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Résumé

Introduction

Grâce aux avancées technologiques dans le domaine des réseaux cellulaires et des équipe-

ments mobiles, le nombre d’applications multimédia à haut débit dans les réseaux mobiles

ne cesse d’augmenter. La quantité de trafic dans ces réseaux a augmenté de 70 pour-

cent en 2012 [Cis13] et de 81 pourcent en 2013 [Cis14]. Conformément à ce taux de

croissance, on prévoit que le trafic de données dans les réseaux mobiles en 2017 sera

13 fois plus important que celui en 2012. Pour satisfaire aux besoins des équipements

mobiles, les réseaux LTE/LTE-A ont été introduits afin d’améliorer l’efficacité spectrale

et d’augmenter les débits des utilisateurs.

Vu l’augmentation sans cesse des demandes de trafic dans les réseaux mobiles, l’améliora-

tion de la capacité du réseau s’avère un avantage, voire une nécessité. Ceci peut être

achevé en déployant plusieurs petites cellules (ex : femto-cellules, micro-cellules, pico-

cellules), utilisant le même spectre de fréquences, au sein de la zone de couverture

des macro-cellules. Le déploiement dense améliore l’efficacité spectrale, mais aggrave

le problème d’interférences intercellulaires. Elles sont dues à l’utilisation simultanée

des ressources radio dans deux ou plusieurs cellules adjacentes, et elles ont des con-

séquences néfastes sur la performance du réseau et sur les débits des utilisateurs. D’où

l’intérêt de l’utilisation des techniques de coordination des interférences intercellulaires,

dont l’objectif est atteint en modifiant l’allocation des ressources et des puissances de

transmission entre les différentes cellules. Ces modifications peuvent avoir lieu à l’echelle

du réseau, en ajustant la distribution des ressources radio et des puissances de transmis-

sion entre les différentes cellules, mais aussi à l’intérieur de chaque cellule, en effectuant

l’ordonnancement des utilisateurs pour améliorer le débit du système, son Efficacité Spec-

trale (ES), ou son Efficacité Energétique (EE).

Le projet Mobile and wireless communications Enablers for the Twenty-twenty Informa-

tion Society (METIS) a défini un ensemble d’objectifs techniques pour les futurs réseaux
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mobiles, ce qui nécessite l’amélioration des réseaux actuels afin de répondre à ces be-

soins. En comparaison avec les réseaux mobiles de la Quatrième Génération (4G), les

principaux objectifs visés pour les réseaux futurs sont :

• Un volume de données par surface 1000 fois plus grand,

• Des débits de 10 à 100 fois plus importants que les débits actuels,

• Un nombre d’équipements connectés de 10 à 100 fois plus grand,

• Une durée de vie des batteries 10 fois plus grande,

• Un délai de bout-en-bout 5 fois plus petit que le délai actuel.

Ainsi, les réseaux mobiles de la Cinquième génération (5G) doivent répondre à ces be-

soins, tout en améliorant l’ES, l’EE et la capacité du système [MET15]. Par conséquent,

l’efficacité des techniques actuelles de coordination des interférences intercellulaires sera

mise en question. De nouvelles approches pour la gestion des ressources radio et des

puissances de transmission sont alors requises afin d’atteindre les objectifs prédéfinis des

futurs réseaux mobiles.

Contributions et plan de la thèse

Dans le cadre de cette thèse, on s’intéresse à proposer des solutions pour remédier aux

problèmes des interférences intercellulaires dans les réseaux mobiles de dernière généra-

tion. La gestion efficace des ressources disponibles devient de plus en plus importante,

surtout avec la prolifération des équipements mobiles et l’augmentation exponentielle des

trafics de données dans les réseaux cellulaires. Les principaux intérêts des opérateurs mo-

biles résident dans l’augmentation de l’ES, l’EE et la capacité du réseau. L’amélioration

des performances des utilisateurs frontaliers est également un objectif important pour

les opérateurs, étant donné que ces utilisateurs sont les plus sensibles aux interférences

intercellulaires.

Cette dissertation comporte six chapitres décrivant les contributions de la thèse, les

différentes comparaisons effectuées et les résultats obtenus. Dans un premier lieu, un

aperçu général du problème de gestion des ressources radio dans les réseaux mobiles

de dernière génération est présenté dans le chapitre 1. On souligne également la né-

cessité de l’élimination des interférences intercellulaires, puis on résume les principales

contributions de la thèse et on fournit le plan détaillé du document.
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Avant d’exposer notre propre vision sur l’allocation des ressources radio et des puissances

de transmission dans les réseaux cellulaires, nous enquêtons d’une manière exhaustive les

différentes techniques de coordination des interférences intercellulaires existantes. Ces

techniques sont qualitativement comparées, puis classées selon le taux de coopération req-

uis entre les différentes stations de base. Une autre classification basée sur les principes de

fonctionnement de ces techniques est également effectuée. Cette analyse qualitative, rap-

portée dans le chapitre 2, est ensuite suivie d’une investigation quantitative de plusieurs

modèles de gestion d’interférences, où les scenarios simulés sont caractérisés par des dis-

tributions uniformes et non-uniformes des utilisateurs et par différentes conditions radio.

Les résultats obtenus permettent de sélectionner la technique qui convient le mieux à

chacun des scenarios simulés.

Dans le chapitre 3, nous abordons le problème multicellulaire d’allocation des ressources

et des puissances de transmission d’une manière centralisée. Nous formulons ce prob-

lème d’optimisation centralisé, puis nous le décomposons en deux sous-problèmes in-

dépendants : l’allocation de ressources qui sera prise en charge localement par chaque

cellule, et l’allocation des puissances de transmission qui sera gérée d’une manière cen-

tralisée pour toutes les cellules. De plus, une approche distribuée basée sur la théorie

des jeux est proposée pour l’allocation des puissances de transmission. Les joueurs étant

les stations de base qui prennent leurs décisions indépendamment les unes des autres.

Les techniques centralisées de minimisation des interférences intercellulaires offrent la

solution optimale au prix d’une grande charge de signalisation. Par contre, les solutions

décentralisées réduisent le trafic de signalisation sans garantir l’optimalité de la solution

obtenue.

Une heuristique de contrôle de puissance est ensuite introduite dans le chapitre 4. Elle

est basée sur les retours d’information sur la qualité des canaux radio, envoyés par les

utilisateurs à la station de base. L’allocation des puissances de transmission est modifiée

localement par chaque cellule de manière à éviter le gaspillage d’énergie, surtout pour

les utilisateurs qui sont proches de la station de base, et pour réduire les interférences

ressenties par les utilisateurs des stations de base voisines. Nous proposons également

une technique autonome qui gère la distribution des ressources radio entre les différentes

zones de chaque cellule. Cette technique répond aux besoins des utilisateurs dans chaque

zone en adaptant la distribution des ressources d’une manière dynamique, sans modifier

l’allocation des puissances de transmission entre les différentes cellules. De cette manière,

on améliore l’équité dans la distribution des débits entre les utilisateurs de chaque cellule,

sans générer des interférences additionnelles dans les cellules voisines.



Conclusion et perspectives 11

Dans le chapitre 5, nous abordons le compromis entre les techniques de gestion d’interfé-

rences intercellulaires centralisées et décentralisées. Nous proposons une approche hy-

bride où l’allocation des ressources radio et des puissances de transmission est faite d’une

manière coopérative entre les différentes cellules. Notre algorithme se déroule en deux

étapes : dans un premier lieu, les cellules voisines collaborent afin d’ajuster les puissances

de transmission allouées aux ressources radio. Pendant cette étape, des informations con-

cernant la satisfaction des utilisateurs et l’allocation des puissances sont échangées entre

ces cellules. Ensuite, la distribution des ressources entre les différentes zones de chaque

cellule est modifiée localement, selon les besoins des utilisateurs dans chaque zone.

Enfin, les contributions de cette thèse ainsi que les thématiques de recherche futures sont

présentées dans le chapitre 6.

Conclusion et perspectives

Dans cette thèse, nous avons abordé le problème d’allocation des ressources radio et des

puissances de transmission dans les réseaux mobiles de dernière génération. En effet,

l’énorme croissance du nombre d’équipements mobiles, la prolifération des applications

multimédia à haut débit et l’évolution rapide vers l’Internet des objets ont mené à un

déploiement dense des stations de base utilisant la totalité du spectre disponible afin de

répondre à ces besoins croissants. La réutilisation dense des fréquences augmente la ca-

pacité du réseau, par contre, des interférences intercellulaires ayant un impact négatif sur

la performance du réseau sont générées. D’où la nécessité de l’utilisation des techniques

de gestion du spectre et d’allocation des puissances de transmission.

D’abord, nous avons commencé cette dissertation en effectuant une enquête exhaus-

tive des travaux figurant dans l’état de l’art. Une comparaison qualitative suivie d’une

analyse quantitative sont effectuées afin de sélectionner la technique la plus adéquate à

chaque scenario simulé. Nous avons ensuite formulé un problème multicellulaire centralisé

d’allocation des ressources radio et des puissances de transmission, qui prend en compte

l’impact des interférences sur les performances des différents utilisateurs. Une autre ap-

proche décentralisée est également proposée pour gérer l’allocation des puissances, en se

basant sur la théorie des jeux. Les joueurs sont les stations de base qui prennent leurs

propres décisions indépendamment les unes des autres. De plus, nous avons proposé une

heuristique de contrôle de puissance où l’allocation des puissances de transmission se fait

en se reférant aux retours d’informations sur la qualité des canaux radio, dans le but

d’éviter le gaspillage d’énergie et de réduire les interférences intercellulaires. Un autre

algorithme autonome de gestion des ressources radio est introduit. Il modifie l’allocation

des ressources entre les différentes zones de chaque cellule de telle manière à répondre aux
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besoins des utilisateurs dans chaque zone. Les puissances attribuées aux ressources ne

sont pas modifiées pour ne pas généer des interférences additionnelles. Enfin, nous avons

abordé le compromis entre les méthodes centralisées et décentralisées en introduisant

une approche hybride pour la gestion des ressources radio et l’allocation des puissances

de transmission. Des informations concernant l’utilisation des ressources et les deman-

des des utilisateurs sont échangées entre les stations de base voisines afin de modifier

l’allocation des puissances d’une manière coopérative. Puis, la distribution du spectre

entre les différentes zones de chaque cellule s’effectue localement, au niveau de chaque

station de base.

Les contributions réalisées dans le cadre de cette thèse constituent des solutions intéres-

santes pour la gestion des ressources radio et des puissances de transmission dans les

réseaux mobiles actuels et futurs. Néanmoins, nous avons réussi à identifier plusieurs

pistes pour nos futurs travaux de recherche.

Les réseaux hétérogènes se présentent comme une alternative efficace pour répondre aux

besoins croissants en débits et pour augmenter la capacité du réseau. Ils sont composés

de plusieurs Technologies d’Accès Radio (TAR) qui coexistent dans la même zone géo-

graphique. La sélection du réseau d’accès radio s’ajoute au problème de minimisation des

interférences inter-TAR et intra-TAR. Les techniques proposées dans cette thèse peuvent

être utilisées pour réduire les interférences intercellulaires dans les réseaux hétérogènes,

une fois le problème de sélection du réseau d’accès est résolu. De plus, on pourra formuler

un problème d’optimisation qui considère à la fois la sélection du réseau d’accès radio, la

gestion des ressources et l’allocation des puissances de transmission. Les objectifs étant

la maximisation du débit total du système, l’augmentation de la capacité du réseau, ou

l’amélioration de l’ES et de l’EE.

L’étude du compromis entre la maximisation de l’ES et la maximisation de l’EE s’avère

également un sujet de grande importance. En effet, la réduction de la consommation

d’énergie est devenue un intérêt de plus en plus important pour les opérateurs des réseaux

mobiles. L’ES est améliorée quand la puissance de transmission augmente. Par contre,

l’EE est réduite, puisque la quantité d’énergie consommée augmente. Le contrôle du

compromis ES-EE est faisable en modifiant l’allocation des ressources radio et des puis-

sances de transmission. Dans ce contexte, on pourra définir un problème d’optimisation

multi-objectifs qui vise la maximisation de l’ES sans dégrader l’EE du système. Les con-

traintes d’un tel problème d’optimisation sont relatives au débit minimal par utilisateur

et vont garantir un niveau raisonnable de qualité de service.





Abstract

The exponentially increasing demand for mobile broadband communications have led to

the dense deployment of cellular networks with aggressive frequency reuse patterns. The

future Fifth Generation (5G) networks are expected to overcome capacity and throughput

challenges by adopting a multi-tier architecture where several low-power Base Stations

(BSs) are deployed within the coverage area of the macro cell. However, Inter-Cell

Interference (ICI) caused by the simultaneous usage of the same spectrum in different

cells, creates severe problems. ICI reduces system throughput and network capacity, and

has a negative impact on cell-edge User Equipment (UE) performance. The ecological

concern is also an important issue, since the carbon dioxide emissions continue to raise

due to the dense deployment of BSs.

Inter-Cell Interference Coordination (ICIC) techniques are required to mitigate the im-

pact of ICI on system performance. ICIC schemes are classified into centralized, decen-

tralized, and hybrid approaches. In the centralized approach, a central control entity

manages resource and power allocation based on the information received from the dif-

ferent cells. It provides the optimal resource allocation at the expense of a high signaling

overhead. In decentralized ICIC schemes, each cell makes its own resource allocation deci-

sions, and the central control entity is not required. However, decentralized ICIC schemes

do not guarantee the optimal resource and power allocation. The hybrid approaches are

proposed as a tradeoff between the centralized and the decentralized approaches. Re-

source allocation between the different cells is performed by a central control entity, while

UE scheduling is decentralized to the base stations.

In this thesis, we address the resource and power allocation problem in multiuser Or-

thogonal Frequency Division Multiple Access (OFDMA) networks such as LTE/LTE-A

networks and dense small cell networks. We start by overviewing the state-of-the-art

schemes, and provide an exhaustive classification of the existing ICIC approaches. This

qualitative classification is followed by a quantitative investigation of several interference

mitigation techniques under uniform and non-uniform UE distributions, and for various

14
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network loads and radio conditions. The obtained results allow us to select the most

adequate technique for each network scenario.

Then, we formulate a centralized multi-cell joint resource and power allocation prob-

lem, and prove that this problem is separable into two independent convex optimization

problems. The objective function of the formulated problem consists in maximizing

system throughput while guaranteeing throughput fairness between UEs. ICI is taken

into account, and resource and power allocation is managed accordingly in a centralized

manner. Furthermore, we introduce a decentralized game-theoretical method to solve

the power allocation problem without the need to exchange signaling messages between

the different cells. A multi-player game is defined, where the cells are the players, and

they make their own decisions independently of each other. The solution to the proposed

decentralized optimization problem corresponds to a Nash Equilibrium.

We also propose a decentralized heuristic power control algorithm based on the received

Channel Quality Indication (CQI) feedbacks. The intuition behind this algorithm is

to avoid power wastage for UEs that are close to the serving cell, and reducing ICI

for UEs in the neighboring cells. An autonomous ICIC scheme that aims at satisfying

throughput demands in each cell zone is also introduced. The obtained results show

that this technique improves UE throughput fairness, and it reduces the percentage of

unsatisfied UEs without generating additional signaling messages.

Lastly, we provide a hybrid ICIC scheme as a compromise between the centralized and the

decentralized approaches. For a cluster of adjacent cells, resource and power allocation

decisions are made in a collaborative manner. First, the transmission power is adjusted

after receiving the necessary information from the neighboring cells. Second, resource

allocation between cell zones is locally modified, according to throughput demands in

each zone.

Keywords Inter-cell interference coordination; OFDMA; 3GPP LTE; 5G; dense small

cell networks; spectral efficiency; energy efficiency; resource allocation; power allocation;

throughput fairness.
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Chapter 1

Introduction

The significant advances in cellular networks and mobile devices have led to a rapidly

growing demand for high speed multimedia applications. To support this increasing data

traffic, the capacity of cellular networks can be improved via the dense deployment of

small cells with aggressive frequency reuse. Thus, resource allocation and interference

management is a key research challenge in present and future cellular networks. In this

chapter, we provide a global description of the inter-cell interference problems in cellular

networks as well as the motivation behind our research work on interference mitigation

techniques. The main contributions of the thesis, and the thesis organization are also

presented hereafter.

1.1 Background

During the last few decades, the traffic demands in mobile networks have tremendously

increased. The global mobile data traffic grew by 70 percent in 2012 [Cis13], and it grew

by 81 percent in 2013 [Cis14]. Consequently, mobile data traffic in 2017 will be 13 times

that of 2012. This rapidly growing demand drove the 3GPP to introduce the Long Term

Evolution (LTE) of the Universal Mobile Terrestrial radio access System (UMTS). LTE-

Advanced (LTE-A) [3GP08] was also proposed to improve cell-edge spectral efficiency,

and to increase the peak transmission rates. However, network capacity and spectral

efficiency should be further improved in order to address the exponentially-increasing

demands for mobile broadband communications.

1
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Network capacity improvement can be achieved through the dense deployment of base

stations with small coverage areas, within the coverage zones of macro cells and us-

ing the same frequency spectrum. Although it improves the overall spectral efficiency,

the aggressive frequency reuse scheme increases the interference caused by UEs using

the same radio resources. Given the negative impact of ICI on system performance,

on cell-edge UEs throughput, and on network capacity, the utilization of adequate in-

terference mitigation techniques becomes a necessity for the next generation cellular

networks. ICIC techniques are designed to alleviate the impact of ICI, and to improve

system performance. These target objectives are achieved by modifying various system

resources allocation such as frequency resources and transmission power. For instance,

several RRM schemes perform resource allocation between the different cells, and packet

scheduling among the active UEs in each cell, in order to improve system performance

and to increase its spectral efficiency.

The METIS project has stated a set of technical objectives [MET13] that require ex-

tending today’s wireless communication systems to support new usage scenarios. These

objectives can be summarized as follows:

• 1000 times higher mobile data volume per area,

• 10 to 100 times higher typical user data rate,

• 10 to 100 times higher number of connected devices,

• 10 times longer battery life for low power devices,

• 5 times reduced end-to-end latency.

The resulting 5G system should be able to meet these goals while guaranteeing a more

efficient energy and resource utilization, in order to allow a constant growth in capacity

at acceptable overall cost and energy dissipation [MET15]. Therefore, the traditional

techniques for radio resource management and power allocation may not be efficient in

future mobile networks.
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1.2 Inter-Cell Interference

1.2.1 LTE/LTE-A Architecture

The LTE/LTE-A system architecture consists of a radio access network, called Evolved-

Universal Terrestrial Radio Access Network (E-UTRAN) and a core network known as

Evolved Packet Core (EPC). The network architecture is shown in Fig. 1.1, and it is

labeled System Architecture Evolution (SAE).

Figure 1.1: LTE/LTE-A system architecture

The Mobility Management Entity (MME) and the Serving Gateway (S-GW) are lo-

cated at the core network, and they are connected to the LTE/LTE-A base stations,

called evolved-NodeBs (eNodeBs) via the S1 interface. The MME entity handles several

functions related to network access control, radio resource management, and mobility

management, while the S-GW acts as a local mobility anchor point for inter-eNodeB

handovers and for the handling of data packet transfer between the core network and

the UEs. The Packet data network Gateway (P-GW) provides connectivity between the

core network and other Internet Protocol (IP) networks. It also serves as an anchor for

mobility between 3GPP and non-3GPP technologies. The radio access network is com-

prised of eNodeBs and UEs. Each eNodeB is connected to its neighboring cells through
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the X2 interface that allows the exchange of signaling messages and information related

to resource usage and power allocation.

In LTE/LTE-A systems, Orthogonal Frequency Division Multiple Access (OFDMA)

technique is selected as the multiple access technique on the downlink of the radio inter-

face. The available bandwidth is divided into several orthogonal subcarriers [3GP12b],

which eliminates intra-cell interference. The smallest scheduling unit is called Resource

Block (RB), and it consists of 12 subcarriers in the frequency domain, and six OFDM

symbols in the time domain in the case of normal cyclic prefix, or seven OFDM symbols

in the time domain in the case of short cyclic prefix. RB duration is 0.5 ms, and it

occupies a spectrum of 180 kHz. The scheduling period is called Transmit Time Interval

(TTI), and it equals 1 ms. During one TTI, each RB is exclusively assigned to one UE

in a given cell, and it could be simultaneously used in the neighboring cells for different

UEs. Consequently ICI problems occur due to the dense usage of the available frequency

resources.

1.2.2 Dense Small Cell Networks

Due to the increasing demand for mobile broadband communications, the dense deploy-

ment of low power base stations within the coverage area of existing macro cells improves

network capacity, and increases the available bandwidth per UE. Figure 1.2 shows an

LTE/LTE-A cell served by a macro base station, with several small cells coexisting in the

same geographical area. Small cells include microcells, picocells, femtocells, and relay

nodes.

The Next Generation Mobile Networks (NGMN) alliance expects the emergence of new

use cases and business models driven by the customers’ and operators’ needs [NGM15].

Beyond 2020, mobile broadband access should be guaranteed in densely populated areas,

such as dense urban city centers, or events where thousands of people are located within

a small geographical area. Interference management challenges will arise due to the

following reasons [HRTA14]:

• Dense deployment of wireless devices.

• Coverage imbalance due to varying transmit powers of the different base stations

coexisting in the same geographical area.
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Figure 1.2: LTE/LTE-A macro cell with dense small cell deployment

• Public or private access restrictions in the different tiers.

• Cooperation among base stations, and direct communications between the UEs.

1.2.3 Radio Resource Management

In cellular networks, RRM functionalities include the partitioning of the available spec-

trum between base stations (macro cells and small cells), resource allocation among the

different UEs within each cell, link adaptation, handover management, and admission

control. Link adaptation function is achieved through Adaptive Modulation and Coding

(AMC) and transmission power control. Among these functionalities, resource partition-

ing between the different cells, UE scheduling, and transmission power control are the

ones used to alleviate the negative impact of ICI on system performance.

Bandwidth allocation between the different cells may need to be performed in dense

small cell networks. For instance, resource allocation between the backhaul links and

the radio access links should be performed in relay-based networks. Otherwise, inter-cell

interference increases, which causes additional degradation to the system performance.

Moreover, UE scheduling aims at maximizing the spectral efficiency and the achievable
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throughput. This functionality is located at the medium access layer of the cellular

system. It occurs periodically, and it is usually based on the QoS requirements, or on the

received channel quality feedbacks. For example, the scheduling period in LTE/LTE-A

networks equals one TTI, and the scheduler may take into account the received CQI

feedbacks. To further improve cell throughput, transmission power control operates along

with AMC. ICI could also be reduced by adjusting the transmission power allocation

among the adjacent cells. Note that resource and power allocation could take place

either locally at the base station, or in a centralized control entity.

1.3 Thesis Scope and Contributions

The objective of this thesis is to contribute to the domain of interference mitigation

techniques for present and future mobile networks. We particularly focus on multiuser

OFDMA networks, including heterogeneous LTE/LTE-A networks and dense small cell

networks. It is of crucial importance for mobile network operators to increase network

capacity, spectral efficiency, and energy efficiency, given the exponentially growing de-

mand for mobile broadband communications. Other concerns include increasing system

throughput and improving the performance of cell-edge UEs that are mainly affected

by ICI. Numerous ICIC schemes have been surveyed in [HKHE13, LCLV14] where the

different trends in the literature are described. We identify three classes of interference

mitigation approaches: centralized, decentralized, and hybrid approaches.

The centralized approach requires the existence of a centralized controller that manages

resource and power allocation across the entire network. Although it finds the optimal

solution, the centralized approach is characterized by an important processing load, and

it generates a large amount of signaling messages that are exchanged periodically be-

tween the cells and the controller. When the decentralized approach is adopted, each

cell performs resource and power allocation locally, regardless of the decisions made by

the other cells. No additional signaling traffic is generated, but the optimal resource

allocation is not guaranteed. The hybrid approach achieves a compromise between the

centralized and the decentralized approaches. A central controller adjusts resource allo-

cation between the different cells, then each cell allocates the available resources to the

active UEs independently of the other cells.
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In this dissertation, we discuss, classify, and investigate the existing ICIC approaches for

multi-user OFDMA networks. Contrarily to the existing surveys that provide qualita-

tive descriptions of the different ICIC schemes, we perform quantitative comparisons of

state-of-the-art ICIC schemes under uniform and non-uniform UE distributions, and for

different network loads. This analysis allows us to draw conclusions about the most ade-

quate technique for each network scenario. An exhaustive classification of ICIC schemes

is also provided.

After overviewing the literature trends, we address the multi-cell resource and power

allocation problem in a centralized manner. In [QLS09, VZRB15] the multi-cell opti-

mization problem is also considered. However, the impact of ICI between the adjacent

cells is neglected, which mitigates the accuracy of the proposed solutions. Our objective

function consists in maximizing system throughput while guaranteeing throughput fair-

ness between the active UEs. ICI caused by the aggressive frequency reuse strategy is

taken into account, and resource and power allocation is managed accordingly. In the

same context, the decentralized ICIC is investigated by introducing a resource allocation

scheme based on game theory. The players are the base stations, and they make their

own resource allocation decisions independently of the other base stations in the network.

Although decentralized ICIC schemes do not guarantee the optimal solution, their main

advantage consists in reducing the signaling overhead and the computational complexity

in comparison with the centralized schemes.

We also investigate autonomous and cooperative heuristic ICIC schemes. Our goal is

to improve cell-edge UEs performance without reducing system throughput, and using

low complexity algorithms. Resource and power allocation are adjusted according to

the received CQI feedbacks, or based on the satisfaction level of each cell. The perfor-

mance of these techniques are compared to that of the centralized solution, and to other

state-of-the-art techniques. The decentralized ICIC schemes do not generate additional

signaling traffic, while the cooperative schemes are proposed as a compromise between

the centralized and the decentralized approaches.
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1.4 Thesis Outline

This thesis document consists of six chapters organized as follows: an extensive sur-

vey of the existing ICIC techniques is performed in Chapter 2. These techniques are

classified according to the amount of cooperation required between the different base

stations. They are also categorized based on their underlying working principles. More-

over, we investigate the performance of each technique under uniform and non-uniform

UE distributions, and for different network loads and radio conditions. The obtained

results allow us to define the most adequate technique for each network scenario. In

Chapter 3 of this dissertation, the multi-cell resource and power allocation problem is

formulated as a centralized optimization problem. Our formulation is valid not only for

LTE/LTE-A networks, but also for dense small cell deployments that will be most likely

adopted by the 5G systems in order to address the exponentially increasing data traffic

demands. It is proven that the joint resource and power allocation problem is separable

into two independent problems: a resource allocation problem performed locally at each

cell, and a centralized power allocation problem. Moreover, we propose a distributed

game-theoretical ICIC scheme, where the players are the base stations (macro cells and

small cells). A multi-player game is defined, where the BSs are assumed to make their

own decisions without knowing the decisions of each other. Therefore, comparisons are

made between the centralized and the distributed multi-cell resource and power allo-

cation problems. Although centralized ICIC schemes provide the optimal resource and

power allocation, they generate an additional signaling overhead due to the information

sent from the base stations to the centralized control entity.

In Chapter 4, we introduce a heuristic downlink power allocation algorithm that adjusts

the transmission power allocated to the different frequency resources in a distributed

manner. Power allocation decisions are based on the received channel quality feedbacks.

