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Abstract

In this work we present an ab initio materials design study of several systems
covering intermetallic and semiconducting alloys, transparent conductive oxides and
molecular solids. We performed Minima Hopping calculations combined with Density
Functional Theory that made possible to unveil several stable compounds in the phase
diagrams of lithium-aluminium and sodium-gold binary alloys, as well as low-symmetry
geometries of CuBO2, significantly lower in energy than the controversial delafossite
structure reported as its ground state. We also found that the H3 molecule can be
stabilized inside Cl cages at pressures of around 100 GPa. Additionally, we combined
high-throughput techniques and global structure prediction methods to find nitride
perovskites structures. In a different line, we studied the change in the absorption
properties of the Cu(In,Ga)S2 chalcopyrite alloys as it was unexpectedly observed
in experiment that with the change of the In/Ga ratio, the S K-absorption edge
shifts, while the absorption edges of the other species is largely independent of the
composition. In a more fundamental chapter, we propose a semiempirical exchange-
correlation functional optimized to yield accurate energies of formation of solids. The
manuscript is organized as follows.

Chapter 1 consists of an overview of concepts that are useful for the reading of
the thesis. First, we give a short introduction to the Kohn-Sham Density Functional
Theory and exchange-correlation functionals. In the following sections we describe
different approaches to materials design with a focus on the Minima Hopping method,
which was used for the structure prediction calculations performed in this work. Finally,
the construction of the convex hull of phase stability, in particular the bidimensional
case, is explained in detail as it is often used on the following chapters.

In Chapter 2 we present a methodology for the computation of binary phase diagrams
from first-principles, based on the Minima Hopping method and its application for
intermetallic binary alloys sodium-gold and lithium-aluminium, and for crystals of
H-Cl at moderate pressures. We first consider the sodium-gold system. We obtain
that the most stable composition is NaAu2, in agreement with available experimental
data. We also confirm the crystal structures of NaAu2 and Na2Au, that were fully
characterized in experiments, and identify a candidate ground-state structure for the
experimental stoichiometry NaAu. Moreover, we obtain three other stoichiometries,
namely Na3Au2, Na3Au, and Na5Au, that turn out to be thermodynamically stable in
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our simulations. Finally, we perform phonon calculations to check the stability of all
reported phases and we simulate X-ray diffraction spectra for comparison with future
experimental data.

In the section that follows, we apply the same methodology to the intermetallic Li-Al
alloys. These compounds are on one hand key materials for light-weight engineering,
and on the other, they have been proposed for high-capacity electrodes for Li batteries.
We determine from first-principles the phase diagram of Li-Al binary crystals using
the Minima Hopping method. Beside reproducing the experimentally reported phases
(LiAl, Li3Al2, Li9Al4, LiAl3, and Li2Al), a structural variety larger than expected is
unveiled by discovering six non-reported binary phases, likely to be thermodynamically
stable. We then compare the results using different exchange-correlation functionals
and we discuss the behavior of the elastic constants of all found Li-Al stable binaries
as a function of their stoichiometry.

Finally, we compute the phase diagram of H-Cl binary crystals. In this case we
focus on the formation of triatomic molecules of H in such crystals. We show that
H3 molecules, which are expected to become stable in pure hydrogen above 2.1 TPa,
can be stabilized in H-Cl crystals at pressures about 100 GPa, perfectly achievable
nowadays in any laboratory.

In Chapter 3 we present a study of materials of interest for applications in pho-
tovoltaics: the transparent conductive oxide CuBO2, novel nitride perovskites with
composition ABN3 and Cu(In,Ga)S2 chalcopyrite alloys. First, with our Minima
Hopping structure prediction calculations, we prove that the delafossite structure of
CuBO2 reported experimentally, is very unlikely to be the ground state of this material
as we found several other crystal structures lower in energy up to 600 meV.

In the following section we present our results on the existence of perovskites
with composition ABN3. Our approach is based on a combination of high-throughput
techniques and global structure prediction methods. We find 21 new compositions of
the form ABN3 that are thermodynamically stable and that have therefore excellent
chances of being experimentally accessible. Most of these materials crystallize in
monoclinic phases, but three compounds, namely LaReN3, LaWN3 and YReN3 are
predicted to have distorted perovskite structures in their ground state.

The last section of the chapter presents the Density Functional Theory study of
the element-specific unoccupied electronic states of Cu(In,Ga)S2 as a function of the
In/Ga ratio. Near the Edge X-Ray Absorption Fine Structure measurements performed
on CuInxGa1−xS2 thin films for x=0, 0.67 and 1 by our experimental collaborators,
show that the S absorption edge shifts with changing In/Ga ratio as expected from
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the variation of the band gap. On the other hand, the Ga, In, and Cu absorption
edge positions remain nearly unaltered with alloy composition despite a significant
change of the band gap. Our calculations indicate that this behavior originates from
the dependence of the electronic states on the local atomic environment, while the
change in band gap arises from the spatial average of these localized states.

In Chapter 4 we develop a semi-empirical exchange-correlation functional for Density
Functional Theory tailored to calculate energies of formation of solids. This functional
has the form of the Perdew-Burke-Ernzerhof functional, but with three parameters,
covering the exchange and correlation parts, fitted to reproduce experimental energies
of formation for a representative set of binary compounds. The quality of the obtained
functional was then assessed for a control set. Our functional manages to reduce the
error of the Perdew-Burke-Ernzerhof generalized gradient approximation by roughly a
factor of two. Furthermore, this is achieved without compromising the quality of the
geometry.

The results collected in this manuscript represent significant examples of the level
of maturity achieved at present by the domain of materials design. The variety of our
contributions shows that our powerful approach to materials design is very general,
and the developments brought by this thesis are now available to the whole community
for many unexplored field of applications.





Résumé

Cette thèse présente une étude dans le cadre de la conception ab initio de nouveaux
matériaux, avec des applications aux alliages intermétalliques et semi-conducteurs, aux
oxydes transparents conducteurs et aux solides moléculaires. Des simulations avec la
méthode Minima Hopping combinée avec la théorie de la fonctionnelle de la densité ont
été utilisées pour trouver des nouveaux composés dans les diagrammes de phase des
composés binaires de Lithium-Aluminium et Sodium-Or, aussi bien que des géométries
de faible symétrie de CuBO2 à plus basses énergies que la structure delafossite qui etait
considérée comme son état fondamental. Nous avons aussi couplé la méthode Minima
Hopping et la recherche de structures avec prototypes pour trouver des nouvelles
perovskites de nitrure. Également, nous avons trouvé que la molécule H3 peut être
stabilisée dans des structures à cages de Cl à pressions d’environ 100 GPa. Nous avons
aussi étudié les propriétés électroniques des alliages de chalcopyrite Cu(In,Ga)S2. Dans
un sujet plus fondamental, nous proposons une fonctionnelle d’échange-corrélation
semi-empirique optimisée pour obtenir des énergies de formation plus précises pour les
solides. Dans la suite nous résumons le contenu par chapitre de ce manuscrit.

Le premier chapitre donne un aperçu des concepts théoriques utiles pour la lecture
de la thèse. D’abord, nous présentons une brève introduction à la théorie de la
fonctionnelle de la densité et aux fonctionnelles d’échange-corrélation. Nous décrivons
ensuite différentes approches de la conception ab initio de nouveaux matériaux et
notamment la méthode Minima Hopping. Pour conclure, nous discutons le concept
d’enveloppe convexe pour décrire la stabilité thermodynamique, en particulier, le cas
bidimensionnel est expliqué en détail car il est utilisé souvent dans le manuscrit.

Dans le deuxieme chapitre, nous présentons une méthodologie pour le calcul des
diagrammes de phase binaires basée sur la méthode Minima Hopping et son application
pour les alliages binaires intermétalliques sodium-or et lithium-aluminium, aussi bien
que pour les cristaux de chlore-hydrogène sous pressions modérées. Nous commençons
par l’étude des alliages sodium-or. Les composés inter-métalliques de métaux alcalins
et d’or ont des propriétés électroniques et structurelles intrigantes qui n’ont pas été
largement explorées. Nous effectuons une étude systématique du diagramme de phases
du système binaire NaxAu1−x appartenant à cette famille. Nous obtenons que la
composition la plus stable est NaAu2, en accord avec les données expérimentales.
Nous confirmons également les structures cristallines de NaAu2 et Na2Au, qui ont
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été entièrement caractérisées par l’expérience. Nous trouvons un candidat pour la
structure de l’état fondamental de la stoechiométrie NaAu. De plus, nous obtenons
trois stoechiométries, à savoir Na3Au2, Na3Au et Na5Au, qui se révèlent être thermo-
dynamiquement stables dans nos simulations. Nous ne trouvons aucune preuve de
l’existence de NaAu5 qui a été discutée dans la litérature. Finalement, nous effectuons
des calculs de phonons pour vérifier la stabilité de toutes les phases identifiées et des
simulations des spectres de diffraction des rayons X pour permettre la comparaison
avec des futures données expérimentales.

Dans la section qui suit, nous appliquons la même méthodologie aux alliages
intermétalliques Li-Al. Ces derniers sont des matériaux clés pour l’ingénierie des
structures légères et ont de plus été proposés comme électrodes de grande capacité pour
batteries de lithium. Nous déterminons le diagramme de phase ab initio des cristaux de
Li-Al en utilisant la méthode Minima Hopping. Au dèlá de la reproduction des phases
rapportées expérimentalement (LiAl, Li3Al2, Li9Al4, LiAl3, and Li2Al), une diversité
structurale plus grande que prévue est dévoilée en découvrant six phases binaires non
reportées, qui sont susceptibles d’être thermodynamiquement stables. Nous avons aussi
characterisé les constantes élastiques de tous les composés stables Li-Al par rapport à
leur stoechiométrie.

Finalement, en étudiant les cristaux de H-Cl sous pressions moderées (100 GPa),
nous trouvons que les molécules triatomiques de H, dont la stabilité est prédite pour H
pure sous des pressions d’environ 2.1 TPa, deviennent stables l’intérieur de cages de Cl
sous pressions beaucoup plus faibles.

Le troisième chapitre présente l’étude de matériaux avec intérêt pour l’application
dans la technologie photovoltaïque: l’oxyde conducteur transparent CuBO2, des nou-
velles pérovskites de nitrure et les alliages de chalcopyrite Cu(In,Ga)S2. Dans la
première section, il est montré que le structure delafossite du CuBO2 connue à ce
jour, n’est pas l’état fondamental de ce matériau au contraire des conclusions très
controversées de certains auteurs. Nous avons trouvé d’autres structures cristallines
jusqu’à 600 meV plus basses en énergie que la delafossite.

Aprés, nous présentons nos résultats sur la possibilité de l’existence de pérovskites
avec composition ABN3. Nous trouvons 21 nouvelles compositions de la forme ABN3

qui sont thermodynamiquement stables et qui ont donc d’excellentes chances d’être
accessibles expérimentalement. La plupart des matériaux trouvés cristallisent dans des
phases monocliniques, à l’exception de trois composés, notament LaReN3, LaWN3 et
YReN3 qui ont une structures du type pérovskite déformée.
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Finalement, nous considérons les alliages de chalcopyrites Cu(In,Ga)S2. La densité
d’états électroniques projetée sur les orbitales s, p et d des atomes a été étudiée
en fonction du rapport In/Ga, dans le cadre de la théorie de la fonctionnelle de la
densité en utilisant des fonctionnelles hybrides. Des expériences de Spectroscopie de
structure près du front d’absorption de rayons X effectuées sur des couches minces de
CuInxGa1−xS2 pour x = 0, 0.67 et 1 par nos collaborateurs expérimentales, montrent
un déplacement du seuil d’absorption de S avec le changement du rapport In/Ga,
comme on peut s’y attendre si on considère la variation de la largeur de la bande
interdite. En revanche, les seuils d’absorption de Ga, In et Cu restent indépendant de
la composition. Nos calculs indiquent que ce comportement provient de la dépendance
des états électroniques de l’environnement atomique local tandis que le changement
dans la bande interdite surgit du changement de la moyenne spatiale de ces états
localisés avec la composition de l’alliage.

Dans le chapitre 4, nous développons une fonctionnelle d’échange-corrélation semi-
empirique adaptée au calcul des énergies de formation des solides dans le cadre de
la théorie de la fonctionnelle de la densité. Cette fonctionnelle a la forme de celui
de Perdew-Burke-Ernzerhof, mais avec trois paramètres ajustés pour reproduire les
énergies de formation expérimentales d’un ensemble représentatif de composés binaires.
La qualité de la fonctionnelle obtenue a été ensuite évaluée pour un ensemble de preuve.
Notre fonctionnelle réussit à réduire l’erreur de Perdew-Burke-Ernzerhof par environ
un facteur de deux. De plus, ce résultat est obtenu en conservant la qualité de la
géométrie.

Les résultats présentés dans ce manuscrit représentent exemples significatifs du
niveau de maturité atteint aujourd’hui par le domaine de la conception de nouveaux
matériaux grâce à des calculs ab initio. La variétés de nos résultats est une preuve de
la puissance et généralité de ces approches, et les développements apportés par cette
thèse sont maintenant à disposition de la communauté pour la réalisation de nouvelles
applications.
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Chapter 1

Theoretical Background

Concepts and methods used along this thesis are presented here. First, we give
a short introduction to the Kohn-Sham Density Functional Theory and exchange-
correlation functionals. Then, in the following sections we describe different approaches
to materials design focusing on the Minima Hopping Method, which was used to
perform all structure prediction calculations in this work. Finally, the construction of
the convex hull of stability, in particular the bidimensional case, is explained in detail
as it will be used several times in the following chapters. Atomic units will be used
through the chapter.

1.1 Density Functional Theory

Within the Born-Oppenheimer approximation [1], the Hamiltonian of a system of
N electrons under the influence of a Coulombic field of a set of stationary nuclei can
be written as (atomic units)

Ĥ = T̂ + V̂ext + V̂ee, (1.1)

where
T̂ = −1

2

N∑
i=1

∇2
i (1.2)

is the kinetic energy operator,

V̂ext =
N∑

i=1
v(ri), (1.3)

v(ri) = −
Nuclei∑

A

ZA

|ri − RA| , (1.4)

is the sum of the potential operators of the nuclei of atomic number {ZA} at positions
{RA}, and

V̂ee =
N∑

i<j

1
|ri − rj| (1.5)
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is the electron-electron interaction operator.
By solving the corresponding Schrödinger equation

ĤΨ = EΨ, (1.6)

we can obtain the wavefunction Ψ and have access to all information about a system.
However, the wave function is a very complicated quantity that cannot be probed
experimentally and depends on three spacial and one spin variables for each particle
of the system. This makes a computational treatment of the Schrödinger equation
unfeasible, unless the number of particles is very small. Even just the memory to store
wavefunctions would be enormous. In practice, though, usually one is not interested in
all the information that the wavefuntion contains. Rather, it would be preferable to
consider a simpler physical quantity to describe the system and express the expectation
values of operators, making more efficient the computational treatment of the problem.
It turns out that this quantity can be the electronic density which is the key ingredient
of Density Functional Theory (DFT).

With that in mind, let us write the Schrödinger equation in terms of the electronic
density

n(r) = N
∑

σ1...σN

∫
dr2...drN |Ψ(rσ1, r2σ2, ..., rNσN)|2 (1.7)

and the electron-pair density

n2(r1, r2) = N(N − 1)
2

∑
σ1...σN

∫
dr3...drN |Ψ(r1σ1, ..., rNσN)|2. (1.8)

If Ψ is the ground state of the system, supposing it is normalized, the ground state
energy can be determined by multiplying on the left by Ψ∗ and integrating over all
positions and spin variables:

E = T + Vext + Vee, (1.9)

where
T = −1

2
∑

σ1...σN

∫
dr1...drNΨ∗(r1, ..., rN)

[
N∑

i=1
∇2

i

]
Ψ(r1, ..., rN), (1.10)

Vext =
∫

drv(r)n(r), (1.11)

and
Vee =

∫
dr1dr2

n2(r1, r2)
|ri − rj| . (1.12)
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Equation (1.10) can be written as a function of the one-electron reduced density matrix
γ(r, r′) = N

∑
σ1...σN

∫
dr2...drNΨ∗(r′σ1, r2σ2, ..., rNσN)Ψ(rσ1, r2σ2, ..., rNσN) by using

the antisymmetry property of the fermionic wavefunction:

T = −1
2

∫
dr

[
∇2

rγ(r, r′)
]

r′=r
. (1.13)

From Equation (1.12) can be seen that the pair density contains all the information
about exchange and correlation of the system. It is related to the probability of
finding an electron at a point r1 while there is another electron at r2. If the electrons
were identical non-interacting classical particles, the pair density would reduce to the
product of the densities of the two electrons since the probability of finding an electron
in a point would be independent of the presence of another electron. This can be used
to split the density and hence the electron-electron interaction (1.12) in a classic and a
quantum term

n2(r1, r2) = 1
2n(r1) [n(r2) + hxc(r1, r2)] . (1.14)

The quantum term is going to contain the information of exchange and correlation
while the classical part will lead to the classic electrostatic interaction between two
particles. hxc is called the exchange-correlation hole. Then we have

Vee = J + Eo
xc, (1.15)

where
J = 1

2

∫
dr1dr2

n(r1)n(r2)
|r1 − r2| (1.16)

is the electrostatic repulsion of the electrons also known as Hartree energy, and

Exc = 1
2

∫
dr1dr2

n(r1)hxc(r1, r2)
|r1 − r2| (1.17)

is the exchange-correlation energy, which contains the quantum effects of the system.
Finally the total energy can be written in function of this quantities as as

E = T + Vext + J + Eo
xc. (1.18)

The formalization of the use of the density as the basic variable for the description
of the system was established in a seminal work of P. Hohenberg and W. Kohn in
1964 [2] where they presented the two theorems which constitute the foundations of
the DFT. The first and second Hohenberg-Kohn theorems state that (i) the external
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potential Vext(r) is (within a constant) a unique functional of the ground state density
n(r); since, in turn, Vext(r) fixes the Hamiltonian we see that the full many particle
ground state is a unique functional of n(r); (ii) this density functional has its minimum
at the ground state density. In other words these theorems state that the electronic
density determines its own Hamiltonian, hence its own wavefunctions, and satisfies the
variational principle.

Even if the Hohenberg-Kohn theorems tell us that the ground state energy is a
functional of the electronic density, the explicit form of this functional remains unknown.
The energy of Equation (1.18) contains the kinetic energy term that can not be written
as an explicit functional of the density, and the exchange-correlation term, whose form
is unknown. To address this problem, Kohn and Sham considered an auxiliary system
of non-interacting electrons with the same density than the real one, and hence the
same ground state energy [3]. The ground state of such a system is described by a
single Slater determinant (SD) wavefunction with density

n(r) =
N∑

i=1
|φi(r)|2, (1.19)

where φi are the one-electron orbitals that form the SD, called Kohn-Sham (KS)
orbitals.

If one adds and subtracts to Equation (1.18) the kinetic energy of the auxiliary
system

Ts = −1
2

∑ 〈φi| ∇2 |φi〉 (1.20)

and puts together all the unknown terms

E = Ts − Ts + T + Vext + J + Eo
xc, (1.21)

E = Ts + Vext + J + [(T − Ts) + Eo
xc] , (1.22)

the total energy reads
E = Ts + Vext + J + Exc. (1.23)

In the KS scheme the term Exc contains the exchange and correlation effects plus the
difference of the kinetic energy between the real and the auxiliary systems. This term
is called exchange-correlation functional.
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Now, in virtue of the second Hohenberg-Kohn theorem [2], the equation

δE[n(r)]
δn (r) = 0, (1.24)

with the normalization of the orbitals as a constraint

〈φi | φj〉 = δij, (1.25)

is the equation that gives the ground-state density of the interacting system and the
corresponding-ground state energy. This equation can be recast in the system of
equations [

−1
2∇2 + v(r) +

∫
dr1

n(r1)
|r − r1| + vxc(r)

]
φi(r) = εiφi(r), (1.26)

known as the KS equations, where

vxc(r) = δExc[n(r)]
δn (r) . (1.27)

The KS equations can be seen as the Schrödinger equation of a system of non-interacting
electrons under the external potential

vKS(r) = v(r) +
∫

dr1
n(r1)

|r − r1| + vxc(r) (1.28)

and its eigenvalues εi are the orbital energy levels. The solution has to be achieved
self-consistently since its potential depends on the electronic density which is calculated
from the single-particle wavefunction as in (1.19). The KS theory is exact. Up to
this point we have not made any approximation. However, the exchange-correlation
functional and hence vxc, are unknown. The search for improved exchange-correlation
functionals remains as a challenge in DFT.

To solve the KS equations in the case of periodic systems, it is convenient to require
that the single-particle wavefunctions obey periodic boundary conditions. In virtue of
the Bloch theorem, the KS orbitals have the form

φnk(r) = unk(r)eik·r. (1.29)

where unk(r) is a periodic function with the same periodicity of the lattice and k is
the crystal wavevector and lies inside the first Brillouin zone (BZ).
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Since any periodic function can be expanded in Fourier series, uk(r) can be written
as

unk(r) = 1√
V

∑
G

Cnk
G eiG·r, (1.30)

where the sum is over the integer multiples G = m1G1 +m2G2 +m3G3 of the reciprocal
lattice vectors

G1 = 2π
R2 × R3

R1 · (R2 × R3)
, G2 = 2π

R3 × R1

R2 · (R3 × R1)
, G3 = 2π

R1 × R2

R3 · (R1 × R2)
,

and R1, R2 and R3 are the lattice vectors. Substituting (1.30) in (1.29), the KS
orbitals can be written as

φnk(r) = 1√
V

∑
G

Cnk
G ei(G+k)·r. (1.31)

To write the KS equation in a plane wave basis, we first consider the effect of the
Laplacian operator on the Fourier expansion of the orbitals

−1
2∇2

[∑
G

Cnk
G ei(G+k)·r

]
= 1

2
∑
G

Cnk
G [G + k]2 ei(G+k)·r (1.32)

and insert (1.32) in the KS equation

1
2

∑
G

Cnk
G [G + k]2 ei(G+k)·r + vKS(r)[n(r)]

∑
G

Cnk
G ei(G+k)·r = εnk

∑
G

Cnk
G ei(G+k)·r.

Multiplying on the left by e−i(G′+k)·r and integrating over r we obtain

1
2

∑
G

Cnk
G [G + k]2 δGG′ +

∑
G

vKS(G, G′)Cnk
G = εnkδGG′Cnk

G ,

where
vKS(G, G′) =

∫
dre−iG′·rvKS(r)[n(r)]eiG·r (1.33)

is the Fourier transformation of the KS potential and [n(r)] represents the functional
dependence of vKS on the electronic density.

Finally, the KS equation for a periodic system in a plane-wave basis can be written
as

1
2 [G + k]2 Cnk

G +
∑
G

vKS(G, G′)Cnk
G = εnkCnk

G . (1.34)
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Equation (1.34) has to be solved self-consistently to find the Cnk
G coefficients for each

k vector.

The equation is generally solved in a discretized reciprocal space for each k vector
in the first BZ (or for the symmetrically inequivalent ones, after considering the
symmetries of the crystal). Also the plane wave expansion is truncated at a certain G

vector: the plane waves with large kinetic energy are neglected in the Fourier expansion.
From Equation (1.32), it can be seen that the terms with the larger kinetic energy are
the ones corresponding to large G vector.

1.2 Exchange-correlation Functionals

The exchange-correlation functional Exc of Equation (1.17) is usually separated
into an exchange and a correlation part [4, 5]

Exc[n] = Ex[n] + Ec[n], (1.35)

where the exchange is defined as [4, 6]

Ex[n] = 〈Φmin| V̂ee |Φmin〉 − J [n] (1.36)

and Φmin is the KS wavefunction. The correlation part is

Ec[n] = Exc[n] − Ex[n] = 〈Ψmin| V̂ee |Ψmin〉 − 〈Φmin| V̂ee |Φmin〉 , (1.37)

where Ψmin is the exact wavefunction of the interacting system.

Regardless Ex is known exactly, it is not an explicit functional of the density and the
derivative (1.27) can not be readily evaluated. For this reason, we need to approximate
both Ex and Ec. Furthermore, in practice it is difficult to achieve the desired accuracy
by combining exact exchange with approximate correlation.

The Local Density Approximation

The simplest approach to exchange-correlation functionals is the Local Density
Approximation (LDA) [2]. It was proposed by Kohn and Sham [2], and proved to be
remarkably accurate, useful and hard to improve upon. It consists in applying the
exact results for the uniform electron gas to real systems.
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The LDA functional has the form

ELDA
xc [n] =

∫
drn(r)εxc[n(r)], (1.38)

where εxc[n(r)] = εx[n(r)] + εc[n(r)] is the exchange-correlation energy density per
particle of the uniform electron gas evaluated at the density of the system at the point
r. As the LDA is exact for a uniform density, it is expected to be particularly accurate
for a density that varies slowly in space.

The LDA exchange energy per particle is

εx[n] = −3
4

( 3
2π

)2/3 1
rs

, (1.39)

where rs = (3/4πn)1/3 is the radius of a sphere which in average contains one electron,
known ad the Wigner-Seitz radius.

The extension to spin-polarized system is called the Local Spin Density Approxi-
mation (LSDA). In this case the exchange energy is cast in the form

ELSDA
x [n↑, n↓] =

∫
drn(r)εx[ n, ζ ], (1.40)

where

εx[ n, ζ ] = −3
4

( 3
2π

)2/3 1
rs

[
(1 + ζ)4/3 + (1 − ζ)4/3

]
2 , (1.41)

n = n↑ +n↓ and ζ = [n↑ −n↓]/n. For the spin-compensated case (ζ = 0), the expression
(1.39) is obtained, and for the spin-fully-polarized case (ζ = 1)

εx[n] = −3
4

(
3√
2π

)2/3 1
rs

. (1.42)

For intermediate spin-polarizations (0 < ζ < 1) , εx can be written as an interpolation
between those two cases

εx[ n, ζ ] = εx( n, ζ = 0 ) + [εx( n, ζ = 1 ) − εx( n, ζ = 0 )] f [ζ], (1.43)

where
f(ζ) = 1

2
(1 + ζ)4/3 + (1 − ζ)4/3 − 2

21/3 − 1 . (1.44)

Correlation is a more difficult problem. The correlation energy per particle εc[n] is
known only for two limiting cases: the high-density (weak-coupling) and the low-density
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(strong-coupling) limits of a spin-compensated uniform electron gas. The expressions
are

εc[rs � 1] = c0ln(rs) + c1 + c2rsln(rs) + c3rs + · · · (1.45)

and
εc[rs � 1] = 1

2

(
d0

rs

+ d1

r
3/2
s

+ d2

r2
s

+ · · ·
)

. (1.46)

The exact numerical values of εc[rs � 1] and εc[rs � 1] are known with small statis-
tical uncertainties for several intermediate values of rs from Monte Carlo simulations of
the uniform electron gas carried out by Ceperley and Alder [7]. Based on these results,
several interpolation formulas have been devised to connect the high- and low-density
limits.

The most used analytic expression satisfying both limits was proposed by Perdew
and Wang by fitting the Ceperley-Alder data for rs=2, 5, 10, 20 and 100 [8]:

εc(n) = −2c0(1 + α1rs)ln
[
1 + 1

2c0(β1r
1/2
s + β2rs + β3r

3/2
s + β1r2

s)

]
, (1.47)

where c0 = 0.031091, α1 = 0.21370, β3 = 1.6382, β4 = 0.49294, β1 = 1/2c0exp(−c1/2c0),
β2 = 2c0β2

1 , and c1 = 0.0466644.
Analogously to Equation (1.40), the extension of the correlation energy to spin-

polarized system can be written as

ELSDA
c [n↑, n↓] =

∫
drn(r)εc(rs, ζ). (1.48)

However, unlike for exchange, there is no simple exact formula relating εc(rs, ζ = 0)
and εc(rs, ζ = 1). Vosko, Wilk and Nusair [9] recommended the following expression

ELSDA
c (rs, ζ) = εc(rs, ζ = 0)+αc[rs]

f(ζ)
f ′′(0)(1−ζ4)+[εc(rs, ζ = 1) − εc(rs, ζ = 0)] f(ζ)ζ4,

(1.49)
where αc[rs] = ∂2εc(rs, ζ)/∂ζ2 is called spin stiffness.

The LSDA is exact for a uniform electron gas and quite accurate for solids, but
less satisfactory for atoms and molecules.

Generalized Gradient Approximation

The next natural step in the improvement of the approximate expressions for the
exchange-correlation functionals is to expand Exc in gradients for the density. Ex and
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Ec can be written as

EGE
x (n) =

∫
drnεLDA

x (n)
[
1 + μs2 + · · ·

]
, (1.50)

EGE
c (n) =

∫
drn

[
εLDA

c (n) + β(n)t2 + · · ·
]

, (1.51)

where s = |∇n|/(2(3π2)1/3n4/3) and t = |∇n|/4(3/π)1/6n7/6 are reduced density gradients
[4, 6].

However, the density-gradient expansion results only in modest improvements
over LDA for exchange energies [4]. The second-order density gradient expansion
for exchange performs well only in the limit of small reduced density gradients s.
The assumption that the reduced gradients are small may be justified for an infinite
electron gas but not for finite systems. Besides, several spurious features appear: the
exchange hole violates the negativity constraint and it does not integrate to -1 [10].
The correction needed to reproduce the exact correlation energy is overestimated by a
factor of 5 leading to the prediction of positive correlation energies [4, 6]. Because of
this, truncated density-gradient expansions are not used as practical density functionals.
Instead, they are regarded as the exact forms to which approximate exchange-correlation
functionals should reduce in the limit of slowly-varying densities [4, 6].

