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Abstract

The thesis is focused on investigating the e�ect of strain on the thermal conductivity of
piezoelectric materials. Piezoelectric materials are crystals which display a mechanical
deformation upon application of an electric �eld. Examples of such material are ZnO,
AlN, and SiO2. Using Molecular Dynamics simulations, we calculate the thermal
conductivity of unstrained and strained ZnO and AlN crystals. We also calculate the
thermal resistance of SiO/graphene interfaces under strain.

We calculate the piezoelectric and elastic properties of ZnO. These will serve as con-
�rmation of the correctness of the inter-atomic potential used, and will serve to show
the magnitude of strain that is possible to apply. Using non-equilibrium molecular
dynamics, we determine the elastic coe�cient of ZnO c33, and we see that it agrees
with experimental values. We also determine that the elastic limit of a perfect ZnO
crystal is 6 GPa which corresponds to a 6% strain. We also determine the piezoelectric
coe�cient of ZnO using NEMD, and we �nd that the piezoelectric coe�cient d33 also
agrees with literature values.

Second, we look at the e�ect of strain on the intrinsic thermal conductivity of ZnO and
AlN. We use reverse non-equilibrium molecular dynamics to calculate the conductivity
because the computational costs are signi�cantly lower than those for the equilibrium
method; especially for ZnO whose inter-atomic potential contains Coulomb interaction.

We also study the size-e�ect on the thermal conductivity of ZnO and AlN. We show
that the Schelling formula can indeed be implemented to both crystals for di�erent
values of strain. The in�nite length thermal conductivity for ZnO is extracted from the
formula, and it is found to be 410 W/mK. We then calculate the thermal conductivity
of strained ZnO crystals. We show that after correcting for the size e�ect the thermal
conductivity follows a power-law dependence to uniaxial strain. Also, we demonstrate
that the thermal conductivity of ZnO can be a�ected by a static external �eld due to
the induced strain.

The in�nite length thermal conductivity of AlN is found to be 3000 W/mK. We show
that for the case of AlN the e�ect of strain does not a�ect the thermal conductivity
due to the di�erent inter-atomic bonding. Hence, AlN might not be a useful material
for piezothermal application.

Third, we explore the e�ect of piezoelectric strain on the thermal conductance of
SiO2/graphene and ZnO/graphene superlattices. Using EMD we calculate the ther-
mal conductivity of a superlattice composed of silica and graphene monolayers. The
thermal conductance of the superlattice was evaluated under di�erent values of ex-
ternal electric �eld. We �nd that applying a positive electric �eld parallel to the
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Z-direction leads to reduction of the thermal conductance by a factor of 2 for an elec-
tric �eld of 20 MV/m. On the other hand, no change in the thermal conductance
is noted for ZnO/graphene superlattice. The e�ect is due to the non-uniform strain
induced at the superlattice junctions. The e�ect is recreated in Si/Ge superlattice by
mechanically applying a non-uniform strain at the interface. This approach might be
responsible for the scattering of phonons.



Résumé

La thèse est axée sur l'examen de l'e�et de la contrainte sur la conductivité thermique
des matériaux piézoélectriques. Les matériaux piézoélectriques sont des cristaux qui
présentent une déformation mécanique lors de l'application d'un champ électrique.
Des exemples de tels systèmes sont ZnO, AlN, et SiO2. En utilisant des simulations
de dynamique moléculaire, nous avons calculé la conductivité thermique de cristaux
de ZnO et AlN sous contrainte. Nous avons aussi calculé la résistance thermique des
interfaces SiO/C et ZnO/C soumis à un champ électrique.

Nous commençons par le calcul des propriétés piézoélectriques et élastiques de ZnO.
Celles-ci serviront à valider les potentiels interatomiques utilisés, et à montrer l'ampleur
de la contrainte qu'il est possible d'appliquer. En utilisant la dynamique moléculaire
d'équilibre, nous avons estimé le coe�cient élastique c33 de ZnO, qui se trouve être en
accord avec les valeurs expérimentales. Il a aussi été déterminé que la limite élastique
d'un cristal de ZnO est de 6 GPa, ce qui correspond à une déformation de 6

Deuxièmement, nous avons examiné l'e�et de la pression sur la conductivité thermique
intrinsèque de ZnO et d'AlN. La dynamique moléculaire de non-équilibre inverse a
été mise en ÷uvre pour calculer la conductivité parce que les coûts de calcul sont
nettement inférieurs à ceux de la méthode d'équilibre, d'autant plus pour ZnO dont
le potentiel inter-atomique contient les interactions Coulombiennes. L'e�et de taille
sur la conductivité thermique de ZnO et AlN a ensuite été étudié. Nous avons montré
que la formule de Schelling peut en e�et être mise en ÷uvre pour les deux cristaux
pour di�érentes valeurs de la contrainte. La conductivité thermique pour un cristal de
ZnO de taille in�nie est extraite de la formule de Schelling, et elle se révèle être de 410
W/mK. La conductivité thermique de cristaux de ZnO sous contrainte a ensuite été
analysée. Nous avons montré que, après correction de l'e�et de taille, la conductivité
thermique suit une dépendance en loi de puissance à la contrainte uniaxiale. De plus,
la conductivité thermique de ZnO est a�ectée par un champ statique externe en raison
de la contrainte induite. La conductivité thermique d'AlN est estimée à 3000 W/mK,
l'e�et de la contrainte ne modi�e pas cette valeur du fait du potentiel inter-atomique
utlisé. Par conséquent, AlN n'est pas un matériau pertinent pour faire o�ce de switch
thermique.

Troisièmement, nous avons exploré l'e�et d'un déplacement piézoélectrique sur la con-
ductance thermique d'interface de SiO2/graphène et ZnO/graphène. Utilisant la dy-
namique moléculaire d'équilibre, la conductivité thermique d'un super-réseau dont
la période est composée de silice et de graphène polyfeuillet. Le super-réseau a été
évalué pour di�érentes valeurs du champ électrique externe. Nous avons constaté
que l'application d'un champ électrique de 20 MV/m positif parallèle à la direction
hors-plan du super-réseau conduit à la réduction de la conductivité thermique d'un
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facteur deux. D'autre part, aucun changement dans la conductance thermique n'est
noté pour le super-réseau ZnO/graphène. Cette di�érence est due aux di�érences de
déformations induites au niveau des interfaces dans le super-réseau. L'e�et est recréé
dans un super-réseau Si/Ge en appliquant une déformation pour former les interfaces.
Cette approche crée une déformation non uniforme qui est susceptible de di�user les
phonons.
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Chapter 1

Introduction

1.1 Thermal management in the semiconductor in-
dustry

1.1.1 Motivation

Microprocessors Signi�cant enhancements in device fabrication and integration in
the electronics industry have led to a rapid increase in the total power consumption in
electronic circuits. Transistors which form the basic building blocks for microproces-
sors for example have been reduced to a few nm within four decades. This has allowed
manufacturers to pack more of them onto a single die. One of the bene�cial aspects of
this higher density packing is a reduction in signal propagation delays, permits higher
clock-frequencies, and as such better performance. If we take microprocessors for ex-
ample; today's processors are faster and cheaper than older ones by several orders of
magnitude owing to the exponential growth in transistor density. The scaling has sur-
passed the growth predicted by Gordon Moore's empirical law stated in 1965 (Moore
(2006)) which stated that processor transistor density would double every year.

However, in his paper, Moore also indicated that it would also be possible to cool
integrated circuits e�ciently due to the relatively large surface area of integrated
circuits, and the limited number of components that need to be driven. Dennard
scaling justi�es this by indicating that to keep the electric �eld constant in a reduced
transistor, the voltage would have to be reduced as well thus reducing the power
consumption (Dennard et al. (1974)). In fact, today this scaling has broken down,
and we know that this is no longer true. In fact, voltage leakage which leads to
heating is the most acute problem facing the advancement of current integrated circuit
technology (McMenamin (2013)). 50% of the energy consumed by a microprocessor is
dissipated as heat due to its electrical resistance and/or current leakage. This leads
to negative e�ects on the lifetime and performance of these microprocessors. In fact,
the surface density power of microprocessors was approaching that of nuclear plants
(Taylor (2009)) as seen in Figure 1.1.
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Figure 1.1: Plot showing the increase in transistor density and power loss in Intel processors
from Holzer (2007)

LEDs Another electronic device which is also prone to heating issues is LEDs. Light-
ing based LEDs has become an important issue of the current decade due to LEDs
becoming a competitor to conventional lighting sources such as incandescent and �uo-
rescence based lighting. Today, the e�ciencies of LEDs exceed 50% Müllen and Scherf
(2006), and all colors of the visible spectrum are available using di�erent combina-
tions of semiconductors. The lifetimes of LEDs (105 hrs) also compare favourably
with incandescent sources (500h) and �uorescent sources (5000 h). To achieve high
quantum e�ciency in a LED, free carriers need to be spatially con�ned. The light
extraction e�ciency has also proven to be a key factor in increasing the e�ciency of
high power LEDs. The maximum thermal power that may be dissipated in a LED
is determined by the maximum operating temperature and the thermal resistivity of
the LED package. High-power LEDs thus require lower thermal resistivity packaging.
However, active cooling is not used in these LEDs as it would lead to lower power
e�ciency. Rather passive-based cooling is prefered where heat is transported to the
printed circuit board using metal heat sink slugs (Müllen and Scherf (2006)). Light-
ing based LED therefore can su�er from the negative e�ects of overheating, and it is
necessary to reduce the thermal resistivity of the packaging (Weng (2009)). Most of
the electrical energy consumed by a LED is transformed to heat; almost 70%, and if
the temperature of a LED rises above the recommended threshold then its reliability
and lifetime is considerably reduced (Yuan et al. (2006)).

Hence, heat management is an issue for LEDs as well; however, this issue of overheating
in microelectronics can perhaps be turned into a positive outcome. In fact, if we note
the omnipresence of electronics in daily life, it becomes apparent that improving the
e�ciency and giving more thought into controlling the heat losses in these circuits is
a crucial need. The reduction of heat damage to electronic components would lead
to increased lifetime, less waste energy, and perhaps even the transformation of heat
waste into electrical energy.

Current thermal management or thermal protection methods are macroscopic scale
and package level. Heat sinks, fans, and other devices attempt to control the tem-
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Figure 1.2: schematic diagram of a microprocessor showing its main components, and the
abundance of interfaces where heat is generated from Schelling, Shi, and Goodson (2005)

perature of the �nal system by coupling to the external environment. This limits the
e�ectiveness to the e�ciency of the coupling between the environment and the inte-
grated circuit. It thus requires the use of heat spreaders, heat pastes, and other metal
contacts. However, the heat itself is generated at the nanoscale or at the interfaces
between the various components. Hence, in order to better improve heat manage-
ment of these integrated circuits, we must deal with the issue at the transistor level
or at least understand the mechanisms behind heat transfer. Phonons which are the
representations of lattice vibrations in solids are the conductors of sound and heat.
Low frequency vibrations, smaller than 1011 Hz correspond to sound, while higher fre-
quency ones manifest themselves as heat (Figure 1.3. Understanding and controlling
phonons is the �rst step in thermal management and impacting current technology in
a way that was achieved by controlling charge and light transport.

Indeed, it is only when we are able to e�ectively utilize heat through phonons as an
energy source, that one of the world's key questions: the dependence on fossil fuels,
could also be resolved. In a paper presented to MRS bulletin (Smalley (2005)), a
possible plan to utilize solar energy was envisioned by placing solar power plants in
strategic locations around the Earth. However, as the author indicates, the current
state-of-the-art technologies involving solar power do not permit a cost-e�ective gen-
eration of solar-electrical power to meet current energy demands. On the other hand,
if we were able to develop solutions to control/stop electron-heat relaxation channels
in semiconductors then production of more e�cient solar cells can be achieved. In this
case, the goal is to reduce the thermal conductivity rather than to increase it as in

Figure 1.3: Phonon spectrum and its applications. Figure from Maldovan (2013).
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the previous cases. Nevertheless, in this aim we still must be able to understand and
control the �ow of heat in a semiconductor.

1.2 Static and transient thermal management

The emergence of the branch of phononics in recent years is the attempt to under-
stand and utilize phonons, the carriers of heat energy in semiconductors, in a bene�-
cial way. One can classify two approaches to this task: the static and the dynamic.
The static approach has proven to be useful when it comes to the topic of thermo-
electrics, for example. One strategy consists in introducing crystallographic defects, by
adding impurities, alloying, or nano-structuring (Iskandar et al. (2015),Pernot et al.
(2010),Dresselhaus et al. (2007)). The aim of introducing defects or alloying is to
increase the scattering of phonons. The scattering rate will of course depend on the
frequency of the phonon-mode, on the temperature, and other factors. These method
are usually employed in thin �lms of silicon, germanium, aluminium nitride, as well
as other semiconductor thin �lms. Other methods of heat management which involve
phonon con�nement and localization which are phenomena that manifest themselves
in nanostructures and superlattices (Venkatasubramanian (2000), Kim et al. (2006),
Balandin and Wang (1998)). Surprising values of the �gure of merit ZT have been
achieved using these techniques (Suriano et al. (2015), Gunes and Ozenbas (2015),
Wu et al. (2014)), and the topic remains an object of active research.

Although static tailoring of the thermal conductivity is of great interest, dynamic con-
trol of heat transport can o�er interesting scienti�c and technological applications as
well; it may even be unavoidable at times. For example, dynamic heat management
can be well suited for systems which are required to adapt to their environment. For
example, recent works on developing phonon analogues to the electric diode, tran-
sistor, memory, and logic gates (Li et al. (2012)) would allow for applications such
as heat-based data storage (Wang and Li (2007)) or "smart" thermoelectric devices
which could maximize their e�ciency by adjusting their thermal properties to the ex-
ternal temperature. Other examples involve devices which can change their thermal
properties depending on a heat load. Component heating in electronic devices, at the
end of the day, is dependant on the task load, and such heat loading is essentially of a
transient nature. Hence, transient heat management lends itself naturally in this case.

Some of the recent works which approached the idea of transient heat management
include thermal recti�cation, which has been observed experimentally (Kobayashi et al.
(2010), Chang et al. (2006)). However, recti�cation coe�cients remain very small for
potential integration in applications. Van Zwol et al. (2011) have showed electrically
controlled fast nanoscale heat-�ux modulation with phase-change materials. They
obtained a signi�cant contrast of heat �ux due to the interplay between radiation
heat transfer at the nanoscale and phase-change materials. Ihlefeld et al. (2015)
have experimentally demonstrated for the �rst time, active and fully reversible control
thermal transport in a solid-state device using ferroelectric thin �lms. Strain has
also been used to modify the thermal conductivity dynamically. In a recent study Li
et al. (2014) have showed that large reversible changes to thermal conductivity on the
order of 70% could be achieved using 2% strain due to the change in the density of
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twin-boundaries in thin �lms. The increase in twin-boundary density has been shown
to vary concurrently with the thermal conductivity. Kulkarni and Zhou (2007) have
also shown that thermal conductivity can be modi�ed in ZnO nanowires using strain.
Under high strain values, above the elastic limit, the phase-change from wurtzite to
hexagonal structure induces a change in the thermal conductivity by a factor of almost
two. Such e�ects could be exploited in the development of non-mechanical thermal
modulators. Other studies have also shown that strain can be e�ective in a�ecting
the thermal transport in nanostructures (Li et al. (2010a)) and bulk crystals (Parrish
et al. (2014)). Our motivation for this work is to try and see whether it is possible
to modify the thermal conductivity of a piezoelectric material using an electric �eld
through strain.

