for x to minimize fθ over C. If
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we suppose now that x is not weakly efficient, it would exist x′ ∈ C such that F (x′) ă F (x).
In particular (see Proposition 2.3.7) we would have fθ(x

′) < fθ(x) which would contradict
x ∈ argmin

y∈C
fθ. As a consequence, critical points are weak minimizers.

Note that the equality (5.33) is proved by the same argument : x is weakly efficient if and
only if it is a critical point, this being equivalent to say (see above) that there exists θ ∈ Θ such
that x ∈ argmin

y∈C
fθ.

For the strictly convex case, argue exactly as for the convex case, just using the fact that a
scalar-valued strictly convex function admits at most one minimizer. �

5.2.2 Normals to level sets

There is an other geometric consequence of Proposition 5.2.9 : under appropriate assumptions,
the subdifferential generates the Bouligand normal cone to the sublevel sets.

Theorem 5.2.12 (Normals to sublevel sets). Let x ∈ X be such that 0 /∈ ∂CF (x). Suppose that
either F is weakly Clarke regular with dim Y < +∞, or F is the sum of a convex function and
a strictly Gateaux differentiable function at x. Then

i) TB[FĺF (x)](x) = {d ∈ X | dCF (x, d) ď 0},

ii) intTB[FĺF (x)](x) = {d ∈ X | dCF (x, d) < 0} (i.e. the descent directions at x),

iii) NB
[FĺF (x)](x) = R+∂

CF (x).

Example 5.2.13. Let F = (f1, f2) : R2 −→ (R2,R2
+) be a smooth convex function and x ∈ R2.

We plot in Figure 5.6 the sublevel set [F ĺ F (x)] in thick continuous curves, and dotted lines
represent respectively the normal and tangent cone to [F ĺ F (x)] at x.

Figure 5.6: First-order analysis at the intersection of two sublevel sets.

Proof of Theorem 5.2.12. We start by showing the inclusion

(5.36) TB[FĺF (x)](x) ⊂ {d ∈ X | dCF (x, d) ď 0}.

So let us consider d such that there exists tn ↓ 0 and dn → d such that x + tndn ∈ [F ĺ F (x)]
for all n ∈ N. That is, fθ(x + tndn) ď fθ(x) for all θ ∈ Θ. After division by tn > 0 and taking
the liminf on n ∈ N, we obtain that dBfθ(x; d) ď 0 for all θ ∈ Θ. In other words, because of the
positive Clarke regularity of F , dCF (x, d) ď 0.

We show now that

(5.37) {d ∈ X | dCF (x, d) < 0} ⊂ TB[FĺF (x)](x).

Consider d ∈ X such that dCF (x, d) < 0. It is a descent direction at x, so it is an Armijo descent
direction, according to Proposition 5.2.9 and the hypotheses made on F . In particular, there
exists some ε > 0 such that x+ td ∈ [F ĺ F (x)] for all t ∈]0, ε[. By definition of the Bouligand
tangent cone, it follows that d ∈ TB[FĺF (x)](x) and (5.37) is proved.

In order to obtain item i), we will take the closure in (5.37). The left member is the strict
sublevel set of the convex continuous function dCF (x, ·) = dBF (x, ·). It is nonempty since it
is assumed that 0 /∈ ∂CF (x), so we can use Therorem 5.2.4. Hence, we can apply Proposition
A.1.4 which says that:

cl {d ∈ X | dCF (x, d) < 0} = {d ∈ X | dBF (x, d) ď 0},(5.38)

{d ∈ X | dCF (x, d) < 0} = int {d ∈ X | dBF (x, d) ď 0}.(5.39)
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From (5.37), (5.38) and the closure of TB[FĺF (x)](x), we deduce item i). Item ii) follows item i)

and (5.39).

To prove item iii), start from item i) and write

TB[FĺF (x)](x) = {d ∈ X | dCF (x, d) ď 0}(5.40)

= {d ∈ X | 〈x∗, d〉 ď 0 ∀x∗ ∈ ∂CF (x)}
= {d ∈ X | 〈x∗, d〉 ď 0 ∀x∗ ∈ R+∂

CF (x)}
= (R+∂

CF (x))∗.

Since ∂CF (x) is w∗-compact and does not contain the origin, Proposition 2.1.7 ensures that
R+∂

CF (x) is a closed convex cone. By taking the polar on (5.40) we obtain the desired inequality.
�

Remark 5.2.14. It must be underlined that, while we are minimizing a function F from X to Y,
all the objects involved here (the ordered subdifferential, the sublevel sets) live in the decision
space X or its dual. Of course, the order on Y determines these objects, but it is somehow
implicit. This will be determinant in Chapter 7, where we construct an auxiliary function
F : X −→ Z, for some well chosen ordered Banach space Z, which has the same sublevel set
than F , and so, the same ordered subdifferential (see Theorem 7.3.3).

Remark 5.2.15. In a recent work [91], Cabot and Thibault give a general description of
N[FĺF (x)](x) in the multi-objective convex case, without the condition 0 /∈ ∂CF (x). When
this condition is satisfied, they recover N[FĺF (x)](x) = R+∂

CF (x). It would be of interest to
overcome the hypothesis 0 /∈ ∂CF (x) in Theorem 5.2.12 by adapting the ideas in [91, Theorem
5.1] to the general vector case.

Remark 5.2.16. It is a known fact in scalar optimization (see [111, Theorem 2.4.7] or [263,
Proposition 5.48]) that the sublevel sets of Clarke regular functions are themselves Clarke reg-
ular, which means that their Clarke and Bouligand tangent cones coincide. This result extends
to our vectorial case when K is polyhedral: it is easy to exploit the finite number of objective
functions to adapt the argument of [263, Proposition 5.48]. It is not clear whether it is true or
not for nonpolyhedral cones. An other approach consists in writing [F ĺ F (x)] as the infinite
intersection of sublevel sets [fθ ď fθ(x)]. Since the inclusions

TC[FĺF (x)](x) ⊂ TB[FĺF (x)](x) ⊂
⋂
θ∈Θ

TB[fθďfθ(x)](x)

always hold, it is enough to prove, after using the Clarke regularity of Γθ, that⋂
θ∈Θ

TC[fθďfθ(x)](x) ⊂ TC[FĺF (x)](x).

This kind of inclusion is known to be valid when a finite number of sets is involved, under
appropriate conditions, see [288, Theorem 5]. But is is a nontrivial question to know whether
it can be extended to an infinite number of sets.

5.2.3 The steepest descent direction in Hilbert spaces

Suppose now that X = H is a Hilbert space, endowed with its scalar product 〈·, ·〉, and identify
H with its dual H∗. We still suppose that Y is an arbitrary Banach space. We aim to introduce
an analog of the usual steepest descent direction used in scalar optimization. Recall that we
note C0 the element of minimal norm of a closed convex set3.

3In other words, C0 is the projection of zero on C.
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Definition 5.2.17. For any x ∈ C, the unique element of minimal norm of the closed convex
set −NC(x)− ∂CF (x) is called the steepest descent direction of F at x. It is denoted by

(5.41) s(x) :=

(
−NC(x)− ∂CF (x)

)0

.

Note that, for any x ∈ C, the set −NC(x) − ∂CF (x) is a closed convex set, as being equal to
the vectorial sum of two closed convex sets, one of them being weakly compact. Hence, it has
a unique element of minimal norm, and s(x) is well defined.

This vector field clearly satisfies that x is a critical point if and only if s(x) = 0. Furthermore,
s(x) is an admissible descent direction for F at any non critical x :

Proposition 5.2.18 (Descent property). For all x ∈ C we have s(x) ∈ TC(x) and

(5.42) dCF (x; s(x)) ď −‖s(x)‖2.

In particular, s(x) is an admissible descent direction for F at any x, as soon as x is not critical.

Proof. By definition, −s(x) is the projection of the origin onto the closed convex set NC(x) +
∂CF (x). Hence, using the variational definition of the projection in a Hilbert space and 0 ∈
NC(x), we obtain for any x∗ ∈ ∂CF (x) :

(5.43) 〈0− (−s(x)), x∗ − (−s(x))〉 ď 0.

In other words,

(5.44) ‖s(x)‖2 + 〈s(x), x∗〉 ď 0 for all x∗ ∈ ∂CF (x),

and the desired inequality follows, by taking the sup over x∗ ∈ ∂CF (x).
Suppose now that x is not critical. As noticed before, it implies that s(x) 6= 0, so it makes

s(x) a descent direction. Verify now that s(x) is an admissible descent direction. By definition

of s(x), we can write s(x) =

(
− x∗ −NC(x)

)0

for some x∗ ∈ ∂CF (x). Since TC(x) is the polar

cone of NC(x), we can use Moreau’s decomposition Theorem 2.1.10 and obtain,

(z −NC(x))0 = z − projNC(x)z

= projTC(x)z

which shows that s(x) ∈ TC(x), and concludes the proof. �

The result above has a simple geometrical interpretation. Take simply the multi-objective
unconstrained problem, i.e., C = H, (Y,K) = (R2,R2

+) with F = (f1, f2) being smooth. Then
−s(x) is the orthogonal projection of the origin on the segment [∇f1(x),∇f2(x)]. By the
classical result on the sum of the angles of a triangle, this forces the angles between −s(x) and
∇fi(x), i = 1, 2, to be acute and so 〈s(x),∇fi(x)〉 ď 0.

Figure 5.7: The steepest descent direction associated to a smooth biobjective optimization
problem.

Remark 5.2.19. In the multi-objective case F : H −→ (Rm,Rm+ ), F (x) = (f1(x), ..., fm(x)),
computing the steepest descent direction at x requires to project the origin on the convex hull
of the subdifferentials ∂Cfi(x):

−s(x) = projco∂Cfi(x)(0).
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Suppose that we are in a non regular point x, such that the subdifferentials ∂Cfi(x) are not
reduced to one point. A naive approach to compute s(x) could be the following: take pi(x) :=
∂Cfi(x)0 for each i ∈ {1, ...,m}, and then compute −s(x) as the element of minimal norm of
co {pi}. But this approach doesn’t work, because the operations of taking the convex hull and
doing the projection do not commute. Example 5.1.10 provides a simple counter-example to
this situation. In this example, such a direction would not be a descent direction because x is
critical (recall the alternative Theorem 5.2.4).

Now that we have established that s(x) is a descent direction, one may wonder why it is
called the steepest descent direction. Observe first that in the case of a smooth real-valued
function f : H −→ R, the direction s(x) at x ∈ C is given by (use Moreau’s theorem 2.1.10)

s(x) = (−NC(x)−∇f(x)))0,

= projTC(x)(−∇f(x)).

It is known in that setting that the normalized vector s(x)
‖s(x)‖ is the solution, if ∇f(x) 6= 0, of

the minimization problem

min { 〈∇f(x), d〉 | d ∈ TC(x), ‖d‖ = 1} ,

whence the name of steepest descent direction for projTC(x)(−∇f(x)). As shown below, this
steepest descent property can be extended to vector-valued functions. Moreover, still in the
case of a smooth real-valued function, it can be easily verified that

(5.45) s(x) = argmin
d∈TC(u)

1

2
‖d‖2 + 〈∇f(x), d〉,

and this further characterization will also be generalized to the multiobjective case.

Theorem 5.2.20 (Steepest descent property). Let x ∈ C be such that s(x) 6= 0. Then s(x)
can be formulated in the following equivalent forms:

1. s(x) =

(
−NC(x)− ∂CF (x)

)0

,

2. s(x)

‖s(x)‖
p−2
p−1

= argmin
d∈TC(u)

1
p‖d‖

p + dCF (x, d), ∀p ∈ [2,+∞[,

3. s(x)
‖s(x)‖ = argmin

d∈TC(x)
‖d‖=1

dCF (x, d).

Remark 5.2.21. The equivalence between formulations 1. and 3. of the steepest descent
direction has been first obtained, in the multicriteria and smooth case, by Cornet in [116,
Proposition 3.1]. In the same context, formulation 2. seems to be introduced for the first time
by Fliege and Svaiter [159], for p = 2

s(u) = argmin
d∈TC(u)

{
1

2
‖d‖2 + dCF (x, d)

}
,

but the equivalence between formulations 1. and 2. is seemingly new. The second formulation
for p 6= 2 is new, although it was stressed in [159] that 1

2‖d‖
2 could be replaced by any positive

proper l.s.c strictly convex function which is dominated by the norm around the origin. The
interest of considering p arbitrary large is that we can see -at least formally- the third formulation
as the limit of the second when p→ +∞: p−2

p−1 tends to 1, while the function 1
p‖ · ‖

p is pointwise
converging to the indicator function of the unit ball δB(·).
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Proof of Proposition 5.2.20. Let us start by proving the formulation 2. Because of the powered
norm term, and the fact that H is a Hilbert space, d 7→ 1

p‖d‖
p + dCF (x; d) is a coercive strictly

convex function. Therefore, there exists a unique solution d̄ to the minimization problem (see
for instance [21, Proposition 2.3.3])

(5.46) min
d∈TC(x)

1

p
‖d‖p + dCF (x; d).

Let us show that d̄ = s

‖s‖
p−2
p−1

, where s = s(x). We use a duality argument which relies on the

equivalent formulation of (5.46) as the convex-concave saddle value problem

(5.47) min
d∈TC(x)

max
a∈∂CF (x)

1

p
‖d‖p + 〈a, d〉 .

It is associated with the convex-concave Lagrangian function

L(d, a) =
1

p
‖d‖p + 〈a, d〉

defined on TC(x)×∂CF (x). Since L is convex and coercive with respect to the first variable, and
∂CF (x) is bounded, by the von Neumann’s minimax theorem (see [21, Theorem 9.7.1]) there
exists ā ∈ ∂CF (x) such that (d̄, ā) is a saddle point of (5.47), that is

(5.48) inf
d∈TC(x)

L(d, ā) = L(d̄, ā) = sup
a∈∂CF (x)

L(d̄, a).

For any a ∈ ∂CF (x) let us define

(5.49) d(a) := argmin
d∈TC(x)

1

p
‖d‖p + 〈a, d〉.

Of course, by definition we have d̄ = d(ā). Using Fermat’s rule for the above primal problem
(5.49) together with a sum rule (recall 2.2.6) gives

(5.50) 0 ∈ NTC(x)(d(a)) + d(a)‖d(a)‖p−2 + a,

where we used that the derivative of 1
p‖ · ‖

p at any x for p ě 2 exists and is x‖x‖p−2. Using the
variational characterization of the projection, it follows

(5.51) d(a) = projTC(x)

(
−a

‖d(a)‖p−2

)
,

which can be rewritten, by Moreau’s theorem, as

(5.52) d(a) =
1

‖d(a)‖p−2
(−a−NC(x))0 .

Since d̄ = d(p̄), we just need to prove that d(ā) = s

‖s‖
p−2
p−1

. To identify ā, we use the dual

formulation

(5.53) ā = argmax
a∈∂CF (x)

min
d∈TC(x)

{
1

p
‖d‖p + 〈a, d〉

}
,

which, by (5.49) and (5.51), can be rewritten as

(5.54) ā = argmax
a∈∂CF (x)

1

p
‖d(a)‖p − ‖d(a)‖p−2

〈
−a

‖d(a)‖p−2
, projTC(x)

(
−a

‖d(a)‖p−2

)〉
.
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Using Moreau’s theorem, we obtain

(5.55) ā = argmax
a∈∂CF (x)

1

p
‖d(a)‖p − ‖d(a)‖p−2

∥∥∥∥projTC(x)

(
−a

‖d(a)‖p−2

)∥∥∥∥2

,

which, by (5.51) and p ∈ [2,+∞], is equivalent to

(5.56) ā = argmin
a∈∂CF (x)

‖d(a)‖p−1.

From (5.52), we know that ‖d(a)‖p−1 =
∥∥∥(−a−NC(x))0

∥∥∥. Therefore, s = (−ā−NC(x))0 with

‖d(ā)‖p−1 = ‖s‖. Using again (5.52), we obtain d(ā) = s

‖s‖
p−2
p−1

, as expected.

Let us complete the proof by proving the third characterisation. As we said before, it relies on
a limit argument. Define, for any p ě 2, the functions Fp : d ∈ H 7→ 1

p‖d‖
p+dCF (x; d)+δTC(x)(d).

It can be easily verified that the sequence (Fp)pě2 epiconverges when p→ +∞ to

F : d ∈ H 7→ δ{‖·‖ď1}(d) + dCF (x; d) + δTC(x)(d).

From item 1 and [21, Theorem 12.1.1] we can deduce that

(5.57)
s

‖s‖
= argmin

v∈TC(x)
‖v‖ď1

dCF (x; d),

where the inequality constraint ‖v‖ ď 1 can be replaced by ‖v‖ = 1, since s
‖s‖ is a normalized

vector. �

Example 5.2.22. We work in the same setting that Example 2.3.8, and we assume to simplify
that F : X −→ Y is strictly Gateaux differentiable and C = H.

• If (Y,K) = (Rm,Rm+ ), s(x) is the element of minimal norm in the convex hull of the

gradients ∇fi(x), and is characterized by s(x)
‖s(x)‖ = argmin

‖d‖=1
max

i∈{1,...m}
〈∇fi(x), d〉.

• If (Y,K) = (Sm(R), Sm+ (R)), then s(x)
‖s(x)‖ = argmin

‖d‖=1
λmax(DF (x; d)), where λmax(M) is

the greatest eigenvalue of M .

• If (Y,K) = (L∞(Ω,Σ, µ), L∞+ (Ω,Σ, µ)), then s(x)
‖s(x)‖ = argmin

‖d‖=1
supess (DF (x; d)).

5.3 Comments

We end here with a couple of remarks about this chapter.

Remark 5.3.1 (The choice of the Clarke subdifferential). We chose to build the ordered subd-
ifferential on the Clarke subdifferential for several reasons. The first one, and the most obvious,
is that it enjoys very good duality properties with its Clarke directional derivatives, like the
max formula (5.3). This allows us to characterize easily the ordered subdifferential ∂CF (x) with
its support function, namely, the ordered directional derivative dCF (x; ·).

An other reason, directly related to the first one, is that the Clarke directional derivative
provides a good Armijo rule at descent directions (see Proposition 5.2.9). If we use for instance
the Bouligand directional derivative for a function f : X −→ R, we would have a poorer Armijo
rule (see for instance [223, Section 4]):

dBf(x; d) < 0⇒ ∀β ∈]0, 1[, ∀T > 0, there exists t0 ∈]0, T [ and ε > 0 such that

f(x+ td) < f(x) + βtdBf(x; d), ∀t ∈ [t0 − ε, t0 + ε].
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While the Armijo rule has a clear importance for the study of descent algorithms with line-
search, it has also a theoretical interest for us, since it is the key to the proof of Fermat’s
Theorem 5.2.10.

The last reason is that the convexity of the Clarke subdifferential is essential for us, since
our main results rely on the separation of convex sets, see the proof of the alternative Theorem
5.2.4. Of course, one can try to go beyond convexity, using for instance the limiting Fréchet
subdifferential. This is the approach adopted by Morduckhovich [245] and Bao, Mordukhovich
[46], see also [61]. Such an approach would, of course, benefits from the fact that the limiting
subdifferential is smaller. Thus, it would provide more accurate necessary conditions for weak
optimality (see [205] for a discussion about criticalities). But it would ask for a completely
different approach, less centered on the primal space and its directional derivatives.

This remark is also the occasion to say that, in most of the results of this chapter, we could
have considered nonconvex constraints. If the constraint is a nonempty closed set Ω ⊂ X, it
suffices to consider the Clarke tangent and normal cones to Ω. These cones are closed and
convex, and enjoys a full duality by taking the polar. The only point for which more regularity
is needed is Proposition 5.2.9, for which we would need the fact that the admissible tangent cone
is dense in the Clarke tangent cone. Such a property is satisfied if Ω is for instance prox-regular.

Remark 5.3.2 (Relationship with generalized Jacobians, and other works). From the begin-
ning of nonsmooth analysis, there have been attempts to provide good generalizations of the
differential for nonsmooth vector-valued functions. For a locally Lipschitz continuous function
F : Rn −→ Rm, Clarke [111] defined the Clarke generalized Jacobian of F at x ∈ Rn by

(5.58) JF (x) := co{ lim
n→+∞

DF (xn) | xn −−→
n→+∞

x and F is differentiable at xn} ⊂ L(Rn,Rm).

This definition is based on Rademacher’s theorem, which asserts that a locally Lipschitz function
is Gateaux differentiable almost everywhere. When m = 1, it is equal to the usual Clarke
subdifferential introduced in Section 2.2. This Jacobian satisfies the following chain rule (see
[111, Proposition 2.6.4]):

∀y∗ ∈ Y∗, ∂C(y∗ ◦ F )(x) = y∗ ◦ JF (x) := {y∗ ◦A | A ∈ JF (x)}.

Thus, if Y is ordered by a closed convex cone with nonempty interior, we can see that the Clarke
generalized Jacobian is related to the ordered Clarke subdifferential by:

∂CF (x) = Θ ◦ JF (x) := {θ ◦A | θ ∈ Θ, A ∈ JF (x)}.

The latter generalizes Proposition 5.1.8 iii), in finite dimensions. See the work of Thibault [305]
for an extension to functions F : X −→ Y between a separable Banach space X and a reflexive
separable Banach space Y.

Considering a function F : X −→ Y with values in an ordered Banach space, there has
been in the 70’s some attempts to build a generalized Jacobian which would respect the order
structure of Y. In its seminal work, Valadier [310] considered convex continuous functions with
values in an order complete Banach lattice4 and introduced what we call5 an ordered generalized
Jacobian of F at x:

JĺF (x) := {A ∈ L(X, Y) | ∀x′ ∈ X, 0 ĺ F (x′)− F (x)−A(x′ − x)}.

It is clear that JĺF (x) enjoys the following Fermat’s rule

0 ∈ JĺF (x)⇔ F (x) ĺ F (x′) ∀x′ ∈ X.
4A Banach lattice is an ordered Banach space such that, given two elements x, y, we can define their minimum

and maximum. Order complete is an assumption which essentially ensures the existence of a supremum for
bounded sets. See [5] for more details.

5We choose this denomination to underline the fact that it is an object living in L(X, Y), in opposition with
our ordered subdifferential living in X∗. In the mentionned papers, theses objects are also called subdifferentials.
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But, as we mentioned it in Section 2.3.3, this is in general pointless, since in a non totally
ordered space, such global minimum does not always exist. It is easy to see that, in the context
of this chapter,

Θ ◦ JĺF (x) ⊂ ∂CF (x),

but this inclusion is strict in general since JĺF (x) might be empty. When X is a Banach
space and Y a reflexive separable Banach space, Thibault [305] extended this notion to locally
Lipschitz continuous functions, by taking6

JĺF (x) := clWOT coo { lim
n→+∞

DF (xn) | xn −−→
n→+∞

x and F is differentiable at xn}.

It is an exercise to verify that, in the context of this chapter, we also have

Θ ◦ JĺF (x) ⊂ ∂CF (x).

The generalized Jacobian has been used in the analysis of vector-valued functions, in partic-
ular in the Lagrangian theory [110, 192, 111]. But it seems to us that these ordered Jacobians
have not been a successful tool for the analysis of vector optimization problems. The fact
that they characterize global minimum instead of Pareto/efficient points might be its major
drawback.

Remark 5.3.3 (Links with qualification conditions). We say that two sets C,D ⊂ X have a
(Bouligand) linearly regular intersection at x ∈ C∩D, if (see e.g. Example 4.2.13 and [214, 222])

NB
C (x) ∩NB

D(x) = {0}.

Recall from the alternative Theorem 5.2.4 that there exists an admissible descent direction at
x if and only if 0 /∈ NC(x) + ∂CF (x). It can be verified that this noncriticality of x is equivalent
to

0 /∈ ∂CF (x) and NC(x) ∩ −R+∂
CF (x) = {0}.

In the context of Theorem 5.2.12, we see that this is equivalent to

0 /∈ ∂CF (x) and NC(x) ∩ −NB

[FĺF (x)](x) = {0},

where this second property expresses that the intersection between the constraint C and the
sublevel set [F ĺ F (x)] must be linearly regular at x . We illustrate this situation in Figure
5.8. We take F = (f1, f2) : R2 −→ (R2,R2

+), and consider a linear constraint C (plotted in a
continuous line) for which there exists no admissible descent directions at x ∈ C. This is because
the intersection between C and [F ĺ F (x)] is not regular : see howNC(x)∩−N[FĺF (x)](x) 6= {0}.

Figure 5.8: First-order analysis at the intersection of two sublevel sets and a constraint.

This kind of regularity condition arises naturally when considering optimization problems
with equality and inequality constraints. Consider for instance a finite family of functions

f, g1, ..., gm, h1, ..., hp : Rn −→ R,
6Here cl WOT denotes the closure with respect with the weak operator norm, which is the topology of the

pointwise convergence to respect with the weak topology of Y. In other words, Aα
WOT−−→
α∈A

A if and only if

〈y∗, Aα(x)〉 R−−→
α∈A

〈y∗, A(x)〉 for all y∗ ∈ Y∗ and all x ∈ X. The “coo” is the operator convex hull, defined for a

family F ⊂ L(X, Y) as the set of finite sums
∑N
i=1 ui ◦ Ai, where the Ai’s are elements of F , and the ui’s are

positive endomorphisms of Y (i.e. 0 ĺ y ⇒ 0 ĺ ui(y)) such that
∑N
i=1 ui = idY .
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where f and G := (g1, ..., gm) are locally Lipschitz continuous , and H := (h1, ..., hp) is smooth.
A classical approach to study

(P) min
x∈Rn

f(x) such that g1(x) ď 0, ..., gm(x) ď 0 and H(x) = 0

consists in writing the corresponding Lagrangian

L(µ, θ, λ, x) := µf(x) +
m∑
i=1

θigi(x) +

p∑
j=1

λjhj(x), for θ = (θi) ∈ Rm and λ = (λj) ∈ Rp,

and study its critical points. For instance, if x̄ ∈ Rn is a local solution for (P), there exists a
triplet (µ, θ, λ) ∈ R × Rm+ × Rp, called Fritz-John coefficients, such that 0 ∈ ∂CL(µ, θ, λ, ·)(x̄)
(see [192, Theorem 2.1]). The whole point is to find qualification conditions on x̄ which ensures
that (µ, θ, λ) are Karush-Kuhn-Tucker coefficients, i.e. µ 6= 0. Such a standard assumption is
the Mangasarian-Fromovitz condition, which demands that (assume that all the constraints are
qualified7 at x̄):

i) DH(x̄) is surjective,

ii) there exists d ∈ Ker DH(x̄) such that dCgi(x̄; d) < 0, ∀i ∈ {1, ...,m}.

According to Liusternik’s theorem [77, Theorem 7.1.6], the Mangasaria-Fromovitz condition can
be equivalently rewritten as:

i) DH(x̄) is surjective,

ii) [H = 0] and [G ĺ 0] have a strongly regular intersection at x̄,

where [H = 0] := {x ∈ Rn | H(x) = 0} and [G ĺ 0] := {x ∈ Rn | gi(x) ď 0, i ∈ {1, ...,m}}.
The discussion at the beginning of this remark says in particular that item ii) could be

interpreted as the noncriticality of x̄ with respect to the multi-objective optimisation problem

(MOP) MIN
H(x)=0

G(x).

Of course, this would require the constraint [H = 0] to be convex, to fall into the setting of
Theorems 5.2.4 and 5.2.12, which is false in general8. We will also see in Chapter 6, Proposition
6.1.17, that the condition i) will provide a good regularity property for the steepest descent
vector field s.

7In other words, that gi(x̄) = 0 for all i ∈ {1, ...,m}.
8But most of the results of this chapter can be extended to more general constraints C, see Remark 5.3.1.
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Chapter 6

The continuous steepest descent
dynamic for vector optimization

Along all this chapter, we are considering a locally Lipschitz function F : H −→ Y , where H is
a Hilbert space identified with its dual, and Y is a Banach space ordered by a nonempty closed
convex cone K having nonempty interior. As in the previous chapter, we equip the dual cone
K+ with a fixed convex weakly∗ compact base Θ ⊂ Y ∗. We refer to Section 2.3 for more details
on ordered Banach spaces and bases of cones.

We recall from the introduction that Smale [297] studied the multi-objective optimisation
problem

(MOP) MIN
x∈C

F (x), with F (x) = (f1(x), ..., fm(x)),

and defined the notion of gradient process for this problem. It is a differential equation

u̇(t) = ψ(u(t))

where ψ : H −→ H is a mapping which satisfies the following properties:{
ψ(u) is an admissible descent direction whenever u is not a Pareto critical point,
ψ(u) = 0 else.

The interest of such a gradient process is twofold. First, the stationary points of the dynamic,
those satisfying u̇(t) = 0, are exactly the critical Pareto points for (MOP). This is a simple
consequence of the Pareto alternative Theorem 5.2.4, which says that the critical Pareto points
are exactly those for which no admissible descent direction can be found. Secondly, as long
as u(t) is not a critical Pareto point, all the objective functions {f1, ..., fm} are guaranteed to
decrease.

The steepest descent vector field

s : H −→ H

x 7−→ − (NC(x) + co ∂Cfi(x))0 ,

introduced in the previous chapter, induces such a gradient process for multi-objective optimiza-
tion problems, according to Proposition 5.2.18. The idea of considering a continuous dynamic
governed by this vector field goes back to Cornet [116], and has been revisited in the last years
[295, 282, 248, 28].

This Chapter 6 is devoted to the study of the trajectories solutions of the steepest descent
dynamical system

(SD) u̇(t) +

(
NC(u(t)) + ∂CF (u(t))

)0

= 0,
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where F : H −→ Y is a locally Lipschitz function with values in an ordered Banach space (Y,K).
It can be written u̇(t) = s(u(t)), where s denotes the steepest descent vector field introduced
in Definition 5.2.17. This dynamic is a gradient process, in the sense of Smale, for the vector
optimization problem

(VOP) MIN
x∈C

F (x).

Indeed, if u : [0,+∞[−→ H is a solution of (SD), its derivative u̇(t) is, by definition, a descent
direction for F at u(t). Then, we expect that F (u(t)) decreases along time, with respect to the
order in Y . Moreover, the stationary points of u(·) are critical points for (VOP), so we can
also expect the trajectories solutions of (SD) to converge, when t→ +∞, to a critical point of
(VOP).

The Chapter is structured as follows. Section 6.1 is devoted to a first basic study of the
steepest descent dynamic (SD). We start in Section 6.1.1 by defining properly what we mean
by a solution of (SD). Indeed, the dynamic is governed by two nonsmooth operators, namely
the normal cone to the constraint NC and the ordered subdifferential ∂CF . While it is clear that
NC(·) is discontinuous, it also appears that ∂CF : H⇒ H suffers from a lack of smoothness, even
if F is regular (see Example 6.1.11). This is why we consider absolutely continuous solutions.
In Section 6.1.2 we prove the announced decrease property of F along the trajectories, in
Proposition 6.1.7. As it was already underlined in Chapter 5 and Section 2.3, this decrease
property of F is essentially due to the simultaneous decrease of the family of cost functions

{fθ = θ ◦ F : H −→ R | θ ∈ Θ ⊂ Y ∗}.

In sections 6.1.3 and 6.1.4 we illustrate the dynamic through some examples, and we compare
(SD) to other dynamics, in particular the ones arising from scalarization methods. Section 6.1.5
consists in a discussion on the uniqueness of the trajectories. Indeed, since the steepest descent
vector field is neither smooth or monotone, we cannot use classical results or techniques which
ensure the uniqueness. We give in particular some geometrical sufficient conditions ensuring
the uniqueness. The question of the uniqueness in general remains open.

Then comes Section 6.2, which is entirely devoted to the asymptotic behaviour of the solu-
tions of (SD). Our main result is Theorem 6.2.6, which gives the convergence of the trajectories
to solutions of (VOP) under some conditions. When F is convex, any bounded trajectory con-
verges weakly to a weak Pareto point. If F is not convex but scalarly quasiconvex, we can still
guarantee the convergence under additional hypotheses. The proof relies on the Féjer mono-
tonicity of the trajectories, and Opial’s Lemma. We also guarantee in Theorem 6.2.9 that the
convergence is strong in the convex symmetric case.

Note finally that, in this Chapter, we assume the existence of solutions for (SD). This
question will be treated in Chapter 7.

6.1 The steepest descent dynamic

6.1.1 Definitions

The dynamical system which is governed by u 7−→ s(u), will be called the steepest descent
dynamical system, (SD) for short. Its solution trajectories t 7−→ u(t) verify

(6.1) (SD) u̇(t) +

(
NC(u(t)) + ∂CF (u(t))

)0

= 0.

Remark 6.1.1. The vector fields that appear in Theorem 5.2.20 generate the same integral
curves, with a different time scale. We could have chosen any of them to generate our dynamic.
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In [297], it is assumed that the vector field ψ governing the gradient process is continuous,
in a finite dimensional setting. In our context, the corresponding notions have been extended
in order to cover dynamical systems governed by a discontinuous vector field on a general
Hilbert space, to model a general preference relation on Y . In particular, instead of classical
(continuously differentiable) solutions, we will consider strong solutions (absolutely continuous
on bounded time intervals), the equality (6.1) being satisfied almost everywhere. We recall here
the definition of absolutely continuous functions (see the monograph of Brezis [83, Appendix]
for more details).

Definition 6.1.2. Given T ∈ R+, a function u : [0, T ] −→ H is said to be absolutely continuous
if one of the following equivalent properties holds:

i) there exists an integrable function g : [0, T ]→ H such that

u (t) = u (0) +

∫ t

0
g (s) ds ∀t ∈ [0, T ] ;

ii) u is continuous and its distributional derivative belongs to the Lebesgue space L1 ([0, T ] ;H);

iii) for every ε > 0, there exists η > 0 such that for any finite family of intervals Ik =]ak, bk[,
Ik ∩ Ij = ∅ for k 6= j and

∑
k |bk − ak| ď η =⇒

∑
k ‖u (bk)− u (ak) ‖ ď ε.

We can now make precise the notion of solution for the steepest descent dynamic (SD).

Definition 6.1.3. We say that u : [0,+∞[−→ C ⊂ H is a strong global solution of (SD) if :

i) u(·) is absolutely continuous on each interval finite interval [0, T ], T ∈]0,+∞[.

ii) u̇(t) = s(u(t)) for a.e. t ∈]0,+∞[.

iii) there exists η : [0,+∞[→ H, v : [0,+∞[→ H, such that for a.e. t ∈]0,+∞[ :

iii.a) η(t) ∈ NC(u(t)) and v(t) ∈ ∂CF (u(t)),

iii.b) u̇(t) + η(t) + v(t) = 0 for a.e. t ∈]0,+∞[.

Remark 6.1.4. Observe that, by definition, the trajectory remains always in the constraint C.
Indeed the nonvacuity of NC(u(t)) for a.e. t ě 0 means that u(t) ∈ C for a.e. t ě 0. Since u is
continuous and C closed, we deduce that u(t) ∈ C for all t ě 0. It follows from the definition
of the Fenchel tangent cone (recall Section 2.2.1) that u̇(t) ∈ TC(u(t)) for a.e t ∈ [0, T [.

6.1.2 Qualitative properties of the trajectories

We establish now the first qualitative properties of strong solutions of (SD). We take here for
granted the existence of such strong global solutions. We will examine in details their existence
in Chapter 7.

The main point of the following proposition is that the family of cost functions {fθ}θ∈Θ is
equicontinuous along the trajectories. This will be of great interest when studying the existence
of such trajectories in Chapter 7.

Proposition 6.1.5 (Equicontinuity of the cost functions). Let u : [0,+∞[−→ C be a strong
global solution of (SD).

i) Lipschitz continuity : The trajectory is Lipschitz continuous on any finite time interval
[0, T ].
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ii) Global Lipschitz continuity : If we suppose that the trajectory is bounded, and that F is
Lipschitz continuous on bounded sets, then the trajectory is Lipschitz continuous on the
entire interval [0,+∞[.

iii) Equicontinuity : The family {fθ ◦ u : [0, T ] −→ R | θ ∈ Θ} is:

iii.a) uniformly Lipschitz continuous (i.e. Lipschitz continuous with the same Lipschitz
constant), therefore equicontinuous,

iii.b) relatively compact in (C[0, T ],R), ‖·‖∞), the space of continuous real-valued functions
on [0, T ], equipped with the uniform convergence topology.

Remark 6.1.6. If H has finite dimension, then the hypothesis of Lipschitz continuity on
bounded sets which appears in item ii) can be removed, since it is equivalent to local Lips-
chitz continuity.

