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ABSTRACT

In this thesis, the digital in-line holography (DIH) is the main optical method used
to analyze inclusions in a droplet. The digital in-line holography is used to characterize
the inclusions in terms of of their size, their 3D position, and their trajectories inside
the droplet. Since the particles are located within a droplet, the incident wavefront is
changed before it illuminates the inclusions. The challenge of this work has two points:
first to take into account the shape of the droplet in the holographic model and secondly
to extend the analysis to the transparent inclusions (phase object). To describe the
hologram recorded by the CCD sensor, the Huygens-Fresnel integral and the ABCD
matrix formalism were used. In this model, we introduce the Zernike polynomials to
describe the transmission function of a particle. For the analysis of holograms, the
2D fractional Fourier transformation (2D-FRFT) is used to reconstruct the image of
inclusions and in this case the size and their 3D position of the inclusions are per-
formed. The trajectories of the inclusions in the drop are possible tracked with a long
exposure shutter speed of the CCD. We also proposed a new simulation to describe
objects of any phases and opaque particles. For this simulation, the same methods of
reconstruction were used. In the case of micro-channel inclusions inside a cylindrical
geometry such as a pipe, the interferometric imaging of multi-core pipe is proposed.
In this case, summation of Dirac delta distribution, located along a line, introduced
into the generalized Fresnel integral allows us to get a good agreement between the
experiment and the simulation.

Keywords: Digital in-line holography, droplet with inclusions, fractional Fourier
transform, Zernike polynomials
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RÉSUMÉ

Dans cette thèse, l’holographie numérique dans l’axe (DIH) est la principale méthode
optique utilisée pour analyser des inclusions dans une gouttelette. L’holographie
numérique dans l’axe est utilisée pour caractériser des inclusions du point de vue de
leur taille, leur position 3D et leur trajectoire à l’intérieur de la gouttelette. Comme
les particules sont situées à l’intérieur d’une gouttelette, le front d’onde incident
sur l’inclusion est modifié avant qu’il l’illumine. Le défi de ce travail est double
: premièrement de prendre en compte la forme de la gouttelette dans le modèle
d’holographie et deuxièmement détendre l’analyse aux inclusions transparentes (type
objet de phase). Pour décrire l’hologramme enregistré par le capteur CCD, l’intégrale
d’Huygens-Fresnel et le formalisme des matrices ABCD ont été utilisés. Dans ce
modèle, nous introduisons les polynômes de Zernike pour décrire la fonction de trans-
mission d’une particule. Pour l’analyse des hologrammes, l’outil mathématique de
la transformation de Fourier fractionnaire 2D (2D-FRFT) est utilisé pour restituer
l’image des inclusions et dans ce cas une mesure la taille de l’inclusion et de sa posi-
tion 3D sont réalisées. Les trajectoires des inclusions dans la goutte est possible avec
un long temps de pose de l’obturateur du capteur CCD. Nous avons également pro-
posé un nouveau modèle pour décrire des objets de phases quelconque et des particules
opaques. Pour ce nouveau modèle, les mêmes procédés ont été utilisés. Dans le cas
d’inclusions filiformes à l’intérieur d’une géométrie cylindrique comme un canal, une
méthode de simulation d’imagerie interférométrique multi-coeurs est proposée. Dans
ce cas, une somme de distributions de Dirac, localisées le long d’une droite, introduite
dans l’intégrale de Fresnel généralisée (c’est-à-dire le formalisme des matrices ABCD
et l’intégrale de Fresnel) permet d’obtenir un bon degré de similitude entre l’expérience
et la simulation.

Mots-clés: l’holographie numérique dans l’axe, gouttelettes avec inclusions, trans-
formée de Fourier fractionnaire, polynômes de Zernike
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1. INTRODUCTION

1.1 General introduction

The detection and characterization of particles inside droplets play an important
role in many areas such as biology, climatology, public health, physics, etc. In biology,
the foreign bodies or other organisms enclosed by a cell or a liquid can be considered
as inclusions inside a droplet [1, 2, 3]. Those foreign bodies or other entities can live
for a longer period within the protective liquid shell. In public health, the droplet
can be considered as an expiratory aerosol and the inclusion can be considered as a
bacterial cell inside the expiratory droplet [6, 7], (see Fig. 1.1). In this example in
public health, the size of bacterial cellsl is important in their dispersion which is related
to the spread of infectious respiratory diseases in the air. The insoluble particles inside
the droplets of clouds are interesting for climatologists [9] for prediction of the weather
or determination of the atmospheric aerosol composition for climate modelling and the
detection of biological weapons agents in military applications [10]. For physicists, the
scattering problem of water droplets with inclusions was studied by using Lorenz-
Mie theory. The study of droplets or spray has many applications in industry to.
For example, in the pharmaceuticals industry, spray drying or droplet drying is the
key to analysing powder’s properties [11]. Another application is in coating surface
technology, as in [12, 13, 14, 15]. The original properties of the coated substrate are
changed to the desired properties. In power plants, in case of an accident, each droplet
from the spray can be used to reduce hazard and to limit the contamination to humans,
animals, and the environment [16, 17]. Considering the wide variety of applications of
droplets with inclusions, study of this topic is of great interest.

Fig. 1.1: The spread of disease via respiratory droplets [8].
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In nuclear power plants, the cooling tower is used to reduce the temperature of
wasted heat emitted to the atmosphere. In cooling tower, a water spray may be used to
reduce the temperature of the waste. In the case of an accident, the water spray may
be used to reduce the spread of radioactive particles that have leaked from the plant.
Therefore, an understanding of the complex interaction between the water droplets
and solid particles in the cooling tower is necessary and a fundamental understanding
of the behaviour of particles captured by a droplet is essential. When particles enter
the droplet, they will follow a fluid flow inside the droplet if they are small enough.
One way that we can study a droplet with inclusions is by characterizing the properties
of the inclusions. Then questions such as “How can we characterize the inclusions in a
droplet?” and “Which method can we use?” appear. The answers are in the following
paragraphs.

Fig. 1.2: Interior of a nuclear power plant*

An optical technique is a good choice to characterize the inclusion because it is
a non-invasive and non-contact method for the particle. With the optical method,
the particle does not change its original properties. Many kinds of optical techniques
can be used to characterize the particle, such as particle imaging velocimetry (PIV),
holography, scattering under Lorenz-Mie theory, etc. However, those techniques can-
not give the actual 3D location of the particle except for the holography technique.
Therefore, we choose holography for particle characterization.

In this thesis, characterization of inclusions inside a water droplet is investigated by
digital in-line holography (DIH). The characterization process with the DIH technique
allows us to measure the size, 3D location, and trajectories of the inclusions inside a
droplet where the astigmatic aberration is introduced. The challenge of this problem
is to take the effect of the droplet as a curved interface which deforms the wavefront
of the incident wave. Without a droplet, the size and 3D location of the particle dis-

*http://sphweb.bumc.bu.edu/otlt/mph-modules/ph/ph709
c transmission/ph709 c transmission4.html
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persed in the air or in the measured volume can be easily found because the wavefront
of the incident beam is not modified or deformed. However, this problem is resolved
by the DIH technique developped in CORIA.

1.2 Literature review

In this thesis, digital in-line holography is selected. Digital in-line holography is
suitable for the visualization of particles inside a volume of interest. One advantage
of the in-line configuration or Garbor hologram is the simplicity of the set-up. This
technique can give the real 3D position of the inclusion in the droplet. Furthermore,
this technique can track the particle’s trajectory by analysing the holograms frame by
frame or using a long exposure time of the CCD sensor, which will be presented later
in this thesis. Before going into the details of the digital in-line holography used in
this work, I would like to introduce some related techniques frequently used in flow
measurement and in particle sizing.

Fig. 1.3: Set-up of particle image velocimetry: (a) recording phase and (b) reconstruction
phase [18].

Particle image velocimetry (or PIV) is an optical technique of flow visualization.
This technique measures flow velocity by adding seed particles and measuring their
velocity field in the measurement volume [19]. The seeded particles are assumed to
follow the fluid flow. The degree to which the seeded particles follow the flow is rep-
resented by the Stokes number. The motion of the seeded particle is used to calculate
the speed and direction of movement of the flow system of interest. The method makes
it possible to measure the two-dimensional cross-section of the flow field, as presented
in many applications [20, 21, 22, 23]. However, the density of the particles affects the
motion of the fluid. Fig.1.4 shows an example of a 2D cross-section of the flow inside
a droplet [20].
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Fig. 1.4: The slab velocity field at z = 148µm inside a droplet is shown in the bottom half
and its streamline is shown in the top half [20].

Another technique used to measure flow is laser Doppler velocimetry. Laser
Doppler velocimetry or Laser Doppler anemometry (LDA) is an optical technique that
uses the Doppler effect on a laser beam to measure the velocity of small particles mov-
ing in gas, liquid, flames, in a domain such as combustion [24], channels [25, 26], wind
or water tunnels [27], and in various areas of scientific and industrial research. The
basic idea of LDA is to measure the velocity of small particles moving in the flow. If
these particles are small enough, their velocity is assumed to be the velocity of that
fluid. For a review of LDA, see [28].

Fig. 1.5: Set-up of laser Doppler anemometry [29].

In aeronautical research, the flow velocity around the airplane model has been
measured by the LDA technique in a water tunnel. The values of velocity are used to
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determine the pressure coefficient along the wing’s center span and along the cockpit
[27].

Fig. 1.6: Velocity vector around the hydrofoil with LDA measurement [27].

Fig.1.6 shows the velocity vectors of the upper surface of the wing model in a hy-
drofoil for angle of attack α = 25◦ and velocity v = 5.32m/s. This kind of study plays
an important role in aeronautical research.

Many research groups in spray analysis use different techniques in order to measure
the size and position of the droplet, such as the rainbow technique and ILIDS. Inter-
ferometric laser imaging for droplet sizing (ILIDS) was introduced in early 1986 by
Koening et al. The droplets are illuminated by a light source and a CCD sensor is at
an off-axis position, as shown in Fig. 1.7. The reflected and refracted rays are visible
on the droplet surface. These two rays observed on the droplet surface are called glare
points. When they are out of focus, an interference pattern becomes visible. If the
two glare points are in focus, two bright dots can be observed on the sensor.

Fig. 1.7: Set-up of ILIDS [30].

For the rainbow technique, the scattered light at the rainbow angle is recorded. A
fast Fourier transform (FFT) algorithm is used to analyse the pattern of the fringes.
However, this technique can measure the size, refractive index, temperature, and the
relative position, but not the real 3D position of the droplets. The experimental set-up
of the rainbow technique is presented in Fig. 1.8.
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Fig. 1.8: Set-up of rainbow technique [31].

Holography was first invented in 1948 by Denis Gabor [32]. In a Gabor hologram,
the total information has to be used, not only the amplitude, as in usual optical imag-
ing, but also the phase. The phase of the object wave can be reconstructed optically
but not measured directly. Gabor’s original set-up (in-line configuration) is depicted
in Fig. 1.9.

Fig. 1.9: Set-up of Gabor’s hologram for recording.

His set-up was a two-step lensless imaging process in which the first step recorded
an interference pattern generated by the interaction of scattered light from an object
wave and a reference wave. The resulting interference pattern is called a “hologram”.
The second step in the procedure was the reconstruction of the wave field or image and
this process was done through the diffraction of a coherence beam by the developed
hologram.

However, the Gabor hologram caused a twin image. Leith and Upatnieks proposed
off-axis holography [33, 34] to separate the two images and the reconstuction wave spa-
tially. With the development of computer technology, computer-generated holography
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Fig. 1.10: Reconstruction process of Gabor’s hologram.

(CGH) was invented instead of the classical holography. The hologram is recorded
optically. Then, the hologram is analysed numerically and the object is reconstructed
numerically [35]. Through the development of charged coupled devices (CCDs), the
hologram is recorded on the CCD and is called a digital hologram. The intensity
and phase of the electromagnetic wave can be measured, stored, and transfered into a
computer for the recording and reconstruction process. CCDs are used instead of the
holographic plates in classical holography. Since the development of digital holography
in 1969, many significant applications have been studied. Some important studies [36]
are:

- improvements of the experimental techniques and of the reconstruction algorithm
- applications in deformation analysis and shape measurement
- development of phase-shifting digital holography
- applications in imaging, particle-tracking and microscopy
- applications in encryption of information
- development of digital light-in-flight holography and other short-coherence-
length applications

- combination of digital holography with heterodyne techniques
- development of methods to reconstruct the three-dimensional object structure
from digital holograms

- development of comparative digital holography
- use of a digital mirror device (DMD) for optical reconstruction of digital
holograms.

1.2.1 Holographic interferometry

Holographic interferometry (HI) is a method to detect optical path length varia-
tions which are caused by the object. HI is a non-invasive and non-contact method
with very high sensitivity. This technique can be applied to stress, strain and vibra-
tion analysis. It can be used to measure optical path length variations in transparent
media; for example, to visualize and analyse fluid flow. It can also be used to generate
a fringe pattern corresponding to contour forms of the surface. In the double exposure
method, two coherence waves illuminate two different states of the object and then
interfere. The recording process of double exposure holography is presented in Fig.
1.11. The first exposure represents the object in its primary state, while the second
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represents the object in its deformed state. The result is two overlapping waves which
form a fringe pattern that contains the changes in optical path length.

Fig. 1.11: Recording of a double exposed hologram.

When the hologram is illuminated by the reference wave, the reconstructed virtual
image coincides with the object. In real-time technique, this allows us to observe in-
stantaneously the effects of small changes in displacement on an object. This is done
by superimposing a hologram over the object itself.

1.2.2 Digital holographic interferometry

The interferogram in HI is created by the superposition of two waves that are scat-
tered from an object in different states. The interference fringe carries the information
about phase change between the two waves in the form of bright and dark fringes.
Digital holographic interferometry (DHI) is like conventional HI but using the CCD
camera. The hologram image in DHI is recorded by the CCD and then it is restored
in computer memory and reconstructed numerically. However, the interference phase
cannot be extracted straightforwardly from a single hologram. It is usually extracted
from three or more holograms by a phase-shifting method. The configuration of DHI
is shown in Fig. 1.12.

Fig. 1.12: DHI set-up.
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The DHI technique can be used to determine the mechanical and thermal prop-
erties of a material, such as conductivity [37], Young’s modulus [38], Poisson ratio
[38], and thermal expansion coefficient[39]. Furthermore, it can be applied to shape
measurement [38], refractive index measurement [40] and so on.

1.2.3 Digital holographic microscopy

Digital holographic microscopy (DHM) is digital holography applied to microscopy.
The difference between DHM and conventional microscopy is that DHM does not
record the projection image of the object. In DHM, the light wave field information
from the object is recorded as a hologram for which a numerical reconstruction is re-
quired. The set-up of DHM is shown in Fig. 1.13.

Fig. 1.13: DHM set-up for the characterization of living tumor cells [41].

The depth of field of the image decreases with increase of the magnification factor.
Due to the high magnification in microscopy, the depth of field is limited. DHM has
been successfully applied in many areas [41, 42], especially in biology.
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In this thesis, digital in-line holography (DIH) is used to record the hologram
of inclusions inside a droplet. In this case, the droplet introduces a lens effect to the
diffraction patterns of the particles inside. To analyse the holograms, the 2D-FRFT
with an appropriate fractional order is used.

Fig. 1.14: Set-up of in-line holography.

Many methods for numerical reconstruction are proposed such as Fresnel transfor-
mation, the convolution approach, wavelet transform, Wigner distribution, and frac-
tional Fourier transform, which is a generalized Fourier transform.

The Fresnel transformation enables reconstruction of the wavefield in a plane
behind the hologram or in the plane of the real image. The Fresnel integral is the
most often used numerical method for hologram reconstruction in digital holography.
However, images reconstructed with this method always include different aberrations
because of the neglect of the fourth- and higher-order phase terms in the calculation.
The quality of the reconstructed image can be degraded by induced aberrations. The
direct numerical processing of the Fresnel integral is more time-consuming than the
convolution approach [43].

The convolution approach is a mathematical tool used to apply spatially filters
to signals in image processing. The basic idea is that a window of some finite size and
shape is scanned across the image. The output pixel value is the weighted sum of the
input pixels within the window, where the weights are the values of the filter assigned
to every pixel of the window itself. The window with its weights is called the convolu-
tion kernel. The kernel is a matrix of fixed numbers. The kernel is applied to the image
by placing over the image to be convolved and sliding it around to center it over every
pixel in the original image. The pixel values from the original image are multiplied by
the kernel number. The sum of all these products is the output pixel value. Then this
result is placed into the new image at the center position of the kernel. The kernel
is then translated to the next pixel and the process is repeated until all the pixels
have been done. One advantage of the convolution approach of reconstruction is an
increase of lateral resolution or the digital zoom of the reconstructed image. Another
advantage of the convolution approach is interesting since it allows the full calculation
by Fast Fourier Transform (FFT) with high speed reconstructions [44, 45].

In conventional Fourier transform, the basis functions are sinusoidal functions.
Such functions can provide frequency information but not temporal information. Un-
like the conventional Fourier transform, the wavelet transform decomposes signals over
dilated and translated functions called wavelets, which transform a continuous func-
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tion into a highly redundant function. With wavelet transform, both frequency and
temporal information can be obtained [46]. Wavelet transforms have advantages over
traditional Fourier transform for representing functions that have discontinuities and
sharp peaks, and for accurately deconstructing and reconstructing finite, non-periodic
and/or non-stationary signals. Wavelet transform is one of a best tools to determine
where the low frequency and high frequency areas are. There are two types of wavelet
transforms: discrete wavelet transforms (DWTs) and continuous wavelet transforms
(CWTs). The continuous two-dimensional wavelet transform is defined as

Wf (s, θ, a, b) =

∫ ∞

−∞

I(x, y)Ψ∗
s,θ(x, y, a, b) dx dy, (1.1)

where

Ψs,θ(x, y, a, b) =
1

s2
Ψ

(

x− a

s
,
y − b

s
, θ

)

.

I(x, y) is the intensity distribution recorded in the CCD plane. s(> 0) and θ are scale
and rotation parameters. The shift parameters related to position are represented by
a and b for the x and y directions, respectively. With wavelet transformation, the
scaling and rotating parameters should be considered.

The concept of Wigner or Wigner-Ville distribution (WVD) is related to time-
frequency representations of non-stationary signals. The approach was originally de-
veloped by Wigner for use in physics, but it was later applied to signal processing by
Ville. This method can be introduced to phase-unwrapped problems [48]. WVD ex-
hibits the highest signal energy concentration in the time-frequency domain for linear
modulated signals. The main problem in this method is in the case of nonlinearly
modulated signals. Furthermore, noise may appear in the time-frequency plane even
though there is no noise in the signal [49]. The WVD belongs to a large class of bilinear
distributions known as the Cohen’s class. The WVD of a 2D image is a 4D function
that includes Fourier transformation for every point of the original image. The dis-
crete WVD of a 1D signal is periodic in the frequency variable with a period of π while
the periodicity of the Fourier spectrum is 2π. This can be considered as the signal
oversampling by a factor of 2. To overcome the problems of aliasing and cross terms
in discretization problem, pseudo Wigner distribution (PWD) is used. The PWD has
two smoothing windows: a spatial averaging window and a spatial-frequency averaging
window. The cross terms problem can be diminished by spatial and spatial-frequency
smoothing [50]. The used of Wigner distribution function (WDF) has already been
proposed for the extraction of three-dimensional locations from holograms, as pre-
sented in [51].

Fractional Fourier transform (FRFT) is a generalization of classical Fourier trans-
form. Wave propagation in optics can be interpreted by FRFT. For fractional Fourier
transform in digital holography, one fractional order is needed for satisfactory recon-
struction, instead of using the other parameters such as distance, wavelength, scaling
parameter and resolution of the recording sensor required in the Fresnel reconstruc-
tion. Many studies have found that Fresnel diffraction can be expressed as an FRFT
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whose orders depend on the distance between the object and the observation field
[52, 53]. The FRFT was used initially as a mathematical tool in quantum mechanics
[54] in 1980. Then the FRFT was used in various applications for signal analysis. In
all time-frequency representations, it normally uses a plane with two orthogonal axes
which correspond to time and frequency. If a signal x(t) is represented along the time
axis and its classical Fourier transform X(f) is represented along the frequency axis,
then the Fourier transform operator F can be visualized as a change in the represen-
tation domain of the signal that corresponds to the counterclockwise rotation of the
axis by an angle π/2. Unlike the classical Fourier transform, the rotation of the signal
in FRFT does not need to be a multiple of π/2.

Recently, FRFT has been combined with digital holography and used in several
applications, such as analysis of the diffraction patterns of a particle field hologram
[55, 56] generated by elliptic and astigmatic Gaussian beams [57], optical informa-
tion security [58, 59], visualization of the particle in a thick pipes system [60], and
reconstruction of particle holograms recorded with a pulsed laser beam [61, 62, 63]. A
two-dimensional FRFT of a function f(x, y) of order (α = aπ/2) is given by F (xα, yα)
as in [55, 56]

F (xα, yα) = K

∫ ∫

f(x, y)× exp

(

jπ
x2 + y2 + x2α + y2α

λf1 tanα
− 2jπ

xy + xαyα
λf1 sinα

)

dx dy.

(x, y) and (xα, yα) represent the space and fractional domain coordinates, respectively.
The parameter K is a complex constant. In the case of the reconstruction of the holo-
gram, the function f(x, y) corresponds to the recorded intensity at CCD sensor. f1 is
the focal length of the lens in the optical set-up type I, which is proposed by Lohmann
[64] and λ is the wavelength of the reconstructed wave.

1.3 Objectives

In this thesis, digital in-line holography is used to analyse inclusions inside a droplet.
In the classical case where the particles are suspended in the air or other fluids, the
diffracted wavefront is deformed due to the effect of the particle itself, whereas the
diffracted wavefront in the case of particles inside a droplet is deformed due to the
particle itself and the curvature of the droplet surrounding the particles. Therefore, in
this thesis, the effect of the droplet is taken into account by considering the droplet as a
lens. With ABCD formalism, the inclusions located near the optical axis is considered.

The principal objective of this study is to show the possibility of the digital in-line
holography developed by our group in CORIA to visualize and characterize inclusions
inside droplets. The model already developed is well adapted for the visualization of
particles in micro-pipes, as shown in the previous work [60]. The aim is to compare
the results of the droplet-inclusion system obtained from simulation and experiment
for size, 3D position , and the trajectories of inclusions inside a droplet. In addition,
a clear differentiation of opaque and phase objects is needed for better interpretation
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of the results obtained with different types of aerosol particles.
In chapter 2, the fundamental knowledge related to digital holography is summa-

rized to give the reader a broader idea. In chapter3, a model of an aberrating object
at the center of a droplet is studied. Here the Zernike polynomial is used to represent
the object’s transmission function. The resulting intensity recorded by a CCD sensor
is determined under ABCD matrix formalism. Next, a model of abitrarily shaped
non-center objects is presented in chapter 4. Both opaque and constant phase objects
with irregular shapes are studied. The simulational process for generating constant
phase objects is described. In chapter 5, the simulated and experimental holograms
and reconstructed images of different sizes of inclusions are presented. Next, the vi-
sualization of particles inside a droplet under a long exposure regime is studied in
chapter 6. With this model, the 3D trajectories of the inclusions inside a droplet are
achieved. Chapter 7 is a study on interferometric imaging of multi-channel pipes. In
this chapter, the interference patterns introduced by many channels in a pipe are an-
alyzed. Finally, the conclusions and perspectives are presented in chapter 8.
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2. BASIC BACKGROUNDS

2.1 Digital holography

Holography is a non-invasive imaging technique which basically consists of a laser,
an object of interest, and a recording medium, e.g. a photographic plate. The laser
illuminates the object. The light diffracted by the object is called the object wave.
The non-diffracted part is called the reference wave. When the two waves are su-
perimposed on each other, an interference pattern is formed at the recording plane.
This pattern is called a “hologram”, from the Greek word holos, meaning “whole”.
The entire information of the object (both phase and amplitude) is recorded on the
holographic plate in terms of black and white fringes. The object can be reconstructed
by illuminating the same reference light source on to the hologram again. The virtual
image will be reconstructed and appears at the location formerly occupied by the ob-
ject, even though the object is no longer in its original position.

Conventional holography consists of two parts: recording and reconstruction steps
as shown in Fig. 2.1 and Fig. 2.2, respectively, in the case of in-line (Gabor) hologra-
phy.

Fig. 2.1: Recording process

In the recording process, a plane wave is traditionally used to illuminate the ob-
ject. Some part of wave is diffracted by the object and is called the object wave. The
other is not diffracted by the object, but directly illuminates the recording medium.
This is called the reference wave. When the two waves interfere with each other, the
interference pattern is observed on the recording medium that we call the hologram.

For the reconstruction process, the same reference wave is used to illuminate the
holographic plate. The hologram acts as a diffraction grating. The reconstructing
beam, after passing through the hologram, produces the virtual image of the object at
the same position as the original object. The real image of the object can be observed
behind the holographic plate symmetrically.
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Fig. 2.2: Reconstructing process

In digital holography, the reference wave and the object wave interfere at the surface
of a charge coupled device (CCD) instead of a photographic plate. The interference
fringes are recorded electronically and they are transferred to the computer. In numer-
ical reconstruction, the virtual image of the object will appear at the same position as
the original object and the real image will appear in the opposite direction.

2.2 ABCD matrix

In geometrical optics, light travelling through an optical element can be described
by a 2 × 2 matrix, called an ABCD transfer matrix. The ABCD matrix is a method
for tracing the propagation of waves in an optical system. This ABCD method uses
the paraxial approximation.

Fig. 2.3: Ray analysis

From Fig. 2.3, two parameters y and θ are considered. A ray is defined by its
heigth, y, and its direction from the optical axis, θ. A light ray enters an optical
system at the input plane at coordinates (y1, θ1) and leaves the system at the output
plane at (y2, θ2). n1 and n2 are the refractive index of the medium before and after
the optical system, respectively. The propagation of the ray can be described by the
mathematical expression as
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(

y2
θ2

)

=

(

A B
C D

)(

y1
θ1

)

. (2.1)

All the parameters of Eq.(2.1) are presented in Fig. 2.3. The vector (y θ) is called
the “ray vector”. If the optical system has several components, the combined optical
system can be calculated by multiplying these ABCD matrices:

(

y2
θ2

)

=

(

An Bn

Cn Dn

)

· · ·
(

A1 B1

C1 D1

)(

y1
θ1

)

. (2.2)

The following examples of a transfer matrix for some commonly used optical compo-
nents are presented in [84] (Appendix B.3, pp.404-407).

- For light travelling in free space with a distance L, the ABCD matrix is

(

A B
C D

)

=

(

1 L
0 1

)

. (2.3)

- For light travelling through any medium that has a refractive index, n2, and that
propagates through a distance L, the ABCD matrix is

(

A B
C D

)

=

(

1 L
n2

0 1

)

. (2.4)

- For light travelling through a thin lens with focal length f , the ABCD matrix is

(

A B
C D

)

=

(

1 0
− 1

f
1

)

. (2.5)

- For light refracting at a spherical surface with radius of curvature R, the ABCD
matrix is

(

A B
C D

)

=

(

1 0
n1−n2

R
1

)

, (2.6)

where n1 is the refractive index of the first medium and n2 is the refractive index of
the second medium.