1.2.0.1 The thermal switch

A prototype model for a mechanical thermal switch device was presented in Cho
et al. (2008). The device is based on two contacts as seen in Figure 1.4 where they
are brought closer together by mechanical actuation. The presence of a high-thermal
conductivity material in between the substrates or leads changes the thermal resistivity
of the device once the two contacts touch. Cho et al. (2008) tested several di�erent

(a) Concept of MEMS thermal switch.

(b) Liquid-metal micro droplets.

Figure 1.4: A MEMS thermal switch schematic and real-life counterpart. Adapted from Cho
et al. (2008)

designs of the contacts such as: silicon-Hg, CNT-Si, CNT-Au-Si, and CNT-CNT.
They concluded that the designs based on liquid-metal droplets-based had superior
on/o� ratio than carbon nanotube based ones. The CNT based switches had high
thermal resistance between the CNTs and the other contacts. Hence, their on/o�
ratios were low. The on/o� ratio of the liquid-metal based switch; on the other hand,
was roughly 1:100. The applicability of such a switch into a circuit or device is however
not discussed. Although Such MEMS devices have high e�ciencies when it comes to
on/o� ratios they do su�er from size disadvantages and from operational degradation..
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Other models for thermal switches come from recent works into the e�ect of strain
on thermal conductivity. These works show the possibility of modifying thermal con-
ductivity by mechanical strain. One of the �rst work which showed the piezo-thermal
conductivity in semiconductors was reported by Keyes and Sladek (1962). For low
temperatures it was reported antimony-doped Ge crystals showed a large increase in
their thermal conductivity when <111> or <110> tensile strain is applied. The the-
ory of scattering of phonons by donors predicted the magnitude and e�ect of applying
strain which modi�ed the electrons bands of the antimony donors in the crystal. More
recently, Alam et al. (2012) used free-standing amorphous silicon nitride thin �lms
to this end. The authors used �lms which were 50 nm thick, and the whole device
(actuator and sample are a few hundred micrometers large as seen in Figure 1.5. By
coupling the �lm to a MEMS actuator they were able to apply large tensile strains
to the �lms, up to 2.4%. They observed in their experiments that the thermal con-
ductivity decreases with tensile strain, and that the decrease can be up to a factor of
almost 8. The authors attributed this decrease to the strong localization of phonon
modes in amorphous structures which is not present in crystalline solids. The trend
reported in this study di�ers markedly from experimental measurements performed
by Ftouni (2015), who studied thermal transport in SiNx membranes by coupling the
3ω method to the Völklein geometry and observed that residual stress has no e�ect
neither on the speci�c heat nor on thermal conductivity.

In a more recent paper Alam et al. (2015) have also shown that the thermal con-
ductivity of 200nm amorphous SiNx can be increased upon mechanical loading up to
2.5%. This contrasting result to the previous experiment was explained by the authors
through possible changes in microstructure and/or carrier density. In all cases, we can
see that the topic of a�ecting thermal conductivity using mechanical strain exhibits
signi�cant variability and promise. This opens up large possibilities for study and
experimentation to build a device such as the thermal switch.

Figure 1.5: (a) Figure showing the single layer SiN three-strip actuator, (b) Scanning elec-
tron micrograph of a specimen, (c) Strain is measured post-experiment fracture of the speci-
men. Adapted from Alam et al. (2015).

As a theoretical "ideal" component our thermal switch is a device that should have
dynamic thermal conductivity. When the switch is in the "on" state the heat �ow is
nominal; the component is a good conductor of heat. In the "o�" state the component
has a low thermal conductivity, and acts as an insulator. The switch can be triggered
by applying strain to the crystal. In the case of a piezoelectric material this strain can
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be applied using an external electric �eld. It would also need to have a fast dynamic
time and an high on/o� ratio to be e�cient. Possible candidates for this application
are zinc oxide and aluminium nitride because they exhibit high thermal conductivities
and high piezoelectric coe�cients.

1.3 Physical background behind solid-state switches

We will now review the necessary physical concepts behind solid-state switches such
as lattice vibrations, phonons, thermal conductivity, elastic behaviour of solids, and
piezoelectric phenomenon. We will begin by a brief review of the model of thermal
conductivity in solids. Since ZnO and AlN are binary compounds and their unit cells
contain four atoms, we will use a 1D linear chain in the harmonic lattice approximation.
This will help present the phonon-mode properties of wurtzite crystals along the c-axis
which may be considered as a linear chain. Next, we introduce the notions of stress and
strain, the elastic behaviour in solids. It is also important to elucidate the connection
between strain and thermal conductivity. We will also present the phenomenon of
piezoelectricity. Finally, we will also discuss some of the general properties of ZnO
and AlN, and explain why they are the best candidate materials.

1.3.1 Lattice vibrations

The topic of lattice vibrations whether addressed with a classical or quantum treatment
is the �rst chapter in any book on solid-state physics. For the following discussion we
will use the former treatment adapted from Srivastava (1990).

Figure 1.6: A two-atomic linear chain with lattice constant 2a and masses m and M (m <
M) at the equilibrium position from Srivastava (1990)

In most solid materials (crystalline), atoms or molecules are arranged in a regular
array of sites, or points in a three-dimensional space, which is known as the crystal
lattice. A crystal structure describes a highly ordered structure, occurring due to the
intrinsic nature of molecules to form symmetric patterns. At any �nite temperature,
atoms vibrate about their equilibrium positions. Under the classical approximations,
those atom motions can be mathematically described by the Newton's second law if
the force applied on each atom and the atomic mass are known.

If we take the linear atomic chain shown in Fig. 1.6, and we assume only nearest-
neighbour interactions, we can write the equations of motion for the 2n and 2n+1
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atoms equations 1.1 and 1.2

m
d2u2n

dt2
= Λ (u2n+1 + u2n−1 − 2u2n) (1.1)

M
d2u2n+1

dt2
= Λ (u2n+2 + u2n − 2u2n+1) (1.2)

Λ is the 2nd order force constant derived from the interaction potential equation 1.3

Φ(u) = Φ0 +
1

2!

∑
nk

unuk
∂2Φ

∂un∂uk︸ ︷︷ ︸
Λnk

+
1

3!

∑
nkl

unukul
∂3Φ

∂un∂uk∂ul
+ · · · (1.3)

If try solutions 1.4 and 1.5

u2n = A1 exp i(2nqa− ωt) (1.4)

u2n+1 = A2expi((2n+ 1)qa− ωt) (1.5)

Then equations 1.1 and 1.1 are transformed into the coupled eigenvalue equations
equations 1.6 and 1.7

−ω2mA1 = Λ
[
A2e

iqa +A2e
−iqa − 2A1

]
(1.6)

−ω2mA2 = Λ
[
A1e

iqa +A1e
−iqa − 2A2

]
(1.7)

This leads to the matrix equation

ω2Ai =

2∑
j=1

DijAi i = 1, 2 (1.8)

where Dij is the dynamical matrix which contains the elastic coe�cient Λ and the
masses m,M given by

D =

(
2Λ/m −(2Λ/m)cosqa

−(2Λ/M)cosqa 2Λ/M

)
(1.9)

This leads to the secular equation 1.10∣∣Dij − ω2δij
∣∣ = 0 (1.10)

Solving equation 1.10 gives the dispersion relation relating the frequency ω to the
wavevector q of the phonon mode equation 1.11.

ω2 = Λ

(
1

m
+

1

M

)
± Λ

[(
1

m
+

1

M

)2

− 4

mM
sin2qa

]1/2

(1.11)

Equation 1.11 is plotted in �gure 1.7. The maximum frequency is known as the Debye
frequency. The Debye temperature is related to it using the relation θD = ~ω/kB .
Figure 1.7 shows two branches. The top branch is the optical branch, and the lower
one is the acoustic branch. The optical branch describes the displacement of the atoms
in the primitive or conventional cell. They describe motions of the atoms in opposite
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Figure 1.7: Dispersion relation for linear diatomic chain.

directions. Therefore, if the two atoms have opposite charges, these modes would be
excited by an electric �eld of the appropriate frequency. The frequencies of said electric
�elds correspond to the infrared part of the light spectrum. Hence, the name optical
branch. The acoustic branch, on the other hand, corresponds to the in-phase motions
of the atoms. This is characteristic of a sound wave. Close the Γ point qa << 1
the dispersion relation described by Eq. 1.11 can be simpli�ed by considering the
relationships sinx ≈ x and

√
1− x = 1− 1

2x when x << 1 to give equation 1.12

ω2 ≈ Λ

2(m+M)
q2a2 (1.12)

Equation 1.12 provides a linear dependence of frequency on q for the acoustic branch
which means a constant group velocity for the acoustical phonons which is known as
the sound velocity in materials. These long wavelength modes are also called elastic
waves, and can be studied through the application of the wave equation. Such a
treatment would see the solid as a continuum rather than a discrete set of particles.

For a one-dimensional linear diatomic chain we see that we have two branches. For the
case of a three-dimensional chain, the number of branches will be 6 or D ×N where
D is the dimensionality and N is the number of atoms in the unit cell (primitive or
otherwise). Among the DN branches, D branches will be acoustical branches and
DN − D will be optical. Acoustical branches contribute more to heat conduction
because of their higher group velocity, as we shall see in the next section. However,
optical modes also play a major roles in phonon-phonon scattering indirectly.
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1.3.2 Typical thermal conductivities of semiconductors

The application of a temperature gradient ∆T across a solid results in the excitation
of elementary particles such as free electrons, holes, and phonons which acquire more
energy than the average or zero-point energy, and transfer heat from the hotter to
the colder part of the specimen Srivastava (1990), p.122. In the quantum picture
of the coupled harmonic oscillators, which we will not discuss, the energy levels are
quantized En =

(
1
2 + n

)
~ω where n = 0,±1,±2, · · · ,±N2 , where N is the number of

atoms. 1
2~ω is the zero point energy if a quantum harmonic oscillator. In addition,

the Hamiltonian can be diagonalized and has the form seen in equation 1.13

H =
∑
q

3∑
s=1

~ωq,s
(
b†q,sbq,s + 1/2

)
(1.13)

Where it can be shown that b†q,s, bq,s respectively create and destroy one excitation
of energy ~ω. These excitations are phonons. From this viewpoint, phonons can are
regarded as quasi-particles which obey Bose-Einstein statistics, and the Boltzmann
equation approach can be applied to them in order to study thermal transport in
solids. The general form for the Boltzmann equation for phonons in the steady state
of heat-�ow is given in equation 1.14

−cs · ∇T
∂nqs
∂T

+
∂nqs
∂t

∣∣∣∣
scatt

= 0 (1.14)

Where nqs is the distribution function nqs(r, t) which measures the occupation number
of phonons in mode (qs), where s is the polarization, in the neighborhood of r at time
t. T is the temperature, and cs(q) is the group velocity of mode qs.

In the absence of a temperature gradient nqs is given by the Bose-Einstein distribution
Eq.1.15

n̄qs := n̄(ω, T ) =
1

exp ~ω(qs)
kT − 1

(1.15)

In the presence of a temperature gradient the phonon distribution is spatially non-
homogeneous which leads to a rate of change of the distribution function, as described
by equation 1.14, due to two mechanisms: di�usion and scattering; which in the case
of steady state must cancel out. Generally, equation 1.14 cannot be solved because
it is very complicated as it requires knowledge of the distribution function nqs for all
possible states qs as well as the transition rates from state qs to q′s′ Srivastava (1990).
Therefore, equation 1.14 is simpli�ed using the relaxation time approximation Eq.1.16

∂nqs
∂t

= −nqs − n̄qs
τqs

(1.16)

Where τqs represents the relaxation time associated with phonon qs decaying to the
average BE distribution. The combination of equation 1.16 with assumption of spatial
homogeneity (small temperature gradient) leads to the linearized Boltzmann equation
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Eq. 1.17

−cs(q) · ∇T ∂n̄qs
∂T

=
nqs − n̄qs

τqs
(1.17)

What is important to us is the relaxation time τqs which is associated with di�erent
scattering mechanisms of phonon-scattering such as: mass defect scattering, bound-
ary scattering, dislocation scattering, phonon-electron scattering, and phonon-phonon
scattering to name some of the more dominant ones. The scattering rates are depen-
dent on the phonon-mode qs and on temperature. In the next section we will discuss
some of them, and see how they a�ect thermal conductivity; paying some attention to
strain scattering.

Lattice thermal conductivity For a solid subjected to a temperature gradient,
Fourier's law describes the rate of energy �ow per unit area normal to the temperature
gradient (macroscopic expression) Eq.1.18:

q = −κ∇T (1.18)

where κ is the thermal conductivity. The expression for the heat current in a solid is
obtained by adding the contribution of all phonons:

q =
1

N0Σ

∑
qs

~ω(qs)nqscs(q) (1.19)

Naturally, the thermal conductivity well then depend on the solution of the Boltzmann
equation which in turn depends on the expression for the relaxation time. There
are several di�erent levels of sophistication to describing phonon relaxation processes
through the associated relaxation time. The simplest of which is the single-mode
relaxation time approximation (smrt) which assumes that one calculates the relaxation
rate of phonons in mode qs under the assumption that all other phonon modes have
their equilibrium distribution. What is also important is that the inverse of the total
smrt τqs can be expressed as a sum of contributions from all the di�erent scattering
mechanisms (Srivastava (1990)):

τ−1
qs = τ−1

qs (bs) + τ−1
qs (md) + τ−1

qs (pp) (1.20)

where bs,md, pp stand for boundary scattering, mass-defect, and phonon-phonon, re-
spectively.

Along with the smrt approximation there are other approximations to simplifying the
expression for the thermal conductivity which lead/correspond to di�erent models
such as the Klemens model (Klemens (1951)), the Callawy model (Callaway (1959),
Holland (1963)), and the Srivastava model (Srivastava (1990), p.134). Avoiding any
extended comparison or detailed explanation of these models, they can, eventually, all
be expressed in the form of the kinetic theory expression (Eq. 1.21)

κ =
1

3
CV v̄

2τ̄ (1.21)
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Where CV is the phonon speci�c heat de�ned as CV = C/V where C is the heat-
capacity of the solid (at high temperatures it is equal to 3NkB). v̄ and τ̄ are average
phonon speed and average phonon relaxation time which depend on the particular
model.

A graph showing the variation of the thermal conductivity of some typical metals and
nonmetals is shown in Figure 1.8.

At low temperatures (well below θD) the thermal conductivity of nonmetals such as
Si and quartz follows a T 3. This is related to the heat capacity of the solid which
from the Debye model changes as T 3. More so at low temperatures it can be veri�ed
within the smrt model that longitudinal phonons contribute only about 10-25% of
the total thermal conductivity of semiconductors and insulators while most of the
heat is carried by the transverse phonon modes (Srivastava (1990), p.235). At high
temperatures anharmonic scattering is the predominant scattering mechanism, and
the thermal conductivity will usually follows a T−1 behaviour due to that. However,
stronger than a T−1 has been observed experimentally. The stronger dependence can
be satisfactorily explained by including the e�ect of thermal expansion which makes
the elastic constants and as such the Gruneisen coe�cients temperature dependent
(Srivastava (1990), p.239). This is a �rst insight into the e�ect of strain on thermal
conductivity. Acousto-optical scattering also plays a big part at high temperatures.
For temperatures in-between it is the predominance of defects limiting the mean-free
path of phonons.

The e�ect of strain on thermal conductivity of non-metals One relevant scat-
tering mechanism that we would like to discuss brie�y is strain scattering of phonons.
The relaxation time associated with elastic strain �eld scattering of phonons has been
studied by Carruthers (1959) using second-order perturbation theory. It was found by
the author that the Fourier component of the strain �eld plays a similar role to that of
the potential. This is not unexpected as phonons can be regarded as lattice vibrations
or localized strains. The application of the theory to edge dislocations at low temper-
ature shows that the scattering rate is proportional to the density of dislocations σ
and to the wavevector magnitude q. Carruthers (1959) also determined a Boltzmann-
like equation for the change in the phonon distribution nqs due to the interaction of
phonons with the strain �eld. The results for such a procedure are valid for simple
crystals with 1 atom per unit cell or for complex crystals at low temperatures.