Proof. i) By Definition 6.1.3 of a strong global solution, we can write for a.e. t ∈]0,+∞[,

(6.2) u̇(t) + η(t) + v(t) = 0,

where η(t) ∈ NC(u(t)) and v(t) ∈ ∂CF (u(t)). Taking the scalar product with u̇(t) in (6.2) gives

(6.3) ‖u̇(t)‖2 = 〈η(t),−u̇(t)〉+ 〈v(t),−u̇(t)〉.

Since u(t) ∈ C, we know from Proposition 2.2.11 that

(6.4) 〈η, u̇(t)〉 =
d

dt
δC ◦ u(t) = 0 for all η ∈ NC(u(t)),

so (6.3) becomes ‖u̇(t)‖2 = 〈v(t),−u̇(t)〉. Using the Cauchy-Schwarz inequality, we obtain

(6.5) ‖u̇(t)‖ ď ‖v(t)‖.

From the compactness of [0, T ] and the continuity of u, we know that u([0, T ]) is compact in H.
Using this compactness and the local boundedness of ∂CF (recall Proposition 5.1.7), we deduce
that ∂CF is uniformly bounded on u([0, T ]). From v(t) ∈ ∂CF (u(t)) and (6.5), we deduce that
u̇ is uniformly bounded on [0, T ], so u is Lipschitz continuous therein.

Item ii) follows exactly the same line, using the boundedness assumptions.

iii) For all θ ∈ Θ, and a.e. t ∈ [0, T ], we have ∂Cfθ(u(t)) ⊂ ∂CF (x). Since the ordered
subdifferential ∂CF (x) has been proved to be uniformly bounded on u([0, T ]), there exists L ě 0
such that ∂Cfθ(u(t)) ⊂ LBH, for all θ ∈ Θ and a.e. t ∈ [0, T ]. Therefore, each cost function fθ is
L-Lipschitz continuous on a neighbourhood of u([0, T ]). Added to the fact that u is Lipschitz
continuous on the interval [0, T ], item iii.a) follows. To prove item iii.b), we want to use Ascoli’s
Theorem C.0.1. For this, consider for any t ∈ [0, T ] the set

(6.6) It := {(fθ ◦ u)(t) | θ ∈ Θ}.

Using the fact that the base Θ is bounded, and the definition fθ = θ ◦ F , it is clear that It
is bounded in R, hence relatively compact. Then Ascoli’s Theorem applies, and item iii.b)
follows. �

Now we show that the cost functions are Lyapunov for the (SD) dynamic: they decrease
along the trajectories. Even more, we see that the dynamic is a descent method, relatively to
the order endowing Y .

124



Proposition 6.1.7 (Descent property). Let u : [0,+∞[−→ C be a strong global solution of
(SD). Then, for each θ ∈ Θ, and for almost all t > 0 :

(6.7)
d

dt
(fθ ◦ u)(t) ď −‖u̇(t)‖2.

In particular, fθ is decreasing along the trajectories. It is also the case for F :

(6.8) t1 ď t2 ⇒ F (u(t2)) ĺ F (u(t1)).

Proof. Let θ ∈ Θ. From Proposition 6.1.5, we know that fθ ◦ u is locally Lipschitz on R+,
thus differentiable almost everywhere. So, for a.e. t > 0, fθ ◦ u is differentiable and u̇(t) =
s(u(t)) holds. For such t > 0, we have, using the chain rule for the Fréchet subdifferential (see
Proposition 2.2.11):

(6.9)
d

dt
(fθ ◦ u)(t) = 〈x∗, u̇(t)〉, ∀x∗ ∈ ∂Ffθ(u(t)).

Since ∂Ffθ(u(t)) ⊂ ∂Cfθ(u(t)) ⊂ ∂CF (x), (6.9) implies

(6.10)
d

dt
(fθ ◦ u)(t) ď dCF (u(t), u̇(t)).

Using u̇(t) = s(u(t)) and its descent property (see Proposition 5.2.18), we obtain the desired
inequality (6.7). The monotonic property of F ◦ u (6.8) is a consequence of the monotony of
fθ◦u, and the characterization of the order in Y by the elements of the base Θ (recall Proposition
2.3.7). �

Remark 6.1.8. If we assume that, for a.e. t > 0, u̇(t) 6= 0, then we can easily improve the
proof of (6.8) to obtain a strict monotonicity of F ◦ u:

(6.11) t1 < t2 ⇒ F (u(t2)) ă F (u(t1)).

When we have a result of uniqueness for the trajectories, there is only two alternatives concerning
the stationary points. Either the trajectory reaches a stationary point in finite time, and
remains there, or the trajectory is never stationary. This question of uniqueness of trajectories
is discussed in Section 6.1.5. In particular, Proposition 6.1.21 shows that, in the convex case,
(6.11) holds until the trajectory reaches a weak Pareto point, in which case the trajectory stops
there.

6.1.3 Some basic examples

We illustrate the (SD) dynamic through some examples. They suggest that its study is not
a mere extension of some classic situation, because (SD) is governed by a vector field which
is neither monotone, nor locally Lipschitz continuous. Without any further assumption, we
cannot expect more than the Hölder continuity of this vector field (see Example 6.1.11 below,
and Proposition 7.1.2 in Chapter 7).

For simplicity, we consider a strictly Gateaux differentiable bi-objective unconstrained case,
i.e.

(6.12) F = (f1, f2) : H −→ R2, with C = H and K = R2
+.

The following elementary result provides an explicit description of the vector field in that case.

Proposition 6.1.9. Suppose we are in the setting of (6.12). Then, for any x ∈ H be such that
∇f1(x) 6= ∇f2(x),

(6.13)

{
s(x) = −λ(x)∇f1(x)− (1− λ(x))∇f2(x),

λ(x) = proj[0,1]

(
〈∇f2(x)−∇f1(x),∇f2(x)〉
‖∇f2(x)−∇f1(x)‖2

)
.
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Proof. By definition of s(x), there exists λ(x) ∈ [0, 1] verifyings(x) = −λ(x)∇f1(x)− (1− λ(x))∇f2(x),

λ(x) = argmin
λ∈[0,1]

‖λ∇f1(x) + (1− λ)∇f2(x)‖2.

Writing down the first-order optimality condition for λ(x), we obtain, when ∇f1(x) 6= ∇f2(x),

λ(x) +N[0,1](λ(x)) 3 〈∇f2(x)−∇f1(x),∇f2(x)〉
‖∇f2(x)−∇f1(x)‖2

.

We conclude by using that the resolvent of the normal cone mapping is equal to the projection.
�

Example 6.1.10. Given a, b ∈ H, consider the quadratic functions f1(v) = 1
2‖v − a‖2 and

f2(v) = 1
2‖v− b‖

2. The set of Pareto points coincide with the set of weak Pareto points, and is
equal to the segment [a, b]. The steepest descent vector field is given by s(x) = −(x−proj[a,b]x).
Trajectories are straight lines connecting the starting point and its projection on the Pareto set.

Figure 6.1 below shows some trajectories of the (SD) dynamic in the particular case H = R2,
and a = (1, 0), b = (−1, 0). Figure 6.2 shows the Pareto front in the value space.

x

y

0 ab

Figure 6.1: Trajectories associated to two distance functions in H = R2.

Figure 6.2: Pareto front in the value space Y = R2. F (X) is in grey, the Pareto front is the thick
black curve.
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Example 6.1.11. Given a ∈ H, consider the quadratic form f1(v) = 1
2‖v‖

2 and the linear
form f2(v) = 〈a, v〉. The sets of Pareto and weak Pareto points both coincide with the half-line
−R+a. The steepest descent vector field is deduced from Proposition 6.1.9:

(6.14) s(x) =


−a if 〈a, x〉 ě ‖a‖2,
−x if ‖x− a

2‖
2 ď ‖a2‖

2,

−a+ 〈a,a−x〉
‖a−x‖2 (a− x) else.

The domain of this vector field appears to be split in three parts, where it behaves differently.
Those three areas are a half-space supported by a, a ball centered in a

2 , and the rest of the space.
The fact that this domains splits in three can also be seen in Example 6.1.10. It is simply due to
the fact that s(x) is the projection of the origin onto the segment [∇f1(x),∇f2(x)]. When doing
this projection, three cases occurs. Either we project onto the extreme points of the segment,
namely ∇f1(x) and ∇f2(x), or we project onto the interior of [∇f1(x),∇f2(x)].

Let us consider the particular case H = R2, with a = (1, 0). Then f1(x, y) = 1
2(x2 + y2) and

f2(x, y) = x. The corresponding Pareto set is ]−∞, 0]× {0}, and

(6.15) s(x, y) =


−(1, 0) if x ě 1,

−(x, y) if (x− 1
2)2 + y2 ď 1

4 ,
−1

(x−1)2+y2 (y2, y(1− x)) else.

Figure 6.3 below shows some trajectories of the (SD) dynamic. One can see that both objective
function decrease along the trajectories. Figure 6.4 shows the Pareto front in the value space.

0

x = 1

(1, 0)

Figure 6.3: Trajectories in H = R2 associated to a nondegenerated quadratic form and a linear
form.
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Figure 6.4: Pareto front in the value space Y = R2. F (X) is in grey, the Pareto front is the thick
black curve.

This example is very interesting, because it has the property that the steepest descent vector
field s(x) = − (co{∇f1(x),∇f2(x)})0 governing the dynamic may fail to be locally Lipschitz.
This can be quite surprising at first sight, since the functions involved here are smooth. The
lack of Lipschitz continuity occurs at the point (1, 0), which is the point where the vector field
“splits” into three parts, see (6.15). Figure 6.5 provides a simple example of parametrized
vectors uα, vα that both converge to (1, 0), when the angle parameter α goes to zero, but such
that

‖s(uα)− s(vα)‖ = sin(α) and ‖uα − vα‖ = sin(α) tan(α).

As a consequence, ‖s(uα)−s(vα)‖
‖uα−vα‖ ' α

α2 is unbounded when α → 0, and this breaks the Lipschitz

continuity in the neighbourhood of (1, 0).

(0, 0) α (1, 0)

α

vα
uα

Figure 6.5: Lack of Lipschitz continuity for u 7→ s(u).

The point (1, 0) where fails the Lipschitz continuity of s is in fact the only one in the plane.
To see this, go to Proposition 6.1.18, where we give a necessary condition for the failure of the
Lipschitz continuity of s.

Example 6.1.12. Take H = R2, and consider the two quadratic degenerate forms f1(x, y) =
1
2x

2 and f2(x, y) = 1
2y

2. Here the only Pareto point is the origin, and the set of weak Pareto
points is and R × {0} ∪ {0} × R. The multiobjective steepest descent vector field is, once
computed:

s(x, y) = −
(

xy2

x2 + y2
,

yx2

x2 + y2

)
if (x, y) 6= (0, 0), s(0, 0) = (0, 0).
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0

s(x, y)

(x, y)

Figure 6.6: Trajectories in H = R2 associated to two degenerated quadratic forms.

Figure 6.7: Pareto front in the value space Y = R2. F (X) is in grey, the Pareto front is the thick
black curve.

Observe in Figure 6.6 that the trajectories tend to move away from each other. This reflects
the fact that (x, y) 7→ −s(x, y) is not a monotone operator. Indeed, for x > 0, y > 0, x 6= y

〈−s(x, y) + s(y, x), (x, y)− (y, x)〉 = −2
xy(x− y)2

x2 + y2
< 0.

Nevertheless, in this example, it can be shown that (x, y) 7→ −s(x, y) is hypomonotone on (R∗)2.
This means that, locally, there exists some α ě 0 such that −s+ αI is monotone. To see this,
compute the Jacobian of −s at (x, y)

D(−s)(x, y) =
1

(x2 + y2)2

(
y4 − x2y2 2xy3

2x3y x4 − x2y2

)
,

and observe that D(−s)(x, y) + I is positive whenever (x, y) 6= (0, 0). It would be interesting to
find some conditions on F which would guarantee that −s is hypomonotone, since in that case
the study of the dynamic would fall into a well-understood class of dynamics.

This example shows also that the operator s : H −→ H does not derive from a potential. Indeed,
we can see above that its differential Ds(x, y) is not symmetric.
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6.1.4 Related dynamics

In classic optimization problems, when F = f : H −→ R, the (SD) dynamic reduces to

u̇(t) +

(
NC(u(t)) + ∂Cf(u(t))

)0

= 0.

If moreover the function f is convex, this system is equivalent to

u̇(t) +NC(u(t)) + ∂Cf(u(t)) 3 0,

because, in this case, the lazy solution property is automatically satisfied by the trajectories of
the semigroup of contractions generated by the maximal monotone operator NC + ∂f , see [83,
Theorem 3.1]. In particular, our existence and asymptotic analysis for (SD) in Sections 2 and
3 extends the well-known results for the nonsmooth gradient flow, see [83].

This leads us to a natural question, which is the study of the relationship (or differences)
between (SD) and the Vector Differential Inclusion ((VDI) for short)

(6.16) (VDI) u̇(t) +NC(u(t)) + ∂CF (x) 3 0.

For the sake of simplicity, we assume here that F is convex. It appears that (VDI) enjoys
a weaker form of Proposition 6.1.7: we can only guarantee that one of the cost functions is
decreasing at each instant.

Proposition 6.1.13. Let u : [0,+∞[−→ C be a strong global solution of (VDI) in the sense
of Definition 6.1.3 (except the lazy property). Suppose that F is convex. Then, for almost all
t ě 0, if u(t) is not critical, there exists some θ ∈ Θ (which depends on t) such that

d

dt
(fθ ◦ u)(t) < 0.

Proof. Since u is a strong solution of (VDI), there exists η, p : [0,+∞[−→ H, which satisfy for
almost all t ě 0

η(t) ∈ NC(u(t)), p(t) ∈ ∂CF (u(t)),

u̇(t) + η(t) + p(t) = 0.

Taking the scalar product of the above equation with u̇(t), we obtain

(6.17) ‖u̇(t)‖2 + 〈η(t), u̇(t)〉+ 〈p(t), u̇(t)〉 = 0.

By a similar argument than the one used for (6.4) in the proof of Proposition 6.1.5, we have

(6.18) 0 =
d

dt
δC(u(t)) = 〈η(t), u̇(t)〉 .

Hence, if we assume that u(t) is not critical, we have u̇(t) 6= 0, and it follows that 〈p(t), u̇(t)〉 < 0.
Since p(t) ∈ co∗

⋃
θ∈Θ

∂Cfθ(u(t)), arguing by contradiction we easily see that there must exist some

θ ∈ Θ (depending on t) and some pθ ∈ ∂Cfθ(u(t)) such that 〈pθ, u̇(t)〉 < 0. Using the chain rule
of Proposition 2.2.11, together with the convexity of F , gives

(6.19)
d

dt
fθ(u(t)) = 〈pθ, u̇(t)〉 < 0.

�
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Remark 6.1.14. Proposition 6.1.13 tells us that, for any trajectory of (VDI), for almost all
t > 0, at least one of the objective functions decreases. We will illustrate this on a few examples,
and highlight the fact that, by contrast, for trajectories of (SD), they are all decreasing.

i) The scalarization approach consists in taking a constant merit function, say fθ. Clearly,
∂fθ(u) ⊂ ∂CF (x), and the corresponding trajectories are solutions of (VDI). According to
Bruck’s theorem [87], any orbit of the generalized gradient flow generated by ∂fθ converges to
a minimizer of fθ, which, by Theorem 5.2.10, is a weak efficient point. This is the strategy
underlying the weighting method, but it suffers from two drawbacks. First, it doesn’t recover
well the Pareto front in nonconvex cases (see Section 6.3). Secondly, there is no particular
reason for this dynamic to improve all the cost functions. Take for instance in Example 6.1.10,
θ = (λ, (1− λ)) ∈ ∆2 for any λ ∈]0, 1]. When starting from (1, 0), the trajectory goes straight
to (1− 2λ, 0) by decreasing f1 but increasing f2.

ii) Consider the multiobjective setting F = (f1, ..., fm), and consider the steepest descent
dynamic associated to the function f = maxi fi. This dynamic has some similarities with (SD),
but it is different. As a supremum of a finite number of convex continuous functions, f is still
convex continuous. The classical subdifferential rule for the supremum of convex functions (see
for example [51, Theorem 18.5]) gives in our setting

(6.20) ∂f(u) = co {∂fi(u) : i ∈ I(u)}

where I(u) = {i ∈ I : fi(u) = f(u)} is the set of the active indices at u. Clearly, ∂f(u) ⊂
co ∂fi(u) = ∂CF (u). As a consequence, the trajectories of the steepest descent for f = max fi
are also solutions of (VDI). But, in general, they fail to make decrease all the objective functions.
Take for instance Example 6.1.10: when starting from some (x0, y0) with x0 > y0 > 1, f2 is first
decreasing along the trajectory, until the current point reaches the projection of (1, 0) on the
line segment joining (x0, y0) to (−1, 0), then it is increasing.

In the next proposition, we show that, among all the possible dynamics satisfying (VDI),
the unique one making all the merit functions decrease with the estimation of Proposition 6.1.7,
is the lazy one, i.e., the steepest descent dynamic.

Proposition 6.1.15. Let u : [0, T [−→ H be a strong solution of (VDI), and suppose that F is
convex. Then the two following statements are equivalent :

i) u is a solution of (SD),

ii) u is decreasing for all cost functions, more exactly,

for a.e. t ∈ [0, T ] and for all θ ∈ Θ, d

dt
(fθ ◦ u)(t) ď −‖u̇(t)‖2.

Proof. The implication i) ⇒ ii) has already been proved in Proposition 6.1.7. To prove the re-
verse implication, start by using the chain rule in Proposition 2.2.11, together with the convexity
of F , to obtain for almost every t ∈ [0, T [:

∀θ ∈ Θ,∀x∗ ∈ ∂Cfθ(u(t)), 〈x∗, u̇(t)〉 ď −‖u̇(t)‖2.

By definition of ∂CF (u(t)), we obtain immediately

(6.21) ∀x∗ ∈ ∂CF (u(t)), 〈x∗, u̇(t)〉 ď −‖u̇(t)‖2.

Moreover, u(t) ∈ C for all t ∈ [0, T [ (recall Remark 6.1.4). It follows that u̇(t) ∈ TC(u(t)) for
a.e t ∈ [0, T [. Hence,

(6.22) ∀η ∈ NC(u(t)), 〈η, u̇(t)〉 ď 0.
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By combining (6.21) and (6.22), we obtain for a.e. t ∈ [0, T [

(6.23) ∀x∗ ∈ NC(u(t)) + ∂CF (u(t)), 〈x∗, u̇(t)〉 ď −‖u̇(t)‖2,

which is equivalent to say that −u̇(t) is the projection of the origin onto NC(u(t)) + ∂CF (u(t)).
In other words, −u̇(t) = (NC(u(t)) + ∂CF (u(t)))0.

�

6.1.5 About the uniqueness of the trajectories

Remark 6.1.16. In the unconstrained multicriteria case, and for convex differentiable objective
functions, illustrative examples of the (SD) dynamic were given in Section 6.1.3. In these
elementary situations, we have been able to explicitely compute the vector field x 7→ s(x).
We observed that it can be Lipschitz continuous (Examples 6.1.10 and 6.1.12) or only Hölder
continuous (Example 6.1.11). This naturally raises the following question: in the unconstrained
case, and for differentiable objective functions, what are the assumptions ensuring that the
vector field x 7→ s(x) is Lipschitz continuous? This is clearly a key property for the uniqueness
of (SD), and we bring a first tribute to this question below.

The next result gives a sufficient condition for the local Lipschitz property of the vector field
x 7→ s(x), and by extension to the uniqueness question:

Proposition 6.1.17. Suppose that H and Y are two Euclidean spaces, and C = H. Suppose
that F is Gateaux differentiable with DF being Lipschitz continuous in a neighborhood of
u ∈ H. If DF (u) is surjective, then the steepest descent vector field s : v 7→ −(∂CF (v))0 is
Lipschitz continuous in a neighborhood of u.

Proof. We have, for any v in the neighborhood of u,

(6.24) s(v) = −θ(v) ◦DF (v) where θ(v) := argmin
θ∈Θ

1

2
‖θ ◦DF (v)‖2.

Since θ ◦ DF (v) can also be written D∗F (v)(θ), we obtain after writing down the first-order
optimality condition in (6.24)

(6.25) 0 ∈ NB(θ(v)) +A(v)(θ(v)),

where A(v) := DF (v) ◦ D∗F (v) is a positive symmetric linear operator of Y . Note that A
is Lipschitz continuous from H to L(Y ) in a neighborhood of u, by assumption. Since we
assume that DF (u) is surjective, then A(u) is in particular definite positive. Hence, by conti-
nuity of eigenvalues on matrix entries, we can suppose that there exists some α > 0 such that
〈A(v)x, x〉 ě α‖x‖2 for all v in a neighborhood of u, and all x ∈ H.

The end of the proof is based on a standard argument for the study of stability for the
solution of a strongly monotone variational inequality. Take two elements v1, v2, make the
difference of the corresponding equations (6.25), and take the scalar product with θ(v2)− θ(v1).
By monotonicity of the normal cone mapping θ 7→ NB(θ), we obtain

(6.26) 〈A(v2)θ(v2)−A(v1)θ(v1), θ(v2)− θ(v1)〉 ď 0.

Let us rewrite (6.26) as

(6.27) 〈A(v2)(θ(v2)− θ(v1)), θ(v2)− θ(v1)〉 ď 〈(A(v1)−A(v2))θ(v1), θ(v2)− θ(v1).

By the positive definite property of A(v), and Cauchy-Schwarz inequality, we obtain

(6.28) α‖θ(v2)− θ(v1)‖2 ď ‖(A(v2)−A(v1))θ(v1)‖‖θ(v2)− θ(v1)‖.

After simplification, and by using the Lipschitz continuous dependence of A(v) with respect to
v, it follows that v 7→ θ(v) is locally Lipschitz continuous. Then combine this result with the
local Lipschitz continuity of DF to conclude. �
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If we apply directly this result to the multiobjective case F = (f1, ..., fm), we obtain the
Lipschitz continuity of s around u ∈ H under the condition that the gradients∇fi(u) are linearly
independent. In fact, in this context, one can modify slightly the proof above to obtain the same
result under a slightly weaker assumption, which is the affine independence of the gradients.
We say that a family {x1, ..., xm} in H is affinely independent whether

(6.29) ∀Λ = (λ1, ..., λm) ∈ Rm,
m∑
i=1

λi = 1 and
m∑
i=1

λixi = 0 implies Λ = 0.

Equivalently, this means that the family {x1 − xm, ..., xm−1 − xm} is linearly independent.

Proposition 6.1.18. Suppose that H is an Euclidean space, with C = H, and that (Y,K) =
(Rm,Rm+ ). Suppose that for all i ∈ {1, ...,m}, fi : H −→ R is Gateaux differentiable with
∇fi being Lipschitz continuous in a neighborhood of u ∈ H. If {∇fi(u)}i∈{1,...,m} is affinely
independent, then the steepest descent vector field s : v 7→ −(∂CF (v))0 is Lipschitz continuous
on a neighborhood of u.

Remark 6.1.19. This result is quite optimal, since in the case m = 2 it ensures the Lipschitz
continuity of s at u under the condition that ∇f1(u) 6= ∇f2(u). Observe that in Example 6.1.11,
this fails only at u = (−1, 0), where the Lipschitz continuity is missing.

Proof. This proof follows the same lines than the previous one, but we will deal with additional
affine terms. Write, for any v in the neighborhood of u,

(6.30) s(v) = −
m∑
i=1

θi(v)∇fi(v) where θ(v) := argmin
θ∈∆m

1

2
‖

m∑
i=1

θi(v)∇fi(v)‖2.

Equivalently, since θm(v) = 1−
∑m−1

i=1 θi(v), we can write

(6.31) s(v) = −∇fm(v)−
m−1∑
i=1

θi(v)(∇fi(v)−∇fm(v))

where

(6.32) θ(v) := argmin
θ∈T m−1

1

2

∥∥∥∥∥∇fm(v) +

m−1∑
i=1

θi(v)(∇fi(v)−∇fm(v))

∥∥∥∥∥
2

with the notation T m−1 := {θ ∈ Rm−1
+ |

∑m−1
i=1 θi ď 1}.

Define G := (gi)i∈{1,...,m−1} : H −→ Rm−1, where gi := fi − fm. Then, writing down the
first-order optimality condition in (6.31) leads to

(6.33) 0 ∈ NT m−1(θ(v)) +A(v)(θ(v)) +B(v),

where A(v) := DG(v) ◦ D∗G(v) and B(v) := DG(v)(∇fN (v)). Note that A(u) is the Gram
matrix corresponding to the linearly independent family {∇gi(u)}i∈{1,...,m−1} = {∇fi(u) −
∇fm(u)}i∈{1,...,m−1}, so A(u) is a definite positive symmetric linear operator on Rm−1. Since
A(v) and B(v) are both Lipschitz continuous with respect to v around u, we can use the same
arguments than in the previous proof to conclude.

�

Remark 6.1.20. In the multi-objective case, if H = Rn with n ě m, then the necessary
condition of Proposition 6.1.18 is equivalent to

rank DF (u) ď m− 1.

As already observed by Smale [297], this property is generically satisfied at the critical points
of F . Thus, if we try to find a counterexample to the uniqueness of trajectories, we should look
for a function F : Rn −→ Rm with n ∼ m, or even n� m.
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Since the uniqueness of trajectories are not guaranteed, one could fear some wild behaviour,
such that a trajectory reaching a solution/stationary point and then escaping from it. Fortu-
nately, it happens that weak Pareto points are stable stationary points.

Proposition 6.1.21. Let u be a strong global solution of (SD). If u(T ) is a weak efficient point
for some T > 0, then u(t) = u(T ) for all t ě T .

Proof. Let t ∈ [T,+∞[ be fixed. Since u(T ) is a weak efficient point, there must exist a θ ∈ Θ
such that

(6.34) fθ(u(t)) ě fθ(u(T )).

But, we know from Proposition 6.1.7 that fθ is decreasing along the trajectory, so this, combined
with (6.34), means that

(6.35) ∀s ∈ [T, t], fθ(u(s)) = fθ(u(T )).

As a consequence, we have d
ds(fθ ◦ u)(s) = 0 for a.e. s ∈ [T, t]. Using the energy estimation in

Proposition REF, we deduce that u̇(s) = 0 for a.e. s ∈ [T, t]. Hence, u ≡ u(T ) on [T, t], this
being true for all t ě T . �

Here, we just tackled the problem of uniqueness from the point of view of the regularity
of s. Another interesting aspect concerns the monotonicity-like property of s. Indeed, in the
Examples 6.1.11 and 6.1.12 of Section 6.1.3, there exists locally some positive constant α such
that x 7→ −s(x) +αx is monotone, a property which classically implies the uniqueness (see [83,
Theorem 3.17]). Thus, it is an open question, that we do not address here, to know whether
this property is satisfied by the (SD) system, at least under some general asumptions.

6.2 Asymptotic properties of the steepest descent dynamic

We start with a very simple result concerning the convergence of the values.

Proposition 6.2.1. Let u : [0,+∞[−→ C be a strong global solution of (SD). Then :

i) For all θ ∈ Θ, fθ(u(t)) ↓ inf
tě0

fθ(u(t)) when t goes to +∞.

ii) The sublevel sets ([F ĺ F (u(t))])tě0 converge, in the Painlevé - Kuratowski sense, to⋂
tě0

[F ĺ F (u(t))], when t goes to +∞.

Proof. Item i) is a direct consequence of the monotonicity of t 7→ fθ(u(t)), see Proposition 6.1.7.
Now let us prove the convergence of [F ĺ F (u(t))] in the Painlevé - Kuratowski sense, see

[21, Remark 12.1.2] for a definition. For short, we will note ΓF (u(t)) := [F ĺ F (u(t))]. We will
prove successively the following inclusions:

(6.36) Limsup
t→+∞

ΓF (u(t)) ⊂ Liminf
t→+∞

ΓF (u(t)) ⊂
⋂
tě0

ΓF (u(t)) ⊂ Limsup
t→+∞

ΓF (u(t)).

Start by taking x ∈ Limsup
t→+∞

ΓF (u(t)), then there exists some xn → x, tn → +∞, such that xn ∈

ΓF (u(tn)). Given an arbitrary sequence t̃k → +∞, let us show that there exits a corresponding
sequence x̃k converging to x such that x̃k ∈ ΓF (u(t̃k)). For any k ∈ N, there exists some nk ∈ N
such that t̃k ď tnk , hence by Proposition 6.1.7 we deduce that xnk ∈ ΓF (u(tnk)) ⊂ ΓF (u(t̃k)).
So it suffices to take x̃k = xnk to deduce that x ∈ Liminf

t→+∞
ΓF (u(t)).

Consider now x ∈ Liminf
t→+∞

ΓF (u(t)), then there exists a sequence xn → x such that xn ∈
ΓF (u(n)) for all n ∈ N. Given some t ě 0, and using again Proposition 6.1.7, we see that
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xn ∈ ΓF (u(n)) ⊂ ΓF (u(t)) for all n ě t. Hence, by passing to the limit when n → +∞, along
with the fact that ΓF (u(t)) is a closed set (due to the lower semi-continuity of the functions),
we deduce that x ∈ ΓF (u(t)). This being true for an arbitrary t ě 0, we conclude that
x ∈

⋂
tě0

ΓF (u(t)).

Take now x ∈
⋂
tě0

ΓF (u(t)). By defining tn := n and xn := x, we trivially have that

xn ∈ ΓF (u(tn)) for all n ∈ N, so x ∈ Limsup
t→+∞

ΓF (u(t)) follows. �

Remark 6.2.2. Note that this property of convergence for the sublevel sets holds more generally
for any decreasing sequence of sets, in the sense of the inclusion.

We follow now with a general asymptotic property for the iterates which guarantees that the
strong limit points of the trajectory are critical Pareto points. It is a direct consequence of the
dissipative property of the dynamic, and the weak-strong outer semi-continuity of the operator
x ⇒ NC(x) + ∂CF (x), studied in Section 5.1 (see Propositions 5.1.11 and 5.1.13). Recall that
we introduced in Section 5.1 the following set of hypotheses (here H is a Hilbert space, thus
reflexive):

One of the three following properties is satisfied:
H 1) K is polyhedral,

2) Y has finite dimension, and F is positively Clarke regular,
3) F is the sum of a convex function and a strictly Gateaux differentiable function.

Proposition 6.2.3. Suppose that one of the cost functions fθ remains bounded from below
along the trajectory.
i) The trajectory has a finite energy :

(6.37)

∫ +∞

0
‖u̇(t)‖2dt < +∞.

ii) If H holds, then any strong limit point of the trajectory is Pareto critical.
iii) If the functions are convex, any weak limit point of the trajectory is a weak Pareto.

Proof. Let fθ be the cost function such that inf
tě0

fθ(x(t)) > −∞. From Proposition 6.1.7 and by

integrating (6.7), we obtain

(6.38)

∫ +∞

0
‖u̇(t)‖2dt ď fθ(x(0))− inf

tě0
fθ(x(t)).

This proves item i).
Let u∞ be a strong limit point of the trajectory, i.e. u(tn) → u∞ strongly in H for some

tn → +∞. The finite energy property (6.38) implies that

(6.39) liminfess
t→+∞

‖u̇(t)‖ = 0.

Since relations (6.38) and (6.39) are satisfied for almost all t > 0, we can suppose, for some
tn → +∞, that:

u(tn)→ x∞ strongly in H,(6.40)

u̇(tn)→ 0 strongly in H,

−u̇(tn) ∈ NC(u(tn)) + ∂CF (u(tn)) for each n ∈ N.

From Corollary 5.1.14 we know that u⇒ NC(u)+∂CF (u) is sequentially upper semi-continuous,
so point ii) follows. Point iii) is proved by the same argument, using the weak-strong closure
instead of the strong-weak closure (cf. Proposition 5.1.11), and Fermat’s rule (Theorem 5.2.10)
for convex fonctions. �
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We are now going to prove a global convergence result for the iterates, under the assumption
that the merit functions are quasi-convex. (Our argument is in the line of the proof of conver-
gence of the steepest descent by Goudou and Munier [180] in the case of a single (quasi-convex)
objective function.) Recall from Chapter 2, Section 2.3, that F is said to be scalarly quasiconvex
whenever fθ is quasiconvex, for all θ ∈ Θ. It implies in particular that F is quasiconvex. In the
following, we will make use of the following limit sets:

(6.41) the set of weak limit points Ω[u(t)] := {u ∈ H | ∃tn → +∞ s.t. u(tn)
w→ u},

(6.42) the common sublevel limit set ΓF [u(t)] :=
⋂
tě0

[F ĺ F (u(t))].

Observe that ΓF [u(t)] is nothing but {v ∈ H | fθ(v) ď fθ(u(t)) ∀t ě 0, ∀θ ∈ Θ}, and is closed
convex in the quasiconvex setting.

Proposition 6.2.4. Let F be scalarly quasiconvex, then Ω[x(t)] ⊂ C ∩ ΓF [x(t)].

Proof. Suppose that u(tn)
w→ u∞ for some tn → +∞. Since the trajectory remains in C which

is closed convex, then u∞ ∈ C. Moreover, recall that the quasiconvex functions are weakly
lower semi-continuous, so for all θ ∈ Θ :

fθ(u∞) ď lim inf
n→+∞

fθ(u(tn)) = inf
tě0

fθ(u(t)).

Whence u∞ ∈ ΓF [u(t)]. �

Proposition 6.2.5. (Fejer property)
Let F be scalarly quasiconvex, then for all z ∈ C ∩ ΓF [u(t)], t 7→ ‖u(t)− z‖ is decreasing.

Proof. Let z ∈ C ∩ ΓF [u(t)], and define h(t) := 1
2‖u(t) − z‖2. Since the trajectory u(·) is

absolutely continuous, so is h, and we can derive it for almost every t > 0:

h′(t) = 〈u̇(t), u(t)− z〉 = 〈−s(u(t)), z − u(t)〉
= 〈η(u(t)), z − u(t)〉+ 〈p(u(t)), z − u(t)〉,

where η(u(t)) ∈ NC(u(t)), p(u(t)) ∈ ∂CF (u(t)). The fact that z ∈ C, implies immediately from
the definition of NC that 〈η(u(t)), z − u(t)〉 ď 0. Using the definition of the Clarke directional
derivative, one obtains:

h′(t) ď dCF (u(t), z − u(t)).

Since z ∈ ΓF [u(t)], we know that fθ(z) ď fθ(u(t)) for all θ ∈ Θ and all t ě 0. Let t > 0 be
fixed, and suppose on one hand that there is some θ ∈ Θ such that fθ(u(t)) = fθ(z). Then
the trajectory stops there. Indeed, by decrease property (Proposition 6.1.7) one has fθ(u(s)) =
fθ(u(t)) for all s ě t. Using (6.7) we see that u̇(s) = 0 for a.e. s ě t. Since u(·) is absolutely
continuous, we deduce that u(s) = u(t) for all s ě t. In that case h is constant on [t; +∞[. On
the other hand, if fθ(z) < fθ(u(t)) for all θ ∈ Θ, then the quasiconvexity and Proposition 2.2.16
tell us that dCfθ(u(t), z − u(t)) ď 0. In other words, dCF (u(t), z − u(t)) ď 0 and so h′(t) ď 0.
Both cases lead to the fact that h is decreasing along time. �

We can now state our main convergence result.

Theorem 6.2.6. Let F be scalarly quasiconvex. Then the trajectory is bounded if and only if
C ∩ ΓF [u(t)] 6= ∅. In that case,
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i) the trajectory weakly converges to a point in C ∩ ΓF [u(t)],

ii) the trajectory has finite energy :
∫ +∞

0 ‖u̇(t)‖2dt < +∞.

Under additional hypotheses, we have the stronger results :

(iii) if F is convex, then the weak limit point is a weak efficient point.

(iv) if the trajectory is precompact and H holds, then the trajectory converges strongly to a
critical point.

The theorem is a direct corollary of Propositions 6.2.3, 6.2.4 and 6.2.5, and Opial’s lemma (see
[268, Lemma 5.2]

Lemma 6.2.7 (Opial). Let S be a non empty subset of H, and x : [0,+∞[→ H a map. Assume
that

(i) for every z ∈ S, lim
t→+∞

‖x(t)− z‖ exists;

(ii) Ω[x(t)] ⊂ S.

Then x(t) weakly converges to some x∞ ∈ S, when t→ +∞.

