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RESUME 
 

L’acide lactique est un produit largement utilisé dans l’industrie alimentaire, pharmaceutique et 
des solvants. Il connait depuis peu un engouement certain en tant que monomère pour la 

production d’acide poly lactique (PLA, poly lactic acid), un polymère biodégradable. L’acide 
lactique peut être produit par voie chimique ou par voie biotechnologique. Cette dernière offre 

plusieurs avantages par rapport à la synthèse chimique, en particulier le faible coût des substrats 

et une spécificité élevée par rapport aux stéréo-isomères produits (John, et al., 2007).  

La production d’acide lactique par des microorganismes est très répandue depuis plus de deux 

décennies, mais généralement, les procédés proposés utilisent dans ce cas des substrats 

relativement coûteux (glucose, lactose, extrait de levure, etc). Cet acide peut être produit à partir 

de plusieurs microorganismes : bactéries lactiques, champignons, levures, micro algues, et 

cyanobactéries. Les microorganismes les plus largement utilisés pour la production d’acide 
lactique sont les bactéries lactiques (LAB). Etant un produit relativement peu cher, l’un des 
principaux défis dans la production d’acide lactique par fermentation à grande échelle est le coût 
de la matière première. Le potentiel des procédés biotechnologiques utilisant des matières 

premières peu coûteuses peut être dès lors exploité afin de rendre le procédé économiquement 

rentable. Actuellement différentes matières premières sont utilisées comme source de carbone : la 

mélasse, le lactosérum, l’amidon et les hydrolysats. 

La farine de blé a été largement étudiée pour la production industrielle d’acide lactique. Ce 
substrat contient presque tous les nutriments nécessaires pour les différentes souches de bactéries 

lactiques. Néanmoins, des réactions enzymatiques sont nécessaires pour hydrolyser l’amidon de 
blé et permettre son utilisation par les bactéries. De façon classique, le procédé de production 

d’acide lactique à partir d’amidon considère trois étapes : un prétraitement de l’amidon par 
gélatinisation et liquéfaction produisant principalement du maltose ; une saccharification 

enzymatique pour obtenir du glucose et une dernière étape de fermentation qui transforme le 

glucose en acide lactique.  

Le procédé développé par Soufflet, qui est à la base de ces travaux de thèse, consiste également 

en trois étapes principales, la liquéfaction de l’amidon, la saccharification partielle du maltose en 
glucose dans une étape de pré saccharification, et la transformation du maltose restant en glucose 

en même temps que la fermentation dans une étape dite de saccharification et fermentation 

simultanées ou SSF  (Simultaneous saccharification and fermentation).  

Par ailleurs, les bactéries lactiques ont des besoins en source d’azote qui doivent être satisfaits. 
Généralement, des nutriments tels que l’extrait de levure et la peptone sont ajoutés pour fournir 

ces besoins. Néanmoins, la farine de blé contient des protéines (gluten) qui peuvent être 

hydrolysées en acides aminés nécessaires pour la croissance bactérienne. Afin de profiter de ces 

sources d’azote, des études enzymatiques de l’hydrolyse des protéines du blé sont nécessaires. De 

même, ce procédé peut être amélioré par couplage des réactions enzymatiques dans le même 

bioréacteur. Cependant, l’optimisation de la production d’acide lactique dans ce type de 
bioréacteur est difficile en raison des diverses réactions enzymatiques ayant lieu simultanément.  
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D’autre part, des stratégies de commande qui permettent la régulation des composants clés dans 
le bioréacteur peuvent être utilisées pour optimiser la production d’acide lactique. Pour ce faire, 

des modèles dynamiques doivent être développés. Ces modèles sont des outils importants pour 

l’optimisation du procédé biotechnologiques car ils permettent de prédire la performance du 
bioréacteur et peuvent être ensuite utilisés pour le développement d’une stratégie de commande. 
Néanmoins, les modèles décrivant des procédés biotechnologiques sont complexes et présentent 

un caractère très fortement non linéaire, rendant d’autant plus difficile la synthèse des stratégies 
de commande. 

Dans ce contexte, l’objectif de cette thèse est d’optimiser le procédé biotechnologique de 
production d’acide lactique à partir de farines de blé pour en maximiser la productivité. Trois 
étapes principales sont considérées pour atteindre cet objectif. Tout d’abord, le milieu de culture 

est optimisé afin d’améliorer la productivité en acide lactique. Deuxièmement, une modélisation 
macroscopique du procédé est développée. Le modèle considère les différentes cinétiques 

(croissance bactérienne, consommation du glucose, production d’acide lactique et hydrolyse 
enzymatique du maltose) qui se déroulent dans le bioréacteur. Finalement, des stratégies de 

commande optimisant la productivité d’acide lactique sont proposées. Ce travail couple ainsi 
deux grands domaines : les bioprocédés et l’automatique.  
 

Les différentes étapes considérées dans ces travaux de thèse pour atteindre l’objectif principal 
sont récapitulées ci-dessous. 

 

Optimisation du procédé 
Tout d’abord, l’optimisation du milieu de culture a été réalisée en s’appuyant sur des essais 

expérimentaux. La souche utilisée dans ce bioprocédé est Lactobacillus coryniformissubsp. 

torquens DMS 20004. Des études enzymatiques ont été effectuées afin d’améliorer la 
composition du milieu de culture et d’optimiser le procédé de production d’acide lactique. Les 

résultats obtenus lors de cette phase ont permis de proposer un nouveau procédé de production 

qui comporte trois étapes. La première étape est la liquéfaction et est suivie d’une étape de 
saccharification et hydrolyse des protéines simultanées (SSPH, simultaneous saccharification and 

proteins hydrolysis) qui permet l’hydrolyse d’une partie du maltose en glucose et du gluten en 
acides aminés. La dernière étape consiste en la saccharification, l’hydrolyse des protéines et la 
fermentation simultanées (SSPHF, simultaneous saccharification, proteins hydrolysis and 

fermentation). Dans cette dernière phase, le maltose et le gluten restants sont hydrolysés 

simultanément à la fermentation. Le bioréacteur dédié à l’étape SSPHF doit fonctionner en mode 

continu car cela permet d’obtenir une productivité maximale. Deux chapitres sont consacrés à 
cette première étape d’optimisation : Les chapitres 1 et 2. 

Modélisation 
La deuxième étape consiste à développer un modèle représentatif des phénomènes biologiques et 

enzymatiques dans le bioréacteur. Les cinétiques (croissance bactérienne, production d’acide 
lactique, réactions enzymatiques) des réactions mises en jeu dans le bioréacteur dédié à l’étape 
SSPHF sont alors prises en compte. Les évolutions des variables clés du procédé (qui seront par 

la suite prises en compte lors de la synthèse de la commande : les concentrations en biomasse, 

glucose, maltose et acide lactique) ont été modélisées en considérant une approche 

macroscopique. Les paramètres du modèle ont finalement été identifiés et validés en utilisant les 
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résultats des essais continus dans un bioréacteur de 5 L lors de l’étape SSPHF. Le chapitre 3 est 
consacré à toute la partie de modélisation.  

Suivi et commande  
Le développement de stratégies de commande permettant d’optimiser la productivité en acide 
lactique dans le bioréacteur dédié à l’étape SSPHF représente la troisième étape de la méthode 
d’optimisation globale. En premier lieu, les estimateurs des variables nécessaires au suivi du 
procédé et à la conception de la commande ont été développés. La synthèse de la commande a 

ensuite été effectuée en considérant les variables mesurées, les grandeurs issues des estimateurs 

développés et le logiciel implanté sur site pour piloter le bioréacteur. Deux chapitres sont 

consacrés à cette étape : les chapitres 4 et 5.  

CHAPITRE 1 : PRODUCTION D’ACIDE LACTIQUE 

La forte demande énergétique et les problèmes environnementaux associés aux procédés 

industriels conventionnels encouragent le développement de procédés novateurs assurant la 

réduction de la consommation énergétique et minimisant les impacts environnementaux. L’acide 
lactique a attiré l’attention des industriels et des chercheurs en raison de ses nombreux domaines 
d’application, et sa demande  toujours croissante, en particulier pour la production d’acide poly 
lactique (PLA). Ce chapitre propose une description générale de la production d’acide lactique 
ciblée à la production de PLA.  

1.1. Acide lactique 
 

L’acide lactique est la principale composante de tous les produits laitiers acidifiés. Sa production 

industrielle a commencé en 1881 aux Etats-Unis. De nos jours, 90% de la production d’acide 
lactique est fourni par fermentation microbienne (Hofvendahl & Hahn-Hligerdal, 1997). Le 

marché mondial de l’acide lactique a été estimé à 714 200 tonnes en 2013 et devrait atteindre 

1 960 100 tonnes en 2020 (Hofvendahl & Hahn-Hligerdal, 1997).  

 

L’acide lactique est principalement utilisé dans les produits alimentaires, cosmétiques, 

pharmaceutiques et pour des applications chimiques. Il est classé comme GRAS 

(GenerallyRecognize As Safe) pour son utilisation comme additif alimentaire par la FDA (Food 

and Drug Administration). Comme mentionné précédemment, il est particulièrement recherché 

en tant que monomère matière première pour la production de PLA. Dès lors, la production 

biotechnologique d’acide lactique s’avère depuis quelques années de plus en plus intéressante car 
elle offre une alternative à deux préoccupations environnementales : la pollution causée par les 

produits pétrochimiques et la limitation en carbone fossile.  

1.2. Production d’acide lactique 

1.2.1. Voie Chimique 

La synthèse chimique d’acide lactique est fondée sur la réaction du lactonitrile. Du cyanure 

d’hydrogène est ajouté à de l’acétaldéhyde en présence d’une base pour produire du lactonitrile. 
Ce dernier est ensuite récupéré et purifié par distillation. Il est ensuite hydrolysé avec de l’acide 
chlorhydrique ou sulfurique pour produire le sel d’ammonium correspondant et de l’acide 
lactique. L’acide lactique est ensuite estérifié avec du méthanol pour produire du  lactate de 
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méthyle, que l’on purifie par distillation. Ultérieurement le lactate de méthyle est ré-hydrolysé 

par de l’eau dans une réaction acide catalytique pour produire de l’acide lactique à nouveau ainsi 
que du méthanol. Cette synthèse chimique produit un mélange racémique d’acide lactique D et L 
(Narayanan, et al., 2004). 

1.2.2. Voie fermentative 
 

La plupart de l'acide lactique disponible sur le marché est produit par fermentation. Au cours de 

la fermentation lactique, un hydrate de carbone est converti en acide lactique par les 

microorganismes. Seuls quelques-uns d'entre eux ont besoin d'oxygène pour croître. De ce fait, la 

conversion des sucres est réalisée sans oxygène car dans des conditions aérobies, l'oxydation 

complète des sucres est favorisée énergiquement, obtenant dioxyde de carbone comme produit de 

fermentation au lieu d’acide lactique. De plus, la plupart de microorganismes producteurs d'acide 

lactique sont inactivés en présence de concentrations élevées d'oxygène, de sorte que l'acide 

lactique est principalement formé dans des conditions anaérobies.  

 

L'acide lactique peut être produit par divers micro-organismes tels que les champignons, les 

cyanobactéries, les levures, les algues et les bactéries.  

1.2.3. Les bactéries lactiques 

Une bactérie lactique typique cultivée dans des conditions « standard » (non limitées en glucose, 

nutriments de croissance ou oxygène) est une bactérie à Gram-positif, non sporulée, catalase 

négative, aérotolérante, tolérante à l'acide, chemoorganotrophe et qui produit de l'acide lactique 

comme produit final de la glycolyse. Les cellules sont typiquement immobiles. Elles ont besoin 

d'éléments nutritifs de croissance complexes tels que des vitamines et des acides aminés. Les 

conditions de croissance optimales dépendent de la souche; les bactéries peuvent se développer 

pour une large gamme de pH (3,5 à 10) et à des températures comprises entre 5 et 45 ° C (Abdel-

Rahman, et al., 2013).  

1.2.4. Le genre Lactobacillus 
 

Les Lactobacillus sont classifiés en trois groupes en fonction de leur métabolisme du sucre : 

 Groupe I : Ces bactéries donnent l'acide lactique à partir des hexoses par un métabolisme 

strictement homofermentaire, elles ne peuvent pas fermenter les pentoses. 

 Groupe II : Ce groupe comprend les espèces ayant un métabolisme optionnellement 

homofermentatif. Les hexoses sont fermentés dans de l'acide lactique par la voie 

d'Embden-Meyerhof. Dans le cas contraire, les pentoses peuvent être dégradés par la voie 

hétérofermentaires avec production d'acides lactique et acétique. 

 Groupe III : Ces espèces ont un métabolisme strictement hétérofermentaire. Elles 

fermentent les gluconates et les pentoses. Elles produisent de l'acide lactique, de l'acide 

acétique, du dioxyde de carbone et de l'éthanol. 

1.2.5. Fermentation : conditions opératoires et paramètres 
 

Plusieurs paramètres affectent la production optimale d'acide lactique. L’un des paramètres ayant 

une forte influence sur la performance du procédé de production d’acide lactique est la souche 
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microbienne utilisée. Parmi les caractéristiques souhaitées pour la souche productrice on note la 

production d’acide lactique à des rendements et des productivités élevés et la capacité à utiliser 

des matières premières peu coûteuses. La sélection des souches se fait généralement de manière 

empirique. La souche utilisée dans ce travail de thèse est Lactobacillus coryniformis subsp. 

torquens DSM 20004. Cette souche a été choisie pour sa production d'acide lactique élevée ainsi 

que ses conditions d’opération satisfaisantes (température optimale basse, pH 6). Les bactéries de 

cette souche appartiennent au groupe II de la classification des lactobacilles ; cela signifie qu'elles 

effectuent un métabolisme optionnellement homofermentatif. 