1.4 Piezoelectric crystals

In three dimensions there are 219 space groups, and 32 point groups. A crystal will be-
long to one of these space groups, and to its corresponding point group. The symmetry
of the point group will determine the minimum symmetry of the material properties
of the crystal such as its elastic constants, its thermal conductivity, or its dielectric
constant. For example, for cubic crystals, face-centered, body centered, or simple,
the three main directions: [100] [010] and [001] are indistinguishable. Hence, the
thermal conductivity κ[100], κ[010], κ[001], and the elastic constants C11, C22, C33 are
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Figure 1.8: Thermal conductivity as a function of temperature for some typical materials.

equal. This is the most important principle in Crystal Physics called Neumann's Prin-
ciple Newnham (2005). A property which also depends on the symmetry of the crystal
is piezoelectricity. The piezoelectric e�ect was discovered in 1880 by Pierre Curie and
Jacques Curie. In certain crystals the application of stress (usually uniaxial) will result
in a non-vanishing macroscopic electric polarization �eld Pi. The coe�cient of propor-
tionality is the direct piezoelectric coe�cient dijk eq 1.22. The converse-peizoelectric
e�ect relates the strain τij to the external electric �eld Ei. From thermodynamic ar-
guments it is shown that the two e�ects have the same coe�cient. The units of dijk
are [C/N] or [m/V], which are equivalent. The inverse-piezoelectric e�ect eijk = d−1

ijk

simply inverses the relations in eq 1.22. It is used in the creation of ultrasonic surface
waves.

Pi = dijkσjk (1.22)

τij = dijkEk

Some typical values of dijk are shown in �g 1.9.
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Figure 1.9: Values of piezoelectric constants for some typical materials from Newnham
(2005)

For the 32 point groups in three dimensions, 21 are piezoelectric. Of the remaining
11, 9 are centrosymmetric: they posses a center of inversion. Centrosymmetry forbids
the presence of the piezoelectric e�ect. ZnO and AlN both belong to the (6mm) point
group or the wurtzite crystals structure P63mc space group. The piezoelectric e�ect
manifests in that structure due to the displacement of the ions from their equilibrium
lattice positions. This leads to a non-vanishing polarization. The structure has 3
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independent piezoelectric coe�cients

P1

P2

P3

 =

 0 0 0 0 d15 0
0 0 0 d15 0 0
d31 d31 d33 0 0 0



τ1
τ2
τ3
τ4
τ5
τ6

 (1.23)

ZnO has the largest piezoelectric coe�cient d33 of all binary semiconductors. There-
fore, it will exhibit the largest strain for a set electric �eld value. Typical dielectric
breakdown �elds for most materials are around 1-10 MV/m; that translates to 0.1-10
MPa stress or 0.001-0.01% strain for ZnO and AlN.

1.5 Organization of the thesis

In chapter 2 we will introduce the numerical methods used to study the e�ect of strain
on thermal conductivity. This mainly includes non-equilibrium and equilibrium molec-
ular dynamics simulations (NEMD and EMD). We will introduce the inter-atomic
potentials used for the simulation of di�erent materials.

In chapter 3 we show the results concerning the e�ect of uniaxial strain on the thermal
conductivity of bulk ZnO and AlN crystals. We apply mechanical strain ranging
between -6% and 6%. We demonstrate that the dependence of thermal conductivity
on strain follows a power law. We also study the size e�ect on the calculation of the
thermal conductivity using NEMD for ZnO and AlN, and show that it is independent
from the value of the strain applied. We also show evidence of the modi�cation of the
thermal conductivity of ZnO using an external electric �eld. For AlN we show that
the thermal conductivity is not a�ected by compressive or tensile strain for the values
proposed.

In chapter 4 we study the e�ect of local non-uniform strain on the thermal conductance
of superlattices of Si/Ge, SiO2/C, and ZnO/C. We use non-equilibrium molecular
dynamics to show that in Si/Ge superlattices local in-plane and cross-plane strain
at the interfaces leads to the same drop of thermal conductance. The e�ect of an
external electric �eld on the thermal conductances of SiO2/C and ZnO/C superlattices
is studied using EMD and NEMD. We show that it is only for the case of SiO2/C
superlattices that a local strain can be applied, and that such strain leads to reduction
of the thermal conductance. For ZnOC superlattices, on the other had, no modi�cation
of the conductance is seen. The results for SiO2/C show promise for applications in
piezothermal devices.

Finally, we conclude the thesis by reviewing the major results, and by indicating the
work that is still required to validate them.





Chapter 2

Molecular Dynamics

2.1 Introduction

�Une intelligence qui, pour un instant donné, connaîtrait toutes les forces
dont la nature est animé, et la situation respective des êtres qui la com-
posent (. . . ) rien ne serait incertain pour elle, et l'avenir comme le passé,
serait présent à ses yeux.�

� Pierre Simon Laplace, Essai Philosophique

Molecular dynamics is a powerful tool for calculating the static and transport prop-
erties for a range of systems; gas, solid, and liquid. It has been applied to a number
of important and di�cult problems involving protein folding, crack propagation in
solids, and non-newtonian �ows. The power of MD is providing detailed atomic level
information that is necessary and unavailable in other methods which use continuum
modelling. Historically, MD was used mainly for liquids; as solids and gases already
had well established theories such as the kinetic theory and the Debye model for simple
crystals at a range of temperatures. These models are well suited for describing solids
and liquids at thermal equilibrium

MD simulations can have an important role in bridging the gap between theory and
experiment. They can provide a way to obtain useful information about a system of
interest before investing time and e�ort. Apart from some of their limitations, MD
simulations do not remove the anharmonicities of the atomic interactions. Even though
the interactions are not as 'accurate' as ab initio based methods they can still reproduce
many interesting macroscopic properties that have to do with phonon transport such
as thermal expansion, thermal conductivity, and some interesting phase transitions.
The computational costs of MD vary depending on the size of the system, and the
complexity of the inter-atomic potential. Typically, systems from a few hundred up
a few million atoms are possible to simulate using MD, and potentials can include
two-body, three-body, and other e�ects.

In the following, we will discuss the requirements to building a MD simulation, its
limitations and relevant quantities that can be obtained by applying statistical anal-
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ysis. This development will serve as a background to the later derivations of thermal
conductivities and piezoelectric coe�cients in chapters three and four.

2.2 Physical principles of Molecular Dynamics

2.2.1 Equations of Motion

As shown in Eqs. 2.1, MD simulations begin by the time integration of Newton's
equations of motion for each atom which are considered as a classical point masses.
The forces between the atoms are set by the derivatives of the interaction potential.
Figure 2.1 represents typical features of a MD cell. The unit cell represents the unit
cell of the solid. This can be the conventional or primitive cell de�ned for the crystal
structure. The unit cell as de�ned here needs to recreate the periodic crystal structure
when tiled along the three directions X,Y, and Z. The supercell represents the cuto�
radius of the inter-actomic potential. In Figure 2.1 it shows that the simulation takes
into account with �rst and second neighbor interactions of each atom. It is important
for the �nal size of the domain to be twice as large as the cuto� distance to avoid any
self-interaction e�ects. We can also see that in this representation we have two di�erent
atom types, and boundary conditions. When an atom crosses a periodic boundary it
is remapped back into the simulation domain rather than being lost. With periodic
boundary conditions the atoms across the boundaries are interacting; hence, periodic
-boundary conditions simulate bulk structures.

After initialization the positions and momenta of the atoms are allowed to evolve
according to the classical equations of motion. For N atoms we have 6N equations.
Without other constraints the equations will represent a single phase trajectory of the
system in microcanonical ensemble. The number of atoms, volume, and energy are
conserved (NVE). The canonical ensemble (NVT) can be simulated by the addition
of a Nosé-Hover thermostat Hoover (1985). This is done by the addition of an extra
equation to the set of 6N equations. MD simulations, in general, are deterministic
and time-reversible.

m1
d2r1

dt2
= F1

m2
d2r2

dt2
= F2

... (2.1)

mN
d2rN
dt2

= FN
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Figure 2.1: Representation of the basic element of a MD cell where atoms are interacting
through potential forces. Periodic boundary conditions are used to induce a translational
symmetry and mimic an in�nite size system.

where, taking Φ(rij) as the interatomic potential function

F(i) =
∑
j 6=i

Fij = −
∑
j 6=i

∂Φ(rij)

∂rij

(2.2)

Here mi is the mass of atom i, ri refer to the position of atom i. Fi is the force on
atom i due to all its neighbours. The derivatives are calculated analytically from the
interaction pseudopotential Φ. Examples of which are reported in Table 2.1.

2.2.2 Solving the equation of motion

Two initial conditions are required for each atomic trajectory to be calculated -as
indicated by the second time-derivative term in the motion equation-, therefore initial
positions and velocities for each atom should be set in the �rst place. When crystals
are to be computed, the positions are set by the crystal lattice. Unfortunately, the
length scales involved in MD are on the order or a few hundreds of nanometers. Hence,
structures such as polycrystalline solids or thick interfaces cannot be fully resolved due
to computational limitations. Nano-structures, on the other hand, are perfectly suited
for MD. Velocities can be randomly drawn according to a Maxwellian distribution
including the desired temperature, but a white noise distribution might also be relevant
as its relaxation to the Maxwellian distribution is reached within fewer atomic periods.

Then a numerical scheme allows for calculating the atomic trajectories, the simplest
numerical scheme being:

p(i, t+ ∆t) = p(i, t) + F(i, t)∆t

r(i, t+ ∆t) = r(i, t) + p(i, t+ ∆t)∆t/mi
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Potential Name Functional form Φ(rij) Relevant materials

Buckingham A exp (−r/ρ)− C
r6 SiO, ZnO, MgO (oxides, ionic

compounds)
Lennard-Jones A/r12 −B/r6 Argon, graphene
Morse D

[
(1− exp (−a(r − r0)))2 − 1

]
ZnO, NaH (diatomic
molecules)

Coulombic −qiqj/r ionic compounds

Table 2.1: List of common MD potentials used in this work

Here ∆t is the timestep, p(i) is the momentum of atom i. F(i) is the force on atom i
due to all its neighbours. Note that the large toolbox of numerical techniques for inte-
grating di�erential equations is currently used in the standard online codes typically
including high-order Runge-Kutta and Verlet algorithms. The timestep is chosen such
that 1/∆t is larger than the maximum vibrational frequency in the system. For ZnO,
this frequency lies around 18 THz and around 20 THz for Si, which corresponds to a
period of 55 fs. Hence, a timestep of 1 fs would ensure a reasonable resolution of all
atomic vibrations and conservation of the total energy with �uctuations on the order
of 0.001%.

The initial state of the system should not have an in�uence on the measurement of
macroscopic quantities that is to be made, which is the case once the chosen initial
coordinates describe the chosen statistical ensemble and are averaged either over a
su�cient duration or over a large enough number of trajectories.

Once the initial state is set and the system is allowed to evolve, thermal equilibrium
has to be reached. Due to their di�erent orders, di�erent macroscopic quantities,
such as temperature, pressure, heat �ux, strain..., relax to their equilibrium values
on di�erent timescales. While temperatures are converging as quickly as one atomic
period at equilibrium, several nanoseconds might be required for the heat �uxes to
reach the relevant regime.

As the rms �uctuation amplitude of temperature is reversely proportional to the square
root of the number of samples, averaging over more timesteps might also be needed
for small systems. Thermal equilibrium can �nally be con�rmed by the convergence
of the temperature integrated over time or by checking that the distribution of the
velocities is Maxwellian-like.

2.2.3 Forces

The inter-atomic forces are perhaps the most challenging aspect of a MD simulation.
They are set using available models from the literature and have to be chosen according
to the quantities to be estimated. The features of the force �eld are especially crucial to
describe the thermal conductivity. The Boltzmann description of this latter quantity



LIST OF FIGURES 21

is in an integral over the phonon modes:

κL =
1

3

∫
~ωqv2

gτq
∂N0

q

∂T
D(q)dq (2.3)

where the density of states D(q) and the frequencies versus wave-vectors appear and
are speci�c to a given solid crystal, depending on the crystal lattice and the inter-
atomic potential. The selected potential will have to provide the accurate phonon
dispersion curves and density of states.

2.2.3.0.1 Potential for ZnO For oxides, and more speci�cally for ZnO, most
studies use the Van Beest, Kramer, and van Santen (BKS) potential. The BKS po-
tential is a two-body potential which was originally developed in 1990 for silica and
aluminophosphate polymorphs (van Beest et al. (1990)). It takes the following form

Φij =
qiqj
rij

+Aije
−rij/ρij − Cij

r6
ij

(2.4)

The �rst term describes point-charge interaction. This is usually the most compu-
tationally demanding portion of the potential since it is slow to converge, and will
only do so under certain conditions. Ewald summation (Ewald (1921)) is usually em-
ployed to handle the long range nature of this coulombic interaction. The problem
with coulombic interactions which have a r−1 form is that they are unbounded; there-
fore, they require special computational techniques. However, less computationally
methods such as the cell-multipole (Ding et al. (1992)) and Wolf method (Wolf et al.
(1999)) also exist, and have been shown to reproduce the general dynamics and en-
ergies of Ewald summed systems (Fennell and Gezelter (2006)). The value qi will be
close to that of the formal charge of the atom i. Empirical �ttings of the potential
might however cause deviations from the conventional charge values.

The remaining terms form what is known as the Buckingham potential. The �rst term
describes repulsion at short range due to the overlap of closed electron shells (Pauli
type repulsion). It replaces the r12 repulsion term in the well-known Lennard-Jones
potential. The A and ρ parameters are in units of energy and distance respectively.
The latter of which should be used to determine the required cut-o� value for the
potential. In van Beest's et al original paper these two parameters for the ij species
were obtained by �tting the potential to ab initio data.

Finally, the last term is the well-known London dispersive term, and was originally �t-
ted using bulk rather than ab initio data. However, the term also has a well-established
physical meaning J. (1994) and maybe calculated using the Slater-Kirkwood formula
Slater and Kirkwood (1931) as was done for the case of ZnO.

Although this potential has a relatively simple form, for example, it does not contain
any three-body terms, it has supplied, rather successfully, several important features
of silica such as the the transition temperature of quartz, the unit cell parameters,
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Species A (eV) ρ (Å) C (eV.Å−6)

O2−-O2− 9547.96 0.21916 32.0
Zn2+-O2− 529.70 0.3581 0.0
Zn2+-Zn2+ 0.0 0.0 0.0

Table 2.2: Coe�cients for inter-atomic potential representing ZnO

elastic constants van Beest et al. (1990), and piezoelectric constants Herzbach et al.
(2005) close to experimental values. Hence, the validity of the potential over a range of
pressure values and over a number of di�erent silica polymorphs made this functional
form attractive for use in molecular dynamics simulations. Van Beest's paper speci�es
that the potential could be applied to �... any other chemical elements that form
tetrahedral network oxides..." van Beest et al. (1990). However, there still exists
certain discrepancies when using this potential. For example, a recent paper has
shown the advantage of other potentials incorporating extra degrees of freedom, and
it has displayed the shortcomings of the BKS potential Herzbach et al. (2005) when it
comes to fundamental quantities such as the vibrational density of states. Therefore,
extensions to the potential and even modi�cations are providing better accuracy. For
example, one may extend the potential by a shell model which aims at modeling
the polarizability of an atom using an additional degree of freedom represented by
a massless particle harmonically coupled to the ionic core Herzbach et al. (2005).
Another closely related potential to the BKS potential was proposed by Vashishta et
al. It adds steric repulsion, Debye screening, charge-dipole interaction, and three-body
terms to the functional form and has been applied to several materials including SiO,
SiC, and AlN Vashishta et al. (1990), Vashishta et al. (2007), Vashishta et al. (2011).