The objective is to avoid power wastage, especially for the UEs that are close to their

serving base stations, and to reduce ICI for the UEs in the neighboring cells. Within the

same context, we propose an autonomous dynamic ICIC technique that adjusts resource

allocation between cell zones according to UE distribution and throughput demands in

each zone. This technique aims at improving throughput fairness between the active

UEs, and reducing the percentage of unsatisfied UEs. Moreover, no additional signaling

messages are required.
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For Chapter 5, the tradeoff between centralized and autonomous ICIC schemes is ad-

dressed by introducing a cooperative interference mitigation scheme. Resource and power

allocation decisions are jointly made by each cell in collaboration with its neighbors. The

objectives sought are increasing UE satisfaction, improving throughput fairness, and in-

creasing both spectral efficiency and energy efficiency. The algorithm consists of two

phases: in the first phase, signaling messages are exchanged to get the necessary infor-

mation about UE satisfaction and power allocation in the neighboring cells. Transmission

power adjustments are made during this phase. In the second phase, resource allocation

between cell zones is modified according to UE demands in each zone.

Finally, Chapter 6 summarizes the thesis main contributions, presents the perspectives,

and describes the future research topics.





Chapter 2

Inter-Cell Interference Coordination

Techniques for Multi-User OFDMA

Networks

The main challenge for present and future mobile networks is to efficiently use the

available spectrum, and to provide satisfying quality of service for users. They are de-

signed in a manner that allows providing high throughput and high capacity. A frequency

reuse factor of one is required to improve spectral efficiency, while other important con-

cerns for mobile network operators include energy efficiency, throughput fairness, and

user satisfaction. Due to the scarcity of the available spectrum, all the cells are allo-

cated the same frequency resources, leading to significant inter-cell interference problems.

Given the negative impact of interference on system performance, several interference

mitigation techniques have been proposed, where restrictions are made on resource blocks

usage, power allocation, or both. In this chapter, we conduct a comprehensive survey

on the existing ICIC techniques. We classify these techniques, and we study their per-

formance while taking into consideration various design parameters. The techniques are

compared throughout intensive system level simulations under several parameters such as

different network loads, radio conditions, and user distributions. Simulation results show

the advantages and the limitations of each technique compared to the frequency reuse-1

model. Thus, we are able to identify the most suitable ICIC technique for each network

11
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scenario.

2.1 Introduction

With the rapidly growing demand for mobile broadband communications and with the

proliferation of mobile applications, Third Generation (3G) Universal Mobile Terrestrial

Radio Access System (UMTS) is no longer able to satisfy UE throughput demands. 3GPP

introduced LTE [3GP06a] and LTE-A standards [3GP12a, 3GP13] to increase system

capacity, to support the high-speed multimedia applications, and to allow UEs to achieve

higher transmission rates. In LTE/LTE-A networks, OFDMA is chosen as the multiple

access technique for the downlink of the radio interface. The advent of smartphones

and tablets, the increasing number of personal connected devices including wearables

and sensors, and the fast evolution towards Internet of Things (IoT) are motivating the

Telecom enterprises and wireless communications enablers to define the architecture,

specifications, and requirements of the 5G networks. 5G wireless networks are expected

to be a mixture of network tiers of different transmission powers, backhaul connections,

and different radio access technologies [HRTA14]. Thus, radio resource allocation and

interference management will be an important challenge in these networks.

OFDMA scheme [SSB09] is based on OFDM technology that subdivides the available

bandwidth into a multitude of narrower mutually orthogonal subcarriers, which can

carry independent information streams. A physical RB is defined as 12 subcarriers in

the frequency domain (180 kHz) and seven OFDM symbols in the time domain as shown

in Fig. 2.1, which is equivalent to one time slot (0.5 ms). RB and power allocation are

performed periodically by the schedulers every TTI that equals one millisecond. In multi-

user OFDMA networks [SL05], intra-cell interference is eliminated, since data is trans-

mitted over independent orthogonal subcarriers. Similarly, Single Carrier Frequency Di-

vision Multiple Access (SC-FDMA) technique, characterized by a lower peak-to-average

power ratio, is usually used on the uplink to transmit data from UEs to the base station

[WYMC09]. However, the frequency reuse-1 model leads to ICI strongly affecting SINR

of active UEs, especially cell-edge UEs, which leads to a significant degradation in the

total throughput. Moreover the existence of network elements with different maximum

transmission power, e.g., macrocells, picocells, and femtocells, makes ICI problem more

complicated.
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Figure 2.1: Physical resource block structure

ICI arises as a prohibitive problem due to simultaneous transmissions over the same

frequency resources in adjacent network cells. It decreases SINR especially for cell-edge

UEs [XYY12], that are relatively far from the serving base station. Thus, it has a

negative impact on UE throughput, it decreases the spectral efficiency, and it reduces

the quality of provided services.

Hard frequency reuse schemes (e.g., reuse factor m) become inefficient due to utilization

of 1
m of the available bandwidth. Thus, the peak data rate is reduced. For instance, ad-

jacent base stations of a GSM network are allocated different frequencies [DK88, Don79]

in order to avoid interference between neighboring transmitters. A number of adjacent

GSM cells are grouped into a cluster where the same frequency resources are used only

once. A cluster size of one is not used due to high co-channel interference problems that

occur. Although ICI within each cluster is eliminated, spectral efficiency is largely re-

duced. In 3G networks, the interference experienced by a UE is due to cross-correlation

between spreading codes, and it can be considered as noise [JPJS05]. Therefore, ICI

problems do not exist in CDMA-based 3G networks.

Although frequency reuse-m models eliminate ICI, they are not adequate for present

and future mobile networks. In fact, one major objective of 3GPP LTE standard is

to increase network capacity in order to accommodate additional UEs. According to

reuse-m schemes, each base station is allowed to allocate a portion of the available

spectrum. This restriction is not tolerated in LTE nor in 5G, since it greatly reduces



2. ICIC Techniques for Multiuser OFDMA Networks 14

the spectral efficiency. Thus, other frequency and power allocation schemes are used to

reduce ICI; they are commonly known as ICIC [DSZ12] techniques.

FFR [HA09] and SFR [Hua05] are static ICIC techniques used to improve spectral ef-

ficiency of the fourth generation wireless standards. While FFR sets restrictions on

RB allocation between the different UEs in each cell, SFR performs both radio resource

management and power allocation for the used RBs. These techniques are independently

used in each cell without any cooperation between adjacent base stations. Other ICIC

techniques exploit the communications between adjacent base stations to reduce ICI. In

LTE, signaling messages about RB and power allocation are exchanged between adjacent

eNodeBs over X2 interface, that interconnects neighboring cells. For instance, a recently

proposed technique divides ICIC problem into a multi-cell scheduling and a multi-user

scheduling problem [KHQT13b]. The former uses an On/Off approach to determine the

restricted RBs for each eNodeB, while the latter attributes RBs to UEs according to

their radio conditions. ICIC can also be seen as a cooperative problem where LTE base

stations collaborate in order to find the power allocation mask that minimizes inter-cell

interference [DA10]. It is an adaptive SFR scheme that reduces transmission power on

RBs allocated to UEs that experience good radio quality (close to the base station).

However, the time scale of the proposed algorithm is in order of tens of seconds, which

is disadvantageous when the system state is quickly varying with time.

With the introduction of CoMP transmissions [LSC+12] in LTE-A networks, ICIC tech-

niques rely more on dynamic coordination between base stations. Scheduling decisions

are improved when they are made jointly for a cluster of cells [DVR03] thereby enhancing

performance through interference avoidance. Small cells (including picocells, femtocells

and home eNodeBs) deployment along with existing macro base stations brings out the

challenge of ICIC in heterogeneous networks. Indeed, serious interference [XHC12] prob-

lems occur due to co-channel deployments with the macro cells. e-ICIC techniques are

used to allow for time-sharing of spectrum resources between macro base stations and

small cells.

Given the diversity of existing ICIC techniques, mobile network operators have the op-

portunity to implement the most convenient one for their intended objectives. In fact,

the performance of some techniques largely depends on network parameters such as UE

distribution between cell zones, existing ICI problems, and the number of UEs in each
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cell. Some techniques aim at improving cell-edge UEs throughput, without taking into

account the overall spectral efficiency. Consequently, the knowledge of ICIC techniques

performance is a critical factor when selecting the one that best fits operator’s goals.

In the remainder of this chapter, we conduct an exhaustive review and classification

of existing interference mitigation and radio resource management techniques. We also

provide a comprehensive survey of the performance of ICIC techniques in LTE Networks.

Various network loads, radio conditions, and user distributions are considered, in order

to study the impact of design parameters on ICIC techniques performance. We inves-

tigate the performance of frequency reuse-m model and other ICIC techniques, and we

inspect the advantages and limitations of each of the examined techniques compared

to the frequency reuse-1 model under different network loads and UE distributions. A

MATLAB-based LTE downlink system level simulator [VUT14, IWR10] is used to com-

pare the performance of the frequency reuse-1 model with that of reuse-3 model, FFR,

and SFR techniques. The objective of ICIC is to reduce interference problems in order

to avoid their harmful impact on user throughput and system performance. An efficient

ICIC technique improves both spectral efficiency and energy efficiency of the mobile

network, which is a substantial goal for mobile network operators.

2.2 Classification of ICIC Techniques

Rather than promoting standardized techniques, 3GPP provides support for proactive

and reactive schemes, and it allows constructors and operators to configure a wide range

of non-standardized ICIC techniques [FKR+09]. We classify these techniques into cen-

tralized, decentralized, and hybrid schemes.

Centralized ICIC techniques require the existence of a central management entity that

controls the entire network. It collects information related to channel quality and UE

throughput demands. Then, it finds the optimal resource allocation between the existing

base stations, and it also performs resource allocation among UEs (scheduling). The

centralized approach offers the optimal resource allocation solution. However, a large

amount of signaling messages is generated. Thus, it is only recommended for small-sized

cellular networks.
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The decentralized non-cooperative approach allows each cell to determine its own re-

source allocation, without the need to cooperate with other cells. The existence of a

centralized control entity is not required. This approach does not generate any addi-

tional signaling overhead, and it is characterized by a low implementation complexity.

However, it does not guarantee the optimal resource allocation. Hence, decentralized

ICIC techniques are adequate for large-sized cellular networks.

Hybrid ICIC techniques are also qualified as semi-centralized. They are proposed as a

compromise between the centralized and the decentralized techniques. In these schemes,

a centralized control entity collects channel quality information and UE throughput de-

mands in order to adjust resource allocation between the network cells, while RB allo-

cation to the active UEs is locally performed by each base station. The hybrid approach

achieves a tradeoff between the previously mentioned approaches, and it is suitable for

medium-sized cellular networks. ICIC techniques classification based on the cooperation

required between the cells is illustrated in Fig. 2.2.

Figure 2.2: Cooperation-based classification of ICIC techniques

Besides the amount of cooperation required between the different cells to achieve ICI

mitigation, we perform another classification of the existing ICIC techniques based on

their working principles. The following categories are identified: frequency reuse, coop-

erative approaches, frequency scheduling, femtocell-aware, graph theory, game theory,

convex optimization, and power minimization. They are illustrated in Fig. 2.3. In the
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remainder of this section, we describe the different classification principles, and we sur-

vey the existing ICIC techniques under each category. Our qualitative comparisons are

summarized in Table 2.1.

Figure 2.3: Classification of ICIC techniques

2.2.1 Frequency Reuse Techniques

Frequency reuse-based ICIC techniques, such as fractional frequency reuse and soft fre-

quency reuse, have been widely suggested to minimize interference between adjacent

cells, and to increase bandwidth efficiency. However, FFR and SFR are not able to dy-

namically adapt to situations where the throughput demands or the UE positions are

not homogeneously distributed between the different cells.

Within this category, several techniques are proposed to improve the performance of the

traditional FFR and SFR schemes. For instance, resource allocation and interference

coordination problems are jointly considered in [Ass08]. The proposed scheme is based

on FFR, and it searches for the optimal dimensions of cell-center and cell-edge zones as

well as the optimal frequency reuse factor. In [GGLBL13], a multi-objective algorithm
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for improving SFR performance is proposed. It addresses the tradeoff between enhancing

network capacity and improving cell-edge performance. From an operator perspective,

SFR optimization is a problem in which the interest is placed not only in maximizing

the overall network spectral efficiency, but also in guaranteeing to UEs a certain levels

of QoS, at the lowest possible cost. It enhances the performance of SFR in realistic

irregular cellular networks by simultaneously improving the system spectral efficiency

and reducing ICI in the cell-edge zone.

2.2.2 Cooperative Approaches

Cooperative ICIC techniques make use of the communications between the neighboring

cells in order to mitigate ICI. Resource allocation becomes more efficient when additional

information about resource usage, power allocation, and UE throughput demands are

exchanged between adjacent cells.

An interference avoidance scheme is presented in [RY10] where the objective is to miti-

gate interference for cell-edge UEs without reducing network throughput. The proposed

scheme is comprised of a two-level algorithm: one at the base station level and the other

at a central controller to which a group of base stations are connected. First, each

cell calculates its own restrictions on resource allocation locally, after receiving channel

quality information from its active UEs. These decisions are forwarded to a centralized

entity that processes requests from several adjacent sectors, and the final restrictions on

resource allocation are sent by the control entity to each of the concerned sectors.

In [LJC11], a cooperative ICIC scheme for the downlink of LTE femtocells is introduced.

A dedicated signaling channel is established over the X2 interface in order to exchange

information related to inter-cell interference and traffic load of each cell. An optimiza-

tion problem that maximizes the sum of the logarithmic rate of all UEs is formulated.

Resource and power allocation procedure is divided into two steps. In the first step,

resources are allocated to the active UEs using a proportional fair scheduling technique,

while in the second step, power allocation is performed on the scheduled resources by

solving the Lagrangian of the maximization problem using the Karush-Kuhn-Tucker con-

ditions.
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2.2.3 Frequency Scheduling Techniques

A simple manner to achieve interference mitigation is by performing frequency scheduling

that takes into account information concerning channel quality and interference. A cen-

tralized downlink proportional fair scheduling is proposed in [YC11], where interference

mitigation in heterogeneous networks of macro and femto cells is addressed. It allows

each cell to be aware of its neighboring dominant interfering base stations. Dominant in-

terferers are identified based on their received signal power, with respect to a predefined

interference threshold. A proportional fair scheduler running at the central control en-

tity allocates the available resources to the active UEs based on the received interference

and CQI information. Hence, resources allocated to a UE will not be simultaneously

scheduled to its dominant interferers, and ICI is reduced.

2.2.4 Femtocell-Aware Techniques

Small cells, including picocells and femtocells, are deployed to enhance the coverage of the

existing macrocells, and to improve the spectral efficiency. Nevertheless, this deployment

leads to significant interference in such heterogeneous networks. Femotcell-aware ICIC

techniques modify resource allocation between the macro LTE/LTE-A cells and the small

cells deployed within their coverage area.

In [WZJW09], the available spectrum is divided into a macro-dedicated portion and a

femto-sharing portion. A list of macro UEs that are potential interferes to nearby femto-

cells is identified. The idea is to allocate resources from the macro-dedicated spectrum to

these UEs, while other UEs can be allocated resources from the macro-dedicated and from

the femto-sharing portions. Within the same context, two resource allocation approaches

are proposed in [PCVC14]. The first one is autonomous, and it does not imply commu-

nication among femtocells. Thus, each femtocell independently takes its own scheduling

decisions. An optimization problem that aims at minimizing the downlink transmission

power is formulated, and it is solved by each femtocell using local information only. The

second approach is cooperative, where the neighboring cells coordinate their resource al-

location to cell-edge UEs through a message passing approach over the femtocell gateway.

It is recommended when the femtocells have sufficiently high bandwidth and low latency

at the backhaul. The coordination is realized by adding an additional constraint to the
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optimization problem of the autonomous approach. It guarantees that power constraints

imposed by the neighboring cells are fulfilled at the local femtocell.

2.2.5 Graph Theory

When a multitude of small cells are randomly deployed within the coverage area of an

LTE/LTE-A network, managing interference problems between these cells becomes very

complicated. In this case, the resource allocation problem can be solved using graph

theory, where a graph is used to represent the interference relationships.

In [Nec09], the scheduling process is divided into two parts. First, a graph is created

based on the interference relations among all UEs. Its edges represent critical interference

relations in-between UEs i.e., those who are connected must not be served by the same set

of resources. Second, a graph coloring algorithm is used to assign resources to the active

UEs, while taking into account constraints related to the interference graph. Similarly,

a two-steps approach based on graph theory is presented in [CTZK09]. In the first

step, an interference graph is constructed by connecting the interfering UEs. Moreover,

each edge is given an integer cost or weight that characterizes the potential interference

between two UEs. It is inferred from the geographical locations of the UEs. In the

second step, resource allocation is performed by finding among the possible resource

assignments, the one that best leverages the instantaneous channel quality. In [LCN+12],

each node of the interference graph represents a base station, and each link indicates

that the two connected nodes are interfering with each other. The proposed graph

coloring approach maximizes the number of colors assigned for resource allocation. An

optimization problem that aims at maximizing the usage of the available resources is

formulated, with constraints related to interference and QoS requirements. For instance,

two linked nodes are not assigned the same color. Although this approach improves the

spectral efficiency, a centralized system implementation is required. A large amount of

signaling overhead is generated, and the overall complexity is prohibitively high.
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2.2.6 Game Theory

Game theory is a mathematical modeling tool that helps to achieve equilibrium among

multiple decision-makers. It assigns a strategy so that each decision-maker cannot in-

crease the payoff by changing its strategy while others maintain theirs. In resource

allocation scenarios, decision-makers are the base stations, and the strategies correspond

to resource management.

In [ZCA15], a stochastic game theory-based approach is formulated to investigate the op-

timal channel selection in dynamic network environment. Each cell is modeled as a game

player, that independently selects its best channel for transmission. A state-based utility

function is defined for each cell, where the target is minimizing the received interference.

Each player autonomously tunes its channel strategy to maximize its expected utility. It

is proven that the proposed game has at least one pure strategy Nash equilibrium point

that minimizes the expected network interference, either globally or locally. Within the

same context, authors of [IWAYB13] propose a resource allocation algorithm based on

cooperative game theory. The cooperative game is a competition between coalitions of

players rather than between individual players. At the first level, a fair resource distri-

bution among flow classes is performed. A cooperative game is used to form coalitions

between the flow classes (the players) to distribute the available bandwidth among them.

At the second level, each flow class distributes its corresponding portion of resources to

all the flows belonging to it.

2.2.7 Convex Optimization

Resource and power allocation problem can be formulated as a constrained maximization

of an objective function. Convex optimization problems [Ber99, BV09] consist in min-

imizing a convex function (or maximizing a concave function) over a convex constraint

set. Moreover, we can make use of Lagrange duality properties to link the original prob-

lem into a dual problem. This leads to iterative algorithms that converge to the global

optimum [PC06].

Energy-efficient resource and power allocation for a cluster of coordinated cells is con-

sidered in [VZRB15]. A global energy efficiency for the noise-limited regime is defined,

and ICI is neglected. The concave objective function is maximized under constraints
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related to the downlink transmission power allocation. The proposed algorithms run in

a centralized controller that collects channel measurements from the different eNodeBs.

Similarly, a convex optimization problem is formulated in [XLZ+12], where a single cell

OFDMA network is considered. The energy efficiency objective function is studied and

a low-complexity suboptimal algorithm is proposed to reduce the computational burden

of the optimal solution.

Table 2.1: Surveyed ICIC Techniques

ICIC Class Example Description

Frequency Reuse

[Hua05] • SFR as proposed by Huawei for LTE UTRAN.

[Ass08]

• FFR-based ICIC technique.

• Optimal dimension of the cell-center and cell-

edge zones.

• Optimal frequency reuse factor for the cell-edge

zone.

[GGLBL13]

• SFR-based ICIC technique.

• Multi-objective optimization of SFR parame-

ters.

• Improving spectral efficiency and reducing ICI.

Cooperative
[RY10]

• Local decisions made by each base station.

• Control entity forwards restrictions on resource

allocation to each cell.

[LJC11]

• Exchanging interference and load information

over X2 interface.

• Proportional fair scheduling and power alloca-

tion based on a Lagrangian method.

Frequency Scheduling [YC11]
• Centralized resource allocation using CQI and

interference information.
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Femtocell-Aware
[WZJW09]

• The available spectrum is divided into macro-

dedicated portion and femto-sharing portion.

• Interfering macro UEs are assigned resources

from the macro-dedicated spectrum, while

other UEs are assigned resources from the two

portions.

[PCVC14]

• Power minimization through autonomous and

coordinated ICIC approaches.

• The coordinated approach outperforms the au-

tonomous approach at the expense of inter-cell

communication.

Graph Theory

[Nec09]

• Creating a graph based on the interference re-

lations between UEs.

• Allocating the resources to the active UEs using

a graph coloring algorithm.

[CTZK09]

• Constructing the weighted interference graph

between the interfering UEs.

• Finding the resource allocation that best lever-

ages the instantaneous channel quality.

[LCN+12]

• Interference graph coloring approach that max-

imizes the spectral efficiency.

• Centralized system implementation to solve the

proposed optimization problem.

Game Theory [ZCA15]

• Each cell autonomously adjusts its resource al-

location strategy to maximize its own utility.

• The Nash equilibrium minimizes the expected

network interference either globally or locally.
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Game Theory [IWAYB13]

• Resource allocation based on a cooperative

game, where the players are the flow classes.

• Competition between coalitions of players.

• Small number of players and reduced complex-

ity.

Convex Optimization
[VZRB15]

• Energy efficiency maximization for a cluster of

coordinated cells.

• Noise-limited energy efficiency function is de-

fined, and ICI is neglected.

[XLZ+12]

• A single cell OFDMA network is considered.

• Energy efficiency is maximized.

• Low-complexity suboptimal algorithm is pro-

posed to reduce the computational burden.

Power Minimization
[PCVC14]

• Joint resource and power allocation problem in-

dependently solved at each base station.

• Minimize the total transmission power subject

to throughput demands constraints.

[YLIK14]

• Downlink power control algorithm using CQI

feedbacks.

• Improving energy efficiency and reducing ICI.

2.2.8 Power Minimization Approaches

We also identify another category of ICIC techniques that avoid ICI by reducing the

transmission power of the base stations. Transmission power adjustment will potentially

reduce the interference caused to the neighboring cells.

An optimization problem is defined in [PCVC14], where the objective is to minimize the

required transmission power for the base station. Resources and transmission powers
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are jointly allocated, and constraints on the minimum throughput per UE and on the

transmission power of each base station are defined. The proposed scheme runs indepen-

dently at each base station, but some signaling overhead is required in order to exchange

information related to the maximum transmission power estimated at each cell. These

information are taken into account by the neighboring cells when locally solving their

joint resource and power allocation problem. In [YLIK14], a heuristic downlink power

allocation strategy is introduced. Power is allocated to each resource according to the

received CQI feedbacks. It is a distributed algorithm that operates independently of

the chosen scheduler, and it aims at avoiding the power wastage. Results show that the

energy efficiency is improved, and ICI is reduced.

2.3 Comparative Analysis of ICIC Techniques in LTE Net-

works

Several works surveyed the existing ICIC techniques and classified them according to

cell cooperation and frequency reuse such as [FKR+09, HKHE13]. However, some of

them only report qualitative comparisons of the existing ICIC techniques; while others

perform simulations under uniform UE distributions and ordinary network scenarios. In

the following, we investigate several interference mitigation techniques under various UE

distributions, and we show the impact of each technique on throughput distribution and

throughput fairness among all the active UEs. This analysis highlights the efficiency of

each technique for each of the simulated scenarios.

2.3.1 Frequency Planning Techniques for GSM Networks

In GSM, frequency allocation is planned taking into account the following issues: radio

coverage, interference estimation and traffic distribution [DPMZ98]. Traditionally, adja-

cent GSM cells are grouped into clusters where only a portion of the available spectrum

is used in each cell. Therefore, we reduce ICI since frequency resources are not simulta-

neously used by adjacent base stations. If m is the number of cells within a cluster (also

called: cluster size), then 1
m of the available subcarriers are used in each cell according to

frequency reuse-m model. Figure 2.4 illustrates a GSM network where frequency reuse-3

model is used to manage frequency resources distribution between the different cells.
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Figure 2.4: The frequency reuse-3 model in GSM

Although frequency reuse-m model mitigates ICI, the main disadvantage of such tech-

nique is that it reduces network capacity. With less resources available in each cell, the

operator is not able to accommodate all the existing UEs. Thus the quality of the pro-

vided services is degraded, and user satisfaction is reduced, especially when the number

of UEs per cell increases. A possible alternative is to reduce cluster size when the number

of UEs or their generated traffic increases. Thus, frequency planning in GSM can be seen

as a compromise between network capacity and interference mitigation.

A dynamic channel allocation strategy is introduced in [DPMPS97] where authors use

the information exchanged between base stations in order to avoid conflicting carrier ac-

quisitions. Frequency allocation between the different cells is tuned in real time, based on

the average traffic and UE speed in the cells. Multiple reuse patterns is another method

to achieve high capacity using tight frequency reuse in combination with frequency hop-

ping [EJK+98]. The idea is to apply an advanced frequency planning method, based on

the usage of different separate reuse patterns, along with frequency hopping in order to

combine these reuse patterns into an average reuse. This allows to maximize interference

diversity, and to support high traffic levels in the different cells.
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2.3.2 ICIC in LTE Networks

Operators of the LTE/LTE-A networks have great interest in implementing ICIC tech-

niques to increase spectrum profitability and to improve UE experience. In this sub-

section, we provide more details about FFR and SFR techniques that will be compared

with the frequency reuse-1 and reuse-3 models via system level simulations.

2.3.2.1 Fractional Frequency Reuse

FFR [HA09] is a traditional static ICIC technique. It does not require any cooperation

between network eNodeBs. Each cell is statically divided into cell-center and cell-edge

zones. The former contains UEs close to the base station, while the latter contains UEs

close to the border of the cell. Since they are closer to the neighboring cells and relatively

far from their serving eNodeBs, cell-edge UEs will experience more ICI. Therefore, the

main objective of FFR is to protect RBs attributed for these UEs from interference

problems.

FFR modifies RBs distribution between the different zones of the cell in order to create

a protected set of RBs for cell-edge UEs. Figure 2.5 illustrates a cluster of three LTE

cells where spectrum allocation between cell-center and cell-edge zones is done according

to FFR technique. Cell-center UEs are also called full reuse UEs since their allocated

spectrum is used according to frequency reuse-1 model in the neighboring cells. RBs

allocated for the protected UEs are called partial reuse RBs since their usage in the

adjacent cells is based on frequency reuse-3 model.

Although FFR reduces ICI for cell-edge UEs, the main drawback of this static ICIC

technique is that it does not dynamically adapt RB distribution between cell zones

according to users demands in each zone. In addition, UE geographical classification

requires the knowledge of the exact position of all the active UEs in the network. Thus,

an additional positioning information is required to determine cell-center and cell-edge

UEs.
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Figure 2.5: Fractional frequency reuse technique

2.3.2.2 Soft Frequency Reuse

SFR is another static ICIC technique where both RB distribution and downlink power

allocation are performed to reduce ICI [QZXB12]. On the downlink of a multiuser

OFDMA system, such as LTE, Signal to Interference and Noise Ratio (SINR) for a UE k

on the RB n in the cell i is given by:

SINRik, n =
P in ·Gik, n∑

j 6=i
P jn ·Gjk, n + PTN

, (2.1)

where P in is the downlink transmission power allocated by the base station i for the RB n,

Gik, n is channel gain for UE k served by eNodeB i on RB n, and PTN is the thermal

noise power on the considered RB. The achievable rate on RB n for UE k in the cell i is

therefore given by:

Rik, n = f(SINRik, n), (2.2)

where f(.) is the adaptive modulation and coding function that maps SINR to rate.

In each cell, a portion of the available spectrum is reserved for cell-edge UEs, and it
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is permanently allocated the maximum downlink transmission power. The remaining

RBs are allocated for cell-center UEs, but with a lower transmission power [JPJ13]. In

addition, there is no common spectrum allocated for cell-edge UEs of the adjacent cells.

Figure 2.6 shows the basic principles of SFR technique.