A different and successful strategy is to look for gradient corrected functionals of
the form [10]

EGGA
xc [n↑, n↓] =

∫
drf(n↑, n↓, ∇n↑, ∇n↓), (1.52)

where the function f is constructed to satisfy important exact constraints like asymp-
totic behavior and boundaries of εxc, density scaling transformations or to fit properties
of a particular class of systems. Such functionals are called Generalized Gradient
Approximations (GGA)[10, 11]. In comparison to LSDA, GGA functionals tend to
improve total energies, atomization energies, energy barriers and structural energy
differences.

The GGA for exchange and for correlation are written as

EGGA
x [n] =

∫
drnεunif

x [n]Fx(s) (1.53)

and
EGGA

xc [n↑, n↓] =
∫

drn[εunif
c (rs, ζ) + H(rs, ζ, t)]. (1.54)
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respectively, where Fx is called enhancement factor and H(rs, ζ, t) is the gradient
contribution to correlation.

Many analytic properties of the exact exchange-correlation functional are known
and, as mentioned before, they can be used to determine Fx and H (the function
f(n↑, n↓, ∇n↑, ∇n↓)) [4, 6, 12]. For example:
(i) the exchange energy is strictly negative, while the correlation energy is non-positive

Ex < 0 Ec ≤ 0, (1.55)

(ii) the Lieb-Oxford bound [13]

Ex[n↑, n↓] ≥ Exc[n↑, n↓] ≥ 1.679
∫

drn(r)4/3, (1.56)

(iii) in a one-electron system of density n1, Ex must cancel the Coulomb self-
interaction energy, while Ec must vanish

Exc[n1] + J [n1] = 0 Ec[n1] = 0, (1.57)

(iv) GGA functional expressions must recover the LSDA ones for the uniform
electron gas.

Many properties of density functionals are derived from density scaling transforma-
tions. The uniform scaling of the density is defined as

nγ(r) = γ3n(γr), (1.58)

as it integrates also to the number of electrons. Considering the effect of such trans-
formations in the exchange-correlation functional leads to important constraints like
[4, 6]

Ex[nγ] = γEx[n] lim
γ→∞ Ec[nγ] > −∞. (1.59)

In Chapter 3, we will discuss the constraint satisfaction procedure in detail for the
derivation of the PBE functional [12]

1.3 First-Principles Cristal Structure Prediction

Crystal structure prediction is the problem of determining the ground state config-
uration of a given system of atoms in a unit cell, i.e. to determine the position of the
atoms and the lattice parameters. This is an optimization problem, where the function
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to minimize is the potential energy and the variables are the atomic positions and the
cell parameters [14, 15].

Even nowadays, when first-principle modeling of materials has become routine,
the prediction of a new crystal structure continues being a challenge, which requires
highly efficient algorithms capable of finding a way from a trial initial structure towards
the ground state geometry. Of course, using a traditional optimization algorithm like
steepest descent or conjugate gradients to minimize the energy would only take the
system from the initial configuration to the nearest energy minimum, which is extremely
unlikely to be the global one. One solution is to try different starting geometries, but
reaching the global minimum in this way certainly needs a smart way of selecting the
trial structures.

A possible approach is to turn to chemical principles and empirical rules. Several
chemistry constraints can be imposed to screen among the candidates. Many crystals
share the same structure and motifs, therefore it is reasonable to choose known
structures as initial guess. This idea is used in high throughput structure prediction
where new stoichiometries are tested in large databases of known structures often
referred as prototypes [16, 17].

Likewise, candidate structures can be randomly generated but by satisfying chemical
constraints. Setting a range of unit cell volumes according to the number of atoms
and a range of distances between the atoms, are strong constraints to help to limit the
infinite number of random structures. It is also common to enforce space groups and
building blocks to bias the search. This is known as the Random Search (RS) method
[15, 18]. In general, RS is performed combined with the use of prototypes [19].

More advanced techniques go beyond chemistry rules and use evolutionary principles
such as inheritance, mutation, selection, and crossover to generate new candidate
structures. This is the case of genetic algorithms. They typically start with a set
of (parent) structures from which new ones are going to be generated (children) by
modifying and combining them in such a way that they minimize an objective function,
in the case of structure prediction, the energy. For instance, a weighted average of
the lattice parameter of the parents can be used to determine the ones of the children.
Children can be also formed by deformations of a single parent, as permutation of
atoms of different kind, modification of the unit cell, etc. Then the lowest-energy
structures of a generation are chosen to procreate the next generation. Analogously
to evolution in life, the bad features will diminish and the candidate structures will
evolve towards the global minimum of the potential energy.
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Particle swarm optimization [20] has also been used for structure prediction. This
algorithm shares some similarities with evolutionary techniques, it is initialized with
a population of random structures and searches for minima by updating generations.
However, this algorithm has no evolution operators such as crossover and mutation
[21, 22].

Other methods take a rather different approach to explore the potential energy
surface (PES). This is the case of algorithms like Simulated Annealing (SA)[23] and
Basin Hopping (BH) [24]. In those algorithms the PES is explored by overcoming
energy barriers. SA starts from a random structure, the atoms are randomly displaced
and the unit cell parameters are changed. After a perturbation (atoms positions or
cell parameters), the energy of the new resulting configuration is calculated. Then,
the new configuration will be accepted or rejected if the probability P = e

− ΔE
kBT is

larger or lower than a random number between 0 and 1, ΔE is the difference between
the energies of the new and the current configurations, kB is the Boltzmann constant
and T is the simulation temperature. Accepting a configuration means that the next
perturbation will be done from this configuration, and rejecting it, means that the
perturbation is neglected, and another perturbation will be performed starting from
the current configuration. In other variants of SA, the PES is explored with molecular
dynamics instead of the Monte Carlo method described above. The simulation starts
with a high temperature in such a way that most of the configurations will be accepted.
This allows to overcome high energies barriers. Then, the temperature is decreased
gradually during the simulation, and higher energies configurations are less accepted.
Finally, when the temperature reaches zero, only configurations that lower the energy
are accepted and the system ends up in the closest minimum. In practice, SA runs
tend to be very slow. Moreover, the number of minima increases exponentially with
the number of atoms. The BH algorithm explores the PES with a Monte Carlo method
as in SA, but after each perturbation the geometry is relaxed, i.e. the system is taken
to the minimum of the basin it has arrived, and the energy of the relaxed structures
are used to compute the probability of acceptance. The temperature is maintained
constant during the calculation, which poses the problem of finding its optimal value
for the run. In BH there is no penalty to avoid revisiting basins.

Another efficient method of structure prediction is Minima Hopping, where a
molecular dynamic algorithm is combined with chemical principles to optimize the
search for the global minimum of the potential energy. In the next section, Minima
Hopping is discussed in detail as it is the method used in this thesis to perform all the
calculations of structure prediction.
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1.4 The Minima Hopping Method

Minima Hopping (MH) [25, 26] is a global optimization algorithm based on the
principle of exploring the high-dimensional PES of complex systems of atoms as fast as
possible and avoiding revisiting minima while progressing towards the (global) minimum
structure. It is constituted by an inner part that performs jumps between the minima
to escape from the basins and an outer part that rejects or accepts the new minima
according to a threshold-based rule, such that half of the moves are accepted and half
are rejected, which is achieved by consequently modifying the threshold parameter. A
record of the visited minima is kept.

The jumps consist of a short Molecular Dynamics (MD) run followed by a geometry
relaxation performed by a combination of standard steepest descent and conjugate
gradient. The MD part is used to move the system from one basin of the PES to
another by crossing energy barriers. MD needs an initial velocity distribution, which is
then scaled to fit the desired kinetic energy. In the first implementation of MH, the
velocities were randomly directed for each atom with Gaussian distributed magnitudes,
but in successive versions the direction of the velocities started to be biased using a
method called “softening”, which will be described later in this section. Then, after
a MD escape, the local geometry relaxation takes the system to the minimum of the
basin it has arrived. This may lead to three cases. The first one is that it may give back
the local minimum used as starting point. The second case is that the new minimum
is one that was previously visited. The third case is when the minimum is a new one,
i.e. it has not been previously visited. This last case is the desirable one since it will
result in the exploration of new configurations.

Once a new minimum is reached, the outer part is going to either accept it or reject
it. If the new minimum is lower than the starting one by a certain value Ed, it is
going to be accepted, this means that the system will move to that minimum from
which another MD escape will start. Otherwise the system will not move to it, the
kinetic energy will be increased and then another MD escape will start from the same
minimum. The outer part introduces a preference for moves that go down in energy.
However, if the inner part only proposes moves that go up in energy, the outer part will
eventually accept them, since Ed is going to be increased to compensate for that many
rejections. The kinetic energy is not only increased if the system falls back into the
current minimum, but also if it gets into another minimum that was already visited.

It might seem reasonable to use a very large kinetic energy since it is desirable to
explore new configurations, but this is only true if the height of a new local minimum
behind a barrier was independent of the barrier height. In chemistry, the Bell-Evans-
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Polanyi (BEP) principle states that strongly exothermic reactions have a low activation
energy. Reactants and products are neighboring local minima on the PES separated
by an energy barrier. Generalizing the BEP principle to any transitions between local
minima on the PES during MD simulations, it has been found that by crossing over
high barriers it is more unlikely to end up in a low energy minimum [27]. MH takes
advantage of that to reduce the space to be explored before finding the global minimum.
For this reason it is important to make a compromise in the choice of the kinetic energy
to obtain the shortest possible simulation time. If it is set to a very large value, the
space to explore before arriving to the global minimum may become very large. In
practice, it turns out that the best solution is to adjust dynamically the kinetic energy
in such a way that half of the MD simulations lead to new basins.

Furthermore, it has been seen that low energy barriers are generally connected to
low frequency eigenmodes of local minima [28]. This take us back to the assignation of
the velocities before a MD simulation. To take advantage of that, before starting a
MD escape, MH performs a search for the lowest curvature direction to escape from
the current minimum. This is the method “softening" [26, 29] that we mentioned
before. The softening is efficiently done by an iterative dimer method which does
not need second derivatives, it uses just gradients instead. Softening has proved to
significantly reduce the number of steps to find the global minimum with respect to the
use of randomly-oriented velocities. However, if the softening process is executed until
it converges exactly to the lowest-curvature direction, the performance drops again.
Hence, after a few steps the iterations have to be stopped before the optimal lowest
local curvature mode is found.

The MH algorithm has proved to be very efficient, being able to reproduce experi-
mental results and to find novel structures starting only from the chemical composition
as the only input information [30–36].

Figure 1.1 shows the evolution of the minima in a MH calculation to find the
ground state structure of LiAl. For this compound the ground state is experimentally
known and we can see at which step the global minimum was found. In the case of new
materials, there is no experimental information to compare with and it is unknown
whether the lowest energy structure found by the algorithm is actually the global
minimum. However, in many cases there are indications that suggest that the global
minimum was found as we discuss bellow.

In the case of LiAl, the initial geometry was selected as the lowest-volume structure
from a large set of randomly-generated cells with 2 atoms of Li and 2 atoms of Al, with
the constraint that the atoms are not too close (interatomic distances at least equal
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Fig. 1.1 Energy of the minima ordered by time occurrence in a MH calculation of 2
formula units of LiAl. The inset is a zoom of the first 40 minima. Accepted minima
are represented by the blue symbols and rejected minima, with the green ones. The
gray symbols correspond to the steps where the MD scape was not able to jump out
of the basin and the same minimum occurs again. The first time a minima is visited
is represented with a circle, while the revisited ones are squares. The dark red line
represents the evolution of the kinetic energy (in arbitrary units).

to the sum of their covalent radii). The structure was relaxed obtaining the energy
represented with the black dot in Figure 1.1. The energies and forces were calculated
using the projector augmented wave (PAW) method as implemented in the code vasp

[37, 38] with the Perdew-Burke-Ernzerhof (PBE)[12] approximation to the exchange
correlation functional.

The ground state structure was the 24th minimum to be found. This search was
very fast as LiAl is a small and simple system (4 atoms per unit cell with PAW datasets
for both for Li and Al with 3 electrons), for larger systems, in general, it is necessary
to visit many more minima to find the global one. It can be seen in Figure 1.1 how
the temperature starts increasing monotonically after the step 34, when most of the
minima were already visited (square symbols predominate). This is an indicator that
the global minimum might have been found. However, on MH calculations, the global
minimum is searched for a fixed number of atoms and it may happen that the true
ground state corresponds to a unit cell with larger number of atoms. As we are limited
by computational cost, we run several unit cells with up to 10 or 12 atoms for each
stoichiometry. That is Li2Al2, Li3Al3, Li4Al4, Li5Al5 and Li6Al6. We normally do not
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run the 1-1 case as the 2-2 is still very fast. In this case all yielded the same ground
state structure.

In the inset of Figure 1.1, it can be seen in detail how the temperature is decreased
after jumping to lower minima, and increased after jumping to higher minima or when
the MD step is not able to take the system out of a basin. Until the 12th minimum,
most of the minima are accepted, even when jumps were from a lower minima as from
the 2th to the 3th minima.

The MH algorithm can be summarized as follows

Initialize a random cell with the atoms at random
positions and with velocities from a Boltzmann distribution

MDstart
ESCAPE TRIAL PART

Softening

Start a MD trajectory with kinetic energy Ekinetic from the current minimum Mcurrent.
Once the potential energy reaches the mdmin-th minimum along the trajectory, stop MD
and optimize geometry to find the closest local minimum ’M’

if (M == Mcurrent) then
Ekinetic = Ekinetic*beta1 (beta1 > 1)
go to MDstart

else if (M == minimum_visited_previously) then
Ekinetic = Ekinetic*beta2 (beta2 > 1)
go to MDstart

else if (M == new_minimum) then
Ekinetic = Ekinetic*beta3 (beta3 < 1)

end if

DOWNWARD PREFERENCE PART
if (energy[M]-energy[Mcurrent] < Ed) then

accept new_minimum: Mcurrent=M
add Mcurrent to history list
Ediff=Ed*alpha1 (alpha1 < 1)

else
Ediff=Ediff*alpha2 (alpha2 > 1)

end if

1.5 The Convex Hull of Phase Stability

The standard enthalpy of formation or heat of formation of a compound is the
change of enthalpy during the formation of 1 mole of the compound from its constituent
elements, with all substances in their standard states at 101.3 kPa (usually at 298.15 K).
It is the central magnitude on the ab initio study of stability since it tells how favorable
is the formation of a phase with respect to the parts from which it is composed.
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Let us first briefly describe how it is determined experimentally. The enthalpy of
formation can be measured by calorimetry experiments. The reactants are added to
a calorimeter and the reaction is started. The calorimeter is a container with good
insulated walls to prevent heat exchange with the environment and its specific heat
has been determined experimentally. Usually the specific heat of the calorimeter is
expressed in equivalent of moles of water. Then, measuring the difference in temperature
before and after the reaction the heat of formation can be calculated as

ΔHo
f = nW Co

pW ΔT ,

were nW is the number of moles of water that would absorb the same heat as the
calorimeter and Co

pW is the specific heat of water.

It is also possible to determine the enthalpy of formation of compounds involved
in chemical reactions with other compounds whose enthalpy of formation has been
already measured

ΔHo
f =

∑
npΔHo

p − ∑
nrΔHo

r ,

where n is the amount of substance, and r and p stand for reactant and products
respectively. The enthalpy of formation of elementary substances is equal to zero by
definition.

In the DFT framework, the enthalpy of formation of condensed systems is determined
from the ground state energy at zero temperature plus the pressure times the cell
volume. If no pressure is applied, usually one talks about formation energy, since the
term PV , will be zero and the enthalpy will be equal to the energy.

Just by looking at the formation energy values, one has not enough information to
know whether a certain phase is stable or not. The formation energy measures the
stability of a phase with respect to the elements which composes it. To determine
if a phase is stable, one has to consider also the decomposition into all possible non-
elementary phases. In the case of binary systems, a 2D convex hull diagram is a
convenient way to visualize the stability between the phases.

The general definition of the convex hull of a set of points S in n dimensions is the
intersection of all convex sets containing S. In this thesis, as it is used to display the
phase diagram of binary systems, we only need the bidimensional case which can be
defined as the smallest convex polygon that contains all the points of S that lie in a
plane. A thermodynamic stability diagram of a binary compound is nothing but the
convex hull formed by the lines connecting the lowest energy points in the plot of the
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Fig. 1.2 Example of convex hull construction for a binary system AB. (top left) there are
no stable phases, (top right) the phase of concentration x is unstable and decomposes
in the phase at xo plus precipitation of B, (bottom left) AxB1−x is in equilibrium with
AxoB1−xo , i.e. the system does not loose or gain energy with this phase transformation.
(bottom,right) AxB1−x and AxoB1−xo are stable.

formation energy per atom as a function of x in AxB1−x (Figure 1.2):

ΔHf (AxB1−x) = E (AxB1−x) − [xEo (A) + (1 − x) Eo (B)] ,

with x in the interval [0;1], Eo the energy per atom, E the total energy and ΔHf is
the formation energy per atom. ΔHf has a linear dependence on x.

To understand how the convex hull is helpful for the determination of the relative
stability of the phases, let us examine Figure 1.2. Consider the points corresponding
to the pure elements, x=0 and x=1. For x=0 we have

ΔHf (x) = E (B) − [0Eo (A) + Eo (B)] = 0 (1.60)

and for x=1 we have

ΔHf (x) = E (A) − [Eo (A) + 0Eo (B)] = 0. (1.61)

The line ΔHf=0 connecting the extreme points of ΔHf as a function of x,

E (AxB1−x) = xEo (A) + (1 − x) Eo (B) ,
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corresponds to the set of phases that are in equilibrium with the separated elements.
Their energy of formation is 0 since there is no need to give energy to the system
to obtain a separation of phases. The points above this lines correspond to unstable
phases.

In contrast, stable phases correspond to points under the line, i.e. negative energies
of formation. If the outcome of a structure prediction calculation, like MH, are two
structures of the same concentration x, it is easy to distinguish which one is more stable:
the one with lower energy of formation. But when it comes to compare structures with
different concentration, it is not trivial, and it becomes clear the importance of the
convex hull construction.

Consider two phases with different negative values of energies of formation and
concentrations. The possible dissociation of the phase with higher energy of formation
(less negative) is described by the following chemical equation:

AxB1−x →
(

1 − x

xo

)
B + x

xo

AxoB1−xo . (1.62)

Depending on the energies of each term on the equation, there will occur one of the
possibilities considered before:

E(AxB1−x)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

<
(
1 − x

xo

)
E(B) + x

xo
E(AxoB1−xo) AxB1−x is stable,

=
(
1 − x

xo

)
E(B) + x

xo
E(AxoB1−xo) both phases are in equilibrium,

>
(
1 − x

xo

)
E(B) + x

xo
E(AxoB1−xo) AxB1−x is unstable.

The relation of this expression with the convex hull can be easily understood by
subtracting xE(A) + (1 − x) E(B) on each side:

E(AxB1−x) − xE(A) − (1 − x)E(B) =
(

1 − x

xo

)
E(B) + x

xo

E(AxoB1−xo)−

− xE(A) − (1 − x)E(B)

= x

xo

[E(AxoB1−xo) − xoE(A)

− (1 − xo)E(B)].



1.5 Convex Hull of Phase Stability 21

In each side we have the formation of each phase respectively

ΔHf (AxB1−x) = x

xo

ΔHf (AxoB1−xo). (1.63)

This expression is the equation of the line that connects the point at x with the one
at xo in the convex hull. This translates the cases considered before to a geometrical
description: the phase at x is going to be stable if its formation energy lies in/or under
the line that connects the stable phase at xo with the point at 0 concentration of A. If
it is above the line, it is going to be unstable.

Now it is clear to see that Figure 1.2 shows the cases examined before: when there
are no stable phases, when the phase of concentration x is unstable and decomposes in
the phase at xo plus precipitation of B, when both phases are stable or both phases
are in equilibrium, i.e. the system does not loose or gain energy with this phase
transformation.

Analogously, if the phase at concentration x were at the right side of the one at xo

(x > xo), the chemical equation would be

AxB1−x → x − xo

1 − xo

A + 1 − x

1 − xo

AxoB1−xo , (1.64)

leading to the line

ΔHf (AxB1−x) =
( 1 − x

1 − xo

)
ΔHf (AxoB1−xo)

= ΔHf (AxoB1−xo)
xo − 1 x − ΔHf (AxoB1−xo)

xo − 1 ,

which connects the stable phase at xo with the the point at 0 concentration of B. If in
Figure 1.2 there was a phase with a concentration of A between x and xo, i.e. with
two adjacent phases instead of a phase and a single elemental, then, if it is unstable, it
would decompose in the two adjacent stable phases and the reasoning to determine its
stability would be the same.

In general, the decomposition of a phase of concentration x in two other phases of
concentrations x2 and x1 (x2 > x1) is given by

AxB1−x → x − x1

x2 − x1
Ax2B1−x2 + x2 − x

x2 − x1
Ax1B1−x1 (1.65)
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and the line that determines the stability is

ΔHf (AxB1−x) = ΔHf (Ax2B1−x2) − ΔHf (Ax1B1−x1)
x2 − x1

x+

+ ΔHf (Ax1B1−x1)x2 − ΔHf (Ax2B1−x2)x1

x2 − x1
.

1.6 Phonons

The structures resulting from MH runs are then “refined” by a geometry optimiza-
tion, performed with stricter convergence parameters. This procedure sets the atomic
positions and lattice parameters for which the forces over the ions and stresses over the
cell are lower than some tolerance value. That is, the final structure is in a stationary
point of the PES, i.e. in a point where the first derivative of the potential energy of
the system (the forces on the atoms) vanishes. To distinguish whether such stationary
points correspond to minima or saddle points, it is useful to look at the phonon modes,
i.e. the frequencies of the modes of small vibrations of the atoms. If all the frequencies
are real, the geometry corresponds to a minimum, and the structure is dynamically
stable. Conversely, imaginary frequencies are indicative of structural instabilities.

Phonons are calculated by expanding in Taylor series the potential over the atoms
around their equilibrium positions as a function of their displacements and retaining the
second-order term. Consider a N = NxNyNz supercell of a periodic solid containing σ

atoms and let ξx
Rα be the x coordinate of the displacement of the atom at position α in

a unit cell located at position R = m1R1 + m2R2 + m3R3. The classical Hamiltonian
describing the small vibrations of the atoms is

Hcl = 1
2

∑
αRx

[
Mα(ξ̇x

Rα)2 +
∑

α′R′x′
Cxx′

αα′(R − R′)
]

ξx
Rαξx′

R′α′ . (1.66)

The term Cxx′
αα′(R−R′) is the mixed second-order derivative of the potential with respect

to the displacement. It is called the interatomic force constant. The corresponding
Hamilton equation is

Mα(ξ̈x
Rα)2 +

∑
α′R′x′

Cxx′
αα′(R − R′)ξx′

R′α′ = 0. (1.67)
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Because of the translation symmetry of the system, the solution can be looked for in
the form

ξRα(q) = aα(q)ei[(q·R)+ωqt]. (1.68)

To satisfy the periodic boundary conditions

q = 2π
3∑

i=1

νi

Ni

Gi, (1.69)

where the Gi are the reciprocal lattice vectors and νi are integers satisfying the
inequalities

−1
2Ni < νi ≤ 1

2Ni (i = x, y, z). (1.70)

The wavevector q can take N different values in the first Brillouin zone. As N → ∞,
q changes continuously. The vectors aα(q) characterize the direction of the vibrations
in (1.68) with wavevector q. Substituting (1.68) into (1.67), the Cartesian components
of these vectors are determined as the solutions of the set of equations

∑
α′x′

C̃xx′
αα′(q)ax′

α′(q) − ω2
qMαax

α = 0, (1.71)

where
C̃xx′

αα′(q) =
∑
R′

Cxx′
αα′(R − R′)eiq·(R−R′) (1.72)

form an Hermitian matrix. The eigenfrequencies ω are determined from the condition
that the set of equations (1.71) has a solution

|C̃xx′
αα′(q)ax′

α′(q) − ω2
qMαδxx′δαα′| = 0. (1.73)

As C̃xx′
αα′ is Hermitean and as the equilibrium position corresponds to an energy minimum,

all 3σ roots of this equation will be real and positive functions of q. Three among
the 3σ frequencies vanish when q=0 (which corresponds to an in-phase displacement
of all atoms belonging to one elementary cell). These solutions, for any q are called
acoustic branches modes. The remaining 3(σ − 1) frequencies are non-zero for q=0.
These solutions are called optical modes.

The computation of the interatomic force constant can be generally carried out
using a finite displacement technique or by a perturbative approach in the framework
of Density Functional Perturbation Theory (DFPT), as described in References [39, 40].
In the first approach, the derivatives are determined by making small displacement of
the atoms in the positive and negative directions along x, y and z, and computing the
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corresponding energies. From Eequations (1.69) and (1.70), it can be seen that it is
necessary to create a supercell to obtain a phonon band structure for non-zero vectors
q. In the DFPT approach, the derivatives are calculated using linear response in the
reciprocal space by considering the change in the self-consistent potential in response
to small atomic displacement.



Chapter 2

Binaries Phase Diagrams from First-Principles

Structure Search

We present a methodology for the computation of binary phase diagrams from first-
principles based on the Minima Hopping method and its application for the intermetallic
binary alloys of sodium-gold and lithium-aluminum, and for the crystals of hydrogen-
chlorine at moderate pressures. Our calculations unveiled several new stable phases
in the three phase diagrams. A detailed electronic structure study of the alloys was
conducted. The results for the Li-Al alloys were crosschecked with different echange-
correlation energy functionals. We also examined the elastic properties by calculating
the Bulk, Shear and Young moduli from ab initio elastic constants. We will then
discuss the effect of pressure and temperature on binary phase diagrams, using the
example of hydrogen-chlorine binaries. We found that triatomic molecules of hydrogen
can be stabilized under moderate pressure in chlorine cages, while they were predicted
to become stable in pure hydrogen above 2.1 TPa.

2.1 Introduction to Alloys

Alloys are materials composed of two or more elements, at such concentrations
that an element can not be considered as an impurity. A typical purpose for making
alloys is to enhance mechanical properties of the parent elementary solids as ductility,
stiffness and hardness. For instance, the stiffness of aluminum can be enhanced by
adding lithium, obtaining at the same time a decrease of wight. This fact makes
aluminum-lithium alloys very attractive for the aerospace industry.

There are many examples of alloys in our everyday life. Among the most well
known alloys are steel, which is composed of iron with a low content of carbon and
stainless steel which also contains chromium. Iron is a very brittle metal, which is likely
to brake if it receives sudden shocks. Adding carbon, one obtains a new alloy with
higher toughness and tensile strength. Steel can be used in the construction industry
for bridges and buildings. In the same way, adding chromium to iron increases the
resistance to corrosion. Bronze is mainly composed of copper with the additions of
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tin, although it might contain also nickel. Varying the amount of tin in the mixture,
produces alloys that can have higher electrical conductivity, hardness, resonant qualities
and resistance to the corrosion by sea water, as well as lower metal-metal friction than
pure copper. Bronze has countless applications from musical instruments to automobile
industry. Gold is mostly present in alloy form. The amount of gold in alloy is expressed
in karats. One karat means that one out of twenty-four parts of the alloys is gold.
Many metals can be used for the remaining portion of the gold alloys.

The more we understand alloys, the more efficiently they can be designed to target
desirable features and properties. The earlier approaches to alloy composition estimation
used phenomenological rules and experience in general. Today we can combine this
empirical knowledge with first-principles computational methods. Computer solutions
have progressively gained space and confidence in guiding material research, not only in
academy but also in industry, thanks to the fact that computers have rapidly became
more powerful and the methods more accurate. Ab initio methods offer a significantly
access to the electronic and atomic structure of crystalline materials at a microscopic
level that often is not directly accessible in experiment. Nowadays, in this domain,
experiments and ab-initio calculation complement each other on an equal footing.
Particularly, in the design of alloys, predictive computational methods are extremely
useful, providing important information to experimentalists.

We can cite for example, the work of Ikehata and coworkers of the Toyota Central
Research Development Laboratories, on the development of low elastic modulus
titanium alloys [41]. These are light and high-strength materials that have been
used in various engineering fields, from automobile and aerospace applications to
biomaterials for load-bearing implants such as hip or knee prostheses because of their
biocompatibility. Raabe and coworkers [42] used DFT calculations to screen between
different possibilities of alloying titanium (Ta, Mo, Nb, and Zr) in order to obtain
stable body centered cubic β-phase Ti-alloy satisfying the medical constraints of being
nontoxic and having a reduced elastic stiffness. Sandlobes and coworkers [43] found that
Yttrium, Scandium and several lanthanides in Mg15X solid-solution crystals, improved
the room-temperature ductility of pure magnesium by up to 4–5 times which was
confirmed in experiment. The industrial use of magnesium is hindered by its poor
formability at room temperature, however, magnesium-based alloys are attractive for
structural applications owing to their low mass density, good castability and efficient
recyclability. Olson and coworkers [44] use DFT and other computational techniques to
design ultra-high strength and high-toughness steels. Their DFT calculations indicate,
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among other results, that in the bcc-iron crystal the gliding induced separation is
dominant, which explains why plastic deformation takes place.

In sections 2.2 and 2.3, we will present the results of our calculations on alloys.
Another example of alloy, in this case a semiconducting alloy, is discussed in section
3.3, for applications in photovoltaics.

2.2 Alloys of Sodium and Gold

Intermetallic compounds made of alkali metals and gold have intriguing electronic and
structural properties that have not been extensively explored. We summarize here a
systematic study of the phase diagram of one binary system belonging to this family,
namely NaxAu1−x, using the ab initio Minima Hopping structure prediction method.
We obtain that the most stable composition is NaAu2, in agreement with available exper-
imental data. We also confirm the crystal structures of NaAu2 and Na2Au, that were
fully characterized in experiments, and identify a candidate ground-state structure for
the experimental stoichiometry NaAu. Moreover, we obtain three other stoichiometries,
namely Na3Au2, Na3Au, and Na5Au, that turn out to be thermodynamically stable
in our simulations. Finally, we perform phonon calculations to check the dynamical
stability of all reported phases and we simulate X-ray diffraction spectra for comparison
with future experimental data.

