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General introduction

From radar or sonar detection to medical and seismic imaging, wave propagation is a com-
plex physical phenomenon which is involved in a large number of applications : noninvasive
methods have been developed since the end of the 19th century (works of Roentgen or Bec-
querel -X rays- in 1895 and 1896, works of Galton in 1883 -ultrasons- and so on), and these
methods are always being developed, especially in medical imaging, seismic imaging, radar
imaging, global seismology or in many other engineering applications.

Numerical simulations of waves deserve particular attention because they require ap-
plying advanced numerical methods in particular when the propagation domain is hetero-
geneous, as considered in this work.

Our main motivation is actually the design of advanced propagators which are meant
to be used for solving seismic inverse problems. This is a very challenging purpose which
is of great interest for oil companies. This PhD thesis has been prepared within the Inria
project-team Magique-3D from Inria Bordeaux Sud-Ouest center in the framework of the
joint Inria-Total research program DIP (Depth Imaging Partnership). Thus, the general
context of this work is the development of an efficient solution methodology for computing
Helmholtz solution in highly heterogeneous media as the Earth can be. Obviously, any
progress in this topic may have nice consequences on other applications like for instance
medial imaging but herein, we are interested in geophysical applications which provide us
synthetic data for validating numerical methods.

Depending on the application, the simulation of high-frequency waves can be required,
especially for high-resolution imaging. In this context, it is of course crucial to propose
efficient numerical algorithms corresponding to (rigorous) PDE based modeling in order to
work on 3D applications. Although realistic 3D full wave simulations become possible with
the increase of computational power. It is worth noting that it is sometimes impossible to
get numerical simulation on very complex cases because it requires too much computing
capacity (even considering high performance computing).

In this work, we focus on efficient numerical algorithms for time-harmonic wave prop-
agation in heterogeneous propagation media, modelled by the heterogeneous Helmholtz
equation. We especially focus on the robustness of the algorithm with the respect to the
frequency and to small scale heterogeneities in the propagation medium.

The lack of robustness of standard discretization methods (like low order finite element
and finite difference methods) with respect to the frequency is common knowledge. Indeed,
these methods fail to reproduce oscillations of high frequency solutions, unless a very fine
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mesh is used, which is often unaffordable. This phenomenon is known as the ”pollution
effect” and has been extensively studied for wave propagation in homogeneous media.

However, though several solutions have been proposed to reduce the pollution effect in
homogeneous media, much less work dealing with heterogeneous media is available. Beside,
most of the ideas proposed to solve the problem in homogeneous media are not easy to
extend to the heterogeneous case.

Among the methodologies developed to reduce the pollution effect in homogeneous
media, we mention high order polynomial Finite Element methods (FEm) and Plane Wave
methods (PWm). In both cases, highly heterogeneous media are not easily handled: high
order polynomial FEm are based on meshes with a great number of degrees of freedom
per cell. For this reason, these methods are usually based on rather coarse meshes with
large cells. In this case, the parameters describing highly heterogeneous media can not be
considered to be constant inside each cell as they might feature important variations.

The philosophy of PWm is to take advantage of a priori knowledge of the solution,
which is expected to be a wave. In this regard, the discrete basis functions are taken as
plane wave (or possibly Bessel functions and/or evanescent waves) instead of polynomials.
More generally, the idea is to take homogeneous solutions of the PDE inside each cell as
basis functions. This approach is very fruitful in homogeneous media, because analytical
solutions are available as soon as the medium parameters are constant inside each mesh
cell. Unfortunately, the requirement that the medium parameters are constant inside each
mesh cell is sometime too restrictive when the medium is highly heterogeneous.

In this work, extensions of high order FEm and PWm for highly heterogeneous media
have been considered:

• We propose to use high order FEm together with a second-level strategy to take into
account small-scale heterogeneities. We call this approach the Multiscale Medium
Approximation method (MMAm) [20,50].

• We are also investigating (work in progress) a multiscale approach, where the basis
functions are taken as local solutions of the PDE. This work is based on a multiscale
method called the Multiscale Hybrid Mixed method (MHMm) originally developed
for Darcy flow problems in highly heterogeneous media. Because the medium param-
eters are supposed to vary inside each mesh cell, there is no analytical expression of
the basis functions, and a second-level numerical method is used to approximate the
basis functions. This part of the work can be considered as an extension of PWm
because the basis functions are taken as local solutions to the PDE. The difference
lies in the fact that because the parameters are allowed to vary inside each mesh cell,
the basis functions have no analytical expression and are approximated through a
second-level approximation.

In this manuscript, we focus on the MMAm since it is very suitable to the industrial
framework we are working with.

The problem of taking into account small scales heterogeneities on coarse meshes has
been already investigated in [9,13,14,17,19,57]. The problem is considered in the context
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of elliptic equations applied to composite materials or porous media. In this context, the
model problem is a second-order elliptic equation, with a highly oscillating heterogeneity
parameter. It has been observed that for this model problem, standard polynomial dis-
cretizations fail to handle small scale variations of the heterogeneity parameter. Multiscale
methods have thus been developed where the shape functions are taken as local solutions
to the PDE. These methods include in particular the so-called multiscale finite element
method [9,57], operator-based upscaling [14] and the Multiscale Hybrid Mixed method [13].

Another viewpoint is given by homogenization theory. The idea of the homogenization
theory is to replace the original highly heterogeneous medium, by a simpler ”homogenized”
equivalent medium. While the method is very elegant and powerful, it relies on restric-
tive assumptions like scale separation and periodicity of the medium [86]. It is worth
noting that homogenization can work under simpler assumptions (for instance: stochastic
homogenization [64], two-scale convergence [8] or unfolding operators [33]). However, it
turns out that these methodologies are not suited for our main application: seismic wave
propagation.

Operator-based upscaling as well as multiscale finite elements have been recently applied
to transient wave problems [2, 63, 101, 102]. Homogenization theory has been used in
Geophysics as well to homogenize finely layered media [18,31]. More recently, a framework
of ”non-periodic” homogenization has been developed [27–29], again in the context of
geophysical applications.

Based on the amount of works available for elliptic and transient wave propagation
problems, we first though that it was mandatory to use a multiscale strategy, with special
shape functions or some kind of homogenization strategy. However, if it is clear from the
literature that standard polynomial discretizations can not handle highly heterogeneous
media in the context of elliptic problems, we believe that it might not be the case for wave
propagation problems.

It turns out that wave propagation problems are really different from elliptic problems.
Indeed the error is mostly due to the pollution effect in the first case while the restrictive
factor is the best-approximation error in the latter. Also, we have mostly focused on the
acoustic wave equation with constant density as a model problem. In this model, the
heterogeneities are ”outside” the divergence operator and can be expected to be easier to
handle than for the model Laplace problem, where the heterogeneous parameter is ”inside”
the divergence operator.

We believe that these two points are the reason why it is possible to use simple poly-
nomial shape functions (leading to such good results), instead of local solutions.

After introducing the MMAm algorithm we propose, we will focus on carefully justifying
the method both from the theoretical and numerical point of view. Theoretical analysis
of the MMAm involves error estimates in 1D and 2D. The frequency appears explicitly
in all the constants involved in error estimates. Numerical experiments include analytical
test-cases in 1D and 2D and geophysical benchmarks in 2D and 3D. In order to tackle
realistic geophysical test-cases, especially in 3D, an efficient and parallel algorithm of the
method has been implemented. The most demanding numerical examples have been run
on the CRIHAN super-computer facility.
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In order to derive precise error-estimates for the MMAm, it is mandatory to show fine
properties of the continuous solution. Thus, our work also includes a mathematical analysis
of our model problem: the acoustic Helmholtz equation in heterogeneous media in 1D and
2D.

The main achievements of this work are:

• the derivation of frequency-explicitly stability estimates for heterogeneous Helmholtz
problems,

• the design and the convergence analysis of the MMAm,

• the parallel implementation of the algorithm with openMPI,

• the validation of the method for the targeted applications.

The manuscript is organized as follows: a first chapter is devoted to the general set-
ting of the seismic imaging framework, the derivation of the elastodynamic equation is
given with suitable boundary conditions. The corresponding variational formulation is
also presented. In Chapter 2, we focus on the analysis of the problem in 1D: the analysis
of the continuous problem is precisely studied, then the discretization using the MMAm
approach is given. In Chapter 3, we present the 2D problem since it is not possible to
easily extend the results obtained in the 1D case. We first present a stability analysis for
the Helmholtz problem set in an heterogeneous medium. We then show that it is possible
to take the discontinuities of the velocity c into account on a coarse mesh by considering
an approximation cǫ. We show that cǫ can be chosen to obtain a quadrature-like formula
that can be mastered to ensure that the construction of the discrete system is cheap, and
computational costs are then given. In Chapter 4, we give both analytical and geophysical
numerical examples in 1D, 2D and 3D. In particular, we illustrate that the MMAm out-
performs standard finite element approximations in highly heterogeneous media. A section
in this chapter is also devoted to a comparison with homogenization.

We end up with a conclusion delivering some perspectives for the future.



Chapter 1

General setting

This work has been launched in the framework of a collaborative research program that is
maintained between Inria and the oil company Total for the design of advanced software
packages focusing on seismic imaging.

In a nutshell, the goal of seismic imaging is to produce a map of the underground based
on surface data acquisition and using seismic wave reflections. It is worth noting that the
concept is in fact general and not limited to underground imaging. For instance, radar
imaging, medical imaging, or non-destructive testing are based on the same ideas.

The physical phenomenon that makes seismic imaging possible (or more generally,
wave imaging) is the reflection of waves: when a wave front impinges an obstacle or a
discontinuity, a part of the energy is scattered back to the emitter. This property makes
it possible to emit waves from one location and receive information back in the same spot.

As a result, a crucial ingredient in seismic imaging is a good model to represent waves,
taking into account reflection and refraction accurately. Several models have been proposed
to represent seismic waves, ranging from asymptotic ray theory to poro-elasticity. Of
course, there is a trade off between the accuracy of the model, and the computational
requirements. Nowadays, full-wave modeling is possible, but still very costly to solve.

In the context of this PhD we propose to work on time-harmonic full-wave propagation
in 2D and 3D isotropic acoustic and elastic media. We are focusing on optimizing numerical
methods for the case of highly heterogeneous problems.

This chapter is devoted to a general setting of the key ingredient describing the context
of this work. We give a brief overview of what seismic imaging is in Section 1.1, in
particular, we illustrate two important seismic data processing tools in Sections 1.1.2 and
1.1.3: reverse-time migration and full waveform inversion.

Section 1.2 is devoted to the presentation of the two wave equation models considered
in this work: acoustic and elastic isotropic wave propagation. For that purpose, we recall
important notions of continuous mechanics in subsections 1.2.1, 1.2.2 and 1.2.3. We dis-
cuss how elasticity of the Earth can be represented using the generalized Hooke’s law in
subsection 1.2.4. The isotropic elastic wave equation is introduced in 1.2.5 and we derive
its acoustic approximation in 1.2.6.

We present the boundary conditions used to close the problem in Section 1.3. In
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10 CHAPTER 1. GENERAL SETTING

particular, we give some details about non-reflecting boundary conditions in Subsection
1.3.2.

Section 1.4 ens up with the mathematical problems considered in the remaining of this
work.

1.1 Seismic Imaging

The purpose of seismic imaging is to take advantage of seismic wave propagation to analyse
the Earth subsurface. To start with, seismic data are gathered during a seismic campaign.
Seismic waves are generated either by a vibrator truck for land acquisition or by an airgun
for marine acquisition. Wave reflections are recorded by geophones or hydrophones located
on a line containing the seismic source. Figure 1.1 illustrates the process.

Figure 1.1: Offshore (left) and onshore (right) seismic acquisition

At this point, the huge amount of data recorded during the acquisition must be pro-
cessed using high performance computing techniques. The aim is therefore to convert
recorded seismic traces (see figures 1.2 and 1.4) into information about the subsurface (see
figures 1.3 and 1.7). In the following, we present two examples of seismic data processing
techniques: reverse time migration (RTM) and full waveform inversion (FWI). But before,
let us say a few words about seismic wave modeling.

1.1.1 Seismic wave modeling

It is well-known that pseudo-elastic models are accurate to represent wave propagation
inside the Earth. However, modeling a full elastic wavefield is computationally expensive.
If realistic 3D elastic wave propagations become possible with nowadays computers, it is
still a tricky task. This is the reason why several simplifications were introduced to help
process the data.

The first simplification introduced is the acoustic approximation in which the Earth
is considered as a fluid. Beside being less computationally demanding, the acoustic ap-
proximation is interesting because it only represents P-waves and is therefore easier to
analyse.
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Figure 1.2: Input model (left) and example of seismic trace (right)

While 3D elastic modeling is still under development, 3D acoustic propagation is nowa-
days commonly used in industry. In this work, we develop optimized algorithms for elastic
and acoustic wave propagation problems in their time-harmonic form.

In the past, fullwave modeling was considered to be too costly for practical purpose
and additional simplifications have been introduced. For instance, ray methods are based
on high-frequency approximations [45] and one-way methods use a splitting of the wave
operators [83]. In the following, we focus on full-wave methods only because they are more
accurate in heterogeneous media.

1.1.2 Reverse time migration

The concept of reverse time migration has been introduced by Clearbout [38]. It is a direct
procedure which hints at recovering reflexivity of the underground based on a smooth
initial model. We show an example presented in [93] from which we have extracted Figures
1.2 and 1.3.

Figure 1.2 shows the data available before the migration process. It consists of the
seismic traces recorded in the acquisition and an input model generally obtained by travel-
time analysis.

The output reflexivity model is compared to the ideal reflexivity model on Figure 1.7.
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Figure 1.3: Output of the RTM (left) and true reflexivity (right)

1.1.3 Full waveform inversion

Full waveform inversion is an optimization procedure based on the minimization of a misfit
function between the observation (seismic traces) and the simulated data. It is viewed as
an inverse problem and for which wave propagation is the direct problem.

While RTM only aims at finding the location reflectors, full properties of the subsurface
can, in theory, be recovered using FWI. We present an example from [91] (Figures 1.4, 1.5,
1.6 and 1.7).

In this example, seismic traces have been simulated using the Marmousi model [71] (see
Figures 1.4 and 1.5).

The algorithm uses as input the seismic traces (Figure 1.4) and a smooth initial model
constructed from travel-time analysis (Figure 1.6). The resulting velocity model is pre-
sented on Figure 1.7. We refer the reader to [94] for an illustration of initial model building
using travel-time tomography.

1.2 Derivation of the elastodynamic equation

The main objective of this section is to introduce the time-harmonic wave equations which
will be under study in the following. After presenting briefly some notions of continu-
ous Mechanics, we derive the elastodynamic equations and then introduce their acoustic
simplification. We also present the boundary conditions used to close the problems. In
particular, we detail how non-reflecting boundary conditions are derived.
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Figure 1.4: Example of seismic traces used in FWI

Figure 1.5: True model used to simulate traces

Figure 1.6: Input model for FWI
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Figure 1.7: Output model from FWI

1.2.1 Lagrangian description of the underground

Seismic waves propagation is usually represented in the context of continuum Mechanics
[48]. We describe the underground as a subset Ω ⊂ R

3 where the matter is represented as
a continuum of particles x ∈ Ω. We call Ω the reference configuration of the underground.

To analyse the motion of the subsurface, we adopt the Lagrangian description, where
we follow the particles. Hence, the space variable x ∈ Ω denotes the position of a particle
in the reference configuration Ω, and every particle in the subsurface is identified by a
point x ∈ Ω.

We introduce the time variable t and assume that when t = 0, the Earth is in its
reference configuration Ω. Under the action of external forces, the particles in Ω can move.
Hence, at the time t > 0, a particle x ∈ Ω can be located to the position x′ ∈ R

3. To
represent the motion of the particle, we introduce the displacement u. Consider a particle
x ∈ Ω. At the time t, the position x′ ∈ R

3 of the particle x is given by

x′ = x+ u(x, t).

Hence, the path of a given particle x ∈ Ω is given by the function t→ x+ u(x, t). On the
other hand, at a given time t the state of the ground is represented by the displacement of
all particles, that is the function x → x+ u(x, t).

Since we adopt the Lagrangian description, the position x ∈ Ω identifies a given particle
in the subsurface. It is natural to associate to each point x ∈ Ω physical properties related
to the nature of the rock. In the following we will see that the interesting quantities are
the density ρ of the rock and its elastic properties defined by the stiffness tensor C. Since
these properties depend on the nature of the rock, they are naturally associated with the
particle x ∈ Ω rather than with the spatial position x′ ∈ R

3.

Furthermore, we can assume that the density and the stiffness tensor do not depend
on the time. Actually, these properties might change in time, but along a geological time
scale which is much longer that the time scale of a wave propagation. Hence, the density
in the Earth subsurface is represented by the function ρ : Ω→ R and the elastic properties
by the function C : Ω→ R

36. If x ∈ Ω, ρ(x) and C(x) represent then the density and the
elastic properties of the particle x.
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To sum up, the properties of the Earth are characterized by the function ρ : Ω → R

and C : Ω→ R
36 and the motions of the ground are fully represented by the displacement

function u : Ω× (0, T ) → R
3. Ω is the reference configuration of the Earth and the space

variable x ∈ Ω denotes a position in the reference configuration at t = 0 which identifies a
single particle.

1.2.2 Representation of the deformation: the strain tensor

As explained in the previous section, the state of the underground at time t is represented
by the displacement of all particles x → u(x, t). In this section, we explain how we can
relate the displacement of the particle to the deformation of the underground.

We first need to introduce the notion of rigid motion. A rigid motion is a displacement
of the underground which does not deform it. To clarify this notion, consider two points
x,y ∈ Ω and a fixed time t > 0. At time t, the particles x and y have moved to the
positions x′,y′ ∈ R

3 respectively, and we have

x′ = x+ u(x, t), y′ = y + u(y, t).

The distance between the particles x and y in the reference configuration Ω is given by
|x − y| and is modified to |x′ − y′| = |(x − y) + (u(x, t) − u(y, t))| at time t. At time t,
we say that the ground has been subjected to a rigid motion if the distances between all
particles have been preserved, that is

|x− y| = |(x− y) + (u(x, t)− u(y, t))|, ∀x,y ∈ Ω.

Mathematically, it means that the function x → x+ u(x, t) is an isometry.
It is intuitive to understand that rigid motions do not induce any deformation. Hence,

we wish to distinguish between rigid motions, and true deformations. We introduce the
Green-Saint Venant strain tensor E defined from the displacement u as

E(u) =
1

2

(

∇u+∇uT +∇u∇uT
)

. (1.1)

It is possible to show that E(u) = 0 if and only if the function x → u(x, t) is a rigid
motion. We see that the Green-Saint Venant strain tensor E ”filters out” the rigid motion.
The strain tensor can be considered as a measure of the deformation. More precisely at
the time t, the second order tensor E(x, t) represents the deformation undergone by the
underground in a neighborhood of the particle x.

Remark 1. It is possible to be more precise about how the distance and angle are lo-
cally modified. Distance and angle transformation are related to the Right Cauchy-Green
deformation tensor [48]:

C(u) = (I+∇u)(I+∇u)T .

The formula

E(u) =
1

2
(C(u)− I)
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shows that the Cauchy-Saint Venant tensor measures how much the distances and angle
are modified.

Remark 2. The Cauchy-Saint Venant strain tensor is not the only possible choice to
measure the deformations. Other definitions of strain are possible. However, they all result
in the same linearized strain tensor, and are equivalent for small deformations. For more
details about the different measures of strain, we refer the reader to [56] and [48].

Because of the last term in (1.1) the relation between the displacement u and the
Cauchy-Saint Venant strain tensor is non-linear. This non-linearity makes the analysis of
the strain very complex. Fortunately, if we assume that the deformations are small enough,
we can linearize (1.1) and define the linearized strain tensor

ε(u) =
1

2

(

∇u+∇uT
)

. (1.2)

The hypothesis of small deformations is reasonable for the applications we are targeting.
Therefore, we use the linearized strain tensor ε(u) as a measure of deformation.

1.2.3 Representation of the internal forces: the stress tensor

When an external force is applied to the Earth, internal forces appear as a reaction. These
forces are represented by a contact force characterized by a stress vector t. If we consider
a portion A ⊂ Ω of the underground, the stress in A at time t can be represented by

∫

∂A

t∂A(s, t)ds,

where the stress vector t∂A : ∂A→ R
3 depends on the shape of A.

The dependency of t∂A on ∂A can be fairly general. To simplify the situation, we
introduce the Cauchy-Euler postulate and assume that the stress vector depends on the
shape of A only through the unit normal vector. Hence, we have t∂A(s, t) = t(s, t,nA),
where nA is the unit normal vector on ∂A. Under the Cauchy-Euler postulate, the stress
can be represented by a function, t : Ω× (0, T )× S

2 → R
3, called a Cauchy stress vector,

such that the stress in A is
∫

∂A

t(s, t,nA)ds,

for A ⊂ Ω. Furthermore, it is possible to show that there exists a second order symmetric
tensor σ, called the Cauchy stress tensor such that

t(x, t,n) = σ(x, t)n

Remark 3. The existence of the Cauchy stress tensor σ is the result of the Cauchy fun-
damental theorem. The demonstration uses Newton’s second law of motion and the con-
servation of moment [48].
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We can interpret the stress as a volumic force using the Stoke’s formula. Indeed, if
A ⊂ Ω, we have

∫

∂A

σ(s, t)nAds =

∫

A

divσ(x, t)dx. (1.3)

Since (1.3) is valid for any regular subset A ⊂ Ω, we conclude that the stress can be
represented by the force density fint : Ω× (0, T ) → R

3:

fint = divσ. (1.4)

1.2.4 Constitutive equation: the generalized Hooke’s law

We have explained that in the context of continuum Mechanics, small deformations of the
Earth are represented by the linearized strain tensor ε(u). These deformations result in
internal forces represented by the stress tensor σ

This framework is quite general and makes it possible to represent different behaviours
of the considered material (namely plasticity, viscosity, and elasticity) depending on how
the stress tensor σ is related to the displacement u [48]. The equation relating the stress to
the displacement is called the constitutive equation. Of course, the constitutive equation
depends on the considered material, but also on which feature we want to model.

In the context of off-shore seismic campaigns, the materials we have to consider are wa-
ter and water-saturated porous rock. An accurate poro-elastic model for wave propagation
has been developed by Biot [23, 24]. The poro-elastic constitutive equation of Biot takes
into account elasticity, viscosity and porosity of the rocks. This model can be simplified
and, for most target applications, we only need to consider elastic and viscous properties
of rocks [53,54]. Also sound wave in the water can be treated as a special case of elasticity.

In the following, we consider the elasticity of the rocks only, it means that the stress
σ(x, t) at the particle x at time t only depends on the strain ε(x, t) at the particle x at
time t. This hypothesis prevents nonlocal and memory effects as well as absorption.

Furthermore, since we are interested in small deformations, we can focus on the simplest
case of elasticity: linear elasticity. In this context, the relation between the stress and strain
is linear and the constitutive equation is the so-called generalized Hooke’s law. The stress
tensor is determined from the strain by the stiffness tensor C:

σ(x, t) = C(x)ε(x, t). (1.5)

Remark 4. Anelastic properties of the Earth, in particular attenuation, are shown to be of
importance in seismic data processing [54,62]. Attenuation is complex to represent in time
domain modeling. In time-domain numerical simulations, dedicated ”memory variables”
[30] need to be added to numerical schemes which increase the computational cost. However,
attenuation is naturally handled in frequency domain formulations by considering a complex
frequency [43] or complex Lamé parameters [53]. Since we are focusing on frequency domain
simulations, we do not consider attenuation as a major difficulty in terms of numerical
approximation and drop it to simplify.



18 CHAPTER 1. GENERAL SETTING

The elastic properties of the Earth at the particle x ∈ Ω are completely determined by
the stiffness tensorC(x). Since the strain and stress tensor are symmetric, they both have 6
independent coefficients. Therefore, in the general case, the stiffness tensor is characterized
by 6 × 6 = 36 coefficients. To simplify the rest of the presentation, we adopt the Voigt
notation. The stiffness tensor is represented as a 6 × 6 matrix C = {Cαβ}6α,β=1, where
Cijkl = Cαβ with the convention

ij ↔ α
11 ↔ 1
22 ↔ 2
33 ↔ 3

32 = 23 ↔ 4
31 = 13 ↔ 5
21 = 12 ↔ 6.

Though the 36 coefficients are independent in the general case, it is possible to greatly
simplify the stiffness tensor under the assumption of isotropy. A material is said to be
isotropic if it has the same elastic properties in every direction. It means that waves
propagate with the same speed in every direction. In the isotropic case, they are only two
independent coefficients C33, C44 and we have

C =

















C33 (C33 − 2C44) (C33 − 2C44) 0 0 0
(C33 − 2C44) C33 (C33 − 2C44) 0 0 0
(C33 − 2C44) (C33 − 2C44) C33 0 0 0

0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

















. (1.6)

We can express the coefficients C33 and C44 in terms of the Lamé parameters λ and µ.
In this case, we have

C33 = λ+ 2µ

and
C44 = µ.

For isotropic media, we can rewrite the Hooke’s law in a simpler form with the Lamé
parameters:

σ = λ divuI+ 2µε(u). (1.7)

It is also possible to express the stiffness tensor as

C = ρ

















c2p c2p − 2c2s c2p − 2c2s 0 0 0
c2p − 2c2s c2p c2p − 2c2s 0 0 0
c2p − 2c2s c2p − 2c2s c2p 0 0 0

0 0 0 c2s 0 0
0 0 0 0 c2s 0
0 0 0 0 0 c2s

















, (1.8)
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where

cp =

√

λ+ 2µ

ρ
, cs =

√

µ

ρ
, (1.9)

are the compressional and shear wave velocities.

Remark 5. The hypothesis of isotropy is not always sufficient to represent the elastic
properties of the Earth. This might be for two main reasons. First some rocks have an
intrinsic anisotropy, because of a preferred orientation of minerals [100]. Second, when a
large enough wavelength travels through a finely layered medium, it appears as an homoge-
neous anisotropic, transverse isotropic, medium [18, 31]. More generally, homogenization
of (not necessary layered) isotropic media usually results in anisotropic effective represen-
tation [27–29].

When the medium is anisotropic, the wavespeed varies along the direction of propaga-
tion. Hence, wavefronts in homogeneous anisotropic media are not circles, but can have
general shapes. In geophysical applications, the rocks have special form of anisotropy. In
the worst case, there are orthotropic, but they are currently mostly represented as transverse
isotropic media [25].

In transverse isotropic media, there exist one axis of symmetry, which is a preferred
direction. When the preferred direction is the depth, we speak about vertical transverse
isotropic (VTI) medium. In a VTI medium, the stiffness tensor contains five independent
coefficients C11, C33, C44, C66, C13 and has the following shape

C =

















C11 (C11 − 2C66) C13 0 0 0
(C11 − 2C66) C11 C13 0 0 0

C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

















. (1.10)

The coefficients of the stiffness tensor are usually expressed using the vertical P and S
velocity cp, cs and three measures of anisotropy proportion ǫ, γ and δ introduced by Thomsen
[98].

The general transverse isotropic case, or tilted transverse isotropic case (TTI), is ob-
tained from the VTI case through a rotation.

1.2.5 Elastodynamic equations

We are now ready to derive the elastodynamic equations by applying Newton’s second law
of motion. We assume that an external force of volumic density f(x, t) is applied to the
Earth. Recalling (1.4) and (1.5), we also take into account the internal forces which are
considered locally as

fint = divσ = divCε(u). (1.11)
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Since the density ρ = ρ(x) is supposed to be constant in time, Newton’s second law of
motion in its local form yields

ρ
∂2u

∂t2
= fint + f ,

and we immediately obtain the elastodynamic equations formulated in displacement by
applying (1.11)

ρ
∂2u

∂t2
− divCε(u) = f . (1.12)

Equation (1.12) is widely used in Geophysics to model the propagation of seismic waves
[30,103]. It is also used in other fields such as structural vibration analysis, non-destructive
testing and fluid-solid interaction.

Remark 6. It is possible to obtain other formulations of the elastodynamic equations by
substituting variables. For instance, the velocity-stress formulation is very popular for time
domain algorithms [103]. However, equation (1.12) usually leads to numerical schemes
with less degrees of freedom.

In the isotropic case, equation (1.12) leads to

ρ
∂2u

∂t2
− div (λ div(u)I+ 2µε(u)) = f . (1.13)

Remark 7. We can easily characterize P and S waves assuming that the medium is ho-
mogeneous and that there is no external sources. If the medium is homogeneous, ρ, cp and
cs do not depend on the space variable x and (1.13) leads to

ρ
∂2u

∂t2
− (λ+ 2µ)∇ divu+ µ curl curlu = 0. (1.14)

If we further write p = divu and S = curlu and divide (1.14) by ρ, we obtain

∂2u

∂t2
− λ+ 2µ

ρ
∇p− µ

ρ
curlS = 0. (1.15)

Taking the divergence of (1.15), we see that

∂2p

∂t2
− λ+ 2µ

ρ
∆p = 0. (1.16)

On the other hand, taking the rotational of (1.15), we obtain

∂2S

∂t2
− µ

ρ
curl curlS = 0,

further more, since S = curlu, div S = div curlu = 0. Therefore

curl curlS = ∇ div S −∆S = −∆S,
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and
∂2S

∂t2
− µ

ρ
∆S = 0,

or
∂2Sn

∂t2
− µ

ρ
∆Sn = 0, (1.17)

for 1 ≤ n ≤ 3.
We identify the P and S wave velocities in the wave equations (1.16) and (1.17) respec-

tively:

c2p =
λ+ 2µ

ρ
, c2s =

µ

ρ
.

A plane wave analysis easily reveals the polarization of each mode. P waves are longi-
tudinal (and therefore, compressional) waves while S waves are transverse (and therefore,
shear) waves.

1.2.6 Acoustic approximation

The propagation of both P and S waves is modeled by elastodynamic equation (1.12). Since
P waves are travelling faster than S waves, they bring information first. Some applications,
like first time arrival computations, require P waves only. Another example is the reverse
time migration where P and S modes require to be filtered to obtain noise-free images. It
is therefore of interest to introduce a simpler model, called the acoustic approximation,
in which P waves are considered only. Acoustic approximation is interesting because it is
simpler to analyse and cheaper to compute than the elastic model.

Actually, the elastic model requires the computation of the displacement, which is a
vectorial unknown. In the acoustic approximation, it is possible to introduce the pressure as
an auxiliary unknown. The pressure is a scalar quantity, so that three times less unknowns
are required for the acoustic approximation on the same mesh.

Besides, the speed difference between P and S waves also plays an important role
because numerical methods are conditioned by the smallest wavelength in the simulation.
As described in [32], the ratio cp/cs ranges from 1.5 to 1.7 in sandstones. In clays, the ratio
is at least 2, and can be much greater. An example of values in water-saturated Berea
sandstone is cp = 3888 m.s−1 and cs = 2302 m.s−1 (cp/cs ≃ 1.69) [32]. Another example of
velocity values for silty clay is cp = 1519 m.s−1 and cs = 287 m.s−1 (cp/cs ≃ 5.29) [53]. As
a result, S wavelength is at least 1.5 times smaller than P wavelength and therefore, the
elastic model requires a finer mesh.

We refer the reader to [7, 80, 108] for a more general discussion on the usability and
computational trade-off of the acoustic approximation.

Remark 8. In the following, we will only consider acoustic approximation of isotropic
media. However, it is possible to derive acoustic approximation of anisotropic media [7,
80,108].
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In the isotropic case the resulting equation (1.24) is the ”true” equation that represents
acoustic waves in an ideal fluid (for instance, water or air can be considered as ideal fluids
depending on the application). The equation is second order in time and space and has the
pressure as unique scalar unknown. In this case, we can say the Earth is considered as an
ideal fluid, since equation (1.24) actually models sound waves in ideal fluid. We also speak
of ”acoustic Earth”.

On the other hand, acoustic approximations of anisotropic media do not describe a
physical phenomenon, and are very different from acoustic wave equation (1.24). Actually,
acoustic media can not be anisotropic by nature [7]. Furthermore, the resulting equation is
more than second order in time and space [7], or has at least two unknowns [80,108].

In the isotropic case, we simply obtain the acoustic approximation by removing shear
waves. This is done by setting the shear wave velocity to zero. Hence, we consider that
cs = 0 in (1.8). We introduce the bulk modulus κ = ρc2p and obtain

C = ρ

















c2p c2p c2p 0 0 0
c2p c2p c2p 0 0 0
c2p c2p c2p 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















=

















κ κ κ 0 0 0
κ κ κ 0 0 0
κ κ κ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















. (1.18)

We can greatly simplify Hooke’s law using (1.18). Indeed, since C has a simple form,
it holds that

σ = Cε(u) = κ div(u)I. (1.19)

At this point, it is clear that the stress tensor has one single independent component:
the pressure p = κ div(u). We obtain a simple expression for σ and the internal forces,

σ = pI, divσ = ∇p (1.20)

and (1.12) simplifies to

ρ
∂2u

∂t2
−∇p = f . (1.21)

We obtain the acoustic formulation in pressure by substituting the displacement u for
the pressure in (1.21). We first divide (1.21) by ρ and take the divergence:

div
∂2u

∂t2
− div

(

1

ρ
∇p

)

= div

(

1

ρ
f

)

. (1.22)

We can now substitute the displacement for the pressure using the Schwarz’ theorem
on cross derivatives. By definition of the pressure p, it holds that

div
∂2u

∂t2
=
1

κ

∂2p

∂t2
. (1.23)
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We obtain the acoustic pressure formulation by plugging (1.23) in (1.22):

1

κ

∂2p

∂t2
− div

(

1

ρ
∇p

)

= div

(

1

ρ
f

)

. (1.24)

Acoustic approximation (1.24) is widely used in geophysical applications. It is of par-
ticular importance in the context of inverse problems because there are less parameters
to identify in the model. For instance, equation (1.24) is the model studied by Tarantola
in [95] in the context of full waveform inversion or by Clayton et Al. in [37] for Born-WKBJ
inversion. An acoustic approximation for TTI media is also used as a direct propagator
by Virieux et al. [51]. Acoustic approximations are also used for reverse-time migration
because kinematic information only is important for this application [80] (see Remark 9).
We refer the reader to the work of Zhang et al. [107] for reverse time migration using a
TTI acoustic approximation.

Equation (1.24) is also the natural equation to model sound waves in ideal fluids. In
ideal fluids, there is no shear, so that expression (1.18) of the stiffness tensor is directly
obtained from physical consideration (while it is obtained from an approximation in Geo-
physics). Hence equation (1.24) is used in Geophysics to model sound waves in the water
during off-shore campaign.

Remark 9. In Remark 7, we observed that P and S waves can be easily separated in
homogeneous media. Furthermore, P-wave equation (1.16) is actually nothing but equation
(1.24). Hence, in the acoustic approximation of homogeneous media, S waves are filtered
out and compressional waves are computed using the pressure p as the unknown.

Unfortunately, this is not the case in heterogeneous media. From the mathematical point
of view, the simplification (1.14) does not hold if λ and µ depend on the space variable x. If
we consider piecewise constant Lamé parameters λ and µ, it is still possible to write (1.14)
locally and we can derive compatibility conditions at the interface between each subdomain.
It turns out that these compatibility conditions couple P and S waves at each interface.

From the physical point of view, we speak about PS converted waves: when a reflection
occurs, conversions between P and S modes happen (for instance, see [40]). For instance,
when a P wave front is reflected in an elastic medium, the energy is separated into P and
S fronts.

In the acoustic simplification, when a reflection occurs, the whole P energy is conserved
and there is no energy conversion. As a result, the acoustic approximation yields the
correct first arrival travel time (because most of P wave fronts are correctly represented)
but amplitudes might be wrong because the whole energy is maintained at every reflection.
Therefore, it is usually said that acoustic approximations correctly represent the kinematic
of P waves, but do not preserve the amplitudes [80].

Acoustic approximation are widely used in reverse time migration algorithms, because
the kinematic is the only information used by this application [80]. Actually, special dedi-
cated imaging conditions where P and S mode are separated need to be applied for elastic
imaging (see [69] $3.1 or [92]).
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Acoustic approximation (1.24) is sometimes further simplified by assuming that the
density is constant. Multiplying (1.24) by (the constant value) ρ, we obtain

1

c2p

∂2p

∂t2
−∆p = div f . (1.25)

As an example of application, equation (1.25) is used as a propagator in [93] to achieve
reverse time migration. We will mostly focus on the time-harmonic version of equation
(1.25) in Chapter 2 and 3.

Remark 10. Like in Remark 9, we can say that approximation (1.25) preserves kinematic
but changes amplitudes. For this reason, constant density acoustic equation is used in the
context of migration techniques.

1.2.7 Time-harmonic formulation

Wave equations (1.12) and (1.24) are formulated in time-domain. It means that the un-
known depends on the space variable x and the time variable t. By introducing the Fourier
transform F , we can describe equations (1.12) and (1.24) in the frequency domain, where
the unknown depends on the space variable x and the dual variable of time t: the so-called
(angular) frequency ω.

If φ is a sufficiently regular function, we introduce its Fourier transform F(φ) defined
by

F(φ)(x, ω) =
∫ +∞

−∞

φ(x, t)e−iωtdt

An important property of the Fourier transform is that if φ is regular enough, we have

F
(

∂φ

∂t

)

= −iωF(φ). (1.26)

Consider a fix angular frequency ω > 0 and define ûω(x) = F(u)(x, ω), p̂ω(x) =
F(p)(x, ω) and f̂ω(x) = F(f)(x, ω). Then, because of (1.26), ûω and p̂ω are solutions to
the time-harmonic equations

−ω2ρûω − divCε(ûω) = f̂ω, (1.27)

and

−ω
2

κ
p̂ω − div

(

1

ρ
∇p̂ω

)

= div

(

1

ρ
f̂ω

)

. (1.28)

Time harmonic formulations have several applications. First, in the case where the
source f(x, t) = g(x)eiωt is time harmonic, the solution becomes time harmonic when
t→ ∞ and the time harmonic solution is given by u(x, t) = ûω(x)e

iωt or p(x, t) = p̂ω(x)e
iωt.

This is often the case for electromagnetic scattering or vibration analysis.
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Second, it is possible to recover the time-domain solution by Fourier synthesis. In
this case, equation (1.27) or (1.28) is solved for a finite number of frequencies ωj and the
time-domain solution is obtained by an approximate inverse Fourier transform

u(x, t) ≃
∑

j

uωj
(x)eiωjt.

This approach is also called frequency-domain treatment of the wave equation. One of the
advantage is that attenuation can be naturally taken into account. Also, this approach is
naturally parallel since the computation of each frequency is independent. We refer the
reader to [43] for more information.

The possibility of frequency-domain treatment of 3D seismic wave propagation problems
is currently under study: Operto and his collaborators have proposed a feasibility study
using acoustic approximation (1.28) and a massively parallel direct solver (the software
package MUMPS [11]) in [79].

Third, even when the source is not time periodic, it is often of interest to consider only
some frequency content of the solution. This is the case in Geophysics for some applications
like full waveform inversion. In the context of full waveform inversion, multiscale frequency-
domain techniques are used to mitigate the non-linearity of the problem. The algorithm
requires only one or a few frequencies at each iteration [84, 104]. Furthermore, carefully
choosing the frequencies makes it possible to speed up full waveform inversion algorithm
as observed by Sirgue and Pratt [91]. The authors also mention that their argument
might also apply to imaging method. 3D frequency-domain full waveform inversion has
been carried out on synthetic examples by Ben Hadj Ali et al. [6] and on real datasets by
Plessix [82].

1.3 Boundary conditions

In the context of seismic imaging, we want to simulate the propagation of waves inside
a domain of interest Ω ⊂ R

3. Without loss of generality, we assume that the domain of
interest Ω has the following shape,

Ω =







x ∈ R
3

∣

∣

∣

∣

∣

∣

xm1 < x1 < xM1
xm2 < x2 < xM2

S(x1, x2) < x3 < xM3







where S : R2 → R locally describe the surface of the Earth (see figure 1.8).

In order to constrain the wave propagation problem in Ω, equations (1.27) and (1.28)
need to be coupled with boundary conditions on ∂Ω.

First, a boundary condition is required to take into account the surface of the ground
that we denote by ΓF . This boundary condition is called free-surface boundary condition.
The free surface boundary condition is valid on the Earth surface.
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Ω

ΓF

ΓA

Figure 1.8: Domain of interest with boundary conditions

Ω

Figure 1.9: Domain of interest compared to the whole Earth
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Second, as depicted by figure 1.9, the domain of interest is much smaller than the
size of the Earth. Therefore, it is relevant to impose artificial ”non-reflecting” boundary
conditions on ΓA to close the problem. In contrast with the free surface ΓF , the boundary
ΓA is artificial: it just represents the end of the zone of interest, but has no physical
justification.