- If the refracted surface has a non-symmetric radius of curvature in the x- and y-
direction, the ABCD matrix in x- and y-components is

(

Ax Bx

Cx Dx

)

=

(

1 0
n1−n2

Rx
1

)

and

(

Ay By

Cy Dy

)

=

(

1 0
n1−n2

Ry
1

)

, (2.7)

where Ax,y, Bx,y, Cx,y, and Dx,y are matrix elements in the x- and y-components. Rx,y

is the radius of curvature of the surface in x- and y-direction.
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2.2.1 Propagation of wave under Fresnel transform

The relation between diffraction theory and ray optics can be used to describe the
propagation of light through a lens systems. A diffraction integral relates the electric
field on the input plane and on the output plane. However, this integral is limited by
the paraxial approximation. The Fresnel integral can be written as the coefficients of
the transfer matrix between the two planes as follows:

Fig. 2.4: Illustration of the input and output plane coordinates.

E1(x1, y1) =
exp(i2π

λ
L0)

iλB

∫ ∫

E0(x0, y0)

exp

[

iπ

λB

(

A(x20 + y20)− 2(x0x1 + y0y1) +D(x21 + y21)
)

]

dx0 dy0,

(2.8)

where L0 is the optical path of a ray lying on the axis of the system between the input
and output planes [69, 70]. E0(x0, y0) is the electric field amplitude at the (x0, y0)
plane. This expression is very useful in holography.

2.3 Gaussian beam

A Gaussian beam is an electromagnetic wave whose intensity distribution is well
described by a Gaussian function. The Gaussian beam is described by a few param-
eters such as the beam’s size, radius of curvature, and Gouy phase shift. The beam
parameters are presented in Fig. 2.5.

The complex electric field amplitude of a Gaussian beam can be expressed as

E(r, z) = E0
ω0

ω(z)
exp

( −r2
ω(z)2

+ ikz + ik
r2

2R(z)
− iζ(z)

)

. (2.9)

The radial distance from the beam axis is denoted r and z is the axial distance from
the beam waist. E0 is the amplitude at (0, 0), ω0 is the beam waist radius at z = 0
whose amplitude is 1/e of its maximum value, ω(z) is the beam radius or spot size at
distance z from the beam waist, and k is wave number, k = 2π/λ. R(z) is the radius
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Fig. 2.5: Gaussian beam’s parameters

of curvature of the beam’s wavefront and ζ(z) is the Gouy phase shift. The beam size,
ω(z), at a distance z along the beam from the beam waist is

ω(z) = ω0

√

1 +

(

z

zR

)2

, (2.10)

where zR =
πω2

0

λ
. The radius of curvature of the wavefronts as a function of axial

position, R(z), is

R(z) = z

[

1 +
(zR
z

)2
]

, (2.11)

and the Gouy phase of the beam, ζ(z), is

ζ(z) = arctan

(

z

zR

)

. (2.12)

When a Gaussian beam propagates through an optical system with optical length L0,
the beam output, Eout(x, y), under Fresnel transformation and ABCD matrix formal-
ism, is

Eout(x, y) =
exp(ikL0)√

iB

∫ ∞

−∞

Ein(x
′, y′) exp

[

iπ

B

(

Dx2 − 2xx′ + Ax′2
)

]

exp

[

iπ

B

(

Dy2 − 2yy′ + Ay′2
)

]

dx′ dy′,

(2.13)

where Ein is the beam input. In this case, it is not possible to define the Gouy phase
shift as in Eq. (2.12). Thus the phase accumulated by a Gaussian beam passing
through an optical system, the denoted Gouy phase shift (ζout), can be defined as

−ζout = arg [Eout(0, 0)]− arg [Ein(0, 0)]− kL0, (2.14)

arg [·] denotes the argument (phase). From [67], the output parameters are related
to the input parameters through transformation of ABCD matrix elements of the
medium. Now consider a Gaussian beam with the input parameters ωin and Rin that
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propagates through an optical system characterized by an ABCD matrix. By consid-
ering a complex beam parameter q which is defined as

1

q
=

1

R(z)
+ i

λ

πω2(z)
. (2.15)

qout is related to qin through matrix elements as [67]

λqout =
Aλqin +B

Cλqin +D
. (2.16)

From the above equation, we then find the output parameters ωout, Rout, and ζout from
the input parameters ωin, Rin, and ζin through the ABCD matrix as

ω2
out =

(

A+
B

λRin

)2

ω2
in +

B2

ω2
in

, (2.17)

1

λRout

=

(

C + D
λRin

)(

A+ B
λRin

)

+ BD
ω4
in

(

A+ B
λRin

)2

+ B2

ω4
in

, (2.18)

ζout = ζin + arctan





B
(

A+ B
λRin

)

ω2
in



 , (2.19)

where A,B,C, and D are matrix elements of the ABCD matrix. The corresponding
intensity distribution at the input plane denoted I(r, z) is

I(r, z) = I0

(

ω0

ωz

)2

exp

(

− 2r2

ω2(z)

)

, (2.20)

where I0 is the intensity of the beam at its waist. As can be seen in Eq.(2.20), the
intensity distribution has a Gaussian form. In my thesis, I will use the Gaussian beam
to characterize inclusions inside a suspended water droplet.

2.4 In-line configuration

For in-line holography, the system can be divided into two parts: before the object
plane and after the object plane. The coordinates at the input plane are (µ, ν), at
the object plane are (ξ, η) and at the recording plane are (x, y). The optical sys-
tem between the incident plane and the object plane can be described by transfer
matrix Mx,y

1 where x, y refer to the components of the transfer matrix, M1 in x- and
y-direction. The system between the object plane and the recording plane can be
described by another transfer matrix Mx,y

2 . A light wave illuminates the object. Some
part of the wave is diffracted by the object while the remaining part passes without
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being diffracted. The former part is called the reference wave and the latter part is
called the object wave. When two waves interfere, a typical diffraction pattern is ob-
served on the recording plane.

Fig. 2.6: Planes of consideration.

The generalized Fresnel integral tells us how to calculate the field G1 before the
object plane by using the field distribution in the incident plane as

G1(ξ, η) =
exp(i2π

λ
E1)

iλ
√

Bx
1B

y
1

∫

R2

G0(µ, ν) exp

(

i
2π

λBx
1

[Ax
1µ

2 − 2ξµ+Dx
1ξ

2]

)

exp

(

i
2π

λBy
1

[Ay
1ν

2 − 2ην +Dy
1η

2]

)

dµ dν,

(2.21)

where G0(µ, ν) is the field amplitude at the incident plane. In our case, G0 is a Gaus-
sian function. E1 is the optical path along the system between the incident plane and
the object plane, and Ax,y

1 , Bx,y
1 , Dx,y

1 are the matrix elements ofMx,y
1 . This expression

describes the propagation of light through optical systems; it relates diffraction theory
to ray optics. After the propagation through the system of matrix Mx,y

2 , the complex
field amplitude at the recording plane is

G2(x, y) =
exp(i2π

λ
E2)

iλ
√

Bx
2B

y
2

∫

R2

G1(ξ, η)[1− T (ξ, η)] exp

(

i
2π

λBx
2

[Ax
2ξ

2 − 2ξx+Dx
2x

2]

)

exp

(

i
2π

λBy
2

[Ay
2η

2 − 2ηy +Dy
1y

2]

)

dξ dη,

(2.22)

where G1(ξ, η) is the field amplitude at the object plane in Eq.(2.21), E2 is the optical
path along the system after the object plane, and Ax,y

2 , Bx,y
2 , Dx,y

2 are the matrix ele-
ments of Mx,y

2 . The function 1 − T (ξ, η) is the transmission function of the particle.
Equation (2.22) can be separated into two parts: the reference beam, denoted R(x, y),
and the object beam, denoted O(x, y), such that

G2(x, y) =
exp(i2π

λ
E2)

iλ
√

Bx
2B

y
2

[R(x, y)−O(x, y)], (2.23)
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where the reference beam is

R(x, y) =

∫

R2

G1(ξ, η) exp

(

i
2π

λBx
2

[Ax
2ξ

2 − 2ξx+Dx
2x

2]

)

exp

(

i
2π

λBy
2

[Ay
2η

2 − 2ηy +Dy
1y

2]

)

dξ dη,

(2.24)

and the object beam is

O(x, y) =

∫

R2

G1(ξ, η)T (ξ, η) exp

(

i
2π

λBx
2

[Ax
2ξ

2 − 2ξx+Dx
2x

2]

)

exp

(

i
2π

λBy
2

[Ay
2η

2 − 2ηy +Dy
1y

2]

)

dξ dη.

(2.25)

From Eqs.(2.24) and (2.25), the intensity, denoted I(x, y), recorded by the CCD sensor
is

I(x, y) = G2(x, y)G2(x, y) =
1

λ2Bx
2B

y
2

[

|R|2 − 2ℜ(RŌ) + |O|2
]

, (2.26)

where the upper bar denotes to the complex conjugate. Now we have the intensity
distribution or the hologram recorded by a CCD camera. The next step is to recon-
struct the image of the particle from the recording hologram.

In order to obtain analytical expression of the transmission function of the particle,
T (ξ, η) can be expressed as [71]

T (ξ, η) =

{

1 when
√

ξ2 + η2 ≤ D/2

0 when
√

ξ2 + η2 > D/2
=

N
∑

k=1

Ak exp

[

−Bk

b2
(ξ2 +R2

ellη
2

]

, (2.27)

where D is the diameter of the particle. For our previous development, the particle
transmission function for an opaque disk, T (ξ, η), can be derived from the summation
of a Gaussian series [71] as described in the above equation. To simulate the opaque
disk, N is fixed at 10. The Ak and Bk coefficients are determined by numerical res-
olution of the Kirchhoff equation [71]. Rell = b/a represents the particle ellipticity
where a and b refer to the major and minor axis of the ellipse, respectively. Rell = 1
refers to a circular particle. In my work, the particle shape considered most is circular
(Rell = 1).

Most of the previous publications on digital holography consider the particle as a
pure amplitude (or an opaque) object. The definition of the transmission function of
the particle, denoted 1 − T , can be written as in Eq. (2.27). This kind of transmis-
sion function can be adapted to describe elliptical opaque objects. For more general
objects, we need to modify this function into a more general form, which is presented
in chapter 3.
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2.5 Fractional Fourier transformation

To reconstruct the image of the particle in this thesis, the 2D fractional Fourier
transformation (2D-FRFT) is used. The fractional Fourier transform is a Fourier trans-
form with the fractional order. The mathematical expression of 2D-FRFT of order α is

Fαx,αy
[I(x, y)] (xa, ya) =

∫

R2

Nαx
(x, xa)Nαy

(y, ya) I(x, y)dxdy, (2.28)

where Nαx
and Nαy

are the kernel of the fractional operator in two dimensions, which
is defined by

Nαp
(p, pa) = C(αp) exp

(

iπ
p2 + p2a
s2p tanαp

)

exp

(

− i2πpap

s2p sinαp

)

(2.29)

where the coefficient C(αp) is

C(αp) =
exp

(

−i(π
4
sign(sinαp)− αp

2
)
)

|s2p sinαp|1/2
. (2.30)

The parameter p refers to x, y. s2p = Npδ
2
p. Np is the number of samples in the x and

y axes. δp is the sample size along both axes.
In digital holography, the digital reconstruction can be viewed as the digital refo-

cusing on the object. From Eq.(2.26), the first and the last terms are concerned with
the reference and the object wave, respectively. Only the second term relates to the
interference pattern. By considering the phase of the interference part (φ) and the
quadratic phase in the FRFT kernel (φa), the best reconstruction plane is obtained
when

φ± φa = 0. (2.31)

The quadratic phase from the interference, φ, is

φ =
π

λ

[(

Mx −Dx
2

Bx
2

)

x2 +

(

My −Dy
2

By
2

)

y2
]

(2.32)

and the quadratic phase from the FRFT kernel,φa, is given by

φa = π

[

cotαx

s2x
x2 +

cotαy

s2y
y2
]

(2.33)

From the condition in Eq.(2.31), the optimal fractional orders are

αopt
x = arctan

[

∓ Bx
2λ

s2x(Mx −Dx
2)

]

,

αopt
y = arctan

[

∓ By
2λ

s2y(My −Dy
2)

]

,

(2.34)
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When the hologram is reconstructed with optimal fractional orders, αopt
x and αopt

y , the
best focus plane of the particle is selected. Then the image of the particle is recovered.

(a) (b)
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Fig. 2.7: Example of one opaque particle (a) and its reconstructed image (b).

Fig. 2.7 is an example of an opaque disk particle (a) and its reconstructed image (b)
by 2D-FRFT. In this case, an opaque particle is illuminated by a plane wave. The
hologram is recorded by a CCD camera behind the opaque particle.

If the incident wave is not a plane wave, the magnification factor needs to be
considered as proposed by [72]:

gx,y =
ωtotx,y

ω1x,y

, (2.35)

where ω1x,y is the beam waist dimension along the x and y direction in the inclusion’s
plane and ωtotx,y is the beam waist dimension along the x and y direction in the CCD
plane.
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3. GENERAL MODEL FOR A CENTRED ABERRATING OBJECT

In this chapter, an extended mathematical description of the digital in-line holo-
gram of a spherical transparent/semi-transparent particle is presented. Most of the
previous studies concerned opaque particles or homogeneous transparent particles
[73, 74, 75]. From the opaque disk point of view, the refractive index of the parti-
cle is not taken into account. Therefore, erroneous interpretations can be obtained
when considering phase particles experimentally such as droplets or bubbles or an-
other transparent particles such as glass particles.

In the first part of this chapter, a general expression for the intensity distribution
of the hologram of a particle in the plane of the CCD sensor is proposed. To do this,
a new model based on ABCD transfer matrix formalism and Zernike polynomials is
developed. In this chapter, the droplet is sometimes considered as a part of the system
with an inclusion inside. This inclusion can be a transparent or opaque particle whose
transmission function is described by a Zernike polynomial. A Zernike polynomial is
chosen to describe the particle because this kind of function can be used to describe
any astigmatism introduced by the particle. Sometime a droplet is considered as a
transparent particle described by a circle polynomial without inclusions. The details
of some mathematical functions are given in the Appendix. For the hologram recon-
struction, the two-dimensional fractional Fourier transform is used to reconstruct the
image of the particle.

The second part focuses on a transparent particle or droplet without inclusion.
Three approximations for the particle’s transmission function are compared: opaque
disk, the quadratic phase, and the quasi-spherical phase approximation. Furthermore,
the Zernike coefficients that describe the considered transparent particles are evalu-
ated by using the double exponential (DE) method, which will be presented in this
chapter.

In the last part of this chapter, a glass particle inside a droplet is considered. The
hologram of the experiment and its reconstruction image of a glass particle inside a
droplet are presented here. The intensity profile of the hologram of a transparent
particle is presented. The difference between the intensity profile of this glass particle
and that of an opaque particle is noticeable.

3.1 In-line configuration of the system

As in the previous chapter’s section, “In-line Configuration”, the system is com-
posed of two parts: before and after the particle plane. The in-line configuration is
represented in Fig. 3.1. The two parts can be described by two 4×4 symplectic matri-
ces, denoted Mi and Mt, respectively. These symplectic matrices can easily deal with
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the polarisation of light in the future applications. Mi describes the system between
the source (with waist ω0) and the particle plane. Mt describes the system between
the particle plane and the CCD sensor. (µ, ν) are the transverse coordinates at the
input plane, (ξ, η) are the transverse coordinates at the object plane and (x, y) are the
transverse coordinates at the recording plane. Each symplectic matrix is composed of
2× 2 matrices A,B,C, and D.

Fig. 3.1: In-line configuration of digital holography

The matrices Mi and Mt are defined as

Mi =

(

Ai Bi

Ci Di

)

, Mt =

(

At Bt

Ct Dt

)

(3.1)

where

Ai =

(

ai,1 0
0 ai,2

)

, Bi =

(

bi,1 0
0 bi,2

)

, Ci =

(

ci,1 0
0 ci,2

)

, Di =

(

di,1 0
0 di,2

)

(3.2)

and

At =

(

at,1 0
0 at,2

)

, Bt =

(

bt,1 0
0 bt,2

)

, Ct =

(

ct,1 0
0 ct,2

)

, Dt =

(

dt,1 0
0 dt,2

)

.

(3.3)

All the matrix elements are defined by the optical components along the propagation
direction of the beam. The indices “i” and “t” indicate the incident part and trans-
mitted part, respectively. The indices 1 and 2 indicate the transverse coordinates (x
or y coordinates).

A source in this study is a Gaussian light source propagated through a system
represented by transfer matrix, Mi. In this work, a particle is described by a Zernike
polynomial which is introduced in the next section.

3.2 Zernike polynomials

Zernike polynomials are mathematical functions which consist of a sequence of
polynomials. These polynomials form a complete orthogonal basis on the unit disk.
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The mathematical expression of Zernike polynomials is

Zm
n (s, θ) = R|m|

n (s) exp(imθ), 0 ≤ s ≤ 1, 0 ≤ θ < 2π, (3.4)

where n is non-negative integers, m describes all integers between −n to n, and n−|m|
is an even number. The two coordinates (s, θ) refer to the radial distance and the az-
imuthal angle, respectively. These polynomials are used in the characterization of
circular optical imaging systems with non-uniform pupil functions [76, 77]. The radial
polynomials, Rm

n (s), are given by

R|m|
n (s) =

(n−|m|)/2
∑

k=0

(−1)k
(n− k)!

k!
(

n+|m|
2

− k
)

!
(

n−|m|
2

− k
)

!
(3.5)

The important property of the Zernike polynomials is their orthogonality. The orthog-
onality property of Zernike polynomials is

∫ 1

0

∫ 2π

0

Zm
n (s, θ)Zm′

n′ (s, θ) s ds dθ =
π

n+ 1
δmm′δnn′ (3.6)

The symbol δ is Kronecker’s delta function. The first few of the Zernike polynomials
are presented in the following table.

n m Zm
n name

0 0 1 Piston

1 1 2s cos θ Tilt

1 −1 2s sin θ Tilt

2 0
√
3(2s2 − 1) Defocus

2 2
√
6s2 cos 2θ Astigmatism

2 −2
√
6s2 sin 2θ Astigmatism

3 1
√
8(3s3 − 2s) cos θ Coma

3 −1
√
8(3s3 − 2s) sin θ Coma

Tab. 3.1: Order and name of Zernike polynomials.

Some examples of the Zernike polynomials of the unit disks of different orders are
presented in Fig. 3.2.
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Fig. 3.2: Figure representing the different orders of Zernike polynomials.

These Zernike polynomials are used in what follows to describe the objects under
study (both opaque and transparent objects which introduced any kind of aberrations)
in the digital in-line holography.

3.3 Intensity distribution in the plane of the CCD sensor

From Fig. 3.1, the propagation of the Gaussian beam from the incident plane to
the CCD plane can be described by two linear canonical transformations. Each linear
canonical transformation has the same integral structure. The first part of the propa-
gation as in Eq.(2.21) can be written in the matrix form by

G1(r) =
exp(ikEi)

iλ
√

det(Bi)

∫

R2

G0(ρ) exp[i
π

λ
(ρTB−1

i Aiρ−2ρTB−1
i r+rTDiB

−1
i r)]dρ. (3.7)
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The G0 function refers to the incident Gaussian beam and is defined as

G0(ρ) = exp(−ρTQ−1
0 ρ), (3.8)

where the vector ρ = (µ ν)T . The matrix Q−1
0 is due to the Gaussian beam waist,

denoted ω0, and its inverse is given by

Q0 =

(

ω2
0 0
0 ω2

0

)

(3.9)

Ei in Eq.(3.7) is the optical path between the incident plane and the particle plane.
λ is the wavelength of the light source and k = 2π/λ is the wave number. By sub-
stituting Eq.(3.8) into Eq.(3.7) and integrating over ρ (see Appendix A, B and D.1
of this thesis), the complex field amplitude of the beam at the particle plane is given by

G1(r) =
π

iλ

exp(ikEi)
√

det(BiQ
−1
0 − iπ

λ
Ai)

exp

[

−π
2

λ2
rTQ−1

i r

]

, (3.10)

where

Q−1
i = B−1T

i

(

Q−1
0 − i

π

λ
B−1

i Ai

)−1

B−1
i − i

π

λ
DiB

−1
i (3.11)

and rT = (ξ η) is the transverse plane coordinates of the particle plane. The field
amplitude in Eq.(3.10) can be rewritten in the form:

G1(r) =
π

iλ

exp(ikEi)
√

det(BiQ
−1
0 − iπ

λ
Ai)

E(r), (3.12)

where E(r) is the Gaussian incident beam before the particles plane and is defined as

E(ξ, η) = exp

[

−
(

ξ2

ω2
x

+
η2

ω2
y

)]

exp

[

−iπ
λ

(

ξ2

Rx

+
η2

Ry

)]

, (3.13)

where the waist along the transverse coordinates, i.e. (x, y), is given by

ωx =
λ

π

√

1

ℜ(Q−1
i (1, 1))

, ωy =
λ

π

√

1

ℜ(Q−1
i (2, 2))

. (3.14)

ℜ[.] refers to the real part of the function. The radius of curvature in the same coor-
dinate system is

Rx =
λ
π

ℑ(Q−1
i (1, 1))

, Ry =
λ
π

ℑ(Q−1
i (2, 2))

(3.15)

where ℑ[.] refers to the imaginary part of the function.
However, most of the previous publications on digital holography consider the

particle as a pure amplitude (no phase) object or an opaque object. The definition
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of the particle function, denoted 1 − p, can be written in the Gaussian series [60]
as in Eq.(2.27). This kind of transmission function is adapted to describe quasi-
homogeneous elliptical opaque objects. For more general objects, we need to modify
this function into a more general form. Therefore, in this chapter, a Zernike series
is introduced to describe the particle function in the case of inhomogeneous phase
objects. This description will be further adapted to homogeneous objects as opaque
particles. Here we expand the complex function p as Zernike polynomials, presented
as follows:

p(s, θ) = [1− A(s, θ) exp(iΦ(s, θ))]Z0
0(s, θ) =

[

1−
∑

n,m

γmn Z
m
n (s, θ)

]

Z0
0(s, θ). (3.16)

The order n is non-negative integers, m describes all integers between −n to n, and
n− |m| is an even number. Zernike polynomials are defined in Eq.(3.4)

The Zernike polynomials are separated into a radial part R
|m|
n (s) and an angle de-

pendence part exp(imθ). The Zernike coefficients, denoted γmn , in Eq.(3.16) can be
obtained by using the orthogonality of the Zernike polynomial functions. Then the
coefficients are

γmn =
n+ 1

π

∫ 1

0

∫ 2π

0

A(s, θ) · exp[iΦ(s, θ)] · Zm
n (s, θ) s ds dθ. (3.17)

The constant before the integral represents the normalization factor. The upper bar
refers to the complex conjugate of the corresponding Zernike polynomials function,
Zm

n . In case of an opaque disk (m = 0, n = 0), the amplitude A(s, θ) is equal to unity
and the phase Φ(s, θ) is equal to zero. Then the function p(s, θ) becomes

p(s, θ) = γ00 Z
0
0(s, θ), (3.18)

where γ00 = 1. The field amplitude at the CCD sensor can be described by linear
canonical transformation and its integral structure is the same as in Eq.(3.7). Then
the field amplitude , G2, can be written as

G2(r
′) =

exp(ikEt)

iλ
√

det(Bt)
exp

[

i
π

λ
r′

T
B−1

t Dtr
′
]

∫

R2

G1(r) · [1− p(s, θ)]×

exp
[

i
π

λ
rTB−1

t Atr
]

exp

[

−i2π
λ
rTB−1

t r

]

dr,

(3.19)

where Et is an optical path between the particle plane and CCD sensor. Let us intro-
duce the dimensionless variables s = 2r/D and s′ = 2r′/D where D is the diameter of
the particle. Then Eq.(3.19) becomes

G2(s
′D/2) = −πD

2

4λ2
exp[ik(Ei + Et)]

√

det(Bt) det(BiQ
−1
0 − iπ

λ
Ai)

exp

[

i
πD2

4λ
s′

T
B−1

t Dts
′

]

×

∫

R2

[1− p(s, θ)] exp
[

isTLts
]

exp
[

−2iπsTPts
′
]

ds

(3.20)
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with

Lt =
πD2

4λ
B−1

t At + i

(

πD

2λ

)2

Qi, Pt =
D2

4λ
· B−1

t (3.21)

Let σ = Pts
′ to simplify the calculations, then the integration on Eq. (3.20) changes

to the form

G2(DP
−1
t σ/2) = −πD

2

4λ2
exp[ik(Ei + Et)]

√

det(Bt) det(BiQ
−1
0 − iπ

λ
Ai)

exp

[

i
πD2

4λ
σTStσ

]

×
∫

R2

[1− p(s, θ)] exp
[

isTLts
]

exp
[

−2iπsTσ
]

ds

(3.22)

with St = P−1T
t DtB

−1
t P−1

t . Now, we have a mathematical expression of the field am-
plitude, G2, in the CCD plane. Therefore, the intensity distribution recorded on the
CCD sensor can be written as

I = |G2(DP
−1
t σ/2)|2 = πD2

4λ2
|G(σ)−G0

0(σ) + ǫGm
n (σ)|2

∣

∣

∣

√

det(Bt) det(Bi det(Q
−1
0 − iπ

λ
Ai))

∣

∣

∣

2 , (3.23)

where

G(σ) =

∫

R2

exp
[

isTLts
]

exp
[

−2iπsTσ
]

ds (3.24)

and

Gm
n (σ) =

∑

n,m

γmn ×
∫

R2

Z0
0(s, θ)Z

m
n (s, θ) exp

[

isTLts
]

exp
[

−2iπsTσ
]

ds (3.25)

The value of ǫ in Eq.(3.23) depends on the kind of particle that is considered. If the
particle is an opaque object, ǫ = 0, and if the particle is a transparent object, ǫ = 1.
The solution of G(σ) and Gm

n (σ) is presented in the next section.

3.4 Expression for G(σ) and Gm
n (σ)

The solution of the integral in Eq.(G) can be solved more easily than Eq.(3.25)
and it is given by

G(σ) =
iπ

√

det(Lt)
exp[−iπ2σTL−1

t σ] (3.26)

For more details, see [78], page 57, Eq.(2.303). The difficulty is how to find the solution
of the integral in Eq.(3.25). To achieve the solution, it is necessary to use mathematical
results on (i) a special circle polynomial expansion, (ii) the linearization of products of
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circle polynomials [79], and (iii) the extended Nijboer-Zernike theory (ENZ) [80]. The
details of the calculation are given in Appendix ??. The semi-analytical expression of
Gm

n (σ) is

Gm
n (σ) = 2π

+∞
∑

q=−∞

∞
∑

n,m,p

∑

t

γmn (−i)m+qAm,2q,m+2q
n,|2q|+2p,t β

|2q|
|2q|+2p(δ)V

m+2q
t (2πσ, χ)ei(m+2q)ϕ.

