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The arrows represent the electrostatic forces at the end surfaces. Microprocessors Signicant enhancements in device fabrication and integration in the electronics industry have led to a rapid increase in the total power consumption in electronic circuits. Transistors which form the basic building blocks for microprocessors for example have been reduced to a few nm within four decades. This has allowed manufacturers to pack more of them onto a single die. One of the benecial aspects of this higher density packing is a reduction in signal propagation delays, permits higher clock-frequencies, and as such better performance. If we take microprocessors for example; today's processors are faster and cheaper than older ones by several orders of magnitude owing to the exponential growth in transistor density. The scaling has surpassed the growth predicted by Gordon Moore's empirical law stated in 1965 [START_REF] Moore | Cramming more components onto integrated circuits[END_REF]) which stated that processor transistor density would double every year.

However, in his paper, Moore also indicated that it would also be possible to cool integrated circuits eciently due to the relatively large surface area of integrated circuits, and the limited number of components that need to be driven. Dennard scaling justies this by indicating that to keep the electric eld constant in a reduced transistor, the voltage would have to be reduced as well thus reducing the power consumption [START_REF] Dennard | Design of ionimplanted mosfet's with very small physical dimensions[END_REF]). In fact, today this scaling has broken down, and we know that this is no longer true. In fact, voltage leakage which leads to heating is the most acute problem facing the advancement of current integrated circuit technology [START_REF] Mcmenamin | The end of dennard scaling[END_REF]). 50% of the energy consumed by a microprocessor is dissipated as heat due to its electrical resistance and/or current leakage. This leads to negative eects on the lifetime and performance of these microprocessors. In fact, the surface density power of microprocessors was approaching that of nuclear plants [START_REF] Taylor | Energy ecient circuit designand the future of power delivery[END_REF]) as seen in Figure 1.1. LEDs Another electronic device which is also prone to heating issues is LEDs. Lighting based LEDs has become an important issue of the current decade due to LEDs becoming a competitor to conventional lighting sources such as incandescent and uorescence based lighting. Today, the eciencies of LEDs exceed 50% [START_REF] Müllen | Organic light emitting devices: synthesis, properties and applications[END_REF], and all colors of the visible spectrum are available using dierent combinations of semiconductors. The lifetimes of LEDs (10 5 hrs) also compare favourably with incandescent sources (500h) and uorescent sources (5000 h). To achieve high quantum eciency in a LED, free carriers need to be spatially conned. The light extraction eciency has also proven to be a key factor in increasing the eciency of high power LEDs. The maximum thermal power that may be dissipated in a LED is determined by the maximum operating temperature and the thermal resistivity of the LED package. High-power LEDs thus require lower thermal resistivity packaging.

However, active cooling is not used in these LEDs as it would lead to lower power eciency. Rather passive-based cooling is prefered where heat is transported to the printed circuit board using metal heat sink slugs [START_REF] Müllen | Organic light emitting devices: synthesis, properties and applications[END_REF]). Lighting based LED therefore can suer from the negative eects of overheating, and it is necessary to reduce the thermal resistivity of the packaging [START_REF] Weng | Advanced thermal enhancement and management of {LED} packages[END_REF]). Most of the electrical energy consumed by a LED is transformed to heat; almost 70%, and if the temperature of a LED rises above the recommended threshold then its reliability and lifetime is considerably reduced [START_REF] Yuan | Thermal analysis of high power led array packaging with microchannel cooler[END_REF]).

Hence, heat management is an issue for LEDs as well; however, this issue of overheating in microelectronics can perhaps be turned into a positive outcome. In fact, if we note the omnipresence of electronics in daily life, it becomes apparent that improving the eciency and giving more thought into controlling the heat losses in these circuits is a crucial need. The reduction of heat damage to electronic components would lead to increased lifetime, less waste energy, and perhaps even the transformation of heat waste into electrical energy.

Current thermal management or thermal protection methods are macroscopic scale and package level. Heat sinks, fans, and other devices attempt to control the tem-Figure 1.2: schematic diagram of a microprocessor showing its main components, and the abundance of interfaces where heat is generated from [START_REF] Schelling | Managing heat for electronics[END_REF] perature of the nal system by coupling to the external environment. This limits the eectiveness to the eciency of the coupling between the environment and the integrated circuit. It thus requires the use of heat spreaders, heat pastes, and other metal contacts. However, the heat itself is generated at the nanoscale or at the interfaces between the various components. Hence, in order to better improve heat management of these integrated circuits, we must deal with the issue at the transistor level or at least understand the mechanisms behind heat transfer. Phonons which are the representations of lattice vibrations in solids are the conductors of sound and heat.

Low frequency vibrations, smaller than 10 11 Hz correspond to sound, while higher frequency ones manifest themselves as heat (Figure 1.3. Understanding and controlling phonons is the rst step in thermal management and impacting current technology in a way that was achieved by controlling charge and light transport.

Indeed, it is only when we are able to eectively utilize heat through phonons as an energy source, that one of the world's key questions: the dependence on fossil fuels, could also be resolved. In a paper presented to MRS bulletin [START_REF] Smalley | Future global energy prosperity: The terawatt challenge[END_REF]), a possible plan to utilize solar energy was envisioned by placing solar power plants in strategic locations around the Earth. However, as the author indicates, the current state-of-the-art technologies involving solar power do not permit a cost-eective generation of solar-electrical power to meet current energy demands. On the other hand, if we were able to develop solutions to control/stop electron-heat relaxation channels in semiconductors then production of more ecient solar cells can be achieved. In this case, the goal is to reduce the thermal conductivity rather than to increase it as in Figure 1.3: Phonon spectrum and its applications. Figure from [START_REF] Maldovan | Sound and heat revolutions in phononics[END_REF].

the previous cases. Nevertheless, in this aim we still must be able to understand and control the ow of heat in a semiconductor.

Static and transient thermal management

The emergence of the branch of phononics in recent years is the attempt to understand and utilize phonons, the carriers of heat energy in semiconductors, in a benecial way. One can classify two approaches to this task: the static and the dynamic.

The static approach has proven to be useful when it comes to the topic of thermoelectrics, for example. One strategy consists in introducing crystallographic defects, by adding impurities, alloying, or nano-structuring [START_REF] Iskandar | On the interplay between phonon-boundary scattering and phonon-point-defect scattering in sige thin lms[END_REF], [START_REF] Pernot | Precise control of thermal conductivity at the nanoscale through individual phononscattering barriers[END_REF], [START_REF] Dresselhaus | New directions for low-dimensional thermoelectric materials[END_REF]). The aim of introducing defects or alloying is to increase the scattering of phonons. The scattering rate will of course depend on the frequency of the phonon-mode, on the temperature, and other factors. These method are usually employed in thin lms of silicon, germanium, aluminium nitride, as well as other semiconductor thin lms. Other methods of heat management which involve phonon connement and localization which are phenomena that manifest themselves in nanostructures and superlattices [START_REF] Venkatasubramanian | Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures[END_REF], [START_REF] Kim | Thermal conductivity reduction and thermoelectric gure of merit increase by embedding nanoparticles in crystalline semiconductors[END_REF], [START_REF] Balandin | Eect of phonon connement on the thermoelectric gure of merit of quantum wells[END_REF]). Surprising values of the gure of merit ZT have been achieved using these techniques [START_REF] Suriano | Inuence of grain size on the thermoelectric properties of polycrystalline silicon nanowires[END_REF], [START_REF] Gunes | Eect of grain size and porosity on phonon scattering enhancement of ca 3 co 4 o 9[END_REF], [START_REF] Wu | Strong enhancement of phonon scattering through nanoscale grains in lead sulde thermoelectrics[END_REF]), and the topic remains an object of active research.

Although static tailoring of the thermal conductivity is of great interest, dynamic control of heat transport can oer interesting scientic and technological applications as well; it may even be unavoidable at times. For example, dynamic heat management can be well suited for systems which are required to adapt to their environment. For example, recent works on developing phonon analogues to the electric diode, transistor, memory, and logic gates [START_REF] Li | Colloquium : Phononics: Manipulating heat ow with electronic analogs and beyond[END_REF]) would allow for applications such as heat-based data storage [START_REF] Wang | Thermal logic gates: computation with phonons[END_REF]) or "smart" thermoelectric devices which could maximize their eciency by adjusting their thermal properties to the external temperature. Other examples involve devices which can change their thermal properties depending on a heat load. Component heating in electronic devices, at the end of the day, is dependant on the task load, and such heat loading is essentially of a transient nature. Hence, transient heat management lends itself naturally in this case. Some of the recent works which approached the idea of transient heat management include thermal rectication, which has been observed experimentally [START_REF] Kobayashi | A trial thermal rectier[END_REF], [START_REF] Chang | Solid-state thermal rectier[END_REF]). However, rectication coecients remain very small for potential integration in applications. [START_REF] Van Zwol | Fast nanoscale heat-ux modulation with phase-change materials[END_REF] have showed electrically controlled fast nanoscale heat-ux modulation with phase-change materials. They obtained a signicant contrast of heat ux due to the interplay between radiation heat transfer at the nanoscale and phase-change materials. [START_REF] Ihlefeld | Room-temperature voltage tunable phonon thermal conductivity via recongurable interfaces in ferroelectric thin lms[END_REF] have experimentally demonstrated for the rst time, active and fully reversible control thermal transport in a solid-state device using ferroelectric thin lms. Strain has also been used to modify the thermal conductivity dynamically. In a recent study [START_REF] Li | Straincontrolled thermal conductivity in ferroic twinned lms[END_REF] have showed that large reversible changes to thermal conductivity on the order of 70% could be achieved using 2% strain due to the change in the density of twin-boundaries in thin lms. The increase in twin-boundary density has been shown

to vary concurrently with the thermal conductivity. [START_REF] Kulkarni | Tunable thermal response of zno nanowires[END_REF] have also shown that thermal conductivity can be modied in ZnO nanowires using strain.

Under high strain values, above the elastic limit, the phase-change from wurtzite to hexagonal structure induces a change in the thermal conductivity by a factor of almost two. Such eects could be exploited in the development of non-mechanical thermal modulators. Other studies have also shown that strain can be eective in aecting the thermal transport in nanostructures (Li et al. (2010a)) and bulk crystals [START_REF] Parrish | Origins of thermal conductivity changes in strained crystals[END_REF]). Our motivation for this work is to try and see whether it is possible to modify the thermal conductivity of a piezoelectric material using an electric eld through strain. Other models for thermal switches come from recent works into the eect of strain on thermal conductivity. These works show the possibility of modifying thermal conductivity by mechanical strain. One of the rst work which showed the piezo-thermal conductivity in semiconductors was reported by [START_REF] Keyes | Piezo-thermal conductivity eect in germanium[END_REF]. For low temperatures it was reported antimony-doped Ge crystals showed a large increase in their thermal conductivity when <111> or <110> tensile strain is applied. The theory of scattering of phonons by donors predicted the magnitude and eect of applying strain which modied the electrons bands of the antimony donors in the crystal. More recently, [START_REF] Alam | Inuence of strain on thermal conductivity of silicon nitride thin lms[END_REF] used free-standing amorphous silicon nitride thin lms to this end. The authors used lms which were 50 nm thick, and the whole device (actuator and sample are a few hundred micrometers large as seen in Figure 1.5. By coupling the lm to a MEMS actuator they were able to apply large tensile strains to the lms, up to 2.4%. They observed in their experiments that the thermal conductivity decreases with tensile strain, and that the decrease can be up to a factor of almost 8. The authors attributed this decrease to the strong localization of phonon modes in amorphous structures which is not present in crystalline solids. The trend reported in this study diers markedly from experimental measurements performed by [START_REF] Ftouni | Transport thermique dans des membranes très minces de SiN amorphe[END_REF], who studied thermal transport in SiN x membranes by coupling the 3ω method to the Völklein geometry and observed that residual stress has no eect neither on the specic heat nor on thermal conductivity.

In a more recent paper [START_REF] Alam | Mechanical strain dependence of thermal transport in amorphous silicon thin lms[END_REF] have also shown that the thermal conductivity of 200nm amorphous SiN x can be increased upon mechanical loading up to 2.5%. This contrasting result to the previous experiment was explained by the authors through possible changes in microstructure and/or carrier density. In all cases, we can see that the topic of aecting thermal conductivity using mechanical strain exhibits signicant variability and promise. This opens up large possibilities for study and experimentation to build a device such as the thermal switch. As a theoretical "ideal" component our thermal switch is a device that should have dynamic thermal conductivity. When the switch is in the "on" state the heat ow is nominal; the component is a good conductor of heat. In the "o" state the component has a low thermal conductivity, and acts as an insulator. The switch can be triggered by applying strain to the crystal. In the case of a piezoelectric material this strain can be applied using an external electric eld. It would also need to have a fast dynamic time and an high on/o ratio to be ecient. Possible candidates for this application are zinc oxide and aluminium nitride because they exhibit high thermal conductivities and high piezoelectric coecients.

Physical background behind solid-state switches

We will now review the necessary physical concepts behind solid-state switches such as lattice vibrations, phonons, thermal conductivity, elastic behaviour of solids, and piezoelectric phenomenon. We will begin by a brief review of the model of thermal conductivity in solids. Since ZnO and AlN are binary compounds and their unit cells contain four atoms, we will use a 1D linear chain in the harmonic lattice approximation.

This will help present the phonon-mode properties of wurtzite crystals along the c-axis which may be considered as a linear chain. Next, we introduce the notions of stress and strain, the elastic behaviour in solids. It is also important to elucidate the connection between strain and thermal conductivity. We will also present the phenomenon of piezoelectricity. Finally, we will also discuss some of the general properties of ZnO and AlN, and explain why they are the best candidate materials.

Lattice vibrations

The topic of lattice vibrations whether addressed with a classical or quantum treatment is the rst chapter in any book on solid-state physics. For the following discussion we will use the former treatment adapted from [START_REF] Srivastava | The physics of phonons[END_REF].