Figure 2.6: Soft frequency reuse technique

For both FFR and SFR techniques, we define SINRik as the mean wideband SINR for

UE k served by eNodeB i. It is the mean value of SINRik,n for the considered UE over all

the available RBs. This variable gives us information about the average channel quality,

radio conditions, and ICI for UE k, since SINR is a function of the useful received

power and the interfering received power. Instead of using geographical positions, mean

wideband SINR values are used to classify UEs. If mean SINR of a UE is lower than

a predefined SINR value called SINRthreshold, it is considered as a Bad Radio (BR)

conditions UE; otherwise, it is classified as Good Radio (GR) conditions UE. BR UEs

are commonly known as cell-edge UEs, while the remaining UEs are called cell-center

UEs.
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2.4 System Model

2.4.1 Deployment Model

Our system model consists of seven adjacent macro base stations serving active UEs

within their coverage area. Base station coverage is modeled as a sectorized hexagonal

layout, as shown in Fig. 2.7, and CI denotes the cell identifier. Each site consists of

three adjacent hexagonal sectors, where each sector is served by an eNodeB having its

own scheduler, bandwidth, and power allocation policy.

Figure 2.7: Cell layout

2.4.2 Propagation Model

The system developed is based on the home eNodeB to UE path loss models. The

considered models are mentioned in [3GP06b] and [3GP06c]. Path loss calculation for

signals traveling from the serving eNodeB to the UE is given by:

PL = 15.3 + 37.6 log10(D), (2.3)

where PL is the path loss from eNodeB to UE, and D (in meters) is the distance between

the active UE and its serving eNodeB.
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Table 2.2: SINR-Data Rate Mapping Table
Minimum
SINR [dB]

Modulation and
Coding Scheme

Data Rate
[kbit/s]

1.7 QPSK(1/2) 168

3.7 QPSK(2/3) 224

4.5 QPSK(3/4) 252

7.2 16QAM(1/2) 336

9.5 16QAM(2/3) 448

10.7 16QAM(3/4) 504

14.8 64QAM(2/3) 672

16.1 64QAM(3/4) 756

2.4.3 Antenna Gain Model

Antenna pattern can be expressed as following:

A(θ) = −min(12(
θ

θ3dB
)2, 20) [in dB], (2.4)

− 180◦ < θ < 180◦, (2.5)

where A(θ) is antenna gain, and θ3dB is the beamwidth, which is equal to 70◦.

2.4.4 SINR-Data Rate Mapping

As stated in (2.2), the value of achievable data rate that can be attained by a UE is a

function of the SINR value. Table 2.2 shows the mapping of SINR values to the data

rates per RB [RBSP09]. In our simulations, the single antenna transmission scheme is

used. It is the transmission mode 1 as specified by 3GPP [3GP13].

2.4.5 UE Distribution

Given the impact of UE distribution between cell zones on ICIC techniques performance,

we consider the percentage of GR or BR UEs as an essential parameter to evaluate the

compared techniques. In fact, UEs geographical positions, as well as UE distribution

between cell zones have a great impact on ICI, and on the achievable throughput in each
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zone. Various UE distributions are considered in our simulations. We simulate scenarios

where UEs are uniformly distributed between GR and BR zones, and other scenarios

characterized by non-homogeneous UE distributions. For instance, the majority of active

UEs are either in GR zone or in BR zone.

2.5 Simulation Scenarios

2.5.1 Simulation Environment

We use a MATLAB-based LTE downlink system level simulator [VUT14, IWR10], devel-

oped by Vienna University of Technology as the simulation platform. Frequency reuse-1

model and FFR technique are included in the original version of the simulator. However,

homogeneous power allocation is only considered. We adjusted the power allocation

scheme in order to allow allocating different power levels to the available RBs. We

have also integrated SFR technique and reuse-3 model along with the existing FFR and

reuse-1 schemes. Simulation parameters for the simulated LTE system [3GP06a, 3GP10]

and the ICIC techniques are summarized in Table 2.3.

Cell geometry for our simulated LTE system is hexagonal, and each LTE site consists

of three adjacent hexagonal sectors, where each sector is served by an eNodeB. Sectors

are equipped with 120◦ directional transmit antennas with an azimuth offset of 30◦.

eNodeBs cover a specific area in which many UEs are located. At the UE side, SINR

is calculated in the link measurement model. It is determined by the useful signal,

interference and noise power; thus, it depends on network layout, path loss, shadow

fading and time-variant small-scale fading [ZM05]. The macroscopic path loss between

eNodeB and UE includes both the propagation path loss due to the distance and the

antenna gain. CQI feedbacks are generated using an SINR-to-CQI mapping and made

available to the eNodeB via a feedback channel with adjustable delay. CQI is used to

select the appropriate modulation and coding scheme to achieve the target block error

rate.

Inter-eNodeB distance equals 500 m, which corresponds to an LTE network deployed in

an urban area. In each cell, 25 RBs are available, since the operating bandwidth equals

5 MHz [EDB07]. However, traffic model is full buffer i.e., all the available RBs are
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permanently allocated for the active UEs in the network. UE scheduling is performed

every one millisecond. Path loss model is the one defined by 3GPP in [3GP06c, 3GP06b],

and feedback reception at eNodeBs is delayed by three milliseconds. When homogeneous

power allocation is used, the maximum downlink transmission power is allocated for each

RB. However, SFR reduces the transmission power allocated for RBs used by GR UEs.

SINRthreshold is a predefined parameter, used to classify active UEs into GR and BR

UEs. It can be adjusted by mobile network operators according to network load and UE

satisfaction.

Unlike traditional works where the proposed interference mitigation technique is com-

pared to reuse-1 and reuse-m models under ordinary network conditions (e.g., homoge-

neous UE density and uniform UE distribution), we investigate ICIC techniques under

various simulation scenarios. We study the impact of network load (number of UEs per

eNodeB) and UE distribution (percentage of GR UEs in the network) on system perfor-

mance for each of the compared techniques. For instance, we consider homogeneous UE

density among all the cells, and we start increasing the number of active UEs per cell.

Therefore, we show the impact of network load on UE satisfaction for reuse-1 model and

other ICIC schemes. This study allows us to choose the most adequate technique for each

network load scenario. In other words, we will be able to select the ICIC technique that

improves system performance when the network is highly loaded, as well as the technique

that offers a better performance for low load scenarios. In addition, we consider not only

uniform UE distributions, but also scenarios where UEs are not uniformly distributed

between cell-zones. Thus, we study the impact of UE distribution on the chosen ICIC

technique, and we show the evolution of system performance when the percentage of GR

UEs changes.

2.5.2 Performance Metrics

In order to compare the performance of the studied techniques, we define the following

performance comparison criteria:
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Table 2.3: Simulation Parameters
Parameter Value Description

Cell geometry Hexagonal A cell is served by an eNodeB

Number of sites 7 —

Inter-eNodeB distance 500 m Urban area

Operating bandwidth 5 MHz —

Number of RBs 25 In the 5 MHz bandwidth

Transmission frequency 2 GHz —

Subcarrier frequency 15 kHz 1 RB = 12 sub-carriers

RB bandwidth 180 kHz 1215 kHz

TTI 1 ms Transmit Time Interval

Thermal noise density -174 dBm/Hz —

Feedback delay 3 ms 3 TTIs

Scheduler Round Robin —

Traffic model Full buffer —

eNodeB maximum power (Pt) 20 W 43 dBm

Maximum power per RB (PRB) 0.8 W PRB = Pt

nb. of RBs
SINRthreshold 5 dB UE classification [KHH+12, Fuj11]

SFR power ratio 0.25 PGR = PRB
4

Number of UEs per sector 2, 5, 7, 10, 15, 20 Impact of network load

Antenna gain 14 dBi —

Penetration Loss (PenL) 10 dB —

Pathloss model 15.3 + 37.6 log10(D) As in [3GP06b, 3GP06c]; D in m

Simulation time 1000 TTIs —

2.5.2.1 Spectral Efficiency and Energy Efficiency

Let K denote the set of active UEs in the network, I the set of eNodeBs, and N the set

of available RBs in each cell. Rk is the mean throughput achieved by UE k, and Pin the

downlink transmission power allocated by cell i to RB n. Spectral efficiency and energy

efficiency are therefore defined as follows:

Spectral efficiency =

|K|∑
k=1

Rk [bit/s]

Total spectrum [Hz]
, (2.6)

Energy efficiency =

|K|∑
k=1

Rk [bit/s]

|I|∑
i=1

|N |∑
n=1

P in [W]

. (2.7)
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2.5.2.2 UE Throughput

In order to investigate the impact of each technique on UE performance in each zone

and on the overall system performance, we use the following metrics:

• Mean throughput per UE [Mbit/s]

• Mean throughput per GR UE [Mbit/s]

• Mean throughput per BR UE [Mbit/s]

For each simulation run, mean throughput is the average throughput achieved by UEs

throughout the simulation time. These three metrics give an overview about how the

throughput of each zone is modified when applying an ICIC technique. Thus, they

allow to carry out a more detailed performance comparison using significant throughput

information.

2.5.2.3 Fairness Index

Fairness in resource sharing is an important performance comparison parameter. Jain’s

fairness index [JCH84] is given by:

J(R1, R2, ..., R|K|) =

(
|K|∑
k=1

Rk)
2

|K|.
|K|∑
k=1

R
2
k

, (2.8)

where J rates the fairness of a set of throughput values; |K| is the number of UEs, and Rk

is the mean throughput of UE k. Jain’s fairness index ranges from 1
|K| (worst case) to 1

(best case). It reaches its maximum value when all UEs receive the same throughput.

An efficient ICIC technique reduces the difference between the mean GR throughput and

the mean BR throughput, and increases Jain’s fairness index.

2.5.2.4 UE Satisfaction

We define a satisfaction throughput threshold as the reference value for performance

comparison. It is the minimum throughput value required to guarantee an acceptable
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quality of service. A UE is qualified as satisfied if its average throughput is higher than

satisfaction threshold; otherwise, this UE will be considered as unsatisfied.

The percentage of unsatisfied UEs among all the active UEs in the network is another

parameter for performance comparison. An ICIC technique is better than other state-

of-the-art techniques when it shows the lowest percentage of unsatisfied UEs. We also

investigate the evolution of this percentage when network load increases.

2.5.2.5 Throughput Cumulative Distribution Function (CDF)

This metric shows UE throughput distribution for the studied ICIC techniques. For a

given throughput value, CDF represents the probability to find a UE characterized by

a lower throughput. Therefore, when comparing interference mitigation techniques, the

best one is the one showing the lowest CDF for all throughput values.

2.6 Simulation Results and Analysis

2.6.1 Spectral Efficiency versus Energy Efficiency

We simulate an LTE network that consists of seven adjacent sites, with 10 UEs randomly

placed in each cell. Simulation time is 100 TTIs. Traffic model is full buffer, and all the

available RBs are assigned to the active UEs. Consequently, inter-cell interference occur

over all the available RBs, since they are permanently used for downlink transmissions,

even when the number of UEs per cell is low. Simulations are repeated 100 times, where

UE positions and radio conditions are randomly generated each time. The simulation

results are illustrated in Fig. 2.8.

The frequency reuse-1 model shows the lowest energy efficiency, since the maximum

downlink transmission power is permanently allocated to all the available RBs. However,

its spectral efficiency is comparable to that of SFR, and higher than that of FFR and

reuse-3 models: reuse-1 makes maximum use of the existing RBs, without any constraint

on frequency usage. FFR technique reduces power consumption, and improves energy

efficiency in comparison with reuse-1 model. Nevertheless, there is an unused frequency

sub-band in each cell; thus, spectral efficiency is reduced.
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Figure 2.8: Spectral efficiency versus energy efficiency

Reuse-3 model shows the lowest spectral efficiency: only one third of the available spec-

trum is used in each cell (for a cluster of three adjacent cells), while it increases energy

efficiency in comparison with reuse-1 and FFR. SFR improves both spectral and energy

efficiencies, in comparison with dense frequency reuse model and other ICIC techniques.

It uses a frequency reuse factor of one with restrictions on power allocation; thus, it is

able to improve energy efficiency without sacrificing spectral efficiency.

2.6.2 Mean Throughput per Zone

For the same simulated network, we study the impact of each of the compared techniques

on UE throughput in GR and BR zones. Mean throughput for GR and BR zones as well

as mean throughput per UE are shown in Fig. 2.9.

We notice that FFR technique improves BR UEs throughput, in comparison with reuse-1,

reuse-3 and SFR techniques. It prohibits the usage of the same sub-band not only in

adjacent BR zones, but also in any other GR zone of the considered cluster. Although ICI

is mitigated for BR UEs, frequency sub-bands availability in GR zones is reduced, and

FFR reduces the average throughput per UE when compared to the frequency reuse-1

model. The frequency reuse-3 model has a negative impact on system performance,

since only one third of the available spectrum is used by active UEs in each cell. Thus,

mean throughput per UE reaches its lowest value with reuse-3 model. SFR technique
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Figure 2.9: Mean Throughput per GR, BR, and all UEs

improves BR UEs throughput without reducing mean throughput per UE for the entire

network. The power allocation strategy applied by SFR reduces ICI for BR UEs. Thus,

it maximizes the usage of the available spectrum in all network cells, and reduces ICI

simultaneously.

2.6.3 Throughput Cumulative Distribution Function

We report throughput CDF for the compared techniques, under the same simulation

scenario. It allows us to study throughput distribution among active UEs in the network.

CDF for reuse-1, reuse-3, FFR, and SFR techniques is illustrated in Fig. 2.10.

For a given throughput value, CDF represents the probability to find a UE characterized

by a lower throughput. The lower the CDF is, the better the quality of service is. We

notice that throughput CDF of reuse-3 model is the first to reach the maximum. In

other words, the probability to find a UE served with a throughput less than 1 Mbit/s

tends to one. FFR improves throughput CDF function in comparison with reuse-3.

However, it reaches the maximum before reuse-1 CDF. When using SFR, the number

of UEs suffering from bad quality of service is reduced. For relatively low throughput

values (less than 1 Mbit/s) throughput CDF for SFR is the lowest curve; thus, it shows

the lowest percentage of UEs served with low throughputs. Moreover, SFR curve is

the last one to reach its maximum (at 3 Mbit/s approximately). Consequently, when
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Figure 2.10: Throughput cumulative distribution function

mobile network operators seek to improve throughput CDF for the entire system, SFR

is the most adequate technique among the compared ICIC schemes. It succeeds in

reducing the percentage of UEs with relatively low throughputs, while also improving

the maximum achievable throughput in the network. Through restrictions made on

downlink transmission power allocation, SFR reduces ICI for BR UEs, and provides

enough bandwidth for GR UEs to achieve higher data rates.

2.6.4 UE Satisfaction versus Network Load

In this paragraph, we compare the percentage of unsatisfied UEs for each technique. The

simulated network consists of seven adjacent hexagonal LTE cells. We simulate several

scenarios, with increasing number of UEs per cell. The simulation results are illustrated

in Fig. 2.11. Satisfaction throughput threshold is set to 512 kbit/s. We assume that the

average throughput per UE is required to be higher than 512 kbit/s in order to fulfill its

downlink data traffic demands. Otherwise, the UE is considered as an unsatisfied UE.

We notice that reuse-3 model shows the lowest percentage of unsatisfied UEs for low

network loads. When each cell is using a disjoint part of the spectrum, ICI problems

are almost eliminated. However, the percentage of unsatisfied UEs becomes the highest

among all the compared techniques when the network load increases. Only one third of
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Figure 2.11: UE satisfaction versus network load

the available spectrum is used in each cell; thus, network capacity and UE satisfaction

are reduced when network load increases.

Despite of the power reduction over RBs allocated for GR UEs, SFR shows approximately

the same percentage of unsatisfied UEs as for reuse-1 model. The power allocation

strategy reduces ICI, especially for BR UEs, and GR throughput loss is compensated.

Compared to reuse-1 model, FFR increases the percentage of unsatisfied UEs, due to

restrictions on RB usage between network cells. A portion of the available spectrum is

not allowed to be used in each cell. When network load increases, FFR performance

exceeds that of the frequency reuse-3 model. It is a compromise between reuse-1 model

and reuse-3 model. In fact, when using FFR, we guarantee that BR UEs of adjacent

cells operate on disjoint spectrum. Thus, it makes use of the main advantage of reuse-3

model: ICI is mitigated for BR UEs. Moreover, it avoids the disadvantage of reuse-3

model i.e., the lack of RBs available in each cell, by allowing the usage of reuse-1 model

in GR zones of the neighboring cells.

2.6.5 UE Satisfaction versus UE Distribution

In this paragraph, UE positions are generated in a manner that the percentage of GR UEs

varies between 20% and 80%. We consider seven adjacent cells with 10 UEs in each cell.

For each UE distribution (percentage of GR UEs), simulations are repeated 100 times,
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and the obtained results are reported in Fig. 2.12. The particularity of our work is that

we compare the performance of different ICIC techniques under both homogeneous and

non-homogeneous UE distributions. When UEs are homogeneously distributed between

cell zones, half of the active UEs are GR UEs, while the other half are BR UEs.
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Figure 2.12: UE satisfaction versus percentage of GR UEs

We notice that FFR reduces the percentage of unsatisfied UEs in the network when their

distribution is approximately homogeneous between BR and GR zones. It improves

system performance in comparison with the frequency reuse-1 model when 50% to 70%

of active UEs are GR UEs. However, when the majority of active UEs are either in

the BR zone, or in the GR zone, the percentage of unsatisfied UEs exceeds that of

reuse-1 model. FFR is a static technique, and RB distribution among GR and BR zones

is not dynamically adjusted according to UE distribution. SFR suffers from the same

limitation caused by its static aspect. In fact, UE satisfaction is not better than that

of the frequency reuse-1 model when the majority of UEs are BR UEs. However, SFR

reduces the percentage of unsatisfied UEs when more than 50% of active UEs are GR

UEs. The frequency reuse-3 model increases the percentage of unsatisfied UEs when

compared to reuse-1 model, for all UE distributions. Restrictions made on RB usage

in each cell reduces spectrum profitability, which in turn has a negative impact on the

achievable throughput.

We also conclude that static configuration parameters for FFR and SFR can be adjusted



2. ICIC Techniques for Multiuser OFDMA Networks 42

to meet UE distribution between BR and GR zones. The choice of these tuning param-

eters [HA09, Ass08] is made by mobile network operators according to quality of service

requirements and deployment scenarios.

2.6.6 Fairness Index versus UE Distribution

For the same simulation scenario, we study UEs throughput fairness index when the

percentage of GR UEs in the network changes. The simulation results are shown in

Fig. 2.13.
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Figure 2.13: Fairness index versus percentage of GR UEs

The frequency reuse-3 model shows permanently the highest throughput fairness index

among all the studied techniques. It exceeds Jain’s fairness index of reuse-1 model, where

BR UEs suffer from ICI, which has a negative impact on their throughput, while GR UEs

achieve higher throughputs. The static RB and power distributions between BR and GR

zones, applied in FFR and SFR, are not adequate for all UE distributions, especially when

the majority of active UEs are homogeneously distributed between cell zones. Although

they succeed in reducing ICI, FFR and SFR do not improve throughput fairness among

all UEs for these particular scenarios. In fact, the tuning parameters of FFR and SFR

techniques, such as the portion of the available spectrum allocated to each cell zone,

should be modified to meet UEs throughput demands in each zone. Nevertheless, FFR

improves Jain’s fairness index in comparison with reuse-1 model when 55% to 65% of UEs
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are GR UEs. Thus, FFR tuning parameters should be adjusted according to network

load and UE distribution between the different zones.

2.6.7 Spectral Efficiency and Energy Efficiency versus UE Distribution

We also study the impact of UE distribution on spectral efficiency and energy efficiency,

for the frequency reuse-1 model, the frequency reuse-3 model, FFR, and SFR techniques.

Simulation results are reported in Fig. 2.14 and Fig. 2.15.
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Figure 2.14: Spectral efficiency versus percentage of GR UEs
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Figure 2.15: Energy efficiency versus percentage of GR UEs
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Our results show that SFR has the highest spectral efficiency, since it allows using all

the available spectrum in every cell, while imposing restrictions on power allocation

for RBs available in each zone. Therefore, it succeeds in reducing ICI while increasing

spectral efficiency for all UE distributions, except the case where the majority of UEs

are GR UEs: in this case, the frequency reuse-1 model is better since it achieves higher

throughputs without the need to reduce downlink transmission power. SFR has also the

highest energy efficiency in comparison with the frequency reuse-1 model, the frequency

reuse-3 model, and FFR technique.

Energy efficiency for the frequency reuse-3 model exceeds that of the frequency reuse-1

model and FFR technique, since no downlink power consumption is made on unused

RBs. Restrictions on RB usage make the frequency reuse-3 model the one with the

lowest spectral efficiency: in a cluster of three adjacent cells, only one third of the

available spectrum is used in each cell. FFR is a compromise between the frequency

reuse-1 model and the frequency reuse-3 model in terms of spectral efficiency and energy

efficiency. Indeed, the frequency reuse-1 model is used in GR zones, while the frequency

reuse-3 model is used for BR zones of the adjacent cells.

2.7 Conclusion

The increasing demands for data in mobile networks, as well as the exponential growth

in mobile applications have lead the mobile network operators to apply dense frequency

reuse model to improve spectral efficiency and increase network capacity. However, inter-

cell interference problems have a negative impact on UE throughput and system perfor-

mance. ICIC techniques are proposed to mitigate ICI, and to improve UEs throughput

without largely reducing spectral efficiency.

In this chapter, we classified the existing ICIC techniques into several categories, and

we surveyed traditional techniques such as the frequency reuse-3 model, FFR, and SFR

techniques. These techniques are compared to the frequency reuse-1 model. System-level

simulations are made under uniform and non-uniform UE distributions. They allow us

to study the performance of each technique, for several parameters: spectral efficiency,

energy efficiency, mean throughput per zone, throughput fairness index, and UE sat-

isfaction. The frequency reuse-3 model has the lowest spectral efficiency, while SFR
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improves it in comparison with the frequency reuse-1 model. Moreover, we noticed that

FFR technique is a compromise between reuse-1 and reuse-3 models in terms of spectral

efficiency and energy efficiency. However, FFR and SFR are static ICIC techniques, and

they require interventions from mobile network operator to adjust RB allocation and

power distribution between cell zones according to UE distribution and quality of service

requirements.

In the next chapter, we introduce our proposed centralized multi-cell interference co-

ordination problem. We define the objective function of the joint resource and power

allocation problem, under constraints related to resource usage and power allocation.

A centralized multi-cell power allocation scheme and a decentralized non-cooperative

power allocation scheme are proposed. We investigate the achievable throughput and

the spectral efficiency of the proposed techniques, the frequency reuse-1 model, reuse-3

model, FFR, and SFR schemes.





Chapter 3

Centralized versus Decentralized

Multi-Cell Resource and Power

Allocation

Resource and power allocation techniques are required to alleviate the harmful impact

of ICI in multiuser OFDMA networks. Contrarily to the existing techniques that con-

sider single-cell resource and power allocation problem without taking ICI into account,

we formulate in this chapter a centralized multi-cell joint resource and power allocation

problem. The objective is to maximize system throughput while guaranteeing throughput

fairness between UEs. We demonstrate that the joint problem is separable into two in-

dependent problems: a resource allocation problem and a power allocation problem. We

also propose a decentralized non-cooperative power allocation approach based on game

theory. The players are the base stations, and each base station maximizes its own utility

function. We investigate the convergence of our proposed centralized and decentralized

approaches, and we compare their performance with that of state-of-the-art approaches.

3.1 Introduction

Convex optimization is used to improve the performance of multiuser OFDMA networks,

and to alleviate the negative impact of ICI on UE throughput. Resource allocation,

power allocation, or joint resource and power allocation problems are usually formulated

as nonlinear optimization problems, where the objective consists of maximizing system

47
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throughput, spectral efficiency, or energy efficiency, with constraints on the minimum

throughput per UE or other QoS parameters [CTP+07, TLZ08, SAE05]. In fact, im-

proving spectral efficiency is crucial for mobile network operators in order to increase

system capacity and UE throughput. Moreover, energy-efficient resource and power al-

location is becoming a significant topic for research works [XTL15].

ICIC techniques are essential to improve spectral efficiency, and to increase UE through-

put. Moreover, coordinated scheduling, coordinated beamforming, and joint transmission

[NBLK14] are seen as important components of ICIC techniques developed for 5G cel-

lular networks. For instance, authors of [HTV14] combine the beamforming technique

with resource allocation algorithms in order to improve cell-edge UEs throughput. How-

ever, the coordinated approaches generate more sharing of channel information between

the network cells. Joint resource and power allocation or distributed power allocation

approaches [HRTA14] that guarantee a minimum throughput per UE are among the

challenges of 5G networks envisioned to achieve higher data rates, improved end-to-end

performance, and reduced energy consumption. The majority of state-of-the-art contri-

butions formulate the resource and power allocation problem for a single cell network

[TSAH14, LMB14, XLZ+11], or do not consider the impact of ICI on system perfor-

mance. For instance, the tradeoff between spectral efficiency and energy efficiency is

addressed in [XLZ+11], and a low-complexity suboptimal algorithm is proposed to allo-

cate RBs for practical applications of the tradeoff. However, the system model consists

of a single cell OFDMA network, where one subcarrier is assigned to at most one UE.

Therefore, ICI problems are not considered.

In this chapter, we formulate the joint resource and power allocation problem for mul-

tiuser OFDMA networks, as a centralized optimization problem. We demonstrate that

the objective function is separable into two independent optimization problems: a re-

source allocation problem and a power allocation problem. Our objective is to maximize

the achievable throughput for the entire system, while satisfying constraints related to

resource usage, SINR, and power allocation. Several adjacent cells share information re-

lated to radio conditions and power allocation in order to solve the centralized resource

and power allocation problem. We also propose a decentralized power allocation ap-

proach that does not rely on centralized controllers. Each base station searches for the

power allocation that maximizes its own utility function in a distributed manner. Our

major contributions are summarized as follows:
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• Propose an original formulation of the centralized joint resource and power alloca-

tion problem: instead of considering a single cell OFDMA network, we formulate

our problem for a multi-cell OFDMA network. Moreover, ICI problems are taken

into account.

• Maximize the mean rate per UE, and ensure a proportional fair rate for all the

UEs in the network.

• Prove the convexity of our centralized problem by applying an adequate variable

change.

• Decompose the joint resource and power allocation problem into two independent

problems.

• Solve the centralized power allocation problem using Lagrange duality theory and

subgradient projection method.

• Formulate a novel decentralized super-modular game for resource and power allo-

cation, and propose a best response algorithm to attain the Nash Equilibrium.

• Solve the decentralized power allocation problem using subgradient projection

method.

• Validate the convergence of the proposed centralized and decentralized approaches

and evaluate their performance in comparison with other state-of-the-art approaches.

3.2 Related Work

Resource and power allocation problem is considered as a centralized optimization prob-

lem. For a given multiuser OFDMA system, the optimal solution to this problem consists

in maximizing spectral efficiency, energy efficiency, or both. Centralized inter-cell coor-

dination is therefore required to achieve this solution, where the necessary information

about SINR, power allocation, and UE radio conditions are sent to a centralized coordi-

nation entity.

In [QLS09], the multi-cell optimization problem is decomposed into two distributed op-

timization problems. The objective of the first problem is to minimize the transmission

power allocated for cell-edge UEs, while guaranteeing a minimum throughput for each
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UE. RB and power are allocated to cell-edge UEs so that they satisfy their minimum

required throughput. The remaining RBs and the remaining transmission power are

uniformly allocated to cell-center UEs. At this stage, the second problem aims at finding

the resource allocation strategy that maximizes the achievable throughput for cell-center

zone. An improved version of this adaptive ICIC technique is proposed in [UH11], where

resource allocation for cell-edge UEs is performed depending on their individual channel

conditions. Another adjustment is made on resource allocation for cell-edge UEs when

the required transmission power exceeds the maximum power of an eNodeB. However,

the main disadvantage of this adaptive ICIC technique and the proposed improvement is

that they do not consider the impact of ICI between adjacent cells when power allocation

is performed. In fact, authors ignore ICI by proposing suboptimal algorithms that solve

the optimization problem in a distributed manner: each cell solves its own optimization

problem without requesting additional information from its neighboring cells.