Unusual and intriguing electronic properties have been found in binary phases of
alkali metals and gold [45–48]. Proceeding through the alkali metal series from LiAu
to CsAu, a metal-insulator transition occurs upon going from KAu to RbAu. All
compounds have an ionic character, with gold being the negative ion. The structural
properties of these binaries are also peculiar: while RbAu and CsAu adopt an octo-
coordinated CsCl structure, analogous to the one of CsBr and CsI ionic crystals, the
structures of the metallic NaAu and KAu compounds are more complicated and still
not fully characterized. A new three dimensional icosahedral quasicrystal has recently
been discovered by exploring the ternary Na-Au-Ga system [49].

Experimental studies on NaAu solid compounds date back to the beginning of the
20th century. Zintl et al. obtained a black deposit from an ammonia solution of sodium
by adding Au, which they claimed to be a NaAu compound [50]. Since then, three
other stoichiometric compounds were obtained from the melts of Na and Au, namely
Na2Au, NaAu2, and NaAu5 [46, 51]. While the crystal structure of Na2Au and NaAu2

were fully characterized, no definitive structure is given in literature for NaAu and
NaAu5 [46, 52–54]. As gold is a highly electronegative element, while alkali metals
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are electropositive, one expects some ionic character for alkali metal-gold compounds.
The negative oxidation state of gold is a focus of intensive studies as summarized in
recent review papers [55, 56]. From the theoretical side, there are very few ab initio
investigations of this family of compounds [57] and almost all the published calculations
are devoted to NaAu clusters [47, 58, 59].

A further motivation to study NaAu binary systems comes from the fact that
previous results on clusters and thin-films [45, 47, 58–60] hint at the existence of other
stoichiometries, eventually stabilized by pressure [48].

Determining from first principles the phase diagram of a solid starting solely from
its elemental composition is one of the most fundamental problems in materials science.
The phase diagram of a binary compound represents the thermodynamic equilibrium
of phases of a two-component system and it reveals useful insights into fundamental
thermodynamic properties. However, the experimental determination of a phase
diagram is an extremely time-consuming process, that requires careful synthesis and
characterization of all possible phases. Accurate ab initio computational tools can
significantly accelerate the construction of phase diagrams at zero temperature and
zero pressure. Furthermore, it is straightforward in this calculations, to include the
effects of pressure and temperature.

In this context, we use the Minima Hopping (MH) method [25, 26] coupled to
Density Functional Theory (DFT) for the theoretical determination of the phase
diagram of Na-Au. For a given stoichiometry, the initial geometries for the MH runs
were obtained randomly, assuring only that the minimal distance between the atoms
was at least equal to the sum of the covalent radii. We used cells containing up to
12 atoms, which, depending on the stoichiometry, corresponds to 1-4 formula units.
During the structure search runs, forces and energies were obtained in the framework
of DFT using the all-electron projector augmented wave method as implemented in
vasp [37, 38]. The Perdew-Burke-Ernzerhof approximation (PBE) [12] to the exchange-
correlation functional was used, and numerical convergence to less then 2 meV/atom
was ensured by a high energy cutoff and dense k-point meshes.

We studied 19 different stoichiometries of NaxAu(1−x), ranging from pure gold
to pure sodium. As discussed above, excluding the pure elemental crystals, only
four compositions were reported experimentally [61]: Na2Au[46, 52], NaAu2[46, 53],
NaAu [46, 50], and NaAu5 [46]. The structures of the first two are well known. A sample
of Na2Au of overall composition 69.95 at.% at 25°C Na was indexed as belonging to
the I4/mcm space group, crystallizing in a CuAl2-type structure [46] with a = 7.417Å
and c = 5.522 Å. On the other hand, NaAu2 has Fd3̄m symmetry, and crystallizes in a
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Fig. 2.1 Convex hull of the Na-Au binary system.

MgCu2-type structure [46] with a = 7.818 Å (averaging on three compositions between
33 and 38 at.% at 25°C). NaAu has been reported to be a complex structure and no
crystallographic data are given [46]. Finally, there exist some experimental evidence of
the production of NaAu5 at 775°C [46], which has not been further verified yet.

Figure 2.1 shows the convex hull of NaAu binaries, calculated considering all the
lowest-energy structures resulting from the MH simulations for the different composi-
tions x = Na/(Na + Au). In this figure, low-energy structures are indicated by crosses,
while thermodynamically stable compositions are marked with a circle. As discussed
in the first chapter, the position of a structure with respect to the convex hull gives
the primary criterion for its stability: all phases corresponding to points on top of the
convex hull are stable, and those above are unstable. There are however, two details
that we have to keep in mind: (i) There is always an error in the estimation of the
formation energy inherent to our theoretical method. Therefore, structures that are
“unstable” but close (∼10 meV/atom) to the convex hull can be stable experimen-
tally. (ii) Structures that are close to the stability line can sometimes be stabilized by
temperature, pressure, doping, or even intrinsic defects.

Based on these rules, we selected our lowest-energy phases which form the convex
hull, or that are very close to it, for further theoretical characterization. The selected
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(a) NaAu2 (b) NaAu

(c) Na3Au2 (d) Na2Au

(e) Na3Au (f) Na5Au

Fig. 2.2 Schematic representation of the structures of the Na-Au binaries found by the
MH runs. Na is represented by blue spheres and Au by yellow spheres.

crystal structures are presented in Figure 2.2 and Table 2.1. Complete crystallographic
information can be found in Appendix A.

It is worth to remark that the structure prediction runs yield the correct ground-
state for both pure sodium (P63/mmc structure with a = 3.77 Å and c = 6.15 Å)
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Table 2.1 Lowest-energy phases obtained from the MH calculations. Distances and
angles in Å and degree respectively.

Phase Space group a b c α β γ

NaAu2 F 41/d 3̄ 2/m 7.9473 7.9473 7.9473 90.00 90.00 90.00
NaAu R 3̄ 2/m 5.6542 5.6542 14.3409 90.00 90.00 120.00
Na3Au2 C 1 2/c 1 7.8593 8.5125 7.0438 90.00 95.15 90.00
Na2Au I 4/m 2/c 2/m 7.3823 7.3823 5.6288 90.00 90.00 90.00
Na3Au P 1 21/m 1 5.7324 9.2625 4.5781 90.00 113.29 90.00
Na5Li P 4/n 2/b 2/m 7.6310 7.6310 6.2395 90.00 90.00 90.00

and gold (Fm3̄m structure with a = 4.08 Å). Furthermore, we also obtained the
experimentally known structures of the Na2Au and NaAu2 phases. The theoretical
lattice parameters of Na2Au are a = 7.38 Å and c = 5.63 Å, and for NaAu2 we find
a = 7.95 Å. All lattice parameter are in very good agreement (of less than 2%) with
the experimental values for Na2Au, aexp = 7.417 Å and cexp = 5.522 Å and for NaAu2,
aexp = 7.818 Å [46].

The proximity of the lowest energy phase for NaAu to the convex hull line suggests
that this structure is a good candidate for the NaAu experimental sample. The NaAu
structure has R3̄m symmetry, with a = 5.65 Å and c = 14.3 Å. Of course, we cannot
exclude that even more stable structures may be found using larger supercells in the
structural search. Despite our extensive search, we could not find any stable structure
for the other possible experimental stoichiometry, NaAu5. Also in this case, more
formula units per cell may be needed to identify a stable crystalline arrangement.
However, our lowest-energy structure for NaAu5 is quite far from the convex hull,
raising the doubt that this stoichiometry might not be stable at all. Indeed, there is
only one reported experimental observation, which has not been verified up to now.
The analysis of the electronic band structures confirm that all the phases are metallic
(see Figure 2.3).

We also found three other structures on top or very close to the convex hull which
were not reported experimentally: Na3Au2, Na3Au, and Na5Au. Na3Au2 crystallizes in
a monoclinic C2/c structure with a = 7.86 Å, b = 8.51 Å and c = 7.04 Å. Na3Au has
monoclinic P21/m space group with a = 5.73 Å, b = 9.26 Å and c = 4.58 Å. Finally,
Na5Au has a tetragonal P4/nbm structure with a = 7.63 Å, and c = 6.24 Å.

In order to further evaluate the stability of the new phases found by the MH
calculations we evaluated the phonon spectra. In fact, the existence of imaginary
frequencies in the spectra indicates dynamical instability, i.e., that the structure is
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Fig. 2.3 Electronic band structures. The Fermi energy has been shifted to zero
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Table 2.2 Bader charges on Na and Au inequivalent atoms for the lowest-energy
structures. The Bader charges are given in elementary charge units

Stoichiometry Charge on Na Charge on Au

NaAu2 +0.81 -0.40
NaAu +0.70, +0.74 -0.72
Na3Au2 +0.71 -1.06
Na2Au +0.63 -1.25
Na3Au +0.60, +0.66 -1.85
Na5Au +0.18, +0.52 -2.25

not a minimum and that the correct structure contains a larger number of atoms in
the unit-cell. The absence of imaginary frequencies is not a proof that the structure
is the absolute minimum, but only indicates that it is a valid (meta-)stable phase.
Our phonon calculations were performed with Density-Functional Perturbation Theory
(DPT) [62–64] as implemented in the abinit [65] DFT software package. For the 6
structures shown in Figure 2.2 we used a cutoff energy of 40 Ha, a 2 × 2 × 2 q-grid, and
4 × 4 × 4 (for Na5Au and Na3Au2) or a 8 × 8 × 8 (for the other compounds) k-point
grid.

Figure 2.4 shows the phonon band structures for the stable Na-Au phases we found.
We can observe that, as expected, acoustical frequencies go to zero at Γ and there are
no unstable modes present, clearly showing the dynamical stability of these phases.
Furthermore, the maximum phonon frequency ranges from 160–190 cm−1. These values
are larger than the values for pure sodium (∼120 cm−1 [66]) and pure gold (∼150 cm−1

[66, 67]), indicating a stronger (ionic) bonding in the alloy.
The metallic character of these compounds and their larger phonon frequencies bring

up the question of superconductivity in NaxAu1−x. According to the strong-coupling
theory of electron-phonon mediated superconductivity, the transition temperature is
proportional to the average phonon frequency. It is well known that neither sodium nor
gold are superconducting at ambient pressure, but it is unclear if the increased phonon
frequencies in Na–Au alloys is enough to yield superconductivity. To investigate this
matter we performed linear-response calculations of the electron-phonon coupling with
abinit. Our results indicate that these alloys are very likely superconductor, but
with transition temperatures as low as 2 K due to the relatively small value of the
electron-phonon coupling constant λ.

In Table 2.2 we report the Bader charges on the crystallographically non-equivalent
atoms for the lowest-energy structures of each stoichiometry. We can clearly see that
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Fig. 2.4 Phonon band structures of the Na-Au phases.

the negative charge on gold increases monotonically by increasing the sodium content.
In particular, it reaches the remarkable value of -2.25 for Na5Au, showing that the
Na-Au binary system is a perfect playground to study how gold behaves in very different
chemical environments.

Finally, in Figure 2.5 we provide simulated X-ray diffraction spectra for the lowest-
energy structures of the six stable compositions. Comparing with the experimental
spectrum from Ref. [68] (reproduced in Figure 2.6), it is possible to notice that both
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Fig. 2.5 Simulated X-ray diffraction spectrum with Cu Kα radiation λ = 1.54178Å.

Fig. 2.6 X-ray diffraction patterns of Au electrode reproduced from Ref [68]: (a) after
potentiostatic cathodic electrolysis at 0.3 V for 2 h; and (b) after potentiostatic anodic
electrolysis at 0.6 V for 1 h after forming the Au2Na alloy in a LiF-NaF-KF eutectic
melt at 773 K. Au2Na: cubic cell unit, a=0.779 nm.
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NaAu2 and NaAu agree well with experiments considering the large amount of noise
present in the experimental data. In fact, the peak around 2θ = 20° and 2θ = 40° are
present in the spectra of NaAu2 and NaAu.

In summary, using MH we found two already known and four novel structures of
NaxAu1−x that are likely to be thermodynamically stable. In the cases of Na2Au and
NaAu2 our MH runs converged to the reported experimental geometries. We found a
likely candidate for the crystal structure of NaAu, which was reported experimentally
but not fully characterized. We also found for the first time a tetragonal Na5Au phase,
and monoclinic phases for Na3Au2 and Na3Au. We calculated phonon band structures
for the lowest-energy structures and we found that all of them are dynamically stable.
Of course, the methodology presented here to study thermodynamic phase diagrams is
absolutely general, and can be used for any other intermetallic binary as we shall see
in the next section.

2.3 Alloys of Lithium and Aluminium

Intermetallic Li-Al compounds are, on one hand, key materials for light-weight engi-
neering, and, on the other, they have been proposed for high-capacity electrodes for
Li batteries. We determine from first-principles the phase diagram of Li-Al binary
crystals using the MH structure prediction method. Beside reproducing the experi-
mentally reported phases (LiAl, Li3Al2, Li9Al4, LiAl3, and Li2Al), a structural variety
larger than expected is unveiled by discovering six unreported binary phases likely to
be thermodynamically stable. Finally, we discuss the behavior of the elastic constants
and of the electric potential profile of all Li-Al stable compounds as a function of their
stoichiometry.

Light weight and good mechanical properties, together with attractive manufactur-
ing costs, set Al alloys with Li at the forefront of aerospace materials research. The
search for improved alloys is still open and attracts global interest for widespread
industrial applications. It is well known that in the Al-rich range of stoichiometries (Li
concentrations between 5% and 25%), Li–Al alloys offer higher stiffness and superior
strength-to-weight ratios [69–71] than pure Al. In fact, each additional weight per-
centage of Li reduces the density by about 3% while increasing the Young modulus
by about 6% [70]. This effect is explained by the hardening which occurs through
the precipitation of nanoscale particles of the binary in the Al matrix [72]. The
strengthening nano-precipitates, known as the δ′ phase, are thought to be made of
metastable LiAl3 with a cubic (Pm3̄m) structure, which remains crystallographically
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coherent with the parent Al fcc matrix with small lattice mismatch. Although some of
the strengthening qualities originate from the precipitates acting as pinning centers for
defects, it is proved by ab initio calculations that the stoichiometric LiAl3 crystal has
a Young modulus significantly larger than Al [73, 74].

Li-Al alloys have been investigated extensively, both experimentally and theoret-
ically, and diverse applications have been proposed for this system. In literature
one can find information on five binary phases. While the Al-rich side of the phase
diagram contains compounds with attractive elastic properties, the Li-rich side has
been explored for high-capacity electrodes for Li batteries [75]. The experimental data
show that starting from a face-centered cubic (fcc) metal (space group Fm3̄m) of pure
Al, addition of Li produces fcc Li–Al solid solutions until reaching the stoichiometry of
the metastable simple cubic LiAl3 and then two stable binaries, the cubic (Fd3̄m) LiAl
and, already in the Li rich range, the rhombohedral (R3̄m) Li3Al2. The structure of
Li3Al2 is indeed compatible with the rhombohedral (R3̄m) zero temperature structure
of Li. However, going from Li3Al2 to pure Li one passes through orthorhombic (Cmcm)
Li2Al and monoclinic (C2/m) Li9Al4 [76, 77]. The fact that at room temperature
the crystal structure of pure Li becomes body-center cubic (bcc, Im3̄m), and that at
T=0 K the above mentioned rhombohedral, the bcc and an fcc phase are separated by
less than 3 meV per atom according to first-principles calculations, is a clear indication
of the complexity of bonding schemes that is brought by Li [74].

Theoretical investigations have mainly focused on the properties of the experimental
phases, and little has been done in order to identify new ones. Podloucky et al. [73,
78] studied Al-rich alloys using first-principles statistical-mechanics and electronic-
structure approaches within the local density approximation [3] (LDA) to the exchange-
correlation energy. They determined thermodynamical magnitudes considering a
statistical ensemble of possible fcc supercells containing up to 8 atoms. Alam et al. [79]
also tried fcc and bcc-based compounds without finding any new stable structure. Also,
using the Korringa-Kohn-Rostoker method within the coherent-potential approximation
(KKR-CPA), they predicted a higher stability of off-stoichiometry Al-rich phases with
respect to the ordered ones, when the Li content is between 8% and 20%.

Despite this large amount of studies in literature, the knowledge on the whole phase
diagram of Li–Al appears to be still incomplete. In view of that, this section presents a
first-principles structure prediction study of ordered phases of the Al-Li binary system.
We used the same methodology described in the previous section to investigate the
phase diagram of LixAl1−x.
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Fig. 2.7 Convex hull of the Li-Al binary system: one constructed from the ab initio
MH calculations (black with open circles) and the other (red with filled circles) with
structures from databases.

We explored 33 different stoichiometries from pure Al to pure Li. For a given
stoichiometry, the initial geometries for the Minima Hopping [25, 26] (MH) runs were
obtained randomly, ensuring only that the minimal distance between the atoms was
at least equal to the sum of the covalent radii. We used cells containing up to 13
atoms, which, depending on the stoichiometry, corresponds to 1–5 formula units. Forces
and energies were obtained in the framework of Density Functional Theory (DFT)
using the all-electron projector augmented wave (PAW) method as implemented in
vasp [37, 38]. We used the Perdew–Burke–Ernzerhof (PBE) approximation [12] to
the exchange-correlation functional, together with a plane-wave cutoff of 520 eV and a
number of k-points sufficient to guarantee a numerical convergence of total energies to
less than 2 meV/atom.

With the lowest energies structures obtained from the MH calculations, we con-
structed the theoretical convex hull, which is presented in Figure 2.7 with a black line.
To showcase the performance of our method in predicting crystal structures, we include
in Figure 2.7 also the convex hull constructed with the energy of the previous known
Li–Al phases (red line). Most of these were available through the AFLOWLIB [16] and
OQMD [17] databases, while the structure of Li2Al was taken from Refs. [76, 77]. The
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Fig. 2.8 Convex hull of the Li–Al binary system using different exchange-correlation
functionals. Red line with plus symbols: computed with the LDA. Green line with
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grey line with triangles: computed with HSE at the PBEsol geometries. The ther-
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energy of the thermodynamically stable compositions, which form the convex hull, are
marked with a circle. Red filled circles refer to experimental structures and the crosses
indicate the energies of the low-lying local minima explored by the MH algorithm
during our simulations. To select the stable compositions, we consider the structures
with energies close (within 10 meV/atom) to the convex hull as belonging to it. In
this way, we take into account effects like the inherent errors in the estimation of the
formation energy, temperature, pressure and defects, which may slightly modify the
position of the structures with respect to the stability lines.

In order to evaluate the effect of the choice for the exchange-correlation functional
on the convex hull we repeated the reoptimization step using different approximations,
i.e. the LDA [3], PBEsol [80] (a revised PBE functional that improves equilibrium
properties of densely packed solids and their surfaces), and the screened hybrid Heyd-
Scuseria-Ernzerhof (HSE) [81, 82] at the PBEsol geometries. The results are shown
in Figure 2.8, were we can see that the shape of the convex hull is to a large extent
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Table 2.3 Lowest-energy phases obtained from the MH calculations. Distances and an-
gles in Å and degree respectively. (∗) Reported experimental phase of Li2Al. Complete
crystallographic information can be found in Appendix B.

Phase Space group a b c α β γ

Al Fm3̄m 4.041 4.041 4.041 90.00 90.00 90.00
LiAl3 Pm3̄m 4.025 4.025 4.025 90.00 90.00 90.00
LiAl Fd3̄m 6.348 6.348 6.348 90.00 90.00 90.00
Li5Al4 P 3̄m1 4.446 4.446 8.391 90.00 90.00 120.00
Li3Al2 R3̄m 4.446 4.446 14.073 90.00 90.00 120.00
Li2Al Cmcm(∗) 4.592 9.596 4.448 90.00 90.00 90.00
Li2Al P6/mmm 4.541 4.541 2.667 90.00 90.00 120.00
Li9Al4 C2/m 5.367 4.453 18.633 105.41 103.14 90.17
Li5Al2 C2/m 5.401 4.465 9.698 90.00 95.27 90.00
Li3Al P121/m1 5.420 4.460 5.636 90.00 100.03 90.00
Li7Al2 R3̄m 7.932 7.932 8.226 90.00 90.00 120.00
Li9Al P 1̄ 5.076 5.093 7.936 83.45 71.71 70.30
Li R3̄m 3.067 3.067 22.085 90.00 90.00 120.00

independent of the choice for the exchange-correlation potential, and therefore the
same compositions are thermodynamically stable for all the tested approximations.

The stable crystal structures are summarized in Table 2.3 and their atomic ar-
rangements are displayed in Figures 2.9 and 2.10. We found eleven stable intermetallic
structures, out of which six had not been reported before. The other five are the
experimentally known structures mentioned above. For these, the lattice constants
were determined in very good agreement of less than 2% with the experimental val-
ues [74, 76, 77, 83, 84]. It is important to stress that the MH algorithm was able to
find all the experimentally known structures, and to determine new phases lower in
energy than the ones available in the databases. This confirms its predictive power,
which is especially relevant in this system that presents a large diversity of atomic
arrangements.

From a careful analysis of Figure 2.7 we can notice that almost straight lines connect
LiAl with pure Al, passing through LiAl3, that touches the convex hull. This is in
agreement with the known metastability of LiAl3: since it lies on a straight line, it will
likely coexist with pure Al and LiAl. The same occurs on the straight line connecting
Li3Al2 and Li7Al2: the phases lying on the convex hull between these two compounds
can easily coexist in mixtures of the two extreme compositions. We can conclude
that LiAl, Li3Al2 and Li5Al4 are the most stables binary phases. Note that Li5Al4 is
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(a) LiAl3 (b) LiAl

(c) Li5Al4 (d) Li3Al2

(e) Li2Al (hexagonal) (f) Li2Al (orthorhombic)

Fig. 2.9 Crystal structure of LiAl3, LiAl, Li5Al4, Li3Al2, Li2Al and Li2Al. Aluminium,
blue and lithium, green
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(a) Li9Al4 (b) Li5Al2

(c) Li3Al (d) Li7Al2

(e) Li9Al

Fig. 2.10 Crystal structure of Li9Al4, Li5Al2, Li3Al, Li7Al2 and Li9Al. Aluminium, blue
and lithium, green.
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absent from known databases. Even if most of the Li–Al compounds that we identify
as thermodynamically stable can easily decompose, they will likely exist as microscopic
inclusions in a matrix of another stoichiometry, contributing therefore to the physical
properties of the alloy. It is therefore relevant to study the structural, elastic, and
electronic properties of the Li–Al lowest-energy binaries all over the composition range.

The two stable crystal structures of LiAl3 and LiAl can be easily related to the
original fcc Bravais lattice of Al. LiAl3 is a simple cubic crystal with 4 atoms in the
unit cell, where Li occupy the vertices of the cubes and Al the center of the cube faces,
recreating the original fcc lattice but with two different atoms on the lattice sites. The
Al-Al and Al-Li distances are 2.85 Å, basically unmodified with respect to fcc Al. We
can therefore see that this crystal structure is perfectly compatible with the starting fcc
lattice of Al. LiAl is made of two interpenetrating fcc lattices, one made of Li and the
other one of Al, displaced by (0.5 0.5 0.5)a, where a is the length of the conventional
cube. In this structure each atom has an equal number of Al and Li neighbors. Li-Li
distances and Al-Al distances measure 2.75 Å, which is significantly smaller than the
bond length in pure Al (2.86 Å) and pure Li (3.05 Å).

The Li rich side of Li–Al alloys is more interesting concerning the complexity of the
ground-state structures, with intermetallic compounds that differ significantly from
their parent pure crystals. On this side of the phase diagram we found several stable
or almost stable compounds for a Li content greater than 50 % that were not reported
in literature. We remind that Li has a rhombohedral R3̄m ground state structure
at zero temperature characterized by a Li-Li bond length of 3.05 Å, but fcc and bcc
structures are only few meV per atom higher in energy. This gives a hint that the
structural variety can be much larger for Li-rich compounds. Li9Al has a distorted bcc
structure, with one out of 10 cube centers occupied by Li instead of Al. The bond
length between Li atoms is basically unchanged with respect to pure Li. Li7Al2 and
Li3Al2 are rhombohedral, Li5Al4 is trigonal, and Li3Al has several orthorhombic and
monoclinic phases within few meV from the hull.

Indeed, while we can observe on the Al rich side of the phase diagram that the lowest
energy minima are clearly separated from the other geometrically distinct minima
by sizable energy gaps, Li rich compounds show a quasi-continuous distribution of
low-lying minima (see Figure 2.7). This suggests that Al rich ordered crystals with
small unit cells should be easier to obtain experimentally than Li rich crystals. In
the latter case one can rather expect at finite temperature the coexistence of different
low-energy structures, possibly in a disordered phase.
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Concerning the stoichiometry Li2Al, which is experimentally reported as an or-
thorhombic crystal [77] with space group Cmcm, we could find an hexagonal P6/mmm

and a trigonal P 3̄m1 structure which are only 2 and 5 meV/atom higher in energy,
respectively. In the hexagonal phase Li atoms are arranged in aligned honeycomb
lattice layers, forming hexagonal cells with one Al in the center. In the orthorhombic
structure Al atoms are instead arranged in zigzag chains, while the trigonal phase
contains zigzag planes of Al. Also in this case, all three structures (and relative mixed
configurations) must be considered as possible stable phases due to the very small
energy differences.

The structures with about 50 % of Li are peculiar as the bond lengths are very
different with respect to both parent Li and Al compounds: Li-Li, Al-Al and Li-Al
bonds are contracted compared to the neighboring compositions. In general, the Li-Li
bond is reduced in all compounds on the Li-rich side except for Li9Al. We can also
observe that Al atoms tends to have other Al as nearest neighbors even for Li-rich
stoichiometries [74].

To further study the stability of the new phases we also calculated phonon bands.
Frozen phonons calculations were performed with the software phonopy from force
constants calculated using vasp for 2x2x2 supercells with finite displacements. All forces
were obtained within the LDA. Figures 2.11 and 2.12 show phonon band structures
for the stable phases. No unstable modes were identified. Although this does not
guarantee that the identified structures constitute the ground state at each composition,
it validates them as dynamically stable. Maximum phonon frequencies range from
382 cm−1 to 447 cm−1.

In view of the importance of the mechanical properties of Li–Al alloys, we was
calculated the dependence of the atomic density and of the elastic constants on
the Li content. As it is desirable to simulate polycrystalline samples, that can be
macroscopically described as isotropic elastic materials, we used appropriate averages
of the elastic constants. The behavior of polycrystalline linear elastic materials can be
described with a set of two independent parameters. Here we select the bulk modulus
B and the shear modulus G and we estimate them using the Voigt-Reuss-Hill (VRH)
averaging scheme [85], which gives, respectively, upper and lower boundaries for the
elastic constants [85]. If the values obtained in the two approaches are close, their
arithmetic media is a reliable estimate of the searched quantity. In the Voigt scheme,
the bulk and shear moduli can be estimated from the the elastic stiffness coefficients
as

9B = (c11 + c22 + c33) + 2(c12 + c23 + c31) (2.1)
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Fig. 2.11 Phonon band structures of LiAl3, LiAl, Li5Al4, Li3Al2, Li2Al and Li2Al.
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Fig. 2.12 Phonon band structures of Li9Al4, Li5Al2, Li3Al, Li7Al2 and Li9Al



2.3 Alloys of Lithium and Aluminium 47

Table 2.4 Calculated bulk (B), shear (G), Young (E) moduli in GPa, Poisson’s ratio
(ν) and B/G for the different phases. Experimental values are given for pure Li and
Al.

Phase B G E ν B/G

Al 78.1 30.5 80.9 0.33 2.6
exp. [88] 75.86 28.34 75.60 0.33 2.7
LiAl3 63.4 39.8 98.7 0.24 1.6
LiAl 47.6 30.9 75.7 0.24 1.5
Li5Al4 41.8 33.6 79.0 0.19 1.2
Li3Al2 38.9 32.8 76.4 0.17 1.2
Li2Al 34.9 33.1 75.4 0.14 1.1
Li2Al 32.6 27.1 63.3 0.18 1.2
Li9Al4 31.8 25.4 59.8 0.19 1.3
Li5Al2 29.0 22.6 53.4 0.19 1.3
Li3Al 27.8 21.6 51.2 0.19 1.3
Li7Al2 27.6 21.7 51.5 0.19 1.3
Li9Al 18.4 9.4 23.5 0.29 2.0
Li (bcc) 12.9 5.5 14.0 0.32 2.3
exp. [89] 12.13 8.78 21.22 0.21 1.4

and
15G = (c11 + c22 + c33) − (c12 + c23 + c31) + 2(c44 + c55 + c66), (2.2)

respectively, while in the Reuss scheme, they are obtained from the elastic compliance
coefficients

1/B = (s11 + s22 + s33) + 2(s12 + s23 + s31), (2.3)

15/G = 4(s11 + s22 + s33) − 4(s12 + s23 + s31) + 3(s44 + s55 + s66). (2.4)

Only 9 out of the 21 independent elastic components of the elastic tensors for
the single crystal are present in these expressions. It already has been noticed that,
shear moduli determined from VRH averages are not always in good agreement with
experimental values [84, 86]. Uesugui et al. [84] determined shear modulus using GGA,
larger by 86.7% than experimental values. A similar situation is found for the Young
modulus of LiIn, determined by Kuriyama et al. [87]. The Young modulus measured
on a polycrystalline aggregate of InLi was larger by a 75% than the one determined
from the VRH averages of elastic constants. Averaged bulk moduli are instead usually
in good agreement with experiments.
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Fig. 2.13 Bulk modulus (filled triangles, in GPa), Young modulus (crosses, in GPa), and
atomic number density (filled circles, in atoms/Å3) as a function of the Li concentration

Once that B and G are determined, it is easy to calculate the Young modulus E

and Poisson’s ratio ν, using G = E/(2+2ν) and B = E/(3−6ν). The elastic constants
were calculated from the stress and strain relations by performing six distortions of
the lattice, as implemented in vasp [37, 38]. In order to assure the convergence of all
quantities by less than 1 GPa, we had to increase the kinetic energy cutoffs to 1000 eV
and the k-point meshes to 15 × 15 × 15. The results are summarized in Table 2.4
and Figure 2.13, where we report the calculated values for the bulk modulus B, the
shear modulus G, the Young modulus E and the Poisson’s ratio ν of all stable phases.
We remark that these calculations are performed using a PBE exchange-correlation
functional. We also calculated the elastic moduli with the LDA. The variations of the
values of the elastic constants are smaller than 10% (see Figure 2.14).