Figure 1.6: A two-atomic linear chain with lattice constant 2a and masses m and M (m < M) at the equilibrium position from [START_REF] Srivastava | The physics of phonons[END_REF] In most solid materials (crystalline), atoms or molecules are arranged in a regular array of sites, or points in a three-dimensional space, which is known as the crystal lattice. A crystal structure describes a highly ordered structure, occurring due to the intrinsic nature of molecules to form symmetric patterns. At any nite temperature, atoms vibrate about their equilibrium positions. Under the classical approximations, those atom motions can be mathematically described by the Newton's second law if the force applied on each atom and the atomic mass are known.

If we take the linear atomic chain shown in Fig. 1.6, and we assume only nearestneighbour interactions, we can write the equations of motion for the 2n and 2n+1 atoms equations 1.1 and 1.2

m d 2 u 2n dt 2 = Λ (u 2n+1 + u 2n-1 -2u 2n ) (1.1) M d 2 u 2n+1 dt 2 = Λ (u 2n+2 + u 2n -2u 2n+1 ) (1.2)
Λ is the 2nd order force constant derived from the interaction potential equation 1.3

Φ(u) = Φ 0 + 1 2! nk u n u k ∂ 2 Φ ∂u n ∂u k Λ nk + 1 3! nkl u n u k u l ∂ 3 Φ ∂u n ∂u k ∂u l + • • • (1.3)
If try solutions 1.4 and 1.5

u 2n = A 1 exp i(2nqa -ωt) (1.4) u 2n+1 = A 2 expi((2n + 1)qa -ωt) (1.5)
Then equations 1.1 and 1.1 are transformed into the coupled eigenvalue equations equations 1.6 and 1.7

-ω 2 mA 1 = Λ A 2 e iqa + A 2 e -iqa -2A 1 (1.6) -ω 2 mA 2 = Λ A 1 e iqa + A 1 e -iqa -2A 2 (1.7)
This leads to the matrix equation

ω 2 A i = 2 j=1 D ij A i i = 1, 2 (1.8)
where D ij is the dynamical matrix which contains the elastic coecient Λ and the masses m, M given by

D = 2Λ/m -(2Λ/m)cosqa -(2Λ/M )cosqa 2Λ/M (1.9)
This leads to the secular equation 1.10

D ij -ω 2 δ ij = 0 (1.10)
Solving equation 1.10 gives the dispersion relation relating the frequency ω to the wavevector q of the phonon mode equation 1.11. directions. Therefore, if the two atoms have opposite charges, these modes would be excited by an electric eld of the appropriate frequency. The frequencies of said electric elds correspond to the infrared part of the light spectrum. Hence, the name optical branch. The acoustic branch, on the other hand, corresponds to the in-phase motions of the atoms. This is characteristic of a sound wave. Close the Γ point qa << 1 the dispersion relation described by Eq. 1.11 can be simplied by considering the relationships sinx ≈ x and

ω 2 = Λ 1 m + 1 M ± Λ 1 m + 1 M 2 - 4 mM sin 2 qa 1/2 ( 
√ 1 -x = 1 -1 2 x when x << 1 to give equation 1.12 ω 2 ≈ Λ 2(m + M ) q 2 a 2
(1.12) Equation 1.12 provides a linear dependence of frequency on q for the acoustic branch which means a constant group velocity for the acoustical phonons which is known as the sound velocity in materials. These long wavelength modes are also called elastic waves, and can be studied through the application of the wave equation. Such a treatment would see the solid as a continuum rather than a discrete set of particles.

For a one-dimensional linear diatomic chain we see that we have two branches. For the case of a three-dimensional chain, the number of branches will be 6 or D × N where D is the dimensionality and N is the number of atoms in the unit cell (primitive or otherwise). Among the DN branches, D branches will be acoustical branches and DN -D will be optical. Acoustical branches contribute more to heat conduction because of their higher group velocity, as we shall see in the next section. However, optical modes also play a major roles in phonon-phonon scattering indirectly.

Typical thermal conductivities of semiconductors

The application of a temperature gradient ∆T across a solid results in the excitation of elementary particles such as free electrons, holes, and phonons which acquire more energy than the average or zero-point energy, and transfer heat from the hotter to the colder part of the specimen [START_REF] Srivastava | The physics of phonons[END_REF], p.122. In the quantum picture of the coupled harmonic oscillators, which we will not discuss, the energy levels are

quantized E n = 1 2 + n ω where n = 0, ±1, ±2, • • • , ± N 2 ,
where N is the number of atoms. 1

2 ω is the zero point energy if a quantum harmonic oscillator. In addition, the Hamiltonian can be diagonalized and has the form seen in equation 1.13

H = q 3 s=1 ω q,s b † q,s b q,s + 1/2 (1.13)
Where it can be shown that b † q,s , b q,s respectively create and destroy one excitation of energy ω. These excitations are phonons. From this viewpoint, phonons can are regarded as quasi-particles which obey Bose-Einstein statistics, and the Boltzmann equation approach can be applied to them in order to study thermal transport in solids. The general form for the Boltzmann equation for phonons in the steady state of heat-ow is given in equation 1.14

-c s • ∇T ∂n qs ∂T + ∂n qs ∂t scatt = 0 (1.14)
Where n qs is the distribution function n qs (r, t) which measures the occupation number of phonons in mode (qs), where s is the polarization, in the neighborhood of r at time t. T is the temperature, and c s (q) is the group velocity of mode qs.

In the absence of a temperature gradient n qs is given by the Bose-Einstein distribution Eq.1.15

nqs := n(ω, T ) = 1 exp ω(qs) kT -1 (1.15)
In the presence of a temperature gradient the phonon distribution is spatially nonhomogeneous which leads to a rate of change of the distribution function, as described by equation 1.14, due to two mechanisms: diusion and scattering; which in the case of steady state must cancel out. Generally, equation 1.14 cannot be solved because it is very complicated as it requires knowledge of the distribution function n qs for all possible states qs as well as the transition rates from state qs to q s [START_REF] Srivastava | The physics of phonons[END_REF].

Therefore, equation 1.14 is simplied using the relaxation time approximation Eq.1.16

∂n qs ∂t = - n qs -nqs τ qs (1.16)
Where τ qs represents the relaxation time associated with phonon qs decaying to the average BE distribution. The combination of equation 1.16 with assumption of spatial homogeneity (small temperature gradient) leads to the linearized Boltzmann equation Eq. 1.17

-c s (q) • ∇T ∂ n qs ∂T = n qs -nqs τ qs (1.17)
What is important to us is the relaxation time τ qs which is associated with dierent scattering mechanisms of phonon-scattering such as: mass defect scattering, boundary scattering, dislocation scattering, phonon-electron scattering, and phonon-phonon scattering to name some of the more dominant ones. The scattering rates are dependent on the phonon-mode qs and on temperature. In the next section we will discuss some of them, and see how they aect thermal conductivity; paying some attention to strain scattering.

Lattice thermal conductivity For a solid subjected to a temperature gradient, Fourier's law describes the rate of energy ow per unit area normal to the temperature gradient (macroscopic expression) Eq.1.18: q = -κ∇T (1.18) where κ is the thermal conductivity. The expression for the heat current in a solid is obtained by adding the contribution of all phonons:

q = 1 N 0 Σ qs ω(qs)n qs c s (q) (1.19)
Naturally, the thermal conductivity well then depend on the solution of the Boltzmann equation which in turn depends on the expression for the relaxation time. There are several dierent levels of sophistication to describing phonon relaxation processes through the associated relaxation time. The simplest of which is the single-mode relaxation time approximation (smrt ) which assumes that one calculates the relaxation rate of phonons in mode qs under the assumption that all other phonon modes have their equilibrium distribution. What is also important is that the inverse of the total smrt τ qs can be expressed as a sum of contributions from all the dierent scattering mechanisms [START_REF] Srivastava | The physics of phonons[END_REF]):

τ -1 qs = τ -1 qs (bs) + τ -1 qs (md) + τ -1 qs (pp) (1.20)
where bs, md, pp stand for boundary scattering, mass-defect, and phonon-phonon, respectively.

Along with the smrt approximation there are other approximations to simplifying the expression for the thermal conductivity which lead/correspond to dierent models such as the Klemens model [START_REF] Klemens | The thermal conductivity of dielectric solids at low temperatures (theoretical)[END_REF]), the Callawy model [START_REF] Callaway | Model for lattice thermal conductivity at low temperatures[END_REF], [START_REF] Holland | Analysis of lattice thermal conductivity[END_REF]), and the Srivastava model (Srivastava (1990), p.134). Avoiding any extended comparison or detailed explanation of these models, they can, eventually, all be expressed in the form of the kinetic theory expression (Eq. 1.21)

κ = 1 3 C V v2 τ (1.21)
Where C V is the phonon specic heat dened as C V = C/V where C is the heatcapacity of the solid (at high temperatures it is equal to 3N k B ). v and τ are average phonon speed and average phonon relaxation time which depend on the particular model.

A graph showing the variation of the thermal conductivity of some typical metals and nonmetals is shown in Figure 1.8.

At low temperatures (well below θ D ) the thermal conductivity of nonmetals such as Si and quartz follows a T 3 . This is related to the heat capacity of the solid which from the Debye model changes as T 3 . More so at low temperatures it can be veried within the smrt model that longitudinal phonons contribute only about 10-25% of the total thermal conductivity of semiconductors and insulators while most of the heat is carried by the transverse phonon modes (Srivastava (1990), p.235). At high temperatures anharmonic scattering is the predominant scattering mechanism, and the thermal conductivity will usually follows a T -1 behaviour due to that. However, stronger than a T -1 has been observed experimentally. The stronger dependence can be satisfactorily explained by including the eect of thermal expansion which makes the elastic constants and as such the Gruneisen coecients temperature dependent (Srivastava (1990), p.239). This is a rst insight into the eect of strain on thermal conductivity. Acousto-optical scattering also plays a big part at high temperatures.

For temperatures in-between it is the predominance of defects limiting the mean-free path of phonons.

The eect of strain on thermal conductivity of non-metals One relevant scattering mechanism that we would like to discuss briey is strain scattering of phonons.

The relaxation time associated with elastic strain eld scattering of phonons has been studied by [START_REF] Carruthers | Scattering of phonons by elastic strain elds and the thermal resistance of dislocations[END_REF] using second-order perturbation theory. It was found by the author that the Fourier component of the strain eld plays a similar role to that of the potential. This is not unexpected as phonons can be regarded as lattice vibrations or localized strains. The application of the theory to edge dislocations at low temperature shows that the scattering rate is proportional to the density of dislocations σ and to the wavevector magnitude q. Carruthers (1959) also determined a Boltzmannlike equation for the change in the phonon distribution n qs due to the interaction of phonons with the strain eld. The results for such a procedure are valid for simple crystals with 1 atom per unit cell or for complex crystals at low temperatures.

Piezoelectric crystals

In three dimensions there are 219 space groups, and 32 point groups. A crystal will belong to one of these space groups, and to its corresponding point group. The symmetry of the point group will determine the minimum symmetry of the material properties of the crystal such as its elastic constants, its thermal conductivity, or its dielectric constant. For example, for cubic crystals, face-centered, body centered, or simple, 

P i = d ijk σ jk (1.22) τ ij = d ijk E k
Some typical values of d ijk are shown in g 1.9. 

  P 1 P 2 P 3   =   0 0 0 0 d 15 0 0 0 0 d 15 0 0 d 31 d 31 d 33 0 0 0           τ 1 τ 2 τ 3 τ 4 τ 5 τ 6         (1.23)
ZnO has the largest piezoelectric coecient d 33 of all binary semiconductors. Therefore, it will exhibit the largest strain for a set electric eld value. Typical dielectric breakdown elds for most materials are around 1-10 MV/m; that translates to 0.1-10

MPa stress or 0.001-0.01% strain for ZnO and AlN.

Organization of the thesis

In chapter 2 we will introduce the numerical methods used to study the eect of strain on thermal conductivity. This mainly includes non-equilibrium and equilibrium molecular dynamics simulations (NEMD and EMD). We will introduce the inter-atomic potentials used for the simulation of dierent materials.

In chapter 3 we show the results concerning the eect of uniaxial strain on the thermal conductivity of bulk ZnO and AlN crystals. We apply mechanical strain ranging between -6% and 6%. We demonstrate that the dependence of thermal conductivity on strain follows a power law. We also study the size eect on the calculation of the thermal conductivity using NEMD for ZnO and AlN, and show that it is independent from the value of the strain applied. We also show evidence of the modication of the thermal conductivity of ZnO using an external electric eld. For AlN we show that the thermal conductivity is not aected by compressive or tensile strain for the values proposed.

In chapter 4 we study the eect of local non-uniform strain on the thermal conductance of superlattices of Si/Ge, SiO 2 /C, and ZnO/C. We use non-equilibrium molecular dynamics to show that in Si/Ge superlattices local in-plane and cross-plane strain at the interfaces leads to the same drop of thermal conductance. The eect of an external electric eld on the thermal conductances of SiO 2 /C and ZnO/C superlattices is studied using EMD and NEMD. We show that it is only for the case of SiO 2 /C superlattices that a local strain can be applied, and that such strain leads to reduction of the thermal conductance. For ZnOC superlattices, on the other had, no modication of the conductance is seen. The results for SiO 2 /C show promise for applications in piezothermal devices. The computational costs of MD vary depending on the size of the system, and the complexity of the inter-atomic potential. Typically, systems from a few hundred up a few million atoms are possible to simulate using MD, and potentials can include two-body, three-body, and other eects.

In the following, we will discuss the requirements to building a MD simulation, its limitations and relevant quantities that can be obtained by applying statistical anal-ysis. This development will serve as a background to the later derivations of thermal conductivities and piezoelectric coecients in chapters three and four.

Physical principles of Molecular Dynamics 2.2.1 Equations of Motion

As shown in Eqs. 2.1, MD simulations begin by the time integration of Newton's equations of motion for each atom which are considered as a classical point masses.

The forces between the atoms are set by the derivatives of the interaction potential. After initialization the positions and momenta of the atoms are allowed to evolve according to the classical equations of motion. For N atoms we have 6N equations.