Resource and power allocation for a cluster of coordinated OFDMA cells are analyzed in

[VZRB15]. Constraints on downlink transmission power are defined to avoid exceeding

the maximum power per cell. A global energy efficiency is defined as the ratio between

sum-rate and power consumption for the entire network. However, noise-limited regime is

considered, and ICI is neglected. The proposed algorithms run in a centralized controller

that collects channel measurements from several eNodeBs, and calculates resource and

power allocation for the entire cluster of coordinated eNodeBs.

Energy-efficient resource allocation for OFDMA systems is studied in [XLZ+12], where

generalized and individual energy efficiencies are defined for the downlink and the up-

link of the OFDMA system, respectively. Properties of the energy efficiency objective

function are analyzed, then a low-complexity suboptimal algorithm is introduced to re-

duce the computational burden of the optimal solution. Subcarrier assignment is made

easier using heuristic algorithms. Within the same context, link adaptive transmission

is exploited to maximize energy efficiency, measured by the throughput per Joule metric

[MHL10]. Energy efficiency is maximized by adapting both overall transmit power and

power allocation according to channel states. Iterative algorithms are used to reach the

optimal link adaptation solution. In [LPCVC14, LXCL14] the objective is to minimize

the required transmission power while satisfying UE rates constraints. Therefore, re-

source allocation is performed in a manner that improves energy efficiency for the entire

system. Authors of [YLY+14] consider the joint resource allocation, power allocation,
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and Modulation and Coding Scheme (MCS) selection problem. Their objective is to

maximize the achievable throughput in a proportional fair manner between UEs. The

joint optimization problem is separated into resource allocation and power allocation

problems, and suboptimal algorithms are proposed. Another low complexity suboptimal

resource allocation algorithm is proposed in [AHSS14]. The objective consists in max-

imizing the achievable throughput, under constraints related to resource usage in the

different cells. Cooperation between adjacent cells is needed. Performance comparisons

with the frequency reuse-1 model and other static ICIC techniques are done using system

level simulations of an LTE network.

The majority of state-of-the-art contributions that formulate spectral efficiency or energy

efficiency problems as centralized optimization problems, neglect the impact of ICI on

system performance [TSAH14, LMB14, XLZ+11], or introduce suboptimal approaches

to solve resource and power allocation problems [NKL14, ZCL+14, SA14]. Moreover,

performance comparisons are not made with other distributed heuristic ICIC algorithms,

that are usually characterized by a lower computational complexity. In our work, we

consider the multi-cell resource and power allocation problem, where the objective is

to maximize system throughput while guaranteeing throughput fairness between the

different UEs. Moreover, ICI is taken into account when solving the centralized resource

and power allocation problem. We also formulate a decentralized non-cooperative power

allocation approach based on game theory. The players are the cells, and each cell seeks

maximizing its own utility function independently of the other cells in the network.

We investigate the convergence of both centralized and decentralized approaches, and

we compare their performance with that of the frequency reuse-1 model, the frequency

reuse-3 model, FFR, and SFR techniques.

3.3 System Model and Problem Formulation

3.3.1 System Model

We consider the downlink of a multiuser OFDMA system that consists of I adjacent cells

and K active UEs. Let I = {1, 2, ..., I} denote the the set of cells, and K = {1, 2, ...,K}

the total set of active UEs. We also define K(i) as the number of UEs served by cell i.

Thus, we have
∑I

i=1K(i) = K. The total bandwidth available in each cell equals B,
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and N = {1, 2, ..., N} denotes the set of available RBs in each cell. The bandwidth per

RB is therefore given by W = B
N .

In OFDMA networks, system spectrum is divided into several channels, where each chan-

nel consists of a number of consecutive orthogonal OFDM subcarriers [WLP+10]. An

RB is the smallest scheduling unit. It consists of 12 consecutive subcarriers in the fre-

quency domain, and seven OFDM symbols with normal cyclic prefix in the time domain

[DPS11] (or six OFDM symbols with extended cyclic prefix). Resources are allocated to

UEs each Transmit Time Interval (TTI), which is equal to 1 ms. When the frequency

reuse-1 model is applied along with homogeneous power allocation, each RB is allocated

the same downlink transmission power Pmax
N , where Pmax denotes the maximum downlink

transmission power per cell.

The signal to interference and noise ratio for a UE k attached to cell i and allocated

RB n is given by:

σk,i,n =
πi,nGk,i,n

N0 +
∑

i′ 6=i πi′,nGk,i′,n
, (3.1)

where πi,n is the downlink transmission power allocated by cell i to RB n, Gk,i,n denotes

channel gain for UE k attached to cell i and allocated RB n, and N0 is the thermal noise

power. Indexes i and i′ refer to useful and interfering signals respectively.

Notations, symbols, parameters, and variables used within this chapter are reported in

Table 3.1.

3.3.2 Problem Formulation

3.3.2.1 Centralized Multi-Cell Optimization Problem

We define θk,n as the percentage of time during which UE k is associated with RB n.

θk,n, ∀k ∈ K, ∀n ∈ N , and πi,n,∀i ∈ I,∀n ∈ N , are the optimization variables of the joint

resource and power allocation problem. Our objective is to manage resource and power

allocation in a manner that maximizes system throughput and guarantees throughput

fairness between the different UEs. The peak rate of UE k when associated with RB n

on cell i is given by:

ρk,i,n = log

(
1 +

πi,nGk,i,n
N0 +

∑
i′ 6=i πi′,nGk,i′,n

)
, (3.2)
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Table 3.1: Sets, parameters, and variables
i Index of cell
k Index of UE
n Index of RB
I Set of cells
K Total set of UEs
K(i) Set of UEs associated to cell i
N Set of RBs
B Total bandwidth
W Bandwidth per RB
ρk,i,n Peak rate achieved by UE k associated with RB n on cell i
πi,n Transmit power of cell i on RB n
Gk,i,n Channel gain for UE k over RB n on cell i
N0 Thermal noise density
θk,n Percentage of time UE k is associated with RB n
η Total system achievable mean rate
σk,i,n SINR for UE k over RB n on cell i
Pmax Maximum DL transmission power per cell
πmin Minimum DL transmission power per RB
I ′(i) Set of neighboring cells for cell i

and the mean rate of UE k is given by:

∑
n∈N

(θk,n.ρk,i,n) =
∑
n∈N

(
θk,n. log

(
1 +

πi,nGk,i,n
N0 +

∑
i′ 6=i πi′,nGk,i′,n

))
. (3.3)

Our centralized multi-cell joint resource and power allocation problem seeks rate maxi-

mization in a proportional fair manner. We make use of the logarithmic function that

is intimately associated with the concept of proportional fairness [Kel97]. Our joint

resource and power allocation problem is formulated in the following:

maximize
θ,π

η =
∑
i∈I

∑
k∈K(i)

log

(∑
n∈N

θk,n. log

(
1 +

πi,nGk,i,n
N0 +

∑
i′ 6=i πi′,nGk,i′,n

))
(3.4a)

subject to
∑
k∈K(i)

θk,n ≤ 1, ∀n ∈ N , (3.4b)

∑
n∈N

θk,n ≤ 1, ∀k ∈ K(i), (3.4c)

∑
n∈N

πi,n ≤ Pmax, ∀i ∈ I, (3.4d)

πi,n ≥ πmin, ∀i ∈ I,∀n ∈ N , (3.4e)

0 ≤ θk,n ≤ 1, ∀k ∈ K(i),∀n ∈ N . (3.4f)
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The objective function η ensures a proportional fair rate for all the active UEs in the

network. Constraints (3.4b) ensure that an RB is used at most 100% of the time, and con-

straints (3.4c) ensure that a UE shares its time on the available RBs. Constraints (3.4d)

guarantee that the total downlink transmission power allocated to the available RBs does

not exceed the maximum transmission power Pmax for each cell i, and constraints (3.4e)

represent the minimum power constraint of the transmit power allocated to each RB.

θk,n and πi,n are the optimization variables of the joint resource and power allocation

problem.

3.3.2.2 Upper Bound of the Objective Functions Difference

In order to reduce the complexity of the joint resource and power allocation problem (3.4),

we prove that this problem is separable into two independent problems: a resource

allocation problem and a power allocation problem. Given Jensen’s inequality and the

concavity of the log function, we have:

log

(∑
n∈N θk,n.ρk,i,n

|N |

)
≥
∑

n∈N log (θk,n.ρk,i,n)

|N |
(3.5a)

⇒ log

(∑
n∈N

θk,n.ρk,i,n

)
≥
∑

n∈N log (θk,n.ρk,i,n)

|N |
+ log (|N |) , (3.5b)

the objective function η can be written as:

η =
∑
i∈I

∑
k∈K(i)

log

(∑
n∈N

θk,n.ρk,i,n

)

≥ 1

|N |
∑
i∈I

∑
k∈K(i)

∑
n∈N

log (θk,n.ρk,i,n) + |K|. log (|N |) .
(3.6)

Since 1
|N | and |K|. log (|N |) are constant terms, maximizing the objective function of

problem (3.4) is achieved by maximizing the following term:

∑
i∈I

∑
k∈K(i)

∑
n∈N

log (θk,n.ρk,i,n) =
∑
i∈I

∑
k∈K(i)

∑
n∈N

(log (θk,n) + log (ρk,i,n)) . (3.7)

In order to decompose the joint problem into two independent problems, we evaluate

the gap between the original objective function η and the function given in (3.7). We
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demonstrate an upper bound on the following difference:

0 ≤ log

(∑
n∈N

θk,n.ρk,i,n

)
−
∑
n∈N

log (θk,n.ρk,i,n) ≤ B. (3.8)

Let φn = θk,n.ρk,i,n > 0, and suppose that a ≤ φn ≤ b. Thus, there exists 0 ≤ λn ≤ 1

such that φn = λna+ (1− λn)b.

Theorem 3.1. The best upper global bound of
(
log
(∑

n∈N φn
)
−
∑

n∈N log (φn)
)
is:

B = max
p

(log (ap+ b (|N | − p))− p log (a)− (|N | − p) log (b)) , where p =
∑

n∈N λn.

Proof:

log

(∑
n∈N

φn

)
−
∑
n∈N

log (φn)

= log

(∑
n∈N

(λna+ (1− λn) b)

)
−
∑
n∈N

log (λna+ (1− λn) b)

≤ log

(∑
n∈N

(λna+ (1− λn) b)

)
−
∑
n∈N

(λn log (a) + (1− λn) log (b))

= log

(
a

(∑
n∈N

λn

)
+ b

(
|N | −

∑
n∈N

(λn)

))
− log (a)

(∑
n∈N

λn

)
− log (b)

(
|N | −

∑
n∈N

(λn)

)
.

Taking p =
∑

n∈N λn and q = |N | −
∑

n∈N λn, we have 0 ≤ p ≤ |N |, 0 ≤ q ≤ |N |,

and p+ q = |N |. Consequently, we have:

log

(∑
n∈N

φn

)
−
∑
n∈N

log (φn)

≤ log (ap+ bq)− p log (a)− q log (b)

≤ max
p

(log (ap+ b (|N | − p))− p log (a)− (|N | − p) log (b)) = B.

For fixed a and b, let us denote:

g(p) = log(ap+ b(|N | − p))− p log(a)− (|N | − p) log(b).

g is defined, differentiable, and concave on [0, |N |]. Its first derivative is given by:

g′(p) =
a− b

ap+ b(|N | − p)
− log(a) + log(b).
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g(p) attains its maximal value B for a p0 that satisfies: g′(p0) = 0. Thus, we have

B = g(p0), where p0 is given by:

p0 =
1

log(a)− log(b)
+
b.|N |
b− a

.

3.4 Problem Decomposition

We tackle ICIC as an optimization problem, where we intend to maximize the mean rate

of active UEs in a multiuser OFDMA system. We consider a system of I cells, having

K(i) UEs per cell i. According to (3.7), and due to the absence of binding constraints,

the optimization problem (3.4) is linearly separable into two independent problems: a

power allocation problem and a resource allocation problem.

3.4.1 Centralized Multi-Cell Power Allocation Problem

In the first problem, the optimization variable π is considered, and the problem is for-

mulated as follows:

maximize
π

η1 =
∑
i∈I

∑
k∈K(i)

∑
n∈N

log

(
log

(
1 +

πi,nGk,i,n
N0 +

∑
i′ 6=i πi′,nGk,i′,n

))
(3.9a)

subject to
∑
n∈N

πi,n ≤ Pmax, ∀i ∈ I, (3.9b)

πi,n ≥ πmin, ∀i ∈ I, ∀n ∈ N . (3.9c)

Problem (3.9) consists in finding the optimal power allocation for the available RBs. In

the following, we introduce a variable change that allows to formulate problem (3.9) as

a convex optimization problem.

Theorem 3.2. The logarithmic function of the sum of exponential functions is convex.

Proof: Let f(x) = log
(∑J

j=1 expxj

)
.

The Hessian of the log-sum-exp function is given by:
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∇2f(x) = 1
S(x)2

(
S(x)diag (s (x))− s (x) s (x)T

)
,

where s(x) = (exp(x1), exp(x2), ..., exp(xJ)), and S(x) =
∑J

j=1 sj(x).

To verify that ∇2f(x) ≥ 0 we must show that for every z ∈ RJ , we have zT∇2f(x)z ≥ 0.

We have:

S(x)2.zT∇2f(x)z = zT
(
S (x)diag (s (x))− s (x) s (x)T

)
z

=

 J∑
j=1

sj (x) z2j

 J∑
j=1

sj (x)

−
 J∑
j=1

sj (x) zj

2

≥ 0,

due to Cauchy-Schwartz inequality. Thus, f(x) is convex on RJ .

The power allocation problem (3.9) can be written as follows:

maximize
ρ

η1 =
∑
i∈I

∑
k∈K(i)

∑
n∈N

log(ρk,i,n) (3.10a)

subject to ρk,i,n ≤ log

(
1 +

πi,nGk,i,n
N0 +

∑
i′ 6=i πi′,nGk,i′,n

)
, ∀i ∈ I, ∀k ∈ K(i), ∀n ∈ N ,

(3.10b)∑
n∈N

πi,n ≤ Pmax, ∀i ∈ I, (3.10c)

πi,n ≥ πmin, ∀i ∈ I, ∀n ∈ N . (3.10d)

To show that the optimization problem (3.10) is a convex optimization problem, we need

to show that the objective function is concave and the inequality constraint functions

define a convex set. Let us consider the following variable change:

ρ̂k,i,n = log(exp(ρk,i,n)− 1), ∀ i ∈ I,∀ k ∈ K(i),∀n ∈ N , (3.11a)

π̂i,n = log(πi,n), ∀ i ∈ I,∀n ∈ N . (3.11b)

Hence, the original variables are given by:

ρk,i,n = log(exp(ρ̂k,i,n) + 1), ∀ i ∈ I,∀ k ∈ K(i),∀n ∈ N , (3.12a)

πi,n = exp(π̂i,n), ∀ i ∈ I,∀n ∈ N . (3.12b)
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After applying the variable change on UE peak rate constraints (3.10b), these constraints

can be written as follows:

ρk,i,n ≤ log

(
1 +

πi,nGk,i,n
N0 +

∑
i′ 6=i πi′,nGk,i′,n

)
, ∀i ∈ I, ∀k ∈ K(i), ∀n ∈ N

⇒ log(exp(ρ̂k,i,n) + 1) ≤ log

(
1 +

exp(π̂i,n)Gk,i,n
N0 +

∑
i′ 6=i exp(π̂i′,n)Gk,i′,n

)

⇒ exp(ρ̂k.i.n) + 1 ≤ 1 +
exp(π̂i,n)Gk,i,n

N0 +
∑

i′ 6=i exp(π̂i′,n)Gk,i′,n

⇒
exp(ρ̂k.i.n).

(
N0 +

∑
i′ 6=i exp(π̂i′,n)Gk,i′,n

)
exp(π̂i,n)Gk,i,n

≤ 1

⇒ log

exp(ρ̂k.i.n − π̂i,n)
N0

Gk,i,n
+
∑
i′ 6=i

exp(ρ̂k.i.n + π̂i′,n − π̂i,n)
Gk,i′,n
Gk,i,n

 ≤ 0,

∀i ∈ I, ∀k ∈ K(i), ∀n ∈ N ,

these constraints are the logarithmic of the sum of exponential functions. According to

Theorem 3.2, they are convex functions. When we apply the variable change on power

constraints (3.10c), we obtain the following:

∑
n∈N

πi,n ≤ Pmax, ∀i ∈ I

⇒
∑
n∈N

exp(π̂i,n) ≤ Pmax

⇒
∑

n∈N exp(π̂i,n)

Pmax
≤ 1

⇒ log

(∑
n∈N

exp(π̂i,n)

)
− log(Pmax) ≤ 0, ∀i ∈ I.
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Since log(
∑

exp) is convex, the constraints at hand are therefore convex. Using the

variable change, the power allocation problem (3.10) can be written as follows:

maximize
ρ̂

η1 =
∑
i∈I

∑
k∈K(i)

∑
n∈N

log (log(exp(ρ̂k,i,n) + 1)) (3.13a)

subject to log

exp(ρ̂k.i.n − π̂i,n)
N0

Gk,i,n
+
∑
i′ 6=i

exp(ρ̂k.i.n + π̂i′,n − π̂i,n)
Gk,i′,n
Gk,i,n

 ≤ 0,

∀i ∈ I, ∀k ∈ K(i), ∀n ∈ N , (3.13b)

log

(∑
n∈N

exp(π̂i,n)

)
− log(Pmax) ≤ 0, ∀i ∈ I, (3.13c)

π̂i,n ≥ log(πmin), ∀i ∈ I,∀n ∈ N . (3.13d)

The objective function of problem (3.13) is concave in ρ̂, and constraints (3.13b), (3.13c),

and (3.13d) are convex functions. Thus, the power allocation problem is a convex opti-

mization problem.

3.4.2 Centralized Resource Allocation Problem

The optimization variable θ is considered in the second optimization problem that is

given in the following:

maximize
θ

η2 =
∑
i∈I

∑
k∈K(i)

∑
n∈N

log(θk,n) (3.14a)

subject to
∑
k∈K(i)

θk,n ≤ 1, ∀n ∈ N , (3.14b)

∑
n∈N

θk,n ≤ 1, ∀k ∈ K(i), (3.14c)

0 ≤ θk,n ≤ 1, ∀k ∈ K(i), ∀n ∈ N . (3.14d)

As demonstrated for the power allocation problem (3.9), we prove that problem (3.14) is

indeed a convex optimization problem in θ. The objective function (3.14a) of the resource

allocation problem (3.14) is concave in θ, since the log function is concave for θ ∈ ]0; 1].

Moreover, constraints (3.14b), (3.14c), and (3.14d) are linear and separable constraints.

Hence, the resource allocation problem (3.14) is a convex optimization problem, and it

is separable into I subproblems. For each cell i, the ith optimization problem is written
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as follows:

maximize
θ

(η2)i =
∑
k∈K(i)

∑
n∈N

log(θk,n) (3.15a)

subject to
∑
k∈K(i)

θk,n ≤ 1, ∀n ∈ N , (3.15b)

∑
n∈N

θk,n ≤ 1, ∀k ∈ K(i), (3.15c)

0 ≤ θk,n ≤ 1, ∀k ∈ K(i), ∀n ∈ N . (3.15d)

Resource and power allocation problems are convex optimization problems that aim at

maximizing the total achievable rate for the entire system, while taking into account

constraints related to power allocation and resource usage.

We identify two different resource and power allocation scenarios, based on the amount

of collaboration between the different cells:

1. Centralized resource and power allocation.

2. Decentralized non-cooperative resource and power allocation.

The centralized resource and power allocation scenario is when the optimization problem

is solved for the entire system, after collecting the necessary information from all the

cells. It assumes that a central entity has the complete knowledge of resource and power

allocation within all the cells: θk,n and πi,n values are known ∀i ∈ I, ∀k ∈ K, ∀n ∈ N .

The main advantage of this scenario is that it offers the resource and power allocation

that maximize the achievable throughput for the entire network. In other words, it leads

to the optimal spectral efficiency, at the expense of additional signaling messages to be

exchanged between the cells and the central entity, as well as an exponentially increasing

computational complexity.

When distributed non-cooperative resource and power allocation scenario is considered,

the optimization problem is solved locally for each cell, and information about resource

and power allocation in the neighboring cells is not requested. The term
∑

i′ 6=i πi′,nGk,i′,n

that reflects ICI caused by the neighboring cells, is unknown for cell i. Thus, each cell i

maximizes its achievable rate
∑

k∈K(i) log
(∑

n∈N θk,n.ρk,i,n
)
without taking into account

the impact of simultaneous transmissions made by its neighboring cells on the same
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resources. This assumption reduces the efficiency of this approach in comparison with

cooperative and centralized scenarios. However, it is interesting when the network size

increases, since it does not generate any additional signaling traffic.

3.5 Centralized Resource and Power Allocation

3.5.1 Solving the Centralized Power Allocation Problem

3.5.1.1 Lagrange-Based Method

Since the power allocation problem (3.13) is proven to be a convex optimization problem,

we can make use of Lagrange duality properties, which also lead to decomposability

structures [PC06]. Lagrange duality theory links the original problem, called primal

problem, with a dual maximization problem. The primal problem (3.13) is relaxed by

transferring the constraints to the objective in the form of weighted sum. The Lagrangian

is formed by relaxing the coupling constraints (3.13b) and (3.13c) in (3.13):

L(ρ̂, π̂,λ,ν) =
∑
i∈I

∑
k∈K(i)

∑
n∈N

log(log(exp(ρ̂k,i,n) + 1))

−
∑
i∈I

∑
k∈K(i)

∑
n∈N

λk,i,n(log(exp(ρ̂k.i.n − π̂i,n)
N0

Gk,i,n

+
∑
i′∈N
i′ 6=i

exp(ρ̂k.i.n + π̂i′,n − π̂i,n)
Gk,i′,n
Gk,i,n

))

−
∑
i∈I

νi(log(
∑
n∈N

exp(π̂i,n))− log(Pmax)).

(3.16)

The optimization variables ρ̂ and π̂ are called the primal variables. λk,i,n and νi are the

Lagrange multipliers or prices associated with the (k, i, n)-th inequality constraint (3.13b)

and with the i-th inequality constraint (3.13c), respectively. λ and ν are also termed

the dual variables.

After relaxing the coupling constraints, the optimization problem separates into two

levels of optimization: lower level and higher level. At the lower level, L(ρ̂, π̂,λ,ν) is

the objective function to be maximized. ρ̂k,i,n and π̂i,n are the optimization variables to
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be found, and the primal problem is given by:

maximize
ρ̂,π̂

L(ρ̂, π̂,λ,ν) =
∑
i∈I

∑
k∈K(i)

∑
n∈N

log(log(exp(ρ̂k,i,n) + 1))

−
∑
i∈I

∑
k∈K(i)

∑
n∈N

λk,i,n(log(exp(ρ̂k.i.n − π̂i,n)
N0

Gk,i,n

+
∑
i′∈N
i′ 6=i

exp(ρ̂k.i.n + π̂i′,n − π̂i,n)
Gk,i′,n
Gk,i,n

))

−
∑
i∈I

νi(log(
∑
n∈N

exp(π̂i,n))− log(Pmax)) (3.17a)

subject to π̂i,n ≥ log(πmin), ∀i ∈ I,∀n ∈ N . (3.17b)

In order to solve the primal optimization problem (3.17), we use the subgradient pro-

jection method. It starts with some initial feasible values of ρ̂k,i,n and π̂i,n that satisfy

the constraints (3.17b). Then, the next iteration is generated by taking a step along the

subgradient direction of ρ̂k,i,n and π̂i,n. For the primal optimization variables, iterations

of the subgradient projection are given by:

ρ̂k,i,n(t+ 1) = ρ̂k,i,n(t) + δ(t)
∂L

∂ρ̂k,i,n
,∀k ∈ K(i),∀i ∈ I,∀n ∈ N , (3.18a)

π̂i,n(t+ 1) = π̂i,n(t) + δ(t)
∂L

∂π̂i,n
,∀i ∈ I,∀n ∈ N . (3.18b)

The scalar δ(t) is a step size that guarantees the convergence of the optimization prob-

lem (3.17). The partial derivatives of the objective function L(ρ̂, π̂,λ,ν) with respect

to ρ̂k,i,n and π̂i,n, are given in the following:

∂L

∂ρ̂k,i,n
=

exp(ρ̂k,i,n)

(exp(ρ̂k,i,n) + 1) log(exp(ρ̂k,i,n) + 1)
− λk,i,n,∀k ∈ K(i),∀i ∈ I,∀n ∈ N ,

(3.19a)

∂L

∂π̂i,n
=
∑
k∈K(i)

λk,i,n − νi
exp(π̂i,n)∑

n∈N
exp(π̂i,n)

, ∀i ∈ I, ∀n ∈ N . (3.19b)
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At the higher level, we have the master dual problem in charge of updating the dual

variables λ and ν by solving the dual problem:

minimize
λ,ν

max
ρ̂,π̂

(L(ρ̂, π̂,λ,ν)) (3.20a)

subject to λ ≥ 0, (3.20b)

ν ≥ 0. (3.20c)

The dual function g(λ,ν) = max
ρ̂,π̂

(L(ρ̂, π̂,λ,ν)) is differentiable. Thus, the master dual

problem (3.20) can be solved using the following gradient method:

λk,i,n(t+ 1) = λk,i,n(t) + δ(t)(log(exp(ρ̂?k.i.n − π̂?i,n)
N0

Gk,i,n

+
∑
i′∈N
i′ 6=i

exp(ρ̂?k.i.n + π̂?i′,n − π̂?i,n)
Gk,i′,n
Gk,i,n

)),∀k ∈ K(i),∀i ∈ I,∀n ∈ N ,

(3.21a)

νi(t+ 1) = νi(t) + δ(t)(log(
∑
n∈N

exp(π̂?i,n))− log(Pmax)), ∀i ∈ I, ∀n ∈ N , (3.21b)

where t is the iteration index, and δ(t) is the step size at iteration t. Appropriate choice of

the step size [Chi05] leads to convergence of the dual algorithm. π̂?i,n and ρ̂?k,i,n denote the

solution to the primal optimization problem (3.17). When t→∞ the dual variables λ(t)

and ν(t) converge to the dual optimal λ∗ and ν∗, respectively. The difference between

the optimal primal objective and the optimal dual objective, called duality gap, reduces

to zero at optimality, since the problem (3.13) is convex and the KKT conditions are

satisfied.