2.2.3.1 Validation of inter-atomic model for ZnO

The wurtzite zinc oxide crystal belongs to the P63mc space group - hexagonal lattice.
J. (1994) provided an empirical �t of the BKS potential for the case of ZnO using
the lattice energy, cell parameters, and elastic constants for several structures. This
�t done under a shell model, but the results should be equally valid for the point
ion model. In fact, the Binks parametrization of the BKS potential both using the
shell and core-only versions have been used in several MD simulations of ZnO; more
speci�cally to study the piezoelectric properties of ZnO Momeni et al. (2012), Kulkarni
and Zhou (2006), Dai et al. (2010). The Binks coe�cients for ZnO are given in Table
2.2

We �rst calculate the density of states for a perfect ZnO crystal using the veloc-
ity autocorrelation function. The initial cell parameters are a=3.265, c=5.155, and
u=0.3882. We start with 15 unit cells in each direction, apply periodic boundary
conditions and relax the system in an NPT ensemble for 10000 timesteps (timestep
1éfs). After which we obtain the vibrational density of states by taking the Fourier
transform of the velocity autocorrelation. We compare our results with ab initio data
from Serrano (2004). We use here the GULP code Gale and Rohl (2003) to calculate
the phonon density of states and dispersion curves.
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(a) BKS potential (b) PCRIM potential

Figure 2.2: Comparison of dispersion relations and vibrational density of states for ZnO
calculated using MD and lattice statistics at 0K. The white points/curve represents the ab
intio data, and the dark lines/curve represent our calculating using MD for the DOS and
lattice dynamics for the dispersion curves.

We also present the dispersion curves along several symmetry directions and compare
them to ab initio data also obtained from Serrano (2004). The data was calculated
using the code GULP for the same potential (core-only) and cell parameters used in
the MD runs. Ewald summation was used in both the lattice dynamics and molecular
dynamics simulations to calculate the long-range forces.

We note in both instances the large di�erences between ab initio calculated phonon
states and those calculated using the BKS potential. Nevertheless, the BKS potential
is actually able to reproduce many of the bulk properties of ZnO such as the elastic,
piezoelectric, and the static dielectric constants. The elastic constants are usually used
as �tting parameters and as such it is no surprise that the potential reproduces them as
seen in Table 2.3. It should of course be noted that the elastic constants are related to
the acoustic modes of the crystal which as we can see in Figure 3 are satisfactorily well
reproduced. The longitudinal optical modes on the other hand are poorly recreated as
well as the high frequency oxygen modes. Hence, the Binks potential should be used
with care. Any (non static) optical of thermal properties calculated will inevitably
su�er from large deviations from experimental values.

2.2.3.1.1 PCRIM potential for MD simulation of ZnO A recent improve-
ment to the Binks parameterization of the BKS potential was given in Wang et al.
(2014). There, the functional form of the potential was chosen based on the lattice
inversion method, and was then empirically improved (�tted). The model used in the
paper is the partially charged rigid ion model (PCRIM) and corresponds to a combi-
nation of the BKS and Morse potential. It has the fucntional form given in equations
2.5 and 2.6

Φ(rij) = Ae−rij/ρ (2.5)
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This Work This work Tu and Hu (2006) Kobiakov (1980)
(BKS-no shell) (PCRIM)

a (Å) 3.2706 3.238 3.199
c (Å) 5.1379 5.176 5.167
u (Å) 0.3891 0.381 0.379
c11 232.6 221.2 218 210
c12 95.3 119.8 137 118
c13 85.6 97.2 121 106
c33 210.6 222.8 229 210
c44 74.6 51.17 38 45

Method LD LD DFT Exp

Table 2.3: Comparison of the lattice parameters and elastic constants of ZnO obtained using
di�erent methods.

Species Type A(eV ) ρ (Å) C (Å−1) q

Zn-Zn Eq.2.5 78.91 0.5177 +1.14
Zn-O Eq.2.5 257600 0.1396
O-O Eq.2.6 0.1567 3.405 1.164 -1.14

Table 2.4: Parameters for the PCRIM potential for ZnO. Taken from Wang et al. (2014).

For Zn-O and Zn-Zn interaction

Φ(rij) = A[(1− e−C(rij−ρ))2 − 1] (2.6)

For O-O interactions The potential parameters are given in Table 2.4

For further details on the derivation of the potential one should consult Wang et al.
(2014). Here we just present the phonon dispersion relations and density of states using
this potential (Fig.2.2b). We can see the substantial improvement in the agreement
between the LD and ab initio data when using this potential. Hence, it will be the
potential used for the simulation of ZnO.

2.2.3.2 Vashishta potential for AlN

For MD simulation of AlN there exists in literature two inter-atomic potentials: a Ter-
so� based potential Tungare et al. (2011), and a potential based on a combination of
2-body and 3-body forces including a modi�ed Stillinger-Weber type potential steric-
size e�ects, screened Coulomb interactions, charge-induced dipole, and van der Waals
interactions which we shall refer to as the Vashishta potential (Vashishta et al. (2011)).
The Terso� based potential has shown good agreement between the experimental and
calculated values of AlN thermal expansion coe�cient, bulk modulus, and lattice pa-
rameters. However, it lacks electrostatic forces which are necessary for the simulation
of the piezoelectric and dielectric properties of AlN. On the other hand, the Vashishta
potential has been shown to reproduce the correct phonon-mode density of states as
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well as the elastic coe�cients, lattice cohesive energy, and elastic constants. It has
also reproduced the pressure-induced phase change of AlN from wurtzite to rock-salt
at high pressure and temperature (3000K, 25GPa), and has reproduced some features
of the AlN amorphous structure speci�cally the phonon-mode density of states. Un-
fortunately, the Vashishta potential is not included in the LAMMPS code package.
Hence, we had to modify the code to include this potential which is given in

Φ =
∑
i<j

Φ
(2)
ij (rij) +

∑
i,j<k

Φ
(3)
jik(rij , rik) (2.7)

Where

Φ
(2)
ij (rij) =

Hij

r
ηij
ij

+
ZiZj
rij

e−r/λij − Dij

r4
e−r/ξij − Wij

r6
ij

(2.8)

Φ
(3)
jik(rij , rik) = Bjik exp

(
γ

rij − r0
+

γ

rik − r0

) (
cosθjik − cosθ̄jik

)2
1 + Cjik

(
cosθjik − cosθ̄jik

)2 (2.9)

Where Φ
(3)
jik(rij , rik) = 0 for rij or rik > r0. The coe�cients for the potential are given

in Figure 2.3

Figure 2.3: Parameters for the Vashishta potential for AlN taken from Vashishta et al.
(2011)

To also verify the correctness of the integration of the potential into LAMMPS we
have calculated the vibrational density of states using molecular dynamics by using
the velocity autocorrelation function. We have compared our calculation to that found
in Vashishta et al. (2011). The good agreement between the two graphs in Figure 2.4
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indicates that the potential has been successfully integrated into LAMMPS, and that
we can proceed with the calculation of other properties of AlN.

(a) Calculated vibrational density of states.
(b) Reference vibrational density of states.

Figure 2.4: Comparison of the vibrational density of states of AlN calculated using MD and
the Vashishta potential to the one found in Vashishta et al. (2011).

2.3 Thermal and mechanical macroscopic quantities

Macroscopic quantities can be derived from the microscopic trajectories as reported
in Table 2.5. The de�nition of temperature intrinsically relies on the assumption of
equilibrium or local equilibrium so that the canonical average of the kinetic energy can
be set equal to its microcanonical average. This equality yields to the temperature as
a function of atomic velocities and masses.

The expression of the pressure also involves local equilibrium as it includes the thermal
contribution and is set by the Virial theorem. This latter theorem indeed relates the
average kinetic and potential energies to temperature Greiner (2001).

The heat �ux expression is directly derived from the steady state heat conduction equa-
tion when replacing the heat �ux by its microcanonical expression Volz (2009).These
standard formulas are implemented in the code used Plimpton (1995)

2.3.1 Thermal Conductivity from Equilibrium Molecular Dy-

namics Simulation

Equilibrium molecular dynamics simulations -which consists in constraint free trajec-
tory computations-allows us to implement the �uctuation-dissipation theorem from
linear response theory which relies in the connection between the energy dissipation in
irreversible processes and the thermal �uctuations in equilibrium Kubo et al. (1985).
As reported above, the net �ow of heat in a solid, given by the heat current vector
J , �uctuates around zero at equilibrium. In the Green-Kubo (GK) method, thermal
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Quantity Formula

Temperature
∑
miv

2
i

3Nk

Pressure
NkBT

V
+

1

3V

N−1∑
i

N∑
j>i

rij · Fij

Heat �ux J =
1

V

∑
i<j

(fij · vj) rij

Table 2.5: Formulas for thermal and mechanical quantities calculated during a MD simula-
tion. k refers to the Boltzmann constant and N to the number of kinetic degrees of freedom.

conductivity is related to the intergal of the autocorrelation of those �uctuations. In
the case of an isotropic material, the conductivity is de�ned by Kubo et al. (1985)

κ =
1

kBV T 2

∫ ∞
0

〈Jx(t)Jx(0)〉 =
1

3kBV T 2

∫ ∞
0

〈J(t) · J(0)〉 (2.10)

where V represents the volume of the simulation cell, t is the time, Jx(t)Jx(0) and
J(t) · J(0) are the heat current autocorrelation functions (HCACF) in the x direction
and all directions, respectively. In crystals where the �uctuations have long life-times
(and long phonon mean free paths), the HCACF decays slowly. The thermal conduc-
tivity being related to the integral of the HCACF is accordingly large. In materials
such as amorphous solids, where the mean free path of phonons is small, thermal
�uctuations are quickly damped, leading to a small integral of the HCACF and a low
thermal conductivity McGaughey and Kaviany (2004).

In real computational procedures, instead of integrating up to in�nity in Eq. 2.10, the
upper limit is a �nite but long enough time period that captures the correct statistics.
The continuous integral is also replaced by a discrete summation. To remove the
arbitrariness on the choice of the upper limit, di�erent methods have been proposed
in the literatures Volz et al. (1996); Che et al. (2000); McGaughey and Kaviany
(2004); Li et al. (1998). According to the Cattaneo-Vernotte's relation Vernotte
(1958); Cattaneo (1958), Volz et al derived the time autocorrelation function of the
heat �ux as Volz et al. (1996)

〈J(t) · J(0)〉 = 〈J(0) · J(0)〉 exp(−t/τ) (2.11)

A similar exponential function was used by Li et al to �t the heat �ux autocorrelation
function

〈J(t) · J(0)〉
3

= g exp(−t/τ) (2.12)
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Figure 2.5: An example of heat �ux autocorrelation function with the �tting of di�erent
methods. The insert represents the integral of the thermal conductivities over time. Figure
from McGaughey and Kaviany (2004)

However, in Li's approach, the single exponential function is not used to �t the whole
HCACF curve but only the range [t1, t2]. This approach is used to determine the
tail contribution of HCACF. Instead of using a single exponential function to �t the
HCACF in the full time interval, Che et al Che et al. (2000) proposed a double
exponential function to �t the whole HCACF curve. This approach has also been used
by McGaughey et al McGaughey and Kaviany (2004) for solid Ar but with di�erent
explanations. The �tting function reads as

〈J(t) · J(0)〉
3

= Ash exp(−t/τsh) +Alg exp(−t/τlg) (2.13)

where the subscripts sh, and lg refer to short range and long range, respectively. Fig.
2.5 shows an example of HCACF obtained from solid Ar at 10 K and the corresponding
�tting curves with Eq.2.11, 2.12 and 2.13.

2.3.2 Thermal Conductivity from Non-equilibrium Molecular

Dynamics Simulation

Non-equilibrium molecular dynamics, also known as the direct method, extracts the
thermal conductivity from the Fourier's law. In this method, a one-dimensional tem-
perature gradient is imposed on a simulation cell by allowing thermal power exchange
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between the heat source and sink while measuring the resulting heat �ux. The thermal
conductivity is then obtained as the ratio of the heat �ux to the temperature gradient.
An alternative, but equivalent way consists in inducing a heat �ux and to measure
the resulting temperature gradient. In both cases the system is �rst allowed to reach
a steady state, after which long simulations are conducted allowing to obtain correct
statistical measurements. The NEMD method is often the method of choice for studies
of nanomaterials while for bulk thermal conductivity, particularly highly conductive
materials, the equilibrium method is typically preferred due to less severe size e�ects
Termentzidis and Merabia (2012).

Figure 2.6: The inverse of the thermal conductivities measured with NEMD simulations for
Si and diamond at speci�ed temperatures versus 1/L and the corresponding �tting with Eq.
2.15. κ∞ is get at 1/L = 0. Figure from Schelling et al (2002), Phys. Rev. B 65: 144306

In NEMD simulations, �nite-size e�ects arise when the length of the simulation cell
L is not signi�cantly longer than the phonon mean free path. This is understood to
be a result of scattering that occurs at the interfaces with the heat source and sink.
As a result, the phonon mean free path is limited by the system size. To eliminate
the size e�ect, Schelling et al Schelling et al. (2002) proposed a method based on
the Matthiessen's rule to determine the e�ective mean free path Λeff when L ∼ Λ∞,
where Λ∞ is the mean free path for an in�nite system. The e�ective mean free path
is obtained by the following relation:

1

Λeff
=

1

Λ∞
+

4

L
(2.14)

Here, the factor of 4 accounts for the fact that as phonons travel along the length
of the simulation cell from the source to the sink, its average distance since the last
scattering event should be L/4. In kinetic theory, the thermal conductivity is given
as κ = 1

3CvvΛ, where Cv and v are the speci�c heat and the phonon group velocity.
Combing with Eq. 2.14, the e�ective thermal conductivity is obtained:

1

κeff
=

1

κ∞
+

12

Cvv

1

L
(2.15)
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Eq. 2.15 suggests that a plot of 1/κ vs 1/L should be linear, and that the thermal
conductivity of an in�nite system can be obtained by extrapolating to 1/L = 0. Fig.
2.6 shows the examples of using Eq. 2.15 to extract the thermal conductivity with
in�nite sizes for Si and diamond. Good linear �ts are found in these cases imply the
successful application of Eq. 2.15.

2.4 Physical limitations and conclusions

Molecular Dynamics has been widely used to predict various properties in bulk and
nanomaterials. It has been regarded as a successful tool to assist the experimental
designs and understand the mechanisms at the atomic scales. Despite its applications,
it also su�ers from several important and fundamental challenges.

Limitations of MD modeling are related �rst to the absence of electron kinetic. Elec-
tronic properties of materials cannot be simulated and the free electron contribution to
thermal conductivity is therefore not accounted for. For semiconductors such as AlN
and ZnO this is not an issue as the main contribution to heat conduction is provided
by atomic vibrations.

The second limitation holds in the fact that simulations involve only classical solids.
MD simulations are therefore supposed to be valid for solids above the Debye tempera-
ture θD. The average phonon mode occupation number is proportional to temperature
according to 〈n (ωq)〉 = kT/~ω; and the heat capacity follows Dulong-Petit law. Note
that this limitation does however not exclude phonon con�nement and rarefaction
e�ects. On a general basis, a less restrictive criteria than the Debye temperature is
applied and MD is usually assumed to be relevant to tempreatures down to one third of
the Debye temperature. This criteria in fact applies in the cases where low frequencies
mainly drive the behaviours of macroscopic quantities.