(3.27)
The summation over t has to respect the following condition:

t = max(|m+ 2q|, |m− |2q| − 2p|)(2)(n+ |2q|+ 2p), (3.28)

where a(2)b is a, a+ 2, . . . , b when b− a is non-negative and even.

The parameter χ in Eq.(3.27) is the trace of the matrix Lt which is defined by
χ = 1

2
Tr(Lt). The parameter δ in Eq.(3.27) is linked to the ellipticity of the system,

i.e., the optical components and the droplet, and is defined by δ = 1
2
(Lt(1,1) − Lt(2,2))

where Lt(i,j) are the diagonal elements of Lt in Eq.(3.21). In the particular case of a

circular system, δ = 0 and β
|2q|
|2q|+2p(0) = 1 if q = p = 0, and β

|2q|
|2q|+2p(0) = 0 otherwise.

The coefficients β can be expressed explicitly in terms of the hypergeometric function
2F3 as in [57], Appendix A, Eq.(A12) and Eq.(A13). In the case where 2r− p = 0, the
coefficients β are

β
|2q|
|2q|+2p

(δ) = d00(−1)r(2|2q|+ 4r + 1)

(

1

2
δ

)|2q|+2r

2F3

(

r + 1

2
|2q|+ r + 1

2
1

2
|2q|+ 2r + 3

2
|2q|+ 2r + 1

;−1

4
δ2
)

(3.29)
and

β
|2q|
|2q|+2p

(δ) = d10(−1)r(2|2q|+ 4r + 1)

(

1

2
δ

)|2q|+2r

2F3

(

r + 1

2
|2q|+ r + 1

2
3

2
|2q|+ 2r + 1 |2q|+ 2r + 1

2

;−1

4
δ2
)

(3.30)

when 2r − p = 1. The coefficients d00 in Eq.(3.29) and d10 in Eq.(3.30) are defined as
follows

d00 =
(2r)!(2|2q|+ 2r)!

r!(|2q|+ r)!(2|2q|+ 4r + 1)!
, d10 =

(2r)!(2|2q|+ 2r)!

r!(|2q|+ r)!(2|2q|+ 4r)!
(3.31)

From [81], Eq.(142), the parameters A in Eq.(3.27) are related to the Clebsch-Gordon
coefficients as

Am,2q,m+2q
n,|2q|+2p,t =

∣

∣

∣

∣

C
n
2
,
|2q|+2p

2
, t
2

m
2
, 2q
2
,m+2q

2

∣

∣

∣

∣

2

, (3.32)

where C are the Clebsch-Gordon coefficients. The functions V in Eq.(3.27) are given
by the following series expansions

V m
n (r, f) = εm exp(if)

∞
∑

l=1

(−2if)l−1

P
∑

j=0

υlj
J|m|+l+2j(r)

l(r)l
, (3.33)



3. General model for a centred aberrating object 33

where n and |m| are integers greater than 0 with n− |m| even and non-negative and
the function υlj is

υlj = (−1)P (|m|+ l + 2j)

(|m|+ j + l − 1

l − 1

)(

j + l − 1

l − 1

)(

l − 1

P − j

)

/

(

Q+ l + j

l

)

, (3.34)

for l = 1, 2, . . . , j = 0, 1, . . . , P, P = n−|m|
2

and Q = n+|m|
2

. For odd m < 0, εm in
Eq.(3.33) is equal to εm = −1 and εm = 1 otherwise. Now, there are two particular
cases to consider: ǫ = 0 for an opaque object and ǫ = 1 for a phase object.

3.5 Reconstruction by the fractional Fourier transformation

In the reconstruction process, the 2D fractional Fourier transformation (2D-FRFT)
is used to reconstruct the object [82]. The fractional order varies from 0 ≤ ax,y ≤ 1.
The 2D fractional Fourier transform of an intensity image I(x, y) is defined as

Fax,ay [I(x, y)](xa, ya) =

∫

R2

Nax(x, xa)Nay(y, ya)I(x, y)dx dy (3.35)

where Nax(x, xa) and Nay(y, ya) are the kernel operators and are defined by

Nap(p, pa) = C(ap) exp

(

iπ
p2 + p2a

s2p tan
(apπ

2

)

)

exp

(

− i2πpap

s2p sin
(apπ

2

)

)

, (3.36)

and

C(ap) =
exp

[

−i
(

π
4
sign

(

sin
(apπ

2

))

− apπ

4

)]

|s2p sin
(apπ

2

)

|1/2 , (3.37)

where p = x, y. The 2D-FRFT is a mathematical tool which is a good operator to
analyse linearly chirped functions in signal processing (or holograms in the present
case). These linearly chirped functions can be different along the two orthogonal axes
x and y and these match the kernel operators in 2D-FRFT, which are separable as
presented in Eq.(3.35). The image of the particle can be reconstructed with fractional
orders called “optimal fractional order”, and denoted by aoptx,y, which corresponds to
the best reconstruction plane. To find the best reconstructed plane, the following con-
ditions must be satisfied:

tan

[

aoptx π

2

]

= − π

s2xℜ[φ11]
and tan

[

aopty π

2

]

= − π

s2yℜ[φ22]
, (3.38)

where [φkl] is the 2× 2 matrix and is defined by

[φkl] = −πD
2

4λ
B−1T

t L−1
t B−1

t , (3.39)

with (k, l) ∈ [1, 2] × [1, 2] and ℜ[φkl] refers to the real part of [φkl]. Eq.(3.38) can be
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rewritten in another form as

tan(αopt
x ) =

4λ

s2xD
2

1

ℜ[B−1T
t L−1

t B−1
t ]

(3.40)

tan(αopt
y ) =

4λ

s2yD
2

1

ℜ[B−1T
t L−1

t B−1
t ]

(3.41)

where αopt
x,y = aoptx,yπ/2. The next section is devoted to the hologram of an opaque in-

clusion inside a water droplet. The experimented and simulated holograms from the
new model of a pupil function of an opaque inclusion inside a droplet are compared in
order to confirm our developed model.

3.6 Hologram of an opaque inclusion

In this section, the above theoretical development of the intensity distribution and
an experimental hologram of an opaque inclusion at the centre of a droplet are com-
pared. The experimental and numerical set-up is represented in Fig. 3.3.
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Fig. 3.3: Configuration representing the numerical and experimental set-up with λ =
642nm,ω0 = 2.5µm, f1 = 50.4mm, e1 = f1, f2 = 5.5mm, e2 = 409.56mm, e3 =
12mm, and z = 6.1mm.

The incident beam is a Gaussian laser diode emitting at the wavelength 642nm,
operating at temperature 25◦C. The beam propagates across an optical system to
illuminate a water droplet of d diameter and with a refractive index n = 1.33. A
hologram image is recorded with a CCD sensor (1234 × 1624 pixels; each pixel size
is 4.4× 4.4µm). A 20µm opaque polymer microsphere from Cospheric Innovations in
Microtechnology is inserted into the centre of the droplet. Note here that the optical
path Ei in Eq.(3.7) is equal to Ei = e1+e2+e3+nδ and the optical path Et in Eq.(3.19)
is Et = n(d− δ) + z according to the set-up where d is the diameter of the droplet. In
the experiment, the powder of opaque particles is mixed with pure water at low (as
low as possible) concentration. A syringe is used to form a suspended droplet at its
tip. The size of the created droplet is on a millimetric scale. However, the exact size of
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the droplet in the experiment could not be determined. The way to predict a droplet’s
size is using the shadowgraphy technique. When the hologram image of the droplet
is recorded, the tip of the needle holding it is included in the image. Fortunately, the
size of the real needle is a known parameter and from the image, its image size can be
measured. Immediately, we know how big the needle is from the real size. Otherwise,
the magnification of an image is known. Then the real size of the droplet can be ob-
tained with the same consideration. In this experiment, the estimated droplet size in
the x- and y-direction is not the same - 1.7mm in the x-axis and 1.8mm in the y-axis.
Here, in simulation, the opaque inclusion is considered as a disk-like shape and the
droplet is considered as an elliptical shape.

Therefore, we can consider two possiblilities of the imaging system: a circular sys-
tem and a non-circular system, as discussed in the following sections.

3.6.1 Case of an axisymmetric imaging system

In the case of an opaque particle (n = m = 0) in a circular system (δ = 0) or in the
case of a spherical droplet, Gm

n in Eq.(3.27) takes the following form:

G0
0(σ, ϕ) = 2πV 0

0 (2πσ, χ), (3.42)

with A0,0,0
0,0,t = 1 for all t in Eq.(3.28). This case is a particular case for axisymmetric

optical systems. Actually, the millimetric-scale droplet is not spherical due to gravity.
The diameters along two perpendicular axes are not the same. The following subsec-
tion allows us to better understand non-axisymmetric systems.

3.6.2 Case of an anamorphic system

An anamorphic system is a non-circular system where δ 6= 0 and Gm
n in Eq.(3.27)

for an opaque particle is given by

G0
0(σ, ϕ) = 2π

+∞
∑

q=−∞

∑

p,t

(−i)qβ|2q|
|2q|+2p(δ) · V

2q
t (2πσ, χ) · ei2qϕ (3.43)

The simulated and experimental images of the intensity distribution recorded on the
CCD sensor for an opaque micro-inclusion located at the center of a droplet are given
in Fig. 3.4 (a) and Fig. 3.4 (b), respectively. Due to gravity, the millimetric droplet
is not a sphere: it is an ellipsoid with different radii of curvature in the x- and y-axes.
In the simulation, the radii of curvatures of the droplet are 1.7mm along the x-axis
and 1.8mm along the y-axis.

In Fig. 3.5, the simulated and experimental intensity profiles along both the x-
and y-axes of the holograms of the opaque inclusion inside a droplet in Fig. 3.4 are
compared. From the results, the simulated and experimental intensity profiles are in
very close agreement, confirming the theoretical developments of this chapter.

In this simulation, the diameter of an opaque micro-inclusion is D = 23.5µm and
its position in the droplet along the propagation direction (z-axis) is δ = 0.99mm.
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All parameters used in the simulation are indicated in the caption of Fig. 3.3. The
hologram image in the experiment is captured by a 1624 × 1234 pixels camera with
4.4× 4.4µm pixel size.
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Fig. 3.4: Hologram of an opaque micro-inclusion in a droplet obtained from (a) theoretical
development and (b) experimental result.

Fig. 3.5: Comparison of the intensity profile of the hologram in Fig. 3.4 between theoretical
development and experiment along x-axis (above) and y-axis (below).
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3.7 Reconstruction of the opaque inclusion

In this section, the hologram image of an opaque inclusion at the centre of a droplet
is reconstructed by using the 2D fractional Fourier transform (2D-FRFT). This recon-
struction is a numerically refocused plane of the inclusion. The theoretical details have
been described already in Section 3.3. The reconstructed images of the theoretical and
experimental holograms in Fig. 3.4 are shown in Fig. 3.6 (a) and (b), respectively.

Fig. 3.6: Reconstructed image of an opaque micro-inclusion in a droplet obtained from (a)
theoretical development and (b) experimental hologram. The optimal fractional
orders are αopt

x = 0.766π/2 and αopt
y = 0.763π/2.

Fig. 3.7: Relationsip between optimal fractional orders and the axial position from the CCD
sensor presented in blue and green curves for aoptx = 0.766 and aopty = 0.763, respec-
tively.

The calculated optimal fractional orders from our theoretical development are
αopt
x = 0.766π/2 and αopt

y = 0.763π/2. The 2D shape of an inclusion is well recovered
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as a circle. From the previous studies, we know already that the optimal fractional
orders are related to the axial position of the reconstructed inclusion by the relation-
ship in Fig. 3.7. This finding derived from the theory and we then know that these
two fractional orders aoptx and aopty as indicated above correspond to the axial position
(position of inclusion from CCD) z + (d− δ) = 6.80mm, whereas the axial position in
the simulation is zsim + (d − δ) = 6.81mm. The uncertainty for measuring the axial
position is about △z = 0.01mm or 10µm.

To obtain the real size of the inclusion, a scale factor (or magnification factor)
must be applied. From the shadowgraphy technique, the experimental magnification
factor, denoted g is equal to 2.9. By plotting the intensity profile of the reconstructed
inclusion in Fig. 3.6(b), the measured size of an inclusion is 24.6µm, whereas the
measured size from the simulation is 24.0µm.

3.8 Hologram of a spherical particle

In this section, only a numerical study was done. There is no inclusion inside
a droplet but the droplet itself is considered as a spherical particle. Therefore the
refractive index and the spherical shape of the droplet are considered. The droplet
here is a very small droplet (in micro-scale, not millimetric scale). Here, we have chosen
to compare our holographic model with a general numerical standard of holograms of
particles based on rigorous near-field Lorenz-Mie scattering theory (LMT) [83]. The
comparison between the developed model and LMT is based on a particle with diameter
D = 20µm and refractive index ni = 1.33 and the surrounding medium index n = 1.
In LMT, the incident beam has to be a plane wave. Therefore, the configuration set-up
in this study is as represented in Fig. 3.8. In this section, there are three ways to model
the droplet. The first approximation is an opaque disk approximation of the droplet.
The second is the classical approximation where a droplet is treated like a thin lens.
The third way is based on a second description of the pupil function p(s, θ). The pupil
function in this approximation depends on the refractive index and the thickness of
the particle. All approximations will be introduced later in this section.

Fig. 3.8: The configuration under study for phase particle (droplet with refractive index ni).
The distance between droplet and CCD is z = 3mm.
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3.8.1 Case of the opaque disk approximation

The compared intensity distribution between the near-field LMT and an opaque
disk approximation of the droplet is shown in Fig. 3.9.
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Fig. 3.9: Simulated intensity profile diffracted by a droplet with opaque disk approximation
for λ = 642nm, n = 1, ni = 1.33, D = 20µm, and z = 3mm. Comparison with the
near-field LMT.

The arrows indicate the position where the zero-th crossing modulation functions
of the intensity distribution do not match. Moreover, the reconstructed images of the
droplet are different.

Fig. 3.10: Reconstructed image of a droplet with opaque disk approximation obtained from
(a) opaque disk approximation and (b) the near-field Lorenz-Mie scattering theory.
The optimal fractional orders are aoptx = aopty = 0.701.

Fig. 3.10 (a) shows a digital reconstruction by 2D fractional Fourier transform
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in the case of the opaque disk approximation. The calculated optimal fractional or-
ders from Eq.(3.38) are aoptx = aopty = 0.701. In the reconstructed image in Fig. 3.10
(b) obtained from LMT, a centred light spot is observed, whereas the opaque disk
approximation did not show it and only the disk shape structure is observed BUT
THERE IS NO CENTERED LIGHT SPOT. The absence of the light spot in the re-
constructed image indicates that the modulation functions for these two cases do not
agree. Therefore, we have to find another way to interpret the hologram of a droplet.
As indicated above, there are the other methods to approximate a droplet: classical
thin lens approximation and the pupil function with a refractive index and its thick-
ness approximation.

3.8.2 Case of the quadratic phase approximation

Under paraxial Gauss conditions, we assume that the droplet is equivalent to a
thin lens. Then, the pupil function p of the droplet with aperture D can be described
by

p(s, θ) =
[

1− exp
(

−iπκs2
)]

· Z0
0(s, θ), (3.44)

where κ = D2/(4λf) and f = niD
4(ni−n)

is the effective focal length of the ball-shaped
lens. Note that κ can be a complex number, for any absorption in the droplet, but
this point will not be addressed here. The second term of Eq.(3.44) can be written as

exp
(

−iπκs2
)

· Z0
0(s, θ) =

∞
∑

n=0
n even

γ0n(κ) · Z0
n(s, θ), (3.45)

where n = 0, 2, 4, . . . and the Zernike moments γ0n(κ) are defined by

γ0n = (n+ 1) exp
(

−iπκ
2

)

(−i)n
2 · jn

2

(

κ
π

2

)

. (3.46)

For an axisymmetric circular system δ = 0, the semi-analytical expression for Gm
n in

Eq.(3.27) is

G0
n(σ) = 2π

∞
∑

n=0
n even

γ0n(κ) · V 0
n (2πσ, χ). (3.47)

Fig. 3.11 shows the intensity distribution of the quadratic phase approximation
compared with LMT. Only the central lobe agrees well using both models. There is a
minor shift in the second lobe. This is because the modulation function in this case
does not describe the droplet well. However, the centred light spot is observed in the
reconstructed image, as shown in Fig. 3.12.
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Fig. 3.11: Simulated intensity profile of a droplet with quadratic phase approximation.

Fig. 3.12: Reconstructed image of the hologram in Fig.3.11 obtained from (a) quadratic
phase approximation and (b) the near-field Lorenz-Mie scattering theory. In this
case, the optimal fractional orders αopt

x and αopt
y are equal to 0.701π/2.

Fig. 3.12 (a) shows a digital reconstruction image of a droplet by 2D-FRFT under
quadratic phase approximation. Fig. 3.12 (b) is a reconstruction image deriving from
LMT. The theoretical optimal fractional order is aoptx = aopty = 0.701. With quadratic
phase approximation, the centred bright spot is observed in the reconstructed image.

3.8.3 Case of the quasi-spherical phase approximation

From Goodman’s book, light propagation through a lens is considered, where the
lens is considered as a thin lens. Therefore, the ray entering the droplet at coordinates
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(x, y) on the entrance face is said to be the same as the exit face and the refraction
effect or bending of the ray inside the lens is negligible. With this approximation, the
phase delays introduced by a thin lens are proportional to the thickness of the lens at
each position.

Fig. 3.13: Configuration under study for a glass inclusion illuminated by a plane wave.

In Fig. 3.13, △0 is the maximum thickness of the lens or the thickness on the
optical axis and △tl is the thickness at any (ξ, η) position. Thus the phase introduced
by a thin lens when it is illuminated by a plane wave is

φ(ξ, η) =
2π

λ
ni△tl +

2π

λ
n (△0 −△tl) , (3.48)

with

△tl = D

√

1− 4(ξ2 + η2)

D2
. (3.49)

All parameters in Eq.(3.48) are presented in Fig. 3.13. ni is the refractive index of the
droplet (ni = 1.33) and n is the refractive index of the surrounding medium (n = 1).
The first term of Eq.(3.48) is the phase delay introduced by the droplet and the second
term is the phase delay introduced by the remaining region. Eq.(3.48) can be rewritten
as

φ(ξ, η) =
2π

λ
ni△tl +

2π

λ
n (△0 −△tl)

=
2π

λ
ni△tl +

2π

λ
n△0 −

2π

λ
n△tl

= 2πn
D

λ
+

2π

λ
(ni − n)△tl.

(3.50)

But this approximation is not good for a big droplet that cannot be considered
as a thin lens. This imposes a need to take into account the refractive law. In this
case, the model of the droplet with an approximation called quasi-spherical phase ap-
proximation is proposed. This approximation is based on the idea of using a thickness
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function to extend the model beyond the thin lens approximation. Here, the droplet is
considered to have a spherical shape with constant refractive index ni. An appropriate
transmittance function for the droplet will allow us to evaluate the pupil function. For
quasi-spherical phase approximation, only the second term in Eq.(3.50) is considered.

Fig. 3.14: Image showing the entrance and exit ray of the droplet.

From the development introduced, the total phase delay φ(r) of the wave at trans-
verse plane r = (ξ, η) when it is passing through the droplet is

φ(r) = 2π(ni − n)
△(r)

λ
, (3.51)

where △(r) is the thickness function which is indicated in Fig. 3.14. Recall that

r = sD/2, and we have △(r) = D · (1− c2s2)
1/2

[for more details, see Appendix F].
The numerical aperture is c = (n/ni) with 0 ≤ c ≤ 1. In Eq.(3.51), we assume that
the coordinates of the entrance ray (ξ0, η0) at point A and the exit ray (ξ1, η1) at point
B of the droplet in Fig. 3.14 are not the same. In other words, the bending of the light
ray is taken into account. Consequently, in this approximation, the pupil function p
can be written as

p(s, θ) =
[

1− exp
(

iπκni

√
1− c2s2

)]

· Z0
0(s, θ), (3.52)

where κni
= 2(ni − n)D/λ. The pupil function in Eq.(3.52) can be expanded in terms

of circle polynomials as

exp
(

iπκni

√
1− c2s2

)

· Z0
0(s, θ) =

∞
∑

n=0
n even

γ0n(−πκni
· uc) · Z0

n(s, θ), (3.53)

where uc = 1−
√
1− c2 and the Zernike moments are

γ0n(x) = (n+ 1) ·
[

x

2
· j n

2
· h(2)

n
2

− x

2νc
j n

2
· h(2)

n
2
+1

]

, νc =
1−

√
1− c2

1 +
√
1− c2

(3.54)

The functions jn are the spherical Bessel functions of the first kind and h(2)
n are
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the spherical Hankel functions of the second kind. In the case of a circular system
(δ = 0),the semi-analytical expression of Gm

n is

G0
n(σ) = 2π

∞
∑

n=0
n even

γ0n · V 0
n (2πσ, χ) (3.55)

Fig. 3.15 illustrates the relation |△tl − △| versus r =
√

ξ2 + η2 where △tl is the
thickness without refraction effect or the thickness in thin lens approximation. △ is
the real thickness when the refraction inside a droplet is taken into account or the
thickness with quasi-spherical approximation. In this figure, the relation |△tl − △|
versus r =

√

ξ2 + η2 is plotted for different particle diameters. For smaller particles,
the different between the estimated thickness and the real thickness function is very
small. Therefore, the interpretation of the droplet as a thin lens is closed to the quasi-
spherical approximation of the droplet. For big droplet, i.e. 100µm, the thin lens
approximation fails when compared to the quasi-spherical phase approximation.
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Fig. 3.15: Thickness △tl as thin lens approximation and the real thickness △ from quasi-
spherical approximation of droplet is plotted versus r for different droplet diame-
ters D

The intensity profile of the hologram of a droplet is illustrated in Fig. 3.16, where
the solid line belongs to the proposed quasi-spherical approximation and the cross-
faded line belongs to the standard LMT.
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Fig. 3.16: Simulated intensity profile of a droplet with quasi-spherical phase approximation.

From this result, the quasi-spherical phase approximation of a droplet is close to
the numerical standard LMT. The reconstructed image of this hologram is shown in
Fig. 3.17 with fractional orders ax = ay = 0.701 in both images. In this case, the
centred light spot is observed in both cases. As a result, the model describing the
droplet as a thickness function seems to be a very good approximation.

Fig. 3.17: Reconstructed image of a droplet with its intensity distribution as in Fig. 3.16 ob-
tained from (a) quasi-spherical phase approximation and (b) the near-field Lorenz-
Mie scattering theory.

Finally, the profiles of the reconstructed droplet using the three approximations
are plotted in Fig. 3.18. However, at this moment, only the qualitative results are
compared.
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Fig. 3.18: Intensity profiles of reconstructed images of the droplet in the two cases: (i)
quadratic phase, and (ii) quasi-spherical phase approximation, compared to LMT.

3.9 Numerical estimation of the Zernike coefficients

In previous sections, the Zernike coefficients were clearly defined from the shape of
the particle or inclusion. If the phase Φ(s, θ) of the pupil function in Eq.(3.16) contains
non-linear chirps, the Zernike coefficients do not have a closed form. Then the Zernike
coefficients have to be numerically evaluated. In this section, numerical estimations
of the Zernike coefficients γmn are compared to theoretical values. A good evaluation
means that the estimated Zernike coefficients can reconstruct the initial function that
may contain the higher order spatial frequencies. For a good evaluation, a double
exponential formula (DE) is used. This formula allow us to find the optimal change of
variable that transforms the original integral over a finite interval to an integral over
an infinite interval. In this case, we will change the limit of s and θ from 0 ≤ s ≤ 1
and 0 ≤ θ ≤ 2π to an infinite interval. This kind of transformation allows us to apply
the trapezoidal rule over ]−∞,+∞[. For variables s and θ, they become

s = φ(u) =
1

2

[

1 + tanh
(π

2
sinh(u)

)]

,

θ = ψ(v) = π
[

1 + tanh
(π

2
sinh(v)

)]

,
(3.56)

where
φ(−∞) = 0, φ(∞) = 1, ψ(−∞) = 0, ψ(∞) = 2π (3.57)

By this changing of variables, the estimated Zernike coefficients in Eq.(3.17) become

Γm
n =

(n+ 1)

π
·
∫

R2

Fm
n (φ(u), ψ(v)) · φ(u)φ′(u)ψ′(v) du dv (3.58)
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where

Fm
n (s, θ) = A(s, θ) · exp [iΦ(s, θ)] · Zm

n (s, θ) (3.59)

The amplitude A(s, θ) can be a constant or a Gaussian function. The phase Φ(s, θ)
is a real value of s and θ. The prime refers to the derivative of that function. Therefore,

φ′(u) =
π

4

cosh(u)

cosh2
(

π
2
sinh(u)

) = O
(

exp
(

−π
2
(1− α) exp|u|

))

, |u| → ∞ (3.60)

and

ψ′(v) =
π2

2

cosh(v)

cosh2
(

π
2
sinh(v)

) = O
(

exp
(

−π
4
(1− α) exp|v|

))

, |v| → ∞ (3.61)

with 0 < α < 1. The integrand in Eq.(3.58) decays by double exponential after the
transformation. That is why this formula is called the double exponential formula.
After this transformation, the integrand φ′(u) has singular points (φ′(u0) = 0) where
u0 is a complex value which is given by

cosh(u0) = 0, u0 = ±iπ
2
+ i2πZ, (3.62)

where Z is an integer and the poles p0 are given by

cosh2
(π

2
sinh(p0)

)

= 0, p0 = ±i arcsin(1) = ±iπ
2
+ i2πZ. (3.63)

To find the sampling period, we need to avoid the singular points and poles, which
corresponds to [85]

|ℑ[u]| < d =
π

2
, (3.64)

where d is the minimum distance between the singular points and the real axis in a
complex plane. Then we used the trapezoidal formula as in [85] and Eq.(3.58) becomes

Γm
n =

(n+ 1)

π
· δnδv

+N
∑

k=−N

+N
∑

l=−N

Fm
n [φ(kδu), ψ(lδv)] · φ(kδu) φ′(kδu) ψ′(lδv) +△γδ. (3.65)

δu,v is the constant sampling period along the u− and v−axis. To get Eq.(3.65),
Eq.(3.58) is transformed from an integral with an infinite interval to summation with
infinite interval first. Then it is transformed again to the summation with a finite
interval (−N,+N). △γδ is linked to the discretization and truncation errors as in [85],
Eq.(3.13) and (3.19), pp.909-910.