We define ∆ρ̂,∆π̂,∆λ, and ∆ν as the differences between the optimization variables

obtained at the current iteration and their values at the previous iteration. They are

given by:

∆ρ̂(t+ 1) = ‖ρ̂(t+ 1)− ρ̂(t)‖, (3.22a)

∆π̂(t+ 1) = ‖π̂(t+ 1)− π̂(t)‖, (3.22b)

∆λ(t+ 1) = ‖λ(t+ 1)− λ(t)‖, (3.22c)

∆ν(t+ 1) = ‖ν(t+ 1)− ν(t)‖. (3.22d)
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Algorithm 1 Dual algorithm for centralized power allocation
1: Parameters: the utility function L(ρ̂, π̂,λ,ν), Pmax, and πmin.
2: Initialization: set t = tprimal = tdual = 0, and πi,n ≥ πmin, ∀i ∈ I,∀n ∈ N ,

such as
∑
n∈N

πi,n ≤ Pmax,∀i ∈ I. Calculate π̂i,n(0) and ρ̂k,i,n(0) accordingly,

∀k ∈ K(i),∀i ∈ I,∀n ∈ N .
3: Set λk,i,n(0) and νi(0) equal to some non negative value, ∀k ∈ K(i), ∀i ∈ I, ∀n ∈ N .
4: (π̂?(t+ 1), ρ̂?(t+ 1))← PrimalProblem(ν?(t),λ?(t))
5: (ν?(t+ 1),λ?(t+ 1))← DualProblem(π̂?(t+ 1), ρ̂?(t+ 1))
6: if (∆π̂?(t + 1) > ε) or (∆ρ̂?(t + 1) > ε) or (∆ν?(t + 1) > ε) or (∆λ?(t + 1) > ε)

then
7: t← t+ 1
8: go to 4
9: end if

3.5.1.2 Iterative Algorithm for Centralized Multi-Cell Power Allocation

The procedure for solving the centralized power allocation problem is described in Al-

gorithm 1. Initially, the primal optimization variables ρ̂k,i,n and π̂i,n as well as the

dual variables λk,i,n and νi start with some initial feasible values. t, tprimal, and tdual

denote the number of rounds required for the centralized power allocation problem to

converge, the number of iterations for the primal problem, and the number of iterations

for the dual problem, respectively. At each round t, we start by updating the pri-

mal optimization variables, using the PrimalProblem function given in Algorithm 2.

The solution to the primal optimization problem at the current round t is denoted by

π̂?i,n(t + 1) and ρ̂?k,i,n(t + 1). The PrimalProblem function updates π̂i,n(tprimal + 1)

and ρ̂k,i,n(tprimal + 1), and increments tprimal until ∆π̂(tprimal + 1) and ∆ρ̂(tprimal + 1)

become less than ε.

Then, the solution to the dual optimization problem at the current round t, denoted

by ν?i (t + 1) and λ?k,i,n(t + 1) is calculated using the DualProblem function given in

Algorithm 3. νi and λk,i,n are updated using the obtained primal solution π̂?i,n(t+1) and

ρ̂?k,i,n(t+1), until ∆ν(tdual+1) and ∆λ(tdual+1) become less than ε. An additional round

of calculations is performed, and t is incremented as long as ∆π̂?(t + 1) or ∆π̂?(t + 1)

or ∆ν?(t + 1) or ∆λ?(t + 1) is greater than ε. Otherwise, the obtained solution at the

current round is the optimal solution to the centralized power allocation problem.
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Algorithm 2 Primal problem function
1: function PrimalProblem(ν?(t),λ?(t))
2: for i = 1 to |I| do
3: for n = 1 to |N | do
4: π̂i,n(tprimal + 1)← max

(
log(πmin); π̂i,n(tprimal) + δ(t) ∂L

∂π̂i,n

)
5: for k = 1 to |K(i)| do
6: ρ̂k,i,n(tprimal + 1)← ρ̂k,i,n(tprimal) + δ(t) ∂L

∂ρ̂k,i,n
7: end for
8: end for
9: end for

10: if (∆π̂(tprimal + 1) > ε) or (∆ρ̂(tprimal + 1) > ε) then
11: tprimal ← tprimal + 1
12: go to 2
13: end if
14: return π̂(tprimal + 1), ρ̂(tprimal + 1)
15: end function

Algorithm 3 Dual problem function

1: function DualProblem(π̂?(t+ 1), ρ̂?(t+ 1))
2: for i = 1 to |I| do
3: νi(tdual + 1)← max(0; νi(tdual) + δ(t)(log(

∑
n∈N

exp(π̂?i,n(t+ 1)))− log(Pmax)))

4: for n = 1 to |N | do
5: for k = 1 to |K(i)| do
6: λk,i,n(tdual + 1) ← max(0;λk,i,n(tdual) + δ(t)(log(exp(ρ̂?k.i.n(t + 1) −
π̂?i,n(t + 1)) N0

Gk,i,n
+
∑

i′∈N
i′ 6=i

exp(ρ̂?k.i.n(t+ 1) + π̂?i′,n(t+ 1)− π̂?i,n(t+ 1))
Gk,i′,n
Gk,i,n

)))

7: end for
8: end for
9: end for

10: if (∆ν(tdual + 1) > ε) or (∆λ(tdual + 1) > ε) then
11: tdual ← tdual + 1
12: go to 2
13: end if
14: return ν(tdual + 1),λ(tdual + 1)
15: end function

3.5.2 Solving the Resource Allocation Problem

In this subsection, we search for the optimal solution to the resource allocation prob-

lem (3.15). For each cell i, the problem (3.15) is a convex optimization problem, as

proven previously.

Theorem 3.3. For each cell i, the optimal solution to the resource allocation prob-

lem (3.15) is given by: θk,n = 1
max(|K(i)|,|N |) , ∀k ∈ K(i), ∀n ∈ N .
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Proof: We consider the objective function (3.15a), which can be written as follows:

(η2)i =
∑
k∈K(i)

∑
n∈N

log(θk,n)

= log

 ∏
k∈K(i)
n∈N

θk,n

 .

(3.23)

Since log function is monotonically increasing, the maximization of (η2)i becomes equiv-

alent to the maximization of the term
∏
k∈K(i)
n∈N

θk,n. We consider the following cases:

1. Let us assume that:

∑
k∈K(i)

θk,n <
∑
n∈N

θk,n, ∀ k ∈ K(i), ∀ n ∈ N . (3.24)

We suppose that θk,n, ∀ k ∈ K(i),∀ n ∈ N is an optimal solution to the resource al-

location problem (3.15) i.e., this solution maximizes the objective function (3.15a).

For this solution, we assume that:

∃ k ∈ K(i) /
∑
n∈N

θk,n < 1. (3.25)

We define ε > 0 as follows:

ε = 1−
∑
n∈N

θk,n,

and we demonstrate that this solution is not an optimal solution to problem (3.15)

using the proof by contradiction. In fact, we define another set of θ′k,n values as

given in the following:

θ′k,n =

 θk,n,

θk,n + ε,

∀ n ∈ N , n 6= n1,∀ k ∈ K(i)

if n = n1, ∀ k ∈ K(i).
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Therefore, we have:

∏
k∈K(i)
n∈N

θ′k,n =
∏

k∈K(i)
n∈N

θk,n + ε ·
∏

k∈K(i)
n∈N

θk,n

>
∏

k∈K(i)
n∈N

θk,n,

and the assumption made in (3.25) is false, since it does not maximize the objective

function (3.15a). Consequently, we have:

∑
n∈N

θk,n = 1, ∀ k ∈ K(i)

⇒
∑
k∈K(i)

∑
n∈N

θk,n = |K(i)|.

Since the sum of all the θk,n variables is constant, the term
∏
k∈K(i)
n∈N

θk,n reaches its

maximum when all the variables θk,n are equal i.e.,

θk,n =
|K(i)|

|K(i)| · |N |
=

1

|N |
,∀ k ∈ K(i),∀ n ∈ N ,

which is an optimal solution to the resource allocation problem (3.15). According

to (3.24): ∑
k∈K(i)

θk,n <
∑
n∈N

θk,n, ∀ k ∈ K(i), ∀ n ∈ N

⇒ |K(i)|
|N |

< 1

⇒ |K(i)| < |N |.

2. Similarly, when:

∑
n∈N

θk,n <
∑
k∈K(i)

θk,n, ∀ k ∈ K(i), ∀ n ∈ N , (3.26)

We suppose that a given set of θk,n values ∀ k ∈ K(i),∀ n ∈ N is an optimal

solution to the resource allocation problem (3.15). For this solution, we assume

that:

∃ n ∈ N /
∑
k∈K(i)

θk,n < 1. (3.27)
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We define ξ > 0 as follows:

ξ = 1−
∑
k∈K(i)

θk,n,

and we demonstrate that this solution is not an optimal solution to problem (3.15)

using the proof by contradiction. In fact, we define another set of θ”k,n variables as

given in the following:

θ”k,n =

 θk,n,

θk,n + ξ,

∀ n ∈ N , ∀ k ∈ K(i), k 6= k1

if k = k1,∀ n ∈ N .

Therefore, we have:

∏
k∈K(i)
n∈N

θ”k,n =
∏

k∈K(i)
n∈N

θk,n + ξ ·
∏

k∈K(i)
n∈N

θk,n

>
∏

k∈K(i)
n∈N

θk,n,

and the assumption made in (3.27) is false, since it does not maximize the objective

function (3.15a). Consequently, we have:

∑
k∈K(i)

θk,n = 1, ∀ n ∈ N

⇒
∑
n∈N

∑
k∈K(i)

θk,n = |N |.

Since the sum of the (|K(i)| · |N |) variables θk,n is constant, the term
∏
k∈K(i)
n∈N

θk,n

reaches its maximum when all the variables θk,n are equal i.e.,

θk,n =
|N |

|K(i)| · |N |
=

1

|K(i)|
,∀ k ∈ K(i), ∀ n ∈ N ,

which is an optimal solution to the resource allocation problem (3.15). According

to (3.26): ∑
n∈N

θk,n <
∑
k∈K(i)

θk,n, ∀ k ∈ K(i), ∀ n ∈ N

⇒ |N |
|K(i)|

< 1

⇒ |N| < |K(i)|.
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When the number of active UEs is less than the number of available resources, θk,n =

1
|N | ,∀k ∈ K(i),∀n ∈ N , and we obtain:

∑
k∈K(i)

θk,n =
|K(i)|
|N |

≤1,∀n ∈ N ,

∑
n∈N

θk,n =
|N |
|N |

=1,∀k ∈ K(i).

Thus, the available resources are not fully used over time, and each UE is permanently

served. Otherwise, the optimal solution is: θk,n = 1
|K(i)| , ∀k ∈ K(i), ∀n ∈ N . This

corresponds to the scenario where the number of active UEs is greater than the number

of RBs. We obtain: ∑
k∈K(i)

θk,n =
|K(i)|
|K(i)|

=1,∀n ∈ N ,

∑
n∈N

θk,n =
|N |
|K(i)|

≤1,∀k ∈ K(i).

In this case, each RB is fully used over time, while UEs are not permanently served over

time.

3.6 Decentralized Resource and Power Allocation

3.6.1 Problem Formulation and Decomposition

We have shown that the power allocation problem can be solved optimally in a centralized

fashion. In this section we investigate the decentralized resource and power allocation

approach. Base stations of the LTE/LTE-A networks are autonomous entities, and each

cell performs resource and power allocation independently of the other cells. Each cell i

maximizes its own utility function, which is given by:

∑
k∈K(i)

∑
n∈N

log

(
θk,n. log

(
1 +

πi,nGk,i,n
N0 +

∑
i′ 6=i πi′,nGk,i′,n

))

=
∑
k∈K(i)

∑
n∈N

log(θk,n) +
∑
k∈K(i)

∑
n∈N

log

(
log

(
1 +

πi,nGk,i,n
N0 +

∑
i′ 6=i πi′,nGk,i′,n

))
.

(3.28)
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The decentralized joint resource and power allocation problem is therefore separable into

two independent problems: a resource allocation problem and a power allocation prob-

lem. The resource allocation problem is solved in a distributed manner as demonstrated

in the previous section. We propose a decentralized power allocation approach based on

game theory, where the cells are the decision makers or players of the game. We define a

multi-player game G between the |I| cells. The cells are assumed to make their decisions

without knowing the decisions of each other.

The formulation of this non-cooperative game G = 〈I, S, U〉 can be described as follows:

• A finite set of cells I = (1, ..., |I|).

• For each cell i, the space of pure strategies is Si given by what follows:

Si = {πi ∈ R|N |such as πi,n ≥ πmin,∀i ∈ I,∀n ∈ Nand
∑
n∈N

πi,n ≤ Pmax, ∀i ∈ I}.

An action of a cell i is the amount of power πi,n allocated to the RB n, and

the strategy chosen by cell i is then πi = (πi,1, ..., πi,N ). A strategy profile π =

(π1, ..., π|I|) specifies the strategies of all players and S = S1...S|I| is the set of all

strategies.

• A set of utility functions U = (U1(π), U2(π), ..., UI(π)) that quantify players’ utility

for a given strategy profile π, where a given utility Ui for cell i is such as:

Ui =
∑
k∈K(i)

∑
n∈N

log

(
log

(
1 +

πi,nGk,i,n
N0 +

∑
i′ 6=i πi′,nGk,i′,n

))
. (3.29)

For every i, Ui is concave with respect to πi and continuous with respect to πl, l 6= i.

Hence, a Nash Equilibrium (NE) exists [Ros65]. We note that the objective function η1

of the centralized power allocation problem (3.13) is equivalent to the sum of the utility

functions Ui of the I cells.

3.6.2 Super-Modular Games

Super-modular games exhibit strategic complementarity i.e., the marginal utility for a

player in playing a higher strategy increases when the opponents also play higher strategy

[Top98]. These games encompass many applied models, and they are characterized by
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the existence of pure strategy NE. Before presenting the properties of a super-modular

game, we list first some definitions.

Definition 3.4. If Ui is twice differentiable, it is said to be super-modular if:

∂Ui
∂πl∂πi

≥ 0,

for all l ∈ I − {i} and ∀πi ∈ Si.

According to [Top79], a game is super-modular if ∀i ∈ I:

1. The strategy space Si is a compact sublattice of RN .

2. The utility function Ui is super-modular.

In [Top79, Yao95], proof is given for the following two results in a S-modular game:

• If each cell i initially uses either its lowest or largest policy in Si, then a best

response algorithm converges monotonically to an equilibrium that may depend on

the initial state.

• If we start with a feasible policy, then the sequence of best responses monotonically

converges to an equilibrium: it monotonically increases in all components in the

case of maximizing in a super-modular game.

Proposition 3.5. The game G is a super-modular game.

Proof: To prove the super-modularity of the present game, we need to verify the condi-

tions in 3.6.2. First, the strategy space Si is clearly a compact convex set of RN . Hence,

it suffices to verify the super-modularity of the utility function as there are no constraint

policies for G:

∂Ui,n
∂πl,n∂πi,n

=
1

log (1 + σk,i,n)

Gk,i,nGk,l,n(
N0 +

∑
i′ 6=i πi′,nGk,i′,n

)2 ( σk,i,n
log (1 + σk,i,n)

− 1

)
.

As x
log(1+x) > 1 for x > 0, ∂Ui,n

∂πl,n∂πi,n
≥ 0, ∀l ∈ I − {i} and ∀n ∈ N .

To attain the NE of the game, we implement a best response algorithm where in each

round t, cell i strives to find, in parallel for every RB n ∈ N , the following optimal power
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level as a response to π−i(t− 1):

π∗i (t) = arg maxπiUi(πi, π−i), s.t. π
∗
i ∈ Si.

The resulting optimization problem for each cell i is as follows:

maximize
πi

Ui (3.30a)

subject to:
∑
n∈N

πi,n ≤ Pmax, (3.30b)

πi,n ≥ πmin, ∀n ∈ N . (3.30c)

3.6.3 Solving the Decentralized Power Allocation Problem

We use the subgradient projection method to solve the decentralized power allocation

problem (3.30). It is an iterative method that starts with some initial feasible vector πi

that satisfies constraints (3.30b) and (3.30c), and generates the next iteration by taking

a step along the subgradient direction of Ui at πi. For each cell i, iterations of the

subgradient projection are given by:

πi,n(t+ 1) = πi,n(t) + δ(t)
∂Ui
∂πi,n

, ∀n ∈ N , (3.31)

where the partial derivative of the objective function Ui with respect to πi,n is given by:

∂Ui
∂πi,n

=
∑
k∈K(i)

Gk,i,n

(N0 + Fi,n)
(

1 +
πi,nGk,i,n

N0+Fi,n

)
log
(

1 +
πi,nGk,i,n

N0+Fi,n

) , (3.32a)

Fi,n =
∑
i′∈I
i′ 6=i

πi′,nGk,i′,n,∀n ∈ N . (3.32b)

The scalar δ(t) > 0 is a small step size (e.g., δ(t) = 0.001) chosen appropriately [Chi05] to

guarantee the convergence of the decentralized power allocation problem (3.30). Before

updating the variables πi,n(t + 1), we make sure that πi,n(t + 1) ≥ πmin in order to

satisfy the constraints (3.30c). Moreover, if constraints (3.30b) are not satisfied, we

perform a projection on the feasible set Pmax, which is straightforward for a simplex

[Pal05]. Then, we calculate the power difference ∆πi, which is the difference between
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Algorithm 4 Decentralized power allocation
1: Parameters: the utility function Ui,∀i ∈ I, the maximum power per cell Pmax, and

the minimum power per RB πmin.
2: Initialization: set t = 0, ti = 0,∀i ∈ I, and πi,n(0) to some positive value≥ πmin,∀i ∈
I,∀n ∈ N , such as

∑
n∈N

πi,n(0) ≤ Pmax,∀i ∈ I.

3: for i = 1 to |I| do
4: for n = 1 to |N | do
5: πi,n(ti + 1)← max

(
πmin;πi,n(ti) + δ(ti)

∂Ui
∂πi,n

)
6: end for

7: if
|N |∑
n=1

πi,n(ti + 1) > Pmax then

8: Perform projection on simplex Pmax
9: end if

10: if ∆πi(ti + 1) > ε then
11: ti ← ti + 1
12: go to 4
13: end if
14: π∗i,n(t+ 1)← πi,n(ti + 1),∀n ∈ N
15: end for
16: if ∆π∗(t+ 1) > ε then
17: t← t+ 1
18: go to 3
19: end if

the power allocation vectors of the current and the previous iterations. It is given by:

∆πi(t+ 1) = ‖πi(t+ 1)− πi(t)‖. (3.33)

For each cell i, iterations are performed until satisfying the satisfaction criterion i.e.,

when ∆πi < ε, where ε > 0 is a very small scalar.

As described in Algorithm 4, each cell i calculates πi,n(ti + 1),∀n ∈ N , where ti is

the iteration number for cell i. The obtained power values are updated in accordance

with the constraints (3.30b) and (3.30c). This procedure is repeated and the number

of iterations ti is incremented until ∆πi(ti + 1) becomes less than ε. The number of

rounds required for all the cells to converge is denoted by t. An additional round of power

calculation is performed for all the cells and t is incremented as long as ∆π∗(t + 1) > ε,

where π∗(t) is the power allocation vector obtained at the end of round t.
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3.7 Performance Evaluation

In this section, we evaluate the convergence and the performance of the proposed central-

ized joint resource and power allocation problem, and the decentralized power allocation

approach.

3.7.1 Centralized Resource and Power Allocation

To verify the convergence of the centralized solution, we consider a multi-user OFDMA

network, such as LTE/LTE-A networks, that consists of seven adjacent hexagonal cells,

with one UE served by each cell. System bandwidth equals 5 MHz, and traffic model is

full buffer. UE positions and radio conditions are randomly generated, and the initial

power allocation for each RB equals the minimum downlink transmission power per RB.

Thus, we have an initial feasible power vector that satisfies constraints (3.17b):

πi,n = πmin, ∀i ∈ I, ∀n ∈ N .

The primal optimization variables ρ̂k,i,n and π̂i,n are calculated accordingly. System

bandwidth equals 5 MHz. Thus, 25 RBs are available in each cell. The maximum trans-

mission power per cell Pmax is set to 43 dBm or 20 W. At the first iteration, the dual

variables λk,i,n(0), ∀k ∈ K(i), ∀i ∈ I,∀n ∈ N , and νi(0), ∀i ∈ I, are assigned initial non

negative values. Then the primal variables are updated using the subgradient projec-

tion iterates (3.18a) and (3.18b), and the obtained solution is denoted ρ̂?k,i,n(λ(t),ν(t))

and π̂?i,n(λ(t),ν(t)). The dual variables λ and ν are then updated using the gradient

iterates (3.21a) and (3.21b), respectively. The same procedure is repeated until conver-

gence of the primal and the dual variables. The evolution of π̂i,1 along with the number

of iterations is shown in Fig. 3.1, where π̂i,1 is the logarithm of the transmission power

allocated by the cell i to the RB 1. In addition, the number of primal iterations and the

number of dual iterations per round are shown in Fig. 3.2.

We notice that for the centralized power allocation approach, the primal problem requires

approximately 6000 iterations to converge. As shown in Fig. 3.2, 1100 rounds are required

to reach the optimal values of the primal and the dual variables. The zoomed box within

Fig. 3.1 shows the evolution of π̂i,n versus the number of primal iterations for a given

round t. The values of π̂i,n are calculated using the dual variables obtained at the
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Figure 3.1: Convergence of the primal variables π̂i,n
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Figure 3.2: Number of primal and dual iterations per round

round (t − 1). We also notice that the number of primal iterations and the number of

dual iterations decreases with the number of rounds. When t increases, the impact of

Lagrange prices λk,i,n(t) and νi(t) on the primal variables calculation is reduced, and

the number of primal iterations required for the primal problem to converge becomes

lower. The same behavior is noticed for the number of dual iterations when the number

of rounds increases.

For the same simulated scenario, we also show the dual variables λk,i,n and νi versus
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the number of dual iterations in Fig. 3.3 and Fig. 3.4, respectively. We notice that ap-

proximately 8000 iterations are required for the dual problem to converge. At a given

round t, the Lagrange prices λk,i,n and νi are updated using the most recent values of

the primal variables. The zoomed boxes within Fig. 3.3 and Fig. 3.4 show the evolution

of λk,i,n and νi versus the number of iterations, respectively. These values are updated

until ∆λk,i,n and ∆νi become less than ε. Convergence of the centralized power allo-

cation problem occurs when two conditions are satisfied: first, the difference between

the updated primal variables at round t and their values at round (t− 1) is less than ε.

Second, the difference between the updated primal variables at round t and their values

at round (t− 1) is less than ε.

3.7.2 Decentralized Power Allocation

The same scenario in 3.7.1 is also simulated to evaluate the performance and convergence

of the decentralized power allocation approach. The evolution of the downlink transmis-

sion power allocated by all the cells to a given RB, along with the number of iterations

is shown in Fig. 3.5.

The initial value of the downlink transmission power allocated to each RB equals πmin

(0.1 W). This allocation satisfies the constraints of the minimal downlink transmission

power per RB and that of the maximum transmission power per cell. Each cell i seeks
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maximizing its own utility function Ui by adjusting the transmission power allocated to

the available RBs. It also estimates the interference due to the usage of the same RBs

by the neighboring cells, and it uses this estimation to calculate SINR values of the UEs

within its coverage area. As shown in Fig. 3.5, each cell starts increasing the downlink

transmission power allocated to its RBs, and then the transmission power converges

after a given number of iterations. At convergence, the partial derivative of the objective

function Ui with respect to πi,n becomes negligible. The difference between the updated

power allocation vector (πi,1, πi,2, ..., πi,N ) at iteration (t + 1) and the power vector at
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iteration t becomes less than ε.

We also show the evolution of the power vector difference ∆πi,∀i ∈ I, defined in (3.33)

along with the number of iterations in Fig. 3.6.

The results show that ∆πi decreases when the number of iterations increases. The impact

of the subgradient projection iterations on the downlink transmission power πi,n becomes

smaller as more iterations are performed. Power convergence is achieved when ∆πi

becomes less than ε. In fact, the utility function of each cell i is maximized, and the

amount by which the downlink transmission power πi,n is modified becomes negligible.

3.7.3 Comparison with State-of-the-Art Resource Allocation Approaches

We also compare the performance of our proposed centralized and decentralized resource

and power allocation approaches with that of state-of-the-art resource and power allo-

cation approaches such as the frequency reuse-1 model, the frequency reuse-3 model,

FFR, and SFR techniques [YAL+15]. Simulation scenario is the same as in 3.7.1. The

frequency reuse-1 model allows the usage of the same frequency spectrum simultaneously

in all the network cells. Moreover, homogeneous power allocation is performed, and the
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Figure 3.7: System throughput for several resource allocation approaches

downlink transmission power allocated to each RB is given by:

πi,n =
Pmax
N

, ∀i ∈ I, ∀n ∈ N . (3.34)

In the frequency reuse-3 model, one third of the available spectrum is used in each cell in

a cluster of three adjacent cells. Interference problems are eliminated, but the spectral

efficiency is largely reduced. FFR and SFR techniques divide each cell into a cell-center

and a cell-edge zones, and set restrictions on resource usage and power allocation in each

zone. For all the compared techniques, resource allocation is performed according to

Theorem 3.3.

3.7.3.1 System Throughput

For several simulation runs, we show the total system throughput for all the strategies

under the same simulation scenarios. Simulation results, including the 95% confidence

interval, are illustrated in Fig. 3.7.

The centralized resource allocation approach offers the highest system throughput among

all the compared techniques. In fact, it searches for the optimal resource and power al-

location while taking into account restrictions on resource usage between the active UEs

and on the downlink transmission power allocation. System throughput for the decen-

tralized approach is slightly lower than that of the centralized approach, since resource
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Figure 3.8: Spectral efficiency for several resource allocation approaches

and power allocation is performed locally by each cell without getting the necessary in-

formation about resource usage and power allocation from the neighboring cells. The

achievable throughput is greater than that of the frequency reuse-3 model, FFR, and

SFR techniques. Although the restrictions made on resource usage by these techniques

mitigate ICI, the achievable throughput is reduced since the available spectrum in each

cell or in each cell zone, is reduced.

3.7.3.2 Spectral Efficiency

We also investigate the impact of the compared techniques on the spectral efficiency.

Simulation results are shown in Fig. 3.8.

Our proposed centralized resource allocation approach offers the highest spectral effi-

ciency, since the optimal resource and power allocation is guaranteed. The spectral

efficiency of our decentralized approach is slightly lower than that of the centralized

approach, due to the lack of information about resource usage in the neighboring cells.

Nevertheless, the spectral efficiency for both the centralized and the decentralized ap-

proaches is higher than that of FFR and SFR techniques. In fact, the static restrictions

made on resource allocation between cell zones, and the quantified transmission power

levels allocated to the available RBs do not allow to perform flexible resource allocation

in a manner that satisfies UE needs in each cell.
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3.7.4 Centralized Versus Decentralized Complexity Comparison

We evaluate the computational complexity of our centralized and decentralized resource

and power allocation approaches. For the centralized and decentralized approaches, re-

source allocation is performed according to Theorem 3.3, and it is equivalent to one

operation. The complexity of each approach equals the number of required operations

multiplied by the complexity of a single operation, which is denoted by Top. The com-

plexity of the centralized approach’s algorithm is given by:

O [(nbprimal|N |(1 + k) + nbdual (1 + k|N |)) |I|Top] . (3.35)

Similarly, the decentralized approach complexity is given as follows:

O(nbiterations|I||N |Top), (3.36)

where nbprimal is the number of primal iterations and nbdual is the number of dual iter-

ations required for convergence of the centralized approach. k is the number of UEs per

cell, and nbiterations is the number of iterations required for convergence of the decentral-

ized approach.

We notice that the decentralized approach complexity is independent of the number of

UEs per cell, contrarily to that of the centralized approach. The complexity of both

techniques depends of the number of cells in the system and the number of resources

available in each cell. Moreover, the computational complexity of the centralized and

decentralized approaches are evaluated under the same simulation scenario as in 3.7.1.

Simulation results are given in Fig. 3.9. The mean number of operations required for the

centralized and decentralized approaches are given in Table 3.2.

Table 3.2: Mean number of operations per approach
Approach Number of operations

Centralized 3.02 · 108

Decentralized 8.84 · 105

According to the results illustrated in Fig. 3.9, and reported in Table 3.2, the number

of operations required for the centralized resource and power allocation approach largely

exceeds that of the decentralized approach. In fact, the centralized approach maximizes

the objective function for the entire network, contrarily to the decentralized approach
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Figure 3.9: Computational complexity of the centralized and decentralized approaches

where each cell maximizes its objective function independently of the other cells. There-

fore, the centralized approach guarantees the optimal solution at the expense of a high

computational complexity.