In the next chapters, the behaviour of the simulated materials will be mainly governed
by atomic vibrations rather than by electron motions and the simulation temperatures
will remain larger than room temperature so that deviations to the Bose-Einstein
distribution will be considered as negligible.
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Origin of thermal conductivity changes

in bulk material. E�ect of uniax-

ial strain

In this chapter we will investigate the e�ect of uniaxial strain on the ther-
mal conductivity of bulk perfect crystals. We begin each section with a short
introduction to the current available data on the thermal conductivity of bulk
crystals then we proceed with the results of our calculations. The thermal con-
ductivity of ZnO and AlN crystals has been calculated using the NEMD method
2.3.2. Uniaxial strain has been applied to perfect ZnO and AlN crystals either
by remapping atom coordinates with a change in simulation-box length, or by
applying a static electric �eld. The strain, thermal conductivity, and electric
�eld have all been calculated/applied parallel to the c-axis of the crystals since
ZnO and AlN crystals have the highest values of piezoelectric constant and
thermal conductivity along this direction The objective is to quantify the e�ect
of strain on the thermal conductivity, and �nd the largest possible change of
thermal conductivity for a static electric �eld before dielectric breakdown.

3.1 Description of simulation procedure

To determine the equilibrium lattice parameters at zero strain and 300K we run a
simple simulation under NPT ensemble for 1 ns. In order to calculate the thermal
conductivity of strained ZnO and AlN crystals the following steps describes the pro-
cedure in general:

1. Initialize:

The atom positions are initialised using the equilibrium lattice parameters a =
3.2706, c = 5.1379 for ZnO, and a = 3.112, c = 4.0982 for AlN. Both crystals
have the wurtzite which is represented by the lattice vectors and assymetric unit
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of uniaxial strain

AB where A is Al or Zn atom, and B is N or O atom:

a1 =
a

2

√3
−1
0

 a2 = a

0
1
0

 a3 = c

0
0
1

 (3.1)

B1 =

 1/3
2/3

0.375

 B2 =

 2/3
1/3

0.875

 A1 =

1/3
2/3
0

 A2 =

2/3
1/3
0.5

 (3.2)

The lattice spacing along the X, Y, and Z directions were
√

3/2a, 1.5a, and 1.0c
respectively. Periodic boundary conditions are applied across all faces of the
simulation domain. The timestep was set to 0.001ps.

2. Equilibrate:

A few tens of ps under NPT conditions with T = Teq = 300K,P = 0 GPa

3. Apply strain and heat �ux :

The box is scaled along the Z direction by a factor ε = 1 + strain, and the atom
positions are rescaled. The rescaling is important as solid deformation is an a�ne
deformation. Alternatively, an electric �eld is applied to the simulation domain
under NPT conditions. The simulation domain is concurrently subdivided into
20 bins along the Z direction, and the velocities of 2 atoms in bins 1 and 11 are
exchanged every tmp = Nmp ×∆t as per the Muller-Plathe algorithm.

4. Stabilize:

The system is allowed to reach steady state under NVT conditions. A few
hundred ps are usually enough to obtain a linear stable temperature pro�le as
in �gure 3.2. It typically takes more time for the system to reach steady state
than to equilibrate.

5. Collect data:

The heat �ux and temperature pro�le are then sampled every Nmp steps, the
thermal conductivity calculated (post-processed), and averaged.

3.1.1 Muller-Plathe method

The Muller-Plathe method (MP) is a reverse NEMD method for calculating the ther-
mal conductivity. In NEMD simulations the thermal conductivity is calculated from
the macroscopic de�nition; equation 3.3

κij = lim
dT
dxi
→0

lim
t→∞

− 〈qi(t)〉
〈dT/dxi〉

(3.3)
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Figure 3.1: Perspective images of 4× 8× 20 uc ZnO crystal after initialization. The silver
and red atoms represent zinc and oxygen atoms respectively.

The MPmethod involves applying a heat �ux to the system after having reached steady
state and calculating the temperature gradient to obtain the thermal conductivity. The
method has several advantages over the direct EMD method (Müller-Plathe (1997))
which involves applying a thermal gradient and then calculating the heat �ux. For
instance, it is well-known that the heat �ux is a slow converging quantity; on the other
hand, using the MP method it is well-de�ned. The temperature gradient is faster to
converge and faster to calculate, and the magnitude can be controlled by adjusting
Nmp. Hence, MP method simulations are typically shorter.

The crystal is subdivided into an even number of bins N as in �gure 3.3. The �rst bin
is the cold bin and the N/2 + 1 bin is the hot bin. At �xed intervals of a �xed number
of timesteps, Nmp, the hottest atom in the cold bin and the coldest atom in the hot
section have their velocities rescaled according to equations 3.4 3.5.

v
′c = −vc + 2

[
mcv

c +mhv
h

mc +mh

]
(3.4)

v
′
h = −vh + 2

[
mcv

c +mhv
h

mc +mh

]
(3.5)

Equations 3.4 and 3.5 enable the exchange of heat between the two bins while conserv-
ing the kinetic energy and linear momentum of the system (Stackhouse and Stixrude
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Figure 3.2: A representative temperature pro�le at 300K, -2% strain after 500ps of applying
the Muller-Plathe algorithm.

Figure 3.3: Schematic representing the Muller-Plathe algorithm

(2010)). vc,vh,mc,mh are the velocities and masses of the cold and hot atoms respec-
tively. The average heat �ux can be calculated directly from the di�erence of kinetic
energies of the hot particle before and after the exchange equation 3.6

qi =
1

2AN∆t

∑
transfers

1

2
mh

(
v

′h
i

2
− vhi

2
)

(3.6)

Where N is the number of elapsed timesteps, ∆t is the timestep, A is the area per-
pendicular to the �ow of heat qi, and i = x, y, z. Once steady state is reached the
macroscopic equation for thermal conductivity equation qi = −κijdT/dxj is used to
calculate the thermal conductivity.

The temperature gradient dT
dxi

is calculated by linearly interpolating the temperatures
of each bin, �gure 3.2.
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3.2 Thermal conductivity of bulk ZnO crsytals

3.2.1 Experimental measurements of ZnO thermal conductiv-

ity

The bulk thermal conductivity of ZnO has been measured experimentally from 1K to
300K (Wolf and Martin (1973)). The values have been �tted to the Debye-Callaway
model eq 3.7, and various averaged phonon properties such as the Gruneisen param-
eters, sound velocity, and relaxation times for phonon-phonon, boundary, defect, and
isotope scattering have been extracted. The expression for the relaxation times is
given in equation 3.8.

κ =
k

2π2v

(
kT

~

)3 ∫ θ/T

0

τ
x4ex

(ex − 1)
2 dx (3.7)

τ−1 =
v

L
+Aω4 + [B1exp(−θ/aT ) +B2]ω2T + Y ω (3.8)

Two of the three samples in this study were single crystal ZnO hydrothermally grown
and lithium doped while the third was vapor grown and undoped. The thermal con-
ductivity was measured using a conventional longitudinal steady-state heat-�ow appa-
ratus. The measurments showed that thermal conductivity parallel and perpendicular
to the c-axis are not very di�erent, and that at room temperature the doping does
not have a signi�cant e�ect. The measurements were also compared to those of Slack
(1972), and found to be in good agreement. Hence, from those measurements the ther-
mal conductivity parallel to the c-axis at room temperature was around 68 W/mK.

On the other hand, the highest, and more recent, thermal conductivity of ZnO reported
in literature is around 150 W/mK (Ozgur et al. (2006)). The samples in this study
were melt-gown, and were subjected to di�erent thermal treatments. The thermal
conductivity in this study was measured using scanning thermal microscopy (SThM).
It was noted that the thermal conductivity measured using thermal probe techniques
depends on the surface treatment which removes surface defects, and improves the
crystal structure at the surface.

As previously stated ZnO belongs to the P63mc crystal group. Therefore it has
an anisotropic thermal conductivity. However, as shown in the experiments, this
anisotropy is small κ||c/κ⊥c = 1.13 − 1.15 (Wolf and Martin (1973)). Therefore, it is
su�cient to calculate the thermal conductivity along the c-axis as the perpendicular
conductivity will not di�er greatly. Hence, we will restrict ourselves to calculating the
thermal conductivity parallel to the c-axis of the crystal in our MD simulations.
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3.2.2 Molecular Dynamics calculation of ZnO thermal conduc-

tivity

E�ect of system length To study the e�ect of the length of the simulation domain
on the thermal conductivity we calculated the thermal conductivity for 15, 20, 30, 40,
45 cells in the Z-direction and 7×4 cells cross-section or 19.70 × 19.5 Å (XY plane).
The number of atoms in the simulations was between 2520 and 7560. A full simulation
(20 unit cell length) took 1.3 hours to complete using 48 CPUs (Intel Xeon X5650).
The PCRIM potential for ZnO (Wang et al. (2014)) was used with a cut-o� of 6.0Å.
Ewald summation with an accuracy of 1.0E-6 was used to calculate the long-range
forces. The equilibration time was 3ps, followed by 20ps to reach steady state, and
50ps for data sampling. The heat exchange step size was Nmp = 25 which yielded a
temperature pro�le of Thot = 390K ± 20 and Tcold = 220K ± 40 for the 5 simulations.

We have calculated the thermal conductivity parallel to the c-axis as a function of the
length of the system in the same direction. We then plot the inverse thermal conduc-
tivity versus the inverse system length as seen in Figure 3.4. As we can see from Figure
3.4 increasing the system length leads to an increase of the thermal conductivity. The
trend can be well represented by a straight line. This shows that from equation 2.15 we
can extract the in�nite-length thermal conductivity. Linear regression analysis of the
data gives an adjusted R-square of 0.903 and an intercept of 0.0024±0.0003 mK/W.
This gives an in�nite-length thermal conductivity to be κ∞||c = 410± 60 W/mK. This
value is representative of a perfect crystal without any defect, impurity, or isotope
scattering. Our value and that of the largest reported in literature have a large di�er-
ence. This disagreement between the absolute values of MD and experimental can be
explained by the following arguments:

1. The Debye temperature of ZnO is between 322K and 800K as can be seen in
table 3.1.

θD (K) Source Reference

1 322 Calculated from average sound velocity vs =
3.4× 105cm/s

Wolf and Martin
(1973)

2 399 Fitting heat capacity to Debye model at low
temperature. The sample contained a high
concentrations of defects and impurities

Morkoc and Ozgur
(2009), p.58

3 805 Equivalent temperature of the highest
phonon-mode frequency at the Γ point for
ZnO (ALO

1 = 560 cm−1) from ab initio data

Serrano (2004)

Table 3.1: Debye temperature of ZnO at room temperature from di�erent sources available
in literature.

2. Second, the experimental data given in Ozgur et al. (2006) which represents the
highest value measured in literature were done using surface thermal microscopy.
This technique is known to be inadequate to measure highly conductive materials
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due to the contribution of the tip-sample contact resistance that predominates
if the sample resistance becomes too low.

3. The two thermal conductivities are on the same order of magnitude which is
acceptable considering that the potential used in the MD simulation was not
�tted taking into account the thermal properties of ZnO.

Bearing all this in mind: that an MD simulation represents a perfect, impurity free,
in�nite length sample, and that no enriched perfect sample data exists for ZnO the
value of 416 W/mK can be considered as an upper limit to the possible thermal
conductivity of ZnO.

Figure 3.4: Dependence of thermal conductivity on the length of the MD simulation cell.
The thermal conductivity of the in�nite system is deduced from the value extrapolated when
the reverse of the length goes to zero.

3.2.3 E�ect of uniaxial strain on the thermal conductivity of

zinc oxide

There have been studies of the e�ect of strain on the thermal conductivity of bulk crys-
tals such as argon (Bhowmick and Shenoy (2006)), silicon (Parrish et al. (2014)), and
nanostructures such as carbon nanotubes (Chalopin et al. (2012)), silicon nanowires
(Li et al. (2010b)), silicon thin �lms (Xu and Li (2009)), and on interfacial conduc-
tance (Abramson AR (2002)),(Shen et al. (2011)). For simple LJ like crystals the
thermal conductivity is seen to decrease as a power law going from compressive to
tensile stress. The exponent was shown to depend on the Grueneisen parameter and
the exponent of the inter-atomic potential (Bhowmick and Shenoy (2006)).
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For the simulations involving strained crystals the simulations proceeded in almost
the same way as for the non-strained case. The system length was set to 7 × 6 × 20
ZnO unit cells yielding a simulation domain of 19.70 × 19.5 × 104 Å which contains
3360 atoms. We used 50ps for equilibration, 500ps to reach steady-state, and 50ps for
data collection. We have used the same random number to initiate the velocities of
the atoms for the di�erent strain simulations. This improves the accordance between
the values as a function of strain. To calculate the long-range forces we used Wolf
summation as it is signi�cantly less costly in terms of computation time.

The strain is applied by resizing the box in the Z-direction and rescaling the atoms.
The box volume is then maintained constant for the rest of the simulation. This
of course modi�es the potential energies of the atoms, and the temperature of the
system is seen to increase slightly (about 10%) even for small strains (less than 3%).
To remedy this NVT conditions are applied to the simulation domain. The strain is
monitored by calculating the domain size in the Z-direction, and comparing it to the
non-stressed case. The pressure is also monitored during the data collection period,
and in Figure 3.5 we see that the crystal starts to deviate from the elastic behaviour
at 4% and -3% strain. The elastic coe�cient of ZnO is between 183 and 232 GPa
(Sarasamak et al. (2010)[p.9]) which �ts well with the value of 202 ± 8 obtained by
linear regression from Figure 3.5.

Figure 3.5: Pressure versus strain for 7 × 4 × 20 ZnO crystal at 300K. The strain and
pressure are averaged over the data collection period. The straight line represents the linear
�t of the data with the intercept �xed at zero.

For all simulations the atom-swap step size is Nmp = 15, and the temperature gra-
dient is 3.0 ± 0.3 K/Å. From this 33 samples of the temperature gradient, heat �ux,
pressure, and strain are obtained. The thermal conductivity, pressure are calculated
and averaged for each strain value.
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Figure 3.6: E�ect of strain on the thermal conductivity of ZnO bulk crystals

For ZnO the e�ect of strain on bulk thermal conductivity has yet to be studied. In
Figure 3.6 we show this study for two di�erent lengths of bulk crystals. We see
that the thermal conductivity linearly decreases going from compressive to tensile
strain as predicted in other studies (Bhowmick and Shenoy (2006)), (Parrish et al.
(2014)). However, the coe�cient of proportionality is observed to change with the
box size. In fact, the coe�cient of proportionality α increases by a factor of 1.45 as
the system doubles in length. This might be an indication that the strain a�ects the
long-wavelength phonons which are not resolved with a smaller system size. Therefore
it is important to correct for the size e�ect before obtaining the correct coe�cient of
proportionality. We de this as the next step.

Bhowmick and Shenoy (2006) model for thermal conductivity as a func-
tion of strain In a recent work it was shown that strain a�ects the scattering rate
of phonons. Assuming the classical limit of phonon distribution i.e. temperatures
above the Debye temperature of a solid, we have that the number of phonons n at
temperature T for mode-frequency ω is given by n ≈ kBT/~ω, and by using Fermi's
golden rule it was shown that the scattering rate for phonons τ is proportional to the
frequency of the phonon-mode ω and to the third order force constants of the lattice Γ.
These terms, the frequency and force constants, were in turn shown to be dependent
on the strain to some power ∝ ε−γ . The exponent γ can be shown to be a combination
of the Grueneisen parameter and inter-atomic potential power (Bhowmick and Shenoy
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(2006)). Also, using the kinetic theory κ ∝ Cv2τ and the Debye approximation v ∝ ω.
It was determined that the thermal conductivity is inversely proportional to the tem-
perature, and decreases as a power-law as a function of strain as noted in equations
3.9 and 3.10.