In Figure 2.13 we show the dependence of the density and the elastic moduli on
the Li concentration. The calculated moduli are in reasonably good agreement with
available experiments [88, 89]. The new structures meet the properties that were
already reported: when increasing the amount of Li the bulk modulus [90, 91] decreases
almost monotonically with the volumetric mass density. This is consistent with a
much stronger resistance of Al to volume changes by applied pressure. However, the
Young modulus increases on the Al-rich side of the phase diagram by small addition of
Li,[69–71] in apparent contrast with the fact that the Young modulus of Li is 5 to 6
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Fig. 2.14 Comparison of the calculated PBE and LDA bulk (B), shear (G), Young (E)
moduli in GPa, Poisson’s ratio (ν) and B/G for the different phases. Experimental
values are given for pure Li and Al (see Table 2.4)

times smaller than the one of Al. We further notice that the Young modulus of LiAl3
is considerably higher than that of pure Al, and that the Young modulus is essentially
constant up to concentrations of 60% of Li, when it starts decreasing at a fast rate.
A similar dependence on the composition is shown by the atomic density, which is
also plotted for comparison in Figure 2.13. The Young modulus is together with the
shear modulus a good estimate of the stiffness of the material. This shows that, from
a purely mechanical point of view, alloys containing substantially more than 5-25% of
Li could be used without deterioration of the stiffness.
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Table 2.5 Bader charges on Li and Al atoms for the lowest-energy structures. The
Bader charges are given in elementary charge units. (∗) The electron is in general
distributed between neighbors Al atoms as shown in Figure 2.15. (∗∗) seven Li atoms
with -0.2 and two Li atoms with +0.4.

Phase Li Al(∗)

Al 0.0 -
LiAl3 -0.8 +0.3
LiAl -0.8 +0.8
Li5Al4 -0.8 +0.9, +1.2
Li3Al2 -0.8 +1.2
Li2Al -0.8 +1.6
Li9Al4 -0.8 +1.8
Li5Al2 -0.8 +2.0
Li3Al -0.8 +2.4
Li7Al2 -0.8 +2.8
Li9Al -0.8,+1.4 (∗∗) +3.8
Li - 0.0

In the context of Li batteries the mechanical properties of the electrodes are also
important to prevent mechanical failures as a consequence of the stress developed
due to large volume expansion upon lithiation. The ratio between the bulk modulus
and shear modulus gives an estimate of the ductile or brittle behavior of a material:
B/G ratios smaller than 1.75 indicate brittle alloys, while B/G is large than 1.75
in ductile alloys. Most of the considered structures are brittle. Beside the obvious
exception of pure Al, which is ductile, also Li9Al and Li have a B/G ration larger than
1.75. Nevertheless, by comparison with the experimental value of B/G for Li (1.4),
we understand that this is an artifact due to the coincidental overestimation of B and
underestimation of G. These results point to the risk of mechanical failures in LiAl
alloys when used for electrodes [92]. The Poisson’s ratio ν is defined as the ratio of
transverse strain to the longitudinal strain and it gives information on the resistance of
the material against shear, therefore giving indirect access to bonding forces. The value
of the ν is usually in the interval 0 – 0.5, and larger values of ν reflect better plasticity.
Our results show an average plasticity with a better behavior while approaching pure
Al and pure Li.

The phase stability and the bonding characteristics of the alloys can be better
understood by looking at the distribution of the valence charge around each atom. A
characteristic of Al-rich compounds is that Li atoms redistribute some of their valence
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(a) LiAl3 (b) LiAl

(c) Li9Al

Fig. 2.15 Electronic density in in the unit cell of LiAl3, LiAl, and Li9Al. (aluminium,
blue and lithium, green)

electrons to the Al bonds (see Figure 2.15) and the resultant strengthened Al bonds
stabilize the compounds [74, 84]. We observed this redistribution of charge (except for
Li9Al where the quantity of Al is too small) by calculating the Bader charges for all
the studied compounds (Table 2.5). This added stabilization can be easily seen in the
plot of the atomic number density of the different compositions, measured in atoms per
unit volume (Figure 2.13). As we see in Figure 2.13 there is an excellent correlation
between the Young modulus and the atomic number density. (Note that this is in
contrast with the usual volumetric mass density that decreases almost linearly as a
function as increasing Li concentration). In fact, up to concentrations of 60% of Li,
the increased bonding leads to denser and therefore stiffer structures. This effect is
maximized for LiAl3.

In summary, we have discovered several unknown ordered phases of the Al-Li binary
system that are thermodynamically stable. Phonon band structures indicate that these
new Li-Al phases are also dynamically stable. Analysis of the elastic constants indicate
that the stiffness of LiAl alloys with up to 60% of Li remains essentially equal to the one
of Al, with a marked maximum at LiAl3. This can be understood by the stabilization
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of these compounds (due to an electron transfer from Li atoms to Al bonds) that
increases the atomic number density and therefore the stiffness. These results expand
our knowledge of the Li–Al phase diagram and can have profound influence in the
understanding and design of new Li–Al alloys for light-weight engineering and batteries.

In the next section we calculate phase diagrams including the effects of pressure
and temperature for a very different system: H-Cl binaries.

2.4 Triatomic Hydrogen Molecules in H-Cl Crystals under Moderate

Pressures

Triatomic hydrogen is a controversial molecule, whose existence was under debate
during most of the XXth century. In 1979, conclusive experiments proved that H3 can be
produced in a low pressure gas discharge tube [93]. However, it exists only in an excited
state, with its third electron being delocalized far from the three protons, namely in a
Rydberg state [94]. If the molecule attempts to lose energy and go to the repulsive ground
state, it spontaneously breaks up. The lowest energy metastable state, has an energy
lower by few eV than the H+ and e− state but decays in around 1 ps [95]. In this work
we propose that H-Cl binaries under pressure are a viable way to access and characterize
the elusive triatomic molecule of hydrogen in an experimental setup. The synthesis at
moderate pressures and room temperature of these non-conventional stoichiometries
of HCl could therefore considerably expand our knowledge of chemical bonds in hydrogen.

We used the Minima Hopping (MH) method to calculate the phase diagram of
H-Cl binaries when an external pressure is applied. We allowed any stoichiometry
HxCly that was compatible with a combination of up to 10 atoms in the unit cell. The
energies were calculated with vasp [37, 38] using the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional [12]. At zero pressure, orthorhombic HCl is the only
stable point of the H-Cl phase diagram. At moderate pressures other stoichiometries
richer in hydrogen become stable. The convex hulls of H-Cl binaries at 50 GPa and
100 GPa are presented in Figure 2.16. We can see that one new composition (H3Cl) is
stabilized at 50 GPa and three additional compositions (H3Cl, H5Cl and HCl2) are
stable at 100 GPa.

We are mostly interested in the H-rich side of the phase diagram. H3Cl, the first
composition to become stable under pressure, touches the convex hull as low as about
10 GPa followed by H5Cl, slightly above 80 GPa. The lowest-enthalpy structure of
H3Cl up to about 90 GPa belongs to the C2/c space group and presents planar zig-zag
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Fig. 2.16 Phase diagrams of the H-Cl system at 50 GPa (top) and 100 GPa (bottom).
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Fig. 2.17 Schematic representation of the structures of H5Cl at 100 GPa along the c
(left) and b (right) lattice vectors.

chains of HCl intercalated with H2 molecules. At 86 GPa a phase with P -1 symmetry
becomes the most stable: this crystal is very similar to the C2/c phase, however
it displays a different stacking and orientation of the chains/molecules, respectively.
Finally, at around 180 GPa, a phase with a completely different structural motif
emerges, belonging to the space group Ama2. The Cl atoms form a host structure
with hexagonal channels surrounding H3 triangular guest clusters. At a pressure of 150
GPa, the triangles are scalene with bond angles of 67.7◦, 47.5◦, 64.8◦, which become
more and more equilateral with increasing pressure (62.5◦, 53.4◦, 64.1◦ at 200 GPa).

A similar behavior is also observed for the stoichiometry H5Cl. Below 82 GPa the
lowest enthalpy phase of H5Cl has P -1 symmetry and displays the previously discussed
planar zig-zag chains. Two H2 molecules per HCl unit are located in between the chains.
At around 82 GPa the H-Cl chains disappear and a phase with Cc symmetry becomes
the most stable, where the Cl atoms form hexagonal channels (see Figure 2.17). Inside
these channels we find H2 molecule, with the typical bond length of 0.74 Å, together
with H3 triangular clusters with sides of 0.8 Å - 1.1 Å. In analogy to H3Cl, the triangles
are scalene and become essentially equilateral with increasing pressure.

We also observed triangular clusters of hydrogen, contained together with H2

molecules in Cl tetragonal cages, in the lowest enthalpy structures of H9Cl. This phase
is not thermodynamically stable yet at 100 GPa, even if it gets very close to the convex
hull.

Figures 2.18 and 2.19 show the evolution of the phonon density of states of H5Cl
with pressure. At 0 GPa there are imaginary phonon modes which disappear when
pressure is applied. The binary phase is unstable, it is a mixture of H2 and HCl
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Fig. 2.18 Phonon density of states for the Cc phase of H5Cl.
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Fig. 2.19 Phonon density of states for the Cc phase of H5Cl (continuation).

molecules. We can observe the contribution to the phonon spectrum of the normal
modes of vibration of both molecules: HCl, with a bond length of 1.2987 Å, at about
2700 cm−1 (exp. 2991 cm−1, exp. bond length 1.2746 Å [96]) and H2, with a bond
length of 0.75 Å [96] at about 4200 cm−1 (exp. 4401 cm−1). As the pressure increases,
it is visible a phase transition. Besides the stabilization of the imaginary modes that
were present before, the modes corresponding to the vibration of the H2 molecule splits
in two and the modes corresponding to the vibration of the HCl molecule move to
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a lower frequencies. This happens as, when the cell is compressed, the H2 and HCl
molecules get closer in a T-shape relative orientation (see Figure 2.21a) and the H-Cl
bond stretches.

At 150 GPa, we can distinguish two peaks, one at ∼3100 cm−1, which can be
attributed to the breathing mode of the H3 molecule (exp 3178.18 cm−1 [96]) and one
at ∼2000 cm−1, which could correspond to the tentatively assigned value of 2109.7
cm−1 [96, 97] for the interaction of the H2 and H3 molecules.

Since the relative stability of H5Cl with respect to decomposition into other stable
phases is of the order of few tens of meV, it is essential to ensure that temperature
dependent contributions do not destabilize the Cc phase of H5Cl. We expect indeed a
temperature far from zero in typical experimental synthesis conditions under pressure
where triatomic hydrogen would be produced. In view of that, we calculated the Gibbs
free energy within the harmonic approximation at a temperature of 300 K. The Gibbs
free energy curves as a function of pressure and of the fractional concentration of H
are shown in Figure 2.20 [98], in comparison with the ones at 0 K.

Including the thermal effect to the phase diagram enhances the stability of H5Cl as
this composition becomes thermodynamically stable at a lower pressure, even below
50 GPa. Furthermore, the transition pressures between the stable phases slightly
shift, as indicated by the bars shown on the basal plane of Figure 2.20 [98]. An
additional phase is stabilized between 145 and 185 GPa for the stoichiometry H3Cl,
which contains HCl zig-zag chains, H2 and, again, H3 molecules, showing that the
system is in a frustrated state between diatomic and triatomic hydrogen. Eventually,
at higher pressures, phases containing H3 clearly dominate the phase diagram of H-rich
stoichiometries.

The structural changes on the H5Cl structure described before can be further
analyzed with the help of Figure 2.21, which shows the electron density at different
pressures. First, at 0 GPa H5Cl is unstable: HCl and H2 molecules are separate. At 50
GPa, the structure is very close to the convex hull (see Figure 2.16): the H-Cl bond
stretches to 1.37 Å while the H atom (which is rather just a proton, as most of the
charge is kept around the more electronegative Cl atom) gets closer to the H2 dimer
an starts to form a triangle. This effect can be seen better at 100 GPa. Calculated
Bader charges shows that in the studied range of pressures the charges on the Cl atoms
remain nearly unchanged (-0.40∼-0.5), hence the H2 dimer shares its charge with a
proton to form a H+

3 molecule. We can conclude that the H3 units can be seen as
stable H+

3 ions immersed in a background of negative charge.
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(a) 0 GPa (b) 50 GPa

(c) 100 GPa (d) 150 GPa

Fig. 2.21 Slices of the electronic density in the H5Cl cell at different pressures.

It is important to remark that H3 triangular clusters were predicted to become
stable in pure hydrogen above 2.1 TPa [99]. Therefore, triangular H3 appears in H-Cl
compounds at pressures 20 times smaller than those necessary to make these exotic
structures stable in pure hydrogen. This unexpected finding is extremely thrilling as
pressures of 100 GPa are easily accessible in experimental setups, while few TPa are at
present impossible to reach in static conditions on earth. The possibility to obtain a
stabilized H3 molecule in H5Cl at moderate pressures would enable the direct experi-
mental study of properties of triatomic hydrogen, obtaining spectra to be compared
with theoretical calculations and astronomical detection of this extremely important
and elusive ion. Furthermore, the synthesis of these predicted non-conventional stoi-
chiometries of HCl under moderate pressures could considerably expand our knowledge
of chemical bonds in hydrogen under pressure.





Chapter 3

Materials for Photovoltaics

This chapter is devoted to the study of materials with applications in photovoltaics:
the transparent conductive oxide CuBO2, novel nitride perovskites and Cu(In,Ga)S2

chalcopyrite alloys. We focus here in the importance to determine the crystal structure
to investigate the interplay between structural and electronic properties. First, we prove
from global structure prediction, that the delafossite structure of CuBO2 proposed in
2007 by Snure and Tiwari [100], is very unlikely the ground state of this material. In
fact, we found several other crystal structures lower in energy by up to 600 meV/atom.
In the second section we present our results on the possibility of the existence of
nitrogen perovskites. Our approach is in this case, a combination of high-throughput
techniques and global structure prediction. We find 21 new compositions of the form
ABN3 that are thermodynamically stable and that have therefore excellent chances
of being experimentally accessible. Most of these materials crystallize in monoclinic
phases, but three compounds, namely LaReN3, LaWN3 and YReN3, are predicted
to have distorted perovskite structures as their ground state. In the last section we
discuss the study of the element-specific electronic states of Cu(In,Ga)S2 chalcopyrite
as a function of the In/Ga ratio. We performed Density Functional Theory calculations
to understand why X-ray absorption experiments observed a shift of the K and L3 S
absorption edges with the change of the In/Ga ratio, while the Cu, Ga, In absorption
edges positions remained constant. Our calculations indicate that this behavior results
from the dependence of the electronic states on the local atomic environment.

3.1 Crystal Structure of the P-type Transparent Conductive Oxide

CuBO2

We employed the Minima Hopping to obtain the ground-state structure of CuBO2. This
is a very promising p-type transparent conductive oxide that was recently synthesized,
and it was thought to belong to the delafossite family. We proved that the true ground
state is not the delafossite structure, and that the most promising candidate is a low
symmetry monoclinic phase. This is still a layered structure, but with boron and copper
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having a different coordination with respect to the delafossite phase.

Transparent conducting oxides (TCOs) are a class of semiconductors which are
simultaneously rather good conductors of electricity and transparent to the visible
frequencies of the electromagnetic spectrum. They posses carrier concentrations of
at least 1020 cm−3 (to be compared with other pure semiconductors 106 − 1013 cm−3)
and optical band gaps greater than 3 eV [101, 102]. TCOs have an important role in
devices requiring a transparent contact like solar cells, LCD displays and low thermal
emittance coatings [103, 104].

These materials offer even much more than transparent contacts, namely, the
fabrication of transparent transistors for development of transparent electronics. The
major ingredient missing for large-scale development of such technologies is a p-type
semiconductor with a large gap, high conductivities and mobilities, together with a
controlled transparency and that can be manufactured industrially. High performance
n-type TCOs such as SnO2, In2O3 and ZnO are part of our everyday life, however,
p-type TCOs have been harder to develop [103]. The most promising materials are
still probably Cu-based delafossites, such as CuAlO2, the first report of a p-type TCO,
by Kawazoe et al. in 1997 [105]. Since then, other CuXO2 delafossites that combine
transparency and p-type conductivity have been synthesized, namely X = Sc, Y, In,
Ga, and Cr.

Among all these Cu-based compounds, CuBO2 is particularly interesting as it
possesses a large band gap (direct and indirect) and higher intrinsic conductivity than
any other Cu-based TCO [100]. Furthermore, it has a crystal structure compatible
with the one of α-Al2O3 sapphire and ZnO, the latter being already widely used as
n-type TCO. This last point is important for the design of a transparent p-n junction,
the fundamental brick of any active electronic device.

CuBO2 thin films were for the first time synthesized and characterized in 2007
by Snure and Tiwari [100]. However, a theoretical work by Scanlon et al. [106]
questioned the validity of the reported experimental lattice parameters, as they were
in disagreement by more than 10% with the theoretical values obtained using either
the local density approximation or the Heyd–Scuseria–Ernzerhof (HSE06) [81, 82]
hybrid functional. This result was unexpected, as Density Functional Theory (DFT)
calculations usually (and, in particular, for the other Cu delafossite structures) give
good estimations of the lattice parameters. Moreover, the direct band gap calculated
with accurate many-body methods for the CuBO2 delafossite structure relaxed within
the local density approximation yielded 3.52 eV [107], much smaller than the reported
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Table 3.1 Phases of CuBO2 found in the MH calculations.

Space group Energy (PBE)
(eV/atom)

Cc -6.751
I 4̄m2 -6.665

Cmc21 -6.664
R3̄m -6.183

P63/mmc -6.182

experimental optical gap of 4.5 eV [100]. On the other hand, the same technique yielded,
for other delafossites (CuAlO2, CuGaO2, and CuInO2), direct band gaps consistently
larger than experiment [107] (with the difference being due to excitonic effects and
lattice contribution to the screening [108]). These facts were very surprising, and led
to identifying CuBO2 as an atypical compound within the class of Cu delafossites.

To shed more light on this controversial issue, we performed Minima Hopping (MH)
calculations of CuBO2 cells containing 1, 2, and 3 formula units (up to 12 atoms).
Forces and energies were obtained using DFT as implemented in the code vasp [37, 38]
with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional [12]. In the
extensive structure search, no low-energy local minimum with lattice constants similar
to the ones given by Snure and Tiwari (a=2.84 Å and c=16.52 Å) [100] was found.

The most stable structure turned out to be a low-symmetry atomic arrangement,
that the software ISOTROPY [109] classified as belonging to space group Cc with
a = 3.63 Å, b = 12.45 Å, c = 4.42 Å, α = γ = 90◦, and β = 86.78◦, with Cu atoms
at the 4a Wyckoff position (-0.0055, 0.2465, 0.0439), B at the 4a Wyckoff position
(-0.3632, 0.4496, 0.1981), and two non-equivalent O at the 4a Wyckoff positions (0.2555,
0.1490, -0.2105) and (0.0791, 0.0349, 0.3937). This crystal structure, which can be
seen in Figure 3.1d, has planar Cu layers alternating with linear BO2 networks where
B is threefold coordinated. Delafossite structures with the two possible stacking
configurations of the layers (hexagonal (space group P63/mmc) and rhombohedral
(space group R3̄m) [110]), appear in our simulations. However, they were not, by far,
the lowest energy phases. Other interesting high-symmetry phases found during our
MH runs are listed in Table 3.1 and shown in Figure 3.1.

The Cc structure lies almost 0.6 eV per atom lower in energy than the R3̄m

delafossite, followed about 0.1 eV per atom higher by the Cmc21 and I 4̄m2 phases,
which are almost degenerate. Between the ground state and the delafossite structure,
many other phases (mostly with very low symmetry) were found. Cross-check MH
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(a) R3̄m (b) I 4̄m2 (c) Cmc21

(d) Cc (a) (e) Cc (c)

Fig. 3.1 Schematic representation of the CuBO2 structures: (a) delafossite, (b) tetrag-
onal (I 4̄m2) (c) orthorhombic Cmc21, (d) and (f) Monoclinic Cc along the a and c
crystallographic directions

runs for CuAlO2, CuGaO2, and CuInO2 yielded invariably the delafossite as the lowest
energy structure. Furthermore, the lower symmetry Cc and Cmc21 structures are not
stable for any of those systems.

Although an energy difference of 0.6 eV is considerably larger than the typical error
incurred in PBE calculations, we performed calculations (using the PBE geometry) at
higher levels of theory and also for the other delafossites to confirm our findings. We
used the HSE06 screened hybrid [81, 82], the PBE0 hybrid [111], and GGA + U as
described in Reference [112] setting U−J = 5 eV for the d-states of Cu. Our results are
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Table 3.2 Energy per atom (in meV) of different structures of CuXO2 studied in this
work using different approximations. The zero is the energy of the delafossite R3̄m
structure.

X B B B Al Ga In
Cc Cmc21 I 4̄m2 I 4̄m2 I 4̄m2 I 4̄m2

PBE -569 -483 -482 123 138 248
PBE+U -598 -508 -491 113 128 236
HSE06 -660 -565 -555 124 135 262
PBE0 -659 -546 -546 131 143 289

summarized in Table 3.2. Results for the P63/mmc phase were basically identical (to
a few meV) to those for the R3̄m structure and are therefore not shown in the table.
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Fig. 3.2 Partial density of states of Cc CuBO2 calculated with PBE+U. The Fermi
level is shifted to zero.

The four approximations (PBE, PBE+U, HSE06, and PBE0) yield essentially the
same energy differences for all structures and compounds studied (CuBO2, CuAlO2,
CuGaO2, and CuInO2). Furthermore, and confirming our MH simulations, the Cc

structure is only the ground state for CuBO2.
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A possible explanation for the destabilization of the delafossite phase of CuBO2

can be found by analyzing the oxidation state of the metal. In fact, in the delafossite
structure, the metal atom is in the oxidation state +3. However, by performing a
Bader analysis of the delafossite CuBO2 one finds a Bader charge on the B atom of
+2.15, to compare with +2.54 for Al in CuAlO2. This charge increases to +2.31 in the
Cc CuBO2

All considered phases of CuBO2 turned out to have indirect fundamental band
gaps, and all band gaps are large enough to assure transparency in the visible. The
top of the valence band displays a mixed Cu d with O d character while the bottom of
the conduction is a mixture of Cu s, p, and d states with mainly O p (and some O s)
states, and a significant amount of B p. This is similar to the case of the delafossite
structure [107]. Moreover, we observed that the projected densities of states of different
phases do not show qualitatively different features.

In conclusion, our results indicate that it is extremely unlikely that the experimen-
tally produced phase belongs to the delafossite family. The most likely candidate is
instead a low symmetry monoclinic structure, consisting of alternating planar Cu layers
(fourfold coordinated) and BO2 networks (where B is threefold coordinated). These
results call for further experimental work to determine unambiguously the structure of
this promising p-type TCO.

3.2 Prediction of Stable Nitride Perovskites

Perovskites are one of the most studied classes of materials, with a variety of appli-
cations in diverse fields of science and technology. Their basic composition is ABX3,
where X is a non-metal normally from the VIA or VIIA group. We investigate the
possibility of the existence of perovskites with X=N. Our approach is based on a combi-
nation of high-throughput techniques and global structure prediction methods. We find
21 new compositions of the form ABN3 that are thermodynamically stable (considering
all possible decomposition channels) and that have therefore excellent chances of being
experimentally accessible. Most of these materials crystallize in monoclinic phases, but
three compounds, namely LaReN3, LaWN3 and YReN3 are predicted to have distorted
perovskite structures in their ground state. In particular, LaWN3 is a semiconductor
and displays a large ferroelectric polarization.

The perovskite structure is one of the most common and most extensively studied
in materials science. The general chemical formula for perovskite compounds is ABX3,
where A and B are two cations of different sizes, and X is an anion that binds to both.
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Its ideal structure is cubic, with the B atoms in the center of a characteristic octahedra
of anions. This seemingly simple atomic arrangement hides an exceptional diversity of
physical and chemical properties.

In fact, perovskites exhibit a wealth of remarkable properties that lead to ap-
plications in numerous technological fields. A prominent example are piezoelectric
perovskites, such as lead zirconate titanate, where the piezoelectric effect is used for
sensor or actuator applications [113]. Another example are perovskite high temperature
superconductors, such as yttrium barium copper oxide [114, 115]. Some materials
of the perovskite family, mostly manganese-based perovskite oxides, exhibit colossal
magnetoresistance that enables them to dramatically change their electrical resistance
in the presence of a magnetic field [116]. Also many multiferroic materials, i.e., phases
that support the co-existence of more than one primary ferroic order parameter si-
multaneously, are transition metal oxides with the perovskite structure [117, 118].
More recently, there was a surge of interest in halide perovskites due to their use as
absorbing materials for solar cells [119, 120]. Moreover, perovskites are studied in
several other fields: as possible thermoelectric materials [121], as catalysts [122, 123],
as lasers [124, 125], etc. Finally, we remark that silicate perovskites are one of the
most common minerals in the lower part of Earth’s mantle.

There are two main reasons for such great variety of physical and chemical applica-
tions. First, the perovskite structure can accommodate a large number of possible A
and B elements, spanning a large portion of the periodic table. Second, the cubic ideal
structure can be distorted in several different ways, e.g. by tilting of the octahedra
or by displacing the cations from the center of their polyhedra. We focus on the first
aspect: the unparalleled chemical variety of the perovskites.

The best known, and perhaps most common, perovskites are oxides, i.e., the anion
X is O2−. In this case, the cations can have oxidation states A+B5+, A2+B4+, or
A3+B3+. A smaller number of fluorides, sulfides, other halides, and a few selenides are
also known to crystallize in the perovskite structure. Other more complex phases also
exist. For example, oxynitrides (of the type ABO2N) with perovskite structures are an
emerging class of materials due to their interesting optical, photocatalytic, dielectric
and magnetoresistive properties [126]. In this case, the nitrogen and the oxygen atoms
may occupy the same sites, forming solid solutions with ratios that can be adjusted to
some extent during the process of synthesis.

We have taken a step further and investigate if it is thermodynamically possible
to create nitride perovskites, i.e. with compositions of the type ABN3. Assuming
the standard oxidation state of −3 for nitrogen, this would imply very high oxidation
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states for the cations of at least +5 to +7. Although several transition metals support
very high oxidation states, however nitrogen is less electronegative than oxygen and we
can expect that such high oxidation states are less likely to be achieved. It is therefore
reasonable to expect that the nitrogen perovskite structure can only be stable in a very
narrow domain of composition space. On the other hand, for the same reason we can
anticipate unusual electronic properties. Above all, the existence of a completely new
class of ABN3 perovskites with potential interesting properties would once more prove
the modernity of this 175-year “old” structure.

Unfortunately, it is not possible with current computer resources to investigate
a large number of ABN3 compounds using global structure prediction. We remind
that in Chapter 2, we calculated 33 stoichiometries for each binary phase diagram,
determined by considering structures with up to 12 or 13 atoms per cell. When it
comes to perovskites, not only there is a large number of possible ABN3 stoichiometries,
but also they often crystallize in deformed structures with a relatively large number of
atoms in the unit cell (10–40). We chose therefore to employ a mixture of prototype
search and global structure prediction with the Minima Hopping (MH) method [25, 26]
that proved to be very efficient for our problem.

All calculation were performed at zero temperature and pressure, and the effects of
the zero point motion of the phonons (that are not expected to be important here)
were neglected. In this case, the thermodynamic quantity of interest is the total energy.
It is clear that to calculate the distance to the convex hull for our systems requires the
evaluation of the total energy of all binary and ternary phases that contain nitrogen.
This is certainly an essential step but also tedious and time-consuming. Fortunately,
there are by now a number of excellent freely available databases, like the Materials
Project [127], the aflowlib [16], or the Open Quantum Materials Database [17] that
provide this information (among a wealth of other data). In the following we will
use the materials project database for our reference energies, and the distance to the
convex hull is calculated with the help of pymatgen [128].

The energies and forces were calculated with Density Functional Theory within the
projector augmented wave (PAW) method as implemented in the code vasp [37, 38].
We used the PAW datasets of version 5.2 (for compatibility with Materials Project [127]
and Open Quantum Materials Database [17]). A cutoff of 520 eV and dense k-point
grids were selected to ensure an accuracy of 2 meV/atom in the total energy. All forces
were converged to better than 0.005 eV/Å. To approximate the exchange-correlation
functional of density functional theory we used the Perdew-Burke-Ernzerhof [12]
generalized gradient approximation.
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Our starting point is the simple cubic perovskite phase with 5 atoms in the unit
cell. We constructed crystal structures using this prototype for all combinations ABN3,
where A and B are all elements up to bismuth, but excluding rare gases (which do
not form hard compounds) and lanthanides. We note that this choice was somewhat
arbitrary, and ultimately decided by efficiency reasons. In the following we will use the
notation that element A rests in the 1a Wyckoff position of the cubic Pm3̄m lattice
and atom B in the 1b position. The lattice constant of each phase was then optimized
using vasp (note that all atomic positions are determined by symmetry). We then
obtained the distance to the convex hull of thermodynamic stability using pymatgen

[128] and the Materials Project database [127].