Les bactéries lactiques, comme tous les micro-organismes, ont un métabolisme soumis à des 

réglementations imposées par les contraintes environnementales. Il est nécessaire de distinguer 

les différents types de stress qui impactent fortement le comportement des bactéries. Un effet 

d'inhibition est caractérisé par la limitation de l'activité microbienne due à l'accumulation de 

produits de fermentation inhibiteurs (acides organiques, bactériocines) et, dans le cas de procédés 

industriels, de l'acidification du milieu de culture. Ce stress augmente tout au long de la 

fermentation, ayant différents effets sur le métabolisme. L'accumulation de l'acide lactique, par 

exemple, provoque un effet d'inhibition sur la croissance. La température est l'un des facteurs 

environnementaux le plus important affectant la production d'acide lactique. Lactobacillus 

coryniformissubsp. Torquensest une bactérie mésophile et sa température optimale pour la 

production d'acide lactique est comprise entre 30 et 38 ° C. 

En ce qui concerne l'acidification du milieu, le pH de la culture est non inhibiteur parce que les 

cellules sont capables de maintenir leur pH intracellulaire proche de la neutralité. Cependant, cela 

nécessite une dépense d’énergie qui impose un régime métabolique pour lequel l'énergie utilisée 

pour la croissance est limitée (Garrigues, et al., 1998).  

Un stress environnemental qui a un rôle important dans le développement des bactéries lactiques 

est lié à la disponibilité des nutriments dans le milieu de culture. Comme mentionné 

précédemment, les bactéries lactiques ont besoin des sels et des vitamines pour se développer. Or 

les principales contraintes sur le métabolisme de croissance sont imposées par l'absence d'azote 

organique (peptides, acides aminés, bases, etc) et des substrats carbonés. En ce qui concerne la 

source d'azote, six acides aminés sont essentiels à la croissance des bactéries d'acide lactique : 

l’acide glutamique, la valine, la méthionine, l’isoleucine, la leucine et l’histidine (Marshal et 

droit, 1984). Les nutriments peuvent être ajoutés sous forme de malt, extrait de viande, extrait de 

levure et de peptone. Concernant la source de carbone, différentes sources ont été utilisées pour la 

production d'acide lactique par fermentation utilisant des bactéries lactiques. L’acide lactique de 
pureté la plus élevée est obtenu quand un seul sucre est fermenté, entraînant des coûts de 

purification inférieurs (Rashid, 2008). Cependant, cela n’est pas économiquement favorable, 

parce que les sucres purs sont des matières premières coûteuses et l'acide lactique est un produit 

bon marché. De façon alternative, différentes matières premières ont été étudiées. 

1.3.  Matières premières  

L'acide lactique produit dans cette étude est destiné à être transformé en PLA. Comme la 

production de ce polymère nécessite de grandes quantités d'acide lactique (produit relativement 

peu cher), l'un des principaux défis dans sa production à grande échelle est le coût de la matière 

première. Par conséquent, l'utilisation de matières premières bon marché est requise pour rendre 

le procédé industriellement viable. Les caractéristiques souhaitées pour les matières premières 
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sont un prix bas, de faibles niveaux de contaminants, des taux de production rapides, des 

rendements élevés pour le produit, une réduction de la formation de sous-produits et une bonne 

capacité à être fermentées sans prétraitements lourds (Wee, et al., 2006). Des procédés de 

production d’acide lactique utilisant des matières premières peu coûteuses ont été largement 

étudiés. Parmi les substrats étudiés, on peut citer l'amidon à base de biomasse non convertie, la 

biomasse lignocellulosique non transformée, et des déchets (John, et al., 2007). Dans cette étude, 

la matière première utilisée pour la production d’acide lactique est l’amidon de farine de blé.  

1.6. Conclusions 

L'intérêt de la production d'acide lactique s’est accru depuis peu grâce à son application dans la 

production de PLA. Il y a deux façons de produire de l'acide lactique, la voie chimique et la voie 

biotechnologique. Cette dernière est préférée car elle s’avère plus respectueuse de 

l'environnement. Bien que différents micro-organismes puissent être utilisés pour la production 

d'acide lactique, les bactéries lactiques sont les plus largement utilisées. Ces bactéries ont besoin 

de nutriments complexes pour croître et produire de l'acide lactique. En effet, il est important de 

garantir les besoins nutritionnels pour la croissance des bactéries lors de la fermentation. Afin de 

garantir ces besoins et de réduire le coût des matières premières, divers substrats ont été proposés 

dans la littérature. Dans ce travail, nous nous concentrons sur l'utilisation de la farine de blé 

comme seul substrat (source de carbone et d'azote) pour la production d'acide lactique. Le 

développement du procédé de production d'acide lactique en utilisant ce substrat est décrit dans le 

chapitre suivant. 

CHAPITRE 2: PRESENTATION DU SYSTEME ETUDIE 

Comme mentionné précédemment, ce projet vise à améliorer la performance du procédé de 

production d’acide lactique. Une des solutions proposée par le CRIS (Centre de Recherche et 

d’Innovation Soufflet) et également décrite dans la littérature pour réduire le coût de production 

est d’utiliser la farine de blé comme matière première. Ainsi la production d’acide lactique peut 
être effectuée sans aucune addition de nutriments (Hetényi, et al., 2010). 

La production mondiale de blé pour les années 2014/2015 a été estimée à 717 millions de tonnes 

par l’USDA (United States Department of Agriculture). Cette production représente 30% de la 
production mondiale de céréales. La France est le premier producteur de céréales dans l’Union 
européenne et occupe la sixième place au niveau mondial. Concernant la production de blé, la 

France occupe la cinquième place au niveau mondial (Lyddon, 2013). 

En tant que constituant principal du blé, l’amidon est un glucide complexe formé de chaînes de 
molécules de D-glucose. Les molécules de glucose sont liées par des liaisons glycosidiques qui 

sont stables à un pH élevé mais sont hydrolysées à des valeurs de pH faibles. L’amidon se 
présente sous forme de granulés et contient deux polymères de glucose, l’amylose et 
l’amylopectine.  

Ce chapitre s’intéresse à l’amélioration du procédé de production d’acide lactique à partir de 
farine de blé. Les procédés existants pour la production d’acide lactique en utilisant des 

matériaux à base d’amidon sont tout d’abord décrits. Ensuite, la conception du procédé à étudier 
est réalisée en partant du procédé proposé par Soufflet. La description de tout le procédé de 

production est présentée pour conclure.  
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2.1. Procédés existants  

2.1.1. Procédé conventionnel 
Le procédé conventionnel de production d’acide lactique à partir d’amidon est composé de trois 
étapes : 

Liquéfaction 
L’amidon est transformé en oligosaccharides et du glucose par hydrolyse enzymatique par des 

enzymes α-amylase. Comme les enzymes ne sont pas capables d’agir directement sur les granulés 
d’amidon, il est nécessaire d’augmenter la température pour former un amidon gélifié sur lequel 
les enzymes ont un effet significatif. 

Saccharification 
Dans cette étape, les oligosaccharides sont transformés en glucose en utilisant l’enzyme 
amyloglucosidase. La réaction dépend fortement de la longueur de la chaîne et des conditions 

opératoires telles que le pH et la température. 

Fermentation 
Cette étape est décrite en détail dans le chapitre 1. Toutefois, plusieurs aspects importants sont 

rappelés ici. Les bactéries lactiques exigent un niveau élevé de nutriments, notamment en source 

d’azote, vitamines et oligo-éléments (Hetényi, et al., 2010). Pour répondre à ces besoins, une 

alternative est d’utiliser la fraction protéique insoluble du blé (représentant 13% de la 
composition du blé) comme source d’azote. Cette approche sera considérée dans ces travaux de 
thèse pour améliorer l’étape de fermentation et sera décrite ultérieurement.  

2.1.2. Autres procédés  

2.1.2.1. Saccharification et fermentation simultanées 
La conversion d’amidon en acide lactique peut être effectuée de manière plus efficace par 
couplage de l’hydrolyse enzymatique des oligosaccharides et de la fermentation en une seule 

étape, dite « simultaneous saccharification and fermentation » (SSF). Ce procédé offre plusieurs 

avantages par rapport au procédé conventionnel, tels que l’utilisation d’un seul réacteur, une 
durée plus courte et une productivité en acide lactique plus élevée. Cependant, les différences en 

termes de conditions optimales de pH et de température pour la culture bactérienne, l'hydrolyse 

enzymatique et la production d'acide lactique conduisent à des difficultés opératoires accrues.  

2.1.2.2. Production directe d’acide lactique  
Des bactéries lactiques amylolytiques ou des champignons tels que les Rhizopusoryzae peuvent 

être utilisés pour la production directe d’acide lactique à partir d’amidon. Cependant, seule une 
minorité de souches de bactéries lactiques a la capacité de produire des enzymes pour hydrolyser 

l’amidon (Narita, et al., 2004) (Shibata, et al., 2007).   

2.2. Conception du procédé à étudier 

Le procédé de production d’acide lactique proposé dans ces travaux de thèse a été conçu en 
partant du procédé de base effectué par le laboratoire du CRIS. Ce dernier comporte trois étapes : 

une liquéfaction (comme dans le procédé conventionnel), une pré saccharification (ou seule une 

partie du maltose et des oligosaccharides sont transformés en glucose) et une étape de 

saccharification et fermentation simultanées.  
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Le procédé que nous proposons contient également trois étapes : une liquéfaction, une étape de 

saccharification et hydrolyse des protéines simultanées (SSPH, simultaneous saccharification and 

proteins hydrolysis) et une dernière étape de saccharification, hydrolyse des protéines et 

fermentation simultanées (SSPHF, simultaneous saccharification, proteins hydrolysis and 

fermentation). La figure 2.1 montre un aperçu des étapes précédemment décrites.  

 

 

 

 

 

 

 

 

 

 

 

 

 

La suite décrit la conception du procédé. Tout d’abord, des expériences effectuées pour optimiser 
le milieu de culture (pour garantir les besoins azotés pour la croissance bactérienne) sont 

présentées, suivies par le développement d’une étape de saccharification et hydrolyse des 
protéines simultanées. Le choix du mode de fonctionnement du bioréacteur est exposé à la fin.  

2.3. Etude de l’hydrolyse des protéines  

Cette étude a été effectuée afin d’optimiser le milieu de culture et augmenter la productivité en 
acide lactique, notamment pour satisfaire les besoins azotés des bactéries lactiques. La fraction 

protéique de blé (gluten) est donc utilisée comme source d’azote. Pour ce faire, des protéases 
différentes (enzymes qui effectuent l’hydrolyse des protéines) ont été testées. L’objectif est de 
trouver la protéase conduisant à la productivité en acide lactique la plus élevée. Les essais 

effectués dans cette étude sont réalisés au cours de l’étape SSF (saccharification et fermentation 
simultanées), la troisième étape dans le procédé de Soufflet. Considérant que l’hydrolyse des 
protéines est réalisée simultanément avec le SSF, cette étape a été renommée: saccharification, 

hydrolyse des protéines et fermentation simultanées (SSPHF). 
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Liquéfaction 

Maltose  
 

 

  

SSPH 

Maltose  
Glucose 

Acides aminés 

Enzyme 
Protéase 

 

 

  

SSPHF 

Bactéries 

lactiques 

Acide lactique 

Figure 2.1. Etapes du procédé de production d’acide lactique proposé 
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2.3.1. Description de l’essai  

Quatre protéases à deux concentrations différentes ont été utilisées afin de choisir la plus 

appropriée pour l’étape de SSPHF dans des essais batch (en fiole). Il s’est avéré que la 
concentration de la protéase n’a pas eu d’effet significatif sur la productivité en acide lactique 
donc seuls les résultats concernant la concentration la plus faible (200 mg kg

-1
) seront présentés. 

Pour la préparation de la solution de blé, de la farine de blé a été mise en suspension dans de l'eau 

à une concentration de 260 g L
-1

. Pour l'étape de liquéfaction, deux enzymes ont été ajoutées : 

Lyvanoldevisco plus et Lyquozyme SDCS (Lyven, Colombelles, France) et la réaction s’est 
déroulée à 85 °C et à un pH de 5,5. Ensuite, un litre de la solution d'amidon liquéfié a été dilué 

avec de l'eau distillée pour obtenir une concentration finale de blé de 130 g L
-1

. Du sulfate de 

manganèse a été ajouté à 0,05 g L
-1

 et
 
le pH a été ajusté à 5,7. Du carbonate de calcium a été 

ajouté à une concentration de 30 g L
-1

 de façon à tamponner la solution de blé et à réduire l’effet 
de diminution du pH avec la production d'acide lactique pendant l’essai. Avant la SSPHF, 
l'enzyme amyloglucosidase (AMG) (Lyvanol GA, Lyven, Colombelles, France), a été ajoutée 

afin de commencer la saccharification à 50 °C. Une fois l'étape de pré-saccharification terminée, 

la température dans l'étuve a été réduite à 30 °C. Chaque protéase a été ajoutée à deux 

concentrations différentes : 200 et 1400 mg d'enzyme kg
-1

 de blé. Au total, 8 conditions 

différentes ont été testées : 4 protéases différentes, chacune à 2 concentrations. Ensuite, la 

biomasse a été ajoutée à une concentration initiale égale à 10
9
 cellules mL

-1
. Cette étape de 

SSPHF a été effectuée pendant 48 h à 30 °C et à pH 5,7.  

2.3.2. Suivi des variables 
 

Pour tous les essais présentés tout au long de ce manuscrit, les analyses pour suivre le 

comportement des variables sont celles décrites ci-après. Des échantillons ont été prélevés à des 

intervalles de temps différents. La concentration cellulaire a été suivie par des comptages 

effectués dans une chambre de comptage de cellule de Thoma. 

