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Abstract

The thesis is focused on investigating the effect of strain on the thermal conductivity of
piezoelectric materials. Piezoelectric materials are crystals which display a mechanical
deformation upon application of an electric field. Examples of such material are ZnQO,
AIN; and SiO,. Using Molecular Dynamics simulations, we calculate the thermal
conductivity of unstrained and strained ZnO and AIN crystals. We also calculate the
thermal resistance of SiO/graphene interfaces under strain.

We calculate the piezoelectric and elastic properties of ZnO. These will serve as con-
firmation of the correctness of the inter-atomic potential used, and will serve to show
the magnitude of strain that is possible to apply. Using non-equilibrium molecular
dynamics, we determine the elastic coefficient of ZnO cs3, and we see that it agrees
with experimental values. We also determine that the elastic limit of a perfect ZnO
crystal is 6 GPa which corresponds to a 6% strain. We also determine the piezoelectric
coefficient of ZnO using NEMD, and we find that the piezoelectric coefficient d33 also
agrees with literature values.

Second, we look at the effect of strain on the intrinsic thermal conductivity of ZnO and
AIN. We use reverse non-equilibrium molecular dynamics to calculate the conductivity
because the computational costs are significantly lower than those for the equilibrium
method; especially for ZnO whose inter-atomic potential contains Coulomb interaction.

We also study the size-effect on the thermal conductivity of ZnO and AIN. We show
that the Schelling formula can indeed be implemented to both crystals for different
values of strain. The infinite length thermal conductivity for ZnO is extracted from the
formula, and it is found to be 410 W/mK. We then calculate the thermal conductivity
of strained ZnO crystals. We show that after correcting for the size effect the thermal
conductivity follows a power-law dependence to uniaxial strain. Also, we demonstrate
that the thermal conductivity of ZnO can be affected by a static external field due to
the induced strain.

The infinite length thermal conductivity of AIN is found to be 3000 W/mK. We show
that for the case of AIN the effect of strain does not affect the thermal conductivity
due to the different inter-atomic bonding. Hence, AIN might not be a useful material
for piezothermal application.

Third, we explore the effect of piezoelectric strain on the thermal conductance of
Si0/graphene and ZnO/graphene superlattices. Using EMD we calculate the ther-
mal conductivity of a superlattice composed of silica and graphene monolayers. The
thermal conductance of the superlattice was evaluated under different values of ex-
ternal electric field. We find that applying a positive electric field parallel to the
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Z-direction leads to reduction of the thermal conductance by a factor of 2 for an elec-
tric field of 20 MV/m. On the other hand, no change in the thermal conductance
is noted for ZnO/graphene superlattice. The effect is due to the non-uniform strain
induced at the superlattice junctions. The effect is recreated in Si/Ge superlattice by
mechanically applying a non-uniform strain at the interface. This approach might be
responsible for the scattering of phonons.



Résumé

La thése est axée sur ’examen de leffet de la contrainte sur la conductivité thermique
des matériaux piézoélectriques. Les matériaux piézoélectriques sont des cristaux qui
présentent une déformation mécanique lors de ’application d’un champ électrique.
Des exemples de tels systémes sont ZnO, AIN, et SiO2. En utilisant des simulations
de dynamique moléculaire, nous avons calculé la conductivité thermique de cristaux
de ZnO et AIN sous contrainte. Nous avons aussi calculé la résistance thermique des
interfaces SiO/C et ZnO/C soumis & un champ électrique.

Nous commencons par le calcul des propriétés piézoélectriques et élastiques de ZnO.
Celles-ci serviront & valider les potentiels interatomiques utilisés, et & montrer I’ampleur
de la contrainte qu’il est possible d’appliquer. En utilisant la dynamique moléculaire
d’équilibre, nous avons estimé le coefficient élastique ¢33 de ZnO, qui se trouve étre en
accord avec les valeurs expérimentales. Il a aussi été déterminé que la limite élastique
d’un cristal de ZnO est de 6 GPa, ce qui correspond & une déformation de 6

Deuxiémement, nous avons examiné ’effet de la pression sur la conductivité thermique
intrinséque de ZnO et d’AIN. La dynamique moléculaire de non-équilibre inverse a
été mise en ceuvre pour calculer la conductivité parce que les cotits de calcul sont
nettement inférieurs & ceux de la méthode d’équilibre, d’autant plus pour ZnO dont
le potentiel inter-atomique contient les interactions Coulombiennes. L’effet de taille
sur la conductivité thermique de ZnO et AIN a ensuite été étudié. Nous avons montré
que la formule de Schelling peut en effet étre mise en ceuvre pour les deux cristaux
pour différentes valeurs de la contrainte. La conductivité thermique pour un cristal de
ZnO de taille infinie est extraite de la formule de Schelling, et elle se révéle étre de 410
W/mK. La conductivité thermique de cristaux de ZnO sous contrainte a ensuite été
analysée. Nous avons montré que, aprés correction de ’effet de taille, la conductivité
thermique suit une dépendance en loi de puissance & la contrainte uniaxiale. De plus,
la conductivité thermique de ZnO est affectée par un champ statique externe en raison
de la contrainte induite. La conductivité thermique d’AIN est estimée & 3000 W/mK,
Ieffet de la contrainte ne modifie pas cette valeur du fait du potentiel inter-atomique
utlisé. Par conséquent, AIN n’est pas un matériau pertinent pour faire office de switch
thermique.