The results of our high-throughput search are summarized in Figure 3.3, where we
plot the distance to the hull for the 1953 stoichiometries (leading to 3906 structures)
studied here. The elements are ordered using a modified [129] Pettifor scale [130], built
in order to put into evidence the chemical similarity between the elements. Neighbor
elements are to some extent similar in the sense that they often lead to similar crystal
structures. The picture uses a color scale to indicate the distance to the convex hull:
green for structures that are thermodynamically stable, that gradually becomes red for
phases that are higher than 400 meV/atom. Note that we measure the distance to the
hull defined solely by the structures present in the materials project database, so our
distance will be negative for novel stable phases.

The first conclusion that we can read from the figure is that most possible combina-
tions are highly unstable (with much more than 1 eV/atom higher than the convex hull).
This is perhaps not surprising. Normal perovskites ABX3 are quite ionic materials,
with X being a rather electronegative atom from the oxygen group or an halogen. Let
us take the example of an halogen, with its nominal charge of −1. Then the combined
charge of the A and B atoms should sum to +3. Our systems contain nitrogen. Its
nominal charge is −3, which would require that the combined A and B charge should
be +9. Such large charges are certainly possible, but the number of possible A and
B are quite reduced. Furthermore, nitrogen is considerably less electronegative than
oxygen or fluorine (Pauling electronegativity of 3.0 in comparison with 3.5 for O, or 4.0
for F), which brings us farther from the optimal chemical conditions for the formation
of the perovskite phase.

It is therefore quite surprising that, in spite of being far away from the sweet spot
for stability, we do find that the cubic perovskite phase is thermodynamically stable in
a relatively narrow region of composition space. The fact that stable compounds form
a localized (green) region in Figure 3.3 is expected due to the used of the (modified)
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Pettifor scale where neighboring atoms are chemically similar, and gives us further
confidence in our results.

There are only 5 elements that can occupy the Wyckoff 1a position and yield a
nitride perovskite, namely Ca, Sr, and Ba (group IIA) and Y and La (group IIIB).
We plot, in Figure 3.4 the distance to the convex hull for LaXN3, where X runs over
the periodic table. It is clear that all elements that can be positioned in the Wyckoff
position 1b of the perovskite structure are transition metals, namely Re, W, and several
of their neighbors in the periodic table. This is of course the region of the periodic
table where the highest oxidation states can be found.

These results prove that there are several compositions that are thermodynamically
stable, and that are still unknown experimentally. This is already remarkable, as there
are only two entries with compositions of the type ABN3 in the Materials Project
database [127], namely BaClN3 and SiPN3 (none of them a perovskite). From Figure 3.3
and Figure 3.4 we already see that the number of stable compositions of this family
is likely an order of magnitude larger than what is currently known. We emphasize
that for many of these compositions the distance to the convex hull is considerably
larger than the theoretical error in this kind of calculations, so we are confident that
the prediction of stability will very likely stand against experimental verification.

Up to now we have only been able to prove that there are a number of compositions
that are thermodynamically stable, where the octahedral arrangement of the nitrogen
atoms typical of the perovskite phase seems to be chemically favored. Moreover, it is
well known that ABX3 compounds rarely crystallize in the cubic perovskite structures,
but prefer distorted phases with a larger number of atoms in the unit cell. For example,
a quick glance at structures for ABX3 compounds, (with X = N, O, S, Se, Te, F, Cl,
Br, I), present in the materials project database shows that that only 110 materials
appear with the cubic perovskite phase, while more than 350 have 10 atoms in the unit
cell, and around 500 have 20. For these reasons, from a simple prototype search we
can hardly provide any further statement concerning the ground-state crystal phase
for these compositions.

To go beyond this situation we decided to use a mixed approach. We started to
select all compositions for which the cubic perovskite phase is already either stable or
within 200 meV per atom from the convex hull. This choice restricted the total number
of compositions from almost 2000 to a mere 22. For these we performed structure
prediction simulations using the MH method with two formula units (10 atoms) in the
unit cell. At least 2 independent simulations were performed for each composition, and
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(a) (b) (c)

(d) (e) (f)

Fig. 3.5 The most relevant crystal structures obtained in our work: (a) the starting
cubic perovskite structure (space group 221); (b) the orthorhombic perovskite structure
(space group 62) of LaReN3 and YReN3; (c) the trigonal structure (space group
161) of LaWN3; (d) The monoclinic structure (space group 15) adopted by LaMoN3,
LaTcN3, CaReN3, SrReN3, BaReN3, YWN3, LaCrN3, SrTcN3, and YTcN3; (e) The
monoclinic structure (space group 12) adopted by CaWN3, CaMoN3, and CaTcN3;
(f) The monoclinic structure (space group 14) adopted by BaWN3 and LaTaN3.

each simulation detected at least 50 minima. In the cases where the simulations were
inconclusive further MH runs were performed.

Unfortunately, structure prediction runs with more than 10 atoms per units cell
turned out to be computationally prohibitive for these systems. We decided therefore
to complement this technique by also testing the most common phases in which ABX3

compounds crystallize. We used a total of 16 prototypes with 5–20 atoms in the
unit cell. This combined approach gives us a rather complete picture of the energy
landscape of our compounds, and allows us to have a large degree of confidence in our
ground-state structures for the large majority of systems.

Our results are summarized in Table 3.3 where we list the distance to the hull
of the cubic perovskite phase, the distance to the hull of the ground-state structure,
and the space group, the electronic indirect and direct band gap computed with the
Heyd-Scuseria-Ernzerhof approximation (HSE06) [81, 82] and the Bader charges of the
ground-state structure. The electronic band gaps were obtained with the HSE06 hybrid
functional to circumvent the severe underestimation typical of the PBE approximation.
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Fig. 3.6 Theoretical ternary phase diagrams for (a) LaReN3, (b) LaWN3, and (c) YReN3.

We can see that we now have 20 compositions that are below the convex hull,
and are therefore potentially stable. As expected, none of these has the simple cubic
perovskite crystal structure, as we always find a structure (either from the MHM
simulations or from other prototypes) whose energy is lower. However, there are a
few that do crystallize in a distorted perovskite structure, namely LaReN3, YReN3,
and LaWN3. The first of these crystallizes in an orthorhombic (space group 62, see
Figure 3.5b) that can be obtained by a deformation of a

√
2 × √

2 × 2 supercell of the
original cubic perovskite. The breaking of the symmetry for LaReN3 is small, which can
also be inferred by the small difference of total energy between the orthorhombic and
the cubic phases (9 meV/atom). The same structure is adopted by YReN3, although
with a larger symmetry breaking (energy difference 150 meV). These two perovskite
phases seem to be metallic. On the other hand, the breaking of the cubic symmetry in
LaWN3 leads to a semiconducting trigonal lattice (space group 161, see Figure 3.5c).
From Table 3.3 we can see that the bonding is quite ionic in these three perovskites,
with around two electrons leaving from the A and B atoms to go to the basin of
attraction of the nitrogens (gaining a net charge of around −1.5 electrons each). The
ternary phase diagram for these systems, calculated with pymatgen and the materials
project database, can be found in Figure 3.6.

Note that for the two La compounds are quite below the known convex hull (by
more than -300 meV/atom), which is much larger than the theoretical error we can
expect for this kind of calculation. We can therefore state that it is extremely likely
that perovskites of the type ABN3 can be produced experimentally in thermodynamic
conditions. Furthermore, it is well known that the lanthanides can be, to a large extent,
substituted by each other. Therefore, it is reasonable to expect that lanthanide (or
actinide) based nitride perovskites are also stable. This is particularly interesting as
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the localized f states of the lanthanides often lead to interesting magnetic properties
with important technological applications.

As we can see from Table 3.3, all other stoichiometries studied here crystallize in
structures very different from the perovskite structure. The most likely structure is
monoclinic with space group 15 (depicted in Figure 3.5d), where the nitrogen atoms are
no longer arranged in octahedra, but in tetrahedra, and the A atoms form flat layers.
This structure seems to be adopted by LaMoN3, LaTcN3, CaReN3, SrReN3, BaReN3,
YWN3, LaCrN3, SrTcN3, and YTcN3. Most of these materials are semiconducting,
with the exception of LaTcN3 and YTcN3 that are metallic.

The compounds CaWN3, CaMoN3, and CaTcN3 are semiconductors that crystallize
in a monoclinic phase (space group 12, Figure 3.5e). The third most likely structure
is also monoclinic (space group 14, see Figure 3.5f), and composed also of A layers
separated by nitrogen tetrahedra. This structure leads to semiconducting phases, and
is adopted by BaWN3 and LaTaN3.

We would like to note that these compositions do not clearly exhaust all possible
thermodynamically stable compounds with composition ABN3. In fact, we steered our
investigation towards finding new perovskite structures. It is perfectly plausible to
believe that many other materials of the type ABN3 can exist, although with a structure
considerably different from the typical arrangement of atoms in the perovskites. As
an example, we decided to perform structure prediction runs for LaCoN3. The cubic
perovskite structure for this composition is more than 500 meV/atom above the convex
hull of stability, much higher than our initial cutoff of 200 meV/atom. However, the
MHM method discovered a monoclinic structure (space group 12) that is below the
convex hull by 156 meV/atom (i.e., 664 meV/atom lower than the cubic phase). Of
course the ground-state structure is quite different from a perovskite, and consists of
a layered structure. This shows that probably many more thermodynamically stable
ABN3 materials are still waiting for our discovery.

We propose an efficient approach to search for new stable materials, that combines
standard prototype search and state-of-the-art global structure prediction methods.
This method was applied to the discovery of new stable ABN3 perovskite structures.
From the ∼2000 possible compositions of the form ABN3 , only two stable materials
that do not crystallize in the perovskite structure were known experimentally. With our
approach we found 21 new compositions that have an energy below the known convex
hull of thermodynamic stability. This, by itself, shows that modern computational
techniques offer an effective tool to screen thousands of possible materials in a fraction
of the time required by an equivalent experimental search.
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From the 21 new stable stoichiometries, most crystallize in monoclinic lattices where
the nitrogen atoms are arranged in pyramids. However, three of them, namely LaReN3,
YReN3 and LaWN3, are likely to favor the perovskite structure. In particular, LaWN3

is a semiconductor and displays a large ferroelectric polarization. This unexpected
finding of stable nitride perovskites puts into question the accepted domain of stability
of this crystal structure and opens the way for the experimental synthesis of exotic
perovskites with new potential applications.

3.3 The Cu(In,Ga)S2 Chalcopyrite Alloys

Near Edge X-Ray Absorption Fine Structure measurements performed on CuInxGa1−xS2

thin films for x=0, 0.67 and 1, by our experimental collaborators [131], show that the S
absorption edges shift with changing In/Ga ratio as expected from the variation of the
band gap. On the other hand, the Ga, In, and Cu absorption edges positions remain
nearly unaltered with alloy composition despite the significant change of the band gap.
We performed a DFT study of the element-specific unoccupied electronic states as a
function of the In/Ga ratio. Our calculations indicate that this behavior originates
from the dependence of the electronic states on the local atomic environment while the
change in band gap arises from a spatial average of these localized states with changing
alloy composition.

Photovoltaic conversion efficiencies of more than 20% have been demonstrated on
both glass substrates and flexible polymer foils for Cu(In,Ga)Se2 (CIGSe) based thin
film solar cells. The properties of this absorber material can be tuned not only by
adjusting the In/Ga ratio and also by substituting Se for S, obtaining Cu(In,Ga)(S,Se)2

(CIGSSe) alloys, which is particularly interesting from the industrial point of view.
Regarding the sulfides (CIGS), the band gap changes from 1.5 eV for CuInS2 (CIS) to
2.4 eV for CuGaS2 (CGS) caused by a small shift of the valence band maximum and a
much larger shift of the conduction band minimum.

CuInS2 and CuGaS2 crystallize in the chalcopyrite lattice structure [132]. This is
a tetragonal cell with 8 atoms and space group I 4̄2d number 122. It is a diamond
like structure similar to the zincblende ZnS double unit cell, but with the Zn-sites
substituted by Cu and Ga/In. The precise location of the S atoms in the chalcopyrite
structure depends on the strength of Cu-S and Ga-S/In-S bonds. A stronger bonding
of S atoms with the two nearest Cu atoms was suggested presumably due to the
d-electrons of the Cu atom contribution to the bonding, leading to a difference of the
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strengths of the Cu-S and Ga-S/In-S bonds and therefore of the Cu-S and Ga-S/In-S
bond lengths.

Fig. 3.7 Schematic representation of the atoms on the chalcopyrite structure. Cu:
brown, Ge/In: blue and S: yellow. In the case of the double cell of zincblende, the Cu
and Ga/In sites would correspond to the Zn sites.

The tetragonal distortion describing the new position of anions makes the lattice
constant ratio c/a in the double zincblende structure, to deviate from 2 to ∼1.96 for
CuGaS2 and CuInS2. The S anions are displaced from their ideal tetrahedral positions
by an amount u known as the anion displacement parameter of the chalcopyrite
structure. The parameter can be determined as

u = d2
Cu−S − d2

Ga−S
a2 − 1

2,

where dGa−S and dGa−S are the two anion-cation distances, and u is the value to add to
the ideally tetrahedral anion coordinate leading (3/4+u,1/4,1/8) at Wyckoff possition
8d.

Unoccupied states can be accurately probed by Near Edge X-ray Absorption fine
Structure (NEXAFS) spectroscopy. NEXAFS is an absorption-spectroscopy technique
that allows to extract the features in the absorption spectra close the the absorption
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edges. It involves the excitation of electrons from a core level to partially filled and
empty states. The absorbed radiation is measured for a range of frequencies around
the energy of the edges. It is element-specific as the elements have different core level
energies. The K-edge for the Cu, Ga, In and S are 8978.9 eV, 10367.1 eV, 27939.9 eV and
2472.0 eV respectively. Therefore, the NEXAFS absorption signal contains information
about the empty density of states of the material as well as transition probabilities.

Figure 3.8 shows the S, Ga and Cu K-edges and the In L3-edge spectra. On the
x-axis of the NEXAFS spectra we can read the excitation (photon) energy. The spectra
from a single element in each figure have a common, although not necessarily absolute
energy scale so that real shifts between the absorption edges can be considered. As
expected, the S K-edge position in Figure 3.8a shifts to higher energies with the Ga
content of the material and thus the band gap is increased. In contrast, no change in
edge position is observed for the Ga or Cu K-edges nor for the In L3-edges. This is
also observed for Ga L3-edges, and the In M4,5-edge, while the S L3-edge exhibits again
a significant shift (see Figure D.1 [131]).

In order to explain this behavior, we performed DFT calculations of the electronic
states of CuInxGa1−xS2 alloys, for x= 0, 0.3, 0.5, 0.67, and 1. The projected partial
densities of states (pDOS) exhibit the same dependence on or independence of the
composition as the measured NEXAFS spectra.

First, in order to obtain a microscopic model of the alloy, we used special quasir-
andom structures (SQS) [133] to approximate random arrangements by using small
periodic supercells. SQSs are periodic supercells with a small number of atoms (start-
ing from N=8), that mimic at best the first few, physically most relevant, radial
correlation functions of a perfectly random structure. The idea is to design a special
N-atom structure whose distinct (i.e. not ensemble average) correlation functions best
matches the ensemble average of the random alloys. The electronic states of the CIGS
compounds are known to be very sensitive to modifications of the internal structural
parameters. This fact necessitates a proper description of the microscopic atomic
structure of CIGS alloys, and it motivated the choice to work with supercells, despite
the increased computational cost.

The SQS of CuInxGa1−xS2 for x � 1/3, x � 1/2, and x � 2/3 were built using the
ATAT [134] code. The SQS supercells contained 40, 54, or 64 atoms and they include
all three possible environments for S: 2 Cu and 2 Ga neighbors, 2 Cu and 2 In neighbors,
and 2 Cu, 1 Ga, and 1 In neighbors as described in Reference [132]. No defects were
considered (e.g., cation antisites) so that all S atoms are surrounded by 2 Cu and 2
atoms of the group IIIA, yielding always the same number of valence electrons. The
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Fig. 3.8 Experimental results for samples of CuInS2, CuGaS2 and CuIn0.7Ga0.3S2, from
Reference [131]. a) Measured absorption K-edges of S, b) Measured absorption K-edges
of Ga, c) Measured absorption K-edges of Cu, d) Measured absorption L3-edges of In

supercells were relaxed using the all-electron projector augmented wave (PAW) method
as implemented in the code vasp [37, 38]. Brillouin zone integrals were converged
with a 340 eV plane-wave cutoff and a 3 × 3 × 3 shifted k-point mesh. We tested
different exchange-correlation potentials: Perdew–Burke–Ernzerhof (PBE)[12], PBE+U
[135] with U=6 eV on Cu d states, and the screened hybrid Heyd-Scuseria-Ernzerhof
(HSE) [81, 82]. For the ternary materials, it is already known that anion–cation bond
lengths are poorly estimated when using standard semi-local functionals (such as PBE)
[136–138] to relax the geometry, causing an underestimation of the band gap by more
than 50% at the relaxed structure. In the mixed cation system, three cation species
lead to three independent anion–cation bond lengths with two different displacement
mechanisms [139].
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The partial density of states (pDOS) were calculated both site- and orbital-projected
using the quick projection scheme1 implemented in vasp. In the following the pDOSs
are calculated for each atom site, and for the angular quantum numbers l=0, 1 and 2
(s,p and d), summing over all the corresponding magnetic quantum numbers m. In the
plots we present the sum of the pDOSs over all atom sites of the same specie.

We first checked the convergence with the cell size of the SQS. After relaxing all
the SQS cells, we observed that SQS 40-atoms supercells already give bond lengths
that differ by less than 0.002 Å and densities of states substantially identical to those
of the 64-atoms supercells. All results shown in the following were obtained therefore
with the 40-atoms SQS cells.

A further validation of our model structures comes from the comparison with
Extended X-Ray Absorption Fine Structure (EXAFS) measurements of CIGS alloys
performed by our collaborators. The EXAFS spectrum is caused by the interference
of the electrons that are extracted out of the atoms by the incident X-rays with the
scattered waves from the atoms around them. This yield the element-specific atomic-
scale structure, in our case, the Cu-S, Ga-S, and In-S distances [139] (see Table 3.4).

1The DOS is defined as
D(E) =

∑
n

〈ψn|ψn〉 δ(E − En),

where, within the DFT framework, ψn are the KS orbitals. Inserting a complete orthonormal basis,
this expression can be rewritten as

D(E) =
∑

n

∑
i

〈ψn|ξi〉 〈ξi|ψn〉 δ(E − En) =
∑

n

∑
i

| 〈ξi|ψn〉 |2δ(E − En).

The factor 〈ξi|ψn〉 weights the terms of the DOS and defines the pDOS Di(E) as

D(E) =
∑

i

Di(E) =
∑

i

[∑
n

| 〈ξi|ψn〉 |2δ(E − En)

]
.

The PAW method offers a simple way of calculating those weights. The method itself needs partial
waves for which atomic orbitals are used commonly which is precisely what is needed to compute
the projections. Thus, within the PAW framework the partial waves φi can be used as basis ξi, were
i ≡ α, n, l, m, the atom site and the principal, angular and magnetic quantum numbers.

〈φi|ψn〉 = 〈φ̃i|ψ̃n〉 + 〈φ̃i|Ô|ψ̃n〉 .

where Ô = 1 +
∑ |p̃i〉 [〈φi|φj〉 + 〈φ̃i|φ̃j〉] 〈p̃j | is the overlap operator [140], 〈p̃i| are the projectors and

φ̃i, ψ̃i are the partial waves and pseudo KS orbitals respectively.
The second term contains 〈φi|p̃i′〉 terms, which are small for i corresponding to different atom sites.

i.e. α �= α′. Thus one can approximate 〈φi|ψn〉 ≈ 〈φ̃i|ψ̃n〉. The final expression to compute the pDOS
is

Di(E) =
∑

n

| 〈φ̃i|ψ̃n〉 |2δ(E − En).
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Comparing Tables 3.4 and 3.5, it can be seen that the atomic positions obtained with
the HSE functional always yield bond lengths in excellent agreement with experimental
data (see Table 3.5). In contrast, PBE and, to a smaller extent, PBE+U overestimates
Ga-S and In-S bond lengths, while Cu-S bond lengths remain quite close to HSE and
experimental values. However, all three bond lengths, Cu-S, Ga-S, and In-S, should be
as close as possible to experimental values as their combination determines the anion
displacement. Our findings for alloy systems are thus consistent with previous results
for the pure ternaries [136, 139] and demonstrate that the use of HSE is crucial to
correctly reproduce the atomic-scale structure.

Table 3.4 Experimental bond lengths of CIGS obtained from EXAFS data (Å) reported
in Reference [139]

Cu/(In+Ga) In/(In+Ga) dCu−S dGa−S dIn−S

0.99 1.00 2.325 - 2.463
0.93 0.80 2.324 2.299 2.458
0.90 0.75 2.325 2.298 2.461
0.97 0.40 2.320 2.293 2.452
1.10 0.30 2.318 2.292 2.446
1.07 0.22 2.318 2.291 2.442
0.99 0 2.312 2.286 -

Table 3.5 Calculated averaged bond lengths (Å) of the 40-atoms of CuInxGa1−xS2
supercells using different exchange correlation potentials.

PBE PBE+U HSE
x dCu−S dGa−S dIn−S dCu−S dGa−S dIn−S dCu−S dGa−S dIn−S

1.00 2.33 - 2.52 2.33 - 2.50 2.34 - 2.48
0.70 2.33 2.34 2.51 2.33 2.33 2.50 2.34 2.31 2.47
0.50 2.32 2.34 2.50 2.33 2.33 2.49 2.34 2.30 2.46
0.30 2.32 2.33 2.49 2.33 2.32 2.48 2.33 2.29 2.46
0.00 2.31 2.32 - 2.32 2.31 - 2.32 2.29 -

Besides, the DOSs of the relaxed structures show that the HSE functional yields a
band gap very close to the experimental value [136, 141] (see Table 3.6). Hence, to
have all three bond lengths, Cu-S, Ga-S, and In-S, as close as possible to experimental
values (as their combination determines the anion displacement) and a better electronic
structure, HSE was used in this work.
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In order to evaluate band offsets, it was necessary to align the band edges of
compounds of different chemical compositions. For this, we used the method described
in the work of Schleife et al. [142] and aligned the branch-point energies, defined as
the energy at which the defect states induced in the gap change their character from
predominantly acceptor-like to donor-like [143, 144]. Reaching from one material into
another at the interface such states transfer a net charge, the sign of which depends
on the position of the Fermi level relative to the branch point energy. This charge
transfer leads to an intrinsic interface dipole that tends to line up the energy bands
in a way that the dipole itself vanishes [144]. Therefore, branch point energies are
relevant reference levels for the band alignment, and their use allows us to avoid the
direct calculations of interfaces.

The branch point energy EBP is calculated as a Brilluoin Zone average of the KS
eigenvalues of the lowest NCB conduction bands and the highest NVB = 2NCB valence
[142, 145].

EBP = 1
2Nk

∑
k

⎡⎣ 1
NCB

NCB∑
i

εci
(k) + 1

NVB

NVB∑
j

εvj
(k)

⎤⎦ .

This method requires to determine the number of bands for the calculation of EBP.
Following the scaling of the number of bands with the number of electrons described
in Reference [142], we obtain for CuGaS2 and CuInS2, with 32 electrons on the unit
cell, 8 valence bands and 4 conduction bands and for CuInxGa1−xS2 supercells with
160 electrons, 40 valence bands and 20 conduction bands.

With the valence band maximum Ev=0 as energy zero, the conduction band
minimum Ec takes the value of the band gap Eg. From EBP and Eg the band offsets
are calculated as

ΔEc = [Eg(X1) − EBP(X1)] − [Eg(X2) − EBP(X2)],

ΔEv = EBP(X1) − EBP(X2),

where X1 and X2 are the two compounds forming the interface.
Figure 3.9 shows the calculated pDOS of the S, Ga and Cu p-states and the In

s+d-states, for the conduction bands of CIGS with varying composition. A Gaussian
broadening of 0.3 eV is applied to all the calculated pDOSs. According to the dipole
selection rules, which states that the change in angular momentum quantum number
should be Δl = ±1 between the initial and final states, electrons from the K-shell
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Table 3.6 Calculated and measured valence band offsets ΔVBM and band gaps Eg of
CuInxGa1−xS2 alloys (eV). Experimental values are from Ref. 3

ΔVBM Eg

x HSE Exp. HSE Exp.

1.0 0.14 0.3 1.32 1.5
0.7 0.11 0.3 1.55 1.6
0.5 0.10 - 1.69 -
0.3 0.06 - 1.90 -
0.0 0.00 0.0 2.20 2.4

(s-orbitals) are excited to unoccupied conduction bands with p character. Furthermore,
transitions only take place if the final and initial states overlap in space [146]. Since the
core level states, particularly of the K-shell, are highly localized at the absorbing atom,
the electrons will be excited to those unoccupied states whose amplitudes dominate at
the absorber site: the states of the absorbing atom itself. Thus, the pDOSs of the S,
Ga and Cu p-states and the In s+d-states of Figure 3.9 correspond to the unoccupied
states sampled at the S, Ga and Cu K-edges and In L3-edge (Figure 3.8) respectively.

The qualitative agreement between calculated and measured pDOS is excellent as
can be seen from comparing Figure 3.8 and Figure 3.9. In particular, a significant shift
of the edge position with alloy composition is observed for S in both cases, whereas the
Ga, In and Cu edges position are less dependent on composition for both experiment
and calculation. The theoretical findings thus confirm the experimental observations
demonstrating that this unusual behavior of absorption edge positions is indeed a real
effect of mixed chalcopyrite alloys.

The fact that the Ga, In, and Cu absorption edge positions remain nearly unaltered
with alloy composition despite a significant change of the band gap closely resembles
the fact that the element-specific Ga-S, In-S, and Cu-S bond lengths are nearly constant
over the whole compositional range despite a significant change of the lattice constants.
In contrast, both the S-edge position and the average group-IIIA-S bond length vary
with changing In/Ga ratio. This strongly suggests that the absorption edge position,
i.e., the energy of the element-specific unoccupied local states, is determined by the
local atomic arrangements rather than the overall crystallographic structure.

In the chalcopyrite each Ga, In, or Cu cation is bonded to four S anions. If all
atoms occupied ideal lattice sites, the Ga-S and In-S bond lengths would be identical
and would change with alloy composition according to the change in lattice constants.
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Fig. 3.9 Calculated pDOS for the conduction bands to be compared with Figure 3.8.
The valence band maximum is set to zero and the energies scales of different compounds
are aligned via the branch point energy. a) p-states of S, b) p-states of Ga. Inset:
pDOS of Ga p-states in the conduction band for CGS with either CGS lattice constants
(green solid line) or with average lattice constants between CIS and CGS (red dashed
line). c) p-states of of Cu, d) s-states plus d-states of In

Note that the Cu-S bond length is nearly the same for CGS and CIS and hence no
significant structural change is expected for the alloy. The local structural environment
surrounding the Ga or In atoms would thus be expanded or compressed leading to a
change in band gap according to the well-known dependence on pressure or temperature.
Consequently, the absorption edge position would shift with varying alloy composition.
This effect is illustrated in the inset of Figure 3.9b where the calculated pDOS of Ga
p-states in the conduction band is plotted for CGS with either the real CGS lattice
constants or with those applying to the x=0.5 alloy. The edge position clearly shifts as
the Ga-S bond length is stretched from the ternary length to the distance of the alloy
lattice sites.
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Obviously, this does not correspond to the behavior of the real CIGS alloys as shown
in Figure 3.9 with the reason being that the local atomic arrangements strongly deviate
from the average crystallographic structure. EXAFS measurements of both CIGS and
CIGSe have shown that the element-specific bond lengths are nearly constant over
the whole compositional range despite the change in lattice constants [132, 139].This
behavior closely resembles the findings for other mixed semiconductor systems as
first reported for (In,Ga)As [147] and later confirmed for many other IIIA-VA and
IIA-VIA ternary compounds[148, 149]. It originates from the fact that bond bending
is energetically favored over bond stretching such that the lattice mismatch is accom-
modated in the mixed system mostly by a change of the bond angles and only to a
small extent by a change of the bond lengths [148, 150]. In mixed cation systems,
this is achieved by a displacement of the anion from its ideal lattice site [151], which
has been shown to influence the band gap of the material for both IIIA-VA alloys
[152] and mixed chalcopyrites [132, 139]. This demonstrates again the strong similarity
between these tetrahedrally coordinated mixed semiconductors and highlights the
correlation between atomic-scale structure and electronic properties. However, due to
the increased complexity of the chalcopyrites compared to the IIIA-VA or IIA-VIA
compounds, two different displacement mechanisms must be distinguished for CIGS
and CIGSe as discussed in detail in Reference [132, 139].

For understanding the behavior of the absorption edge positions discussed here, the
important feature of the atomic scale structure is the fact that the element-specific
Ga-S, In-S, and Cu-S bond lengths remain close to the ternary values over the whole
compositional range. As a consequence of this bond length preservation, the local
structural environment surrounding the Ga, In, or Cu atoms changes very little and the
projected pDOS still resembles that of the pure ternary compounds. The corresponding
absorption edge position is thus independent of the alloy composition and remains
fixed at the ternary energy position.