Without other constraints the equations will represent a single phase trajectory of the system in microcanonical ensemble. The number of atoms, volume, and energy are conserved (NVE). The canonical ensemble (NVT) can be simulated by the addition of a Nosé-Hover thermostat [START_REF] Hoover | Canonical dynamics: Equilibrium phase-space distributions[END_REF]. This is done by the addition of an extra equation to the set of 6N equations. MD simulations, in general, are deterministic and time-reversible. where, taking Φ(r ij ) as the interatomic potential function

m 1 d 2 r 1 dt 2 = F 1 m 2 d 2 r 2 dt 2 = F 2 . . . (2.1) m N d 2 r N dt 2 = F N
F(i) = j =i F ij = - j =i ∂Φ(r ij ) ∂r ij (2.2)
Here m i is the mass of atom i, r i refer to the position of atom i. F i is the force on atom i due to all its neighbours. The derivatives are calculated analytically from the interaction pseudopotential Φ. Examples of which are reported in Table 2.1.

Solving the equation of motion

Two initial conditions are required for each atomic trajectory to be calculated -as indicated by the second time-derivative term in the motion equation-, therefore initial positions and velocities for each atom should be set in the rst place. When crystals are to be computed, the positions are set by the crystal lattice. Unfortunately, the length scales involved in MD are on the order or a few hundreds of nanometers. Hence, structures such as polycrystalline solids or thick interfaces cannot be fully resolved due to computational limitations. Nano-structures, on the other hand, are perfectly suited for MD. Velocities can be randomly drawn according to a Maxwellian distribution including the desired temperature, but a white noise distribution might also be relevant as its relaxation to the Maxwellian distribution is reached within fewer atomic periods.

Then a numerical scheme allows for calculating the atomic trajectories, the simplest numerical scheme being:

p(i, t + ∆t) = p(i, t) + F(i, t)∆t r(i, t + ∆t) = r(i, t) + p(i, t + ∆t)∆t/m i Potential Name Functional form Φ(r ij ) Relevant materials Buckingham A exp (-r/ρ) -C r 6
SiO, ZnO, MgO (oxides, ionic compounds) Here ∆t is the timestep, p(i) is the momentum of atom i. F(i) is the force on atom i due to all its neighbours. Note that the large toolbox of numerical techniques for integrating dierential equations is currently used in the standard online codes typically including high-order Runge-Kutta and Verlet algorithms. The timestep is chosen such that 1/∆t is larger than the maximum vibrational frequency in the system. For ZnO, this frequency lies around 18 THz and around 20 THz for Si, which corresponds to a period of 55 fs. Hence, a timestep of 1 fs would ensure a reasonable resolution of all atomic vibrations and conservation of the total energy with uctuations on the order of 0.001%.

Lennard-Jones A/r 12 -B/r 6 Argon, graphene Morse D (1 -exp (-a(r -r 0 ))) 2 -1 ZnO, NaH (diatomic molecules) Coulombic -q i q j /r ionic compounds
The initial state of the system should not have an inuence on the measurement of macroscopic quantities that is to be made, which is the case once the chosen initial coordinates describe the chosen statistical ensemble and are averaged either over a sucient duration or over a large enough number of trajectories.

Once the initial state is set and the system is allowed to evolve, thermal equilibrium has to be reached. Due to their dierent orders, dierent macroscopic quantities, such as temperature, pressure, heat ux, strain..., relax to their equilibrium values on dierent timescales. While temperatures are converging as quickly as one atomic period at equilibrium, several nanoseconds might be required for the heat uxes to reach the relevant regime.

As the rms uctuation amplitude of temperature is reversely proportional to the square root of the number of samples, averaging over more timesteps might also be needed for small systems. Thermal equilibrium can nally be conrmed by the convergence of the temperature integrated over time or by checking that the distribution of the velocities is Maxwellian-like.

Forces

The inter-atomic forces are perhaps the most challenging aspect of a MD simulation.

They are set using available models from the literature and have to be chosen according to the quantities to be estimated. The features of the force eld are especially crucial to describe the thermal conductivity. The Boltzmann description of this latter quantity is in an integral over the phonon modes:

κ L = 1 3 ω q v 2 g τ q ∂N 0 q ∂T D(q)dq (2.3)
where the density of states D(q) and the frequencies versus wave-vectors appear and are specic to a given solid crystal, depending on the crystal lattice and the interatomic potential. The selected potential will have to provide the accurate phonon dispersion curves and density of states. 

Φ ij = q i q j r ij + A ij e -rij /ρij - C ij r 6 ij (2.4)
The rst term describes point-charge interaction. This is usually the most computationally demanding portion of the potential since it is slow to converge, and will only do so under certain conditions. Ewald summation [START_REF] Ewald | Die berechnung optischer und elektrostatischer gitterpotentiale[END_REF]) is usually employed to handle the long range nature of this coulombic interaction. The problem with coulombic interactions which have a r -1 form is that they are unbounded; therefore, they require special computational techniques. However, less computationally methods such as the cell-multipole [START_REF] Ding | Atomic level simulations on a million particles: The cell multipole method for coulomb and london nonbond interactions[END_REF]) and Wolf method (Wolf et al.

(1999)) also exist, and have been shown to reproduce the general dynamics and energies of Ewald summed systems [START_REF] Fennell | Is the ewald summation still necessary? pairwise alternatives to the accepted standard for long-range electrostatics[END_REF]). The value q i will be close to that of the formal charge of the atom i. The latter of which should be used to determine the required cut-o value for the potential. In van Beest's et al original paper these two parameters for the ij species were obtained by tting the potential to ab initio data.

Finally, the last term is the well-known London dispersive term, and was originally tted using bulk rather than ab initio data. However, the term also has a well-established physical meaning J. (1994) and maybe calculated using the Slater-Kirkwood formula [START_REF] Slater | The van der waals forces in gases[END_REF] as was done for the case of ZnO.

Although this potential has a relatively simple form, for example, it does not contain any three-body terms, it has supplied, rather successfully, several important features of silica such as the the transition temperature of quartz, the unit cell parameters, Species comes to fundamental quantities such as the vibrational density of states. Therefore, extensions to the potential and even modications are providing better accuracy. For example, one may extend the potential by a shell model which aims at modeling the polarizability of an atom using an additional degree of freedom represented by a massless particle harmonically coupled to the ionic core [START_REF] Herzbach | Comparison of model potentials for molecular-dynamics simulations of silica[END_REF]. 

A (eV) ρ (Å) C (eV.Å -6 ) O 2--O 2 

Validation of inter-atomic model for ZnO

The wurtzite zinc oxide crystal belongs to the P63mc space group -hexagonal lattice.

J. (1994) provided an empirical t of the BKS potential for the case of ZnO using the lattice energy, cell parameters, and elastic constants for several structures. This t done under a shell model, but the results should be equally valid for the point ion model. In fact, the Binks parametrization of the BKS potential both using the shell and core-only versions have been used in several MD simulations of ZnO; more specically to study the piezoelectric properties of ZnO [START_REF] Momeni | Finite size eect on the piezoelectric properties of zno nanobelts: A molecular dynamics approach[END_REF], [START_REF] Kulkarni | Surface-eects-dominated thermal and mechanical responses of zinc oxide nanobelts[END_REF], [START_REF] Dai | Piezoelectric constants for zno calculated using classical polarizable coreshell potentials[END_REF]. The Binks coecients for ZnO are given in Table 2.2

We rst calculate the density of states for a perfect ZnO crystal using the velocity autocorrelation function. The initial cell parameters are a=3.265, c=5.155, and u=0.3882. We start with 15 unit cells in each direction, apply periodic boundary conditions and relax the system in an NPT ensemble for 10000 timesteps (timestep 1éfs). After which we obtain the vibrational density of states by taking the Fourier transform of the velocity autocorrelation. We compare our results with ab initio data from [START_REF] Serrano | Pressure dependence of the lattice dynamics of zno: An ab initio approach[END_REF]. We use here the GULP code [START_REF] Gale | The general utility lattice program (gulp)[END_REF] to calculate the phonon density of states and dispersion curves. We also present the dispersion curves along several symmetry directions and compare them to ab initio data also obtained from [START_REF] Serrano | Pressure dependence of the lattice dynamics of zno: An ab initio approach[END_REF]. The data was calculated using the code GULP for the same potential (core-only) and cell parameters used in the MD runs. Ewald summation was used in both the lattice dynamics and molecular dynamics simulations to calculate the long-range forces.

We note in both instances the large dierences between ab initio calculated phonon states and those calculated using the BKS potential. Nevertheless, the BKS potential is actually able to reproduce many of the bulk properties of ZnO such as the elastic, piezoelectric, and the static dielectric constants. The elastic constants are usually used as tting parameters and as such it is no surprise that the potential reproduces them as seen in Table 2 

Φ(r ij ) = A[(1 -e -C(rij -ρ) ) 2 -1] (2.6)
For O-O interactions The potential parameters are given in Table 2.4

For further details on the derivation of the potential one should consult [START_REF] Wang | New ab initio based pair potential for accurate simulation of phase transitions in zno[END_REF]. Here we just present the phonon dispersion relations and density of states using this potential (Fig. 2.2b). We can see the substantial improvement in the agreement between the LD and ab initio data when using this potential. Hence, it will be the potential used for the simulation of ZnO. Hence, we had to modify the code to include this potential which is given in

Vashishta potential for AlN

Φ = i<j Φ (2) ij (r ij ) + i,j<k Φ (3) jik (r ij , r ik ) (2.7) Where Φ (2) ij (r ij ) = H ij r ηij ij + Z i Z j r ij e -r/λij - D ij r 4 e -r/ξij - W ij r 6 ij (2.8) Φ (3) jik (r ij , r ik ) = B jik exp γ r ij -r 0 + γ r ik -r 0 cosθ jik -cos θjik 2 1 + C jik cosθ jik -cos θjik 2 (2.9)
Where Φ (2011) To also verify the correctness of the integration of the potential into LAMMPS we have calculated the vibrational density of states using molecular dynamics by using the velocity autocorrelation function. We have compared our calculation to that found in [START_REF] Vashishta | Interaction potential for aluminum nitride: A molecular dynamics study of mechanical and thermal properties of crystalline and amorphous aluminum nitride[END_REF]. The good agreement between the two graphs in 

Thermal and mechanical macroscopic quantities

Macroscopic quantities can be derived from the microscopic trajectories as reported in Table 2.5. The denition of temperature intrinsically relies on the assumption of equilibrium or local equilibrium so that the canonical average of the kinetic energy can be set equal to its microcanonical average. This equality yields to the temperature as a function of atomic velocities and masses.

The expression of the pressure also involves local equilibrium as it includes the thermal contribution and is set by the Virial theorem. This latter theorem indeed relates the average kinetic and potential energies to temperature [START_REF] Greiner | Thermodynamics and Statistical Mechanics[END_REF].

The heat ux expression is directly derived from the steady state heat conduction equation when replacing the heat ux by its microcanonical expression [START_REF] Volz | Thermal nanosystems and nanomaterials[END_REF].These standard formulas are implemented in the code used [START_REF] Plimpton | Fast parallel algorithms for short-range molecular dynamics[END_REF] 

Thermal Conductivity from Equilibrium Molecular Dynamics Simulation

Equilibrium molecular dynamics simulations -which consists in constraint free trajectory computations-allows us to implement the uctuation-dissipation theorem from linear response theory which relies in the connection between the energy dissipation in irreversible processes and the thermal uctuations in equilibrium [START_REF] Kubo | Statistical Physics II[END_REF].

As reported above, the net ow of heat in a solid, given by the heat current vector J , uctuates around zero at equilibrium. In the Green-Kubo (GK) method, thermal Quantity Formula Temperature

m i v 2 i 3N k Pressure N k B T V + 1 3V N -1 i N j>i r ij • F ij Heat ux J = 1 V i<j (f ij • v j ) r ij
Table 2.5: Formulas for thermal and mechanical quantities calculated during a MD simulation. k refers to the Boltzmann constant and N to the number of kinetic degrees of freedom.

conductivity is related to the intergal of the autocorrelation of those uctuations. In the case of an isotropic material, the conductivity is dened by [START_REF] Kubo | Statistical Physics II[END_REF] κ

= 1 k B V T 2 ∞ 0 J x (t)J x (0) = 1 3k B V T 2 ∞ 0 J(t) • J(0) (2.10)
where V represents the volume of the simulation cell, t is the time, J x (t)J x (0) and J(t) • J(0) are the heat current autocorrelation functions (HCACF) in the x direction and all directions, respectively. In crystals where the uctuations have long life-times (and long phonon mean free paths), the HCACF decays slowly. The thermal conductivity being related to the integral of the HCACF is accordingly large. In materials such as amorphous solids, where the mean free path of phonons is small, thermal uctuations are quickly damped, leading to a small integral of the HCACF and a low thermal conductivity [START_REF] Mcgaughey | Thermal conductivity decomposition and analysis using molecular dynamics simulations. part i. lennard-jones argon[END_REF].

In real computational procedures, instead of integrating up to innity in Eq. 2.10, the upper limit is a nite but long enough time period that captures the correct statistics.

The continuous integral is also replaced by a discrete summation. To remove the arbitrariness on the choice of the upper limit, dierent methods have been proposed in the literatures [START_REF] Volz | Transient fourier-law deviation by molecular dynamics in solid argon[END_REF]; [START_REF] Che | Thermal conductivity of diamond and related materials from molecular dynamics simulations[END_REF]; [START_REF] Mcgaughey | Thermal conductivity decomposition and analysis using molecular dynamics simulations. part i. lennard-jones argon[END_REF]; [START_REF] Li | Atomistic modeling of nite-temperature properties of crystalline b-sic ii. thermal conductivity and eects of point defects[END_REF]. According to the Cattaneo-Vernotte's relation Vernotte 

J(t) • J(0) = J(0) • J(0) exp(-t/τ )
J(t) • J(0) 3 = A sh exp(-t/τ sh ) + A lg exp(-t/τ lg ) (2.13)
where the subscripts sh, and lg refer to short range and long range, respectively. Fig.

2.5 shows an example of HCACF obtained from solid Ar at 10 K and the corresponding tting curves with Eq.2.11, 2.12 and 2.13.