Pour le suivi des concentrations en glucose, maltose et acide lactique, les échantillons ont d'abord 

été chauffés à 95 °C pendant 15 minutes puis filtrés à travers des filtres de 0,2 µm de cellulose. 

Les concentrations ont été ensuite mesurées sur un système par HPLC.  

Les concentrations des acides aminés ont été mesurées en utilisant une méthode colorimétrique 

(Friedman, 2004). La concentration de free amino nitrogen (FAN), un mesure de la concentration 

des acides aminés individuels et des petits peptides, a été déterminée par spectrophotométrie 

comme un équivalent de la glycine, cette substance étant utilisée comme référence. 

2.3.3. Résultats de l’étude d’hydrolyse des protéines 

La figure 2.2 montre les résultats obtenus avec cette étude. La plus forte concentration (FAN) a 

été obtenue avec l’enzyme P4, Prolyve NP à 48h. Une concentration plus élevée d'acide lactique 

a été obtenue aussi avec Prolyve NP. A 24 h de fermentation, la productivité obtenue avec la 

protéase Prolyve NP était de 1,45 g L
-1

.h
-1

. A la fin de la fermentation (à 48 h) la productivité 

était de 1,04 g. L
-1

h
-1

, ce qui prouve une réduction du taux de production d'acide lactique au cours 

des dernières 24 heures.  
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Figure 0.2 A gauche concentration de Free Acid Nitrogen (FAN), à droite concentration d’acide lactique pendant 
l’étape de SSPHF. P1= Prolyve PAC, P2= Prolyve BS, P3= Prolyve 4000 and P4= Prolyve NP. Conditions de 

fermentation: 30°C et pH 5,7 sans régulation du pH. 

Certains auteurs utilisant la farine de blé comme matière première dans la fermentation de l'acide 

lactique ont obtenu des productivités comparables à celles obtenues dans cet essai. Une 

productivité de 2,1 g L
-1 

h
-1

 a été obtenue par Akerberg, et al (1998) en utilisant 

Lactococcuslactisssp. lactis ATCC 19435. Une productivité d'acide lactique de 0,8 g L
-1

 h
-1

 en 

utilisant Lactobacillussp. MKT-878 NCAIM B02375 a été obtenue par Hetényi et al. (2010). 

Cela prouve que les valeurs des productivités obtenues dans ce travail sont en accord avec la 

littérature. A partir de ces résultats, Prolyve NP à une concentration de 200 mg  kg
-1

 a été choisie 

pour les études suivantes. 

2.4. Saccharification et hydrolyse des protéines simultanées (SSPH) 

Après avoir choisi la protéase, des expériences visant à améliorer l'ensemble du procédé ont été 

réalisées. En considérant que les températures optimales pour l’hydrolyse des protéines en 

utilisant Prolyve NP et la saccharification sont de 50°C et 55°C, respectivement, nous avons 

décidé de coupler ces deux réactions enzymatiques en une seule étape avec les conditions 

suivantes : température 50°C et à pH 5,7. La valeur du pH reste la même que celle choisie pour 

l'étude des protéases et seule la température a été modifiée (pour l'étude du choix de la protéase 

elle était de 30 °C). L'enzyme Prolyve NP est donc ajoutée au début de l'étape de saccharification, 

cette étape devient donc une étape de saccharification et hydrolyse des protéines simultanées 

(SSPH pour le sigle en anglais). Cette démarche permet d'améliorer l'ensemble du procédé car la 

température de la SSPH est proche de la valeur optimale de l'activité enzymatique de chaque 

enzyme, à la différence de l'étape de SSPHF qui est effectuée à 30° C. Des essais ont permis de 

montrer que cette étape de SSPH doit se dérouler pendant 6 h avant le début de l’étape de SSPHF 
afin de garantir les meilleures conditions de production. 

2.5. Choix du mode d’opération 

Sachant que les paramètres tels que le type et la nature des substrats, les micro-organismes et les 

caractéristiques du milieu de fermentation (viscosité, composition, présence de particules solides, 

etc.) doivent être considérés lors de la conception du procédé de fermentation, le mode de 

fonctionnement du bioréacteur est également un facteur important lorsque des améliorations de la 
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performance du procédé sont recherchées. Le tableau 2.1 résume les principaux avantages et 

inconvénients d’une partie des modes d’opération utilisés dans la production d’acide lactique par 
fermentation. 

En plus de l'optimisation de la souche et de l'utilisation d'autres matières premières, le passage du 

procédé batch traditionnel vers un procédé fed-batch, continu ou avec recyclage cellulaire 

pourrait conduire à une meilleure performance du procédé de production d'acide lactique. Il est 

également important de considérer le traitement down stream associé (Kamm, 2015).  

Tableau0.1 Avantages et inconvénients d’une partie des procédés de production d’acide lactique par fermentation 
(Abdel-Rahman, et al., 2013). 

Mode opératoire  Avantages Inconvénients 

Fermentation batch - Opération simple 

- Concentration du produit élevée 

- Risque de contamination réduit 

- faible productivité 

- Inhibition par le produit et 

par le substrat 

Fermentation fed-batch - Inhibition par le produit évitée 
- Concentration du produit élevée 

- Inhibition par le produit 

Fermentation répétée  - Gain de temps  
- Omission du temps de 
préparation de l’inoculum  

- Exigence de dispositifs 
spéciaux pour la 
concentration cellulaire 

-Difficile à utiliser avec des 
milieux complexes 

Fermentation continue - productivité élevée  
- possibilité de contrôler le taux 
de croissance 
- fréquence d’arrêt du procédé 
plus faible 

- Utilisation incomplète de la 
source de carbone 
- Produit dilué 

Le but de l'optimisation du procédé étudié dans ce travail est de maximiser la productivité  en 

acide lactique, d’une part en optimisant les conditions de fonctionnement et d'autre part en 

utilisant une stratégie de commande pour maintenir le bioprocédé dans les conditions optimales 

de fonctionnement.  

 

Afin d'être en mesure de construire une stratégie de commande pilotant le débit d'entrée du 

substrat (paramètre considéré comme commande dans la plupart des stratégies de commande), le 

procédé doit être opéré soit en fed-batch, soit en mode continu. En outre, la fermentation répétée 

n'a pas été considérée dans ce travail car des dispositifs spéciaux sont nécessaires pour la 

filtration et le recyclage cellulaire. Ceci sort du domaine de ce travail. En outre, comme le 

bouillon de culture utilisé pour la production d'acide lactique est un mélange de farine de blé et 

d'eau à 25% p / p, la filtration d'un bouillon si complexe pourrait être difficile. 

 

En comparant les fermentations fed-batch et continues, des valeurs de productivité plus élevées 
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sont obtenues avec la fermentation en mode continu. De plus, la fermentation fed-batch empêche 

les inhibitions par les substrats, mais pas par les produits de fermentation. Pour ces raisons, la 

fermentation en mode continu a été retenue pour l’étude et l’implantation d’une loi de commande 
pour le procédé.  

2.6. Conclusions  

La matière première pour la production d'acide lactique dans ces travaux de thèse est la farine de 

blé. Cela se justifie principalement par la grande disponibilité de cette céréale en France, son 

faible coût et l'expertise de Soufflet quant à son utilisation. Ce chapitre s’est intéressé à la 
conception du procédé de production de l'acide lactique en partant du procédé proposé par 

Soufflet. Une étape de saccharification, hydrolyse de protéines et  fermentation simultanées 

(SSPHF) a été conçue afin de garantir les besoins en azote pour la croissance des bactéries. La 

protéase Prolyve NP a permis d’obtenir des productivités plus élevées en acide lactique et a été 
choisie pour la suite des travaux. Par ailleurs, les réactions de saccharification et d’hydrolyse des 
protéines ont été couplées en une même étape (SSPH). Le procédé obtenu consiste alors en trois 

étapes : l'amidon est d’abord liquéfié, suivi par une étape de SSPH où le maltose et le gluten sont 
partiellement hydrolysés. La dernière étape de saccharification, hydrolyse des protéines et 

fermentation simultanées, SSPHF, permet de produire l’acide lactique, le produit d’intérêt. Dans 
cette dernière étape, le maltose et le gluten restants sont hydrolysés en même temps que la 

fermentation. Concernant le mode opératoire, le mode continu a été choisi compte tenu des 

productivités en acide lactique élevées qu’il permet d’obtenir. La modélisation et la commande 
seront développées pour l’étape SSPHF, l’étape la plus longue du procédé.  

CHAPITRE 3 : MODELISATION 

Les modèles sont des outils importants pour l'optimisation des procédés biotechnologiques 

complexes, et pour prédire la performance du bioréacteur. La modélisation mathématique des 

fermentations permet de représenter par des équations, dont certaines sont des équations 

différentielles, l'évolution des variables importantes ou fondamentales du procédé. Les variables 

considérées sont généralement les concentrations des cellules, des substrats et des métabolites. 

Pour décrire un procédé microbiologique, il existe essentiellement deux types de modèles : 

structurés et non structurés. 

 

• Les modèles structurés considèrent l'évolution de la composition interne du micro-organisme. 

Ils décrivent les voies métaboliques et prennent en compte les caractéristiques intracellulaires 

(Gadjil et Venkatesh, 1997) (Nielsen et al., 1991). 

• Les modèles non structurés utilisent les cinétiques microbiennes pour décrire l'évolution des 

taux de croissance, la consommation du substrat et la production de métabolites. Seule la 

concentration cellulaire totale est considérée. Pourtant, il a été prouvé que ces modèles peuvent 

décrire avec précision la fermentation d'acide lactique dans une large gamme de conditions 

expérimentales (Bouguettoucha, et al., 2011). Ce chapitre est consacré à l'élaboration d'un modèle 

pour une SSPHF (saccharification, hydrolyse des protéines et fermentation simultanées) dans un 

bioréacteur continu.  

3.1. Modélisation de la fermentation lactique 
 

La modélisation de la croissance bactérienne et de la production de métabolites dans la 
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fermentation lactique considère généralement le phénomène d'inhibition exercée par le substrat et 

le produit (acide lactique). Les effets d'autres paramètres importants pour les conditions de 

culture sont souvent non pris en compte. En effet, certains d'entre eux, y compris le pH et la 

température, sont généralement fixés. D'autres facteurs tels que l'agitation, la concentration en 

oxygène dissous, ne sont régulièrement pas pris en compte. Le réacteur utilisé dans l'approche de 

modélisation est illustré figure 3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

Les variables d'intérêt sont X (concentration en biomasse en g L
-1

), S (concentration en glucose en 

g L
-1

), P (concentration en acide lactique en g L
-1

) et M (concentration en maltose en g L
-1

). Le 

modèle doit inclure quatre équations dynamiques décrivant leur évolution dans le temps. M0 et S0 

représentent les concentrations de maltose et de glucose alimentant le réacteur, respectivement. 

Ces concentrations sont obtenues à partir de la SSPH (saccharification et hydrolyse des protéines 

simultanées), étape précédente du procédé. Il convient de souligner que la valeur du pH dans le 

bioréacteur SSPHF est régulée par l’addition de NaOH, par conséquent le bioréacteur comporte 

en fait deux flux d'entrée. Néanmoins, le débit d'entrée de NaOH est très faible par rapport au 

débit d'alimentation du bioréacteur (35 fois plus petit). Le débit d'entrée de NaOH peut donc être 

négligé pour la modélisation.  

3.2. Développement d’un modèle de l’étape SSPHF continue 

Le procédé de production d'acide lactique à partir de farine de blé proposé dans cet ouvrage est 

innovant. En effet, la souche, le substrat et les étapes proposées n'ont jamais été utilisés 

auparavant. En conséquence, il n'y a pas de modèle disponible dans la littérature décrivant ce 

procédé. 

Avant de présenter notre modèle, certaines hypothèses considérées pour son développement 

doivent être exposées. Tout d’abord, les acides aminés obtenus par l’hydrolyse du blé ne sont pas 
considérés dans le modèle car leur modélisation est complexe et ils sont supposés être en excès 

(substrat non limitant). Ainsi, nous considérons le cas général où le glucose, la source de carbone, 

peut être le substrat limitant. Ce sucre est produit à partir de maltose et consommé par les 

bactéries simultanément, par conséquent les mécanismes impliqués dans la transformation du 

SSPHF 

 

 

  
S0, M0 

X, S, P, M 

Figure 0.1 SSPHF continue 
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maltose et du métabolisme des bactéries lactiques doivent être considérés dans l'approche de 

modélisation mathématique. 

Dans le fonctionnement en continu, toutes les variables, X, S, P et M restent constantes une fois le 

régime stationnaire atteint. Néanmoins, il est nécessaire de modéliser les phases transitoires au 

moyen d'équations dynamiques. Les équations de bilan de matière décrivant la dynamique de ces 

variables sont obtenues pour le bioréacteur parfaitement agité représenté par la figure 3.1. 

Cependant le mélange dans ces bioréacteurs est souvent non idéal. Par conséquent, l'écart par 

rapport à la réalité doit être évalué et quantifié. La méthode de distribution du temps de séjour 

(DTS) est l'une des façons de caractériser le comportement non idéal du réacteur afin d’assurer 
une bonne représentation des phénomènes. Il a été constaté que le réacteur a un volume mort de 

9% qui a été pris en compte dans notre approche de modélisation.  