Troisiémement, nous avons exploré I'effet d’'un déplacement piézoélectrique sur la con-
ductance thermique d’interface de SiOq/graphéne et ZnO/graphéne. Utilisant la dy-
namique moléculaire d’équilibre, la conductivité thermique d’un super-réseau dont
la période est composée de silice et de graphéne polyfeuillet. Le super-réseau a été
évalué pour différentes valeurs du champ électrique externe. Nous avons constaté
que P'application d’un champ électrique de 20 MV /m positif paralléle & la direction
hors-plan du super-réseau conduit & la réduction de la conductivité thermique d’un
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facteur deux. D’autre part, aucun changement dans la conductance thermique n’est
noté pour le super-réseau ZnQO/graphéne. Cette différence est due aux différences de
déformations induites au niveau des interfaces dans le super-réseau. L’effet est recréé
dans un super-réseau Si/Ge en appliquant une déformation pour former les interfaces.
Cette approche crée une déformation non uniforme qui est susceptible de diffuser les
phonons.
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Chapter 1

Introduction

1.1 Thermal management in the semiconductor in-
dustry

1.1.1 Motivation

Microprocessors Significant enhancements in device fabrication and integration in
the electronics industry have led to a rapid increase in the total power consumption in
electronic circuits. Transistors which form the basic building blocks for microproces-
sors for example have been reduced to a few nm within four decades. This has allowed
manufacturers to pack more of them onto a single die. One of the beneficial aspects of
this higher density packing is a reduction in signal propagation delays, permits higher
clock-frequencies, and as such better performance. If we take microprocessors for ex-
ample; today’s processors are faster and cheaper than older ones by several orders of
magnitude owing to the exponential growth in transistor density. The scaling has sur-
passed the growth predicted by Gordon Moore’s empirical law stated in 1965 (Moore
(2006)) which stated that processor transistor density would double every year.

However, in his paper, Moore also indicated that it would also be possible to cool
integrated circuits efficiently due to the relatively large surface area of integrated
circuits, and the limited number of components that need to be driven. Dennard
scaling justifies this by indicating that to keep the electric field constant in a reduced
transistor, the voltage would have to be reduced as well thus reducing the power
consumption (Dennard et al. (1974)). In fact, today this scaling has broken down,
and we know that this is no longer true. In fact, voltage leakage which leads to
heating is the most acute problem facing the advancement of current integrated circuit
technology (McMenamin (2013)). 50% of the energy consumed by a microprocessor is
dissipated as heat due to its electrical resistance and/or current leakage. This leads
to negative effects on the lifetime and performance of these microprocessors. In fact,
the surface density power of microprocessors was approaching that of nuclear plants
(Taylor (2009)) as seen in Figure 1.1.
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Figure 1.1: Plot showing the increase in transistor density and power loss in Intel processors
from Holzer (2007)

LEDs Another electronic device which is also prone to heating issues is LEDs. Light-
ing based LEDs has become an important issue of the current decade due to LEDs
becoming a competitor to conventional lighting sources such as incandescent and fluo-
rescence based lighting. Today, the efficiencies of LEDs exceed 50% Miillen and Scherf
(2006), and all colors of the visible spectrum are available using different combina-
tions of semiconductors. The lifetimes of LEDs (10° hrs) also compare favourably
with incandescent sources (500h) and fluorescent sources (5000 h). To achieve high
quantum efficiency in a LED, free carriers need to be spatially confined. The light
extraction efficiency has also proven to be a key factor in increasing the efficiency of
high power LEDs. The maximum thermal power that may be dissipated in a LED
is determined by the maximum operating temperature and the thermal resistivity of
the LED package. High-power LEDs thus require lower thermal resistivity packaging.
However, active cooling is not used in these LEDs as it would lead to lower power
efficiency. Rather passive-based cooling is prefered where heat is transported to the
printed circuit board using metal heat sink slugs (Miillen and Scherf (2006)). Light-
ing based LED therefore can suffer from the negative effects of overheating, and it is
necessary to reduce the thermal resistivity of the packaging (Weng (2009)). Most of
the electrical energy consumed by a LED is transformed to heat; almost 70%, and if
the temperature of a LED rises above the recommended threshold then its reliability
and lifetime is considerably reduced (Yuan et al. (2000)).

Hence, heat management is an issue for LEDs as well; however, this issue of overheating
in microelectronics can perhaps be turned into a positive outcome. In fact, if we note
the omnipresence of electronics in daily life, it becomes apparent that improving the
efficiency and giving more thought into controlling the heat losses in these circuits is
a crucial need. The reduction of heat damage to electronic components would lead
to increased lifetime, less waste energy, and perhaps even the transformation of heat
waste into electrical energy.

Current thermal management or thermal protection methods are macroscopic scale
and package level. Heat sinks, fans, and other devices attempt to control the tem-
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Figure 1.2: schematic diagram of a microprocessor showing its main components, and the
abundance of interfaces where heat is generated from Schelling, Shi, and Goodson (2005)

perature of the final system by coupling to the external environment. This limits the
effectiveness to the efficiency of the coupling between the environment and the inte-
grated circuit. It thus requires the use of heat spreaders, heat pastes, and other metal
contacts. However, the heat itself is generated at the nanoscale or at the interfaces
between the various components. Hence, in order to better improve heat manage-
ment of these integrated circuits, we must deal with the issue at the transistor level
or at least understand the mechanisms behind heat transfer. Phonons which are the
representations of lattice vibrations in solids are the conductors of sound and heat.
Low frequency vibrations, smaller than 10'! Hz correspond to sound, while higher fre-
quency ones manifest themselves as heat (Figure 1.3. Understanding and controlling
phonons is the first step in thermal management and impacting current technology in
a way that was achieved by controlling charge and light transport.