Proof of Theorem 6.2.6. If the trajectory is bounded, then it admits a weakly convergent subse-
quence. In other words, Ω[u(t)] 6= ∅, and with Proposition 6.2.4 it follows that C∩ΓF [u(t)] 6= ∅.
If C ∩ΓF [u(t)] 6= ∅, then using Opial’s Lemma together with Propositions 6.2.4 and 6.2.5, gives
the weak convergence of the trajectory. In that case one sees that the trajectory is in particular
bounded. Items ii-iv) follow Proposition 6.2.3, using the fact that if the trajectory converges to
u∞ ∈ ΓF [u(t)], then each cost function fθ is minimized along the trajectory by fθ(u∞). �

Remark 6.2.8. a) Since each function t 7→ fθ(u(t)) is nonincreasing (see Proposition 6.1.7), a
natural condition insuring that the trajectory remains bounded, is that one of the functions has
bounded sublevel sets. b) Similarly, if one of the merit functions has relatively compact sublevel
sets (inf-compactness property), then the trajectory is relatively compact, which is needed for
the strong convergence in H.

As in the convex monocriteria case, strong convergence can be obtained by doing a symmetry
hypothesis on the involved functions. We say that F is even if F (x) = F (−x) for all x ∈ H.,
and that C is symmetric whether C = −C.

Theorem 6.2.9. Suppose that F is convex and even, and that C is symmetric. Hence the
trajectory strongly converges to a weak efficient point.

Proof. Let s ě 0 and define, for t ∈ [0, s] :

γ(t) := ‖u(t)‖2 − ‖u(s)‖2 − 1

2
‖u(t)− u(s)‖2.

We will show that γ is decreasing and then derive a Cauchy property for the trajectory. Since
u, γ is differentiable almost everywhere on [0, s], then for a.e t ∈ [0, s] :

γ̇(t) = 2〈u̇(t), u(t)〉 − 〈u̇(t), u(t)− u(s)〉 = 〈−u̇(t),−u(s)− u(t)〉(6.43)

= 〈η(u(t)),−u(s)− u(t)〉+ 〈p(u(t)),−u(s)− u(t)〉
ď 〈η(u(t)),−u(s)− u(t)〉+ dCF (u(t),−u(s)− u(t))

where η(u(t)) ∈ NC(u(t)) and p(u(t)) ∈ ∂CF (u(t)).
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Using the symmetry of C, we see that u(s) ∈ C ⇒ −u(s) ∈ C, so combined with η(u(t)) ∈
NC(u(t)) we obtain

(6.44) 〈η(u(t)),−u(s)− u(t)〉 ď 0.

Now, thanks to the decrease property (Proposition 6.1.7) and the symmetry, we have

(6.45) for all θ ∈ Θ, fθ(−u(s)) = fθ(u(s)) ď fθ(u(t)).

Since the merit functions are supposed to be convex, we can use Proposition 2.2.15 to deduce
from (6.45) that dCF (u(t),−u(s) − u(t)) ď 0. By combining (6.43) with (6.44), we obtain
γ̇(t) ď 0 for a.e. t ∈ [0, s], so γ(·) is decreasing on [0, s].

The decrease property of γ indicates in particular that γ(t) ě γ(s) = 0 for all t ∈ [0, s]. In
other words :

(6.46) for all 0 ď t ď s,
1

2
‖u(t)− u(s)‖2 ď ‖u(t)‖2 − ‖u(s)‖2.

A first observation on (6.46) is that 0 ď ‖u(s)‖2 ď ‖u(t)‖2. Being decreasing and positive, we
see that ‖u(·)‖ converges in R, and so it is Cauchy. As a consequence, by going back on (6.46),
we see that the trajectory u(·) is Cauchy, whence strongly convergent in H. We know that the
limit point is weakly efficient using Theorem 6.2.6.

�

6.3 The discrete steepest descent method, and numerical re-
sults

6.3.1 Review of the existing algorithms, and links with (SD)

We discuss the discretization(s) in time of the continuous dynamic

(SD) u̇(t) +

(
NC(u(t)) + ∂CF (u(t))

)0

= 0,

and relate it to the existing literature.

We start by assuming that F is of class C1, and that there is no constraint (C = H). In
that case, a naive discretization of (SD) gives

(6.47) xn+1 = xn + λns(xn),

where λn is a real stepsize, and s(xn) is the element of minimal norm of ∂CF (xn). It can be
useful to recall that the steepest descent direction has also the equivalent form (see Theorem
5.2.20 and Proposition 5.1.8):

(6.48) s(xn) = argmin
d∈X

1

2
‖d‖2 + σθ(DF (x; d)).

Since the steepest descent direction enjoys an Armijo rule (see Propositions 5.2.18 and 5.2.9),
it is natural to chose λn as:

λn := max

{
1

2k
| k ∈ N, F (xn +

1

2k
d) ĺ F (xn) + β

1

2k
dCF (xn; d)

}
.

As usual, if DF is L-Lipschitz continuous at xn, then it is sufficient to take λn <
1−β
L .
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This algorithm (6.47) has been first introduced by Fliege and Svaiter [159], for the multi-
objective case, and extended by Graña and Svaiter [176] to the general vector case (see also
[122, 60]). According to these works, this discrete dynamic shares exactly the same behaviour
with our (SD) dynamic. That is, like in Theorem 6.2.6, this algorithm weakly converges in
the quasiconvex case, and the limit point is a weak efficient point in the convex case. Still like
in Theorem 6.2.6, the convergence of the iterates (xn)n∈N is conditioned by the boundedness
hypothesis

{x ∈ H | F (x) ĺ F (xn), ∀n ∈ N} 6= ∅.

If we consider the presence of a convex constraint C, the discretization of (SD) becomes
more delicate. Of course, we could directly write

xn+1 = xn + λns(xn) = xn + λn

(
NC(xn) + ∂CF (xn)

)0

,

but this would face a serious drawback. Indeed, we know in the constrained case that the
steepest descent direction s(xn) is an admissible descent direction, i.e. s(xn) ∈ TC(xn). But
while we perform an Armijo step, what we really need is s(xn) ∈ T adC (xn), that is,

s(xn) ∈ C − xn
µ

, ∀µ ∼ 0.

The problem is that TC(xn) can be strictly bigger than T adC (xn), and that following such a
direction could make us getting out from the constraint. Of course, there is some cases for
which the tangent cone of admissible descent directions is closed (e.g. the locally polyhedral
sets, see [239]), but an other method must be considered in the general case.

This problem already appears in the scalar case (f : H −→ R), for which we generally
perform a gradient-projection step:

xn+1 = projC(xn − λn∇f(xn)).

Thus, a natural approach would be, in the vector case, to perform first a steepest descent step
to decrease F , and then project onto the constraint C:

(6.49) xn+1 = projC(xn + λndn), where dn = (∂CF (xn))0.

But, unfortunately, this approach does not work anymore in the vector case, because we loose
the descent property of F . The least we can say is that, at each step, one of the cost functions
decreases (do the parallel with Section 6.1.4). But this is not true in general for all the cost
functions, and hence for F (see a simple counter-example below).

Proposition 6.3.1. Let (xn)n∈N be a sequence generated by the algorithm (6.49). Sup-
pose that F is continuously differentiable, with a Lipschitz continuous derivative. Let L :=
sup
θ∈Θ

Lip(∇fθ;xn), and suppose that λn ∈]0, 1
L [. Then, for all n ∈ N, there exists θn ∈ Θ such

that

(6.50)

(
1

2λn
− L

2

)
‖xn+1 − xn‖2 ď fθn(xn)− fθn(xn+1).

Proof. By definition of the projection, and since xn ∈ C, we have

(6.51)
1

2
‖xn+1 − xn − λndn‖2 ď

1

2
‖λndn‖2,
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which can be rewritten as

(6.52)
1

2tn
‖xn+1 − xn − λndn‖2 ď 〈xn+1 − xn, dn〉.

Because of Proposition 5.1.8, dn writes as θn ◦ DF (xn) = ∇fθn(xn) for some θn ∈ Θ. The
Lipschitz continuity of ∇fθn gives

(6.53) 〈xn+1 − xn,−∇fθn(xn)〉 ď fθn(xn)− fθn(xn+1) +
L

2
‖xn+1 − xn‖2.

We obtain from (6.52) and (6.53) that

(6.54)

(
1

2λn
− L

2

)
‖xn+1 − xn‖2 ď fθn(xn)− fθn(xn+1).

�

The following example shows that we cannot expect an individual decrease property for all the
functions.

Example 6.3.2. We build our counter-example in the bi-objective case. Consider two quadratic
functions, distances to two points: f1(x) = 1

2‖x − a‖
2 and 1

2‖x − b‖
2 for two distinct points

a 6= b. They are smooth functions, with 1-Lipschitz gradient. For now we do not precise what
is C.
Suppose that at our current iterate, we have a point xn such that ‖xn − a‖ = ‖xn − b‖. At
this point, s(xn) is exactly a+b

2 − xn. Then, whatever can be C, the algorithm reads, for some
λn ∈]0, 1[,

xn+1 = projC

(
(1− λn)xn + λn

a+ b

2

)
.

Introduce now the constraint C: consider at xn the level set of the function f1, which is exactly
the ball B(a, ‖xn− a‖). Consider the hyperplane tangent to B(a, ‖xn− a‖) at xn, at take C as
the closed half space delimited by this hyperplane, which does not contain B(a, ‖xn − a‖):

(6.55) C = {x ∈ H | 〈x− xn, a− xn〉 ď 0}.

One can easily see that for any choice of λn ∈]0, 1[, the point xn+1 will fall outside B(a, ‖xn−a‖).

Figure 6.8: Failure of the steepest descent-projection method for bi-objective optimization
problems.

The problem here is that, from the point of view of f1, we are performing an inexact
projected-gradient method, where the gradient of f1 is replaced by a a more general descent
direction, and this cannot work.

An other approach to handle the constraint is to use an approximation of s(xn) based on
its variational form

s(xn) = argmin
d∈TC(xn)

1

2
‖d‖2 + σθ(DF (x; d)).

Approximating TC(xn) by C−xn
µn

for some µn ∈, we define

dn = argmin
d∈C−xn

µn

1

2
‖d‖2 + σθ(DF (x; d)).
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It is not a difficult exercise to verify that such dn is an admissible Armijo direction, so it makes
sense to use it to design an algorithm. This approach has been developed by Graña and Iusem
[173], and followed by Fukuda and Graña [164, 165], Bello, Lucambio and Melo [63]. As for the
unconstrained case, this algorithm shares the same asymptotic behaviour than (SD).

In the last fifteen years, there has been other algorithms proposed to manage the constraint.
Fliege and Svaiter [159] propose a method to deal with inequality constraints. Recchioni [282],
together with Miglierina, Molho and Recchioni [248], consider a box constraint that they pe-
nalize with a barrier method. Villacorta, Oliveira and Soubeyran [313] study also an interior
point method, by adapting the trust-region methods to the multi-objective case. Bento, Fer-
reira, Oliveira [62] and then Bento and Cruz [59] adopted an approach based on Riemannian
manifolds.

Suppose now that F is convex but nonsmooth, without constraint. A common way to
discretize (SD) is to do it implicitly with respect to ∂CF :

xn+1 + λn∂
CF (xn+1)0 = xn.

But this nonlinear implicit equation in xn+1 seems to be too difficult to be solved. We can relax
this equation by taking general elements in ∂CF (xn+1), instead of taking specifically its element
of minimal norm (recall (VDI) in Section 6.1.4):

(6.56) xn+1 + λn∂
CF (xn+1) 3 xn.

Introducing a formal resolvent for ∂CF , we see that the above equation can be equivalently
rewritten as

xn+1 ∈ PROXλnF (xn), where PROXλF := (Id+ λ∂CF )−1.

Since F is assumed to be convex, we have (Proposition 5.1.8) that ∂CF (x) =
⋃
θ∈Θ

∂Cfθ(x), so we

can deduce that
PROXλnF (xn) =

⋃
θ∈Θ

proxλnfθ(xn),

where (using that 〈θ, e〉 = 1)

proxλnfθ(xn) = argmin
x∈H

θ ◦ F (x) +
1

2λn
‖x− xn‖2 = argmin

x∈H
〈θ, F (x) +

1

2λn
‖x− xn‖2e〉.

Using the classical representation of weak efficient points for convex functions (Theorem 5.2.10),
we see that the algorithm in (6.56) is equivalent to

(6.57) xn+1 ∈ ARGMINw
x∈H

F (x) +
1

2λn
‖x− xn‖2e.

Since the algorithm in (6.57) is based on the vector differential inclusion

(VDI) u̇(t) + ∂CF (u(t)) 3 0,

instead of the steepest descent one, there is no guarantee for F to decrease at each iteration.
In their seminal paper, Bonnel, Iusem and Svaiter [73] propose a modified version of (6.57),
enforcing the decrease property by adding a sublevel constraint:

xn+1 ∈ ARGMINw
x∈[FĺF (xn)]

F (x) +
1

2λn
‖x− xn‖2e.

This proximal method for vector optimization problems has also been studied by Ceng, Yao [99]
and Ceng, Mordukhovich, Yao [98]. Villacorta and Oliveira [312] consider a modified version of
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this algorithm, involving Bregman distances to handle a convex constraint C. Bento, Cruz and
Soubeyran [61] propose a particular instance of this proximal algorithm, defined by

xn+1 ∈ argmin
x∈H

σΘ

(
F (x) +

1

2λn
‖x− xn‖2e+ δ[FĺF (xn)](x)e

)
.

But a quick computation, involving Proposition A.3.6, shows that it is in fact just a proximal
method associated to the scalar-valued function σΘ ◦ F , with a moving constraint [F ĺ F (·)].

None of the aforementioned proximal methods can be seen as a direct discretization of the
(SD) dynamic, because of the constraint [F ĺ F (·)]. It is, to our opinion, more related to the
sweeping process

u̇(t) +N[FĺF (u(t))](u(t)) + ∂CF (u(t)) 3 0.

6.3.2 The effective computation of the steepest descent direction

Given a point x ∈ H, Theorem 5.2.20 provides a formula for the computation of the steepest
descent at x:

min
d∈H

1

2
‖d‖2 + dCF (x; d).

Following [159], this problem is equivalent to the following quadratic problem with convex
constraint:

min
(d,α)∈H×R

1

2
‖d‖2 + α such that dCF (x; d) ď α.

If F is strictly Gateaux differentiable, it is also equivalent to the quadratic program with cone
constraints

min
(d,α)∈H×R

1

2
‖d‖2 + α such that DF (x; d) ĺ αe.

For instance, if (Y,K) = (Sm,Sm+ ), the space of symmetric matrices ordered by the cone of
positive symmetric matrices, it reduces to a SDP program:

min
(d,α)∈H×R

1

2
‖d‖2 + α such that DF (x; d) ĺ αId.

In the multi-objective case, it reduces to a quadratic program with linear constraints

min
(d,α)∈H×R

1

2
‖d‖2 + α such that 〈∇fi(x), d〉 ď α for all i ∈ {1, ...,m}.

Theorem 5.2.20 provides also a dual version of this problem, involving the linear forms θ ∈ Θ:

max
y∗∈Y∗

−‖D∗F (x; y∗)‖2 such that y∗ ∈ Θ,

which is equivalent to
min
θ∈Θ

‖θ ◦DF (x)‖2.

In its general form, it is a quadratic program, with linear and cone constraints since

θ ∈ Θ⇔ θ ∈ K+ and 〈θ, e〉 = 1.

In the multi-objective case F = (f1, ..., fm), this dual problem reduces to the projection onto
the polyhedron co{∇f1(x), ...,∇fm(x)}. It is particularly easy to implement when m is low, for
instance m = 2 or 3.

In the nonsmooth case, the computation of s(x) can be challenging. We propose a naive
approach to compute it, in the case of a bi-criteria optimization problem F = (f, g) : Rn −→
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(R2,R2
+). We assume that f is a smooth function, but that g is nonnecessarily differentiable.

In that setting, we need to be able to project the origin onto co{∇f(x), ∂Cg(x)}. We aim to
show that this problem can be solved quickly, provided that the projection onto ∂Cg(x) is easy.
For instance, the subdifferential of the `1 norm falls into this setting.

The problem we need to solve here is

min
λ∈R

inf
x∗∈∂Cg(x)

‖(1− λ)∇f(x) + λx∗‖, such that λ ∈ [0, 1].

This is equivalent to solve
min
λ∈[0,1]

‖projCλ(0)‖,

where Cλ := (1−λ)∇f(x) +λ∂Cg(x). In other words, we need to minimize real-valued function

φ : [0, 1] −→ R
λ 7−→ ‖proj(1−λ)∇f(x)+λ∂Cg(x)(0)‖.

The main trick is that this function is convex:

Lemma 6.3.3. The function φ defined above is convex.

Proof. Let λ1, λ2 ∈ [0, 1] and α ∈ [0, 1]. Define λ := αλ1 + (1− α)λ2, and show that

φ(λ) ď αφ(λ1) + (1− α)φ(λ2).

Using basic algebra on sets, we can write

(6.58) αCλ1 + (1− α)Cλ2 = Cλ.

Note p1 := projCλ1
(0), p2 := projCλ2

(0), and p := αp1 +(1−α)p2. From (6.58), we have p ∈ Cλ.
Thus, using the triangle inequality:

φ(λ) ď ‖p‖ ď α‖p1‖+ (1− α)‖p2‖ = αφ(λ1) + (1− α)φ(λ2).

�

So, we can apply a golden section method to φ. It finds (one of) its minimum λ̄ by dichotomy.
This method only asks to compute the values of φ, which is computationally equivalent to
compute a projection on ∂Cg(x), since

proj(1−λ)∇f(x)+λ∂Cg(x)(0) = projλ∂Cg(x)(−(1− λ)∇f(x)) + (1− λ)∇f(x).

Once λ̄ is found, it suffices to take s(x) = proj(1−λ̄)∇f(x)+λ̄∂Cg(x)(0).

6.3.3 Generation of Pareto fronts

Example 6.3.4. Let F = (f1, f2) : R2 −→ R2 be defined for all x = (x1, x2) by

f1(x) = ‖x‖1 and f2(x) =
1

x1
+ ‖x‖22 + 3e−100(x1−0.3)2

+ 3e−100(x1−0.6)2
,

where ‖ · ‖1 and ‖ · ‖2 denote respectively the usual `1 and `2-norms on R2. This example is
taken from [284], see also [248, Test 1].
We take a constraint C = [0.1, 1]2, on which F is well-defined and locally Lipschitz continuous.
Our purpose is to generate the Pareto front, that is, the minimal elements of F (C) in (R2,ĺ).
Next figure shows an approximation of F (C), and the Pareto front we try to recover. Due to
the oscillations of f2 around the values x1 = 0.3, 0.6, the image F (C) is not convex, and we see
that the Pareto front is not connected.
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Figure 6.9: Left: approximation of F (C). Right: the Pareto points are plotted in thick contin-
uous red lines, and the local Pareto points are in thin dotted blue lines.

To compute the Pareto front, we compare two methods: the weighting method, and the
steepest descent method. Let us give in detail our protocol. The weighting method consists in
the choice of some θ ∈ ∆2 = {(θ1, 1−θ1) | θ1 ∈ [0, 1]}, and the minimization of the corresponding
convex combination fθ = θ1f1 + (1 − θ1)f2. Its minimization will be performed by a gradient
projected algorithm

xk+1 = projC(xk − λ∇fθ(xk)), where λ = 0.05.

The stopping criterion is ‖xk+1−xk
λ ‖ < 0.05. In Figure 6.10, we show some samples of the weight-

ing method. The starting point x0 and the combination θ ∈ ∆2 are either chosen randomly, or
chosen on a uniformly distributed grid. We plot the value in Y = R2 of the last iterate of each
trajectory.
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Figure 6.10: Top Left: 20 points with initial data chosen randomly. Top Right: 100 points
with initial data chosen randomly. Bottom: 4000 points with initial data chosen on a uniform
grid.

We observe that the points generated by the weighting method tends to be attracted in the
zones where f2 has low values. We now pass to the steepest descent method. We use a basic
discretized version of (SD), namely

xk+1 = xk + λs(xk), where λ = 0.05,

and the stopping criterion is again ‖xk+1−xk
λ ‖ < 0.05. The results concerning the steepest

descent method are given in Figure 6.11.

Figure 6.11: Left: 20 points with initial data chosen randomly. Right: 100 points with initial
data chosen randomly.

We observe that the steepest descent approach tends to cover the Pareto front more uniformly.
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Example 6.3.5. Let F = (f1, f2) : Rn −→ R2 be defined for all x = (x1, ..., xn) by

f1(x) =

(
n∑
i=1

x2
i − 10 cos(2πxi) + 10

) 1
4

and

(
n∑
i=1

(xi − 1.5)2 − 10 cos(2π(xi − 1.5)) + 10

) 1
4

,

and consider the constraint C = [−0.5, 2]n. This example is adapted from [248, Test 5], see also
[52, Section 6.3]. Here again, due to the oscillatory behaviour of f1 and f2, the set of Pareto
points is disconnected in Rn, and the Pareto front is concave in R2.

We compare again the classic scalarization method with the steepest descent method. They
are implemented exactly as we described it in the previous example, and we choose the initial
data randomly. The results are presented in Figures 6.12 and 6.13. We observe that, with
the increase of the dimension n, both methods present difficulties to recover the Pareto front.
The trajectories tend to be attracted by some particular components of the Pareto front. An
explanation could be the fact that the density of the Pareto set is not uniform (see [52]).

Figure 6.12: From left to right, and top to bottom: 1000 samples of the scalarization method,
with n taking respectively the values 1, 2, 3, 50.
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Figure 6.13: From left to right, and top to bottom: 1000 samples of the steepest descent
method, with n taking respectively the values 1, 2, 3, 50.

6.4 Comments and perspectives

Remark 6.4.1 (On the selection of an efficient point among others). Because the set of (weak)
efficient points is rarely reduced to one point, we can aim to select one among them satisfying
a desired property. For instance, we could look for the efficient point being the nearest from
a desired state ud. This problem of optimizing over the set of efficient points is sometimes
called post-Pareto analysis, see [270, 58, 67, 74]. By analogy with the scalar optimization, we
propose an approach based on a Tikhonov-like regularization. That is, we could add to the
(SD) dynamic a vanishing term ε(t)(u(t)− ud), where ε(t) −−→

t→+∞
0:

(6.59) u̇(t) + ∂CF (u(t))0 + ε(t)(u(t)− ud) = 0.

More generally, if we want our solution to minimize some smooth potential g : H −→ R, we
could consider

u̇(t) + ∂CF (u(t))0 + ε(t)∇g(u(t)) = 0,

which covers (6.59) by taking g = 1
2‖ · −ud‖

2.

This hierarchical dynamic is well-known in scalar optimization and is based on Tikhonov
regularization ideas (see [23, 90, 124, 114, 24] for the continuous dynamic and [25, 267, 125]
for the corresponding algorithms). When F = f : H −→ R, it is proved in [285, 114] that the
dynamic (6.59) converges to the closest element to ud among argmin

x∈H
f , provided that ε(t) tends

to zero, but not too fast (ε(·) /∈ L1([0,+∞[,R)). We can hope to obtain similar results in our
vector optimization problem, that is, finding the closest element to ud among the weak efficient
points.
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Remark 6.4.2 (On the convergence towards efficient points instead of weak efficient points).
Theorem 6.2.6 only guarantees the convergence of the trajectories of (SD) towards weak efficient
points. Of course, being a weak efficient point is a necessary condition to be an efficient point,
but one might ask for a method ensuring the convergence to efficient points. A well-known
method to turn weak efficient points into efficient points is to equip Y with a bigger cone than
K. More exactly, consider a closed convex cone K̃ such that K \ {0} ⊂ int K̃. It is easy,
according to the definitions, to see that weak efficient points with respect to K̃ are efficient
points with respect to the original cone K. Thus, it suffices to consider a dynamic governed by
the order induced by K̃ instead of K.

As an example, consider the bi-objective smooth case F = (f1, f2) : H −→ (R2,R2
+). Fix a

parameter ε > 0, and consider the cone

K̃ε := {x = (x1, x2) ∈ R2 | (1− ε)x1 + εx2 ě 0 and εx1 + (1− ε)x2 ě 0}.

Its dual cone is

K̃+
ε = {x = (x1, x2) ∈ R2 | εx2 ď (1− ε)x1 and εx1 ď (1− ε)x2},

whose base can be taken as

∆2,ε := {(λ, 1− λ) ∈ R2 | λ ∈ [ε, 1− ε]}.

Figure 6.14: An enlargement for R2
+.

Clearly, K̃ε is an enlargement of R2
+, such that R2

+ \ {0} ⊂ int K̃ε. From a dual point of view,

the basis ∆2,ε is a retract of the unit simplex ∆2. Since this new cone K̃ε is still polyhedral,
the dynamic induced by this order is the same, from the complexity point of view. Indeed,
according to Proposition 5.1.5, the ordered subdifferential of F with respect to the basis ∆2,ε is

∂CF (x) = co{ε∇f1(x) + (1− ε)∇f2(x), ε∇f2(x) + (1− ε)∇f1(x)}.

This approach can be generalized to the general multi-objective setting F : H −→ (Rm,R∗+),
by considering the reduced base

∆m,ε := {θ = (θi) ∈ ∆m | θi ∈ [ε, 1− (m− 1)ε]}.

Note that this approach suffers some drawbacks. For instance, it guarantees the convergence to
an efficient point, but not that any efficient point can be recovered. See also [164] for a short
discussion on this topic.

Remark 6.4.3 (The general differential inclusion and the parameter selection problem). Con-
sider here that we are in the multi-objective setting F = (f1, ..., fm) : H −→ Rm. A very
interesting feature of (SD) is that it selects itself, at (almost) each time, a convex combination
θ ∈ ∆m. Thus, we can see locally this dynamic as a steepest descent associated to the convex
combination

∑m
i=1 θifi. It is a clear improvement with respect to the usual weighting method,

which asks to choose a fixed convex combination.
A parallel with this situation can be done with what we call the parameter selection problem.

In optimization, and in particular in inverse problems, it happens that we often need to solve
the problem

(6.60) min
f(x)=0

R(x),
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where R : H −→ R is a regularization term, and f : H −→ R is a data fidelity term. A common
example is H = Rn, R(x) = ‖x‖1 and f(x) = 1

2‖Ax − b‖, for A ∈ Mn,p(R) and b ∈ Rp. In
general R is not smooth, and managing both a nonsmooth function and a constraint can be
difficult in practical. To overcome this difficulty, we can chose to relax the original problem into
the following one

(6.61) min
x∈H

R(x) + αf(x),

where α > 0 is a parameter to choose. The whole problem is: how to find an α so that the
relaxed problem (6.61) will give us a satisfactory solution with respect to the original problem
(6.60)? In general, finding this parameter is an expensive task which asks to try different values
for α until we are satisfied.

We feel that the situation here is similar to the multi-objective one, when one tries to find
the good convex combination of the objective functions {f1, ..., fm}. Our opinion is that a good
approach could be to consider a dynamic which “naturally” let the parameter α evolve. Note
that (6.61) can be equivalently rewritten as

(6.62) min
x∈H

λR(x) + (1− λ)f(x),

where λ = 1
1+α ∈]0, 1[. Thus, the dynamic we are looking for can be searched in the Vector

Differential Inclusion discussed in Section 6.1.4:

(VDI) u̇(t) + co{∂CR(x), ∂Cf(x)} 3 0.

One can try to consider the (SD) dynamic for F = (R, f), but this might not be a good idea.
Indeed, the (SD) dynamic minimizes simultaneously too many scalar functions, namely all the
convex combinations of R and f . Thus, the trajectory will be quickly stucked in a Pareto
critical point, which has nothing to do with the scalar optimization problem (6.62). Worst, the
corresponding coefficient λ can tend to 0 or 1, which is too extreme in (6.62). In general, we
look for a λ close to zero, but not too much.

A different approach could be to perform a steepest descent-like dynamic, but enforcing the
parameter λ to remain in a desired zone, namely λ ∈ [a, b] ⊂]0, 1[. This is equivalent to consider
the vector optimization problem for the function F = (R, f) : H −→ R2, R2 being endowed
with a bigger cone K than R2

+. As in the previous remark, consider the cone

K := {x = (x1, x2) ∈ R2 | ax1 + (1− a)x2 ě 0 and bx1 + (1− b)x2 ě 0},

then its dual cone K+ admits the desired base

∆a,b := {(λ, (1− λ)) ∈ ∆2 | λ ∈ [a, b]}.

It would be interesting to look at how λ evolves with time, if it converges to a particular value,
or if it tends to remain close to a particular value. Of course this is a simple suggestion, and
we could imagine other dynamics for this problem, which would take more into account the
structure of the original problem.

Remark 6.4.4 (Links with cone-constrained problems). It would be interesting to investigate
applications of the tools developed in the two previous chapters, to the class of optimization
problems under cone constraint. They wrote as follows:

min
x∈H

h(x) under the constraint G(x) ∈ −K,

where h : H −→ R, G : H −→ Y and K ⊂ Y is a closed convex cone with nonempty inte-
rior (we assume these functions to be smooth). This general problem covers for instance the
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Nonlinear Complementary Problems, or the Semi Definite Programming. It arises for instance
in mechanics [272], and is the subject of an active research, see [311, 294, 3, 2, 182] and the
references therein. In the spirit of [159], we can propose an interior-point method for solving
this cone-constrained problem, based on the steepest descent direction.

Choose an error parameter ε > 0, and note Θ a weakly∗ compact convex base of K+. The
condition

σΘ(y) ď −ε

is a barrier for the constraint −K, since Proposition A.3.5 asserts that

−K = {y ∈ Y | σΘ(y) ď 0}.

Thus, it seems natural to design an interior-point method as follows: Given a current iterate
xn ∈ H, test whether the condition σΘ(G(xn)) ď −ε holds or no. If so, this means that G(xn)
lies in the interior of of −K. In that case, we use a step of any classic descent method with
respect to h, to obtain xn+1. If σΘ(G(xn)) > −ε, it means that G(xn) is too close to the
boundary of −K. In that case, we make decrease both h and G, by computing a steepest
descent step with respect to

F : H −→ R× Y
x 7−→ F (x) := (h(x), G(x)),

where R×Y is ordered by the cone R+×K. Its dual cone is R+×K+, whose base can be taken
as {1} ×Θ. In other words, we propose to perform

xn+1 = xn + λns(xn)

where

(6.63) s(xn) = argmin
d∈H

1

2
‖d‖2 + 〈∇h(xn), d〉+ σΘ(DG(xn; d)).

The main difficulty in this method would be the resolution of (6.63), which asks to solve a convex
quadratic programming. Using the definition of the support function σΘ, it can be rewritten as
a saddle-point problem:

s(xn) = argmin
d∈H

sup
θ∈Θ

1

2
‖d‖2 + 〈∇h(xn) + D∗G(xn; θ), d〉.

Together with the explicit description of σΘ that we know for classical cones (see Example
2.3.8), we also have from Proposition A.3.6 this useful characterization:

∀y ∈ Y, σΘ(y) = inf{t ∈ R | y − te ∈ −K},

where e ∈ intK defines the base Θ by {y∗ ∈ K+ | 〈y∗, e〉 = 1}.

Remark 6.4.5 (Vector optimization problems and the Kurdyka- Lojasiewicz property). In this
chapter, we proved the convergence for the trajectories of (SD), assuming that F : X −→ Y is
convex. In the light of the results of Part I, it would be interesting to know whether a similar
result can be obtained for vector-valued functions satisfying some analogue of the Kurdyka-
 Lojasiewicz inequality. We present briefly some ideas going in this direction. For simplicity, we
assume that we are in the multiobjective setting, and that F (x) = (f1(x), . . . , fm(x)) is of class
C1.

A natural hypothesis, when considering the finite family of functions {f1, . . . , fm}, is assum-
ing that each of them is a K L function. From this, we aim to derive the finite length property
for the trajectories of (SD). Consider then a strong global solution u : [0,+∞[−→ H of (SD),
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and assume that it has some strong limit point u∞. Consider h(t) =
m∑
i=1

ϕi(fi(u(t))− fi(u∞)),

where each ϕi is the desingularizing function corresponding to fi around u∞. Its derivative is:

h′(t) =

m∑
i=1

ϕ′i(fi(u(t))− fi(u∞))〈∇fi(u(t)), s(u(t))〉.

Assume that the following angle condition holds:

(6.64) ∃ε > 0 such that for a.e. t ě 0,
m∑
i=1

〈−∇fi(u(t)), s(u(t))〉
‖∇fi(u(t))‖‖s(u(t))‖

ě ε.

Then, by using successively the Kurdyka- Lojasiewicz inequality and this angle condition, we
can deduce that

−h′(t) ě ε‖u̇(t)‖,

which is the key estimation for the proof of convergence in Theorems 3.1.8 and 3.2.2. Clearly,
the angle hypothesis (6.64) is automatically satisfied when m = 1, since in that case s(u(t)) =
−∇f1(u(t)). More generally, (6.64) means that, at almost every t ě 0, there exists some i(t)
such that the cosine between ∇fi(t)(u(t)) and s(u(t)) is bounded from above by ε.

This angle hypothesis is quite difficult to verify in practice, so we propose an other approach
by making a K L-like assumption directly on F . It is based on a generalized Kurdyka- Lojasiewicz
inequality used in [44] to study general gradient-like systems. Suppose that we are given some
locally Lipschitz Lyapunov function E : H −→ R, such that (E ◦ u)′(t) ď 0 for a.e. t ě 0. Then,
similarly to what has been done in Section 3.1.1, the finite length of u(·) can be derived from
the following generalized Kurdyka- Lojasiewicz inequality:

(6.65) ∀x ∼ x̄, ∀x∗ ∈ ∂CE(x), ϕ′(E(x)− E(x̄))〈x∗,−s(x)〉 ě ‖s(x)‖.

We know from Proposition 6.1.7 that each function fi is Lyapunov for the (SD) dynamic, as any
convex combination of them. The max function max

i∈{1,...,m}
fi is also Lyapunov for the dynamic.

It is an open question to know whether (6.65) is satisfied or no for one of the aforementioned
Lyapunov functions.
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Chapter 7

The continuous steepest descent:
existence of trajectories

This chapter is devoted to the proof of the existence of trajectories for the dynamic (SD),
introduced in Chapter 6. Its main result is:

Theorem 7.0.1. Suppose that E is an Euclidean space, and let C ⊂ E be a nonempty closed
convex set. Suppose that Y is a separable Banach space, ordered by a closed convex cone with
nonempty interior. Let F : E −→ Y be a locally Lipschitz continuous function, being convex and
bounded from below. Then, for all u0 ∈ E, there exists a strong global solution u : [0,+∞[−→ E

of
(SD) u̇(t) + (NC(u(t)) + ∂CF (u(t)))0 = 0

satisfying the Cauchy condition u(0) = u0.

In Theorem 7.0.1, we make two structural hypotheses on the spaces E and Y. First, we suppose
that E has finite-dimension. This is essentially because our existence result is based on the
following Peano’s Theorem (see [39, Theorem 2.8]), and not Cauchy-Lipschitz:

Theorem 7.0.2 (Peano). Let φ : Rn −→ Rn be continuous. Then, for all x0 ∈ H and t0 ∈ R,
there exists some T > 0 and x : [t0, t0 + T [−→ H of class C1, such that

(7.1) ẋ(t) = φ(x(t)) for all t ∈ [t0, t0 + T [, with x(t0) = x0.

The assumption of separability on Y relies on the necessity to use measurability results, like
Castaing’s measurable selection theorem, see Section B.1 in Appendix.

Now we discuss our strategy to prove this existence result. Our idea is to provide a con-
structive proof of existence, involving a regularization of the operator ∂CF governing the (SD)
dynamic. We aim to adapt to our situation the classical proof of the existence of strong solutions
for evolution equations governed by subdifferentials of convex lower semicontinuous functions,
see [83]. The idea is to approach the dynamic (SD) by a regularized one, parametrized by a
real λ > 0:

(SD)λ u̇λ(t) + (NC(uλ(t)) + ∂CFλ(uλ(t)))0 = 0,

where Fλ must be defined as a smooth function such that ∂CFλ approximates ∂CF when λ ↓ 0.
The problem (SD)λ being easier because of the smoothness of Fλ (but not trivial, because of
the noncontinuous operator NC), we should be able to prove the existence of approximated
trajectories uλ : [0,+∞[−→ E. Then, it ‘suffices’ to let λ tend to zero and prove that the net
(uλ)λ>0 tends to a trajectory satisfying (SD).

So we will proceed as follows. In Section 7.1, we focus on the smooth case and prove the
existence of trajectories under this assumption. Note that the smooth multi-objective case has
been addressed by Attouch and Goudou [28]. Our result derives from an abstract existence
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result used in [28], which relies itself on Peano’s Theorem. After that, we will need to define
a ‘good’ approximation Fλ of F , and this will rely on the Moreau-Yosida approximation for
convex real-valued functions, which is a widely used method in nonsmooth convex analysis (see
[17, 33, 51, 83, 326, 268] for a detailed presentation).