In contrast, the S anions are bonded to two Cu and two group-IIIA atoms which
can be either Ga or In. Consequently, the average first nearest neighbor environment
of S changes with changing alloy composition even if the element-specific bond lengths
remain constant. The S pDOS in the alloy thus represents a weighted average of the
S pDOS in CGS and CIS corresponding to an absorption edge position that shifts
with changing In/Ga ratio as seen in Figure 3.8. The change of the band gap, i.e., the
shift of the conduction band minimum, is thus caused by a changing spatial average
over the element-specific local states rather than by a change in energy of these states
themselves. As a consequence, a determination of the conduction band minimum and
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thus the band gap from X-ray absorption spectroscopy studies is not straightforward
in semiconductor alloys and care has to be taken when evaluating such data.

A very similar behavior can be found in Yamazoe et al. where Cu-In-Se compounds
were studied with different Cu/In ratios varying from 1 (CuInSe2) to 0.2 (CuIn5Se8)
[153]. While the Cu and In K-edge NEXAFS are independent of the sample stoi-
chiometry, the Se K-edge NEXAFS exhibits significant changes as the Cu/In ratio
decreases. Despite the different crystal structures of the various compounds, the Cu
and In cations are bonded to four Se anions the distance to which varies only little
with stoichiometry. The local structural environment of Cu and In, and hence the
pDOS, therefore, remains mostly unchanged. In contrast, the average surrounding of
the Se anions changes strongly with changing Cu/In ratio as clearly evidenced by the
changing NEXAFS spectra. In view of these similarities between CIGS and Cu-In-Se
compounds and given the remarkable resemblance of the atomic-scale structure of
CIGS and CIGSe [132, 139], we strongly believe that the findings presented in this
work are general features of tetrahedrally coordinated semiconductors with different
cation species and varying composition or stoichiometry. The similarity between our
study and those on La1−xSxCoO3 [154–156] further suggests that this behavior is even
more general and can be found whenever an alloy contains elements for which the
local first nearest neighbor environment does or does not change with changing alloy
composition. For both CIGS and La1−xSxCoO3, the nature and distance of the anions
surrounding the cations do not change and the cation absorption edge position does
not shift. In contrast, the local environment surrounding the anions does change with
alloy composition and consequently the anion absorption edge positions do shift in
both cases.

In conclusion, DFT calculations together with the results of NEXAFS measure-
ments show that the absorption edge position for Ga, In, and Cu is independent of
the composition, whereas the S absorption edge shifts with changing In/Ga ratio
in accordance with the change in bandgap. This behavior originates from the state
selectivity of the absorption process in which the core level electron is excited predom-
inantly into unoccupied states of the absorbing atom itself. These element-specific
local states are determined by the atomic-scale structural environment, which is nearly
independent of composition for the Ga, In, and Cu cations but varies significantly with
changing In/Ga ratio for the S anions. The observed change in the band gap with
changing alloy composition thus results from a changing spatial average of the nearly
unchanged element-specific local states. This clearly demonstrates the strong influence
of local structural parameters on the electronic properties of the material. For those to
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be predicted correctly, the DFT calculation therefore has to reproduce not only the
crystallographic structure correctly but also the atomic-scale structural parameters
such as element-specific bond lengths and anion displacement which necessitates the
use of the HSE exchange-correlation potential. While the study was performed for the
specific case of CIGS, we believe that our findings are also applicable other compound
semiconductors with different cation species and varying composition or stoichiometry.





Chapter 4

Optimized Exchange and Correlation

Functional for the Calculation of Energies of

Formation

In this chapter we describe how we develop a semi-empirical exchange-correlation
functional for Density Functional Theory, tailored to calculate energies of formation
of solids. This functional has the form of a Perdew-Burke-Ernzerhof functional, but
with three parameters, covering the exchange and correlation parts, fitted to reproduce
experimental energies of formation for a representative set of binary compounds. The
quality of the obtained functional was then assessed for a control set. Our functional
manages to reduce the error of the Perdew-Burke-Ernzerhof generalized gradient
approximation by roughly a factor of two. Furthermore, this is achieved without
affecting the quality of the geometry.

4.1 Introduction

The accuracy of many thermochemical experiments, the so-called chemical accuracy,
is commonly taken as approximately 40 meV/formula-unit (1kcal/mol). This is the
desirable accuracy of theoretical methods as well. To achieve such a level of accuracy
one needs to pay the price of very high computational cost. In fact, calculating energies
of formation at the chemical accuracy level is nowadays possible only by using very
expensive (and therefore limited to very small systems) first-principles methods such
as Configuration-Interaction or Quantum Monte Carlo.

Density Functional Theory (DFT) could give in principle exact ground-state energies
(in the Born-Oppenheimer framework), but in practice it does not, as the exact form of
the exchange-correlation functional is unknown. In particular, the common semi-local
approximations for the exchange-correlation energy term usually suffer from the self-
interaction problem, i.e. the interaction of an electron with itself. The self-interaction
error is believed to be the cause of many failures of these functional. DFT is widely used
in structure prediction, i.e. to compute energies of formation, as it is the only approach
that allows to handle the large number of calculations required by large scale calculations
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[19, 157, 158] obtaining a reasonable compromise between accuracy and computational
effort. DFT energies of formation (in the local density approximation or generalized
gradient approximation) often benefit from error cancellations when subtracting the
total energy of the elemental phases to the total the energy of the compounds. This
occurs in a larger extent when considering energy differences between similar systems,
for example, metallic alloys and their (metal) components [159]. Conversely, DFT
is more likely to fail to reproduce the energies of formation of semiconductors and
insulators composed by metals and molecular species [159].

There are some other sources of errors involved when it comes to predict a thermo-
chemical quantity, even at zero temperature. Namely, originating from the zero-point
motion of the phonons. However, and as in the vast majority of cases, the error due
to phonons is considerably smaller than the error due to the exchange-correlation,
therefore we will ignore it in the following. Extrapolated experimental values to
0 K, show that the errors introduced by finite temperature are typically smaller than
0.03 eV/atom [159]. This makes possible the comparison to the available experimental
enthalpies of formation, which usually correspond to standard conditions: temperature
of 298 K and pressure of 101.3 kPa. On the other hand, one should not forget that the
contribution of the zero-point motion of diatomic molecules O2 (0.049 eV/atom), N2

(0.073 eV/atom) and H2 (0.135 eV/atom) is significant [160].

Several approaches have been suggested to improve the prediction of the energies of
formation. Most of them include a Hubbard U parameter which allows to better describe
the d-electrons and hence to obtain better total energies [157, 159, 161]. However,
there are no unique rules to choose its values. This is in general a “thermodynamical”
U, in the sense that it is not intended to predict band-gaps, but instead total energies
leading to accurate energies of formation.

In turn, there are several ways to correct the energies of formation obtained in the
DFT+U framework. Lei Wang et al. [157] computed the formation of transition metal
oxides with the PBE and PBE+U methods, and found a constant shift of 1.36 eV per O2

molecule between the experimental and theoretical energies of formation. This comes
in part from the inaccuracy of the PBE exchange-correlation functional in describing
the binding energy of the O2 molecule which is about 1.58 eV per O2 molecule lower
than the experimental value. The remaining contribution to the shift is attributed to
the PBE error associated with adding electrons to the O p-orbital when ions O2− are
formed from O2. They also provide the values of U for several transition metals, that
give the best oxidation energies.
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Anubhav et al. [161] presented a way to mix PBE and PBE+U total energies
to obtain more accurate energies of formation. Their methodology is based on the
idea of decomposing the reaction under study as a set of subreactions that either are
well described with PBE alone, well described with PBE+U alone, or for which there
is experimental data available. The subreactions will introduce intermediate phases,
whose energies are computed with either PBE or PBE+U. For a set of 49 ternary
oxide, this approach was able to reduce the mean absolute relative error of calculated
formation enthalpies from approximately 7.7–21% in PBE + U to less than 2%. They
also successfully predict that all the known phases of the Fe-P-O system are stable in
contradiction with PBE and PBE+U calculation.

In a completely different approach, Stevanovic et al. [159] used a set of 252 binary
compounds to determine corrections to the energy of the elements in order to maximize
the error cancellation leading to accurate values for the energy of formation. They
wrote the energy of each elemental phase as EPBE+U(A)+μA and use μA as a parameter
to fit the PBE+U-computed formation energy to the experimental value. By using
these fitted elemental-phase reference energies (FERE), the energies of formation of
a set of 252 binaries are reproduced with the mean absolute error of 0.054 eV/atom
instead of 0.250 eV/atom resulting from pure PBE calculations. Using FERE in a set
of 55 ternary compounds that were not part of the fitting set, the energies of formation
are reproduced with a mean absolute error of = 0.048 eV/atom. Their choice for the
values of the Hubbard U was to set it to 3 eV for all transition metals except Ag
and Cu, which was set to 5 eV. The strategy of fixing U allows to develop a more
general scheme that can be applied to different families of compounds, not only to
oxides or chalcogenides separately, for instance. The μA corrections, added to the
elemental-phase energies, automatically take care of the contribution of the zero-point
motion of the diatomic molecules mentioned above.

This is probably the best method available for the calculation of energies of forma-
tion, but unfortunately it has a few shortcomings when used to obtain the distance to
the convex hull of stability. To understand these shortcomings, we should remember
that to calculate the distance to the convex hull we need to consider all possible
decomposition channels. It turns out that depending on the channel, FERE can give
very different results: (i) The decomposition is to elementary phases. Then the distance
to the hull is simply related to the energy of formation and FERE yields excellent
results. (ii) The solid decomposes into one (or more) elementary phases and one (or
more) binary or higher compounds. In this case FERE just corrects the elementary
phases, and the error can be substantially higher than for the normal PBE+U. This
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can be easily seen in, e.g., binary phases diagrams as FERE can (incorrectly) stabilize
(or destabilize) certain phases. (iii) Otherwise the decomposition is into binaries or
higher phases, and FERE simply yields the same error as the underlying PBE+U
theory.

In this chapter we present a new approach to improve the accuracy of DFT
thermochemistry: a generalized gradient approximation exchange-correlation functional
optimized to give accurate values of energies of formation. To define the new functional
we tuned the values for the parameters μ, κ, β and γ of the PBE [12] to fit experimental
formation energies. We also verified that with the optimized functional, the lattice
parameters are still determined with the same accuracy of PBE, which is an essential
requirement to use it for structure prediction.

4.2 Generalized Gradient Approximation for the Exchange and

Correlation energy

The challenge in the Kohn-Sham DFT formalism is to describe the exchange-
correlation term of the total energy. Often one divides this term into separate exchange
and correlation contributions [4, 5]

Exc = Ex + Ec. (4.1)

The generalized gradient approximation (GGA) for exchange is usually expressed
as [4, 5, 12]

EGGA
x [n] =

∫
drnεunif

x [n]Fx(s), (4.2)

(although non-separable forms have also been proposed) where s = |∇n|/2kF n is a
dimensionless density gradient, Fx is called enhancement factor and εunif

x (n) = −3kF /4π

is the exact uniform-electron-gas exchange energy and kF = [3π2n(r)]1/3 is the local
Fermi wavevector.

We will write the GGA for the correlation in the form [4, 5, 12]

EGGA
c (n↑, n↓) =

∫
drn[εunif

c (rs, ζ) + H(rs, ζ, t)], (4.3)

where H is the gradient contribution, rs is the Seitz radius, defined as n = 3/4πr3
s =

k3
F /3π2, ζ = [n↑ − n↓]/n is the relative spin polarization, and t = |∇n|/2φksn is a

dimensionless density gradient, with φ(ζ) = [(1 + ζ)2/3 + (1 − ζ)2/3]/2, a spin-scaling
factor, and ks =

√
4kF /π, the Tomas-Fermi wavenumber.
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The analytic expressions for the correlation energy of the uniform electron gas
εc are known only in the extreme limits when rs → 0 and rs → ∞. An expression
satisfying both limits, proposed by Perdew and Wang [4, 6, 8], is

εc(n) = −2c0(1 + α1rs)ln
[
1 + 1

2c0(β1r
1/2
s + β2rs + β3r

3/2
s + β1r2

s)

]
, (4.4)

where c0 = 0.031091, α1 = 0.21370, β3 = 1.6382, β4 = 0.49294, β1 = 1/(2c0)exp(−c1/2c0),
β2 = 2c0β2

1 , where c1 = 0.0466644. These coefficients were found by fitting to Quantum
Monte Carlo uniform electron gas correlation energies for rs=2, 5, 10, 20 and 100 [7].

An enhancement factor for correlation can be defined as [5]

Fc(rs, ζ, t) = 1 + H(rs, ζ, t)
εunif

c (rs, ζ) , (4.5)

allowing us to write the correlation energy as

EGGA
c =

∫
d3rnεunif

c Fc(rs, ζ, t). (4.6)

Equivalently, an enhancement factor for the exchange and correlation together can be
defined as

Fxc(rs, ζ, s) = Fx(s) + εunif
c (rs, ζ)

εunif
x (rs, ζ)Fc(rs, ζ, s) (4.7)

and the exchange-correlation energy can be written as

EGGA
xc =

∫
d3rnεunif

x Fxc(rs, ζ, t). (4.8)

4.3 The PBE Exchange-Correlation Functionals Family

The Perdew-Burke-Ernzerhof (PBE) [12] is the most used exchange-correlation
functional in DFT calculations in condensed matter and it has a simple expression very
easy to derive and implement. The PBE approximation to correlation is constructed
from three conditions [12]:

a) at the slowly varying limit t → 0, the gradient contribution to the correlation is
given by the second-order expansion

H → βφ3t2, (4.9)

where β � 0.066726.
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b) at the rapidly varying limit t → ∞ the correlation vanishes

H → −εunif
c , (4.10)

c) due to the uniform scaling (1.58) to the high density limit the correlation energy
must scale to a constant, thus H must cancel the logarithmic singularity of εunif

c .
The selected function to satisfy a) b) and c) is the first term of the Perdew-Wang-91

(PW91) correlation functional [162]

H = γφ3ln
[
1 + β

γ
t2 1 + At2

1 + At2 + A2t4

]
, (4.11)

where
A = β

γ
exp

(
−εunif

c
γφ3 − 1

)−1

, (4.12)

The GGA for the exchange is constructed using four further conditions [12]
d) in the uniform density scaling (1.58), Ex must have the form (4.2) to recover the

correct uniform electron gas limit with Fx(s = 0) = 1
e) the exact exchange energy obeys the spin-scaling relation

Ex[n↑, n↓] = Ex[2n↑] + Ex[2n↓]
2 , (4.13)

f) it is desired to recover the local spin density linear response when s → 0, hence
the effective gradient for exchange

Fx(s) → 1 + μs2 , (4.14)

has to cancel that for correlation, leading to the condition μ = βπ2/3 � 0.21951.
g) the Lieb-Oxford bound [13]

Ex[n↑, n↓] ≥ Exc[n↑, n↓] ≥ −1.679
∫

d3rn
4/3 , (4.15)

will be satisfied if Fx(ζ = 1, s) grows gradually with s to a maximum value less than or
equal to 2.273.

A simple function satisfying d), e), f) and g) was proposed by Becke [163] but with
empirical coefficients

F PBE
x (s) = 1 + κ − κ

1 + μs2/κ
. (4.16)
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Table 4.1 The parameters μ, κ, β and γ for some functionals of the PBE family.

PBE PBEsol xPBE revPBE B86

μ 0.21951 10/81 0.23214 0.21951 0.23511
κ 0.804 0.804 0.91954 1.245 0.9672
β 0.066725 0.046 0.089809 0.066725 -
γ 0.031090 0.031090 0.011279 0.031090 -

Although the original derivation of the PBE used solid theoretical arguments to
fix the four parameters μ, κ, β and γ, there seems to still be a considerable amount
of other (reasonably well) justified choices. In different works, these parameters have
been modified to improve the performance of the original PBE functional to predict
magnitudes as atomic data, heats of formation of molecules and lattice parameters.
That gives rise to a family of functionals based on PBE among which are PBEsol [80],
xPBE [5], revPBE [164], PBE-TCA [165, 166], PBEA [167] ,vdW-PBE [168], RPBA
[169], PBEint [170].

The functional revPBE, whose name stands for revised PBE, appears in a comment
to the paper where the PBE functional is presented. Zhang et al. [164] argue that
the derivation of PBE leaves flexibility to choose κ and they obtain a new value of
this parameter by fitting exchange-only total energies of atoms to exact exchange-only
results from the optimized exchange potential method, finding that it can improve
significantly over the original PBE. The revPBE improves PBE atomic total energies
by a factor of 10 [164]. In the PBEsol functional, the gradient expansion is restored to
better describe real solids, where the density is often almost slowly varying over space.
The β parameter is chosen to best fit the results with the Tao-Perdew-Staroverov-
Scuseria (TPSS) functional [171] for large neutral jellium clusters. To construct the
extended PBE functional xPBE, the four parameters are fitted to the Hartree-Fock
limit energies, to the exact atomic energies for atoms from H to Ar, the binding energies,
and bond distance of Ne2. xPBE outperforms PBE for thermochemistry of molecules,
and can be competitive or better than PBE for the prediction of geometric parameters,
ionization potentials, electron affinities and for the description of Van der Waals and
hydrogen bond interactions [5].
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4.4 Optimized Semi-local Exchange-Correlation Functional for the

Calculation of Energies of Formation

To optimize our exchange-correlation functional, we minimized the mean absolute
deviation (MAD) of the PBE energies of formation of a set of 92 binary compounds
with respect to the experimental values, obtaining a fit for the four parameters μ, κ, β

and γ on (4.11) and (4.16).
The optimization set was selected to assure its chemical diversity. It is a subset of

the 252 binary compounds used on Reference [159], for which experimental energies
of formation are known. It comprises 47 different elements (see Table C.5) and it
contains 44 compounds of transition metals, 38 compounds of alkali and alkali-earth
metals and 12 compounds of the groups IIIA and IVA. They are listed in Table C.1.
Structures were obtained from the Material Project database [127]. We included as
many distinct chemical elements as possible, and that were representatives of all groups
of the periodic table. We could take a step beyond, and also require representative
structures for all possible oxidation states for all elements, for example. This would,
certainly, cover even better the chemical diversity. However, this would lead to a too
large training set and often too large unit cells for our current computational ability.

The ground state structure of the elemental solids at 0 K, were obtained from
Reference [172] or from the Material Project Database [127]. The structures were
relaxed using PBE functional and the ones with lowest energies were used for the
computation of the energies of formation.

The minimization was performed with the Downhill Simplex method (DSM) by
Nelder and Mead [173], being the parameters μ, κ, β and γ, the variables, and the MAD,
the objective function. The DSM requires only function evaluations, not derivatives.
Several minimization were performed starting from different initial parameters in order
to check the convergence of the method. This method uses the concept of simplex:
the geometrical figure consisting of N + 1 vertices and all their interconnecting line
segments, polygonal faces, etc, where N is the number of variables of the function. The
algorithm starts with N + 1 points, defining an initial simplex. Then it takes a series
of steps in its way downhill, most of them just moving the point of the simplex where
the function is largest through the opposite face to a lower value (called reflexion).
The simplex can also be contracted to enter in narrow zones.

All calculations were done within the projector augmented wave (PAW) method as
implemented in the vasp code [37, 38]. The plane wave cut-off was set to a value 30%
higher than the ones suggested for the PAW potentials. The numerical convergence to
less than 2 meV/atom was ensured by a high energy cutoff and dense k-point meshes.



4.4 Functional for the Calculation of Energies of Formation 97

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0  5  10  15  20  25  30  35  40

M
A

D
 Δ

H
f 

(e
V

)

Steps

Fig. 4.1 DSM minimization of the MAD starting from the PBE values of the parameters.

For each functional the structures were relaxed until the forces over the atoms were
less than 0.005 eV/Å and the stresses over the cell were lower than 0.1 GPa. All the
total energies used to compute energies of formation correspond to relaxed structures.

The calculations involving transition metals were performed spin polarized, with
a ferromagnetic alignment as initial spin configuration, except for NiO, CoO, CuO
and FeO that where set to start from an antiferromagnetic alignment. Note that
Stevanovic et al. [159] reported that they found that the energy differences associated
with different magnetic configurations are typically of the order of 0.01-0.02 eV/atom
and do not contribute appreciably to relative large ab initio errors.

Figure 4.1 shows a typical minimization of the MAD. The step zero corresponds to
the PBE parameters for which the MAD i equal to 0.208 eV/atom. The following four
steps determine the other points corresponding to the first simplex, and then, in step 5
the minimization starts.

The minimum found for the MAD is 0.097 eV/atom for parameters μ � 0.346,
κ � 0.437, β � 0.043 and γ � 0.034 (see Figure 4.2). These values correspond
approximately to 1.5 times μPBE, 0.6 times κPBE, 0.66 times βPBE, (very close to the
βPBEsol) and almost the same γPBE. Repeating the calculations with the converged
parameters but fixing γPBE, do not change significantly the MAD (0.099 eV/atom).
Therefore, we decided to leave γ unchanged.



98 Functional for the Calculation of Energies of Formation

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

A
g
O

A
lN

B
aO

2

B
eO

C
aF

2

C
aS

C
d
F

2

C
d
S

C
d
T

e
C

o
S

C
rN

C
u
O

C
u

3
N

F
eS

G
aA

s
G

aS
b

H
g
S

H
g
T

e
In

N
In

T
e

K
F

K
2
S

L
aN

L
iC

l
L

i 2
O

L
i 2

S
e

L
i 3

N
M

g
C

l 2
M

g
S

M
g
T

e
N

aF
N

a 2
S

N
b
N

N
iS

b
P

tO
P

tS
2

R
b
F

R
b

2
S

S
cF

3
S

n
S

2

S
rO S
rS

T
iS

V
N

Z
n
O

Z
n
S

e
Z

rN

A
lA

s
B

aO
B

aS
B

eS
C

aO
C

d
C

l 2
C

d
O

C
d
S

e
C

o
O

C
o
S

e
C

rS
C

u
2
S

e

F
eO

F
eS

e
G

aN
H

fN
H

g
S

e
In

A
s

In
S

b
K

C
l

K
2
O

K
2
S

e

L
aS

L
iF

L
i 2

S
L

i 3
B

i
L

i 3
S

b

M
g
O

M
g
S

e
N

aC
l

N
a 2

O
N

a 2
S

e

N
iO

P
d
O

P
tS

R
b
C

l
R

b
2
O

S
cA

s
S

n
O

S
n
S

e 2
S

rO
2

T
iN

T
iS

2

Y
A

s
Z

n
S

Z
n
T

e
Z

rS
2

H
ex

p
 -

 
H

D
F

T
  

(e
V

)

PBE

PBEfe

Fig. 4.2 Errors of the calculated energies of formation with the PBE and the PBEfe
functionals. The orange long-dashed line represents the MAD of the PBE and the blue
short-dotted line represent the MAD of PBEfe. Transparent colors have been used to
show the orange bars when they are shorter than the corresponding blue one.

The individual errors for the different materials can be seen in Figure 4.2 and
Table C.3. PBE formation energies are affected by systematic errors, leading to an
overestimation of the experimental values for most of the compounds, i.e. values
less negatives than the experimental ones. This was already pointed out by Lany
[174]. The energies are very concentrated with a few outliers that correspond to
highly correlated Mott insulators as NiO and CoO, which are incorrectly described by
semi-local approximations. This is different if our optimized functional (which we label
PBEfe standing for PBE for formation energies) is used instead: for 38 compounds,
out of 92 on the list, the calculated energies of formation are underestimated, while
the rest is overestimated. Table 4.2 summarizes these results. We also presented for
the sake of comparison the MAD of the energy of formation computed from the total
energies obtained from of the Materials Project Database, which use the Hubbard U
values and the corrections to the O2 binding energy from Reference [157].

Figure 4.3 shows a comparison between the calculated and experimental energies of
formation of the 92 compounds with four different functionals, PBE, PBEsol, xPBE,
revPBE, LDA and PBEfe. In addition to the overestimation, it can be seen that PBE
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Table 4.2 Mean absolute deviation, and maximum absolute error (MAE) for our
optimization set with the different functionals mentioned here and the results obtained
in the Material Project (MP) Database.

MAD (eV) MAE (eV)

PBE 0.208 0.768
PBEsol 0.193 0.664
xPBE 0.225 0.631
revPBE 0.262 0.701
LDA 0.152 0.672
PBEfe 0.099 0.435
PBEfe+U 0.078 0.336
MP 0.130 0.394

errors increase with the absolute value of the total energies. The functionals xPBE
and revPBE gives the largest errors increasing the MAD up a 21% with respect to the
PBE. The energies obtained with the PBEsol functional are slightly better than the
ones that PBE yields. LDA energies are considerably better, and the values do not
have such a large systematic error as PBE or PBEsol. This was expected as it was
also pointed out by Lany [174]. Finally, PBEfe results show a much smaller dispersion.

The PBEfe error of the subset of the 92 systems formed of transition-metals
compounds is higher (0.120 eV/atom) than the remaining subset of the s- and p-
compounds (0.077 eV/atom). To address that, we performed calculations applying a
Hubbard U term to the d-orbitals of the transition metal compounds. To obtain the
values of U we used the following procedure: (i) For each compound we found the value
of U for which PBEfe+U gave the lowest error. (ii) We averaged the best values of U
for all compounds containing the element. This is not intended to find universal U
values, but just to compensate the difference of errors between the mentioned subsets.
Table 4.3 shows the values of U, for each transition metal. The PBEfe+U calculation
gives a MAD of 0.078 eV/atom. Figure 4.3 shows how the calculated energies of
formation are obtained closer to experiment when applying PBEfe+U.

It is important to remark that the search of for more accurate exchange-correlation
functionals will never lead to a MAD of zero. Even if the exact functional is known, the
energies of formation are still going to be predicted with a considerable error. In fact,
calculations in the Born-Oppenheimer framework neglects the energetic contribution
of the atomic motion, which is of the order of tens of meV/atom (including zero point
motions) as discussed before, that is not much smaller than the value of the MAD
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Fig. 4.3 Calculated versus experimental energies of formation of compounds in the
optimization set for different exchange-correlation functionals. The corresponding
MAD are indicated in the graphs.
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found here. Other approaches like the use of FERE, can yield very small errors, as they
include the ionic motion contribution on the fitted corrections of the total energies.

Table 4.3 Values of the Hubbard U in eV for the transition metals obtained to give the
lowest energies of formation with the PBEfe functional.

Sc 3.0 La 0.5 Pd 0.0
Ni 3.0 Nb 0.0 Ti 2.7
Zn 5.3 V 6.0 Y 3.0
Co 1.3 Cd 3.3 Cr 1.0
Pt 0.0 Zr 3.0 Hg 5.7
Ag 6.0 Fe 2.0 Cu 3.0

Figure 4.4 shows the PBE and PBEfe enhancement factor Fxc(rs, ζ, s). In the
range of interest for real systems, 0 ≤ s ≤ 3 and 0 ≤ rs ≤ 10, it varies less than the
enhancement factor of the PBE. The simultaneous increasing of μ and decreasing of
κ makes the non-locality of PBEfe, i.e. the dependence with s, larger than in PBE
for s ∼ 1 and 1 ≤ rs ≤ 10, while as s increases, the dependence becomes smaller.
Decreasing β, and increasing μ destroys the cancellation between the exchange and
correlation terms for the small s limit (s → 0). This makes the concave bump of Fxc

more pronounced while Fxc(rs, ζ, s ∼ 0) remains as in PBE and Fxc(rs, ζ, s ∼ 3) varies
slightly. If β were decreased according to the relation μ = π2β/3, Fxc would become
convex as rs increases. This is because the density for which the exchange stops being
dominant would be smaller, decreasing the gradient correction for rs lower than 10.

A minimization of only the two parameters of exchange was also performed (i.e.,
keeping the PBE correlation part). The lowest MAD was found of 0.155 eV/atom for
μ = 0.255 and κ = 0.395. For this case Fxc becomes almost constant for rs ∼ 5, being
convex for rs > 5 and concave for rs < 5.

PBEfe is designed exclusively to obtain energies of formation or distances to the
convex hull. It is however interesting to study what happens for other quantities that
are also important for high-throughput investigations. One of this is the geometry. It
is well known that PBE functional usually overestimates the lattice constants, while
LDA underestimates them. This can be verified in Figure 4.5, where the green bars
dominate the positive side while the blue ones prevail in the negative side. When it
comes to the PBEfe functional, Figure 4.5 shows that the abundance of orange bars,
corresponding to the PBEfe energies, is not significantly larger on one side than on the
other. In fact approximately a 47% of the lattice parameters computed with PBEfe
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Fig. 4.4 Enhancement factors (Equation 4.7) for the spin-unpolarized (ζ = 0) and the
ferromagnetic spin-polarized (ζ = 1) cases. Solid curves represent the fitted functional
and the dashed ones represent the PBE functional.
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Fig. 4.5 Differences between the experimental and calculated lattice constants for PBE,
PBEfe, and LDA functionals.

are lower than the experimental ones (that is considering all negative values, even the
ones very close to experiment).

Figure 4.5 also shows that the PBEfe functional yields lattice constants, for most
of the cases, lying between the values computed with LDA and PBE. The MAD of
the values of the a and b cell parameters with respect to experiment is 0.051 Å for
PBEfe, to be compared with 0.049 Å for the PBE and 0.080 Å for the LDA. For the c

parameter the MAD is 0.068 Å for PBEfe, 0.150 Å for PBE and 0.119 Å for the LDA.
We can therefore conclude that PBEfe is at least as good as the PBE for the geometries
of solids, and often better when it comes to layered systems.

To verify the dependence of these errors on the choice of the optimization set, the
PBEfe functional was tested in another set of compounds, different of the optimization
set (results are summarized in Table C.4). This control set is formed by 104 binaries
including 52 transition metal compounds and 52 alkali, alkali-earth or groups IIIA and
IVA compounds and 33 ternary compounds (including one transition-metal sulfide, 7
oxides without transition metals, and 26 oxides with 1 or 2 transition metals).