Indeed, it is only when we are able to effectively utilize heat through phonons as an
energy source, that one of the world’s key questions: the dependence on fossil fuels,
could also be resolved. In a paper presented to MRS bulletin (Smalley (2005)), a
possible plan to utilize solar energy was envisioned by placing solar power plants in
strategic locations around the Earth. However, as the author indicates, the current
state-of-the-art technologies involving solar power do not permit a cost-effective gen-
eration of solar-electrical power to meet current energy demands. On the other hand,
if we were able to develop solutions to control/stop electron-heat relaxation channels
in semiconductors then production of more efficient solar cells can be achieved. In this
case, the goal is to reduce the thermal conductivity rather than to increase it as in
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Figure 1.3: Phonon spectrum and its applications. Figure from Maldovan (2013).
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the previous cases. Nevertheless, in this aim we still must be able to understand and
control the flow of heat in a semiconductor.

1.2 Static and transient thermal management

The emergence of the branch of phononics in recent years is the attempt to under-
stand and utilize phonons, the carriers of heat energy in semiconductors, in a benefi-
cial way. One can classify two approaches to this task: the static and the dynamic.
The static approach has proven to be useful when it comes to the topic of thermo-
electrics, for example. One strategy consists in introducing crystallographic defects, by
adding impurities, alloying, or nano-structuring (Iskandar et al. (2015),Pernot et al.
(2010),Dresselhaus et al. (2007)). The aim of introducing defects or alloying is to
increase the scattering of phonons. The scattering rate will of course depend on the
frequency of the phonon-mode, on the temperature, and other factors. These method
are usually employed in thin films of silicon, germanium, aluminium nitride, as well
as other semiconductor thin films. Other methods of heat management which involve
phonon confinement and localization which are phenomena that manifest themselves
in nanostructures and superlattices (Venkatasubramanian (2000), Kim et al. (2006),
Balandin and Wang (1998)). Surprising values of the figure of merit ZT have been
achieved using these techniques (Suriano et al. (2015), Gunes and Ozenbas (2015),
Wu et al. (2014)), and the topic remains an object of active research.

Although static tailoring of the thermal conductivity is of great interest, dynamic con-
trol of heat transport can offer interesting scientific and technological applications as
well; it may even be unavoidable at times. For example, dynamic heat management
can be well suited for systems which are required to adapt to their environment. For
example, recent works on developing phonon analogues to the electric diode, tran-
sistor, memory, and logic gates (Li et al. (2012)) would allow for applications such
as heat-based data storage (Wang and Li (2007)) or "smart" thermoelectric devices
which could maximize their efficiency by adjusting their thermal properties to the ex-
ternal temperature. Other examples involve devices which can change their thermal
properties depending on a heat load. Component heating in electronic devices, at the
end of the day, is dependant on the task load, and such heat loading is essentially of a
transient nature. Hence, transient heat management lends itself naturally in this case.

Some of the recent works which approached the idea of transient heat management
include thermal rectification, which has been observed experimentally (IKobayashi et al.
(2010), Chang et al. (2006)). However, rectification coefficients remain very small for
potential integration in applications. Van Zwol et al. (2011) have showed electrically
controlled fast nanoscale heat-flux modulation with phase-change materials. They
obtained a significant contrast of heat flux due to the interplay between radiation
heat transfer at the nanoscale and phase-change materials. Ihlefeld et al. (2015)
have experimentally demonstrated for the first time, active and fully reversible control
thermal transport in a solid-state device using ferroelectric thin films. Strain has
also been used to modify the thermal conductivity dynamically. In a recent study Li
et al. (2014) have showed that large reversible changes to thermal conductivity on the
order of 70% could be achieved using 2% strain due to the change in the density of
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twin-boundaries in thin films. The increase in twin-boundary density has been shown
to vary concurrently with the thermal conductivity. Kulkarni and Zhou (2007) have
also shown that thermal conductivity can be modified in ZnO nanowires using strain.
Under high strain values, above the elastic limit, the phase-change from wurtzite to
hexagonal structure induces a change in the thermal conductivity by a factor of almost
two. Such effects could be exploited in the development of non-mechanical thermal
modulators. Other studies have also shown that strain can be effective in affecting
the thermal transport in nanostructures (Li et al. (2010a)) and bulk crystals (Parrish
et al. (2014)). Our motivation for this work is to try and see whether it is possible
to modify the thermal conductivity of a piezoelectric material using an electric field
through strain.

1.2.0.1 The thermal switch

A prototype model for a mechanical thermal switch device was presented in Cho
et al. (2008). The device is based on two contacts as seen in Figure 1.4 where they
are brought closer together by mechanical actuation. The presence of a high-thermal
conductivity material in between the substrates or leads changes the thermal resistivity
of the device once the two contacts touch. Cho et al. (2008) tested several different

GSOFF” GSON”

(a) Concept of MEMS thermal switch.

(b) Liquid-metal micro droplets.