κ ∝ 1

T
ε−γ (3.9)

Where the strain in this case is calculated as

ε = V/V0 (3.10)

Where V0 is the volume of the crystal at zero strain. Therefore, we have corrected our
data seen in Figure 3.6 for the size e�ect seen in Figure 3.4 using equation 3.11.

κ−1
ε,∞ = κ−1

ε,Lz
− 0.403

(1 + ε)Lz
(3.11)

Where κ−1
ε,∞ is the thermal conductivity at a strain ε for an in�nite length system,

κε,Lz
is the thermal conductivity at a strain ε at a �nite system length (in this case

we used the data for Lz = 21nm), Lz is the system length equal to 211Å, and 0.403 is
the slope of the line seen in Figure 3.4.

Figure 3.7: Thermal conductivity corrected for size e�ect as a function of strain at 300K.
The red line represents the �tting of the data to a power law function.

We have plotted this data in Figure 3.7 as a function of the strain ε = V/V0 =
Lz,0/Lz,ε. We can see that we do recover the power law dependence for ZnO quite
well. The exponent obtained from the �tting is equal to −18.8±0.8. Therefore, with a
typical strain value of 0.01, for example, the percentage change of thermal conductivity
can be calculated from κ = 538ε−18.8 to be -17%. To be able to stretch a ZnO crystal
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by 1% along the c-axis we need 2.1 GPa (C33 = 210GPa) or Ez = 8.1 × 108 V/m
electric �eld (d33 = 12 m/V).

3.2.4 E�ect of uniaxial strain on phonon properties

Strain modi�es the unit cell length and the interatomic distance yielding a modi�cation
in phonon eigenfrequencies and force constants. For constants in turn a�ect group
velocities and eigenfrequencies also as shown in Eqs. 3.12.

(a) Dispersion relations (b) Group velocity from elastic constants

Figure 3.8: Phonon mode properties as a function of strain along the [0001] direction

More speci�cally, uniaxial compression increases the frequencies and group velocities of
the longitudinal phonon modes along the strain direction while tensile strain decreases
them. The transverse mode velocities are also increased slightly for moderate strains
(less than 0.6). We utilized lattice dynamics calculations at zero temperature and zero
pressure using the GULP code. The PCRIM potential and the equilibrium lattice
constants from the MD simulations were used as input. A 10 × 10 × 10 mesh was
then used to calculate the dispersions relations. The GULP code uses the dynamical
matrix constructed from the inter-atomic force constants to �nd the eigenvalues and
eigenvectors. To obtain the dispersion relations for the strained structure we simply
changed the unit cell parameter. Hence, the lattice parameter for 0, -2%, and 2% strain
are 5.245286, 5.14038028, and 5.35019172, respectively. The dispersion relations were
calculated along the Γ−A direction or in k-vector form k = [00kz]. The behaviours for
the dispersion curves seen in other works such as Parrish et al. (2014) are the same for
the case of ZnO as we can see in Figure 3.8. The elastic constants were also calculated
from lattice dynamics and the group velocities for the TA and LA modes for wurtzite
structureRosen and Klimker (1970) were estimated from them using equation 3.12

vTA([0001]) =
√
C44/ρ

vLA([0001]) =
√
C33/ρ

(3.12)
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3.2.5 Piezothermal resistance in ZnO

Figure 3.9: Strain versus electric �eld strength along the c-direction. The straight line
represents the linear �t of the data where α is the slope and β is the y-intercept.

In order to investigate possible thermal conductivity alterations through electrical ac-
tuation, the impact of electric �elds applied to the atomic system was also investigated.
For the system length of 10.5 nm, we have applied several static electric �elds along the
c-axis direction, and calculated the strain and the thermal conductivity. So, instead of
changing the box length we apply a static electric �eld parallel to the Z-direction, and
we allow the box to change size by applying NPT conditions. This permits the atoms
to adopt their new equilibrium positions due to the additional electrostatic force term
qiEz. The ratio of the induced strain to the electric �eld magnitude is the piezoelec-
tric coe�cient d33. No surface charge redistribution was observed due to the periodic
boundary conditions.

In Figure 3.9 we have plotted the strain versus the applied electric �eld. The strain was
calculated by averaging the domain length during the data collection period. We see
that the relation between the strain and the applied electric �eld is linear even for �eld
values up to 2 GV/m. Such large �elds would normally induce dielectric breakdown
of any material. The breakdown �eld depends on the bandgap of the material, and
also on the size and microstructure. Typical values of the magnitude of breakdown
�elds are between 1 MV/m and 1 GV/m. This phenomenon is not observed in MD
simulations due to the absence of electrons. Nevertheless, it is possible to increase
the piezoelectric coe�cient of ZnO by nano-structuring. Recent studies using �rst-
principles methods have shown that ZnO nanowires of diameters of 0.6 to 2.4 nm
have a giant piezoelectric e�ect (Agrawal and Espinosa (2011)). This was explained
by the surface rearrangement of atoms which reduces the volume of the nanowire
compared to a bulk crystal with the same number of atoms. Since the piezoelectric
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coe�cient d33 depends on the polarization per unit volume a large increase in the value
of the piezoelectric coe�cient is calculated. Agrawal and Espinosa (2011) reported an
increase of e33 by a factor of 50 in 0.6 nm ZnO wires.

In Figure 3.6 we plot the change of thermal conductivity versus the strain induced
by the electric �eld. The values of the electric �eld for each point are placed next to
them. We can see that the decrease of the thermal conductivity follows almost the
same trend as that for the mechanically strained case. This is direct evidence that the
strain induced by the electric �eld is responsible for the modi�cation of the thermal
conductivity.

3.3 Thermal conductivity of bulk AlN crystals

3.3.1 E�ect of system size on the thermal conductivity of alu-

minium nitride

Figure 3.10: A representative graph of the temperature gradient of a 14×8×20 AlN crystal
at 300K during the data collection period. This is after 500 ps of applying the heat �ux.

We have also performed the same study for AlN single crystals. The simulation domain
size was 14 × 8 × 20. T he initial unit cell lengths were a = 3.112, c = 4.982 giving
a domain of 37.73 × 37.344 × 99.64 Åwith 13440 atoms. The Vashishta (Vashishta
et al. (2011)) potential was used with a cuto� of 7.6 Å. We used 80ps for initial
equilibration followed by 500 ps to reach steady state, and 50ps for data collection.
The heat exchange step size was Nmp = 25 which gave a temperature gradient of
1.2±0.2 K/Åfor the simulations. To study the siwe e�ect we performed two runs with



44 Chapter 3 - Origin of thermal conductivity changes in bulk material. Effect

of uniaxial strain

Figure 3.11: E�ect of system length on the calculated thermal conductivity of AlN at 300K
for 0 and -3% strain. The straight lines are the linear �t to the data with α as the slope and
β representing the y-intercept.

system lengths of 15, 20, 30, 40, 45, and 60 unit cells in the Z-direction. The number of
atoms was between 10080 and 40320, and the computation time was 40 minutes using
120 CPUs. In order to verify that the size e�ect is the same for di�erent strain values,
we repeated the calculations of thermal conductivity as a function of system length
for a a strained crystal. Following the initial equilibration period, the box length was
scaled by a factor of 0.97 and then stabilized using NVT conditions. As we can see
in Figure 3.11 the size e�ect is linear for 0 and -3% strain. At -3% strain we can
see that the coe�cient of proportionality between inverse length and inverse thermal
conductivity is the same as that for no strain. This indicates that the strain does not
a�ect the size dependence of the calculations for AlN. Hence, the same size adjustment
can be made for all values of strain. Linear extrapolation of the values in Figure 3.11
provides the in�nite length thermal conductivity at zero strain of 3000 W/mK. The
thermal conductivity of a perfect AlN crystal at room temperature has been measured
by Slack to be around 285 W/mK (Slack et al. (1987)). However, we should note that
for the case of AlN there are always oxygen impurities and defects which reduce the
thermal conductivity. In fact it oxygen acts as a substitutional impurity in AlN with
concentrations up to 1× 1021 cm3 (Slack et al. (2002)).

3.3.2 E�ect of uniaxial strain strain on the thermal conductiv-

ity of aluminium nitride

To study the e�ect of uniaxial strain on the thermal conductivity of AlN we have �xed
the system length to 20 unit cells. The number of atoms was 13440. The Vashishta
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Figure 3.12: E�ect of strain on the calculated thermal conductivity of AlN at room temper-
ature.

potential was again used with the same cuto� of 7.6 Å, and strain values from -0.06
to 0.06 in increments of 0.01 were used. The heat �ux step size was kept the same
Nmp = 25, and the temperature gradient was also the same at about 1.2 K/Å. The
strain was again applied simultaneously with the heat �ux, and it was observed that
after 500 ps the temperature gradient was acceptable to begin data collection. The
e�ect of strain on thermal conductivity can be seen in Figure 3.12. First, we see that
the e�ect of strain on the thermal conductivity of AlN is not the same as that seen
in ZnO. One reason for this might be the di�erent dominant bonding mechanisms in
the two crystals. The e�ective charge in ZnO is +2e and -2e for zinc and oxygen ions,
respectively. While in AlN it is -1e and +1e. In addition, the interatomic potentials for
ZnO, BKS and rigid ion models, have a larger ionic contribution. In fact, the potential
requires the use of a long-range solver such as Ewald or Wolf summation. AlN, on
the other hand, has been historically simulated using either Terso� or Vashsishta
potential(Vashishta et al. (2011)) which do not contain long-range forces. Hence, the
dependence of the phonon properties on the strain should be di�erent. Especially for
the optical phonon modes which are more a�ected by the strain as one can see in
�gure 3.8. We can see that the strong covalent nature of AlN inhibits any signi�cant
modi�cation of the thermal conductivity for compressive and tensile strain.

Unfortunately, due to the strong large error associated with the calculation of the
thermal conductivity of AlN we were not able to �t the size-corrected values to the same
model κ = aεb. The outlier values at -1% and <-4% strain values showed unphysical
negative thermal conductivities when equation 3.11 was applied. It has been noted
that for high-thermal conductivity crystals the NEMD is unsuitable (Termentzidis and
Merabia (2012)).
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3.4 Conclusions

1. We have studied the e�ect of strain on the intrinsic thermal conductivity on
ZnO and AlN perfect crystals. We have noted that the stain e�ect is stronger
in the case of ZnO than AlN. Seeing that the only di�erence between the two
crystals is the inter-atomic bonding, we attribute the stronger dependence to the
long-range forces (electrostatic) which are more present in the case of ZnO.

2. The change in the group velocities in ZnO is seen to mainly follow the trends of
the thermal conductivity; however, the weaker drop when going from compressive
to tensile strain suggests that modi�cation of the relaxation times of the phonon
modes must also be taking place. This is a reasonable assumption based on other
studies, but one which was not veri�ed.

3. Finally, we were able to verify the presence of a piezothermal resistive e�ect in
ZnO. However, a real-life application cannot be con�rmed as the values of the
electric �eld to see a real change are above the dielectric breakdown limit.
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Thermal conductance - Kapitza

resistance. E�ect of local strain

on thermal conductance of super-

lattices

In this chapter we study the e�ect of piezoelectric strain on the thermal con-
ductivity of superlattices. We use equilibrium and non-equilibrium molecular
dynamics to calculate the thermal conductance of SiO2and Si/Ge superlattices
under various piezoelectric and mechanical strain strengths, respectively. We
show that strain applied to the superlattice junctions induces large changes in
the inter-layer conductance.

4.1 Literature review

When two di�erent materials are placed in perfect contact, strain roughness, or defects
between them will cause a �nite thermal conductance at the interface when a heat
�ux is applied. The interface thermal conductance (ITC) is due to a combination of
intrinsic and extrinsic sources, and may be de�ned in Eq. 4.1.

σ = q/∆T (4.1)

Where ∆T is the temperature di�erence across the interface, and q is the thermal
�ux. In Kapitza (1941), experimental evidence of the presence of a thermal boundary
resistance was shown for the case of liquid helium. This experiment showed that
even for almost perfect contact there is always some resistance between two dissimilar
materials. The discontinuity of phonon properties at the interface causes some back-
scattering of phonons as they move across the interface. This resistance to the �ux
of phonons is what is called Kapitza resistance, and is an intrinsic property of the
combined system. Other sources for phonon scattering at the interface may include
scattering due to strain �eld or defects and voids. These are due to the manufacturing
process, and are extrinsic e�ects.
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For the intrinsic (Kapitza) resistance there are two limiting models for phonon trans-
mission across an interface: the acoustic mismatch model (AMM) and the di�use
mismatch model (DMM). The AMM treats phonons as plane waves incident across
the interface. The waves have a �nite probability for re�ection αAMM which is due to
the change in the acoustic impedance of the materials zi = ρici where ρi is the mass
density and ci is the sound velocity. By applying the laws of classical acoustics the
transmission probability for a longitudinal wave incident on the interface is given by
equation 4.2 Srivastava (1990)[p.368]

αAMM =
4z1z2

z1 + z2
(4.2)

And the Kapitza conductance can be obtained by applying Debye's isotropic contin-
uum model which assumes that: (1) only long-wavelength phonon modes are present
in the whole q-space ω(qs) = csq, and (2) an average phonon-mode group velocity
3
c̄3 =

∑
s

1
c3s

where cs is the phase velocity (transverse, longitudinal) and in this case
is equal to the group velocity cg = cs (Srivastava (1990)[p.48-49]). The expression for
σAMM is given in equation 4.3

σ−1
K = π2k4

BαAMM/30~3c̄2 (4.3)

The result may be considered valid only for the long-wavelength phonons at low tem-
peratures where the Debye approximation and wave-picture of phonons is dominant.
The model also assumes that the interface is completely specular, and that no scat-
tering takes place.

The di�use mismatch model, on the other hand, assumes that the phonons are com-
pletely di�usely scattered at the interface. In other words, the phonons lose their
history when they reach the interface. The transmission coe�cient in this case is de-
termined by the overlap between the densities of states between the two materials.
The expression for the phonon transmission under the DMM can be found from the
principle of detailed balance. The two models represent the two extremes of phonon
behaviour at an interface. For example, at high acoustic dissimilarity z1/z2 6= 1
the DMM is predicted to reduce the thermal boundary resistance calculated from the
AMM. While at low mismatch, di�use scattering increases the thermal boundary resis-
tance; more precisely, it is doubled compared to to the acoustic model. In fact, for the
limit z1/z2 → 1 the DMM gives the unphysical conductance related to tDMM = 0.5,
where t is the transmission probability across the interface, while the AMM gives the
more physically sound value of unity. The DMM is noted to be valid for high frequency
or short-wavelength phonons at high temperatures.

For solid-solid interfaces which do not su�er from large acoustic dissimilarity, the
values for the Kapitza resistances predicted from the two models are relatively close
(a di�erence of about 30% Srivastava (1990)[p.369]). Hence, experimental results
usually agree well with both models. To improve the agreement an interpolation
between the two models can be umplemented as was done in Kazan (2011). The
model in Kazan (2011) utilized the RMS roughness of the interface in comparison
with the phonon-mode wavelength to determine whether phonons would be scattered
di�usively or specularly. The model also takes into account the full bulk dispersion
relations for the two sides for the calculation of the group velocity of phonon-modes,
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and for calculating the density of states. The model showed very good agreement with
experimental results for InN/GaN interfaces.