Thermal Conductivity from Non-equilibrium Molecular Dynamics Simulation

Non-equilibrium molecular dynamics, also known as the direct method, extracts the thermal conductivity from the Fourier's law. In this method, a one-dimensional temperature gradient is imposed on a simulation cell by allowing thermal power exchange between the heat source and sink while measuring the resulting heat ux. The thermal conductivity is then obtained as the ratio of the heat ux to the temperature gradient.

An alternative, but equivalent way consists in inducing a heat ux and to measure the resulting temperature gradient. In both cases the system is rst allowed to reach a steady state, after which long simulations are conducted allowing to obtain correct statistical measurements. The NEMD method is often the method of choice for studies of nanomaterials while for bulk thermal conductivity, particularly highly conductive materials, the equilibrium method is typically preferred due to less severe size eects [START_REF] Termentzidis | Molecular Dynamics Simulations and Thermal Transport at the Nano-Scale[END_REF]. In NEMD simulations, nite-size eects arise when the length of the simulation cell L is not signicantly longer than the phonon mean free path. This is understood to be a result of scattering that occurs at the interfaces with the heat source and sink.

As a result, the phonon mean free path is limited by the system size. To eliminate the size eect, Schelling et al [START_REF] Schelling | Comparison of atomiclevel simulation methods for computing thermal conductivity[END_REF] proposed a method based on the Matthiessen's rule to determine the eective mean free path Λ ef f when L ∼ Λ ∞ , where Λ ∞ is the mean free path for an innite system. The eective mean free path is obtained by the following relation:

1 Λ ef f = 1 Λ ∞ + 4 L (2.14)
Here, the factor of 4 accounts for the fact that as phonons travel along the length of the simulation cell from the source to the sink, its average distance since the last scattering event should be L/4. In kinetic theory, the thermal conductivity is given as κ = 1 3 C v vΛ, where C v and v are the specic heat and the phonon group velocity.

Combing with Eq. 2.14, the eective thermal conductivity is obtained:

1 κ ef f = 1 κ ∞ + 12 C v v 1 L (2.15)
Chapter 2 -Molecular Dynamics Eq. 2.15 suggests that a plot of 1/κ vs 1/L should be linear, and that the thermal conductivity of an innite system can be obtained by extrapolating to 1/L = 0. Fig.

2.6

shows the examples of using Eq. 2.15 to extract the thermal conductivity with innite sizes for Si and diamond. Good linear ts are found in these cases imply the successful application of Eq. 2.15.

Physical limitations and conclusions

Molecular Dynamics has been widely used to predict various properties in bulk and nanomaterials. It has been regarded as a successful tool to assist the experimental designs and understand the mechanisms at the atomic scales. Despite its applications, it also suers from several important and fundamental challenges.

Limitations of MD modeling are related rst to the absence of electron kinetic. Electronic properties of materials cannot be simulated and the free electron contribution to thermal conductivity is therefore not accounted for. For semiconductors such as AlN and ZnO this is not an issue as the main contribution to heat conduction is provided by atomic vibrations.

The second limitation holds in the fact that simulations involve only classical solids.

MD simulations are therefore supposed to be valid for solids above the Debye temperature θ D . The average phonon mode occupation number is proportional to temperature according to n (ω q ) = kT / ω; and the heat capacity follows Dulong-Petit law. Note that this limitation does however not exclude phonon connement and rarefaction eects. On a general basis, a less restrictive criteria than the Debye temperature is applied and MD is usually assumed to be relevant to tempreatures down to one third of the Debye temperature. This criteria in fact applies in the cases where low frequencies mainly drive the behaviours of macroscopic quantities.

In the next chapters, the behaviour of the simulated materials will be mainly governed by atomic vibrations rather than by electron motions and the simulation temperatures will remain larger than room temperature so that deviations to the Bose-Einstein distribution will be considered as negligible.

Chapter 3

Origin of thermal conductivity changes in bulk material. Eect of uniaxial strain

In this chapter we will investigate the eect of uniaxial strain on the thermal conductivity of bulk perfect crystals. We begin each section with a short introduction to the current available data on the thermal conductivity of bulk crystals then we proceed with the results of our calculations. The thermal conductivity of ZnO and AlN crystals has been calculated using the NEMD method 2.3.2. Uniaxial strain has been applied to perfect ZnO and AlN crystals either by remapping atom coordinates with a change in simulation-box length, or by applying a static electric eld. The strain, thermal conductivity, and electric eld have all been calculated/applied parallel to the c-axis of the crystals since ZnO and AlN crystals have the highest values of piezoelectric constant and thermal conductivity along this direction The objective is to quantify the eect of strain on the thermal conductivity, and nd the largest possible change of thermal conductivity for a static electric eld before dielectric breakdown.

Description of simulation procedure

To determine the equilibrium lattice parameters at zero strain and 300K we run a simple simulation under NPT ensemble for 1 ns. In order to calculate the thermal conductivity of strained ZnO and AlN crystals the following steps describes the procedure in general:

1. Initialize:

The atom positions are initialised using the equilibrium lattice parameters a = 3.2706, c = 5.1379 for ZnO, and a = 3.112, c = 4.0982 for AlN. Both crystals have the wurtzite which is represented by the lattice vectors and assymetric unit of uniaxial strain AB where A is Al or Zn atom, and B is N or O atom:

a 1 = a 2   √ 3 -1 0   a 2 = a   0 1 0   a 3 = c   0 0 1   (3.1) B 1 =   1/3 2/3 0.375   B 2 =   2/3 1/3 0.875   A 1 =   1/3 2/3 0   A 2 =   2/3 1/3 0.5   (3.2)
The lattice spacing along the X, Y, and Z directions were √ 3/2a, 1.5a, and 1.0c

respectively. Periodic boundary conditions are applied across all faces of the simulation domain. The timestep was set to 0.001ps.

Equilibrate:

A few tens of ps under NPT conditions with T = T eq = 300K, P = 0 GPa 3. Apply strain and heat ux:

The box is scaled along the Z direction by a factor = 1 + strain, and the atom positions are rescaled. The rescaling is important as solid deformation is an ane deformation. Alternatively, an electric eld is applied to the simulation domain under NPT conditions. The simulation domain is concurrently subdivided into 20 bins along the Z direction, and the velocities of 2 atoms in bins 1 and 11 are exchanged every t mp = N mp × ∆t as per the Muller-Plathe algorithm.

Stabilize:

The system is allowed to reach steady state under NVT conditions. A few hundred ps are usually enough to obtain a linear stable temperature prole as in gure 3.2. It typically takes more time for the system to reach steady state than to equilibrate.

Collect data:

The heat ux and temperature prole are then sampled every N mp steps, the thermal conductivity calculated (post-processed), and averaged.

Muller-Plathe method

The Muller-Plathe method (MP) is a reverse NEMD method for calculating the thermal conductivity. In NEMD simulations the thermal conductivity is calculated from the macroscopic denition; equation 3.3 The MP method involves applying a heat ux to the system after having reached steady state and calculating the temperature gradient to obtain the thermal conductivity. The method has several advantages over the direct EMD method (Müller-Plathe (1997)) which involves applying a thermal gradient and then calculating the heat ux. For instance, it is well-known that the heat ux is a slow converging quantity; on the other hand, using the MP method it is well-dened. The temperature gradient is faster to converge and faster to calculate, and the magnitude can be controlled by adjusting N mp . Hence, MP method simulations are typically shorter.

κ ij = lim dT dx i →0 lim t→∞ - q i (t) dT /dx i (3.3)
The crystal is subdivided into an even number of bins N as in gure 3.3. The rst bin is the cold bin and the N/2 + 1 bin is the hot bin. At xed intervals of a xed number of timesteps, N mp , the hottest atom in the cold bin and the coldest atom in the hot section have their velocities rescaled according to equations 3.4 3.5. 

v c = -v c + 2 m c v c + m h v h m c + m h (3.4) v h = -v h + 2 m c v c + m h v h m c + m h (3.
q i = 1 2AN ∆t transfers 1 2 m h v h i 2 -v h i 2 (3.6)
Where N is the number of elapsed timesteps, ∆t is the timestep, A is the area perpendicular to the ow of heat q i , and i = x, y, z. Once steady state is reached the macroscopic equation for thermal conductivity equation q i = -κ ij dT /dx j is used to calculate the thermal conductivity.

The temperature gradient dT dxi is calculated by linearly interpolating the temperatures of each bin, gure 3.2.

Thermal conductivity of bulk ZnO crsytals

Experimental measurements of ZnO thermal conductivity

The bulk thermal conductivity of ZnO has been measured experimentally from 1K to 300K [START_REF] Wolf | Low temperature thermal conductivity of zinc oxide[END_REF]). The values have been tted to the Debye-Callaway model eq 3.7, and various averaged phonon properties such as the Gruneisen parameters, sound velocity, and relaxation times for phonon-phonon, boundary, defect, and isotope scattering have been extracted. The expression for the relaxation times is given in equation 3.8.

κ = k 2π 2 v kT 3 θ/T 0 τ x 4 e x (e x -1) 2 dx (3.7) τ -1 = v L + Aω 4 + [B 1 exp(-θ/aT ) + B 2 ]ω 2 T + Y ω (3.8)
Two of the three samples in this study were single crystal ZnO hydrothermally grown and lithium doped while the third was vapor grown and undoped. The thermal conductivity was measured using a conventional longitudinal steady-state heat-ow apparatus. The measurments showed that thermal conductivity parallel and perpendicular to the c-axis are not very dierent, and that at room temperature the doping does not have a signicant eect. The measurements were also compared to those of [START_REF] Slack | Thermal conductivity of ii-vi compounds and phonon scattering by fe 2+ impurities[END_REF], and found to be in good agreement. Hence, from those measurements the thermal conductivity parallel to the c-axis at room temperature was around 68 W/mK.

On the other hand, the highest, and more recent, thermal conductivity of ZnO reported in literature is around 150 W/mK [START_REF] Ozgur | Thermal conductivity of bulk zno after dierent thermal treatments[END_REF]). The samples in this study were melt-gown, and were subjected to dierent thermal treatments. The thermal conductivity in this study was measured using scanning thermal microscopy (SThM).

It was noted that the thermal conductivity measured using thermal probe techniques depends on the surface treatment which removes surface defects, and improves the crystal structure at the surface.

As previously stated ZnO belongs to the P6 3 mc crystal group. Therefore it has an anisotropic thermal conductivity. However, as shown in the experiments, this anisotropy is small κ ||c /κ ⊥c = 1.13 -1.15 [START_REF] Wolf | Low temperature thermal conductivity of zinc oxide[END_REF]). Therefore, it is sucient to calculate the thermal conductivity along the c-axis as the perpendicular conductivity will not dier greatly. Hence, we will restrict ourselves to calculating the thermal conductivity parallel to the c-axis of the crystal in our MD simulations.

of uniaxial strain

Molecular Dynamics calculation of ZnO thermal conductivity

Eect of system length To study the eect of the length of the simulation domain on the thermal conductivity we calculated the thermal conductivity for 15, 20, 30, 40, 45 cells in the Z-direction and 7×4 cells cross-section or 19.70 × 19.5 Å (XY plane).

The number of atoms in the simulations was between 2520 and 7560. A full simulation (20 unit cell length) took 1.3 hours to complete using 48 CPUs (Intel Xeon X5650).

The PCRIM potential for ZnO [START_REF] Wang | New ab initio based pair potential for accurate simulation of phase transitions in zno[END_REF]) was used with a cut-o of 6.0Å.

Ewald summation with an accuracy of 1.0E-6 was used to calculate the long-range forces. The equilibration time was 3ps, followed by 20ps to reach steady state, and 50ps for data sampling. The heat exchange step size was N mp = 25 which yielded a temperature prole of T hot = 390K ± 20 and T cold = 220K ± 40 for the 5 simulations.

We have calculated the thermal conductivity parallel to the c-axis as a function of the length of the system in the same direction. We then plot the inverse thermal conductivity versus the inverse system length as seen in Figure 3.4. As we can see from Figure 3.4 increasing the system length leads to an increase of the thermal conductivity. The trend can be well represented by a straight line. This shows that from equation 2.15 we can extract the innite-length thermal conductivity. Linear regression analysis of the data gives an adjusted R-square of 0.903 and an intercept of 0.0024±0.0003 mK/W.

This gives an innite-length thermal conductivity to be κ ∞ ||c = 410 ± 60 W/mK. This value is representative of a perfect crystal without any defect, impurity, or isotope scattering. Our value and that of the largest reported in literature have a large dierence. This disagreement between the absolute values of MD and experimental can be explained by the following arguments:

1. The Debye temperature of ZnO is between 322K and 800K as can be seen in 2. Second, the experimental data given in [START_REF] Ozgur | Thermal conductivity of bulk zno after dierent thermal treatments[END_REF] which represents the highest value measured in literature were done using surface thermal microscopy.

This technique is known to be inadequate to measure highly conductive materials due to the contribution of the tip-sample contact resistance that predominates if the sample resistance becomes too low.

3. The two thermal conductivities are on the same order of magnitude which is acceptable considering that the potential used in the MD simulation was not tted taking into account the thermal properties of ZnO.

Bearing all this in mind: that an MD simulation represents a perfect, impurity free, innite length sample, and that no enriched perfect sample data exists for ZnO the value of 416 W/mK can be considered as an upper limit to the possible thermal conductivity of ZnO. The thermal conductivity of the innite system is deduced from the value extrapolated when the reverse of the length goes to zero.

Eect of uniaxial strain on the thermal conductivity of zinc oxide

There have been studies of the eect of strain on the thermal conductivity of bulk crystals such as argon [START_REF] Bhowmick | Eect of strain on the thermal conductivity of solids[END_REF]), silicon [START_REF] Parrish | Origins of thermal conductivity changes in strained crystals[END_REF]), and nanostructures such as carbon nanotubes (Chalopin et al. (2012)), silicon nanowires (Li et al. (2010b)), silicon thin lms [START_REF] Xu | Strain eect analysis on phonon thermal conductivity of two-dimensional nanocomposites[END_REF]), and on interfacial conductance [START_REF] Abramson | Interface and strain eects on the thermal conductivity of heterostructures: A molecular dynamics study[END_REF]), [START_REF] Shen | Bonding and pressure-tunable interfacial thermal conductance[END_REF]). For simple LJ like crystals the thermal conductivity is seen to decrease as a power law going from compressive to tensile stress. The exponent was shown to depend on the Grueneisen parameter and the exponent of the inter-atomic potential [START_REF] Bhowmick | Eect of strain on the thermal conductivity of solids[END_REF]).

of uniaxial strain

For the simulations involving strained crystals the simulations proceeded in almost the same way as for the non-strained case. The system length was set to 7 × 6 × 20 ZnO unit cells yielding a simulation domain of 19.70 × 19.5 × 104 Å which contains 3360 atoms. We used 50ps for equilibration, 500ps to reach steady-state, and 50ps for data collection. We have used the same random number to initiate the velocities of the atoms for the dierent strain simulations. This improves the accordance between the values as a function of strain. To calculate the long-range forces we used Wolf summation as it is signicantly less costly in terms of computation time.