Le modèle proposé dans ces travaux de thèse consiste en quatre équations dynamiques décrivant 

l’évolution des variables X, P, S et M : 

 
DXX

dt

dX
    

 
DPX

Y

Y

dt

dP

PS

XS    (0.1) 

 
)(

1
0 SSDMkX

Ydt

dS
M

PS

    

 
)( 0 MMDMk
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M    

avec : 

 n

S P

P

Sk

S













max
max 1   

Dans ce modèle, X, P, S et M sont les concentrations en biomasse, acide lactique, glucose et 

maltose (g L
-1

) respectivement, µ la vitesse de croissance (h
-1

), D le taux de dilution défini 

comme le ratio entre le débit et le volume (h
-1

), μmax le taux de croissance maximal (h
-1

), kS la 

constante de demi-saturation (g L
-1

), Pmax la concentration du produit au-dessus de laquelle les 

bactéries ne croissent plus (g L
-1

), n le pouvoir toxique du produit, YXS le rendement en biomasse 

par rapport au substrat (g cellules g
-1 

substrat), YPS le rendement en acide lactique par rapport au 

substrat (g cellule g
-1

substrat), kM la constante de dégradation du maltose (h
-1

) et M0 et S0 les 

concentrations en maltose et en  glucose dans le flux d’alimentation (g L
-1

), respectivement. Les 

paramètres qui doivent être déterminés pour les conditions de fermentation considérées sont les 

paramètres intervenant dans la cinétique de croissance (μmax, kS, Pmax et n), les rendements YXS 

etYPS et la constante cinétique kM. 
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3.3. Vers une stratégie d’identification  

Une étude de sensibilité des paramètres du modèle a permis d’établir que le paramètre kS 

n’influence aucune des variables (pour la gamme de concentrations de glucose considérée dans ce 

travail). Son identification ne sera donc pas réalisée car elle conduirait à un résultat ayant une 

faible précision. Sa valeur est alors fixée à la moyenne des valeurs rapportées dans la littérature, 

0,5 g L
-1

. L'identification du pouvoir toxique de l’acide lactique (n) présent dans la cinétique de 

croissance semble complexe en raison de la structure de l'équation (voir équations 3.1); sa valeur 

sera fixée à 3. Cette valeur a été choisie considérant une étude qui a permis de déterminer son 

impact sur la cinétique de croissance et des valeurs présentées par d'autres auteurs travaillant sur 

la fermentation de l'acide lactique (Akerberg, et al., 1998) (Kwon, et al., 2001), qui ont trouvé des 

valeurs du pouvoir toxique de 2,06 et 2,68, respectivement. Avec cette démarche, les paramètres 

à identifier sont réduits à 5 (µmax, Pmax, YPS, YXS et kM). 

L'estimation de l'ensemble des valeurs des paramètres est effectuée en utilisant des données 

expérimentales provenant d’essais réalisés en continu décrits plus loin dans ce chapitre. Les 

paramètres du modèle ont été déterminés par minimisation de la fonction de cout suivante. 

 

2
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Dans l'équation (3.2), RSE est la somme des carrés des erreurs entre les valeurs calculées via le 

modèle (Xi,cal, Pi,cal, Si,cal et Mi,cal,) et les données expérimentales (Xi,exp, Pi,exp, Si,exp et Mi,exp,). N 

est le nombre d'observations. wX, wP, wS, wM sont des facteurs de pondération permettant de 

normaliser tous les termes de l'équation (3.2), ils ont été fixés à 100, 1, 1 et 1, respectivement en 

considérant l'ordre de grandeur de chaque variable. 

Les équations différentielles (3.1) sont résolues numériquement (par la méthode Runge-Kutta 

d’ordre quatre). Les données calculées sont ensuite comparées à celles mesurées en calculant la 

RSE. Les valeurs des paramètres qui minimisent RSE conduisent au meilleur ajustement des 

données expérimentales. Ceci peut être réalisé considérant une approche d'identification globale 

de tous les paramètres, en utilisant des algorithmes de moindres carrés non linéaires (par exemple 

l’algorithme de Levenberg-Marquardt, (Fletcher, 1987)). Le problème d'optimisation présenté 

dans l'équation (3.2) est toutefois difficile à résoudre, car il existe plusieurs solutions sous-

optimales, soit en raison de la précision des mesures soit à cause de l’imprécision du modèle. La 
solution optimale dépend fortement de l'initialisation des valeurs des paramètres dans 

l'algorithme d'optimisation. L'initialisation pourrait être faite par des données de la littérature, 

mais malheureusement très peu des données sont disponibles pour les bactéries considérées. 

Ainsi, afin de résoudre ce problème d'optimisation, une procédure d'identification spécifique est 

développée. La procédure d'identification est résumée figure 3.2.  
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 Identification  de kM à partir de la dynamique du maltose 

(régression linéaire) 

 Identification  de YXS à partir de la dynamique du 

glucose (régression linéaire) 

 Identification  de YPS à partir de la dynamique du 

produit (régression linéaire) 

  


Détermination du vecteur optimal  =[ kM,YXS, YPS] 

 

Identification des paramètres de croissance  

 =[ max, Pmax] pour fix à 
(régression non linéaire) 

 

Détermination de  =[max, Pmax] 

Détermination des paramètres du modèle  

 

Identification de tous les paramètres  =[ 
en utilisant =[ comme valeurs initiales 

(régression non linaire) 

 

Etape 1 

Etape 2 

Etape 3 

 

Figure 3.2. Procédure d'identification proposée pour déterminer les paramètres du modèle. 

L'idée principale consiste à déterminer la valeur de chaque paramètre indépendamment, en 

utilisant chaque dynamique séparément. Afin de réduire la complexité de la procédure 

d'identification, l'approche envisagée est de déterminer les valeurs des paramètres en phase 

transitoire. En effet, l'identification des paramètres à l'état d'équilibre semble difficile car les 

dynamiques dans les équations (3.1) seraient annulées. Pour cette raison, l'identification a été 

effectuée en phase transitoire, notamment ici, pour simplifier, pendant les phases de 

fonctionnement discontinu où D = 0. Les paramètres intervenant dans les dynamiques du glucose 

du maltose et de l'acide lactique (kM, YXS et YPS) peuvent être déterminés par des régressions 

linéaires qui ne nécessitent pas d'initialisation. Seuls les paramètres du taux de croissance doivent 

être identifiés via un algorithme des moindres carrés non linéaires, conduisant à un problème 

d'optimisation non convexe. Dans ce cas, les autres paramètres (kM, YXS et YPS) sont fixés aux 

valeurs obtenues à partir de la régression linéaire. Enfin, le problème global de l'équation (3.2) est 

résolu en utilisant les valeurs des paramètres obtenus comme valeur initiales.  

3.4. Validation expérimentale du modèle 

3.4.1. Description de l’essai de validation  

Dans ce travail, les étapes de liquéfaction et SSPH ont été effectuées en mode batch, et l'étape de 

SSPHF a été réalisée en mode continu. Deux types de bioréacteurs sont utilisés, deux 
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bioréacteurs de 5 L pour les expériences continues et un bioréacteur de 12 L pour produire le 

stock de solution de blé liquéfiée et pré saccharifiée nécessaire pour alimenter le procédé SSPHF 

en continu. L’étape de SSPHF a été effectuée dans deux bioréacteurs de 5L en parallèle avec les 

mêmes conditions pour la duplication. L'étape de SSPHF a démarré en mode batch et le mode 

continu a été déclenché une fois une concentration en biomasse suffisante atteinte. Deux essais 

ont été réalisés dans le but d'acquérir des données expérimentales pour l'identification des 

paramètres. Dans le premier essai, quatre taux de dilution ont été testés : 0,05, 0,1, 0,15 et 0,31   

h
-1

. L'intérêt de tester différents taux de dilution est d'identifier expérimentalement ceux qui 

permettent d'obtenir les plus fortes productivités. Dans la seconde expérience, la fermentation 

continue a été effectuée avec deux taux de dilution, 0,15 et 0,2 h
-1

. La procédure utilisée dans 

chaque essai est résumée dans le tableau 3.1. Les étapes de liquéfaction et SSPH se sont 

déroulées comme il a été précédemment décrit dans les sections 2.3.1. et 2.4. Les suivis des 

concentrations des variables dans le temps a été effectué comme décrit dans la section 2.3.2.  

3.4.2. Résultats et analyse  

Les données expérimentales correspondant à la phase batch final de l'essai 2, B4 (voir le tableau 

3.1) ont été utilisées pour identifier les paramètres du modèle. Les paramètres identifiés sont 

présentés dans le tableau 3.2. 

Tableau 0.1Taux de dilution testés dans les essais 1 et 2. 

 Etape Désignation Duration (h) Taux de dilution (h-1) 

Essai 1 1 Phase batch 1 = B1 15 0 

2 Phase continue 1 = D1 22 0,1 

3 Phase batch 2 = B2 5 0 

4 Phase continue 2 =  D2 21 0,05 

5 Phase continue 3 = D3 3 0,31 

6 Phase continue 4 =D4 4 0,15 

Essai 2 1 Phase batch 3 = B3 10 0 

2 Phase continue4 = D4 8 0,15 

3 Phase continue5 = D5 7 0,2 

4 Phase batch 4 = B4 6 0 

Le modèle décrit de manière satisfaisante l'évolution des concentrations dans le temps comme 

montré par la figure 3.3, qui présente la comparaison entre les données expérimentales de l’essai 
2 et les valeurs obtenues par le modèle. En ce qui concerne la concentration de glucose, les 

données expérimentales étaient légèrement plus élevées que les valeurs calculées. Ceci peut 

s’expliquer par la production de glucose à partir de sucres autres que le maltose, présents dans le 

blé, qui n’est pas prise en compte dans le modèle. L'équation cinétique du premier ordre est 

suffisante pour décrire la dynamique du maltose. La prédiction des concentrations d'acide 

lactique et de biomasse est également satisfaisante. 
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Tableau 0.2 Paramètres identifiés pour un bioréacteur de 5 L avec un volume mort de 9%. 

Paramètre Valeur identifiée 
µmax (h

-1
) 0,28 

Pmax (g L
-1

) 98,6 

YXS (g Cell g
-1

 Glucose) 0,053 

YPS (g Product g
-1

 Cell) 0,8 

kM (h
-1

) 0,035 

kS (g L
-1

) 0,5 (valeur de la littérature) 

n 3 (fixé par essai-erreur) 

 

 

Figure 0.2 Données expérimentales  (   ) et simulées (  ) des concentrations de cellules, glucose, maltose et 

acide lactiquepour des SSPHF en batch et en continu. Deux taux de dilution testés D4 = 0,15 h
-1 

et D5 = 0,2h
-1

. 

3.5 CONCLUSIONS 

Ce chapitre a présenté le développement d'un modèle capable de décrire le comportement des 

variables dans le bioréacteur de SSPHF. Le modèle proposé est composé de quatre équations 

dynamiques décrivant la croissance des bactéries, la consommation des substrats et la formation 

du produit (équations 3.1). Le maltose est le seul sucre pris en compte dans la dynamique du 

glucose. L’identification et la validation des paramètres du modèle a été effectuée en utilisant des 
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données expérimentales des essais en batch et continu. Le modèle décrit correctement le 

comportement des variables au cours de temps. Ce modèle peut maintenant être utilisé pour 

accomplir le prochain objectif de ce travail, à savoir l'élaboration d'une stratégie de commande 

pour atteindre un état de fonctionnement optimal. 

CHAPITRE 4 : Suivi et surveillance  

Après validation du modèle, le principal problème pour la maîtrise des procédés 

biotechnologiques est le manque de capteurs physiques fiables et peu coûteux permettant de 

mesurer en ligne les différentes variables d'état. En effet, il est souvent difficile, pour des raisons 

économiques ou technologiques, de mesurer toutes les variables nécessaires à la commande du 

bioréacteur. Une solution alternative consiste à estimer les états non mesurés à l’aide 
d'observateurs qui utilisent le modèle dynamique du système et les mesures disponibles en ligne. 

Il est également possible d'estimer d'autres variables importantes dans le système, par exemple les 

taux cinétiques de croissance ou de production. Dans ces travaux de thèse, nous avons tout 

d’abord développé un capteur logiciel pour reconstruire, en ligne, la concentration en acide 

lactique. Des observateurs (Extended Kalman filter et Unscented Kalman filter) fondés sur 

l'approche du filtre de Kalman ont ensuite été étudiés pour estimer les variables d'état du système. 

Ils ont été validés en simulation. Enfin, considérant l’importance du taux de production d'acide 
lactique pour évaluer la performance du bioprocédé, des observateurs estimant sa valeur ont aussi 

été développés. Leur performance a été validée en simulation également.  

4.1. Détermination de la concentration d’acide lactique en ligne  

Dans ce travail, les variables clés sont les concentrations en biomasse, glucose, acide lactique et 

maltose. Pour l'élaboration de la loi de commande, il est nécessaire de mesurer en ligne au moins 

une des variables clés du système. Dans ces travaux de thèse, la concentration en acide lactique 

est reconstruite en utilisant la masse d'hydroxyde de sodium (disponible en ligne) ajoutée pour 

réguler le pH du bioréacteur. En effet, la concentration en acide lactique produit lors de l'étape de 

SSPHF peut être corrélée à la masse de base ajoutée pour maintenir le pH à 5,7. Par conséquent, 

nous avons développé une expression mathématique corrélant ces deux variables comme présenté 

ci-dessous. Le bilan de matière de la concentration d'acide lactique est alors celui décrit par 

l'équation dynamique de P (3.1) rappelée ici: 

  
DPX

Y

Y

dt

dP

XS

PS    (4.1) 

L'objectif est alors de considérer ce bilan massique et la neutralisation de l'acide lactique par 

l'hydroxyde de sodium afin de développer une technique pour la détermination en ligne de la 

concentration en acide lactique. En sachant que une mole d’acide lactique est neutralisée par une 
mole de soude, le taux de production d’acide lactique en g L-1

 h
-1

 peut être alors exprimé en 

fonction de la quantité de soude ajoutée au bioréacteur par : 

 

  
V

MCF
X

Y

Y LANaNa

XS

PS    (0.2) 

où V est le volume du milieu de culture (L), FNa le débit de soude ajoutée dans le bioréacteur pour 

la neutralisation du lactate (L h
-1

) à l'instant t, CNa la concentration de soude dans son débit 
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d’entrée (mol L-1
) et MLA la masse moléculaire de l’acide lactique (g mol

-1
). En remplaçant 4.2 

dans 4.1 on obtient : 

 

  DP
V

MC
F

dt

dP LANa
Na   (0.3) 

En discrétisant l’équation (4.3), la concentration d’acide lactique à chaque instant k est donnée 

par : 

 

  kkkkk
LANa

kNak PttPD
V
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FP 






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L'équation (4.4) permet la détermination de la concentration d'acide lactique dans un bioréacteur 

en continu à l'instant k + 1 à partir du débit d’entrée de soude, du taux de dilution, de la 

concentration de l'acide lactique à l'instant k et des constantes CNa, MLA, V. La concentration en 

acide lactique est mise à jour à chaque période d'échantillonnage à partir des variables FNa,k et Dk, 

mesurées en ligne. 