We assume that there is no energy source outside of the domain of interest. Hence,
we set a boundary condition that let the wave coming from the domain of interest travel
freely through the artificial boundary, but filters out waves coming from outside. Such a
boundary condition is called a non-reflecting, or transparent, boundary condition.

The free surface boundary condition has to be satisfied on

ΓF : x3 = S(x1, x2),

while the non-reflecting boundary condition needs to be imposed on the boundaries

x1 = xm1 , x1 = xM1 , x2 = xm2 , x2 = xM2 , x3 = xM3 .

1.3.1 Free surface condition

The free-surface boundary condition on ΓF is easy to write. It is characterized by the
fact that that the traction vanishes on ΓF : σn = 0. We can write this condition on the
displacement u using Hooke’s law (1.5):

Cε(ûω)n = 0 on ΓF , (1.29)

which is a Neumann-like boundary condition.
In the acoustic approximation, free surface condition (1.29) leads to:

p̂ω = 0 on ΓF , (1.30)

which is a Dirichlet boundary condition.

1.3.2 Non-reflecting boundary conditions

Non-reflecting boundary conditions define a complex topic which is still under development.
In the following we consider two types of non-reflecting boundary conditions: absorbing
boundary conditions, and perfectly match layers. We refer the reader to the PhD thesis of
J. Diaz [42] for a general presentation of this conditions.

Absorbing boundary conditions

The aim of absorbing boundary conditions is to simulate an infinite domain of propaga-
tion by imposing a local boundary condition on the boundary ΓA. Pioneering works on
absorbing boundary conditions include the results of Engquist and Majda [44]. The main
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ingredient is that there exists a non-local pseudo-differential operator T such that the
boundary condition

1

ρ
∇p̂ω · n = T (p̂ω) on ΓA, (1.31)

is non-reflecting. Unfortunately, since the operator T is nonlocal, its discretization is costly.
Therefore one wishes to approximate the operator T by a local expression.

As shown, for instance, in [52] or [42], several expansions of the operator T are possible.
In the following, we will use the simplest first order approximation given by Engquist and
Majda [44]:

1

ρ
∇p̂ω · n =

iω√
ρκ
p̂ω on ΓA. (1.32)

A similar approach for isotropic elastic media is presented by Clayton and Engquist
in [36]. However, we will only use perfectly matched layers for elastic waves. We also
refer the reader to the recent work of Boillot et al. [25] for the derivation of an absorbing
boundary condition for transverse isotropic media.

Perfectly Matched Layers

Another approach, called Perfectly Matched Layers (PML), was proposed by Bérenger for
electromagnetic waves [22]. Instead of imposing a local boundary condition at the boundary
of the domain interest, the domain of interest is surrounded by an additional layer, in which
outgoing waves are absorbed. This is done by introducing artificial dispersion inside the
layer.

To simplify, suppose we want to impose an artificial boundary at x2 = 0 to reduce
a simulation in R

2 to R
2
+ only. We introduce an additional layer R × (0,−L) of length

L > 0 under the domain. In the layer, the derivative operator with respect to x2 variable
is formally replaced as follows:

∂

∂x2
−→ iω

iω + σ

∂

∂x2
,

where σ > 0 is an arbitrary positive constant. A Dirichlet boundary condition is applied
on the external boundary of the layer to close the problem.

The absorbing properties of the layer depend on length L and the constant σ. When
L and σ increase, the layer is more efficient, but a finer and longer mesh is required inside
the layer.

Figure 1.10 shows the domain of interest surrounded by perfectly matched layers in 2D.
The domain is surrounded by PML of size L, resulting in the computational domain

Ω =







x ∈ R
3

∣

∣

∣

∣

∣

∣

xm1 − L < x1 < xM1 + L
xm2 − L < x2 < xM2 + L
S(x1, x2) < x3 < xM3 + L






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Ω

Ω̄

ΓF

ΓD

x
m

1 x
M

1

x
M

3

Figure 1.10: Domain of interest surrounded by PML

We introduce the functions νj : Ω̄ → C defined by

νj(x) =







1 if xmj ≤ xj ≤ xMj
iω

iω + σ
otherwise.

Applying a PML condition simply consists in formally transforming the derivative operators

∂

∂xj
−→ νj

∂

∂j
.

In the acoustic case, we can rewrite the PML equation under a compact form:

−ω
2

aκ
p̂ω − div

(

1

ρ
B∇p̂ω

)

= div

(

1

ρ
f̂

)

,

where
a =

∏

j

νj, Bij =
νiνj
a
.

The condition p̂ω = 0 is imposed on the external boundary ΓD of the PML.
For isotropic elastic media, we define the fourth order tensor C̃ as

(

C̃∇φ
)

nm
= δmnλ

∑

k

νnνk
a

∂φk

∂xk
+ µ

(

ν2m
a

∂φn

∂xm
+
νnνm
a

∂φm

∂xn

)

.



30 CHAPTER 1. GENERAL SETTING

We have C̃∇u = Cε(u) inside Ω and the elastic wave equation reads

−ρω
2

a
ûω − div

(

C̃∇ûω

)

= f ,

together with the condition that ûω = 0 on ΓD.
It has been observed that PMLs might be instable in anisotropic media [21]. For

this reason, new methodologies are currently developed to obtain non-reflecting boundary
conditions in general anisotropic case (for instance, see [99]).

1.4 Boundary value problems and their variational

formulation

We have derived the elastodynamic equation and its acoustic approximation, together with
appropriate boundary conditions in the framework of continuous Mechanics. This task has
been carried out formally, without precise mathematical statement. We fill this lack in this
section by stating the considered problems in precise mathematical formulation.

It is well known that boundary value problems usually do not admit regular solutions
in the general case, so that a precise notation of ”derivative” is required. We briefly
introduce notions of measure and distributions theory to solve this problem. We refer the
reader to the book of W. Rudin [85] for a general presentation of measure theory and to
L. Schwartz [89] for distributions theory.

From now on, we assume that Ω ⊂ R
N is a regular open simply-connected domain. We

require the definition of the spaces Lp(Ω,C) for 1 ≤ p ≤ +∞. We refer the reader to [85]
for the definition of these spaces. We will also use the Sobolev spaces Wm,p(Ω,C) with
m ∈ N

⋆ and 1 ≤ p ≤ +∞. We define in particular Hm(Ω,C) = Wm,2(Ω,C). H1
0 (Ω,C) is

the space of functions of H1(Ω,C) which vanish on ∂Ω. Finally, if Γ ⊂ ∂Ω, H1
Γ(Ω,C) is

the space of functions in H1(Ω,C) vanishing on Γ. We refer the reader to the book of H.
Brezis [26] for a presentation of the Sobolev spaces Wm,p(Ω,C).

With the introduction of the Sobolev spaces, we are now ready to establish the boundary
value problems considered afterward, and their variational formulations. The acoustic wave
propagation problem with ABC consists in finding a scalar unknown, the pressure, denoted
here by u : Ω → C, solution to



































−ω
2

κ
u− div

(

1

ρ
∇u

)

= f in Ω,

u = 0 on ΓF ,

1

ρ
∇u · n− iω√

κρ
u = 0 on ΓA,

(1.33)

where κ−1, ρ−1 ∈ L∞(Ω,R) describe the acoustic medium and f ∈ L2(Ω,C) represents the
seismic source. The variational formulation of problem (1.33) is to find u ∈ H1

ΓD
(Ω,C)
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such that

−ω2

∫

Ω

1

κ
uv̄ − iω

∫

∂Ω

1√
κρ
uv̄ +

∫

Ω

1

ρ
∇u · ∇v̄ =

∫

Ω

fv̄, (1.34)

for all v ∈ H1
ΓD
(Ω,C).

The acoustic wave propagation problem with PML requires the introduction of artificial
coefficients a and B. From the definition given in the previous section, it is clear that
a−1 ∈ L∞(Ω,C) and Bij ∈ L∞(Ω,C) (1 ≤ i, j ≤ N). The scalar unknown u : Ω → C

represents the pressure and must satisfy:











−ω
2

κa
u− div

(

1

ρ
B∇u

)

= f in Ω,

u = 0 on ∂Ω,

(1.35)

In the variational version of (1.35), we seek u ∈ H1
0 (Ω,C) such that

−ω2

∫

Ω

1

κa
uv̄ +

∫

Ω

1

ρ
B∇u · ∇v̄ =

∫

Ω

fv̄ (1.36)

for all v ∈ H1
0 (Ω,C).

We also consider elastic wave propagation problems where PML are used to simulate a
semi-infinite propagation medium. In this case, the unknown u : Ω→ C

N is vectorial and
represents the displacement. The unknown must satisfy:



























−ρω
2

a
u− div

(

C̃∇u
)

= f in Ω

C̃∇u · n = 0 on ΓF ,

u = 0 on ΓD

(1.37)

where ρ/a ∈ L∞(Ω,C) and each coefficient Cα,β of C̃ is such that Cα,β ∈ L∞(Ω,C). The
load term is assumed to square integrable: f ∈ L2(Ω,C)N . The variational version of
problem (1.37) is to find u ∈ H1

ΓD
(Ω,C)N such that

−ω2

∫

Ω

ρ

a
u · v̄ +

∫

Ω

C̃∇u : ∇v̄ =

∫

Ω

f · v̄, (1.38)

for all v ∈ H1
ΓD
(Ω,C)N .
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Chapter 2

Analysis of the problem in one

dimension

2.1 Analysis of the continuous problem

The convergence analysis of numerical schemes is based on stability properties of the PDE
to be discretized. Since we aim at solving Helmholtz problems in heterogeneous media,
there is a need for studying its stability. Indeed, most of the results have been obtained
for homogeneous media. The only result dealing with the stability of variational formu-
lation of he Helmholtz equation in heterogeneous media that we are aware of dates back
from 1988, and is restricted to the case of a one dimensional problems with a smoothly
varying wavespeed [16]. More recent investigations are available, namely the works of
Cummings and Feng [39] and Hetmaniuk [55], but they are restricted to the analysis of
the homogeneous equation (with a constant wavespeed).

Claeys and Hiptmair have developed a theory for acoustic (and even electromagnetic)
scattering by composite structures, described by piecewise constant medium parameters,
in the context of integral equations [34,35]. They show the coercivity of their formulation,
but the dependency of the stability constant with respect to the frequency is not explicit
(see Theorem 10.4 of [34]). Hence, it is not useful for frequency-explicit convergence study.

In our 1D contributions, we consider an acoustic medium defined by piecewise constant
parameters. We give a new results demonstrated in the variational framework. First, we
derive a stability estimate for the one dimensional case with mixed boundary conditions
and arbitrary piecewise constant parameters κ and ρ. This result can be generalized to a
class of two-dimensional layered propagation domains.

We deal with the variational formulation of the heterogeneous Helmholtz equation
coupled with standard boundary conditions like Dirichlet, Neumann and Fourier-Robin
conditions. Our objective is to establish stability estimates depending on the frequency
explicitly.

We go beyond the standard estimates of the solution H1 norm. Indeed, we give an
estimate in the W 1,∞ norm. Besides, we are able to give stability estimates not only with

33
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respect to the right-hand-side, but also with respect to the model parameters κ and ρ.
Furthermore, we will take advantage of these results for the numerical analysis to bound
the jumps in the solution derivative by a constant explicitly depending on the frequency.

2.1.1 Preliminary information

One might think that the Helmholtz equation, in particular in 1D, is simple. Indeed, it is a
linear PDE related to the Laplace operator. In the simplest case, we can write the operator
as −∆−ω2I. However, if the operator has a simple expression, it behaves very differently
from the Laplace operator. It is because the perturbation −ω2I has a negative sign, so that
the coercivity of the Laplace operator is lost. Furthermore, the loss of coercivity is related
to the frequency ω, and becomes more important at high frequencies. For this reason,
classical arguments based on the Lax-Milgram theorem can not apply to the Helmholtz
equation (see for example $2.4 of [58] or $2.10 of [87]).

If the Helmholtz operator is indefinite, it still keeps an interesting form. Indeed, we see
that −∆− ω2I = −∆(I + ω2∆−1), so that we can think about the operator as a compact
perturbation ω2∆−1 of the identity. Hence, we can study the stability of the operator in the
context of the Fredholm alternative theory: the problem of well-posedness resumes to the
problem of uniqueness of the solution. For a demonstration of the Fredholm alternative,
we refer the reader to the book of Brezis [26]. The application to variational formulations
of Helmholtz problems is given, for instance, in [58] or [87].

In the context of interior problems, the Fredholm alternative explains very well the
existence of resonance frequencies. They are the values of ω for which the homogeneous
equation admits non-trivial solutions. For exterior problems, or geophysical applications,
the Sommerfeld radiation condition, or its approximation, prevents from resonances, and
we are able to show uniqueness for all frequencies ω > 0. Therefore, we are able to show
the well-posedness of the Helmholtz equation using the Fredholm alternative.

However, if the Fredholm alternative provides a nice tool to show existence, uniqueness
and stability with respect to the right-hand-side, the stability constant remains implicit.
In particular, the behaviour of the stability constant (and therefore, the behaviour of
the solution) with respect to the frequency is not specified. Furthermore, in the con-
text of heterogeneous media, the influence of the medium parameters is unknown as well.
Frequency-explicit stability estimates are crucial for several reasons:

• From the physical point of view, frequency-explicit stability estimates describe the
behaviour of the energy depending on the frequency. For example, they indicate how
the amplitude of the solution depends on the frequency.

• In the context of numerical analysis, frequency-explicit stability estimates are also of
importance. Indeed, when analysing finite element schemes, regularity of the solution
is involved. In particular, it is well known that the bound on the finite element error
involves the semi-norm of the solution in suitable Sobolev spaces.
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Since we are especially concerned with the design of efficient numerical methods for
high frequency regime, the behaviour of the solution derivatives at high frequency will
take a crucial place in the forth-coming analysis.

This need for additional informations has motivated several developments. To the best
of our knowledge, the first frequency-explicit stability estimate available in the literature
has been demonstrated by Aziz et al. [16]. They consider a smooth velocity parameter c
and the boundary value problem



















−ω
2

c2
u− u′′ = f,

u(0) = u0,

u′(1)− iω

c∞
u(1) = 0.

Their idea is to use a special test function of the form v = αu+βu′, where α and β are
smooth functions. Since the velocity parameter c is smooth, it is possible to pick α and β
to be the solutions of the ODE system

{

2α + β′ = 1
2c−2α− (c−2β)′ = c−2,

yielding estimates depending explicitly on the frequency.
This methodology has two main drawbacks:

• It can not be generalized to non-smooth velocity parameters. Indeed, the result they
obtain is only valid for a high enough frequency range ω ≥ ω0(c). It turns out that
ω0(c) increases with the derivative of c, so that if we try to approximate a non-smooth
velocity parameter by a smooth one, we will not be able to extend the proof.

• The other issue is that the method of Aziz et al. do not precise how the solution
depends on the velocity. Indeed, their stability constant depends explicitly on the
frequency, but implicitly on the velocity. This is because the constant depends on
the derivatives of α and β, which are implicitly defined through an ODE.

In the context of homogeneous propagation media, a simpler methodology has been
developed by Douglas et al. [43]. Indeed, in a one dimensional homogeneous medium, the
solution can be expressed as a convolution with the Green function (which is analytically
available):

u(x) =
i

2ω

∫ 1

0

f(ξ) exp (iω|x− ξ|) ,

and stability estimates follow from simple computations. The same approach is adopted
by Babuška and Ihlenburg with different boundary conditions [59]. But if this approach is
straightforward, it is limited to the one dimensional homogeneous case.

Makridakis, Ihlenburg and Babuška have also considered the problem of a fluid-solid
interaction [70]. A solid body is immersed in a fluid and waves are propagating. They have
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used special test functions of the form v(x) = (x− x̄)u′(x), where x̄ is a carefully selected
point and their approach came to our attention. In the following we propose to extend
the methodology of Makridakis, Ihlenburg and Babuška to the case of a heterogeneous
acoustic one dimensional medium. We assume that the medium is determined by piecewise
constant parameters, so that the problem can be understood as a transmission problem.
Our method differs from Makridakis, Ihlenburg and Babuška. Indeed, in every layer, an
acoustic Helmholtz equation is considered and the transmission conditions are different.
Besides, we do not restrict our model to 3 layers, but to an arbitrary number of layers L.
Furthermore, the parameters of the medium can be chosen freely in each layer.

Though our 1D proof can be generalized to the case of two dimensional layered media,
it is not valid for general geometries. This is the reason why we will propose another
methodology for 2D problems in Chapter 2.

2.1.2 Description of the propagation medium

We consider a 1D acoustic propagation medium defined by a bulk modulus κ and a density
ρ. In order to simplify the notations in the following, we need to introduce a set M of
admissible models, or equivalently, a set of admissible couple (κ, ρ).

Definition 1. We will say that a couple (κ, ρ) ∈ L∞(0, Z,R)×L∞(0, Z,R) is an admissible
propagation medium, and we will note (κ, ρ) ∈M if the following conditions are satisfied:

1. There exist an integer L, a partition

0 = z0 < z1 < . . . zL−1 < zL = Z

and two sets of values {κl}Ll=1, {ρk}Ll=1 such that

κ|(zl−1,zl) = κl, ρ|(zl−1,zl) = ρl,

for all l ∈ {1, . . . , L}.

2. Each parameter is bounded

κ⋆ ≤ κl ≤ κ⋆, ρ⋆ ≤ ρl ≤ ρ⋆,

for all L ∈ {1, . . . , L}.

3. We define hl = zl − zl−1 for all l ∈ {1, . . . , L} and assume that hl ≥ h⋆ for all
l ∈ {1, . . . , L}.

4. We define the constant

M =
L−1
∏

l=1

max

(

κl+1

κl
,
ρl
ρl+1

, 1

)

, (2.1)

and assume that M ≤ M⋆,
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where the constants κ⋆, κ
⋆, ρ⋆, ρ

⋆, h⋆ and M⋆ are fixed. We also assume that κ⋆, ρ⋆,h⋆ > 0.
Furthermore, if (κ, ρ) ∈ M , we note c =

√

κ/ρ ∈ L∞(0, Z,C) the wavespeed. We also

note cl =
√

κl/ρl for every layer l ∈ {1, . . . , L}.

In the remaining of Chapter 2, we will use the notations ||.|| and ||.||∞ for the L2(0, Z,C)
and L∞(0, Z,C) norms. Theses norms are defined by

||v||2 =
∫ Z

0

|v(z)|2dz, ∀v ∈ L2(0, Z,C)

and

||v||∞ = esssupz∈(0,Z) |v(z)|, ∀v ∈ L∞(0, Z,C).

2.1.3 Problem setting

Let f ∈ L2(0, 1,C) be a load term, (κ, ρ) ∈ M be an admissible model and c =
√
κ, ρ

be the associated wavespeed. We seek a function u ∈ L2(0, Z,C) satisfying the following
conditions:

• In each layer l ∈ {1, . . . , L}, u satisfies

−ω
2

c2l
u− u′′ = ρlf in (zl−1, zl), (2.2)

in the sense of distribution D′(zl−1, zl,C).

• For each interface l ∈ {1, . . . , L− 1}, the following compatibility conditions hold:

u(z−l ) = u(z+l ) (2.3)

1

ρl
u′(z−l ) =

1

ρl+1

u′(z+l ) (2.4)

• u satisfies the boundary conditions

−u′(0) = 0 (2.5)

u′(Z)− iω

cL
u(Z) = 0. (2.6)

Our first task is to show that transmission problem (2.2-2.6) is equivalent to varia-
tional problem (2.7). Establishing a variational formulation is crucial, because Galerkin
discretizations (including finite elements) are not based on transmission problem (2.2-2.6),
but rather on variational formulation (2.7). Furthermore, several important properties of
the solution are easier to show in the variational framework.
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Theorem 1. A function u ∈ L2(0, Z,C) satisfies the boundary value problem (2.2) to (2.6)
if and only if u ∈ H1(0, Z,C) and

Bω,κ,ρ(u, v) =

∫ Z

0

f(z)v(z)dz, ∀v ∈ H1(0, Z,C), (2.7)

where

Bω,κ,ρ(w, v) = −ω2

∫ Z

0

1

κ(z)
w(z)v(z)dz − iω√

κlρl
w(Z)v(z) +

∫ Z

0

1

ρ(z)
w′(z)v′(z)dz. (2.8)

Proof. Let us first assume that u ∈ L2(0, Z,C) satisfies (2.2) to (2.6). We are going to
show that u ∈ H1(0, Z,C) and that (2.7) holds.

Since u satisfies (2.2), it is clear that

u′′ = −ρlf − ω2

c2l
u ∈ L2(zl−1, zl,C),

for l ∈ {1, . . . , L}. It follows that u ∈ H2(zl−1, zl,C) for every layer l ∈ {1, . . . , L} and
compatibility condition (2.3) implies that u ∈ H1(0, Z,C).

To show that (2.7) holds, we consider a test function φ ∈ H1(0, Z,C). Multiplying
(2.2) by ρ−1

l φ we obtain

−ω
2

κl
u(z)φ(z)− 1

ρl
u′′(z)φ(z) = f(z)φ(z), z ∈ (zl−1, zl). (2.9)

We integrate (2.9) on each layer (zl−1, zl) and sum over all layers l ∈ {1, . . . , L}. It
follows

L
∑

l=1

{

−ω
2

κl

∫

zl

zl−1

u(z)φ(z)dz − 1

ρl

∫

zl

zl−1

u′′(z)φ(z)dz

}

=
L

∑

l=1

∫

zl

zl−1

f(z)φ(z)dz. (2.10)

By Chasles relation, we have

L
∑

l=1

{

−ω
2

κl

∫

zl

zl−1

u(z)φ(z)dz

}

= −ω2

∫ Z

0

1

κ(z)
u(z)φ(z)dz, (2.11)

and
L

∑

l=1

∫

zl

zl−1

f(z)φ(z)dz =

∫ Z

0

f(z)φ(z)dz. (2.12)

Using integration by parts, compatibility condition (2.4), boundary conditions (2.5)
and (2.6), and Chasles relation, we end up with

L
∑

l=1

{

− 1

ρl

∫

zl

zl−1

u′′(z)φ(z)dz

}

= − iω√
ρlκl

u(Z)φ(Z) +

∫ Z

0

1

ρ(z)
u′(z)φ′(z)dz. (2.13)
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Inserting (2.11), (2.12) and (2.13) in (2.10), we have

Bω,κ,ρ(u, φ) =

∫ Z

0

f(z)φ(z)dz, (2.14)

and (2.7) holds, since (2.14) is true for all φ ∈ H1(0, Z,C).

We now assume that u ∈ H1(0, Z,C) and that (2.7) holds. We are going to show that
u satisfies (2.2) to (2.6).

We consider a test function φ ∈ D(0, Z,C), and integrate by parts. We have

Bω,κ,ρ(u, φ) =

∫ Z

0

{

− ω2

κ(z)
u(z)−

(

1

ρ
u′

)′

(z)

}

φ(z)dz,

and, since (2.7) holds

∫ Z

0

(

1

ρ
u′

)′

(z)φ(z)dz =

∫ Z

0

(

−f(z)− ω2

κ(z)
u(z)

)

φ(z)dz.

It follows that
(

1

ρ
u′

)′

= f − ω2

κ
u, (2.15)

in the sense of distribution and therefore (ρ−1u′)′ ∈ L2(0, Z,C). We thus have ρ−1u′ ∈
H1(0, Z,C).

Since u, ρ−1u′ ∈ H1(0, Z,C), we have u, ρ−1u′ ∈ C0(0, Z,C). It follows that compati-
bility conditions (2.3) and (2.4) hold.

Furthermore, if we consider a given layer (zl−1, zl) for l ∈ {1, . . . , L}, κ(z) = κl and
ρ(z) = ρl for z ∈ (zl−1, zl). Thus, we can multiply (2.15) by ρl to obtain (2.2).

In order to show that boundary conditions (2.5) and (2.6) are satisfied, we consider a
test function φ ∈ H1(0, Z,C) and integrate by parts

∫ Z

0

{

− ω2

κ(z)
u(z)−

(

1

ρ
u′

)′

(z)

}

φ(z)dz− 1

ρ1
u′(0)φ(0)+

1

ρL
u′(Z)φ(Z)− iω√

κLρL
u(Z)φ(Z) =

∫ Z

0

f(z)φ(z)dz,

and we obtain

− 1

ρ1
u′(0)φ(0) +

(

1

ρL
u′(Z) +

iω√
κLρL

u(Z)

)

φ(Z) = 0 (2.16)

using (2.15). Selecting the test functions φ(z) = z/Z and φ(z) = (Z − z)/Z, we obtain
boundary conditions (2.5) and (2.6).
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2.1.4 Well-posedness

This section is devoted to the existence and uniqueness of a solution u to problem (2.2-2.6)
(or equivalently, problem (2.7)).

We follow standard paths for demonstration: since the sesquilinear form (2.8) of the
variational problem satisfies a G̊arding inequality, it is sufficient to show uniqueness of
the solution to obtain well-posedness in the sense of Hadamard. We refer the reader to
Chapter 2 of [87], in particular Corollary 2.1.61.

The theory around the G̊arding inequality is based on the Fredholm alternative. Note
that if it provides a simple tool to show the well-posedness of our problem, it provides no
information about how the solution depends upon the parameters. Namely, the stability
constant is not explicit (see for instance Proposition 8.1.3 of [73]). We will overcome this
lack of information in the next section.

To begin with, let us take advantage of the 1D setting to depict the solution as a
function of f :

Lemma 1. Let u ∈ L2(0, Z,C) be solution to (2.2). Then there exist 2L complex constants
αl, βl ∈ C, 1 ≤ l ≤ L such that

u(z) = αl exp

(

iω

cl
z

)

+ βl exp

(

− iω

cl
z

)

− iclρl
2ω

∫ Z

0

f(ξ) exp

(

− iω

cl
|z − ξ|

)

dξ, (2.17)

for a.e. z ∈ (zl−1, zl) and for 1 ≤ l ≤ L.

Proof. Consider a given layer l ∈ {1, . . . , L} inside which u is solution to the linear ODE

−ω
2

c2l
u− u′′ = ρlf.

One can verify by hand that

− iclρl
2ω

∫ Z

0

f(ξ) exp

(

− iω

cl
|z − ξ|

)

dξ,

is a particular solution and that

exp

(

iω

cl
z

)

, exp

(

− iω

cl
z

)

,

are two independent homogeneous solutions.
Since (2.1.4) is a second order linear ODE, it follows from classical theory that there

exist two constants αl, βl ∈ C such that (2.17) holds.

We are now ready to prove uniqueness of the solution to problem (2.2-2.6). Using
Lemma 1, we apply mathematical induction to prove that any solution u vanishes in each
layer.
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Lemma 2. Assume u ∈ L2(0, Z,C) satisfies boundary value problem (2.2-2.6) with f = 0.
Then u = 0.

Proof. Because f = 0, Lemma 2 yields that for each layer 1 ≤ l ≤ L,

u(z) = αl exp

(

iω

cl
z

)

+ βl exp

(

− iω

cl
z

)

, z ∈ (zl−1, zl),

for some complex constants αl, βl ∈ C. Now, since (2.7) holds, we have in particular

ImBω,κ,ρ(u,u) = − iω√
κLρL

|u(Z)|2 = 0,

so that u(Z) = 0. Furthermore, u satisfies boundary condition (2.6) and we deduce that
u(Z) = u′(Z) = 0. It follows that



















exp

(

iωZ

cl

)

αL + exp

(

− iωZ

cl

)

βL = 0

iω

cl
exp

(

iωZ

cl

)

αL − iω

cl
exp

(

− iωZ

cl

)

βL = 0,

and αL = βL = 0.
Assume that αl = βl = 0 for l⋆ ≤ l ≤ L. We are going to show that αl⋆−1 = βl⋆−1 = 0.

Since αl⋆ = βl⋆ = 0, is it clear that u(z+l⋆) = u′(z+l⋆) = 0, and transmission conditions (2.3)
and (2.4) ensure that u(z−l⋆) = u′(z−l⋆) = 0. It follows that



















exp

(

iωzl⋆
cl⋆−1

)

αl⋆−1 + exp

(

− iωzl⋆
cl⋆−1

)

βl⋆−1 = 0

iω

cl
exp

(

iωzl⋆
cl⋆−1

)

αl⋆−1 − iω

cl
exp

(

− iωzl⋆
cl⋆−1

)

βl⋆−1 = 0,

and αl⋆−1 = βl⋆−1 = 0.
Using mathematical induction, we obtain that αl = βl = 0 for all l ∈ {1, . . . , !L}, and

hence, u = 0.

Uniqueness being established, we can now turn to the proof of existence. We recall that
the M is the set of admissible propagation media defined in Definition 1.

Theorem 2. Consider an admissible model (κ, ρ) ∈ M and f ∈ L2(0, Z,C). Then there
exists a unique function Sω,κ,ρf ∈ L2(0, Z,C) satisfying the transmission problem (2.2-2.6).

Proof. Recalling Theorem 1, a function u ∈ L2(0, Z,C) is solution to the transmission
problem (2.2-2.6) iff u ∈ H1(0, Z,C) and u is solution to the variational problem (2.7).

It is clear that sesquilinear form (2.8) satisfies a G̊arding inequality. Indeed, for all
φ ∈ H1(0, Z,C), it holds that

ReBω,κ,ρ(φ, φ) = −ω2

∫ Z

0

1

κ(z)
|φ(z)|2dz +

∫ Z

0

1

ρ(z)
|φ′(z)|2 ≥ 1

ρ⋆
||φ′||2 − ω2

κ⋆
||φ||2.

Following the classical theory (see for, instance Corollary 2.1.61 of [87]), it is then
sufficient to show uniqueness of the solution, and we conclude thanks to Lemma 2.
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2.1.5 Frequency-explicit stability estimates

In the previous section, we have demonstrated the existence and uniqueness of the solution
to problem (2.2-2.6). Our proofs are based on the Fredholm alternative theory, and actually,
they include stability of the solution with respect to the right hand side, that is

||Sω,κ,ρf ||+ ||(Sω,κ,ρf)
′|| ≤ C||f ||, (2.18)

for some constant C ∈ R.
Obviously, regarding the extreme role played by the frequency in Helmholtz problems,

stability estimate (2.18) is not sufficient, because the constant C depends implicitly on all
the parameters of the problem, including ω, κ and ρ.

In this section, we introduce fully-explicit stability estimates. We say that our estimates
are fully explicit, because we obtain an explicit formula for all constants that occur in the
estimates. More precisely, the constants depend (explicitly) on the length of the domain
Z, the frequency ω, the maximum values κ⋆ and ρ⋆ of κ and ρ, the values κL and ρL of κ
and ρ in the last layer, and the constant

M =
L−1
∏

l=1

max

(

κl+1

κl
,
ρl
ρl+1

, 1

)

.

Note that κL and ρL play a special role because they are involved in the boundary
condition (2.6). In fact, only the value cL matters.

The constant M appears naturally in the above demonstrations. It can be interpreted
as a measure of the variations of the propagation medium. In the worst case, it can be
bounded by a constant depending on the extreme values of the parameters κ⋆, κ

⋆, ρ⋆, ρ
⋆

and the number of interfaces L− 1

M ≤
(

κ⋆ρ⋆

κ⋆ρ⋆

)L−1

.

If κ is increasing and ρ is decreasing (hence, c is increasing), we have a simpler bound,
independent of the number of layers

M ≤ κ⋆ρ⋆

κ⋆ρ⋆
.

Finally, if κ is decreasing and ρ is increasing (that is, c is decreasing) we can neglect
the constant M since

M ≤ 1.

Theorem 3. Let f ∈ L2(0, Z,C) and (κ, ρ) ∈M . The following stability estimate holds
∣

∣

∣

∣κ−1/2(Sω,κ,ρf)
∣

∣

∣

∣ ≤ Csω
−1 ||f || ,

∣

∣

∣

∣ρ−1/2(Sω,κ,ρf)
′
∣

∣

∣

∣ ≤ Cs ||f || , (2.19)

where

Cs = ρ⋆1/2
(

1 +
κ⋆

κ⋆

)1/2

M⋆Z (2.20)
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Theorem 3 is a classical stability result for the Helmholtz equation, revisited to the
case of piecewise constant coefficients κ and ρ (we recall that M is the set of admissible
propagation media defined in Definition 1). Note that only the values {κl, ρl}Ll=1 of the
parameters and the length Z of the domain are involved in the stability constant. In
particular, the length {hl}Ll=1 does not matter.

Theorem 4 gives additional information on the solution norm at the interfaces. This
result is important because the amplitude of the jumps in the solution derivative are directly
related to these quantities. In particular, Theorem 4 is a key point in the analysis of finite
element schemes.

In Theorem 4, we handle the traces of u and its derivative on the interfaces zl. Because
of the transmission condition (2.4), the traces of the derivative are multi-valued: the trace
is not the same depending on which side we look at. In Definition 2, we introduce auxiliary
notations to avoid confusions.

Definition 2. For l ∈ {1, . . . , L− 1}, we define the traces vl and wl by

vl = (Sω,κ,ρf)(zl) = (Sω,κ,ρf)(z
+
l ) = (Sω,κ,ρf)(z

−
l ),

and

wl =
1

ρl+1

(Sω,κ,ρf)
′(z+l ) =

1

ρl
(Sω,κ,ρf)

′(z−l ).

We further define v0,w0, vL and wL by

v0 = (Sω,κ,ρf)(0), vL = (Sω,κ,ρf)(Z),

and

w0 =
1

ρ1
(Sω,κ,ρf)

′(0), wL =
1

ρL
(Sω,κ,ρf)

′(Z).

Theorem 4. At each interface l ∈ {1, . . . , L}, we have

κ
−1/2
l |vl| ≤

Cs

h⋆

ω−1 ||f || , ρ
1/2
l |wl| ≤

Cs

h⋆

||f || . (2.21)

The demonstration of Theorems 3 and 4 is rather technical and is presented in a separate
section.

Basically, the main ideas of the proof of Theorem 3 draw their inspiration from the
proof of Makridakis, Ihlenburg and Babuška for fluid-solid interaction [70]. The difference
is that we consider an arbitrary number of layers L and that we have different transmission
conditions.

As a direct consequence of Theorem 3 we can bound the H2 semi norm of the solution
when the density ρ = 1 is constant.

Corollary 1. Assume that ρ = 1. Then Sω,κ,ρf ∈ H2(0, Z,C) and we have

||(Sω,κ,ρf)
′′|| ≤ Cs,2ω||f ||, (2.22)

with

Cs,2 = 1 +
Cs

κ⋆
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Proof. Since ρ = 1 is constant, it is clear that it holds that

−ω
2

κ
− u′′ = f

in (0, Z). It follows that

u′′ = −f − ω2

κ
u,

and thus u′′ ∈ L2(0, Z,C) and

||u′′|| ≤ ||f ||+ ω2

κ⋆
||u||. (2.23)

Hence, (2.22) follows from Theorem 3.

As a direct consequence of Theorem 3, we are able to derive an inf-sup condition for the
sesquilinear form (2.8). Inf-sup condition (2.24) is equivalent to the well-posedness of the
Helmholtz operator that we show in Theorem 2. Additionally, as observed by Ihlenburg
and Babuška [59], we will see that its proof is a direct application of the stability estimate
(Theorem 3).

Before giving Theorem 5, we need the following notation.

Definition 3. Let v ∈ H1(0, Z,C). We introduce the norm (equivalent to the standard
H1(0, Z,C) norm)

||v||ω,κ,ρ =
(

ω2||κ1/2v||2 + ||ρ1/2v′||2
)1/2

.

Theorem 5. The following inf-sup condition holds

inf
u∈H1(0,Z,C)

sup
v∈H1(0,Z,C)

ReBω,κ,ρ(u, v)

||u||ω,κ,ρ||v||ω,κ,ρ
≥ 1

1 + 2Csω
. (2.24)

Note that our inf-sup condition is frequency-explicit (and actually, explicit with respect
to all parameters), because we were able to derive a frequency-explicit stability estimate. In
contrast, the inf-sup constant obtained by Claeys and Hiptmair in [34] depends implicitly
on all parameters.

We are now ready to establish our inf-sup condition. Observe that our result is a
generalization of the inf-sup condition demonstrated by Ihlenburg and Babuška [59] for
the homogeneous case. They showed that their result is optimal in the sense that the
exponent on ω in the inf-sup condition is as small as possible.

Proof. Consider an arbitrary w ∈ H1(0, Z,C). We define φ ∈ H1(0, Z,C) by

φ = 2ω2Sω,κ,ρ(κ−1w). (2.25)
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Definition (2.25) of φ ensures that

Bω,κ,ρ(ξ, φ) = Bω,κ,ρ(φ, ξ)

= 2ω2Bω,κ,ρ

(

Sω,κ,ρ(κ
−1w), ξ

)

= 2ω2

∫ Z

0

1

κ(z)
ξ(z)w(z)dz,

for all ξ ∈ H1(0, Z,C). It is thus clear that

Bω,κ,ρ(w, φ) = 2ω2

∫ Z

0

1

κ(z)
|w(z)|2dz = 2ω2||κ−1/2w||2,

and it follows

ReBω,κ,ρ(w,w + φ) = ReBω,κ,ρ(w, φ)− ω2||κ−1/2w||2 + ||ρ−1/2w′||2 = ||w||2ω,κ,ρ.

Furthermore, Theorem 3 ensures that

||φ||ω,κ,ρ ≤ 2Csω
2||κ−1/2w||,

and therefore
||w + φ||ω,κ,ρ ≤ (1 + 2Csω)||w||ω,κ,ρ.

Setting η = w + φ ∈ H1(0, Z,C), we conclude that

ReBω,κ,ρ(w, η) ≥
1

1 + 2Csω
||w||ω,κ,ρ||η||ω,κ,ρ.

We close our stability analysis with respect to the right-hand-side f , with Theorem 6,
where we introduce additional stability estimates in L∞ norm.

Proposition 1. Let c ∈ R
∗
+ and z ∈ R. Then the matrix

Mc,z =











exp

(

iω

c
z

)

exp

(

− iω

c
z

)

exp

(

iω

c
z

)

− exp

(

− iω

c
z

)











,

is invertible.

M−1
c,z =

−1
2











− exp

(

− iω

c
z

)

− exp

(

− iω

c
z

)

− exp

(

iω

c
z

)

exp

(

iω

c
z

)











,

and
||M−1

c,z ||∞ ≤ 1.
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Lemma 3. Consider a given layer l ∈ {1, . . . , L}. There exist constants αl, βl ∈ C such
that

(Sω,κ,ρf)(z) = αl exp

(

iω

cl
z

)

+ βl exp

(

− iω

cl
z

)

− iclρl
2ω

∫ Z

0

f(ξ) exp

(

− iω

cl
|z − ξ|

)

dξ,

for z ∈ (zl−1, zl). Furthermore

|αl|, |βl| ≤ Cα,βω
−1||f ||, (2.26)

where

Cα,β = max
l∈{1,...,L}

(

Csκ
−1/2
l

h⋆

+
clρl

√
Z

2

)

.

Proof. The first part of the Lemma is a direct consequence of Lemma 1. Therefore, we
focus on proving (2.26). Recalling Definition 2, we have

αl exp

(

iω

cl
zl

)

+ βl exp

(

− iω

cl
zl

)

− iclρl
2ω

∫ Z

0

f(ξ) exp

(

− iω

cl
|zl − ξ|

)

dξ = vl,

and

iω

cl
αl exp

(

iω

cl
zl

)

− iω

cl
βl exp

(

− iω

cl
zl

)

−ρl
2

∫ Z

0

f(ξ) sign(zl−ξ) exp
(

− iω

cl
|zl − ξ|

)

dξ = wl.

Therefore, we have Mcl,zlA = B, where Mcl,zl is defined in Proposition 1, A = (αl, βl)
T

and

B =











vl +
iclρl
2ω

∫ Z

0

f(ξ) exp

(

− iω

cl
|zl − ξ|

)

dξ

cl
iω

wl +
clρl
2iω

∫ Z

0

f(ξ) sign(zl − ξ) exp

(

− iω

cl
|zl − ξ|

)

dξ











.