Section 7.2 will be uniquely devoted to the convex (nonsmooth) multi-objective case. Indeed,
in that setting, the function F is explicitly defined by a finite family of real-valued functions
(f1, ..., fm). Then it suffices to define Fλ := (f1,λ, ..., fm,λ), where fi,λ is the Moreau-Yosida
regularisation of fi with index λ > 0 (see Proposition 7.2.2 in Section 7.2 for more details). In
that case (SD)λ writes

(SD)λ u̇λ(t) + (NC(uλ(t)) + co∇fi,λ(uλ(t)))0 = 0,

and we prove the existence of a solution of (SD) by passing to the limit in (SD)λ when λ→ 0.
In section 7.3, we consider the general vector case, and we start by defining properly some

function Fλ satisfying the desired properties. As one can expect, this construction will rely on
Moreau-Yosida approximations of the cost functions {fθ}θ∈Θ. This being done, the analysis is
almost the same than for the multi-criteria case.

Since the general existence result in Section 7.3 covers the multi-objective one in Section
7.2, one might question the pertinence of presenting in a separate way the results in section 7.2.
We made this choice essentially because the definition of Fλ in the multicriteria case is direct
and intuitive, which is not the case for the general vector case. Moreover, the proof in Section
7.3 faces some delicate questions about measurabiliy which does not occur in the multicriteria
case. With this presentation, the reader which is only interested in the multicriteria case can
directly access an easier proof.

In all this chapter, it is assumed, if not specified, that E is an Euclidean space, that Y is a
Banach space, and that F : E −→ Y is locally Lipschitz continuous.

7.1 Existence in the smooth vector case

We start with a regularity result for the steepest descent vector field, when F is smooth. But
before, we recall the notion of Hausdorff continuity for a set-valued mapping.

Definition 7.1.1 (Hausdorff distance). Let A,B be two nonempty subsets of E. The Hausdorff
distance between A and B is defined by

dH(A,B) = max{sup
a∈A

d(a,B); sup
b∈B

d(b, A)},

where d(a,B) := inf
b∈B
‖a− b‖.

We say that a set-valued mapping S : E ⇒ E is Hausdorff continuous at x ∈ E whenever
dH(S(xn), S(x)) −−→

n→+∞
0 for all sequence (xn)n∈N converging to x. In an obvious way, we say

that S is Lipschitz Hausdorff continuous on U ⊂ E if there exists some L ě 0 such that

∀x, x′ ∈ U, dH(S(x), S(x′)) ď L‖x− x′‖.

Of course, Lipschitz Hausdorff continuity on U entails Hausdorff continuity on U .

Proposition 7.1.2. Let F : E −→ Y be a Fréchet differentiable function, with its derivative
being Lipschitz continuous U ⊂ E. Then,

i) x 7−→ ∂CF (x) is Lipschitz Hausdorff continuous on U ,

ii) x 7−→ ∂CF (x)0 is Holder continuous on U ,
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iii) there exists c > 0 such that ∀x ∈ U , ∀x′ ∈ ∂CF (x), ‖x′‖ ď c(1 + ‖x‖).

Proof. During all the proof, we note M > 0 a bound for Θ in Y∗. We start with item i). Take
an arbitrary pair x1, x2 ∈ U . Consider any p1 ∈ ∂CF (x1), then there exists θ1 ∈ Θ such that
p1 = θ∗1 ◦DF (x1). Define p2 := θ∗1 ◦DF (x2) ∈ ∂CF (x2). It follows that

d(p1, ∂
CF (x2)) = inf

p∈∂CF (x2)
‖p1, p‖ ď ‖p1 − p2‖ = ‖θ∗1 ◦ (DF (x1)−DF (x2))‖

ď ‖θ∗1‖Y∗�DF (x1)−DF (x2)�L(E,Y) ď MLip(DF ;U)‖x1 − x2‖.

Since the latter is true for any p1 ∈ ∂CF (x1), it follows that

sup
p1∈∂CF (x1)

d(p1, ∂
CF (x2)) ď MLip(DF ;U)‖x1 − x2‖.

By symmetry, we obtain

(7.2) dH(∂CF (x1), ∂CF (x2)) ď MLip(DF ;U)‖x1 − x2‖.

We follow with item ii). Take two arbitrary x1, x2 ∈ U . For the sake of simplicity, we write
s1 := ∂CF (x1)0 and s2 := ∂CF (x2)0. Then :

(7.3) ‖s1 − s2‖ = ‖proj∂CF (x1)(0)− proj∂CF (x2)(0)‖.

According to [32, Proposition 5.1], we have the following estimation:

(7.4) ‖proj∂CF (x1)(0)− proj∂CF (x2)(0)‖2 ď (‖s1‖+ ‖s2‖) dH(∂CF (x1), ∂CF (x2)).

Then, combine (7.3) and (7.4) together with (7.2) to obtain

(7.5) ‖s1 − s2‖2 ď (‖s1‖+ ‖s2‖) MLip(DF ;U)‖x1 − x2‖.

Since DF is Lipschitz continuous on U , it follows from the mean value theorem that F is also
Lipschitz continuous on U . So, according to Proposition 5.1.7, we finally obtain

‖s1 − s2‖2 ď 2M2Lip(F ;U)Lip(DF ;U)‖x1 − x2‖.

We end the proof with item iii). Fix now some xU ∈ U , and take any x ∈ U and x′ ∈ ∂CF (x).
Then, using the triangular inequality and the Lipschitz continuity of DF on U :

‖x′‖ ď M�DF (x)� ď M�DF (x)−DF (xU )� +M�DF (xU )�
ď MLip(DF ;U)‖x′ − xU‖+M�DF (xU )�
ď c(1 + ‖x‖),

where c := max{MLip(DF ;U);MLip(DF ;U)‖xU‖+M�DF (xU )�}. �

We can now state the main result of this section. It involves a space of bounded weak∗

measurable functions, for which we refer to Appendix B.3 for its definitions and properties.

Theorem 7.1.3. Let F : E −→ Y be a Fréchet differentiable function, with a Lipschitz contin-
uous gradient. Suppose that E is Euclidean. Then, for all u0 ∈ C, there exists a strong global
solution u : [0,+∞[−→ E of

(SD) u̇(t) + (NC(u(t)) + ∂CF (u(t)))0 = 0

such that u(0) = u0. More precisely, there exists1 η : [0,+∞[−→ E and θ : [0,+∞[−→ Y∗ such
that

1The reader might pay attention to the following fact: the theta θ used here is a function with values in Θ,
whose generic elements are denoted by θ, which is slightly more italic than θ.
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i) u̇(t) + η(t) + θ(t) ◦DF (u(t)) = 0 for a.e. t ∈ [0,+∞[,

ii) η(t) ∈ NC(u(t)) and θ(t) ∈ Θ for a.e. t ∈ [0,+∞[,

iii) η ∈ L2([0, T ],E) and θ(·) ◦DF (u(·)) ∈ L2([0, T ],E) for each T > 0.

If we suppose moreover that Y is separable, then θ ∈ L∞w∗([0,+∞[, Y∗).

The proof is based on the following abstract existence result, which can be found in the work
of Attouch and Goudou [28, Theorem 3.5] (see also the paper of Henry [191]).

Theorem 7.1.4. Let S : E ⇒ E be a Hausdorff continuous set-valued mapping, taking convex
compact values, and satisfying the following growth condition :

∃c > 0 such that ∀x̄ ∈ E, ∀x ∈ S(x), ‖x‖ ď c(1 + ‖x̄‖).

Suppose that E is Euclidean. Then, for all u0 ∈ C, there exists a strong global solution u :
[0,+∞[−→ E of

(7.6) u̇(t) + (NC(u(t)) + S(u(t)))0 = 0

such that u(0) = u0. More precisely, there exists η, p : [0,+∞[−→ E such that

i) u̇(t) + η(t) + p(t) = 0 for a.e. t ∈ [0,+∞[,

ii) η(t) ∈ NC(u(t)) and p(t) ∈ S(u(t)) for a.e. t ∈ [0,+∞[,

iii) η, p ∈ L2([0, T ],E) for each T > 0.

Proof of Theorem 7.1.3. Under our assumptions, and thanks to Proposition 7.1.2, we can apply
Theorem 7.1.4 to obtain a strong global solution of (SD) satisfying items i-iii). The point now is
to prove that θ ∈ L∞w∗([0,+∞], Y∗) when Y is separable. The fact that θ is bounded on [0,+∞[
is clear since it takes it values in the bounded base Θ. The whole point is to prove that it is
weakly∗ measurable.

Define the application

j : R+ ×Θ −→ R(7.7)

(t, θ) 7−→ ‖θ ◦DF (u(t)) + η(t)‖E.

We verify first that j(t, ·) is w∗-continuous on Θ, for any fixed t ě 0. Consider for this any

weakly-∗ convergent net θα
w∗−−→
α∈A

θ inΘ. For all d ∈ E, DF (x; d) ∈ Y and 〈θα,DF (u(t); d)〉Y∗×Y
R−−→

α∈A
〈θ,DF (u(t); d)〉Y∗×Y . In other words, θα ◦ DF (u(t)) tends to θ ◦ DF (u(t)) in (E∗, w∗). But we
supposed E to be finite dimensional, so this convergence holds in (E, ‖·‖). Because of the strong
continuity of the norm in E, it follows that j(t, ·) is w∗-continuous on Θ. Now we verify that
j(·, θ) is measurable for all θ ∈ Θ. We know that u(·) is continuous, and so is DF by assump-
tion, so it follows that t 7−→ θ ◦ DF (u(t)) is continuous between R+ and E, hence measurable.
Moreover η is also measurable, because of item iii). Since the sum and the composition of
measurable functions is measurable (see [5, Lemma 4.22]), we deduce that j(·, θ) is measurable.

We proved that j is a Caratheodory function, and because of the separability assumption
on Y, (Θ, w∗) is a separable metrizable compact space (see Proposition C.0.2). So we can apply
Castaing’s measurable selection Theorem B.1.2, which asserts that the function θ̃ : R+ −→
(Θ, w∗) defined by

(7.8) θ̃(t) := argmin
θ∈Θ

‖θ ◦DF (u(t)) + η(t)‖E

is Borel measurable. Observe that, by definition of θ, we have θ(t) = θ̃(t) for a.e. t ě 0.
It remains only to verify that θ̃ is weakly-∗ measurable. For this, consider any y ∈ Y and

show that θ̃ ◦ evy : R+ −→ R is measurable, where evy : y∗ ∈ Y∗ 7−→ 〈y∗, y〉Y∗×Y . We shown
that θ̃ is Borel measurable between R+ and (Θ, w∗), and we know that evy is continuous from
(Θ, w∗) to R, so their composition is Borel measurable ([5, Lem 4.22]). �
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7.2 Existence in the nonsmooth convex multiobjective case

Here we aim to prove a weaker version of Theorem 7.0.1, in the multi-objective case:

Theorem 7.2.1. Let (fi)i∈{1,...,m} : E −→ R be a finite family of convex continuous functions
being bounded from below, and C a nonempty closed convex subset of E. Suppose that E is an
Euclidean space. Then, for all u0 ∈ E, there exists a strong global solution u : [0,+∞[−→ E of

(SD) u̇(t) + (NC(u(t)) + co ∂fi(u(t)))0 = 0

satisfying the Cauchy condition u(0) = u0.

As we explained at the beginning of this chapter, the proof will heavily rely on a Moreau-
Yosida regularization of the objective functions (fi)i∈{1,...,m}. We recall briefly the definition of
the Moreau-Yosida approximation for a proper lower semi-continuous convex function f : E −→
R∪{+∞}, and summarize its main properties in the following statement, see in particular [83,
Proposition 2.11], or more recently [268, Section 3.5.4]. Recall that we suppose in this Chapter
7 that E is a finite-dimensional Hilbert space.

Proposition 7.2.2. Let f : E→ R∪{+∞} be a lower semi-continuous convex proper function.
The Moreau-Yosida approximation of index λ > 0 of f is the function fλ : E → R which is
defined for all x ∈ E by

(7.9) fλ(x) = inf
d∈E

f(d) +
1

2λ
‖d− x‖2.

i) The infimum in (7.9) is attained at a unique point proxλf (x) ∈ E, which satisfies

fλ(x) = f(proxλf (x)) + 1
2λ‖x− proxλf (x)‖2;(7.10)

proxλf (x) + λ∂f(proxλf (x)) 3 x.(7.11)

proxλf : E −→ E is a nonexpansive operator. It is the resolvent of index λ of ∂f : E⇒ E.

ii) fλ is convex, and Gateaux differentiable. Its gradient at x ∈ E is equal to

(7.12) ∇fλ(x) =
1

λ
(x− proxλf (x)).

The operator ∇fλ : E −→ E is the Yosida approximation of index λ of the maximal
monotone operator ∂f . It is Lipschitz continuous with Lipschitz constant 1

λ .

iii) For any x ∈ dom∂f , ‖∇fλ(x)‖ ď ‖∂0f(x)‖, (∂0f(x) is the element of minimal norm of
∂f(x)).

iv) For any x ∈ E, fλ(x) ď f(x), inf
E
fλ = inf

E
f and fλ(x) ↑ f(x) as λ ↓ 0.

For all i ∈ {1, ...,m} and λ > 0, we will note fi,λ := (fi)λ the Moreau-Yosida regularization of
fi, with index λ > 0. Define Fλ : E −→ (Rm,Rm+ ), for λ > 0, by Fλ(x) := (f1,λ(x), ..., fm,λ(x)).
Proposition 7.2.2 asserts that Fλ is convex and continuously differentiable, with a 1

λ -Lipschitz
gradient. In that case, we can apply Theorem 7.1.3 to obtain, for all λ > 0, the existence of a
trajectory uλ : [0,+∞[−→ E such that:

• uλ is absolutely continuous on [0, T ] for all T > 0,

• u̇λ(t) + (NC(uλ(t)) + co ∇fi,λ(uλ(t)))0 = 0 for a.e. t ě 0, and uλ(0) = u0,

• there exists ηλ : [0,+∞[−→ E and θλ = (θi,λ)i∈{1,...,m} : [0,+∞[−→ Rm such that
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– u̇λ(t) + ηλ(t) +
m∑
i=1
θi,λ(t)∇fi,λ(uλ(t)) = 0 for a.e. t ě 0,

– ηλ(t) ∈ NC(uλ(t)) and θλ(t) ∈ ∆m for a.e. t ě 0,

– ηλ ∈ L2([0, T ],E) and
m∑
i=1
θi,λ(·)∇fi,λ(uλ(·)) ∈ L2([0, T ],E) for all T > 0,

– θλ ∈ L∞([0,+∞[,Rm).

Now we turn on the proof of Theorem 7.2.1, by passing to the limit when λ tends to zero. We
chose to divide the proof into three Lemmas. Basically, in the first lemma we pass to the limit
when λ ↓ 0, and in the two last lemmas we prove that the limiting trajectory is a solution of
(SD). We will not recall that we assume the hypotheses of Theorem 7.2.1 to hold.

Lemma 7.2.3. When λ ↓ 0, we have (taking eventually a subnet) for all T > 0:

i) uλ
‖·‖−−→ u in C([0, T ],E),

ii) (u̇λ)λ>0 is bounded and u̇λ
w−−→ u̇ in L2([0,+∞[,E),

iii) (ηλ)λ>0 is bounded and ηλ
w−−→ η in L2([0, T ],E), with η(t) ∈ NC(u(t)) for a.e. t ě 0,

iv) ∀i ∈ {1, ...,m}, θi,λ
w∗−−→ θi in L∞([0, T ],R), with θi(t) ě 0 and

m∑
i=1
θi(t) = 1 for a.e.

t ě 0,

v) ∀i ∈ {1, ...,m}, fi,λ ◦ uλ
‖·‖−−→ fi ◦ u in C([0, T ], R).

Proof. Let us establish bounds for the net (uλ)λ>0, which are independent of λ. By a similar
argument to that used in the asymptotic study (see Theorem 6.2.6), we obtain∫ +∞

0
‖u̇λ(t)‖2dt ď fi,λ(u0)− inf

E
fi,λ.

Then notice that fi,λ(u0) ď fi(u0), and inf
E
fi,λ = inf

E
fi. Hence

∫ +∞

0
‖u̇λ(t)‖2dt ď fi(u0)− inf

E
fi,

and

(7.13) sup
λ>0

∫ +∞

0
‖u̇λ(t)‖2dt < +∞.

Since (u̇λ)λ>0 is bounded in L2([0,+∞[,E), we can assume that it converges.
From

uλ(t) = u0 +

∫ t

0
u̇λ(τ)dτ,

and Cauchy-Schwarz inequality, we obtain

(7.14) ‖uλ(t)‖ ď ‖u0‖+
√
t

(∫ t

0
‖u̇λ(τ)‖2dτ

) 1
2

.

Combining (7.13) with (7.14) we deduce that, for any T > 0

(7.15) sup
λ
‖uλ‖L∞([0,T ];E) < +∞.
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By (7.13), (7.15), the generalized sequence (uλ) is uniformly bounded and equi-continuous on
[0, T ]. Since E is finite dimensional, we deduce from Ascoli’s theorem that, for any 0 < T < +∞,
the generalized sequence (uλ) is relatively compact for the uniform convergence topology on
[0, T ]. Thus, we can assume that (uλ)λ>0 converges uniformly on bounded intervals to some u,
and item i) is proved. For item ii), use the weak convergence in L2([0, T ],E) of (uλ)λ>0 and
(u̇λ)λ>0, together with [83, Proposition A.6], to see that u̇λ

w−−→
λ→0

u̇.

Item iii) comes from the following observation: by definition of uλ,

(7.16) ηλ(t) = −u̇λ(t)−
m∑
i=1

θi,λ(t)∇fi,λ(uλ(t)),

where (u̇λ)λ>0 is bounded in L2([0,+∞[,E) and θi,λ is bounded in L∞([0,+∞[,Rm). Moreover,
by Proposition 7.2.2, for any v ∈ E, λ > 0, and i = 1, 2, ...,m

(7.17) ‖∇fi,λ(v)‖ ď ‖ (∂fi)
0 (v)‖.

Combining (7.15) with (7.17), and using that fi is a convex continuous function whose subdif-
ferential ∂fi is bounded on bounded sets, we obtain, for any T > 0

(7.18) sup
λ
‖∇fi,λ(uλ)‖L∞([0,T ];E) < +∞.

We deduce that the net (ηλ)λ>0 remains bounded in L2([0, T ];E) for any T > 0, and admits

then a weak limit point η. From uλ
C([0,T ],E)−−→

λ↓0
u, ηλ

w−−→
λ↓0

η and ηλ(t) ∈ NC(uλ(t)), and from the

demi-closedness property of the extension to L2(0, T ;E) of the maximal monotone normal cone
mapping NC , we obtain η(t) ∈ NC(u(t)) for a.e. t ě 0.

We now turn on item iv). For all i ∈ {1, ...,m}, (θi,λ)λ>0 is bounded in L∞([0,+∞[,R),
so we can assume, taking eventually a subnet, that these nets weakly∗ converge to some θi ∈
L∞([0,+∞[,R). Since L∞+ ([0,+∞[,R) is a weakly∗ closed cone (as the dual of L1

+([0,+∞[,R)),
we know that θi(t) ě 0 for a.e. t ě 0. We note θ := (θi)i∈{1,...,m}, which is a weak∗ limit
of θλ when λ ↓ 0. Endowing L∞([0,+∞[,R) with the weakly∗ lower semi-continuous norm
‖φ‖∞ := supess

tě0

∑m
i=1 |φi(t)|, we deduce that, for a.e. t ě 0,

∑m
i=1 θi(t) ď 1. To prove that∑m

i=1 θi(t) = 1, consider any measurable I ⊂ [0, T ], and use the weak∗ convergence of θλ to θ
to show ∫

I

m∑
i=1

θi(t) dt = |I|,

and the conclusion follows.

For item v), use Proposition 7.2.2 to obtain the pointwise convergence of (fi,λ) to fi. Combin-
ing (7.17) with the local Lipschitz property of the objective functions (fi)i∈{1,...,m}, we obtain
that the net (fi,λ)λ>0 is equi-Lipschitz continuous on bounded sets (recall that E has finite
dimension). Hence, by Ascoli’s Theorem, (fi,λ) uniformly converges to fi on bounded sets.
Combining this result with the uniform convergence of (uλ) gives the result. �

Lemma 7.2.4. For a.e. t ě 0, u̇(t) +NC(u(t)) + co ∂fi(u(t)) 3 0.

Proof. Our difficult task consists in passing to the limit in

(7.19) u̇λ(t) + ηλ(t) +
m∑
i=1

θi,λ(t)∇fi,λ(uλ(t)) = 0,

which contains a product of two weakly converging sequences (θi,λ)λ>0 and (∇fi,λ(uλ))λ>0.
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In order to circumvent this difficulty, we use a variational argument based on the convex
differential inequality: for any ξ ∈ L∞([0, T ],E),

m∑
i=1

θi,λ(t)fi,λ(ξ(t)) ě

m∑
i=1

θi,λ(t)fi,λ(uλ(t)) +

〈
m∑
i=1

θi,λ(t)∇fi,λ(uλ(t)), ξ(t)− uλ(t)

〉
.

After integration on [0, T ], we obtain∫ T

0

m∑
i=1

θi,λ(t)fi,λ(ξ(t)) dt ě

∫ T

0

m∑
i=1

θi,λ(t)fi,λ(uλ(t)) dt

+

∫ T

0

〈
m∑
i=1

θi,λ(t)∇fi,λ(uλ(t)), ξ(t)− uλ(t)

〉
dt.

By (7.19),
∑m

i=1 θi,λ(t)∇fi,λ(uλ(t)) = −u̇λ(t)−ηλ(t), so we can rewrite the inequality above by:∫ T

0

m∑
i=1

θi,λ(t)fi,λ(ξ(t)) dt ě

∫ T

0

m∑
i=1

θi,λ(t)fi,λ(uλ(t)) dt

+

∫ T

0
〈−u̇λ(t)− ηλ(t), ξ(t)− uλ(t)〉 dt.

Since fi,λ(ξ(t)) ď fi(ξ(t)), and θi,λ(t) ě 0, we obtain
(7.20)∫ T

0

q∑
i=1

θi,λ(t)fi(ξ(t))dt ě

∫ T

0

q∑
i=1

θi,λ(t)fi,λ(uλ(t))dt+

∫ T

0
〈−u̇λ(t)− ηλ(t), ξ(t)− uλ(t)〉dt.

For any ξ ∈ L∞([0, T ];E) and all i ∈ {1, ...,m}, since fi is Lipschitz continuous on bounded sets,

we have fi ◦ ξ ∈ L∞([0, T ],R). Moreover θi,λ
w∗−−→
λ→0

θi in L∞([0, T ],R). Therefore, by passing to

the limit on the left member of (7.20), we obtain

lim
λ→0

∫ T

0

m∑
i=1

θi,λ(t)fi(ξ(t)) dt =

∫ T

0

m∑
i=1

θi(t)fi(ξ(t)) dt.

Let us now pass to the limit on the right-hand-side of (7.20). For the first term, we use Lemma
7.2.3. For the second term, we notice that u̇λ + ηλ converges weakly in L2([0, T ],E) to u̇ + η,
ξ − uλ converges uniformly, and hence strongly in L2([0, T ],E) to ξ − u. We obtain

(7.21)

∫ T

0

m∑
i=1

θi(t)fi(ξ(t)) dt ě

∫ T

0

m∑
i=1

θi(t)fi(u(t)) dt+

∫ T

0
〈−u̇(t)− η(t), ξ(t)− u(t)〉 dt.

Let us interpret this inequality in the duality pairing bewteen the functional spaces L∞([0, T ],E)
and L1([0, T ],E) ⊂ (L∞([0, T,E))∗. For this, introduce Φ, the integral functional on L∞([0, T ],E)

(7.22) Φ(ξ) =

∫ T

0

m∑
i=1

θi(t)fi(ξ(t)) dt.

Φ : L∞([0, T ],E)→ R is convex and continuous on L∞([0, T ],E). Hence, (7.21) can be rewritten
as

(7.23) − u̇− η ∈ ∂Φ(u).

According to a duality theorem of Rockafellar for convex functional integrals that we ex-
tended in Appendix (see Corollary B.2.11), the inclusion (7.23) implies that for almost all t > 0,

−u̇(t)− η(t) =
m∑
i=1

θi(t)vi(t)
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with measurable functions vi ∈ L∞([0, T ],E) such that

(7.24) vi(t) ∈ ∂fi(u(t)) for almost all t > 0.

In other words, we proved that

u̇(t) +NC(u(t)) + co ∂fi(u(t)) 3 0.

�

Lemma 7.2.5. For a.e. t ě 0, u̇(t) + (NC(u(t)) + co ∂fi(u(t)))0 = 0.

Proof. Since we already proved in 7.2.4 that u is a solution of the vector differential inclusion

u̇(t) +NC(u(t)) + co ∂fi(u(t)) 3 0,

we will use the criterion of Proposition 6.1.15 to verify that it is in fact a lazy solution. In other
words, we need to prove that

(7.25) ∀θ = (θi) ∈ ∆m, ‖u̇(t)‖2 +
m∑
i=1

θi
d

dt
(fi ◦ u)(t) ď 0.

We will use of course the fact that each uλ is a lazy solution of (SD)λ, and satisfies (using again
Proposition 6.1.15)

(7.26) ∀θ = (θi) ∈ ∆m, ‖u̇λ(t)‖2 +
m∑
i=1

θi
d

dt
(fi,λ ◦ uλ)(t) ď 0.

So the whole point is to pass to the limit in (7.26), when λ→ 0, to obtain (7.25).
Take any ψ ∈ D(]0, T [,R), the space of infinitely differentiable functions with support un-

cluded in ]0, T [, which is dense in L2([0, T ],R) (see [83, Appendices]). Consider then the corre-
sponding linear integrand

Ψ : L2([0, T ],E) −→ R

w 7−→
∫ T

0
ψ(t)‖w(t)‖2 dt.

It is easy to see that Ψ is strongly continuous, hence weakly lower semi-continuous. As a direct
consequence of u̇λ

w−−→
λ→0

u̇ in L2([0, T ],E), we deduce that

(7.27)

∫ T

0
ψ(t)‖u̇(t)‖2 dt ď lim inf

λ→0

∫ T

0
ψ(t)‖u̇λ(t)‖2 dt.

Now, use an integration by parts together with the fact that ψ(0) = ψ(T ) = 0 to write for
all θ ∈ ∆m

(7.28)

∫ T

0
ψ(t)

(
m∑
i=1

θifi ◦ u

)′
(t) dt = −

∫ T

0
ψ′(t)

(
m∑
i=1

θifi(u(t))

)
dt.

Because of Proposition 7.3.20, fi,λ ◦ uλ converges uniformly to fi ◦ u in C([0, T ],R), hence from
(7.28) we deduce∫ T

0
ψ(t)

(
m∑
i=1

θifi ◦ u

)′
(t) dt = − lim

λ→0

∫ T

0
ψ′(t)

(
m∑
i=1

θifi,λ(uλ(t))

)
dt.
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Doing again an integration by parts, we obtain

(7.29)

∫ T

0
ψ(t)

(
m∑
i=1

θifi ◦ u

)′
(t) dt = lim

λ→0

∫ T

0
ψ(t)

(
m∑
i=1

θifi,λ ◦ uλ

)′
(t) dt.

Combines now (7.27) and (7.29) to find∫ T

0
ψ(t)

(
‖u̇(t)‖2 +

m∑
i=1

θi
d

dt
(fi ◦ u)(t)

)
dt ď lim inf

λ→0

∫ T

0
ψ(t)

(
‖u̇λ(t)‖2 +

m∑
i=1

θi
d

dt
(fi,λ ◦ uλ)(t)

)
dt.

If we suppose that ψ ∈ D+(]0, T [,R), i.e. that ψ takes positive values, we can deduce from
(7.26) that ∫ T

0
ψ(t)

(
‖u̇(t)‖2 +

m∑
i=1

θi
d

dt
(fi ◦ u)(t)

)
dt ď 0.

By using the density of D+(]0, T [,R) in L2
+(]0, T [,R), which is a closed convex self-dual cone,

we obtain that ‖u̇(·)‖2 +
m∑
i=1

θi
d
dt(fi ◦u) ∈ −L2

+(]0, T [,R). This proves (7.25), and ends the proof

with Proposition 6.1.15.
�

7.3 Existence in the nonsmooth convex vector case

When observing what we did in the multicriteria case, one might be tempted in the general case
F : E −→ Y to regularize the cost functions {fθ}θ∈Θ. Indeed we saw in the previous chapters
that these functions were the key to understand the behaviour of F with respect to the order
in Y. Hence it would be natural, adapting the method of the previous section, to consider the
following dynamic:

(SD)λ u̇λ(t) +

(
NC(uλ(t)) + co∗

⋃
θ∈Θ
∇fθ,λ(uλ(t))

)0

= 0,

where fθ,λ denotes the Moreau-Yosida regularisation of fθ with index λ > 0. Indeed it seems,
at least at first sight, that co∗

⋃
θ∈Θ
∇fθ,λ is a good approximation for ∂CF = co∗

⋃
θ∈Θ

∂Cfθ. But

two basic observations must be made at this point.
First, if we reduce to the multi-objective case, this (SD)λ dynamic is in principle different

from the one used in the previous section, which involved the convex hull of the gradients
∇fi,λ(uλ(t)). This is because the Moreau-Yosida regularization fθ,λ is not linear with respect
to θ. In other words, for general θ ∈ ∆m, it happens that

∇fθ,λ(x) = ∇

(
m∑
i=1

θifi

)
λ

(x) 6=
m∑
i=1

θi∇fi,λ(x).

The second concern with this formulation is that there is no explicit vector-valued function
Fλ : E −→ Y whose ordered subdifferential is given by co∗

⋃
θ∈Θ
∇fθ,λ. And this is essential for

who wants to pass to the limit when λ goes to zero.

The aim of the following subsection 7.3.1 is to give the good setting in which we will be able
to exploit the cost functions fθ. In subsection 7.3.2 we define properly a Moreau-Yosida-like
regularization of F , for which the ordered subdifferential will be as desired co∗

⋃
θ∈Θ
∇fθ,λ. It
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will rely on the appropriate choice of a function Fλ : E −→ Z for some well-chosen Z 6= Y. The
essential point in this trick is that the ordered subdifferential essentially depends on the initial
space. Subsection 7.3.3 contains the proof of our main existence theorem. It follows the lines
of the proof in the multi-objective case.

7.3.1 An equivalent description of ∂F

Recall that Θ is a w∗-compact convex subset of Y∗. We note C(Θ) the vector space of (bounded)
continuous functions from (Θ, w∗) to (R, | · |). It is a Banach space, once equipped with the
uniform norm :

(7.30) ∀ψ ∈ C(Θ), ‖ψ‖C(Θ) := sup
θ∈Θ

ψ(θ).

This space is naturally ordered by the closed convex cone of positive continuous functions on
Θ:

C+(Θ) := {ψ ∈ C(Θ) | ψ(θ) ě 0 for all θ ∈ Θ}.

We will note ĺC(Θ) the order induced by C+(Θ), and ăC(Θ) the strict order induced by its
interior cone, namely :

C++(Θ) := intC+(Θ) = {ψ ∈ C(Θ) | ψ(θ) > 0 for all θ ∈ Θ} = {ψ ∈ C(Θ) | inf
θ∈Θ

ψ(θ) > 0}.

The topological dual space of C(Θ) is notedMR(Θ), and can be identified with the Banach
space of Radon measures on (Θ, w∗), equipped with the total variation norm2 ‖ · ‖M(Θ). This
space of Radon measures inherits an order induced by the dual cone of C+(Θ), that we note
MR

+(Θ), and which can be identified with the set of positive Radon measures on Θ. Since
C+(Θ) has a nonempty interior, we can find a weakly∗ compact convex base forMR

+(Θ). In the
following, we will always consider that the base of MR

+(Θ) is

(7.31) PR(Θ) := {µ ∈MR
+(Θ) | 〈µ,1〉 = 1}

where 1 ∈ C++(Θ) = intC+(Θ) is the constant application 1 : θ ∈ Θ 7→ 1 ∈ R. In that case,
PR(Θ) can be identified with the set of Radon probabilities on Θ. It is an easy exercise to verify
that this space of Radon probabilities can be equivalently described by

(7.32) PR(Θ) = {µ ∈MR(Θ) | 〈µ,1〉 = 1 and ‖µ‖M(Θ) ď 1}.

We will often use the weak∗ topology inMR(Θ), relatively to the dual pair 〈C(Θ),MR(Θ)〉.
Hence two weak∗ topologies will appear in the following : the one in Y∗ and the one inMR(Θ).
For the sake of simplicity we will both note them w∗, instead of w∗Y∗ and w∗C(Θ). In general
it will be obvious to know which topology we are dealing with, because of the context, or the
notations (we try as possible to use y∗, θ for denoting the elements in Y∗ ⊃ Θ, and µ for the
elements of MR(Θ) ⊃ PR(Θ)).

Our interest for C(Θ) is that there is a natural linear embedding i : Y ↪→ C(Θ). It is the
composition of the canonical embeddedding Y ↪→ (Y∗, w∗)∗, together with the embedding by
restriction (Y∗, w∗)∗ ↪→ (Θ, w∗)∗ and the inclusion (Θ, w∗)∗ ⊂ C(Θ), that is :

i : Y ↪−→ C(Θ)
y 7−→ i(y) : Θ −→ R

θ 7−→ 〈θ, y〉Y∗×Y
This lead to the following definition :

2See [5, Section 10.10].
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Definition 7.3.1. We define F := i◦F : E −→ C(Θ), i.e. for all x ∈ E, F(x) ∈ C(Θ) is defined
by

F(x) : Θ −→ R(7.33)

θ 7−→ fθ(x).

As we can guess from its simple definition, F shares a lot of properties with F .

Proposition 7.3.2. We have the following :

i) for all x1, x2 ∈ E, F (x1) ĺ F (x2)⇔ F(x1) ĺC(Θ) F(x2).

ii) for all x1, x2 ∈ E, F (x1) ă F (x2)⇔ F(x1) ăC(Θ) F(x2).

iii) If F is locally Lipschitz at x, then so is F .

iv) If F is convex, then so is F .

v) If F is Gateaux differentiable at x, then so is F , and

for all d ∈ E, θ ∈ Θ, DF(x; d)(θ) = D∗F (x; θ)(d).

vi) If F is bounded from below by me for some m ∈ R, then F is bounded from below by
m1.

Proof. Items i) and ii) essentially relies on Proposition A.3.5. Indeed,

F (x1) ĺ F (x2) ⇔ σΘ(F (x1)− F (x2)) ď 0

⇔ ∀θ ∈ Θ, fθ(x1) ď fθ(x2)

⇔ F(x1) ĺC(Θ) F(x2),

and

F (x1) ă F (x2) ⇔ σΘ(F (x1)− F (x2)) < 0

⇔ inf
θ∈Θ
〈θ, F (x2)− F (x1)〉Y∗×Y

⇔ inf
θ∈Θ

(F(x2)−F(x1))(θ) > 0

⇔ F(x1) ĺC(Θ) F(x2).

Items ii) to v) are a direct consequence of the definition of F as the composition of F together
with the continuous linear application i. Item vi) relies on the same argument than the one of
item i). �

An important consequence of Proposition 7.3.2 is that F and F share the same sublevel
sets, i.e. [F ĺ F (x)] = [F ĺC(Θ) F(x)] for all x ∈ E. Hence, minimizing F or F is the same :

(7.34) ARGMIN
x∈C

F (x) = ARGMIN
x∈C

F(x) and ARGMINw
x∈C

F (x) = ARGMINw
x∈C

F(x)

Moreover we saw in Proposition 5.2.12 that the ordered subdifferential of F is strongly related
to the geometry of its sublevel sets in E. As we can expect from this observation, we will prove
below the following important result:

Theorem 7.3.3. If Y is separable, for all x ∈ E, ∂CF (x) = ∂CF(x).
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Recall that from its definition, the ordered subdifferential ∂CF(x) depends on the choice of a
base for MR

+(Θ). Here, and in all what follows, we fix the base of MR
+(Θ) to be PR(Θ). In

other words,

(7.35) ∂CF(x) = co∗
⋃

µ∈PR(Θ)

∂Cfµ(x),

where

fµ := µ ◦ F : E −→ R

x 7−→ 〈µ,F(x)〉 =

∫
Θ

fθ(x) dµ(θ).

For a given θ ∈ Θ, we note δθ the Dirac probability at θ defined by

(7.36) for all ψ ∈ C(Θ), 〈δθ, ψ〉MR(Θ)×C(Θ) = ψ(θ).