△γδ = O

(

exp

[

− 2πd

δu,v)

])

+O
(π

4
exp

[

−π
2
(1− α) exp(Nδu,v)

])

(3.66)



48 3.9. Numerical estimation of Zernike coefficients

The sampling period δu,v is chosen such that the discretization and truncation errors
have the same orders of magnitude. Therefore,

exp

[

− 2πd

δu,v)

]

=
π

4
exp

(

−π
2
(1− α) exp(Nδu,v)

)

. (3.67)

Then we can determine the sampling period δu,v or the number of evaluation N . The
plotted curves between the Zernike coefficient and n of Eq.(3.46) with quadratic ap-
proximation and Eq.(3.58) are compared as shown in Fig. 3.19. This figure compares
the numerical Zernike coefficient γmn and the estimated Zernike coefficient Γm

n under
quadratic approximation. The comparison is of both the imaginary part and the real
part of the Zernike coefficient. This comparison introduces an error △e and is defined
by

△e = max (||ℜ(Γm
n )−ℜ(γmn )|+ |ℑ(Γm

n )−ℑ(γmn )||) . (3.68)

0 5 10 15 20 25 30
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

n

Γ
nm

 a
n

d
  

γ nm

 

 

ℜ[γ
n

m
]

ℜ[Γ
n

m
]

ℑ[γ
n

m
]

ℑ[Γ
n

m
]

Fig. 3.19: Graph comparing the theoretical Zernike coefficients (γmn ) and the estimated
Zernike coefficients (Γm

n ) with n for the case of quadratic phase approximation.

Fig. 3.19 represents in the case of m = 0 and the κ coefficient equal to 7.7296. The
maximum error obtained is 0.557× 10−13 over interval n = (0, 34).

The comparison curve between the Zernike coefficients and n of Eq.(3.54) with
quasi-spherical phase approximation and Eq.(3.58) is illustrated in Fig. 3.20.

In this figure both theoretical and numerical estimated Zernike coefficients are
compared under quasi-spherical phase approximation. The maximal error of the com-
parison in Fig. 3.20 is 0.519×10−13 over interval n = (0, 34). From these comparisons,
the error between the theoretical Zernike coefficients and the estimated coefficients is
very small. We can conclude that this approximation works well for a pure phase pupil
function.
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Fig. 3.20: Graph comparing the numerical Zernike coefficients (γmn ) and the estimated
Zernike coefficients (Γm

n ) with n for the case of quasi-spherical phase approxi-
mation.

m

n

ℜ[γ
n

m
]

 

 

−20 −10 0 10 20

0

5

10

15

20

0

0.2

0.4

0.6

0.8

m

n

ℑ[γ
n

m
]

 

 

−20 −10 0 10 20

0

5

10

15

20 0

0.1

0.2

0.3

0.4

m

n

ℜ[Γ
n

m
]

 

 

−20 −10 0 10 20

0

5

10

15

20

0

0.2

0.4

0.6

0.8

m

n

ℑ[Γ
n

m
]

 

 

−20 −10 0 10 20

0

5

10

15

20 0

0.1

0.2

0.3

0.4

Fig. 3.21: Comparison between the theoretical Zernike coefficients γmn and the estimated
Zernike coefficients Γm

n of coma function with N = 100 and δu = δv = 0.0486167.

For example, if the pupil function p(s, θ) is a coma function and it is defined by

p(s, θ) = exp(iαR1
3(s) cos θ) ≃

∑

n,m

Γm
n · Zm

n (s, θ), α = 1 (3.69)
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The numerical estimation of the Zernike coefficients Γm
n can be compared to the the-

oretical Zernike coefficients γmn as shown in Fig. 3.21, with both real and imaginary
parts which are represented by ℜ and ℑ, respectively. The maximum error is equal to
0.854× 10−15 over the range (n,m) = [0, 20]× [−20, 20].

3.10 Hologram of a glass inclusion

In this section, the quasi-spherical phase approximation is used to describe a glass
inclusion inside a droplet. The experimental study of a glass inclusion inside the droplet
is performed. The experimental setup is presented in Fig. 3.22. A glass inclusion is
located at the centre of a transverse plane of a droplet. The experimental param-
eters in Fig. 3.22 are: λ = 642nm, ω0 = 2.5µm, f1 = e1 = 50.4mm, f2 = 5.5mm,
and z = 6.1mm. The radius of curvature of droplet in the x and y directions is
Rx = 0.785mm and Ry = 0.815mm with refractive index n1 = 1.33. The diameter of
the glass inclusion is D = 20µm with refractive index n2 = 1.5.

Fig. 3.22: Configuration under study for droplet with a glass inclusion (side or top view).

The hologram of a glass inclusion located at the centre of the droplet is first recorded
by a 1234×1234 pixels CCD sensor and each pixel’s size is 4.4µm. Then the hologram
is cropped for the region of interest with 500×500 pixels as in Fig.3.23 (a). According
to the previous section which mention that the reconstructed phase particle under
quadratic phase and quasi-spherical phase approximation gives a white spot at the
centre of the reconstructed particle, an example of a hologram and its reconstruction
image of a droplet with a 20µm glass inclusion are presented in Fig. 3.23 (a) and (b),
respectively.

In Fig. 3.23(b), the white spot is observed at the centre of the reconstructed
glass inclusion. The estimated diameter of this glass inclusion is 20.13µm where the
magnification factor is 2.9. To consider the axial position in the drop of the inclusion,
see Fig. 3.7.
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(a) (b)

Fig. 3.23: (a) is the hologram of 20µm glass inclusion inside a droplet. (b) is the reconstruc-
tion image of (a) with fractional orders ax = 0.8π/2 and ay = 0.77π/2

Fig. 3.24 shows the intensity profile along the x- and y-axis of the hologram pre-
sented in Fig. 3.23 (a). For the high frequency signal, a shift between the profile of
the x- and y- axis can be observed.
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Fig. 3.24: Intensity profile along x- and y- axis of the hologram in Fig. 3.23(a).

Fig. 3.25 shows the intensity profiles along the x- and y-axis of the reconstructed
particle from Fig. 3.23(b). The central peak of Fig. 3.25 shows the white spot at the
centre of the reconstruction particle. From this result, it is confirmed that the bright
spot could be observed in the reconstructed image of a transparent particles (in this
case, a glass particles) but not in an opaque particle.
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Fig. 3.25: Intensity profile along x- and y- axis of the reconstructed particle in Fig. 3.23(b).

3.11 Conclusions

In this chapter, a mathematical model giving the intensity distribution for the holo-
gram of a particle is proposed. Three approximations have been proposed to describe
the pupil function: opaque disk, quadratic phase approximation, and quasi-spherical
phase approximation. The holograms obtained with these three approximations were
compared with the near-field Lorenz-Mie scattering theory. Both the quadratic and
quasi-spherical phase approximations represent the pupil in terms of the circle poly-
nomials. From the results obtained, the opaque disk approximation fails to describe a
centred light spot present in the reconstructed image of the particle, while the other
two do not. The quasi-spherical phase approximation is the best of the three approx-
imation proposed in this chapter. This approximation considers the true thickness
function. In conclusion, our proposed model is well suited to determine both opaque
and phase particles (with quasi-spherical phase approximation). However, this model
has some limitations: the refractive index of the particle has to be higher than the
index of the surrounding medium. It cannot describe an air bubbles in a liquid.
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4. GENERAL MODEL OF ARBITRARILY SHAPED
NON-CENTERED OPAQUE/PHASE OBJECT

In the previous chapter, we proposed a model to describe various kinds of pupil
functions of spherical opaque or transparent particles. Nevertheless, the model is lim-
ited to one particle located on the centre of the optical axis of the incident Gaussian
beam. In this chapter, a general numerical model that can create arbitrarily shaped
non-centered opaque or phase objects is introduced. The possibility of analysing such
transparent phase objects using digital in-line holography and 2D fractional Fourier
transform is then demonstrated numerically. With this technique, the study of opaque
objects is well understood already. However, in the general case, the object under in-
vestigation is not necessarily opaque. It can be transparent, for example in the study
of biological cells. Research on phase contrast metrology by digital holography has
been proposed in [86, 87, 61].

There are two configurations under study in this chapter. Firstly, we consider
two irregularly shaped opaque and phase objects located at two different planes as
represented in Fig. 4.10. The second is the study of two irregularly shaped phase
and opaque objects located inside a droplet, as will be shown later in Fig. 4.15.
The irregularly-shaped objects in this chapter are produced by defining numerically
arbitrarily-shaped transmission functions. An object will be created as a collection of
many small circular particles. All these small circular particles are connected in order
to form the irregularly shaped object. In this study, “N” elementary circular particles
are generated to create an object. The collection of these elementary particles is gen-
erated randomly. Note that only a numerical study is performed in this chapter.

In section 4.1, a mathematical expression of the electric field in the object’s plane is
evaluated. This mathematical development is based on ABCD matrix formalism. The
definition of the transmission function of irregularly-shaped opaque and phase objects
is considered in this section. The field amplitude at the CCD sensor is briefly de-
scribed in this section and a brief mathematical analysis of the hologram is presented.
The holograms generated by phase and opaque objects located in different planes are
then simulated and reconstructed in section 4.2. In section 4.3, the hologram and
reconstructed images of phase and opaque objects located in the same longitudinal
planes inside a water droplet are presented. An example of the different object shapes
is given in section 4.4. Next, we propose the possiblility of adding noise into the
simulated hologram image in section 4.5. After that, the conclusion of this work is
presented.
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4.1 Mathematical development

4.1.1 Amplitude distribution of the beam in the plane of the object

Recall that the basic idea of digital in-line holograhy is to record the intensity
distribution of the diffraction pattern by an object on a CCD camera. Fig. 4.1 is the
numerical set-up with a Gaussian incident beam.

Fig. 4.1: Numerical set-up of the objects located in two different planes with ω0 = 2.3µ
m, e1 = 58.8mm, e2 = 342.84mm, f1 = 42.8mm, f2 = 5.5mm,△1 = 9.5mm,
△2 = 10mm, z1 = 8.5mm,and z2 = 8mm.

At the beginning of the propagation, the waist of the incident Gaussian beam is
located at the origin (z = 0). The electric field amplitude in the incident plane is

G(µ, ν, z = 0) = G(µ, ν) = exp

(

−µ
2 + ν2

ω2
0

)

, (4.1)

where ω0 is the waist of the beam as shown in Fig. 2.5. Then the incident light source
propagates through the first optical system between the incident plane and the particle
plane, which is denoted by a transfer matrixM1 as seen in Fig. 4.1. The complex field
amplitude of the wave at the particle’s plane, G1, can be described by a generalized
Fresnel integral. G1, is defined by

G1(ξ, η) =
exp(i2π

λ
E1)

iλ
√

Bx
1B

y
1

∫

R2

G(µ, ν) exp

(

i
π

λBx
1

[Ax
1µ

2 − 2ξµ+Dx
1ξ

2]

)

exp

(

i
π

λBy
1

[Ay
1ν

2 − 2ην +Dy
1η

2]

)

dµ dν,

(4.2)

where E1 is an optical path between the incident plane and the object’s plane. Ax,y
1 ,

Bx,y
1 , and Dx,y

1 are the matrix elements of the matrixMx,y
1 , whereMx

1 =My
1 =M1, for

an axisymmetric system. Substituting Eq.(4.1) into Eq.(4.2), the complex amplitude
G1(ξ, η) at the particle’s plane becomes

G1(ξ, η) =
exp(i2πλ E1)

iλ
√

Bx
1B

y
1

G0K
x
1K

y
1 exp

[

−
(

ξ2

ω2
1x

+
η2

ω2
1y

)]

exp

[

− iπ
λ

(

ξ2

R1x
+

η2

R1y

)]

, (4.3)
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with

Kx,y
1 =
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

πω2
0

1− i
πω2

0

λ

(

Ax,y
1

Bx,y
1

)


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1/2

, (4.4)

ω1x,y =

(

λBx,y
1

πω

)

[

1 +

(

πω2
0

λ
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1
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1
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, (4.5)

R1x,y = − Bx,y
1
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1 −

Ax
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πω2
0
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πω2
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1
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x,y
1

)2

, (4.6)

where ω1x,y and R1x,y are the beam waist radii and the beam curvature at the object
plane, respectively. For more details, see Appendix A.

4.1.2 Definition of the objects

In this section, the numerical definitions of the irregularly-shaped opaque and
phase objects are explained. The irregularly-shaped object is created from a collection
of small circular disks. These small circular particles are collected in one and two
directions that will be explained in 1D and 2D description. Both opaque and phase
objects description will be described in the following topics.

Fig. 4.2: Opaque disk locates at (x, y) = (0, 0).

Creation of an opaque object

-1D description

In the simulation, the irregular shape of an opaque object can be created by first
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considering one opaque disk. The opaque disk is presented in Fig. 4.2. In the simula-
tion, we assume that the diameter of the opaque disk is equal to 2 units.

For the opaque particle, the transmission function is defined as

T (x, y) =

{

0, if
√

x2 + y2 < D
2

1, otherwise
, (4.7)

where D is the diameter of the disk. The transmission function of one opaque disk in
Fig. 4.2 located at the centre of the x− y plane is shown versus the x-axis (for y = 0)
in the following figure.

Fig. 4.3: Transmission function of an opaque disk located at the centre of x axis. The
diameter of the opaque disk is 2 units.

Fig. 4.3 shows the transmission function of the opaque disk plotted along the
x-axis. The transmittance inside the disk is equal to zero and equal to one outside
the disk. For 1D description of an arbitrarily-shaped opaque object, the other opaque
disks are located along one direction (x or y direction). To do this, the second opaque
disk is generated with distance △ far away from the first disk along one direction or
the x-direction in this example. The third opaque disk is located far from the second
disk with the same distance △ in the x-direction and so on. For “N” opaque disks,
the 1D opaque object can be obtained and it is composed of “N” opaque disks. If “N”
is high enough and the distance △ is small enough, the shape of this opaque object
will look like a rod or wire shape. An example of an opaque object composed of three
opaque disks is presented in Fig. 4.4.

Fig. 4.4: Three opaque disks separated by distance △ = 1unit.
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In Fig. 4.4, three opaque disks are created along the x-direction. All three disks
have a diameter of 2 units and each of them is separated by distance △ = 1 unit.

-2D description

The 2D description of the opaque object can be generated by varying the position
of each opaque disk in both the x and y directions. The displacement in the x and
y directions are represented by △x and △y, respectively. The first opaque disk with
diameter, D, is located at its original position (x0, y0). The position of the second
disk is generated randomly and it can be defined in different ways. Fig. 4.5 shows an
example of how to define the random position in 2D. In this case, one random number
J is generated numerically and 0 ≤ J ≤ 1. Let J ≤ 0.5, the opaque disk changes in
the x direction with displacement △x. Let 0.5 < J ≤ 1, then the disk changes its
position in the y direction with displacement △y. The example of 10 opaque disks is
shown in Fig. 4.5.

Fig. 4.5: Ten opaque disks located in two directions. They are separated by displacement
△x = 0.25 and △y = 0.25.

The diameter of the opaque disk in Fig. 4.5 is 0.5 unit. The displacements are
△x = 0.25 and △y = 0.25. From this description, the arbitrary shape of the opaque
object can be generated.

Creation of a phase object

In this section, I will describe how to create an irregularly-shaped phase object. In
the simulation, the irregular shape of a constant phase object can be created by first
considering one phase disk. For a phase particle, the transmission function is defined as

T (x, y) =

{

eiφ, if
√

x2 + y2 < D
2

1, otherwise
, (4.8)

where D is the diameter of a disk.
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-1D description

A circular phase disk located at (x, y) = (0, 0) is presented in Fig. 4.6. The diam-
eter of the disk is 2 units. The transmission value inside the disk is equal to eiφ and
the value outside the disk is equal to 1.

Fig. 4.6: A phase disk located at the origin.

The transmission function of the phase particle is developed from the opaque par-
ticle’s transmission function as shown in Fig. 4.7.

Fig. 4.7: Development of the transmission function of one phase particle from the opaque
particle.

The first graph of Fig. 4.7 is the transmission function T1 of the opaque particle.
The second is the complementary of the opaque particle and it can be obtained from
T2 = 1− T1. The third graph (T3) is the real part of T2 multiplied by eiφ and is called
an “incomplete phase particle”. The constant phase of the object is presented by φ.
The bottom graph is the complete phase particle and it is found from T4 = T3 + T1.
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-2D description

The 2D phase object as in Fig. 4.8 is composed of 10 phase particles. The diameter
of each phase particle is D = 0.25. The positions of the second to the tenth particles
are generated randomly as described for the 2D opaque object. Fig. 4.8 shows the
transmission function in the (x, y) plane. The transmission function equals eiφ in the
black part of the figure and 1 elsewhere.

Fig. 4.8: Ten phase disks located in two directions. They are separated by displacement
△x = 0.5 and △y = 0.5.

Now, the irregularly-shaped opaque and/or phase object can be simulated. Next,
the intensity distribution in the CCD plane of the phase object is analysed.

4.1.3 Fresnel transform for the field in the CCD plane

A second Fresnel transform of the field G1 gives the field G2 in the CCD plane.
The second Fresnel transformation for any kind of object is given by

G2(x, y) =
exp(i2π

λ
E2)

iλ
√

Bx
2B

y
2

∫

R2

G1(ξ, η)T (ξ, η) exp

[

i
π

λBx
2

(Ax
2ξ

2 − 2ξx+Dx
2x

2)

]

exp

[

i
π

λBy
2

(Ay
2η

2 − 2ηy +Dy
1y

2)

]

dξ dη,

(4.9)

where T (ξ, η) = T1 for an opaque object and T (ξ, η) = T4 for a phase object. T is the
transmittance of the object. T1 and T4 are defined in Fig. 4.7 (top) and (bottom),
respectively. This second integral is evaluated numerically and the intensity in the
plane of the CCD sensor will be described later.

4.1.4 Hologram analysis by fractional Fourier transform

In previous section, the electric field amplitude in the CCD plane has been pre-
sented already. The intensity distribution recorded by a CCD sensor can be found from

I(x, y) = G2(x, y) ·G2(x, y), (4.10)
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where the overline refers to its complex conjugate. Next, we use the 2D-FRFT to
converse the hologram to an image of the object or to reconstruct the object.

The best reconstruction plane is reached when [60]

ϕa ± ϕ = 0, (4.11)

where ϕa is the phase contained in 2D-FRFT and ϕ is the phase contained in its in-
tensity. From this condition, the optimal fractional order can be obtained.

4.2 Simulation of opaque and phase object

In this section, two irregular objects are generated at two different planes. Each
object has a different size and shape, as shown in Fig. 4.9. The numerical set-up is
presented in Fig. 4.10. The first object is located at △1 = 9.5mm and the second
object is located at △2 = 10mm from the second lens, as seen in Fig. 4.10. The
distance from the second lens to the CCD sensor is fixed as 18mm. From Fig. 4.9, the
object in Plane 1 is a phase object and the object in Plane 2 is an opaque object.

Fig. 4.9: Simulated phase particle (left) with phase shift ϕ = 0.3π and opaque particle (right)
at two different planes.

The incident beam is a Gaussian beam with beam waist ω0 = 2.3µm. According to the
numerical set-up in Fig. 4.10, the beam then propagates through Plane 1 and Plane
2, respectively. The diffracted beam gives the pattern on the CCD camera.

For the two objects, the magnification factors between the objects’ plane and the
CCD’s plane differ. Following the set-up in Fig. 4.10, the object in Plane 1 has a mag-
nification factor equal to 6.76 while the object in Plane 2 has 5.32. The magnification
factor can be found easily by [72]

g1,2x,y =
wtotx,y

w1,2x,y

, (4.12)
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Fig. 4.10: Simulated configuration of the system showing two different object planes with
e1 = 58.8mm, f1 = 42.8mm, e2 = 342.84mm, f2 = 5.5mm, △1 = 9.5mm, △2 =
10mm, and distance from the second lens to CCD is 18mm.

where g1,2x,y are the magnification factors between the objects in Plane 1 (or Plane
2) and the CCD’s plane, respectively. w1,2x,y are the beam waist dimensions (along x
and y, respectively) of the initial Gaussian beam in Plane 1 and Plane 2, respectively,
and expressed in Eq.(4.5). wtotx,y is the beam waist dimension of the original Gaussian
beam at the CCD plane and is given by [72]

wtotx,y =

(

λBx,y
tot

πω0

)

[

1 +

(

Ax,y
tot

πω2
0

λBx,y
tot

)2
]1/2

(4.13)

Ax,y
tot and Bx,y

tot are the matrix elements of the matrix transfer describing the whole sys-
tem between the laser source and the CCD sensor: Mtot =M2×M1. In the simulation,
the sensor’s size is 1024× 1024 pixels and each pixel is 4.4× 4.4µm.

Fig. 4.11 (a) is the hologram of the two objects recorded by CCD camera. Fig.
4.11 (b) and (c) show the optimal reconstruction of the two objects. For reconstruction
of the objects, the 2D-FRFT is applied to the hologram. The optimal fractional orders
for the objects in Fig. 4.11(b) and (c) are −0.600π/2 and −0.686π/2, respectively.
For the pure phase object in Fig. 4.11 (b), the reconstruction object is indicated by
the arrow. In this case, fringes due to the discontinuity are observed around the edge
of the object. The intensity inside the reconstructed object is higher than the back-
ground. For the opaque object in Fig. 4.11 (c), the intensity in the reconstructed
object is zero. The optimal fractional orders of the reconstructed objects give the
longitudinal position along the z-axis of the two objects. Moreover, the analysis of the
patterns of the reconstructed objects leads to the size and the 2D-shape of the objects.

If we zoom in on the reconstructed object, we observe a discontinuity which is
different for the opaque and phase objects as shown in Fig. 4.12(a) and (b).
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Fig. 4.11: (a) Simulated hologram of phase and opaque objects at two different planes. (b)
Reconstructed image of the phase object with order αx,y = −0.600π/2 as indicated
by the red arrow. (c) Reconstructed image of opaque object with order αx,y =
−0.686π/2.

(a) (b)

Fig. 4.12: Zoom in on the reconstructed phase and opaque object.

The intensity profiles of this phase and opaque reconstructed object are plotted
in Fig. 4.13(a) and (b), respectively. The size of the phase object can be estimated
from the distance between the discontinuities which are indicated by the two arrows
in Fig. 4.13(a). For the opaque object, the width between the two discontinuities of
the intensity profile represents its size. From the intensity profiles of the two objects
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and their magnification factors (5.32 and 6.76, for the phase and opaque objects,
respectively), the real size of the phase object along the x-axis is 24.81µm and the
real size of the opaque object along the x-axis is 20.12µm, respectively. The size
measurements correspond to the original sizes of the two simulated objects in Fig. 4.9.

(a) (b)

Fig. 4.13: Lateral intensity profile of the reconstructed phase (a) and opaque (b) object.

(a) (b)

(c) (d)

Fig. 4.14: Transversel intensity profile of the reconstructed phase of (a) ϕ = 0.25π, (b)
ϕ = 0.5π, (c) ϕ = 0.75π, and (d) ϕ = π.
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For different values of the phase shift introduced by the irregularly-shaped phase
object, the transverse reconstructed intensity profiles for ϕ = 0.25π, 0.5π, 0.75π and π
are presented in Fig. 4.14 (a), (b), (c) and (d), respectively.

A comparison of the experimental result with our simulation should then allow us
to determine the phase shift introduced by arbitrarily-shaped phase object.

4.3 Simulation of irregularly-shaped phase/opaque objects in a
droplet

In this section, two irregularly-shaped phase and opaque objects are generated at
one longitudinal plane inside a water droplet. The numerical set-up is presented in
Fig. 4.15. The wavelength of the incident beam is 642nm. The diameter of the water
droplet is 1.5mm and its refractive index is 1.33. The numerical parameters are pre-
sented in the caption of Fig. 4.15.

Fig. 4.15: Simulated configuration of the two different objects in a plane with e1 = 42.8mm,
f1 = 42.8mm, e2 = 135.6mm, f2 = 5.5mm, e3 = 10mm, z1 = 1.125mm, z2 =
0.375mm, and z = 9.7mm.

Fig. 4.16: The simulated object1 (opaque) and object2 (phase).

Object 1 and object 2 shown in Fig. 4.16 (a) and (b) are located at z1 = 1.125mm
inside a droplet. Object1 is an opaque object and object2 is a phase object. Ob-
ject1 and object2 are generated by the collection of 20µm opaque and phase particles,
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respectively. The phase shift introduced by object2 is equal to ϕ = 0.3π. By the cal-
culation of magnification factors as in Eq.(4.12) and (4.13), the magnification factor
introduced by the optical system for the two objects in one plane is 5.61.

Fig. 4.17(a) shows the hologram of these two objects located in the droplet. Fig.
4.17(b) is the reconstructed image of object 1 and object 2 with a fractional order
0.644.

Fig. 4.17: (a) Simulated hologram of phase objects at one longitudinal plane inside a droplet.
(b) Reconstructed image of the phase and opaque object with the optimal frac-
tional order ax,y = 0.644.

From Fig. 4.17, if we realize a zoom of the two reconstructed objects, we see the
discontinuity around the edge of the phase object as shown in Fig. 4.18.

Fig. 4.18: Zoom of the two reconstructed objects.

Intensity profiles along the x-axis of the two objects are plotted in Fig. 4.19. Fig.
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4.19 (a) is the intensity profile of the opaque object and Fig. 4.19 (b) is the intensity
profile of the phase object which presents the discontinuity around the edge of the ob-
ject. The width of the intensity profile of the reconstruction of the irregularly-shaped
objects divided by the magnification factors gives the real size of the objects.

(a) (b)

Fig. 4.19: Intensity profile along x-axis of two objects : (a) profile of the opaque object and
(b) profile of the phase object.

From these results, we found the difference between the opaque and phase ob-
jects. In future work, we may use our developed simulator to distinguish opaque and
phase objects inside a droplet.

4.4 Library of objects

In this section, we have made a library of different shapes of objects. For a cross-
like opaque object, Fig. 4.20 shows the object (a), the hologram of the cross-shaped
object (b) and its optimal reconstruction (c), respectively.

(a)object (b)hologram (c)reconstruction

Fig. 4.20: Image of the cross-shape object (a), its hologram (b), and its reconstruction image
(c).
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For an asterisk-like object, the object, the hologram and the reconstructed object
are shown in the first row of Fig. 4.21(a), (b), and (c), respectively.

(a)object (b)hologram (c)reconstruction

Fig. 4.21: First column (a) shows the image of the object, the second column (b) shows its
hologram, and the third column (c) shows its reconstructed image .

The second and the third rows refer to triangle- and ring-shaped objects. With
our definition of the object presented in the previous section, any kind of object shap
can be simulated. Objects can be opaque or phase objects. Any optical system can
be considered by the choice of the appropriated transfer matrices.

4.5 Possiblility to add noise

In the simulation, we can add noise into the hologram. We have developed a proce-
dure to add noise with a spatial frequency that we can adjust. By using MATLAB, the
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meshgrid command is used to generate two arrays containing x- and y-coordinates at
each position in a grid. Firstly, a square N×N mesh grid is created. Using MATLAB,
the syntax for creating a 2D meshgrid is [X, Y ] = meshgrid(u, v) which replicates the
grid vectors u and v to produce a 2D grid.

First, we create a grid where the noise is obtained as shown in Fig. 4.22 (a) with
spatial frequency k1 = 2. The scaling of this grid is then enlarged to the scaling of
the hologram. Next, another grid that has the same number of pixels (with spatial
frequency k2 = 1) as the hologram grid (called a hologram-like grid) is generated.