The strain is applied by resizing the box in the Z-direction and rescaling the atoms.

The box volume is then maintained constant for the rest of the simulation. This of course modies the potential energies of the atoms, and the temperature of the system is seen to increase slightly (about 10%) even for small strains (less than 3%).

To remedy this NVT conditions are applied to the simulation domain. The strain is monitored by calculating the domain size in the Z-direction, and comparing it to the non-stressed case. The pressure is also monitored during the data collection period, and in Figure 3.5 we see that the crystal starts to deviate from the elastic behaviour at 4% and -3% strain. The elastic coecient of ZnO is between 183 and 232 GPa For ZnO the eect of strain on bulk thermal conductivity has yet to be studied. In Figure 3.6 we show this study for two dierent lengths of bulk crystals. We see that the thermal conductivity linearly decreases going from compressive to tensile strain as predicted in other studies [START_REF] Bhowmick | Eect of strain on the thermal conductivity of solids[END_REF]), [START_REF] Parrish | Origins of thermal conductivity changes in strained crystals[END_REF]). However, the coecient of proportionality is observed to change with the box size. In fact, the coecient of proportionality α increases by a factor of 1.45 as the system doubles in length. This might be an indication that the strain aects the long-wavelength phonons which are not resolved with a smaller system size. Therefore it is important to correct for the size eect before obtaining the correct coecient of proportionality. We de this as the next step. [START_REF] Bhowmick | Eect of strain on the thermal conductivity of solids[END_REF] model for thermal conductivity as a function of strain In a recent work it was shown that strain aects the scattering rate of phonons. Assuming the classical limit of phonon distribution i.e. temperatures above the Debye temperature of a solid, we have that the number of phonons n at temperature T for mode-frequency ω is given by n ≈ k B T / ω, and by using Fermi's golden rule it was shown that the scattering rate for phonons τ is proportional to the frequency of the phonon-mode ω and to the third order force constants of the lattice Γ.

These terms, the frequency and force constants, were in turn shown to be dependent on the strain to some power ∝ -γ . The exponent γ can be shown to be a combination of the Grueneisen parameter and inter-atomic potential power (Bhowmick and Shenoy of uniaxial strain ( 2006)). Also, using the kinetic theory κ ∝ Cv 2 τ and the Debye approximation v ∝ ω.

It was determined that the thermal conductivity is inversely proportional to the temperature, and decreases as a power-law as a function of strain as noted in equations 3.9 and 3.10.

κ ∝ 1 T -γ (3.9)
Where the strain in this case is calculated as

= V /V 0 (3.10)
Where V 0 is the volume of the crystal at zero strain. Therefore, we have corrected our data seen in Figure 3.6 for the size eect seen in Figure 3.4 using equation 3.11.

κ -1 ,∞ = κ -1 ,Lz - 0.403 (1 + )L z (3.11) Where κ -1
,∞ is the thermal conductivity at a strain for an innite length system, κ ,Lz is the thermal conductivity at a strain at a nite system length (in this case we used the data for L z = 21nm), L z is the system length equal to 211Å, and 0.403 is the slope of the line seen in Figure 3 We have plotted this data in Figure 3.7 as a function of the strain = V /V 0 = L z,0 /L z, . We can see that we do recover the power law dependence for ZnO quite well. The exponent obtained from the tting is equal to -18.8 ± 0.8. Therefore, with a typical strain value of 0.01, for example, the percentage change of thermal conductivity can be calculated from κ = 538 -18.8 to be -17%. To be able to stretch a ZnO crystal by 1% along the c-axis we need 2.1 GPa (C 33 = 210GP a) or E z = 8.1 × 10 8 V/m electric eld (d 33 = 12 m/V).

Eect of uniaxial strain on phonon properties

Strain modies the unit cell length and the interatomic distance yielding a modication in phonon eigenfrequencies and force constants. For constants in turn aect group velocities and eigenfrequencies also as shown in Eqs. 3.12. In order to investigate possible thermal conductivity alterations through electrical actuation, the impact of electric elds applied to the atomic system was also investigated.

For the system length of 10.5 nm, we have applied several static electric elds along the c-axis direction, and calculated the strain and the thermal conductivity. So, instead of changing the box length we apply a static electric eld parallel to the Z-direction, and we allow the box to change size by applying NPT conditions. This permits the atoms to adopt their new equilibrium positions due to the additional electrostatic force term

q i E z . The ratio of the induced strain to the electric eld magnitude is the piezoelectric coecient d 33 . No surface charge redistribution was observed due to the periodic boundary conditions.

In Figure 3.9 we have plotted the strain versus the applied electric eld. The strain was calculated by averaging the domain length during the data collection period. We see that the relation between the strain and the applied electric eld is linear even for eld values up to 2 GV/m. Such large elds would normally induce dielectric breakdown of any material. The breakdown eld depends on the bandgap of the material, and also on the size and microstructure. Typical values of the magnitude of breakdown elds are between 1 MV/m and 1 GV/m. This phenomenon is not observed in MD simulations due to the absence of electrons. Nevertheless, it is possible to increase the piezoelectric coecient of ZnO by nano-structuring. Recent studies using rstprinciples methods have shown that ZnO nanowires of diameters of 0.6 to 2.4 nm have a giant piezoelectric eect [START_REF] Agrawal | Giant piezoelectric size eects in zinc oxide and gallium nitride nanowires. a rst principles investigation[END_REF]). This was explained by the surface rearrangement of atoms which reduces the volume of the nanowire compared to a bulk crystal with the same number of atoms. Since the piezoelectric coecient d 33 depends on the polarization per unit volume a large increase in the value of the piezoelectric coecient is calculated. [START_REF] Agrawal | Giant piezoelectric size eects in zinc oxide and gallium nitride nanowires. a rst principles investigation[END_REF] reported an increase of e 33 by a factor of 50 in 0.6 nm ZnO wires.

In Figure 3.6 we plot the change of thermal conductivity versus the strain induced by the electric eld. The values of the electric eld for each point are placed next to them. We can see that the decrease of the thermal conductivity follows almost the same trend as that for the mechanically strained case. This is direct evidence that the strain induced by the electric eld is responsible for the modication of the thermal conductivity.

3.3 Thermal conductivity of bulk AlN crystals 3.3.1 Eect of system size on the thermal conductivity of aluminium nitride Figure 3.10: A representative graph of the temperature gradient of a 14 × 8 × 20 AlN crystal at 300K during the data collection period. This is after 500 ps of applying the heat ux.

We have also performed the same study for AlN single crystals. The simulation domain size was 14 × 8 × 20. T he initial unit cell lengths were a = 3.112, c = 4.982 giving a domain of 37.73 × 37.344 × 99.64 Åwith 13440 atoms. The Vashishta [START_REF] Vashishta | Interaction potential for aluminum nitride: A molecular dynamics study of mechanical and thermal properties of crystalline and amorphous aluminum nitride[END_REF]) potential was used with a cuto of 7.6 Å. We used 80ps for initial equilibration followed by 500 ps to reach steady state, and 50ps for data collection.

The heat exchange step size was N mp = 25 which gave a temperature gradient of 1.2 ± 0.2 K/Åfor the simulations. To study the siwe eect we performed two runs with of uniaxial strain Figure 3.11: Eect of system length on the calculated thermal conductivity of AlN at 300K for 0 and -3% strain. The straight lines are the linear t to the data with α as the slope and β representing the y-intercept.

system lengths of 15, 20, 30, 40, 45, and 60 unit cells in the Z-direction. The number of atoms was between 10080 and 40320, and the computation time was 40 minutes using 120 CPUs. In order to verify that the size eect is the same for dierent strain values, we repeated the calculations of thermal conductivity as a function of system length for a a strained crystal. Following the initial equilibration period, the box length was scaled by a factor of 0.97 and then stabilized using NVT conditions. As we can see in Figure 3.11 the size eect is linear for 0 and -3% strain. At -3% strain we can see that the coecient of proportionality between inverse length and inverse thermal conductivity is the same as that for no strain. This indicates that the strain does not aect the size dependence of the calculations for AlN. Hence, the same size adjustment can be made for all values of strain. Linear extrapolation of the values in Figure 3.11 provides the innite length thermal conductivity at zero strain of 3000 W/mK. The thermal conductivity of a perfect AlN crystal at room temperature has been measured by Slack to be around 285 W/mK [START_REF] Slack | The intrinsic thermal conductivity of {AIN}[END_REF]). However, we should note that for the case of AlN there are always oxygen impurities and defects which reduce the thermal conductivity. In fact it oxygen acts as a substitutional impurity in AlN with concentrations up to 1 × 10 21 cm 3 (Slack et al. ( 2002)).

Eect of uniaxial strain strain on the thermal conductivity of aluminium nitride

To study the eect of uniaxial strain on the thermal conductivity of AlN we have xed the system length to 20 unit cells. The number of atoms was 13440. The Vashishta Figure 3.12: Eect of strain on the calculated thermal conductivity of AlN at room temperature.

potential was again used with the same cuto of 7.6 Å, and strain values from -0.06 to 0.06 in increments of 0.01 were used. The heat ux step size was kept the same N mp = 25, and the temperature gradient was also the same at about 1.2 K/Å. The strain was again applied simultaneously with the heat ux, and it was observed that after 500 ps the temperature gradient was acceptable to begin data collection. The eect of strain on thermal conductivity can be seen in Figure 3.12. First, we see that the eect of strain on the thermal conductivity of AlN is not the same as that seen in ZnO. One reason for this might be the dierent dominant bonding mechanisms in the two crystals. The eective charge in ZnO is +2e and -2e for zinc and oxygen ions, respectively. While in AlN it is -1e and +1e. In addition, the interatomic potentials for ZnO, BKS and rigid ion models, have a larger ionic contribution. In fact, the potential requires the use of a long-range solver such as Ewald or Wolf summation. AlN, on the other hand, has been historically simulated using either Terso or Vashsishta potential [START_REF] Vashishta | Interaction potential for aluminum nitride: A molecular dynamics study of mechanical and thermal properties of crystalline and amorphous aluminum nitride[END_REF]) which do not contain long-range forces. Hence, the dependence of the phonon properties on the strain should be dierent. Especially for the optical phonon modes which are more aected by the strain as one can see in gure 3.8. We can see that the strong covalent nature of AlN inhibits any signicant modication of the thermal conductivity for compressive and tensile strain.

Unfortunately, due to the strong large error associated with the calculation of the thermal conductivity of AlN we were not able to t the size-corrected values to the same model κ = aε b . The outlier values at -1% and <-4% strain values showed unphysical negative thermal conductivities when equation 3.11 was applied. It has been noted

that for high-thermal conductivity crystals the NEMD is unsuitable [START_REF] Termentzidis | Molecular Dynamics Simulations and Thermal Transport at the Nano-Scale[END_REF]).

Chapter 4

Thermal conductance -Kapitza resistance. Eect of local strain on thermal conductance of superlattices

In this chapter we study the eect of piezoelectric strain on the thermal conductivity of superlattices. We use equilibrium and non-equilibrium molecular dynamics to calculate the thermal conductance of SiO 2 and Si/Ge superlattices under various piezoelectric and mechanical strain strengths, respectively. We show that strain applied to the superlattice junctions induces large changes in the inter-layer conductance.

Literature review

When two dierent materials are placed in perfect contact, strain roughness, or defects between them will cause a nite thermal conductance at the interface when a heat ux is applied. The interface thermal conductance (ITC) is due to a combination of intrinsic and extrinsic sources, and may be dened in Eq. 4.1.

σ = q/∆T (4.1)
Where ∆T is the temperature dierence across the interface, and q is the thermal ux. In [START_REF] Kapitza | Heat transfer and superuidity of helium ii[END_REF], experimental evidence of the presence of a thermal boundary resistance was shown for the case of liquid helium. This experiment showed that even for almost perfect contact there is always some resistance between two dissimilar materials. The discontinuity of phonon properties at the interface causes some backscattering of phonons as they move across the interface. This resistance to the ux of phonons is what is called Kapitza resistance, and is an intrinsic property of the combined system. Other sources for phonon scattering at the interface may include scattering due to strain eld or defects and voids. These are due to the manufacturing process, and are extrinsic eects.

strain on thermal conductance of superlattices For the intrinsic (Kapitza) resistance there are two limiting models for phonon transmission across an interface: the acoustic mismatch model (AMM) and the diuse mismatch model (DMM). The AMM treats phonons as plane waves incident across the interface. The waves have a nite probability for reection α AM M which is due to the change in the acoustic impedance of the materials z i = ρ i c i where ρ i is the mass density and c i is the sound velocity. By applying the laws of classical acoustics the transmission probability for a longitudinal wave incident on the interface is given by equation 4.2 Srivastava (1990)[p.368] α

AM M = 4z 1 z 2 z 1 + z 2 (4.2)
And the Kapitza conductance can be obtained by applying Debye's isotropic continuum model which assumes that: (1) only long-wavelength phonon modes are present in the whole q-space ω(qs) = c s q, and ( 2) an average phonon-mode group velocity

3 c3 = s 1 c 3 s
where c s is the phase velocity (transverse, longitudinal) and in this case is equal to the group velocity c g = c s ( Srivastava (1990)[p.48-49]). The expression for σ AM M is given in equation 4.3

σ -1 K = π 2 k 4 B α AM M /30 3 c2 (4.3) 
The result may be considered valid only for the long-wavelength phonons at low temperatures where the Debye approximation and wave-picture of phonons is dominant.