Then, we can see that δθ ◦ F is exactly fθ. This means that the family of functions {fθ}θ∈Θ
is included in the family {fµ}µ∈PR(Θ), which gives directly that ∂CF (x) ⊂ ∂CF(x). In fact, we
have:

Lemma 7.3.4. Let (Θ, w∗) be metrizable. Let µ ∈ PR(Θ), and take the mean

θ̄µ :=

∫
Θ

θ dµ(θ).

Then θ̄µ ∈ Θ and fµ = fθ̄µ .

Proof. Consider

φ : Θ −→ Y∗ and A : Y∗ −→ R
θ 7−→ θ y∗ 7−→ 〈y∗, F (x)〉,

where φ and A are continuous. The metrizability assumption ensures, via Proposition B.2.3,
that θ̄µ is well-defined. Use [5, Theorem 11.54] to verify that θ̄µ ∈ Θ. It suffices to apply [5,
Lemma 11.45] (see Proposition B.2.4) to obtain the result. �

In other words, this Lemma with the above discussion say that the families {fθ}θ∈Θ and
{fµ}µ∈PR(Θ) are equal. Since the metrizability of Θ is ensured when Y is separable (see Propo-
sition C.0.2) this proves Theorem 7.3.3.

7.3.2 A Moreau-Yosida approximation for convex vector-valued functions

Our purpose here is to propose an analogous Moreau-Yosida approximation for F , so that
we can approach equation (SD) by a sequence of approximate equations involving a smooth
approximation of F . Indeed, this case has been treated in Theorem 7.1.3, and we hope to pass
to the limit on the corresponding solutions to obtain a solution of (SD).

Before defining what will be Fλ, we need two technical results:

Lemma 7.3.5. If F is bounded from below, then for all x ∈ E, T > 0, the family

{proxλfθ(x) | θ ∈ Θ, λ ∈]0, T [}

is bounded in E.
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Proof. By definition, for all θ ∈ Θ, λ ∈]0, T [, x ∈ E, we have

(7.37)
1

2λ
‖proxλfθ(x)− x‖2 ď fθ(x)− fθ(proxλfθ(x)).

Use the fact that Θ is bounded in Y∗, and that F is bounded from below together with Propo-
sition 2.3.11 to conclude. �

Recall that, given θ ∈ Θ and λ > 0, we note fθ,λ := (θ ◦ F )λ, i.e. the Moreau-Yosida
transform of fθ = θ ◦ F with index λ.

Proposition 7.3.6. Let F : E −→ Y be convex and bounded from below, where E is Euclidean.

Let (θα)α∈A ⊂ Θ such that θα
w∗−−→
α∈A

θ is Θ, and (λα) ⊂]0,+∞[ such that λα
R−−→

α∈A
λ in

[0,+∞[. Then, for all x ∈ E,

i) lim
α∈A

proxλαfθα (x) = proxλfθ(x) if λ 6= 0, x if λ = 0.

ii) lim
α∈A

fθα,λα(x) = fθ,λ(x) if λ 6= 0, fθ(x) if λ = 0.

Proof. For the sake of notation, we write here pα := proxλαfθα (x), and p := proxλfθ(x) if λ 6= 0,

x if λ = 0. Hence item i) resumes to the proof of pα
E−−→

α∈A
p. We know from Lemma 7.3.5 that

(pα)α∈A is bounded in E, which is finite dimensional. Then, it suffices to prove that any limit
point of (pα)α∈A is p. Take then any limit point p̄ of (pα)α∈A, i.e. suppose that there exists a

subnet satisfying pβ
E−−→

β∈A
p̄.

Now, use the definition of pβ = proxλβ(θβ◦F )(x) to write, for all x′ ∈ E :

(7.38) fθβ (pβ) +
1

2λβ
‖pβ − x‖2 ď fθβ (x′) +

1

2λβ
‖x′ − x‖2.

We want to pass to the limit in (7.38) when β ∈ A. Observe that pβ is supposed to strongly
converge to p̄ ∈ E, that F is continuous from E to Y, and that θβ is bounded and w∗-converging
to θ in Y∗. It follows that for all x′ ∈ E,

fθβ (pβ)
R−−→

β∈A
fθ(p̄),(7.39)

fθβ ,λα(x′)
R−−→

β∈A
fθ(x

′).

To pass to the limit in the other terms of (7.38), we need to distinguish the cases λ = 0 and
λ 6= 0.

We first start with λ 6= 0. In that case, for all x′ ∈ E,

1

2λ
‖pβ − x‖

R−−→
β∈A

1

2λ
‖p− x‖,(7.40)

1

2λ
‖x′ − x‖ R−−→

β∈A

1

2λ
‖x′ − x‖.

Passing to the limit in (7.38) by using (7.39) and (7.40), we obtain

(7.41) for all x′ ∈ E, fθ(p̄) +
1

2λ
‖p− x‖2 ď fθ(x

′) +
1

2λ
‖x′ − x‖2.

The above inequality states that p̄ = proxλfθ(x).
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Now consider that λ = 0. In (7.38), take x′ = x and pass to the limit using (7.39) to obtain

lim sup
β∈A

1

2λβ
‖pβ − x‖2 ď fθ(x)− fθ(p̄).

We have lim sup
β∈A

1
2λβ
‖pβ − x‖2 < +∞, where λβ → 0 and pβ → p̄, so necessarily, p̄ = x. Hence

item i) is proved.
In view to prove item ii), write

(7.42) fθα,λα(x) = fθα(proxλαfθα (x)) +
1

2λα
‖proxλαfθα (x)− x‖2.

If λ 6= 0, it is clear that the right member of (7.42) converges toward fθ(p)+ 1
2λα
‖p−x‖2, where

p = proxλfθ(x), according to item i). In that case, we obtain lim
α∈A

fθα,λα(x) = fθ,λ(x). If λ = 0,

then the first term of the right member of (7.42) tends to fθ(x) according to item i). For the
second term, note that by definition of proxλαfθα (x) we have

(7.43)
1

2λα
‖proxλαfθα (x)− x‖2 ď fθα(pα)− fθα(x).

The right member of (7.43) goes to zero, since pα = proxλαfθα (x) tends to x, according to

item i). It follows that 1
2λα
‖proxλαfθα (x) − x‖2 goes also to zero in (7.42), which means that

lim
α∈A

fθα,λα(x) = fθ(x). �

For all x ∈ E and λ > 0, consider the application

Fλ(x) : (Θ, w∗) −→ R
θ 7−→ fθ,λ(x),

where fλ,θ is the Moreau-Yosida approximation of fθ = θ ◦ F with index λ. Using Proposition
7.3.6, we see that Fλ(x) ∈ C(Θ). Hence, we can define the Moreau-Yosida approximation of F ,
with index λ > 0. It is the application

Fλ : E −→ C(Θ)(7.44)

x 7−→ Fλ(x),

where Fλ(x) has been defined above. Its properties are gathered in the following theorem :

Theorem 7.3.7. Let F : E −→ Y be convex and bounded from below, with E finite-dimensional.
Then :

i) for all λ > 0, Fλ : E −→ C(Θ) is convex.

ii) for all λ > 0, Fλ is Gateaux differentiable. Its derivative DFλ : E −→ L(E, C(Θ)) satisfies
the following properties:

ii.a) DFλ is 1
λ -Lipschitz continuous,

ii.b) for all x ∈ E, d ∈ E, θ ∈ Θ, DFλ(x; d)(θ) = 〈∇fθ,λ(x), d〉,
ii.c) for all x ∈ E, µ ∈MR(Θ), D∗Fλ(x;µ) =

∫
Θ∇fθ,λ(x) dµ(θ) ∈ E,

ii.d) for all x ∈ E, ∂CFλ(x) = co∗
⋃
θ∈Θ
∇fθ,λ(x).

iii) for all λ > 0, x ∈ E, �DFλ(x)�L(E,C(Θ)) ď sup
θ∈Θ
‖∂0fθ(x)‖, where ∂0fθ(x) denotes the

element of minimal norm of ∂fθ(x).
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iv) for all λ > 0, x ∈ E, Fλ(x) ĺC(Θ) F(x).

v) If F is bounded from below by me ∈ Y for some m ∈ R, then for all λ > 0, Fλ is bounded
from below by m1 ∈ C(Θ).

vi) for all x ∈ E, Fλ(x)
C(Θ)−−→
λ↓0

F(x).

Observe that in the monocriteria case, i.e. when (Y,K) = (R,R+), we recover the results of
Proposition 7.2.2.

The rest of this Section 7.3.2 will be devoted to the proof of Theorem 7.3.7. For the sake
of presentation, we will divide the result in individual Propositions. We start with item i) of
Theorem 7.3.7, which is quite immediate.

Proposition 7.3.8. Let F : E −→ Y be a convex function bounded from below, with E finite-
dimensional. Then, for all λ > 0, Fλ : E −→ C(Θ) is convex.

Proof. Let x1, x2 ∈ E, and t ∈ [0, 1]. Using the definition of ĺC(Θ) and Fλ, we have

Fλ(tx+ (1− t)y) ĺC(Θ) tFλ(x) + (1− t)Fλ(y)

⇔ Fλ(tx+ (1− t)y)(θ) ď tFλ(x)(θ) + (1− t)Fλ(y)(θ) for all θ ∈ Θ
⇔ fθ,λ(tx+ (1− t)y) ď tfθ,λ(x) + (1− t)fθ,λ(y) for all θ ∈ Θ.

Since the latter inequality always holds (see Proposition 7.2.2 ii)), the convexity of Fλ is proved.
�

Now we focus on one of the most important properties of the Moreau-Yosida approximation
Fλ, which is its regularity.

Lemma 7.3.9. Let F : E −→ Y be a convex function bounded from below, with E finite-
dimensional. Then, for all λ > 0, the family of functions

{fθ,λ : E −→ R | θ ∈ Θ}

is equi-Lipschitz continuous on bounded sets.

Proof. It is a direct consequence of the equi-Lipschitz continuity (see Proposition 7.2.2 ii)) of

{∇fθ,λ : E −→ E | θ ∈ Θ}.

Indeed, for all x ∈ E, use the triangle inequality and the 1
λ -Lipschitz continuity of fθ,λ to obtain

‖∇fθ,λ(x)‖ ď ‖∇fθ,λ(x)−∇fθ,λ(0)‖+ ‖∇fθ,λ(0)‖(7.45)

ď
1

λ
‖x‖+ ‖∇fθ,λ(0)‖.

We saw in Proposition 7.2.2 that ∇fθ,λ(0) = −1
λ proxλfθ(0), that we know to be uniformly

bounded (with respect to θ) thanks to Lemma 7.3.5. Hence, it follows from (7.45) that ∇fθ,λ
sends bounded sets onto bounded sets, uniformly with respect to θ ∈ Θ. Using the mean value
theorem, we conclude that fθ,λ is Lipschitz continuous on bounded sets, uniformly with respect
to θ ∈ Θ. �

Lemma 7.3.10. Let F : E −→ Y be a convex function bounded from below, with E finite-
dimensional. Then, for all λ > 0 and x ∈ E, the application

(Θ, w∗) −→ E

θ 7−→ ∇fθ,λ(x)

is continuous.
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Proof. Let (θα)α∈A be a net in Θ, weakly-∗ convergent to some θ ∈ Θ. Let us show that
∇fθα,λ(x) converges to ∇fθ,λ(x) in E.

Observe that, according to Proposition 7.2.2, ‖∇fθα,λ(x)‖ ď ‖∂0fθα(x)‖. Given that ∂0fθα(x) ∈
∂F (x) for all α ∈ A, and using that ∂F (x) is bounded in E, it follows that the net (∇fθα,λ(x))α∈A
is bounded in E. Since we assume that E is finite-dimensional, it is then sufficient to show that
the only limit point of (∇fθα,λ(x))α∈A is ∇fθ,λ(x).

Suppose that, for some subnet, ∇fθβ ,λ(x) converges when β ∈ A to some x̄ ∈ E. Using the
convexity of fθβ ,λ, we have for all β ∈ A and x′ ∈ E, that

(7.46) fθβ ,λ(x′)− fθβ ,λ(x)− 〈∇fθβ ,λ(x), x′ − x〉 ě 0.

This can be rewritten, using the definition of Fλ,

(7.47) Fλ(x′)(θβ)−Fλ(x)(θβ)− 〈∇(θβ ◦ F )λ(x), x′ − x〉 ě 0.

We pass to the limit in this last expression, using our hypothesis ∇fθβ ,λ(x)
E−−→

β∈A
x̄, and the

continuity of Fλ(x) on Θ (recall Proposition 7.3.6) :

(7.48) for all x′ ∈ E, fθ,λ(x′)− fθ,λ(x)− 〈x̄, x′ − x〉.

Since fθ,λ is convex, the latter means that x̄ lies in the (Fenchel) subdifferential of fθ,λ. But
this function being Gateaux differentiable (Proposition 7.2.2), this means that x̄ = ∇fθ,λ(x).

�

Proposition 7.3.11. Let F : E −→ Y be a convex function bounded from below, with E finite-
dimensional. Then, for all λ > 0, Fλ is Gateaux differentiable. Its derivative DFλ : E −→
L(E, C(Θ)) is 1

λ -Lipschitz continuous, and is defined by :

(7.49) for all x ∈ E, d ∈ E, θ ∈ Θ, DFλ(x; d)(θ) = Dfθ,λ(x; d) = 〈∇fθ,λ(x), d〉.

Proof. We define, for all x ∈ E, the application Ax : E −→ C(Θ), where Ax(d) ∈ C(Θ) is
defined for all d ∈ E by Ax(d) : θ 7−→ 〈∇fθ,λ(x), d〉. We shown in Lemma 7.3.10 that this last
application is continuous on (Θ, w∗). Hence Ax is well-defined, and it is immediate to see that
it is linear and continuous, i.e. Ax ∈ L(E, C(Θ)). Let us verify now that Ax is the Gateaux
derivative of Fλ at x.

We know from Proposition 7.2.2 that, for all λ > 0 and all θ ∈ Θ, that fθ,λ is convex and
Gateaux differentiable at x, so

(7.50) for all x′ ∈ E, fθ,λ(x′)− fθ,λ(x)− 〈∇fθ,λ(x), x′ − x〉 ě 0.

Moreover ∇fθ,λ is 1
λ -Lipschitz continuous on E, so we can deduce from the classic descent lemma

(see [255, Proposition 3.2.12] or [268, Lemma 1.30]) that

(7.51) for all x′ ∈ E, 1

λ
‖x′ − x‖2 ě fθ,λ(x′)− fθ,λ(x)− 〈∇fθ,λ(x), x′ − x〉.

By combining (7.50) and (7.51), we obtain for all x′ ∈ E, x′ 6= x :

(7.52)

∣∣∣∣fθ,λ(x′)− fθ,λ(x)− 〈∇fθ,λ(x), x′ − x〉
‖x′ − x‖

∣∣∣∣ ď
1

λ
‖x′ − x‖.

Take now an arbitrary nonzero d ∈ E, t ∈ R++. By replacing x′ by x+ td in (7.52), we obtain

(7.53)

∣∣∣∣fθ,λ(x+ td)− fθ,λ(x)

|t|
− 〈∇fθ,λ(x), d〉

∣∣∣∣ ď
1

λ
t‖d‖2,
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which can be rewritten as

(7.54)

∣∣∣∣Fλ(x+ td)(θ)−Fλ(x)(θ)

|t|
−Ax(d)(θ)

∣∣∣∣ ď
1

λ
t‖d‖2.

Taking the supremum over θ ∈ Θ in the above expression leads to

(7.55)

∥∥∥∥Fλ(x+ td)−Fλ(x)

|t|
−Ax(d)

∥∥∥∥
C(Θ)

ď
1

λ
t‖d‖2.

If we take the limit when t goes to zero, we see that Ax(d) is the Gateaux derivative of Fλ at
x in the direction d.

Now we just need to check that DFλ is 1
λ -Lipschitz continuous. Take two arbitrary x, x′ ∈ E,

then :

�DFλ(x′)−DFλ(x)�L(E,C(Θ)) = sup
‖d‖E=1

‖DFλ(x′; d)−DFλ(x; d)‖C(Θ)(7.56)

= sup
‖d‖E=1

sup
θ∈Θ
|DFλ(x′; d)(θ)−DFλ(x; d)(θ)|

= sup
‖d‖E=1

sup
θ∈Θ
|〈∇fθ,λ(x′)−∇fθ,λ(x), d〉|.

Using the Cauchy-Schwarz inequality in E and the 1
λ -Lipschitz continuity of all ∇fθ,λ(x), for all

θ ∈ Θ, we finally obtain

�DFλ(x′)−DFλ(x)�L(E,C(Θ)) ď sup
‖d‖E=1

sup
θ∈Θ
‖∇fθ,λ(x′)−∇fθ,λ(x)‖E‖d‖E

ď sup
‖d‖E=1

sup
θ∈Θ

1

λ
‖x′ − x‖E =

1

λ
‖x′ − x‖E.

�

Corollary 7.3.12. Let F : E −→ Y be a convex function bounded from below, with E finite-
dimensional. Then, for all x ∈ E:

i) for all µ ∈MR(Θ), D∗Fλ(x;µ) =
∫
Θ∇fθ,λ(x) dµ(θ) ∈ E,

ii) ∂CFλ(x) = co∗
⋃
θ∈Θ
∇fθ,λ(x).

Proof. Let x ∈ E. Using Proposition 7.3.11, we know that for all d ∈ E and µ ∈ MR(Θ), we
have

〈D∗Fλ(x;µ), d〉 = 〈µ,DFλ(x; d)〉 =

∫
Θ

〈∇fθ,λ(x), d〉 dµ(θ).

Moreover, because of Lemma 7.3.10 and Theorem B.2.2, θ 7→ ∇fθ,λ(x) is Bochner integrable.
It follows then that

D∗Fλ(x;µ) =

∫
Θ

∇fθ,λ(x) dµ(θ).

Now we turn on the proof of item ii). Start by taking any θ ∈ Θ, and observe that

∇fθ,λ(x) =

∫
Θ

∇fθ̃,λ(x) dδθ(θ̃),

where δθ ∈ PR(Θ) is the Dirac measure at θ. Write now for all d ∈ E:

〈∇fθ,λ(x), d〉 = 〈D∗Fλ(x; δθ), d〉 = 〈δθ,DFλ(x; d)〉 = 〈δθ ◦DFλ(x), d〉 = 〈∇(δθ ◦ Fλ)(x), d〉.

170



We deduce that ∇fθ,λ(x) = ∇(δθ ◦ Fλ)(x), so from the definition of the ordered subdifferential
we obtain ∇fθ,λ(x) ∈ ∂CFλ(x). Since this is true for any θ ∈ Θ, and because the ordered
subdifferential ∂CFλ(x) is convex and weakly∗ closed, we can deduce

∂CFλ(x) ⊃ co∗
⋃
θ∈Θ
∇fθ,λ(x).

For the reverse inclusion, recall from Proposition 7.3.12 that Fλ is smooth, so we have

∂CFλ(x) = {D∗Fλ(x;µ) | µ ∈ PR(Θ)}.

Then, take any µ ∈ PR(Θ), and use item i) together with [5, Theorem 11.54] to obtain
D∗Fλ(x;µ) ∈ co∗

⋃
θ∈Θ
∇fθ,λ(x). It follows that

∂CFλ(x) ⊂ co∗
⋃
θ∈Θ
∇fθ,λ(x),

and the claim is proved. �

We follow with item iii) of Theorem 7.3.7, which states a uniform boundedness of the
derivatives, with respect to λ.

Proposition 7.3.13. Let F : E −→ Y be a convex function bounded from below, with E

finite-dimensional. Then, for all λ > 0, x ∈ E,

�DFλ(x)�L(E,C(Θ)) ď sup
θ∈Θ
‖∂0fθ(x)‖,

where ∂0fθ(x) denotes the element of minimal norm of ∂fθ(x).

Proof. The proof follows similar arguments as in the end of the proof of Proposition 7.3.11. Let
x ∈ E, then

�DFλ(x)�L(E,C(Θ)) = sup
‖d‖E=1

‖DFλ(x; d)‖C(Θ)(7.57)

= sup
‖d‖E=1

sup
θ∈Θ
|DFλ(x; d)(θ)|

= sup
‖d‖E=1

sup
θ∈Θ
|〈∇fθ,λ(x), d〉|.

Using the Cauchy-Schwarz inequality in E, and Proposition 7.2.2, the result follows. �

We end now by studying the monotone properties of Fλ, with respect to λ, to prove items
iv), v) and vi) of Theorem 7.3.7.

Proposition 7.3.14. Let F : E −→ Y be a convex function bounded from below, with E

finite-dimensional. Then, for all λ > 0, x ∈ E,

m1 ĺC(Θ) Fλ(x) ĺC(Θ) F(x).

Proof. Start with the first inequality. By hypothesis, we have for all x ∈ E and all θ ∈ Θ that
fθ(x) ě m (see Proposition 2.3.11). Equivalently, for all θ ∈ Θ, inf

E
fθ ě m. From Proposition

7.2.2 we deduce that for all x ∈ E and all θ ∈ Θ that fθ,λ(x) ě m. The latter means that
m1 ĺC(Θ) Fλ(x) for all x ∈ E. Hence, the first inequality is proved.

The second inequality comes from the fact that fθ,λ(x) ď fθ(x), for all x ∈ E, θ ∈ Θ, see
Proposition 7.2.2. �
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To prove the convergence of Fλ(x) to F(x) in C(Θ), we will use the following technical
lemmas:

Lemma 7.3.15. Let (K, τ) be a compact topological vector space. Let ψ ∈ C(K) and
(ψα)α∈A ⊂ C(K). Suppose that

(7.58) for all (kα)α∈A ⊂ K, if kα
τ−−→

α∈A
k then ψα(kα)

R−−→
α∈A

ψ(k).

Hence ψα converges uniformly to ψ on K, i.e. ψα
C(K)−−→
α∈A

ψ.

Proof. Suppose by contradiction that ψα does not converge uniformly to ψ on K. Then there
exists ε > 0 and a subnet (ψβ)β∈A such that for all β ∈ A, ‖ψβ − ψ‖ ě ε. Since ψβ − ψ is
continuous by hypothesis, and K compact, by the extreme value theorem we obtain for all
β ∈ A some kβ ∈ K such that |ψβ(kβ)−ψ(kβ)| ě ε. But, (kβ)β∈A lies in the compact space K,
so there exists a subnet (kγ)γ∈A converging to some k ∈ K. By hypothesis, it satisfies

ψγ(kγ)
R−−→

γ∈A
ψ(k) and ψ(kγ)

R−−→
γ∈A

ψ(k),

in other words |ψγ(kγ)− ψ(kγ)| −−→
γ∈A

0 which is a contradiction. �

Lemma 7.3.16. Let F : E −→ Y be a convex function bounded from below, with E finite-
dimensional. For all x ∈ E, the following application is continuous :

Ψ : [0, 1] −→ C(Θ)

λ 7−→ Fλ(x) if λ 6= 0

F(x) if λ = 0.

Proof. Let (λi)i∈I be any net in [0, 1] converging to λ ∈ [0, 1]. If λi > 0 for all i ∈ I, we could
use Proposition 7.3.6 to obtain

(7.59) for all (θi)i∈I ⊂ Θ, if θi
w∗−−→
i∈I

θ then Ψ(λi)(θi)
R−−→
i∈I

ψ(λ)(θ).

In the case λ 6= 0, it is clear that we can assume that λi 6= 0, taking eventually a subnet. If
λ = 0, then two cases must be considered. Either there exists some i ∈ I such that for all j � i,
λj = 0, in which case we have

Ψ(λj)(θj) = Ψ(0)(θj) = 〈θj , F (x)〉Y∗×Y
R−−→
j�i

〈θ, F (x)〉Y∗×Y = ψ(λ)(θ).

Or it holds that for all i ∈ I, there exists some j � i such that λj > 0. In that case J := {j ∈
I | λj > 0} induces two subnets (λj)j∈J and (θj)j∈J for which we can apply Proposition 7.3.6.

Hence, we case assume in generality that (7.59) holds. Then, we can use Lemma 7.3.15 to

obtain that Ψ(λα)
C(Θ)−−→
α∈A

Ψ(λ), which ends the proof. �

Proposition 7.3.17. Let F : E −→ Y be a convex function bounded from below, with E

finite-dimensional. Then, for all x ∈ E, lim
λ→0

Fλ(x) = F(x) in C(Θ).

Proof. Just use the continuity at zero in the previous Lemma. �

Remark 7.3.18. Clearly, using Lemma 7.3.16 to prove Proposition 7.3.17 is kind of using a
bazooka to kill a fly. Nevertheless we chose this way because we will need, later, to obtain some
compactness for the familiy {Fλ(x)}λ in C(Θ) (see Lemma Lemma 7.3.16).
If one wants to prove Proposition 7.3.17 directly, note that the net (Fλ(x))λ is monotone in
C(Θ) when λ ↓ 0, so we can apply Dini’s monotone convergence theorem(see [6, Theorem 9.04,
p.70]3).

3Note that the Theorem there only deals with a sequence of functions, but the proof can easily be adapted to
take into account our net (Fλ(x))λ∈]0,+∞[.
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7.3.3 Proof of the existence

We are now ready to prove Theorem 7.0.1. We consider satisfied its hypotheses, i.e. we suppose
that F : E −→ Y is a convex locally Lipschitz function, with E Euclidean and Y a separable
Banach space. Let u0 ∈ E be fixed.

For all λ > 0, Fλ : E −→ C(Θ) is a locally Lipschitz function, whose derivative DFλ is
globally 1

λ -Lipschitz continuous. Hence, we can use Theorem 7.1.3 to obtain the existence of a
trajectory uλ : [0,+∞[−→ E such that :

• uλ is absolutely continuous on [0, T ] for all T > 0,

• u̇λ(t) + (NC(uλ(t)) + ∂CFλ(uλ(t)))0 = 0 for a.e. t ě 0, and uλ(0) = u0,

• there exists ηλ : [0,+∞[−→ E and µλ : [0,+∞[−→MR(Θ) such that

– u̇λ(t) + ηλ(t) + µλ(t) ◦DFλ(uλ(t)) = 0 for a.e. t ě 0,

– ηλ(t) ∈ NC(uλ(t)) and µλ(t) ∈ PR(Θ) for a.e. t ě 0,

– ηλ ∈ L2([0, T ],E) and µλ(·) ◦DFλ(uλ(·)) ∈ L2([0, T ],E) for all T > 0,

– µλ ∈ L∞w∗([0,+∞[,MR(Θ)).

Our intention is to pass to the limit when λ goes to zero, to obtain a trajectory solution of
(SD).

During all this section, we use the following notations for the cost functions: for all λ > 0
and each µ ∈ PR(Θ), note

fµ,λ := µ ◦ Fλ : E −→ R

x 7−→ µ ◦ Fλ(x) =

∫
Θ

Fλ(x) dµ =

∫
Θ

fθ,λ(x) dµ(θ).

By Theorem 7.3.7, fµ,λ is a convex Fréchet differentiable function, whose gradient ∇fµ,λ(x) =
µ ◦DFλ(x) is 1

λ -Lipschitz continuous. Similarly, define

fµ := µ ◦ F : E −→ R

x 7−→ µ ◦ F(x) =

∫
Θ

F(x) dµ =

∫
Θ

fθ(x) dµ(θ).

It is also a convex function, such that (fµ,λ)λ>0 is pointwise converging to fµ from below.

Proposition 7.3.19. Let F : E −→ Y be convex and bounded from below, with E finite-
dimensional and Y separable. Then, when λ ↓ 0, we have (taking eventually a subnet) for all
T > 0:

i) uλ
‖·‖−−→ u in C([0, T ],E),

ii) (u̇λ)λ>0 is bounded and u̇λ
w−−→ u̇ in L2([0,+∞[,E),

iii) (ηλ)λ>0 is bounded and ηλ
w−−→ η in L2([0, T ],E), with η(t) ∈ NC(u(t)) for a.e. t ě 0,

iv) (µλ)λ>0 is bounded and µλ
w∗−−→ µ in L∞w∗([0, T ],MR(Θ)), with µ(t) ∈ PR(Θ) for a.e.

t ě 0.
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Proof. We start with energies estimations for the trajectory. For all λ > 0 and µ ∈ PR(Θ), fµ,λ
is differentiable so for a.e. t ě 0,

(7.60)
d

dt
(fµ,λ ◦ uλ)(t) = 〈∇fµ,λ(uλ(t)), u̇λ(t)〉 = dCfµ,λ(uλ(t); u̇λ(t)).

Using u̇λ(t) = − (NC(uλ(t)) + ∂CFλ(uλ(t)))0, we obtain from Proposition 6.1.7 that

(7.61)
d

dt
(fµ,λ ◦ uλ)(t) ď ‖u̇λ(t)‖2 for a.e. t ě 0,

and integrating (7.61) on [0, T ] :

(7.62)

∫ T

0
‖u̇λ(t)‖2 dt ď fµ,λ(u0)− fµ,λ(u(T )).

Use now the fact that fµ,λ ď fµ on E, and that F is bounded from below on E together with
Theorem 7.3.7 v) to obtain:

(7.63)

∫ T

0
‖u̇λ(t)‖2 dt ď fµ(u0)−m.

Since the estimation in (7.63) is independent of λ and T , it follows that u̇λ ∈ L2([0,+∞[,E)
with

(7.64) sup
λ>0
‖u̇λ‖L2([0,+∞[,E) < +∞.

Consider, for all λ > 0 and all T > 0, the trajectory uλ ∈ C([0, T ],E). To prove the existence
of a converging subnet of this family, we will invoke Ascoli’s Theorem. First recall that uλ is
absolutely continuous. So, for all t ě 0,

(7.65) uλ(t) = uλ(0) +

∫ t

0
u̇λ(s) ds,

which implies, after using the Cauchy-Schwarz inequality in L2([0, t],R),

(7.66) ‖uλ(t)‖ ď ‖uλ(0)‖+
√
t

√∫ t

0
‖u̇λ(s)‖2 ds.

As a direct consequence of (7.66) and (7.64), we have

(7.67) sup
λ>0
‖uλ(t)‖ ď ‖uλ(0)‖+

√
T sup

λ>0
‖u̇λ‖L2([0,+∞[,E) < +∞.

So {uλ}λ>0 is pointwise bounded, hence pointwise relatively compact in C([0, T ],E) (recall that
E has finite dimension). Now we verify that {uλ}λ>0 is equicontinuous in C([0, T ],E). For this,
fix λ > 0 and consider 0 ď s < t ď T , and use the absolute continuity of uλ to write

uλ(t)− uλ(s) =

∫ t

s
u̇λ(τ) dτ.

Using the Cauchy-Schwarz inequality as before, together with (7.64), we obtain
(7.68)

‖uλ(t)− uλ(s)‖ ď

∫ t

s
‖u̇λ(τ)‖ dτ ď

√
t− s

√∫ t

s
‖u̇λ(τ)‖2 dτ ď

√
t− s sup

λ>0
‖u̇λ‖L2([0,+∞[,E).
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The latter means that {uλ}λ>0 is uniformly Hölder continuous, hence equicontinuous. So we
can apply Ascoli’s Theorem, and obtain that {uλ}λ>0 is relatively compact in C([0, T ],E), so
by taking eventually a subnet, we obtain that there exists some u : [0,+∞[−→ E such that uλ
converges uniformly to u on [0, T ] for each T > 0.

We prove now the weak convergence of u̇λ to u̇ in L2([0, T ],E). We already now, from (7.64),
that {u̇λ}λ>0 is relatively compact in L2([0, T ],E). Let v ∈ L2([0, T ],E) be any limit point of
{u̇λ}λ>0 when λ ↓ 0, then use [83, Proposition A.6] to verify that v(t) = u̇(t) for a.e. t ∈]0, T [.

We focus now on item iii). We have, for all λ > 0 and a.e. t ě 0,

(7.69) ‖ηλ(t)‖ = ‖u̇λ(t) + µλ(t) ◦DFλ(uλ(t))‖.

Since [0, T ] is compact and u continuous, u([0, T ]) is compact in E. But F is locally Lipschitz
continuous, so there exists some ε > 0 such that F is Lipschitz continuous on u([0, T ]) + εBE.
Hence, using Proposition 5.1.7,

(7.70) ∃M > 0 such that ‖x∗‖ ď M ∀x∗ ∈ ∂CF (x), ∀x ∈ u([0, T ]) + εB.

Since uλ converges uniformly to u on [0, T ], we can say that uλ([0, T ]) ⊂ u([0, T ]) + εB for λ
close enough to zero. From Theorem 7.3.7 iii) and (7.70), it follows that

(7.71) ∀λ ∼ 0,∀t ∈ [0, T ], �DFλ(uλ(t))� ď M,

and since ‖µλ(t)‖MR(Θ) = 1, we deduce

(7.72) ∀λ ∼ 0,∀t ∈ [0, T ], ‖µλ(t) ◦DFλ(uλ(t))‖ ď M.

Combining (7.72), (7.64) and (7.69), we obtain that the net (ηλ)λ is bounded in L2([0, T ],E),
hence weakly relatively compact. So, by taking eventually a subnet, we can say that ηλ
weakly converges to some η ∈ L2([0, T ],E). Since we know that uλ strongly converges to u
in L2([0, T ],E), by using a classic argument involving the maximal monotonicity of NC (see [83,
Proposition 2.16]), it follows that η(t) ∈ NC(u(t)) for a.e. t ě 0.

We end now the proof with item iv). We know that ‖µλ(t)‖MR(Θ) = 1 for all λ > 0 and
a.e. t ě 0, so ‖µλ‖L∞

w∗ ([0,T ],MR(Θ)) = 1 for all λ > 0. This means that (µλ)λ>0 is bounded

in L∞w∗([0, T ],MR(Θ)), hence relatively weakly∗ compact. So, taking eventually a subnet, µλ
weakly∗ converges to some µ ∈ L∞w∗([0, T ],MR(Θ)). It remains to verify that µ(t) ∈ PR(Θ) for
a.e. t ě 0.

Consider any measurable I ⊂ [0, T ], and define 1I : [0, T ] −→ C(Θ) as follows: if t ∈ I,
then 1I(t) = 1 ∈ C(Θ), else 1I(t) = 0 i.e. the null function. This function is well-defined and
measurable, and we easily see that it is Bochner integrable, i.e. 1I ∈ L1([0, T ], C(Θ)). From

µλ
w∗−−→
λ→0

µ, it follows4:

(7.73) 〈µλ,1I〉L∞
w∗×L

1
R−−→

λ→0
〈µ,1I〉L∞

w∗×L
1

On one hand, we know that for all λ > 0,

〈µλ,1I〉L∞
w∗×L

1 =

∫ T

0
〈µλ(t),1I(t)〉MR(Θ)×C(Θ) dt =

∫
I
〈µλ(t),1〉MR(Θ)×C(Θ) dt =

∫
I

1 dt = |I|.

Using (7.73), we deduce that 〈µ,1I〉L∞
w∗×L

1 = |I|. On the other hand,

(7.74) 〈µ,1I〉L∞
w∗×L

1 =

∫
I
〈µ(t),1〉MR(Θ)×C(Θ) dt,

4〈·, ·〉L∞
w∗×L1 denotes the duality product between L∞w∗([0, T ],MR(Θ)) and L1([0, T ], C(Θ)).

175



which means that∫
I
〈µ(t),1〉MR(Θ)×C(Θ) dt = |I| for any measurable I ⊂ [0, T ].

The latter implies that

(7.75) 〈µ(t),1〉MR(Θ)×C(Θ) = 1 for a.e. t ∈ [0, T ].

Recall now this alternative characterization of PR(Θ) (see (7.32)):

PR(Θ) = {µ ∈MR(Θ) | 〈µ,1〉MR(Θ)×C(Θ) = 1 and ‖µ‖MR(Θ) ď 1}.

Since we already proved (7.75), it remains to verify that ‖µ(t)‖MR(Θ) ď 1 for a.e. t ∈ [0, T ].
From the weak∗ convergence of µλ to µ, and the weakly∗ lower semi-continuity

(7.76) ‖µ‖L∞
w∗

ď lim inf
λ→0

‖µλ‖L∞
w∗
.

Moreover we know that µλ(t) ∈ PR(Θ) for all λ > 0 and a.e. t ě 0, which implies that
‖µλ‖L∞

w∗
= 1 for all λ > 0. In the light of (7.76), we deduce that ‖µ‖L∞

w∗
ď 1, which means that

‖µ(t)‖MR(Θ) ď 1 for a.e. t ∈ [0, T ], and ends the proof. �

Proposition 7.3.20. Let F : E −→ Y be convex and bounded from below, with E finite-
dimensional and Y separable. Then, when λ ↓ 0, we have (taking eventually a subnet) Fλ◦uλ −→
F ◦ u in C([0, T ], C(Θ)).