(a) (b)
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Fig. 4.22: (a) Noise grid. (b) Hologram-like grid. (c) Resulting noise grid.

Unfortunately, the pixel sizes of the two grids (noise grid and hologram-like grid)
are unequal. We thus realize an interpolation or resampling of the noise grid in the
hologram-like grid.

Fig. 4.23: The resulting noise grid.

Now Fig. 4.22 (b) is the generated hologram-like grid with the same number of
pixels as the hologram. Fig. 4.23 is the resulting noise grid derived from the interpo-
lation between Fig. 4.22 (a) and (b). In the next figure, we will show an example of a
generated 2D noise grid for k1 = 50, k2 = 1 and number of pixels N = 500. The noise
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can be generated as in Fig.4.24. This figure shows the 2D projection of a meshgrid
with a noise value. Noise is generated randomly in this case.

Fig. 4.24: An interpolated grid.

(a) (b)

(c)

Fig. 4.25: (a) Hologram without any noise. (b) Generated noise. (c) Interpolated image
between hologram in (a) and noise in (b).

Actually, the hologram image in the simulation did not generate noise in the image.
The following figure, Fig. 4.25 (a) is a simulated hologram without any noise. Then



70 4.6. Conclusions

noise is generated by the “meshgrid” command in MATLAB following the procedure
in section 4.4. The simulation is produced with N = 512, k1 = 64, k2 = 1 as shown
in Fig. 4.25 (b). Finally, in the hologram, noise can be added into our simulated
hologram as presented in Fig. 4.25 (c).

4.6 Conclusions

In this chapter, irregularly-shaped objects are simulationally created at differrent
planes in a general system. We are able to simulate any optical in-line configurations
by the choice of the appropriate transfer matrices. The objects can be opaque or phase
objects. In this chapter, two configurations have been studied: objects in free space
or objects within a droplet. With our model, irregularly-shaped phase and opaque
objects can be produced simultaneously at the same longitudinal plane and different
transverse positions inside a droplet. We can add noise, whose spatial frequency can
be arbitrarily defined to the hologram. Note here that only simulational studies are
performed in this chapter. This numerical simulator should become a very powerful
tool for the analysis and simulation of experimental results in a wide range of optical
configurations such as in the characterization of ice crystals.
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5. DIGITAL RECONSTRUCTION OF INCLUSIONS IN A
DROPLET

In this chapter, the inclusions inside a suspended water droplet are visualized both
in simulation and in experiment. Moreover, the inclusions sizes and their 3D locations
in the drop are characterized. The simulated and experimental set-up are shown in
Fig. 5.1. The challenge of this problem is that the field amplitude of the incident
beam is modified by the droplet size and shape and by the position of the inclusion
in the drop. In other words, the radius of curvature of the beam is changed by the
droplet’s curvature, the shape, and the position of the inclusion in the drop . The in-
clusion here means the micro-particle inside a droplet. This modification will modify
the diffraction pattern of the inclusions inside a droplet. With this problem, finding
the droplet’s size and locations is not straightforward. More parameters are needed
to find the size and the 3D positions such as the radii of curvature of the droplet,
the shape, and the position of the inclusion in the drop. The number of unknown
parameters in this study is more important than the classical problem where only the
particle’s longitudinal location and size are determined.

According to the previous work [60, 89], digital in-line holography (DIH) offers the
possibility to describe a system with droplet and inclusions. In the recording process,
the intensity distribution recorded on the CCD sensor can be determined by the ABCD
matrix formalism and the generalized Huygens-Fresnel integral under paraxial approx-
imation. The numerical reconstruction is introduced to “refocus” the plane where the
inclusion is located inside the droplet. The hologram reconstruction is carried out by
using the 2D fractional Fourier transform (2D-FRFT). Deformations due to an optical
astigmatism introduced by the inclusion can be described. The originality of this ap-
proach is to see an individual droplet as a spherical micro-channel and the inclusions
as seeding particles which trace the fluid flow. In this chapter, both simulated and
experimental measurements of the size and the 3D positions will be presented.

5.1 Hologram of an opaque particle as an inclusion

The experimental and numerical set-up is illustrated in Fig. 5.1. The incident
Gaussian beam propagates across an optical system, denoted M1, and illuminates a
water droplet (with refractive index equal to n = 1.33) of diameter d.
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Fig. 5.1: Numerical and experimental optical set-up for λ = 642nm, ω0 = 2.5µm, f1 =
42.8mm, f2 = 5.5mm, e1 = f1, e2 = 135.6mm, e3 = 14.32mm, z = 11.1mm.

Inside the droplet, spherical particles of diameter D are added to create the inclu-
sions. In the experiment, the inclusions are put inside a droplet by adding the solid
particles into a certain amount of water and mixing them together until it becomes a
solution of those particles. A simple way to form a drop is to flow the liquid solution
by pushing the pistol of the syringe. The surface tension of the liquid causes the liquid
hanging from the tip of the syringe’s tube to form a pendant drop as in Fig. 5.2.

Fig. 5.2: Suspended droplet.

In the theoretical developments, the finite droplet size is not taken into account. On
the other hand, the radii of curvature of the droplet are involved in the model. After
the beam illuminates a droplet, it propagates again through another optical system,
denoted M2. Behind the droplet, the CCD sensor is located at a distance z to record
the intensity distribution of the diffraction pattern. Note here that the matrices, M1

andM2 are refered to transfer matrices describing the optical systems before and after
the inclusion’s plane, respectively. The detail of matrices M1 and M2 are explained in
Appendix A.1 and B.1.

For an opaque particle, the intensity distribution recorded by the CCD sensor
is

I(x, y) =
1

λ2Bx
2B

y
2

[

|R|2 − 2ℜ(RŌ) + |O|2
]

(5.1)

where the upper bar denotes the complex conjugate and ℜ is the real part. The square
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modulus |R|2 corresponds to the directly transmitted beam and |O|2 corresponds to
the diffracted beam. The reference beam R and the object beam O are defined as
[60, 57].

R(x, y) =

∫
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(5.2)

and

O(x, y) =

∫
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(5.3)

5.2 Reconstruction of the hologram

As previously, the two-dimensional fractional Fourier transformation is used for
the image processing. This tool is well suited for these studies. For clarity, we recall
briefly the main definitions and results. The mathematical expression of 2D-FRFT is

Fαx,αy
[I(x, y)](xa, ya) =

∫

R2

Nαx
(x, xa)Nαy

(y, ya)I(x, y) dx dy (5.4)

where the kernel function Nαp
is defined in Chapter 2, Eq.(2.29). The numerical recon-

struction can be considered as a numerical refocusing over the object. The quadratic
phase ϕ must be evaluated. The quadratic phase is contained in the term 2ℜ(RŌ) of
Eq.(5.1). This term is composed of a linear chirp function and a complex Gaussian
series. The linear chirp is inversely proportional to the recording distance z and a
summation of complex Gaussian functions relates to the diameter of the particle. The
analytical expression of the quadratic phase is as follows:

RŌ = |RŌ| exp(iϕ) (5.5)

where

ϕ =
π

λ

[(

Mx −Dx
2

Bx
2

)

x2 +

(

My −Dy
2

By
2

)

y2
]

(5.6)

The quadratic phase of the kernel of the 2D-FRFT denoted ϕa is

ϕa = π

(

cotαx

s2x
x2 +

cotαy

s2y
y2
)

(5.7)
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The best reconstruction of the particle is achieved when one of the quadratic phase
terms is equal to zero.

ϕ+ ϕa = 0 (5.8)

ϕ− ϕa = 0 (5.9)

The first condition , ϕ − ϕa = 0, corresponds to the reconstruction of the real image
and the second condition, ϕ + ϕa = 0, corresponds to the virtual image. With these
conditions, the optimal fractional orders αopt

x and αopt
y are

αopt
x = arctan

[

∓ Bx
2λ

s2x(Mx −Dx
2)

]

αopt
y = arctan

[

∓ By
2λ

s2y(My −Dy
2)

]

(5.10)

Finally, the optimal fractional order allows us to reconstruct the image of the particle.

5.3 Hologram and its reconstruction

In this section, the holograms of different particle sizes are shown using both sim-
ulations and experiments. In the simulation, 20µm opaque particles are considered at
two different planes: a first particle is located at distance z1 = 1.125mm within the
droplet and a second particle is located at z1 = 0.5625mm along the z-axis inside the
droplet. For 10µm particles, the first plane is at z1 = 1.35mm and the second plane
is at z1 = 0.5625mm. For the simulation of 5µm particles, they are assumed to be
located at two different planes z1 = 1.35mm and 0.15mm. The diameter of the droplet
is fixed to 1.5mm for 20µm and 10µm particles and the droplet size is 1.4mm for 5µm
particles. Other parameters in the simulation are indicated in Fig. 5.1, which corre-
sponds to the experiment. The holograms derived from the simulation are shown in
Fig. 5.3(a), (c), and (e). In the experiment, holograms are recorded by a 1234× 1624
CCD sensor with pixel size 4.4µm ×4.4µm.These particles are calibrated borosilicate
glass particles of diameter 19.3µm ±1.0µm, 9.9µm ±1.0µm, and 5.4µm ±0.3µm from
Duke Standards. The experimental holograms are presented in Fig. 5.3(b), (d), and
(f). These holograms show only the region of interest where the particles are present,
and not the whole droplet.



5. Digital reconstruction of inclusions in a droplet 75

(a) (b)

(c) (d)

(e) (f)

Fig. 5.3: Simulated hologram of 20µm, 10µm, and 5µm particles are shown in (a),(c), and
(e). Experimental holograma of 20µm, 10µm, and 5µm particles are shown in
(b),(d), and (f), respectively.
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(a) (b)

(c) (d)

Fig. 5.4: Reconstructed images of 20µm particles in different planes presented numerically
and experimentally. (a) Reconstructed image of simulated hologram of Fig. 5.3(a)
with fractional order αx,y = 0.48π/2. (b), (c) and (d) Reconstructed images of the
experimental hologram of Fig. 5.3(b) with fractional order αx,y = 0.48π/2, 0.49π/2,
and αx,y = 0.53π/2, respectively.

To characterize the particle’s size, we have to do the numerical reconstruction. The
reconstructed images of 20µm particles are shown in Fig. 5.4 for both simulations and
experimental results. Fig. 5.4(a) is the reconstructed image from the simulation and
the reconstructed image of the particles is indicated by arrows. These images are recon-
structed with fractional order αopt

x,y = 0.48π/2. Fig. 5.4(b), (c), and (d) are the recon-
struction images from the experiment with fractional orders αopt

x,y = 0.48π/2, 0.49π/2,
and 0.53π/2, respectively. The reconstructed particles are indicated in circles.

The numerical and experimental reconstructed images of 10µm particles are pre-
sented in Fig. 5.5.
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(a) (b)

(c) (d)

Fig. 5.5: (a) Simulated reconstruction image of 10µm in Fig. 5.3(c) with fractional order
αx,y = 0.619π/2. (b), (c), and (d) Experimental reconstruction images of Fig.
5.3(d) with fractional order αx,y = 0.50π/2, 0.54π/2, and 0.57π/2, respectively.

Fig. 5.5(a) is the simulated reconstruction. The reconstructed particles are indicated
by the arrows with fractional order αopt

x,y = 0.619π/2. Fig. 5.5(b), (c), and (d) are
the experimental reconstruction images with αopt

x,y = 0.50π/2, 0.54π/2, and 0.57π/2,
respectively, and are indicated in the circles.
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For 5µm particles, the reconstruction images are shown in Fig. 5.6.

(a) (b)

(c) (d)

Fig. 5.6: (a) Reconstructed image of simulated hologram of 5µm in Fig. 5.3(e) with fractional
order αx,y = 0.59π/2. (b) Reconstructed image of the experimental hologram of Fig.
5.3(f) with fractional order αx,y = 0.55π/2. (c) and (d) Reconstructed images of the
experimental hologram with fractional order αx,y = 0.59π/2 and αx,y = 0.61π/2,
respectively.

Fig. 5.6(a) is the simulated reconstruction. The reconstructed particles are indicated
by the arrows with fractional order αopt

x,y = 0.59π/2. Fig. 5.5(b), (c), and (d) are
the experimental reconstruction images with αopt

x,y = 0.55π/2, 0.59π/2, and 0.61π/2,
respectively, and are indicated in the circles.

All holograms and reconstruction images are not in the true scale. The magni-
fication factor should be taken into account to find the estimated diameter of the
inclusions. The transverse positions of the inclusions inside the droplet are easily ob-
tained from the reconstruction image. The longitudinal position can be found from
the optimal fractional order.
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5.3.1 Size measurement

This section is about how to find the inclusion’s size. The profile width at 10% of
the maximum intensity is considered to be the inclusion’s size. For 20µm, 10µm,and
5µm particle, the intensity profiles along the horizontal axis of the reconstructed par-
ticles are plotted in Fig. 5.7.

(a) (b)

(c) (d)

(e) (f)

Fig. 5.7: Intensity profile of simulated reconstruction particle with 20µm diameter (a), 10µm
diameter (c), and 5µm diameter (e). (b), (d), and (f) are the experimented intensity
profile of 20µm, 10µm, 5µm particle, respectively.

In our case, the inclusion has a circular shape, so the profile along the x- and y- axis
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should be equal. Therefore, we considered only the profile along the x-axis. For the
20µm particle, the reconstructed size is equal to 20.4µm for the simulation and 20.1µ
m for the experiment where the magnification factor is 3.3. For the 10µm particle, its
reconstructed size is 11.3µm for the simulation and 10.7µm for the experiment where
the magnification factor is 3.4. The size of a 5µm particle after reconstruction of the
simulated hologram is 6.0µm and its experimental size is 6.0µm where the magnifica-
tion equal to 3.4.

In the simulation, the magnification factor can be found as in chapter 4, section
4.6, Eq.(4.12). The magnification factor in the experiment can be obtained by shad-
owgraphy.

5.3.2 Method for finding axial position of the particle

From the optimal fractional orders, the axial location of the particle can be found
by plotting the relationship between the fractional order and the axial position numer-
ically. The curve plotting the optimal fractional order versus the longitudinal location
of the particle is shown in Fig. 5.8. Note that there is a difference between the three
curves because the droplet radius (d) was different: d = 1.5mm for 20µm and 10µm,
and d = 1.4mm for 5µm particles.
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Fig. 5.8: Theoretical optimal order of reconstruction and longitudinal position of the different
inclusions’ sizes.

From Fig. 5.8 in the blue line, the 20µm particle with fractional order a =
0.48, 0.49, 0.53 corresponds to the positions z2 + z = 1.1, 1.03, 0.76mm in the droplet.
The inclusions with diameter 10µm are reconstructed at a = 0.5, 0.54, 0.57 and corre-
spond to z2 + z = 1.03, 0.77, 0.54mm, respectively. For 5µm particles with fractional
order a = 0.55, 0.59, 0.61, the longitudinal locations are z2 + z = 0.84, 0.58, 0.44mm.

If we can fix the axial position of the particles in the droplet, then we can compare
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the optimal fractional orders obtained from the experiment and the theoretical values.
The difference between these two values corresponds to the error in the evolution of
the longitudinal position in the measurement. Unfortunately, this experiment cannot
fix the axial position of the inclusions inside a droplet because the inclusions move
following the fluid flow inside the droplet. Therefore, we need to find another way
of describing the limitation in the measurement of the axial position. The limitation
of the technique for the evaluation of the longitudinal displacement of the particles
can be considered by varying the fractional orders in the reconstruction process. For
example, in Fig. 5.4 (c) the particle is reconstructed with the optimal fractional order
0.49π/2. The Fig. 5.9 realizes a zoom of the reconstructed particle in Fig. 5.4 (c)
with different fractional orders α = 0.47π/2, 0.48π/2, 0.49π/2, 0.50π/2, and 0.51π/2.

(a) (b) (c)

(d) (e)

Fig. 5.9: (a) α = 0.47π/2, (b) α = 0.48π/2, (c) α = 0.49π/2, (d) α = 0.50π/2, (e) α =
0.51π/2

From Fig. 5.9, the best reconstruction particle is in figure (c). The images of the
reconstructed particle in (b) and (d) are different from (c). From these results, we
found that the second decimal number affects the reconstruction image of the particle
with △α = ±0.01π/2. Then the corresponding uncertainty of the measurement of the
axial position for 20µm particle is △z = 0.07mm. The transverse accuracy can be
obtained by counting thel number of pixels divided by the magnification factor.

5.3.3 Tracking the particle’s trajectory

By recording a series of holograms, the trajectories of the particles can be tracked.
Then we can trace the trajectory of the particle inside a droplet. For 20µm particles,
their trajectories can be tracked as shown in Fig. 5.10. The 3D location of the particle



82 5.4. Conclusions

in the droplet is obtained from the different holograms. The time between two holo-
grams is known. Then we can find the average velocity of the particle between two
successive holograms. From the experiment, ten holograms are recorded. The frame
rate of the CCD camera is 14.7 fps (frames per second).

Fig. 5.10: The circles represent the 3D locations of each hologram series. In this figure, ten
holograms were recorded. The different colors refer to different particles in the
drop. The arrow shows the direction of movement of the particles. The upper
right image shows the trajectory of the particles in a 2D plane.

From Fig. 5.10, the circles refer to the 3D location of the inclusions inside the
droplet. The distance between two circles refers to the displacement between two
holograms. From this information, the velocity of the inclusion can be obtained. The
direction of travel of the inclusion follows the black arrow in the figure. For the 2D
trajectory, the inclusions move upwards along the y-direction which is the result of the
capillary force of the needle that suspended the droplet.

5.4 Conclusions

This technique allows us to visualize the inclusions inside a droplet. The size, shape
and 3D locations of the inclusions can be determined. The trajectories of the inclusions
can be analysed by recording series of holograms and it is possible to measure the ve-
locity of the inclusions inside the droplet. In this study, the droplet is suspended from
the tip of a syringe which produces the capillary action to the droplet and makes the
inclusion inside the droplet move upwards into the tube. This technique should allow
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us to characterize the inclusion in 3D and real time. However, tracing the inclusion’s
trajectory by reconstruction the hologram series takes time to analyse.
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6. TRAJECTORIES OF PARTICLES IN A DROPLET BY LONG
EXPOSURE TIME MEASUREMENT

From the previous chapter, the trajectory of the inclusion can be obtained by
analysing the hologram series frame by frame. However, this method takes a lot of
time. Therefore in this chapter, we propose another method to trace the inclusion’s
trajectory inside a droplet.

Studying the trajectory of particles is very interesting in flow measurement. Many
techniques are proposed for measuring the velocity of the particles [3, 62, 90, 19]. For
the holography technique, the multiple exposure method [101] and video holographic
microscope [100, 102] are proposed in order to track the trajectories of individual par-
ticles in the flow. A long exposure time method is proposed by [99, 103] for tracking
particles in the measurement volume. In this chapter, we propose a long exposure
time method to analyse the trajectory of the particles inside a droplet. This technique
can measure moving particles inside a millimetric droplet [104]. This is of great in-
terest when measuring the 3D flow of micronic particles in a millimetric droplet. A
long exposure time experiment consists in using a long duration shutter speed of the
camera. In this chapter, we show that it is possible to reconstruct the trajectory of
particles within a droplet by the digital in-line holography (DIH) technique. When
a slow shutter speed (long time exposure) is used, the particles’ trajectory inside the
droplet can be detected.

In the experiment, we consider a suspended droplet with inclusions. The inclusions
or particles are inserted by mixing water with the powder of solid particles and making
a suspended drop with a syringe. The inclusions used in this experiment are calibrated
20µm particles and the droplet’s diameter is on a millimeter scale. The holograms are
recorded by a CCD sensor. The exposure time of the CCD sensor is set from 0.15s
to 0.25s. The 2D fractional Fourier transform (2D-FRFT) is used to reconstruct the
holograms.

6.1 Theoretical description of digital in-line holography set-up

The theoretical development in this chapter is the same as in the previous chap-
ter. A Gaussian light source is used. The light source propagates through an optical
system, denoted M1, and illuminates the object. Then the transmitted light and scat-
tered light propagate through another optical system, denoted M2, and are collected
by a CCD sensor with a slow shutter speed. The parameters used in the experiment
are indicated in the caption of Fig. 6.1. To derive the intensity distribution of the
hologram, the Huygens-Fresnel transformation is used two times: first it is used to
transform the field amplitude in the incident plane to the field in the particle’s plane;
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second, the field in the particle’s plane is transformed to the field in the CCD’s plane.
The intensity distribution of the hologram recorded by the CCD sensor is

I(x, y = G2(x, y)G2(x, y) (6.1)

where G2 is the field in the CCD’s plane and the upper bar refers to the complex
conjugate.

Fig. 6.1: Configuration of numerical and experimental set-up of long exposure time mea-
surement with ω0 = 2.3µm, f1 = 42.8mm, e1 = 42.8mm, e2 = 342.84mm, f2 =
5.5mm, e3 = 10.9mm, z = 13.14mm.

For digital reconstruction, the 2D fractional Fourier transform is used to convert
the hologram to the image of the particle as in the following equation

Fαx,αy
[I(x, y)] (xa, ya) =

∫

R2

Nαx
(x, xa)Nαy

(y, ya)I(x, y)dx dy (6.2)

where Nαx
and Nαy

are the kernel operators of the 2D-FRFT. The numerical recon-
struction can be considered as a numerical refocusing in the particle’s plane. The
details of the mathematical development are already described in [60, 57]. The opti-
mal fractional order is reached if the hologram is refocused to the right plane. The
optimal fractional order is given by

αopt
x,y =

2

π
arctan

[

∓ Bx,y
2 λ

s2x,y(Mx,y −Dx,y
2 )

]

(6.3)

This relation links the optimal fractional order of reconstruction to the position of
the particle. The experimental results of the holograms and their reconstructions are
presented in the next section.

6.2 Experimental results using a long exposure time

The experimental set-up was installed as described in Fig. 6.1. The parameters
used in the experiment are indicated in the caption of this figure. The light source is
a laser diode with wavelength λ = 642nm operating at 25◦C. The CCD sensor used
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in this experiment has 1624 × 1234 pixels. Each pixel size is 4.4µm × 4.4µm. In the
previous chapter, the normal shutter duration that we used to capture the holograms
was 0.04s. The exposure time of the CCD sensor is now set to 0.15s, 0.20s, and 0.25s.
Calibrated 20µm spheres of borosiligate glass are used as inclusions.

For noise reduction, all holograms in the experiments are treated with the following
steps: first the holograms are recorded on the CCD sensor. Next, we apply a Gaussain
filter to a hologram in order to obtain a blurred image of the hologram. Then a filtered
hologram is obtained from the division of the original hologram by the blurred image.
Finally, we then use the filtered holograms for characterization of the moving particles.

Fig. 6.2: (a) Hologram of 20µm glass particle inside the droplet with 0.15s shutter time.
(b)-(d) Reconstructed images of 20µm glass particle inside the droplet under 0.15s
shutter time with optimal fractional order: 0.56π/2, 0.6π/2, and 0.73π/2.

For 0.15s of exposure time, an example of the filtered hologram of the moving par-
ticles is presented in Fig. 6.2 (a). The diameter of the droplet is 1.7mm in this case.
Three optimal reconstructed images of the inclusions are presented in Fig. 6.2(b), (c),
and (d) for the following three fractional orders: α = 0.56π/2, 0.6π/2, and 0.73π/2,
respectively. In each case, the reconstructed particle is indicated by the circle.
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Fig. 6.3: Theoretical fractional order of reconstruction versus the longitudinal distance of
20µm particles for three droplet sizes.

To find the longitudinal position of the particles, the curve in Fig.6.3 is considered.
This curve shows the relationship between the optimal fractional order and the axial
position of the particles for three different droplet sizes. This graph is obtained from
theoretical analysis. The particles in Fig. 6.2(b), (c), and (d) are thus located at
distances z2+ z = 14.8mm, 14.6mm, and 13.2mm, respectively, from the CCD sensor.
The magnification factor is evaluated experimentally. It is equal to 3.4 ± 0.1. This
uncertainty of the magnification factor is not sensitive for the different reconstructed
planes that are presented here. After considering the magnification factor, the evalu-
ated velocity in the x and y components (vx, vy) of the particles in Fig. 6.2(b), (c), and
(d) are (0.45, 0.95)mm/s, (0.41, 0.47)mm/s, and (0.49, 0.26)mm/s, respectively. The
resolution depth along the z-axis is not accurate enough to evaluate the velocity in the
z-direction. The direction of the moving particle (or the sign of the velocity) can be
obtained by using a double exposure source (short and long exposure). First, we use
the short exposure which acts as a precursor that indicates the starting point of the
particle. Second, we use the long exposure that tracks the trajectory of the particle,
as shown in Fig. 6.4.

Fig. 6.4: Hologram recorded under a double exposure light source with 0.03s and 0.15s ex-
posure time (a) and its reconstruction image (b) with fractional order α = 0.67π/2.
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Fig. 6.4 (a) is the recorded hologram from the double exposure light source. Fig.
6.4(b) is the reconstructed image of the hologram in (a). The particles enclosed by
the two circles are reconstructed. In the reconstruction image, dark dots and dark rod
shapes are observed. Dark dots refer to the starting point of the moving particles.

For a 0.20s exposure time, the hologram is presented in Fig. 6.5 (a), as recorded
by the CCD sensor. Fig. 6.5 (b-d) are the reconstructed images of three different
reconstruction planes with the fractional orders: 0.73π/2, 0.735π/2, and 0.75π/2, re-
spectively. In this case, the droplet’s diameter is 1.5mm. The observed trajectories
are indicated by the circles. The theoretical curve between the axial position and the
optimal fractional order of reconstruction can be seen in Fig. 6.3 (middle curve).

Fig. 6.5: Hologram of 20µm particle (a), and the reconstructed images of 20m glass par-
ticle under 0.20s shutter time (b-d). The optimal fractional order of (b-d) are
0.73π/2, 0.735π/2, and 0.75π/2, respectively.

From the curve in Fig. 6.3, we then know that these particles are located at the
axial positions z2 + z = 13.8mm, 13.75mm, and 13.6mm, respectively. The magni-
fication factor is the same as in the first case. The evaluated x- and y-components
(vx, vy) of the particle velocities in Fig. 6.5 (b), (c), and (d) are (0.32, 0.27)mm/s (for
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the lower encircled particle in Fig. 6.5 (b)), (0.28, 0.25)mm/s (for the upper particle
in Fig. 6.5 (b)), (0.54, 0.08)mm/s (for the reconstructed particle in Fig. 6.5 (c)),
and (0.30, 0.39)mm/s (for the reconstructed particle in Fig. 6.5 (d)). The z-accuracy
in this case is not accurate enough to evaluate the z-component velocity. For more
description of the z-accuracy, see in section 6.3.2 Precision of axial position.

For a 0.25s exposure time, the experimental results are presented in Fig. 6.6.
The hologram is presented in Fig. 6.6(a). Two optimal planes are reconstructed with
fractional orders α = 0.76π/2 and 0.8π/2 as presented in Fig. 6.6(b) and (c), re-
spectively. In this case, the droplet’s diameter is 1.1mm. According to Fig. 6.3, the
longitudinal positions of the particle in Fig. 6.6(b) and (c) are 14.2mm and 13.9mm,
from the CCD sensor. After evaluation of the transverse magnification factor intro-
duced by the imaging system, the x- and y-components of the particle velocities can
be determined.