Recalling Proposition 1, ||M ||∞ ≤ 1, and therefore |αl|, |βl| ≤ ||A||∞ ≤ ||B||∞.
It remains to bound ||B||∞. We have

|B1| ≤ |vl|+
clρl
2ω

||f ||1

≤ Cs

h⋆

ω−1κ
−1/2
l ||f ||+ clρl

2ω
||f ||1

≤
(

Cs

h⋆

κ
−1/2
l +

clρl
√
Z

2

)

ω−1||f ||,

and

|B2| ≤ cl
2ω

|wl|+
clρl
2ω

||f ||1

≤ cl
2ω

Cs

h⋆

ρ
−1/2
l ||f ||+ clρl

2ω
||f ||1

≤
(

Cs

2h⋆

κ
−1/2
l +

clρl
√
Z

2

)

ω−1||f ||,
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so that

||B||∞ ≤
(

Cs

h⋆

κ
−1/2
l +

clρl
√
Z

2

)

ω−1||f ||.

Theorem 6. We have

||Sω,κ,ρf ||∞ ≤ C∞ω
−1||f ||, ||(Sω,κ,ρf)

′||∞ ≤ C ′
∞||f ||, (2.27)

with

C∞ = 2Cα,β, C ′
∞ =

C∞

minl∈{1,...,L} cl
.

Proof. Consider an arbitrary layer l ∈ {1, . . . , L}. Using Lemma 3, there exist two complex
constants αl, βl ∈ C such that

u(z) = αl exp

(

iω

cl
z

)

+ βl exp

(

− iω

cl
z

)

− icl
2ω

∫ Z

0

f(ξ) exp

(

− iω

cl
|z − ξ|

)

dξ,

for z ∈ (zl−1, zl). Furthermore, we have

u′(z) =
iω

cl
αl exp

(

iω

cl
z

)

− iω

cl
βl exp

(

− iω

cl
z

)

−1

2

∫ Z

0

f(ξ) sign(zl−ξ) exp
(

− iω

cl
|z − ξ|

)

dξ,

for z ∈ (zl−1, zl).
It follows that, for z ∈ (zl−1, zl),

|u(z)| ≤ |αl|+ |βl|+
cl
2ω

∫ Z

0

|f(z)|dz,

and

|u′(z)| ≤ ω

cl
|αl|+

ω

cl
|βl|+

1

2

∫ Z

0

|f(z)|dz.

Hence, (2.27) follows from (2.26), since

∫ Z

0

|f(z)|dz ≤
√
Z||f ||.

2.1.6 Stability with respect to the medium parameters

Stability estimates with respect to the medium parameters are rarely tackled in the liter-
ature even if they have an important role to play.

First, in the context of inverse problems, the dependency of the solution with respect
to medium parameters is at stake.
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Second, in the context of multiscale numerical methods, it might be of interest to ap-
proximate the medium parameters. For instance, in this work, we use a piecewise constant
approximation of the velocity in order to simplify the computations of integral coefficients
related to finite element approximation. In recent developments of plane-wave methods,
the so-called generalized plane-waves have been introduced [61, 96]. In homogeneous me-
dia, plane waves are homogeneous solutions to the Helmholtz equation and they might be
used as finite element shape functions to approximate the solution. The idea of general-
ized plane-wave is to locally approximate the wavespeed (by a linearization in [96] or a
higher order approximation in [61]) in such a way that analytical homogeneous solutions
are available. These homogeneous solutions are the so-called generalized plane-waves.

In order to analyse such numerical methods, it is clear that the approximation of
the wavespeed has a major impact. Indeed the generalized plane wave are not exactly
homogeneous solutions to the Helmholtz equation with the real wavespeed. As a matter
of fact, it turns out that frequency-explicit convergence analysis of generalized plane-wave
method is not available yet.

In Theorem 7 we provide a frequency-explicit stability result for the 1D case. For
this purpose, we first establish Proposition 2. We recall that M is the set of admissible
propagation media defined in Definition 1.

Proposition 2. Let (κ, ρ) ∈M . Then, for all v ∈ H1(0, Z,C), we have

||v||∞ ≤ Ctrω
−1/2||v||ω,κ,ρ, (2.28)

with

Ctr = max

{

1,

√

(

1

Z
+ ρ⋆

)

κ⋆

}

.

Proof. First, for all x, y ∈ (0, Z) it holds that

|v(x)|2 − |v(y)|2 =

∫ x

y

d

dz

(

|v|2
)

(ξ)dξ

= 2Re

∫ x

y

v(ξ)v′(ξ)dξ

= 2Re

∫ x

y

(

ρ1/2v(ξ)
)

(

ρ−1/2v′(ξ)
)

dξ

≤ 2||ρ1/2v|| ||ρ−1/2v′||.

We thus have
|v(x)|2 ≤ |v(y)|2 + 2

√
ρ⋆||v|| ||ρ−1/2v′||.

for all x, y ∈ (0, Z). Integrating with respect to y over (0, Z), and dividing by Z, we get

|v(x)|2 ≤ 1

Z
||v||2 + 2

√
ρ⋆||v|| ||ρ−1/2v′||,
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Using the algebraic inequality 2ab ≤ ωa2 + ω−1b2, and the assumption that ω ≥ 1, we
can conclude:

||v||2∞ ≤ 1

Z
||v||2 + ρ⋆ω||v||2 + ω−1||ρ−1/2v′||2

≤ ω−1

{(

ω−1

Z
+ ρ⋆

)

ω2||v||2 + ||ρ−1/2v′||2
}

≤ ω−1

{(

ω−1

Z
+ ρ⋆

)

ω2κ⋆||κ−1/2v||2 + ||ρ−1/2v′||2
}

≤ max

{

1, κ⋆
(

1

Z
+ ρ⋆

)}

ω−1||v||2ω,κ,ρ.

Theorem 7. Consider two propagation media defined by the parameters (κ1, ρ1) ∈M and
(κ2, ρ2) ∈M . Then

||Sω,κ1,ρ1f − Sω,κ2,ρ2f ||
≤ Cs,m||f ||

(

||κ−1
1 − κ−1

2 ||+ ||ρ−1
1 − ρ−1

2 ||+ ω−1/2|κ1(Z)ρ1(Z))−1/2 − (κ2(Z)ρ2(Z))
−1/2|

)

,

and

||(Sω,κ1,ρ1f)
′ − (Sω,κ2,ρ2f)

′||
≤ Cs,mω||f ||

(

||κ−1
1 − κ−1

2 ||+ ||ρ−1
1 − ρ−1

2 ||+ ω−1/2|κ1(Z)ρ1(Z))−1/2 − (κ2(Z)ρ2(Z))
−1/2|

)

,

where Cs,m is a constant independent of ω, (κ1, ρ1), (κ2, ρ2) and f .

Proof. To simplify the notations, let us write u1 = Sω,κ1,ρ1f and u2 = Sω,κ2,ρ2f . First,
since u1,u2 satisfy problem (2.7), it is clear that

Bω,κ1,ρ1(u1, v) = Bω,κ2,ρ2(u2, v)

for all v ∈ H1(0, Z,C). Hence, we have

Bω,κ1,ρ1(u1 − u2, v) = Bω,κ2,ρ2(u2, v)− Bω,κ1,ρ1(u2, v), (2.29)

for all v ∈ H1(0, Z,C).
Using Theorem 5, we can lower bound the left-hand-side of (2.29) by the norm of

u1 − u2. Focusing on the right-hand-side of (2.29), we have

Bω,κ2,ρ2(u2, v)− Bω,κ1,ρ1(u2, v) = − ω2

∫ Z

0

(

κ−1
2 − κ−1

1

)

(z)u2(z)v(z)dz

− iω
(

κ2(Z)ρ2(Z))
−1/2 − (κ1(Z)ρ1(Z))

−1/2
)

u2(Z)v(Z)

+

∫ Z

0

(

ρ−1
2 − ρ−1

1

)

(z)u′
2(z)v

′(z)dz,
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and

|Bω,κ2,ρ2(u2, v)− Bω,κ1,ρ1(u2, v)| ≤ ω2||κ−1
2 − κ−1

1 || ||u2||∞ ||v||
+ ω|κ2(Z)ρ2(Z))−1/2 − (κ1(Z)ρ1(Z))

−1/2| ||u2||∞ ||v||∞
+ ||ρ−1

2 − ρ−1
1 || ||u′

2||∞ ||v′||
≤ C∞ω||κ−1

2 − κ−1
1 || ||f || ||v||

+ C∞|κ2(Z)ρ2(Z))−1/2 − (κ1(Z)ρ1(Z))
−1/2| ||f || ||v||∞

+ C ′
∞||ρ−1

2 − ρ−1
1 || ||f || ||v′||

≤ (C∞||κ−1
2 − κ−1

1 ||
+ C∞Ctrω

−1/2|κ2(Z)ρ2(Z))−1/2 − (κ1(Z)ρ1(Z))
−1/2|

+ C ′
∞||ρ−1

2 − ρ−1
1 ||) ||f || ||v||ω,κ1,ρ1 .

Using Proposition 2, we have

|Bω,κ2,ρ2(u2, v)− Bω,κ1,ρ1(u2, v)|
||v||ω,κ1,ρ1

≤ max((1 + Ctr)C∞, C
′
∞)×

(||κ−1
2 − κ−1

1 ||+ ω−1/2|(κ2(Z)ρ2(Z))−1/2 − (κ1(Z)ρ1(Z))
−1/2|+ ||ρ−1

2 − ρ−1
1 ||)||f ||. (2.30)

We conclude with Theorem 5. We have,

||u1 − u2||ω,κ1,ρ1 ≤ (1 + 2Cs,1ω) sup
v∈H1(0,Z,C)

|Bω,κ1,ρ1(u1 − u2, v)|
||v||ω,κ1,ρ1

,

and the proof follows from (2.29) and (2.30).

2.1.7 Proof of Theorems 3 and 4

The main tool of the demonstration of Theorems 3 and 4 is a set of discontinuous test
functions {φl}Ll=1. Each φl has a support contained in [zl, zl−1] and depends on a parameter
ẑl that will be set in the end of demonstration.

Definition 4. Let l ∈ {1, . . . , L}, we define φl : (zl, zl−1) → C by

φl(z) = (z − ẑl)(Sω,κ,ρf)
′(z),

where ẑl ∈ R is a real constant. Observe that, since Sω,κ,ρf ∈ H2(zl−1, zl,C), φl ∈
H1(zl−1, zl,C).

For ease of presentation we will write u = Sω,κ,ρf . We define, for each layer l ∈
{1, . . . , L}, Hlu ∈ L2(zl−1, zl,C) by

(

Hlu
)

(z) = −ω
2

κl
u(z)− 1

ρl
u′′(z), z ∈ (zl−1, zl).

We also introduce

Hu = −ω
2

κ
u−

(

1

ρ
u′

)′

.

The proof is divided in 3 distinct parts.
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Part I

The first step of the demonstration is to obtain identity (2.31) recorded in Proposition 3.

Proposition 3. For any f ∈ L2(0, Z,C), we have

∫ Z

0

(

ω2

κ(z)
|u(z)|2 + 1

ρ(z)
|u′(z)|2

)

dz

+ ω2

L−1
∑

l=1

{

1

κl+1

(zl − ẑl+1)−
1

κl
(zl − ẑl)

}

|vl|2 +
L−1
∑

l=1

{ρl+1(zl − ẑl+1)− ρl(zl − ẑl)} |wl|2

= (Z−ẑL)

(

ω2

κL
|vL|2 + ρL|wL|2

)

−(0−ẑ1)

(

ω2

κ1
|v0|2 + ρ1|w0|2

)

+2Re

{

L
∑

l=1

∫

zl

zl−1

f(z)φl(z)dz

}

.

(2.31)

We obtain identity (2.31) by applying each test function φl against Hlu. The proof is
based on the Rellich identity (which is equivalent to integrating by parts in 1D) and the
fact that Hu = f . The proof is straightforward, but requires a lot of hand computations.
We thus introduce three preliminary Lemmas.

In Lemma 4 we obtain identities (2.33) and (2.34) using integration by parts together
with the derivation rule

(

|ψ|2
)′
= 2Re

(

ψ′ψ
)

, (2.32)

for complex functions ψ ∈ H1.

Lemma 4. For l ∈ {1, . . . , L}, it holds that

2Re

∫

zl

zl−1

u(z)φl(z)dz = −
∫

zl

zl−1

|u(z)|2dz + (zl − ẑl)|vl|2 − (zl−1 − ẑl)|vl−1|2, (2.33)

and

2Re

∫

zl

zl−1

u′′(z)φl(z)dz = −
∫

zl

zl−1

|u′(z)|2dz+(zl−ẑl)ρ
2
l |wl|2−(zl−1−ẑl)ρ

2
l−1|wl−1|2. (2.34)

Proof. As a starting point, we use the fact that z − ẑl is real to write

2Re

∫

zl

zl−1

u(z)φl(z)dz = 2Re

∫

zl

zl−1

u(z)(z − ẑl)u′(z)dz

=

∫

zl

zl−1

(z − ẑl)2Re
(

u(z)u′(z)
)

dz,

and

2Re

∫

zl

zl−1

u′′(z)φl(z)dz = 2Re

∫

zl

zl−1

u′′(z)(z − ẑl)u′(z)dz

=

∫

zl

zl−1

(z − ẑl)2Re
(

u′′(z)u′(z)
)

dz.
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The chain rule (2.32) enables us to derive

2Re
(

u(z)u′(z)
)

=
d

dz

(

|u|2
)

(z), 2Re
(

u′′(z)u′(z)
)

=
d

dz

(

|u′|2
)

(z).

Lemma 4 follows from integration by parts:

2Re

∫

zl

zl−1

u(z)φl(z)dz =

∫

zl

zl−1

(z − ẑl)
d

dz

(

|u|2
)

(z)dz.

= −
∫

zl

zl−1

d

dz
(z − ẑl) |u(z)|2dz +

[

(z − ẑl)|u(z)|2
]zl

zl−1

= −
∫

zl

zl−1

|u(z)|2dz + (zl − ẑl)|u(z−l )|2 − (zl−1 − ẑl)|u(z+l−1)|2,

and

2Re

∫

zl

zl−1

u′′(z)φl(z)dz =

∫

zl

zl−1

(z − ẑl)
d

dz

(

|u′|2
)

(z)dz.

= −
∫

zl

zl−1

d

dz
(z − ẑl) |u′(z)|2dz +

[

(z − ẑl)|u′(z)|2
]zl

zl−1

= −
∫

zl

zl−1

|u′(z)|2dz + (zl − ẑl)|u′(z−l )|2 − (zl−1 − ẑl)|u′(z+l−1)|2.

The results follow by the definition of vl−1,vl,wl−1 and wl.

In Lemma 5, we test Hlu upon the test functions φl. We use the identities (2.33) and
(2.34) to simplify the expression, yielding identity (2.35).

Lemma 5. For l ∈ {1, . . . , L}, we have

2Re

∫

zl

zl−1

(Hlu)(z)φl(z)dz =

∫

zl

zl−1

(

ω2

κ(z)
|u(z)|2 + 1

ρ(z)
|u′(z)|2

)

dz (2.35)

+ (zl−1 − ẑl)

(

ω2

κl
|vl−1|2 + ρl|wl−1|2

)

− (zl − ẑl)

(

ω2

κl
|vl|2 + ρl|wl|2

)

Proof. By definition of Hlu, we have

2Re

∫

zl

zl−1

(Hlu)(z)φl(z)dz = −ω
2

κl

(

2Re

∫

zl

zl−1

u(z)φl(z)dz

)

− 1

ρl

(

2Re

∫

zl

zl−1

u′′(z)φl(z)dz

)

.
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We can simplify the right-hand-side thanks to identities (2.33), (2.34) and by grouping
the terms

2Re

∫

zl

zl−1

(Hlu)(z)φl(z)dz = −ω
2

κl

(

−
∫

zl

zl−1

|u(z)|2dz + (zl − ẑl)|vl|2 − (zl−1 − ẑl)|vl−1|2
)

− 1

ρl

(

−
∫

zl

zl−1

|u′(z)|2dz + (zl − ẑl)ρ
2
l |wl|2 − (zl−1 − ẑl)ρ

2
l |wl−1|2

)

=

∫

zl

zl−1

(

ω2

κl
|u(z)|2 + 1

ρl
|u′(z)|2

)

dz

+ (zl−1 − ẑl)

(

ω2

κl
|vl−1|2 + ρl|wl−1|2

)

− (zl − ẑl)

(

ω2

κl
|vl|2 + ρl|wl|2

)

.

Lemma 6. We have

2Re

{

L
∑

l=1

∫

zl

zl−1

(Hlu)(z)φl(z)dz

}

=

∫ Z

0

(

ω2

κ(z)
|u(z)|2 + 1

ρ(z)
|u′(z)|2

)

dz

+ ω2

L−1
∑

l=1

{

1

κl+1

(zl − ẑl+1)−
1

κl
(zl − ẑl)

}

|vl|2

+
L−1
∑

l=1

{ρl+1(zl − ẑl+1)− ρl(zl − ẑl)} |wl|2

+ (0− ẑ1)

(

ω2

κ1
|v0|2 + ρ1|w0|2

)

− (Z − ẑL)

(

ω2

κL
|vL|2 + ρl|wL|2

)

Proof. First, as a direct consequence of (2.35), we obviously have

2Re

{

L
∑

l=1

∫

zl

zl−1

(Hlu)(z)φl(z)dz

}

=
L

∑

l=1

∫

zl

zl−1

(

ω2

κl
|u(z)|2 + 1

ρl
|u′(z)|2

)

dz

+
L

∑

l=1

(zl−1 − ẑl)

(

ω2

κl
|vl−1|2 + ρl|wl−1|2

)

−
L

∑

l=1

(zl − ẑl)

(

ω2

κl
|vl|2 + ρl|wl|2

)

.
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Then the first term simplifies like

L
∑

l=1

∫

zl

zl−1

(

ω2

κl
|u(z)|2 + 1

ρl
|u′(z)|2

)

dz =
L

∑

l=1

∫

zl

zl−1

(

ω2

κ(z)
|u(z)|2 + 1

ρ(z)
|u′(z)|2

)

dz

=

∫ Z

0

(

ω2

κ(z)
|u(z)|2 + 1

ρ(z)
|u′(z)|2

)

dz.

We can simplify the second term as

L
∑

l=1

(zl−1 − ẑl)

(

ω2

κl
|vl−1|2 + ρl|wl−1|2

)

= (z0 − ẑ1)

(

ω2

κ1
|v0|2 + ρ1|w0|2

)

+
L

∑

l=2

(zl−1 − ẑl)

(

ω2

κl
|vl−1|2 + ρl|wl−1|2

)

= (0− ẑ1)

(

ω2

κ1
|v0|2 + ρ1|w0|2

)

+
L−1
∑

l=l

(zl − ẑl+1)

(

ω2

κl+1

|vl|2 + ρl+1|wl|2
)

.

We rewrite the last term as

L
∑

l=1

(zl − ẑl)

(

ω2

κl
|vl|2 + ρl|wl|2

)

=
L−1
∑

l=1

(zl − ẑl)

(

ω2

κl
|vl|2 + ρl|wl|2

)

+ (zL − ẑL)

(

ω2

κL
|vL|2 + ρl|wL|2

)

=
L−1
∑

l=1

(zl − ẑl)

(

ω2

κl
|vl|2 + ρl|wl|2

)

+ (Z − ẑL)

(

ω2

κL
|vL|2 + ρl|wL|2

)

.
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Regrouping the three terms, we get

2Re

{

L
∑

l=1

∫

zl

zl−1

(Hlu)(z)φl(z)dz

}

=

∫ Z

0

(

ω2

κ(z)
|u(z)|2 + 1

ρ(z)
|u′(z)|2

)

dz

+ (0− ẑ1)

(

ω2

κ1
|v0|2 + ρ1|w0|2

)

+
L−1
∑

l=1

(zl − ẑl+1)

(

ω2

κl+1

|vl|2 + ρl+1|wl|2
)

−
L−1
∑

l=1

(zl − ẑl)

(

ω2

κl
|vl|2 + ρl|wl|2

)

− (Z − ẑL)

(

ω2

κL
|vL|2 + ρl|wL|2

)

=

∫ Z

0

(

ω2

κ(z)
|u(z)|2 + 1

ρ(z)
|u′(z)|2

)

dz

+ ω2

L−1
∑

l=1

{

1

κl+1

(zl − ẑl+1)−
1

κl
(zl − ẑl)

}

|vl|2

+
L−1
∑

l=1

{ρl+1(zl − ẑl+1)− ρl(zl − ẑl)} |wl|2

+ (0− ẑ1)

(

ω2

κ1
|v0|2 + ρ1|w0|2

)

− (Z − ẑL)

(

ω2

κL
|vL|2 + ρl|wL|2

)

.

We are now ready to establish Proposition 3. We obtain identity (2.31) using the fact
that u satisfies (2.2) together with Lemma 6.

Proof of Proposition 3. Since u satisfies (2.2), we have (Hu)(z) = f(z) for a.e. z ∈ (0, Z).
Therefore

∫

zl

zl−1

(Hlu)(z)φl(z)dz =

∫

zl

zl−1

f(z)φl(z)dz,

for all l ∈ {1, . . . , L}. Then

2Re

{

L
∑

l=1

∫

zl

zl−1

(Hlu)(z)φl(z)dz

}

= 2Re

{

L
∑

l=1

∫

zl

zl−1

f(z)φl(z)dz.

}

,

and the result follows from Lemma 6.
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Part II

In Definition 4 of the test functions φl, we have left the definition of the coefficients ẑl un-
defined. The second step of demonstration is to derive Proposition 4 by carefully selecting
the coefficients ẑl.

Proposition 4. We have

1

2

∫ Z

0

(

ω2

κ(z)
|u(z)|2 + 1

ρ(z)
|u′(z)|2

)

dz +
L−1
∑

l=1

hl

(

ω2

κl
|vl|2 + ρl|wl|2

)

≤ 18M2

(

ρ⋆ +
κ⋆

κL
ρL

)

Z2 ||f ||2 . (2.36)

Again, the proof is based on a lot of hand computations. After giving the definition of
the coefficients ẑl, we demonstrate Proposition 4 using 4 preliminary Lemmas. To simplify
the notations, we write

hl = zl − zl−1, ĥl = zl−1 − ẑl.

Definition 5. We define the sequence ĥ = {ĥl}Ll=1 recursively by ĥ0 = 0 and

ĥl+1 = max

(

κl+1

κl
,
ρl
ρl+1

, 1

)

(

ĥl + 2hl

)

.

Furthermore, we define ẑ as

ẑl = zl − ĥl, l ∈ {1, . . . , L}.

Lemma 7. ĥ is an increasing sequence. Furthermore, we have

ĥL ≤ 2MZ

and
1

κl+1

(zl − ẑl+1)−
1

κl
(zl − ẑl) ≥

hl

κl
, ρl+1(zl − ẑl+1)− ρl(zl − ẑl) ≥ ρlhl.

Proof. It is clear that ĥ is an increasing sequence. Indeed, for a given l ∈ {1, . . . , L − 1},
we have

ĥl+1 = max

(

κl+1

κl
,
ρl
ρl+1

, 1

)

(

ĥl + 2hl

)

≥ ĥl + 2hl ≥ ĥl,

since hl > 0.
Then, by recurrence, we have

ĥl = 2
l−1
∑

n=1

{

n
∏

m=1

max

(

κm+1

κm
,
ρm
ρm+1

, 1

)

}

hn.
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It follows that

ĥL = 2
L−1
∑

n=1

{

n
∏

m=1

max

(

κm+1

κm
,
ρm
ρm+1

, 1

)

}

hn

≤ 2

{

L−1
∏

m=1

max

(

κm+1

κm
,
ρm
ρm+1

, 1

)

}

L−1
∑

n=1

hn

≤ 2

{

L−1
∏

m=1

max

(

κm+1

κm
,
ρm
ρm+1

, 1

)

}

Z

≤ 2MZ.

Finally, we have

ĥl+1 = max

(

κl+1

κl
,
ρl
ρl+1

, 1

)

(

ĥl + 2hl

)

,

therefore
ĥl+1 ≥

κl+1

κl

(

ĥl + 2hl

)

, ĥl+1 ≥
ρl
ρl+1

(

ĥl + 2hl

)

,

so that
1

κl+1

ĥl+1 −
1

κl
(ĥl + hl) ≥

1

κl
hl, ρl+1ĥl+1 − ρl(ĥl + hl) ≥ ρlhl,

and we conclude the proof of Lemma 7, since by definition of ĥ, ĥl+1 = zl − ẑl+1 and
ĥl + hl = zl − ẑl.

Lemma 7 ensures that every term in the left-hand-side of (2.31) is positive. More
precisely, we have

hl

(

ω2

κl
|vl|2 + ρl|wl|2

)

≤ ω2

{

1

κl+1

(zl − ẑl+1)−
1

κl
(zl − ẑl)

}

|vl|2

+ {ρl+1(zl − ẑl+1)− ρl(zl − ẑl)} |wl|2.
Then, it remains to bound the right-hand-side of (2.31) to conclude the demonstration

of Proposition 4. The right-hand-side reads

(Z−ẑL)

(

1

κL
|vL|2 + ρL|wL|2

)

−(0−ẑ1)

(

1

κ1
|v0|2 + ρL|w0|2

)

+2Re

{

L
∑

l=1

∫

zl

zl−1

f(z)φl(z)dz

}

,

and can be rewritten as

(Z − ẑL)

(

1

κL
|vL|2 + ρL|wL|2

)

+ 2Re

{

L
∑

l=1

∫

zl

zl−1

f(z)φl(z)dz

}

,

since 0− ẑ1 = ĥ1 = 0.
The term involving f is bounded in Lemma 8 with simple algebraic arguments. The

bound for the other term is derived in Lemmas 9 and 10. The boundary conditions (2.5)
and (2.6) at z = 0 and z = Z are involved in this proof.
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Lemma 8. For any f ∈ L2(0, Z,C), we have

2Re

{

L
∑

l=1

∫

zl

zl−1

f(v)φl(z)dz

}

≤ 2ρ⋆(Z + ĥL)
2 ||f ||2 + 1

2

∫ Z

0

1

ρ(z)
|u′(z)|2dz. (2.37)

Proof. First, let us consider l ∈ {1, . . . , L}. We have

2Re

∫

zl

zl−1

f(z)φl(z)dz = 2

∫

zl

zl−1

(z − ẑl) Re
(

f(z)u′(z)
)

dz

≤ 2

∫

zl

zl−1

|z − ẑl||f(z)||u′(z)|dz.

Then, for all z ∈ (zl−1, zl), we have

|z − ẑl| ≤ max(|zl−1 − ẑl|, |zl − ẑl|) = max(|ĥl|, |hl + ĥl|) = (hl + ĥl).

Hence, we get

2|z − ẑl||f(z)||u′(z)| ≤ 2(hl + ĥl)|f(z)||u′(z)|

≤ 2
(

√

2ρl(hl + ĥl)|f(z)|
)

(

1√
2ρl

|u′(z)|
)

≤ 2ρl(hl + ĥl)
2|f(z)|2 + 1

2ρl
|u′(z)|2.

Since we know that ĥ is an increasing sequence, we have ĥl ≤ ĥL. Furthermore, hl ≤ Z
and ρl ≤ ρ⋆, so that

2|z − ẑl||f(z)||u′(z)| ≤ 2ρ⋆(Z + ĥL)
2|f(z)|2 + 1

2ρl
|u′(z)|2.

It follows that

2Re

∫

zl

zl−1

f(z)φl(z)dz ≤ 2ρ⋆(Z + ĥL)
2

∫

zl

zl−1

|f(z)|2dz + 1

2

∫

zl

zl−1

1

ρl
|u′(z)|2dz,

for each l ∈ {1, . . . , L}.
We obtain the desired result by summation over l.

In Lemma 9, we prepare the proof of Lemma 10 using the absorbing boundary condition
at z = Z and the Neumann or Dirichlet boundary condition at z = 0.

Lemma 9. We have

Im

∫ Z

0

(Hu)(z)u(z)dz = − ω√
κLρL

|u(Z)|2. (2.38)
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Proof. By integrating by parts, we have

∫ Z

0

(Hu)(z)u(z)dz =

∫ Z

0

(

− ω2

κ(z)
u(z)−

(

1

ρ
u′

)′

(z)

)

u(z)dz

=

∫ Z

0

− ω2

κ(z)
|u(z)|2dz −

∫ Z

0

(

1

ρ
u′

)′

(z)u(z)dz

=

∫ Z

0

− ω2

κ(z)
|u(z)|2dz +

∫ Z

0

1

ρ(z)
u′(z)u′(z)dz −

[

1

ρ(z)
u′(z)u(z)

]Z

0

=

∫ Z

0

− ω2

κ(z)
|u(z)|2dz +

∫ Z

0

1

ρ(z)
|u′(z)|2dz −

[

1

ρ(z)
u′(z)u(z)

]Z

0

.(2.39)

It is clear that the first two terms of (2.39) are real. Therefore

Im

∫ Z

0

(Hu)(z)u(z)dz = − Im

[

1

ρ(z)
u′(z)u(z)

]Z

0

=
1

ρ1
Im

(

u′(0)u(0)
)

− 1

ρL
Im

(

u′(Z)u(Z)
)

.

Because of the boundary condition (2.5), u′(0) = 0, and because of the boundary condition
(2.6)

1

ρL
u′(Z)u(Z) =

1√
ρL

(

1√
ρL

u′(Z)

)

u(Z) =
1√
ρL

(

iω√
κL

u(Z)

)

u(Z) =
iω√
κLρL

|u(Z)|2.

Lemma 10. For any f ∈ L2(0, Z,C), we have

(Z − ẑL)

(

1

κL
|vL|2 + ρL|wL|2

)

≤ 2(Z + ĥL)
2 ρL
κL
κ⋆ ||f ||2 + 1

2

∫ Z

0

ω2

κ(z)
|u(z)|2dz.

Proof. Since u satisfies the absorbing boundary condition

1√
ρL

u′(Z)− iω√
κL

u(Z) = 0,

we have
1

ρL
|u′(Z)|2 = ω2

κL
|u(Z)|2,

and therefore
1

κL
|vL|2 + ρL|wL|2 =

ω2

κL
|u(Z)|2.

Now using Lemma 9, we have

− ω√
κLρL

|u(Z)|2 = Im

∫ Z

0

(Hu)(z)u(z)dz = Im

∫ Z

0

f(z)u(z)dz,
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so that

(Z − ẑL)

(

1

κL
|vL|2 + ρL|wL|2

)

= 2(Z − ẑL)
ω2

κL
|u(Z)|2

= 2(Z − ẑL)ω

√
ρ
L√
κL

(

ω√
κLρL

|u(Z)|2
)

≤ 2(Z − ẑL)ω

√
ρ
L√
κL

∣

∣

∣

∣

∫ Z

0

f(z)u(z)dz

∣

∣

∣

∣

≤ 2

∫ Z

0





√

2ρLκ(z)

κL
(Z − ẑL)|f(z)|





(

ω
√

2κ(z)
|u(z)|

)

dz

≤ 2

∫ Z

0

(

ρLκ(z)

κL
(Z − ẑL)

2|f(z)|2dz + 1

2

∫ Z

0

ω2

κ(z)
|u(z)|2

)

dz

≤ 2(Z − ẑL)
2 ρL
κL

∫ Z

0

κ(z)|f(z)|2dz + 1

2

∫ Z

0

ω2

κ(z)
|u(z)|2dz

≤ 2(Z − ẑL)
2 ρL
κL
κ⋆||f ||2 + 1

2

∫ Z

0

ω2

κ(z)
|u(z)|2dz

We conclude by observing that

Z − ẑL = zL − ẑL

= zL − zL−1 + zL−1 − ẑL

= hL + ĥL

≤ Z + ĥL.

We are now ready to give a demonstration of Proposition 4.

Proof of Proposition 4. We begin with using Proposition 3

∫ Z

0

(

ω2

κ(z)
|u(z)|2 + 1

ρ(z)
|u′(z)|2

)

dz

+ ω2

L−1
∑

l=1

{

1

κl+1

(zl − ẑl+1)−
1

κl
(zl − ẑl)

}

|vl|2 +
L−1
∑

l=1

{ρl+1(zl − ẑl+1)− ρl(zl − ẑl)} |wl|2

= (Z−ẑL)

(

ω2

κL
|vL|2 + ρL|wL|2

)

−(0−ẑ1)

(

ω2

κ1
|v0|2 + ρ1|w0|2

)

+2Re

{

L
∑

l=1

∫

zl

zl−1

f(z)φl(z)dz

}

.
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Then, Lemma 7 enables us to write

∫ Z

0

(

ω2

κ(z)
|u(z)|2 + 1

ρ(z)
|u′(z)|2

)

dz +
L−1
∑

l=1

hl

(

1

κl
|vl|2 + ρl|wl|2

)

≤
∫ Z

0

(

ω2

κ(z)
|u(z)|2 + 1

ρ(z)
|u′(z)|2

)

dz + ω2

L−1
∑

l=1

{

1

κl+1

(zl − ẑl+1)−
1

κl
(zl − ẑl)

}

|vl|2

+
L−1
∑

l=1

{ρl+1(zl − ẑl+1)− ρl(zl − ẑl)} |wl|2 (2.40)

On the other hand, Lemmas 8 and 10 together with the fact that 0− ẑ1 = ĥ1 = 0 yield

(Z−ẑL)

(

ω2

κL
|vL|2 + ρL|wL|2

)

−(0−ẑ1)

(

ω2

κ1
|v0|2 + ρ1|w0|2

)

+2Re

{

L
∑

l=1

∫

zl

zl−1

f(z)φl(z)dz

}

≤ 2(Z + ĥL)
2

(

ρ⋆ +
κ⋆

κL
ρL

)

||f ||2 + 1

2

∫ Z

0

(

ω2

κ(z)
|u(z)|2 + 1

ρ(z)
|u′(z)|2

)

dz (2.41)

Combining (2.40) and (2.41), we obtain

1

2

∫ Z

0

(

ω2

κ(z)
|u(z)|2 + 1

ρ(z)
|u′(z)|2

)

dz+
L−1
∑

l=1

hl

(

1

κl
|vl|2 + ρl|wl|2

)

≤ 2(Z+ĥL)
2

(

ρ⋆ +
κ⋆

κL
ρL

)

||f ||2 .

To conclude the proof, we use Lemma 7 again to derive

Z + ĥL ≤ Z + 2MZ ≤ 3MZ,

since M ≥ 1.

Part III

We are now able to prove Theorems 3 and 4 as direct consequences of Proposition 4.

Proof of Theorem 3. We first recall stability estimate (2.36) from Proposition 4. We have

1

2

∫ Z

0

(

ω2

κ(z)
|u(z)|2 + 1

ρ(z)
|u′(z)|2

)

dz +
L−1
∑

l=1

hl

(

ω2

κl
|vl|2 + ρl|wl|2

)

≤ 18M2

(

ρ⋆ +
κ⋆

κL
ρL

)

Z2 ||f ||2 .

In particular, it holds that

1

2

∫ Z

0

ω2

κ(z)
|u(z)|2 ≤ 18M2

(

ρ⋆ +
κ⋆

κL
ρL

)

Z2 ||f ||2 , (2.42)
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and
1

2

∫ Z

0

1

ρ(z)
|u′(z)|2 ≤ 18M2

(

ρ⋆ +
κ⋆

κL
ρL

)

Z2 ||f ||2 . (2.43)

We obtain Theorem 3 by taking the square roots of (2.42) and (2.43).

Proof of Theorem 4. We recall again stability estimate (2.36) from Proposition 4. We have

1

2

∫ Z

0

(

ω2

κ(z)
|u(z)|2 + 1

ρ(z)
|u′(z)|2

)

dz +
L−1
∑

l=1

hl

(

ω2

κl
|vl|2 + ρl|wl|2

)

≤ 18M2

(

ρ⋆ +
κ⋆

κL
ρL

)

Z2 ||f ||2 ,

and observe that we have in particular

L−1
∑

l=1

hl

(

ω2

κl
|vl|2 + ρl|wl|2

)

≤ 18M2

(

ρ⋆ +
κ⋆

κL
ρL

)

Z2 ||f ||2 .

Since, hl ≥ h⋆ for l ∈ {1, . . . , L}, it is clear that
L−1
∑

l=1

(

ω2

κl
|vl|2 + ρl|wl|2

)

≤ 18M2

h⋆

(

ρ⋆ +
κ⋆

κL
ρL

)

Z2 ||f ||2 ,

and it follows in particular that

ω2

κl
|vl|2 ≤

18M2

h⋆

(

ρ⋆ +
κ⋆

κL
ρL

)

Z2 ||f ||2 , (2.44)

and

ρl|wl|2 ≤
18M2

h⋆

(

ρ⋆ +
κ⋆

κL
ρL

)

Z2 ||f ||2 , (2.45)

for l ∈ {1, . . . , L}.
We obtain Theorem 4 by taking the square roots of (2.44) and (2.45).

2.2 Some results in the homogeneous case

Before we tackle the discretization of 1D heterogeneous Helmholtz problems, we would
like to introduce important results about the discretization of homogeneous Helmholtz
problem.

As already stated in this document, the frequency plays a very important role both in
the mathematical property of the equation and its numerical approximation. In particular,
high frequency solutions are very expensive to compute. As a result, error analysis must be
handled very carefully by taking into account the frequency parameter explicitly in every
constant.
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When using standard variational theory, based on the Schatz argument [88], one obtains
the so-called ”asymptotic” error-estimates. A quasi-optimal error-estimate for the finite
element solution is established under the condition that the mesh step is small enough.

A quasi-optimal error-estimate is an error-estimate of the form

||u− uh||⋆ ≤ C inf
vh∈Vh

||u− vh||⋆, (2.46)

where Vh ⊂ H1 is the finite element space, uh is the finite element solution and ||.||⋆ is
a norm of interest. This type of error-estimate is called ”quasi-optimal” because, up to
a constant, the finite element solution is as accurate as the best approximation provided
by the discretization space. If (2.46) holds, we also say that the finite element solution is
quasi-optimal.

In this spirit, the pioneering work of Aziz and Kellogg [15] establishes quasi-optimality
of the finite element solution under the assumption that h ≤ C(ω) where the constant C
depends implicitly on ω. They extend this result in the late 80’s and show that the solution
is quasi-optimal under the condition that ω2h ≤ C [16], where the condition on h depends
explicitly on ω. Asymptotic error-estimates for linear elements are further investigated by
Douglas et al. [43] and Ihlenburg and Babuška [59] in the 90’s. Ihlenburg and Babuška
also generalize asymptotic error-estimates for Lagrangian finite elements of arbitrary order
p [60] in the context of one-dimensional domains. Melenk and Sauter have recently further
extended the theory to general 3D problems with rough right-hand-sides f ∈ L2 [75, 76].

As we are going to explain in the next subsections, if asymptotic error-estimates pro-
vide sufficient and necessary conditions to ensure quasi-optimality of the finite element
solution, they are not fully satisfactory to quantify the error of the finite element solution.
More precisely, they are only valid in a certain asymptotic range h ∈ (0, h0) where h0 is
going to zero as ω increases. Hence, the asymptotic error-estimates do not provide any in-
formation in the pre-asymptotic range h ≥ h0. This is troublesome, especially because the
requirements on the mesh step h0 are usually too restrictive to cover practical applications.

This has motivated the design of so-called ”pre-asymptotic” error-estimates which are
valid as soon as a given number of points per wavelength is achieved (ωh < C). Ihlenburg
and Babuška show in [59,60] that in the pre-asymptotic range, the finite element solution
is not quasi-optimal, and is polluted by an additional term in the error estimate. Though
their work is limited to 1D problems with smooth data, their results are optimal and valid
for Lagrangian elements of arbitrary degree p. They are also able to make a link between
the so-called ”pollution term” and the phase lag of the finite element solution.

Another powerful tool to study numerical methods for the Helmholtz equation is dis-
persion analysis. This methodology is less rigorous in the sense that it does not yield any
error-estimate. Also, it is limited to cartesian grids (or space-periodic meshes). However,
it is simpler to use than pre-asymptotic error-estimates and very powerful to analyse and
design new schemes. Actually, if error-estimates are not proven, the results are usually
very accurate when compared with numerical experiments.

The main idea is that if the right-hand-side vanishes and the boundary conditions are
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omitted, the general solution of the Helmholtz equation is

u(x) = Aeiωx +Be−iωx, (2.47)

where A,B ∈ C. It can be shown that (2.47) has a discrete counterpart, and the discrete
solution satisfies

uh(xj) = Ahe
iωhxj +Bhe

−iωhxj ,

for all mesh vertices xj = jh, where Ah, Bh ∈ C and ωh > 0. Dispersion analysis then gives
an estimate of the phase lag ω − ωh.