The results can be seen in Figure 4.6 in comparison with PBE and LDA. It can be
seen that the PBEfe functional corrects again to a large extent the systematic errors
that affect the PBE energies of formation also for the control set. The conclusions are
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Fig. 4.6 Calculated versus experimental energies of formation in the control set for dif-
ferent exchange-correlation functionals. Orange dots correspond to ternary compounds.
The MAD is indicated in each graph.

essentially the same as for the optimization set, i.e., the PBEfe MAD is substantially
smaller than for the PBE (a 50% decrease for this set, and a 59% if a Hubbard U is
used for transition metals).

In conclusion, we presented a new semi-empirical functional capable of reducing by
50% the error in the calculation of formation energies. This is achieved by fitting only
three parameters of the PBE exchange-correlation functional to experimental formation
energies. This means that this functional is trivially implemented in any code that
already has the PBE functional, with no additional computational costs. The PBEfe
functional can also be easily coupled to post-processing techniques to reduce the error
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in the formation energies like FERE. Furthermore, the theoretical lattice constants are
at least as good as the ones calculated with the PBE. For these reasons we think that
our PBEfe functional is an excellent choice to search for new materials either using
structure prediction or in high-throughput investigations.





Chapter 5

General Conclusions

This manuscript gathers several examples of developments and new applications
of structure prediction and theoretical spectroscopy. We employed modern methods
based on Density Functional Theory to define our first-principles approach to materials
design. The variety of the systems considered here, ranging from intermetallic alloys
and semiconductors to molecular solids, shows that these techniques are general and
can be used in diverse domains of science.

The different topics have been organized in three chapters. Chapter 2 is devoted to
the study of binary phase diagrams. We developed a methodology based on the Minima
Hopping method for crystal structure prediction, to compute phase diagrams of binary
compounds from first-principles in an easy and automatizable way. We first, applied
this procedure to compute the phase diagrams of sodium-gold and lithium-aluminum
binaries. We determined and characterized several new stable phases of these systems.
Moreover, in both cases, we found all already experimentally-reported structures,
validating the predictive power of the Minima Hopping method. We found interesting
features like the increasing of the negative charge on gold with the sodium content,
showing Bader charges ranging from -0.4 to -2.25. We also showed that the stiffness of
the lithium-aluminum ordered alloys, with up to 60% of lithium, remains essentially
equal to the one of aluminum while its bulk modulus decreases almost monotonically
with the lithium content. We calculated the phase diagram of hydrogen-chlorine
binaries and we found that the H3 molecule can be stabilized in these compounds
at moderate pressures of about 100 GPa, much lower than what predicted for pure
hydrogen (2.1 TPa). This could open new opportunities to study this exotic molecule
in an anvil cell in any laboratory.

In Chapter 3 we studied materials of interest for applications in photovoltaics.
First, we considered the transparent conductive oxide CuBO2, We have found a new
stable crystal structure quite lower in energy than the previously proposed delafossite
structure. We crosschecked our results with the fact that our structure prediction
calculations gave the for CuAlO2, CuGaO2 and CuInO2 the delafossite structure as
the ground state, in agreement with experiment. This result is of big interest for
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experimentalist due the technological relevance of this compound, which is a promising
p-type transparent conductor, and not yest well studied.

Going an step further, we proposed then an efficient approach to search for new
stable materials, combining standard prototype search and state-of-the-art global
structure prediction methods. This method was applied to the discovery of new
stable ABN3 perovskite structures. From the nearly 2000 possible compositions of
the form ABN3, only two stable materials were known experimentally (and do not
crystallize in the perovskite structure). We found 21 new compositions that have an
energy below the known convex hull of thermodynamic stability. This, by itself, shows
that modern computational techniques offer an effective tool to screen thousands of
possible materials in a fraction of the time required by an equivalent experimental
search. The unexpected discovery of stable nitride perovskites puts into question the
previously accepted domain of stability of this crystal structure and opens the way for
the experimental synthesis of exotic perovskites with new potential applications.

The last section of the chapter presents the study of the Cu(In,Ga)S2 chalcopyrite
alloys. Our calculations using a simple band alignment scheme, allowed us to reproduce
the behavior of the X-ray absorption edges measured by collaborators. We found that
the observed change in the band gap with changing alloy composition results from a
spatial average of the nearly unchanged element-specific local states. Although the study
was performed for the specific case of CIGS, we believe that our physical interpretation
is also applicable to other compounds with different chemical composition.

Finally, while performing many calculations of total energies for varied systems, we
realized that the state-of-the-art approximations do not yield very accurate formation
energies, especially when we consider energy differences between dissimilar systems.
We developed therefore an exchange-correlation functional based on the Perdew-Burke-
Ernzerhof (PBE) approximation called PBEfe, which yields errors of the energies of
formation smaller by a factor of 2 than the ones obtained with PBE, without increasing
the computational time. This functional is specifically designed to be applied in high-
throughput calculations. The optimization was done using a set of binary compounds
and the functional was tested against a different set containing both binaries and ternary
compounds, yielding a similar reduction of errors (of about a factor of 2). Moreover,
these results were obtained without affecting the quality of the PBE geometries, which
is an essential requirement to use this functional for of materials design.

We are confident that the PBE functional will be appreciated by the community:
it improves significantly the quality of the energies of formation and it is easy to
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implement as most of the codes already include a PBE functional. PBEfe has been
included in the libxc [175] library of exchange-correlation functionals.

In the future, we plan to apply the Downhill Simplex Method that we used, to
also optimize for determining accurate energies of formation, exchange-correlation
functionals not derived from the PBE approximation. Moreover, we are working on
the development of new techniques to reduce the error of the energies of formation
based Artificial Neural Networks, which have already been successfully used to predict
heat of formation of molecules.
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Appendix A

Sodium-Gold Alloys Crystal Structure

Information

NaAu2

Space Group: F 41/d 3̄ 2/m (Origin choice 1) (227)
a = 7.9473 Å b = 7.9473 Å c = 7.9473 Å
α = 90.00 β = 90.00 γ = 90.00

Na at Wyckoff position b

Au at Wyckoff position c

NaAu
Space Group: R 3̄ 2/m (Hexagonal axes) (166)
a = 5.6542 Å b = 5.6542 Å c = 14.3409 Å
α = 90.00 β = 90.00 γ = 120.00

Na at Wyckoff position a

Na at Wyckoff position c, z = 0.3863
Au at Wyckoff position d

Na3Au2

Space Group: C 1 2/c 1 (15)
a = 7.8593 Å b = 8.5125 Å c = 7.0438 Å
α = 90.00 β = 90.00 γ = 90.00

Na at Wyckoff position e, y = 0.3865
Na at Wyckoff position f , x = 0.3154, y = 0.4312, z = -0.0106
Au at Wyckoff position f , x = 0.1323, y = 0.2701, z = -0.3655



126 Na-Au Alloys Crystal Structure Information

Na2Au
Space Group: I 4/m 2/c 2/m (140)
a = 7.3823 Å b = 7.3823 Å c = 5.6288 Å
α = 90.00 β = 90.00 γ = 90.00

Na at Wyckoff position h, x = 0.3285
Au at Wyckoff position a

Na3Au
Space Group: P 1 21/m 1 (11)
a = 5.7324 Å b = 9.2625 Å c = 4.5781 Å
α = 90.00 β = 113.29 γ = 90.00

Na at Wyckoff position f , x = -0.1950, y = -0.4363, z = 0.1536
Na at Wyckoff position e, x = -0.4001, z = -0.4508
Au at Wyckoff position e, x = -0.0053, z = 0.2464

Na5Au
Space Group: P 1 21/m 1 (125)
a = 7.6310 Å b = 7.6310 Å c = 6.2395 Å
α = 90.00 β = 113.29 γ = 90.00

Na at Wyckoff position m, x = 0.1650, z = 0.2858
Na at Wyckoff position a

Au at Wyckoff position b



Appendix B

Lithium-Aluminum Alloys Crystal Structure

Information

Li
Space Group R 3̄ m (166)
a = 3.0672 Å b = 3.0672 Å c = 22.0849 Å
α = 90.00 β = 90.00 γ = 120.00

Li at Wyckoff position a

Li at Wyckoff position c, z = 0.22223
Li at Wyckoff position c, z = 0.77777

Li
Space Group I m 3̄ m (229)
a = 3.4199 Å a = 3.4199 Å a = 3.4199 Å
α = 90.00 β = 90.00 γ = 90.00

Li at Wyckoff position a

Li
Space Group F m 3̄ m (225)
a = 3.0429 Å a = 3.0429 Å a = 3.0429 Å
α = 90.00 β = 90.00 γ = 90.00

Li at Wyckoff position a
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Al
Space Group F4/m 3̄ 2/m (255)
a = 4.0412 Å b = 4.0412 Å c = 4.0412 Å
α = 90.00 β = 90.00 γ = 90.00

Al at Wyckoff position a

LiAl
Space Group F 41/d 3̄ 2/m (origin choice 1) (227)
a = 6.3482 Å b = 6.3482 Å c = 6.3482 Å
α = 90.00 β = 90.00 γ = 90.00

Al at Wyckoff position a

Li at Wyckoff position b

LiAl3
Space Group P 4/m 3̄ 2/m (221)
a = 4.0245 Å b = 4.0245 Å c = 4.0245 Å
α = 90.00 β = 90.00 γ = 90.00

Al at Wyckoff position c

Li at Wyckoff position a

Li2Al (Hexagonal)
Space Group P 6/m 2/m 2/m (191)
a = 4.5411 Å b = 4.5411 Å c = 2.6674 Å
α = 90.00 β = 90.00 γ = 120.00

Al at Wyckoff position b

Li at Wyckoff position c
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Li2Al (Orthorhombic)
Space Group Cmcm (63)
a = 4.5923 Å b = 9.5959 Å c = 4.4483 Å
α = 90.00 β = 90.00 γ = 90.00

Al at Wyckoff position c, y = 0.07673
Al at Wyckoff position c, y = -0.24257
Li at Wyckoff position c, y = 0.41064

Li3Al
Space Group P 1 21/m 1 (11)
a = 5.4198 Å b = 4.4599 Å c = 5.6365 Å
α = 90.00 β = 100.03 γ = 90.00

Al at Wyckoff position e, x = -0.3824, z = 0.4343
Li at Wyckoff position e, x = -0.3756, z = -0.0783
Li at Wyckoff position e, x = 0.1189, z = 0.2308
Li at Wyckoff position e, x = 0.1387, z = -0.3068

Li3Al2
Space Group R 3̄ 2/m (hexagonal axes)
a = 4.4464 Å b = 4.4464 Å c = 14.0727 Å
α = 90.00 β = 90.00 γ = 120.00

Al at Wyckoff position c, z = -0.1981
Li at Wyckoff position a

Li at Wyckoff position c, z = 0.4029
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Li7Al2
Space Group R 3̄ 2/m (hexagonal axes) (166)
a = 7.9320 Å b = 7.9320 Å c = 8.2264 Å
α = 90.00 β = 90.00 γ = 120.00

Al at Wyckoff position c, z = 0.1644
Li at Wyckoff position f , x = -0.3288
Li at Wyckoff position b

Li9Al
Space Group P -1 (2)
a = 5.0759 Å b = 5.0925 Å c = 7.9362 Å
α = 83.45 β = 71.71 γ = 70.30

Al at Wyckoff position d

Li at Wyckoff position c

Li at Wyckoff position i, x = 0.4088, y = 0.4992, z = 0.1832
Li at Wyckoff position i, x = 0.3104, y = 0.0000, z = 0.3790
Li at Wyckoff position i, x = -0.2003, y = -0.5000, z = 0.4010
Li at Wyckoff position i, x = 0.0928, y = 0.0003, z = -0.1873

Li9Al4
Space Group A 1 2/m 1 (12)
a = 5.3670 Å b = 4.4529 Å c = 18.6329 Å
α = 90.00 β = 105.42 γ = 90.42

Al at Wyckoff position i, x = 0.2825, z = -0.1512
Al at Wyckoff position i, x = -0.4324, z = 0.3862
Li at Wyckoff position i, x = -0.3425, z = -0.2330
Li at Wyckoff position i, x = -0.1379, z = -0.0848
Li at Wyckoff position i, x = -0.0276, z = 0.3079
Li at Wyckoff position i, x = -0.1755, z = -0.4565
Li at Wyckoff position d
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Supplementary Tables for Chapter 3

Table C.1 Experimental and calculated lattice constants of the compounds in the
optimization set.

Space Exp[127] PBEfe
Comp. group a b c a b c

AgO Cccm 3.404 3.404 5.495 3.2760 3.2760 5.5666
AlAs F 4̄3m 4.002 4.002 4.002 4.0430 4.0430 4.0430
AlN P63mc 3.139 3.139 5.066 3.1135 3.1135 4.9990
BaO Fm3̄m 3.917 3.917 3.917 3.9373 3.9373 3.9373
BaO2 I4/mmm 3.811 3.811 4.347 3.8349 3.8349 4.3734
BaS Fm3̄m 4.517 4.517 4.517 4.5351 4.5351 4.5351
BeO P63mc 2.725 2.725 4.424 2.6953 2.6953 4.3791
BeS F 4̄3m 3.440 3.440 3.440 3.4339 3.4339 3.4339
CaF2 Fm3̄m 3.868 3.868 3.868 3.8227 3.8227 3.8227
CaO Fm3̄m 3.402 3.402 3.402 3.3839 3.3839 3.3839
CaS Fm3̄m 4.018 4.018 4.018 4.0046 4.0046 4.0046
CdCl2 R3̄m 3.85 3.85 17.46 3.8732 3.8732 17.0854
CdF2 Fm3̄m 3.813 3.813 3.813 3.8217 3.8217 3.8217
CdO Fm3̄m 3.320 3.320 3.320 3.3610 3.3610 3.3610
CdS P63mc 4.091 4.091 6.641 4.1742 4.1742 6.8050
CdSe F 4̄3m 4.278 4.278 4.278 4.3572 4.3572 4.3572
CdTe F 4̄3m 4.580 4.580 4.580 4.6503 4.6503 4.6503
CoO F 4̄3m 3.190 3.190 5.439 3.1721 3.1710 5.3781
CoS P63/mmc 3.380 3.380 5.150 3.3735 3.3735 5.1575
CoSe P4/nmm 3.530 3.530 5.250 3.7246 3.7246 5.3691
CrN Fm4̄m 2.924 2.924 2.924 2.9256 2.9256 2.9256
CrS P63/mmc 3.439 3.439 5.324 3.4704 3.4704 5.5896
CuO P42/mmc 2.902 2.902 5.130 2.9208 2.9197 5.1316
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Table C.1 Experimental and calculated lattice constants of the compounds in the
optimization set.

Space Exp[127] PBEfe
Comp. group a b c a b c

Cu2Se Fm3̄m 4.075 4.075 4.075 4.1326 4.1326 4.1326
Cu3N Pm3̄m 3.813 3.813 3.813 3.8099 3.8099 3.8099
FeO I4/mmm 4.326 4.326 4.326 4.3066 4.3066 4.3066
FeS P4/nmm 3.679 3.679 5.047 3.6048 3.6048 5.0907
FeSe P4/nmm 3.779 3.779 5.511 3.6950 3.6950 5.5524
GaAs F 4̄3m 3.997 3.997 3.997 4.0628 4.0628 4.0628
GaN P63mc 3.142 3.142 5.720 3.2132 3.2132 5.2413
GaSb F 4̄3m 4.310 4.310 4.310 4.3896 4.3896 4.3896
HfN Fm3̄m 3.200 3.200 3.200 3.2092 3.2092 3.2092
HgS F 4̄3m 4.137 4.137 4.137 4.2321 4.2321 4.2321
HgSe F 4̄3m 4.303 4.303 4.303 4.4176 4.4176 4.4176
HgTe F 4̄3m 4.567 4.567 4.567 4.6881 4.6881 4.6881
InAs F 4̄3m 4.285 4.285 4.285 4.3638 4.3638 4.3638
InN P63mc 3.533 3.533 5.671 3.5702 3.5702 5.7839
InSb F 4̄3m 4.580 4.580 4.580 4.6732 4.6732 4.6732
InTe Fm3̄m 4.368 4.368 4.368 4.4540 4.4540 4.4540
KCl Fm3̄m 4.440 4.440 4.440 4.3518 4.3518 4.3518
KF Fm3̄m 3.804 3.804 3.804 3.6974 3.6974 3.6974
K2O Fm3̄m 4.560 4.560 4.560 4.4609 4.4609 4.4609
K2S Fm3̄m 5.238 5.238 5.238 5.1551 5.1551 5.1551
K2Se Fm3̄m 5.438 5.438 5.438 5.3449 5.3449 5.3449
LaN P63mc 4.084 4.084 5.840 4.1369 4.1370 5.9240
LaS Fm3̄m 4.144 4.144 4.144 4.1655 4.1655 4.1655
LiCl Fm3̄m 3.637 3.637 3.637 3.5701 3.5701 3.5701
LiF Fm3̄m 2.850 2.850 2.850 2.8041 2.8041 2.8041
Li2O Fm3̄m 3.382 3.382 3.382 3.2299 3.2299 3.2299
Li2S Fm3̄m 4.073 4.073 4.073 3.9861 3.9861 3.9861
Li2Se Fm3̄m 4.246 4.246 4.246 4.1941 4.1941 4.1941
Li3Bi Fm3̄m 4.743 4.743 4.743 4.7019 4.7019 4.7019
Li3N P6/mmm 3.672 3.672 3.881 3.5859 3.5859 3.8318
Li3Sb Fm3̄m 4.648 4.648 4.648 4.5850 4.5850 4.5850
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Table C.1 Experimental and calculated lattice constants of the compounds in the
optimization set.

Space Exp[127] PBEfe
Comp. group a b c a b c

MgCl2 R3̄m 3.596 3.596 17.589 3.6265 3.6265 17.2592
MgO Fm3̄m 2.998 2.998 2.998 2.9754 2.9754 2.9754
MgS Fm3̄m 3.678 3.678 3.678 3.6776 3.6776 3.6776
MgSe F 4̄3m 4.246 4.246 4.246 4.2026 4.2026 4.2026
MgTe P63mc 4.540 4.540 7.395 4.5680 4.5680 7.4461
NaCl Fm3̄m 3.988 3.988 3.988 3.9052 3.9052 3.9052
NaF Fm3̄m 3.266 3.266 3.266 3.2080 3.2080 3.2080
Na2O Fm3̄m 3.932 3.932 3.932 3.8590 3.8590 3.8590
Na2S Fm3̄m 4.629 4.629 4.629 4.5507 4.5507 4.5507
Na2Se Fm3̄m 4.826 4.826 4.826 4.7491 4.7491 4.7491
NbN P 6̄m2 2.940 2.940 2.790 2.9855 2.9855 2.9043
NiO Fm3̄m 2.944 5.088 2.944 2.9473 5.0815 2.9473
NiSb P63/mmc 3.946 3.946 5.148 3.9871 3.9871 5.2148
PdO P42/mmc 3.036 3.036 5.327 3.0877 3.0877 5.4333
PtO P42/mmc 3.040 3.040 5.340 3.1544 3.1544 5.3769
PtS P42/mmc 3.470 3.470 6.110 3.5369 3.5369 6.1729
PtS2 P 3̄m1 3.537 3.537 5.019 3.6149 3.6149 5.0802
RbCl Fm3̄m 4.632 4.632 4.632 4.5738 4.5738 4.5738
RbF Fm3̄m 3.988 3.988 3.988 3.9146 3.9146 3.9146
Rb2O R3̄m 6.74 6.74 6.74 6.6988 6.6988 6.6988
Rb2S Fm3̄m 5.420 5.420 5.420 5.4186 5.4186 5.4186
ScAs Fm3̄m 3.881 3.881 3.881 3.8725 3.8725 3.8725
ScF3 Pm3̄m 4.011 4.011 4.011 4.0181 4.0181 4.0181
SnO P4/nmm 3.800 3.800 4.810 3.8561 3.8561 4.9977
SnS2 P 3̄m1 3.640 3.640 5.900 3.7290 3.7290 5.8409
SnSe2 P 3̄m1 3.811 3.811 6.141 3.9156 3.9156 6.0528
SrO Fm3̄m 3.629 3.629 3.629 3.6451 3.6451 3.6451
SrO2 I4/mmm 3.557 3.557 4.133 3.5426 3.5426 4.1625
SrS Fm3̄m 4.256 4.256 4.256 4.2520 4.2520 4.2520
TiN Fm3̄m 2.995 2.995 2.995 3.0032 3.0032 3.0032
TiS P63/mmc 3.300 3.300 6.440 3.2917 3.2916 6.4235
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Table C.1 Experimental and calculated lattice constants of the compounds in the
optimization set.

Space Exp[127] PBEfe
Comp. group a b c a b c

TiS2 P 3̄m1 3.412 3.412 5.695 3.4171 3.4171 5.7463
VN Fm3̄m 2.925 2.925 2.925 2.9185 2.9185 2.9185
YAs Fm3̄m 4.112 4.112 4.112 4.1212 4.1212 4.1212
ZnO P63mc 3.184 3.184 5.155 3.2547 3.2547 5.2666
ZnS P3m1 3.813 3.813 3.813 3.8313 3.8313 3.8313
ZnSe F 4̄3m 4.012 4.012 4.012 4.0356 4.0356 4.0356
ZnTe F 4̄3m 4.402 4.402 4.402 4.3502 4.3502 4.3502
ZrN Fm3̄m 3.235 3.235 3.235 3.2691 3.2691 3.2691
ZrS2 P 3̄m1 3.680 3.680 5.850 3.6977 3.6977 5.8765
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Table C.2 Experimental and calculated lattice constants of the compounds in the
control set.

Space Exp[127] PBEfe
Comp. group a b c a b c

Ag2O Pn3̄m 4.723 4.723 4.723 4.7942 4.7942 4.7942
Ag2S P21 4.200 6.860 8.043 4.0073 5.8436 6.9808
Ag2Se P212121 4.337 7.070 7.773 4.5332 7.0766 7.7835
AlCl3 C2/m 5.910 5.910 6.148 5.9501 5.9501 6.0634
AlF3 R3̄c 5.030 5.030 5.030 5.0189 5.0189 5.0189
Al2O3 R3̄c 5.128 5.128 5.128 5.1502 5.1502 5.1502
Al2S3 P61 6.491 6.491 17.169 6.5301 6.5302 17.275
Al2Se3 Cc 6.730 6.740 7.320 6.7703 6.7979 7.4215
Al2Te3 P21/c 7.181 12.848 14.167 7.2761 12.9880 14.4066
Be3N2 Ia3 7.054 7.054 7.054 7.0230 7.0230 7.0230
CaCl2 P42/mnm 4.204 6.383 6.383 4.1230 6.3351 6.3351
CdSb Pbca 6.471 8.253 8.526 6.6357 8.3637 8.7085
Cd3As2 P42/nmc 8.945 8.945 12.650 9.1353 9.1353 12.8584
Cd3N2 Ia3̄ 9.378 9.378 9.378 9.5031 9.5031 9.5031
CoF2 P42/mnm 3.170 4.694 4.694 3.1988 4.6133 4.6133
CoF3 R3̄c 5.281 5.281 5.281 5.1217 5.1189 5.1189
CoSb3 Im3̄ 7.864 7.864 7.864 7.9413 7.9413 7.9413
Co3O4 Fd3̄m 5.736 5.736 5.736 5.7121 5.7121 5.7121
Co3S4 Fd3̄m 6.651 6.651 6.651 6.6016 6.6016 6.6016
CrO2 P42/mnm 2.897 4.371 4.371 2.9186 4.4306 4.4306
Cr2O3 R3̄c 5.396 5.396 5.396 5.3628 5.3628 5.3628
CuF2 P21/c 3.294 4.568 4.614 3.1383 4.6144 4.6062
CuS P63/mmc 3.760 3.782 16.235 3.7751 3.8119 16.4588
Cu2O Pn3̄m 4.268 4.268 4.268 4.2676 4.2676 4.2676
Cu2Sb P4/nmm 4.002 4.002 6.104 4.0651 4.0651 6.1256
Cu2Te P6/mmm 4.237 4.237 7.274 4.2766 4.2766 8.5022
Cu3Sb Pmnm 4.353 4.768 5.504 4.1829 5.6269 5.3493
CuSe Cmcm 3.952 4.003 17.235 3.9657 4.0435 17.3670
FeF2 P42/mnm 3.360 4.830 4.830 2.9330 4.9275 4.9275
Fe2O3 R3̄c 5.431 5.431 5.431 4.7667 5.2173 4.7667
Fe3O4 Fd3̄m 5.951 5.951 5.948 5.7536 5.7536 5.7537
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Table C.2 Experimental and calculated lattice constants of the compounds in the
optimization set.

Space Exp[127] PBEfe
Comp. group a b c a b c

GaCl3 C2/m 6.855 6.887 6.928 6.6715 6.7966 6.7947
GaF3 R3̄c 5.208 5.208 5.208 5.2292 5.2292 5.2292
GaS P63/mmc 3.585 3.585 15.500 3.6333 3.6333 15.6032
GaSe R3m 3.755 3.755 15.940 3.8217 3.8217 16.1576
Ga2O3 C2/m 3.037 5.798 6.293 3.0748 5.8567 6.3773
Ga2S3 Cc 6.411 6.427 7.038 6.4605 6.4761 7.1033
Ga2Se3 Cc 6.660 6.660 6.710 6.7527 6.7435 6.8064
GeS Pmcn 3.640 4.290 10.420 3.6926 4.4253 10.7480
GeSe Pmcn 3.833 4.388 10.825 3.9133 4.4897 11.2631
HfO2 P21/c 5.150 5.185 5.342 5.1269 5.1681 5.3128
HgCl2 Pcmn 4.323 5.963 12.735 4.1607 6.0007 12.7550
HgO Pcmn 3.521 5.520 6.612 3.5992 5.5529 6.7550
InS Pmnn 3.940 4.443 10.642 3.9972 4.6967 10.6818
In2O3 Ia3̄ 8.781 8.781 8.781 8.8691 8.8691 8.8691
In2S3 I41/amd 7.617 7.617 17.039 7.7273 7.7273 17.3415
KSb P21/c 6.879 7.072 12.037 6.9455 7.1587 12.1102
KSb2 C2/m 4.233 7.053 7.339 4.3116 7.0467 7.4238
KO Ccme 4.855 4.855 6.474 4.7841 4.7841 6.3953
KS P 6̄2m 8.490 8.490 5.840 8.4002 8.4002 5.7075
K3As P63/mmc 5.794 5.794 10.242 5.7039 5.7039 10.1000
K3Bi P63cm 10.649 10.649 10.940 6.0661 6.0661 10.7669
K3Sb P63/mmc 6.037 6.037 10.715 5.9673 5.9673 10.5801
K5Sb4 C2/m 5.402 6.636 10.808 5.4074 6.6895 10.9740
LaCl3 P63/m 7.483 7.483 4.375 7.4731 7.4731 4.3609
La2O3 Ia3̄ 9.890 9.890 9.890 9.8362 9.8362 9.8362
La2S3 Pmnb 4.220 7.660 15.950 4.1599 7.6230 15.8801
Li2O Fm3̄m 3.382 3.382 3.382 3.2298 3.2298 3.2298
LiO P63/mmc 3.183 3.183 7.726 3.1109 3.1109 7.5534
MgF2 P42/mnm 3.096 4.691 4.691 3.0393 4.5935 4.5935
Mg3Bi2 P 3̄m1 4.666 4.666 7.401 4.6862 4.6861 7.4896
Mg3Sb2 P 3̄m1 4.559 4.559 7.227 4.5748 4.5748 7.2936
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Table C.2 Experimental and calculated lattice constants of the compounds in the
optimization set.

Space Exp[127] PBEfe
Comp. group a b c a b c

NaSb P21/c 6.340 6.800 11.107 6.2893 6.7739 11.1220
NaTe3 P 3̄c1 9.033 9.033 21.930 9.0520 9.0520 22.1166
NaO P 6̄2m 6.207 6.207 4.471 6.1174 6.1174 4.3902
NaS P63/mmc 4.494 4.494 10.228 4.4121 4.4121 10.0777
NaSe P63/mmc 4.685 4.685 10.530 4.6207 4.6207 10.6461
Na3As P63cm 8.784 8.784 8.999 4.9988 4.9988 8.8975
Na3Bi P63/mmc 5.459 5.459 9.675 5.3770 5.3770 9.5601
Na3Sb P63/mmc 5.366 5.366 9.515 5.2746 5.2746 9.3789
NbO2 I41/a 5.985 7.479 7.479 6.0835 7.5482 7.5482
NiF2 P42/mnm 3.080 4.650 4.650 3.0894 4.6071 4.6071
NiSe R3m 5.883 5.883 5.883 5.9047 5.9047 5.9047
Ni3S2 R32 4.032 4.032 4.032 4.0839 4.0839 4.0839
PdS2 Pbca 5.460 5.541 7.531 5.5520 5.6298 7.6431
PdCl2 R3̄ 8.060 8.060 8.060 8.0471 8.0471 8.0471
PtO2 Pmnn 3.138 4.488 4.533 3.1976 4.5963 4.5377
Pt3O4 Pm3̄n 5.585 5.585 5.585 5.6639 5.6639 5.6639
RbSb P212121 7.197 7.315 12.815 7.2187 7.3200 12.7135
RbSb2 C2/m 4.140 7.314 8.557 4.2372 7.2448 8.5540
Rb3Sb P63/mmc 6.283 6.283 11.180 6.2541 6.2541 11.0484
Sc2O3 Ia3̄ 8.418 8.418 8.418 8.5266 8.5266 8.5266
ScCl3 R3̄ 6.979 6.979 6.979 6.8019 6.8019 6.8019
SiO2 I 4̄2d 6.241 6.241 6.241 5.0792 5.0794 5.0795
SiS2 Imcb 5.552 5.564 6.182 5.6023 5.5525 6.1656
SiSe2 Imcb 5.851 5.998 6.397 5.9478 6.0022 6.3918
SnO2 P42/mnm 3.195 4.708 4.720 3.2412 4.7991 4.8018
SnS Pmcn 3.940 4.228 10.957 4.0277 4.4470 11.4424
SnSe Pmcn 4.222 4.400 11.580 4.2118 4.5730 11.8303
Sr2Bi I4/mmm 5.010 5.010 9.523 5.0710 5.0710 9.6671
Sr2Sb I4/mmm 5.002 5.002 9.394 4.9924 4.9924 9.5173
TiAs P63/mmc 3.642 3.642 12.064 3.6633 3.6633 12.0862
Ti2O3 R3̄c 5.433 5.433 5.433 5.5020 5.5020 5.5020
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Table C.2 Experimental and calculated lattice constants of the compounds in the
optimization set.