4.2. Estimation des variables d’état 

Cette section propose des observateurs pour estimer les variables clés qui ne sont pas mesurées en 

ligne, à partir de celles disponibles en ligne, à savoir la concentration d'acide lactique. Le système 

d’équations différentielles (3.1) peut être représenté dans le formalisme d’état de la manière 
suivante : 
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avec x=(X, S, M, P)
T
 , u=D , y=P  et F et H définies par les équations (4.6) et (4.7).  
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Ce système est observable, par conséquent des observateurs pour estimer les variables d'état 

peuvent être construits pour le système (4.5).  
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L'évolution des variables d'état dans le temps est lente, d’où la possibilité d’une discrétisation du 

système simple par la méthode d’Euler, avec une période d'échantillonnage notée Ts.  

4.3. Filtres de Kalman EKF et UKF appliqués au système 

Pour l’estimation des états, deux techniques fondées sur le principe du filtre de Kalman sont 
utilisées. Le filtre de Kalman permet d’obtenir des estimées des états mesurés et non mesurés en 

utilisant un modèle mathématique du système. L’approche consiste à minimiser la variance de 

l’erreur d’estimation en utilisant un algorithme récursif :  

 Phase de prédiction : le modèle est utilisé pour propager l’estimation initiale des états 

jusqu’à avoir une nouvelle mesure disponible. 

 Phase de correction : les estimées propagées par le modèle sont combinées avec les 

mesures pour mettre à jour ou corriger ces estimées. 

Le filtre de Kalman étendu (EKF, Extended Kalman Filter)  

Dans l’EKF, l'estimation est effectuée par linéarisation des équations non linéaires du modèle 

autour de l'estimation actuelle, puis en appliquant la stratégie du filtre de Kalman pour les 

équations linéarisées. La technique d'estimation EKF se retrouve dans la littérature pour 

l'estimation d'état de plusieurs procédés biotechnologiques. 

Le filtre de Kalman sans odeur (UKF, Unscented Kalman Filter) 

L'observateur UKF utilise une approche similaire à celle de l’EKF, en évitant la procédure de 

linéarisation et conduisant à une meilleure robustesse et vitesse de convergence (Kandepu et 

al., 2008). Comme le système étudié a des fortes non linéarités et incertitudes, la méthode UKF 

évitant la linéarisation semble attractive. Dans ce cas, la distribution de l'état est représentée par 

un ensemble minimal de points soigneusement choisis, des points dits sigma. Chacun de ces 

points se propage à travers les non linéarités, et l'estimation de l'état est calculée comme la 

moyenne de ces points transformés (Julier & Uhlmann, 1997). 

Les observateurs EKF et UKF peuvent être appliqués au système (4.5). La structure des 

observateurs obtenus est représentée figure 4.1. 

       

    D        P         
        

 

     

      

      PMSX ˆ,ˆ,ˆ,ˆ   EKF or UKF 

 PMSX ˆ,ˆ,ˆ,ˆ  

Fermenter 

(X, S, M, P) 

 

Figure 0.1 Structure des filtres de Kalman étendu et sans odeur 

où X̂ , Ŝ , M̂  et P̂  sont les valeur estimées des concentrations en biomasse, glucose, maltose et 

acide lactique, respectivement. 
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4.4. Validation des estimateurs d’état en simulation 

La convergence des observateurs EKF et UKF est analysée pour une erreur d'initialisation des 

concentrations en biomasse, glucose, maltose et acide lactique. De plus, afin de tester la 

robustesse des filtres par rapport aux incertitudes du modèle, une erreur non corrélée de 20% des 

paramètres du modèle est appliquée au système réel (les paramètres du procédé réel sont 

différents de 20% de ceux utilisés dans le modèle considéré par l’observateur). Les résultats de 

simulation sont montrés figure 4.2.  

 

Figure 0.2 Comparaison des observateurs EKF et UKF. Estimation de la concentration en biomasse, glucose, 

maltose et acide lactique avec une erreur d’initialisation. Une erreur non corrélée de 20% des paramètres du modèle 
est appliquée au système réel. 

Les résultats de simulation montrent que la qualité de l'estimation par les filtres de Kalman 

dépend fortement de la qualité du modèle. Cette limitation est le principal inconvénient des 

observateurs exponentiels, et en particulier du filtre de Kalman. On peut remarquer que les 

estimées obtenues avec le filtre UKF sont plus proches des valeurs réelles que les valeurs 

obtenues avec l’EKF. Comme la méthode EKF est fondée sur l'approximation linéaire du système 

à un instant de temps donné, cela peut introduire des erreurs dans l'estimation des états (Figure 

4.1). L’UKF montre de meilleures performances que l’EKF, mais l'estimation reste dépendante 

de la qualité du modèle. Les paramètres du modèle doivent être connus avec précision afin 
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d'assurer la bonne performance des estimateurs. A partir de cette étude en simulation, on peut 

conclure que le filtre de Kalman UKF est préférable car sa mise en œuvre est plus simple (pas de 

nécessité de linéarisation du modèle) et il montre une meilleure performance par rapport au filtre 

de Kalman étendu (EKF). 

4.5. Estimation du taux de production 

Cette section est consacrée au développement d'un estimateur du taux de production d'acide 

lactique. Vu que l'objectif de ce travail de thèse est d'optimiser le procédé de production d'acide 

lactique, une mesure de l'efficacité du procédé est le taux de production. La méthode d'estimation 

du taux de production a été choisie en considérant que la concentration d'acide lactique est 

déterminée en ligne. Le taux de production d'acide lactique (noté , en g L
-1 

h
-1

) est défini 

comme suit : 

 

  X
Y

Y

XS

PS    (0.1) 

Dans le modèle du système, le taux de production est lié directement à la concentration du 

produit par : 

 

  DP
dt

dP
   (0.9) 

Ainsi, la dynamique de la concentration du produit sera utilisée afin de développer une estimation 

de  . Trois stratégies d’estimation ont été étudiées. Elles sont présentées ci-dessous. 

Différentiation numérique 
 

De l’équation (4.71), une manière simple de calculer une estimée de , notée ̂ , est d’utiliser la 
concentration d’acide lactique et sa dérivée première : 
 

  
DPP  ̂  (0.10) 

La dérivée première P  peut être calculée par une technique de discrétisation standard. 

Cependant, en cas de mesures bruitées de P, cette approche peut conduire à une très mauvaise 

estimation. Une approche classique pour éviter ce phénomène consiste à filtrer le signal bruité. 

Dans ce travail, la technique proposée dans (Fliess, et al., 2008) a été utilisée. La dérivée 

première de la concentration du produit est calculée par : 

 

  .)()2(
!3ˆ

0
3
 
T

dttPtT
T

P  (0.11) 

où [0, T] est une fenêtre « courte » de temps. 

Filtre de Kalman Linéaire 

Le principe du filtre de Kalman linéaire est considéré afin de construire un estimateur linéaire du 

taux de production. Cette approche est appliquée dans deux cas : pour un modèle avec un taux de 

production constant dans le temps et pour un modèle avec une évolution linéaire du taux de 

production. 
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Modèle avec taux de production constant 

Le système à considérer dans ce cas  est comme suit : 

 

  







0




 DPP
 (0.2) 

Modèle avec taux de production linéaire 

Cette hypothèse est plus précise dans le cas d'une culture batch ou dans les phases transitoires 

d'une culture continue. Le modèle est dans ce cas donné par : 

 

  







0




 DPP
 (0.13) 

4.6. Validation des estimateurs du taux de production en simulation 

Les techniques d'estimation du taux de production ont été validées en simulation. Les résultats 

obtenus avec l'approche de différentiation numérique, avec le filtre de Kalman avec un modèle 

constant pour   (dénommé ci-après Kalman 1) et le filtre de Kalman avec un modèle linéaire 

pour   (nommé Kalman 2) sont représentés par la figure 4.3. Un bruit blanc gaussien est 

appliqué à la concentration de l'acide lactique, P, avec un écart type de 1%. La simulation a 

commencé en mode batch (D = 0) et à partir de 15 h, un taux de dilution de 0,1 h
-1

 a été appliqué. 

 

Figure 0.3 Comparaison des estimateurs du taux de production 

Avec la méthode de différentiation numérique, une discontinuité est observée lorsque le taux de 

dilution change. Les deux filtres de Kalman montrent de meilleures performances que la 

différentiation numérique. Le zoom sur le taux de production (Figure 4.4) montre que le filtre de 

Kalman 1 estime bien lorsque le taux de dilution n’est pas nul, mais un décalage est présent 

lorsque D = 0. Dans le cas du filtre de Kalman 2, une surestimation de la production du taux de 

production est présente pendant les 2 premières heures de fermentation. Ensuite, la valeur estimée 

est très proche de la valeur réelle. Dans l'état d'équilibre, les deux filtres conduisent à des 

performances assez similaires. 
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Figure 0.4 Zoom sur l'estimation du taux de production au cours des 5 premières heures (à gauche) et à l'état 

d'équilibre (à droite). 

4.7. Conclusions 

La conception de stratégies d'estimation pour reconstruire les variables d'état du bioréacteur 

SSPHF a été présentée. Le calcul en ligne de la concentration en acide lactique est tout d’abord 
développé. L'approche considérée exploite la mesure en ligne du débit d’entrée de soude pour 

obtenir une reconstruction en ligne de la concentration en acide lactique. Pour l'estimation en 

ligne des autres variables d'état non mesurées, deux observateurs ont été proposés : le filtre de 

Kalman étendu (EKF) et le filtre de Kalman sans odeur UKF. Ce dernier montre de meilleurs 

résultats en simulation car il ne nécessite pas une linéarisation du modèle. Néanmoins, les deux 

estimateurs sont très dépendants de la qualité du modèle. L’estimation du taux de production a 

ensuite été étudiée. Trois approches différentes ont été examinées : une méthode de 

différentiation numérique et deux filtres de Kalman, le premier considère un modèle constant 

pour la dynamique du taux de production et l’autre un modèle linéaire. La méthode de 

différentiation numérique s’avère peu satisfaisante, tandis que les deux filtres de Kalman ont 

montré de bonnes performances. Le filtre de Kalman fondé sur un modèle de taux de production 

constant offre le meilleur compromis entre performance et simplicité de mise en œuvre.  

CHAPITRE 5 : Stratégie de commande  

La plupart des travaux en termes de stratégies de commande appliquées à la production d'acide 

lactique n’ont pas été validées expérimentalement en raison du manque de fiabilité des capteurs. 

Il est alors intéressant d'étudier ces aspects. Ce chapitre se concentre sur le développement de 

stratégies de commande pour la production d'acide lactique à partir de farine de blé, et leur 

validation par des essais expérimentaux. En premier lieu, il est important de décrire les 

différentes composantes du système à contrôler : 

• Le bioréacteur SSPHF, représenté par les équations (3.1) est le système que nous voulons 

contrôler. 

• La variable de sortie est la concentration en acide lactique, reconstruite en ligne. 
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• La variable d'entrée ou commande est le taux de dilution dont la manipulation affecte la variable 

de sortie. 

• L'objectif de commande est de réguler la concentration d'acide lactique à une valeur souhaitée 

en jouant sur le taux de dilution. L'objectif est d'atteindre les meilleures performances en taux de 

production d'acide lactique 

Dans l'élaboration d'une loi de commande, il est important de déterminer le point de 

fonctionnement optimal qui conduit à des taux de production d'acide lactique plus élevés. 

5.1. Point optimal de fonctionnement 

Le taux de production d'acide lactique expérimental (en g L
-1

 h
-1

) à l'état d'équilibre, défini 

comme PD  , a été calculé pour chaque expérience décrite au chapitre 3 pour la gamme des taux 

de dilution compris entre [0,04 0,24] h
-1

 (Figure 5.1). Le modèle (3.1) prédit que la fonction de la 

productivité est concave et n'a qu'une seule valeur maximale. L'objectif est de faire fonctionner le 

procédé autour de cette productivité maximale. En considérant la forme parabolique du taux de 

production en fonction du taux de dilution, les données expérimentales ont été approchées par 

une parabole concave afin de faciliter la détermination de la productivité maximale. 

 

Figure 0.3 Modélisation l’étape SSPHF à l’état stationnaire. Comparaison entre les données experimentales et le 
modèle pour l’essai 1 (    ) et l’essai 2 (    ). (        ) Modèle à l’état stationnaire ( ) Approximation 

polynomiale des données experimentales. 