It turns out that among the various methodologies used to analyse wave propagation
schemes, dispersion analysis was the first to be used. Pioneering works focus on the tran-
scient wave equation and include the work of Krieg and Key [65], Mullen and Betyschko [78],
and Abboud and Pinsky [1].

An optimal bound on the phase lag in Helmholtz discretizations by Lagrangian finite
elements of degree 1 ≤ p ≤ 3 is first given by Thompson and Pinsky [97] on a one
dimensional problem. Their result is generalized by Babuška and Ihlenburg to arbitrary
order p in one dimension [60]. These results are obtained under the assumption that enough
points per wavelength are used (ωh ≤ C).

To the best of our knowledge, Ainsworth’s paper [3] is a reference work to dispersion
analysis. It provides an estimation of the phase lag for arbitrary order p on cartesian grid
in one, two or three dimensions. The analysis of Ainsworth is not limited to the condition
ωh ≤ C and the phase lag is provided for any value of h.

In the next subsections, we try to make a link between asymptotic error-estimates,
dispersion analysis and pre-asymptotic error-estimates. We also give a quick overview of
how the proofs are derived and refer the reader to the literature for more details. We
discuss the possibility of generalizations to heterogeneous problems as well.

To clarify, given f ∈ L2(0, 1,C), we consider the simple homogeneous 1D problem of
finding u = Sωf ∈ H1(0, 1,C) such that







−ω2u(z)− u′′(z) = f(z), z ∈ (0, 1),
−u′(0)− iωu(0) = 0,
u′(1)− iωu(1) = 0.

(2.48)

We discretize problem (2.48) with Lagrangian finite element of degree p ≥ 1. Introduc-
ing the variational formulation of problem (2.48), the continuous and discretized problems
read: find Sωf ∈ H1(0, 1,C) and Sh,p

ω f ∈ Vh,p such that

B(Sωf, v) =

∫ 1

0

f(z)v(z)dz, ∀v ∈ H1(0, 1,C), B(Sh,p
ω f, vh) =

∫ 1

0

f(z)vh(z)dz, ∀vh ∈ Vh,p,

where

B(w, v) = −ω2

∫ 1

0

w(z)v(z)dz−iωw(0)v(0)−iωw(1)v(1)+
∫ 1

0

w′(z)v′(z)dz, ∀w, v ∈ H1(0, 1,C),
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and

Vh,p =
{

vh ∈ C0(0, 1,C) | vh|((j−1)h,jh) ∈ Pp((j − 1)h, jh); j ∈ {1, . . . , n = j/h}
}

.

We also introduce the adjoint operator S⋆
ω : L2(0, 1,C) → H1(0, 1,C) where S⋆

ωg is
defined for g ∈ L2(0, 1,C) as S⋆

ωg = Sωḡ and is the unique solution to

B(w,S⋆
ωg) =

∫ 1

0

w(z)g(z)dz.

Finally, the Vh,p-interpolant of a function v ∈ H1(0, 1,C) is defined as the unique
function Πh,pv ∈ Vh,p such that

(Πh,pv)(jh+
kh

p
) = v(jh+

kh

p
), 0 ≤ j ≤ n, 0 ≤ k ≤ p.

For ease of presentation, we will write u = Sωf and uh,p = Sh,p
ω f . We will also use the

notations ||.||k and |.|k for the Hk(0, 1,C) norm and semi-norm (k ∈ N):

||v||2k =
k

∑

j=0

∫ 1

0

|v(j)(z)|2dz, |v|2k =
∫ 1

0

|v(k)(z)|2dz, ∀v ∈ Hk(0, 1,C).

We introduce the essential result of Babuška and Ihlenburg [60] concerning the analysis
of finite element error: assuming that ωh ≤ C, we have

ω|u− uh,p|0 + |u− uh,p|1 ≤ C1ωh+ C2ω
2p+1h2p.

We see that the finite element error is decomposed into two terms. The first term
of order ωphp is called the best approximation error term and is directly related to the
approximation properties of the finite element space. The second term of order ω2p+1h2p

is called the ”pollution” term. It is worth noting that even when ωphp is small, the term
of order ω2p+1h2p = ω(ωh)2p can be important if the frequency is high.

In standard finite element analysis of elliptic problem, the finite element scheme is
quasi-optimal, and the finite element error is bounded by the best approximation error.
The pollution term is thus typical of wave problems which are undefinite.

It is also clear that if we consider a given frequency ω, we can define two regions in
which each term in the error bound is predominant. Asymptotically, if h → 0, the best
approximation term ωphp is more important than the pollution term ω2p+1h2p. On the
other hand, especially for a high frequency ω, the pollution term is greater than the best
approximation term for large mesh steps h. We can therefore define two regions:

• The pre-asymptotic range where the pollution term is dominant. It is characterized
by ωphp ≤ ω2p+1h2p.

• The asymptotic range where the best approximation term is dominant. It is charac-
terized by ωphp ≥ ω2p+1h2p.
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In the following, we focus on conforming Lagrangian finite element discretizations, but
it is worth mentioning that dispersion and convergence analysis are also available for other
popular discretization methods:

• In the context of polynomial Discontinuous Galerkin methods, we can mention the
convergence analysis of the Local Discontinuous Galerkin (LDGm) and Internal
Penalty Discontinuous Galerkin (IPDGm) methods [46, 47]. Wu and collaborators
also recently introduced the so-called Continuous Internal Penalty method (CIPm)
which is analysed in [106,109].

• Melenk and collaborators have proposed a convergence analysis for general Discon-
tinuous Galerkin methods, where functions of the discretization space are assumed
to satisfy an inverse trace inequality [74]. Their convergence results apply to polyno-
mial discretizations, but also to plane wave based discretizations. In particular, the
Ultra-Weak Variational Formulation method (UWVFm) is handled.

• Among popular ”plane wave” methods, we can also cite the Discontinuous Enrich-
ment method (DEm). A convergence analysis for the lowest-order DEm elements is
avaible [10].

• In the context of dispersion analysis, we mention the work of Ainsworth and col-
laborators on the Spectral Element method and Discontinuous Galerkin discretiza-
tions [4, 5].

We now focus on standard conforming Lagrangian elements. We will first talk about
asymptotic error-estimates which are valid in the asymptotic range only. Then, we will
present dispersion analysis and introduce the notion of phase-lag, which can be linked to
the pollution term. We will close this introduction with pre-asymptotic error-estimates,
which are valid in the pre-asymptotic range.

2.2.1 Asymptotic error-estimates

Asymptotic error-estimates give a bound of the finite element error under the condition that
the mesh is sufficiently refined. If the mesh step h ∈ (0, h0) lies in a so-called asymptotic
range bounded by a given h0 > 0, then the finite element solution is quasi-optimal, and
the finite element error is bounded by the best approximation error up to constant.

If we are using finite elements of order p and assuming that the right-hand-side f ∈
Hp−1(0, Z,C), the asymptotic quasi-optimality and error-estimate for the Helmholtz equa-
tion can be stated in three points. We refer the reader to [16,43,59] for the analysis of the
linear element case and to [60] for the general p-version in one-dimension. The linear case
is treated in two dimensions in Melenk’s PhD [73]. First, the best approximation error is
bounded explicitly in frequency:

ω|u− Πh,pu|0 + |u− Πh,pu|1 ≤ Cωphp||f ||p−1. (2.49)
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Second, under the condition that ωp+1hp ≤ C, the finite element solution is quasi-optimal:

ω|u− uh,p|0 + |u− uh,p|1 ≤ C (ω|u− Πh,pu|0 + |u− Πh,pu|1) . (2.50)

Third, we can summarize the first two points as an asymptotic error-estimate. If we assume
that h ∈ (0, h0) with h0 = Cω−1−1/p, the following error-estimate holds

ω|u− uh,p|0 + |u− uh,p|1 ≤ Cωphp||f ||p−1. (2.51)

We see that the best approximation error is controlled by the number of points per
wavelength Nλ ≃ (ωh)−1:

ω|u− Πh,pu|0 + |u− Πh,pu|1 ≤
C||f ||p−1

Np
λ

.

It is worth noting that the best approximation error is bounded independently of the
frequency when the number of points per wavelength is constant. It is not the case of the
finite element error, and it is precisely what the pollution effect is.

We will analyse the pollution effect more precisely later. However we can already state
that the finite element error increases linearly with the frequency when the number of points
per wavelength Nλ is kept constant. We see that the same idea applies to the asymptotic
range. In the asymptotic range, h must satisfies ωp+1hp ≤ C, that is Nλ ≤ Cω−1/p. We
can summarize the pollution effect as follows: the number of points per wavelength Nλ

must increase with the frequency for the finite element solution to remain quasi-optimal.
Another way to describe the pollution effect is that if Nλ ≥ C is bounded below, we

have

lim
ω→+∞

|u− uh,p|1
|u− Πh,pu|1

= +∞.

Another important comment is that the approximation order is p, which is quite natural
since we assume the right-hand-side to be in Hp−1. Hence, the solution is in Hp+1. Melenk
and Sauter [75,76] have developed an asymptotic theory when the right-hand-side is in L2

only. In this context, the best approximation converges to the best solution only at order
1. Hence, (2.49) does not hold and we only have

ω|u− Πh,pu|0 + |u− Πh,pu|1 ≤ Cωh|f |0.

However the asymptotic range in which quasi-optimality holds is the same: ωp+1hp ≤ C.
The main idea here is that having a p-order convergence by itself is not so important.
Indeed, the best approximation error is always controlled by ωh ≃ N−1

λ and h is always
selected so that limω→+∞ ωh = 0 to ensure that the solution is precise enough. The
important point here is the region in which the quasi-optimality is valid, which is the same
if f ∈ L2 only.

In the context of highly heterogeneous media, u ∈ Hp+1 does not hold for two reasons.
Indeed, we assume the right-hand-side to be in L2 only, so that we can not expect more
than u ∈ H2 in the general case. Besides, there are jumps in the medium parameters
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which lower the regularity of the solution. In the general case, we can not even expect the
solution to be in H2. However, if we assume that the density is constant (which is what we
will do afterwards) the solution remains in H2. It is worth noting that even if we assume
that f ∈ Hp−1, u ∈ Hp+1 does not hold because of the jumps in the medium parameters.

Assuming that the density is constant, u ∈ H2 and we obtain a result similar in spirit
to Melenk and Sauter [75, 76]: when the velocity parameter is rough, the convergence
order of the best approximation is not improved when p increases, but the asymptotic
region h ∈ (0, h0) in which the solution is quasi-optimal is larger. To the best of our
knowledge, this asymptotic error-estimate for heterogeneous media is new and will be
presented afterwards.

The asymptotic results we have stated are optimal: it is mandatory that ωp+1hp ≤ C to
achieve quasi-optimality. Indeed, in the pre-asymptotic range (h ≥ h0) the finite element
solution is ”polluted” and is much less accurate than the best approximation. However, if
the result is optimal in terms of quasi-optimality, we can make a simple comment about
its quality as an error-estimate. If we apply the result as-is, we need to select h in the
asymptotic range, that is h ≤ h0 ≃ ω−1−1/p. Hence, we have

ω|u− uh,p|0 + |u− uh,p|1 ≤ Cωphp ≃ ω−1,

and the error is decreasing to 0 as ω is increasing. It means that condition ωp+1hp ≤ C
is not a good strategy to obtain a constant error independently of the frequency: the
condition is too restrictive.

This observation has motivated the study of the behaviour of the finite element error
in the so-called ”pre-asymptotic” range, without assuming that h ≤ h0. We will state
important results about pre-asymptotic analysis in the next subsections, but before, we
give an overview of how the asymptotic error-estimates are derived.

The first issue is to estimate the best approximation error. From standard finite ele-
ment theory, the interpolation error can be bounded by a semi-norm of the solution in an
appropriate Sobolev space. Therefore, the problem of estimating the best approximation
error simply amounts to estimating the norm of the solution derivatives.

We would like to point out that this is one of the reasons why it is really important to de-
rive frequency-explicit stability estimates. Indeed, having frequency-explicit estimates for
the continuous problem immediately yields frequency-explicit bounds of the best approxi-
mation error. For our purpose of briefly explaining how asymptotic errors are established,
we recall that we have

|Sωf |2 ≤ Cω|f |0, |S⋆
ωf |2 ≤ Cω|f |0, (2.52)

as a particular case of Theorem 5. We are now able to show that the best approximation
error is controlled by the number of points per wavelength. We record this result in Lemma
11.

Lemma 11. Let f ∈ L2(0, Z,C). The following estimates hold:

ω|Sωf − ΠhSωf |0 + |Sωf − ΠhSωf |1 ≤ Cωh|f |0, (2.53)
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and
ω|S⋆

ωf − ΠhS⋆
ωf |0 + |S⋆

ωf − ΠhS⋆
ωf |1 ≤ Cωh|f |0. (2.54)

Proof. The proof relies on classical approximation properties of polynomials and the frequency-
explicit stability estimate of the Helmholtz equation. To simplify the notations, we will
write uf = Sωf . Using approximation theory, we have

ω|uf − Πhuf |0 + |uf − Πhuf |1 ≤ C(ωh2 + h)|uf |2.

The second step uses the frequency-explicit stability estimate. We have

|uf |2 ≤ Cω|f |0,

so that
ω|uf − Πhuf |0 + |uf − Πhuf |1 ≤ C(ω2h2 + ωh)|f |0.

We obtain (2.53) since ωh ≤ 1. The demonstration of (2.54) follows the same guidelines
than for (2.53) and is thus omitted here.

We now show that the finite element solution is asymptotically quasi-optimal. Most of
asymptotic error-estimates for the Helmholtz equation are based on the so-called Schatz
argument [88]. Actually, the Schatz argument is valid for any continuous sesquilinear form
satisfying a G̊arding inequality, that is a sesquilinear form B such that

ReB(u, u) ≥ α||u||21 − µ|u|20, ∀u ∈ H1, (2.55)

and
|B(u, v)| ≤M ||u||1||v||1, ∀u, v ∈ H1,

for some positive constants α, µ and M .
It is well-known that variational formulations of Fredholm operator fall into this cat-

egory. For the case of the Helmholtz equation, it is simple enough to show that our
sesquilinear form B is continuous and satisfies the G̊arding inequality with the constants
M = ω2, α = 1 and µ = ω2 + 1. More precisely, we have:

Lemma 12. Let w, v ∈ H1(0, Z,C). Then, we have

|B(w, v)| ≤ C(ω|w|0 + |w|1)(ω|v|0 + |v|1)
ReB(v, v) ≥ |v|21 − ω2|v|20.

The Schatz argument can be viewed as a generalization of Céa’s Lemma. Céa’s Lemma
is only valid for coercive forms, and states that the finite element solution is quasi-optimal
for any h. In contrast, the Schatz argument is valid under a weaker assumption of G̊arding
inequality but ensures the quasi optimality only for small enough h < h0, where h0 depends
on the constants α and µ of G̊arding inequality (2.55).

In Theorem 8, we demonstrate that the linear finite element solution is quasi-optimal
in the asymptotic range using the Schatz argument. We also derive the corresponding
error-estimate.
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Theorem 8. Assume that ω2h ≤ C. Then the solution Sh,1
ω f is quasi optimal:

ω|Sωf − Sh,1
ω f |0 + |Sωf − Sh,1

ω f |1 ≤ C (ω|Sωf − Πh(Sωf)|0 + |Sωf − Πh(Sωf)|1) , (2.56)

and the following error-estimate holds

ω|Sωf − Sh,1
ω f |0 + |Sωf − Sh,1

ω f |1 ≤ C
(

ωh+ ω3h2
)

|f |0. (2.57)

Proof. We will use the notations u = Sωf and uh = Sh,1
ω f . The first part of the proof is

the usual Aubin-Nitsche duality trick. We introduce the Riesz representation of the error
z ∈ H1(0, 1,C), defined as the unique function of H1(0, 1,C) satisfying

B(w, z) = (w, u− uh) ∀w ∈ H1(0, 1,C).

In particular, it holds that |u − uh|20 = B(u − uh, z), and by Galerkin orthogonality
together with the continuity of B, we have

|u− uh|20 = B(u− uh, z − Πhz) ≤ C(ω|u− uh|0 + |u− uh|1)(ω|z − Πhz|0 + |z − Πhz|1)

According to the definition of z, Lemma 11 yields

(ω|z − Πhz|0 + |z − Πhz|1) ≤ Cωh|u− uh|0,

hence
|u− uh|20 ≤ Cωh(ω|u− uh|0 + |u− uh|1)|u− uh|0,

and
(

1− Cω2h
)

|u− uh|20 ≤ Cωh|u− uh|1|u− uh|0.
Assuming that ω2h is small enough and dividing by |u− uh|0, we obtain

|u− uh|0 ≤ Cωh|u− uh|1. (2.58)

Note that (2.58) is the usual bound obtained with the Aubin-Nitsche duality trick: the
order of convergence is one order higher in the L2 norm than in the H1 semi-norm. When
dealing with elliptic problems, the H1 semi-norm is bounded using Céa’s Lemma and the
L2 error bound follows. Here, (2.58) is just a step in the convergence proof.

The second part of the proof is similar to Céa’s Lemma. We use Galerkin orthogonality
and the G̊arding inequality (remark that in Céa’s Lemma, coercivity of the sesquilinear
form is used instead of the G̊arding inequality). We have B(u−uh, u−uh) = B(u−uh, u−
Πuh), and

|u−uh|21−ω2|u−uh|20 ≤ ReB(u−uh, u−Πhu) ≤ C(ω|u−uh|0+|u−uh|1)(ω|u−Πhu|0+|u−Πhu|1).

With estimate (2.58), we have that

(

1− Cω4h2
)

|u− uh|21 ≤ C(1 + ω2h)|u− uh|1(ω|u− Πhu|0 + |u− Πhu|1),
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and, dividing by |u− uh|1, we get the quasi-optimality in the H1 semi-norm if we assume
that ω2h is small enough:

(

1− Cω4h2
)

|u− uh|1 ≤ C(1 + ω2h)(ω|u− Πhu|0 + |u− Πhu|1),

Because we assume that ω2h is small enough and that ωh < 1, we can use (2.58) to
derive

ω|u− uh|0 + |u− uh|1 ≤ C(1 + ω2h)(ω|u− Πhu|0 + |u− Πhu|1),
which is (2.56) using again that ω2h is small.

We now turn to the proof of error-estimate (2.57). A direct application of Lemma 11
yields

ω|u− Πhu|0 + |u− Πhu|1 ≤ ωh|f |0,
and therefore, inserting the previous estimate in (2.56), we have

ω|u− uh|0 + |u− uh|1 ≤ C(1 + ω2h)ωh|f |0,

which simplifies to (2.57).

Remark that we keep the term ω3h2 in the above estimates because it appears naturally
in the proofs. However, since we assume that ω2h ≤ C, we obviously have ω3h2 ≤ Cωh so
that it can be omitted to recover (2.51) with p = 1. As we are going to see in the dispersion
analysis, this term plays an important role, so that we keep it in the estimates.

2.2.2 Dispersion relations

In the previous subsection, we observed that the condition ωp+1hp ≤ C is mandatory to
achieve quasi-optimality. We also stated that this condition on h is not satisfactory, because
the finite element error is going to zero when the frequency increases if it is applied as-
is. We also demonstrated that the quality of the best approximation only depends on the
number of points per wave length Nλ and is bounded if ω

php ≤ C. However, we have stated
that this condition is not sufficient to guarantee the quality of the numerical solution.

Therefore, to select h, the rule h ≃ ω−1 where the number of points per wavelength is
constant is not enough. On the other hand, the asymptotic-range restriction h ≃ ω−1−1/p

is to restrictive. One would wish to obtain a rule, say an exponent θ such that the finite
element error is constant if h ≃ ωθ for all frequencies ω ≥ 1. Dispersion analysis is a nice
tool to achieve this goal.

Strictly speaking, dispersion analysis does not provide any error-estimate. Actually,
it gives a measure of the phase-lag between the numerical solution and the continuous
solution. The basic idea comes from the fact that if we neglect boundary conditions,
homogeneous solutions to the homogeneous 1D Helmholtz equation reads

u(x) = Aeiωx +Be−iωx ∀x ∈ R, (2.59)
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where A,B ∈ C are two complex constants. If the problem is discretized on a regular
infinite grid, (2.60) has a discrete counterpart. It can be shown that the values of the
solution at the nodal points xn = nh satisfy

uh,p(xn) = Ahe
iωh,pxn +Bhe

−iωh,pxn ∀n ∈ N, (2.60)

for two constants Ah, Bh ∈ C and the so-called ”discrete pulsation” ωh,p ∈ C.
The aim of the dispersion analysis is to estimate the phase lag, that is the difference

|ω − ωh,p| between the continuous and the discrete pulsations. Babuška and Ihlenburg
analysed the dispersion of Lagrangian finite elements in [59, 60] and proved that

|ω − ωh,p| ≤ Cω2p+1h2p+1, (2.61)

provided that there are enough number of points per wave length (ωh ≤ 1). Note that
the condition ωh ≤ 1 is much less restrictive than the asymptotic condition ωp+1hp ≤ C
when the frequency is high. Furthermore, since the best approximation error depends on
the number of points per wavelength, it is fairly natural to assume that ωh ≤ 1.

Although dispersion analysis is not a rigorous error analysis (there is no right-hand-side
and boundary conditions are not taken into account), it turns out that (2.61) exactly fits
numerical experiments in most situations and there is actually a theoretical reason, that
we will present in the next subsection. Thus dispersion analysis is a very popular technique
to analyse finite element schemes for wave propagation problems. The results are optimal
(even though there is no rigorous justification), easy to derive (compared to pre-asymptotic
error-estimates) and have a clear physical meaning: the phase-lag.

Dispersion analysis is not limited to the one-dimensional case. The important hypoth-
esis is that the numerical scheme must be periodic in space. Dispersion analysis in two and
three dimensions includes the work of Mullen and Belytschko [78], Abboud and Pinsky [1]
and Ainsworth [3] for cartesian grids. An analysis for more general schemes is given by
Deraemaeker, Babuška and Bouillard [41].

Unfortunately, finite element schemes are not all space-periodic. This is the case of
Lagrangian elements on unstructured meshes which are interesting in Geophysics for their
h-adaptivity. More importantly, dispersion analysis can not be applied in heterogeneous
media (apart from the case where the medium is periodic, and the period of the medium
is a multiple of the mesh step h or simple configurations like two layered media).

The advantage of dispersion analysis over pre-asymptotic error-estimates however, is
that the requirement ωh ≤ C is not mandatory and that all computations can be made
explicitly. That way, Ainsworth obtained [3] a closed formula for the discrete pulsation
which is valid for all ω, h and p:

cos(ωh,ph) = Rp(ωh),

where Rp is a rational function which is explicitly defined using Padé approximants.
We close this subsection with Theorem 9 where we estimate the phase-lag of linear

elements in one dimension. In order to state and demonstrate Theorem 9, we need to
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introduce an Helmholtz problem without boundary conditions, set on the whole real line
R, together with a ”finite element approximation”. To this end, we introduce additional
notations. We assume h > 0 is given. For all n ∈ Z, we define xn = nh and φn : R → R

φn(x) =























x− xn−1

h
, if x ∈ (xn−1, xn),

xn+1 − x

h
, if x ∈ (xn, xn+1),

0 otherwise.

Note that if j ∈ Z with |j| ≥ 2, the Lebesgue measure of supp(φn) ∩ supp(φj+n) vanishes.
Hence,

u =
∑

n∈Z

unφn ∈ W 1,∞
loc (R,C),

is well defined for any sequence (un)n∈Z ⊂ C.
For u ∈ W 1,∞ and φ ∈ W 1,1, we define

B∞(u, φ) = −ω2

∫ +∞

−∞

u(x)φ(x)dx+

∫ +∞

−∞

u′(x)φ′(x)dx.

In particular,

B∞

(

∑

n∈Z

unφn, φm

)

is well defined for all m ∈ Z.

Theorem 9. Assume that ωh <
√
12 and

u =
∑

n∈Z

unφn,

satisfies
B(u, φm) = 0, ∀m ∈ Z.

Then there exist two constants A,B ∈ C and a discrete pulsation ωh ∈ R+ such that

un = u(xn) = A exp (iωhxn) + B exp (−iωhxn) , ∀n ∈ Z. (2.62)

The discrete pulsation ωh is defined by the equation

cos(ωhh) =
6− 2ω2h2

6 + ω2h2
, (2.63)

and we have

ω − ωh =
ω3h2

24
+ o(ω5h4). (2.64)
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Proof. Consider a given m ∈ Z. Since the basis functions φn and φm have disconnected
supports when n+ 2 ≤ m or m ≤ n+ 2, we have

B∞ (u, φm) = B∞

(

∑

n∈Z

unφn, φm

)

= B∞

(

m+1
∑

n=m−1

unφn, φm

)

= 0.

Using sesquilinearity of B∞, we obtain a recurrence relation:

um+1B∞ (φm+1, φm) + umB∞ (φm, φm) + um−1B∞ (φm−1, φm) = 0, ∀m ∈ Z. (2.65)

We now use the key feature: space periodicity. We have

B∞ (φm+1, φm) = b+, B∞ (φm, φm) = b0, B∞ (φm−1, φm) = b−,

for all m ∈ Z, where b+, b0, b− ∈ R are real constants independent of the position m.
Furthermore, direct computations yield that

b0 =
2

h
− 2ω2h

3
, b− = b+ = −1

h
− ω2h

6
.

Hence, multiplying (2.65) by −h, we obtain a linear recurrence relation for (um)m∈Z:

(

ω2h2

6
+ 1

)

um+1 + 2

(

ω2h2

3
− 1

)

um +

(

ω2h2

6
+ 1

)

um−1 = 0 ∀m ∈ Z, (2.66)

and we can compute a formula for any solution up to two complex constants by finding
the roots of the characteristic polynomial

P (r) =

(

ω2h2

6
+ 1

)

r2 +

(

ω2h2

3
− 1

)

r +

(

ω2h2

6
+ 1

)

To start with, we compute the discriminant:

∆ = 4

(

ω2h2

3
− 1

)2

− 4

(

ω2h2

6
+ 1

)2

= ω2h2
(

ω2h2

3
− 4

)

= 2ω2h2
(

ω2h2

12
− 1

)

;

Since ωh > 0, we deduce that ∆ < 0 iff ωh <
√
12. Assuming that ∆ < 0 from now

on, P has two conjugate roots r± ∈ C given by

r± =
1

2
(

ω2h2

6
+ 1

)

(

−
(

ω2h2

6
+ 1

)

± i
√
−∆

)

,

and there exist two constants A,B ∈ C such that

um = Arm+ +Brm− , ∀m ∈ Z.
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The expression of r± is hard to handle. Therefore, we are going to identify r± by
inserting um = eiθm into recurrence relation (2.66). We obtain

(

ω2h2

6
+ 1

)

ei(m+1)θ + 2

(

ω2h2

3
− 1

)

eimθ +

(

ω2h2

6
+ 1

)

ei(m−1)θ = 0.

Dividing by eimθ and using De Moivre identity, we have

cos(θ) =
6− 2ω2h2

6 + ω2h2
. (2.67)

We define ωh = θ/h. Then (2.67) directly yields (2.63). We also obtain (2.62) easily.
Indeed, since xm = mh, we have

u(xm) = um = Aeimθ +Be−imθ = Aeiωhxm +Be−iωhxm .

Following Ihlenburg and Babuška [59], we prove (2.64) using (2.67) and Taylor expan-
sions. We have

ωhh = arccos

(

6− 2ω2h2

6 + ω2h2

)

= ωh− ω3h3

24
+ o(ω5h5),

and we obtain (2.64) by dividing by h.

2.2.3 Pre-Asymptotic error-estimates

We have defined two types of results: asymptotic error-estimates which give a necessary
condition on h for the finite element solution to be quasi-optimal and dispersion analy-
sis which gives an explicit expression of the phase-lag. We recall that asymptotic error-
estimates are only valid if h satisfies ωp+1hp ≤ C. Thus, asymptotic error-estimates can
only be applied in an asymptotic range h ∈ (0, h0] where h0 ≃ ω−1−1/p. The main prob-
lem is that this condition is too restrictive at high frequency. Indeed, suppose we want
to achieve a given accuracy ǫ. If asymptotic error-estimate are to be applied, the largest
possible mesh step is h = h0 ≃ ω−1−1/p which leads to

ω|u− uh,p|0 + |u− uh,p|1 ≤ ωphp ≃ ω−1. (2.68)

Assume we want to solve for a high frequency ω such that ω−1 << ǫ. Then, regarding
(2.68), if we apply the asymptotic condition h ≤ h0, the solution is more precise than
needed. Hence, to achieve the desired precision exactly, we need to select h > h0, but this
case is not covered by asymptotic error-estimates.

Dispersion analysis is limited as well because it applies to simplified models and space-
periodic schemes. This has motivated the development of pre-asymptotic error-estimates.
Compared to asymptotic error-estimates, pre-asymptotic error-estimates are valid as soon
as there are enough points per wavelength (or equivalently, the number of points per
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wavelength Nλ is bounded above, i.e. ωh ≤ C). Furthermore, pre-asymptotic error-
estimates apply to realistic models including boundary conditions and right-hand-side when
dispersion analysis can not be carried out.

Against this background, an essential result has been established by Ihlenburg and
Babuška in a pair of papers [59, 60]. Assuming that ωh ≤ C, the finite element error is
bounded by the best-approximation error plus a ”pollution” term:

ω|Sωf − Sh,p
ω f |0 + |Sωf − Sh,p

ω f |1 ≤ C1ω
php + C2ω

2p+1h2p, (2.69)

where C1, C2 > 0 are two constants independent of ω, h.
The first term in the right-hand-side of (2.69) is the best approximation error. It is

the same term than in asymptotic error-estimates. The second is called the pollution term
and has the same order than the phase-lag.

Actually, pre-asymptotic error-estimates are a proper generalization of asymptotic
error-estimates. Indeed, if we assume that h lies in the asymptotic range, ωp+1hp ≤ C,
then ω2p+1h2p ≤ Cωphp and (2.69) becomes

ω|Sωf − Sh,p
ω f |0 + |Sωf − Sh,p

ω f |1 ≤ (C1 + CC2)ω
php,

which is (2.51). Hence, pre-asymptotic error-estimate (2.69) is equivalent to asymptotic
error-estimate (2.51) in the asymptotic range where ωp+1hp ≤ C.

More precisely, we see that the quasi-optimality condition ωp+1hp ≤ C corresponds
to the zone where the phase-lag is of the same order than the best approximation. The
quasi-optimality condition thus defines two different regimes:

• In the pre-asymptotic range, ωp+1hp >> 1. Therefore ωphp << ω2p+1h2p and the
phase-lag error, or pollution error, is dominant.

• In the asymptotic range, ωp+1hp << 1, then ωphp >> ω2p+1h2p and the best-
approximation error is dominant: the solution is quasi-optimal.

It is not obvious to extend the proof of (2.69) to higher dimensions or to heteroge-
neous media. This proof is the work of Babuška and Ihlenburg [60] and it involves subtle
arguments including stability estimates in dual norms and specific interpolants.

A simpler method to obtain pre-asymptotic error-estimates has been recently devel-
oped by Wu and Zhu [106, 109]. It consists in defining an elliptic projection of the Riesz
representation of the error and it turns out that the proof is based on an extension of the
Schatz argument. The method work for 2D and 3D problems, however, the results are not
optimal as compared to (2.69).

2.3 Discretization using the Multiscale Medium Ap-

proximation method

In this section, we consider the discretization of heterogeneous Helmholtz problems by
finite elements.
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2.3.1 Problem statement

We are focusing on the 1D Helmholtz problem with constant density. Hence, we assume
that ρ = 1, and κ = c2, where c is the wavespeed.

It follows that the problem reads






















− ω2

c(z)2
u(z)− u′′(z) = f(z), z ∈ (0, Z)

u′(0) = 0

u′(Z)− iω

c(Z)
u(Z) = 0,

(2.70)

We assume that c is chosen so that (c2, 1) ∈ M . It means in particular that c is a
piecewise constant parameter satisfying cmin ≤ c(z) ≤ cmax for z ∈ (0, Z).

Since ρ is set, we write Sω,c = Sκ,ρ,c, S
⋆
ω,c = S⋆

κ,ρ,c and Bω,c = Bκ,ρ,c. We also introduce
the weighted norm

||v||2ω,c = ω2||c−1v||2 + ||v′||2,
for v ∈ H1(0, Z,C).

2.3.2 Finite element discretization

In this section, we recall the theory developed by Melenk and Sauter [75, 76] to derive
asymptotic stability estimates. The main idea is that if the discrete space is sufficiently
rich, the scheme is quasi-optimal.

For the sake of simplicity, we will consider a uniform decomposition of the domain (0, Z)
together with polynomial basis functions with constant degree. To this end, we consider a
discretization step h = 1/nh with nh ∈ N, and the associated decomposition tj = jh, for
j ∈ {0, . . . , nh}. Then we define the discretization space as

V h,p =
{

v ∈ H1(0, Z) | v|(tj−1,tj) ∈ Pp, 0 ≤ j ≤ nh

}

, (2.71)

where 1 ≤ p ≤ 3 is a given integer and Pp stands for the space of polynomials of degree
smaller or equal to p.

In the following, we want to quantify the ability of the discretization space V h,p to
approximate solutions to the Helmholtz equation. In this regard, we introduce

ηh,pω,c = sup
f∈L2(0,Z)

inf
vh∈V h,p

||S⋆
ω,cf − vh||ω,c

||f || = sup
f∈L2(0,Z)

inf
vh∈V h,p

||Sω,cf − vh||ω,c
||f || . (2.72)

We first show that the sesquilinear form B is bounded by a constant independent of ω
for the norm ||.||ω,c.

Proposition 5. For all u, v ∈ H1(0, Z) we have

|Bω,c(u, v)| ≤ Cb||u||ω,c||v||ω,c, (2.73)
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with

Cb = 1 +
C2

tr

cmin

.

Proof. First, by application of the Schwarz inequality, we have

|Bω,c(u, v)| ≤ ω2||c−1u|| ||c−1v||+ ||u′|| ||v′||+ ω

c(Z)
|u(Z)| |v(Z)|.

Then, we have

ω2||c−1u|| ||c−1v||+ ||u′|| ||v′|| ≤ ||u||ω,c||v||ω,c,

and, by application of Proposition 2,

ω

c(Z)
|u(Z)||v(Z)| ≤ 1

cmin

(

ω−1/2||u||∞
) (

ω−1/2||v||∞
)

≤ C2
tr

cmin

||u||ω,c||v||ω,c.

It follows that

|Bω,c(u, v)| ≤ (1 +
C2

tr

cmin

)||u||ω,c||v||ω,c.

In Lemma 13, we recall an important result due to Melenk and Sauter [75,76]: if ωηh,pω,c

is properly controlled, the accuracy of the numerical scheme is ensured by approximation
properties of the discretization space V h,p.

Lemma 13. Assume that uh ∈ V h,p satisfies

Bω,c(uh, vh) =

∫ Z

0

f(z)vh(z)dz, (2.74)

for all vh ∈ V h,p. Then, if we assume that ωηh,pω,c ≤ α, we have

||Sf − uh||ω,c ≤ Ceη
h,p
ω,c||f ||, (2.75)

with

α =
cmin

2Cb

, Ce =
2Cbcmax

cmin

.

Proof. To simplify the notation, let us write u = Sω,cf and s⋆ = S⋆
ω,c(c

−2(u − uh)). Let
s⋆h ∈ V h,p denote the best approximation of s⋆ in the ||.||ω,c norm. Then by Galerkin
orthogonality and by definition of ηh,pω,c (2.72), we have

||c−1(u− uh)||2 = ReBω,c(u− uh, s
⋆ − s⋆h)

≤ Cb||u− uh||ω,c||s⋆ − s⋆h||ω,c

≤ Cbη
h,p
ω,c

cmin

||u− uh||ω,c||c−1(u− uh)||.
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Furthermore, it holds that

ReBω,c(u− uh, u− uh) = ||u− uh||2ω,c − 2ω2||c−1(u− uh)||2

≥



1− 2

(

ωCbη
h,p
ω,c

cmin

)2


 ||u− uh||2ω,c,

and we can conclude that


1− 2

(

ωCbη
h,p
ω,c

cmin

)2


 ||u− uh||2ω,c ≤ ReBω,c(u− uh, u− uh)

≤ Re

∫ Z

0

f(z)(u− uh)(z)dz

≤ ||cf ||||c−1(u− uh)||

≤ Cbcmax

cmin

ηh,pω,c||f ||||u− uh||ω,c.

As a direct consequence of Lemma 13, the numerical scheme corresponding to V h,p is
well-posed under the condition that ωηh,pω,c ≤ α and the discrete solution is quasi-optimal.
To simplify the notations, we also introduce the discrete solution operator Sh,p

ω,c .

Theorem 10. Assume that ωηh,pω,c ≤ α. Then for all f ∈ L2(0, Z), there exists a unique
element Sh,p

ω,cf ∈ V h,p such that

Bω,c(Sh,p
ω,cf, vh) =

∫ Z

0

f(z)vh(z)dz, (2.76)

for all v ∈ V h,p. Furthermore, we have

||Sω,cf − Sh,p
ω,cf ||ω,c ≤ Ceη

h,p
ω,c||f ||. (2.77)

Proof. Error estimate (3.23) directly follows from Theorem 13. Therefore, we only need
to show existence and uniqueness of Sh,p

ω,cf and, since Sh,p
ω,cf is defined as the solution to a

finite dimensional linear system, proving uniqueness is sufficient. But uniqueness directly
follows from (2.75) with f = 0, and the proof is thus complete.

2.3.3 Approximation properties

In the previous section, we have clarified how the quality of the best approximation is
crucial to obtain the quasi-optimality of the scheme: the condition ωηh,pω,c ≤ α is required
(the constant α being defined in Lemma 13). The aim of this section is to bound ηh,pω,c

explicitly with respect to ω, h and p. This is achieved by building a good approximation
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of Sω,cf for a given f ∈ L2(0, Z). In the context of homogeneous media with a non-regular
right-hand-side f in L2, Melenk and Sauter have proposed a frequency-splitting of the
solution to build such an approximation [75,76].

Here, we provide a methodology to construct the best approximation in the context of
highly heterogeneous media. We are not aware of previous work dealing with discretization
of Helmholtz problems with non-matching interfaces inside the mesh. Hence, we believe
this result is new.

We are considering polynomials of degree 1 ≤ p ≤ 3. For the case p > 1, standard
approximation theory requires the solution to be more regular than H2 to achieve optimal
convergence rate. We propose to isolate ”non-regular parts” of the solution which are H2

only. We call them non-regular, because they are not regular enough to apply standard
approximation theory with polynomial of degree p > 1. The key point in our analysis is to
construct special approximants for these non-regular parts.

For the sake of simplicity, we assume in the remaining of the Chapter that ωh ≤ 1.
Note that this is a rational assumption which means that the number of discretization
points per wavelength is bounded below.

We start with a standard approximation property of polynomials of degree p in the
norm ||.||ω,c.
Proposition 6. Let 1 ≤ p ≤ 3. For all v ∈ Hp+1(0, Z), there exists an element vh ∈ V h,p

such that
||v − vh||ω,c ≤ Cah

p||v(p+1)||, (2.78)

where

Ca = 2Ĉmax(1,
1

cmin

),

and Ĉ is a numeric constant independent of all parameters.

Proof. Since v ∈ Hp+1(0, Z), classical approximation theory ensures that there exists vh ∈
V h,p such that

||v − vh|| ≤ Ĉhp+1||v(p+1)
h ||, ||(v − vh)

′|| ≤ Ĉhp||v(p+1)
h ||,

and therefore

||v − vh||ω,c ≤ Ĉ

(

ωhp+1

c⋆
+ hp

)

||v(p+1)||

≤ Ĉmax(1,
1

c⋆
)(1 + ωh)hp||v(p+1)||

≤ 2Ĉmax(1,
1

c⋆
)hp||v(p+1)||.

Since we do not assume more than L2(0, Z) regularity for the right-hand-side, we might
not expect the solution to be more than in H2(0, Z). In Lemma 14, we isolate this non-
regular part of the solution and define its approximation.
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Lemma 14. Let f ∈ L2(0, Z). There exists a function φ ∈ H1
0 (0, Z) ∩H2(0, Z) such that

φ′′ = f . Furthermore, there exists an element φh ∈ V 1
h such that

||φ− φh||ω,c ≤ Cah||f ||.

Proof. Since the Laplace operator (nothing but second derivative in 1D), is elliptic, it is
clear that there exists a unique function φ ∈ H1

0 (0, Z), such that −φ′′ = −f . Furthermore,
the definition of φ ensures that φ ∈ H2(0, Z) and ||φ′′|| = ||f ||. We conclude the proof
with Proposition 6.