Figure 1.4: A MEMS thermal switch schematic and real-life counterpart. Adapted from Cho
et al. (2008)

designs of the contacts such as: silicon-Hg, CNT-Si, CNT-Au-Si, and CNT-CNT.
They concluded that the designs based on liquid-metal droplets-based had superior
on/off ratio than carbon nanotube based ones. The CNT based switches had high
thermal resistance between the CNTs and the other contacts. Hence, their on/off
ratios were low. The on/off ratio of the liquid-metal based switch; on the other hand,
was roughly 1:100. The applicability of such a switch into a circuit or device is however
not discussed. Although Such MEMS devices have high efficiencies when it comes to
on/off ratios they do suffer from size disadvantages and from operational degradation..
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Other models for thermal switches come from recent works into the effect of strain
on thermal conductivity. These works show the possibility of modifying thermal con-
ductivity by mechanical strain. One of the first work which showed the piezo-thermal
conductivity in semiconductors was reported by Keyes and Sladek (1962). For low
temperatures it was reported antimony-doped Ge crystals showed a large increase in
their thermal conductivity when <111> or <110> tensile strain is applied. The the-
ory of scattering of phonons by donors predicted the magnitude and effect of applying
strain which modified the electrons bands of the antimony donors in the crystal. More
recently, Alam et al. (2012) used free-standing amorphous silicon nitride thin films
to this end. The authors used films which were 50 nm thick, and the whole device
(actuator and sample are a few hundred micrometers large as seen in Figure 1.5. By
coupling the film to a MEMS actuator they were able to apply large tensile strains
to the films, up to 2.4%. They observed in their experiments that the thermal con-
ductivity decreases with tensile strain, and that the decrease can be up to a factor of
almost 8. The authors attributed this decrease to the strong localization of phonon
modes in amorphous structures which is not present in crystalline solids. The trend
reported in this study differs markedly from experimental measurements performed
by Ftouni (2015), who studied thermal transport in SiN, membranes by coupling the
3w method to the Volklein geometry and observed that residual stress has no effect
neither on the specific heat nor on thermal conductivity.

In a more recent paper Alam et al. (2015) have also shown that the thermal con-
ductivity of 200nm amorphous SiN, can be increased upon mechanical loading up to
2.5%. This contrasting result to the previous experiment was explained by the authors
through possible changes in microstructure and/or carrier density. In all cases, we can
see that the topic of affecting thermal conductivity using mechanical strain exhibits
significant variability and promise. This opens up large possibilities for study and
experimentation to build a device such as the thermal switch.

Heater

50 um

Specimen

Figure 1.5: (a) Figure showing the single layer SiN three-strip actuator, (b) Scanning elec-
tron micrograph of a specimen, (c) Strain is measured post-erperiment fracture of the speci-
men. Adapted from Alam et al. (2015).

As a theoretical "ideal" component our thermal switch is a device that should have
dynamic thermal conductivity. When the switch is in the "on" state the heat flow is
nominal; the component is a good conductor of heat. In the "off" state the component
has a low thermal conductivity, and acts as an insulator. The switch can be triggered
by applying strain to the crystal. In the case of a piezoelectric material this strain can
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be applied using an external electric field. It would also need to have a fast dynamic
time and an high on/off ratio to be efficient. Possible candidates for this application
are zinc oxide and aluminium nitride because they exhibit high thermal conductivities
and high piezoelectric coefficients.

1.3 Physical background behind solid-state switches

We will now review the necessary physical concepts behind solid-state switches such
as lattice vibrations, phonons, thermal conductivity, elastic behaviour of solids, and
piezoelectric phenomenon. We will begin by a brief review of the model of thermal
conductivity in solids. Since ZnO and AIN are binary compounds and their unit cells
contain four atoms, we will use a 1D linear chain in the harmonic lattice approximation.
This will help present the phonon-mode properties of wurtzite crystals along the c-axis
which may be considered as a linear chain. Next, we introduce the notions of stress and
strain, the elastic behaviour in solids. It is also important to elucidate the connection
between strain and thermal conductivity. We will also present the phenomenon of
piezoelectricity. Finally, we will also discuss some of the general properties of ZnO
and AIN, and explain why they are the best candidate materials.

1.3.1 Lattice vibrations

The topic of lattice vibrations whether addressed with a classical or quantum treatment
is the first chapter in any book on solid-state physics. For the following discussion we
will use the former treatment adapted from Srivastava (1990).

fo—— 20— 2n-1 n 41

Figure 1.6: A two-atomic linear chain with lattice constant 2a and masses m and M (m <
M) at the equilibrium position from Srivastava (1990)

In most solid materials (crystalline), atoms or molecules are arranged in a regular
array of sites, or points in a three-dimensional space, which is known as the crystal
lattice. A crystal structure describes a highly ordered structure, occurring due to the
intrinsic nature of molecules to form symmetric patterns. At any finite temperature,
atoms vibrate about their equilibrium positions. Under the classical approximations,
those atom motions can be mathematically described by the Newton’s second law if
the force applied on each atom and the atomic mass are known.

If we take the linear atomic chain shown in Fig. 1.6, and we assume only nearest-
neighbour interactions, we can write the equations of motion for the 2n and 2n-1
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atoms equations 1.1 and 1.2

dZ’ILQn
m a2 =A (U2n+1 + Uop_1 — 2’11,2n) (1.1)
Puay,
M% = A (ugn+t2 + U2n — 2u2n41) (1.2)

A is the 2nd order force constant derived from the interaction potential equation 1.3

1 0?® 1 3P
D)= o+ = > tntp o o S Ul e 1.3
(u) ot 2! %;u Uk Ou, Ouy, +3! %u Ukt O, Oug Oy + (1.3)
Ank
If try solutions 1.4 and 1.5
Ugp = Aj expi(2nga — wt) (1.4)
Uznt1 = Asexpi((2n + 1)ga — wt) (1.5)

Then equations 1.1 and 1.1 are transformed into the coupled eigenvalue equations
equations 1.6 and 1.7

—w2mA1 =A [Ageiqa + Azeiiqa - 2A1] (16)
—w2mA2 =A [Aleiqa + Ale_iqa - 2A2] (17)