3.8 Conclusion

The resource and power allocation problem is a challenging problem for present and

future mobile networks. Several state-of-the-art techniques consider the joint resource

and power allocation problem, and formulate it as nonlinear optimization problems.

The objective is maximizing system throughput, spectral efficiency, or energy efficiency

under constraints related to the minimum throughput per UE, QoS parameters, and the

maximum transmission power. However, the main disadvantage of these techniques is

that they do not consider the impact of ICI when solving the multi-cell optimization

problem. Indeed, each cell solves its own resource and power allocation problem without

taking into account resource usage and power allocation in the neighboring cells.

In this chapter, we formulated the joint resource and power allocation problem for mul-

tiuser OFDMA networks as a centralized optimization problem, where the objective

consists in maximizing system throughput while guaranteeing throughput fairness be-

tween UEs. The joint problem is then decomposed into two independent problems: a

resource allocation problem and a power allocation problem. Contrarily to the majority
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of the state-of-the-art approaches, ICI is not neglected, and the impact of the simulta-

neous transmissions in the neighboring cells is taken into account when managing the

resource and power allocation. Moreover, we introduced a decentralized power alloca-

tion approach based on game theory. The players are the cells, and each cell aims at

maximizing its own utility function regardless of the decisions made by the other cells.

Simulation results prove the convergence of the dual variables, and show the positive

impact of our proposed centralized and decentralized resource allocation approaches on

system performance.

In the next chapter, we investigate autonomous resource and power allocation techniques

for multiuser OFDMA networks. These techniques are characterized by a low computa-

tion complexity, and they do not generate any additional signaling traffic in comparison

with the centralized approaches.





Chapter 4

Heuristic Downlink Power Control

Algorithm and Autonomous ICIC

for Multiuser OFDMA Networks

Although centralized interference mitigation techniques find the optimal resource

and power allocation for the entire multiuser OFDMA network, the centralized approach

is characterized by a high computational complexity, and generates additional signaling

overhead. For these reasons, autonomous ICIC approaches are fostered. In this chapter,

we introduce a heuristic downlink power control algorithm that adjusts power allocation

on the downlink of multiuser OFDMA networks. It operates in a distributed manner at

each base station. We investigate the impact of the proposed heuristic algorithm on UE

throughput and on system power consumption. System performance is compared with

the frequency reuse-1 model. Simulation results show that the proposed algorithm largely

reduces the downlink power consumption without degrading system performance. It also

increases cell-edge UEs throughput that are mainly affected by ICI problems. To fur-

ther improve system performance, we propose an autonomous dynamic ICIC technique

based on CQI feedbacks sent by the UEs to the base stations. It aims at reducing downlink

inter-cell interference problems, and achieving throughput fairness for all the UEs without

any cooperation between network cells. Contrarily to static FFR and SFR schemes, our

technique dynamically allocates resources according to user demands in each cell zone.

System level simulations are done to compare the performance of the proposed technique

85
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with the frequency reuse-1 model and other state-of-the-art techniques. The obtained re-

sults show that the proposed technique improves energy efficiency, reduces the percentage

of unsatisfied UEs, and increases Jain’s throughput fairness index in comparison with

frequency reuse-1 model and other ICIC techniques.

4.1 Introduction

The main objective of ICIC techniques is to increase the throughput of cell-edge UEs that

suffer the most from interference problems. For instance, FFR modifies the frequency

resources distribution within each cell in order to reduce interference. Instead of using

all the available bandwidth in the neighboring cells, FFR allocates disjoint spectrum

for edge zones at neighboring cells. Hence, reuse-3 model is used for cell-edge zones,

while reuse-1 is used for cell-center zones. Other frequency reuse-based ICIC techniques

modify the transmission power allocated to each band of the available spectrum on the

downlink. For example, SFR [Hua05] allocates lower power for cell-center RBs while

cell-edge RBs get higher transmission power.

LTE networks are meant to be self-organizing, where operators seek to minimize ICI

while reducing the amount of cooperation required between LTE cells. Cooperative

ICIC techniques benefit from the communication between network entities to coordinate

RBs distribution in the different cells, to reduce ICI and to improve system performance.

However, the cooperation between different base stations increases computational com-

plexity, and generates an additional signaling load. Autonomous ICIC techniques do not

require any cooperation between base stations, and they are characterized by a lower

complexity. Each base station performs RB allocation locally, and there is no need for

additional signaling messages.

Before introducing our autonomous ICIC technique, we investigate the impact of power

allocation on system performance. Regardless of the resource allocation strategy used,

the power allocation mechanism adjusts the transmission power on the different frequency

resources in order to increase system throughput. Downlink transmission power is an im-

portant issue in distributed networks with dense frequency reuse schemes. The excessive

use of downlink power causes interference problems to the neighboring cells. Thus, it

degrades system performance, and lowers spectrum profitability. Several works have pro-

posed power allocation algorithms for multiuser OFDMA [PSC12] networks such as LTE.
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For instance, authors of [BPVG06] investigate a power allocation algorithm that tries to

minimize the requested power under user rate constraints in a non-collaborative system.

In addition, [AkI08] introduces a hybrid algorithm that combines adaptive modulation

along with power control (i.e., power is increased when the order of the modulation

scheme is reduced and vice versa).

ICIC is also the objective in [FFSY09], where the authors use a proportional fair scheduler

along with an open loop power control strategy to reduce ICI on the uplink of multi-user

OFDMA system. Their objective is to reduce SINR variation in order to increase average

UE throughput and cell-edge UE throughput on the uplink. Power is allocated to each

UE depending on the number of used RBs, on cell-specific characteristics, and on path

loss parameters. Authors of [PB08] introduce a cooperation between base stations of the

OFDMA cellular systems in order to couple the resources allocated by the source and

relay base stations for a UE. They also propose a distributed power control algorithm

that operates independently of the information received from neighboring cells. The

influence of cooperation and power control is tested over four different schedulers.

In multiuser OFDMA networks, interference mainly affects cell-edge UEs that receive

high interfering signals due to their proximity to the neighboring cells. We propose a

heuristic power control algorithm that operates along with the scheduler deployed at each

base station. The objective of this algorithm is to avoid power wastage especially for

cell-center UEs (that are close to the base stations) or UEs having good radio conditions.

Numerous scheduling techniques can be combined with our power control algorithm such

as Proportional Fair, Round Robin, Maximum SNR, and many others. Particularly, our

heuristic power control algorithm computes power allocation to the different resource

blocks once they are allocated to UEs. Power allocation problem is tackled as a method to

reduce ICI in dense frequency reuse networks, where all the available frequency resources

are simultaneously used in adjacent cells. Power control does not only reduce the power

levels of interfering signals (signals usually belonging to cell-center UEs), but it can also

increase the power levels on resource blocks that suffer of bad radio conditions (usually

RBs allocated for cell-edge UEs). Therefore, it can be considered as an ICIC technique.
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4.2 Downlink Power Control in LTE

We particularly focus on the downlink of LTE networks, where frequency reuse-1 model

is used along with homogeneous power allocation for all the available RBs. In LTE,

downlink Reference Signal (RS) exists only in the physical layer. There are two types

of RS: cell specific and user specific. The former is transmitted every sub-frame, and

it spans the operating bandwidth. However, the latter is only transmitted within the

resource blocks allocated to a specific UE. RSs are inserted every six sub-carriers in the

frequency domain [3GP12b, Roe11]. Each RB contains two RSs in the first and the fifth

OFDM symbols.

The power level for the RS is signaled within system information to the device. It is

cell-specific [3GP09], and it ranges between -60 dBm and +50 dBm per 15 kHz. It is a

requirement that the LTE base station transmits all reference signals with constant power

over the entire bandwidth. RS is an important element for downlink power allocation,

which can be done on a 1 ms basis. In fact, it delivers the reference point for the downlink

power.

Authors of [XKM13] propose a downlink power control algorithm based on CQI feed-

backs. UEs with different types of service are studied. The downlink power allocated for

all the RBs is initialized with the minimum transmission power. For voice-over-IP and

data UEs, transmission power is increased until their data requirements are met. How-

ever, an additional offset throughput is set upon the minimum data rate requirement for

web UEs. The base station stops increasing the transmission power when the additional

throughput is achieved.

The transmission power allocated for frequency resources on the downlink affects UEs in

the neighboring cells. Thus, downlink power control is also used to reduce interference.

For example, authors of [SQ09] noticed that high transmission power for cell-center UEs

in 4G systems degrades the performance of cell-edge UEs in the neighboring cells. There-

fore, an adaptive power control is proposed to reduce ICI. It aims to ensure the same

SINR at the receiver. A distributed power control strategy is used in [KW11] to reduce

ICI especially when there is a lack of cooperation between base stations. Power control

algorithms were already proposed in [SV09, WKSV10], where they lead to dynamic Soft

Frequency Reuse schemes. In addition, authors of [WCLM99, CKKL04] have proposed
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dynamic subcarrier, bit and power allocation for multiuser OFDM systems. In fact,

frequency resources, modulation order and transmission power are dynamically assigned

depending on channel conditions. This flexibility allows to reduce the transmission power

while guaranteeing the required bitrates and bit error rate for all the users. Therefore,

it is more advantageous than static access schemes such as time division multiple access

and frequency division multiple access. Moreover, authors of [KLL03] divided the re-

source and power allocation problem into two steps. The objective is to minimize total

transmission power with constraints on bit-error rate and transmission rate for UEs. In

the first step, SINR is used to determine the number of subcarriers to be allocated for

each UE. The second step of the algorithm finds the best assignment of subcarriers to

UEs.

4.3 System Model

We consider an LTE network of seven adjacent base station sites, each with three hexag-

onal sectors as shown in Fig. 4.1.

Figure 4.1: LTE network layout
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Many state-of-the-art techniques use the distance between eNodeB and UE to classify

UEs into cell-edge and cell-center UEs. In our work, we use mean wideband SINR values

to perform UE classification. Therefore, there is no need to find the exact position of each

UE in the network, and mobile operators are no longer required to solve this localization

problem. SINR-based classification is more realistic, since we might have cell-center UEs

characterized by a weak useful signal (due to high interference or bad radio conditions)

and cell-edge UEs having relatively high SINR values.

Let P denote the maximum downlink transmission power of a cell and N the number

of available RBs in this cell. When using frequency reuse-1 model, homogeneous power

allocation is applied, and each RB gets the same downlink transmit power PRB given

by:

PRB =
P

N
. (4.1)

SFR reduces downlink transmission power allocated to the GR UEs in order to minimize

ICI for BR UEs using the protected band in adjacent sectors. PGR denotes transmission

power allocated to a GR RB:

PGR = αPRB, (4.2)

0 < α < 1. (4.3)

Where α is the SFR power ratio. The downlink transmission power allocated to the RBs

used in the BR zone is identical to the frequency reuse-1 model. The only constraint on

power allocation is that the downlink transmission power allocated by a cell i to all the

RBs does not exceed its maximum transmission power:

N∑
n=1

P in ≤ P. (4.4)

On the downlink of a multiuser OFDMA system, such as LTE, UEs can measure the

separate levels for different dominant sources of interference [KHQT13a]. For a downlink

transmission to a UE in a sector, interference is caused by all the sectors allocating

simultaneously the same RB for another UE. We consider a UE k attached to cell i and

allocated RB n. The corresponding SINR is therefore given by:

SINRik, n =
P in ·Gk,i,n∑

j 6=i
P jn ·Gk,j,n + PTN

, (4.5)
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Table 4.1: List of Symbols
n index of RB

k index of UE

i index of serving cell

j index of interfering cell

N number of RBs

K number of users

P maximum downlink transmission power per cell

PRB maximum power per RB

PGR downlink power per GR RB

PTN thermal noise power

α SFR power ratio

βGR ratio of RBs with lower power

P in downlink power allocated by cell i to the RB n

Gk,i,n channel gain for UE k on RB n in cell i

SINRik, n SINR for UE k on RB n in cell i

Rik, n data rate achieved by UE k on RB n in cell i

SINRth SINR threshold used to classify UEs

CQIkn narrowband CQI for UE k on RB n

∆th throughput difference to borrow RBs

where P in is the downlink transmission power allocated by cell i to the RB n, Gk,i,n is

channel gain for UE k served by eNodeB i on RB n, and PTN is the thermal noise power

on the considered RB. Channel gain includes all key fading components i.e., path loss,

shadowing and multipath that UE k experiences on RB n. Index i refers to the serving

base station, while index j refers to the remaining cells, whose transmissions are causing

interference problems.

Let Rik, n denote the achievable rate on RB n for UE k in the cell i, then:

Rik, n = f(SINRik, n). (4.6)

Where f(.) is the adaptive modulation and coding function that maps SINR to rate. For

convenience, notation used in this chapter are listed in Table 4.1.

LTE requires the transmission of UE feedback in order to adapt the transmission to
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the current channel conditions. In this context, CQI is a four-bit value sent from the

UE to its serving eNodeB. It reflects the level of SINR of a certain frequency band in

downlink channels [AHS14, XKM13]. It indicates the highest modulation and coding

scheme that guarantees a block error rate lower than 10% for physical downlink shared

channel transmissions. Channel state reports are configured by the network to be either

periodically delivered with a certain periodicity or aperiodically delivered when explicitly

requested by the network. In LTE, several reporting modes are supported. For example,

wideband CQI feedbacks reflect the average channel quality across the entire cell band-

width while specific reports require the transmission of one CQI per configured sub-band

(narrowband CQI feedbacks).

4.4 Heuristic Power Control Algorithm

We propose a distributed heuristic power control algorithm that avoids power wastage

especially for cell-center UEs that usually have good radio conditions, and increases

downlink transmission power on RBs allocated to cell-edge UEs that suffer the most

from interference and path loss problems. Cell-edge UEs denote UEs with bad radio

conditions. The downlink channel dependent scheduling in LTE requires specific infor-

mation to be sent by the terminals to the network. Such information is transmitted

through Channel State Reports that contain CQI feedback.

We use CQI feedbacks as an entry to solve the downlink power allocation problem. In

this context, we propose a distributed heuristic downlink power control algorithm that

computes downlink power allocation on the different resources according to CQI values

received from UEs. The heuristic power control algorithm is compared with the scenario

where no power control is applied i.e., the scheduler allocates permanently the maximum

downlink transmission power for each RB.

In the proposed algorithm, the scheduler of each base station (e.g., Proportional Fair,

Round Robin, or Best CQI) performs both RB and power allocation each TTI, inde-

pendently of the other base stations in the network. The algorithm minimizes downlink

transmission power without degrading the performance of cell-center UEs. In addition,

transmission power allocated for RBs having low SINR values is increased to benefit

from the available spectrum. If the received CQI feedback is higher than a predefined
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Algorithm 5 Downlink power control
1: Each user sends CQI feedback about all available RBs to the serving cell
2: for each RB ∈ RB_pool do
3: if ((CQI < CQIthreshold) & (Pt−TTI < PmaxperRB)) then
4: Pt ← Pt−TTI + Power_Control_Step
5: else if ((CQI > CQIthreshold) & (Pt−TTI > PminperRB)) then
6: Pt ← Pt−TTI − Power_Control_Step
7: end if
8: end for

CQIthreshold, downlink transmission power is reduced as long as it is higher than a pre-

defined minimum power Pmin. However, if CQI feedback is lower than CQIthreshold,

downlink transmission power is increased as long as it is lower than the maximum al-

lowed transmission power Pmax, where:

Pmax =
Sector Maximum Downlink Power

Number of Available RBs
= PRB. (4.7)

The minimum transmission power Pmin is a predefined parameter that guarantees an

acceptable data rate over the considered RB. CQIthreshold can take one of fifteen possi-

ble integer values since 1 ≤ CQI ≤ 15. When CQIthreshold equals 15, the power control

algorithm allocates the maximum downlink transmission power for each RB. Moreover,

Pmax, given in (4.7), guarantees that the maximum transmission power allocated for all

the RBs is always less than or equals the maximum transmission power of the cell. Algo-

rithm 5 describes how downlink transmission power attributed for each RB is adjusted

by the scheduler according to the last received CQI feedback. In fact, information about

channel quality are sent by the UEs to their serving cells. The received CQI feedbacks are

monitored by the scheduler of each cell. Every TTI, the transmission power allocated to

each RB is adjusted according to the CQI value and to the transmission power allocated

to this RB at the previous TTI: Pt - TTI. If the received CQI is less than CQIthreshold and

Pt - TTI is less than the maximum transmission power per RB, the transmission power

allocated to this RB is incremented by a power control step. Otherwise, the transmission

power at TTI t is decremented by a power control step when the received CQI exceeds

CQIthreshold, as long as the transmission power allocated to the concerned RB is greater

than the minimum transmission power per RB. The power control step is a predefined

parameter that allows controlling the granularity of the proposed algorithm. A very

small power control step results in delaying the improvement of system performance,

while a big step size creates additional oscillations in the downlink power allocation.
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4.5 Simulation Environment

In order to study the performance of our power control algorithm, several LTE system

level simulations are performed. Comparison parameters are: downlink transmission

power and mean UE throughput. We simulate our proposed algorithm using a MATLAB

based LTE downlink system level simulator [IWR10], and we compare its performance

to other power control strategies.

We adapted the chosen LTE downlink system level simulator before performing the

required simulations. In fact, SINR calculations were made assuming the maximum

downlink transmission power is attributed permanently for all the RB. In addition, no

downlink power control mechanism was implemented. Therefore, we adjusted the MAT-

LAB open-source code of the simulator to ensure that the effective power levels on each

RB are taken into account when calculating SINR levels. We choose the proportional

fair scheduler to implement the proposed power control algorithm. Note that this algo-

rithm can also be integrated within other schedulers such as round robin or best CQI.

Simulation parameters for the simulated LTE system and the power control algorithm

are summarized in Table 4.2.

The simulated network consists of several adjacent hexagonal LTE cells, where inter-

eNodeB distance equals 500 m. eNodeB spacing corresponds to dense networks deployed

in urban areas. In each cell, 25 RBs are available and fully used, since the operating

bandwidth equals 5 MHz. Traffic model is full buffer i.e., all the available spectrum is

permanently allocated for active UEs. The scheduling period in LTE equals one TTI

(1 ms), where power and RB allocation are periodically performed by the scheduler

located at each eNodeB.

4.6 Performance Evaluation of the Downlink PC Algorithm

4.6.1 Downlink Transmission Power

First, we simulate a basic scenario where an LTE system contains one cell-center UE

and one cell-edge UE in two adjacent cells. The objective of the simulation is to show

the impact of our proposed heuristic algorithm on the downlink transmission power for
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Table 4.2: Simulation Parameters
Parameter Value Description

Cell geometry Hexagonal A cell is served by an eNodeB

Inter-eNodeB distance 500 m Urban area

Operating bandwidth 5 MHz —

Number of RB 25 In the 5 MHz bandwidth

Transmission frequency 2 GHz —

Subcarrier frequency 15 kHz 1 RB = 12 sub-carriers

TTI 1 ms Transmit Time Interval

Pathloss model TS 25.814 Same as in HSDPA

Thermal noise density -174 dBm/Hz —

Feedback delay 3 ms 3 TTIs

Scheduler Proportional Fair —

Traffic model Full buffer —

eNodeB max. power 10 W —

Max. power per RB 0.4 W eNodeBmax. power
Number of RB

Power control step 0.04 W Max. power per RB
10

Min. power per RB 0.16 4 ∗ Power_Control_Step

CQIthreshold 7 1 ≤ CQI ≤ 15

cell-center and cell-edge UEs. Simulation time equals 500 TTIs which is equivalent to

500 ms. We report the variation of the total downlink transmission power allocated for

each UE along with time. These variations are illustrated in Fig. 4.2.

According to Fig. 4.2, we notice that the downlink transmission power allocated for the

cell-center UE is reduced after receiving the corresponding CQI feedback at the serving

base station. In fact, the power control algorithm implemented at the scheduler will

decrease the downlink power allocated for the RBs used by this UE, since the received

CQI is higher than the predefined CQIthreshold. Downlink power is decreased as long as

the received CQI is higher than the predefined threshold, until it reaches the minimum

downlink transmission power. The oscillations observed for the downlink transmission

power of cell-edge UE are due to successive increase and decrease in the downlink trans-

mission power. Consequently, this power reduction will affect the current CQI value that

will also decrease. Thus, downlink power value along with time is subject to oscillations

that are ruled by the received CQI feedback values. To reduce these oscillations, we
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Figure 4.2: Downlink transmission power versus time

define a CQI interval around CQIthreshold where we tolerate CQI variations i.e., where

we do not modify the allocated downlink power.

4.6.2 System Performance

Using the same parameters as in the previous subsection, we simulate the LTE system

with 10 UEs randomly placed in each cell. Therefore, the simulated system contains

70 UEs. The heuristic power control algorithm adjusts downlink transmission power ac-

cording to CQI feedbacks received from UEs. Simulations are repeated 100 times where

UE positions and radio conditions are randomly generated each time. Performance pa-

rameters, such as mean throughput per UE and system power consumption, are averaged

over the 100 simulation runs. The majority of UEs in the central cell of the system are

cell-edge UEs, while they are cell-center UEs in the other cells. Simulation results are

reported in Fig. 4.3 to 4.6.

In Fig. 4.3, we report the mean throughput per UE with and without the power control

heuristic algorithm. It shows that system throughput is slightly reduced when using our

algorithm. In fact, downlink transmission power for resource blocks having good radio

conditions (CQI relatively high) is decreased; however, the transmission power allocated

to RB characterized by low CQI feedback values is increased to compensate throughput
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Figure 4.3: Mean throughput versus time
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Figure 4.4: Cell-center UEs throughput versus time

loss that might occur due to propagation loss and ICI problems. Globally, the mean

throughput per UE is slightly reduced.

Figure 4.4 shows the impact of downlink transmission power adjustments on cell-center

UEs. These UEs are characterized by a lower path loss. In addition, they are less

affected by inter-cell interference, since the interfering signals will experience important

degradation before reaching these UEs. For these reasons, resources allocated for cell-

center UEs show relatively high CQI feedback values. Hence, downlink power allocated
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for these resources is decreased, and the mean throughput per cell-center UE is reduced.
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Figure 4.5: Cell-edge UEs throughput versus time

Simulation results reported in Fig. 4.5 show the average throughput per cell-edge UE

with and without the power control algorithm. We notice that mean throughput per

cell-edge UE is increased when applying the algorithm. In fact, these UEs suffer the

most from inter-cell interference problems for two reasons: first, their signal path loss

is important; second, they are highly affected by interfering signals transmitted by the

neighboring cells. Since resource blocks allocated for cell-edge UEs are characterized by

low CQI values (due to propagation loss and inter-cell interference), the power allocated

for these RBs is increased. Thus, the signal loss caused by free space propagation is

reduced. Furthermore, resource blocks used by cell-center UEs in the neighboring cells

have higher CQI values. When reducing the downlink transmission power allocated to

these RBs, the amount of inter-cell interference that affects cell-edge UEs operating on

the same RBs in the neighboring cells is reduced. These power adjustments improve

channel quality and SINR of cell-edge UEs, allowing them to get higher throughputs and

better performance.

Figure 4.6 shows that our heuristic power control algorithm largely reduces the required

downlink transmission power. Indeed, the simulated LTE system consumes only 22 W

instead of 70 W, which is the transmission power consumed when no downlink power

control is applied. Thus, the total downlink transmission power is reduced by 68%.

Combining these results with the results obtained in Fig. 4.3 (system throughput is
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Figure 4.6: System power consumption versus time

slightly reduced) allows us to exhibit the main advantage of our algorithm: we avoid

power wastage and we improve cell-edge UEs throughput.

Note that in the special case where all UEs are located at the edge of the cells, downlink

transmission power is increased until we reach the maximum transmission power. Thus,

the percentage of cell-edge UEs has an important impact on power consumption.

4.7 Autonomous Dynamic ICIC Technique

The heuristic power control algorithm that we introduced at the beginning of this chapter

operates in a distributed manner at the scheduler of each base station, regardless of the

resource allocation strategy used. To further protect UEs having low SINR values from

ICI problems, we also introduce an autonomous distributed dynamic ICIC technique

that aims at improving the quality of service for BR UEs and increasing throughput

fairness among all the active UEs in the network. Our technique dynamically adjusts

RB allocation depending on UE demands in each cell zone. It operates on the downlink of

multiuser OFDMA networks, such as LTE, where frequency reuse-1 model implies severe

restricting ICI problems, and it does not require any cooperation between network base

stations. Thus, no additional signaling overhead is generated.
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Algorithm 6 RB classification
1: All UEs send CQI feedbacks to the base station
2: for each RB ∈ RB_pool do

3: CQIn(t)←

K∑
k=1

CQIkn(t)
K

4: CQIn(t)← γCQIn(t-1) + (1− γ)CQIn(t)
5: end for

The cooperation between adjacent base stations is possible by exchanging the necessary

information over the X2 interface [Raz13] that interconnects adjacent eNodeBs. Draw-

backs of such cooperation are basically an additional signaling load due to messages

exchanged between eNodeBs and an additional time delay in order to solve the resource

and power allocation problem in a cooperative manner. Our proposed ICIC technique

is an autonomous distributed method where the existence of a central controller is not

required.

Information about channel quality at the UE is transmitted regularly to the eNodeB.

CQI is calculated by the UE based on the SINR of the received common pilot [EDB07]. It

is expressed as a recommended transport block size, and it is received after a predefined

number of TTIs, since the uplink transmission channel is shared by several UEs. We

assume that CQI degradation is caused by interference problems due to the usage of the

same resources in adjacent cells. For a given RB, the block error rate increases when

it is simultaneously used in adjacent cells, due to ICI that causes SINR degradation.

Mean narrowband CQI feedbacks are information concerning the link quality for specific

RBs. They are sent by the active UEs to the network, and they are used to classify

RBs allocated to each zone, as shown in Algorithm 6. First, we calculate the mean CQI

value for a RB n over the K active UEs at time t. Then, the average CQI over time

is calculated for each RB. γ is a real coefficient less than one, and it is used to give

more weight to the recently received CQI feedbacks. Thus, the algorithm becomes more

responsive to recent modifications in the radio conditions, and to the latest received CQI

feedbacks. RBs originally allocated to the GR zone and characterized by high CQI values

are potential candidates to be moved to the cell-edge zone when needed i.e., when BR

UEs are not satisfied. Moreover, BR resources having low CQI values are most probably

the ones to be used in the GR zone if GR UEs are not satisfied.

Algorithm 7 shows how our autonomous dynamic ICIC technique periodically adjusts

RB allocation between cell zones. Initially, RB and power allocation are performed



4. Heuristic PC and Autonomous ICIC 101

Algorithm 7 Autonomous dynamic ICIC
1: Allocate RBs and power according to SFR
2: Every T TTIs:
3: if (RGR − RBR > ∆th) then
4: Borrow the RB with the highest CQI from GR to BR zone
5: else if (RBR − RGR > ∆th) then
6: Borrow the RB with the lowest CQI from BR to GR zone
7: else
8: Keep the same RB distribution
9: end if

according to the SFR technique: one third of the available bandwidth is allocated to the

BR UEs and used at the maximum downlink transmission power; while the remaining

bandwidth is allocated to the GR UEs at a lower transmit power, as shown in Fig. 4.7.

After receiving the first narrowband CQI feedbacks from active UEs, eNodeB starts

calculating mean CQI values for each RB available in the cell. RGR and RBR denote the

mean throughput per GR UE and BR UE respectively. A throughput threshold ∆th is

defined and used to decide whether UEs of a specific zone are more satisfied than UEs

in the other zone or not.

Figure 4.7: Initial RB and power allocation

The scheduler of each base station locally performs periodic interventions, every T TTIs.