Lemma 15. Consider the function W p
l ∈ L2(0, Z) defined by

W p
l (z) =

1

p!
(z − zl)

p1z>zl .

We have (W p
l )

(p+1) = δzl, and there exists a function vpl,h ∈ V h,p such that

||W p
l − vpl,h||ω,c ≤ Ca,wh

p−1/2, (2.79)

with

Ca,w = 2max(1,
1

cmin

).

Proof. First, it is clear that if zl = tj for some integer j, then W
p
l ∈ V h,p and the Lemma

is trivial. Therefore, assume that zl 6= tj. There exists a unique integer j⋆ such that
tj⋆ < zl < tj⋆+1. We define

vpl,h|(tj−1,tj)(z) =



















0, j < j⋆
1

p!
(tj⋆ − zl)

p (z − tj⋆−1)
p

(tj⋆ − tj⋆−1)p
, j = j⋆

1

p!
(z − zl)

p, j > j⋆.

One can easily verify that vpl,h ∈ V h,p. Furthermore, we can show that vpl,h satisfies (2.79)
by direct computations.

That the solution is non-regular is also due to the velocity parameter c which is dis-
continuous. Lemma 16 presents one way to isolate those irregularities together with an
approximation.

Lemma 16. For f ∈ L2(0, Z), we define

µ2 = ω2

L−1
∑

l=1

[

1

c2

]

l

(Sω,cf)(zl)W
2
l , µ3 = ω2

L−1
∑

l=1

[

1

c2

]

l

(Sω,cf)
′(zl)W

3
l .

Then we have

µ
(3)
2 = ω2

L−1
∑

l=1

[

1

c2

]

l

(Sω,cf)(zl)δzl , µ
(4)
3 = ω2

L−1
∑

l=1

[

1

c2

]

l

(Sω,cf)
′(zl)δzl .
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Furthermore, there exist µ2,h ∈ V 2
h and µ3,h ∈ V 3

h such that

||µ2 − µ2,h||ω,c ≤ Ca,2ωh
3/2, ||µ3 − µ3,h||ω,c ≤ Ca,3ω

2h5/2,

with

Ca,2 = Ca,wC∞, Ca,3 = Ca,wC
′
∞

(

1

c2min

− 1

c2max

)

.

Proof. The first part of Lemma 16 is a direct consequence of the definition of the Dirac
distribution δ. Therefore, let us focus on the construction of µ2,h and µ3,h. We define

µ2,h = ω2

L−1
∑

l=1

[

1

c2

]

l

(Sω,cf)(zl)v
2
l,h.

In view of (2.79), it is clear that

||µ2 − µ2,h||ω,c ≤ Ca,w

(

L−1
∑

l=1

[

1

c2

]

l

|(Sω,cf)(zl)|
)

ω2h3/2.

Therefore, using (2.27), we obtain

||µ2 − µ2,h||ω,c ≤ Ca,wC∞ωh
3/2||f ||.

We define

µ3,h = ω2

L−1
∑

l=1

[

1

c2

]

l

(Sω,cf)
′(zl)v

3
l,h,

and using (2.79), we have

||µ3 − µ3,h||ω,c ≤ Ca,w

(

L−1
∑

l=1

[

1

c2

]

l

(Sω,cf)
′(zl)

)

ω2h5/2

≤ Ca,w

(

L−1
∑

l=1

[

1

c2

]

l

)

||(Sω,cf)
′||∞ω2h5/2.

Therefore, according to (2.27), we have

||µ3 − µ3,h||ω,c ≤ Ca,wC
′
∞

(

1

c2min

− 1

c2max

)

ω2h5/2||f ||.

Theorem 11. Let 1 ≤ p ≤ 3. We have

ηh,pω,c ≤ Cη,pωh, (2.80)
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with

Cη,1 = CaCs,2, Cη,2 = Camax

{

1, Ca,2,
CaCs

c2min

}

, Cη,3 = Camax

{

1, Ca,2, Ca,3,
CaCs,2

c2min

}

.

Furthermore, if
ωp+1hp ≤ αp, (2.81)

where αp is a constant depending on α and Cη,p only, then the condition ωηh,p ≤ α is
satisfied.

Proof. The case of linear approximation is easy. Indeed, reminding estimate (2.22), it is
clear that there exists an element vh,1 ∈ V 1

h such that

||Sω,cf − vh,1||ω,c ≤ Cah||(Sω,cf)
′′|| ≤ CaCs,2ωh||f ||.

Therefore ηh,1ω,c ≤ CaCs,aωh and (2.80) and (2.81) immediately follow for p = 1.
We now consider the case p > 1. Since Sω,cf is a weak solution to (2.70), we have

(Sω,cf)
′′ = −f − ω2

c2
Sω,cf,

in the sense of distributions. Hence, defining φ ∈ H2(0, Z) as in Lemma 14, we have

(Sω,cf − φ)′′ = −ω
2

c2
Sω,cf. (2.82)

Differentiating (2.82) in the sense of distributions, we obtain

(Sω,cf − φ)(3) = −ω
2

c2
(Sω,cf)

′ − ω2

L−1
∑

l=1

[

1

c2

]

l

(Sω,cf)(zl)δzl ,

so that, defining µ2 as in Lemma 16

(Sω,cf − φ− µ2)
(3) = −ω

2

c2
(Sω,cf)

′. (2.83)

To conclude on the case p = 2, we define θ2 = Sω,cf − φ − µ2 ∈ H3(0, Z). According to
(2.83) and (2.19), we have

||θ(3)2 || ≤ ω2

c2min

||(Sω,cf)
′|| ≤ Cs

c2min

ω2||f ||.

Therefore, there exists a function θ2,h ∈ V 2
h such that

||θ2 − θ2,h||ω,c ≤
CaCs

c2min

ω2h2||f ||.
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We define φh ∈ V 1
h and µ2,h ∈ V 2

h as in Lemmas 14-16 and vh,2 = φh + µ2,h + θ2,h. Since
Sω,cf = φ+ µ2 + θ2, we obtain

||Sω,cf − vh,2||ω,c ≤
(

Cah+ Ca,2ωh
3/2 +

CaCs

c2min

ω2h2
)

||f ||,

and (2.80) follows for p = 2 because ω ≥ 1 and ωh ≤ 1. We now establish (2.81) for p = 2
and we get

ωηh,2ω,c ≤ Cη,2

(

ωh+ ω2h3/2 + ω3h2
)

≤ Cη,2

(

ω−1/2(ω3h2)1/2 + (ωh)1/2(ω3h2)1/2 + ω3h2
)

.

Thus, since ω−1/2 ≤ 1 and (ωh)1/2 ≤ 1 assuming that ω3h2 ≤ α2, we have

ωηh,2ω,c ≤ Cη,2

(

2α
1/2
2 + α2

)

,

and selecting

α2 =

(

(

α

Cη,2

+ 1

)1/2

− 1

)2

,

we have ωηh,2ω,c ≤ α.
We now tackle the case p = 3. We differentiate (2.83) again and obtain

(Sω,cf − φ− µ2)
(4) = −ω

2

c2
(Sω,cf)

′′ − ω2

L−1
∑

l=1

[

1

c2

]

l

(Sω,cf)
′(zl)δzl ,

so that, defining µ3 as in Lemma 16, we have

(Sω,cf − φ− µ2 − µ3)
(4) = −ω

2

c2
(Sω,cf)

′′. (2.84)

To conclude, we define θ3 = Sω,cf−φ−µ2−µ3 ∈ H4(0, Z), so that Sω,cf = φ+µ2+µ3+θ3
and

||θ(4)3 || ≤ ω2

c2min

||(Sω,cf)
′′|| ≤ Cs,2

c2min

ω3||f ||.

Let θ3,h ∈ V 3
h be the best approximation to θ3 and define µ3,h ∈ V 3

h as in Lemma 16. We
set vh,3 = φh + µ2,h + µ3,h + θ3,h ∈ V 3

h , and then we have

||Sω,cf − vh,3||ω,c ≤
(

Cah+ Ca,2ωh
3/2 + Ca,3,hω

2h5/2 +
CaCs,2

c2min

ω3h3
)

||f ||,

and we obtain (2.80) and (2.81) for p = 3 using the same arguments than for p = 2.

Our analysis is limited to the case p ≤ 3. We have obtained that when p ≥ 2, ω||µ2 −
µ2,h||ω,c is bounded by (ω4h3)1/2. Hence, even for p > 3, the best estimate for ωηh,pω,c is ω

4h3.
Now that ηh,pω,c has been estimated, we are able to deliver frequency-explicit stability

conditions and error-estimates.
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Corollary 2. Let 1 ≤ p ≤ 3. Assume that ωp+1hp ≤ αp. Then the discrete problem admits
a unique numerical solution Sh,p

ω,cf and the following error-estimate holds

||Sω,cf − Sh,p
ω,cf ||ω,c ≤ Ce,pωh||f ||,

where αp is defined in Theorem 11 and

Ce,3 = CeCη,p.

Proof. The proof is a direct application of Theorem 10 and Theorem 11. Indeed, assuming
ωp+1hp ≤ αp, (2.81) yields ωη

h,p
ω,c ≤ α and we can use Theorem 10. The result directly

follows from (3.23) because we also have ηh,pw,c ≤ Cη,pωh from (2.80).

2.3.4 Multiscale medium approximation

In the previous subsections, we have derived frequency-explicit stability conditions and
asymptotic error-estimates assuming that we are able to solve problem (2.76) exactly. It
requires thus to compute the coefficients of the linear system, including the integrals

∫ Z

0

1

c2(z)
φh(z)ψh(z)dz, (2.85)

for all basis functions φh, ψh ∈ V h,p of V h,p. Of course, in a one-dimensional space, it is
always possible to evaluate integral (2.85) analytically, since it can be decomposed into
several intervals where c is constant. However, this is not the case in two-dimensional
domains. Furthermore, even when the analytical formula is available (for example, if we
assume that the interfaces defining c are polygons in 2D), it might be expensive to compute,
since the quadrature scheme to be used will be different in each cell.

We propose a different approach which consists in approximating c by another param-
eter cǫ designed so that the integrals (2.85) are always cheap to compute numerically. We
construct cǫ so that (c

2
ǫ , 1) ∈M , where M is the set of admissible propagation media (κ, ρ)

defined in Definition 1. Hence, Theorem 7 will ensure the quality of the numerical approx-
imation. We call this process the Multiscale Medium Approximation method (MMAm),
just because the scale ǫ of the medium approximation is independent of the scale h of the
finite element approximation.

We now tackle the construction of cǫ. We suppose that the velocity parameter c is such
that (c2, 1) ∈M and

min
l∈{1,...,L}

zl − zl−1 > 2h⋆. (2.86)

We use the discretization space (2.71) with n ∈ N
⋆ cells. We consider m ∈ N

⋆ subdivisions
of each cell of the mesh. Then, for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}

cǫ|(tj−1

i ,tji )
= sup

(tj−1

i ,tji )

c
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where tji = ti+ jǫh, and ǫ = 1/m. Note that, because of (2.86), it is clear that both (c2, 1)
and (c2ǫ , 1) belong to M as soon as hǫ < h⋆. In Lemma 17, we show that the medium is
properly approximated if hǫ is small enough.

Lemma 17. Assume that hǫ < h⋆. Then we have

|c−2 − c−2
ǫ |1 ≤ (c−2

min − c−2
max)ǫh. (2.87)

Proof. For each l ∈ {1, . . . , L − 1}, there exists a unique pair il ∈ {1, . . . , n} and jl ∈
{1, . . . ,m} such that zl ∈ [tjl−1

il
, tjlil ). Furthermore, since hǫ < h⋆, il 6= ik and jl 6= jk if

j 6= k. If i 6= il and j 6= jl for all l ∈ {1, . . . , L− 1}, c is constant on (tj−1
i , tji ) and therefore

cǫ = c on this interval. It follows that

|c−2 − c−2
ǫ |1 =

L−1
∑

l=1

∫ t
jl
il

t
jl−1

il

|c−2(z)− c−2
ǫ (z)|dz ≤ hǫ

L−1
∑

l=1

[

1

c2

]

l

≤ hǫ
(

c−2
min − c−2

max

)

.

In Theorem 12, we conclude about the convergence of the MMAm.

Theorem 12. Assume that hǫ < h⋆ and ωp+1hp ≤ αp . Then for all f ∈ L2(0, Z), there
exists a unique element Sh,p

ω,cǫf ∈ V h,p such that

Bω,cǫ(Sh,p
ω,cǫf, v) =

∫ Z

0

f(z)v(z)dz, (2.88)

for all v ∈ V h,p. Furthermore, it holds that

||Sω,cf − Sh,p
ω,cǫf ||ω,c ≤ Ce,p,ǫ(ωh+ ω2hǫ)||f ||, (2.89)

with
Ce,p,ǫ =

cmax

cmin

max
{

(c−2
min − c−2

max)Cs,mZ,Ce,p

}

.

Proof. Using Lemma 17, the result directly follows from Theorem 7, the bounds (2.80) and
(2.81) from Corollary 2 and the error-estimate (3.23) of Theorem 10:

||Sω,cf − Sh,p
ω,cǫf ||ω,c ≤ ||Sω,cf − Sω,cǫf ||ω,c + ||Sω,cǫf − Sh,p

ω,cǫf ||ω,c
≤ ||Sω,cf − Sω,cǫf ||ω,c +

cmax

cmin

||Sω,cǫf − Sh,p
ω,cǫf ||ω,cǫ

≤ cmaxCs,m

cmin

ω2||c−2 − c−2
ǫ ||1||f ||+

cmaxCe,p

cmin

ωh||f ||

≤
(

cmaxCs,m

cmin

(c−2
min − c−2

max)Zω
2hǫ+

cmaxCe,p

cmin

ωh

)

||f ||.



Chapter 3

Analysis of the problem in two

dimensions

This chapter is devoted to the analysis of the problem in 2D. We are not able to extend all
the results obtained in 1D to the two-dimensional case. Like in the 1D case, we start by
deriving frequency-explicit stability estimates for the continuous problem in Section 3.1.
We then turn to the convergence analysis of the MMAm for 2D problems in Section 3.2.

3.1 Analysis of the continuous problem

3.1.1 Background

Makridakis, Ihlenburg and Babuška consider the problem of a one dimensional fluid-solid
interaction [70]. A solid body is immersed in a fluid and waves are propagating. They use
special test functions of the form v(x) = (x− x̄)u′(x), where x̄ is a carefully selected point.

The method of Makridakis, Ihlenburg and Babuška is generalized to two dimensional
problems in star-shaped domains by Melenk during his PhD [73]. The test function is
generalized to v(x) = x · ∇u(x) in two dimensions.

The method is further extended to three dimensional homogeneous media and to elastic
waves (but the results are not optimal for the elastic case) by Cummings and Feng [39]. The
case of mixed boundary conditions is handled with the same test-functions by Hetmaniuk
[55].

The test function v(x) = x · ∇u(x), is called a ”Morawetz multiplier”. This multiplier
was first introduced by Morawetz in [77] to analyse a non-linear time-domain wave equation
and is commonly used in the analysis of Helmholtz and Schrödinger problems (see for
instance [67, 81]). A general presentation of how Morawetz multipliers can be applied to
Helmholtz problems is given in [81]. In particular, the analysis presented in [81] includes
heterogeneous propagation media.

In the following, we use a Morawetz multiplier to show frequency-explicit stability-
estimates for Helmholtz problems in heterogeneous propagation media where the density

87
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is constant and the wavespeed satisfies a monotonicity hypothesis. We consider bounded
propagation media surrounded by an absorbing condition.

The results presented in this section are strongly linked to [81]. In particular, our
monotonicity hypothesis is similar to the assumptions of [81]. The main difference between
our results and [81] is the boundary conditions. In [81], the authors consider an Helmholtz
problem set in the whole space R

N and the uniqueness of the solution is ensured by the
limiting absorption principle. In contrast, we propose to analyse the problem in a bounded
domain of R2 surrounded by a first-order radiation condition.

3.1.2 Problem statement

We now consider acoustic wave propagation in two dimensions. We consider problem (1.33)
with two simplifications. First, we assume that the propagation domain Ω = (0, L1) ×
(0, L2) ⊂ R

2, is a rectangle. Second we assume that the density ρ is constant (see (1.25)).
We further assume that there is no free surface, and the whole domain is surrounded by
an absorbing condition. Finally, we are using a simplified absorbing boundary condition
compared to (1.33). As a result, the propagation of harmonic seismic waves is governed by
the equation:

{

−k2u−∆u = f in Ω
∇u · n− ikmaxu = 0 on ∂Ω.

(3.1)

The wave number k is defined from the pulsation ω and the velocity c through the relation
k = ω/c. The pulsation is a given positive constant and the velocity varies in the whole
domain. Since we are especially concerned with high frequency waves, we consider pulsa-
tions ω higher than a given minimum ω0. The field f is a given distributed source. To get
into the right condition of numerical experiments, we assume that the domain of interest
is limited by an absorbing boundary. We thus set the simplest outgoing radiation condi-
tion on the boundary of Ω. We use the coefficient kmax = supΩ k to define this radiation
condition.

We assume that c ∈ L∞(Ω) is piecewise constant and the values of c are distributed as
follows. The velocity model is composed of R subdomains Ωr enclosed in Ω and in each
Ωr, the velocity is cr = c|Ωr

∈ R
+∗ with cmin = minr cr, cmax = maxr cr and we assume

that cmin > 0. It is worth noting that kmax = ω/cmin. We further assume that there exists
a point x0 ∈ Ω such that

nr · (x− x0)

c2r
+

nl · (x− x0)

c2l
< 0 ∀x ∈ ∂Ωr ∩ ∂Ωl, (3.2)

for all r, l ∈ {1, . . . , R} such that Ωr ∩Ωl 6= ∅, where nr and nl stand for the unit outward
normal vectors to ∂Ωr and ∂Ωl respectively. Examples of velocity models satisfying (3.2)
are given in Figures 3.1 and 3.2.
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Figure 3.1: A stratified velocity parameter

(0, L2)

(0, 0) (L1, 0)

x0

5000

1500

2000

2500

3000

3500

2500

3000

3500

Figure 3.2: A velocity parameter with a salt body

In the following, we employ the notation kr = ω/cr.
It is well-known that u ∈ H1(Ω,C) is solution to (3.1) in a weak sense if and only if u

satisfies the variational equation

B(u, v) = −
∫

Ω

k2uv̄ − ikmax

∫

∂Ω

uv̄ +

∫

Ω

∇u · ∇v̄ =
∫

Ω

fv̄, (3.3)

for all v ∈ H1(Ω,C), whereB : H1(Ω,C)×H1(Ω,C) → C is the sesquilinear form associated
with Problem (3.1). The proof is similar to the one-dimensional case and is not repeated
here.
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Proposition 7. Let u ∈ H1(Ω,C) be any solution to (3.3). Then u ∈ H2(Ω,C) and there
exists a constant C := C(Ω, cmin) such that

|u|22,Ω ≤ C
(

|f |20,Ω + (ω2 + ω4)|u|20,Ω + ω2|u|21,Ω
)

.

Proof. u being a solution to (3.3), it satisfies
∫

Ω

∇u · ∇v̄ =
∫

Ω

F v̄ +

∫

∂Ω

Gv̄ ∀v ∈ H1(Ω,C),

with F = f + k2u and G = ikmaxu. Since k ∈ L∞(Ω) and u ∈ H1(Ω,C), we have
F ∈ L2(Ω,C) and G ∈ H1/2(∂Ω,C). Since Ω is convex, the classical theory for the
homogeneous Laplace operator implies that there exists a constant C depending on Ω only
such that

|u|22,Ω ≤ C
(

|F |20,Ω + ||G||21/2,∂Ω
)

.

Furthermore, regarding norms |F |20,Ω and ||G||21/2,∂Ω, we have

|F |20,Ω = |f + k2u|20,Ω
≤ |f |20,Ω + k4max|u|20,Ω
≤ C

(

|f |20,Ω + ω4|u|20,Ω
)

,

with C = max(1, 1/c4min). Moreover,

||G||21/2,∂Ω = ||ikmaxu||21/2,∂Ω
= k2max||u||21/2,∂Ω
≤ Cω2||u||21/2,∂Ω,

with C = max(1, 1/c2min). We end the proof thanks to the following trace inequality

||u||21/2,Ω ≤ C
(

|u|20,Ω + |u|21,Ω
)

,

where C is a constant depending on Ω only.

Before turning to stability in the L2(Ω,C) norm, we need two identities. It is worth
mentioning that Lemma 18 is only valid in 2D. We refer the reader to [55] for a 3D version
of Lemma 18.

Lemma 18. For all w ∈ H2(Ω,C),

2Re

∫

Ω

∇w · ∇(x · ∇w̄) =
∫

∂Ω

|∇w|2x · n. (3.4)

For all w ∈ H1(Ω,C),

2Re

∫

Ω

k2wx·∇w̄ = −2
∫

Ω

k2|w|2−
R
∑

r,l=1

∫

Ωr∩Ωl

(k2rx·nr+k
2
l x·nl)|w|2+

∫

∂Ω

k2|w|2x·n, (3.5)

where x = x− x0.
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Proof. In the proof of (3.4) and (3.5), we use the identity

2Re v∂j v̄ = ∂j|v|2, ∀v ∈ H1(Ω,C), j = 1, 2. (3.6)

To demonstrate (3.4), we first develop the expression:

∂jw∂j(x · ∇w̄) =
2

∑

k=1

∂jw∂j(xk∂kw̄)

=
2

∑

k=1

∂jw(∂jxk∂kw̄ + xk∂jkw̄)

=
2

∑

k=1

δjk∂jw∂kw̄ +
2

∑

k=1

xk∂jw∂jkw̄

= |∂jw|2 +
2

∑

k=1

xk∂jw∂k(∂jw̄)

Using (3.6) with v = ∂jw, we get

2Re ∂jw∂j(x · ∇w̄) = 2|∂jw|2 +
2

∑

k=1

xk∂k|∂jw|2

= 2|∂jw|2 + x · ∇|∂jw|2.

We shall now integrate and then use a Green formula:

2Re

∫

Ω

∂jw∂j(x · ∇w̄) = 2

∫

Ω

|∂jw|2 +
∫

Ω

x · ∇|∂jw|2

= 2

∫

Ω

|∂jw|2 −
∫

Ω

div x|∂jw|2 +
∫

∂Ω

x · n|∂jw|2

= 2

∫

Ω

|∂jw|2 −
∫

Ω

2|∂jw|2 +
∫

∂Ω

x · n|∂jw|2

=

∫

∂Ω

x · n|∂jw|2
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We demonstrate (3.4) by summing over j. We now turn to (3.5).

2Re

∫

Ω

k2wx · ∇w̄ =

∫

Ω

k2x · ∇|w|2

=
R
∑

r=1

k2r

∫

Ωr

x · ∇|w|2

=
R
∑

r=1

k2r

{

−
∫

Ωr

div x|w|2 +
∫

∂Ωr

x · nr|w|2
}

= −2
∫

Ω

k2|w|2 +
R
∑

r=1

k2r

∫

∂Ωr

x · nr|w|2.

= −2
∫

Ω

k2|w|2 +
R
∑

r,l=1

∫

Ωr∩Ωl

(k2rx · nr + k2l x · nl)|w|2 +
∫

∂Ω

k2x · n|w|2

We are now ready to introduce our stability result in the L2(Ω,C) norm. We point out
that Proposition 8 is valid for all pulsations ω ≥ ω0.

Proposition 8. Let u ∈ H1(Ω,C) be any solution to (3.3). Then there exists a constant
C := C(Ω, cmax, cmin, x0, ω0) such that

|u|0,Ω ≤ C

ω
|f |0,Ω.

Proof. According to Proposition 7, u ∈ H2(Ω,C) and v = x · ∇u is regular enough to be
used as a test function in the variational equation (3.3). Recalling (3.4) and (3.5), then
taking the real part of (3.3), we have

2

∫

Ω

k2|u|2 −
R
∑

r,l=1

∫

Ωr∩Ωl

(k2rx · nr + k2l x · nl)|u|2 +
∫

∂Ω

|∇u|2x · n

= 2Re

∫

Ω

fx · ∇ū+ 2Re ikmax

∫

∂Ω

ux · ∇ū+
∫

∂Ω

k2|u|2x · n.

Ω being a rectangle, it is strictly star-shaped with respect to x0, and there exists a
constant γ > 0 depending on Ω and x0 only such that x·n ≥ γ on ∂Ω. Since c satisfies (3.2),
we have (k2rx · nr + k2l x · nl) ≤ 0. Then, observing that |x| ≤ diam Ω = (L2

1 + L2
2)

1/2 = L,
it follows

2k2min|u|2 + γ|∇u|20,∂Ω ≤ 2L|f |0,Ω|u|1,Ω + 2Lkmax|u|0,∂Ω|∇u|0,∂Ω + Lk2max|u|20,∂Ω

≤ L2

ǫ
|f |20,Ω + ǫ|u|21,Ω +

L2k2max

γ
|u|20,∂Ω + γ|∇u|20,Ω + Lk2max|u|20,∂Ω.
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We then get that for any ǫ > 0

2kmin|u|20,Ω ≤ L2

ǫ
|f |20,Ω + ǫ|u|21,Ω +

(

L2

γ
+ L

)

k2max|u|20,∂Ω. (3.7)

We complete the proof by deriving estimates for |u|1,Ω and |u|0,∂Ω. This is carried out by
picking v = u as a test function in (3.3) and considering the real and imaginary parts
separately. We start by studying |u|1,Ω. We have:

Re B(u, u) = −
∫

Ω

k2|u|2 +
∫

Ω

|∇u|2 = Re

∫

Ω

fū ≤ |f |0,Ω|u|0,Ω.

It follows that

|u|21,Ω ≤ |f |0,Ω|u|0,Ω + k2max|u|20,Ω ≤ 1

4k2max

|f |20,Ω + 2k2max|u|20,Ω.

Then selecting ǫ = k2min/4k
2
max, we obtain

L2

ǫ0
|f |0,Ω + ǫ0|u|21,Ω ≤

(

4L2k
2
max

k2min

+
k2min

k4max

)

|f |20,Ω +
k2min

2
|u|20,Ω. (3.8)

We now move on estimating |u|0,∂Ω. We have

Im B(u, u) = −kmax|u|20,∂Ω = Im

∫

Ω

fū.

It follows that
(

L2

γ
+ L

)

k2max|u|20,∂Ω ≤
(

L2

γ
+ L

)

kmax|f |0,Ω|u|0,Ω

≤ 1

2

(

L2

γ
+ L

)2
k2max

k2min

|f |20,Ω +
k2min

2
|u|20,Ω. (3.9)

Combining (3.7), (3.8) with (3.9), we get

k2min|u|2 ≤
{(

4L2 +
1

2

(

L2

γ
+ L

)2
)

k2max

k2min

+
k2min

k4max

}

|f |20,Ω,

so that the proposition holds with

C = cmax

√

√

√

√

(

4L2 +
1

2

(

L2

γ
+ L

)2
)

c2min

c2max

+
c2max

c4min

1

ω2
0

.
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We end this section by a full statement of the results obtained in the section.

Theorem 13. For all f ∈ L2(Ω,C) and for all ω ≥ ω0, problem (3.3) admits a unique
solution Sω,cf ∈ H1(Ω,C). Furthermore, Sω,cf ∈ H2(Ω,C), and there exists a constant
C := C(Ω, cmin, cmax, x0, ω0) such that

|Sω,cf |0,Ω ≤ C

ω
|f |0,Ω, |Sω,cf |1,Ω ≤ C|f |0,Ω, |Sω,cf |2,Ω ≤ Cω|f |0,Ω.

Proof. Regarding existence and uniqueness, observe that the sesquilinear form B satisfies
a G̊arding inequality. Indeed for all v ∈ H1(Ω,C), we have

Re B(v, v) = −
∫

Ω

k2|v|2 +
∫

Ω

|∇v|2 ≥ −k2max|v|20,Ω + |v|21,Ω.

Therefore, it follows that we can apply the Fredholm alternative and thus focus on unique-
ness (see Chapter 2 of [87]). But Proposition 8 applied to (3.3) with f = 0 implies that
u = 0, which proves uniqueness and thus existence.

Problem (3.3) admits thus a unique solution Sω,cf ∈ H1(Ω,C). Now, Proposition 8
implies that

|Sω,cf |0,Ω ≤ C0

ω
|f |0,Ω,

with a suitable constant C0. Moreover, if we write u = Sω,cf , we have

Re B(u, u) = −
∫

Ω

k2|u|2 +
∫

Ω

|∇u|2 = Re

∫

Ω

fū.

which implies that

|u|21,Ω ≤ |f |0,Ω|u|0,Ω + k2max|u|20,Ω
≤ 1

4k2max

|f |20,Ω + 2k2max|u|20,Ω

≤
(

c2min

4ω2
0

+ 2
C2

0

c2min

)

|f |20,Ω
≤ C2

1 |f |20,Ω.
The demonstration of the theorem is then ended since Proposition 7 allows to write the

estimates:

|u|22,Ω ≤ C(Ω)
(

|f |20,Ω + (ω2 + ω4)|u|20,Ω + ω2|u|21,Ω
)

≤ C(Ω)
(

1 + (1 + ω2)C2
0 + ω2C2

1

)

|f |20,Ω

≤ C(Ω)
(1 + C2

0

ω2
+ (C2

0 + C2
1)
)

ω2|f |20,Ω

≤ C(Ω)
(1 + C2

0

ω2
0

+ (C2
0 + C2

1)
)

ω2|f |20,Ω
≤ C2

2ω
2|f |20,Ω.
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Corollary 3. For all g ∈ L2(Ω,C) and for all ω ≥ ω0, there exists a unique solution
S⋆
ω,cg ∈ H1(Ω,C) such that

B(w,S⋆
ω,cg) =

∫

Ω

wḡ, ∀w ∈ H1(ω,C).

Furthermore, S⋆
ω,cg ∈ H2(Ω,C), and there exists a constant C := C(Ω, cmin, cmax, x0, ω0)

such that

|S⋆
ω,cg|0,Ω ≤ C

ω
|g|0,Ω, |S⋆

ω,cg|1,Ω ≤ C|g|0,Ω, |S⋆
ω,cg|2,Ω ≤ Cω|g|0,Ω.

Proof. To start with, by definition of Sω,cḡ, we have

B(Sω,cḡ, v) =

∫

Ω

ḡv̄, ∀v ∈ H1(Ω,C). (3.10)

Then, we easily remark that B(Sω,cḡ, v) = B(v̄,Sω,cḡ). Hence setting w = v̄ in (3.10), we
obtain

B(w,Sω,cḡ) =

∫

Ω

ḡw, ∀w ∈ H1(Ω,C).

Therefore, S⋆
ω,cg = Sω,cḡ. Hence, existence uniqueness and stability estimates follow

from Theorem 13.

3.2 Discretization using the Multiscale Medium Ap-

proximation method

3.2.1 Background

We explained in detail the importance of frequency-explicit convergence analysis of finite
element schemes in the 1D case. Let us give a brief comparison of the results available in
the literature between 1D and 2D.

We explained that asymptotic error-estimates are purely based on finite element tech-
niques using the Schatz argument. Therefore, they are easily applicable to 2D problems.
For instance, the case of linear elements is treated in Melenk’s PhD [73]. Also, Melenk
and Sauter have developed an asymptotic theory for arbitrary polynomial degree when the
right hand side is in L2 only [75, 76].

Dispersion relations can also be extended to 2D in some cases. As we already mention,
the key ingredient is the space periodicity of the mesh. Dispersion analysis in two and
three dimensions includes the work of Mullen and Belytschko [78], Abboud and Pinsky [1]
and Ainsworth [3] for cartesian grids. An analysis for more general schemes is given by
Deraemaeker, Babuška and Bouillard [41].
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Concerning asymptotic error-estimate, an optimal results has been given by Ihlenburg
and Babuška [60] for 1D homogeneous problems: provided that ωh ≤ C, the finite element
solution uh satisfies

ω|u− uh|0 + |u− uh|1 ≤ C1ωh+ C2ω
2p+1h2p, (3.11)

where C1 and C2 are two constants independent of ω and h.
The proof of (3.11) given by Ihlenburg and Babuška [60] is tricky to extend to the higher

dimensions or to heterogeneous media. It involves subtle arguments including stability
estimates in dual norms and specific interpolants. As a result, no rigorous generalization
of their work was available until very recently.

A simpler method to obtain pre-asymptotic error-estimates has been recently devel-
oped by Wu and Zhu [106, 109]. It consists in defining an elliptic projection of the Riesz
representation of the error and we can think about the proof as an extension of the Schatz
argument.

The argument of Wu and Zhu applies to 2D and 3D and to rough right hand sides
f ∈ L2. However, the resulting pre-asymptotic error-estimates are not optimal compared
to (2.69). Their result reads: if ωp+2hp+1 ≤ C then

ω|u− uh|0 + |u− uh|1 ≤ C1ω
php + C2ω

p+2hp+1. (3.12)

In pre-asymptotic estimate (3.12), the error is decomposed into the best approximation
error and a pollution term like in (3.11). The difference is that it is only valid in a given
range where ωp+2hp+1 ≤ C. Also the order of the pollution term is not optimal as compared
to (3.11).

The main achievement of this section is the derivation of a pre-asymptotic error-estimate
for the MMAm with linear Lagrangian elements using the method of Wu and Zhu in the
context of heterogeneous media.

3.2.2 Problem statement

In this section, we pertain to a finite element discretization of problem (3.3) and we study
its convergence with respect to the pulsation ω and the maximum size h of cells forming
the mesh.

We propose convergence estimates which are based on the analysis of Zhu and Wu
[106,109]. Our proof is elaborated for a 2D heterogeneous domain and its main ingredient
is the construction of an approximate propagation medium by the mean of an approximate
velocity cǫ. We are then able to extend the optimal convergence result for linear elements
in homogeneous media providing that ω3h2 and ωMh,ǫ are small enough. The quantity
Mh,ǫ which involves two parameters h and ǫ, stands for the approximation error of c by
cǫ (see Definition 7). As abovementioned, h denotes the discretization step related to the
finite element mesh while ǫ represents the size of the local submesh that is used to represent
the approximate velocity cǫ.
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Let then Th be a regular mesh of Ω and its associated conforming discrete space Vh ⊂
H1(Ω,C). Since Theorem 13 indicates that Sω,cf ∈ H2(Ω,C), we may expect a linear
convergence in the H1(Ω,C) norm when using linear or bilinear elements.

We now tackle the issue of computing the entries of the linear system associated with
Vh. Indeed, even when using piecewise polynomials, we must integrate quantities involving
c. In fact, if we assume that each interface Ωr∩Ωl is polygonal, we could accurately mesh it
with a finer mesh Tǫ where ǫ has already been introduced with the approximate velocity cǫ.
We could then perform an exact integration on Tǫ. But this is not fully satisfactory since
it requires to build an auxiliary mesh and we prefer to avoid any superfluous mesh with a
view to reduce the implementation time. Furthermore, if we accept the idea of constructing
an auxiliary mesh, the quadrature scheme induced by the fine mesh Tǫ is different in each
coarse cell, making integration of linear system entries very costly. Finally, for realistic
applications, the interfaces Ωl ∩ Ωr are not given explicitly and the parameter c is rather
given as a set of sampling values. It seems thus difficult to introduce Tǫ. We have to cope
with a technical difficulty and for that purpose, we propose to construct an approximation
cǫ of c such that the entries of the linear system are both cheap and easy to compute. This
is what we are doing in the next subsection, but before, we focus on proving that the finite
element scheme we apply is stable when c is replaced by its approximation. More precisely,
we demonstrate that if cǫ converge to c when ǫ goes to zero (in a sense to be defined), the
numerical solution converges to the analytical solution as both h and ǫ go to zero.

In the following, we will assume that ωh ≤ 1. It is worth mentioning that this hypothesis
is not restrictive, since the final results are obtained under the stronger condition that ω3h2

is small enough.
We start by requiring approximation properties on the discretization space and we

introduce the quantity Mh,ǫ in Definition 6 and 7. Note that the conditions given in
Definition 6 are fulfilled, for instance, by P1 Lagrangian polynomials.

Definition 6. We consider a partition Th of Ω. We assume that each cell K ∈ Th is the
image of a reference cell K̂ ⊂ R

2 through an invertible affine map FK ∈ L(R2). We also
consider a (finite dimensional) reference discretization space P̂ ⊂ C∞(K̂), and define the
discretization space Vh by

Vh =
{

vh ∈ H1(Ω,C) | vh|K ◦ FK ∈ P̂ ∀K ∈ Th

}

.

We further assume that there is a projection operator Πh ∈ L(H1(Ω,C), Vh) satisfying

|w − Πhw|0,Ω ≤ Ch2|w|2,Ω, |w − Πhw|1,Ω ≤ Ch|w|2,Ω, ∀w ∈ H2(Ω,C),

where C is a constant depending on Ω, K̂ and P̂ . Note that the multiplicative trace in-
equality ensures that

|w − Πhw|0,∂Ω ≤ Ch3/2|w|2,Ω,
where C is a constant depending on Ω, K̂ and P̂ .

The construction of cǫ is depicted at Section 4. In this section, assume that cǫ ∈ L∞(Ω)
and cmin ≤ cǫ ≤ cmax. We also define the quantity Mh,ǫ:
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Definition 7. The velocity approximation error is defined by

Mh,ǫ = max
K∈Th

1

|K|

∫

K

∣

∣

∣

∣

1

c2
− 1

c2ǫ

∣

∣

∣

∣

,

where |K| is the Lebesgue measure of the cell K.

3.2.3 Convergence analysis

In the following, we assume that Mh,ǫ converges to zero as h and ǫ go to zero. To simplify
the notations we will consider a given f ∈ L2(Ω,C) and define u = Sω,cf . Vh and cǫ being
defined, we now introduce the discrete finite element problem. We write kǫ = ω/cǫ. The
discrete equation consists in finding uh ∈ Vh such that

Bǫ(uh, vh) = −
∫

Ω

k2ǫuhv̄h − ikmax

∫

∂Ω

uhv̄h +

∫

Ω

∇uh · ∇v̄h =
∫

Ω

fv̄h, ∀vh ∈ Vh. (3.13)

In the remaining of this section C := C(Ω, cmin, cmax, x0, ω0) denotes a constant inde-
pendent of ω, h and ǫ.

Proposition 9. There exists a constant C > 0 such that

|B(w, v)| ≤ C
(

ω|w|0,Ω + |w|1,Ω
)(

ω|v|0,Ω + |v|1,Ω
)

, ∀w, v ∈ H1(Ω,C),

and
|Bǫ(wh, vh)| ≤ C

(

ω|wh|0,Ω + |wh|1,Ω
)(

ω|vh|0,Ω + |vh|1,Ω
)

, ∀wh, vh ∈ Vh.

Proof. Since the proofs are similar for B and Bǫ, we focus on the first case only. Consider
w, v ∈ H1(Ω,C). It is obvious that

|B(w, v)| ≤ k2max|w|0,Ω|v|0,Ω + kmax|w|0,∂Ω|v|0,∂Ω + |w|1,Ω|v|1,Ω
≤

(

kmax|w|0,Ω + |w|1,Ω
)(

kmax|v|0,Ω + |v|1,Ω
)

+ kmax|w|0,∂Ω|v|0,∂Ω.

Moreover, for all µ ∈ H1(Ω, C), we have

kmax|µ|20,∂Ω ≤ C(Ω)kmax

(

|µ|20,Ω + |µ|0,Ω|µ|1,Ω
)

≤ C(Ω)kmax

(

|µ|20,Ω + kmax|µ|20,Ω +
1

kmax

|µ|21,Ω
)

≤ C(Ω, ω0, cmin)
(

k2max|µ|20,Ω + |µ|21,Ω
)

≤ C(Ω, ω0, cmin)
(

kmax|µ|0,Ω + |µ|1,Ω
)2
,

and the result follows since kmax = ω/cmin.

We now give a result concerning the error induced by the approximation of the velocity
parameter between the two sesquilinear forms B and Bh in Proposition 10.
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Proposition 10. There exists a constant C := C(K̂, P̂ ) such that

|B(uh, vh)− Bǫ(uh, vh)| ≤ Cω2Mh,ǫ|uh|0,Ω|vh|0,Ω, ∀uh, vh ∈ Vh.