This leads to the matrix equation
2
WA = Z DijA;  i=1,2 (1.8)
j=1

where D;; is the dynamical matrix which contains the elastic coefficient A and the
masses m, M given by

2A/m —(2A/m)cosqa
D= (—(QA/M)cosqa 2A/M ! ) (1.9)

This leads to the secular equation 1.10
’Dij — w25ij| =0 (1'10)

Solving equation 1.10 gives the dispersion relation relating the frequency w to the
wavevector ¢ of the phonon mode equation 1.11.

w2:A(1—|—1>iA
m

5 1/2
1 1 4
U (m + M) — 5 qa] (1.11)
Equation 1.11 is plotted in figure 1.7. The maximum frequency is known as the Debye
frequency. The Debye temperature is related to it using the relation 0p = hw/kp.
Figure 1.7 shows two branches. The top branch is the optical branch, and the lower
one is the acoustic branch. The optical branch describes the displacement of the atoms
in the primitive or conventional cell. They describe motions of the atoms in opposite
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Figure 1.7: Dispersion relation for linear diatomic chain.

directions. Therefore, if the two atoms have opposite charges, these modes would be
excited by an electric field of the appropriate frequency. The frequencies of said electric
fields correspond to the infrared part of the light spectrum. Hence, the name optical
branch. The acoustic branch, on the other hand, corresponds to the in-phase motions
of the atoms. This is characteristic of a sound wave. Close the I' point ga << 1
the dispersion relation described by Eq. 1.11 can be simplified by considering the
relationships sinx ~ z and V1 —z =1 — %x when x << 1 to give equation 1.12

A
C VR —— 1.12
2(m+ M) (1.12)

Equation 1.12 provides a linear dependence of frequency on ¢ for the acoustic branch
which means a constant group velocity for the acoustical phonons which is known as
the sound velocity in materials. These long wavelength modes are also called elastic
waves, and can be studied through the application of the wave equation. Such a
treatment would see the solid as a continuum rather than a discrete set of particles.

For a one-dimensional linear diatomic chain we see that we have two branches. For the
case of a three-dimensional chain, the number of branches will be 6 or D x N where
D is the dimensionality and N is the number of atoms in the unit cell (primitive or
otherwise). Among the DN branches, D branches will be acoustical branches and
DN — D will be optical. Acoustical branches contribute more to heat conduction
because of their higher group velocity, as we shall see in the next section. However,
optical modes also play a major roles in phonon-phonon scattering indirectly.
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1.3.2 Typical thermal conductivities of semiconductors

The application of a temperature gradient AT across a solid results in the excitation
of elementary particles such as free electrons, holes, and phonons which acquire more
energy than the average or zero-point energy, and transfer heat from the hotter to
the colder part of the specimen Srivastava (1990), p.122. In the quantum picture
of the coupled harmonic oscillators, which we will not, discuss, the energy levels are
quantized E,, = (% + n) hw where n = 0,£1,£2,--- ,j:%, where N is the number of
atoms. %hw is the zero point energy if a quantum harmonic oscillator. In addition,
the Hamiltonian can be diagonalized and has the form seen in equation 1.13

3
H=> "> hwy. (b bgs+1/2) (1.13)
1

q s=

Where it can be shown that b} ,,bg s respectively create and destroy one excitation
of energy hw. These excitations are phonons. From this viewpoint, phonons can are
regarded as quasi-particles which obey Bose-Einstein statistics, and the Boltzmann
equation approach can be applied to them in order to study thermal transport in
solids. The general form for the Boltzmann equation for phonons in the steady state

of heat-flow is given in equation 1.14

Ongs  Ongs
as | 9Nas

—¢ - VIgr ot

=0 (1.14)

scatt

Where ng is the distribution function ngs(r, t) which measures the occupation number
of phonons in mode (gs), where s is the polarization, in the neighborhood of r at time
t. T is the temperature, and c,(q) is the group velocity of mode gs.

In the absence of a temperature gradient nqs is given by the Bose-Einstein distribution
Eq.1.15

1

hw(qs)
T

. (1.15)
exp —&T 1

figs == A(w,T) =

In the presence of a temperature gradient the phonon distribution is spatially non-
homogeneous which leads to a rate of change of the distribution function, as described
by equation 1.14, due to two mechanisms: diffusion and scattering; which in the case
of steady state must cancel out. Generally, equation 1.14 cannot be solved because
it is very complicated as it requires knowledge of the distribution function ngs for all
possible states ¢gs as well as the transition rates from state ¢gs to ¢’s’ Srivastava (1990).
Therefore, equation 1.14 is simplified using the relaxation time approximation Eq.1.16

Ongs __Mqs — Ngs (1.16)
ot Tqs '

Where 74, represents the relaxation time associated with phonon qs decaying to the
average BE distribution. The combination of equation 1.16 with assumption of spatial
homogeneity (small temperature gradient) leads to the linearized Boltzmann equation
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Eq. 1.17

Ongs _ Ngs — Ngs

—Cs (q) . VT aT - qu

(1.17)

What is important to us is the relaxation time 74, which is associated with different
scattering mechanisms of phonon-scattering such as: mass defect scattering, bound-
ary scattering, dislocation scattering, phonon-electron scattering, and phonon-phonon
scattering to name some of the more dominant ones. The scattering rates are depen-
dent on the phonon-mode gs and on temperature. In the next section we will discuss
some of them, and see how they affect thermal conductivity; paying some attention to
strain scattering.