The model also assumes that the interface is completely specular, and that no scattering takes place.

The diuse mismatch model, on the other hand, assumes that the phonons are completely diusely scattered at the interface. In other words, the phonons lose their history when they reach the interface. The transmission coecient in this case is determined by the overlap between the densities of states between the two materials.

The expression for the phonon transmission under the DMM can be found from the principle of detailed balance. The two models represent the two extremes of phonon behaviour at an interface. For example, at high acoustic dissimilarity z 1 /z 2 = 1 the DMM is predicted to reduce the thermal boundary resistance calculated from the AMM. While at low mismatch, diuse scattering increases the thermal boundary resistance; more precisely, it is doubled compared to to the acoustic model. In fact, for the limit z 1 /z 2 → 1 the DMM gives the unphysical conductance related to t DM M = 0.5, where t is the transmission probability across the interface, while the AMM gives the more physically sound value of unity. The DMM is noted to be valid for high frequency or short-wavelength phonons at high temperatures.

For solid-solid interfaces which do not suer from large acoustic dissimilarity, the values for the Kapitza resistances predicted from the two models are relatively close (a dierence of about 30% Srivastava (1990)[p.369]). Hence, experimental results usually agree well with both models. To improve the agreement an interpolation between the two models can be umplemented as was done in [START_REF] Kazan | Interpolation between the acoustic mismatch model and the diuse mismatch model for the interface thermal conductance: Application to inn/gan superlattice[END_REF]. The model in [START_REF] Kazan | Interpolation between the acoustic mismatch model and the diuse mismatch model for the interface thermal conductance: Application to inn/gan superlattice[END_REF] utilized the RMS roughness of the interface in comparison with the phonon-mode wavelength to determine whether phonons would be scattered diusively or specularly. The model also takes into account the full bulk dispersion relations for the two sides for the calculation of the group velocity of phonon-modes, and for calculating the density of states. The model showed very good agreement with experimental results for InN/GaN interfaces.

Another important consideration when predicting the Kapitza resistance is the interfacial strain due to the lattice mismatch between the two sides of the interface. The dierence in lattice constants creates dislocations at the interface as the atoms are displaced from their equilibrium position (i.e. with no interface). The displacement creates a space dependent strain eld which relaxes as one goes further into the bulk of either side of the interface. However, the nite modication of the atom positions just at the interface leads to a change in the elastic coecients, and this change can be shown to depend on the third-order force constants. The spatial dependence of the elastic coecients can be shown to scatter phonons, as was shown in [START_REF] Carruthers | Scattering of phonons by elastic strain elds and the thermal resistance of dislocations[END_REF], and that a characteristic relaxation time τ strain can be dened. In [START_REF] Meng | Phonon scattering of interfacial strain eld between dissimilar lattices[END_REF] this analysis was carried out. Two dissimilar lattices were considered as seen in (2013) that the interface strain eld scatters phonons above a critical frequency ω 0 which depends on the amount of dissimilarity between the two lattices p. Hence, a gradual switch from a DMM dominated to an AMM dominated phonon-transmission scheme is obtained as the dissimilarity between the lattices increases [START_REF] Meng | Phonon scattering of interfacial strain eld between dissimilar lattices[END_REF]). The work also showed that the scattering time is dierent than that seen in a single bulk dislocation. The inverse scattering time for an interface strain eld (ISF) is 1/τ ISF (ω) ∝ (ω -ω 0 ) 3 whereas for an individual dislocation it is given by the relation 1/τ (ω) ∝ ω [START_REF] Meng | Phonon scattering of interfacial strain eld between dissimilar lattices[END_REF]). And nally, by using the Callaway model for the thermal conductivity, it was shown that the eect of the ISF is to decrease the thermal conductivity relative to the a system with no ISF scattering at high temperatures. Nevertheless, this change is relatively small in solids, approximately 10% of strain on thermal conductance of superlattices the DMM at 300K, and as such it does not dominate the interface conductance [START_REF] Meng | Phonon scattering of interfacial strain eld between dissimilar lattices[END_REF]). [START_REF] Meng | Phonon scattering of interfacial strain eld between dissimilar lattices[END_REF] nevertheless showed that the eect of in-plane strain does have an eect on the cross-plane thermal conductance. This eect is in essence due to the anharmonicity of the inter-atomic potential across the interface. Therefore, and as pointed out in [START_REF] Shen | Bonding and pressure-tunable interfacial thermal conductance[END_REF] neither the AMM nor DMM account for the stiness of the interface. The stiness is dened as the change in the normal to interface stress to the normal strain S = ∂P zz /∂ε zz . The value of S determines the strength of the bonding, and is related to the inter-atomic potential. For a harmonic potential it is constant, but for an anhormonic potential it depends on the separation between the two solids. In [START_REF] Shen | Bonding and pressure-tunable interfacial thermal conductance[END_REF] the thermal conductance between two Lennard-Jones type solids was calculated using NEMD simulations for dierent bonding strengths.

It was shown that for weak interfaces (the interfacial bonding is weaker than the bulk bonding) the application of uniaxial pressure normal to the interface increases the thermal conductance while for strong interfaces there is no change in the conductance, rather there is a slight decrease for large pressure values. The increase in conductance was shown to be correlated with the increase in interface stiness S while the increase in the bulk stiness (or modulus) is seen to decrease the interface conductance. In weak interfaces the former eect is dominant while for strong interfaces, the two eects cancel out. The decrease of the conductance due to the increase in bulk modulus is due to a change in the phonon transmission coecients. For even though the increase in the bulk modulus means an increase in the group velocities and frequencies of the modes, the results indicate that the thermal conductance decreases. It was postulated that this is due to a decrease in the phonon transmission probabilities. In the harmonic approximation, the overlap between the densities of states from each side is what determines the transmission probabilities (DMM), and it was shown in [START_REF] Shen | Bonding and pressure-tunable interfacial thermal conductance[END_REF] that the conductance between two mass-dissimilar solids does indeed follow this overlap. The harmonic contribution to the thermal conductance was also shown to be dominant in [START_REF] Sääskilahti | Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces[END_REF]. In said article, MD simulations were used to calculate the thermal conductance of two fcc LJ solids. A frequency resolved expression for the elastic and inelastic thermal conductances were developed, and it was shown that pressure does not aect the transmission of energy for low frequency modes by elastic forces nor for inelastic transmission. Hence, it is elastic processes for high-frequency modes that aect the thermal conductance under uniaxial compression.

The observed increase due to compression was roughly 26% for 42 MPa. In complex crystals the density of these high frequency modes can be rather signicant, and it might be possible to aect the thermal conductance even more.

An example of such a weakly-bonded system is silica-graphene superlattices. Silica is regularly chosen for graphene deposition due to the low mismatch between the lattices.

In [START_REF] Hsieh | Pressure tuning of the thermal conductance of weak interfaces[END_REF] experimental determination of the dependence of thermal conductance of Al/graphene/SiO/SiC lms on the uniaxial pressure was measured using time-domain thermoreectance. From normal up to 10 GPa, it was noted that the thermal conductance of such a structure is strongly dependent on the pressure. An increase of about a factor of 5 is seen for low pressure (up to 6 GPa). However, it was noted in that work that the dependence of the conductance on pressure for clean Al/SiO/SiC was very similar to that of the system with graphene. A result which was surprising, and may have cast doubt about the contribution of graphene to the results.

Nevertheless, the eect of pressure on such weak interfaces was veried experimentally, and the thermal interface conductance of silica/graphene was determined to be around 25 MW.m -2 .K -1 at normal pressure. The pressure dependence was also veried using molecular dynamics by the same group of [START_REF] Shen | Heat transfer mechanism across few-layer graphene by molecular dynamics[END_REF] and by the group of [START_REF] Mak | Thermal conductance at the graphene-sio2 interface measured by optical pump-probe spectroscopy[END_REF] experimentally using time-domain thermoreectance. Both works have also noted that the number of graphene layers does not aect the thermal conductance albeit that the inclusion of more graphene would increase the total resistance of the system.

To recap, the DMM and AMM oer the two extremes of phonon transmission across interfaces at normal conditions. However, they donot take into account the strength of the bonds across the interface. The presence of a local strain eld at the interface modies the elastic properties of the system and leads to phonon scattering. The scattering depends on the phonon frequency, and ths strain eld spatial extent. It has also been demonstrated both experimentally and using MD simulations that the application of pressure to weakly-bonded systems modies their thermal conductance.

Therefore, it is our aim in the next few sections to study the eect of local strain on the thermal conductance of such systems, and show that they are good candidates for piezothermal application.

4.2 Eect of non-uniform strain on the thermal conductance of SiGe superlattices

We begin by taking a simple system consisting of a 10 × 10 × 20 SiGe superlattice shown in Figure 4.2. In the cross-plane direction we create 10 unit cells of germanium and 10 unit cells of silicon. The number of atoms is 16000. The conventional diamond unit cell was used for both lattices. The Terso [START_REF] Terso | Modeling solid-state chemistry: Interatomic potentials for multicomponent systems[END_REF]) potential was used for both elements, as mixing rules exist for Si and Ge. Simulations of each material, separately, gave unit cell lengths for germanium and silicon corresponding to a Ge = 5.6711Å, a Si = 5.4423Å. To build the superlattice, the mean unit cell length was used a Ge/Si = (a Ge + a Si )/2 = 5.5567Åas starting guess for both structures. This strains the original unit cells of Ge and Si by -2% and 2.1%, respectively. In order to study the eect of in-plane and cross-plane stress three types of simulations were carried out.

(1) A simulation where the initial structure was relaxed only in the Z direction, [START_REF] Weng | Advanced thermal enhancement and management of {LED} packages[END_REF] another where the initial structure was relaxed in all three directions, (3) and a nal where the structure was relaxed in all three directions however later a non-uniform strain was applied in the Z direction. The superlattice thermal conductance for all simulation types was calculated using the reverse NEMD algorithm where a heat ux was simulated in the system by exchanging particle velocities and a corresponding temperature drop can be observed across the interface; exactly the same algorithm used in the previous section. For the third type of simulations (non-uniform strain) two strain values were investigated: ±1% and ±2%. For all simulations types only one run was performed with the following general scheme:

1. Relax structure -100 ps

The timestep is set to 1 fs, and periodic boundary conditions are applied along strain on thermal conductance of superlattices all sides. The structure was relaxed in the designated directions (Z -only or X Y, and Z under 0 GPa and 300K (NPT ensemble).

Strain and apply heat ux

Any required strain is applied to the structure by remapping the coordinates of some of the atoms, and the heat ux is applied to the strained system. The velocity swap is performed every 20 fs (20 timesteps).

3. Reach steady-state -500ps

The system is allowed to reach steady state under NVT conditions. The temperature prole is monitored, and 500ps were sucient to obtain a reasonable at temperature prole away from the interfaces.

Collect data -50ps

After steady state has been reached, we collect the temperature prole, in-plane and cross-plane pressure, and the energy exchanged from the velocity exchange.

Data analysis

The average temperature prole ∆T , area A, system length L z , and heat ux q are then used to calculate the thermal conductance using equation 4.1. Procedure for creating a non-uniform initial periodic strain state In order to apply a non-uniform strain to the superlattice, the following procedure was adopted.

After equilibrating the superlattice under NPT, a central group of atoms was selected.

This central region has a length of 3 unit cells. The simulation box was then rescaled in the Z direction, and the corresponding central atoms remapped according to the rescaling. This creates a non-uniform periodic strain in the superlattice, and forces the atoms to adopt new equilibrium positions. A schematic of this procedure (tensile The temperature prole was sampled away from both interfaces (periodic boundary conditions). Sample temperature proles for all simulation types are shown in Figure 4.3. 500 ps were sucient to obtain an almost constant heat-ux q and temperature prole for all simulation types except the -2% strained superlattice which showed a non-linear temperature prole. Hence, the heat ux was decreased. The results for all simulations are presented in Pz is the average pressure at the end of the simulation.

For the fully relaxed case, we obtain a thermal conductance σ Si/Ge of 2.07 GW/m 2 K which is reasonable when compared to the value of 0.34 GW/m 2 K at 500K reported in other works (Chalopin et al. (2012), [START_REF] Landry | Eect of lm thickness on the thermal resistance of conned semiconductor thin lms[END_REF]). However, as the results in Table 4.1 show, there is a signicant drop in the thermal conductance when comparing the fully relaxed superlattice to all the other types (a factor of 28 reduction). For the Z-relaxed superlattice, the nal cross-plane stress, P z , is more than a factor of 10 lower than for the ±1% or -2% strained case (for the 2% case we theorize that the atoms were displaced a distance larger than the cut-o for the potential thereby giving the lowest stress value). This conrms that the two cases Z-relaxed and initially-strained do not share the same nal state in terms of residual cross-plane stress. Nevertheless, we remark that the thermal conductance is almost the same (0.074 GW/m 2 K). This suggests that in-plane stress is just as eective as cross- plane stress in aecting the thermal conductance. The -2% strain case also shows that the thermal conductance goes through a minimum under compressive strain. To verify that the higher conductance value (σ -2% = 0.22 GW/m 2 K) is not due to numerical artefacts, we performed an extra simulation (-1%) for a lower value of q. We obtain the same value of thermal conductance which indicates that the calculation of the thermal conductance is insensitive to the value of the applied heat ux.

Molecular Dynamics simulation of the thermal conductance of SiO 2 /FLG superlattices

We have also calculated the thermal conductivity of silica/graphene interfaces using EMD simulations. The calculation of the thermal conductance of silicon/graphene superlattices (σ SiOC ) has been performed in a recent work using NEMD (Shen et al. (2013)), and it has been determined that the number of graphene layers does not aect the thermal conductance. Using experiments, as well, [START_REF] Mak | Thermal conductance at the graphene-sio2 interface measured by optical pump-probe spectroscopy[END_REF], it has been determined that the number of layers from 1 to 13 does not aect the conductance between silica and graphene. Hence, we have simulated a 4 × 6 superlattice of silica/graphene with 7 unit cells of silica, and 3 monolayers of graphene.