Proof. Consider uh, vh ∈ Vh. We have

|B(uh, vh)− Bǫ(uh, vh)| =

∣

∣

∣

∣

∫

Ω

(k2 − k2ǫ )uhvh

∣

∣

∣

∣

≤ ω2
∑

K∈Th

∫

K

∣

∣

∣

∣

1

c2
− 1

c2ǫ

∣

∣

∣

∣

|uh||vh|

≤ ω2
∑

K∈Th

|uh|0,∞,K |vh|0,∞,K

∫

K

∣

∣

∣

∣

1

c2
− 1

c2ǫ

∣

∣

∣

∣

. (3.14)

Furthermore, for any cell K ∈ Th, wh ◦ FK belongs to the finite dimensional space P̂ if
wh ∈ Vh and there exists a constant Ĉ depending on P̂ only, such that

|wh|0,∞,K = |wh ◦ FK |0,∞,K̂ ≤ Ĉ|wh ◦ FK |0,K̂ .

We can thus derive

|wh ◦ FK |20,K̂ =

∫

K̂

|wh ◦ FK |2 = Det J−1
FK

∫

K

|wh|2 =
|K̂|
|K| |wh|20,K ,

so that

|wh|0,∞,K ≤ Ĉ

√

|K̂|
|K| |wh|0,K . (3.15)

We can conclude by using (3.15) with wh = uh, vh in (3.14).

|B(uh, vh)− Bǫ(uh, vh)| ≤ Ĉ2|K̂|ω2
∑

K∈Th

|uh|0,K |vh|0,K
|K|

∫

K

∣

∣

∣

∣

1

c2
− 1

c2ǫ

∣

∣

∣

∣

≤ Ĉ2|K̂|ω2Mh,ǫ

∑

K∈Th

|uh|0,K |vh|0,K

≤ Ĉ2|K̂|ω2Mh,ǫ|uh|0,Ω|vh|0,Ω.

Before we establish our convergence result, we need three additional Lemma. In Lemma
19, we define the Riesz representation of the error z together with its elliptic projection
zh. We use the Riesz representation and its elliptic projection in Lemma 20 to bound the
finite element error in the L2 norm. Lemma 21 is a technical result required to prove the
convergence in the H1 norm in Theorem 14.

The proof of our error-estimate is based on the theory of Zhu and Wu [106, 109] who
establishes in particular Proposition 11.
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Proposition 11. Let a be the sesquilinear form

a(w, v) =

∫

Ω

∇w · ∇v̄ − ikmax

∫

∂Ω

wv̄, ∀w, v ∈ H1(Ω,C).

For all z ∈ H1(Ω,C), there exists a unique zh ∈ Vh such that

a(wh, zh) = a(wh, z), ∀wh ∈ Vh,

and we have

|z − zh|0,Ω ≤ Ch2|z|2,Ω,
|z − zh|1,Ω ≤ Ch|z|2,Ω,
|z − zh|0,∂Ω ≤ Ch3/2|z|2,Ω.

Lemma 19. Let uh ∈ Vh. Then there exists a unique element z ∈ H1(Ω,C) such that

|u− uh|2 = B(u− uh, z). (3.16)

Furthermore, there exists an element zh ∈ Vh such that

|B(u− uh, z − zh)|
|u− uh|0,Ω

≤ C
(

ω3h2|u− uh|0,Ω + ω2h2|f |0,Ω
)

. (3.17)

Proof. According to Corollary 3, it is clear that there exists a unique z ∈ H1(Ω,C) such
that

B(w, z) =

∫

Ω

w(u− uh), ∀w ∈ H1(Ω,C).

In particular, picking w = u− uh yields (3.16).
Using Proposition 11, there exists an element zh ∈ Vh such that

a(u− uh, z − zh) = a(u− Πhu, z − zh)

It follows that

B(u− uh, z − zh) = −
∫

Ω

k2(u− uh)(z − zh) + a(u− uh, z − zh)

= −
∫

Ω

k2(u− uh)(z − zh) + a(u− Πhu, z − zh)

Hence,

|B(u− uh, z − zh)| ≤ k2max|u− uh|0,Ω|z − zh|0,Ω + kmax|u− Πhu|0,∂Ω|z − zh|0,∂Ω
+ |u− Πhu|1,Ω|z − zh|1,Ω
≤ C

(

k2maxh
2|u− uh|0,Ω|z|2,Ω + kmaxh

3|u|2,Ω|z|2,Ω + h2|u|2,Ω|z|2,Ω
)

≤ C
(

ω2h2|u− uh|0,Ω|z|2,Ω + ωh3|u|2,Ω|z|2,Ω + h2|u|2,Ω|z|2,Ω
)
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Now, using Corollary 3 again, we have

|z|2,Ω ≤ Cω|u− uh|0,Ω,

and therefore

|B(u− uh, z − zh)|
|u− uh|0,Ω

≤ C
(

ω3h2|u− uh|0,Ω + ω2h3|u|2,Ω + ωh2|u|2,Ω
)

.

We conclude thanks to Theorem 13. We have

|u|2,Ω ≤ Cω|f |0,Ω,

and the proof follows since ωh ≤ 1.

Lemma 20. Let uh ∈ Vh be any solution to problem (3.13). Then if ω3h2 and ωMh,ǫ are
small enough, there exists a constant C such that

|u− uh|0,Ω ≤ C
(

ω2h2 +Mh,ǫ

)

|f |0,Ω.

Proof. Recalling (3.16) from Lemma 19, there exits an element z ∈ H1(Ω,C) such that

|u− uh|20,Ω = B(u− uh, z).

We then introduce zh ∈ Vh defined as in Lemma 19. Since u and uh solve (3.3) and
(3.13) respectively, we have

B(u− uh, z) = B(u− uh, z − zh) + B(u− uh, zh)

= B(u− uh, z − zh) + Bǫ(uh, zh)− B(uh, zh),

and therefore

|u− uh|0,Ω ≤ |B(u− uh, z − zh)|
|u− uh|0,Ω

+
|Bǫ(uh, zh)− B(uh, zh)|

|u− uh|0,Ω
. (3.18)

We bound the first term in the right hand side of (3.18) using Lemma 19. To deal with
the second term, we recall Proposition 10: there holds

|Bǫ(uh, zh)− B(uh, zh)| ≤ Cω2Mh,ǫ|uh|0,Ω|zh|0,Ω,

but we have

|zh|0,Ω ≤ |z|0,Ω + |z − zh|0,Ω
≤ C

(

ω−1|u− uh|0,Ω + h2|z|2,Ω
)

≤ C
(

ω−1|u− uh|0,Ω + ωh2|u− uh|0,Ω
)

≤ Cω−1(1 + ω2h2)|u− uh|0,Ω
≤ Cω−1|u− uh|0,Ω,
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and

|uh|0,Ω ≤ |u|0,Ω + |u− uh|0,Ω
≤ Cω−1|f |0,Ω + |u− uh|0,Ω,

so that
|Bǫ(uh, zh)− B(uh, zh)|

|u− uh|0,Ω
≤ C (Mh,ǫ|f |0,Ω + ωMh,ǫ|u− uh|0,Ω) .

Recalling (3.17) from Lemma 19, we obtain

|u− uh|0,Ω ≤ C
(

ω3h2|u− uh|0,Ω + ω2h2|f |0,Ω +Mh,ǫ|f |0,Ω + ωMh,ǫ|u− uh|0,Ω
)

.

It follows that
(

1− Cω3h2 − CωMh,ǫ

)

|u− uh|0,Ω ≤ C
(

ω2h2 +Mh,ǫ

)

|f |0,Ω,
and we get Lemma 20 by assuming that ω3h2 and ωMh,ǫ are small enough.

Lemma 21. The following estimate holds

|uh − Πhu|21,Ω ≤ C
(

ω2|u− uh|20,Ω + (M2
h,ǫ + ω2h2)|f |20,Ω

)

,

where u is the solution to (3.3) and uh is any solution to (3.13).

Proof. First, the following relation holds

|uh − Πhu|21,Ω = Re Bǫ(uh − Πhu, uh − Πhu) +

∫

Ω

k2ǫ |uh − Πhu|20,Ω. (3.19)

Developing the first term of the right-hand-side in the above equation leads to:

Bǫ(uh − Πhu, uh − Πhu) = Bǫ(uh, uh − Πhu)− Bǫ(Πhu, uh − Πhu)

= B(u, uh − Πhu)− Bǫ(Πhu, uh − Πhu)

= B(u− Πhu, uh − Πhu) + B(Πhu, uh − Πhu)− Bǫ(Πhu, uh − Πhu)

It follows that

Re Bǫ(uh − Πhu, uh − Πhu)

≤ |B(u− Πhu, uh − Πhu)|+ |B(Πhu, uh − Πhu)− Bǫ(Πhu, uh − Πhu)|. (3.20)

Then, using Proposition 9 and Theorem 13, we have:

|B(u− Πhu, uh − Πhu)| ≤ C
(

ω|u− Πhu|0,Ω + |u− Πhu|1,Ω
)(

ω|uh − Πhu|0,Ω + |uh − Πhu|1,Ω
)

≤ 1

2
|uh − Πhu|21,Ω + C

(

ω2|uh − Πhu|20,Ω + ω2|u− Πhu|20,Ω + |u− Πhu|21,Ω
)

≤ 1

2
|uh − Πhu|21,Ω + C

(

ω2|uh − Πhu|20,Ω + ω2h4|u|22,Ω + h2|u|22,Ω
)

≤ 1

2
|uh − Πhu|21,Ω + C

(

ω2|uh − Πhu|20,Ω + ω4h4|f |20,Ω + ω2h2|f |20,Ω
)

≤ 1

2
|uh − Πhu|21,Ω + C

(

ω2|uh − Πhu|20,Ω + ω2h2|f |20,Ω
)

, (3.21)
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where we have used algebraic inequalities ”2ab ≤ ηa2 + η−1b2” in the second line and the
hypothesis that ωh ≤ 1 in the last line.

Moreover, Proposition 10 implies that

|B(Πhu, uh − Πhu)− Bǫ(Πhu, uh − Πhu)| ≤ Cω2Mh,ǫ|Πhu|0,Ω|uh − Πhu|0,Ω
≤ Cω2

(

M2
h,ǫ|Πhu|20,Ω + |uh − Πhu|20,Ω

)

≤ Cω2
(

M2
h,ǫ(|u|20,Ω + |u− Πhu|20,Ω) + |uh − Πhu|20,Ω

)

≤ Cω2
(

M2
h,ǫ(|u|20,Ω + h4|u|22,Ω) + |uh − Πhu|20,Ω

)

≤ Cω2
(

M2
h,ǫ(

1

ω2
+ ω2h4)|f |20,Ω + |uh − Πhu|20,Ω

)

≤ C
(

M2
h,ǫ(1 + ω4h4)|f |20,Ω + ω2|uh − Πhu|20,Ω

)

.(3.22)

Now, since k2ǫ ≤ Cω2, we have

|uh − Πhu|21,Ω ≤ Re Bǫ(uh − Πhu, uh − Πhu) + Cω2|uh − Πhu|20,Ω

Plugging (3.21) and (3.22) in (3.20) implies that

1

2
|uh − Πhu|21,Ω ≤ C

{

ω2|uh − Πhu|20,Ω + (M2
h,ǫ(1 + ω4h4) + ω2h2)|f |20,Ω

}

.

Then, since ωh < 1, we end up with

|uh − Πhu|21,Ω ≤ C
{

ω2|uh − Πhu|20,Ω + (M2
h,ǫ + ω2h2)|f |20,Ω

}

.

We end the demonstration by observing that

ω2|uh − Πhu|20,Ω ≤ ω2|u− uh|20,Ω + ω2|u− Πhu|20,Ω
≤ ω2|u− uh|20,Ω + Cω2h4|u|22,Ω
≤ ω2|u− uh|20,Ω + Cω4h4|f |20,Ω.

We now establish a convergence result under the assumption that ω3h2 and ωMh,ǫ can
be made arbitrarily small.

Theorem 14. Assume that ω3h2 and ωMh,ǫ are small enough. Then problem (3.13) has
a unique solution uh ∈ Vh. Furthermore, uh satisfies

ω|u− uh|0,Ω + |u− uh|1,Ω ≤ C
(

ωMh,ǫ + ωh+ ω3h2
)

|f |0,Ω, (3.23)

where C := C(Ω, cmin, cmax, x0, ω0) denotes a constant independent of ω, h and ǫ.
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Proof. Let us first show existence end uniqueness of uh. Since Vh is a finite dimensional
space, (3.13) is equivalent to a linear system with size

(

dimVh × dimVh
)

. Therefore, we
only need to prove uniqueness. Assume then that f = 0 in the discrete and continuous
problem (3.3) and (3.13). According to Theorem 13, the corresponding continuous solution
u is u = 0. Then, from Lemma 20, we deduce that

|uh|0,Ω = |u− uh|0,Ω ≤ C
(

ω2h2 +Mh,ǫ

)

|f |0,Ω = 0,

so that uh = 0 and uniqueness occurs.
We now turn to the proof of error-estimate (3.23). Recalling Lemma 20, it is clear that

ω|u− uh|0,Ω ≤ C
(

ω3h2 + ωMh,ǫ

)

|f |0,Ω,

and it remains to show that

|u− uh|1,Ω ≤ C
(

ωMh,ǫ + ωh+ ω3h2
)

|f |0,Ω.

To start with, it is clear that

|u− uh|1,Ω ≤ |u− Πhu|1,Ω + |uh − Πhu|1,Ω
≤ Ch|u|2,Ω + |uh − Πhu|1,Ω
≤ Cωh|f |0,Ω + |uh − Πhu|1,Ω,

but recalling Lemma 21, we have

|uh − Πhu|21,Ω ≤ C
(

ω2|u− uh|20,Ω + (M2
h,ǫ + ω2h2)|f |20,Ω

)

≤ C
(

ω6h4 + ω2M2
h,ǫ +M2

h,ǫ + ω2h2
)

|f |20,Ω,

hence
|uh − Πhu|1,Ω ≤ C

(

ω3h2 + ωMh,ǫ +Mh,ǫ + ωh
)

|f |0,Ω,
and the result follows since Mh,ǫ ≤ ω−1

0 ωMh,ǫ.

3.2.4 Approximation of c

So far, we have studied the convergence of the method, assuming that the velocity pa-
rameter c is replaced by an approximation cǫ, where ǫ is a small parameter describing the
convergence of cǫ to c. As indicated by Theorem 14, the convergence has to be understood
in the sense Mh,ǫ → 0 as ǫ→ 0 (the quantity Mh,ǫ is introduced in Definition 7).

In this section we discuss how to pick an approximation cǫ of c which is both accurate
and easy to compute. For the sake of simplicity, we restrict our study to the case of flat
interfaces. We also show that the entries of the linear system related to (3.13) are easy to
compute.

The approximation of c is based upon the following procedure. Let Tǫ be a given
partition of the reference cell K̂. We can map this partition to each actual cell K ∈ Th and
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thus obtain a partition T K
h,ǫ of the cell K. Finally, gathering all the partitions associated to

each cell K ∈ Th together, we obtain a (possibly non-conforming) partition Th,ǫ of Ω (see
Figure 3.3 which illustrates this process). The approximate velocity parameter is defined
as follow:

Definition 8. Let c ∈ L∞(Ω) be the global velocity supposed to satisfy assumption 3.2.
Let xA ∈ A be the barycenter of A ∈ Th,ǫ. If xA does not belong to an interface, we set
cǫ|A = c(xA), otherwise we define cǫ|A = supA c.

Our definition of cǫ corresponds to a P0-interpolation of c. Recalling Definition 7, it is
clear that other choices are possible and covered by our convergence analysis. However we
consider P0-interpolation only. Indeed, since we consider a piecewise constant parameter,
it is not clear that higher order approximations might bring additional precision. Further-
more, difficulties can arise when defining high order approximation of c. For instance, it is
shown in [72] that cǫ can take negative values if it is defined as a P2-interpolation of c.

We now show that in the simple case of flat interfaces, the quantity Mh,ǫ goes to zero
as ǫ goes to zero uniformly with respect to h. Figure 3.3 is helpful to figure out different
quantities used in the demonstration.

Proposition 12. Assume that the interfaces of the partition (Ωr) are flat and that the
medium approximation submesh Tǫ is regular. Then there exists a constant C depending
on the reference cell |K̂| only such that

Mh,ǫ ≤ CRǫ

∣

∣

∣

∣

1

c2min

− 1

c2max

∣

∣

∣

∣

.

Proof. Consider a given cell K ∈ Th. Then, K is crossed by at-most R straight interfaces
and, since the submesh T K

h,ǫ is regular, there exists a constant C such that the number of
subcells A ∈ T K

h,ǫ crossed by each interface is less than C/ǫ. Then the total number of
subcells of K crossed by an interface is less than CR/ǫ.

We can easily upper-bound the measure |A| of each subcell A ∈ Tǫ like |A| ≤ Cǫ2. Since
the submesh T K

h,ǫ is constructed from a linear mapping, it follows that for all A ∈ T K
h,ǫ

|A| ≤ C
|K|
|K̂|

ǫ2.

Let Ac ⊂ T K
h,ǫ be the set of all subcells crossed by an interface. The total measure of

the crossed subcells is then satisfying

∑

A∈Ac

|A| ≤ CR
|K|
|K̂|

ǫ.

Next, let Ae = T K
h,ǫ \ Ac be the set of subcells which are not crossed by any interface.

Then, the approximation of c by cǫ is exact on each cell A ∈ Ae. Therefore, we have
∫

K

∣

∣

∣

∣

1

c2
− 1

c2ǫ

∣

∣

∣

∣

≤
∑

A∈Ac

∫

A

∣

∣

∣

∣

1

c2
− 1

c2ǫ

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

c2min

− 1

c2max

∣

∣

∣

∣

∑

A∈Ac

|A| ≤ CR
|K|
|K̂|

ǫ

∣

∣

∣

∣

1

c2min

− 1

c2max

∣

∣

∣

∣

.
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But by definition of Mh,ǫ, we have

Mh,ǫ = max
K∈Th,ǫ

1

|K|

∫

K

∣

∣

∣

∣

1

c2
− 1

c2ǫ

∣

∣

∣

∣

≤ C

|K̂|
Rǫ

∣

∣

∣

∣

1

c2min

− 1

c2max

∣

∣

∣

∣

.

which concludes the proof of Proposition 12.

A

B

K̂

K

FK

Ac

Figure 3.3: Mapping of the reference submesh

3.2.5 Computational cost

To end up with this section, we discuss on the computational cost of the proposed method.
The corresponding linear system reads nearly as the one related to the classical FEM,
except that the coefficients of the discrete system are weighted differently just because
cǫ is different. Therefore, only the construction of the linear system is more expensive.
To compute the entries of the linear system, we first compute reference integrals on each
subcell B ∈ Tǫ. This is done once and for all at the beginning of the simulation (or directly
hard-coded, if the mesh Tǫ is known before execution) and it corresponds thus to a pre-
processing step. Next, the mapping FK is used to compute the coefficients associated with
each cell K.

Let {ϕ̂i}Di=1 be a basis of P̂ . Note that if P̂ = Pk(K̂), D = (p + 1)(p + 2)/2. On each
cell K ∈ Th, one has to compute

∫

K

k2ǫ ϕ̂i ◦ F−1
K ϕj ◦ F−1

K =
∑

A∈T K
h,ǫ

k2ǫ

∫

A

ϕ̂i ◦ F−1
K ϕj ◦ F−1

K = Det JFK

∑

B∈Tǫ

k2ǫ

∫

B

ϕ̂iϕ̂j.

It should be noted that the last integral is independent of the given cell K. Therefore, we
may compute the reference integrals

MB
ij =

∫

B

ϕ̂iϕ̂j, ∀B ∈ Tǫ.
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once and for all independently of the number of coarse cells. The corresponding computa-
tional cost is thus insignificant. Now, for a given cell K, we have to compute

Det JFK

∑

B∈Th

k2ǫM
B
ij .

IfNǫ is the number of cell in Tǫ, we thus need to performNǫ multiplications, Nǫ−1 additions,
and one multiplication by the Jacobian, which comes to 2Nǫ operations for each coefficient.
Now, arguing the symmetry of the system, we only need to computeD(D+1)/2 coefficients,
which requiresNǫ(D+1) operations per cell. Then, if we assume that the mesh Tǫ is regular,
Nǫ ≤ C/ǫ2 and the number of operations per cell is of O(D(D+1)/ǫ2) operations. Another
way to think about it, is that if we are using Nǫ subcells, the computational cost of the
matrix assembly is multiplied by Nǫ. Note that only the cost of the assembly is increased,
since the linear system keeps the same size and stencil.
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Chapter 4

Numerical examples

The aim of this chapter is to illustrate the MMAm approach presented in Chapters 2 and
3 on numerical examples. We first focus on analytical test-cases: Section 4.1 is devoted
to one dimensional examples while we consider two dimensional layered media with plane
wave solutions in Section 4.2.

Then, we numerically compare the MMAm with other methods in terms of performance
and accuracy. In Section 4.3 we compare the MMAm with an homogenization procedure
in a periodic layered medium. We analyse the behaviour of the MMAm on geophysical
benchmarks in Section 4.4. A comparison with the standard FEm coupled with parameter
averaging is included.

4.1 Analytical test-cases in 1D

4.1.1 Model problem

In this section, we consider a one dimensional Helmholtz problem set in the domain Ω =
(0, 1000). We will consider different velocity parameters in each experiment. These velocity
parameters are defined as piecewise constant functions c : (0, 1000) → R which are bounded
above and below as 1000 ≤ c(z) ≤ 5000, for z ∈ (0, 1000). The Helmholtz equation is
coupled with absorbing boundary conditions at z = 0, 1000. We use an inhomogeneous
boundary condition at z = 0 to represent an incoming wave travelling from the surface to
depth. The homogeneous boundary condition at z = 1000 ensures that no wave enters the
domain from depth.

Hence, the model problem reads






























− ω2

c2(z)
u(z)− u′′(z) = 0, z ∈ (0, 1000),

−u′(0)− iω

c(0)
u(0) = 1,

u′(1000)− iω

c(1000)
u(1000) = 0,

(4.1)
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4.1.2 Analytical solution

An analytical solution for problem (4.1) is available. Since we consider piecewise constant
parameter c : (0, 1000) → R we can write c as

c =
L

∑

l=1

cl1(zl−1,zl). (4.2)

where 0 = z0 ≤ z1 ≤ . . . zL = 1000, and the values {cl}Ll=1 are such that cmin ≤ cl ≤ cmax.

It is therefore clear that in each layer (zl−1, zl) the solution u satisfies the following
ODE:

−ω
2

c2l
u− u′′ = 0, (4.3)

and there exist two constants Al, Bl ∈ C such that

u(z) = Al exp

(

iωz

cl

)

+Bl exp

(

− iωz

cl

)

, (4.4)

for all z ∈ (zl−1, zl).

We can obtain the analytical expression of u by retrieving the constant Al, Bl for 1 ≤
l ≤ L. This is done by solving the 2L× 2L linear system define from the equations given
by the boundary conditions of problem (4.1) and the C1 compatibility conditions at the
interface between each two consecutive layers. These conditions reads:

• Boundary condition at z = 0:

A0 = 1.

• Boundary condition at z = 1000:

BL = 0.

• C0 compatibility condition at zl (0 < l < L):

Al exp

(

iωzl
cl

)

+Bl exp

(

− iωzl
cl

)

= Al+1 exp

(

iωzl
cl+1

)

+Bl+1 exp

(

− iωzl
cl+1

)

.

• C0 compatibility condition of the derivative at zl (0 < l < L):

Al
iω

zl
cl exp

(

iωzl
cl

)

−Bl
iω

zl
cl exp

(

− iωzl
cl

)

= Al+1
iω

zl
cl+1 exp

(

iωzl
cl+1

)

−Bl+1
iω

zl
cl+1 exp

(

− iωzl
cl+1

)

.
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4.1.3 Numerical experiments

We consider six different velocity models represented by c(i) for i ∈ {1, . . . , 6}. We point
out that the length νi of the thinest layer of the model is decreasing from one experiment
to the other. The medium is thus more complicated to handle from one experiment to
another which justifies the use of the MMAm.

For i ∈ {2, . . . , 6}, we have constructed the velocity model c(i) so that the length of
each layer is different and can not be fitted by a regular mesh. It ensures that we do
not accidentally obtain an exact approximation of the velocity parameter when using the
MMAm.

Let m be the number of subdivisions that are used inside a cell. We then introduce
ǫ = 1/m as the small parameter representing the second scale used to approximate the
medium. We thus have cǫ as approximated velocity use in the MMAm.

For each experiment, we tabulate the relative L2 error |u−uh|/|u| for different frequen-
cies ω, mesh steps h = 1/n and multiscale subdivisions m. We also note ndf the number
of degrees of freedom in the finite element space.
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Figure 4.1: Velocity parameters used in experiments 2, 3 and 4

Experiment 1: Two-layered gradient

In experiment 1, we focus on a simple two-layered medium:

c(1)(z) =

{

1 if z < 500
2 if z > 500.

We consider (4.1) with the parameter c(1) and solve it with three different methodolo-
gies. First, we use a mesh with an even number of cells which fits the interface of the
velocity parameter. Then we use a mesh with an odd number of cells, so that there is a
velocity contrast in the middle cell of the mesh. With the non-conforming mesh, we first
run without multiscale medium approximation: c

(1)
ǫ is taken constant in each cell (m = 1),

and the medium is approximated in the middle cell. Then, we use two subcells per cell
(m = 2) to approximate the medium, so that the medium is perfectly represented. We
refer the reader to Figures 4.2-4.4.
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h

c = 1000

c = 2000

Figure 4.2: Fitting mesh with an even number of cells

h

ε

c = 1000

c = 2000

cε = 1000

cε = 2000

Figure 4.3: Non-fitting mesh with an odd number of cells
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h

c = 1000

c = 2000

cε = 1000

cε = 2000

ε

Figure 4.4: Non-fitting mesh with an odd number of cells and two subcells

We wish to understand if the condition ω2p+1h2p ≤ C is sufficient to ensure that the
finite element error remains bounded. We run our experiment with p ranging from 1 to 6
for different frequencies. For each p, we start with a low frequency ω0 and select a mesh
step h0 so that the finite element relative error is less than 5% (this is done by trying
different values of h0). We then use the rule

ω2p+1h2p = ω2p+1
0 h2p0 (4.5)

to select the mesh steps h to solve for higher frequencies ω ≥ ω0.
In Table 4.1, we present the relative error on the numerical solution, for the three

different techniques: ”even” refers to the conforming mesh, ”odd1” to the non-conforming
with m = 1 and ”odd2” to the non-conforming mesh with m = 2. We use the condition
(4.5) to select the mesh steps.

It is clear that the meshing strategy ω2p+1h2p ≤ C is optimal since the error remains
constant when ω is increasing for all tables.

Besides, the tables show that for a given frequency, high order methods require less
degrees of freedom for a given accuracy both when the fitting mesh is used, or when the
MMAm is used with m = 2 on the non-fitting mesh.

Actually, we see that when the subquadrature technique is used, the results obtained
with the non-fitting mesh are comparable to those obtained with the conforming one when
the frequency is high enough. For the cases p = 1, 2 and 3, the results are similar for the
fitting and non-fitting meshes for all frequencies. For the cases p = 4, 5 and p = 6, the
MMAm solution is less precise than the solution obtained on the fitting mesh for the lowest
frequency ω = 100. However, the results are similar for higher frequencies. Finally, apart
from the case of p = 1, the results with the non-conforming mesh are always improved when
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using m = 2 subcells. It shows that for high order method, the medium approximation
error can be larger than the best approximation error.

P1

ω n ndf even odd1 odd2
100 1001 1000 1.97e-02 1.55e-02 1.98e-02
500 11181 11180 1.98e-02 1.15e-02 1.98e-02
1000 31623 31622 1.98e-02 1.33e-02 1.98e-02
2000 89443 89442 1.98e-02 1.49e-02 1.98e-02
5000 353554 353552 1.98e-02 1.66e-02 1.98e-02

P2

ω n ndf even odd1 odd2
100 238 78 7.89e-02 2.84e-01 8.61e-02
500 1774 590 7.90e-02 1.71e-01 8.06e-02
1000 4216 1404 7.97e-02 1.36e-01 8.05e-02
2000 10030 3342 8.01e-02 1.07e-01 8.05e-02
5000 31534 10510 8.05e-02 7.72e-02 8.07e-02

P3

ω n ndf even odd1 odd2
100 131 26 9.47e-02 3.40e-02 4.18e-02
500 881 176 1.91e-02 4.35e-02 3.92e-02
1000 1976 395 7.81e-02 4.79e-02 4.31e-02
2000 4436 887 3.06e-02 4.08e-02 4.47e-02
5000 12921 2584 6.09e-02 5.13e-02 4.65e-02

P4

ω n ndf even odd1 odd2
100 176 24 5.03e-02 8.23e-01 8.39e-02
500 1086 154 4.11e-02 7.06e-01 4.93e-02
1000 2367 338 4.10e-02 6.61e-01 4.64e-02
2000 5167 738 4.24e-02 6.18e-01 4.61e-02
5000 14498 2070 4.41e-02 5.62e-01 4.64e-02

P5

ω n ndf even odd1 odd2
100 172 18 3.27e-02 1.00e+00 6.34e-02
500 1045 116 1.66e-02 8.61e-01 2.15e-02
1000 2242 248 1.79e-02 8.26e-01 2.12e-02
2000 4807 534 1.81e-02 7.90e-01 2.03e-02
5000 13177 1464 1.91e-02 7.45e-01 2.04e-02

P6

ω n ndf even odd1 odd2
100 177 16 6.00e-03 1.13e+00 3.32e-02
500 1024 92 9.70e-03 9.97e-01 1.71e-02
1000 2168 196 1.11e-02 9.54e-01 1.45e-02
2000 4599 418 1.23e-02 9.16e-01 1.26e-02
5000 12420 1128 1.49e-02 8.74e-01 1.16e-02

Table 4.1: Relative L2 error in experiment 1

Experiment 2: 100 layered gradient

In this experiment, we consider the velocity parameter c(2) defined by

c(2)(z) =
L

∑

l=1

c
(2)
l 1(zl−1,zl), (4.6)

where

z0 = 0, zl = 1000
l + 0.4 cos l

L
(0 < l < L), zL = 1000,

with L = 100, and

c
(2)
l = 1000 + 4000

l − 1

99
.

The definition of the velocity parameter c(2) is motivated by three different aspects.
First, we are using a cosine in the definition of the layers in order to make sure that the
layers do not define a regular partition of (0, 1000). That way, it is hard to integrate
exactly the coefficients of the linear system if we use a regular non-fitting mesh and it
makes sense to use the MMAm. Second, the size of each layer is in the order of 100 m,
which is reasonable considering geophysical applications. Third, the values of the velocity
are chosen to linearly increase from 1000 m.s−1 to 5000 m.s−1 with depth, which is also
representative of geophysical applications.
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We solve the problem with finite elements ranging from p = 1 to p = 6 together with
the meshing condition ω2p+1h2p ≤ C (more precisely (4.5)). The results are presented with
different number of subcells m = 1, 10 and 100.

To start with, we can make the same comment than the previous experiment. The
meshing strategy ω2p+1h2p ≤ C is enough to ensure the precision of the method. Fur-
thermore, for a given frequency, higher order methods give an equivalent result with less
degrees of freedom.

In most cases, increasing the number of subcells improve the precision of the numerical
scheme as expected. However, for p = 3, 4, 5 especially at high frequency, this is not the
case. This can be explained by the fact that in those cases, the mesh is fine enough to
capture the variations of the velocity, and improving the approximation of the medium
does not improve the accuracy of the numerical solution. The error is then increasing a
little because of numerical error due to finite precision arithmetic.

P1

ω n ndf m = 1 m = 10 m = 100
100 500 501 1.43e-02 1.63e-02 1.63e-02
500 5590 5591 1.52e-02 1.60e-02 1.63e-02
1000 15811 15812 1.93e-02 1.64e-02 1.64e-02
2000 44721 44722 1.62e-02 1.64e-02 1.65e-02
5000 176776 176777 1.63e-02 1.62e-02 1.63e-02

P2

ω n ndf m = 1 m = 10 m = 100
100 52 157 5.16e-02 4.87e-02 4.66e-02
500 394 1183 5.73e-02 4.79e-02 4.75e-02
1000 937 2812 7.10e-02 4.97e-02 4.83e-02
2000 2229 6688 9.29e-02 4.97e-02 4.89e-02
5000 7007 21022 8.92e-02 4.81e-02 4.95e-02

P3

ω n ndf m = 1 m = 10 m = 100
100 26 131 9.47e-02 3.40e-02 4.18e-02
500 176 881 1.91e-02 4.35e-02 3.92e-02
1000 395 1976 7.81e-02 4.79e-02 4.31e-02
2000 887 4436 3.06e-02 4.08e-02 4.47e-02
5000 2584 12921 6.09e-02 5.13e-02 4.65e-02

P4

ω n ndf m = 1 m = 10 m = 100
100 17 120 2.75e-01 3.49e-02 3.53e-02
500 108 757 1.44e-01 5.49e-02 4.05e-02
1000 237 1660 2.43e-01 4.57e-02 4.21e-02
2000 517 3620 2.64e-01 3.99e-02 4.11e-02
5000 1449 10144 1.20e-01 5.09e-02 4.54e-02

P5

ω n ndf m = 1 m = 10 m = 100
100 13 118 2.39e-01 5.02e-02 2.40e-02
500 77 694 8.29e-02 7.39e-02 3.50e-02
1000 166 1495 3.97e-01 5.64e-02 3.72e-02
2000 356 3205 1.49e-01 5.80e-02 4.33e-02
5000 976 8785 3.49e-01 4.54e-02 4.67e-02

P6

ω n ndf m = 1 m = 10 m = 100
100 10 111 1.21e-01 2.34e-02 2.87e-02
500 59 650 7.86e-02 3.66e-02 3.98e-02
1000 127 1398 1.78e-01 5.04e-02 3.86e-02
2000 269 2960 1.42e-01 4.57e-02 4.26e-02
5000 726 7987 8.35e-02 7.05e-02 4.93e-02

Table 4.2: Relative L2 error in experiment 2

Experiment 3: 100 layered gradient with perturbations

The velocity parameter c(2) is representative of some applications in the sense that it is
increasing with depth from 1000 m.s−1 to 5000 m.s−1. However, since the velocity is
increasing linearly, it does not feature high contrasts.

Thus, in experiment 3, we propose to perturbate the parameter c(2) every other layer
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to create a more complex medium (see figure 4.1). The values

c
(3)
l =















1000 + 4000
l − 1

99
, l odd

500 + 4000
l − 1

99
, l even

define the velocity parameter

c(3)(z) =
L

∑

l=1

c
(3)
l 1(zl−1,zl)

with L = 100 and

z0 = 0, zl = 1000
l + 0.4 cos l

L
(0 < l < L), zL = 1000,

The parameter c(3) has been designed so that the velocity contrast between two con-
secutive layers is approximately 500 m.s−1. Numerical results are displayed in Table 4.3.

We use the meshing condition ω2p+1h2p ≤ C and observe that for 1 ≤ p ≤ 6, the error on
the numerical solution remains bounded. However, we see than the error is not ”constant”,
but varies from one frequency to another, more than in the previous experiments. We
observe again than for a given frequency, higher order discretization require less degrees of
freedom for a given accuracy. In particular, the case ω = 500 is detailed on Table 4.4 and
Figure 4.5. If one wishes to obtain a 5% accuracy, the best choice is p = 4.

P1

ω n ndf m = 10 m = 100 m = 1000
100 1000 1001 2.84e-02 1.16e-02 1.29e-02
200 2828 2829 1.50e-02 9.19e-03 9.48e-03
500 11180 11181 1.03e-02 1.22e-02 1.24e-02
1000 31622 31623 7.09e-03 1.02e-02 1.03e-02
2000 89442 89443 4.40e-03 5.20e-03 5.26e-03
5000 353553 353554 1.23e-02 1.25e-02 1.25e-02

P2

ω n ndf m = 10 m = 100 m = 1000
100 105 316 1.36e-01 3.13e-02 3.37e-02
200 250 751 5.32e-02 3.06e-02 3.60e-02
500 788 2365 7.77e-02 3.30e-02 4.27e-02
1000 1874 5623 7.77e-02 2.67e-02 2.55e-02
2000 4458 13375 4.16e-02 1.03e-02 1.25e-02
5000 14014 42043 2.70e-02 3.33e-02 2.83e-02

P3

ω n ndf m = 10 m = 100 m = 1000
100 53 266 1.03e-01 2.27e-02 2.94e-02
200 120 601 1.47e-01 3.63e-02 4.50e-02
500 352 1761 1.25e-01 6.95e-02 5.16e-02
1000 790 3951 2.23e-01 3.89e-02 2.61e-02
2000 1774 8871 9.04e-02 1.05e-02 1.30e-02
5000 5168 25841 5.21e-02 2.61e-02 2.97e-02

P4

ω n ndf m = 10 m = 100 m = 1000
100 44 309 1.04e-01 8.10e-02 5.71e-02
200 96 673 9.27e-02 1.77e-02 2.57e-02
500 271 1898 2.40e-01 3.18e-02 2.26e-02
1000 592 4145 2.40e-01 2.99e-02 8.64e-03
2000 1293 9052 5.56e-02 5.22e-03 3.95e-03
5000 3624 25369 1.92e-01 9.70e-03 9.22e-03

P5

ω n ndf m = 10 m = 100 m = 1000
100 31 280 1.59e-01 9.84e-02 7.11e-02
200 67 604 3.05e-01 4.92e-02 3.33e-02
500 186 1675 1.19e-01 2.64e-02 2.73e-02
1000 399 3592 1.86e-01 2.63e-02 2.10e-02
2000 855 7696 9.52e-02 1.44e-02 1.45e-02
5000 2343 21088 6.52e-02 5.45e-03 1.34e-02

P6

ω n ndf m = 10 m = 100 m = 1000
100 24 265 4.53e-01 5.12e-02 5.98e-02
200 51 562 1.95e-01 1.08e-02 2.21e-02
500 139 1530 4.29e-01 3.40e-02 4.93e-02
1000 296 3257 3.54e-01 2.40e-02 2.16e-02
2000 628 6909 7.96e-02 4.73e-02 2.05e-02
5000 1694 18635 2.11e-01 5.32e-02 1.73e-02

Table 4.3: Relative L2 error in experiment 3



4.1. ANALYTICAL TEST-CASES IN 1D 117

p n ndf m err
1 5500 5501 1000 4.96e-02
2 700 2101 1000 4.95e-02
3 370 1851 1000 4.90e-02
4 217 1520 1000 4.34e-02
5 180 1621 1000 4.94e-02
6 142 1563 1000 4.72e-02

Table 4.4: Comparison of different orders of discretization for Experiment 3
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Figure 4.5: Number of degrees of freedom required for 5% accuracy in experiment 3

Experiment 4: 100 layered gradient with rough perturbations

We now further perturbate the velocity parameter c(2) in order to incorporate higher ve-
locity contrasts in the model. The velocity parameter c(4) is defined by

c(4)(z) =
L

∑

l=1

c
(4)
l 1(zl−1,zl)

where L = 100,

z0 = 0, zl = 1000
l + 0.4 cos l

L
(0 < l < L), zL = 1000,
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and

c
(4)
l =







1000 + 4000
l − 1

99
, l odd

500, l even.

The velocity parameter c(5) includes velocity contrasts ranging from 500 m.s−1 to over
4500 m.s−1. Numerical results are presented in Table 4.5.

We see that the error is varying a lot depending on the frequency when ω2p+1h2p is
kept constant. In particular, we observe an outstanding error peak for ω = 2000 for all
polynomial order on Table 4.5. This might indicate that the condition ω2p+1h2p ≤ C is not
sufficient to guarantee a constant error independently of the frequency when the medium
is heterogeneous.