En estimant le maximum de la fonction parabolique utilisée pour approcher les données 

expérimentales, il est possible de trouver le point optimal de fonctionnement: Les valeurs 

optimales de taux de dilution et taux de production à l'état stationnaire obtenues en utilisant cette 

approche sont 0,15 h
-1

 et 2,95 g L
-1

 h
-1

, respectivement. 

A partir du modèle, le point d'équilibre du système (3.1) est déterminé de sorte que la 

productivité de l'acide lactique soit maximisée. Ce problème est formulé en tant que problème 

d'optimisation sous contrainte à variable unique comme suit : 

 

  
PDD  maxarg

*
 

s.c.  équations (3.1) 

max0 DD   

(0.1) 
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où maxD  est le taux de dilution maximal permis par le dispositif expérimental. La solution de ce 

problème a été déterminée numériquement avec un algorithme de recherche de type section dorée 

(Fletcher, 1987). La solution obtenue par cette approche est 12,0* D h
-1 

et 87,2*   g L
-1

 h
-1

. 

En considérant tous ces résultats, l'objectif de commande sera de réguler la concentration d'acide 

lactique à la valeur optimale, 21 g L
-1

. 

5.2. Développement d'une loi de commande linéarisante par retour d’état 
 

Pour le développement de la commande et sa validation expérimentale, les contraintes liées à la 

capacité du logiciel du bioréacteur SSPHF ont été prises en compte. Le bioréacteur est équipé 

d'un logiciel C-BIO (Concept Global Process, La Rochelle, France). Ce logiciel dispose d'une 

interface de calcul qui peut être utilisée pour la mise en œuvre d'une loi de commande. 
Néanmoins, en raison de la restriction dans le logiciel (cela fonctionne uniquement avec des 

algorithmes simples), seule une stratégie de commande simple doit être conçue. 

Dans la commande linéarisante par retour d’état, l'idée de base est de simplifier la forme d'un 
système en choisissant une représentation d'état différente (Hedrick et Girard, 2010). Pour un 

système affine en la commande représenté par : 

 

   
))(()(

)()()()(

txhty

tutxgxftx




 (0.3)  

où u apparaît linéairement dans l'équation (5.2), une loi de commande linéarisante par retour 

d’état peut être développée.  

Pour le développement de ce type de commande pour le système (4.5), tout d'abord le degré 

relatif du système doit être déterminé. Le degré relatif, r, de ce système est 1 car il est nécessaire 

de dériver la sortie, y = P, une seule fois par rapport au temps afin d'obtenir l'entrée u = D 

explicitement. Cela veut dire que seule la dynamique de la concentration du produit, P, peut être 

linéarisée. La loi de commande obtenue avec cette approche est représentée par : 

 

  







 X

Y

Y
D

P
D

XS

PS ˆ1
 (0.4)  

Le système linéarisé dans l'équation (5.3) est équivalent à une simple intégrateur r = 1. Afin de 

corriger les erreurs du modèle et de rejeter les perturbations, le signal de commande sera délivré 

par une boucle extérieure via un régulateur proportionnel : 

 

  
)(ˆ

refPPGD   (0.5)  

où G est le gain du régulateur et Pref est la consigne. Le gain du régulateur est réglé pour fournir 

une temps de réponse en boucle fermée désiré. La loi de commande obtenue est illustrée figure 

5.3. 
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        )(tx  

  
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Commande 
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Figure 0.4 Structure de la commande linéarisante par retour d’état 

Pour mettre en œuvre la stratégie de commande illustrée figure 5.3, toutes les variables d’état 
doivent être disponibles en ligne, par leur mesure ou par leur estimation. Les observateurs des 

variables d’état développés au chapitre 4, EKF et UKF, ont été utilisés pour les estimer.  

5.3. Développement d'une loi de commande adaptative 

Afin de réduire la dépendance de la commande de la qualité du modèle, une stratégie de 

commande adaptative, où seul le taux de production est estimé en ligne, est proposée. En 

introduisant   (définie par l’équation (4.8) dans l'équation (5.3), la loi de commande obtenue 

est : 

 

  
 ̂ˆ1

 D
P

D  (0.6)  

   

où D̂ est le signal de commande et est encore donné par (5.4), et ̂  le taux de production estimé. 

Pour l’estimation de   , les filtres de Kalman développés dans le chapitre 4 sont utilisés.  

5.4. Comparaison des stratégies de commande en simulation  

Dans cette section, seuls les estimateurs qui ont montré les meilleurs performances pour estimer 

les états sont retenus pour être implémentés en chaque loi de commande. Ainsi, dans la 

commande linéarisante par retour d’état, le filtre UKF est utilisé pour estimer les variables d'état. 

Dans l'approche de commande adaptative, le filtre de Kalman avec le modèle constant pour   est 

retenu. Afin de tester la robustesse des lois de commande, une erreur de 30% des paramètres 

utilisés a été considérée. La figure 5.4 montre la performance des stratégies de commande.  

La loi de commande adaptative conduit à un meilleur suivi de la consigne. La valeur de consigne 

est atteinte avec un bon comportement transitoire et sans erreur statique. Cette commande est 

robuste par rapport aux erreurs de modèle. La commande linéarisante par retour d’état conduit à 

un décalage par rapport à la consigne. Compte tenu de la simplicité de la structure de la loi de 

commande adaptative, et comme elle a montré de meilleures performances, elle a été choisie pour 

une validation expérimentale dans le bioréacteur.  
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Figure 0.4 Comparaison des performances des lois de commande. Evolution de la concentration d’acide lactique et 
du taux de dilution avec le temps. 

5.5. Validation expérimentale de la loi de commande  

La validation expérimentale de la stratégie de commande adaptative a été effectuée dans un 

bioréacteur de 5 L. Les performances et la robustesse de la stratégie de commande sont évaluées 

dans une expérience SSPHF en mode continu. Après inoculation, la commande est activée afin de 

réguler la concentration d'acide lactique. Deux consignes de concentration d'acide lactique ont été 

testées au cours de l'essai. A la fin de l'expérience la robustesse de la loi de commande a été 

évaluée dans le as d’une perturbation de température. 
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Figure 0.5. Validation expérimentale de la loi de commande. A Evolution de la concentration d’acide lactique en 
fonction du temps. Pref 1= 20 g L

-1
 (       ), Pref 2= 27 g L

-1
  (      ), concentration d’acide lactique déterminée en ligne  

(      ) concentration d’acide lactique  (   ). B évolution du taux de dilution. C taux de production estimé.  

La première consigne a été fixée à 20 g L
-1

. Après inoculation, la loi de commande fait 

fonctionner le bioréacteur en mode batch afin d’augmenter la concentration d'acide lactique. La 
consigne est atteinte après 10 h, puis le réacteur commence à fonctionner en continu afin de 

maintenir constante la concentration d'acide lactique égalé à 20 g L
-1

. Aucun dépassement de la 

valeur de consigne n’est observé. Les concentrations d'acide lactique mesurées hors ligne sont en 
accord avec celles calculées en ligne. A 26 h, la valeur de consigne est modifiée de 20 g L

-1
 à 27 

g L
-1

. Les résultats de l’analyse de la robustesse de la loi de commande ont montré également que 
cette commande est robuste vis-à-vis de perturbations de température.  



39 

 

Conclusions et perspectives 

Conclusions 

Une démarche a été proposée afin d’optimiser le procédé de production d’acide lactique à partir 
de farine de blé. Cette démarche comprend : une première étude de l’optimisation des étapes du 

procédé de production d’acide lactique, la modélisation du bioprocédé, la détermination de la 

concentration d’acide lactique en temps réel, l’estimation des états et du taux de production et 

finalement le développement d’une loi de commande adaptative. 

Cette démarche a permis d’obtenir des résultats qui contribuent à l’optimisation du procédé tels 
que : i) La conception d’un procédé innovant de trois étapes : liquéfaction, saccharification et 

hydrolyse des protéines simultanées (SSPH) et saccharification, hydrolyse des protéines et 

fermentation simultanées (SSPHF). ii) La validation expérimentale du modèle décrivant les 

dynamiques des concentrations en biomasse, glucose, maltose et acide lactique. iii) Le  

développement d’estimateurs des variables d’état et du taux de production à partir de la 
détermination de P. iv) la validation expérimentale de la loi de commande adaptative permettant 

la régulation de la concentration d’acide lactique d’une manière précise et robuste vis-à-vis des 

erreurs de modèle et de perturbations. Ces résultats se traduisent par un gain de productivité 

d'acide lactique par rapport au procédé batch de Soufflet: 2,6 g L
-1

 h
-1

 en mode continu face à 1.3 

g L
-1

 h
-1

. 

Perspectives 

Il est possible de proposer de perspectives académiques et d’autres concernant le milieu 
industriel. Au niveau académique il est possible de proposer : des études d’optimisation du milieu 
de culture et du procédé (réduire le gaspillage du substrat et le volume mort dans le bioréacteur) ; 

plus des essais pour perfectionner le modèle mathématique décrivant l’étape de SSPHF et tester 

le modèle avec d’autres microorganismes et substrats ; le développement d’un modèle décrivant 

les trois étapes de transformation de l’amidon en acide lactique ; l’amélioration des techniques 

d’estimation des variables d’état ; une modification du filtre de Kalman sans odeur avec une 

approche Monte-Carlo ; la conception d’observateurs hybrides afin d’obtenir des meilleures 

estimations ; la régulation du taux de production en utilisant une stratégie d’optimisation en ligne 
dans l’algorithme de commande.  

Au niveau industriel, différents aspects de la mise en œuvre du procédé doivent être étudiés tels 

que : L’implémentation de l’étape de SSPHF en continu dans un réacteur industriel ; la 

modélisation d’un réacteur SSPHF industriel (en incluent la dynamique des fluides) ; 

l’interconnexion des trois réacteurs pour une exploitation industriel ; le développement d’une 
stratégie de commande pour le procédé de trois étapes et l’application de la commande adaptative 

sur un autre procédé de production.  
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INTRODUCTION 
 

Context and motivations 
 

Lactic acid is a traditional chemical product that is widely used in food, pharmaceutical, solvents 

and leather tanning industries. It has recently received much attention as the monomer for the 

production of PLA (Poly Lactic Acid) material, a biodegradable polymer.  Lactic acid can be 

produced by biotechnological or chemical processes. The biotechnological production of lactic 

acid offers several advantages compared to the chemical synthesis: 1) the use of lower cost 

substrates and 2) the higher product specificity as the former process produces a desired 

stereoisomer (optically pure L or D lactic acid).(John, et al., 2007).  

 

The lactic acid production by microorganisms has been well developed for over two decades. 

Lactic acid can be produced by several microorganisms classified into bacteria, yeasts, 

cyanobacteria and algae. Lactic acid bacteria (LAB) are the most widely used microorganisms. 

Recently, genetic engineering of various microbial producers has improved the yield and the 

optical purity of lactic acid. 

 

Although the increasing interest of producing lactic acid by fermentation, this process still uses 

relatively expensive substrates (glucose, lactose, yeast extract, etc). The use of mixed strains in 

fermentation allows the utilization of complex raw materials and enhances lactic acid production 

yield and productivity (or production rate). Indeed, as lactic acid is a relatively cheap product, 

one of the major challenges in its large-scale fermentative production is the cost of the raw 

material. Then new biotechnological processes using complex cheap raw materials can make 

lactic acid production more economical. Currently, different inexpensive raw materials are used 

as carbon sources for the production of lactic acid: molasses, whey, starch, hydrolysates.  

 

Wheat flour has been reported as suitable for the lactic acid production on a largescale. Indeed, it 

contains almost all the necessary nutrients for the different strains of lactic acid bacteria. 

Nevertheless, enzymatic reactions are required to hydrolyze wheat starch for further lactic acid 

fermentation. The conventional biotechnological production of lactic acid from starch materials 

requires then three steps: starch pretreatment by gelatinisation and liquefaction (starch 

hydrolysis) which produces mainly maltose; enzymatic saccharification (hydrolysis) of maltose 

to glucose and subsequent conversion of glucose to lactic acid by fermentation.  

 

Otherwise, the lactic acid bacteria have nitrogen needs that must be fulfilled. Conventionally 

nutrients as yeast extract and peptone are added to the medium to provide nitrogen to bacteria. 
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Wheat flour contains proteins (gluten) that can be hydrolyzed into amino acids. Therefore, 

enzymatic studies are required to optimize this process. In addition, protein hydrolysis from raw 

materials can be improved by coupling different enzymatic reactions in the same bioreactor, 

which is very challenging.  

 

On the other hand, control strategies which allow regulating key components in the bioreactor 

may be used to optimize the overall lactic acid production. To do so, mathematical models have 

to be developed. They are important tools for optimizing the biotechnological process and to 

predict bioreactor’s performance. Nevertheless, models describing biotechnological processes are 

complex and exhibit large nonlinearities making the development of control strategies for 

continuous bioreactors a difficult task.  

 

In this context, the aim of this PhD thesis is to optimize the lactic acid production 

biotechnological process from wheat flour by maximizing its lactic acid productivity. Three main 

steps are considered to accomplish this objective. First, the culture broth is optimized in order to 

improve the lactic acid production rate. Second, a macroscopic modelling of the process is 

developed. The model takes into account the different kinetics (bacterial growth, lactic acid 

production and enzymatic maltose hydrolysis) taking place in the bioreactor. Finally, control 

strategies to maximize the lactic acid productivity are proposed. This work couples two main 

areas: bioprocess and control.  