The intervention period T is greater than the scheduling period (one TTI), so that the

scheduler has enough time to receive UE feedbacks, to calculate the mean throughput for

each zone, and to monitor the impact of the latest modifications on mean UE throughput

per zone. If mean throughput per GR UE exceeds by ∆th the mean BR throughput, then

BR UEs are considered to be unsatisfied. As mentioned earlier in this section, GR RBs

are classified according to their mean CQI feedbacks. According to the proposed ICIC

technique, BR zone borrows one RB from the RBs allocated to the GR zone in order to
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satisfy throughput demands of its UEs, as shown in Fig. 4.8. The borrowed RB is the one

having the highest CQI feedback value, since it will be allocated to the disadvantaged

UEs (having bad radio conditions and low SINR). However, downlink transmission power

allocated to this RB is maintained (according to the SFR scheme) to avoid additional

interference for BR UEs of the neighboring cells. In fact, power allocation mask is

kept the same as for SFR, since there is no cooperation between network entities to

coordinate RB distribution in each cell. A local power increase decision that raises ICI

level is therefore avoided.

Figure 4.8: BR UEs unsatisfied

Similarly, if mean throughput per BR UE exceeds by ∆th the mean GR throughput,

then GR throughput requirements are not satisfied. Consequently, BR RB characterized

by the lowest mean CQI feedback is selected, and it is borrowed by the GR zone. This

scenario is illustrated in Fig. 4.9. Since GR UEs usually have good radio conditions and

high SINR, GR zone can borrow RBs with low CQI values. Resources with higher CQI

feedback values are reserved for BR UEs. Downlink transmission power allocated to the

borrowed RB is maintained since it does not have a negative impact on BR UEs in the

neighboring cells.

∆th allows to avoid unnecessary modifications of RB allocation between cell zones when

the difference between mean GR throughput and mean BR throughput is low. It is

a tuning parameter that could be adjusted by mobile network operators according to

quality of service requirements. For instance, if we tolerate a throughput difference of

128 kbit/s per UE between GR and BR zones, then no intervention is performed as long

as the absolute value of GR and BR throughput difference is less than 128 kbit/s. In

this case, RB distribution between cell zones is kept the same.
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Figure 4.9: GR UEs unsatisfied

Time scale of the proposed autonomous ICIC technique is greater than the scheduling

period in LTE (one TTI), i.e., when intervention period elapses, restrictions on RB usage

in each zone are updated according to UEs needs. Therefore, base station schedulers

have enough time to measure the impact of RB borrowing on UE throughput in each

zone. It also allows to avoid oscillations in RB borrowing, that might occur when mean

throughput per GR and BR zones have close values. Interventions occur every T ms

in a distributed manner, to decide whether to change or not RB distribution locally

between cell zones. Static ICIC techniques, such as FFR and SFR, are not adapted for

non-uniform user distributions between the different network cells. In addition, they

do not adjust RB distribution between cell zones, especially when user density is not

geographically homogeneous within the same cell.

4.8 Simulation Environment

4.8.1 Simulation Parameters

Simulations are performed to evaluate the performance of the proposed autonomous dy-

namic ICIC technique to be compared with the frequency reuse-1 model and traditional

state-of-the-art ICIC techniques. LTE system level simulator generates sites with three

hexagonal sectors per site. We implemented an algorithm that adjusts downlink trans-

mission power allocated to each RB. It is used when adjusting power allocation according

to SFR technique and according to our proposed autonomous ICIC technique. We have

implemented our proposed ICIC technique and another state-of-the-art ICIC technique,

called Adaptive ICIC [QLS09]. It considers the resource and power allocation problem
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for each cell independently of the other cells. For the cell-edge zone, the objective is to

minimize the transmission power under constraints related to the minimum throughput

per UE. For the cell-center zone, the objective consists in maximizing the achievable

throughput under constraints related to resource usage. The adaptive ICIC technique

operates as follows:

• UEs are divided into cell-edge and cell-center UE groups.

• RB and power allocation to the cell-edge group is performed. After that, the RB

and power allocation to the cell-center group is performed based on the assignment

results of the cell-edge UE group.

• The RBs and power allocation to cell-edge UEs is performed using a waterfilling-

based power allocation algorithm, so that all the cell-edge UEs satisfy the prede-

termined target throughput.

• The RB and power allocation problem is subject to constraints related to the

minimum throughput per UE, and to the maximum downlink transmission power.

• Each cell solves its own optimization problem with minimal exchange of information

between the cells.

Therefore, we are able to compare our autonomous technique with the frequency reuse-1

model, FFR, SFR, and adaptive ICIC techniques.

The simulated LTE network consists of several adjacent hexagonal cells, where each

cell is served by an eNodeB. Inter-eNodeB distance equals 500 m, which corresponds

to the distance separating two adjacent eNodeBs in urban areas. Operating bandwidth,

transmission frequency, and other parameters for the simulated LTE system are the same

as given in Table 4.2. Downlink transmission power allocated to the GR RBs is defined by

an SFR power ratio (α < 1). Satisfaction throughput threshold is a predefined parameter

used to measure the percentage of satisfied UEs i.e., UEs having their mean throughput

higher than this threshold. In our simulations, it equals 512 kbit/s. We assume that

the minimum throughput required to guarantee an acceptable QoS for the active UEs

equals 512 kbit/s. The intervention period T for our autonomous ICIC technique equals

25 TTIs, which is greater than the scheduling period (1 TTI).
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4.8.2 Performance Metrics

4.8.2.1 Spectral Efficiency and Energy Efficiency

Spectral efficiency is an important metric for performance comparison, due to the scarcity

of the frequency spectrum. Another important concern for mobile network operators is

energy efficiency. Indeed, the integration of a power allocation algorithm that reduces

ICI will increase cell-edge UEs throughput, and reduce system power consumption.

We define the spectral efficiency as the aggregate system throughput divided by the

available spectrum; it indicates the throughput per Hertz. Similarly, energy efficiency

gives the aggregate system throughput per Watt:

Spectral efficiency [bit/s/Hz] =

∑K
k=1Rk[bit/s]

Available spectrum [Hz]
, (4.8)

Energy efficiency [bit/s/W] =

∑K
k=1Rk[bit/s]

Total power consumption [W]
, (4.9)

where K is the number of active UEs, and Rk is the mean throughput of UE k. An

efficient ICIC technique for a mobile network operator is a technique that increases

spectral efficiency, energy efficiency, or both.

4.8.2.2 Mean Throughput per UE

Since each cell is divided into GR and BR zones, we define two additional throughput

metrics: mean throughput per GR UE and mean throughput per BR UE.

We have performance improvements for the LTE system due to an increase in GR UEs

throughput only. However, BR throughput is reduced, and the objective of ICIC is not

achieved. For this reason, BR and GR UEs’ throughput are introduced to investigate

user performance in each zone. They also show the impact of ICIC techniques on system

performance using detailed throughput information.

4.8.2.3 Throughput Cumulative Distribution Function

Throughput CDF shows UE throughput distribution for the different ICIC techniques.

For each throughput value, CDF represents the probability to find a UE characterized
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by a lower throughput. When comparing ICIC techniques, the best one is the one that

shows the lowest CDF for all throughput values.

4.8.2.4 UE Satisfaction

We define a satisfaction throughput threshold as the reference throughput for perfor-

mance comparison. We assume that a UE is satisfied when his average throughput

exceeds this threshold. In fact, it is the minimum throughput that guarantees an ac-

ceptable quality of service. UEs having a mean throughput lower than the satisfaction

threshold are qualified as unsatisfied.

For each ICIC technique, we compute the percentage of unsatisfied users in the network.

We investigate the evolution of user satisfaction when the percentage of GR UEs changes

i.e., when the majority of active UEs are GR UEs or BR UEs or when UEs are equally

distributed between cell zones. We also study the impact of network load (number of

UEs per eNodeB) on user satisfaction for each of the studied ICIC techniques.

4.8.2.5 Fairness Index

Throughput fairness is an important performance comparison parameter. It gives insights

about the gap between BR and GR UEs performance. Jain’s fairness index [JCH84] is

given by:

J(R1, R2, ..., RK) =

(
K∑
k=1

Rk)
2

K ·
K∑
k=1

R2
k

. (4.10)

Where J rates the fairness of a set of throughput values; K is the number of active UEs,

and Rk is the throughput of UE k. Jain’s fairness index ranges from 1
K (worst case) to 1

(best case). It reaches its maximum value when all UEs receive the same throughput.

4.9 Simulation Results

Extensive simulations are done to compare the performance of the proposed autonomous

dynamic ICIC technique with frequency reuse-1 model, FFR, SFR, and adaptive ICIC
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techniques. Results concerning energy efficiency, spectral efficiency, UE satisfaction,

mean throughput per zone, and throughput fairness are reported in the current section.

4.9.1 Throughput Threshold ∆th

We study the impact of the throughput threshold ∆th, which is the tolerated throughput

difference between the different cell zones, on system performance. We simulate the

same network scenarios under different ∆th values, for uniform and non-uniform UE

distributions. Our results concerning UE satisfaction versus UE distribution are shown

in Fig. 4.10, and results showing the impact of ∆th on throughput fairness are given in

Fig. 4.11.
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Figure 4.10: UE satisfaction versus UE distribution

According to Fig. 4.10, the lowest percentage of unsatisfied UEs for uniform and non-

uniform UE distributions is achieved for ∆th = 128 kbit/s. When we allow a larger

throughput difference between cell zones, the number of interventions that occur to

adjust RB allocation decreases. Thus, the adjustments made on RB allocation between

cell zones are not enough to respond accurately to throughput demands in each zone.

The percentage of unsatisfied UEs increases when ∆th increases. If ∆th equals zero, RB

allocation between GR and BR zones is modified at each intervention. Although system

performance is improved, additional oscillations in RB allocation between cell zones are

caused by these consecutive interventions.
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Figure 4.11: Fairness index versus UE distribution

Similarly, our autonomous ICIC technique offers the highest fairness index when ∆th

equals 128 kbit/s, as shown in Fig. 4.11. When ∆th increases, the tolerated throughput

difference between cell zones increases. Thus, the higher the throughput threshold ∆th is,

the lower the fairness index is. This result is valid independently of the UE distribution

between cell-center and cell-edge zones. The optimal ∆th value is therefore selected for

the rest of the simulations.

4.9.2 Spectral Efficiency versus Energy Efficiency

We simulate a cluster of seven adjacent hexagonal LTE cells with 10 UEs randomly

placed in each cell. Simulations are repeated 100 times, and mean results are shown in

Fig. 4.12.

Simulation results reported in Fig. 4.12 show that the frequency reuse-1 model presents

the lowest energy efficiency. In fact, RBs are simultaneously used in the adjacent cells,

and all the active UEs experience ICI problems that mainly affect those located at the

edge of the cell. The downlink transmission power is always set to the maximum, since no

power control is used. Thus, reuse-1 model has the lowest energy efficiency in comparison

with other ICIC techniques.

FFR increases energy efficiency compared to the frequency reuse-1 model. It creates

a static group of restricted RBs that are not used in each cell. The unused RBs are
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Figure 4.12: Spectral efficiency versus energy efficiency

not allocated any downlink transmission power. Therefore, system power consumption

is reduced, which increases energy efficiency. However, FFR shows the lowest spectral

efficiency in comparison with other techniques. Restrictions on RB usage reduce the

amount of RBs available in each cell; thus, spectral efficiency is reduced. The adaptive

ICIC technique improves spectral efficiency in comparison with reuse-1 model, since it

increases the achievable throughput for the LTE network. Adjustments made on power

allocation also allow a slight improvement of energy efficiency. However, energy efficiency

for adaptive ICIC technique is less than that of FFR.

According to simulation results, our proposed autonomous ICIC technique improves both

spectral efficiency and energy efficiency in comparison with frequency reuse-1 model

and static FFR technique. This RB allocation strategy improves UE throughput, and

increases spectral efficiency. Moreover, downlink transmission power allocated to the

GR RBs is lower than the maximum transmission power per RB; therefore, the total

downlink transmission power is reduced and energy efficiency is improved. Performance

results for our dynamic ICIC technique are similar to those of SFR for homogeneous UE

distributions.
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4.9.3 Mean Throughput per UE

We simulate the same scenario for frequency reuse-1 model, FFR, SFR, adaptive ICIC,

and our proposed ICIC technique, and we investigate mean UE throughput as well as

mean GR and BR throughputs for all these techniques. When using SFR, one third of

the available RBs in each cell are exclusively allocated to BR UEs, and they are used at

the maximum downlink transmission power. The remaining spectrum is used by GR UEs

at a lower transmission power. Simulations are repeated 100 times, where UE positions

and radio conditions are randomly generated each time, and mean results are reported

in Fig. 4.13.
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Figure 4.13: Mean throughput per GR, BR and all UEs

Simulation results show that the proposed technique is a compromise between FFR and

SFR techniques. The main objective of ICIC is to protect BR UEs that are characterized

by low SINR values due to interference problems. FFR guarantees that BR RBs are not

reused in GR zones of the adjacent cells; therefore, higher SINR values are reached

in comparison with reuse-1 (where RBs are reused at the full downlink transmission

power) and SFR (where BR RBs are reused in adjacent cells with a lower transmit

power). GR UE throughput is reduced due to restrictions on RB usage, which results

in a decrease of the overall mean throughput in comparison with the frequency reuse-1

model. Adaptive ICIC adjusts RB and power allocation between BR and GR zones,

in order to satisfy throughput requirements for BR UEs, while minimizing downlink

transmission power used in BR zone. Nevertheless, it does not take into account ICI
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caused by RBs used in GR zones of the neighboring cells, thus system throughput is

improved due to improvements in GR UEs throughput.

SFR improves BR UEs throughput in comparison with reuse-1 without degrading system

throughput. In fact, all the spectrum is used in each cell, but power allocation restrictions

are imposed to reduce ICI. The drawback of SFR is that RB distribution between cell

zones remains static; it does not take into account traffic demands in each zone. Thus,

our proposed technique keeps the same downlink power restrictions, but it adapts RB

distribution between cell zones in order to reach throughput homogeneity among all

the users. This result will be further explained in the following paragraph. BR UEs

throughput is improved without reducing mean throughput per user.

4.9.4 Throughput CDF

The same scenario is simulated in order to study throughput CDF for reuse-1 model,

FFR, SFR, adaptive ICIC, and our autonomous ICIC technique. Simulations are re-

peated 100 times, where the positions and the radio conditions of 70 UEs are randomly

generated each time. The obtained results are illustrated in Fig. 4.14.
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Figure 4.14: Throughput cumulative distribution function

We notice that our ICIC technique has the lowest CDF for throughput values less than

1 Mbit/s. Consequently, the number of UEs suffering of bad quality of service is reduced.

CDF of adaptive ICIC technique is the best for throughput values higher than 1 Mbit/s.
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Thus, it increases the number of UEs having relatively high throughput. However, re-

strictions made on RB and power allocation do not succeed in reducing the percentage

of UEs having low throughput.

Our autonomous dynamic ICIC technique outperforms reuse-1 model and other state-

of-the-art techniques. In fact, our objective is to increase throughput fairness among all

the active UEs by reducing the number of RBs allocated to the UEs having relatively

high throughputs, in order to improve quality of service for vulnerable UEs.

4.9.5 UE Satisfaction

4.9.5.1 Network Load

We compare the percentage of unsatisfied UEs for the proposed ICIC technique and

other state-of-the-art techniques for a scenario of seven adjacent hexagonal LTE cells.

We define a throughput threshold as the reference throughput for performance compar-

ison. If the average throughput for a user is higher than the predefined satisfaction

throughput threshold, the user is considered satisfied; otherwise, this user is considered

as an unsatisfied user.

Satisfaction throughput threshold is set to 512 kbit/s. We assume that this threshold is

the minimum throughput required to guarantee an acceptable QoS for the active UEs.

Our objective is to show the evolution of the overall UE satisfaction when the network

load (or the number of UEs per cell) increases. For each simulation run, UE positions

and radio conditions are randomly generated. Mean results are displayed in Fig. 4.15.

These results show that our algorithm is characterized by the lowest percentage of un-

satisfied UEs in comparison with reuse-1, FFR and SFR. In fact, our distributed ICIC

technique adjusts RBs distribution between GR and BR zones in each cell dynamically,

according to user demands in each zone. When the number of UEs per eNodeB is greater

than 12, FFR user satisfaction becomes the worst. In fact, RBs are statically distributed

between cell zones, regardless of the number of UEs and their actual throughput de-

mands in each zone. In addition, no downlink power allocation is performed to reduce

ICI over GR RBs (that are reused according to frequency reuse-1 scheme). Adaptive

ICIC technique shows approximately the same percentage of unsatisfied UEs regardless
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Figure 4.15: UE satisfaction versus network load

of the number of UEs per cell. It outperforms FFR when the number of UEs per eN-

odeB exceeds 12. Thus, adaptive ICIC is well adapted for high load situations, where

the downlink transmission power is allocated to the BR and GR UEs in a manner that

improves BR UEs throughput without increasing ICI. Power adjustments made by SFR

allow keeping approximately the same percentage of unsatisfied UEs as for frequency

reuse-1 model.

4.9.5.2 UE Distribution

We investigate the impact of user distribution between GR and BR zones on system

performance. An LTE network of seven adjacent hexagonal cells with 10 UEs per cell

is considered. UEs positions are generated in a manner that the percentage of GR UEs

existing in the system varies between 20% and 80%. For each user distribution (percent-

age of GR UEs), simulations are repeated 100 times. Simulation time is 1000 TTIs, and

mean results are reported in Fig. 4.16.

Our results show that our autonomous dynamic ICIC technique is characterized by the

lowest percentage of unsatisfied UEs, compared to frequency reuse-1 model, FFR, SFR

and adaptive ICIC techniques. However, FFR and SFR performance depends on UE

distribution in the network. When the majority of UEs are in the BR zone, reuse-1

model outperforms FFR and SFR techniques. In fact, these static ICIC techniques do
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Figure 4.16: UE satisfaction versus percentage of GR UEs

not adapt RB allocation between GR and BR zones according to user demands in each

zone. However, they increase user satisfaction when UEs are uniformly distributed in

each cell. In fact, RB classification is performed statically, and it is well adapted for

user demands when UEs are uniformly distributed between BR and GR zones. Adaptive

ICIC technique does not reduce the percentage of unsatisfied UEs, since power allocation

problem for cell-edge UEs does not take into account potential interference caused by

downlink transmissions for cell-center UEs of the neighboring cells. The main advantage

of our technique is that it adapts RB distribution between cell zones in a distributed way

(without any cooperation between eNodeBs) in order to increase user satisfaction, and

improve system performance.

4.9.6 Fairness Index

We simulate the same scenario as in the previous subsection, and simulation time is

1000 TTIs. ICIC algorithm interventions occur periodically (every 25 TTIs). We gener-

ate UEs with uniform and non-uniform distributions between GR and BR zones. Simu-

lation results are shown in Fig. 4.17.

Fairness index gives information about throughput distribution between the different

UEs. The difference between mean UEs throughput tends to zero when the fairness

index tends to one. Simulation results reported in Fig. 4.17 show that FFR, SFR, and
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Figure 4.17: Fairness index versus percentage of GR UEs

adaptive ICIC techniques have low fairness index in comparison with frequency reuse-1

model, especially for non-uniform user distributions between cell zones. In fact, static

RB classification are not adapted for situations where the majority of UEs served by an

eNodeB are located in only one of the two zones. Consequently, throughput discrepan-

cies between UEs increases, and fairness index is reduced. FFR improves throughput

fairness in comparison with reuse-1 model only when RB classification between GR and

BR zones matches UE demands in these zones. The objective of adaptive ICIC tech-

nique is to allocate enough RBs for BR UEs while minimizing the transmission power

used in BR zone. Thus, BR UE demands are satisfied, but the remaining transmission

power is totally allocated to the cell-center zone, and it allows GR UEs to achieve higher

throughputs. Throughput fairness index is therefore reduced. However, the proposed

technique adjusts RB allocation according to UE demands, without any cooperation be-

tween eNodeBs, while maintaining power allocation constraints to reduce ICI. Therefore,

it shows the highest Jain’s fairness index compared to SFR, FFR and frequency reuse-1

model.

4.10 Conclusion

In this chapter, we proposed a distributed power control heuristic algorithm that operates

on the downlink of multiuser OFDMA networks. It can be implemented within several
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schedulers such as proportional fair, round robin or max SINR. The proposed algorithm

adjusts the downlink transmission power allocated for each RB according to the received

CQI feedbacks. We investigated its performance, and we compared it to the frequency

reuse-1 model by simulating an LTE network with randomly placed cell-center and cell-

edge UEs. Simulation results show that our algorithm reduces power wastage without

degrading system performance. It also improves the performance of cell-edge UEs by

decreasing the transmission power on resource blocks allocated to cell-center UEs in the

neighboring cells, since they are the main source of interference between neighboring

cells. Moreover, the proposed algorithm does not require any cooperation between base

stations.

We also introduced an autonomous dynamic downlink ICIC technique for multiuser

OFDMA networks. The proposed method is characterized by a low complexity, and

it does not generate any additional signaling overhead. RB allocation between GR and

BR zones is dynamically adjusted according to user demands in each zone. Simulation

results show that our technique improves BR UEs throughput without reducing the av-

erage throughput per user. It reduces energy consumption, increases the percentage of

satisfied users, and improves throughput fairness among all the users, which are the main

goals of mobile network operators.

In the next chapter, we introduce a cooperative resource management and power allo-

cation technique that makes use of the communications between the neighboring base

stations. Resource and power allocation are performed in a collaborative manner, using

information about UE throughput and resource usage in the neighboring cells. The coop-

erative approach is a compromise between the centralized approach that offers optimal

resource and power allocation at the expense of high signaling overhead, and the au-

tonomous approach where suboptimal resource and power allocation is achieved without

generating additional signaling traffic.



Chapter 5

Cooperative Resource Management

and Power Allocation for Multiuser

OFDMA Networks

In this chapter, we address the compromise between the centralized and the decen-

tralized resource and power allocation approaches by proposing a cooperative distributed

interference management algorithm. Signaling messages are exchanged between adjacent

cells to adjust resource and power allocation in a collaborative manner. Objectives sought

are: increasing user satisfaction, improving system throughput, and increasing both spec-

tral efficiency and energy efficiency. The proposed technique is compared to the frequency

reuse-1 model and to other state-of-the-art techniques under uniform and non-uniform

user distributions and for different network loads. We consider elastic traffic sessions,

and we define UE satisfaction as a function of the achievable throughput. System-level

simulation results demonstrate that our cooperative technique succeeds in achieving the

desired objectives under various user distributions and for different throughput demands.

5.1 Introduction

LTE/LTE-A networks are meant to be self-organizing networks, where eNodeBs operate

autonomously independently of each other. However, it is possible to exchange signaling

117
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messages between eNodeBs over X2 interface that interconnects adjacent cells. Infor-

mation about channel gain, traffic load, radio conditions, and interference are useful to

adjust resource and power allocation in a manner that improves system performance.

ICIC seeks a compromise between spectral efficiency and throughput fairness. In other

words, the objective is to improve the quality of service for UEs suffering of severe

ICI problems (having low SINR) without reducing system throughput. A dynamic co-

operative FFR-based technique is proposed in [RSV10], where interference mitigation

is achieved through the exchange of interference related information among neighbor-

ing cells. Another cooperative ICIC technique is presented in [YPW08]. It consists in

a graph-based dynamic FFR, where an RB allocation algorithm based on the auction

method is introduced. It achieves interference mitigation in a multi-cell OFDMA envi-

ronment via base-station coordination. In this chapter, we introduce a cooperative ICIC

algorithm that exploits communications between adjacent cells to reduce ICI problems

in multiuser OFDMA networks such as LTE/LTE-A networks. Our technique aims at

improving spectral efficiency, energy efficiency, system throughput, and UE satisfaction

under various UE distributions and network loads. We define a satisfaction function as

well as satisfaction throughput thresholds for each cell in the simulated network. The

time scale of the proposed technique is higher than the scheduling period, since it sets

RB and power allocation restrictions for the scheduler of each cell. It also adjusts RB

distribution between cell-center and cell-edge zones for each network cell. Our technique

is compared to the frequency reuse-1 model, FFR, SFR, autonomous ICIC technique

proposed in chapter 3.8, and another state-of-the-art ICIC techniques. System-level sim-

ulation results show that the proposed technique achieves significant improvements under

various UE distributions and network loads.

5.2 System Model

Let K denote the set of active UEs, I denotes the set of LTE/LTE-A cells, and N is the

set of RBs available in each cell. We consider a UE k attached to the cell i and allocated

RB n. Let Rik, n denote the achievable rate on RB n for UE k in the cell i, then:

Rik, n = f(SINRik, n). (5.1)
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Where f(.) is the adaptive modulation and coding function that maps SINR to rate. An

LTE/LTE-A network of multiple adjacent hexagonal cells is considered.

LTE/LTE-A networks require the transmission of UE feedback in order to adapt trans-

mission to current channel conditions. In this context, CQI is a four-bit value sent from

the UE to the eNodeB [3GP13] that reflects the level of SINR of a given frequency

band in downlink channels. It indicates the highest modulation and coding scheme that

guarantees a block error rate lower than 10% for physical downlink shared channel trans-

missions. Several reporting modes are supported: for example, wideband CQI feedbacks

reflect the average channel quality across the entire cell bandwidth, while specific re-

ports require the transmission of one CQI per configured sub-band (narrowband CQI

feedbacks).

We consider elastic traffic sessions, such as file transfer, web traffic, and email, since

these are the traditional data services in mobile networks [ELK13]. Then we define the

satisfaction function for each UE k at time t, Sk(t), as a function of the achievable

throughput for this UE, Rk(t), and it is given by:

Sk(t) = 1− exp(−Rk(t)
RS

), (5.2)

where RS is the satisfaction throughput for the considered UE, or the mean throughput

beyond which UE satisfaction exceeds 0.63. Satisfaction with respect to Rk has a concave

shape; it increases slowly as the throughput exceeds the satisfaction throughput RS for

UE k. Therefore, the satisfaction of an LTE/LTE-A cell i having K(i) UEs is given by:

Si(t) =

K(i)∑
k=1

Sk(t)

K(i)
. (5.3)

LTE/LTE-A cells are hexagonal, and each cell exchanges signaling messages with its six

neighboring cells. The cell i calculates mean satisfaction function S for the considered

cluster C that contains KC UEs:

S =

KC∑
k=1

Sk(t)

KC
. (5.4)
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5.3 Cooperative Resource and Power Allocation

We introduce a cooperative resource management and power allocation technique for

multiuser OFDMA networks, where the adjacent cells exchange signaling messages over

X2 interface in order to reduce ICI problems. It is a distributed technique that requires

cooperation between adjacent cells to adjust RB and power allocation. Initially, RB and

power allocation between the different cells is performed according to the SFR scheme.

Thus, the frequency reuse-1 model is chosen to maximize spectral efficiency, while re-

strictions are made on RB and power allocation between the different cells. Centralized

resource and power allocation schemes provide the optimal resource and power allocation

solutions. However, these schemes are characterized by a high computation complexity,

and they generate an additional signaling overhead. Thus, decentralized cooperative in-

terference coordination schemes are adequate for medium-sized and big-sized networks,

where the centralized schemes face severe limitations in terms of signaling and processing

load.

Our technique makes use of the signaling messages exchanged between neighboring eN-

odeBs over X2 interface. Each cell has local information, concerning the SINR of its active

UEs, as well as their achievable throughputs and their satisfaction. It also requests infor-

mation about UE satisfaction from the neighboring cells. Therefore, adjacent eNodeBs

adjust power allocation to the different RBs, in order to reduce ICI and to improve UE

satisfaction in a collaborative manner. In a second phase, resource allocation between cell

zones is autonomously adjusted by each eNodeB in order to satisfy throughput demands

in each zone.