A snapshot of the superlattice is shown in Figure 4.5 after initialization of the atom coordinates. Silica quartz (SiO 2 ) belongs to the trigonal P3 2 21 space group. It has strain on thermal conductance of superlattices

In order to calculate the thermal conductance, we used the equilibrium method of temperature uctuations [START_REF] Rajabpour | Thermal boundary resistance from mode energy relaxation times: Case study of argon-like crystals by molecular dynamics[END_REF]). The inter-layer resistance R SiO/C is given by equation 4.4

Rk B = ∞ 0 ∆T (0)∆T (t) ∆T (0) 2 dt 1 N 1 + 1 N 2 A (4.4)
Where the subscripts 1, 2 represent the two thermal reservoirs, in this case the silica and graphene, ∆T is the temperature dierence between the interacting atoms of the two reservoirs, A is the surface area, and N 1,2 is the number of potential and kinetic degress of freedom on a given side which is related to the number of atoms. The thermal conductance was calculated as a function of electric eld.

After initialization of atom positions, momenta, and forces, the system was equilibrated under NPT conditions while applying a static electric eld in the Z direction for 300 ps. The temperature dierence between carbon and silica atoms was then sampled for 800 ps under NVT conditions. The interacting atoms were selected by specifying rectangular regions close to the rst and third graphene layers. The height of this region was set to 4.2Å to try and include only rst interacting layers of atoms.

The number of silica atoms was found to be N 1 = 227 and that of graphene to be N 2 = 180. 10 independent simulations were performed for each value of the electric eld.

Quartz is a well known piezoelectric crystal. It belongs to point group 32. The 

Molecular dynamics simulations of ZnO/FLG superlattices

We have also studied the eect of electric eld on the thermal conductance of ZnO/C superlattices. We have simulated 7 × 4 × 40 ZnO lattice with 2 monolayers of graphene placed at the Zn face as seen in Figure 4.8. The graphene atoms were strained to the ZnO lattice in the in-plane direction. This induces a strain of -14%. For ZnO we used the same potential as before (PCRIM), for carbon we used the AIREBO potential, and for the Zn-C and O-C interactions, the Lennard-Jones potential. The interaction between ZnO and graphene has been studied, and MD simulations have demonstrated that Lennard-Jones interactions reproduces real physiosorbed graphene on ZnO substrates very well [START_REF] Galan | Molecular dynamics prediction of interfacial strength and validation through atomic force microscopy[END_REF]). Hence, we use parameters for Zn-C and O-C interactions taken from [START_REF] Guo | Structure evolution of zn cluster on graphene for zno nanostructure growth[END_REF] and [START_REF] Harris | Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model[END_REF], respectively. Stabilization of the ZnO structure is an important issue as well.

Electrostatic interactions in ZnO are dominant, and the morphologies of the ( 1000) and

(0001) surfaces are dependent on their respective polarities. In order to stabilize ZnO nanowires, for example, which expose the polar surfaces, three methods are available:

1. Surface passivation by the saturation of surface bonds using (OH or H + molecules) [START_REF] Lauritsen | Stabilization principles for polar surfaces of zno[END_REF]).

2. Reconstruction of the polar surfaces into a shell like structure by the relaxation of the outermost ions [START_REF] Jedrecy | The hexagonal polar zno (0001)-(1× 1) surfaces: structural features as stemming from x-ray diraction[END_REF], [START_REF] Kulkarni | Surface-eects-dominated thermal and mechanical responses of zinc oxide nanobelts[END_REF]).

3. Reduction of the charge on the Zn-surface by charge transfer of some O ions from the O-surface. This results in the reduction of the surface charges by 0.75S [START_REF] Dai | Surface piezoelectricity: size eects in nanostructures and the emergence of piezoelectricity in nonpiezoelectric materials[END_REF][START_REF] Noguera | Polar oxide surfaces[END_REF]) All the stabilization methods are conrmed to aect the thermal conductivity of ZnO nanowires due to the modication of surface phonon modes [START_REF] Jiang | Polar surface eects on the thermal conductivity of zno nanowires: a shell-like surface reconstruction-induced preserving mechanism[END_REF]).

In our case of ZnO/C superlattices, the addition of the graphene layers in between the ZnO layers seems to keep the ZnO system stable. This is accompanied by some reconstruction of the end (polar) surfaces as can be seen in Figure 4.8. Nevertheless, the structures were stable until the end of the MD simulations.

In order to calculate the thermal conductance, we again use the reverse NEMD method employed in section 4.2. We rst minimize the total energy of the structure using the conjugate gradient method. The equilibrium separation between the end ZnO faces and the graphene is seen to deviate from the equilibrium distances initially applied and deduced from the Lennard-Jones characteristic distances by the formula d eq = 1.122σ.

We equilibrate the system under NPT conditions for 100ps. Then, we apply the electric eld along the Z-direction as well as the heat ux, and we allow the system to reach steady-state under NPT conditions for 800ps. The temperature prole, heat ux, and system length are then sampled every 1.5ps for 50ps. It was not possible to obtain an accurate estimation of the strain induced in the system due to the electric eld, as the addition of the graphene layers causes uctuations in the system size on the order of the strains induced. The velocity of the atoms in the hot (ZnO) and cold (C) slabs are exchanged every 0.15ps leading to an average temperture dierence of about 190K between the ZnO and graphene layers. The temperature prole of the ZnO is seen to be almost constant as shown for all values of electric eld in Figure 4.9. The thermal conductance is calculated according to equation 4. Not very surprisingly, it is found that the thermal conductance of ZnO/C is not aected by the application of the external electric eld. The results in Table 4.2 show that the conductance is constant at a value of 170 MW/m 2 K for eld strengths between -100 and 100 MV/m. ZnO is a piezoelectric crystal much like SiO 2 . Unlike SiO 2 , however, ZnO does posses a piezoelectric constant d 33 leading to uniform strain when an external electric eld is applied. This uniform strain is seen to not aect the thermal conductance between ZnO and graphene. The uniform extension and compression of the ZnO lattice merely displaces the graphene layers without any local deformation.

This implies that the reconstructed polar surfaces are also unaected by these values of the electric eld.

Conclusions

Through several molecular dynamics simulations of dierent superlattices, we have seen that the interfacial thermal conductance is aected by the application of local strain at the interface. The interfacial conductance is observed to be highly sensitive to local strain for the case of perfect interfaces. The conductance is seen to be sensitive to residual strain in unrelaxed structures. For relaxed structures (those corresponding to real-life situations) the conductance is not aected by the application of additional compressive or tensile strain as seen in the case of SiGe (±1% strain). However, for larger compressive strain values perpendicular to the interface, an enhancement of the conductance is possible. The eect has been explored in other MD simulations, and in experiments on silica/graphene interfaces.

The reduction of the conductance in silica/graphene superlattices has been shown to be eective for electric eld strengths of 5 to 20 MV/m. This reduction is attributed to the particularity of the piezoelectric nature of SiO 2 which prohibits any bulk uniform strain while allowing for the creation of very local junction strain/stress. Unfortunately, we were unable to quantify this stress, and it remains to be calculated as conrmation to the proposed strain picture. For electric eld higher than 25 MV/m we were unable to calculate the thermal resistance due insucient simulation time. No decrease in the thermal resistance was observed for compressive strains as seen in other works [START_REF] Shen | Heat transfer mechanism across few-layer graphene by molecular dynamics[END_REF], [START_REF] Shen | Bonding and pressure-tunable interfacial thermal conductance[END_REF]). The zero-eld value of the thermal conductance of silica/graphene was noted to be in very good agreement with experiment (Mak et al.

(2010))

Finally, using ZnO/C superlattices, we were able to show that the thermal conductance is only aected by local strain. The application of a uniform static electric eld to ZnO/C superlattice is predicted to induce a uniform strain eld compared to the local strain eld in the case of SiO 2 /C. Reverse NEMD simulations indicate that the thermal conductance of ZnO/C superlattices is 170(5) MW/m 2 K.

Chapter 5

Conclusions and future work

Conclusions

With a combination of equilibrium and non-equilibrium molecular dynamics simulations we have studied the eect of strain on the thermal conductivity of bulk piezoelectric crystals and on the thermal conductance of piezoelectric superlattices. We have investigated the eect of uniform and non-uniform strain applied mechanically or using an electric eld in piezoelectric crystals. The main conclusions of the work are as follows:

The thermal conductivity of bulk piezoelectric crystals ZnO and AlN have been calculated using reverse-NEMD. The zero strain values deviate greatly from experimental values. However, for the case of ZnO they have the same order of magnitude. It is seen that the eect of system size plays a signicant role on the calculation of the thermal conductivity using reverse-NEMD, but that it follows the equations present in literature. Uniform uniaxial mechanical strain is seen to decrease the thermal conductivity going from compression to tensile. The behaviour of the thermal conductivity is that predicted for argon-like crystals and has the form κ ∝ ε b where ε = l/l 0 and b = -18.8

for ZnO. The change in thermal conductivity in bulk crystals has been indicated to result from the change in the properties of the phonon modes i.e. the frequency, group velocity, and scattering rates. The dependence of thermal conductivity on strain is seen to depend on the size of the system with bigger systems showing larger coecients of proportionality as the size eect becomes less dominant. It was also conrmed that strain induced using an external uniform electric eld aects the thermal conductivity in the same way as that for strain induced mechanically. The phenomenon may be termed thermo-piezoelectric. However, the strengths of such elds exceed typical dielectric-breakdown values, and are therefore unattainable. By performing the same study on AlN we have shown that the dependence of thermal conductivity on strain is dependent on the type of atomic interactions. The more covalent nature of AlN which is a material with a higher Debye temperature suppresses the dependence of thermal conductivity on strain. Therefore, the thermal conductivity of ZnO is seen to have a stronger dependence on strain than that of AlN, and may be considered as a better candidate for piezothermal applications.

Chapter 5 -Conclusions and future work

We have also investigated the eect of strain on the thermal conductance of superlattices of SiGe, SiO 2 /C, and ZnO/C. We have shown that for SiGe superlattices the thermal conductance can decrease by a factor of 28 due to in-plane and cross-plane stress applied at the interface. We have shown that by initially straining the atoms at the superlattice junctions compressively and tensile we are able to create a nal state where the thermal conductance is reduced as compared to an unmodied structure.

The conductance is seen to reach its nal value for 1% strain, and that larger initial tensile strains do not lead to further reduction in the conductance. Furthermore, larger initial compressive strains are seen to reasonable enhancement of the conductance in accordance with studies seen in literature which studied the case of constant uniform external pressure.

We have also examined two dierent cases of piezoelectric crystals: SiO 2 /C and ZnO/C. The strain-free thermal conductances were calculated as 0.05 and 0.167 GW/m 2 K, respectively. It was shown that only in the case of SiO 2 , a modication of the ther- mal conductance is possible, and that for a value of 20 MV/m of the electric eld, it is possible to reduce the conductance by half. While for ZnO/C superlattices, the uniform strain induced by the piezoelectric phenomenon does not aect the thermal conductance.

The possible applications of such ndings in piezo-thermal devices could be envisioned.

For the case of superlattices, it is seen that the modication of the thermal properties is more pronounced than that for bulk materials. However, the systems presented in this work represent perfect interfaces. A situation that requires careful fabrication techniques. The case of SiO 2 /C seems the most promising as the dielectric breakdown eld of SiO 2 is in the range of 10 MV/m (Lynch (1972)) depending on the thickness.

Future works, perspective, and issues

The study presented in this thesis has attempted to explore various avenues for strainmodication of thermal conduction by phonons. As such it has attempted to explore dierent materials and interesting combinations. However, the mechanisms behind the situations were the thermal conductivity/conductance was modied were not fully explained. Therefore, there remains a lot to understand in these particular systems.

For the case of bulk crystals, the discrepancy between the AlN and ZnO results requires a more careful determination of phonon properties. The mode-specic relaxation times and group velocities need to be calculated in order to see why strain is eective in modifying the thermal conductivity of bulk ZnO crystals but not AlN. Arguably, such analysis has been performed, and is seen that the contribution of the dierent mode properties may not be intuitive. For high-Debye temperature crystals like AlN the contribution of the change of the heat capacity must also be considered as it was

shown to change as a function of the strain [START_REF] Parrish | Origins of thermal conductivity changes in strained crystals[END_REF]).

For the case of the change in thermal conductance in superlattices. The most pressing issue is to quantify the local strain elds induced due to the initial straining of the atoms for the case of Si/Ge superlattice, and due to the electric eld in the case of SiO 2 /C superlattices. It is important to quantify the spatial extent and magnitude of the strain elds, and to see whether they correspond with theoretical models developed elsewhere [START_REF] Meng | Phonon scattering of interfacial strain eld between dissimilar lattices[END_REF]). The eect of strain on thermal conductance would also be of interest in well-oriented polycrystalline thin lms where the thermal conductivity is dominated by grain-boundary scattering.
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 11 Figure 1.1: Plot showing the increase in transistor density and power loss in Intel processors from[START_REF] Holzer | Optimization for Enhanced Thermal Technology CAD Purposes[END_REF] 
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 2 .0.1 The thermal switch A prototype model for a mechanical thermal switch device was presented in Cho et al. (2008). The device is based on two contacts as seen in Figure 1.4 where they are brought closer together by mechanical actuation. The presence of a high-thermal conductivity material in between the substrates or leads changes the thermal resistivity of the device once the two contacts touch. Cho et al. (2008) tested several dierent (a) Concept of MEMS thermal switch. (b) Liquid-metal micro droplets.
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 14 Figure 1.4: A MEMS thermal switch schematic and real-life counterpart. Adapted from Choet al. (2008) 
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 15 Figure 1.5: (a) Figure showing the single layer SiN three-strip actuator, (b) Scanning electron micrograph of a specimen, (c) Strain is measured post-experiment fracture of the specimen. Adapted from Alam et al. (2015).

  plotted in gure 1.7. The maximum frequency is known as the Debye frequency. The Debye temperature is related to it using the relation θ D = ω/k B .
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 1 Figure 1.7 shows two branches. The top branch is the optical branch, and the lower one is the acoustic branch. The optical branch describes the displacement of the atoms in the primitive or conventional cell. They describe motions of the atoms in opposite
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 17 Figure 1.7: Dispersion relation for linear diatomic chain.