Proof. We start by proving that {Fλ ◦ u}λ∈]0,1[ is relatively compact in C([0, T ], C(Θ)). For
this we aim to use Ascoli’s Theorem, for which we need to verify the hypotheses. Given a fixed
t ∈ [0, T ], and using Lemma 7.3.16, we obtain the relative compactness of {Fλ(u(t))}λ∈]0,1[ in
C(Θ). Now we prove the equicontinuity of {Fλ◦u}λ∈]0,1[ in C([0, T ], C(Θ)). Take 0 ď s < t ď T ,
and any λ > 0. Using the fact that u is absolutely continuous, and Fλ is differentiable :

(7.77) ‖Fλ(u(t))−Fλ(u(s))‖ ď

∫ t

s

∥∥∥∥ d

dt
Fλ ◦ u(τ)

∥∥∥∥ dτ ď

∫ t

s
�DFλ(uλ(τ))�‖u̇λ(τ)‖ dτ.

From the estimation we obtained in (7.71), and the Cauchy-Schwarz inequality in L2([0, T ],R),
we obtain

(7.78) ‖Fλ(u(t))−Fλ(u(s))‖ ď M
√
t− s ‖u̇‖L2([0,T ],E).

We deduce from the latter that {Fλ ◦ u}λ∈]0,1[ is uniformly Hölder continuous, hence equicon-
tinuous. So we can apply Ascoli’s Theorem, and obtain that {Fλ ◦u}λ∈]0,1[ is relatively compact
in C([0, T ], C(Θ)).

Now we pass to the uniform convergence of Fλ ◦ uλ to F ◦ u in C([0, T ], C(Θ)). For this,
take any t ∈ [0, T ], λ > 0, and use the triangular inequality to write

(7.79) ‖Fλ ◦ uλ(t)−F ◦ u(t)‖ ď ‖Fλ ◦ uλ(t)−Fλ ◦ u(t)‖+ ‖Fλ ◦ u(t)−F ◦ u(t)‖.

On one hand, the first term of the right member in (7.79) can be bounded from above by using
the mean value theorem:

(7.80) ‖Fλ ◦ uλ(t)−Fλ ◦ u(t)‖ ď sup
c∈[uλ(t),u(t)]

�DFλ(c)� ‖uλ(t)− u(t)‖.

Using the same argument as in (7.71), we obtain some M > 0 such that for all λ ∼ 0 and any
t ∈ [0, T ],

(7.81) ‖Fλ ◦ uλ(t)−Fλ ◦ u(t)‖ ď M‖uλ(t)− u(t)‖.
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Since uλ converges uniformly to u, we deduce from the latter that Fλ ◦ uλ − Fλ ◦ u converges
uniformly to zero. On the other hand, we know from Theorem 7.3.7 that Fλ ◦ u is pointwise
convergent to F ◦ u. Moreover we shown in the first part of this proof that {Fλ ◦ u}λ∈]0,1[ is
relatively compact in C([0, T ], C(Θ)). These two properties entails the uniform convergence of
Fλ ◦ u to F ◦ u, which means that the second term of the right member of (7.79) converges
uniformly to zero when λ → 0. So we proved the uniform convergence of Fλ ◦ uλ to F ◦ u in
C([0, T ], C(Θ)).

�

Proposition 7.3.21. For a.e. t ě 0, u̇(t) +NC(u(t)) + ∂CF (u(t)) 3 0.

Proof. Consider any w ∈ L∞([0, T ],E) and λ > 0. Since Fλ is convex and differentiable, we
have for a.e. t ∈ [0, T ]

(7.82) µλ(t) ◦ Fλ(w(t))− µλ(t) ◦ Fλ(uλ(t))− 〈∇(µλ(t) ◦ Fλ)(uλ(t)), w(t)− uλ(t)〉 ě 0.

Observe that by definition of µλ, we have

(7.83) ∇(µλ(t) ◦ Fλ)(uλ(t)) = µλ(t) ◦DFλ(uλ(t)) = −u̇λ(t)− ηλ(t).

Using (7.83) together with the fact that Fλ ĺ F on E (recall Theorem 7.3.7), we obtain from
(7.82) that

(7.84) µλ(t) ◦ F(w(t))− µλ(t) ◦ Fλ(uλ(t))− 〈−u̇λ(t)− ηλ(t), w(t)− uλ(t)〉 ě 0.

This expression is integrable on [0, T ], and we obtain after integration:∫ T

0
〈µλ(t),F(w(t))〉MR(Θ)×C(Θ) dt −

∫ T

0
〈µλ(t),Fλ(uλ(t))〉MR(Θ)×C(Θ) dt

−
∫ T

0
〈−u̇λ(t)− ηλ(t), w(t)− uλ(t)〉E dt ě 0

In the latter, we recognize in the two first terms a duality product between L1([0, T ], C(Θ)) and
L∞w∗([0, T ],MR(Θ)). The last term involves uλ ∈ C([0, T ],E) ⊂ L∞([0, T ],E) and u̇λ + ηλ ∈
L2([0, T ],E) ⊂ L1([0, T ],E), which can be seen as a subspace of L∞([0, T ],E)∗. Hence this last
inequality can be rewritten as:

(7.85) 〈µλ,F ◦ w〉L∞
w∗×L

1 − 〈µλ,Fλ ◦ uλ〉L∞
w∗×L

1 − 〈−u̇λ − ηλ, w − uλ〉L1×L∞ ě 0.

We can now pass to the limit in (7.85) when λ goes to zero, using Propositions 7.3.19 and 7.3.20
to obtain for all w ∈ L∞([0, T ],E):

(7.86) 〈µ,F ◦ w〉L∞
w∗×L

1 − 〈µ,F ◦ u〉L∞
w∗×L

1 − 〈−u̇− η, w − u〉L1×L∞ ě 0.

We want to interpret the equation above as a subdifferential inequality. Consider for this
the integrand

Φ : L∞([0, T ],E) −→ R

w 7−→
∫ T

0
φ(t, w(t)) dt,

where φ is defined as follows

φ : [0, T ]× E −→ R
(t, x) 7−→ φt(x) := 〈µ(t),F(x)〉MR(Θ)×C(Θ).
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In other words, Φ(w) = 〈µ,F ◦ w〉L∞
w∗×L

1 . The convexity of F implies the one of Φ, and (7.86)

expresses the fact that −u̇−η ∈ ∂Φ(u). Using a celebrated result of Rockafellar ([286, Theorem
4]), we obtain for a.e. t ∈ [0, T ] that

(7.87) − u̇(t)− η(t) ∈ ∂φt(u(t)).

But for each t ∈ [0, T ], φt = µ(t) ◦ F , so for all x ∈ E,

(7.88) ∂φt(x) = ∂(µ(t) ◦ F)(x) ⊂ ∂CF(x).

Since ∂CF = ∂CF from Theorem 7.3.3, we finally obtain from (7.87) and (7.88) that

−u̇(t)− η(t) ∈ ∂CF (u(t)) for a.e. t ě 0.

�

Proposition 7.3.22. For a.e. t ě 0, u̇(t) + (NC(u(t)) + ∂CF (u(t)))0 = 0.

Proof. To prove the lazyness of the trajectory u, we will use the one of each uλ and pass to the
limit when λ ↓ 0. Indeed, we know for all λ > 0 that for a.e. t ě 0,

(7.89) u̇λ(t) + (NC(uλ(t)) + ∂CF (uλ(t)))0 = 0.

Using the variational characterization of (NC(uλ(t)) + ∂CF (uλ(t)))0 as the projection of the
origin onto NC(uλ(t)) + ∂CF (uλ(t)), together with the fact that 0 ∈ NC(uλ(t)), we obtain for
a.e. t ě 0

(7.90) ∀x∗ ∈ ∂CFλ(uλ(t)), 〈u̇λ(t), u̇λ(t) + x∗〉 ď 0,

which means that

(7.91) ∀µ ∈ PR(Θ), 〈u̇λ(t), u̇λ(t) + µ ◦DFλ(uλ(t))〉 ď 0,

or equivalently

(7.92) ∀µ ∈ PR(Θ), ‖u̇λ(t)‖2 +
d

dt
(µ ◦ Fλ ◦ uλ)(t) ď 0.

Our aim is to pass to the limit in (7.92) to prove

(7.93) ∀µ ∈ PR(Θ), ‖u̇(t)‖2 +
d

dt
(µ ◦ F ◦ u)(t) ď 0.

Indeed, this is a sufficient condition for the trajectory u to be lazy, recall Proposition 6.1.15.
Take any ψ ∈ D(]0, T [,R), the space of infinitely differentiable functions with support un-

cluded in ]0, T [, which is dense in L2([0, T ],R) (see [83, Appendices]). Consider then the corre-
sponding linear integrand

Ψ : L2([0, T ],E) −→ R

w 7−→
∫ T

0
ψ(t)‖w(t)‖2 dt.

It is easy to see that Ψ is strongly continuous, hence weakly lower semi-continuous. As direct
consequence of u̇λ

w−−→
λ→0

u̇ in L2([0, T ],E), we deduce that

(7.94)

∫ T

0
ψ(t)‖u̇(t)‖2 dt ď lim inf

λ→0

∫ T

0
ψ(t)‖u̇λ(t)‖2 dt.
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Now, use an integration by parts together with the fact that ψ(0) = ψ(T ) = 0 to write for
all µ ∈ PR(Θ)

(7.95)

∫ T

0
ψ(t)(µ ◦ F ◦ u)′(t) dt = −

∫ T

0
ψ′(t)(µ ◦ F ◦ u)(t) dt.

Because of Proposition 7.3.20, µ ◦Fλ ◦uλ converges uniformly to µ ◦F ◦u in C([0, T ],R), hence
from (7.95) we deduce

(7.96)

∫ T

0
ψ(t)(µ ◦ F ◦ u)′(t) dt = − lim

λ→0

∫ T

0
ψ′(t)(µ ◦ Fλ ◦ uλ)(t) dt.

Doing again an integration by parts, we obtain

(7.97)

∫ T

0
ψ(t)(µ ◦ F ◦ u)′(t) dt = lim

λ→0

∫ T

0
ψ(t)(µ ◦ Fλ ◦ uλ)′(t) dt.

Combines now (7.94) and (7.97) to find∫ T

0
ψ(t)

(
‖u̇(t)‖2 +

d

dt
(µ ◦ F ◦ u)(t)

)
dt ď lim inf

λ→0

∫ T

0
ψ(t)

(
‖u̇λ(t)‖2 +

d

dt
(µ ◦ Fλ ◦ uλ)(t)

)
dt.

If we suppose that ψ ∈ D+(]0, T [,R), i.e. that ψ takes positive values, we can deduce from
(7.92) that

(7.98)

∫ T

0
ψ(t)

(
‖u̇(t)‖2 +

d

dt
(µ ◦ F ◦ u)(t)

)
dt ď 0.

By using the density of D+(]0, T [,R) in L2
+(]0, T [,R), which is a closed convex self-dual cone,

we obtain that ‖u̇(·)‖2 + d
dt(µ ◦ F ◦ u) ∈ −L2

+(]0, T [,R). This proves (7.93), and ends the proof
with Proposition 6.1.15.

�

7.4 Comments

Remark 7.4.1 (On the necessity to work in general Banach spaces). When considering Chap-
ters 5 and 6, it might seem superfluous to work with a function F taking its values in a
general ordered Banach space Y. Indeed, we make the assumption that the cone K induc-
ing the order in Y must have a nonempty interior, which reduces the “useful” spaces to work
in to Y = L∞([0, 1],Rp) or Y = C([0, 1]). When one sees the technicalities induced by this
infinite-dimensional Banach setting, we could reasonably wonder if it is worth it.

In fact, even if Y = Rm, as soon as K is not polyhedral, we cannot apply the techniques
of Section 7.2 to prove the existence of trajectories. We need in the Section 7.3 to introduce
an auxiliary Banach space of continuous functions on the base Θ, C(Θ), which is in general a
nonreflexive Banach space.

Remark 7.4.2 (Seeing ∂CFλ as a Yosida approximation of ∂CF ). In Section 6.3.1, we formally
defined the resolvent of ∂CF for a convex function F by

∀x ∈ H, PROXλF (x) = (Id+ λ∂CF )−1(x) =
⋃
θ∈Θ

proxλfθ(x).

It is a known fact (see [51, Chapter 23]) that proxλfθ(x) = x− λ∇fθ,λ(x). Then, we can write
from Proposition 7.3.12 that

∂CFλ(x) = co∗
⋃
θ∈Θ
∇fθ,λ(x) =

1

λ

(
x− co∗

⋃
θ∈Θ

proxλfθ(x)

)
.
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In other words,

∂CFλ =
1

λ
(Id− co∗PROXλF ) ,

that we can interpret as the fact that ∂CFλ is a formal Yosida transform of ∂CF .
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Chapter 8

A continuous inertial approach to
multi-objective optimization

Let H be a Hilbert space, and consider the unconstrained multi-objective problem

(MOP) MIN
x∈H

F (x)

where F = (f1, ..., fm) : H −→ (Rm,Rm+ ) is a continuously differentiable function. In Chapter
5, we introduced the steepest descent vector field for F :

s : H −→ H(8.1)

x 7−→ s(x) := − (co∇fi(x))0

where co∇fi(u)0 denotes the element of minimal norm of the convex compact set co∇fi(u).
The vector s(u) is called the steepest descent direction at x, and simply reduces to −∇f(u) if
m = 1. It enjoys the following nice properties, which extends known facts about −∇f(u) in the
mono-criteria case (recall Section 5.2):

i) s(u) = 0 if and only if u is Pareto critical.

ii) s(u) is a common descent direction at u for all the objective functions. More exactly,

(8.2) ∀i = {1, ...,m}, 〈∇fi(u), s(u)〉 ď −‖s(u)‖2.

iii) It is the steepest common descent direction, in the sense that

(8.3)
s(u)

‖s(u)‖
= argmin
‖d‖=1

max
i∈{1,...,m}

〈∇fi(u), d〉 whenever s(u) 6= 0.

In Chapter 6, we introduced and studied the steepest descent dynamic (SD) to solve problem
(MOP). It is a dynamic governed by the steepest descent vector field s, which reduces in this
multi-objective case to

(SD) u̇(t) + (co ∇fi(u(t)))0 = 0.

The main feature of (SD) is that, when the objective functions fi are convex, all its bounded
solutions weakly converge to weak Pareto point of (MOP).

When m = 1, this dynamic corresponds exactly to the classic steepest descent dynamic

u̇(t) +∇f(u(t)) = 0.

It is known that its trajectories have poor convergence rates, when t → +∞. Thus, the (SD)
dynamic for multi-objective optimization problems shares the same slow behaviour, which is
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characteristic of first-order methods. This is a clear issue in the multi-objective setting. Indeed,
while in scalar optimization we often look for one minimum, in multi-objective problems we aim
to have a description of the set of Pareto efficient points. Hence, we need to perform in parallel
a high number of trajectories, and it would be better that the trajectories converge quickly.

To circumvent this problem, we propose to introduce an inertial term in our dynamic.
Inertial continuous dynamics for scalar optimization have been studied since Polyack [276], and
Attouch-Goudou-Redont [29] introduced the so-called Heavy Ball with Friction dynamic:

(HBF) ü(t) + γu̇(t) +∇f(u(t)) = 0.

This system has a clear mechanical interpretation. The term ü(t) is the acceleration of the
physical point u(t), on which acts the sum of two forces: the friction −γu̇(t) and the vector
field ∇f(u(t)). Just like a heavy ball sliding down the graph of f , due to the viscous friction
effect, each trajectory tends to stabilize at a local minimum of f . This (HBF) dynamic has
been extended by Cabot-Engler-Gaddat [92], which introduced a variable damping coefficient
γ(·). This variable viscosity is of importance, in the light of the works of Su-Boyd-Candès [303]
and Attouch-Chbani-Peypouquet-Redont [22]. Indeed they show that, by taking γ(t) = α

t , we
recover after discretization in time the inertial algorithms of Nesterov [251] and Chambolle-
Dossal [100].

Our aim in this chapter is to provide a first study of an inertial gradient-based dynamical
system for multi-objective optimization. To our knowledge, the combination of both inertial and
multi-objective aspects has not been considered before. It is a second-order in time differential
equation, which generalizes the (HBF) dynamic to the multi-objective setting, replacing the
gradient of f by the ordered subdifferential of F . It is called the Inertial Steepest Descent with
Friction dynamic, and is defined as follows:

(ISDF) ü(t) + γu̇(t) + co∇fi(u(t))0 = 0,

where the viscous damping coefficient γ is a fixed positive parameter. Clearly, when there is
only one objective function, we recover the (HBF) dynamic.

Thus our program consists in studying the Inertial Steepest Descent with Friction dynamic,
by combining the technics of the previous chapters and the ones in [29]. After introducing the
Inertial Steepest Descent with Friction dynamic, we investigate in Section 8.1 the existence of
solution trajectories for (ISDF) in finite dimensions. In Section 8.2, we study the properties of
the trajectories generated by (ISDF). Under a convexity assumption on the objective functions,
we show that the bounded trajectories converge to weak Pareto points of the problem. We
recover in that case the convergence result concerning (HBF) in [29]. Of course, due to the
effects of inertia, (ISDF) is not a descent dynamic, i.e. the values of the cost functions may
not decrease over time. But we show that, with an appropriate choice of the initial velocity,
the cost values are improved along the trajectory relative to the starting point (see Proposition
8.2.5). This is essential for one which wants to implement a numerical method with restarting,
see [303] for instance. In Section 8.3, we illustrate a discretized version of this dynamic, and
compare its convergence rate with the (SD) dynamic. The proper analysis of the corresponding
algorithm is left for a future work, see Section 8.4.

8.1 Existence of trajectories

In this section, we question the existence of solutions for the Cauchy problem associated to
(ISDF). Let t0 ∈ R, T ∈]t0,+∞], and (u0, u̇0) ∈ H2. We say that u : [t0, T [−→ H is a solution
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of (ISDF) if u is continuous on [t0, T [, of class C2 on ]t0, T [, and satisfies

ü(t) = −γu̇(t) + s(u(t)) for all t ∈]t0, T [,
(IMOG)

u(t0) = u0, u̇(t0) = u̇0.

Here, contrary to Chapter 7, we consider solutions in the classic sense. This is because we
restrict our analysis to the smooth case.

In view to apply an existence theorem for the dynamical system (IMOG), the key point is
the regularity of the steepest descent vector field s. As a particular case of Proposition 7.1.2,
we have:

Proposition 8.1.1. Suppose that the gradients ∇fi : H → H are Lipschitz continuous on
bounded sets. Then s is 1

2 -Holder continuous on bounded sets.

We will face for the (ISDF) dynamic the same regularity problem that with (SD). Thus, here
also our existence proof will rely on Peano’s existence result:

Theorem 8.1.2. (Peano) Let φ : Rn −→ Rn be continuous. Then, for all x0 ∈ H and t0 ∈ R,
there exists some T > 0 and x : [t0, t0 + T [−→ H of class C1, such that

(8.4) ẋ(t) = φ(x(t)) for all t ∈ [t0, t0 + T [, with x(t0) = x0.

The ingredients are now all gathered to get a first local existence result :

Proposition 8.1.3. Suppose that H has finite dimension, and that the gradients ∇fi : H→ H

are Lipschitz continuous on bounded sets. Then, for all t0 ∈ R, and for all (u0, u̇0) ∈ H × H,
there exists some T > 0 and u : [t0, t0 + T [−→ H of class C2, such that

(8.5) ü(t) = −γu̇(t) + s(u(t)) for all t ∈ [t0, t0 + T [, with u(t0) = u0, u̇(t0) = u̇0.

Proof. We just need to apply a change of variables in (ISDF) to get a first-order ODE. Let
φ : H2 −→ H2 be defined by

(8.6) φ(u, v) := (v,−γv + s(u)).

Clearly, from Proposition 8.1.1, φ is continuous on H2. We can then apply Peano’s Theorem at
t0 and x0 := (u0, u̇0), to get some x : [t0, t0 + T [−→ H2 of class C1 such that (8.4) holds. If we
note x(t) = (u(t), v(t)) ∈ H×H, (8.4) can be rewritten as :

(8.7) u̇(t) = v(t), v̇(t) = −γv(t) + s(u(t)) for all t ∈ [t0, t0 + T [, with u(t0) = u0, v(t0) = u̇0.

Since x is of class C1, we deduce that it is also the case for u and v. But from u̇(t) = v(t), we
can see that u is of class C2 and satisfies (8.5). �

Remark 8.1.4. For this result we use Peano’s theorem, which asks the space to be finite
dimensional. In fact, Peano’s theorem can be stated in the Banach space setting, if one asks
the vector field involved to be compact. We recall that an operator φ : H −→ H is said to be
compact whenever it is continuous and maps bounded sets to relatively compact sets. Observe
that if the gradients ∇fi are all compact operators, then s is also compact. Hence, one might
want to apply Peano’s result in this context. Nevertheless, by reducing (ISDF) to a first-order
ODE, we do not deal directly with s but with (u, v) 7→ (v,−γv + s(u)). And it can be easily
proved that if s is compact, then v 7→ v is also compact, which would mean that H has finite
dimension.
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We can now state our main existence result. To get a global solution on [0,+∞[, we do a
stronger hypothesis on the gradients.

Theorem 8.1.5. Suppose that H has finite dimension, and that the gradients ∇fi are globally
Lipschitz continuous. Then, for all t0 ∈ R, (u0, u̇0) ∈ H×H, there exists u : [t0,+∞[−→ H of
class C2, such that

(8.8) ü(t) = −γu̇(t) + s(u(t)) for all t ∈ [t0,+∞[, with u(t0) = u0, u̇(t0) = u̇0.

Proof of Theorem 8.1.5. Proposition 8.1.3 provides us a local solution and, using Zorn’s lemma,
we can suppose that it is a maximal solution u : [t0, T [−→ H, with T ∈ [t0,+∞]. The whole
point is to prove that T = +∞. For this, we argue by contradiction by supposing that T < +∞.
We will show that the solution does not blow up in finite time, and extend it at T to obtain a
contradiction.

Using the fact that the gradients are globally Lipschitz continuous, we obtain from Propo-
sition 7.1.2 the following global growth property for s :

(8.9) ∃c > 0 s.t. ∀u ∈ H, ‖s(u)‖ ď c(1 + ‖u‖).

From this growth condition, we will obtain some energy estimates on the trajectory.
Let us show that u̇ and ü lie in L∞([t0, T ],H). For this, we consider as before

(8.10) φ : H2 −→ H2, (u, v) 7→ φ(u, v) = (v,−γv + s(u)).

By defining x(t) := (u(t), u̇(t)) for all t ∈ [t0, T [, we see that ẋ(t) = φ(x(t)) on [t0, T [. Define
h(t) := ‖x(t)−x(t0)‖ on [t0, T [, which is continuous on [t0, T [. Equip H2 with the scalar product
inherited from H, and note that h2 is derivable on [t0, T [, so we can write for all t ∈ [t0, T [ :

(8.11)
d

dt

1

2
h2(t) = 〈ẋ(t), x(t)− x(t0)〉 = 〈φ(x(t)), x(t)− x(t0)〉 ď ‖φ(x(t))‖h(t).

From the growth condition (8.9) we deduce an upper bound for ‖φ(x(t))‖. Indeed, for all
x = (u, v) ∈ H2,

‖φ(x)‖ ď (‖v‖+ ‖s(u)− γv‖) using the equivalence between `1 and `2 norms

ď (1 + γ)‖v‖+ c(1 + ‖u‖) using the triangle inequality with (8.9)

ď c2(1 + ‖x‖) with c2 :=
√

2 max{c; 1 + γ}.

Using the triangle inequality with c3 := c2(1 + ‖x(t0)‖), it follows for all t ∈ [t0, T [ that

(8.12) ‖φ(x(t))‖ ď c3(1 + h(t)).

Combining (8.11) and (8.12), we obtain

(8.13)
d

dt

1

2
h2(t) ď c3h(t)(1 + h(t)) for all t ∈ [t0, T [.

We will now conclude by using a Gronwall-type argument. Consider an arbitrary ε ∈
]0, T − t0[. After integration of (8.13) on [t0, T − ε], and using h(t0) = 0, we obtain

(8.14)
1

2
h2(t) ď

∫ t

t0

c3(1 + h(s))h(s) ds for all t ∈ [t0, T − ε].

Since h is continuous on [0, T−ε], the function g : t ∈ [0, T−ε] 7→ c3(1+h(t)) is in L1([0, T−ε],R).
Hence we can apply Lemma C.0.4 (we left it in the Appendix) to obtain

(8.15) h(t) ď

∫ t

t0

c3(1 + h(s)) ds for all t ∈ [t0, T − ε].
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We easily obtain from (8.15) and T < +∞ that

(8.16) h(t) ď c3T + c3

∫ t

t0

h(s) ds for all t ∈ [t0, T − ε],

so we can use the Gronwall-Bellman’s Lemma (see Lemma C.0.3 in the Appendix), and obtain
:

(8.17) h(t) ď c3Te
c3t ď c3Te

c3T for all t ∈ [t0, T − ε].

Since the upper bound in (8.17) is independent of ε and t, we deduce that h ∈ L∞([0, T ],R).

From the definition of h, this means that u and u̇ lie in L∞([0, T ],H). Moreover, using the
growth condition (8.9), it implies that s ◦ u ∈ L∞([0, T ],H), so ü(t) = (s(u(t))− γu̇(t)) lies also
in L∞([0, T ],H). Now, since T is supposed finite, we can say that L∞([0, T ],H) ⊂ L1([0, T ],H),
so u can be continuously extended at T by

u(T ) := u(0) +

∫ T

0
u̇(t) dt,

and we can do the same for u̇. Hence, we can apply Proposition 8.1.3 at t0 = T with (u0, u̇0) =
(u(T ), u̇(T )) to extend the solution u(·), which contradicts its maximality. �

As already discussed in Section 6.1.5, the steepest descent vector field governing the dynamic
is not Lipschitz continous, neither monotone (even in the convex setting). So we cannot use
methods from monotone operator theory, and the question of uniqueness of the trajectories
remains open in the general context. Nevertheless, under some assumptions, we still can ensure
the uniqueness.

Corollary 8.1.6. Let u be a trajectory solution of the Cauchy problem (8.8). Suppose that
for all t ∈ [t0,+∞[, the family {∇f1(u(t)), ...,∇fm(u(t))} is affinely independent. Then, u is
the unique solution to (8.8).

Proof. It is proved in Proposition 6.1.17 that under these hypotheses, for all t ∈ [t0,+∞[, the
steepest descent vector field is locally Lipschitz in the neighbourhood of u(t). Hence, it suffices
to apply the Cauchy-Lipschitz theorem to derive the uniqueness of u. �

8.2 Qualitative study of the dynamic

Recall that, for a given function φ : H −→ H and a nonempty subset U ⊂ H, we note Lip(φ;U)

the best Lipschitz constant of φ over U , that is Lip(φ;U) := sup
x6=y∈U

‖φ(x)−φ(y)‖
‖x−y‖ . We say that φ

is Lipschitz over U whenever Lip(φ;U) < +∞.

8.2.1 A dissipative system

We start our study of the dynamic by showing that it is a dissipative system. But before, we
need the following chain rule:

Lemma 8.2.1. Let φ : H −→ R and u : I −→ H, where I is a nonempty open subset of R.
Suppose that φ and u are of class C1,1 on I, and that Lip(∇φ;u(I)) < +∞. Then for a.e. t ∈ I,

(8.18)
d2

dt2
(φ ◦ u)(t) ď Lip(∇φ;u(I))‖u̇(t)‖2 + 〈∇φ(u(t)), ü(t)〉.
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Proof. By hypothesis, u̇ and ∇φ◦u are locally Lipschitz continuous, hence differentiable almost
everywhere. So, from d

dt(φ ◦ u)(t) = 〈∇φ(u(t)), u̇(t)〉, we have for a.e. t ∈ I

(8.19)
d2

dt2
(φ ◦ u)(t) = 〈 d

dt
(∇φ ◦ u)(t), u̇(t)〉+ 〈∇φ ◦ u(t), ü(t)〉.

Moreover, we have in the second member above (using the Cauchy-Schwarz inequality and the
Lipschitz property of ∇φ) :

〈 d

dt
(∇φ ◦ u)(t), u̇(t)〉 = lim

h→0

1
h〈∇φ ◦ u(t+ h)−∇φ ◦ u(t), u̇(t)〉

ď lim
h→0

1
|h|‖∇φ ◦ u(t+ h)−∇φ ◦ u(t)‖‖u̇(t)‖

ď lim
h→0

L 1
|h|‖u(t+ h)− u(t)‖‖u̇(t)‖ = L‖u̇(t)‖2

where L := Lip(∇φ;u(I)).
�

Let us prove now the dissipativity of our dynamic :

Proposition 8.2.2 (Dissipative property). Let u : [t0, T [−→ H be a solution of (ISDF). For
all i ∈ {1, ...,m}, define for all t ∈ [t0, T [ :

(8.20) Ei(t) := (fi ◦ u)(t) +
1

γ
(fi ◦ u)′(t) + ‖u̇(t)‖2.

Then, for a.e. t ∈ [t0, T [, if Li := Lip(∇fi;u([t0, T [)) < +∞, we have

(8.21) E ′i(t) ď −1

γ
‖ü(t)‖2 − 1

γ

(
γ2 − Li

)
‖u̇(t)‖2

Proof. The dissipative property is a direct consequence of the variational characterisation of the
projection of 0 over co ∇fi(u(t)) in (ISDF). Indeed, for a.e. t ∈ [t0, T [, we have −ü(t)−γu̇(t) =
projco{∇fi(u(t))}(0). It follows that

(8.22) 〈ü(t) + γu̇(t),∇fi(u(t)) + ü(t) + γu̇(t)〉 ď 0,

which is equivalent, after distributing the terms and dividing by γ, to

(8.23)
1

γ
〈∇fi(u(t)), ü(t)〉+

d

dt

[
(fi ◦ u) + ‖u̇‖2

]
(t) ď −1

γ
‖ü(t)‖2 − γ‖u̇(t)‖2.

Use now Lemma 8.2.1 with Lip(∇fi;u([t0, T [)) < +∞ to obtain

1

γ

(
d2

dt2
(fi ◦ u)(t)− Li‖u̇(t)‖2

)
+

d

dt

[
(fi ◦ u) + ‖u̇‖2

]
(t) ď −1

γ
‖ü(t)‖2 − γ‖u̇(t)‖2,

which ends the proof. �

Proposition 8.2.2 suggests that we need an hypothesis on the parameters to ensure the
dissipative property :

HPi γ2 > Li where Li := Lip(∇fi;u([t0, T [)).

If HPi holds for all i ∈ {1, ..., q} then we just write HP. This hypothesis asks the friction
parameter γ to be large enough, in order to limit the inertial effects, which induce oscillations
(see Example 8.3.1). The hypothesis asks also implicitly the gradients ∇fi to be Lipschitz over
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the trajectory (since γ ∈ R). Note that this last property holds whenever u(·) is bounded, since
the gradients are assumed to be Lipschitz continuous on bounded sets (see Corollary 8.2.4). See
Section 8.4 for a discussion on this hypothesis.

As a direct consequence of the dissipative nature of the system, we obtain that the values
(fi(u(t)) are bounded from above by max{fi(u0); Ei(t0)} :

Corollary 8.2.3. (Upper bound for the values) Let u : [t0, T [−→ H be a solution of (ISDF),
such that HPi holds. Then, for all i ∈ {1, ...,m} and t ě t0, we have the following upper bounds
:

(8.24) fi(u(t)) ď Ei(t0) + (fi(u0)− Ei(t0))e−γ(t−t0).

Proof. It is a trivial consequence of the monotonicity property of Ei obtained in Proposition
8.2.2. Indeed, we obtain for all t ∈ [t0,+∞[ :

(8.25)
1

γ
(fi ◦ u)′(t) ď Ei(t0)− (fi ◦ u)(t).

The conclusion follows Gronwall’s Lemma (see Lemma C.0.3), applied to t 7→ (fi ◦ u)(t) −
Ei(t0). �

This upper bound for the values has two interesting consequences. The first one is immediate,
and gives a useful sufficient condition for the trajectory u(·) to be bounded:

Corollary 8.2.4. Suppose that there exists i ∈ {1, ...,m} such that fi is coercive, and globally
Li-Lipschitz continuous, with γ2 > Li. Then any trajectory of (ISDF) is bounded.

The second consequence is that it tells us how to enforce the interesting property fi(u(·)) ď

fi(u0). Indeed, we know that this dynamic is not a descent method for the functions because
of the inertial effects which can create damped oscillations. But at least, one can choose ap-
propriately the initial velocity so that each point on the trajectory is better than the initial
one.

Corollary 8.2.5. Suppose that HPi holds for some i ∈ {1, ..., q}. For all u0 ∈ H, if u̇0 ∈ H is
chosen to satisfy

(8.26) 〈∇fi(u0), u̇0〉 ď −γ‖u̇0‖2,

then fi(u(t)) ď fi(u0) for all t ě t0. In particular, for all λ ∈ [0, 1
γ ], u̇0 = λs(u0) satisfies (8.26).

Remark 8.2.6. Observe that the set of vectors satisfying (8.26) recalls the notion of pseudo-
gradient introduced by Miglierina [247].

Proof of Corollary 8.2.5. We saw in Corollary 8.2.3 that the conclusion holds whenever fi(u0)−
Ei(t0) ě 0. This condition, once rewritten, is exactly (8.26). Now, consider u̇0 = λs(u0) for
some λ ∈ [0, 1

γ ]. We recall that this steepest descent direction satisfies for all i ∈ {1, ...,m}, see
(8.2),

(8.27) ‖s(u0)‖2 + 〈∇fi(u0), s(u0)〉 ď 0.

So we deduce that (8.26) holds for λs(u0) . �
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8.2.2 Energy estimations

We will now use the dissipative property of the system to deduce energy estimations for a global
solution of (ISDF).

Proposition 8.2.7. (Energy estimations) Let u : [t0,+∞[−→ H be a bounded global solution
of (ISDF) satisfying HP. Then,

(i) For all i ∈ {1, ...,m}, Ei(t) ↓ E∞i ∈ R whenever t→ +∞.

(ii) u̇ ∈ L∞([t0,+∞[,H) ∩ L2([t0,+∞[,H) and lim
t→+∞

‖u̇(t)‖ = 0.

(iii) ü ∈ L∞([t0,+∞[,H) ∩ L2([t0,+∞[,H) and liminfess
t→+∞

‖ü(t)‖ = 0.

(iv) For all i ∈ {1, ...,m}, (fi ◦ u)′ ∈ L∞([t0,+∞[,R) and lim
t→+∞

(fi ◦ u)′(t) = 0.

(v) For all i ∈ {1, ...,m}, (fi ◦ u) ∈ L∞([t0,+∞[,R) and lim
t→+∞

(fi ◦ u)(t) = E∞i .

(vi) For all i ∈ {1, ...,m}, there exists θi ∈ L∞([t0,+∞[,R) such that for all t ∈ [t0, T [,

mü(t) + γu̇(t) +

m∑
i=1

θi(t)∇fi(u(t)) = 0 with θ(t) ∈ ∆m.

In particular, it follows that
∑m

i=1 θi(·)(fi ◦ u)′ ∈ L1([t0,+∞[,H).

Proof. We start by proving that u̇ ∈ L∞([t0,+∞[,H), from which the other results will follow
easily. Take any i ∈ {1, ...,m}, and define c := inf

tět0
fi(u(t))−EI(t0) andM := max

i∈{1,...,m}
sup
tět0
‖∇fi(u(t))‖.

Given that the gradients ∇fi are Lipschitz continuous on bounded sets, we deduce (using the
mean value theorem) that the functions fi are bounded on bounded sets. Since the trajec-
tory is bounded, it follows that M and c are finite. In particular, it implies that ü + γu̇ ∈
L∞([t0,+∞[,H), since, according to (ISDF), we have for a.e. t ě t0 that −ü(t) − γu̇(t) ∈
co ∇fi(u(t)) which is bounded by M .

Using the monotonicity property of Ei (see Proposition 8.2.2), we have for all t ě t0:

(8.28) 0 ě Ei(t)− Ei(t0) ě ‖u̇(t)‖2 +
1

γ
(fi ◦ u)′(t) + c.

Using Cauchy-Schwarz inequality and the definition of M , one has

(8.29) (fi ◦ u)′(t) = 〈∇fi(u(t)), u̇(t)〉 ě −‖∇fi(u(t))‖‖u̇(t)‖ ě −M‖u̇(t)‖.

If we note b = 1
γM , we obtain

(8.30) 0 ě ‖u̇(t)‖2 − b‖u̇(t)‖+ c.