Another important consideration when predicting the Kapitza resistance is the inter-
facial strain due to the lattice mismatch between the two sides of the interface. The
di�erence in lattice constants creates dislocations at the interface as the atoms are
displaced from their equilibrium position (i.e. with no interface). The displacement
creates a space dependent strain �eld which relaxes as one goes further into the bulk
of either side of the interface. However, the �nite modi�cation of the atom positions
just at the interface leads to a change in the elastic coe�cients, and this change can
be shown to depend on the third-order force constants. The spatial dependence of
the elastic coe�cients can be shown to scatter phonons, as was shown in Carruthers
(1959), and that a characteristic relaxation time τstrain can be de�ned. In Meng et al.
(2013) this analysis was carried out. Two dissimilar lattices were considered as seen in
Figure 4.1. In this �gure the interface strain �eld (ISF) determining the displacement
of atoms is periodic in x (parallel to the interface), and is exponentially decreasing
in z (normal to the interface) which makes it a short-range �eld. The larger is the
dissimilarity between the two lattices, the shorter is the range of the strain �eld in the
normal direction to the interface. (Meng et al. (2013)) It was shown in Meng et al.

Figure 4.1: A schematic showing the dislocation due to mismatched lattices. The black dots
and red circles represent the atom positions on the two lattices. Sb, Sa are the contact planes,
and p is the distance between dislocations. It also represents the dissimilarity between the two
lattices. Smaller p indicates more dissimilarity. From Meng et al. (2013)

(2013) that the interface strain �eld scatters phonons above a critical frequency ω0

which depends on the amount of dissimilarity between the two lattices p. Hence, a
gradual switch from a DMM dominated to an AMM dominated phonon-transmission
scheme is obtained as the dissimilarity between the lattices increases (Meng et al.
(2013)). The work also showed that the scattering time is di�erent than that seen
in a single bulk dislocation. The inverse scattering time for an interface strain �eld
(ISF) is 1/τISF (ω) ∝ (ω−ω0)3 whereas for an individual dislocation it is given by the
relation 1/τ(ω) ∝ ω (Meng et al. (2013)). And �nally, by using the Callaway model
for the thermal conductivity, it was shown that the e�ect of the ISF is to decrease the
thermal conductivity relative to the a system with no ISF scattering at high temper-
atures. Nevertheless, this change is relatively small in solids, approximately 10% of
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the DMM at 300K, and as such it does not dominate the interface conductance (Meng
et al. (2013)).

Meng et al. (2013) nevertheless showed that the e�ect of in-plane strain does have
an e�ect on the cross-plane thermal conductance. This e�ect is in essence due to the
anharmonicity of the inter-atomic potential across the interface. Therefore, and as
pointed out in Shen et al. (2011) neither the AMM nor DMM account for the sti�ness
of the interface. The sti�ness is de�ned as the change in the normal to interface stress
to the normal strain S = ∂Pzz/∂εzz. The value of S determines the strength of the
bonding, and is related to the inter-atomic potential. For a harmonic potential it is
constant, but for an anhormonic potential it depends on the separation between the
two solids. In Shen et al. (2011) the thermal conductance between two Lennard-Jones
type solids was calculated using NEMD simulations for di�erent bonding strengths.
It was shown that for weak interfaces (the interfacial bonding is weaker than the bulk
bonding) the application of uniaxial pressure normal to the interface increases the
thermal conductance while for strong interfaces there is no change in the conductance,
rather there is a slight decrease for large pressure values. The increase in conductance
was shown to be correlated with the increase in interface sti�ness S while the increase
in the bulk sti�ness (or modulus) is seen to decrease the interface conductance. In
weak interfaces the former e�ect is dominant while for strong interfaces, the two e�ects
cancel out. The decrease of the conductance due to the increase in bulk modulus is due
to a change in the phonon transmission coe�cients. For even though the increase in the
bulk modulus means an increase in the group velocities and frequencies of the modes,
the results indicate that the thermal conductance decreases. It was postulated that
this is due to a decrease in the phonon transmission probabilities. In the harmonic
approximation, the overlap between the densities of states from each side is what
determines the transmission probabilities (DMM), and it was shown in Shen et al.
(2011) that the conductance between two mass-dissimilar solids does indeed follow
this overlap. The harmonic contribution to the thermal conductance was also shown
to be dominant in Sääskilahti et al. (2014). In said article, MD simulations were
used to calculate the thermal conductance of two fcc LJ solids. A frequency resolved
expression for the elastic and inelastic thermal conductances were developed, and it
was shown that pressure does not a�ect the transmission of energy for low frequency
modes by elastic forces nor for inelastic transmission. Hence, it is elastic processes for
high-frequency modes that a�ect the thermal conductance under uniaxial compression.
The observed increase due to compression was roughly 26% for 42 MPa. In complex
crystals the density of these high frequency modes can be rather signi�cant, and it
might be possible to a�ect the thermal conductance even more.

An example of such a weakly-bonded system is silica-graphene superlattices. Silica is
regularly chosen for graphene deposition due to the low mismatch between the lattices.
In Hsieh et al. (2011) experimental determination of the dependence of thermal con-
ductance of Al/graphene/SiO/SiC �lms on the uniaxial pressure was measured using
time-domain thermore�ectance. From normal up to 10 GPa, it was noted that the
thermal conductance of such a structure is strongly dependent on the pressure. An
increase of about a factor of 5 is seen for low pressure (up to 6 GPa). However, it
was noted in that work that the dependence of the conductance on pressure for clean
Al/SiO/SiC was very similar to that of the system with graphene. A result which was
surprising, and may have cast doubt about the contribution of graphene to the results.
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Nevertheless, the e�ect of pressure on such weak interfaces was veri�ed experimentally,
and the thermal interface conductance of silica/graphene was determined to be around
25 MW.m−2.K−1 at normal pressure. The pressure dependence was also veri�ed using
molecular dynamics by the same group of Shen et al. (2013) and by the group of Mak
et al. (2010) experimentally using time-domain thermore�ectance. Both works have
also noted that the number of graphene layers does not a�ect the thermal conductance
albeit that the inclusion of more graphene would increase the total resistance of the
system.

To recap, the DMM and AMM o�er the two extremes of phonon transmission across
interfaces at normal conditions. However, they donot take into account the strength
of the bonds across the interface. The presence of a local strain �eld at the interface
modi�es the elastic properties of the system and leads to phonon scattering. The
scattering depends on the phonon frequency, and ths strain �eld spatial extent. It
has also been demonstrated both experimentally and using MD simulations that the
application of pressure to weakly-bonded systems modi�es their thermal conductance.
Therefore, it is our aim in the next few sections to study the e�ect of local strain on
the thermal conductance of such systems, and show that they are good candidates for
piezothermal application.

4.2 E�ect of non-uniform strain on the thermal con-
ductance of SiGe superlattices

We begin by taking a simple system consisting of a 10 × 10 × 20 SiGe superlattice
shown in Figure 4.2. In the cross-plane direction we create 10 unit cells of germanium
and 10 unit cells of silicon. The number of atoms is 16000. The conventional diamond
unit cell was used for both lattices. The Terso� (Terso� (1989)) potential was used
for both elements, as mixing rules exist for Si and Ge. Simulations of each material,
separately, gave unit cell lengths for germanium and silicon corresponding to aGe =
5.6711Å, aSi = 5.4423Å. To build the superlattice, the mean unit cell length was used
aGe/Si = (aGe + aSi)/2 = 5.5567Åas starting guess for both structures. This strains
the original unit cells of Ge and Si by -2% and 2.1%, respectively. In order to study
the e�ect of in-plane and cross-plane stress three types of simulations were carried out.
(1) A simulation where the initial structure was relaxed only in the Z direction, (2)
another where the initial structure was relaxed in all three directions, (3) and a �nal
where the structure was relaxed in all three directions however later a non-uniform
strain was applied in the Z direction. The superlattice thermal conductance for all
simulation types was calculated using the reverse NEMD algorithm where a heat �ux
was simulated in the system by exchanging particle velocities and a corresponding
temperature drop can be observed across the interface; exactly the same algorithm
used in the previous section. For the third type of simulations (non-uniform strain)
two strain values were investigated: ±1% and ±2%. For all simulations types only
one run was performed with the following general scheme:

1. Relax structure - 100 ps
The timestep is set to 1 fs, and periodic boundary conditions are applied along
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all sides. The structure was relaxed in the designated directions (Z-only or
X Y, and Z under 0 GPa and 300K (NPT ensemble).

2. Strain and apply heat �ux
Any required strain is applied to the structure by remapping the coordinates of
some of the atoms, and the heat �ux is applied to the strained system. The
velocity swap is performed every 20 fs (20 timesteps).

3. Reach steady-state - 500ps
The system is allowed to reach steady state under NVT conditions. The tem-
perature pro�le is monitored, and 500ps were su�cient to obtain a reasonable
�at temperature pro�le away from the interfaces.

4. Collect data - 50ps
After steady state has been reached, we collect the temperature pro�le, in-plane
and cross-plane pressure, and the energy exchanged from the velocity exchange.

5. Data analysis
The average temperature pro�le ∆T , area A, system length Lz, and heat �ux q
are then used to calculate the thermal conductance using equation 4.1.

Figure 4.2: Perspective and in-plane view of SiGe superlattice 10 × 10 × 20 before start of
simulation. Ge atoms are in yellow and Si atoms are in pink.

Procedure for creating a non-uniform initial periodic strain state In order
to apply a non-uniform strain to the superlattice, the following procedure was adopted.
After equilibrating the superlattice under NPT, a central group of atoms was selected.
This central region has a length of 3 unit cells. The simulation box was then rescaled
in the Z direction, and the corresponding central atoms remapped according to the
rescaling. This creates a non-uniform periodic strain in the superlattice, and forces
the atoms to adopt new equilibrium positions. A schematic of this procedure (tensile
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Figure 4.3: Temperature pro�les for the di�erent simulation types of the SiGe superlattice.
The pro�les shown are collected at the end of the simulation.

Figure 4.4: A schematic showing the rescaling of the simulation box for the case of tensile
strain. The �gure is to scale in the Z-direction; however, the rescaling is exaggerated for
clarity. The operation is performed after the equilibration period, and the superlattice is
allowed to relax under NVT conditions. The arrows represent the restoring forces arising
from the remapping of the atoms.

strain) is shown in Figure 4.4. As can be seen in the �gure, the operation creates an
initial state of non-uniform strain.

The temperature pro�le was sampled away from both interfaces (periodic boundary
conditions). Sample temperature pro�les for all simulation types are shown in Figure
4.3. 500 ps were su�cient to obtain an almost constant heat-�ux q and temperature
pro�le for all simulation types except the −2% strained superlattice which showed a
non-linear temperature pro�le. Hence, the heat �ux was decreased. The results for all
simulations are presented in Table 4.1.
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System type q (×109 W/m2) ∆T (eV) σ (×109 W/m2K) Pz (GPa)

Z-relaxed 28.86± 0.7 0.0167± 0.0003 0.074± 0.003 0.0889
XY Z-relaxed 796± 20 0.0165± 0.0004 2.07± 0.1 -0.154

1%-strain 29.1± 0.7 0.01589± 0.001 0.078± 0.007 -1.31
2%-strain 23.6± 0.7 0.01418± 0.001 0.072± 0.007 0
−1%-strain 28.4± 0.8 0.01693± 0.0008 0.0723± 0.0053 1.31
−2%-strain 16.59± 0.6 0.00323± 0.0009 0.2215± 0.07 2.20
−1%-strain 14.5± 0.6 0.00889± 0.0007 0.0704± 0.008 1.31

Table 4.1: Thermal conductance results for the various simulation types of SiGe superlat-
tices. The errors are the standard deviations of the averages during the data collection period.
Pz is the average pressure at the end of the simulation.

For the fully relaxed case, we obtain a thermal conductance σSi/Ge of 2.07 GW/m2K
which is reasonable when compared to the value of 0.34 GW/m2K at 500K reported
in other works (Chalopin et al. (2012), Landry and McGaughey (2010)). However, as
the results in Table 4.1 show, there is a signi�cant drop in the thermal conductance
when comparing the fully relaxed superlattice to all the other types (a factor of 28
reduction). For the Z-relaxed superlattice, the �nal cross-plane stress, Pz, is more
than a factor of 10 lower than for the ±1% or −2% strained case (for the 2% case
we theorize that the atoms were displaced a distance larger than the cut-o� for the
potential thereby giving the lowest stress value). This con�rms that the two cases
Z-relaxed and initially-strained do not share the same �nal state in terms of residual
cross-plane stress. Nevertheless, we remark that the thermal conductance is almost the
same (0.074 GW/m2K). This suggests that in-plane stress is just as e�ective as cross-
plane stress in a�ecting the thermal conductance. The -2% strain case also shows that
the thermal conductance goes through a minimum under compressive strain. To verify
that the higher conductance value (σ−2% = 0.22 GW/m2K) is not due to numerical
artefacts, we performed an extra simulation (−1%) for a lower value of q. We obtain
the same value of thermal conductance which indicates that the calculation of the
thermal conductance is insensitive to the value of the applied heat �ux.

4.3 Molecular Dynamics simulation of the thermal
conductance of SiO2/FLG superlattices

We have also calculated the thermal conductivity of silica/graphene interfaces using
EMD simulations. The calculation of the thermal conductance of silicon/graphene
superlattices (σSiOC) has been performed in a recent work using NEMD (Shen et al.
(2013)), and it has been determined that the number of graphene layers does not
a�ect the thermal conductance. Using experiments, as well, (Mak et al. (2010)),
it has been determined that the number of layers from 1 to 13 does not a�ect the
conductance between silica and graphene. Hence, we have simulated a 4 × 6 super-
lattice of silica/graphene with 7 unit cells of silica, and 3 monolayers of graphene.
A snapshot of the superlattice is shown in Figure 4.5 after initialization of the atom
coordinates. Silica quartz (SiO2) belongs to the trigonal P3221 space group. It has
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Figure 4.5: A snapshot of silica/graphene superlattice used for all simulations with 3 mono-
layers of graphene (green atoms) and 7 unit cells of silica or α-quartz. The electric �eld is
applied in the cross-plane direction.

lattice constants given by a = 4.97636Å and c = 5.4397Å, and the unit cell contains 9
atoms. Graphene belongs to the P63:mmc space group with lattice constants given by
a = 2.4569Å and inter-sheet spacing 0.5c where c = 6.708Å (from graphite structure).
The two-dimensional unit cells contains 2 atoms. The cross-sectional area of the su-
perlattice is approximately 342±5Å2 while the initial length is approximately 56.74Å.
The number of atoms is 2844 atoms. The BKS potential (van Beest et al. (1990))
with a cuto� or 5.5Å was used to simulate the interaction between silicon and oxygen
atoms. Wolf summation with a cuto� of 10Å and a damping parameter α = 0.3 was
used to calculate the electrostatic interactions. The charges on the silicon and oxygen
atoms are +2.4 and -1.2, respectively. For the carbon atoms the AIREBO potential
(Stuart et al. (2000)) with a cuto� of 3.0 Åwas used. To simulate the interactions
between the graphene layers and silica atoms the Lennard-Jones potential was used
with parameters taken from Ong and Pop (2010). The LJ interactions are suitable for
the modelling of physiosorbed graphene on silica substrates, and they model the weak
bonding forces of such superlattices. The equilibrium separation between O face of
the silica and the graphene by minimizing the potential energy of the total system was
found to be dO/C = 3.3622Å while that for Si was dSi/C = 3.6758Å. The equilibrium
distances rm = 1.122σ obtained from the LJ parameter σ are rm = 3.367Å for O-C and
rm = 3.732Å for Si-C which correspond well to the values obtained by minimization.
Periodic boundary conditions were applied in all three directions, and the timestep
was set to 1fs.
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In order to calculate the thermal conductance, we used the equilibrium method of
temperature �uctuations (Rajabpour and Volz (2010)). The inter-layer resistance
RSiO/C is given by equation 4.4

RkB =

∫ ∞
0

〈∆T (0)∆T (t)〉
〈∆T (0)2〉

dt

(
1

N1
+

1

N2

)
A (4.4)

Where the subscripts 1, 2 represent the two thermal reservoirs, in this case the silica
and graphene, ∆T is the temperature di�erence between the interacting atoms of the
two reservoirs, A is the surface area, and N1,2 is the number of potential and kinetic
degress of freedom on a given side which is related to the number of atoms. The
thermal conductance was calculated as a function of electric �eld.