Space Exp[127] PBEfe
Comp. group a b c a b c

TiCl4 P21/c 6.474 6.474 6.474 6.3070 9.4351 9.4390
TiO2 C2/m 3.741 6.370 6.525 3.7403 6.3976 6.5959
VO2 P42/mnm 4.526 5.381 5.381 4.5621 5.3793 5.3793
YCl3 C2/m 6.440 6.900 6.900 6.2210 6.8598 6.8598
YF3 Pbnm 4.393 6.353 6.850 4.3496 6.4125 6.8670
ZnCl2 I 4̄2d 5.400 5.400 6.431 5.2439 5.2439 6.3824
ZnF2 P42/mnm 3.131 4.715 4.715 3.1509 4.7020 4.7020
Zn3As2 P42/nbc 11.789 11.789 23.635 8.4467 8.4467 11.9343
Zn3N2 Ia3̄ 8.460 8.460 8.460 8.5145 8.5145 8.5145
ZnSb Pbca 6.218 7.741 8.115 6.3379 7.7913 8.2158
ZrO2 P21/c 5.164 5.164 5.164 5.2080 5.2614 5.3865
Al2MgO4 Fd3̄m 5.733 5.733 5.733 5.7776 5.7776 5.7776
Al2NiO4 Imcm 5.7379 5.7379 5.7900
Al2ZnO4 Fd3̄m 5.717 5.717 5.717 5.7827 5.7827 5.7827
Al2ZnS4 Fd3̄m 7.048 7.048 7.048 7.1316 7.1316 7.1316
BaTiO3 R3m 4.004 4.004 4.004 4.0764 4.0764 4.0764
Ba2TiO4 P21/c 6.120 7.700 10.500 6.2399 7.7746 10.6833
BaCrO4 Pmcn 5.679 7.454 9.206 5.6865 7.4600 9.2084
BaGeO3 P212121 4.580 5.680 12.760 4.6807 5.8176 13.0985
BaSi2O5 Pcmn 4.629 7.688 13.523 4.7081 7.7919 13.7244
BaSiO3 C2/c 7.5738 7.5738 11.4700
BeAl2O4 Pcmn 4.426 5.475 9.402 4.4615 5.5279 9.4999
Co2SiO4 Pcmn 4.779 5.987 10.286 4.8333 6.0640 10.3700
Cr2FeO4 Fd3̄m 5.974 5.974 5.974 6.0424 6.0424 6.0424
Cr2MgO4 Fd3̄m 5.966 5.966 5.966 5.9760 5.9760 5.9760
CrMgO4 Ccmm 5.060 5.060 6.487 5.0607 5.0607 6.4796
Fe2CdO4 Fd3̄m 6.244 6.244 6.244 6.2402 6.2402 6.2402
Fe2CuO4 Fd3̄m 5.7727 5.7727 5.7729
Fe2NiO4 Imma 5.817 5.758 5.817 5.9512 5.9133 5.9512
Fe2SiO4 Pcmn 4.932 6.026 10.417 4.8844 6.1680 10.6243
Fe2ZnO4 Fd3̄m 6.036 6.036 6.036 6.0292 6.0292 6.0292
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Table C.2 Experimental and calculated lattice constants of the compounds in the
optimization set.

Space Exp[127] PBEfe
Comp. group a b c a b c

FeCuO2 R3̄m 5.984 5.984 5.984 6.0450 6.0450 6.0450
MgTi2O5 Cmcm 3.745 5.212 9.990 3.7595 5.2603 10.1228
Mg2SiO4 Pcmn 4.765 5.997 10.230 4.8028 6.0479 10.3234
Mg2TiO4 P4122 6.0517 6.0517 8.4876
MgTiO3 R3̄ 5.477 5.477 5.477 5.5317 5.5317 5.5317
Sr2SiO4 P21/c 5.663 7.084 9.767 5.7542 7.1614 9.8536
Sr2TiO4 I4/mmm 3.884 3.884 6.873 3.9265 3.9265 6.9205
SrAl2O4 P21 5.173 8.507 8.890 5.2139 8.5474 8.9176
SrSiO3 C2/c 7.127 7.127 10.885 7.2177 7.2177 10.9961
SrTiO3 I4/mcm 5.511 5.511 5.512 5.5666 5.5666 5.5782
TiZn2O4 P4122 6.005 6.005 8.416 6.0760 6.0760 8.5156
V2MgO6 C2/m 3.502 4.959 6.731 3.5171 5.3170 7.0782
ZnTiO3 R3̄ 5.490 5.490 5.490 5.5498 5.5498 5.5498
ZnSiO3 C2/c 5.289 6.694 6.694 5.3729 6.8868 6.8868
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Table C.3 Experimental and calculated energies of formation of the compounds in the
optimization set.

Comp. Exp[159] PBE PBEsol revPBE xPBE LDA PBEfe PBEfe+U

AgO -0.06 -0.107 -0.082 -0.073 0.147 -0.138 -0.278 -0.188
AlAs -0.61 -0.487 -0.433 -0.464 0.476 -0.465 -0.677 -0.677
AlN -1.61 -1.409 -1.518 -1.261 1.324 -1.711 -1.800 -1.800
BaO -2.86 -2.481 -2.509 -2.382 2.486 -2.636 -2.803 -2.803
BaO2 -2.19 -1.853 -1.890 -1.756 1.857 -2.015 -2.133 -2.133
BaS -2.38 -2.081 -2.094 -2.021 2.074 -2.141 -2.275 -2.275
BeO -3.14 -2.762 -2.817 -2.633 2.740 -2.950 -3.157 -3.157
BeS -1.21 -1.061 -1.096 -0.990 1.020 -1.146 -1.271 -1.271
CaF2 -4.21 -3.900 -3.981 -3.823 3.966 -4.269 -4.293 -4.286
CaO -3.29 -2.968 -3.023 -2.832 2.962 -3.214 -3.387 -3.387
CaS -2.45 -2.155 -2.201 -2.061 2.126 -2.293 -2.412 -2.412
CdCl2 -1.35 -1.097 -1.076 -1.070 1.110 -1.058 -1.129 -1.194
CdF2 -2.42 -2.159 -2.200 -2.130 2.245 -2.407 -2.404 -2.494
CdO -1.34 -1.031 -1.045 -0.963 1.034 -1.115 -1.209 -1.334
CdS -0.78 -0.643 -0.621 -0.628 0.659 -0.619 -0.711 -0.769
CdSe -0.75 -0.633 -0.569 -0.633 0.650 -0.540 -0.643 -0.692
CdTe -0.48 -0.464 -0.384 -0.519 0.508 -0.362 -0.470 -0.504
CoO -1.23 -0.672 -0.663 -0.666 0.752 -0.746 -0.947 -1.157
CoS -0.43 -0.273 -0.414 -0.147 0.153 -0.516 -0.356 -0.355
CoSe -0.32 -0.275 -0.302 -0.240 0.239 -0.347 -0.309 -0.258
CrN -0.65 -0.343 -0.483 -0.231 0.239 -0.624 -0.524 -0.739
CrS -0.81 -0.468 -0.508 -0.455 0.447 -0.555 -0.527 -0.786
CuO -0.82 -0.600 -0.601 -0.540 0.621 -0.682 -0.821 -0.848
Cu2Se -0.21 0.013 0.021 0.036 -0.033 0.039 -0.007 -0.102
Cu3N 0.19 0.282 0.255 0.326 -0.302 0.194 0.150 0.111
FeO -1.41 -0.877 -0.746 -0.735 0.798 -0.738 -0.975 -1.360
FeS -0.52 -0.515 -0.600 -0.439 0.453 -0.719 -0.632 -0.340
FeSe -0.39 -0.281 -0.318 -0.224 0.229 -0.396 -0.343 -0.250
GaAs -0.37 -0.352 -0.319 -0.335 0.343 -0.321 -0.371 -0.371
GaN -0.81 -0.480 -0.643 -0.342 0.360 -0.781 -0.611 -0.611
GaSb -0.22 -0.165 -0.123 -0.193 0.198 -0.125 -0.191 -0.191
HfN -1.91 -1.752 -1.980 -1.560 1.559 -2.189 -1.973 -1.947
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Table C.3 Experimental and calculated energies of formation of the compounds in the
optimization set.

Comp. Exp[159] PBE PBEsol revPBE xPBE LDA PBEfe PBEfe+U

HgS -0.3 -0.135 -0.179 0.019 0.029 -0.190 -0.159 -0.277
HgSe -0.24 -0.215 -0.212 -0.080 0.118 -0.194 -0.183 -0.277
HgTe -0.22 -0.171 -0.154 -0.088 0.098 -0.143 -0.137 -0.196
InAs -0.31 -0.249 -0.203 -0.240 0.247 -0.209 -0.282 -0.282
InN -0.1 0.082 -0.041 0.205 -0.173 -0.173 -0.065 -0.065
InSb -0.16 -0.131 -0.081 -0.165 0.167 -0.091 -0.170 -0.170
InTe -0.5 -0.298 -0.290 -0.295 0.286 -0.295 -0.329 -0.329
KCl -2.26 -1.964 -1.943 -1.931 1.989 -1.992 -2.099 -2.099
KF -2.94 -2.699 -2.738 -2.661 2.766 -2.964 -2.993 -2.987
K2O -1.25 -1.031 -1.054 -0.935 1.046 -1.221 -1.344 -1.344
K2S -1.31 -1.068 -1.072 -1.017 1.076 -1.153 -1.264 -1.264
K2Se -1.36 -1.110 -1.090 -1.073 1.114 -1.145 -1.255 -1.255
LaN -1.57 -1.330 -1.391 -1.231 1.278 -1.506 -1.573 -1.588
LaS -2.36 -2.170 -2.237 -2.070 2.097 -2.295 -2.323 -2.342
LiCl -2.12 -1.816 -1.826 -1.747 1.817 -1.885 -1.991 -1.991
LiF -3.19 -2.923 -2.598 -2.864 2.983 -3.221 -3.269 -3.263
Li2O -2.07 -1.837 -1.838 -1.743 1.858 -2.014 -2.187 -2.187
Li2S -1.52 -1.341 -1.342 -1.286 1.341 -1.423 -1.558 -1.558
Li2Se -1.45 -1.267 -1.251 -1.223 1.254 -1.307 -1.429 -1.429
Li3Bi -0.6 -0.535 -0.554 -0.511 0.500 -0.603 -0.626 -0.626
Li3N -0.43 -0.369 -0.407 -0.265 0.349 -0.565 -0.667 -0.667
Li3Sb -0.83 -0.637 -0.648 -0.617 0.608 -0.698 -0.734 -0.734
MgCl2 -2.21 -1.864 -1.865 -1.809 1.860 -1.894 -2.013 -2.013
MgO -3.11 -2.715 -2.753 -2.597 2.707 -2.933 -3.123 -3.123
MgS -1.79 -1.433 -1.478 -1.355 1.385 -1.537 -1.642 -1.642
MgSe -1.52 -1.257 -1.212 -1.227 1.253 -1.235 -1.428 -1.428
MgTe -1.08 -0.879 -0.821 -0.908 0.893 -0.840 -1.021 -1.021
NaCl -2.13 -1.813 -1.795 -1.775 1.834 -1.830 -1.951 -1.951
NaF -2.97 -2.700 -2.727 -2.667 2.771 -2.938 -2.996 -2.990
Na2O -1.43 -1.219 -1.207 -1.149 1.250 -1.336 -1.517 -1.517
Na2S -1.26 -1.074 -1.063 -1.037 1.087 -1.119 -1.261 -1.261
Na2Se -1.18 -1.074 -1.043 -1.047 1.078 -1.076 -1.209 -1.209
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Table C.3 Experimental and calculated energies of formation of the compounds in the
optimization set.

Comp. Exp[159] PBE PBEsol revPBE xPBE LDA PBEfe PBEfe+U

NbN -1.22 -1.077 -1.275 -0.906 0.911 -1.441 -1.263 -1.263
NiO -1.24 -0.472 -0.608 -0.539 0.608 -0.661 -0.816 -1.306
NiSb -0.34 -0.273 -0.323 -0.249 0.212 -0.338 -0.223 -0.242
PdO -0.44 -0.445 -0.449 -0.381 0.471 -0.540 -0.664 -0.664
PtO -0.37 -0.242 -0.231 -0.177 0.291 -0.338 -0.514 -0.514
PtS -0.42 -0.411 -0.431 -0.355 0.401 -0.459 -0.518 -0.518
PtS2 -0.38 -0.351 -0.406 -0.301 0.317 -0.455 -0.430 -0.430
RbCl -2.26 -1.952 -1.933 -1.923 1.977 -1.967 -2.072 -2.072
RbF -2.89 -2.639 -2.685 -2.601 2.702 -2.896 -2.921 -2.915
Rb2O -1.17 -0.919 -0.958 -0.811 0.919 -1.111 -1.216 -1.216
Rb2S -1.25 -1.009 -1.025 -0.953 1.009 -1.095 -1.193 -1.193
ScAs -1.39 -1.375 -1.412 -1.307 1.280 -1.456 -1.457 -1.463
ScF3 -4.22 -3.931 -3.989 -3.905 4.012 -4.216 -4.229 -4.265
SnO -1.48 -1.290 -1.323 -1.218 1.300 -1.403 -1.458 -1.458
SnS2 -0.53 -0.379 -0.429 -0.330 0.330 -0.437 -0.384 -0.384
SnSe2 -0.43 -0.348 -0.354 -0.313 0.301 -0.335 -0.293 -0.293
SrO -3.07 -2.739 -2.784 -2.620 2.737 -2.950 -3.116 -3.116
SrO2 -2.19 -1.892 -1.932 -1.789 1.893 -2.078 -2.199 -2.199
SrS -2.45 -2.151 -2.183 -2.071 2.130 -2.259 -2.382 -2.382
TiN -1.58 -1.723 -1.941 -1.532 1.546 -2.145 -1.962 -1.918
TiS -1.41 -1.427 -1.578 -1.296 1.287 -1.672 -1.525 -1.478
TiS2 -1.41 -1.280 -1.333 -1.221 1.240 -1.389 -1.416 -1.486
VN -1.13 -0.976 -1.181 -0.800 0.804 -1.362 -1.177 -1.073
YAs -1.68 -1.553 -1.573 -1.496 1.470 -1.608 -1.645 -1.671
ZnO -1.81 -1.445 -1.448 -1.382 1.475 -1.556 -1.692 -1.935
ZnS -1.07 -0.811 -0.812 -0.769 0.817 -0.839 -0.929 -1.031
ZnSe -0.85 -0.716 -0.673 -0.694 0.725 -0.667 -0.771 -0.849
ZnTe -0.61 -0.470 -0.404 -0.506 0.508 -0.396 -0.514 -0.558
ZrN -1.89 -1.683 -1.887 -1.503 1.512 -2.074 -1.914 -1.893
ZrS2 -1.96 -1.519 -1.532 -1.480 1.503 -1.568 -1.663 -1.757
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Table C.4 Experimental and calculated energies of formation of the compounds in the
control set.

Comp. Exp[159] PBE LDA PBEfe PBEfeU

Ag2O -0.11 -0.096 -0.028 -0.195 -0.252
Ag2S -0.11 -0.062 -0.010 -0.068 -0.159
Ag2Se -0.15 -0.079 -0.033 -0.046 -0.185
AlCl3 -1.82 -1.510 -1.558 -1.643 -1.634
AlF3 -3.9 -3.552 -3.758 -3.906 -3.900
Al2O3 -3.47 -3.017 -3.279 -3.407 -3.442
Al2S3 -1.5 -1.061 -1.107 -1.270 -1.276
Al2Se3 -1.18 -0.846 -0.817 -0.982 -0.994
Al2Te3 -0.68 -0.451 -0.380 -0.537 -0.548
Be3N2 -1.22 -1.078 -1.361 -1.337 -1.383
CaCl2 -2.75 -2.403 -2.420 -2.568 -2.558
CdSb -0.07 -0.051 -0.006 -0.045 -0.086
Cd3As2 -0.08 -0.103 -0.023 -0.090 -0.149
Cd3N2 -0.33 0.549 0.396 0.463 0.350
CoF2 -2.39 -1.702 -1.666 -1.928 -2.172
CoF3 -2.1 -1.712 -1.865 -1.924 -2.035
CoSb3 -0.17 -0.192 -0.265 -0.114 -0.144
Co3O4 -1.32 -0.987 -1.137 -1.216 -1.393
Co3S4 -0.53 -0.430 -0.655 -0.505 -0.541
CrO2 -2.07 -1.900 -1.964 -2.161 -2.306
Cr2O3 -2.36 -1.926 -1.900 -2.163 -2.435
CuF2 -1.88 -1.517 -1.610 -1.733 -1.855
CuS -0.28 -0.199 -0.308 -0.279 -0.324
CuSe -0.21 -0.137 -0.156 -0.187 -0.211
Cu2O -0.58 -0.414 -0.479 -0.575 -0.656
Cu2Sb -0.04 0.011 -0.047 0.108 0.050
Cu2Te 0.07 0.086 0.096 0.108 0.043
Cu3Sb -0.02 0.067 0.015 0.163 0.105
FeF2 -2.46 -1.916 -1.888 -2.138 -2.506
Fe2O3 -1.71 -1.172 -1.460 -1.451 -1.589
Fe3O4 -1.66 -1.122 -1.319 -1.398 -1.632
GaCl3 -1.36 -1.111 -1.047 -1.101 -1.072
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Table C.4 Experimental and calculated energies of formation of the compounds in the
control set.

Comp. Exp[159] PBE LDA PBEfe PBEfeU

GaF3 -3.01 -2.609 -2.839 -2.802 -2.794
GaS -1.09 -0.652 -0.689 -0.692 -0.708
GaSe -0.83 -0.595 -0.571 -0.575 -0.596
Ga2O3 -2.26 -1.858 -2.081 -2.025 -2.053
Ga2S3 -1.07 -0.664 -0.707 -0.715 -0.724
Ga2Se3 -0.85 -0.589 -0.572 -0.575 -0.592
GeS -0.39 -0.333 -0.339 -0.333 -0.338
GeSe -0.48 -0.249 -0.245 -0.249 -0.246
HfO2 -3.95 -3.566 -3.827 -3.892 -3.949
HgCl2 -0.77 -0.605 -0.567 -0.581 -0.691
HgO -0.47 -0.294 -0.370 -0.385 -0.527
InS -0.7 -0.509 -0.580 -0.583 -0.600
In2O3 -1.92 -1.600 -1.787 -1.778 -1.799
In2S3 -0.74 -0.557 -0.609 -0.621 -0.621
KSb -0.43 -0.443 -0.465 -0.536 -0.542
KSb2 -0.37 -0.304 -0.313 -0.359 -0.371
KO -1.28 -1.066 -1.221 -1.334 -1.332
KS -1.12 -0.940 -1.013 -1.112 -1.101
K3As -0.48 -0.335 -0.392 -0.490 -0.490
K3Bi -0.6 -0.382 -0.438 -0.511 -0.514
K3Sb -0.47 -0.418 -0.469 -0.556 -0.555
K5Sb4 -0.44 -0.444 -0.469 -0.549 -0.553
LaCl3 -2.78 -2.414 -2.465 -2.558 -2.578
La2O3 -3.72 -3.468 -3.571 -3.780 -3.805
La2S3 -2.51 -2.201 -2.279 -2.377 -2.404
Li2O -2.07 -1.838 -2.017 -2.161 -2.188
Li2O2 -1.64 -1.416 -1.565 -1.697 -1.712
MgF2 -3.88 -3.550 -3.754 -3.896 -3.889
Mg3Bi2 -0.32 -0.208 -0.265 -0.277 -0.310
Mg3Sb2 -0.49 -0.370 -0.414 -0.448 -0.474
NaSb -0.33 -0.333 -0.341 -0.383 -0.404
NaTe3 -0.35 -0.388 -0.383 -0.417 -0.429
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Table C.4 Experimental and calculated energies of formation of the compounds in the
control set.

Comp. Exp[159] PBE LDA PBEfe PBEfeU

NaO -1.32 -1.077 -1.231 -1.327 -1.338
NaS -1.03 -0.833 -0.898 -0.982 -0.985
NaSe -0.97 -0.834 -0.835 -0.918 -0.926
Na3As -0.53 -0.423 -0.454 -0.533 -0.551
Na3Bi -0.46 -0.384 -0.421 -0.468 -0.490
Na3Sb -0.53 -0.441 -0.471 -0.534 -0.552
NbO2 -2.75 -2.447 -2.598 -2.785 -2.785
NiF2 -2.25 -1.656 -1.677 -1.879 -2.311
NiSe -0.31 -0.287 -0.396 -0.255 -0.338
Ni3S2 -0.42 -0.374 -0.562 -0.388 -0.454
PdCl2 -0.69 -0.482 -0.474 -0.521 -0.521
PdS2 -0.28 -0.268 -0.357 -0.317 -0.342
PtO2 -0.57 -0.465 -0.627 -0.681 -0.717
Pt3O4 -0.4 -0.440 -0.563 -0.647 -0.689
RbSb -0.52 -0.433 -0.452 -0.525 -0.525
RbSb2 -0.35 -0.304 -0.289 -0.356 -0.363
Rb3Sb -0.45 -0.365 -0.419 -0.493 -0.493
ScCl3 -2.4 -2.125 -2.127 -2.222 -2.265
Sc2O3 -3.94 -3.559 -3.763 -3.925 -3.947
SiO2 -3.13 -2.980 -2.932 -2.980 -2.996
SiS2 -0.88 -0.657 -0.657 -0.657 -0.654
SiSe2 -0.61 -0.376 -0.370 -0.376 -0.366
SnO2 -1.97 -1.652 -1.888 -1.805 -1.823
SnS -0.57 -0.443 -0.543 -0.500 -0.515
SnSe -0.47 -0.436 -0.474 -0.426 -0.446
Sr2Bi -1.08 -0.761 -0.834 -0.829 -0.864
Sr2Sb -1.11 -0.864 -0.927 -0.941 -0.970
TiAs -0.78 -0.926 -1.008 -0.887 -0.920
TiCl4 -1.7 -1.597 -1.456 -1.616 -1.626
TiO2 -3.26 -3.048 -3.092 -3.358 -3.402
Ti2O3 -3.15 -2.896 -3.078 -3.202 -3.259
VO2 -2.47 -2.346 -2.467 -2.622 -2.763
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Table C.4 Experimental and calculated energies of formation of the compounds in the
control set.

Comp. Exp[159] PBE LDA PBEfe PBEfeU

YCl3 -2.59 -2.290 -2.245 -2.397 -2.420
YF3 -4.45 -4.112 -4.332 -4.450 -4.511
ZnCl2 -1.43 -1.149 -1.101 -1.201 -1.296
ZnF2 -2.64 -2.318 -2.432 -2.547 -2.738
ZnSb -0.08 -0.032 0.004 -0.068 -0.085
Zn3As2 -0.28 -0.144 -0.084 -0.185 -0.241
Zn3N2 -0.05 0.114 -0.106 -0.040 -0.250
ZrO2 -3.8 -3.360 -3.554 -3.688 -3.826
Al2MgO4 -3.4 -3.403 -3.222 -2.985 -3.403
Al2NiO4 -2.82 -2.681 -2.492 -2.311 -2.841
Al2ZnO4 -3.02 -3.004 -2.850 -2.630 -3.075
Al2ZnS4 -1.36 -1.189 -1.112 -1.017 -1.217
BaGeO3 -2.6 -2.466 -2.424 -2.286 -2.645
BaTiO3 -3.35 -3.421 -2.367 -3.083 -2.466
Ba2TiO4 -3.18 -3.315 -3.132 -3.010 -3.235
BaCrO4 -2.42 -2.650 -3.074 -2.419 -3.163
BaSi2O5 -3.21 -3.163 -3.256 -2.937 -3.456
BaSiO3 -3.27 -3.235 -3.089 -2.997 -3.296
BeAl2O4 -3.34 -3.377 -3.205 -2.968 -3.377
Co2SiO4 -2.1 -1.722 -1.556 -1.501 -1.902
CrMgO4 -2.17 -2.409 -2.169 -2.151 -2.404
Cr2FeO4 -2.19 -1.739 -1.591 -1.645 -2.168
Cr2MgO4 -2.65 -2.514 -2.229 -2.204 -2.689
FeCuO2 -1.3 -1.196 -1.121 -0.902 -1.317
Fe2CdO4 -1.59 -1.336 -1.279 -1.336 -1.580
Fe2CuO4 -1.43 -1.312 -1.294 -1.076 -1.393
Fe2NiO4 -1.6 -1.237 -1.222 -0.979 -1.539
Fe2SiO4 -2.23 -1.871 -1.696 -1.655 -2.152
Fe2ZnO4 -1.73 -1.563 -1.475 -1.240 -1.755
MgTiO3 -3.24 -3.319 -3.109 -2.962 -3.348
MgTi2O5 -3.25 -3.339 -3.102 -3.002 -3.378
Mg2SiO4 -3.17 -3.154 -3.040 -2.838 -3.154
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Table C.4 Experimental and calculated energies of formation of the compounds in the
control set.

Comp. Exp[159] PBE LDA PBEfe PBEfeU

Mg2TiO4 -3.21 -3.265 -3.055 -2.898 -3.295
SrTiO4 -3.42 -3.502 -3.222 -3.145 -3.470
Sr2SiO4 -3.35 -3.337 -3.193 -3.039 -3.296
Sr2TiO3 -3.36 -3.415 -3.324 -3.057 -3.538
SrAl2O4 -3.47 -3.470 -3.236 -3.074 -3.337
SrSiO3 -3.33 -3.296 -3.245 -3.038 -3.438
TiZn2O4 -2.38 -2.381 -2.217 -2.108 -2.554
V2MgO6 -2.53 -2.717 -2.498 -2.448 -2.460
ZnTiO3 -2.63 -2.674 -2.382 -2.382 -2.564
ZnSiO3 -2.52 -2.464 -2.498 -2.236 -2.798



148 Supplementary Tables for Chapter 3

Table C.5 Experimental lattices constants of the elementary solids from references [172]
and [127](∗).

Comp. Spg. a b c

Fe 229 2.8665 2.8665 2.8665
La 194 3.770 3.770 12.159
Ni 225 3.523 3.523 3.523
Ga 64 4.5167 7.6448 4.5107
Ag 225 4.08626 4.08626 4.08626
Ba 229 5.013 5.013 5.013
Ca 225 5.5884 5.5884 5.5884
Co 194 2.5071 2.5071 4.0695
Cu 225 3.61491 3.61491 3.61491
Hg 139 3.995 3.995 2.825
K 229 5.148 5.148 5.148
Li(∗) 166 3.012 3.012 3.012
Nb 229 3.3063 3.3063 3.3063
Pd 225 3.8874 3.8874 3.8874
Rb 229 5.585 5.585 5.585
Sr 225 6.0849 6.0849 6.0849
Ti 194 2.9503 2.9503 4.6810
Y 194 3.6515 3.6515 5.7474
Zr 194 3.23178 3.23178 5.14831
Al 225 4.04950 4.04950 4.04950
Be 194 2.2858 2.2858 3.5843
Cd 194 2.972 2.972 5.605
Cr 229 2.8844 2.8844 2.8844
Hf 194 3.198 3.198 5.061
In 139 3.2530 3.2530 4.9455
Mg 194 3.20944 3.20944 5.21076
Na 166 3.767 3.767 6.154
Pt 225 3.924 3.924 3.924
Sc 194 3.309 3.309 5.2733
Sn 227 3.287 3.287 3.287
V 229 3.0309 3.0309 3.0309
Zn 194 2.66469 2.66469 4.94616
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Table C.5 Experimental lattices constants of the elementary solids from references [172]
and [127](∗).

Comp. Spg. a b c

H 194 3.776 3.776 6.162
Bi 166 4.5460 4.5460 11.862
C 194 2.464 2.464 6.711
Se 152 4.366 4.366 4.955
N 205 6.164 6.164 6.164
B 166 4.91 4.91 12.57
F 15 5.50 3.38 7.28
O(∗) 12 3.773 4.983 4.983
Si 227 3.34 3.34 3.34
I 64 7.2697 4.7903 9.7942
Br 64 6.68 4.49 8.74
Te 152 4.456 4.456 5.921
Cl 64 6.24 4.48 8.26
Ge 227 5.65752 5.65752 5.65752





Appendix D

Experimental Absorption Edges Reproduced

from Johnson et al. [131]

Fig. D.1 Absorption edges reproduced from Reference [131] of (a) Cu L3 , (b) In M4,5 ,
(c) Ga L3 and (d) S L3 from CuInS2 (red), CuIn0.67Ga0.33S2 (blue) and CuGaS2 (green)
measured with total electron yield. The energy scale for each set of curves is not
absolute, but the edge positions are correct relative to one another, making shifts in
the spectra correspond to real energy differences between the core level and the end
state of the electron in the conduction bands of the three materials. Inset: the crests
of the Cu L3 spectra.