Fig. 6.6: (a) Hologram under 0.25s. (b) and (c) Reconstructed images of 20µm glass particle
under 0.25s shutter time. The optimal fractional orders are 0.76π/2 and 0.80π/2.

The velocity components (vx, vy) of the particles in Fig. 6.6 (b) and (c) are
(0.24, 0.29)mm/s (for the upper particle in Fig. 6.6 (b)), (0.41, 0.38)mm/s (for the
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lower particle in Fig. 6.6 (b)) and (0.52, 0.45)mm/s (for the particle in Fig. 6.6 (c)).
In this case, the image quality is poor because there is a lot of noise introduced in the
image. Therefore, when the reconstruction process is done, the visibility of the recon-
structed particles is poor. Again, the particles in this case move in the transverse plane.

6.3 Signal-to-noise ratio (SNR)

One of the methods to specify the quality of the reconstructed images is calculation
of the signal-to-noise ratio (SNR). The better the quality, the higher the SNR value
that should be obtained. In this section, the calculation of the SNR ratio is evaluated
for each reconstructed image. The SNR in decibels is defined as

SNR = 10 log(
Imean − Imin

σ
) (6.4)

where σ is the standard deviation of the background intensity. Imean is the average
background intensity. Imin is the minimum intensity of the reconstructed particle.

To find these parameters, we need to treat the image by using “ImageJ” as shown
in Fig.6.7.

Fig. 6.7: The software “Image J”.

The treatments of the reconstructed image are the following steps: select the black-
ground area in the reconstructed image and find Imean and σ from the histogram of the
selected area, rotate the particle if necessary, select the reconstructed particle’s area
and plot its intensity profile to see the minimum intensity Imin. From these steps, we
can calculate the value of the signal-to-noise ratio of the reconstructed image of the
particle.

Fig. 6.8 shows the example of the treatment processes as described above. The
20µm particle in Fig. 6.8 is reconstructed with fractional order α = 0.56π/2 for expo-
sure time τ = 0.15s. From the measurement, the average intensity is Imean = 75.648,
the minimum intensity is Imin = 54.330, and the standard deviation is σ = 3.888.
Therefore, from Eq.(6.4), the signal-to-noise ratio (SNR) is SNR = 7.39. The follow-
ing table shows the SNR of all reconstructed particles.
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Fig. 6.8: Figure showing the process of signal-to-noise ratio (SNR) measurement.

Exposure time (τ) Optimal order of reconstruction SNR(dB)

0.15 s 0.56 7.387

0.60 7.727

0.73 8.112

0.20 s 0.73 8.010

0.735 8.257

0.75 7.479

0.25 s 0.76 6.523

0.80 5.534

Tab. 6.1: Table of SNR

From Tab. 6.1, the exposure time τ = 0.25s gives the lowest signal-to-noise ratio.
This means that the reconstructed image has more background noise than the signal.
This technique for tracking the trajectories of the particles is limited to the exposure
time τ < 0.25s because the diffraction pattern of the moving particle spreads and is
blurred, as observed in the holograms in Fig. 6.2(a), Fig. 6.5(a), and Fig. 6.6(a).
With this exposure time, the SNR is very low (less than 7.0 dB). This value is the
limited value that we can distinguish the reconstructed particles from the background
noise [101, 103, 97]. Therefore, this technique cannot be used for tracking full path of
the particles inside a suspended droplet.
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6.4 Displacement in z-component

During the recording process, the position of the particles in the droplet changes
with time. To measure the displacement of the particles in the z-component, recon-
structions with slightly different orders are performed. Let us consider Fig. 6.9 (a).
One particle is reconstructed with fractional order α. If the particle moves in the
z-direction, the top part of the reconstructed particle is reconstructed with fractional
order α1 while the bottom part is reconstructed with another fractional order α2. Fig.
6.9(b) shows the positions where the intensity profile of the reconstructed particle is
plotted. In this case, the intensity profile of the top part is plotted in red colour and
the intensity profile of the bottom part is plotted in blue. The typical intensity profiles
obtained in the different reconstructed planes are illustrated in Fig. 6.9(c). Blue lines
refer to the profile at the bottom part and the red lines refer to the top part of the
reconstructed particle.

Fig. 6.9: (a) Two reconstructed particles with different fractional orders α1 and α2. (b) The
position of intensity profile plotting in red and blue colors. (c) The intensity profiles
for different fractional orders α1 (left) and α2 (right).

In our experiments, the widths of the intensity profiles obtained in the different re-
constructed planes are the same. This means that the particles move in the transverse
plane not in the longitudinal direction.

The graph in Fig. 6.10 shows the relationship between the signal-to-noise ratio
(SNR) in decibels (dB) and the magnitude of transverse velocity multiplied by the ex-
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Fig. 6.10: Graph between SNR versus ||vtransverse||τ .

posure time (we call this the “transverse length” or “transverse displacement”). For
longer exposure time, the contrast of the holograms decreases. The displacement of the
particles induces a smoothing effect in the diffraction patterns, which makes unclearly
reconstructed particles. From these experiments, we found that the reconstruction is
correct (SNR>7.0 dB) when the transverse displacement is ||vtransverse||τ < 0.12mm
(approximately), where ||vtransverse|| =

√

v2x + v2y .
From the experimental results of different exposure times, we found that each recon-

struction image of the particle cannot distinguish when the optimal fractional orders
of the two reconstruction planes differ by less than △aavr = 0.016π/2. From the the-
oretical graph between the fractional order and longitudinal distance in Fig. 6.3, the
corresponding uncertainty of the measurement of the axial position is △z = 0.16mm.
This is why we cannot evaluate the z-displacement with this technique.

6.5 Conclusions

In this chapter, a long exposure time is applied to the recording process of holo-
grams. The trajectory of particles inside a droplet can be traced by using digital
in-line holography with a long exposure time. The transverse trajectory of the parti-
cles can be achieved by reconstructing the holograms. In the different reconstruction
planes, the length of the particle’s trajectory can differ. Moreover, we can determine
the x- and y-components of the particle’s velocity. However, in this experiment, the
z-accuracy is not good enough to determine the z-component velocity.

Tracing the particle’s trajectory with long exposure saves on processing time. The
hologram with frame by frame recording as in the previous chapter needs the recon-
struction of each hologram. This method requires us to evaluate the 3D coordinates
of the moving particle for each frame. In contrast, by using a long exposure time, only
one reconstruction is done.
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7. INTERFEROMETRIC IMAGING OF MULTI-CORE
MICROPIPES

I showed in previous chapters that it was possible to reconstruct inclusions located
inside a droplet using digital in-line holography. In the last years, our team has been
working on microfluid systems. It was demonstrated that it was possible to reconstruct
seeding particles in a microflow : i.e. inside a cylindrical, 100 micrometer diameter mi-
crochannel [88]. Different types of microchannels exist (squared, circular, mono-core,
or multi-core) depending on the microflow systems used. It is an interesting challenge
to develop techniques that can control the geometry of the micropipes. Based on pre-
vious chapters, we thought that DIH could be a well-suited technique to characterize
quantitatively the geometry of multi-core micropipes (separation between the pipes,
orientation of the inner multi-cores). In such systems, the multi-core pipes can indeed
be viewed as inclusions located within a plexiglas or quartz cylinder whose diameter
is more or less 1mm. This appears to be a specific case of cylindrical inclusions lo-
cated within a cylindrical geometry, and the set-up previously developed in chapters 5
and 6 appears to be a good characterization technique. In this work, double-core and
quard-core pipes are considered. The double-core pipe has 2 cylindrical holes and the
quard-core pipe has 4 cylindrical holes, as shown in Fig. 7.1.

Fig. 7.1: Double core and quard core tube*

We thus decided to adapt the set-up of Fig. 6.1 (chapter 6) to record the digital
in-line holograms generated by a laser beam focused in the vicinity of multi-core mi-
cropipes.

*www.vitrocom.com
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Fig. 7.2: Experimental set-up: side view and top view. The experimental parameters are
e1 = 46.05mm, f1 = 46.05mm, e2 = 300.57mm, f2 = 5.5mm, e3 = 13.20mm, z =
63.40mm.

The set-up of Fig. 7.2 was realized. The diffracted patterns were recorded on a
CCD sensor. An exemple of a recorded image is presented in Fig. 7.3 in the case of a
double-core micropipe.

Fig. 7.3: Example of recorded interferogram from the experiment.

A first observation shows that the main effect is the presence of well-contrasted
interference fringes. The characteristic diffraction pattern expected when illuminating
a slit is partially masked by this interference. It appears that an interferometric
analysis should allow us to characterize the position of the inner pipes where digital
reconstruction would probably fail. Let us consider the system from an interferometric
point of view. We consider the standard interferometric set-up indicated in Fig. 7.4.
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In Young’s double slit experiment, the spacing between two slits affects the spacing
between bright and dark fringes. If the space between the two slits is very small, the
interfringe is large. Inversely, if the space between the two slits is bigger, the interfringe
is narrower. In our case, the goal is to determine the interdistance “s” between the
pipe’s cores. The observed interference patterns link to the interdistance “s” between
the cores of the pipe.

Fig. 7.4: Double slit interference*

An inner cylindrical tube can be considered as a column of many point sources, as
presented in Fig. 7.5 (side view). For double cores, the two columns of light sources
are located at the origin, as shown in Fig. 7.5. Light from the two sources propagates
through the thickness of the tube where the refractive index is n1. Then light propa-
gates again through the outer curvature of the tube. After that, light goes out from
the tube, propagates through the air and forms the interference pattern in the CCD
sensor.

In section 1, a mathematical analysis of the intensity distribution recorded on the
CCD sensor is investigated by ABCD matrix formalism. By considering the phase
difference between the two light sources (which represent the two cores), the spatial
fringes’ frequency is obtained. The mathematical analysis shows that the spatial fre-
quency depends directly on the interdistance between the two cores and the rotation
angle around vertical axis (or y-axis). In section 2, the experimental and the simulated
results are compared. Finally, in the last section, the conclusion is presented.

7.1 Mathematical analysis for multi-core micropipes

In this section, a mathematical analysis of two or four channels inside a cylindrical
geometry is proposed. The development of interferometric laser imaging for droplet
sizing (ILIDS) simulator based on generalized Huygens-Fresnel integrals associated
with ABCD matrices was introduced in [30]. In out-of-focus imaging, the analysis of
fringe patterns allows us to determine the diameter of droplets,as proposed by [87].

*http://cnx.org/content/m42508/latest/?collection=col11406/latest
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In our case, the two/four cylindrical cores are considered to be extended light
sources. These two sources illuminate an optical system and the interference of these
sources gives fringe patterns in the CCD sensor. The analysis of interferogram allows
us to evaluate the relative position between the different channels which are located
inside a pipe. In our case, an in-line configuration is considered. In the simulation,
light from the extended light sources propagates inside the pipe’s thickness and then
propagates through the curvature of the outer edge of the pipe as presented in Fig.
7.5: top view.

Fig. 7.5: Simulational set-up: side view and top view.

In our model, shown in Fig. 7.5, the two channels can be considered as two columns
of light sources. Each column of light source is composed of N glare points. The 3D
position of each glare point is defined. We assume the electric field amplitude emit-
ted by each glare point is equal to unity. By using MATLAB, we then simulated N
glare points for each column of light sources. The two columns are located along the
y-direction. Their position in (x, z) are at (−s/2, 0) and (+s/2, 0).

Fig. 7.6: Top view of pipe with indicated parameters.
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The physical parameters of the double-core pipe are indicated in Fig. 7.6. The
outer diameter of the pipe is equal to D = 0.775mm and the inner diameter is equal
to d = 125µm. These physical parameters of double-core pipe (model:DB531Q) and
of quard-core pipe (model:FB531Q) can be found from www.vitrocom.com as shown
in Fig. 7.6. The refractive index of quartz pipe is 1.54427. The inter-distance
s = 0.25mm.

Fig. 7.7: Top view configuration of the channels with and without rotation.

The pipe’s core can be rotated around the y-axis. When the cores are rotated, the
axial distances of the two cores zp as indicated in Fig. 7.5’s top view are not equal.
The distance zp depends on the rotation angle θ as indicated in Fig. 7.7.

The total electric field emitted from two columns of point sources can be written as

G0(x, y, z) =
N
∑

n

Anδ(x− an, y − bn, z − cn) exp(iϕn)+

N
∑

n

Anδ(x− dn, y − en, z − fn) exp(iφn),

(7.1)

where An is the electric field amplitude emitted by each point source which is as-
sumed to be 1. δ is the Dirac delta function. ϕn and φn are the initial phases of
each point in the first and second columns, respectively. The 3D positions of each
point in the first column are (an, bn, cn) and the positions of each point in the second
column are (dn, en, fn). The first term of Eq.(7.1) represents the first column of point
sources and the second term in Eq.(7.1) represents the second column of point sources.

When light passes through these channels, light from the first channel and from the
second channel will interfere. When the light is constructively superposed, the bright
fringe is observed on the screen. The dark fringes will be observed when destructive
interferences occurs. The interference pattern changes (the distance between the two
bright fringes changes) due to the inter-distance s between the two channels.



100 7.1. Mathematical analysis for multi-core micropipes

Fig. 7.8: Matrix system in the simulation.

Looking at Fig. 7.7, when there is no rotation around the y-axis , △ is equal to
the inter-distance (s), △ = s, as in Fig. 7.7 (left hand side). To make the rotation
around the y-axis, we define the rotation angle, θ, as in Fig. 7.7. The smaller △, the
bigger the distance between two consecutive bright fringes that will be observed. Fig.
7.8 presents the system considered in the simulation. Here, we generate two sources
which are located at z + zp far from the CCD sensor.

In the simulation, we use an ABCD matrix to describe the system. The matrix,
M , consists of three matricesMzp1,2 ,M

x,y
R , andMz. The matrixMzp1,2 can be written as

Mzp1,2 =

(

1 zp1,2/n1

0 1

)

, (7.2)

where n1 is the refractive index of the pipe (n1 = 1.54427). The matrix Mx,y
R is:

Mx,y
R =

(

1 0
(n1−n0)
Rx,y 1

)

, (7.3)

where n0 is the refractive index of the air (n0 = 1) and Rx,y is the radius of curvature
of the pipe in the x- and y-direction. Here, we set the pipe along the y-axis. Therefore,
the radius of curvature of the pipe is infinity along the y-direction and is −D/2 along
the x-direction.

The matrix, Mz, can be written as

Mz =

(

1 z/n0

0 1

)

(7.4)

The total matrix, M , can be written as

Mx,y =Mz ×Mx,y
R ×Mzp1,2 (7.5)

or

M =

(

Ax,y Bx,y

Cx,y Dx,y

)

(7.6)

When the two channels are rotated, the distance zp changes from the initial value
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(zp = R, where R is the radius of outer cylinder), as seen in Fig. 7.7. Assume that the
two channels located along the y-axis and placed on the x-axis at the positiosn x = a1
and x = a2, respectively, as in Fig. 7.9.

Fig. 7.9: Side view of the two channels. |a1−a2| = s when there is no rotation and |a1−a2| =
△ with rotation.

By using the generalized Huygens-Fresnel integral, the field amplitude in the plane
where the CCD sensor is located is

G(x′, y′, z′) =
exp

(

i2π
λ
E1

)

iλBx,y

∫

R2

G0(x, y, z) exp

[

i
π

λBx

(

Axx
2 − 2x′x+Dxx

′2
)

]

exp

[

i
π

λBy

(

Ayy
2 − 2y′y +Dyy

′2
)

]

dx dy

(7.7)

where E1 is an optical path which is equal to E1 = zp1,2+z. G0 is the field amplitude of
the two columns of light sources, defined in Eq.(7.1). x′, y′, and z′ are the coordinates
in the CCD plane. Ax,y, Bx,y, and Dx,y are the matrix elements of the transfer matrix
M .

For two columns of light sources as indicated in Fig. 7.9, the field amplitude at
the CCD sensor can be written as

G ∝ γ1 exp

[

i
π

λBx

(

Axa
2
1 − 2a1x

′ +Dxx
′2
)

]

+ γ2 exp

[

i
π

λBx

(

Axa
2
2 − 2a2x

′ +Dxx
′2
)

+ iϕ0

]

(7.8)

where ϕ0 is the initial phase different between the two columns of light sources (ϕ0 =
ϕn − φn).

The intensity is I = G∗G, where the asterisk means the complex conjugate. As-
sume that γ1 = γ2 = 1. Therefore, the intensity is

I ∝ 1 + 1 + ei[
π

λBx
2(a1−a2)x′+ϕ0] + e−i[ π

λBx
2(a1−a2)x′+ϕ0]

∝ 1 + 1 + 2 cos

[

π

λBx

2(a1 − a2)x
′ + ϕ0

]

,
(7.9)

where the third term represents the interference term. The phase difference △ϕ of the
intensity distribution is
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△ϕ =
π

λBx

2(a1 − a2)x
′ + ϕ0 (7.10)

which is equal to 2π
λ
δ (δ =path difference) and for the constructive interference the

path different could differ by the full number of wavelength (δ = mλ), where m =
0,±1,±2,±3, ... . Let the initial phase difference ϕ0 = 0 (in the case of no rotation)
and the spacing between the two bright fringes be δx. If x′ = δx (the distance between
the two successive bright fringes), the phase difference is 2π. Then

π

λBx

2(a1 − a2)δx = 2π. (7.11)

The spacing between the two bright fringes, δx, becomes

δx =
λBx

(a1 − a2)
(7.12)

Remember that the △ = a1 − a2. According to the rotation in Fig. 7.7, when the two
channels are rotated, △ is also changed as:

△ = s cos θ (7.13)

Therefore, the fringes’ space, δx is:

δx =
λBx

s cos θ
(7.14)

The inverse of the fringes’ space is the spatial frequency of the interference fringes.
Thus the spatial frequency of the interference fringes is

F =
1

δx
=
s cos θ

λBx

(7.15)

which depends on the orientation of the channels. Bx is the matrix element of the
matrix M .

The mathematical development for the intensity distribution of the quard-core
pipe is developed in the same way as for the double-core pipe. However, the system is
more complex than in the case of double-core pipe. The geometry of the quard-core
pipe is shown in Fig. 7.10.

The inner diameter of the channel is d = 125µm and the outer diameter of the pipe
is D = 0.775mm. The channels are separated with the distance s = 0.25mm. When
the four channels are rotated with the angle θ, the △ is changed. In this case, there
are six values of △: △1,△2,△3, ...,△6 as indicated in Fig. 7.12, in which the channels
are number as 1, 2, 3, and 4.

The distance △1 is the distance between channel 1 and 2. △2 is the distance be-
tween channel 1 and 4. △3 is the distance between channel 1 and 3. △4 is the distance
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Fig. 7.10: Top view of the quard-core pipe indicating its parameters.

Fig. 7.11: Top view of the quard-core pipe with and without rotation.

between channel 2 and 3. △5 is the distance between channel 3 and 4. △6 is the
distance between channel 2 and 4.

Fig. 7.12: Four channels with rotation angle θ and their interdistances △1,△2,△3, and △4.

However, we have △1 = △5 and △2 = △4. The interdistances between the chan-
nels are defined as the following relations:

△1 = s cos θ, △2 = s sin θ, △3 =
√
2 s
∣

∣

∣sin
(π

4
+ θ
)∣

∣

∣

△4 = s sin θ, △5 = s cos θ, △6 =
√
2 s
∣

∣

∣sin
(π

4
− θ
)∣

∣

∣ (7.16)

From the spatial frequency of the double-core pipe in Eq.(7.15), the spatial fre-
quencies F1, F2, F3, ..., F6 are:
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F1 =
△1

λ B1

F2 =
△2

λ B2

F3 =
△3

λ B3

F4 =
△4

λ B4

F5 =
△5

λ B5

F6 =
△6

λ B6

(7.17)

The parameters B1, B2, B3, and B4 depend on the distances zp1, zp2, zp3, zp4 along the
z-axis between each channel 1, 2, 3, and 4, respectively, to the curvature of the pipe.
△1 to △6 are defined in Eq.(7.16).

B1 relates to channel 1 and channel 2, and the distance zp between these two
channels is the average between zp1 and zp2. B2 relates to channel 1 and channel 4,
and the distance zp between these two channels is the average between zp1 and zp4.
B3 relates to channel 1 and channel 3, and the distance zp between these two channels
is the average between zp1 and zp3. B4 relates to channel 2 and channel 3, and the
distance zp between these two channels is the average between zp2 and zp3. B5 relates
to channel 3 and channel 4, and the distance zp between these two channels is the
average between zp3 and zp4. B6 relates to channe l2 and channel 4, and the distance
zp between these two channels is the average between zp2 and zp4. For all description,
see Fig. 7.13.

Fig. 7.13: The configuration showing △1, ...,△6 and zp1, ..., zp6.

7.2 Experimental Results

7.2.1 Double-core pipe

In this section, we present the possiblility of our simulation predicting the interfer-
ogram created by two channels inside a cylindrical geometry (pipe). In the double-core
pipe experiment (model: DB 531Q), the experimental set-up is presented in Fig. 7.2.
All parameters used in the experiment are indicated in the caption of Fig. 7.2. The
configuration set-up in this study is the same as in the previous study. The difference
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is in replacing a droplet with inclusions by a double-core pipe. This pipe can be ro-
tated around the y-axis as already discussed in the previous section. The pipe is made
from quartz with refractive index n1 = 1.54427. Light from a light source is used to
illuminate the pipe. A CCD sensor is located at distance z from the pipe.

(a) (b)

Fig. 7.14: Interference fringes without rotation from experiment (a), and simulation (b).

In the CCD sensor plane, the interference pattern is observed as bright and dark
strips. The experimental interference pattern is shown in Fig. 7.14(a) and the sim-
ulated interference pattern is shown in Fig. 7.14(b). The rotation angle in this case
is θ = 0π(or0◦). Two channels align along the x-axis (no rotation). The analysis of
interferograms can be done by plotting the intensity profile of these inferference pat-
terns along the horizontal axis. The intensity profile along the horizontal axis of the
experiment and the simulation are presented in Fig. 7.15.

Fig. 7.15: Intensity profile of the interference fringes from simulation (red) and from exper-
iment (blue) of Fig. 7.14.
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To analyse the intensity profile of the interference pattern, the one-dimensional
fast Fourier transform (1D-FFT) is applied to transform the intensity distribution in
the space domain to the frequency domain. By using 1D-FFT, we can extract the
frequencies forming the interference patterns. The frequency domains of the intensity
distribution in the simulation and in the experiment are presented in Fig. 7.16.

Fig. 7.16: FFT of the intensity distribution in simulation (red) and experiment (blue) when
the two channels have no rotation (θ = 0◦).

From Fig. 7.16, there are three peaks. The central peak at zero comes from the
background signal. The two peaks which are sysmetric around the central peak refer
to the fringe’s frequency. The distance from the two small peaks to the central peak
is the value of the fringe’s frequency. The fringe’s frequency from the experiment is
8523m−1 whereas the calculated frequency is 8536m−1 as shown in Fig. 7.16. The
results in Fig. 7.16 for the simulation and experiment agree well.

(a) (b)

Fig. 7.17: Interference patterns with rotation angle θ = 12.6◦ from the experiment (a) and
from the simulation (b).
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For the rotation angle θ = 0.07π(12.6◦), the experimented and the simulated inter-
ference patterns are shown in Fig. 7.17 (a) and (b), respectively. The intensity profiles
are obtained (not presented here). By using 1D fast Fourier transform (1D-FFT), their
intensity spectrum is as shown in Fig. 7.18.

Fig. 7.18: FFT of the intensity distribution in simulation (red) and experiment (blue) with
rotation angle θ = 12.6◦.

From the 1D-FFT in Fig. 7.18, there are three lobes. The central lobe at the origin
comes from the background signal and the two lobes are symmetric to each other. In
this case, the spatial frequency of the fringes with rotation angle θ = 12.6◦ is 8239m−1

(from the experiment). The calculated frequency is 8328m−1. From the FFT in Fig.
7.18, the peaks of the simulation (in red) and experiment (in blue) are located at the
same positions.

(a) (b)

Fig. 7.19: Interference patterns of double-core pipe with θ = 30.6◦ from experiment (a) and
simulation (b).



108 7.2. Experimental results

For the rotation angle equal to 0.17π(30.6◦), the interference fringes are shown in
Fig. 7.19. Fig. 7.19(a) shows the interference pattern from the experiment and Fig.
7.19(b) shows the interference pattern from the simulation.

Fig. 7.20: FFT of the intensity distribution of double-core pipe with θ = 30.6◦.

The intensity profiles along the horizontal axis of the simulated and experimented
fringes are obtained. After using 1D-FFT, the spectrum of the intensity distribution is
as presented in Fig. 7.20. From the spectrum in Fig. 7.20, the spatial frequency of the
interference pattern is 7382m−1 whereas the calculated spectrum is equal to 7353m−1.
The result from the experiment agrees well with the simulation.

For the rotation angle θ = 0.25π(45◦), the interference fringes are shown in Fig.
7.21 both experimentally (a) and numerically (b).

(a) (b)

Fig. 7.21: Interference fringes of two channels with θ = 45◦ in experiment (a) and simulation
(b).
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The intensity profiles are plotted for both the experiment and simulation. The
spectrum of the intensity profiles of the interference fringes is analysed by 1D-FFT.
The result is presented in Fig. 7.22. The spatial frequency is equal to 6250m−1 in Fig.
7.22 whereas the calculated spatial frequency is 6034m−1.

Fig. 7.22: FFT of the intensity distribution of double-core pipe with rotation angle θ = 45◦.

For the rotation angle θ = 0.4π(72◦), the interference fringes are shown in Fig.
7.23 both experimentally (a) and numerically (b).

(a) (b)

Fig. 7.23: (a) The experimented and (b) simulated interference fringes with rotation angle
θ = 72◦.

The intensity profiles are plotted for both cases as shown in Fig. 7.24. The spectrum
of the intensity profiles of the interference fringes is analysed by 1D-FFT. The result
is presented in Fig. 7.25.The spatial frequency is equal to 2841m−1. The calculated
spatial frequency according to Eq.(7.15) is equal to 2640m−1.
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Fig. 7.24: Intensity profile of the interference fringes in Fig.7.23 of simulation (red) and of
experiment (blue).

Fig. 7.25: FFT of the intensity profile in Fig. 7.24.

When the rotation angle increases to π/2, the fringes’ frequency is not the lowest.
Sub-fringes are observed inside each strip of bright fringes. This effect may come from
the interference of higher waves (more than two waves). At a 90◦ of rotation angle,
the intensity is very low due to light scattered from the first pipe and there is a small
amount of light that can pass through the second pipe. Fig. 7.26 presents the tube
with rotation angle θ = 90◦. The red arrow represents the direction of the incident
light source.
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Fig. 7.26: Double-core configuration when rotation angle θ = 90◦.