If we consider now the real polynomial X2 − bX + c, we can see that it takes negative val-
ues on a compact interval, independent of t. Since ‖u̇(t)‖ lies therein, we conclude that
u̇ ∈ L∞([t0,+∞[,H).

We can now derive the other properties, and we start with (i). The decreasing property of
the energies Ei (see Proposition 8.2.2) ensures the existence of a limit E∞i , taking eventually the
value −∞. But now we can prove that for all i ∈ {1, ...,m}, E∞i ∈ R. Indeed, using the same
inequality as in (8.29),

(8.31) E∞i = lim
t→+∞

Ei(t) ě inf
tět0

fi(u(t))− 1

γ
M‖u̇‖L∞([t0,+∞[,H) > −∞.
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We now prove (iii). Since ü + γu̇ and u̇ lie in L∞([t0,+∞[,H), we directly obtain that
ü ∈ L∞([t0,+∞[,H). For the L2 estimation, use Proposition 8.2.2 to obtain:

(8.32)
1

γ

∫ +∞

t0

‖ü(t)‖2 dt ď

∫ +∞

t0

− d

dt
Ei(t) dt = Ei(t0)− E∞i .

It follows that ü ∈ L2([t0,+∞[,H), and then, liminfess
t→+∞

‖ü(t)‖ = 0.

Let us now to prove (ii). Using exactly the same argument as for ü, one obtains u̇ ∈
L2([t0,+∞[, H). Moreover, we know that u̇ is Lipschitz continuous on [t0,+∞[ (since ü ∈
L∞([t0,+∞[,H)), so it follows that lim

t→+∞
‖u̇(t)‖ = 0.

We continue with items (iv) and (v). From Cauchy-Schwarz inequality, |(fi ◦ u)′(t)| ď

M‖u̇(t)‖ for all t ě t0. As a direct consequence of (ii), we deduce (fi ◦ u)′ ∈ L∞([t0,+∞[,H)
and lim

t→+∞
(fi ◦ u)′(t) = 0. Then it follows directly from (i) that lim

t→+∞
(fi ◦ u)(t) = E∞i , and

(fi ◦ u) ∈ L∞([t0,+∞[,H).
We end the proof with item (vi). It is clear from the definition of (ISDF) that for all t ě t0,

there exists θ(t) = (θi(t)) ∈ ∆m such that

ü(t) + γu̇(t) +
m∑
i=1

θi(t)∇fi(u(t)) = 0.

To get θi ∈ L∞([t0,+∞[,R), the whole point is to verify that it can be taken measurable. For
this, we write θ(t) as a solution of the following optimality problem

θ(t) ∈ argmin
θ∈Sq

j(t, θ), where j(t, θ) :=

∥∥∥∥∥
m∑
i=1

θi∇fi(u(t))

∥∥∥∥∥ .
Since j is a Caratheodory function, we are guaranteed of the existence of a measurable selection
θ : t 7→ θ(t) ∈ argmin

θ∈∆m

j(t, θ) (see B.1.2). Now we can write

m∑
i=1

θi(t)(fi ◦ u)′(t) =

m∑
i=1

θi(t)〈∇fi(u(t)), u̇(t)〉 = 〈−ü(t)− γu̇(t), u̇(t)〉

where u̇, ü ∈ L2([t0,+∞[,H). So, using the Cauchy-Schwarz inequality and the measurability
of θi, we get directly that

∑m
i=1 θi(·)(fi ◦ u)′ ∈ L1([t0,+∞[,H). �

8.2.3 Convergence of the trajectories

We present here the main result of this section. Under a convexity assumption, we show
that the bounded trajectories of (ISDF) weakly converge to a solution. Recall that the HP
hypothesis asks in particular the gradients ∇fi to be Lipschitz continuous in a neighborhood of
the trajectory.

Theorem 8.2.8. Suppose that the objective functions fi are convex. Then any bounded trajec-
tory of (ISDF) u : [t0,+∞[−→ H satisfying HP converges weakly to a weak Pareto optimum.

We sketch here the main points of the proof. The convergence essentially relies on Opial’s
Lemma that we recall below (note Ω[u(t)] the set of weak sequential cluster points of the
trajectory) :

Lemma 8.2.9 (Opial). Let S be a non empty subset of H, and u : [t0,+∞[→ H. Assume that

(i) Ω[u(t)] ⊂ S;

(ii) for every z ∈ S, lim
t→+∞

‖u(t)− z‖ exists.

Then u(t) weakly converges to some element u∞ ∈ S.
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Like in Chapter 6, it is applied to the set

S := {x ∈ H | fi(x) ď lim
t→+∞

fi(u(t)) for all i ∈ {1, ...,m} },

for which (i) is easy to obtain. The key point to prove the Féjer property (ii) is that h(t) :=
1
2‖u(t)− z‖2 satisfies a differential inequality. We will use for this the following result from [29,
Lemma 4.2] or [30, Lemma 2.3] :

Lemma 8.2.10. Let h ∈ C1([t0,+∞[,R) be a positive function satisfying ḧ + γḣ ď g where
γ > 0 and g ∈ L1([t0,+∞[,R). Then lim

t→+∞
h(t) exists.

Once obtained the weak convergence of the trajectory, the characterisation of its limit point as
a weak Pareto point is a direct consequence of the upper semi-continuity of u⇒ co ∇fi(u) (see
Proposition 5.1.11) :

Lemma 8.2.11. Assume that the objective function {f1, ..., fm} are convex. If un
w−−→

n→+∞
u∞

and u∗n −−→n→+∞
0 with u∗n ∈ co ∇fi(un), then 0 ∈ co ∇fi(u∞).

Proof of Theorem 8.2.8. Since u(·) is bounded, there exists some tn → +∞ such that u(tn)
converges weakly to some u∞. For all i ∈ {1, ...,m}, since fi is convex continuous, it is in
particular weakly semi-continuous. Hence, using Proposition 8.2.7 we get

(8.33) fi(u∞) ď lim inf
n→+∞

fi(u(tn)) = lim
t→+∞

fi(u(t)).

This proves that Ω[u(t)] ⊂ S 6= ∅. To obtain convergence of the trajectory through Opial’s
Lemma, it remains to prove the Fejer property (ii). That is, given some z ∈ S, prove that
lim

t→+∞
‖u(t)− z‖ exists.

Define h(t) := 1
2‖u(t) − z‖2 for all t ě 0. Since u̇ is absolutely continuous, then h is twice

differentiable for a.e. t ∈ [0,+∞[, and

ḣ(t) = 〈u̇(t), u(t)− z〉,(8.34)

ḧ(t) = 〈ü(t), u(t)− z〉+ ‖u̇(t)‖2.(8.35)

A linear combination of (8.34) and (8.35) gives

(8.36) ḧ(t) + γḣ(t) = ‖u̇(t)‖2 + 〈−ü(t)− γu̇(t), z − u(t)〉.

Let θi(t) ∈ ∆m be such that −ü(t)− γu̇(t) =
∑m

i=1 θi(t)∇fi(u(t)), then we can rewrite

(8.37) ḧ(t) + γḣ(t) = ‖u̇(t)‖2 +
m∑
i=1

θi(t)〈∇fi(u(t)), z − u(t)〉.

For any i ∈ {1, ...,m}, we use the monotone property of Ei and z ∈ S (recall that E∞i =
lim

t→+∞
fi(u(t))) together with the convexity of fi, to obtain for all t ∈ [0,+∞[ :

Ei(t) = fi(u(t)) +
1

γ
(fi ◦ u)′(t) + ‖u̇(t)‖2(8.38)

ě E∞i ě fi(z) ě fi(u(t)) + 〈∇fi(u(t)), z − u(t)〉.

Thus, it follows from (8.37) and (8.38) that

(8.39) ḧ(t) + γḣ(t) ď 2‖u̇(t)‖2 +
1

γ

m∑
i=1

θi(t)(fi ◦ u)′(t),
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where the right member of (8.39) lies in L1([t0,+∞[,H) (see Proposition 8.2.7).
Thus, hypothesis of Lemma 8.2.10 is satisfied, and lim

t→+∞
h(t) exists. It follows from Opial’s

Lemma that u(t) weakly converges to some u∞ ∈ S. It remains to prove that u∞ is a weak
Pareto. In (ISDF), we have −ü(t)− γu̇(t) ∈ co ∇fi(u(t)), where (see Proposition 8.2.7)

un
w−−→

n→+∞
u∞ and liminfess

t→+∞
‖ü(t) + γu̇(t)‖ = 0.

Thus, we can apply Lemma 8.2.11 to obtain 0 ∈ co ∇fi(u∞). Following Theorem 5.2.10,
this is equivalent for u∞ to be a weak Pareto point. �

Remark 8.2.12. If the objective functions are not convex, we still can say something on the
limits points: each weak limit point of a bounded trajectory of (ISDF) is a critical Pareto point
(see Proposition 8.2.7 and 8.2.11).

8.3 Examples and numerical results

Example 8.3.1. Consider two quadratic functions from R2 to R, defined by f1(x, y) = 1
2(x +

1)2 + 1
2y

2 and f2(x, y) = 1
2(x− 1)2 + 1

2y
2. The corresponding Pareto set is [−1,+1]× {0} and

the steepest descent vector field is given by :

(8.40) s(x, y) =


−(x− 1, y) if x > 1,

−(0, y) if − 1 ď x ď 1,

−(x+ 1, y) if x < −1.

Figure 8.1 shows some trajectories of the (ISDF) dynamic, with the steepest descent vector
field plotted in background. We took the Cauchy data (u0, u̇0) randomly. Here the trajectories
are computed exactly, since in this simple example (ISDF) can be solved explicitly. We can
observe the following: all the trajectories converge to a Pareto point, the dynamic is clearly not
a descent method, and can be highly oscillating whenever the friction parameter is too close to
zero.

Figure 8.1: Friction parameter γ = 1 (left) and γ = 0.1 (right). For each trajectory, the initial
point is indicated by the symbol ×, and the limit point by ⊕.
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Example 8.3.2. Let f1(x, y) = 1
2(x2 + y2) and f2(x, y) = x, that we already seen in Example

8.3.2. The corresponding Pareto set is ] − ∞, 0] × {0}, plotted in blue in Figure 8.2. Once
computed, we see that the steepest descent vector field is defined according to three areas of
the plane (these areas are delimited by red lines in Figure 8.2) :

(8.41) s(x, y) =


−(1, 0) if x ě 1,

−(x, y) if (x− 1
2)2 + y2 ď 1

4 ,
−1

(x−1)2+y2 (y2, y(1− x)) else.

In this case we plot the trajectories using an explicit discretization in time of (IMOG):

un+1 − 2un + un−1

τ2
+ γ

un+1 − un
τ

− s(un) = 0

⇔ un+1 = un + 1
1+τγ (un − un−1) + τ2

1+τγ s(un).

We take γ = 1, τ = 0.05, and consider a randomly chosen initial data. More exactly, generate
randomly (u0, u̇0), and take u1 = u0 + τu1.

Figure 8.2: For each trajectory, the initial point is indicated by the symbol ×, and the limit
point by ⊕.

Remark 8.3.3 (Towards Fast Iterative Methods for Multi-Objective optimization). The study
of the Inertial Steepest Descent with Friction dynamic should be a first step towards fast nu-
merical methods to solve multi-objective optimization problems. Future works should start by
considering the (ISDF) dynamic with a variable damping coefficient,

ü(t) + γ(t)u̇(t) + co∇fi(u(t))0,
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where γ(t) should be able to tend to zero. In the mono-criteria case, this dynamic has been
studied only very recently [92, 303, 22]. The analysis of this multi-objective generalization might
be very delicate, because of the assumption we need on the damping parameter γ2 > L.

The idea is to develop, in a second time, fast converging Nesterov-like algorithms for multi-
objective problems. They would write as follows:

yk = xk + λs(xk),

xk+1 = yk + βn(yk − yk−1)

where λ > 0 is a stepsize, and βn ∈ [0, 1[ is an inertial parameter converging to 1. To guarantee
the fast convergence of the method, βn shall be finely tuned, look for instance in the works of
Nesterov [251] and Beck-Teboulle [53].

Example 8.3.4. Let F = (f1, f2) : Rn −→ R2 be the function defined for all x = (x1, ..., xn)
by:

f1(x) =

(
n∑
i=1

x2
i − 10 cos(2πxi) + 10

) 1
4

and

(
n∑
i=1

(xi − 1.5)2 − 10 cos(2π(xi − 1.5)) + 10

) 1
4

.

It is the function considered in Example 6.3.5, in which we removed the square roots, so that
F can be smooth. We compare here three numerical methods:

• The first order steepest descent, used in Examples 6.3.4 and 6.3.5.

• The Euler discretization of the (ISDF) dynamic, used in Example 8.3.2.

• A FISTA-like version of the steepest descent, defined as follows:

yk = xk−1 + τs(xk)

xk = yk +
tk−1−1
tk

(yk − yk−1), where tk =
1+

√
1+4t2k−1

2 .

We take n = 10, τ = 0.5, γ = 1, and run in parallel these methods for 1000 iterations. The
result is presented in Figure 8.3, in which we measure on k ∈ {1, . . . , 1000} the relative decay

max
{
fi(xk)−fi(x1000)
fi(x0)−fi(x1000) , i ∈ {1, 2}

}
.

Figure 8.3: Convergence rates for the steepest descent method (dotted curve), the discretized
(ISDF) (continuous curve) and its improvement using FISTA-like decreasing friction (thick
cirve).
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8.4 Comments and perspectives

Remark 8.4.1 (On the hypothesis on the friction parameter). To ensure the convergence of
the trajectories of (ISDF), we assume in Section 8.2 the relation γ2 > L, where γ is the damping
parameter and L is a Lipschitz constant for the gradients of the objective functions {f1, ..., fm}.
When we reduce to the mono-objective case (m = 1), we recover the (HBF) dynamic

(HBF) ü(t) + γu̇(t) +∇f(u(t)) = 0

for which such assumption is not needed to guarantee the convergence of the trajectories, see
[29]. Thus, one might think that this hypothesis HP is not necessary, and is just a consequence
of a ‘bad’ choice of Lyapunov function in Proposition 8.2.2. In addition, the analysis of (HBF)
relies on the Lyapunov function

E(t) = f(u(t)) + ‖u̇(t)‖2,

while our energy functions involve in addition the derivatives of the fi’s:

Ei(t) = fi(u(t)) +
1

γ
〈∇fi(u(t)), u̇(t)〉+ ‖u̇(t)‖2.

Thus, the analysis of (ISDF) and (HBF) are of different nature.
Recently, Attouch and Maingé [30] studied the following extension of (HBF):

ü(t) + γu̇(t) +∇f(u(t)) +Au(t) = 0,

where f : H −→ R is a convex differentiable function, and A : H −→ H is a β-cocoercive1

maximal monotone operator. The solutions of this dynamic are proved to weakly converge,
when t → +∞, under the assumption γ2 > 1

β . As underlined by the authors, this assumption
only involves the cocoercivity of the nonpotential part of the operator ∇f + A which governs
the dynamic. Thus, the parallel can be done with our dynamic (ISDF), which is governed by an
operator s : H −→ H which does not derive from a potential (see Example 6.1.12). Of course, −s
is not monotone, and it is not clear whether it is 1

L -cocoercive, with L := max
i∈{1,...,m}

Lip(∇fi,H).

But the similarities between those dynamics is striking.

Remark 8.4.2 (Some things left behind). In this chapter, we did not take into account a
constraint C for (MOP). This is because the analysis of a nonsmooth operator NC is really
difficult once we introduce inertia into the dynamic. From a mechanical point of view, in this
second-order dynamic (ISDF), when a trajectory reaches the boundary of the constraint, there
is a shock, which is hard to manage. Nevertheless, we still can penalize the constraint with a
smooth barrier function φ, and solve the relaxed problem

(MOP) MIN
x∈H

(f1(x) + φ(x), ..., fm(x) + φ(x)).

The corresponding (ISDF) dynamic would be

(ISDF) ü(t) + γu̇(t) + (∇φ(u(t)) + co ∇fi(u(t)))0 .

For more details on this approach, see [10].
An other missing point in this chapter, is the quantitative analysis of the trajectories around

their limit point. We think that it will be worth it to study the convergence rate of this dynamic
whenever we will be able to let the friction parameter to tend to zero.

1An operator A : H −→ H is said to be β-cocoercive if, for all x, y ∈ H, 〈Ax − Ay, x − y〉 ě β‖Ax − Ay‖2
(see [51, Definition 4.4]). For instance, for a convex Fréchet differentiable function f : H −→ R, its gradient
∇f : H −→ H is β-cocoercive if and only if it is 1

β
-Lipschitz continuous. It is the Baillon-Haddad theorem, see

[51, Corollary 18.16].
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Appendix A

Variational analysis tools in Banach
spaces

In this chapter, we give in detail the proofs of some results exposed in Chapter 2. This chapter
is structured exactly as the introducing Chapter, with three sections corresponding to the ones
of Chapter 2.

A.1 Basic topology and differential calculus

Proposition A.1.1. In a Hausdorff locally convex topological vector space (X, τ), let A ⊂ X
be a compact set not containing the origin. Then R+A is closed.

Proof. Let (tαaα)α∈A ⊂ R+A be a net, converging to x ∈ X. Let us show that x ∈ R+A. By
compactness of A, and considering eventually a subnet, one can assume that the net (aα)α∈A
converges to some a ∈ A. Let (pi)i∈I be a family of semi-norms generating the topology of τ .
Since it is assumed that 0 /∈ A, and that (X, τ) is Hausdorff, there exists some i ∈ I such that
pi(a) 6= 0.

We have tαaα → x in X and pi(aα)→ pi(a) 6= 0 in R, so tαaα
pi(aα) converges to x

pi(a) in X. Now

we can write tα = pi

(
tαaα
pi(aα)

)
, which tends to pi

(
x

pi(a)

)
. Define t := pi

(
x

pi(a)

)
ě 0, and use

again the Hausdorff property to conclude that x = ta. �

Proposition A.1.2. Let (X, τ) be a locally convex topological vector space, and K ⊂ X a
polyhedral cone with a nonempty interior. Then X has finite dimension.

Proof. Since K has finite interior, there exists a nonempty open set U ⊂ K. For any x ∈ U , U−x
is a neighborhood of the origin which implies that X = R+(U − x). Since R+(U − x) ⊂ span U ,
we have X = span U . But U ⊂ K, so X = span K.

By definition of a polyhedral cone, there exists m ∈ N and some {a1, ..., am} ⊂ X such
that K = R+co{a1, ..., am}. It follows that X = span K = span {a1, ..., am}, and proves the
claim. �

Proposition A.1.3 ([325, Theorem 1.1.2]). Let C be a convex set in a topological vector space
(X, τ). If int τC 6= ∅, then

cl τ int τC = cl τC and int τcl τC = int τC.

For a function f : X −→ R, we use the following notation to denote its sublevel sets:

[f ď λ] := {x ∈ X | f(x) ď λ}, [f < λ] := {x ∈ X | f(x) < λ}.
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Proposition A.1.4. Let (X, τ) be a topological vector space, and f : X −→ R be a convex
continuous function. If there exists x̄ ∈ X such that f(x̄) < 0, then

cl τ [f < 0] = [f ď 0] and int τ [f ď 0] = [f < 0].

Proof. This proof is inspired by the one of Hiriart-Urrity and Lemaréchal in [195, Proposition
VI.1.33], where this result is stated with X = Rn.

Let x ∈ cl τ [f < 0], i.e. there exists a net (xα)α∈A in [f < 0] such that xα
τ−−→

α∈A
x. Since

f(xα) < 0 for all α ∈ A, and using the lower semi-continuity of f , we obtain

f(x) ď lim inf
α∈A

f(xα) ď 0,

that is, x ∈ [f ď 0].
Take now any x ∈ [f ď 0], and define for all n ∈ N:

xn :=
1

n
x̄+

(
1− 1

n

)
x.

We can rewrite the latter as

xn − x =
1

n
(x̄− x),

where the right member goes to zero when n → +∞. Hence, xn converges to x. Moreover,
using the definition of xn together with the convexity of f and the hypothesis f(x̄) < 0 gives

f(xn) ď
1

n
f(x̄) +

(
1− 1

n

)
f(x) ď

1

n
f(x̄) < 0.

So, xn ∈ [f < 0] and it follows that x ∈ cl τ [f < 0]. This proves item i)
For item ii), we apply Proposition A.1.3 to C = [f < 0], which is convex since f is convex.

For this we need to verify that [f < 0] has a nonempty τ -interior. But f being upper semi-
continuous implies that [f ě 0] is τ -closed, and its complement is exactly [f < 0]. Hence,
[f < 0] is τ -open and nonempty since we assume that x̄ ∈ [f < 0]. So Proposition A.1.3 applies,
and we obtain

int τcl τ [f < 0] = int τ [f < 0].

Since [f < 0] is open and satisfies item i), we deduce that

int τ [f ď 0] = [f < 0].

�

Now we prove the results concerning the differentiability of a function F : X −→ Y, where
X and Y are two Banach spaces. First, we will need some technical results.

Proposition A.1.5. If F : X −→ Y is Gateaux differentiable at x̄ ∈ X, then for all d ∈ X,
the application φ : t ∈ R 7−→ F (x̄ + td) ∈ Y is continuous and derivable at zero. In particular,
φ′(0) = DF (x̄; d).

Proof. Let us show that φ is right derivable at zero, using the Gateaux differentiability of F at
x̄:

lim
h→0+

φ(h)− φ(0)

h
= lim

h→0+

F (x̄+ hd)− F (x̄)

h
= DF (x̄; d).

Similarly, it is left derivable at zero:

lim
h→0−

φ(h)− φ(0)

h
= lim

h→0−

F (x̄+ hd)− F (x̄)

h
= lim

h→0+

F (x̄− hd)− F (x̄)

−h
= −DF (x̄;−d).

Since −DF (x̄;−d) = DF (x̄; d) by linearity of DF (x̄), we have that φ is derivable at zero, and
its derivative is φ′(0) = DF (x̄; d). In particular, φ is continuous at zero. �
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We immediately derive the following corollary, just by observing that the derivability at t̄ ∈ [0, 1]
of t 7→ F (x̄+ td) is exactly the same than the derivability at zero of t 7→ F (x̄+ t̄d+ td).

Corollary A.1.6. If F : X −→ Y is Gateaux differentiable on a segment [x̄1, x̄2] ⊂ X, then for
all d ∈ X, the application φ : t ∈ R 7−→ F ((1 − t)x̄2 + tx̄1) ∈ Y is continuous and derivable on
[0, 1]. In particular, φ′(t) = DF ((1− t)x̄2 + tx̄1; x̄2 − x̄1) for all t ∈ [0, 1].

Applying the fundamental theorem of calculus to φ : [0, 1] −→ Y, ones obtain

Corollary A.1.7. If F : X −→ Y is Gateaux differentiable on a segment [x̄1, x̄2] ⊂ X, then

F (x̄2)− F (x̄1) =

∫ 1

0
DF ((1− t)x̄2 + tx̄1; x̄2 − x̄1) dt.

Now we can prove Proposition 2.1.11, that we recall here:

Proposition A.1.8. Let F : X −→ Y be Gateaux differentiable on an open set U ⊂ X. Then,
for all x̄ ∈ U , the following is equivalent:

i) F is strictly Gateaux differentiable at x̄,

ii) DF : U −→ L(X, Y) is pointwise continuous at x̄, i.e. continuous with respect to the norm
topology of X and the pointwise1 topology of L(X, Y). In other words, for all converging

net (xα)α∈A ⊂ U converging to x̄, we have DF (xα; d)
‖·‖Y−−→
α∈A

DF (x̄; d) for all d ∈ X.

Proof. Suppose first that F is strictly Gateaux differentiable at x̄ and fix some d ∈ X. Using
the strict Gateaux differentiability at x̄, there exists some δ > 0 such that

(A.1) ∀x ∈ x̄+ δB, ∀t ∈]0, δ[,

∥∥∥∥F (x+ td)− F (x)

t
−DF (x̄; d)

∥∥∥∥ ď
ε

2
.

Given this δ, for any x ∈ x̄+δB we can assume (taking eventually a smaller δ) that F is Gateaux
differentiable at x. Then, for all x ∈ x̄+ δB there exists some tx ∈]0, δ[ such that

(A.2)

∥∥∥∥F (x+ txd)− F (x)

tx
−DF (x; d)

∥∥∥∥ ď
ε

2
.

Combining (A.1) and (A.2) together with the triangle inequality, we proved that

∃δ > 0, ∀x ∈ x̄+ δB, ‖DF (x̄; d)−DF (x; d)‖ ď ε.

Item ii) being proved, suppose now the reverse, that is item i) holds. To prove that F is
strictly Gateaux differentiable at x̄, fix some d ∈ X, and ε > 0. Using the continuity of DF at
x̄ in the sense of item ii), we obtain the existence of δ > 0 such that B(x̄, δ) ⊂ U , and which
satisfies

(A.3) for all x ∈ B(x̄, δ), ‖DF (x; d)−DF (x̄; d)‖ ď ε.

Take arbitrary x ∈ B(x̄, δ2) and t ∈]0, δ‖d‖2 [. These bounds ensure that x+ td remains in B(x̄, δ),
where F is Gateaux differentiable. Since [x;x+ td] ⊂ B(x̄, δ), we can use Corollary A.1.7 which
gives us

F (x+ td)− F (x) =

∫ 1

0
DF (x+ τtd, td) dτ,

1The pointwise topology is the locally convex topology τpw on L(X, Y) defined by the family of seminorms
{px}x∈X, where px : A ∈ L(X, Y) 7→ ‖Ax‖Y . This topology is also called the weak operator topology
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or equivalently

(A.4) F (x+ td)− F (x)− tDF (x̄; d) =

∫ 1

0
t(DF (x+ τtd, d)−DF (x̄; d)) dτ,

But for all τ ∈ [0, 1], x + τtd lies in [x, x + td] ⊂ B(x̄, d) where (A.3) applies. We deduce
immediately from (A.4) that

‖F (x+ td)− F (x)− tDF (x̄; d)‖ ď εt.

Hence, we proved that for all x ∈ B(x̄, δ2) and t ∈]0, δ‖d‖2 [,∥∥∥∥F (x+ td)− F (x)

t
−DF (x̄; d)

∥∥∥∥ ď ε,

which proves the strict Gateaux differentiability of F at x̄. �

In a similar fashion, we prove Proposition 2.1.12:

Proposition A.1.9. Let F : X −→ Y be Frechet differentiable on an open set U ⊂ X. Then,
for all x̄ ∈ U , the following is equivalent:

i) F is strictly Frechet differentiable at x̄,

ii) DF : U −→ L(X, Y) is strongly continuous at x̄, i.e. continuous with respect to the norm
topology of X and the usual operator norm topology of L(X, Y).

We will use for this proof the fact that the Frechet differentiability (and strict Frechet differen-
tiability) of F at x̄ is equivalent to

lim
t↓0

sup
‖d‖ď1

‖F (x̄+ td)− F (x̄)− tDF (x̄; d)‖
t

= 0,(A.5)

lim
x→x̄
t↓0

sup
‖d‖ď1

‖F (x+ td)− F (x)− tDF (x̄; d)‖
t

= 0.(A.6)

Proof. Suppose first that F is strictly Frechet differentiable at x̄. Using the strict Frechet
differentiability at x̄ and (A.6), there exists some δ > 0 such that

(A.7) ∀x ∈ B(x̄, δ), ∀t ∈]0, δ[, sup
‖d‖ď1

∥∥∥∥F (x+ td)− F (x)

t
−DF (x̄; d)

∥∥∥∥ ď
ε

2
.

Given this δ, for any x ∈ B(x̄, δ) we can assume (taking eventually a smaller δ) that F is Frechet
differentiable at x. Then, for all x ∈ B(x̄, δ) we use (A.5) to obtain some tx ∈]0, δ[ such that

(A.8) sup
‖d‖ď1

∥∥∥∥F (x+ txd)− F (x)

tx
−DF (x; d)

∥∥∥∥ ď
ε

2
.

Combining (A.7) and (A.8) together with the triangle inequality, we proved that

∃δ > 0, ∀x ∈ B(x̄, δ), sup
‖d‖ď1

‖DF (x̄; d)−DF (x; d)‖ ď ε.

In other words, using the definition of the operator norm in L(X, Y),

∃δ > 0, ∀x ∈ B(x̄, δ), �DF (x̄)−DF (x)� ď ε.
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Item ii) being proved, suppose now the reverse, that is item i) holds. To prove that F is
strictly Frechet differentiable at x̄, fix some ε > 0. Using the continuity of DF at x̄ in the sense
of item ii), we obtain the existence of δ > 0 such that B(x̄, δ) ⊂ U , and which satisfies

(A.9) for all x ∈ B(x̄, δ), �DF (x)−DF (x̄)� ď ε,

or, equivalently,

(A.10) for all x ∈ B(x̄, δ), sup
‖d‖ď1

‖DF (x; d)−DF (x̄; d)‖ ď ε.

Take arbitrary x ∈ B(x̄, δ2) and t ∈]0, δ2 [. For all d ∈ X such that ‖d‖ ď 1, these bounds ensure
that x + td remains in B(x̄, δ), where F is Frechet differentiable. Since [x;x + td] ⊂ B(x̄, δ),
we can use Corollary A.1.7 (recall that Frechet differentiabiliy entails Gateaux differentiability)
which gives us

F (x+ td)− F (x) =

∫ 1

0
DF (x+ τtd, td) dτ,

or equivalently

(A.11) F (x+ td)− F (x)− tDF (x̄; d) =

∫ 1

0
t(DF (x+ τtd, d)−DF (x̄; d)) dτ,

But for all τ ∈ [0, 1], x + τtd lies in [x, x + td] ⊂ B(x̄, d) where (A.10) applies. We deduce
immediately from (A.11) that

sup
‖d‖ď1

‖F (x+ td)− F (x)− tDF (x̄; d)‖ ď εt.

Hence, we proved that for all x ∈ B(x̄, δ2) and t ∈]0, δ‖d‖2 [,

sup
‖d‖ď1

∥∥∥∥F (x+ td)− F (x)

t
−DF (x̄; d)

∥∥∥∥ ď ε,

which proves the strict Gateaux differentiability of F at x̄. �

Remark A.1.10. The similarity between the proofs of Propositions A.1.8 and A.1.9 is simply
due to the fact that and Frechet differentiabiliy are just two particular insances of bornological
differentiabilities, for which this equivalence extends.

A.2 Nonsmooth analysis for extended-real-valued functions

Proposition A.2.1. Let x ∈ Ω ⊂ X. Then T adΩ (x) = T rΩ(x) if and only if Ω is radial at x. In
particular T adΩ (x) = T rΩ(x) for all x ∈ Ω when Ω is convex.

Proof. Suppose that T adΩ (x) = T rΩ(x) and take y ∈ Ω. We have that y = x + (y − x) ∈ Ω, so
y − x ∈ T rΩ(x) = T adΩ (x). So there exists some δ > 0 such that for all t ∈ [0, δ[, x + td ∈ Ω.
In other words, [x, y] ∩ B(x, δ) ⊂ Ω. Conversely, suppose that Ω is radial at x, and consider
d ∈ T rΩ(x). So we have x + λd ∈ Ω for some λ > 0. By hypothesis, there exists a δ > 0
such that [x, x + λd] ∩ B(x, δ) ⊂ Ω. In other words, for all t ∈ [0, λδ[, we have x + td ∈ Ω,
whence d ∈ T adΩ (x). Now suppose that Ω is convex. In particular it is radial, and the equality
T adΩ (x) = T rΩ(x) holds. Moreover, coT rΩ(x) = coR+(Ω−x) = R+co(Ω−x) = R+(Ω−x) = T rΩ(x)
which proves that T rΩ(x) is convex. �

Proposition A.2.2. Let f : X −→ R ∪ {+∞} and x ∈ dom f . Consider the following sets:
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i) {x∗ ∈ X∗ | ∀y ∈ X, f(y)− f(x)− 〈x∗, y − x〉 ě 0},

ii) {x∗ ∈ X∗ | x is a global minimum of y 7→ f(y)− 〈x∗, y〉},

iii) {x∗ ∈ X∗ | (x∗,−1) ∈ Nepi f (x, f(x))},

iv) {x∗ ∈ X∗ | ∀d ∈ X, 〈x∗, d〉 ď dD−f(x; d)}.

Hence the first three sets always coincide, and we call it the convex subdifferential of f at x,
noted ∂f(x). Moreover, the fourth set always contains ∂f(x), with equality when f is convex.

Proof. Equivalence between the sets 1 and 2 is immediate.

Now prove equivalence between sets 1 and 3. Suppose that (x∗,−1) ∈ Nepi f (x, f(x)),
then by definition, ∀(d, λ) ∈ Tepi f (x, f(x)), 〈x∗, d〉 ď λ. Take now any y ∈ X, and pose
d := y − x, λ := f(y) − f(x). One easily sees that (x, f(x)) + (d, λ) ∈ epi f , that is (d, λ) ∈
T repi f (x, f(x)) ⊂ Tepi f (x, f(x)). So we deduce 〈x∗, y − x〉 ď f(y) − f(x) which is what we
wanted. Now suppose that for all y ∈ X we have f(y)− f(x)− 〈x∗, y − x〉 ě 0. Take now any
(d, λ) ∈ Tepi f (x, f(x)), then by definition there exists sequences dn → d, λn → λ and tn > 0
such that f(x+ tndn) ď f(x) + tnλn. Then

(A.12) 〈x∗, d〉 = lim
n→+∞

〈x∗, x+ tndn − x〉
tn

ď lim
n→+∞

f(x+ tndn)− f(x)

tn
ď lim

n→+∞
λn = λ.

Now we check that in the general case, any x∗ ∈ ∂f(x) is a linear minorant for dD−f(x; ·).
Indeed for any d ∈ X,

(A.13) 〈x∗, d〉 = lim inf
t↓0

〈x∗, x+ td− x〉
tn

ď lim inf
t↓0

f(x+ td)− f(x)

t
= dD−f(x; d).

Suppose now that f is convex, and take any linear minorant x∗ of dD−f(x; ·). Then for any
y ∈ X,
(A.14)

〈x∗, y− x〉 ď lim inf
t↓0

f(x+ t(y − x))− f(x)

t
ď lim inf

t↓0

tf(y) + (1− t)f(x)− f(x)

t
= f(y)− f(x).

�

Proposition A.2.3. Let x ∈ Ω ⊂ X. Then:

i) clT adΩ (x) ⊂ TBΩ (x) ⊂ clT rΩ(x) = TΩ(x) .

ii) If Ω is radial at x, then the above inclusions become equalities.

Proof. We start with item i), and prove that clT adΩ (x) ⊂ TBΩ (x). Let d = lim
n→+∞

dn with

dn ∈ T adΩ (x), that is there exists some δn > 0 such that for all t ∈ [0, δn[, one has x+ tdn ∈ Ω.
We can select a sequence satisfying tn ↓ 0 and tn < δn, so that x + tndn ∈ Ω for all n ∈ N.
Whence d ∈ TBΩ (x). Now we show that TBΩ (x) ⊂ clT rΩ(x). Let d ∈ TBΩ (x), then there exists
tn ↓ 0 and dn → d such that x + tndn ∈ Ω for all n ∈ N. Clearly, dn ∈ T rΩ(x), which proves
the claim. The inequalities concerning the weak Bouligand tangent cone follows exactly the
same proof, replacing strong by weak topology. Item ii) is a direct consequences of Proposition
A.2.1. �

Proposition A.2.4. Let x ∈ Ω ⊂ X, then TBΩ (x) is closed.
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Proof. Let dn be a sequence in TBΩ (x) strongly converging to some d ∈ X. Then there exists for
all n ∈ N a sequence dkn −→

k→+∞
dn and tkn −→

k→+∞
0 such that for all k ∈ N we have x+ tknd

k
n ∈ Ω.

So for all n ∈ N, there exists some kn ∈ N such that for all k ě kn we have

(A.15) ‖dkn − dn‖ ď
1

n
and tkn ď

1

n
.

By setting d̃n := dknn and
˜
tknn one can see that d̃n → d, t̃n → 0 with x+ t̃nd̃n ∈ Ω. This achieve

the proof. �

Proposition A.2.5. Let u : I ⊂ R −→ X and f ◦ u : I −→ R ∪ {+∞}, where I is an open
interval of R. Suppose that both u and f ◦ u are derivable at t ∈ I, and that u(t) ∈ dom ∂Bf .
Then,

(A.16) (f ◦ u)′(t) = 〈x∗, u̇(t)〉, ∀x∗ ∈ ∂Bf(u(t)).