After initialization of atom positions, momenta, and forces, the system was equili-
brated under NPT conditions while applying a static electric �eld in the Z direction
for 300 ps. The temperature di�erence between carbon and silica atoms was then
sampled for 800 ps under NVT conditions. The interacting atoms were selected by
specifying rectangular regions close to the �rst and third graphene layers. The height
of this region was set to 4.2Å to try and include only �rst interacting layers of atoms.
The number of silica atoms was found to be N1 = 227 and that of graphene to be
N2 = 180. 10 independent simulations were performed for each value of the electric
�eld.

Quartz is a well known piezoelectric crystal. It belongs to point group 32. The
piezoelectric tensor is given by equation 4.5 in Voigt notation. The tensor determines
the magnitude of the converse piezoelectric e�ect εi = dijEj .

dij =

d11 −d11 0 d14 0 0
0 0 0 0 −d14 −2d11

0 0 0 0 0 0

 (4.5)

The application of a static electric �eld parallel to the c-axis of SiO2 crystal produces

Figure 4.6: Schematic representation of the SiOC superlattice with the application of an
electric �eld leading to local compressive strain at the interfaces. The arrows represent the
electrostatic forces at the end surfaces. Figure not to scale.

no bulk strain di3 = 0. Nevertheless, in the SiO2/C superlattice the end surfaces of
the SiO2lattice will still experience strain because of end e�ects. The application of a
positive electric �eld will lead to local compressive strain at the superlattice junction
as represented in Figure 4.6. This should lead to a situation similar to that seen in
the Si/Ge superlattice, and to a reduction of the thermal conductance. In Figure
4.7, we plot the cumulative integral of the autocorrelation function. From that we



LIST OF FIGURES 57

(a) Example of the autocorrelation of temper-
ature di�erence in one simulation between the
interacting graphene and silica atoms.

(b) Average of the cumulative integral of the
autocorrelation function giving the accumula-
tion of the thermal boundary resistance. 10
simulations for each graph.

Figure 4.7: The thermal boundary resistance as a function of simulation time for several
electric �eld strengths in MV/m.

obtain the thermal resistance. We can see that for zero electric �eld the thermal
conductance is well converged to its �nal value within 300 ps. The �nal resistance
at zero electric �eld is 1.85±0.15×10−8 m2K/W which gives a thermal conductance
σSiO/C = 1/R = 5400 ± 440 W/cm2K. The value is in very good agreement with
experimental �ndings (Mak et al. (2010)). For 0.5 MV/m, we can see an increase in
the resistance by a factor of 1.2. This value is determined at t = 200 ps. For later
times the resistance is seen to diverge slightly due to insu�cient averaging. For higher
values of the electric �eld, 23 MV/m, the thermal resistance continues to increase by
a factor of 2, and does not seem to attain its �nal value within 300 ps. The short time
behaviour of the thermal conductance is also seen to change most signi�cantly at 5
MV/m. The temperature autocorrelation function is often given as in equation 4.6 to
indicate the two predominant mode relaxation times (Rajabpour and Volz (2010))

〈∆T (t)∆T (0)〉
〈∆T (0)2〉

= Ashorte
−t/τsh +ALonge

−t/τLo (4.6)

The change in the short time behaviour (<50 ps) of the thermal resistance indicates
that at high electric �eld values the induced local strain �eld begins to a�ect the
short-lifetime modes. Unfortunately, we were not able to accurately calculate the
inter-layer strain. An estimation of it should show an increase in the spatial extent
and magnitude. The results of such an increase would be in agreement with theoritical
models which indicate a relationship between the properties of the interfacial strain
�eld and the frequency of phonon modes a�ected by it.
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Figure 4.8: Snapshots of ZnO/C superlattice at di�erent stages of the simulation with and
without an external electric �eld. Carbon atoms are in green, and are placed on the Zn face.
Note the reconstruction of the ZnO lattice at the free ends.

4.4 Molecular dynamics simulations of ZnO/FLG su-
perlattices

We have also studied the e�ect of electric �eld on the thermal conductance of ZnO/C
superlattices. We have simulated 7×4×40 ZnO lattice with 2 monolayers of graphene
placed at the Zn face as seen in Figure 4.8. The graphene atoms were strained to
the ZnO lattice in the in-plane direction. This induces a strain of -14%. For ZnO
we used the same potential as before (PCRIM), for carbon we used the AIREBO
potential, and for the Zn-C and O-C interactions, the Lennard-Jones potential. The
interaction between ZnO and graphene has been studied, and MD simulations have
demonstrated that Lennard-Jones interactions reproduces real physiosorbed graphene
on ZnO substrates very well (Galan and Sodano (2012)). Hence, we use parameters
for Zn-C and O-C interactions taken from Guo et al. (2011) and Harris and Yung
(1995), respectively. Stabilization of the ZnO structure is an important issue as well.
Electrostatic interactions in ZnO are dominant, and the morphologies of the (1000) and
(0001) surfaces are dependent on their respective polarities. In order to stabilize ZnO
nanowires, for example, which expose the polar surfaces, three methods are available:

1. Surface passivation by the saturation of surface bonds using (OH− or H+ molecules)
(Lauritsen et al. (2011)).

2. Reconstruction of the polar surfaces into a shell like structure by the relaxation
of the outermost ions (Jedrecy et al. (2000), Kulkarni and Zhou (2006)).

3. Reduction of the charge on the Zn-surface by charge transfer of some O− ions
from the O-surface. This results in the reduction of the surface charges by 0.75S
(Dai et al. (2011), Noguera (2000))
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Figure 4.9: Temperature pro�les of ZnO/C superlattices at the end of the simulations for
di�erent electric �eld strengths. The �rst point corresponds to the temperature of the double
monolayers of graphene (cold slab).

All the stabilization methods are con�rmed to a�ect the thermal conductivity of ZnO
nanowires due to the modi�cation of surface phonon modes (Jiang et al. (2013)).
In our case of ZnO/C superlattices, the addition of the graphene layers in between
the ZnO layers seems to keep the ZnO system stable. This is accompanied by some
reconstruction of the end (polar) surfaces as can be seen in Figure 4.8. Nevertheless,
the structures were stable until the end of the MD simulations.

In order to calculate the thermal conductance, we again use the reverse NEMD method
employed in section 4.2. We �rst minimize the total energy of the structure using the
conjugate gradient method. The equilibrium separation between the end ZnO faces
and the graphene is seen to deviate from the equilibrium distances initially applied and
deduced from the Lennard-Jones characteristic distances by the formula deq = 1.122σ.
We equilibrate the system under NPT conditions for 100ps. Then, we apply the electric
�eld along the Z-direction as well as the heat �ux, and we allow the system to reach
steady-state under NPT conditions for 800ps. The temperature pro�le, heat �ux, and
system length are then sampled every 1.5ps for 50ps. It was not possible to obtain an
accurate estimation of the strain induced in the system due to the electric �eld, as the
addition of the graphene layers causes �uctuations in the system size on the order of
the strains induced. The velocity of the atoms in the hot (ZnO) and cold (C) slabs
are exchanged every 0.15ps leading to an average temperture di�erence of about 190K
between the ZnO and graphene layers. The temperature pro�le of the ZnO is seen to
be almost constant as shown for all values of electric �eld in Figure 4.9. The thermal
conductance is calculated according to equation 4.1, and the results are given in Table
4.2.
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E-�eld q ∆T σZnOC
(MV/m) GW/m2 eV GW/m2K

0 31.25 ± 4 0.01603 ± 0.0009 0.168 ± 0.03
100 30.36 ± 4 0.01606 ± 0.0009 0.163 ± 0.03
1 30.41 ± 4 0.01632 ± 0.0010 0.161 ± 0.03
20 30.49 ± 5 0.01425 ± 0.0009 0.184 ± 0.04
-100 30.51 ± 3 0.01514 ± 0.0009 0.174 ± 0.02

Table 4.2: Thermal boundary resistance of ZnO/C as a function of electric �eld strength.

Not very surprisingly, it is found that the thermal conductance of ZnO/C is not a�ected
by the application of the external electric �eld. The results in Table 4.2 show that
the conductance is constant at a value of 170 MW/m2K for �eld strengths between
-100 and 100 MV/m. ZnO is a piezoelectric crystal much like SiO2. Unlike SiO2,
however, ZnO does posses a piezoelectric constant d33 leading to uniform strain when
an external electric �eld is applied. This uniform strain is seen to not a�ect the thermal
conductance between ZnO and graphene. The uniform extension and compression of
the ZnO lattice merely displaces the graphene layers without any local deformation.
This implies that the reconstructed polar surfaces are also una�ected by these values
of the electric �eld.

4.5 Conclusions

Through several molecular dynamics simulations of di�erent superlattices, we have
seen that the interfacial thermal conductance is a�ected by the application of local
strain at the interface. The interfacial conductance is observed to be highly sensitive
to local strain for the case of perfect interfaces. The conductance is seen to be sensitive
to residual strain in unrelaxed structures. For relaxed structures (those corresponding
to real-life situations) the conductance is not a�ected by the application of additional
compressive or tensile strain as seen in the case of SiGe (±1% strain). However, for
larger compressive strain values perpendicular to the interface, an enhancement of the
conductance is possible. The e�ect has been explored in other MD simulations, and
in experiments on silica/graphene interfaces.

The reduction of the conductance in silica/graphene superlattices has been shown to be
e�ective for electric �eld strengths of 5 to 20 MV/m. This reduction is attributed to the
particularity of the piezoelectric nature of SiO2 which prohibits any bulk uniform strain
while allowing for the creation of very local junction strain/stress. Unfortunately, we
were unable to quantify this stress, and it remains to be calculated as con�rmation to
the proposed strain picture. For electric �eld higher than 25 MV/m we were unable to
calculate the thermal resistance due insu�cient simulation time. No decrease in the
thermal resistance was observed for compressive strains as seen in other works (Shen
et al. (2013), Shen et al. (2011)). The zero-�eld value of the thermal conductance of
silica/graphene was noted to be in very good agreement with experiment (Mak et al.
(2010))
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Finally, using ZnO/C superlattices, we were able to show that the thermal conductance
is only a�ected by local strain. The application of a uniform static electric �eld to
ZnO/C superlattice is predicted to induce a uniform strain �eld compared to the local
strain �eld in the case of SiO2/C. Reverse NEMD simulations indicate that the thermal
conductance of ZnO/C superlattices is 170(5) MW/m2K.





Chapter 5

Conclusions and future work

5.1 Conclusions

With a combination of equilibrium and non-equilibrium molecular dynamics simula-
tions we have studied the e�ect of strain on the thermal conductivity of bulk piezo-
electric crystals and on the thermal conductance of piezoelectric superlattices. We
have investigated the e�ect of uniform and non-uniform strain applied mechanically
or using an electric �eld in piezoelectric crystals. The main conclusions of the work
are as follows:

The thermal conductivity of bulk piezoelectric crystals ZnO and AlN have been calcu-
lated using reverse-NEMD. The zero strain values deviate greatly from experimental
values. However, for the case of ZnO they have the same order of magnitude. It is seen
that the e�ect of system size plays a signi�cant role on the calculation of the thermal
conductivity using reverse-NEMD, but that it follows the equations present in litera-
ture. Uniform uniaxial mechanical strain is seen to decrease the thermal conductivity
going from compression to tensile. The behaviour of the thermal conductivity is that
predicted for argon-like crystals and has the form κ ∝ εb where ε = l/l0 and b = −18.8
for ZnO. The change in thermal conductivity in bulk crystals has been indicated to
result from the change in the properties of the phonon modes i.e. the frequency, group
velocity, and scattering rates. The dependence of thermal conductivity on strain is
seen to depend on the size of the system with bigger systems showing larger coe�cients
of proportionality as the size e�ect becomes less dominant. It was also con�rmed that
strain induced using an external uniform electric �eld a�ects the thermal conductiv-
ity in the same way as that for strain induced mechanically. The phenomenon may
be termed thermo-piezoelectric. However, the strengths of such �elds exceed typical
dielectric-breakdown values, and are therefore unattainable. By performing the same
study on AlN we have shown that the dependence of thermal conductivity on strain is
dependent on the type of atomic interactions. The more covalent nature of AlN which
is a material with a higher Debye temperature suppresses the dependence of thermal
conductivity on strain. Therefore, the thermal conductivity of ZnO is seen to have a
stronger dependence on strain than that of AlN, and may be considered as a better
candidate for piezothermal applications.
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We have also investigated the e�ect of strain on the thermal conductance of super-
lattices of SiGe, SiO2/C, and ZnO/C. We have shown that for SiGe superlattices the
thermal conductance can decrease by a factor of 28 due to in-plane and cross-plane
stress applied at the interface. We have shown that by initially straining the atoms at
the superlattice junctions compressively and tensile we are able to create a �nal state
where the thermal conductance is reduced as compared to an unmodi�ed structure.
The conductance is seen to reach its �nal value for 1% strain, and that larger initial
tensile strains do not lead to further reduction in the conductance. Furthermore, larger
initial compressive strains are seen to reasonable enhancement of the conductance in
accordance with studies seen in literature which studied the case of constant uniform
external pressure.

We have also examined two di�erent cases of piezoelectric crystals: SiO2/C and
ZnO/C. The strain-free thermal conductances were calculated as 0.05 and 0.167 GW/m2K,
respectively. It was shown that only in the case of SiO2, a modi�cation of the ther-
mal conductance is possible, and that for a value of 20 MV/m of the electric �eld,
it is possible to reduce the conductance by half. While for ZnO/C superlattices, the
uniform strain induced by the piezoelectric phenomenon does not a�ect the thermal
conductance.

The possible applications of such �ndings in piezo-thermal devices could be envisioned.
For the case of superlattices, it is seen that the modi�cation of the thermal properties
is more pronounced than that for bulk materials. However, the systems presented in
this work represent perfect interfaces. A situation that requires careful fabrication
techniques. The case of SiO2/C seems the most promising as the dielectric breakdown
�eld of SiO2 is in the range of 10 MV/m (Lynch (1972)) depending on the thickness.

5.2 Future works, perspective, and issues

The study presented in this thesis has attempted to explore various avenues for strain-
modi�cation of thermal conduction by phonons. As such it has attempted to explore
di�erent materials and interesting combinations. However, the mechanisms behind
the situations were the thermal conductivity/conductance was modi�ed were not fully
explained. Therefore, there remains a lot to understand in these particular systems.

For the case of bulk crystals, the discrepancy between the AlN and ZnO results requires
a more careful determination of phonon properties. The mode-speci�c relaxation times
and group velocities need to be calculated in order to see why strain is e�ective in
modifying the thermal conductivity of bulk ZnO crystals but not AlN. Arguably, such
analysis has been performed, and is seen that the contribution of the di�erent mode
properties may not be intuitive. For high-Debye temperature crystals like AlN the
contribution of the change of the heat capacity must also be considered as it was
shown to change as a function of the strain (Parrish et al. (2014)).

For the case of the change in thermal conductance in superlattices. The most pressing
issue is to quantify the local strain �elds induced due to the initial straining of the
atoms for the case of Si/Ge superlattice, and due to the electric �eld in the case of
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SiO2/C superlattices. It is important to quantify the spatial extent and magnitude of
the strain �elds, and to see whether they correspond with theoretical models developed
elsewhere (Meng et al. (2013)). The e�ect of strain on thermal conductance would also
be of interest in well-oriented polycrystalline thin �lms where the thermal conductivity
is dominated by grain-boundary scattering.
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