Lattice thermal conductivity For a solid subjected to a temperature gradient,
Fourier’s law describes the rate of energy flow per unit area normal to the temperature
gradient (macroscopic expression) Eq.1.18:

q=—kVT (1.18)

where £ is the thermal conductivity. The expression for the heat current in a solid is
obtained by adding the contribution of all phonons:

a= ﬁ Z fiw(qs)ngscs(a) (1.19)

Naturally, the thermal conductivity well then depend on the solution of the Boltzmann
equation which in turn depends on the expression for the relaxation time. There
are several different levels of sophistication to describing phonon relaxation processes
through the associated relaxation time. The simplest of which is the single-mode
relaxation time approximation (smrt) which assumes that one calculates the relaxation
rate of phonons in mode gs under the assumption that all other phonon modes have
their equilibrium distribution. What is also important is that the inverse of the total
smrt 74, can be expressed as a sum of contributions from all the different scattering
mechanisms (Srivastava (1990)):

7',;,51 = Tq_sl (bs) + T(;Sl(md) + Tq_sl (pp) (1.20)

where bs, md, pp stand for boundary scattering, mass-defect, and phonon-phonon, re-
spectively.

Along with the smrt approximation there are other approximations to simplifying the
expression for the thermal conductivity which lead/correspond to different models
such as the Klemens model (Klemens (1951)), the Callawy model (Callaway (1959),
Holland (1963)), and the Srivastava model (Srivastava (1990), p.134). Avoiding any
extended comparison or detailed explanation of these models, they can, eventually, all
be expressed in the form of the kinetic theory expression (Eq. 1.21)

K= %C’V#% (1.21)
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Where Cy is the phonon specific heat defined as Cy = C/V where C is the heat-
capacity of the solid (at high temperatures it is equal to 3Nkg). v and 7 are average
phonon speed and average phonon relaxation time which depend on the particular
model.

A graph showing the variation of the thermal conductivity of some typical metals and
nonmetals is shown in Figure 1.8.

At low temperatures (well below 6p) the thermal conductivity of nonmetals such as
Si and quartz follows a T. This is related to the heat capacity of the solid which
from the Debye model changes as T3. More so at low temperatures it can be verified
within the smrt model that longitudinal phonons contribute only about 10-25% of
the total thermal conductivity of semiconductors and insulators while most of the
heat is carried by the transverse phonon modes (Srivastava (1990), p.235). At high
temperatures anharmonic scattering is the predominant scattering mechanism, and
the thermal conductivity will usually follows a 7~! behaviour due to that. However,
stronger than a 7! has been observed experimentally. The stronger dependence can
be satisfactorily explained by including the effect of thermal expansion which makes
the elastic constants and as such the Gruneisen coefficients temperature dependent
(Srivastava (1990), p.239). This is a first insight into the effect of strain on thermal
conductivity. Acousto-optical scattering also plays a big part at high temperatures.
For temperatures in-between it is the predominance of defects limiting the mean-free
path of phonons.

The effect of strain on thermal conductivity of non-metals One relevant scat-
tering mechanism that we would like to discuss briefly is strain scattering of phonons.
The relaxation time associated with elastic strain field scattering of phonons has been
studied by Carruthers (1959) using second-order perturbation theory. It was found by
the author that the Fourier component of the strain field plays a similar role to that of
the potential. This is not unexpected as phonons can be regarded as lattice vibrations
or localized strains. The application of the theory to edge dislocations at low temper-
ature shows that the scattering rate is proportional to the density of dislocations o
and to the wavevector magnitude gq. Carruthers (1959) also determined a Boltzmann-
like equation for the change in the phonon distribution nys due to the interaction of
phonons with the strain field. The results for such a procedure are valid for simple
crystals with 1 atom per unit cell or for complex crystals at low temperatures.

1.4 Piezoelectric crystals

In three dimensions there are 219 space groups, and 32 point groups. A crystal will be-
long to one of these space groups, and to its corresponding point group. The symmetry
of the point group will determine the minimum symmetry of the material properties
of the crystal such as its elastic constants, its thermal conductivity, or its dielectric
constant. For example, for cubic crystals, face-centered, body centered, or simple,
the three main directions: [100] [010] and [001] are indistinguishable. Hence, the
thermal conductivity (100}, 5010, Kj001), and the elastic constants Cy1,Cag, C33 are
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Figure 1.8: Thermal conductivity as a function of temperature for some typical materials.

equal. This is the most important principle in Crystal Physics called Neumann’s Prin-
ciple Newnham (2005). A property which also depends on the symmetry of the crystal
is piezoelectricity. The piezoelectric effect was discovered in 1880 by Pierre Curie and
Jacques Curie. In certain crystals the application of stress (usually uniaxial) will result
in a non-vanishing macroscopic electric polarization field P;. The coefficient of propor-
tionality is the direct piezoelectric coefficient d;;i, eq 1.22. The converse-peizoelectric
effect relates the strain 7;; to the external electric field £;. From thermodynamic ar-
guments it is shown that the two effects have the same coefficient. The units of d;;
are [C/N] or [m/V], which are equivalent. The inverse-piezoelectric effect e;jk = d;i
simply inverses the relations in eq 1.22. It is used in the creation of ultrasonic surface
waves.