Proof. Let x∗ be in ∂Bf(u(t)), then 〈x∗, u̇(t)〉 ď dBf(u(t), u̇(t)) where

dBf(u(t), u̇(t)) = lim inf
h↓0, d′→u̇(t)

f(u(t) + hd′)− f(u(t))

h

ď lim inf
h↓0, ε→0

f(u(t) + hu(t+ε)−u(t)
ε )− f(u(t))

h

Taking ε = h we obtain 〈x∗, u̇(t)〉 ď (f ◦ u)′(t). Now we write 〈x∗,−u̇(t)〉 ď dBf(u(t),−u̇(t)),
and using the same method with ε = −h one obtains 〈x∗,−u̇(t)〉 ď −(f ◦ u)′(t) which ends the
proof. �

Proposition A.2.6. Let f : X −→ R ∪ {+∞} be a quasi-convex function such that f(x2) ď

f(x1). Then 〈x∗, x2 − x1〉 ď 0 for all x∗ ∈ ∂Bf(x1) ⊃ ∂Ff(x1).

Proof. Introducing the convex sublevel set Ω = [f ď f(x1)], we see that x1 and x2 lie therein.
Hence tx2 + (1− t)x1 lies in this set for all t ∈ [0, 1], and:

(A.17) f(x1 + t(x2 − x1))− f(x1) ď 0 for any t ∈ [0, 1].

After dividing by t and passing to the limit when t ↓ 0, we obtain dD−f(x1;x2 − x1) ď 0.
Conclusion follows dBf(x1; ·) ď dD−f(x1; ·). �

Proposition A.2.7. Let f : X −→ R ∪ {+∞} be a quasi-convex function such that f(x2) <
f(x1). Then 〈x∗, x2 − x1〉 ď 0 for all x∗ ∈ ∂Lf(x1). If f is locally Lipschitz then ∂L can be
replaced by ∂C.

Proof. We start by proving our statement for the limiting subdifferential. Let x∗ ∈ ∂Lf(x1),

then it is the weak limit of a sequence (x∗n)n∈N such that x∗n ∈ ∂Ff(xn) with xn
‖·‖−−→

n→+∞
x1 and

f(xn)
R−−→

n→+∞
f(x1). Since we have the strict inequality f(x2) < f(x1), we can assume that

f(x2) < f(xn) for all n ∈ N. In particular, Proposition 2.2.15 applies, and 〈x∗n, x2 − xn〉 ď 0.
The conclusion follows directly by passing to the limit on n.

It is easy to extend this property to the Clarke subdifferential when f is locally Lipschitz
continuous and X reflexive, by using ∂Cf(x1) = co ∂Lf(x1). Otherwise, we have to prove that
dCf(x1;x2 − x1) ď 0.

If x′ ∈ X is taken arbitrary close to x1, and because of the continuity of f together with
f(x2) < f(x1), we can assume that f(x2) ď f(x′). Using that f is quasi-convex together with
x′, x2 ∈ [f ď f(x1)], we obtain that

∀t ∈ [0, 1], f(x′ + t(x2 − x′))− f(x′) ď 0.
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Hence, for all t ∈ [0, 1] and x′ close to x1, use the inequality above and the Lipschitz continuity
at x1 to obtain:

f(x′ + t(x2 − x1))− f(x′) = f(x′ + t(x2 − x1))− f(x′ + t(x2 − x′)) + f(x′ + t(x2 − x′))− f(x′)

ď tLip(f, x1)‖x′ − x‖.

As a consequence,

dCf(x1;x2 − x1) = lim sup
x′→x1

t↓0

f(x′ + t(x2 − x1))− f(x′)

t
ď lim sup

x′→x1

t↓0

Lip(f, x1)‖x′ − x‖ = 0.

�

A.3 Optimization for vector-valued functions

Here are some results concerning the bases of a cone K in a locally convex topological vector
space (X, τ). Let us fix some definitions in that setting. We say that a set A ⊂ K is τ -bounded
if for any neighbourhood of zero V , there exists some λ > 0 such that A ⊂ λV . This simply
corresponds to the usual norm-boundedness in the following cases: X is a normed space equipped
with its norm or weak topology, or X is the topological dual of a Banach space, equipped with
the norm, weak or weak star topology. It is a consequence of the uniform boundedness principle
[5, Theorems 6.14–6.15], see also Mackey’s theorem [5, Theorem 6.20], [215, XX.11.7]. We will
also consider the strong topology associated to (X, τ), that we note β(X, τ). It is the topology
induced by the w∗-bounded sets of (X, τ)∗, see [5, Chapter 5.19]. Here again, as expected, the
strong topology reduces to the usual norm topology when X is a normed space equipped with
its norm or weak topology, or X is the topological dual of a Banach space, equipped with the
norm, weak or weak star topology.

We present some necessary and sufficient conditions on a cone K for the existence of such
a base. We say that a cone K is pointed if K ∩ −K = {0}.

Proposition A.3.1.

i) If K admits a τ -closed and τ -bounded base, then K is τ -closed.

ii) If K admits a convex base, then K is pointed and convex.

As a consequence, if K admits a τ -closed convex and τ -bounded base, then K is τ -closed,
convex, pointed, with a nonempty strong interior.

Proof. Item ii) can be found in [206, Lemma 1.14]. Both items i) and ii) can be found in [139,
Proposition I.1.7], where they are presented as a result of Jameson [207]. �

Given a strict cone S ⊂ X, we also introduce its strict dual cone S++ ⊂ (X, τ)∗ as

(A.18) S++ := {x∗ ∈ X∗ | 〈x∗, x〉 > 0 for all x ∈ S}.

Analogously, we define K++ the strict dual cone of a cone K, as the strict dual cone of K \{0}.
Do not mistake K++ with the bidual (K+)+. The strict dual cone of K is sometimes called the
quasi-interior of K+, since K++ is exactly the quasi-interior of K+ with respect to the weak∗

toology of X∗ when K is closed convex (see [80, Proposition 2.1.1]). It is easy to see that if
K++ 6= ∅ then K is pointed, and in fact the reverse statement is true in the normed separable
spaces:
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Theorem A.3.2 (Krein-Rutman, [206, Theorem 3.38]). Let K be a convex closed cone. If
K++ 6= ∅, then K is pointed. The reverse is true if X is a separable normed vector space.

Now we will see that the existence of a base having good properties is directly connected
with the properties of K+. We mention in this result the algebraic strict dual cone K

′++ which
is defined exactly as the strict dual cone K++, but with elements in the algebraic dual space
X′ instead of the topological one X∗. Despite the fact that it won’t be useful in the sequel, it
helps to have a better comprehension of what happen here.

Theorem A.3.3. Let K be a convex cone in a locally convex Hausdorff topological vector space
(X, τ), and Θ ⊂ X.

i) Θ is a convex base of K ⇔ ∃e′ ∈ K ′++ such that Θ = {x ∈ K | 〈e′, x〉 = 1}.

ii) Θ is a convex base of K with 0 /∈ cl τΘ⇔ ∃e∗ ∈ K++ such that Θ = {x ∈ K | 〈e∗, x〉 = 1}.

iii) Θ is a τ -bounded convex base of K with 0 /∈ τclΘ ⇔ ∃e∗ ∈ βintK+ such that Θ = {x ∈
K | 〈e∗, x〉 = 1}.

We see that deeper in the ‘interiors’ of K+ we can take e∗ (βintK+ ⊂ K++ ⊂ K
′++), better

is the base we construct for K. Moreover the Theorem gives us an easy way to construct such
bases, it suffices to pick an appropriate e∗ ∈ K++.

Proof. Proof of item i) is based on Zorn’s Lemma (see [206, Lemma 3.3]), but can also be proved
without the axiom of choice if K spans X (see [206, Lemma 1.28]). Item iii) is proved in [207,
Theorem 3.8.4], and makes use of the duality provided by the Alaoglu-Bourbaki theorem. Note
that Jameson assume the cone K to be pointed2 but this is not necessary since both members of
the equivalence imply pointedness. The direct implication of item ii) is proved in [206, Corollary
3.19], but without mentioning 0 /∈ cl τΘ in the hypotheses3. It seems that the author made a
mistake there. Given a convex base he proves that 0 do not lie in the algebraic closure of Θ,
and says that this algebraic closure equals the topological one cl τB invoking [206, Lemma 1.32].
But this result asks the interior of Θ to be nonempty, which is not guaranteed here. So adding
0 /∈ cl τΘ in the left member saves the day. The reverse implication is immediate, since it is
clear that such Θ is convex (see also item i)), and 0 /∈ cl τΘ follows the continuity of e∗. �

As a corollary, we can prove Theorem 2.3.4:

Proof of Theorem 2.3.4. Suppose that K is a closed convex cone in a Banach space X, and
apply item iii) of Theorem A.3.3 to the weakly∗ closed convex cone K+ in (X∗, w∗).

Suppose in a first time that we have some weakly∗ compact convex base Θ of K+. We
have in particular that Θ is w∗-bounded. Moreover a base satisfies by definition 0 /∈ Θ, and
this Θ is weakly∗ closed, so 0 /∈ clw∗ Θ. Then Theorem A.3.3 applies, and using the fact
that (X∗, w∗)∗ = X, we obtain that βint (K+)+ ⊂ X is nonempty. Since K is assumed to
be closed and convex, we have (K+)+ = K, and as said at the beginning of this section,
the strong topology coincides here with the norm topology. In other words, intK 6= ∅, and
Θ = {x∗ ∈ K+ | 〈x∗, e〉 = 1} for some e ∈ intK.

Suppose now that intK 6= ∅. Take some e ∈ intK and consider Θ = {x∗ ∈ K+ | 〈x∗, e〉 = 1}.
Applying Theorem A.3.3, we obtain that this is a w∗-bounded convex base of K+. Moreover,
K+ is weakly∗ closed, so by definition Θ is also weakly∗ closed. Since bounded weakly∗ closed
sets are exactly the weakly∗ compact sets in (X∗, w∗), the desired property is proved. �

2For Jameson, ‘cone’ means pointed convex cone in our setting.
3Which is strange since it would prove the equivalence between a purely algebraic property with a topological

one.
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Given a base Θ of K ⊂ (X, τ), we study now its support function

σΘ : X∗ −→ R ∪ {+∞}
x∗ 7−→ sup

θ∈Θ
〈x∗, θ〉.

Proposition A.3.4. Let Θ be a τ -bounded set of K. Then σΘ : X∗ → R ∪ {+∞} takes finite
values, and is continuous for the strong topology on X∗.

Proof. Because of Mackey’s theorem, the τ -boundedness of Θ implies its boundedness for the
weak topology on X. As a consequence, for all x∗ ∈ X∗, x∗(Θ) is a bounded set in R. It is why
σΘ take finite values on X∗.

Let us turn now on continuity. From its definition, we know that σΘ is lower semi-continuous
for the weak∗ topology, which is coarser than the strong topology β(X∗, w∗). It follows that
σΘ is β-lower semi-continuous. Let us show now that it is also strongly upper semi-continuous.
Take for this an arbitrary net (x∗α)α∈A converging to some x∗ ∈ X∗ for the strong topology. In
other words, we assume for all τ -bounded sets A ⊂ X that sup

x∈A
|〈x∗− x∗α, x〉| tends to zero when

α ∈ A. In particular it holds for Θ and we deduce that

(A.19) |σΘ(x∗ − x∗α)| ď sup
x∈Θ
|〈x∗ − x∗α, x〉|

R−−→
α∈A

0.

But from the sublinearity of σΘ, we have

(A.20) σΘ(x∗α) ď σΘ(x∗ − x∗α) + σΘ(x∗) for all α ∈ A.

So take the limsup over α ∈ A in (A.20), together with the limit obtained in (A.19), to deduce

lim sup
α∈A

σΘ(x∗α) ď σΘ(x∗)

and conclude. �

Recall that the polar cone K∗ and the dual cone K+ are just the negative of each other:
K∗ = −K+.

Proposition A.3.5. Let K ⊂ (X, τ) be a cone.

i) If Θ is a base of K, then K∗ = [σΘ ď 0].

ii) If moreover Θ is τ -bounded and 0 /∈ τcl coΘ, then βintK∗ = [σΘ < 0] is nonempty.

Proof. Item i) is immediate from K = R+Θ:

x∗ ∈ K∗ ⇔ ∀x ∈ K, 〈x∗, x〉 ď 0⇔ ∀x ∈ Θ, 〈x∗, x〉 ď 0⇔ σΘ(x∗) ď 0.

For item ii), take the strong interiors in item i), i.e.

βintK∗ = βint [σΘ ď 0].

We will now apply apply Proposition A.1.4 to conclude. We already know that σΘ is convex, and
is strongly continuous by Proposition A.3.4. We just need to verify that [σΘ < 0] is nonempty.
For this, consider the hypothesis 0 /∈ τcl coΘ, and apply Hanh-Banach separation theorem to
obtain some x∗ ∈ X∗ and α ∈ R such that σΘ(x∗) ď α < 0. �

We can see that Theorem 2.3.7 is a direct consequence of Proposition A.3.5, applied to K+ ⊂
(X∗, w∗).
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Proposition A.3.6. Let K be a convex cone having a convex base Θ. Let e′ ∈ K ′++ be such
that Θ = {x ∈ K | 〈e′, x〉 = 1}. Then :

i) for all x∗ ∈ X∗, σΘ(x∗) = inf
t∈R
{x∗ ĺX∗ te

′} where ĺX∗ denotes the dual order on X∗ induced

by K+.

ii) for all x∗ ∈ X∗ and λ ∈ R, σΘ(x∗ + λe′) = σΘ(x∗) + λ.

Proof. Let t ∈ R, then using the definition of e′ and Proposition A.3.5, the item i) follows

(A.21) x∗ ĺX∗ te
′ ⇔ ∀θ ∈ Θ, 〈x∗, θ 〉 ď 〈te′, θ〉 ⇔ ∀θ ∈ Θ, 〈x∗, θ〉 ď t⇔ σΘ(x∗) ď t.

Item ii) is a direct consequence of item i):

σΘ(x∗ + λe′) = inf
t∈R
{x∗ + λe′ ĺX∗ te

′} = inf
t∈R
{x∗ ĺX∗ (t− λ)e′}

= inf
t∈R
{x∗ ĺX∗ (t)e′} − λ = σΘ(x∗)− λ.

�
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Appendix B

Measurability and Lp spaces

We present here some definitions and results which are necessary in Chapter 7. For the basic
definitions in measure theory, we refer to [5].

B.1 Measurability

Let (X, τX) and (Y, τY) be two topological spaces. Let ΣX be the Borel σ-algebra of (X, τX),
i.e. the σ-algebra generated by the open sets of (X, τX). We say that f : X −→ Y is Borel
measurable1 if f−1(V ) ∈ ΣX for all open sets V of (Y, τY). For instance, continuous functions
are Borel measurable.

Definition B.1.1. Let T > 0 and (X, τ) a topological space. We say that f : [0, T ]× X −→ R
is a Caratheodory function whenever

i) for all x ∈ X, fx := f(·, x) : [0, T ] −→ R is Borel measurable,

ii) for all t ∈ [0, T ], ft := f(t, ·) : X −→ R is continuous.

If S : X ⇒ Y is a set-valued mapping, we say that it admits a Borel measurable selection
whenever it exists a Borel measurable function s : X −→ Y such that s(x) ∈ S(x) for all x ∈ X.

Theorem B.1.2 (Castaing’s measurable selection). Let (X, τ) be a metrizable separable compact
topological space, and f : [0, T ]×X −→ R a Caratheodory function. Then the set-valued mapping

[0, T ] ⇒ X

t 7→ argmin
x∈X

f(t, x)

has nonempty compact values, and admits a Borel measurable selection.

The proof of this result can be found for instance in [5, Theorem 18.19], or in the book of
Castaing and Valadier [95] (Lemma III.39 p.36 and the application below).

B.2 Strong measurability and Lp spaces

Let (T , τ) be a compact topological space, and (Z, ‖ · ‖) be a Banach space. We equip T with a
measure µ on its Borel sets, so that (T ,Στ , µ) is a finite measure space. We say that f : T −→ Z

is a (µ-)simple function whenever f(T ) is finite, say f(T ) = {z1, ..., zN}, and f−1(zi) is Borel
measurable for each i ∈ {1, ..., N}.

1See [5, Definition 4.21 and Corollary 4.24]
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Definition B.2.1. We say that f : T −→ Z is strongly measurable (or Bochner measurable) if

there exists a sequence (fn)n∈N of simple functions such that for µ-a.e. t ∈ T , fn(t)
Z−−→

n→+∞
f(t).

Strong measurability is related to Borel measurability by the following Pettis’s result2.

Theorem B.2.2 (Pettis’s measurability Theorem, [5, Lemma 11.37]). A function f : T −→ Z

is strongly measurable if and only if it is Borel measurable and is essentially separably valued3.

In particular, we see that strong and Borel measurability coincide if Z is a separable Banach
space. An easy example of strongly measurable function are the continuous functions:

Proposition B.2.3. Let f : T −→ Z be continuous, and assume that (T , τ) is metrizable.
Then f is strongly measurable.

Proof. It suffices to exploit the fact that f is continuous on a compact metric space, hence
uniformly continuous, to build a sequence of simple functions pointwise converging to f . Let d
be the metric inducing the topology of T . Using the uniform continuity of f , we can say that
for all n ∈ N, there exists αn > 0 such that

(B.1) ∀t, s ∈ T , d(t, s) ď αn ⇒ ‖f(t)− f(s)‖ ď
1

n
.

Since a compact metric space is totally bounded [5, Theorem 3.28], we can cover T with a finite
number of open balls of radius αn

2 . Using a finite number of boolean operations on these balls,
we obtain a disjoint covering of T

T ⊂
Kn⊔
k=1

Bn
k ,

where the Bn
k are Borel sets, with diameter lower than αn

2 . For all k ∈ {1, ...,Kn}, define

χBnk : T −→ R
t 7−→ 1 if t ∈ Bn

k ,
0 if t /∈ Bn

k ,

and pick some tnk ∈ Bn
k . Define then fn :=

∑Kn
k=0 f(tnk)χInk , which is clearly a simple function.

Thus, given any ε > 0, we can take N ∈ N satisfying 1
N < ε, so that ‖f(t)− fn(t)‖ ď ε for all

n ě N and t ∈ T . �

According to [5, Lemma 11.39] or [137, Theorem II.2.2], for any strongly measurable function
f : T −→ Z, the function ‖f‖ : T −→ R defined by ‖f‖(t) = ‖f(t)‖ is also strongly measurable,
so we can define

‖f‖L1(T ,Z) :=

∫
T
‖f(t)‖ dµ(t) ∈ R ∪ {+∞}.

We define then L1(T ,Z) the space of Bochner integrable functions as

L1(T ,Z) := {f : T −→ Z | f is strongly measurable and ‖f‖L1(T ,Z) < +∞}.

We define L1(T ,Z) as the quotient of L1(T ,Z) by this equivalence relation :

f ∼ g ⇔ f(t) = g(t) for µ-a.e. t ∈ T .
2In fact the original Pettis’s result is stronger, see [137, Theorem II.1.2], but the one presented here is sufficient

for us.
3This means that there exists a closed separated subspace Z0 of Z such that f(t) ∈ Z0 for µ-a.e. t ∈ T .
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Similarly, we define for all p ∈]1,+∞[

‖f‖Lp(T ,Z) :=

(∫
T
‖f(t)‖p dµ(t)

) 1
p

∈ R ∪ {+∞},

and
‖f‖L∞(T ,Z) := supess

t∈T
‖f(t)‖.

In an obvious way, we define the corresponding spaces of (classes of) strongly measurable func-
tions Lp(T ,Z) and L∞(T ,Z).

Next Proposition shows that the Bochner integral commutes with the bounded operators.

Proposition B.2.4 ([5], Lemma 11.45). Let φ : T −→ X be a Bochner integrable function,
and A ∈ L(X, Y) a continuous linear operator. Then A ◦ φ is also Bochner integrable, and∫

T
A(φ(t)) dµ(t) = A

(∫
T
φ(t) dµ(t)

)
.

From now, we focus on the case T = [0, T ], T ∈]0,+∞[, and give some properties of the
spaces Lp([0, T ],Z).

Theorem B.2.5. For all p ∈ [1,+∞], ‖ · ‖Lp([0,T ],Z) is a norm on Lp([0, T ],Z), which makes it
a Banach space.

This result is exposed in [162, Theorem 2.100], [137, p.50, p.97] or [308, Theorem VI.1.1, Section
VI.3]. One can also verify that L2([0, T ],Z) is Hilbert space if Z is a Hilbert space, if it is endowed
with the inner product

〈f, g〉L2([0,T ],Z) :=

∫ T

0
〈f(t), g(t)〉Z dt.

It is easy to see, as in the real case, that because of the finite measure of [0, T ], we have an
ordered embedding of spaces :

L∞([0, T ],Z) ⊂ Lq([0, T ],Z) ⊂ Lp([0, T ],Z) ⊂ L1([0, T ],Z) for all 1 ď p ď q ď +∞.

We also have the useful:

Proposition B.2.6. C([0, T ],Z) ⊂ L∞([0, T ],Z) is an embedding.

Proof. Note that, by definition, the set of t ∈ [0, T ] such that ‖f‖L∞([0,T ],Z) < ‖f(t)‖ has null
measure, and is open for a continuous function f . Both properties imply that this set is empty,
and that ‖f‖C([0,T ],Z) = ‖f‖L∞([0,T ],Z), so the result follows. �

An important point is to identify the topological dual of such Lp spaces. A first partial
result can be found in [137, Theorem IV.1.1 (and the discussion above)], see also [308, Chapter
VI] or [162, Theorem 2.112]:

Theorem B.2.7. Let p ∈ [1,+∞[, and q ∈]1,+∞] its conjugate exponent, i.e. such that
1
p+ 1

q = 1. Then Lq([0, T ],Z∗) can be isometrically viewed as a subset of Lp([0, T ],Z)∗. Moreover,

the equality Lq([0, T ],Z∗) = Lp([0, T ],Z)∗ holds if Z is a reflexive4 space. In both cases, the
duality pairing is defined as follows:

∀g ∈ Lq([0, T ],Z∗), ∀f ∈ Lp([0, T ],Z), 〈g, f〉 :=

∫ T

0
〈g(t), f(t)〉Z∗×Z dt.

4In fact, as it is stated in [137, Theorem IV.1.1], the equality Lq([0, T ],Z∗) = Lp([0, T ],Z)∗ holds if and only
if Z∗ has the Radon-Nykodym property, which is also equivalent for Z to be an Asplund space, due to Stegall’s
Theorem [301]. This class includes the reflexive spaces, and the Banach spaces whose dual is separable.
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Remark B.2.8. In Section 7.3, we need to work with the whole dual of L1([0, T ],Z), for Z
being not reflexive. In that case, L1([0, T ],Z)∗ is strictly bigger than L∞([0, T ],Z∗), and its
complete description pass through the consideration of weak∗ measurable functions, see the
next section.

We end this section with a classic result due to Rockafellar on the subdifferential of convex
integrands [286, Theorem 4].

Theorem B.2.9. Let X be an Euclidean space. Let f : [0, T ]× X −→ R be such that

• for all x ∈ X, fx := f(·, x) : [0, T ] −→ R is Borel measurable and has bounded values,

• for all t ∈ [0, T ], ft := f(t, ·) : X −→ R is convex.

Consider the associated convex integrand

If : L∞([0, T ],X) −→ R

ω 7−→
∫ T

0
f(t, ω(t)) dt.

Then If is well-defined, convex and (strongly) continuous. Moreover its subdifferential enjoys
the following characterization: ∀v ∈ L1([0, T ],X),∀ω ∈ L∞([0, T ],X),

v ∈ ∂If (ω)⇔ v(t) ∈ ∂ft(ω(t)) for a.e. t ∈ [0, T ].

Remark B.2.10. Note that in the above result, the subdifferential lives in the dual of L∞([0, T ],X),
in which L1([0, T ],X) can be identified as a subspace, and where the subdifferential characteri-
zation holds.

Adapting the proof of the above theorem, we derive a useful corollary for multi-objective prob-
lems:

Corollary B.2.11. Let X be an Euclidean space, and let f1, ..., fm : X −→ R be a finite family
of convex continuous functions. Let θ = (θi) ∈ L∞([0, T ],Rm) be such that θ(t) ∈ ∆m for a.e.
t ∈ [0, T ]. Consider the associated convex integrand

I : L∞([0, T ],X) −→ R

ω 7−→
∫ T

0

m∑
i=1

θi(t)fi(ω(t)) dt.

Then I is well-defined, convex and (strongly) continuous. Moreover, its subdifferential enjoys
the following characterization: ∀v ∈ L1([0, T ],X),∀ω ∈ L∞([0, T ],X),

v ∈ ∂I(ω)⇔ v(t) =

m∑
i=1

θi(t)vi(t) with vi(t) ∈ ∂fi(ω(t)) for a.e. t ∈ [0, T ].

Proof. By the Fenchel extremality relation,

(B.2) v ∈ ∂I(ω)⇔ I(ω) + I∗(v)− 〈ω, v〉(L∞(0,T ;H),L1(0,T ;H)) = 0.

Applying [286, Theorem 2] to the function f(t, x) :=
∑m

i=1 θi(t)fi(x), we obtain that the inte-
grand I is well-defined, convex, continuous, and its Fenchel transform (see [51, 268]) is given
by

I∗(v) =

∫ T

0

(
m∑
i=1

θi(t)fi

)∗
(v(t))dt.
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Let us analyze this last expression. Since the fi are convex continuous functions, their conjugate
are coercive functions, and(

m∑
i=1

θi(t)fi

)∗
(v(t)) = min

{
m∑
i=1

(θi(t)fi)
∗ (zi) |

m∑
i=1

zi = v(t)

}
.

The same measurable selection argument as the one used in Theorem 7.1.3 gives the existence
of measurable functions zi(·) such that

(B.3)

(
m∑
i=1

θi(t)fi

)∗
(v(t)) =

m∑
i=1

(θi(t)fi)
∗ (zi(t)), with

m∑
i=1

zi(t) = v(t).

Returning to (B.2), we obtain

v ∈ ∂I(ω)⇔
∫ T

0

q∑
i=1

(θi(t)fi) (ω(t)) + (θi(t)fi)
∗ (zi(t))− 〈ω(t), zi(t)〉 dt = 0.

Since each of the elements of this last sum expression is nonnegative, we deduce that, for each
i ∈ {1, ...,m} and for almost all t > 0,

θi(t)fi(ω(t)) + (θi(t)fi)
∗ (zi(t))− 〈ω(t), zi(t)〉 = 0.

Equivalently, zi(t) ∈ ∂ (θi(t)fi) (ω(t)). Since we know from (B.3) that v(t) =
∑m

i=1 zi(t), we
need to verify that there exists vi ∈ L∞([0, T ],X) such that zi(t) = θi(t)vi(t).

Take some z̃i ∈ L∞([0, T ],X) such that z̃i(t) ∈ ∂fi(ω(t)) for almost all t > 0, (such an
element exists, take for example z̃i(t) = (∂fi)

0(ω(t))). We have

zi(t) = θi(t)vi(t) for almost all t > 0,

where

vi(t) =

{
v(t)
θi(t)

if θi(t) > 0,

z̃i(t) if θi(t) = 0.

This choice of vi is measurable, and vi(t) ∈ ∂fi(ω(t)) for almost all t > 0. By continuity of fi,
we conclude that vi ∈ L∞([0, T ],X). �

B.3 Weak∗ measurability and L∞w∗ space

Let f : [0, T ] −→ Z∗, where Z is a Banach space. We say that f is weak∗ measurable if, for all
z ∈ Z, the function

z ◦ f : t ∈ [0, T ] 7−→ 〈f(t), z〉 ∈ R

is strongly measurable. Note that we abusively note z ◦ f , as if z was a linear functional on
Z∗. In fact this notation makes sense if one sees z as an element of Z∗∗ through the canonical
embedding Z ↪→ Z∗∗. For example, Borel measurable functions from [0, T ] to Z∗ are in particular
weakly∗ measurable

Define L∞w∗([0, T ],Z∗) as the vector space of bounded weak∗ measurable functions. Consider
the following equivalence relation on L∞w∗([0, T ],Z∗):

f ∼ g ⇔ ∀z ∈ Z, for a.e. t ∈ [0, T ], 〈f(t), z〉 = 〈g(t), z〉.

Define then L∞w∗([0, T ],Z∗) as the quotient of L∞w∗([0, T ],Z∗) by this equivalence relation. It is a
Banach space, once equipped with the essential supremum norm (see [308, Corollary VI.4 p.78
and Remark VII.2 p.89]). As announced (see [308, Corollary VII.4 p.95]):
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Theorem B.3.1. L∞w∗([0, T ],Z∗) is isometrically equal to the dual space L1([0, T ],Z)∗. The
duality pairing is defined as follows:

∀g ∈ L∞w∗([0, T ],Z∗), ∀f ∈ L1([0, T ],Z), 〈g, f〉 :=

∫ T

0
〈g(t), f(t)〉Z∗×Z dt.
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Appendix C

Others

Theorem C.0.1 (Arzela-Ascoli’s Theorem). Let X be a compact topological vector space, and
E a metric space. Let C(X, E) be the space of continuous functions from X to E, equipped with
the uniform metric. Then a set A ⊂ C(X, E) is relatively compact if and only if the family A is
equicontinuous, and A(x) := {f(x) | f ∈ A} is relatively compact in E.

Proof. See [138, Theorem 7.5.7 p. 142], or [81, Theorem X.2.5.2 p. 290]. �

Proposition C.0.2. Let Y be a separable Banach space, and Θ a weakly∗ compact subset of
Y∗. Then,

i) (Θ, w∗) is a metrizable and separable topological vector space,

ii) (C(Θ), ‖ · ‖C(Θ) is a separable Banach space,

iii) (PR(Θ), w∗) is a metrizable separable topological space.

Proof. Since (Y, ‖ · ‖Y) is separable, it follows from [153, Corollary 3.104] that (BY∗ , w∗) is
separable, where BY∗ denotes the unit ball in Y∗. From [5, Theorem 6.30] it follows also that
(BY∗ , w∗) is metrizable. Since Θ is compact, we have Θ ⊂ nBY∗ for some n ∈ N. But (nBY∗ , w∗)
is metrizable and separable, so any of its topological subspace is also metrizable and separable
(see for instance [138, 3.10.9 p.43]). This proves that (Θ, w∗) is metrizable and separable. Now
use [153, Lemma 3.102] to obtain that (C(Θ), ‖ · ‖C(Θ)) is separable. Using now the same

arguments for (PR(Θ), w∗) than the ones for (Θ, w∗), we finally obtain that (PR(Θ), w∗) is
metrizable and separable (see also [5, Theorem 15.11]). �

We give here the two integral forms of Gronwall’s Lemma that we used in the proof of
Theorem 8.1.5. They can be found in Brezis’s book [83, Lemma A.4 & Lemma A.5, pp. 156–
157].

Lemma C.0.3 (Gronwall-Bellman). Let t0 ∈ R and T ∈]t0,+∞[. Let a ∈ [0,+∞[, and
g ∈ L1([0, T ],R) with g(t) ě 0 for a.e. t ∈ [0, T ]. Let h ∈ C([0, T ],R) such that

(C.1) h(t) ď a+

∫ t

t0

g(s)h(s) ds for all t ∈ [t0, T ].

Then h(t) ď ae
∫ t
t0
g(s) ds

for all t ∈ [t0, T ].

Lemma C.0.4. Let t0 ∈ R and T ∈]t0,+∞[. Let a ∈ [0,+∞[, and g ∈ L1([0, T ],R) with
g(t) ě 0 for a.e. t ∈ [0, T ]. Let h ∈ C([0, T ],R) such that

(C.2)
1

2
h2(t) ď

a2

2
+

∫ t

0
g(s)h(s) ds for all t ∈ [0, T ],

then |h(t)| ď a+
∫ T

0 g(s) ds for all t ∈ [0, T ].
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[83] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les es-
paces de Hilbert, North-Holland/Elsevier, New-York, 1973.
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[217] K. Kurdyka and A. Parusiński, wf -stratification of subanalytic functions and the
 Lojasiewicz inequality, C. R. Acad. Paris, 318, pp. 129–133, 1994.

[218] C. Lageman, Pointwise convergence of gradient-like systems, Mathematische Nachrichten,
280(13-14), pp. 1543–1558, 2007.

[219] E.S. Levitin, B.T. Polyak, Constrained minimization methods, U.S.S.R. Comput. Math.
and Math. Phys. 6(5), pp. 1–50, 1966.

[220] A.B. Levy, R. Poliquin and L. Thibault, Partial extensions of Attouch’s theorem with
applications to proto-derivatives of subgradient mappings, Transactions of the American
Mathematical Society, 347(4), pp. 1269–1294, 1995.

[221] A.S. Lewis, Active sets, nonsmoothness, and sensitivity, SIAM Journal on Optimization,
13(3), pp. 702–725, 2002.

[222] A.S. Lewis, D.R. Luke and J. Malick, Local linear convergence for alternating and averaged
nonconvex projections, Foundations of Computational Mathematics, 9(4), pp. 485–513,
2009.

[223] A.S. Lewis and M. Overton, Nonsmooth optimization via quasi-Newton methods, Mathe-
matical Programming, 141(1-2), pp. 135–163, 2013.

[224] D. Li, L.-P. Pang and S. Chen, A proximal alternating linearization method for nonconvex
optimization problems, Optimization Methods & Software, 29(4), 2014.

[225] G. Li and T.K. Pong, Global convergence of splitting methods for nonconvex composite
optimization, preprint available on arXiv:1407.0753, submitted on July 2014.
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Résumé.

Dans une première partie, nous nous intéressons aux systèmes dynamiques gradients gou-
vernés par des fonctions non lisses, mais aussi non convexes, satisfaisant l’inégalité de Kurdyka-
 Lojasiewicz. Après avoir obtenu quelques résultats préliminaires pour la dynamique de la plus
grande pente continue, nous étudions un algorithme de descente général. Nous prouvons, sous
une hypothèse de compacité, que tout suite générée par ce schéma général converge vers un point
critique de la fonction à minimiser. Nous obtenons aussi de nouveaux résultats sur la vitesse de
convergence, tant pour les valeurs que pour les itérés. Ce schéma général couvre en particulier
des versions parallélisées de la méthode forward-backward, autorisant une métrique variable et
des erreurs relatives. Cela nous permet par exemple de proposer une version non convexe non
lisse de l’algorithme Levenberg-Marquardt. Enfin, nous proposons quelques applications de ces
algorithmes aux problèmes de faisabilité, et aux problèmes inverses parcimonieux.

Dans une seconde partie, cette thèse développe une dynamique de descente associée à des
problèmes d’optimisation vectoriels sous contrainte. Pour cela, nous adaptons la dynamique de
la plus grande pente usuelle aux fonctions à valeurs dans un espace ordonné par un cône convexe
fermé d’intérieur non vide. Cette dynamique peut être vue comme l’analogue continu de nom-
breux algorithmes développés ces dernières années. Nous avons un intérêt particulier pour les
problèmes de décision multi-objectifs, pour lesquels cette dynamique de descente fait décroitre
toutes les fonctions objectif au cours du temps. Nous prouvons l’existence de trajectoires pour
cette dynamique continue, ainsi que leur convergence vers des points faiblement efficients. Fi-
nalement, nous explorons une nouvelle dynamique inertielle pour les problèmes multi-objectif,
avec l’ambition de développer des méthodes rapides convergeant vers des équilibres de Pareto.

Abstract.

In a first part, we focus on gradient dynamical systems governed by non-smooth but also
non-convex functions, satisfying the so-called Kurdyka- Lojasiewicz inequality. After obtaining
preliminary results for a continuous steepest descent dynamic, we study a general descent al-
gorithm. We prove, under a compactness assumption, that any sequence generated by this
general scheme converges to a critical point of the function to be minimized. We also obtain
new convergence rates both for the values and the iterates. The analysis covers alternating
versions of the forward-backward method, with variable metric and relative errors. As an ex-
ample, a non-smooth and non-convex version of the Levenberg-Marquardt algorithm is detailed.
Applications to non-convex feasibility problems, and to sparse inverse problems are discussed.

In a second part, the thesis explores descent dynamics associated to constrained vector
optimization problems. For this, we adapt the classic steepest descent dynamic to functions
with values in a vector space ordered by a closed convex cone with nonempty interior. It can be
seen as the continuous analogue of various descent algorithms developed in the last years. We
have a particular interest for multi-objective decision problems, for which the dynamic make
decrease all the objective functions along time. We prove the existence of trajectories for this
continuous dynamic, and show their convergence to weak efficient points. Then, we explore an
inertial dynamic for multi-objective problems, with the aim to provide fast methods converging
to Pareto points.
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