The relationship between the spatial frequency and rotation angle of the double-
core pipe is shown in Fig. 7.27 from FFT of the experimental results (blue), from the
simulation (red), and from Eq.(7.15) (black). We can see that we are able to determine
the distance between the two cores and their orientation.

Fig. 7.27: Relationship between rotation angle and fringe’s frequency.

The following table presents the fringe’s frequency and fringe’s space at different
rotation angles from the experiment and simulation.

Angle(θ)
Experiment Simulation

F (m−1) δx = 1
F
(m) F (m−1) δx = 1

F
(m)

0◦ 8523 1.173× 10−4 8536 1.172× 10−4

12.6◦ 8239 1.214× 10−4 8328 1.201× 10−4

30.6◦ 7382 1.355× 10−4 7353 1.360× 10−4

45◦ 6250 1.600× 10−4 6034 1.657× 10−4

72◦ 2841 3.520× 10−4 2640 3.788× 10−4

Tab. 7.1: Data derived from different orientation angles of pipe.

From the intensity spectrum, the fringe frequency is obtained and the fringe spac-
ing is the inverse of fringe frequency which is indicated in the Tab. 7.1. From the
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previous section, we already know that the fringe spacing (δx) depends on the inter-
distance s and the rotation angle θ, as in Eq.(7.14).

When the double-core micropipe makes no rotation, the distances from the first
and the second channel to the curvature of pipe, zp1 and zp2, are equal. However,
when the double-core pipe rotates with some angle, the distances zp1 and zp2 are dif-
ferent, as presented in Fig. 7.7. The following table shows the calculated distances
zp1 and zp2 with different rotation angles. The calibrated value of the interdistance is
s = 0.2583mm. The results in Tab. 7.2 match the calibrated value well.

Angle(θ) zp1(mm) zp2(mm) B1 B2 s(mm)

0◦ 0.3875 0.3875 0.0471 0.0471 0.2578

12.6◦ 0.3593 0.4157 0.049 0.0453 0.2555

30.6◦ 0.3218 0.4532 0.0514 0.0428 0.2592

45◦ 0.2962 0.4788 0.0531 0.0412 0.2675

72◦ 0.2647 0.5103 0.0551 0.0391 0.2779

Tab. 7.2: Distances zp1 and zp2, matrix elements B1 and B2, and interdistance s presented
according to the orientation of pipe.

Fig. 7.28: Experimental set-up: top view and side view. The experimental parameters are
e1 = 46.05mm, f1 = 46.05mm, e2 = 300.57mm, f2 = 5.5mm, e3 = 13.20mm, z =
63.40mm.

7.2.2 Quard-core pipe

For the experiment of quard-core pipe (model: FB 531Q), the experimental set-
up is presented in Fig. 7.28. All parameters used in the experiment are indicated
in the caption of Fig. 7.28. The configuration set-up is the same as in the case of
the double-core pipe. The incident light source illuminates a quard-core pipe. The
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quard-core pipe is made from the same material as the double-core pipe (quartz) with
its refractive index n1 = 1.54427. A CCD sensor is located at distance z from the
quard-core pipe.

In the CCD plane, the interference pattern is observed as shown in Fig. 7.29(a)
for the experiment and the simulated interference pattern is shown in Fig. 7.29(b).

(a) (b)

Fig. 7.29: Experimental interference pattern of quard-core pipe (a) and numerical interfer-
ence pattern of quard-core pipe (b) without rotation.

The rotation angle in this case is θ = 0π, 0.51π(or0◦, 91.8◦) . The intensity profiles
along the horizontal axis of the experiment and simulation are presented in Fig. 7.30.

Fig. 7.30: Intensity profile of the interference fringes of simulation (red) and of experiment
(blue).

To analyse the intensity profiles of the interference pattern, the one-dimensional
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fast Fourier transform (1D-FFT) is applied to transform the intensity distribution in
the space domain to the frequency domain. By using 1D-FFT, we can extract the
spatial frequencies forming the interference patterns. The intensity spectrum in the
simulation (in red) and in the experiment (in blue) are presented in Fig. 7.31.

Fig. 7.31: FFT of the intensity distribution in simulation (red) and experiment (blue).

From the intensity spectrum, there are 9 peaks. The central peak comes from the
background signal. The eight peaks on the two sides of the central peak are sym-
metric. One side of the central peak is considered. From the simulation, there are
4 frequencies: 10000m−1, 8636m−1, 7045m−1, 1136m−1. From the experimental spec-
trum in Fig. 7.31, there are the following frequencies: 10230m−1, 8409m−1, 6818m−1,
and 1364m−1. The fringes’ frequencies of the simulation and experiment agree well.

Experiment Simulation

F (m−1) δx = 1
F
(m) F (m−1) δx = 1

F
(m)

F1 = 10230 9.775× 10−5 10000 1.000× 10−4

F2 = 8409 1.189× 10−4 8636 1.158× 10−4

F3 = 6818 1.467× 10−4 7045 1.419× 10−4

F4 = 1364 7.331× 10−4 1136 8.803× 10−4

Tab. 7.3: Values of fringe frequency F and fringe spacing δx.

After the spatial frequency of the interference fringe is obtained, the space between
fringes is derived from the inversion of the frequency as presented in Tab. 7.3.
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Let us consider the spectrum in Fig. 7.31, where the highest frequency (peak1)
is the result of the interference between channel 1 and channel 2. Peak3 comes from
the interference between channel 3 and channel 4. The intermediate peak (peak2)
between peak 1 and peak 2 has two consecutive peaks which are closed together. This
intermediate peak (peak2) comes from crossed interference between channel 1 and 3
and channel 2 and 4. Peak4 relates to the interference between channel 1 and 4 and
channel 2 and 3.

From the relation in the previous section, Eq.(7.16) and Eq.(7.17), we then obtain
the interdistance between cores s. Peak1 in Fig. 7.31 corresponds to the interdistance
between channel 1 and channel 2 s1 = 0.256mm. Peak2 corresponds to the distance
between channel 1 and channel 3 or channel 2 and channel 4 s2 = 0.242mm. Peak3
corresponds to the distance between channel 3 and channel 4 s3 = 0.210mm. Peak4
corresponds to the distance between channel 1 and channel 4 or channel 2 and channel
3 s4 = 0.048mm. The calibrated value of s is s = 0.25mm. The value of s1 is more
than the values of s2, s3, and s4 because the interdistance s1 comes from the interfer-
ence between channel 1 and 2 and these two columns are closer to the CCD sensor.
Channel 3 and 4 are further from the CCD. Thus from the CCD point of view, the
distance s1 looks slightly greater than the others.

For the other rotation angles of quard-core pipe, the interference patterns are not
the same as in the simulation because of various factors. The possible factors are:
the precision in rotation is not accurate enough, so the interference pattern that we
observed quite close to the case of rotation angle 0π; the alignement of the pipe is not
in the vertical direction or its alignement makes some angle to the vertical axis; the
effect of the cylindrical shape of the inner cores.

7.3 Conclusions

In this chapter, we show the possiblility of our model describing the interferogram
introduced by a double- or quard-core pipe. With our model, we consider the cores of
the pipe as extended light sources. Each extended light source is composed of many
point sources. For mathematical description, the generalized Huygens-Fresnel integral
with ABCD matrix formalism is proposed to describe the propagation of light through
a multi-core pipe. The experimental and numerical results of the interference pattern
of multi-core pipes are studied. For double-core pipe, light from two extended light
sources interfered and caused the interference pattern observed in the CCD sensor.
For quard-core pipe, light from the four extended light sources interfered and the
interference pattern could be observed in the CCD camera.

In this work, the relation between fringes’ frequency and the interdistance length
is developed for both two and four channels. The interference patterns from the
experiment and simulation of the rotated pipe are compared. The calculated and
experimental spatial frequencies correspond to each other.
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8. CONCLUSIONS AND PERSPECTIVES

For particle detection, many techniques have been developped such as particle
imaging velocimetry (PIV), interferometric laser imaging for droplet sizing (ILIDS),
Rainbow, laser Doppler anemometry (LDA), etc. However, these techniques cannot
give three-dimensional information such as the 3D positions of the particle. The only
technique that is able to give three-dimentional information is holography. In this the-
sis, the simplest configuration of holography, called digital in-line holography (DIH),
is used to characterize the inclusions inside a droplet. The main advantage of this
configuration is the simplification of the set-up.

In this work, we have been developed the DIH for characterization of inclusions
inside a droplet. The generalized Huygens-Fresnel integral represented by an ABCD
matrix is used to describe the propagation of light through the considered optical
system. For the digital holography, a hologram is recorded by a CCD sensor and is
reconstructed digitally by 2D fractional Fourier transform (2D-FRFT). In the best
reconstruction plane, the image of the particle is recovered. This optimal plane of re-
construction corresponds to the optimal fractional order in 2D-FRFT which depends
on the longitudinal location of the particle.

The DIH developed is used to characterize inclusions in a flow. In this previous
model, the inclusions are considered as opaque disks, while the shape of the container
(droplet or channel) is considered as a curved interface. This point of view allows us
to take into account the simple aberration as astigmatism.

Following this direction, in the first part of chapter 3 of this thesis, we proposed a
new model to describe the transmission function of opaque and transparent inclusions
by Zernike polynomials. Thus, it is possible to describe a hologram in cases where an
object (particle, bubble), as an inclusion or not, can be opaque or transparent, i.e.
fully absorbed or partially absorbed.

The second part of chapter 3 described the droplet as a transparent object with
different approximations: (i) opaque, (ii) quadratic phase, and (iii) quasi-spherical
phase approximation. All three approximations are compared with Lorenz-Mie theory
(LMT) and good results are obtained. The hologram and reconstruction image of the
transparent inclusion inside a droplet are presented at the end of this chapter. In this
study, we can interpret a transparent inclusion inside a droplet as a quasi-spherical
approximation. In chapter 3, the size and three-dimensional positions of the opaque
and transparent object can be characterized.

For a long exposure time experiment, the 3D positions in a droplet of the inclu-
sions, their transverse velocity, and their trajectories inside the droplet are obtained.
Another method to track the particle’s trajectory is to take a series of hologram images
and reconstruct them. This frame by frame method is not practical because it takes
a long time to process each hologram. Therefore, we proposed the long exposure time
method for tracking the trajectories of particles. The interference pattern recorded by
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a CCD camera with a long exposure time is spread and blurred along the direction
of movement of that particle. Blurring in the hologram image affects the resolution
of the reconstructed image. Therefore, better resolution is necessary. A possible way
to improve the resolution of the reconstructed image of inclusions is by changing the
resolution of the CCD camera. If the shutter time of the camera is very long, longer
trajectories of the inclusions can be observed. However, when the exposure time in-
creases, the SNR value is very low. For longer trajectories, the movement in three
dimentions can be visualized and the three components of velocity of the inclusion can
be obtained. With this technique, the behaviour of the inclusions is observed inside a
suspended droplet.

The model describing the arbitrary/irregular shape of an opaque and constant
phase object can be used as a simulational model in the case of aggregated opaque
and/or phase inclusions when they are inside a droplet or in the case of an ice crystal.
In this study, the intensity profiles of the reconstructed opaque and phase inclusions
are different. For the opaque inclusion, the lowest reconstructed intensity profile is at
the centre of the profile, whereas the reconstructed intensity profile of phase inclusion
is not lowest at the centre. From the difference of the reconstructed intensity profiles
we can distinguish the opaque and phase inclusions when they are mixed together.
Further experiments on aggregated opaque and phase inclusions inside a droplet have
to be performed to confirm the simulation.

In case of non-spherical inclusions in a non-spherical or non-elliptical shell, we pro-
posed interferometric imaging for analysis of the interference patterns. In this work,
micro-pipes with two and four hollow channels are investigated. The channels are
considered as solid cylindrical inclusions inside a cylindrical geometry. In the simula-
tion, we generated two and four columns of point sources from the Dirac distribution
which represented two and four channels inside a pipe. To describe the propagation of
light through this system, the generalized Huygens-Fresnel integral based on ABCD
matrix formalism is used. Then we can simulate the interferogram at the CCD plane.
By plotting the intensity profiles along the horizontal axis of the interferogram and
transforming the intensity distribution by 1D-FFT, the spatial fringe’s frequency is
analysed. When we know the resultant frequency, we then know the space between
the two/four channels and their orientation in the pipe.

The aim of all of our studies is to characterize the inclusions inside a droplet. The
droplet diameter in our studies is on millimetric scale and the inclusion diameter is var-
ied from 5− 20µm. However, we still cannot characterize inclusions smaller than 5µm
with our configuration set-up experimentally because we cannot separate the recon-
structed particle from the background noise of the image. Therefore, the experiments
have to be improved in order to increase the image quality or to get rid of background
noise. In other word, the increasing signal-to-noise ratio (SNR) is very important to
the image quality. The characterization of inclusions on a nanometric scale is also of
interesting for future work. If we can fix the axial position of the particles in the drop
experimentally, then we can compare the optimal fractional order obtained from the
experiment and from the theoretical values. To fix the axial position of the particles
in the droplet, an optical tweezer may be used to hold the particle in position. In the
more genreal case, for smaller size droplets, the evaporation behaviour of the droplet
should be considered. Moreover, the development of digital holography for measuring
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the refractive index of the inclusions is very interesting.
To make the system close to realistic, we need to use a falling droplet instead of a

suspended droplet. The motions of the inclusions inside a droplet will follow the flow
inside the droplet when the droplet falls. There is no capillary effect introduced to
the motions of inclusions as in the suspended droplet. The experimental set-up can
be the same as we have used in this work (in-line configuration). The difference is in
the system for falling droplets, the droplets can be monodisperse as line of droplets
or polydisperse as spray of droplets. Moreover, the different particles can be charac-
terized such as biological particles, ice crystal formation, and nano-particles inside a
micro-bubble.
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Appendix A

PROPAGATION BEFORE THE OBJECT’S PLANE

A.1 Matrix transfer of the system before the particle plane

For the system of droplet with inclusion as presented in the setup in Fig. A.1, the
matrix transfer of the system before the particle plane, Mx,y

1 , is:

Mx,y
1 =Mz1 ×Mx,y

R1
×Me3 ×Mx,y

f2
×Me2 ×Mx,y

f1
×Me1 (A.1)

Fig. A.1: The configuration of numerical and experimental setup.

Each matrices are defined by:

Me1 =

(

1 e1/n0

0 1

)

Mx,y
f1

=

(

1 0
−1/fx,y

1 1

)

Me2 =

(

1 e2/n0

0 1

)

Mx,y
f2

=

(

1 0
−1/fx,y

2 1

)

Me3 =

(

1 e3/n0

0 1

)

Mx,y
R1

=

(

1 0
n0−n1

Rx,y
1

1

)

(A.2)

Mz1 =

(

1 z1/n1

0 1

)

where n0 is the refractive index of the air and n1 is the refractive index of water. Rx,y
1

is the radius of curvature of the entrance side of the droplet. Other parameters are
defined in Fig. A.1.
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A.2 The complex amplitude at object plane

If the incident source is a gaussian light source, G0(µ, ν, z) can be written as

G0(µ, ν, z) = exp

(

−µ
2 + ν2

ω2
0

)

, (A.3)

where (µ, ν) is the plane coordinates at the incident plane. ω0 is the waist of the
gaussian incident beam and R(z) is the radius of curvature of the Gaussian beam and
is defined as in Eq.(2.11). The complex amplitude at the object plane can be found
from Fresnel integral as shown in the following equation:

G1(ξ, η) =
exp(i2π

λ
E1)

iλ
√

Bx
1B

y
1

∫

R2

G0 exp

(

−µ
2 + ν2

ω2
0

)

exp

(

i
π

λBx
1

[Ax
1µ

2 − 2ξµ+Dx
1ξ

2]

)

exp

(

i
π

λBy
1

[Ay
1ν

2 − 2ην +Dy
1η

2]

)

dµ dν

(A.4)

Substitute Eq.(A.3) into Eq.(A.4), the field amplitude in the object plane is:

G1(ξ, η) =
exp(i2π

λ
E1)

iλ
√

Bx
1B

y
1

G0 exp

[

i
π

λ

(

Dx
1

Bx
1

ξ2 +
Dy

1

By
1

η2
)]∫
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exp

(

−µ
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ω2
0

)

exp

(

i
π

λBx
1
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2 − 2ξµ]

)

exp

(

i
π

λBy
1

[Ay
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2 − 2ην]

)

dµ dν

(A.5)

Then regroup the parameters µ and ν together. The Eq.(A.5) becomes:

G1(ξ, η) =
exp(i2π

λ
E1)

iλ
√

Bx
1B

y
1

G0 exp
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i
π

λ
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(A.6)

Use the exponential integral formular in this form:

∫ +∞

−∞

e−ax2

e−2bxdx =

√

π

a
e

b2

a (A.7)
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Then integrate Eq.(A.6) over µ and ν. Therefore, G1 is

G1(ξ, η) =
exp(i2π

λ
E1)
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Rearrange the Eq.(A.8) to

G1(ξ, η) =
exp(i2π
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with

Kx,y
1 =





πω2
0

1− i
πω2

0

λ

Ax,y
1
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1




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(A.10)

Then consider the denominators of the exponential term in Eq.(A.9). Multiply the

term in exponential by
(

1 + i
πω2

0

λ

Ax,y
1

Bx,y
1

)

both numerator and denominator. Then the

Eq.(A.9) becomes:
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λ
E1)

iλ
√
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(
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(A.11)

Rearrange again. Then we get the following equation:

G1(ξ, η) =
exp(i2π

λ
E1)

iλ
√

Bx
1B

y
1

G0K
x
1K

y
1 exp

[

−
(

ξ2

ω2
1x

+
η2

ω2
1y

)]

exp

[

−iπ
λ

(

ξ2

R1x

+
η2

R1y

)]

,

(A.12)

where ω1x,1y is

ω1x,y =

(

λBx,y
1

πω0

)

[

1 +

(

πω2
0

λ

Ax,y
1

Bx,y
1

)2
]1/2

, (A.13)
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and R1x,y is

R1x,y = − Bx,y
1

Dx,y
1 −

Ax
1

(

πω2
0

λB
x,y
1

)2

1+

(

πω2
0

λ

A
x,y
1

B
x,y
1

)2

(A.14)

where ω1x,y and R1x,y are the beam radii and the beam curvature at the object plane,
respectively.



Appendix B

PROPAGATION AFTER THE OBJECT’S PLANE

B.1 Matrix transfer of the system after the particle plane

The matrix transfer of the system between the particle plane and the CCD sensor,
Mx,y

2 , is:

Mx,y
2 =Mz ×Mx,y

R2
×Mz2 (B.1)

Each matrices are defined by:

Mz2 =

(

1 z2/n1

0 1

)

Mx,y
R2

=

(

1 0
n1−n0

Rx,y
2

1

)

Mz =

(

1 z/n0

0 1

)

(B.2)

where n0 is the refractive index of air and n1 is the refractive index of water. Rx,y
1 is

the radius of curvature of the left side of the droplet. Other parameters are defined in
Fig. A.1.

B.2 The complex amplitude at CCD plane

For the electric field recorded in the CCD sensor G2(x, y), it can be described by
Fresnel integral as shown in the following equation.

G2(x, y) =
exp(i2π

λ
E2)

iλ
√

Bx
2B

y
2

∫

R2

G1(ξ, η)[1− T (ξ, η)]
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[

i
π

λBx
2

(Ax
2ξ

2 − 2ξx+Dx
2x

2)

]

exp

[

i
π

λBy
2

(Ay
2η

2 − 2ηy +Dy
1y

2)

]

dξ dη

(B.3)

or it can be devided into two terms:

G2(x, y) =
exp(i2π

λ
E2)

iλ
√

Bx
2B

y
2

[R(x, y)−O(x, y)] ; (B.4)

where R(x, y) refers to the reference beam and O(x, y) refers to the beam scattered
from the object ( is called the object beam). The reference beam is
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R(x, y) =

∫

R2

G1(ξ, η) exp

[

i
π

λBx
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(Ax
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(B.5)

The object beam is

O(x, y) =

∫

R2

G1(ξ, η)T (ξ, η) exp

[

i
π

λBx
2

(Ax
2ξ

2 − 2ξx+Dx
2x

2)

]

exp

[

i
π

λBy
2

(Ay
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2 − 2ηy +Dy
1y

2)

]

dξ dη

(B.6)

B.2.1 Reference beam

From (B.5), substitute G1 in (A.12) into the equation. Then the reference beam is:

R(x, y) =

∫

R2

exp(i2π
λ
E1)
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√
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+
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+
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[
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]
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[

i
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2
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]
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(B.7)

Then regroup the parameters ξ and η together. The Eq.(B.7) becomes:

R(x, y) =
exp(i2π

λ
E1)

iλ
√
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y
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x
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y
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[
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(
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(B.8)

Use the exponential integral formular in Eq.(A.7). Therefore, the reference beam be-
comes:

R(x, y) =
exp(i2π

λ
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√
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(B.9)
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or

R(x, y) =
exp(i2π
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√
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(B.10)

where Kx,y
2 is

Kx,y
2 =






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(B.11)

Then consider the denominators of the exponential term in Eq.(B.10). Multiply the

term in exponential by

(

1− i
πω2

1x,y

λ
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1
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)

both numerator and denominator.

Then the Eq.(B.10) becomes:
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(B.12)

Rearrange the equation. Then

R(x, y) =
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√
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or

R(x, y) =
exp(i2π
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(B.14)

where

Nx,y =

(
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Mx,y = Dx,y
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)2 (B.16)

B.2.2 Object beam

From Eq.(B.6), the object beam is

O(x, y) =

∫
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G1(ξ, η)T (ξ, η) exp
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i
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(B.17)

Substitute G1 into Eq. (B.17).

O(x, y) =
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(B.18)

Rearrange the equation.
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Next, separate parameter ξ and η.

O(x, y) =
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(B.20)

From [60] Eq.(7), T (ξ, η) is defined as

T (ξ, η) =
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(B.21)

Then Eq.(B.20) becomes:
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(B.22)

Rearrange Eq.(B.22) again, then the object beam is
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(B.23)

The coefficient Bk is a complex number so it has both real and imaginary part, ℜ(Bk)
and ℑ(Bk), respectively. Therefore, the object beam can be written as:
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(B.24)

or
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(B.25)

Let
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and
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Then (B.25) becomes

O(x, y) =
exp(i2π

λ
E1)

iλ
√

Bx
1B

y
1

G0K
x
1K

y
1 exp

[

iπ

λ

(

Dx
2

Bx
2

x2 +
Dy

2

By
2

y2
)]

(

1− eiφ
)

N
∑

k=1

Ak

∫

ξ

exp

[

−
(

1

ω2
1xeq

+ i
π

λ

(

1

R1xeq

− Ax
2

Bx
2

))

ξ2

]

exp

(

−2i
πx

λBx
2

ξ

)

dξ

∫

η

exp

[

−
(

1

ω2
1yeq

+ i
π

λ

(

1

R1yeq

− Ay
2

By
2

))

η2

]

exp

(

−2i
πy

λBy
2

η

)

dη

(B.28)

Use the exponential integral in Eq. (A.7)
∫ +∞

−∞
e−ax2

e−2bxdx =
√

π
a
e

b2

a . The object
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beam is

O(x, y) =
exp(i2π

λ
E1)

iλ
√

Bx
1B

y
1

G0K
x
1K

y
1 exp

[

iπ

λ

(

Dx
2

Bx
2

x2 +
Dy

2

By
2

y2
)]

(

1− eiφ
)

N
∑

k=1

Ak

√

√

√

√

π

1
ω2
1xeq

+ iπ
λ

(

1
R1xeq

− Ax
2

Bx
2

) exp







(

i πx
λBx

2

)2

1
ω2
1xeq

+ iπ
λ

(

1
R1xeq

− Ax
2

Bx
2

)







√

√

√

√

π

1
ω2
1yeq

+ iπ
λ

(

1
R1yeq

− Ay
2

By
2

) exp







(

i πy
λBy

2

)2

1
ω2
1yeq

+ iπ
λ

(

1
R1yeq

− Ay
2

By
2

)







(B.29)

or

O(x, y) =
exp(i2π

λ
E1)

iλ
√

Bx
1B

y
1

G0K
x
1K

y
1 exp

[

iπ

λ

(

Dx
2

Bx
2

x2 +
Dy

2

By
2

y2
)]

(

1− eiφ
)

N
∑

k=1

Ak

K
xeq

2 K
yeq
2 exp







(

i πx
λBx

2

)2

1
ω2
1xeq

+ iπ
λ

(

1
R1xeq

− Ax
2

Bx
2

)






exp







(

i πy
λBy

2

)2

1
ω2
1yeq

+ iπ
λ

(

1
R1yeq

− Ay
2

By
2

)







(B.30)

where

K
x,yeq
2 =







π

1
ω2
1x,yeq

+ iπ
λ

(

1
R1x,yeq

− Ax,y
2

Bx,y
2

)







1/2

(B.31)

Then consider the denominators of the exponential term of the object beam in Eq.(B.30).

Multiply the term in exponential by

[

1− i
πω2

1xeq,yeq

λ

(

1
R1xeq,yeq

− Ax,y
1

Bx,y
1

)

]

both numerator

and denominator. Then the Eq.(B.30) becomes:

O(x, y) =
exp(i2π

λ
E1)

iλ
√

Bx
1B

y
1

G0K
x
1K

y
1 exp

[

iπ

λ

(

Dx
2

Bx
2

x2 +
Dy

2

By
2

y2
)]

(

1− eiφ
)

N
∑

k=1

Ak

K
xeq

2 K
yeq
2 exp







(

i πx
λBx

2

)2

ω2
1xeq

1 + i
πω2

1xeq

λ

(

1
R1xeq

− Ax
2

Bx
2

)

1− i
πω2

1xeq

λ

(

1
R1xeq

− Ax
2

Bx
2

)

1− i
πω2

1xeq

λ

(

1
R1xeq

− Ax
2

Bx
2

)







exp







(

i πy
λBy

2

)2

ω2
1yeq

1 + i
πω2

1yeq

λ

(

1
R1yeq

− Ay
2

By
2

)

1− i
πω2

1yeq

λ

(

1
R1yeq

− Ay
2

By
2

)

1− i
πω2

1yeq

λ

(

1
R1yeq

− Ay
2

By
2

)







(B.32)

After some mathematical development, the object beam is
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O(x, y) =
exp(i2π

λ
E1)

iλ
√

Bx
1B

y
1

G0K
x
1K

y
1 exp

[

iπ

λ

(

Dx
2

Bx
2

x2 +
Dy

2

By
2

y2
)]

(

1− eiφ
)

N
∑

k=1

AkK
xeq

2 K
yeq
2

exp

[

−π
λ

(

Nxeq

Bx
2

x2 +
Nyeq

By
2

y2
)]

exp

[

i
π

λ

(

Mxeq

Bx
2

x2 +
Myeq

By
2

y2
)]

,

(B.33)

where

Nx,yeq =

πω2
1x,yeq

λBx,y
2

1 +

(

πω2
1x,yeq

λBx,y
2

)2
(

Bx,y
2

Rx,y
1

− Ax,y
2

)2
, (B.34)

and

Mx,yeq =

(

πω2
1x,yeq

λBx,y
2

)2
(

Bx,y
2

Rx,y
1

− Ax,y
2

)

1 +

(

πω2
1x,yeq

λBx,y
2

)2
(

Bx,y
2

Rx,y
1

− Ax,y
2

)2
(B.35)

For the theoretical study in Chapter3, see Appendix D.1.