P1

ω n ndf m = 10 m = 100 m = 1000
100 2000 2001 2.72e-03 1.85e-03 1.91e-03
200 5656 5657 1.92e-03 1.16e-03 1.53e-03
500 22360 22361 1.46e-02 8.59e-03 9.17e-03
1000 63245 63246 5.46e-02 3.51e-02 3.66e-02
2000 178885 178886 9.33e-02 8.28e-02 8.39e-02
5000 707106 707107 1.19e-03 1.21e-03 1.23e-03

P2

ω n ndf m = 10 m = 100 m = 1000
100 316 949 1.39e-02 3.29e-03 8.49e-04
200 752 2257 1.91e-02 1.64e-03 8.46e-04
500 2364 7093 5.28e-02 1.34e-02 5.09e-03
1000 5623 16870 2.26e+00 1.68e-02 1.64e-02
2000 13374 40123 9.29e-02 5.77e-02 3.02e-02
5000 42044 126133 3.00e-03 8.17e-04 2.71e-04

P3

ω n ndf m = 10 m = 100 m = 1000
100 107 536 5.26e-02 5.63e-03 4.00e-03
200 241 1206 1.65e-02 2.45e-03 3.98e-03
500 704 3521 6.81e-01 3.22e-02 1.51e-02
1000 1581 7906 1.14e+01 1.00e-01 6.82e-02
2000 3549 17746 3.37e-01 2.09e-01 9.57e-02
5000 10337 51686 2.36e-02 3.73e-03 8.81e-04

P4

ω n ndf m = 10 m = 100 m = 1000
100 88 617 5.76e-02 1.15e-02 4.73e-03
200 193 1352 4.68e-02 6.95e-03 3.98e-03
500 543 3802 3.31e-01 1.72e-02 1.38e-02
1000 1185 8296 1.62e-01 1.28e-02 2.95e-02
2000 2586 18103 6.38e+00 1.00e-01 4.95e-02
5000 7249 50744 1.86e-02 4.50e-03 4.89e-04

P5

ω n ndf m = 10 m = 100 m = 1000
100 63 568 1.61e-01 1.30e-02 5.14e-03
200 135 1216 1.51e-01 1.45e-02 7.97e-03
500 372 3349 2.54e-01 4.33e-02 2.03e-02
1000 798 7183 8.46e-01 7.32e-02 9.86e-02
2000 1710 15391 1.50e+00 2.66e-01 1.75e-01
5000 4687 42184 5.16e-02 3.93e-03 1.05e-03

P6

ω n ndf m = 10 m = 100 m = 1000
100 48 529 1.17e-01 1.34e-02 8.92e-03
200 103 1134 6.94e-02 1.41e-02 4.84e-03
500 279 3070 3.74e-01 5.01e-02 2.07e-02
1000 592 6513 8.66e-01 2.06e-01 5.67e-02
2000 1256 13817 3.05e+00 3.31e-01 1.39e-01
5000 3389 37280 6.98e-02 4.47e-03 1.57e-03

Table 4.5: Relative L2 error in experiment 4

If the condition ω2p+1h2p ≤ C is not satisfactory here, we can still investigate which
polynomial degree p is the best to obtain a given accuracy. In this regard, we consider the
frequency ω = 500 and compare the number of degrees of freedom required to achieve a
5% accuracy depending on p.

Based on the results presented in Table 4.6 and Figure 4.6, we claim that increasing
the polynomial degree, at least up to p = 6, reduce the size of the linear system for a given
accuracy.
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p n ndf m err
1 10000 10001 10 4.67e-02
2 1200 3601 100 5.40e-02
3 610 3051 100 5.17e-02
4 375 2626 300 4.00e-02
5 275 2476 1000 4.61e-02
6 220 2421 1000 4.77e-02

Table 4.6: Comparison of different orders of discretization for Experiment 4
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Figure 4.6: Number of degrees of freedom required for 5% accurracy in experiment 4

Experiment 5: 1000 layered gradient with perturbations

We consider here a velocity parameter c(5) similar to c(3), c(5) featuring 1000 layers. It is
defined by

c(5)(z) =
L

∑

l=1

c
(5)
l 1(zl−1,zl)

where L = 1000,

z0 = 0, zl = 1000
l + 0.4 cos l

L
(0 < l < L), zL = 1000,
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and

c
(5)
l =















1000 + 4000
l − 1

999
, l odd

500 + 4000
l − 1

999
, leven.

Like in experiment 4, we observe that the condition ω2p+1h2p ≤ C is not satisfactory.
Indeed, as shown in Table 4.7, the error level is varying a lot when ω changes.

P1

ω n ndf m = 10 m = 100 m = 1000
100 1000 1001 1.97e-02 1.82e-02 1.25e-02
200 2828 2829 2.64e-03 1.29e-02 1.31e-02
500 11180 11181 2.28e-02 1.26e-02 1.52e-02
1000 31622 31623 5.19e-03 3.02e-03 2.95e-03
2000 89442 89443 1.33e-01 3.02e-02 3.61e-02
5000 353553 353554 1.51e-02 1.61e-02 1.69e-02

P2

ω n ndf m = 10 m = 100 m = 1000
100 158 475 7.53e-02 5.67e-03 2.63e-03
200 376 1129 4.25e-02 3.19e-02 2.32e-02
500 1182 3547 3.07e-02 3.65e-02 3.06e-02
1000 2811 8434 5.65e-02 1.12e-02 6.03e-03
2000 6687 20062 2.06e-01 1.51e-01 7.45e-02
5000 21022 63067 4.02e-01 5.46e-02 1.91e-02

P3

ω n ndf m = 10 m = 100 m = 1000
100 53 266 4.55e-01 1.15e-02 8.83e-03
200 120 601 1.10e-01 5.51e-02 3.24e-02
500 352 1761 4.08e-01 1.20e-01 1.99e-01
1000 790 3951 1.83e-01 3.49e-02 4.22e-02
2000 1774 8871 1.91e-01 1.04e+00 1.10e+00
5000 5168 25841 3.04e-01 1.55e-01 1.77e-01

P4

ω n ndf m = 10 m = 100 m = 1000
100 44 309 9.87e-02 6.31e-02 6.74e-03
200 96 673 3.10e-01 3.84e-02 2.90e-02
500 271 1898 4.52e-01 1.96e-01 1.79e-01
1000 592 4145 2.48e-01 3.15e-02 3.38e-02
2000 1293 9052 3.70e-01 2.55e+00 5.34e-01
5000 3624 25369 6.67e-01 2.72e-01 1.34e-01

P5

ω n ndf m = 10 m = 100 m = 1000
100 31 280 6.53e-01 4.98e-02 7.32e-03
200 67 604 6.58e-01 4.12e-02 2.83e-02
500 186 1675 7.73e-01 2.35e-01 2.29e-01
1000 399 3592 3.84e-01 7.75e-02 5.02e-02
2000 855 7696 9.76e-01 1.06e+00 3.06e+00
5000 2343 21088 5.77e-01 2.53e-01 2.43e-01

P6

ω n ndf m = 10 m = 100 m = 1000
100 36 397 3.60e-01 2.95e-02 5.09e-03
200 77 848 1.08e-01 4.01e-02 2.48e-02
500 209 2300 4.30e-01 1.54e-01 1.33e-01
1000 444 4885 3.18e-01 2.91e-02 2.25e-02
2000 942 10363 2.54e+00 4.05e-01 3.10e-01
5000 2541 27952 2.63e-01 4.70e-02 7.06e-02

Table 4.7: Relative L2 error in experiment 5

Nevertheless, though the meshing condition is not satisfactory, we are still able to show
the advantage of higher order methods. To this end, we consider the problem of obtaining
an error of 5% for a given frequency of ω = 500. Table 4.8 and Figure 4.7 show that for
higher discretization orders, the size of the linear system is smaller. Here, the best choice
for experiment 5 seems to be p = 5.

p n ndf m err
1 5500 5501 1 4.01e-02
2 1000 3001 1 4.95e-02
3 550 2751 50 3.25e-02
4 370 2591 100 4.00e-02
5 285 2566 100 4.33e-02
6 270 2971 300 4.80e-02

Table 4.8: Comparison of different orders of discretization for Experiment 5
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Figure 4.7: Number of degrees of freedom required for 5% accuracy in experiment 5

Experiment 6: 1000 layered gradient with rough perturbations

We consider a velocity parameter like c(4), but with 1000 layers. We thus combine strong
velocity contrasts with a high number of value changes. The velocity parameter c(6) is
defined by

c(6)(z) =
L

∑

l=1

c
(6)
l 1(zl−1,zl)

where L = 1000,

z0 = 0, zl =
l + 0.4 cos l

L
(0 < l < L), zL = 1,

and

c
(6)
l =







1000 + 4000
l − 1

999
, l odd

500, l even.

Like in experiments 4 and 5, we do not obtain a constant level of accuracy by using
the rule ω2p+1h2p ≤ C. This is depicted in Table 4.9. This is the reason why we focus
on comparing different orders of discretization for the frequency ω = 500. The results are
presented in Table 4.10 and Figure 4.8. They show that high order methods require a
smaller linear system to achieve the same precision.
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P1

ω n ndf m = 10 m = 100 m = 1000
100 2000 2001 2.82e-02 1.93e-02 2.94e-02
200 5656 5657 3.81e-02 3.91e-02 3.90e-02
500 22360 22361 1.32e-02 6.61e-02 5.47e-02
1000 63245 63246 6.73e-04 2.58e-04 1.91e-04
2000 178885 178886 2.25e-03 2.62e-03 2.29e-03
5000 707106 707107 1.36e-02 5.50e-03 6.25e-03

P2

ω n ndf m = 10 m = 100 m = 1000
100 316 949 1.05e-01 7.61e-02 6.97e-02
200 752 2257 1.39e-01 2.05e-01 1.36e-01
500 2364 7093 1.63e-01 6.48e-02 1.08e-01
1000 5623 16870 3.82e-03 6.51e-04 1.34e-04
2000 13374 40123 4.04e-02 2.94e-03 2.73e-03
5000 42044 126133 1.31e-01 7.66e-03 4.55e-03

P3

ω n ndf m = 10 m = 100 m = 1000
100 430 2151 2.20e-01 2.80e-02 2.55e-02
200 967 4836 1.13e-01 3.47e-02 1.33e-02
500 2817 14086 1.07e-01 3.24e-02 1.11e-02
1000 6324 31621 7.70e-03 1.00e-03 1.03e-04
2000 14198 70991 6.47e-02 1.98e-03 6.13e-04
5000 41351 206756 1.51e-01 2.63e-02 1.74e-03

P4

ω n ndf m = 10 m = 100 m = 1000
100 88 617 8.29e-01 1.37e-01 8.23e-02
200 193 1352 9.72e-01 5.26e-01 4.79e-01
500 543 3802 9.94e-01 4.33e-01 4.92e-01
1000 1185 8296 4.37e-02 5.57e-03 2.27e-03
2000 2586 18103 3.99e-01 2.29e-02 1.69e-02
5000 7249 50744 2.62e-01 5.38e-02 2.39e-02

P5

ω n ndf m = 10 m = 100 m = 1000
100 63 568 1.76e+00 7.11e-02 4.96e-02
200 135 1216 1.02e+00 5.99e-01 5.38e-01
500 372 3349 1.44e+00 1.04e+00 7.41e-01
1000 798 7183 5.57e-02 1.13e-02 2.96e-03
2000 1710 15391 4.49e-01 2.63e-02 1.23e-02
5000 4687 42184 4.65e-01 1.66e-01 4.11e-02

P6

ω n ndf m = 10 m = 100 m = 1000
100 48 529 1.05e+00 1.54e-01 4.37e-02
200 103 1134 1.38e+00 4.80e-01 5.60e-01
500 279 3070 9.63e-01 8.71e-01 1.02e+00
1000 592 6513 6.36e-02 8.46e-03 4.75e-03
2000 1256 13817 1.51e+00 8.54e-02 3.21e-02
5000 3389 37280 7.15e-01 1.07e-01 6.29e-02

Table 4.9: Relative L2 error in experiment 6

p n ndf m err
1 25000 25001 100 4.58e-02
2 3000 9001 200 2.83e-02
3 1700 8501 300 2.45e-02
4 1150 8051 300 2.18e-02
5 900 8101 1000 5.25e-02
6 700 7701 1000 5.32e-02

Table 4.10: Comparison of different orders of discretization for Experiment 6
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Figure 4.8: Number of degrees of freedom required for 5% accuracy in experiment 6

Conclusion

First, we have investigated explicit frequency requirements for meshing. The three first
test-cases show when the medium is slowly varying, the pre-asymptotic error-estimate in
O(ω2p+1h2p) known in the homogeneous case is still valid and optimal, provided that the
medium is properly approximated (see Tables 4.1 to 4.3). However experiment 4 shows
that this is no longer the case for more complex media (see Table 4.5).

The other aim of our study were to figure out which order of discretization is the
cheapest for a given accuracy and frequency. In the three first experiments, we see that
for a given accuracy and frequency, the number of degrees of freedom required decreases
when the order is increasing, showing the efficiency of high order methods. For the other
experiments, the situation is more complex and is described in Tables 4.6, 4.8 and 4.10.
We have observed that for a given accuracy, the number of degrees of freedom required for
p = 5 is always less than for p = 1, 2, 3 and 4.

We can make an additional comment which does not directly apply to the method in
higher dimensions. We can apply static condensation on the degrees of freedom inside one
cell (they only depend on the values at the vertices, see [60] or [105]) and reduce the size
of the global linear system to n× n. In this situation, high order methods look even more
attractive, since the number of cells required for a given accuracy is clearly decreasing
when the order is increasing.

Our experiments also confirms the interest of the MMAm second level approximation
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strategy. Indeed, we have observed that the order of discretization that yields the smallest
linear system is always p ≥ 4. In this case, the mesh cells are rather large and the solution
obtain by the standard FEm without MMAm subcells (m = 1) is not accurate. It is
therefore of interest to use the MMAm with m = 100 or 1000 to obtain an accurate
solution. Using an important number of subcells is not a problem, since it corresponds to
a pre-processing step in the computations which can be easily parallelized. Furthermore,
the linear system size and stencil remain the same for any choice of m.

4.2 Analytical test-cases in 2D

The objective of this section is to illustrate the MMAm approach on 2D analytical solutions.
We base our analysis on artificial stratified media in which we have a plane wave analytical
solution. In particular, we illustrate how the MMAm performs well even when the velocity
is strongly varying and does not satisfy the technical assumption 3.2. The performance of
the method is measured from the values of the L2(Ω) norm relative error, that is

E =

∫

Ω
|u− uh,ǫ|2dx
∫

Ω
|u|2dx (4.7)

where u denotes the exact (analytical) solution and uh,ǫ is the numerical solution. We
recall that h stands for the size of the finite element mesh cells while ǫ denotes the size of
the second-level subcells used to approximate the medium.

The numerical results are depicted by the mean of the solution profile, that is the graph
of x2 → uh,ǫ(500, x2).

All along this section, we use two kinds of meshes as depicted in figure 4.9. Some are
constructed so that the velocity is constant inside each cell. We then speak about fitting
meshes in contrast to non-fitting meshes which are composed of cells inside which the
velocity may vary. Obviously, the MMAm must be used on non-fitting meshes to take into
account subcells velocity variations. Standard FEM, or other usual methods, are rather
used on fitting meshes.

(a) (b) (c)

Figure 4.9: Velocity model (a), fitting (b) and non-fitting (c) meshes

Herein, we will also consider the standard FEM on non-fitting meshes. In this case,
we transform the velocity parameter so that it is constant in each cell of the mesh. We
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use two different strategies. The first idea is to select the value of the velocity parameter
in the center of the cell. It corresponds to using the MMAm with only one subcell. The
other strategy is to average the velocity parameter on the cell and choosing the value

1

c2K
=

∫

K

1

c2
. (4.8)

Remark 11. We will justify the averaged value (4.8) in Section 4.3, where we focus on
the comparison between the MMAm and homogenization techniques.

When analysing MMAm results, we will distinguish between the FEM approximation
error and the medium approximation error. The FEM approximation error is defined as
the error of the best approximation, i.e.

EFEM = inf
vh∈Vh

|u− vh|0,Ω,

while the medium approximation error is defined as EMED = Mh,ǫ (the quantity Mh,ǫ is
defined in Definition 7 of Chapter 3). We observe that for a given mesh (i.e. h is fixed),
the FEM approximation error is fixed but the medium approximation error can be reduced
by refining the submesh (i.e. ǫ goes to zero).

In each of the following examples, we consider a fixed propagation medium together with
a given mesh and an approximation order. We present the results obtained for different
values of ω and ǫ. In particular, we show that in the case where the dominant part of the
error is due to the medium approximation, the quality of the numerical solution can be
slightly improved by increasing the number of subcells.

For the computations, we use triangular Lagrangian finite elements. The medium
approximation submesh is obtained through a homothety of the reference triangle, as shown
in Figure 4.10. Note that those meshes are obviously regular and satisfy the hypothesis of
Proposition 12.

4.2.1 Analytical solution

To construct an analytical solution, we introduce an auxiliary 1D problem, that is to find
v ∈ C1([0, Z]) such that



















− ω2

c2(z)
v(z)− v′′(z) = 0 for z ∈ (0, Z)

−v′(0) = 1

v′(Z)− i
ω

c(Z)
v(Z) = 0,

where c is piecewise constant on a partition 0 = z0 < z1 < · · · < zm = Z. We obtain an
analytical solution using the methodology presented in Section 4.1.1.
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Figure 4.10: Velocity approximation schemes for ǫ = 1, 0.5, 0.25, 0.125, 0.0625 and 0.03125.

We then get a two dimensional problem by setting Ω = (0, 1000) × (0, Z) and k ∈
L∞(Ω) is defined as k ∈ L∞(Ω), k|Ωj

= ω/cj where Ωj = (0, 1000) × (xj−1, xj). Then
u(x1, x2) = v(x2) is the unique solution to























−k2u−∆u = 0 in Ω
∇u · n = 1 on (0, 1000)× {0}

∇u · n− ikLu = 0 on (0, 1000)× {Z}
∇u · n = 0 on {0} × (0, Z)
∇u · n = 0 on {1000} × (0, Z).

4.2.2 A two-layered media

We begin with evaluating the medium approximation error as a function of ǫ. For that
purpose, we consider the case of a two-layered medium composed of two homogeneous
layers. In this case, the use of a fitting mesh is obviously relevant and this case gives us a
way to measure the effect of MMAm on the accuracy of the solution.

We set x0 = 0, x1 = 500, x2 = Z = 1000, c1 = 1000 and c2 = 2000. In order to
quantify the error coming from the medium approximation we use both a fitting and a
non-fitting meshes. When using the fitting mesh, the medium is perfectly represented,
since the coefficient c is constant in each cell of the finite element mesh. On the other
hand, when using the non-fitting mesh, c must be approximated by cǫ since it may vary
inside an element. The experiment then shows that when the velocity approximation is
refined, the solution error obtained with the non-fitting mesh is getting closer to the error
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obtained on the fitting mesh.

Figure 4.11: Evolution of the interface: fitting mesh (top-left) and non fitting mesh with
ǫ = 1, 0.5, 0.25, 0.125 and 0.0625.

The non-fitting mesh contains 164 cells and the fitting mesh contains 166 cells. We
start with P2 elements and the corresponding results are represented in the Table 4.11.

In the first column, the integer numbers indicate the number of subcells that are used
to approximate the velocity inside each cell of the non-fitting mesh. The last line stands
for the results obtained by using the standard P2 FEM with the fitting mesh.

P2 ω = 2π ω = 4π ω = 6π
1 9.76× 10−2 2.38× 10−1 9.11× 10−1

4 2.26× 10−2 7.92× 10−2 3.24× 10−1

16 1.18× 10−2 4.62× 10−2 2.02× 10−1

64 5.20× 10−3 3.76× 10−2 2.05× 10−1

256 3.05× 10−3 3.61× 10−2 2.09× 10−1

1024 2.59× 10−3 3.59× 10−2 2.11× 10−1

fitting 1.81× 10−3 3.78× 10−2 2.65× 10−1

Table 4.11: P2 elements

We can observe that for each value of ω, the error decreases when letting ǫ go to 0.
Moreover, when comparing with the last line of the table, we can see that the MMAm
reaches the same level of accuracy that the standard P2 FEM. When the frequency is
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increasing, the two methods result in the same level of accuracy and MMAm accuracy
seems to reach a plateau. We believe that the medium approximation error becomes so
small that quickly the values of the error describe the finite element approximation only.

Table 4.12 represents the results obtained when using P4 elements. The same conclu-
sions hold except that due to a highest degree of approximation, the medium approximation
error stabilizes itself on a plateau for ω = 10π only. It is worth noting than when ω is less
than 10π, the convergence is super linear which illustrates well Section 3 results.

P4 ω = 2π ω = 4π ω = 6π ω = 8π ω = 10π
1 9.67× 10−2 2.25× 10−1 3.42× 10−1 4.81× 10−1 5.01× 10−1

4 2.22× 10−2 6.59× 10−2 1.42× 10−1 4.03× 10−1 1.90× 10−1

16 1.22× 10−2 3.75× 10−2 6.65× 10−2 2.37× 10−1 8.94× 10−2

64 4.70× 10−3 1.44× 10−2 2.74× 10−2 9.81× 10−2 4.50× 10−2

256 1.47× 10−3 4.91× 10−3 1.13× 10−2 4.54× 10−2 2.94× 10−2

1024 5.25× 10−4 1.54× 10−3 4.58× 10−3 1.67× 10−2 2.52× 10−2

fitting 2.62× 10−6 8.80× 10−5 8.10× 10−4 5.76× 10−3 2.44× 10−2

Table 4.12: P4 elements

The behaviour of the discrete solution as ǫ → 0 is depicted on Figures 4.12 and 4.13
for P2 and P4 elements respectively. We see that the MMAm solution is as accurate as the
solution computed on the fitting mesh when ǫ is sufficiently small.
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Figure 4.12: Solution profile for P2 elements, ω = 6π
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Figure 4.13: Solution profile for P4 elements, ω = 10π

4.2.3 Multi-layered medium

We now set Z = 3000. We decompose the propagation domain into 1000 layers of 3
meters each. We set cmin = 1500, cmax = 5500. The velocity parameter varies linearly
from c1 = cmin to c1000 = cmax. We use P6 elements on a 1033 cells mesh. We carry out
simulations for different values of ǫ. To compare with parameter averaging methods, we
perform simulations for k2ǫ |K given as the mean value of k2 on the cell K as explained
above (4.8).

On table 4.13, we present the results that we have obtained by discretizing with P6

Lagrangian elements. We can draw the same conclusion than in the previous test case. It
is interesting to note that the MMAm results are always better then when the standard
FEM is used with the mean value of the wavenumber in each cell. This example shows
that the subscheme quadrature strategy of the MMAm is superior to a simple averaging
of the wavenumber, as depicted by the first line of Table 4.13.

It is also clear that for a given pulsation, reducing the approximation step ǫ reduces the
solution error. For the lowest pulsation ω = 20π, the convergence is super linear, which is
consistent with the results of section 3. For higher pulsations, the part of the error due to
finite element approximation is much larger, so that the linear convergence is not observed
anymore.

For the lowest frequency ω = 20π, the standard finite element solution is accurate
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(ǫ = 1), but it is mandatory use the MMAm to obtain an accurate solution for higher
frequencies (ǫ ≤ 0.25 for ω = 40π for instance). This observation is in accordance with the
error-estimate of Theorem 14. Indeed, the term related to medium approximation in the
error-estimate behaves as O(ωMh,ǫ), which let us guess that the medium approximation
error has more impact for high frequencies ω.

Figure 4.14 illustrates how the finite element solution depends on ǫ in the case ω = 60π.

P6 ω = 20π ω = 30π ω = 40π ω = 50π ω = 60π
mean 4.38× 10−2 1.70× 10−1 6.44× 10−1 1.90× 10−1 2.33× 100

1 4.19× 10−2 1.61× 10−1 5.04× 10−1 1.87× 10−1 1.19× 100

4 7.27× 10−3 2.39× 10−2 4.83× 10−1 1.02× 10−1 4.47× 10−1

16 2.12× 10−3 7.06× 10−3 5.97× 10−2 6.63× 10−2 3.52× 10−1

64 1.02× 10−3 3.76× 10−3 3.64× 10−2 6.33× 10−2 3.34× 10−1

256 4.93× 10−4 1.74× 10−3 3.52× 10−2 6.26× 10−2 3.40× 10−1

1024 2.00× 10−4 9.40× 10−4 3.69× 10−2 6.19× 10−2 3.37× 10−1

Table 4.13: Multi-layered medium
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Figure 4.14: Solution profile in gradient domain for P6 elements, ω = 60π
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4.2.4 Multi-layered medium: Highly heterogeneous

We consider here the case where the velocity does not satisfy the technical condition (3.2).
The velocity model is now constructed by modifying the previous one as follows. Between
0 and 1500 meters and between 2000 and 3000 meters, the velocity is decreased by 500
every other layer, and increased by 500 in the remaining layers. Between 1500 and 2000
meters, the velocity is 500 in every other layer. We use an adaptive mesh, which is more
refined between 1500 and 2000 meters in order to correctly fit the small wavelength in this
area. The mesh is made of 4838 cells and is represented in Figure 4.15.

P6 ω = 20π ω = 30π ω = 40π ω = 50π
mean 1.06× 100 6.73× 10−1 1.17× 100 2.76× 100

1 9.99× 10−1 1.81× 100 7.44× 100 3.20× 100

4 7.41× 10−1 3.84× 100 1.71× 100 1.88× 100

16 3.41× 10−1 6.79× 10−1 3.34× 100 2.68× 100

64 3.12× 100 1.86× 10−1 4.45× 10−1 1.05× 100

256 8.40× 10−2 6.60× 10−2 1.03× 10−1 2.77× 10−1

1024 6.23× 10−2 3.63× 10−2 7.00× 10−2 2.12× 10−1

Table 4.14: Highly heterogeneous multi-layered medium

The results of the experiment are presented on Table 4.14 and some solution profiles
are plotted on Figure 4.16. We observe that the MMAm solution is accurate as soon as ǫ
is less that 0.0625, which means that we need to use at least 256 subcells to compute the
entries of the matrix. This is not surprising because we consider a velocity model including
very strong contrasts. It is indeed composed of very thin layers and the variations of the
velocity are important.

It is also clear that the averaging method is not satisfying for this experiment. Indeed,
as shown by the first line of Table 4.14, the solution obtained with the averaged parameter
is not accurate, even for the lowest frequency ω = 20π.

Figure 4.15: Adaptive mesh (90 degrees rotation)



4.2. ANALYTICAL TEST-CASES IN 2D 133

-150

-100

-50

 0

 50

 100

 150

 200

 0  500  1000  1500  2000  2500  3000

R
e

 (
u

)

z

sol
epsilon=1

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0  500  1000  1500  2000  2500  3000

R
e

 (
u

)

z

sol
epsilon=0.5

-30

-20

-10

 0

 10

 20

 30

 0  500  1000  1500  2000  2500  3000

R
e

 (
u

)

z

sol
epsilon=0.125

-30

-20

-10

 0

 10

 20

 30

 0  500  1000  1500  2000  2500  3000

R
e

 (
u

)

z

sol
epsilon=0.03125

Figure 4.16: Solution profile in highly heterogeneous domain for P6 elements, ω = 40π

4.2.5 High order MMAm VS fitting mesh based method

In the previous numerical tests, we have shown the efficiency of the MMAm and we have
concluded that when using enough subcells we obtain accurate results even in highly het-
erogeneous media. In particular, the first experiment showed that when a fitting mesh is
available, the accuracy of the MMAm on a non-fitting mesh of the same size is comparable
to the standard FEM on the fitting mesh.

In this section, we investigate the reduction of the computational cost offered by the
MMAm to obtain a 5% relative error on the previous velocity model at the frequency
ω = 40π.

We use regular meshes based on cartesian grids of different sizes and different poly-
nomial degrees. As a starting point, we discretize the problem with the coarsest possible
fitting mesh. The mesh steps are given by hx = 3.33m, hz = 3m. The z step is chosen
to be exactly the length of a layer, so that the mesh is fitting, and the x step is chosen
so that the grid cells are nearly squares. Hence, the mesh is formed by a regular grid of
300× 1000 squares, each square being divided into two triangles.

If we use P1, P2 and P3 elements on the fitting mesh, we obtain relative L
2 errors of

1.79× 10−1, 3.19× 10−4 and 1.21× 10−6. We thus have that the P1 solution is not precise
enough regarding the level of accuracy we target and the P2 and P3 solutions are very
precise but in the same time very expensive to compute. For example, the computation of
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the P2 solution requires to invert a system with 1.20×106 degrees of freedom and 1.26×107
non-zero elements in the matrix.

We now focus on the size of the cells which obviously impacts the size of the corre-
sponding linear system. It turns out that if p is greater than 2, the MMAm delivers 5%
relative error on a much coarser (and non-fitting) mesh than the fitting mesh as shown in
Table 4.15. We see that when p is greater than 2, we can use a coarse non-fitting mesh
and use less than 1.20 × 106 degrees of freedom to get 5% of accuracy. We conclude that
the MMAm enables to reduce the computational cost compared to the standard FEM on
fitting meshes.

p err hz ndf nz
1 5.5× 10−2 1.5 12.0× 105 14.4× 106

2 4.0× 10−2 6 3.01× 105 3.15× 106

3 5.8× 10−2 12 1.70× 105 2.06× 106

4 5.9× 10−2 18.75 1.24× 105 1.84× 106

5 5.9× 10−2 20 1.70× 105 3.12× 106

6 5.5× 10−2 24 1.67× 105 3.76× 106

Table 4.15: Comparison of different p to obtain a 5% accuracy

To give a comparison with another fitting mesh method, consider the coarsest fitting
cartesian grid made of 300× 1000 squares. It includes 6.01× 105 edges, which means that
lowest order discontinuous Galerkin plane wave method would require at least 6.01 × 105

degrees of freedom to solve (see, for example [10]). On the other hand, the P4 solution
is computed on a 64 × 160 non-fitting cartesian grid. This grid is much coarser than the
300 × 1000 fitting grid and the number of degrees of freedom required to obtain the P4

solution is 1.24× 105 (4.8 times less than for the plane wave method).

4.3 Comparison with homogenization

Periodic homogenization techniques have been applied to upscale fine scale properties of
the Earth. They permit to obtain an ”effective” propagation medium that can be easily
meshed. Under restrictive assumptions of periodicity, the homogenization process is well
understood and convergence analysis is available [8,33]. In Geophysics, the idea dates back
to 1962: Backus showed that fine scale isotropic layers can be upscaled into a homogeneous
anisotropic medium [18]. Periodic homogenization has two main drawbacks:

• in the standard mathematical setting, even if the periodicity hypothesis can be weak-
ened, the medium parameters are expected either to belong to a family of param-
eters which converge in some weak sense (for instance, two-scale convergence [8] or
unfolding methods [33]), or to be randomly distributed according to a specific dis-
tribution [64]. Unfortunately, these hypothesis seem hard to apply to geophysical
models.
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• a separation of scale between the wavelength and the spatial period of the hetero-
geneities is required. This point has been quantitatively analysed by Carcione et
al. [31]. They showed that the anisotropic approximation of finely layered media is
valid only if the wavelength is at least five times larger than the spatial period of the
heterogeneities.

In recent developments, Capdeville and collaborators have introduced the so-called
”non-periodic homogenization” framework [27–29]. The procedure is based on a user de-
fined parameter λ0 which separates the microscopic and macroscopic scales. The homoge-
nization procedure includes a low-pass filtering to upscale properties of the medium under
the wavelength λ0.

The advantage of the non-periodic homogenization procedure of Capdeville et al. over
”standard” homogenization methods is that there is no requirement on the medium param-
eters. However, the scale separation between the wavelength λ and the low-pass filtering
parameter λ0 is still mandatory to obtain accurate results. Also, though the non-periodic
homogenization procedure of Capdeville et al. is numerically efficient, it lacks a strong
mathematical justification.

Because the non-periodic homogenization procedure developed by Capdeville et al. is
an attractive solution for wave propagation in highly heterogeneous media, we propose a
comparison. We focus on the simplest case of a periodic layered medium with constant
density. In Subsection 4.3.1 we briefly present the principle of periodic homogenization
and derive the formula for the homogenized coefficients. We carry out simulations using
the homogenized parameters in Subsection 4.3.2 and compare the results with the MMAm
in Subsection 4.3.3.

4.3.1 Principle of periodic homogenization

The aim of this subsection is to introduce the concept of periodic homogenization. We
consider that the medium of propagation is periodic, with a small period ǫ. We consider
the ”cell” Y = (0, 1)N . Then periodic medium parameters κǫ and ρǫ can be defined as

κǫ(x) = κ(ǫ−1x), ρǫ(x) = ρ(ǫ−1x)

where κ and ρ are Y−periodic functions. For a given period ǫ, the wave equation reads

Hǫuǫ = −ω
2

κǫ
uǫ − div

(

1

ρǫ
∇uǫ

)

= f. (4.9)

Problem (4.9) is actually defined for each ǫ > 0. Hence, if we denote by Hǫ the Helmholtz
operator for the period ǫ, we have, for any ǫ > 0 a function uǫ ∈ H1(Ω,C) such that

Hǫuǫ = f.

It is actually possible to show that when ǫ tends toward 0, uǫ weakly converges to a
function u0 in H1(Ω). The aim of the homogenization process is to identify this weak limit.
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An important result is that u0 can be characterized as the solution of

Ĥu0 = f,

where Ĥ is the so-called ”homogenized” operator.
The homogenization procedure has two main interests. First, we obtain u0 which

might be used as an approximation of uǫ for small ǫ. Second, and more importantly, the
homogenized operator Ĥ describe the macroscopic representation of microscopic scales. In
Ĥ the dependency of ǫ is gone and there is no microscopic scale.

In the context of wave propagation, the homogenized operator Ĥ is still a wave propa-
gation operator and it has the following shape

Ĥu = −ω
2

κ̂
u− div

(

B̂∇u
)

, (4.10)

where κ̂ ∈ R and B̂ ∈ M2(R) are constant parameters. First, we see that Ĥ is different
from the operators Hǫ in the sense that it can be anisotropic because ρ

−1
ǫ has been changed

by a matrix. Second, the small scales have actually disappeared since the parameters are
now constant.

From a numerical point of view, the homogenized operator is interesting because it is
much simpler to discretize than the original operator. Indeed, though it is anisotropic,
the parameters are constant so that there is no restriction on the mesh due to small scale
heterogeneities.

From a physical point of view, we can consider that an isotropic periodic medium with
a small-period behaves macroscopically like an homogeneous, but possibly anisotropic,
medium.

The expressions of the homogenized parameters κ̂ and B̂ are available in the literature
(see [8,86] for instance). The coefficients of the matrix B̂ are obtained as the mean value of
the solution to a PDE set in the reference cell with periodic boundary conditions. Hereafter,
we will focus on the simplest case where the density is constant. Hence, it is only required
to homogenize the parameter κ and the corresponding value is given by

1

κ̂
=

∫

Y

1

κ
. (4.11)

4.3.2 Experiments with the homogenized parameters

We consider a layered propagation medium Ω = (0, 1000)× (0, 1000) with constant density
ρ. Each horizontal layer has the same length ǫ. The wavespeed c takes two different values
c1 and c2 every other layer. In accordance with (4.11), we also consider the homogenized
version where the wavespeed is constant and takes the value

ĉ =
c1c2

√

c21 + c22
.
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We propose to solve the original problem











−ω
2

c2
u−∆u = f in Ω

∇u · n− iω

c
u = 0 on ∂Ω,

with the MMAm and the homogenized problem











−ω
2

ĉ2
u−∆u = f in Ω

∇u · n− iω

ĉ
u = 0 on ∂Ω,

with the standard FEm.

In every experiments, we keep c2 = 3000 m.s−1. We try different velocity contrasts by
choosing c1 = 1000, 2000 or 2500 m.s−1. We experiment with frequencies ranging from 1 to
20Hz. We also experiment with different numbers of layer m = 21, 51, 101 or 201 and set
ǫ = 1000/m. Hence ǫ approximately ranges from 50 m to 5 m. We choose an odd number
of layers so that the Dirac source, located at (500, 500) always lies within the middle layer.

We carry out simulations on a fitting cartesian grid based mesh (210× 210 for m = 21,
204×204 form = 51, 202×202 form = 101 and 201×201 form = 201) with p = 3 elements.
The results are presented from Figure 4.17 to Figure 4.20. The error axis are limited to
50% of relative L2 error. The curve 2000, refers to the experiment where c1 = 1000 and
the velocity contrast is 2000. The curve 1000 refers to the case where c1 = 2000 and the
curve 500 to the case where c1 = 2500.

Let us first consider the case c1 = 1000, where the velocity contrast is the strongest.
We see that the homogenized solution has more that 20% relative error for all frequencies,
even when there is a high number of layers. Furthermore, the homogenized solution is
completely inaccurate at high frequency for the test cases m = 21, 51 and 101.

The homogenization method performs better for the other velocity contrasts. For the
cases with the higher number of layers m = 101 and m = 201 we obtain a constant
approximation error of 10% for c1 = 2000 and 5% for c2 = 2500 for all frequencies.

In the case where there are 51 layers, we see that homogenization works well with the
lowest velocity contrast for all frequencies. However, apart from the case c2 = 2500, the
quality of the approximation is decreasing when the frequency increases.

For the hardest case where there are only 21 layers, we see that the homogenized
solution is good only for low frequencies and small velocity contrasts.
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Figure 4.17: Comparison of different velocity contrast for 21 layers
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Figure 4.18: Comparison of different velocity contrast for 51 layers
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Figure 4.19: Comparison of different velocity contrast for 101 layers
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Figure 4.20: Comparison of different velocity contrast for 201 layers

4.3.3 Comparison with the MMAm

We solve the heterogeneous problem using the MMAm on a 10 × 10 grid with p = 6
elements. We use 1024 subcells for the multiscale medium approximation. We compare
the MMAm solution to the solution obtained on the fitting mesh with p = 3. Results are
presented from Figure 4.21 to Figure 4.32.
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For the cases with 101 and 201 layers, the results obtained with the MMAm are equiv-
alent to the result obtained in the homogenized medium.

In the experiment with 21 and 51 layers, the MMAm is more accurate than the homog-
enized solution. The highest contrast case is correctly handle for low frequency f < 10Hz
only. When the contrast is smaller (c1 = 2000, 25000), the MMAm solution is accurate
even if they are several layers per mesh cell.

These few examples shows that in the simplest case where the density is constant, the
MMAm outperforms periodic homogenization techniques, especially when the layers are
relatively large. This is because no scale separation is assumed in the method.
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Figure 4.21: Homogenization vs MMam: 21 layers, 2000 m.s−1 contrast
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Figure 4.22: Homogenization vs MMam: 21 layers, 1000 m.s−1 contrast
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Figure 4.23: Homogenization vs MMam: 21 layers, 500 m.s−1 contrast
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Figure 4.24: Homogenization vs MMam: 51 layers, 2000 m.s−1 contrast
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Figure 4.25: Homogenization vs MMam: 51 layers, 1000 m.s−1 contrast
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Figure 4.26: Homogenization vs MMam: 51 layers, 500 m.s−1 contrast
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Figure 4.27: Homogenization vs MMam: 101 layers, 2000 m.s−1 contrast
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Figure 4.28: Homogenization vs MMam: 101 layers, 1000 m.s−1 contrast
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Figure 4.29: Homogenization vs MMam: 101 layers, 500 m.s−1 contrast
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Figure 4.30: Homogenization vs MMam: 201 layers, 2000 m.s−1 contrast
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Figure 4.31: Homogenization vs MMam: 201 layers, 1000 m.s−1 contrast
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Figure 4.32: Homogenization vs MMam: 201 layers, 500 m.s−1 contrast

4.4 Geophysical test-cases

In this section, we consider standard geophysical benchmark models. These geophysical
models represent Earth subsurface. In particular, they feature strong contrasts in the
medium parameters.

While strongly contrasted media are a good opportunity to validate the MMAm, they
might not be completely representative of actual applications. The selected benchmarks
can be considered as good Earth models. However, in geophysical applications, wave
propagation methods are used in the context of imaging or inverse problems. In this
situation, the actual Earth model is not known and the simulations take place either in a
”background” model for imaging or in an approximation of the true model for inversion.
These models are usually smooth (or at least, smoother than the real Earth) and therefore,
easier to handle numerically.

In order to give a fair comparison between the MMAm and the standard FEm, we
also include smooth propagation media in our experiments. These smoothed propagation
media are obtained by applying a low-pass filter to the original media. This approach is
used, for example, in [49]. One can also compare our smooth version of the Marmousi
II model (Figure 4.47) with the FWI output model of Sirgue and Pratt [91] depicted on
Figure 1.7.

For 2D experiments with p ≥ 3 we will use static condensation to remove the internal
degrees of freedom of each cell K. The process is explained in details by Wilson [105].
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4.4.1 Methodology

In the following, we consider geophysical test-cases where the medium parameters are
defined by sample values on a cartesian grid. We have arranged the test cases so that the
grids dimensions are integer powers of 2 and can be subdivided easily.