P; = dyjrojy (1.22)
Tij = diji Bk

Some typical values of d;;;, are shown in fig 1.9.
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Table 12.3 Piczoclectric strain coclAcients in pCiMN
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Figure 1.9: Values of piezoelectric constants for some typical materials from Newnham
(2005)

For the 32 point groups in three dimensions, 21 are piezoelectric. Of the remaining
11, 9 are centrosymmetric: they posses a center of inversion. Centrosymmetry forbids
the presence of the piezoelectric effect. ZnO and AIN both belong to the (6mm) point
group or the wurtzite crystals structure P63mc space group. The piezoelectric effect
manifests in that structure due to the displacement of the ions from their equilibrium
lattice positions. This leads to a non-vanishing polarization. The structure has 3
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independent piezoelectric coefficients

T1
P, 0 0 0 0 dys 0\ |7
Pl=l0 0 0 ds 0 of[T (1.23)
P dsy dsy dzz 0 0 o) |

T5

T6

ZnO has the largest piezoelectric coefficient dsz of all binary semiconductors. There-
fore, it will exhibit the largest strain for a set electric field value. Typical dielectric
breakdown fields for most materials are around 1-10 MV /m; that translates to 0.1-10
MPa stress or 0.001-0.01% strain for ZnO and AIN.

1.5 Organization of the thesis

In chapter 2 we will introduce the numerical methods used to study the effect of strain
on thermal conductivity. This mainly includes non-equilibrium and equilibrium molec-
ular dynamics simulations (NEMD and EMD). We will introduce the inter-atomic
potentials used for the simulation of different materials.

In chapter 3 we show the results concerning the effect of uniaxial strain on the thermal
conductivity of bulk ZnO and AIN crystals. We apply mechanical strain ranging
between -6% and 6%. We demonstrate that the dependence of thermal conductivity
on strain follows a power law. We also study the size effect on the calculation of the
thermal conductivity using NEMD for ZnO and AIN, and show that it is independent
from the value of the strain applied. We also show evidence of the modification of the
thermal conductivity of ZnO using an external electric field. For AIN we show that
the thermal conductivity is not affected by compressive or tensile strain for the values
proposed.

In chapter 4 we study the effect of local non-uniform strain on the thermal conductance
of superlattices of Si/Ge, SiO5/C, and ZnO/C. We use non-equilibrium molecular
dynamics to show that in Si/Ge superlattices local in-plane and cross-plane strain
at the interfaces leads to the same drop of thermal conductance. The effect of an
external electric field on the thermal conductances of SiO2/C and ZnO/C superlattices
is studied using EMD and NEMD. We show that it is only for the case of SiO5/C
superlattices that a local strain can be applied, and that such strain leads to reduction
of the thermal conductance. For ZnOC superlattices, on the other had, no modification
of the conductance is seen. The results for SiO2/C show promise for applications in
piezothermal devices.

Finally, we conclude the thesis by reviewing the major results, and by indicating the
work that is still required to validate them.






Chapter 2

Molecular Dynamics

2.1 Introduction

“Une intelligence qui, pour un instant donné, connaitrait toutes les forces
dont la nature est animé, et la situation respective des étres qui la com-
posent (...) rien ne serait incertain pour elle, et 1’avenir comme le passé,
serait présent a ses yeux.”

— Pierre Simon Laplace, Essai Philosophique

Molecular dynamics is a powerful tool for calculating the static and transport prop-
erties for a range of systems; gas, solid, and liquid. It has been applied to a number
of important and difficult problems involving protein folding, crack propagation in
solids, and non-newtonian flows. The power of MD is providing detailed atomic level
information that is necessary and unavailable in other methods which use continuum
modelling. Historically, MD was used mainly for liquids; as solids and gases already
had well established theories such as the kinetic theory and the Debye model for simple
crystals at a range of temperatures. These models are well suited for describing solids
and liquids at thermal equilibrium

MD simulations can have an important role in bridging the gap between theory and
experiment. They can provide a way to obtain useful information about a system of
interest before investing time and effort. Apart from some of their limitations, MD
simulations do not remove the anharmonicities of the atomic interactions. Even though
the interactions are not as 'accurate’ as ab initio based methods they can still reproduce
many interesting macroscopic properties that have to do with phonon transport such
as thermal expansion, thermal conductivity, and some interesting phase transitions.
The computational costs of MD vary depending on the size of the system, and the
complexity of the inter-atomic potential. Typically, systems from a few hundred up
a few million atoms are possible to simulate using MD, and potentials can include
two-body, three-body, and other effects.

In the following, we will discuss the requirements to building a MD simulation, its
limitations and relevant quantities that can be obtained by applying statistical anal-
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ysis. This development will serve as a background to the later derivations of thermal
conductivities and piezoelectric coefficients in chapters three and four.

2.2 Physical principles of Molecular Dynamics

2.2.1 Equations of Motion

As shown in Eqgs. 2.1, MD simulations begin by the time integration of Newton’s
equations of motion for each atom which are considered as a classical point masses.
The forces between the atoms are set by the derivatives of the interaction potential.
Figure 2.1 represents typical features of a MD cell. The unit cell represents the unit
cell of the solid. This can be the conventional or primitive cell defined for the crystal
structure. The unit cell as defined here needs to recreate the periodic crystal structure
when tiled along the three directions X,Y, and Z. The supercell represents the cutoff
radius of the inter-actomic potential. In Figure 2.1 it shows that the simulation takes
into account with first and second neighbor interactions of each atom. It is important
for the final size of the domain to be twice as large as the cutoff distance to avoid any
self-interaction effects. We can also see that in this representation we have two different
atom types, and boundary conditions. When an atom crosses a periodic boundary it
is remapped back into the simulation domain rather than being lost. With periodic
boundary conditions the atoms across the boundaries are interacting; hence, periodic
-boundary conditions simulate bulk structures.