Appendix C

FRACTIONAL FOURIER TRANSFORMATION

Fractional Fourier transform (FRFT) is a generalized Fourier transform with n−th
power, where n is not an integer. This integral operator has various applications in
signal processing. The FRFT is the Fourier transform of a function f(x) as defined by

Fα[f ](u) =

∫

Kα(u, x)f(x)dx (C.1)

where α is non-integer number. In the other word, α is the angle of the kernel opera-
tor. Kα is the kernel function with the properties of

symmetry:

Kα(u, x) = Kα(x, u) (C.2)

inverse:

K−1
α (u, x) = K∗

α(u, x) = K−α(x, u) (C.3)

additivity:

Kα+β(u, x) =

∫

Kα(u, v)Kβ(v, x)dv (C.4)

In this work, the 2D fractional Fourier transform (2D-FRFT) of the intensity distri-
bution is defined by

Fα[I(x, y)](xa, ya) =

∫

R2

Kαx
(x, xa)Kαy

(y, ya)I(x, y) dx dy (C.5)

where I(x, y) = G2(x, y) G2(x, y) and the overbar refers to the complex conjugate.

I(x, y) = G2(x, y) G2(x, y)

=
1

λ2Bx
2B

y
2

[

|R|2 − 2ℜ[RO] + |O|2
] (C.6)

Here, the kernel operator Kαx,y
is defined by

Kαp
(p, pa) = C(αp) exp

(

iπ
p2 + p2a
s2p tanαp

)

exp

(

− i2πpap

s2p sinαp

)

(C.7)
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C(αp) is the coefficient and is defined as

C(αp) =
exp

[

−i
(

π
4
sign(sinαp)− αp

2

)]

|s2p sinαp|1/2
(C.8)

p = x, y. The parameter sp is related to CCD parameter and is defined as s2p = Np · δ2p
where Np is number of pixel and δp is pixel’s size.

To do the numerical refocusing over the object, the quadratic phase in the in-
terference term of the intensity distribution 2ℜ[RO] in Eq.(C.6) is considered. From
Eq.(B.14) and Eq.(B.33), the quadratice phase in the interference term is:

ϕ =
π

λ

[(

Mx −Dx
2

Bx
2

)

x2 +

(

My −Dy
2

By
2

)

y2
]

(C.9)

Another quadratic phase is in the kernel of 2D-FRFT and it is denoted by ϕa as in
the following equation:

ϕa = π

(

cotαx

s2x
x2 +

cotαy

s2y
y2
)

(C.10)

The reconstructed image is obtained by applying the 2D-FRFT to the intensity dis-
tribution of Eq.(C.6):

Fαx,αy
[I(x, y)] ∝ Fαx,αy

[

|R|2 + |O|2
]

− C(αx)C(αy)

∫

R2

|RO| exp[i(ϕa − ϕ)]

exp

[

−2iπ

(

xax

s2x sinαx

+
yay

s2y sinαy

)]

dx dy − C(αx)C(αy)

∫

R2

|RO|

exp[i(ϕa + ϕ)] exp

[

−2iπ

(

xax

s2x sinαx

+
yay

s2y sinαy

)]

dx dy

(C.11)

The best reconstruction plane is reached when the quadratic phase is zero. Therefore:

ϕa ± ϕ = 0 (C.12)

with the above condition, the optimal fractional order αopt
x and αopt

y corresponded to
the best hologram reconstruction are:

αopt
x = arctan

[

∓ Bx
2λ

s2x(Mx −Dx
2)

]

, αopt
y = arctan

[

∓ By
2λ

s2y(My −Dy
2)

]

(C.13)



Appendix D

FIELD AMPLITUDE IN MATRIX FORM

D.1 Field amplitude in object plane

A Gaussian beam in Eq.(A.3) can be written in matrix form as:

G0(µ, ν) = exp
(

−ρTQ−1
0 ρ
)

(D.1)

where Q0 is:

Q0 =

(

ω2
0 0
0 ω2

0

)

(D.2)

and ρ = (µ ν)T .
The transfer matrixM1 described the propagation through the system between the

incident plane and the object plane is defined as:

M1 =

(

A1 B1

C1 D1

)

(D.3)

and each matrix element in Eq.(D.3) can be written as:

A1 =

(

Ax
1 0
0 Ay

1

)

, B1 =

(

Bx
1 0
0 By

1

)

, C1 =

(

Cx
1 0
0 Cy

1

)

, D1 =

(

Dx
1 0
0 Dy

1

)

(D.4)

Recall that the field amplitude in the object plane as in Eq.(A.12) are:

G1(ξ, η) =
exp(ikE1)

iλ
√

Bx
1B

y
1

Kx
1K

y
1 exp

[

−
(

ξ2

ω2
1x

+
η2

ω2
1y

)]

exp

[

−iπ
λ

(

ξ2

R1x

+
η2

R1y

)]

(D.5)

with

Kx
1 =





πω2
0

1− i
πω2

0

λ

Ax
1

Bx
1





1/2

Ky
1 =





πω2
0

1− i
πω2

0

λ

Ay
1

By
1





1/2

(D.6)

Let consider Kx
1K

y
1 :
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Kx
1K

y
1 =





πω2
0

1− i
πω2

0

λ

Ax
1

Bx
1





1/2



πω2
0

1− i
πω2

0

λ

Ay
1

By
1





1/2

= πω2
0





1

1− i
πω2

0

λ

Ax
1

Bx
1





1/2



1

1− i
πω2

0

λ

Ay
1

By
1





1/2

= π

√

Bx
1

√

Bx
1

ω2
0

− iπ
λ
Ax

1

√

By
1

√

By
1

ω2
0

− iπ
λ
Ay

1

(D.7)

Then multiply by 1√
Bx

1
By

1

:

Kx
1K

y
1

√

Bx
1B

y
1

=
π

√

Bx
1B

y
1

√

Bx
1

√

Bx
1

ω2
0

− iπ
λ
Ax

1

√

By
1

√

By
1

ω2
0

− iπ
λ
Ay

1

= π
1

√

Bx
1

ω2
0

− iπ
λ
Ax

1

1
√

By
1

ω2
0

− iπ
λ
Ay

1

(D.8)

or it can be written in the matrix form as:

Kx
1K

y
1

√

Bx
1B

y
1

= π
1

√

det
(

B1Q
−1
0 − iπ

λ
A1

)

(D.9)

The two exponential term in Eq.(D.5) can be written in the matrix form as:

exp

[

−
(

ξ2

ω2
1x

+
η2

ω2
1y

)]

exp

[

−iπ
λ

(

ξ2

R1x

+
η2

R1y

)]

= exp

[

−π
2

λ2
rTQ−1

1 r

]

, (D.10)

where rT = (ξ η). Q−1
1 is:

Q−1
1 = B−1T

1

(

Q−1
0 − i

π

λ
B−1

1 A1

)−1

B−1
1 − i

π

λ
D1B

−1
1 , (D.11)

Therefore, the field amplitude in the object plane as in Eq.(D.5) can be written in
the matrix form as:

G1(r) =
π

iλ

exp(ikE1)
√

det
(

B1Q
−1
0 − iπ

λ
A1

)

exp

[

−π
2

λ2
rTQ−1

1 r

]

, (D.12)

and k = 2π
λ
and E1 is an optical path between the incident plane and the object plane.
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D.2 Field amplitude in CCD plane

The transfer matrix M2 described the propagation through the system between the
object plane and the CCD plane is defined as:

M2 =

(

A2 B2

C2 D2

)

(D.13)

and each matrix element in Eq.(D.13) can be written as:

A2 =

(

Ax
2 0
0 Ay

2

)

, B2 =

(

Bx
2 0
0 By

2

)

, C2 =

(

Cx
2 0
0 Cy

2

)

, D2 =

(

Dx
2 0
0 Dy

2

)

(D.14)

Recall that the field amplitude in the CCD plane as in Eq.(B.3) are:

G2(x, y) =
exp(i2π

λ
E2)

iλ
√

Bx
2B

y
2

∫

R2

G1(ξ, η)[1− T (ξ, η)]

exp

[

i
π

λBx
2

(Ax
2ξ

2 − 2ξx+Dx
2x

2)

]

exp

[

i
π

λBy
2

(Ay
2η

2 − 2ηy +Dy
1y

2)

]

dξ dη

(D.15)

or

G2(x, y) =
exp(i2π

λ
E2)

iλ
√

Bx
2B

y
2

exp

[

iπ

λ

(

Dx
2

Bx
2

x2 +
Dy

2

By
2

y2
)]∫

R2

G1(ξ, η)[1− T (ξ, η)]

exp

[

i
π

λBx
2

(Ax
2ξ

2 − 2ξx)

]

exp

[

i
π

λBy
2

(Ay
2η

2 − 2ηy)

]

dξ dη

(D.16)

In this case, the particle transmission function T (ξ, η) is replaced by p(s, θ) as defined
in the following equation:

p(s, θ) = [1− A(s, θ) exp(iΦ(s, θ))]Z0
0(s, θ)

=

[

1−
∑

n,m

γmn Z
m
n (s, θ)

]

Z0
0(s, θ)

(D.17)

Zm
n (s, θ) is Zernike polynomials which is defined as:

Zm
n (s, θ) = R|m|

n (s)eimθ, 0 ≤ s ≤ 1, 0 ≤ θ ≤ 2π (D.18)

Therefore, the field amplitude in the CCD plane as in Eq.(D.14) becomes:

G2(x, y) =
exp(i2π

λ
E2)

iλ
√

Bx
2B

y
2

exp

[

iπ

λ

(

Dx
2

Bx
2

x2 +
Dy

2

By
2

y2
)]∫

R2

G1(ξ, η)[1− p(s, θ)]

exp

[

i
π

λ
(
Ax

2

Bx
2

ξ2 +
Ay

2

By
2

η2)

]

exp

[

−i2π
λ
(
Ax

2

Bx
2

ξx+
Ay

2

By
2

ηy)

]

dξ dη

(D.19)
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The amplitude G1(ξ, η) can be written in the matrix form G1(r) as in Eq.(D.12). The
term outside the integral in Eq.(D.19) can be written as:

exp(i2π
λ
E2)

iλ
√

Bx
2B

y
2

exp

[

iπ

λ

(

Dx
2

Bx
2

x2 +
Dy

2

By
2

y2
)]

=
exp(i2π

λ
E2)

iλ
√

det (B2)
exp

[

i
π

λ
r′

T
B−1

2 D2r
′
]

, (D.20)

where the vector r′T = (x y), and E2 is an optical path between the object plane and
the CCD plane.

From Eq.(D.19), the field amplitude in the CCD plane can be written in the matrix
form as:

G2(r
′) =

exp(i2π
λ
E2)

iλ
√

det (B2)
exp

[

i
π

λ
r′

T
B−1

2 D2r
′
]

∫

R2

G1(r)[1− p(s, θ)]

exp
[

i
π

λ
rTB−1

2 A2r
]

exp

[

−i2π
λ
rTB−1

2 r

]

dr

(D.21)

Substitute G1(r) from Eq.(D.12) into Eq.(D.21), then the field G2(r
′) becomes:

G2(r
′) =

exp(i2π
λ
E2)

iλ
√

det (B2)
exp

[

i
π

λ
r′

T
B−1

2 D2r
′
] π

iλ

exp(ikE1)
√

det
(

B1Q
−1
0 − iπ

λ
A1

)

∫

R2

exp

[

−π
2

λ2
rTQ−1

1 r

]

[1− p(s, θ)] exp
[

i
π

λ
rTB−1

2 A2r
]

exp

[

−i2π
λ
rTB−1

2 r

]

dr

(D.22)

Then we will change the variable r and r′ to the dimensionless variables s = 2r/D and
s′ = 2r′/D where D is the particle’s diameter. Therefore, the Eq.(D.22) becomes

G2(s
′D/2) = − π

λ2
exp(i2π

λ
E1 + E2)

√

det (B2) det
(

B1Q
−1
0 − iA1

)

exp

[

i
πD2

4λ
s′

T
B−1

2 D2s
′

]

∫

R2

exp
[

−isTL2s
]

[1− p(s, θ)] exp
[

−i2πsTP2s
′
] D2

4
ds

(D.23)

with

L2 =
πD2

4λ
B−1

2 A2 + i

(

πD

2λ

)2

Q1, P2 =
D2

4λ
B−1

2 (D.24)

Let σ = P2s
′, then the integration in Eq.(D.24) changes to the form:

G2(DP
−1
2 σ/2) = −πD

2

4λ2
exp(i2π

λ
E1 + E2)

√

det (B2) det
(

B1Q
−1
0 − iA1

)

exp

[

i
πD2

4λ
σTS2σ

]

∫

R2

[1− p(s, θ)] exp
[

−isTL2s
]

exp
[

−i2πsTσ
]

ds

(D.25)



APPENDIX D. FIELD AMPLITUDE IN MATRIX FORM 139

where S2 = P−1T
2 D2B

−1
2 P−1

2 .

D.3 Intensity distribution in the CCD plane

The intensity distribution recorded by the CCD sensor is:

I = |G2(DP
−1
2 σ/2)|2

=
πD2

4λ2
|G(σ)−G0

0(σ) + ǫGm
n (σ)|2

∣

∣

∣

√

det (B2) det
(

B1Q
−1
0 − iπ

λ
A1

)

∣

∣

∣

2 ,
(D.26)

where G(σ) is

G(σ) =

∫

R2

exp
[

−isTL2s
]

exp
[

−i2πsTσ
]

ds (D.27)

and

Gm
n (σ) =

∑

n,m

γmn ×
∫

R2

Z0
0(s, θ)Z

m
n (s, θ) exp

[

−isTL2s
]

exp
[

−i2πsTσ
]

ds (D.28)

For an opaque particle, we have only the second term G0
0(σ) and the value of ǫ = 0.

For a phase particle, the value of epsilon ǫ = 1.
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Appendix E

CALCULATION OF G(σ) AND Gm
n (σ)

E.1 Calculation of G(σ)

From Eq.(D.27), the integral G(σ) is

G(σ) =

∫

R2

exp
[

isTL2s
]

exp
[

−i2πsTσ
]

ds (E.1)

Denoted that L2 and s are

L2 =
πD2

4λ
B−1

2 A2 + i

(

πD

2λ

)2

Q1, s =
2r

D
=

2

D

(

x
y

)

(E.2)

Then Eq.(D.1) becomes

G(σ) =

∫

x

∫

y

exp

[

i
4

D2
L2(x

2 + y2)

]

exp

[

−i4π
D

(x+ y)σ

]

dx dy (E.3)

Rearrange the variable x and y.

G(σ) =

∫

x

exp

[

i
4

D2
L2x

2

]

exp

[

−i4π
D

σx

]

dx

∫

y

exp

[

i
4

D2
L2y

2

]

exp

[

−i4π
D

σy

]

dy

(E.4)

Use the integral exponential formula :
∫

e−ax2

e−2bxdx =
√

π
a
e

b2

a . Then the Eq.(E.4)
becomes:

G(σ) =
π

−i 4
D2L2

exp

[

(

i2πσ
D

)2

−i 4
D2L2

]

exp

[

(

i2πσ
D

)2

−i 4
D2L2

]

(E.5)

or

G(σ) =
iπD2

4L2

exp

[

−iπ
2σ2

L2

]

exp

[

−iπ
2σ2

L2

]

(E.6)

The G(σ) can be written in matrix form as:

G(σ) =
iπ

√

det(L2)
exp

[

−iπ2σTL−1
2 σ

]

(E.7)
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E.2 Calculation of Gm
n (σ)

The Gm
n (σ) in Eq.(D.28) can be written as:

Gm
n (σ, ϕ) =

∑

n,m

γmn ×
∫

R2

Z0
0(s, θ)Z

m
n (s, θ) exp

[

−isTL2s
]

exp [−i2πσ · s cos(θ − ϕ)] s ds dθ

(E.8)

where σ = σ exp(iϕ) and s = s exp(iθ). To get the semi-analytical solution of this
integral, first write the exp

[

−isTL2s
]

as the following equation:

exp
[

−isTL2s
]

= exp

[

i
1

2
s2
(

L2(1,1) + L2(2,2)

)

+ i
1

2
s2
(

L2(1,1) − L2(2,2)

)

cos(2θ)

]

(E.9)

Then expand the second term of Eq.(E.9) by using β-coefficients:

exp

[

i
1

2
s2
(

L2(1,1) − L2(2,2)

)

cos(2θ)

]

=
+∞
∑

q=−∞

∞
∑

p=0

iq · β|2q|
|2q|+2p(δ) · Z

2q
|2q|+2p(s, θ) (E.10)

where δ = 1
2

(

L2(1,1) − L2(2,2)

)

. The expansion coefficients β
|2q|
|2q|+2p can be expressed

explicitly in terms of the hypergeometric functions 2F3 [57] as:

β
|2q|
|2q|+2p(δ) = d00(−1)r(2|2q|+ 4r + 1)

(

1

2
δ

)|2q|+2r

×2 F3

(

r + 1
2

|2q|+ r + 1
2

1
2

|2q|+ 2r + 3
2

|2q|+ 2r + 1
;−1

4
δ2
)

,

(E.11)

for the case of 2r − p = 0 and

β
|2q|
|2q|+2p(δ) = d10(−1)r(2|2q|+ 4r − 1)

(

1

2
δ

)|2q|+2r

×2 F3

(

r + 1
2

|2q|+ r + 1
2

3
2

|2q|+ 2r + 1 |2q|+ 2r + 1
2

;−1

4
δ2
)

,

(E.12)

for the case of 2r − p = 1. The coefficients d00 and d10 are defined as:

d00 =
(2r)!(2|2q|+ 2r)!

r!(|2q|+ r)!(2|2q|+ 4r + 1)!
(E.13)

and

d10 =
(2r)!(2|2q|+ 2r)!

r!(|2q|+ r)!(2|2q|+ 4r)!
(E.14)

substitute Eq.(E.10) into Eq.(E.8), we see that there is the product of two Zernike
polynomials as

Zm
n (s, θ) · Z2q

|2q|+2p(s, θ) (E.15)
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From [79], Eq.(40)-(44), this product is:

Zm
n (s, θ) · Z2q

|2q|+2p(s, θ) =
∑

t

Am,2q,m+2q
n,|2q|+2p,t · Z

m+2q
t (s, θ) (E.16)

This summation over is

t = max (|m+ 2q|, |m− |2q| − 2p|) (2) (n+ |2q|+ 2p) (E.17)

a(2)b is a, a+ 2, ..., b where b− a is non-negative and even. The coefficients A can be
given in terms of Wigner or Clebsch-Gordon coefficients [96], Eq.(23).

Ai,k,m
j,l,n =

∣

∣

∣
C

j
2
, l
2
,n
2

i
2
, k
2
,m
2

∣

∣

∣

2

(E.18)

The integral Eq.(E.8) is:

Gm
n (σ, ϕ) =

∑

n,m

γmn ×
∫ 1

0

∫ 2π

0

Z0
0(s, θ)Z

m
n (s, θ) exp [−i2πσ · s cos(θ − ϕ)]

exp

[

i
1

2
s2
(

L2(1,1) + L2(2,2)

)

+ i
1

2
s2
(

L2(1,1) − L2(2,2)

)

cos(2θ)

]

s ds dθ

(E.19)

Substitute Eq.(E.10) to Eq.(E.19), then

Gm
n (σ, ϕ) =

∑

n,m

γmn ×
∫ 1

0

∫ 2π

0

Z0
0(s, θ)Z

m
n (s, θ) exp [−i2πσ · s cos(θ − ϕ)]

exp

[

i
1

2
s2
(

L2(1,1) + L2(2,2)

)

] +∞
∑

q=−∞

∞
∑

p=0

iq · β|2q|
|2q|+2p(δ) · Z

2q
|2q|+2p(s, θ) s ds dθ

(E.20)

From the product of two Zernike polynomials in Eq.(E.16), the Gm
n (σ, ϕ) becomes

Gm
n (σ, ϕ) =

∑

n,m

γmn ×
∫ 1

0

∫ 2π

0

exp [−i2πσ · s cos(θ − ϕ)] exp

[

i
1

2
s2
(

L2(1,1) + L2(2,2)

)

]

+∞
∑

q=−∞

∞
∑

p=0

∑

t

Am,2q,m+2q
n,|2q|+2p,t · Z

m+2q
t (s, θ)iq · β|2q|

|2q|+2p(δ) s ds dθ

(E.21)

or
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Gm
n (σ, ϕ) =

+∞
∑

q=−∞

∞
∑

n,m,p

∑

t

γmn · Am,2q,m+2q
n,|2q|+2p,t · iq · β

|2q|
|2q|+2p(δ)

∫ 1

0

∫ 2π

0

exp [−i2πσ · s cos(θ − ϕ)] exp

[

i
1

2
s2
(

L2(1,1) + L2(2,2)

)

]

· Zm+2q
t (s, θ) s ds dθ

(E.22)

The equation in this form is similar to the Eq.(3) in [81]. From [81] in Section 2.2, the
semi-analytical solution of Gm

n (σ, ϕ) becomes

Gm
n (σ, ϕ) = 2π

+∞
∑

q=−∞

∞
∑

n,m,p

∑

t

γmn · (−i)m+q · Am,2q,m+2q
n,|2q|+2p,t · β

|2q|
|2q|+2p(δ)

· V m+2q
t (2πσ, χ) · ei(m+2q)ϕ

(E.23)

in which [81], Eq.(19-20)

V m
n (r, f) = εmexp(if) ·

∞
∑

l=1

(−2if)l−1

P
∑

j=0

υlj ·
J|m|+l+2j(r)

l(r)l
(E.24)

where

υlj = (−1)P (|m|+ l + 2j)

(

|m|+ j + l − 1
l − 1

)

·
(

j + l − 1
l − 1

)(

l − 1
P − j

)

/

(

Q+ l + j
l

)

,

(E.25)

for l = 1, 2, 3, ... and j = 0, 1, 2, ..., P . Q = n+|m|
2

and P = n−|m|
2

. For odd m < 0,
εm = −1 and otherwise εm = 1.



Appendix F

THE DEVELOPMENT OF THICKNESS FUNCTION △(r)

Let’s consider a sphere as in Fig. F.1. This figure shows ray analysis in x-z plane.

Fig. F.1: This image shows the entrance and the refracted ray of the droplet.

Point A is a point on a sphere where the ray enters to a droplet and point B is a point
where the ray leaves the droplet. Consider triangle ABO, from the law of cosines, the
thickness function can be written as

(△r)2 =
D2

4
+
D2

4
− 2

D2

4
cosα (F.1)

where α is the angle between the line OA and OB as shown in Fig. F.1. From the
Snell’s law, the incident angle and the refracted angle is related to

n sin(i) = ni sin(t), (F.2)

where i and t are incident and refracted angle, respectively. Then we know that the
refracted angle related to the incident angle and the ratio of refractive index as

sin(t) =
n

ni

sin(i). (F.3)

Consider the right triangle ABB′, then
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sin(t) =
BB′

△r
or BB′ =

n

ni

△r sin(i) (F.4)

The summation between the angle α and β is α + β = 180◦ or β = 180◦ − α. By
considering the right triangle OBB′, sine of β is

sin(β) =
BB′

D/2

BB′ =
D

2
sin(β), β = 180◦ − α

=
D

2
sin(180◦ − α) =

D

2
sin(α)

(F.5)

Then compare Eq.(F.4) and Eq.(F.5), we have:

△r =
D

2

ni

n

sin(α)

sin(i)
(F.6)

From Eq.(F.1), we already know that

(△r)2 =
D2

2
(1− cosα)

cosα = 1− 2

D2
(△r)2

(F.7)

With trigonometry identity cos2α + sin2α = 1, then Eq.(F.6) becomes:

△r =
D

2

ni

n

√
1− cos2 α

sin(i)
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D

2

ni
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√
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D

2
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D
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2

D
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1− 1
D2 (△r)2
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sin(i)

n

ni

sin(i) =
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1− 1

D2
(△r)2

)

(△r)2 = D2

[

1−
(

n
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)2

sin2 i
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(F.8)
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With cos2 i+ sin2 i = 1, the Eq.(F.8) becomes

(△r)2 = D2

[

1−
(

n

ni

)2
(

1− cos2 i
)

]

(△r)2 = D2

[

1−
(

n

ni

)2

+

(

n

ni

)2

cos2 i

] (F.9)

Fig. F.2: This image shows the incident angle with respect to parameters z and D/2

Consider the right triangle ACO in Fig. F.2, cos i is

cos i =
z

D/2
(F.10)

and

z =

√

D2

4
− x2 − y2

=
D

2

√

1− (x2 + y2)

D2/4

(F.11)

Then cos i is

cos i =

D
2

√

1− (x2+y2)
D2/4

D/2

cos2 i = 1− (x2 + y2)

D2/4

(F.12)

By recalling that r = sD/2, therefore the thickness function can be written as:

△r = D ·
(

1− c2s2
)1/2

(F.13)

where c = n/ni and 0 < c < 1.
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Appendix G

POSSIBLILITY TO ADD NOISE IN THE HOLOGRAM

From chapter 4 in section 4.5, we can add noise into the hologram. First part, we
create a grid where the noise is obtained as shown in Fig. 4.22 (a) with k1 = 2. The
scaling of this grid is then enlarged to the scaling of the hologram. MATLAB code for
this part is:

% number

N = 5;

% create a grid

[X,Y ] = meshgrid(−N : k1 : N,−N : k1 : N);

% generate grid’s value randomly

Z = rand(size(X), size(Y ));

Next, the other grid that have the same pixel number (k2 = 1) as the hologram
grid (we called hologram-like grid) is generated by

% create another grid

[XI, Y I] = meshgrid(−N : k2 : N,−N : k2 : N);

Unfortunately, the pixel sizes of both grids (noise grid and hologram-like grid) are
not equal (noise grid has pixel size equals to 2 and hologram-like grid has pixel size
equals to 1). We thus realize an interpolation or resampling of the noise grid in the
hologram-like grid. The interpolation process is

% 2D interpolate the 1st grid to the 2nd grid

ZI = interp2(X,Y, Z,XI, Y I);

Now Fig. 4.22 (b) is the generated hologram-like grid with the same pixel number
as the hologram. Fig. 4.23 is the resulting noise grid that derived from the interpola-
tion between Fig. 4.22 (a) and (b). Finally, in the hologram, noise can be added into
our simulated hologram as presented in Fig. 4.25(c).
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M. Janssen, “Digital in-line holography assessment for general phase and opaque
particle”, Opt. Commun, 326, 160-165 (2014)

[106] E. Wolf, “Three-dimensional structure determination of semi-transparent objects
from holographic data”, Opt. Commun, 1, 153-156 (1969)

[107] E. Stoykova, F. Yaras, A. O. Yontem, H. Kang, L. Onural, P. Hamel, Y.
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