 

This PhD is the result of the collaboration between two research teams of CentraleSupélec and 

one of the Soufflet Group Company who decided to combine their skills and know-how. One of 

the research team of CentraleSupélec is the bioprocess team from the LGPM Laboratory 

(Laboratoire de Génie des Procédés et Matériaux). This team couples experimental and modelling 

approaches to design and improve bioprocesses. The Sydico group (Uncertain Dynamic Systems, 

Control and Optimization) of the L2S laboratory (Laboratoire des Signaux et Systèmes, Control 

department of CentraleSupélec) works on bioreactors control and develops software sensors for 

bioprocesses. The last team is the Soufflet Research and Innovation Center (CRIS, Centre de 

Recherche et d’Innovation Soufflet) of the Soufflet Group. This company focuses on the 

collection and production of cereals and is specialized in wheat and barley production. In 2009, 

the Soufflet Group embarked on four regional biotechnology research programs (the OSIRIS 

programs), aimed at the development of solutions for different areas; one of these is the 

improvement of lactic acid production. The purposes of these programs are to increase the value 

derived from agricultural resources and especially from agro-industrial by-products. The lactic 

acid production project aims at promoting the incorporation of cereal-based ingredients instead of 

chemical-based products and optimizing the use of wheat flour in the lactic acid production 

process. 
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Work methodology and thesis organization 

As previously mentioned, the main objective of the work is the optimization of the lactic acid 

production process from wheat flour. The different steps considered in this work to reach this 

objective are described thereafter. 

Process optimization 

First, the optimization of the culture medium was performed by experimental assays. The bacteria 

used in the bioprocess is Lactobacillus Coryniformis subsp. torquens DMS 20004. The choice of 

the bacteria was done taking into account previous results obtained by the private partner. 

Enzymatic studies were performed in order to improve the medium composition and optimize the 

lactic acid production process. The results obtained with this step allowed proposing a new 

process design which involves three main steps. In the first step, starch is converted into maltose 

and glucose (in a liquefaction step), and then a simultaneous saccharification and proteins 

hydrolysis (SSPH) step allows hydrolyzing one part of maltose into glucose and wheat proteins 

into amino acids. The last step consists in the simultaneous saccharification, proteins hydrolysis 

and fermentation step (SSPHF). In this final phase, the remaining maltose and gluten are 

hydrolyzed simultaneously while the conversion of glucose into lactic acid (fermentation) takes 

place.  

In order to maximize the whole process productivity, the SSPHF bioreactor should be operated in 

continuous as this allows obtaining the highest productivity. Two chapters are consecrated to this 

approach: Chapters 1 and 2. 

Chapter 1:  Lactic acid Production 

This first chapter provides an overview of the industrial production of lactic acid. An overview of 

the different microorganisms able of carrying out lactic acid fermentation as well as their main 

growth factors is presented. Additionally, the major raw materials commonly used in lactic acid 

production are described.  

Chapter 2 Design of the studied process  

The second chapter focuses on the description of lactic acid production from wheat flour. First, 

the state of art of starch transformation processes is presented. Then, the experimental campaigns 

performed to optimize the culture broth and design an optimal process are described and the 

results are discussed. Later, the different fermenter operation modes for lactic acid production 

described in the literature are summarized. This helped the choice of the bioreactor’s mode of 
operation used thereafter in this study. The proposed lactic acid production process is finally 

detailed.  
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Modelling 

The second step consists in developing a model representing the biological and enzymatic 

phenomena in the bioreactor. The kinetics (bacteria growth, lactic acid production, enzymatic 

reactions) of the reactions involved in the SSPHF process are presented. The key variables of the 

process (those which are considered for the control design, such as biomass, glucose, maltose and 

lactic acid concentrations) were modeled and identified using a macroscopic approach. Model 

parameters were finally identified and validated using the results of continuous SSPHF 

experiments performed in a bioreactor. These subjects are presented in Chapter 3. 

Chapter 3 Modelling 

In chapter 3 the model development of the continuous SSPHF bioreactor for lactic acid 

production is presented.  First, a bibliography survey of the models describing lactic acid 

fermentation kinetics processes is done. Thereafter, the model of the SSPHF bioreactor is 

developed. An identification strategy allows finally determining the model parameters that are 

experimentally validated through continuous SSPHF experiments.  

Monitoring and Control 

The development of control strategies to maximize the lactic acid productivity in the SSPHF 

bioreactor represents the third step of the overall methodology. First, estimators required for the 

control design were developed. The latter was performed considering the measured and control 

variables, the developed estimators and the software used to control the bioreactor. Two chapters 

are devoted to this step: Chapter 4 and 5.  

Chapter 4 Monitoring 

In this chapter, the development of estimators necessary for the bioprocess monitoring and 

control design is considered. First, the construction of a software sensor to determine online the 

lactic acid concentration is presented. Then, estimators of the biomass, glucose and maltose 

concentrations are developed from the online available lactic acid concentration. Finally, 

estimators of the lactic acid production rate (the indicator of the process productivity) are 

proposed. The performance and robustness of all developed estimators is tested in simulation. 

Chapter 5 Control strategy 

This chapter starts with a short survey of the different control strategies applied to the lactic acid 

fermentation process. Then the optimal operation point that maximizes the lactic acid production 

rate is determined through a steady state analysis; the control objective is to operate the 

bioreactor at this optimal point. Later, two control strategies are proposed: a feedback linearizing 

controller using biomass, glucose and maltose concentration estimators; and an adaptive 

controller coupled to an estimator of the lactic acid production rate. These control strategies are 
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tested and compared with one another by simulations.  Finally, the experimental validation of the 

best control strategy giving the best performance is presented.  

Conclusions and Perspectives 

This final section presents the results of work performed in this PhD. Similarly, some 

perspectives are proposed in the continuity of this work, particularly to improve the monitoring 

and control strategies, as well as to extend the control strategy for the whole process (including 

the three bioreactors).  

Appendixes 

This report contains 10 appendixes. Appendix A.1 shows other relevant results of the protease 

choice study. In the appendix B.1, results of the residence time determination of the bioreactor 

used for the model and control law validation are presented. Appendix B.2 contains the results of 

experiments performed to study substrate effects on growth and lactic acid production. Appendix 

B.3 presents the identification of model parameters for the SSPHF batch process. In appendix C.1 

the observability theory is presented. The experimental validation of the lactic acid concentration 

determination from the sodium hydroxide inlet flow is presented in Appendix C.2. Appendix C.3 

shows the influence of the process noise covariance matrix on the state variables estimators. 

Appendix D.1 presents a detailed description of the control law implementation in the bioreactor 

software. Results obtained in the study of the effect of the temperature on growth and lactic acid 

production are summarized in appendix D.2. Finally a glossary of terms used in the biology and 

biotechnology areas concludes the appendixes section in Appendix D.3. 
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1. CHAPTER 1: LACTIC ACID 
PRODUCTION 

 

1.1. INTRODUCTION 

The high energy demand and environmental problems associated with standard industrial 

processes drive the development of innovative green processes. Thus, processes intensification 

through the development of new products and processes ensuring reduced material and energy 

consumption as well as environmental impacts are needed. This is the case of lactic acid which 

can be produced by biotechnological processes and can participate in a wide variety of chemical 

reactions. Green solvents (ethyl, propoyl, butyl lactates), oxygenated chemicals (propyleneglycol) 

and biodegradable thermoplastics (Poly Lactic Acid) are few examples of lactic acid-derived 

products. This compound has attracted the attention of industrials and researchers due to its 

widespread applications and its growing market demand especially for Poly Lactic Acid (PLA) 

production.  

In this chapter, a general description of lactic acid production, mainly for PLA production, is 

presented. The different microbial lactic acid producers are listed. The metabolism of lactic acid 

bacteria and growth factors that they require are described. Finally the raw materials used for the 

lactic acid production are discussed.  

 

1.2. LACTIC ACID 

Lactic acid is the main component of all acidified milk products giving them their fundamental 

characteristics. This is a non-toxic natural product. It was first discovered in 1780 by the Swedish 

chemist, Carl Wilhelm Scheele, who isolated lactic acid from sour milk as impure brown syrup. 

In 1789 Lavoisier named this milk component “acide lactique”, which became the core origin of 
the current terminology. It was considered as a milk component until 1857, when Pasteur 

discovered another phenomenon and postulated that lactic acid was a fermentation metabolite 

generated by microorganisms. Beside Pasteur’s discovery, a French scientist, Frémy, produced 

lactic acid by fermentation (Ghaffar, et al., 2004). Lactic acid production started in 1881 in the 

USA. Its applications in food, pharmaceutical, cosmetic, and chemical industries are described 

since the late 19th century (Narayanan, et al., 2004). In 1894 its production, primarily intended 

for leather and textile industries, reached 5 tons/year. Nowadays 90% of lactic acid production is 

provided by microbial fermentation and only 10% obtained chemically by the hydrolysis of 

lactonitrile (Hofvendahl & Hahn-Hligerdal, 1997).  
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The global lactic acid market was estimated at 714,200 tons in 2013 and is expected to reach 

1,960,100 tons by 2020 (Grand-View-Research, 2015). It is dominated by the USA, with 35.8% 

of the total market in 2010. Europe and Asia-pacific are the second and third largest markets 

representing 29.9% and 29.2%. Lactic acid is nowadays mainly used in industrial applications 

(42.4% of the production market in 2010), exceeding food and beverages applications. This was 

the result of a strong growth of PLA and solvents markets, products for which lactic acid is the 

main raw material (marketsandmarkets.com, 2015) . 

Lactic acid is mainly used in food, cosmetic, pharmaceutical and chemical applications (Figure 

1.1). It is classified as GRAS (Generally Recognize As Safe) for use as a food additive by FDA 

(Food and Drug Administration). It is widely used in almost all segments of the food industry for 

functions such as flavoring, pH regulation and improvement of the microbial quality. In addition, 

lactic acid is used commercially in the meat and poultry industries, where it improves flavor and 

helps controlling food borne pathogens. Because of its slightly acid flavor, it is also used as 

acidifying agent in salads, sauces, pastries, pickled vegetables and beverages (Wee, et al., 2006). 

In cosmetic applications, lactic acid is mainly used as lightening agent and pH regulator, but it 

also has other interesting properties such as antimicrobial activity and skin moisturizing power. 

Lactic acid is also used in the pharmaceutical industry as an electrolyte in a large number of 

parenteral / intravenous solutions for reconstruction of body fluids or electrolytes. As for 

chemical applications, lactic acid is used as descaling agent, pH regulator, neutralizing agent, 

chiral intermediate, solvent, cleaning agent, complexing agent for metals, antimicrobial and 

humectant agent. Finally lactic acid is currently considered as the raw material monomer with the 

biggest potential for chemical conversions, due to its two reactive functional groups, a carboxylic 

group and a hydroxyl group. Lactic acid can be transformed into potentially useful chemicals 

such as propylene oxide (by hydrogenation), acetaldehyde (via decarboxylation), acrylic acid (by 

dehydration), propionic acid (by reduction), 2,3-pentanedione (via condensation) and dilactide 

(by self-esterification). As previously mentioned, lactic acid has received much attention as a raw 

material monomer for the production of PLA (Varadarajan & Miller, 1999).  

Due to these numerous applications, lactic acid is a very important product and its 

biotechnological production received more and more interest in recent years as an alternative to 

chemical processes to overcome environmental concerns: pollution caused by petrochemicals and 

limitation of fossil carbon. 
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Figure 1.1 Applications of lactic acid in industry (Wee et al., 2006). 

 

1.2.1. Physicochemical properties of lactic acid 

 

Lactic acid is the simplest 2-hydroxy-acid having a chiral center. It exists as two enantiomers. 

Different names are used in the literature to call them. They can be named by the spatial 

configuration of the atoms using the D, L nomenclature (named after Latin dexter and laevus, 

right and left). This system is based on the stereochemistry of glyceraldehyde and defines relative 

configurations of lactic acid. Another system used to name the lactic acid enantiomers is the R/S 

system, which does not involve a reference molecule such as glyceraldehyde. In this system each 

chiral center in a molecule is assigned a prefix (R or S), according to whether its configuration is 

right or left handed. The lactic acid enantiomers can also be named by the direction in which it 

rotates the plane of polarized light. If it rotates the light clockwise that enantiomer is labeled (+). 

Its mirror image is labeled (-). Lactic acid enantiomers are presented on figure 1.2. 

 

The chirality of lactic acid often results in confusion between molecular structures and physical 

properties (optical rotation). (S) lactic acid (or L-lactic acid) has a slight positive specific optical 

rotation and is often referred to L (+) lactic acid. However, a concentrated solution of (S) lactic 

acid in equilibrium with oligomers of lactic acid results in a negative total optical rotation. 
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Therefore it is recommended to use the structural notation R / S or the former notation L/D and 

avoid the + /- one (Auras, et al., 2010). 

 

Figure 1.2 Enantiomers of lactic acid: (S) - and (R) - 2-hydroxypropionic acid (Auras et al., 2010) 

 

The physical properties of lactic acid are shown in Table 1.1. It can participate either as an 

organic acid or an organic alcohol in a large number of chemical reactions. It is completely 

soluble in water and has a low volatility.  

Concerning its physiological role in human body, it is necessary to distinguish between the L and 

D forms. It is known that the L-form is more rapidly metabolized than the D-form and has also 

superior nutritional qualities(Vick Roy, 1985). 

Table 1.1 Physical properties of lactic acid (Vick Roy, 1985). 

Property Value 

Molecular weight 90.08 g mol
-1

 

Melting point for D and L enantiomers D=52.8°C, L=54°C 

Boiling point for D and L enantiomers D=103°C, L= 122°C at 14mmHg 

Dissociation constant (Ka at 20°C) 1.37*10
-4

 

Heat of Combustion (ΔHc) 1361 kJ mol
-1

 

Specific heat (Cp at 20°C) 190 mol °C 

 

1.2.2. PLA (Poly Lactic Acid) 

 

Natural polymers, biopolymers and synthetic polymers based on renewable resources are the 

basis for the ecological plastics portfolio of the XXI
st
 century. These materials are gradually 

replacing the family of petroleum-based polymers by becoming more and more competitive in 

terms of performance and cost. Poly Lactic Acid (PLA) is leading in the emerging bioplastics 
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market through its availability and attractive cost. PLA is a thermoplastic material with rigidity 

and clarity similar to polystyrene (PS) or poly ethylene terephthalate (PET). It is used for rigid or 

flexible packaging, cutlery, textile fibers, bottles, biomedical materials and other applications 

(Auras, et al., 2010).  