For the 2D test-cases, we consider 100 different right hand sides. The right hand sides
are Dirac sources located at z = 50 m depth and different offsets {xs}100s=1. In the elastic
case, the Dirac impulsion is placed on the vertical component of the displacement. Hence,
the sth right hand side f (s) (1 ≤ s ≤ 100) is given by

〈f (s), v〉 = v(xs, z), ∀v ∈ H1(Ω,C), (4.12)

in the acoustic case and by

〈f (s), v〉 = v2(xs, z), ∀v = (v1, v2) ∈ H1(Ω,C2), (4.13)

in the elastic case.
We also consider a 3D acoustic medium. In this case the source is a Gaussian right

hand side centered at x̄ = (500, 500, 50) represented by the density

f(x) = exp

(

−|x− x̄|2
σ

)

, (4.14)

with σ = 50.
Numerical solutions are computed on different meshes with different orders of dis-

cretization. After solving the linear system, the finite element solutions are projected onto
a cartesian grid of fixed size nx × nz (nx × ny × ny in 3D) for comparison. We use the
solution computed on the finer mesh with the higher polynomial degree as reference to
compute finite element error. For a given finite element configuration, we denote by u

(s)
fem

the numerical solution obtained for the right hand side number s. Considering the refer-
ence solution u

(s)
ref for each right hand side 1 ≤ s ≤ 100, we evaluate the precision of a

finite element configuration by

E =

√

√

√

√

∑100
s=1

∑nx

i=1

∑nz

j=1 |usref (xi, zj)− usfem(xi, zj)|2
∑100

s=1

∑nx

i=1

∑nz

j=1 |usref (xi, zj)|2
. (4.15)

In the 3D example, there is a single right hand side so that the finite element error is
measured by

E =

√

∑nx

i=1

∑ny

j=1

∑nz

k=1 |usref (xi, yj, zk)− usfem(xi, yj, zk)|2
∑nx

i=1

∑ny

j=1

∑nz

k=1 |usref (xi, yj, zk)|2
. (4.16)

In each test cases, we start by simulating the wave propagation on a fitting mesh (i.e.,
if the medium is given by a nx × nz grid, we use a mesh based on a nx × nz cartesian grid
(nx × ny × nz in 3D)). In this case, the medium parameters are constant in each cell, so
that the MMAm is not required and we use the classical FEM. The reference solution is
the solution computed on the fitting mesh with the highest possible polynomial degree our
computational resources allow.
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4.4.2 2D Acoustic simulations with constant density: Overthrust

model

We consider a vertical slice of SEG/EAGE Overthrust 3D velocity model [12]. The density
ρ = 1 is assumed to be constant. The sound velocity is given as a 512 × 128 grid and
illustrated on Figure 4.33.

Figure 4.33: Overthrust P-velocity model

We also consider a smoothed version of the model, where a 200 m low-pass filter have
been applied to the velocity model. The smoothed version of cp is represented on Figure
4.34.

Figure 4.34: Smoothed Overthrust P-velocity model

We run acoustic simulations for frequencies f = 5, 10, 15 and 20Hz in the original and
smoothed models. We use the numerical solution computed on the h = 40 m mesh with
p = 6 as a reference solution to compute relative errors. Numerical solutions obtained on
coarser mesh and/or with lower order polynomial, are compared to the reference solution
from Tables 4.16 to Table 4.19.

We pay special attention to the case f = 10Hz which is detailed afterward.
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We observe that, in terms of relative error, the results are very similar in the original
and smoothed models. This is in strong agreement with the fact that high contrast in
piecewise constant velocity model can be handle on non-fitting mesh without difficulty
by the MMAm. Indeed, since the error levels are the same in the smoothed and original
media, we can conclude that the error is mostly caused by dispersion.

Furthermore, Tables 4.16 to 4.19 confirm the interest of the MMAm. Indeed, it is clear
that when high order polynomials are used, it is possible to obtain an accurate solution on
a non-fitting mesh. When high order polynomials are used, we can obtain accurate results
with a mesh step 8 times larger than the parameter grid for f = 5Hz, 4 times larger for
f = 10Hz and f = 15Hz and 2 times larger for f = 20Hz.

h p=1 p=2 p=3 p=4 p=5 p=6
40 60.6 0.49 0.32 0.22 0.16 0
80 119 3.76 0.69 0.46 0.42 0.41
160 116 41.9 2.41 1.44 0.98 0.73
320 107 119 46.6 5.67 2.38 1.91

h p=1 p=2 p=3 p=4 p=5 p=6
40 48.0 0.49 0.33 0.23 0.17 0
80 110 2.81 0.71 0.48 0.44 0.44
160 116 31.2 2.19 1.50 1.03 0.76
320 106 110 32.7 3.97 2.41 1.99

Table 4.16: Relative error (%) for f = 5Hz in the original (left) and smoothed (right)
acoustic Overthrust models

h p=1 p=2 p=3 p=4 p=5 p=6
40 127 6.72 0.25 0.17 0.12 0
80 120 74.8 2.55 0.39 0.32 0.32
160 115 119 78.3 7.91 1.06 0.61
320 100 107 124 127 77.0 19.2

h p=1 p=2 p=3 p=4 p=5 p=6
40 120 4.83 0.27 0.18 0.13 0
80 123 57.8 1.69 0.39 0.35 0.35
160 107 113 58.1 4.82 0.93 0.64
320 100 108 123 116 51.4 9.95

Table 4.17: Relative error (%) for f = 10Hz in the original (left) and smoothed (right)
acoustic Overthrust models

h p=1 p=2 p=3 p=4 p=5 p=6
40 129 45.8 0.72 0.18 0.13 0
80 112 124 33.3 1.75 0.38 0.35
160 101 121 124 99.5 18.8 2.62
320 104 102 118 125 123 120

h p=1 p=2 p=3 p=4 p=5 p=6
40 131 34.2 0.52 0.18 0.13 0
80 112 116 22.5 0.93 0.35 0.35
160 101 118 120 77.5 10.5 1.28
320 107 102 121 133 119 111

Table 4.18: Relative error (%) for f = 15Hz in the original (left) and smoothed (right)
acoustic Overthrust models
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h p=1 p=2 p=3 p=4 p=5 p=6
40 124 122 5.15 0.23 0.15 0
80 113 132 121 16.1 1.30 0.56
160 100 110 126 125 115 36.8
320 100 100 106 110 125 125

h p=1 p=2 p=3 p=4 p=5 p=6
40 123 108 3.47 0.22 0.16 0
80 113 134 106 9.32 0.64 0.41
160 100 114 128 116 95.0 20.1
320 100 100 107 109 126 122

Table 4.19: Relative error (%) for f = 20Hz in the original (left) and smoothed (right)
acoustic Overthrust models

Frequency f = 10Hz

We detail the case f = 10Hz. Figures 4.35 to 4.38 present convergence curves of the MMAm
with a high number of subcells and of the standard FEm with an averaged parameter. We
use the same submesh to compute the MMAm coefficient and to compute the averaged
parameter. Hence, if the submesh of the cell K is denoted by Tǫ = {Kl}ml=1 we have

∫

K

1

c2
φiφj ≃

m
∑

l=1

1

c2l

∫

Kl

φiφj,

for the MMAm and

∫

K

1

c2
φiφj ≃

(

1

|K|

∫

K

1

c2

)∫

K

φiφj,

∫

K

1

c2
≃

m
∑

l=1

1

c2l
|Kl|

for the FEm.

We observe that the MMAm is overconvergent for large h. Indeed, the fit in hα always
give an α > p+ 1 for the MMAm both in the original and smoothed media. This result is
well-known for the standard FEm in homogeneous media: in the transition zone between
the pre-asymptotic and the asymptotic range, the finite element solution is less accurate
than the best approximation, but has an improved convergence rate. We refer the reader
to the numerical examples of Babuška and Ihlenburg [59].

On the other hand, the convergence rate of the FEm solution is always lower than
expected, even in the smoothed medium: the fit in hα gives α < p+ 1. We interpret that
this loss of convergence is due to the poor approximation of the medium parameter by the
averaging technique. In the smoothed medium with p = 3 and p = 4 the convergence rate
is between 3 and 4. In all other test cases, the convergence rate is less than 2. We interpret
this convergence rate by the fact that the convergence of the averaged parameter to the
true parameter is only linear and is a limitation for the optimal convergence of the FEm.

In terms of accuracy, the MMAm and FEm provide comparable results only in the
smoothed medium when p = 3. In this case, the mesh step is relatively small and the
averaged parameter is a good approximation of the smoothed parameter. For all the other
cases, the MMAm provides a slightly improved accuracy. In the smoothed medium, the
MMAm solution, is between 2 to 20 times more accurate than the FEm solution on the
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same mesh. In the original medium, we are never able to obtain less than 10% accuracy
with the FEm on all meshes consider, while a 1% accuracy is achieved by the MMAm.

In terms of performance, the MMAm and the FEm give similar results for p = 3 in
the smoothed medium. In every other configuration, the MMAm outperforms the FEm.
Assuming that static condensation is used, we can give the following numbers:

• In the smoothed medium, the FEm is able to achieve a 10% accuracy for p = 3, 4
and 5. For p = 3, the number of degrees of freedom required is similar. However,
for p = 4, the number of degrees of freedom required is reduced from 51 × 103 to
33× 103. The number of degrees of freedom is reduced from 59× 103 to 21× 103 for
p = 5.

• In the original medium, the only case where the FEm achieves an accuracy close to
10% is p = 3. In this configuration, the number of degrees of freedom required is
201× 103 for the FEm against only 66× 103 for the MMAm.
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Figure 4.35: Convergence curves for p = 3 in the original (left) and smoothed (right) media
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Figure 4.36: Convergence curves for p = 4 in the original (left) and smoothed (right) media
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Figure 4.37: Convergence curves for p = 5 in the original (left) and smoothed (right) media
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Figure 4.38: Convergence curves for p = 6 in the original (left) and smoothed (right) media

Figures 4.39 and 4.40 present the number of degrees of freedom required to obtain
different levels of accuracy. The number of floating-point numbers required to represent
the finite element matrix is also represented (since the matrix is symmetric, it is the number
of non-zero elements in the upper triangle).

When static condensation is not used, the number of degrees of freedom required is
always reduced when p increases from 2 to 6. However, if the number of non-zero elements
reduces from p = 2 to 4, it increases from p = 4 to 6. This observation holds for all
accuracy levels considered.

When static condensation is used, the numbers of degrees of freedom and non-zero
elements are reduced when p is increased.

We conclude that high order MMAm is an interesting method for constant density
cases if static-condensation is used. In the case where static condensation is not used,
the efficiency of high order polynomials might depend on the sparse linear solver used.
However, increasing the order of discretization seems to be interesting at least up to p = 4.
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Figure 4.39: Number of degrees of freedom and non-zero elements in the linear system
without static condensation for f = 10Hz
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Figure 4.40: Number of degrees of freedom and non-zero elements in the linear system
with static condensation for f = 10Hz

Adaptive meshes

One advantage of finite element discretizations over finite difference discretizations is the
possibility to locally adapt the mesh. Indeed, finite element discretizations do not have to
rely on a cartesian grid but are rather based on a mesh made of triangles. Finite element
methods can thus naturally handle different discretization steps in the same simulation as
long as it is possible to produce a mesh.

This is of particular importance in Geophysics because it is possible to guess where the
mesh needs to be refined in advance. Indeed, it is well-known that the crucial requirement
for the finite element method to be accurate is to ensure that they are enough points per
wavelength. The wavelength of the solution is directly linked to the wave velocity, which
is known before the simulation. Since the velocity can vary from 1000 ms−1 in shallow
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regions to 5000 m.s−1 in depth, it might be of interest to have a mesh 5 times more refined
near the surface than in depth.

More precisely, assume we have a mesh Th and that the velocity is constant in each
cell. A cell K ∈ Th is associated with a wave velocity cK . If hK is the diameter of K, the
number of points per wavelength when using finite elements of degree p can be expressed
as

NK
λ ≃ pcK

fhK
. (4.17)

If hK = h is constant (for example, using a cartesian grid), the number of points per
wavelength varies from one cell to another, depending on the velocity value cK . On the
other hand, if one wishes to keep the number of points per wavelength Nλ to a constant
value in all cells, the cell diameters need to be selected so that

hK ≃ pcK
fNλ

. (4.18)

Thus, the ideal cell size at the point x ∈ Ω would be

h(x) ≃ pc(x)

fNλ

. (4.19)

Actually (4.19) defines a ”metric” than can be used to produce adaptive meshes [68].
In this section, we propose to use the software BL2D [66] to produce and use such meshes.
In order to compare with cartesian grid results, we define a ”minimum step” hmin and
define the mesh metric by

h(x) =
c(x)

cmin

hmin, x ∈ Ω. (4.20)

Definition (4.20) ensures that the number of points per wavelength is the same for all
cells. Furthermore, the smallest cell in the mesh should be of length hmin.

In the following, we compare the adaptive mesh with minimum mesh step hmin to the
cartesian mesh with constant mesh step h = hmin. The idea behind this choice is that
the strongest requirement on the mesh is where the velocity is minimal. When using a
cartesian mesh, the mesh step is the same everywhere and the mesh is unnecessary refined
where the wavespeed is higher. We thus expect that the adaptive and cartesian meshes
yield the same precision, the adaptive mesh being optimal and therefore, less costly to use.

Figures 4.41 to 4.44 show adaptive and cartesian meshes for hmin = 80 and 160 m. The
number of cells in the adaptive meshes is approximately divided by two as compared to
the cartesian meshes.

Of course, since adaptive meshes are non-cartesians, they are obviously non-fitting
(since the velocity parameter is given on a cartesian grid). We therefore use the MMAm
with 1024 subcells to approximate the medium.
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Figure 4.41: Adaptive mesh with hmin = 80 m (17383 triangles)

Figure 4.42: Cartesian mesh with h = 80 m (32768 triangles)

Figure 4.43: Adaptive mesh with hmin = 160 m (4315 triangles)
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Figure 4.44: Cartesian mesh with h = 160 m (8192 triangles)

Numerical results are presented in Tables 4.20 to 4.23. In every test case, the error
level is comparable for the adaptive and the cartesian meshes. It confirms the idea that
the cartesian mesh is over-refined in some regions and that the bottlenecks are the regions
with minimal velocity.

In terms of performance, if we compare the case hmin = 320 m and p = 6 (2.03% error
for f = 5Hz) with static condensation, the number of degrees of freedom is 15589 for the
cartesian mesh against only 8844 for the adaptive mesh. The number of non-zero elements
in the finite element matrix is also reduced from 256312 to 144500 by using the adaptive
mesh.

For the case hmin = 80 m and p = 2 (4.62% error for f = 5Hz), the number of degrees
of freedom is reduced from 64897 to 35200 and the number of non-zero elements is reduce
from 403216 to 218371.

The number of cells is thus almost halved when adaptive meshes are used. It follows
that the number of degrees of freedom and the filling of the linear system are divided by
a factor close to 2 as well.

In order to show the interest of the MMAm, let us consider again the cases hmin = 320
m with p = 6 and hmin = 80 m with p = 2 for f = 5Hz. If we use an averaged parameter
with the standard FEm, the relative error is 64.7% for hmin = 320 m and p = 6 (against
2.03% using the MMAm). For the case hmin = 80 m and p = 2, the relative error is 10.7%
for the standard FEm with an averaged parameter (against 4.62% using the MMAm).

hmin p=1 p=2 p=3 p=4 p=5 p=6
40 72.2 0.56 0.34 0.27 0.19 0.14
80 123 4.62 0.70 0.41 0.37 0.36
160 120 54.2 2.93 1.44 1.00 0.76
320 110 126 72.3 9.13 2.68 2.03

h p=1 p=2 p=3 p=4 p=5 p=6
40 60.6 0.49 0.32 0.22 0.16 0
80 119 3.76 0.69 0.46 0.42 0.41
160 116 41.9 2.41 1.44 0.98 0.73
320 107 119 46.6 5.67 2.38 1.91

Table 4.20: Relative error (%) for f = 5Hz with the adaptive (left) and cartesian (right)
meshes
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hmin p=1 p=2 p=3 p=4 p=5 p=6
40 135 9.48 0.29 0.22 0.17 0.14
80 118 90.5 3.56 0.44 0.36 0.35
160 125 135 101 11.3 1.60 0.95
320 100 122 131 140 111 35.8

h p=1 p=2 p=3 p=4 p=5 p=6
40 127 6.72 0.25 0.17 0.12 0
80 120 74.8 2.55 0.39 0.32 0.32
160 115 119 78.3 7.91 1.06 0.61
320 100 107 124 127 77.0 19.2

Table 4.21: Relative error (%) for f = 10Hz with the adaptive (left) and cartesian (right)
meshes

hmin p=1 p=2 p=3 p=4 p=5 p=6
40 125 59.7 1.18 0.29 0.24 0.22
80 118 142 43.1 2.22 0.65 0.58
160 100 122 138 120 25.6 3.94
320 101 105 122 132 133 137

h p=1 p=2 p=3 p=4 p=5 p=6
40 129 45.8 0.72 0.18 0.13 0
80 112 124 33.3 1.75 0.38 0.35
160 101 121 124 99.5 18.8 2.62
320 104 102 118 125 123 120

Table 4.22: Relative error (%) for f = 15Hz with the adaptive (left) and cartesian (right)
meshes

hmin p=1 p=2 p=3 p=4 p=5 p=6
40 124 131 7.44 0.49 0.35 0.32
80 164 143 132 19.6 1.84 0.99
160 100 154 139 131 132 46.0
320 100 100 112 127 141 132

h p=1 p=2 p=3 p=4 p=5 p=6
40 124 122 5.15 0.23 0.15 0
80 113 132 121 16.1 1.30 0.56
160 100 110 126 125 115 36.8
320 100 100 106 110 125 125

Table 4.23: Relative error (%) for f = 20Hz with the adaptive (left) and cartesian (right)
meshes

4.4.3 2D Acoustic simulations with non-constant density: Mar-

mousi II model

In this subsection, we consider the Marmousi II model [71]. The P-velocity and the density
are represented by a 2048× 512 grid with 5 m step as depicted on Figures 4.45 and 4.46.
We consider a smoothed version of the model by applying a 50 m low-pass filter. The
smoothed versions of the P-velocity and density are given on Figures 4.47 and 4.48.
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Figure 4.45: Marmousi II P-velocity model

Figure 4.46: Marmousi II density model

Figure 4.47: Marmousi II smoothed P-velocity model
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Figure 4.48: Marmousi II smoothed density model

Tables 4.24 to 4.28 present results for frequencies f = 5, 10, 15, 20 and 30Hz. For all
frequencies, we are able to obtain accurate results on non-fitting meshes if high order
polynomials are used. Like in the constant-density case, we obtain similar results in the
original and smoothed media. This might be explained by the fact that the error is mostly
due to dispersion, and that the impact of small-scale heterogeneities is small.

h p=1 p=2 p=3 p=4 p=5 p=6
5 2.55 0.13 0.00 x x x
10 10.1 0.33 0.19 0.11 x x
20 38.7 0.73 0.59 0.44 x x
40 104 2.09 0.89 0.75 0.66 x
80 119 20.0 1.66 1.25 1.05 0.96
160 109 112 19.0 2.93 1.80 1.53
320 101 112 123 68.2 14.5 4.39

h p=1 p=2 p=3 p=4 p=5 p=6
5 2.34 0.13 0.00 x x x
10 9.18 0.33 0.19 0.11 x x
20 34.6 0.73 0.59 0.44 x x
40 95.7 1.79 0.89 0.75 0.65 x
80 117 17.5 1.54 1.25 1.05 0.96
160 110 105 15.6 2.45 1.75 1.52
320 100 112 115 57.9 11.2 3.19

Table 4.24: Relative error (%) for f = 5Hz in the original (left) and smoothed (right)
Marmousi II models

h p=1 p=2 p=3 p=4 p=5 p=6
5 22.6 0.12 0.00 x x x
10 77.8 0.40 0.19 0.11 x x
20 129 3.46 0.58 0.43 x x
40 129 43.4 1.42 0.75 0.64 x
80 109 127 38.1 2.97 1.15 0.98
160 100 116 122 105 27.3 5.28
320 100 101 106 118 125 120

h p=1 p=2 p=3 p=4 p=5 p=6
5 19.3 0.13 0.00 x x x
10 68.7 0.37 0.19 0.11 x x
20 122 2.76 0.59 0.44 x x
40 129 36.5 1.11 0.76 0.66 x
80 109 120 30.4 1.98 1.07 0.98
160 100 116 115 97.0 20.9 3.15
320 101 101 107 118 119 114

Table 4.25: Relative error (%) for f = 10Hz in the original (left) and smoothed (right)
Marmousi II models
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h p=1 p=2 p=3 p=4 p=5 p=6
5 76.3 0.21 0.00 x x x
10 135 1.90 0.27 0.15 x x
20 135 26.0 0.90 0.62 x x
40 123 129 14.6 1.28 0.94 x
80 110 129 128 51.6 5.97 1.76
160 150 112 117 125 124 107
320 100 100 105 107 112 120

h p=1 p=2 p=3 p=4 p=5 p=6
5 70.6 0.21 0.00 x x x
10 134 1.64 0.28 0.16 x x
20 133 22.7 0.89 0.65 x x
40 123 130 12.1 1.15 0.97 x
80 116 131 125 42.6 4.03 1.49
160 107 112 117 121 121 99.8
320 100 100 105 107 111 123

Table 4.26: Relative error (%) for f = 15Hz in the original (left) and smoothed (right)
Marmousi II models

h p=1 p=2 p=3 p=4 p=5 p=6
5 127 0.55 0.00 x x x
10 134 7.71 0.37 0.20 x x
20 127 90.2 2.41 0.85 x x
40 121 134 80.3 5.23 1.34 x
80 101 124 132 124 57.4 9.06
160 101 106 116 117 128 122
320 100 102 100 104 111 108

h p=1 p=2 p=3 p=4 p=5 p=6
5 126 0.50 0.00 x x x
10 132 6.75 0.39 0.22 x x
20 128 83.7 2.04 0.91 x x
40 123 133 72.5 3.93 1.37 x
80 101 126 130 124 46.8 5.80
160 196 101 119 118 127 123
320 100 274 100 105 109 108

Table 4.27: Relative error (%) for f = 20Hz in the original (left) and smoothed (right)
Marmousi II models

h p=1 p=2 p=3 p=4 p=5 p=6
5 139 3.35 0.00 x x x
10 138 47.9 0.66 0.21 x x
20 116 135 26.2 1.23 x x
40 113 128 131 82.6 9.10 x
80 101 117 118 134 126 123
160 100 100 102 109 114 124
320 100 100 100 100 104 103

h p=1 p=2 p=3 p=4 p=5 p=6
5 135 2.65 0.00 x x x
10 141 38.4 0.52 0.21 x x
20 116 128 20.1 1.00 x x
40 112 128 122 67.2 6.14 x
80 101 114 116 130 119 116
160 100 100 102 106 115 121
320 100 100 100 100 103 104

Table 4.28: Relative error (%) for f = 30Hz in the original (left) and smoothed (right)
Marmousi II models

Frequency f = 20Hz

We focus on the case f = 20Hz. In order to provide a comparison with the standard FEm,
we propose a method where an average bulk modulus κ̃ is used instead of the original value.
We do not homogenize the density. Indeed, homogenizing the density is more complicated
than just averaging. We thus keep the original value and use the MMAm formula for the
density.
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Hence, we use the following formula to compute the coefficients in the MMAm:

∫

K

1

κ
φiφj ≃

m
∑

l=1

1

κl

∫

Kl

φiφj,

∫

K

1

ρ
∇φi · ∇φj ≃

m
∑

l=1

1

ρl

∫

Kl

∇φi · ∇φj.

To compare with the standard FEm, we use the following quadrature formula to com-
pute the mass matrix coefficient

∫

K

1

κ
φiφj ≃

(

1

|K|

∫

K

1

κ

)∫

K

φiφj,

∫

K

1

κ
≃

m
∑

l=1

1

κl
|Kl|,

and keep the MMAm formula for the stiffness matrix:

∫

K

1

ρ
∇φi · ∇φj ≃

m
∑

l=1

1

ρl

∫

Kl

∇φi · ∇φj.

Convergence curves for p = 3, 4, 5 and 6 are presented on Figures 4.49 to 4.52. In every
considered configuration, the MMAm is more accurate than the FEm.

We provide two fits in hα for every convergence curve. The first fit is carried out on
the larger mesh steps and gives α > p + 1. The second fit is carried out in small mesh
steps and gives α < p + 1. We interpret these two different convergence rates as the
separation between the pre-asymptotic range where the method is over-convergent and the
asymptotic range where the convergence rate is suboptimal. Again, a similar behaviour
has already been observed by Ihlenburg and Babuška [59] for 1D homogeneous problem
with the standard FEm. The difference here is that since the solution is not H2, the rate
of convergence of the best approximation is suboptimal (less than p + 1 in the L2 norm).
This is the reason why the convergence rate is not optimal in the asymptotic range.

In particular, for the cases p = 5 and 6, the asymptotic convergence rate is less than
1. This can be explained by the fact that the density varies quickly or is discontinuous.
When the density is discontinuous, the solution does not belong to H2(Ω) which explains
that the convergence rate is not even 1. On the other hand, the convergence is good in the
pre-asymptotic range.

The MMAm slightly outperforms the FEm in the original medium. The FEm never
reaches 10% accuracy on all considered meshes, while the MMAm is able to achieve 1%
relative L2 error.

The MMAm and the FEm gives similar error levels in the smoothed medium for the
case p = 3 (see Figure 4.49). For p > 3, the MMAm solution is at least four times more
accurate than the FEm solution on the same mesh.

We can say that the MMAm always improves the quality of the numerical solution
compared to the FEm while the linear system to solve has exactly the same size and stencil.
It is also clear that the MMAm reduces the computational cost for a given accuracy, and
we can give similar numbers than in the constant density case. On the other hand, the
asymptotic convergence rate of high order elements is very poor, which can be explained
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by the fact that the density is discontinuous or highly oscillating. We also make this
observation in performance assessments.
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Figure 4.49: Convergence curves for p = 3 in the original (left) and smoothed (right) media
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Figure 4.50: Convergence curves for p = 4 in the original (left) and smoothed (right) media
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Figure 4.51: Convergence curves for p = 5 in the original (left) and smoothed (right) media

 0.01

 0.05

 0.1

 0.5

 35  40  50  60  70  80  90  100

R
e

la
ti
v
e

 E
rr

o
r

h

h
1.71

h
7.40

Error MMAm

Error FEm

 0.01

 0.05

 0.1

 0.5

 30  40  50  60  70  80  90  100

R
e

la
ti
v
e

 E
rr

o
r

h

h
0.29

h
8.30

h
2.28

Error MMAm

Error FEm

Figure 4.52: Convergence curves for p = 6 in the original (left) and smoothed (right) media

Performance assessments of the MMAm are depicted on Figures 4.53 and 4.54. We see
that the size and the filling of the linear system are reduced for p = 4 compared to p = 3
(it is also smaller than for p = 1 and 2 though this is not represented here). The case of
high order discretizations with p ≥ 5 needs to be discussed more precisely.

We see that the size and filling of the linear system are reduced for p = 5 and 6 if static
condensation is used and the desired accuracy level is 5 or 10%.

However, it is clear that p = 5 and p = 6 elements are more costly than p = 4 elements
if the desired accuracy is 1%. This is agreement with the observation that the asymptotic
convergence rate is poor for p = 5 and 6 (see Figures 4.51 and 4.52). Also, it can be
explained by the fact that since the density is either discontinuous or fastly variating, high
order methods do not bring additional precision to the best approximation. Actually, the
same mesh step needs to be used to obtain a 1% accuracy for p = 4, 5 and 6, so that p = 4
discretization is cheaper.

As a conclusion, we might say that p = 4 elements seem to be the best choice for the
non constant-density test-case considered here. In this case, the MMAm makes it possible
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to use a coarse mesh, while preserving the quality of the numerical solution. If the standard
FEm with parameter averaging is used, we might expect the solution to be at least 4 times
less accurate.
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Figure 4.53: Number of degrees of freedom and non-zero elements in the linear system
without static condensation for f = 20hz
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Figure 4.54: Number of degrees of freedom and non-zero elements in the linear system
with static condensation for f = 20hz

4.4.4 3D Acoustic simulations with constant density: Louro Model

In this subsection, we consider a 3D velocity model. The density ρ = 1 is assumed to be
constant. The velocity is given by a 64 × 64 × 32 cartesian grid with 20 m step which is
depicted on Figure 4.55.
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Figure 4.55: x, y and z cuts of the velocity model

A Dirichlet boundary condition is imposed as a free surface condition and PML layers
of 160 m are used to bound the computation domain. A Gaussian source located at
y = (500m, 500m, 50m) with σ = 50 m is used as right hand side:

f(x) = exp

(

−|x− y|2
σ2

)

, x ∈ Ω.

Numerical meshes are based on cartesian grids, each cube of the grid being subdivided
into 6 tetrahedron. The mesh steps are ranging from h = 20 m (fitting mesh) to h = 160
m. Numerical solutions are evaluated on a 128 × 128 × 64 cartesian grid for comparison.
We use single precision arithmetic and the single precision complex version of MUMPS
as linear solver [11]. The MMAm code has been run on CRIHAN (HPC center). We are
limited to 1024 Gb of memory (64 MPI processes with 16 Gb each), and the ”out of core”
option of MUMPS makes it possible to compute a reference solution using 13 × 106 of
degrees of freedom and 766 × 106 of non-zero elements in the linear system using p = 4
elements on a fitting mesh (we are not using static condensation).

The MMAm solutions are computed using a 569 tetrahedron reference submesh. The
submesh has been generated by Tetgen [90]. We compare MMAm solutions with FEm
solutions. FEm solutions are computed using a constant value for the velocity in each cell.
This value is selected in the grid using the barycenter of the cell (remark that no averaging
is done here).

Numerical results for the frequency f = 10Hz are presented on Table 4.29. The reference
solution is computed on a fitting mesh (h = 20 m) with p = 4 elements. We see that it is
possible to obtain accurate solutions on non-fitting meshes if high order elements are used
with the MMAm. In particular, it is possible to use a mesh step 8 times larger than the
medium grid (h = 160 m) if polynomials of degree p = 6 are used. The MMAm solution
is 10 times more accurate than the FEm solution in this case.

h p=1 p=2 p=3 p=4 p=5 p=6
20 66.0 2.80 2.50 0 x x
40 113 15.3 3.40 3.77 3.53 x
80 135 84.8 17.1 4.89 4.62 4.65
160 108 123 93.9 51.6 17.4 6.53

h p=1 p=2 p=3 p=4 p=5 p=6
20 66.0 2.80 2.50 0 x x
40 114 21.4 15.3 11.7 11.5 x
80 131 91.1 37.8 30.9 30.6 30.8
160 107 128 101 77.3 68.2 61.7

Table 4.29: Relative error in % for f = 10Hz with the MMAm (left) and the FEm (right)
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The size and filling of the linear system are presented on Figure 4.56. Except for the
case p = 5, the size and the filling of the linear system are reduced when p increases. We
would like to point out that we do not obtain a ”perfect” curve as in the Overthrust test
case because we only take mesh size of the form 20 × 2j. We think we could obtain a
smaller linear system with less filling for p = 5 by letting the mesh step increase between
80 m and 160 m.

In order to compare with the standard FEm, we can consider the p = 2 solution on
the fitting mesh as a reference. Then, the number of degrees of freedom required to obtain
less that 10% of relative L2 error is reduced by a factor 6 for p = 4 and by a factor 14 for
p = 6. The filling is reduced by a factor 4 for p = 4 and by a factor 6 for p = 6. We would
like to point out, however, that this result needs to be mitigate by the fact that the p = 4
is 1.74 less times precise and the p = 6 solution is 2.33 less times precise. Again, this is
because the mesh size are of the form 20×2j and we think we could obtain a similar result
(less in favor of the MMAm) with the same 5% precision for p = 2, 4 and 6 by selecting h
more freely.
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Figure 4.56: Size and filling of the linear system for a < 10% accuracy

We now provide additional information on Figure 4.57 concerning the computational
time and memory usage using 16 MPI process with the linear solver CMUMPS 5.0.0 [11].

In all test cases, the time required to compute the matrix coefficients is of the order
of the second, and is negligible compared to the time required to solve the linear system.
This result strongly confirms the interest of the MMAm. We would like to point out that
the result would be even more impressive if several right hand side were used.

It is clear that the computational time and the memory usage are reduced when p
increases, at least up to p = 4. If p = 2 is taken as a reference for the standard FEm, the
computational time and memory usage are reduced by 15 and 11 for p = 4 and by 65 and
32 for p = 6 with the MMAm.
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Figure 4.57: Computational times and memory usages (CMUMPS 5.0.0 with 16 MPI
processes)

The results are impressive when comparing different polynomial degrees to obtain an
accuracy level close to 5%. However, the results would have been less impressive if we
had compared for a 3% accuracy for example. In particular, we see that when h is small
the precision is not greatly improved when p is increased. For instance, we have the same
precision for p = 4, 5 and 6 when h = 80. However, for larger h this is not the case and the
precision is improved when p ranges from 4 to 6 and h = 160 m. We think that this might
be because we are using simple precision arithmetic and that the matrix is ill-conditioned.
Unfortunately, we did not compute the condition number of the matrix while doing the
experiment (the option is available is MUMPS, however, it requires more memory and
computational time). Also, the difference between the reference solution p = 4 and the
closest solution p = 3 computed on the fitting mesh is of the order of 1% which might be
to much to compare for a 3% level of accuracy.

We conclude that the MMAm seems very interesting for 3D acoustic experiments with
constant density if an accuracy level of 10 or 5% is required. Further investigations are
required to discuss the case of 1% accuracy.

4.4.5 2D Elastic simulations with constant density: Overthrust

model

We close this section with 2D elastic experiment. We consider again the Overthrust model.
As illustrated on Figure 4.58, we obtain a shear velocity model by applying the rule from
Castagna et al. [32]:

cp = 1.16cs + 1360.
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Figure 4.58: Overthrust S-velocity model

We also consider a smoothed version of the model, where a 200 m low-pass filter has
been applied to the velocity model. The smoothed version of cs is represented on Figure
4.59.

Figure 4.59: Smoothed Overthrust S-velocity model

A Neumann free-surface boundary condition is imposed on the top of the domain. 640
m PML layers are used to simulate an infinite propagation medium.

Tables 4.30 to 4.32 present numerical results where f = 2, 5 and 10Hz. We see that,
unlike the acoustic case, there is an important accuracy difference between the original
and smoothed media. As an example, when p = 6, the MMAm solution is always at least
5 times more accurate in the smoothed medium, than in the original medium.

We explain the difference between the acoustic and the elastic cases by the fact than
in the elastic case, the velocity parameters cp and cs are ”inside” the divergence operator.
Therefore, the velocity contrasts have a stronger impact on the solution. Yet, the MMAm
is still able to provide accurate solutions on non-fitting meshes, even in the original medium
at low frequencies f = 2 and 5Hz.

However, as shown by Table 4.32, we are not able to obtain accurate solutions on
non-fitting meshes in the original medium for f = 10Hz.
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The results are promising in the smoothed medium, where accurate solutions are obtain
on non-fitting meshes, even for the frequency f = 10Hz.

We conclude that the MMAm provide improved results in the smoothed medium for all
frequencies considered and in the original medium at low frequency. From our experiment,
it is not clear that the MMAm might improve the performance of the standard FEm in
highly contrasted media for high frequencies.

h p=1 p=2 p=3 p=4 p=5 p=6
40 91.7 0.64 0.14 0.09 0.06 0
80 121 8.53 2.34 1.40 1.29 0.95
160 114 64.7 5.73 3.38 2.75 2.29
320 110 117 61.3 11.5 5.76 4.50

h p=1 p=2 p=3 p=4 p=5 p=6
40 82.9 0.43 0.14 0.09 0.06 0
80 121 5.06 0.45 0.28 0.24 0.19
160 116 51.1 1.83 0.69 0.53 0.44
320 111 116 42.3 3.55 1.25 0.93

Table 4.30: Relative error (%) for f = 2Hz in the original (left) and smoothed (right)
elastic Overthrust models

h p=1 p=2 p=3 p=4 p=5 p=6
40 126 40.2 0.58 0.16 0.10 0
80 116 126 24.2 4.20 3.42 2.56
160 125 123 124 60.3 12.5 7.61
320 105 110 112 128 121 88.8

h p=1 p=2 p=3 p=4 p=5 p=6
40 125 34.9 0.39 0.14 0.09 0
80 116 125 15.6 0.80 0.46 0.35
160 111 180 123 40.3 3.45 0.97
320 103 108 129 123 120 58.8

Table 4.31: Relative error (%) for f = 5Hz in the original (left) and smoothed (right)
elastic Overthrust models

h p=1 p=2 p=3 p=4 p=5 p=6
40 122 135 44.8 1.42 0.20 0
80 122 136 133 120 58.8 40.0
160 104 111 115 128 131 128
320 100 104 108 111 113 120

h p=1 p=2 p=3 p=4 p=5 p=6
40 121 135 33.5 0.87 0.17 0
80 119 146 134 82.4 7.18 0.99
160 103 109 188 128 132 108
320 100 102 105 109 113 122

Table 4.32: Relative error (%) for f = 10Hz in the original (left) and smoothed (right)
elastic Overthrust models



170 CHAPTER 4. NUMERICAL EXAMPLES



Conclusion

This work focus on numerical approximation of the Helmholtz equation in heterogeneous
media. The numerical solution methodology has been considered in the context of seismic
imaging applications where accuracy must be achieved with a limited computational burden
to have any chance of solving the corresponding inverse problem. Regarding its practical
impact, the main contribution of this PhD is the full design of the Multiscale Medium
Approximation method (MMAm).

Because special properties of the continuous solution were required to analyse the
MMAm properly, we have started with the mathematical analysis of the continuous prob-
lem. This work has been presented in Chapter 2 for 1D Helmholtz problems and in Chapter
3 for 2D problems. Our main achievements are then the derivation of frequency-explicit
stability estimates for the solution of 1D Helmholtz problem in general acoustic media.
In 2D, our results are only valid if the density is constant and if the velocity satisfies a
monotonous hypothesis. In both cases, our results are proper generalization of the stability
estimates available for homogeneous Helmholtz problems and our bounds are optimal with
respect to the frequency.

Concerning the analysis of the MMAm, we have derived a pre-asymptotic error-estimate
for 2D problems when linear Lagrangian elements are used. We believe that the crucial
result of our analysis is our asymptotic error-estimates for 1D problems. Indeed, we were
able to show that using quadratic and cubic finite elements is very interesting, even if the
solution is H2 only because of the discontinuities of the velocity parameter. Theses results
have been applied under the assumption that the density is constant.

From the numerical point of view, we have been able to validate the MMAm with
analytical test-cases featuring strong velocity contrasts. These numerical results are in
accordance with our theoretical analysis. The MMAm has also been tested with geophysical
benchmarks, chosen to be representative of seismic imaging. These tests show that the
method is accurate and efficient and outperforms the standard finite element method for
the targeted application. In particular, numerical experiments on benchmarks with non-
constant density show that the method is still efficient even if this case is not covered by our
analysis. We have also investigated how the method works for elastic wave propagation.
The results are promising, but the interest of the method might be limited to the low
frequency regime.

Future developments should focus on the analysis and the possible extensions of the
method for the non-constant densities both in acoustic and elastic cases. Indeed, these
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results are not covered by our analysis and have been observed to be tricky to discretize
from the numerical point of view. A natural extension of the MMAm for layered media
with non-constant density could be the ”special finite element method” of Babuška et
al. [17].

In the ”special finite element method” of Babuška et al., special shape functions are
obtained from Lagrangian polynomials through a change of variables. This change of
variables follows the variations of the density, which are supposed to be one-dimensional.
The method has been tested for linear Lagrangian element. One of the drawbacks of the
method is that the conformity of the original elements is lost. Since this might be a problem
for higher order elements, we would propose to use a penalization technique to ensure the
stability of the resulting scheme.

A promising approach for complex propagation media with non-constant density is the
MHMm proposed by F. Valentin et al. [13]. In the framework of the HOSCAR project
(www-sop.inria.fr/hoscar/), I had the opportunity to meet F. Valentin and we started
working on this topic. Using the MHMm is thus an on-going work and preliminary results
make us confident in the capability of MHMm to handle complex media.
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[17] I. Babuška, G. Caloz, and E. Osborn, Special finite element methods for a class
of second order elliptic problems with rough coefficients, SIAM J. Numer. Anal. 31
(1994), 510.

[18] G.E. Backus, Long-wave anisotropy produced by horizontal layering, J. Geophys. Res.
67 (1962), 4427–4440.

[19] H. Barucq, T. Chaumont Frelet, J. Diaz, and V. Péron, Upscaling for the laplace
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