  Figure 1.8: Thermal conductivity as a function of temperature for some typical materials.

Figure 1 .

 1 Figure1.9: Values of piezoelectric constants for some typical materials from[START_REF] Newnham | Properties of Materials: Anisotropy, Symmetry, Structure[END_REF] 

Finally,

  we conclude the thesis by reviewing the major results, and by indicating the work that is still required to validate them. , pour un instant donné, connaîtrait toutes les forces dont la nature est animé, et la situation respective des êtres qui la composent (. . . ) rien ne serait incertain pour elle, et l'avenir comme le passé, serait présent à ses yeux.Pierre Simon Laplace, Essai PhilosophiqueMolecular dynamics is a powerful tool for calculating the static and transport properties for a range of systems; gas, solid, and liquid. It has been applied to a number of important and dicult problems involving protein folding, crack propagation in solids, and non-newtonian ows. The power of MD is providing detailed atomic level information that is necessary and unavailable in other methods which use continuum modelling. Historically, MD was used mainly for liquids; as solids and gases already had well established theories such as the kinetic theory and the Debye model for simple crystals at a range of temperatures. These models are well suited for describing solids and liquids at thermal equilibrium MD simulations can have an important role in bridging the gap between theory and experiment. They can provide a way to obtain useful information about a system of interest before investing time and eort. Apart from some of their limitations, MD simulations do not remove the anharmonicities of the atomic interactions. Even though the interactions are not as 'accurate' as ab initio based methods they can still reproduce many interesting macroscopic properties that have to do with phonon transport such as thermal expansion, thermal conductivity, and some interesting phase transitions.

Figure 2 .

 2 Figure 2.1 represents typical features of a MD cell. The unit cell represents the unit cell of the solid. This can be the conventional or primitive cell dened for the crystal structure. The unit cell as dened here needs to recreate the periodic crystal structure when tiled along the three directions X,Y, and Z. The supercell represents the cuto radius of the inter-actomic potential. In Figure 2.1 it shows that the simulation takes into account with rst and second neighbor interactions of each atom. It is important for the nal size of the domain to be twice as large as the cuto distance to avoid any self-interaction eects. We can also see that in this representation we have two dierent atom types, and boundary conditions. When an atom crosses a periodic boundary it is remapped back into the simulation domain rather than being lost. With periodic boundary conditions the atoms across the boundaries are interacting; hence, periodic -boundary conditions simulate bulk structures.
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 21 Figure 2.1: Representation of the basic element of a MD cell where atoms are interacting through potential forces. Periodic boundary conditions are used to induce a translational symmetry and mimic an innite size system.

  Empirical ttings of the potential might however cause deviations from the conventional charge values. The remaining terms form what is known as the Buckingham potential. The rst term describes repulsion at short range due to the overlap of closed electron shells (Pauli type repulsion). It replaces the r 12 repulsion term in the well-known Lennard-Jones potential. The A and ρ parameters are in units of energy and distance respectively.

  Another closely related potential to the BKS potential was proposed by Vashishta et al. It adds steric repulsion, Debye screening, charge-dipole interaction, and three-body terms to the functional form and has been applied to several materials includingSiO, SiC, and AlN Vashishta et al. (1990[START_REF] Vashishta | Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide[END_REF][START_REF] Vashishta | Interaction potential for aluminum nitride: A molecular dynamics study of mechanical and thermal properties of crystalline and amorphous aluminum nitride[END_REF].

  (a) BKS potential (b) PCRIM potential

Figure 2 . 2 :

 22 Figure 2.2: Comparison of dispersion relations and vibrational density of states for ZnO calculated using MD and lattice statistics at 0K. The white points/curve represents the ab intio data, and the dark lines/curve represent our calculating using MD for the DOS and lattice dynamics for the dispersion curves.

For

  MD simulation of AlN there exists in literature two inter-atomic potentials: a Terso based potential[START_REF] Tungare | A terso-based interatomic potential for wurtzite aln[END_REF], and a potential based on a combination of 2-body and 3-body forces including a modied Stillinger-Weber type potential stericsize eects, screened Coulomb interactions, charge-induced dipole, and van der Waals interactions which we shall refer to as the Vashishta potential[START_REF] Vashishta | Interaction potential for aluminum nitride: A molecular dynamics study of mechanical and thermal properties of crystalline and amorphous aluminum nitride[END_REF]).The Terso based potential has shown good agreement between the experimental and calculated values of AlN thermal expansion coecient, bulk modulus, and lattice parameters. However, it lacks electrostatic forces which are necessary for the simulation of the piezoelectric and dielectric properties of AlN. On the other hand, the Vashishta potential has been shown to reproduce the correct phonon-mode density of states as well as the elastic coecients, lattice cohesive energy, and elastic constants. It has also reproduced the pressure-induced phase change of AlN from wurtzite to rock-salt at high pressure and temperature (3000K, 25GPa), and has reproduced some features of the AlN amorphous structure specically the phonon-mode density of states. Unfortunately, the Vashishta potential is not included in the LAMMPS code package.

( 3 )

 3 jik (r ij , r ik ) = 0 for r ij or r ik > r 0 . The coecients for the potential are given in Figure2.3
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 23 Figure 2.3: Parameters for the Vashishta potential for AlN taken from Vashishta et al.(2011) 

  Figure 2.4 indicates that the potential has been successfully integrated into LAMMPS, and that we can proceed with the calculation of other properties of AlN. (a) Calculated vibrational density of states. (b) Reference vibrational density of states.
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 24 Figure 2.4: Comparison of the vibrational density of states of AlN calculated using MD and the Vashishta potential to the one found in Vashishta et al. (2011).

(

  1958);[START_REF] Cattaneo | Sur une forme de l'equation de la chaleur eliminantle paradoxe d'ine propagation instantanee[END_REF], Volz et al derived the time autocorrelation function of the heat ux as[START_REF] Volz | Transient fourier-law deviation by molecular dynamics in solid argon[END_REF] 
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 25 Figure 2.5: An example of heat ux autocorrelation function with the tting of dierent methods. The insert represents the integral of the thermal conductivities over time. Figure from McGaughey and Kaviany (2004)
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 26 Figure 2.6: The inverse of the thermal conductivities measured with NEMD simulations for Si and diamond at specied temperatures versus 1/L and the corresponding tting with Eq. 2.15. κ∞ is get at 1/L = 0. Figure from Schelling et al (2002), Phys. Rev. B 65: 144306
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 31 Figure 3.1: Perspective images of 4 × 8 × 20 uc ZnO crystal after initialization. The silver and red atoms represent zinc and oxygen atoms respectively.

5 )

 5 Figure 3.2: A representative temperature prole at 300K, -2% strain after 500ps of applying the Muller-Plathe algorithm.
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 33 Figure 3.3: Schematic representing the Muller-Plathe algorithm
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 34 Figure 3.4: Dependence of thermal conductivity on the length of the MD simulation cell.The thermal conductivity of the innite system is deduced from the value extrapolated when the reverse of the length goes to zero.

(

  [START_REF] Sarasamak | Pressuredependent elastic constants and sound velocities of wurtzite sic, gan, inn, zno, and cdse, and their relation to the high-pressure phase transition: A rstprinciples study[END_REF][p.9]) which ts well with the value of 202 ± 8 obtained by linear regression from Figure3.5.
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 35 Figure 3.5: Pressure versus strain for 7 × 4 × 20 ZnO crystal at 300K. The strain and pressure are averaged over the data collection period. The straight line represents the linear t of the data with the intercept xed at zero.
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 36 Figure 3.6: Eect of strain on the thermal conductivity of ZnO bulk crystals
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Figure 3 .

 3 Figure 3.7: Thermal conductivity corrected for size eect as a function of strain at 300K. The red line represents the tting of the data to a power law function.
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 3839 Figure 3.8: Phonon mode properties as a function of strain along the [0001] direction

Figure 4 . 1 .

 41 Figure 4.1. In this gure the interface strain eld (ISF) determining the displacement of atoms is periodic in x (parallel to the interface), and is exponentially decreasing in z (normal to the interface) which makes it a short-range eld. The larger is the dissimilarity between the two lattices, the shorter is the range of the strain eld in the normal direction to the interface. (Meng et al. (2013)) It was shown in Meng et al.
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 41 Figure 4.1: A schematic showing the dislocation due to mismatched lattices. The black dots and red circles represent the atom positions on the two lattices. S b , Sa are the contact planes, and p is the distance between dislocations. It also represents the dissimilarity between the two lattices. Smaller p indicates more dissimilarity. From Meng et al. (2013)
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 42 Figure 4.2: Perspective and in-plane view of SiGe superlattice 10 × 10 × 20 before start of simulation. Ge atoms are in yellow and Si atoms are in pink.
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 43 Figure 4.3: Temperature proles for the dierent simulation types of the SiGe superlattice. The proles shown are collected at the end of the simulation.
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 44 Figure 4.4: A schematic showing the rescaling of the simulation box for the case of tensile strain.The gure is to scale in the Z-direction; however, the rescaling is exaggerated for clarity. The operation is performed after the equilibration period, and the superlattice is allowed to relax under NVT conditions. The arrows represent the restoring forces arising from the remapping of the atoms.
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 45 Figure 4.5: A snapshot of silica/graphene superlattice used for all simulations with 3 monolayers of graphene (green atoms) and 7 unit cells of silica or α-quartz. The electric eld is applied in the cross-plane direction.

  piezoelectric tensor is given by equation 4.5 in Voigt notation. The tensor determines the magnitude of the converse piezoelectric eect i = d ij E j . a static electric eld parallel to the c-axis of SiO 2 crystal produces
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 46 Figure 4.6: Schematic representation of the SiOC superlattice with the application of an electric eld leading to local compressive strain at the interfaces. The arrows represent the electrostatic forces at the end surfaces. Figure not to scale.

Figure 4 .

 4 Figure 4.7: The thermal boundary resistance as a function of simulation time for several electric eld strengths in MV/m.
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 46 Figure 4.8: Snapshots of ZnO/C superlattice at dierent stages of the simulation with and without an external electric eld. Carbon atoms are in green, and are placed on the Zn face. Note the reconstruction of the ZnO lattice at the free ends.
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 49 Figure 4.9: Temperature proles of ZnO/C superlattices at the end of the simulations for dierent electric eld strengths. The rst point corresponds to the temperature of the double monolayers of graphene (cold slab).

  

  

  

  

  

  

Table 2 .

 2 1: List of common MD potentials used in this work

  2.2.3.0.1 Potential for ZnO For oxides, and more specically for ZnO, most

studies use the Van Beest, Kramer, and van Santen (BKS) potential. The BKS potential is a two-body potential which was originally developed in 1990 for silica and aluminophosphate polymorphs

[START_REF] Van Beest | Force elds for silicas and aluminophosphates based on ab initio calculations[END_REF]

). It takes the following form

Table 2 .

 2 2: Coecients for inter-atomic potential representing ZnO elastic constants van Beest et al. (1990), and piezoelectric constants Herzbach et al. (2005) close to experimental values. Hence, the validity of the potential over a range of pressure values and over a number of dierent silica polymorphs made this functional form attractive for use in molecular dynamics simulations. Van Beest's paper species

					-	9547.96	0.21916	32.0
	Zn	2+ -O	2-	529.70	0.3581	0.0
	Zn	2+ -Zn	2+	0.0	0.0	0.0

that the potential could be applied to ... any other chemical elements that form tetrahedral network oxides..."

[START_REF] Van Beest | Force elds for silicas and aluminophosphates based on ab initio calculations[END_REF]

. However, there still exists certain discrepancies when using this potential. For example, a recent paper has shown the advantage of other potentials incorporating extra degrees of freedom, and it has displayed the shortcomings of the BKS potential

[START_REF] Herzbach | Comparison of model potentials for molecular-dynamics simulations of silica[END_REF] 

when it

Table 2 . 3 :

 23 Comparison of the lattice parameters and elastic constants of ZnO obtained using dierent methods.

	2.2.3.1.1 PCRIM potential for MD simulation of ZnO A recent improve-
	ment to the Binks parameterization of the BKS potential was given in Wang et al.
	(2014). There, the functional form of the potential was chosen based on the lattice
	inversion method, and was then empirically improved (tted). The model used in the
	paper is the partially charged rigid ion model (PCRIM) and corresponds to a combi-
	nation of the BKS and Morse potential. It has the fucntional form given in equations
	2.5 and 2.6
	(2.5)

.3. It should of course be noted that the elastic constants are related to the acoustic modes of the crystal which as we can see in Figure 3 are satisfactorily well reproduced. The longitudinal optical modes on the other hand are poorly recreated as well as the high frequency oxygen modes. Hence, the Binks potential should be used with care. Any (non static) optical of thermal properties calculated will inevitably suer from large deviations from experimental values. Φ(r ij ) = Ae -rij /ρ Species Type A(eV ) ρ (Å) C (Å -1)

Table 2 .

 2 

4

: Parameters for the PCRIM potential for ZnO. Taken from

[START_REF] Wang | New ab initio based pair potential for accurate simulation of phase transitions in zno[END_REF]

.

For Zn-O and Zn-Zn interaction

table 3 .

 3 

		1.						
		θ D (K) Source						Reference
	1	322	Calculated from average sound velocity v s =	Wolf and Martin
			3.4 × 10 5 cm/s				(1973)
	2	399	Fitting heat capacity to Debye model at low	Morkoc and Ozgur
			temperature. The sample contained a high	(2009), p.58
			concentrations of defects and impurities
	3	805	Equivalent	temperature	of	the	highest	Serrano (2004)
			phonon-mode frequency at the Γ point for
			ZnO (A	LO 1 = 560 cm -1 ) from ab initio data

Table 3 .

 3 1: Debye temperature of ZnO at room temperature from dierent sources available in literature.

Table 4

 4 

	.1.

Table 4 .

 4 1: Thermal conductance results for the various simulation types of SiGe superlattices. The errors are the standard deviations of the averages during the data collection period.

Table 4 .

 4 1, and the results are given in ± 3 0.01514 ± 0.0009 0.174 ± 0.02 Table 4.2: Thermal boundary resistance of ZnO/C as a function of electric eld strength.
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