As explained previously, an LTE/LTE-A cell is divided into two zones, according to

UEs wideband SINR values: GR and BR zones. Initially, one third of the available

spectrum in each cell is kept for BR UEs, and the maximum downlink transmission power

(πmax) is allocated to each RB used in this zone. The remaining bandwidth is used at

a lower transmission power (PGR) in the GR zone. BR UEs of adjacent cells operate on

different frequency sub-bands, and they receive low power interfering signals from their

neighboring cells. The intervention period of our proposed technique is chosen to be

higher than the scheduling period (1 ms) and higher than the CQI feedback reception

delay, so the scheduler of each cell has enough time to investigate the impact of RB
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and power allocation changes on UEs throughput. Each cell performs periodically, every

T TTIs, where T ≥ max(1 TTI,CQI feedback delay), the following actions:

1. Classify the available RBs according to mean narrowband CQI feedback values.

2. Collect information about mean throughput per UE in the neighboring cells.

3. Request information about resource and power allocation from the neighboring

cells.

4. Send Stop messages to the neighboring cells.

5. Calculate the local cell satisfaction Si(t).

6. Calculate mean satisfaction for the neighboring cells S(t).

7. When unsatisfied, increase the downlink transmission power allocated to the worst

low power RB, and ask the neighboring cells to reduce downlink transmission power

allocated to this RB.

8. When satisfied, keep the same resource and power allocation.

9. Send Release messages to the neighboring cells.

10. Locally adjust resource allocation between GR and BR zones of the current cell

according to throughput demands in each zone.

Our proposed technique exploits the fact that adjacent eNodeBs can exchange informa-

tion related to UE throughput in each cell. When a given cell decides to perform the

cooperative ICIC procedure, it sends Stop messages to its neighboring cells to avoid any

potential conflict that might occur when adjacent cells take simultaneous power alloca-

tion decisions. Since the X2 interface between adjacent eNodeBs is bidirectional, the

Stop messages contain a time stamp, that allows to avoid any potential deadlock that

might occur if two eNodeBs send simultaneous Stop messages to each other. Time syn-

chronization between eNodeBs is required. Each cell calculates the mean satisfaction

for its active UEs, as well as mean satisfaction for UEs in the neighboring cells. We

tolerate a predefined difference (∆i
S) between the satisfaction of the local cell and mean

satisfaction per cell to reduce the number of interventions performed by each cell. When

power adjustments are done, a Release message is sent to the neighboring cells, and



5. Cooperative Resource Management and Power Allocation 122

RB distribution between GR and BR zones is locally updated according to throughput

demands in each zone.

The distributed algorithm operates at the scheduler of each eNodeB as shown in Al-

gorithm 8. Ri(t) denotes the mean throughput per UE in cell i; I is the number of

cells in the neighboring cells pool I. P in is the downlink transmission power allocated by

cell i to the RB n. πmax is the power allocated to a BR RB, while PGR is the downlink

power per GR RB. RGR and RBR denote the mean throughput per GR and BR zones,

respectively. After receiving narrowband CQI feedbacks from the UEs, each cell calcu-

lates mean CQI per RB. The coefficient γ equals 0.5, and it is used to emphasize the last

received CQI feedback value, CQIn(t). Each cell classifies the available RBs according to

mean CQI values, then it sends signaling messages to its neighbors so that the downlink

transmission power allocated to the different RBs is kept the same.

Our algorithm consists of two phases: in the first phase, the adjacent cells exchange

the necessary information required to coordinate power allocation, while in the second

phase, each cell locally modifies RB distribution between the different zones. After

setting restrictions on power allocation with its neighbors, each cell adjusts RB allocation

between GR and BR zones according to UE throughput demands in each zone. The

objective behind second phase is to dynamically respond to throughput demands within

each cell, even when UE distributions are not homogeneous among GR and BR zones.

Figure 5.1 shows a cluster of seven adjacent hexagonal LTE/LTE-A cells. We assume

that the central cell (eNodeB 7) has the highest traffic load, and seeks to improve its

mean UE satisfaction. After exchanging the necessary signaling messages with its neigh-

boring cells, eNodeB 7 increases the downlink transmission power allocated to a portion

of the available bandwidth that was originally used at a low transmission power. It

also orders the concerned neighboring cells (eNodeBs 1, 3, and 5) to reduce their down-

link transmission power allocated to this portion of the spectrum. Therefore, eNodeB 7

reduces ICI and improves mean UE satisfaction via collaborative power allocation de-

cisions. Moreover, it autonomously adjusts resource allocation between cell-center and

cell-edge zones based on throughput demands in each zone.



5. Cooperative Resource Management and Power Allocation 123

Algorithm 8 Cooperative resource and power allocation
1: Perform RB and power allocation according to SFR
2: All UEs send CQI feedbacks to the eNodeB
3: for each RB ∈ RB_pool do

4: CQIin(t)←

K∑
k=1

CQIkn(t)
K

5: CQIin(t)← γCQIin(t-1) + (1− γ)CQIn(t)
6: end for
7: Every T TTIs:
8: Cell i sends Stop messages to its neighbors
9: Sk(t)← 1− exp(−Rk(t)

RS
)

10: Si(t)←

Ki∑
k=1

Sk(t)

Ki

11: S(t)←

KC∑
k=1

Sk(t)

KC

12: if (Si(t) < (1−∆i
S)S(t)) then

13: Select the low power RB n with the lowest CQIin(t)
14: P in ← πmax
15: P jn ← PGR;∀j ∈ I
16: else
17: Keep the same power allocation mask
18: end if
19: Send Release messages to the neighboring cells
20: if (RGR − RBR > ∆th) then
21: Select RB n with the highest CQIin(t) from GR zone
22: Allocate this RB to the BR zone
23: else if (RBR − RGR > ∆th) then
24: Select RB n with the lowest CQIin(t) from BR zone
25: Allocate this RB to the GR zone
26: else
27: Keep the same RB distribution
28: end if

5.4 Simulation Parameters

System level simulations are done in order to compare the performance of our coopera-

tive technique with that of the frequency reuse-1 model and other state-of-the-art ICIC

techniques. The simulated network includes seven adjacent hexagonal LTE/LTE-A cells,

with a 5 MHz operating bandwidth. Since the total bandwidth per RB equals 180 kHz,

we have 25 RBs available in each cell. Traffic model is full buffer; thus, the available spec-

trum is permanently used to serve active UEs. With the full buffer model, the maximum

ICI is generated since all the available spectrum is simultaneously used in the adjacent

cells. Simulation parameters are given in Table 5.1.
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Figure 5.1: LTE/LTE-A network of seven adjacent cells

5.5 Simulation Results

5.5.1 Tolerated Satisfaction Ratio

We simulate an LTE/LTE-A network having seven adjacent hexagonal cells, where each

cell is serving 10 UEs. System bandwidth equals 5 MHz; thus, 25 RBs are available in

each cell. Traffic model is full buffer: all the available RBs are allocated to the existing

UEs in the network. Round Robin scheduler is used to allocate the available RBs for

UEs. Simulation time is 350 TTIs (350 ms). Throughput satisfaction threshold for the

center cell equals 4RS ; where RS is satisfaction threshold for UEs in all the other cells.

In other words, throughput demands are not the same through the simulated network:

it is required to provide higher throughputs for central cell UEs, since their satisfaction

throughput threshold exceeds that of the other UEs.

First, we study the impact of the tolerated satisfaction ratio ∆S , which is a percentage

of the mean satisfaction value, on the central cell satisfaction and mean satisfaction for

the entire network. Simulations are repeated 100 times, and satisfaction versus time

for central cell UEs and for all UEs versus time are reported in Fig. 5.2 and Fig. 5.3

respectively.
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Table 5.1: Simulation Parameters
Parameter Value Description

Cell geometry Hexagonal A cell is served by an
eNodeB

Inter-eNodeB distance 500 m Urban area

Operating bandwidth 5 MHz —

Number of RBs (N) 25 In the 5 MHz bandwidth

Transmission frequency 2 GHz —

Subcarrier frequency 15 kHz 1 RB = 12 sub-carriers

Total bandwidth per RB 180 kHz 1215 kHz

TTI 1 ms Transmit Time Interval

Pathloss model TS 25.814 Same as in HSDPA

Thermal noise density -174 dBm/Hz —

Feedback delay 3 ms 3 TTIs

Scheduler Round Robin —

Traffic model Full buffer —

eNodeB max. power (Pmax) 20 W 43 dBm

Max. RB power (πmax) 0.8 W Pmax
N

SINR threshold 3 UE classification

SFR power ratio (α) 0.25 PGR = πmax
4

Intervention period (T ) 25 TTIs T ≥
max(1 TTI, feedback delay)

∆th 512 kbit/s Satisfaction per zone

Throughput threshold RS
512 kbit/s UEs in the center cell

128 kbit/s UEs in other cells

For tolerated satisfaction ratios higher than 20%, power allocation over the different

RBs is kept the same, since all the cells achieve an acceptable satisfaction compared to

mean satisfaction per UE. However, when ∆S equals 1%, satisfaction for central cell UEs

is increased, while mean satisfaction per UE is slightly decreased with time. When the

tolerated satisfaction is lower than 0.01S, the central cell decides to increase transmission

power allocated to some RBs (that were already used with a lower transmission power),

and it orders all its neighbors to reduce the downlink power allocated to these RBs.

Satisfaction for central cell UEs is increased in comparison with the remaining cases
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Figure 5.2: Central cell satisfaction versus time
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Figure 5.3: Mean satisfaction versus time

where no power adjustments are performed. For the remaining cells, satisfaction is

decreased since power reduction will reduce the achievable throughput. Thus, mean

satisfaction per UE in the entire network is slightly reduced.

In the following, the tolerated satisfaction ratio ∆S equals 1%. Hence, when the mean

satisfaction per UE exceeds by 1% the satisfaction of a cell, it decides to launch a cooper-

ative ICIC procedure with its neighbors in order to adjust power allocation and improve

the satisfaction of its UEs. We compare our proposed cooperative ICIC technique with
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the frequency reuse-1 model, FFR, SFR, an adaptive ICIC technique given in [QLS09],

and a non-cooperative ICIC technique introduced in [YLI+15], where power allocation

for the different RBs is not modified among adjacent eNodeBs. Nevertheless, periodic

interventions are made by the scheduler of each eNodeB, locally, in order to find out

whether GR or BR users are unsatisfied. RB distribution between cell zones is adjusted

according to UEs throughput demands in each zone. More details about the adaptive

ICIC technique and the non-cooperative ICIC technique are given in chapter 3.8.

5.5.2 Spectral Efficiency and Energy Efficiency

In this paragraph, we show the spectral efficiency and the energy efficiency for each

of the compared techniques. The simulated network of seven adjacent hexagonal cells

contains 10 UEs randomly placed in each cell. When using FFR, half of the available

spectrum is used according to the frequency reuse-1 model in cell-center zones, while the

remaining fraction is used according to the frequency reuse-3 model in cell-edge zones of

neighboring cells in a cluster of three adjacent cells. SFR allows using one third of the

available spectrum at the maximum downlink power, to be allocated to BR UEs, while

the remaining two thirds are used at a lower power (PGR), and are allocated to GR UEs.

Simulations are repeated 100 times, and the obtained results are reported in Fig. 5.4.
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Figure 5.4: Spectral efficiency versus energy efficiency
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The frequency reuse-1 model shows the lowest energy efficiency since the maximum

downlink transmission power is permanently allocated to the available RBs; however, its

spectral efficiency is better than that of FFR since all the available spectrum is used in

each cell. FFR improves energy efficiency when compared to the frequency reuse-1 model:

no power consumption is made on the unused RBs. However, FFR’s spectral efficiency

is the lowest among all the compared techniques due to restrictions on RB usage in

cell-edge zones. The adaptive ICIC technique increases spectral efficiency in comparison

with the frequency reuse-1 model, since it increases the achievable throughput. However,

the energy efficiency of this technique is less than that of FFR.

Autonomous ICIC technique shows a better energy efficiency, and a spectral efficiency

comparable to that of the frequency reuse-1 model. SFR shows the highest spectral

efficiency, due to restrictions made on power allocation for each set of RBs. Our proposed

technique brings modifications on power allocation over the different RBs. These power

adjustments are done in collaboration with the neighboring cells; however, they do not

have a negative impact on energy efficiency. On the contrary, our cooperative ICIC

technique shows the best energy efficiency, while its spectral efficiency is comparable to

that of reuse-1 and SFR.

5.5.3 Throughput Cumulative Distribution Function

Under the same simulation conditions, we study the impact of each technique on through-

put CDF for all UEs existing in the network. Throughput CDF is shown in Fig. 5.5.

Although FFR succeeds in reducing ICI, especially for BR UEs, restrictions on RB usage

between the different zones of each cell will reduce the amount of available spectrum

dedicated for the existing UEs. Thus, FFR shows the highest percentage of UEs having

throughputs lower than 512 kbit/s. Throughput CDF for FFR is the first curve to

reach the maximum value. SFR improves the frequency reuse-1 model by reducing

the percentage of UEs with throughputs lower than 1 Mbit/s. Our cooperative ICIC

technique shows the lowest percentage of UEs having low throughputs, and it reaches its

maximum value for the same throughput as for reuse-1. We also notice that the adaptive

ICIC technique does not succeed in reducing the percentage of UEs characterized by low

throughput values, since its CDF curve shows the highest values for throughputs less than

0.5 Mbit/s. In fact, this technique does not take ICI problems into account, and resource
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Figure 5.5: Throughput cumulative distribution function

allocation is performed in a manner that improves spectral efficiency. Therefore, BR UEs

throughput decreases and more RBs are allocated to GR UEs in order to maximize system

throughput.

5.5.4 Satisfaction Cumulative Distribution Function

For the same simulated scenario, we show satisfaction cumulative distribution function for

all the compared techniques. Satisfaction function ranges from 0 (minimum satisfaction)

to 1 (maximum satisfaction). Satisfaction CDF for the performed simulations are shown

in Fig. 5.6.

According to these results, adaptive ICIC always shows the highest percentage of UEs

with low satisfaction values. The frequency reuse-1 model, SFR, and autonomous ICIC

techniques have approximately the same satisfaction CDF, and our proposed cooperative

ICIC technique has the best satisfaction CDF in comparison with the other techniques.

For instance, when cooperative ICIC is applied, only 10% of UEs have a satisfaction

below 0.9, while 30% of the active UEs have their satisfaction below 0.9 for the adaptive

ICIC technique. Therefore, our technique improves UE satisfaction by adjusting power

allocation over RBs used simultaneously in adjacent LTE cells.
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Figure 5.6: Satisfaction cumulative distribution function

5.5.5 Unsatisfied UEs versus Network Load

For an LTE network of seven adjacent LTE cells, with 25 RBs available in each cell,

we study the impact of network load (number of UEs per eNodeB) on the percentage

of unsatisfied UEs in the network. The percentage of satisfied UEs at 63% denotes

the percentage of UEs characterized by a mean throughput higher than the satisfaction

throughput threshold RS . When a UE has its throughput equal to RS , the satisfaction

function equals 0.63. We investigate the percentage of UEs that are unsatisfied at 63%

i.e., the number of UEs characterized by a throughput lower than RS , among all the

active UEs in the network. Figure 5.7 shows the percentage of unsatisfied UEs at 63%

versus the number of UEs per eNodeB.

For very low network load scenarios, such as two or five UEs per eNodeB, the frequency

reuse-1 model and all the other ICIC techniques have approximately the same percentage

of unsatisfied UEs. However, when the number of UEs per eNodeB increases, throughput

demands become more difficult to satisfy, especially with the increased ICI. FFR has

always the highest percentage of unsatisfied UEs, which increases with network load.

Unsatisfied UEs with SFR technique are comparable to those with the frequency reuse-1

model. Moreover, their percentage decreases when network load increases. Our proposed

cooperative ICIC technique shows the lowest percentage of unsatisfied UEs regardless of

the number of UEs per eNodeB. It adjusts power allocation over the available RBs
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Figure 5.7: Unsatisfied UEs at 63% versus network load

for each cell in a collaborative manner, which reduces the number of UEs with low

satisfaction values.

5.5.6 Energy Efficiency versus UE Distribution

We also investigate the impact of UE distribution on the performance of the compared

ICIC techniques. We generate scenarios with different UE distributions by controlling the

percentage of GR UEs among all the existing UEs in each cell. For every UE distribution

scenario, simulations are repeated 50 times, and mean energy efficiency values are shown

in Fig. 5.8.

According to these results, the frequency reuse-1 model shows always the lowest energy

efficiency among all the compared techniques. In fact, when the maximum downlink

transmission power is permanently allocated to all the available RBs, power consumption

increases, ICI increases and the achievable throughput is reduced, especially for BR UEs.

When using FFR, a fraction of the available spectrum is not used in each cell; therefore,

no downlink transmission power is allocated to the unused frequency sub-band. Power

consumption is reduced, while also improving SINR for BR UEs. For these reasons,

FFR improves energy efficiency when compared to the frequency reuse-1 model. We also

notice that the adaptive ICIC technique is a compromise between the frequency reuse-1
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Figure 5.8: Energy efficiency versus UE distribution

model and FFR technique in terms of energy efficiency, since it succeeds in improving

system performance in comparison with the frequency reuse-1 model.

Our cooperative ICIC technique shows an energy efficiency comparable to that of SFR.

When there is more BR UEs in the network (the percentage of GR UEs is low), ICIC

algorithm increases downlink transmission power allocated to selected RBs to increase

BR UEs satisfaction. Thus, total power consumption increases, and energy efficiency is

slightly lower than that of SFR. However, it shows the highest energy efficiency when

the majority of UEs are GR UEs.

5.6 Conclusion

In this chapter, we introduced a cooperative distributed resource and power allocation

technique where communications between the adjacent cells are required to adjust re-

source and power allocation. Our algorithm consists of two phases: in the first phase,

signaling messages are exchanged to get the necessary information about UE satisfaction

and power allocation in the neighboring cells. Decisions concerning transmission power

adjustments are made in a collaborative manner during this phase. In the second phase,

the scheduler of each cell locally adjusts restrictions on resource distribution between

cell zones according to UE demands per zone. Simulation results show that the spectral
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efficiency and energy efficiency of our cooperative technique are comparable to that of

SFR technique. It enhances throughput cumulative distribution function in comparison

with the frequency reuse-1 model, FFR, and SFR, and shows the lowest percentage of

unsatisfied UEs independently of network load. Regardless of UEs distribution between

cell zones, our cooperative technique improves energy efficiency when compared to the

frequency reuse-1 model, FFR, adaptive ICIC, and non-cooperative ICIC techniques.

In the next chapter, we summarize the main contributions of the thesis, and we introduce

additional challenging research topics in future cellular networks.





Chapter 6

Conclusions and Future Work

This chapter summarizes the main contributions of the thesis. In addition, we intro-

duce future research topics, where our current contributions may be efficiently exploited.

6.1 Thesis Summary

In this thesis, we have addressed the resource and power allocation problems in wireless

networks such as LTE/LTE-A networks, or dense small cell networks. In fact, the ever

increasing demand for mobile broadband communications has led to the deployment

of dense cellular networks with aggressive frequency reuse model. Although system

capacity increases since the available bandwidth is fully used in each cell, the resulting ICI

problems have a negative impact on system performance. The utilization of interference

mitigation techniques is a necessity for nowadays and future cellular networks. The

objectives of ICIC schemes include improving spectral efficiency, energy efficiency, system

capacity, UEs satisfaction, and increasing throughput fairness among the active UEs.

We started this document by providing an exhaustive overview of the existing ICIC

techniques. We classified these techniques into multiple categories, according to their

working principles. After providing this qualitative analysis, we performed quantitative

comparisons of state-of-the-art schemes through a series of system level simulations under

uniform and non-uniform UE distributions, and for different network loads and radio

conditions. The frequency reuse-3 model shows the lowest spectral efficiency among

the compared techniques. However, it improves UE satisfaction for low network loads.

SFR scheme shows the highest spectral efficiency, and the highest energy efficiency.

135
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Nevertheless, the static configuration parameters of FFR and SFR should be adjusted

to meet UE distribution between cell zones.

After this analysis, we formulated a centralized multi-cell resource and power allocation

problem. Contrarily to the existing state-of-the-art approaches that neglect the impact

of ICI when solving the resource and power allocation problems locally for each cell, our

formulation takes ICI into account. The joint resource and power allocation problem is

separable into two independent convex optimization problems. Our objective function

consists in maximizing system throughput while guaranteeing throughput fairness among

UEs. We use Lagrange duality theory and subgradient projection method to solve the

centralized power allocation problem. In the same context, the power allocation problem

is solved in a decentralized manner via our proposed game-theoretical method. A multi-

player game is defined, where the players are the base stations. Each BS makes its own

power allocation decisions independently of the other BSs in the network. The solution to

the decentralized power allocation problem is found using subgradient projection method.

Our centralized resource and power allocation approach outperforms the decentralized

approach and state-of-the-art techniques, but more iterations are required to guarantee

the convergence of the centralized problem in comparison with the decentralized power

allocation approach.

In addition, we proposed a heuristic power control algorithm based on the received

CQI feedbacks. The downlink transmission power allocated to the different frequency

resources is adjusted by each cell in a distributed manner. The intuition behind this al-

gorithm is to avoid power wastage, especially for UEs that are close to their serving base

stations, and to mitigate ICI for UEs in the neighboring cells. The total downlink trans-

mission power is reduced by 68%, and cell-edge UEs throughput is improved without

degrading system performance. We also introduced an autonomous ICIC scheme that

aims at satisfying throughput demands in each cell zone. Restrictions on power alloca-

tion are not modified in order to avoid increasing interference, while resource allocation

between cell zones is adjusted in a distributed manner, according to throughput demands

in each zone. It is a dynamic technique that improves system performance, especially

under non-uniform UE distributions and throughput demands: throughput fairness and

UE satisfaction are improved regardless of UE distribution and network load. Moreover,

no additional signaling message is required.
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We have also addressed the tradeoff between centralized and decentralized ICIC ap-

proaches by introducing a hybrid interference mitigation scheme. For a cluster of adja-

cent cells, resource and power allocation decisions are made by each cell in collaboration

with its neighbors. First, the transmission power is adjusted after receiving the necessary

information from the neighboring cells. Second, resource allocation between cell zones is

locally modified, according to throughput demands in each zone. The main objectives

of this technique are: increasing UE satisfaction, improving throughput fairness, and in-

creasing both spectral efficiency and energy efficiency. It is a compromise between the

centralized and the decentralized approaches, since it does not require the existence of

a central control entity, and it reduces the signaling traffic overhead. Compared to the

frequency reuse-1 model, FFR, SFR, and the autonomous ICIC scheme, our proposed

hybrid scheme improves UE satisfaction, and increases energy efficiency.

Interference mitigation approaches are classified into centralized, decentralized, and hy-

brid approaches. The centralized approach requires the existence of a central control

entity that collects information about resource usage and power allocation from all the

cells. This information is exchanged through signaling messages between the base sta-

tions and the control entity. The optimal power allocation requires the deployment of

a centralized ICIC approach, as shown in chapter 2.7. Thus, system performance is

improved at the expense of a high signaling overhead. Nevertheless, the decentralized

approach is more adequate for heuristic resource and power allocation algorithms such

as the autonomous ICIC technique proposed in chapter 3.8. This approach allows each

base station to perform its own resource and power allocation decisions, independently

of the other cells. The optimal solution is not guaranteed due to the lack of cooperation

between network base stations. The hybrid interference mitigation approach is proposed

as a compromise between the centralized and the decentralized approaches. It makes use

of the cooperation between adjacent cells, as presented in chapter 4.10, and it reduces

the signaling overhead in comparison with the centralized approach. For instance, UE

scheduling is performed by the schedulers of each base station, while resource allocation

between the different cells is performed by the central control entity.
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6.2 Future Work

The contributions made throughout this thesis offer promising solutions for interference

mitigation in present and future cellular networks. However, the exponentially increasing

demand for mobile broadband data, the proliferation of mobile devices, and the rapid

evolution towards Internet of things are creating additional challenging research issues.

Managing the interference-aware heterogeneous cellular networks is one of these chal-

lenges. In fact, heterogeneous networks are an efficient way to deal with the increas-

ing mobile data traffic demands. Several Radio Access Technologies (RATs) may cover

the same geographical area in order to increase network capacity, and to improve UE

throughput. In this context, the RAT selection problem is an additional issue to be

addressed along with the co-tier and the cross-tier interference problems. Co-tier in-

terference occurs among network elements of the same type, e.g., between neighboring

femtocells, while cross-tier interference occurs among network elements that belong to

different tiers, e.g., between macrocells and femtocells. Our current work may be easily

extended to include scenarios where the heterogeneous network solves the RAT selection

problem independently of the resource and power allocation strategy. In this case, our

proposed ICIC techniques are implemented after the UE association process. Otherwise,

the RAT selection and the resource allocation problems should be jointly considered in

a single optimization problem, which can be overly costly in computing power. Several

objective functions can be defined to improve network performance, such as maximizing

system throughput, spectral efficiency, energy efficiency, or throughput fairness, while

guaranteeing the minimum required QoS for all the UEs.

In the same context, downlink/uplink imbalance and cell range expansion problems exist

in multi-tier wireless networks. These problems motivate the need for enhanced ICIC

techniques that manage UE association and downlink/uplink decoupling in addition to

resource management. In fact, the downlink coverage of a macrocell is larger than that of

a femtocell, since small cells operate at a lower downlink transmission power. However,

this power difference does not affect the coverage in the uplink, since the transmitter is the

UE. Consequently, the eNodeB providing the best downlink coverage is not necessarily

the one that offers the best uplink coverage. An additional problem is that more UEs

are connected to the macrocell, which leads to inefficient resource utilization. Thus, it is

preferable to handover more UEs towards the small cell eNodeB even when it does not
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provide the highest received signal strength. It is interesting to study the advantages of

downlink/uplink decoupling in terms of SINR improvement, transmit power reduction,

interference mitigation, and throughput improvement.

Another interesting issue for future investigations is studying the compromise between

spectral efficiency and energy efficiency maximization. Throughout this thesis, we no-

ticed that spectral efficiency and energy efficiency maximization cannot be achieved

simultaneously. For instance, the frequency reuse-3 model and FFR technique improve

the energy efficiency, while their spectral efficiency is reduced in comparison with the

frequency reuse-1 model. In addition, many state-of-the-art contributions focus on im-

proving system throughput and spectral efficiency without taking into account the energy

efficiency degradation. Controlling the tradeoff between spectral efficiency and energy

efficiency maximization is achieved by adjusting the radio resource allocation and the

power allocation strategies. Since the energy consumption becomes one of the major con-

cerns for mobile network operators, maximizing the spectrum usage should take power

considerations into account. This resource efficiency tradeoff could be addressed by

modifying the objective function of the optimization problem, in order to improve both

spectral efficiency and energy efficiency. The constraints of this optimization problem

have to verify that the minimum requirements for all the UEs are satisfied. For a given set

of frequency resources, the spectral efficiency is improved when the transmission power

is increased. However, the energy efficiency is reduced, since the power consumption

increases. Therefore, managing this tradeoff is a crucial need for future green cellular

networks.

We are also planning to investigate practical implementation of centralized schemes for

managing RAN functionalities in future 5G networks. With the spreading of cloud

computing technologies, more interest is given to the logically centralized management

of network functionalities in order to improve system performance. Although it achieves

a better performance, the implementation of a logically centralized approach may show

several drawbacks and limitations related to latency, processing time, and reliability. In

5G networks, the challenge consists in finding the optimal functionality split between

the access network and the core network. For instance, scheduling and interference

management functionalities can be delegated to the cloud, while delay sensitive and

radio transmission functionalities should be managed locally in the radio access points

e.g., the eNodeBs.
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