After initialization the positions and momenta of the atoms are allowed to evolve
according to the classical equations of motion. For N atoms we have 6N equations.
Without other constraints the equations will represent a single phase trajectory of the
system in microcanonical ensemble. The number of atoms, volume, and energy are
conserved (NVE). The canonical ensemble (NVT) can be simulated by the addition
of a Nosé-Hover thermostat Hoover (1985). This is done by the addition of an extra
equation to the set of 6/NV equations. MD simulations, in general, are deterministic
and time-reversible.

d2r1 N
T !
d21‘2
2§
2 g 2
(2.1)
d’r
N— =Fy
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Figure 2.1: Representation of the basic element of a MD cell where atoms are interacting
through potential forces. Periodic boundary conditions are used to induce a translational
symmetry and mimic an infinite size system.

where, taking ®(r;;) as the interatomic potential function

F(i) = Z Fyj = — Z L(I;(rr”)
J#i i Y
(2.2)

Here m; is the mass of atom i, r; refer to the position of atom i. F; is the force on
atom ¢ due to all its neighbours. The derivatives are calculated analytically from the
interaction pseudopotential ®. Examples of which are reported in Table 2.1.

2.2.2 Solving the equation of motion

Two initial conditions are required for each atomic trajectory to be calculated -as
indicated by the second time-derivative term in the motion equation-, therefore initial
positions and wvelocities for each atom should be set in the first place. When crystals
are to be computed, the positions are set by the crystal lattice. Unfortunately, the
length scales involved in MD are on the order or a few hundreds of nanometers. Hence,
structures such as polycrystalline solids or thick interfaces cannot be fully resolved due
to computational limitations. Nano-structures, on the other hand, are perfectly suited
for MD. Velocities can be randomly drawn according to a Maxwellian distribution
including the desired temperature, but a white noise distribution might also be relevant
as its relaxation to the Maxwellian distribution is reached within fewer atomic periods.

Then a numerical scheme allows for calculating the atomic trajectories, the simplest
numerical scheme being:

p(i,t + At) = p(i, t) + F(i,t) At
r(i,t + At) =r(i,t) + p(i, t + At)At/m;
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Potential Name Functional form ®(r;;) Relevant materials

Buckingham Aexp(—r/p) — & Si0, ZnO, MgO (oxides, ionic
compounds)

Lennard-Jones A/r2 — B/r® Argon, graphene

Morse D [(1 —exp(—a(r —rg)))* —1] ZnO, NaH (diatomic
molecules)

Coulombic —qiq; /7 ionic compounds

Table 2.1: List of common MD potentials used in this work

Here At is the timestep, p() is the momentum of atom ¢. F(i) is the force on atom 4
due to all its neighbours. Note that the large toolbox of numerical techniques for inte-
grating differential equations is currently used in the standard online codes typically
including high-order Runge-Kutta and Verlet algorithms. The timestep is chosen such
that 1/At is larger than the maximum vibrational frequency in the system. For ZnO,
this frequency lies around 18 THz and around 20 THz for Si, which corresponds to a
period of 55 fs. Hence, a timestep of 1 fs would ensure a reasonable resolution of all
atomic vibrations and conservation of the total energy with fluctuations on the order
of 0.001%.

The initial state of the system should not have an influence on the measurement of
macroscopic quantities that is to be made, which is the case once the chosen initial
coordinates describe the chosen statistical ensemble and are averaged either over a
sufficient duration or over a large enough number of trajectories.

Once the initial state is set and the system is allowed to evolve, thermal equilibrium
has to be reached. Due to their different orders, different macroscopic quantities,
such as temperature, pressure, heat flux, strain..., relax to their equilibrium values
on different timescales. While temperatures are converging as quickly as one atomic
period at equilibrium, several nanoseconds might be required for the heat fluxes to
reach the relevant regime.

As the rms fluctuation amplitude of temperature is reversely proportional to the square
root of the number of samples, averaging over more timesteps might also be needed
for small systems. Thermal equilibrium can finally be confirmed by the convergence
of the temperature integrated over time or by checking that the distribution of the
velocities is Maxwellian-like.

2.2.3 Forces

The inter-atomic forces are perhaps the most challenging aspect of a MD simulation.
They are set using available models from the literature and have to be chosen according
to the quantities to be estimated. The features of the force field are especially crucial to
describe the thermal conductivity. The Boltzmann description of this latter quantity
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is in an integral over the phonon modes:

O
/hw Vg Ty 37:1 D(q)dq (2.3)

where the density of states D(q) and the frequencies versus wave-vectors appear and
are specific to a given solid crystal, depending on the crystal lattice and the inter-

atomic potential. The selected potential will have to provide the accurate phonon
dispersion curves and density of states.

2.2.3.0.1 Potential for ZnO For oxides, and more specifically for ZnO, most
studies use the Van Beest, Kramer, and van Santen (BKS) potential. The BKS po-
tential is a two-body potential which was originally developed in 1990 for silica and
aluminophosphate polymorphs (van Beest et al. (1990)). It takes the following form

0 C..
D, = 495 JrAije*Tij/Pz‘j _ Y

y 6
Tij Tij

(2.4)

The first term describes point-charge interaction. This is usually the most compu-
tationally demanding portion of the potential since it is slow to converge, and will
only do so under certain conditions. Ewald summation (Ewald (1921)) is usually em-
ployed to handle the long range nature of this coulombic interaction. The problem
with coulombic interactions which have a »~! form is that they are unbounded; there-
fore, they require special computational techniques. However, less computationally
methods such as the cell-multipole (Ding et al. (1992)) and Wolf method (Wolf et al.
(1999)) also exist, and have been shown to reproduce the general dynamics and en-
ergies of Ewald summed systems (Fennell and Gezelter (2006)). The value ¢; will be
close to that of the formal charge of the atom . Empirical fittings of the potential
might however cause de