 

Lactic acid may be polymerized into PLA by polycondensation in series or by polymerization. Its 

optical purity is a critical factor for the final properties of polylactic acid; the D/L mixture 

provides an amorphous and optically inactive polymer; in contrast pure L or D isomers provide 

crystalline and optically active polymers. PLLA (Poly L-Lactic Acid) is limited to medical 

applications due to its weakness under impact load, which can be attributed to its low melting 

temperature and low crystallization capacity. In the other hand, a stereocomplex mixture of both 

polymers PLLA and PDLA (Poly D-Lactic Acid) has new and interesting properties such as a 

high melting temperature (Zhao, et al., 2010). 

1.2.3. Production of PLA from lactic acid 

 

From a chemical point of view, lactic acid may form PLA from the reaction of its hydroxyl and 

carboxylic acid groups. By removing the water molecules formed during the condensation 

reaction, it is possible to draw the reaction toward PLA formation (Equation (1.1)): 

 

 

 

(1.1) 

 

where n and m ≥ 1. Water removal becomes more and more difficult as the desired molecular 

weight increases because of the high viscosity of the reaction mixture. To compensate this 

disadvantage, the application of vacuum can facilitate water removal. However, during 

polycondensation of lactic acid, other side reactions also occur, such as transesterification, 

resulting in the formation of cyclic structures of different sizes (Zhang, et al., 2009). These side 

reactions have a negative influence on the polymer properties. 

1.2.4. Lactic acid Production 

1.2.4.1. Chemical synthesis 

 

The commercial process for the chemical synthesis of lactic acid is based on lactonitrile as an 

intermediate. Hydrogen cyanide is added to acetaldehyde in the presence of a base to produce 

lactonitrile. This reaction takes place in liquid phase at a high pressure. Lactonitrile is recovered 

and purified by distillation. It is then hydrolyzed using hydrochloric or sulfuric acid to produce 

the corresponding ammonium salt and lactic acid. Lactic acid is then esterified with methanol to 

produce methyl lactate that is purified by distillation (distillation is easier for the ester than for 
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the organic acid) and re-hydrolyzed by water in an acid catalytic reaction to produce again lactic 

acid and methanol (Narayanan, et al., 2004). This chemical synthesis produces a racemic mixture 

of D and L lactic acid.  

The process is summarized in equations (1.2) to (1.5): 

Addition of Hydrogen Cyanide 

 
 (1.2) 

Hydrolysis by H2SO4 

 
 (1.3) 

 

Esterification 

 
 (1.4) 

 

Hydrolysis by H2O 
 
 

 (1.5) 

 
Many other synthesis routes exist: base catalytic degradation of sugars; oxidation of propylene 

glycol; reaction of acetaldehyde, carbon monoxide and water at high temperature and pressure; 

hydrolysis of chloropropionic acid and propylene oxidation. However, none of these processes 

are commercialized due to the growing demand of lactic acid for PLA production needing pure 

(D or  L) isomers of lactic acid.  

1.2.4.2. The fermentation 

 

The major part of lactic acid available in the market is produced by fermentation. During lactic 

fermentation, a suitable carbohydrate is converted into lactic acid by microorganisms. Only a few 

of them require oxygen to grow and the conversion of sugars is thus carried out without oxygen. 

In aerobic conditions, the complete oxidation of sugars to carbon dioxide and water is indeed 

favored energetically. Moreover, most lactic acid producers are inactivated in the continuous 

presence of high oxygen concentrations, so lactic acid is mainly formed under anaerobic 

conditions. In the cell, sugar is first converted to pyruvate by several enzymatic steps; this 

conversion provides chemical energy in the form of ATP (adenosine triphosphate) and reducing 

equivalents (NADH, Nicotinamide adenine dinucleotide). To recycle these reducing equivalents, 
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the cell converts pyruvate to lactic acid (Madigan, et al., 2000). The chemical energy produced is 

consumed by several mechanisms in the cell, for example cell growth, maintenance, and motility 

(Auras, et al., 2010). Figure 1.3 shows the reactions previously mentioned.  

 

Figure 1.3 A) Conversion of glucose to pyruvate. Generation of chemical energy (ATP), B) Lactic acid from 

pyruvate: The reoxidation of NADH into NAD (the reduced form of NADH) occurs. NAD can be reused in the 

reaction. 

The reactions shown in figure 1.3 occur for homofermentative lactic acid bacteria. These bacteria 

produce almost exclusively lactic acid as fermentation product. In contrast, heterofermentative 

lactic acid bacteria produce a mixture of lactic acid, acetate, carbon dioxide and ethanol(Auras, et 

al., 2010). It will be further discussed in section 1.3.3. 

1.2.5. Microorganisms producing lactic acid 

 

Lactic acid maybe produced by different microorganisms such as fungi, cyanobacteria, yeasts, 

algae and bacteria. In this section, the main characteristics of lactic acid producers are presented 

as well as their application in the fermentation industrial process. 

1.2.5.1. Molds 

 
Several molds as Rhizopus oryzaeare able to produce lactic acid. Rhizopus oryzae uses glucose as 

a substrate and produces lactate under aerobic conditions. These microorganisms present several 

advantages: they do not require organic nitrogen sources, are able to use hexoses, pentoses and 

renewable resources (refined sugar, molasses, starch and crude lignocellulose), especially for 

genus Rhizopus, and are easily separated from the culture medium during the purification of 
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lactic acid (Miura, et al., 2004). Other advantages compared to bacteria are their amylolytic 

characteristics, the fungal biomass that can be used in the biosorption process for the purification 

of the contaminated effluent, and the co-production of fungal chitiosan which can be used as an 

additive for feed. 

 

However, lactic acid production by molds faces several economic challenges. Their sensitivity to 

low pH, the need for aeration and agitation and their trend to grow in filaments complicate the 

process control and increase the production costs. Besides most previous researches with the 

genus Rhizopus exhibited low productivities of lactic acid (Yin, et al., 1997).  

1.2.5.2. Yeasts 

 

Yeasts have won recently significant interest as lactic acid producers because of their ability to 

tolerate lower pH values, which avoids neutralization of the medium during fermentation. One of 

their disadvantages is their trend to produce ethanol in the presence of glucose in excess (Ilmén, 

et al., 2013). Many efforts have been made to develop genetically modified yeasts for lactic acid 

production, including Saccharomyces, Zygosacchromyces, Candida, Pichia and Kluyveromycees 

(Abdel-Rahman, et al., 2013). The development of genetically modified yeasts able to use a 

variety of sugars other than glucose and xylose is a current field of research. However, more 

studies on lactic acid production from oligosaccharides and polysaccharides via the integration of 

specific genes in the genome of yeast strains are required. 

1.2.5.3. Microalgae and cyanobacteria. 

Photosynthetic microorganisms which couple CO2 capture and synthesis of organic products 

offer an economical alternative approach for lactic acid production as they do not need 

carbohydrates as feedstock. Several authors have reported lactic acid production by Scenedesmus 

D3 (Hirt, et al., 1971) and Nannochlorum sp. 26A4 (Hirayama & Ueda, 2004). Cyanobacteria 

have the same advantages, as microalgae: photosynthetic capacity and requirement of simple raw 

materials (ie, sunlight, CO2, water, a few mineral elements). Moreover, they can be easily 

genetically modified (Ducat, et al., 2011). 

1.2.5.4. Bacteria 

 

Bacterial producers of lactic acid can be divided into four main groups:  lactic acid bacteria 

(LAB), Bacillus strains, Escherichia coli and Corynebacterium glutamicum. In general, lactic 

acid production by bacteria have many limitations including: (i) simultaneous production of D- 

and L-lactic acid involving enzymatic reactions via two enzymes, L-lactate dehydrogenase (L-

LDH) and D-lactate dehydrogenase (D-LDH), respectively; (ii) low lactic acid yield due to the 

formation of by-products; (iii) nutrient-rich environment (in nitrogen and vitamins) required;  

(iv) high risk of bacteriophage infection resulting in cell lysis and stopping lactic acid production. 
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Various studies in metabolic and genetic engineering have been performed to overcome these 

problems, namely, (i) improving the optical purity in a given isomer of lactic acid by removing 

the suitable genes; (ii) reducing the by-products by deletion of the genes encoding the suitable 

enzymes, pyruvate formate lyase (production of formic acid), alcohol dehydrogenase (production 

of ethanol ), acetate kinase (production of acetic acid) and then enhancing lactic acid yield (Zhou, 

et al., 2003); (iii) developing  genetically modified bacterial strains and (iv) improving existing 

strains by blocking steps in the life cycle of phages (Allison & Klaenhammer, 1998). 

Additionally, the use of mixed or phage-resistant strains in some cases may be necessary to 

prevent bacteriophage infection. 

1.3. LACTIC ACID BACTERIA 

The first pure culture of lactic acid bacteria (LAB) was obtained by J. Listerin 1873, ten years 

after the beginning of Pasteur's studies on lactic acid fermentation. The first lactic acid cultures 

for cheese and curd production were introduced in 1890 (König, et al., 2009). A typical lactic 

acid bacterium cultured under standard conditions (not limited by glucose, growth nutrients, or 

oxygen) is a Gram-positive, non-spore forming, catalase negative, aerotolerant, acidtolerant, 

chemoorganotroph and produces lactic acid. Cells are typically motionless. They need complex 

growth nutrients such as vitamins and amino acids. The optimal growth conditions depend on the 

strain; the bacteria can grow for a large pH scale (3.5 to10) and for temperatures between 5and 45 

°C (Abdel-Rahman, et al., 2013). 

Lactic acid bacteria are generally aerotolerant. However, some species are strict anaerobes. They 

are unable to carry out oxidative phosphorylation as a result of their inability to synthesize 

cytochromes and antioxidant enzymes (superoxide dismutases and hydroperoxidases). In the 

presence of toxic oxygen, some strains use peroxidase enzymes to remove the toxic hydrogen 

peroxide that is produced by the flavoprotein oxidase system (Djidel, 2007).  

Lactic acid bacteria are used for the fermentation of a large variety of products of animal or 

vegetal origins. The genera Lactococcus (milk), Lactobacillus (milk, cereals, meats, vegetables), 

Leuconostoc (plants,milk), Oenococcus (wine), Pediococcus (meat,vegetables) and Streptococcus 

(milk) are the main members of this group. Due to their recognized beneficial health effects, a 

significant interest in using lactic acid bacteria to produce "probiotics" for food, drugs or animal 

feed has increased lately. More recently, lactic acid bacteria are also used in the production of 

industrial chemicals and biological products including biopolymers, enzymes, ethanol and lactic 

acid (Hofvendahl & Hahn-Hligerdal, 2000). 

1.3.1. The genus Lactobacillus 

 

Lactobacillus species are characterized by cells varying from long and slender, to curved shapes. 

The motility is not a common feature; a peritrichous flagella is responsible for motility in motile 

species. No spore formation is reported. These microorganisms belong to the Gram positive 
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group. They are characterized by an heterogenous composition of their DNA: CG% (Cytosine 

and Guanine content) varies from 32 to53%. They are considered GRAS (Generally Recognize as 

Safe) (Vos, et al., 2011). 

 

Lactobacilli have a fermentative metabolism necessarily saccharolytic. At least half of the carbon 

consumed produces lactate that is not further consumed by the bacteria. Other products can also 

be synthesized as acetate, ethanol, carbon dioxide, formate and succinate. Although bacteria are 

aerotolerant, growth on solid surfaces (biofilm based growth) is generally induced by 

anaerobiosis, reduced oxygen pressure and carbon dioxide concentration of 5-10%. Under strictly 

aerobic conditions, there is an inhibitory effect on growth. 

 

Their nutritional requirements are complex; they require amino acids, peptides, nucleic acid 

derivatives, vitamins, salts, fatty acids or fatty acid esters and fermentable carbohydrates. Each 

species has specific nutritional requirements. The growth temperature ranges between 2 and 50 

°C, the optimal interval being 30-40 °C for most strains. The optimal pH is between 5.5 and 6.2 

but growth may also occur at lower pH values. The growth rate is generally reduced in neutral or 

alkaline pH conditions. It is possible to find lactobacilli in dairy, grain, meat and fish products, 

beer, wine, fruit and fruit juices, pickled vegetables, mashed potatoes, sauerkraut, silage, 

sourdough water, soil and waste waters. These bacteria are an integral part of the normal flora in 

mouth, intestinal tract and vagina of humans and many animals (Charalampopoulos, et al., 2002). 

1.3.2. Lactobacillus classification 

 

The Lactobacillus microorganisms are classified into three groups according to their sugar 

metabolism: 

Group I: Formerly known Thermobacterium. These bacteria give lactic acid from hexoses by a 

strictly homofermentative metabolism, they cannot ferment pentoses. 

Group II: Formerly known Streptobacterium. This group includes species with an optional 

homofermentative metabolism. Hexoses are fermented in lactic acid by the Embden-Meyerhof 

pathway. Otherwise, pentoses can be degraded by the heterofermentative path with production of 

lactic and acetic acids. 

Group III: Previously known as Betabacterium. These species have a strictly heterofermentative 

metabolism. They ferment gluconate and pentose. They produce lactic acid, acetic acid, carbon 

dioxide and ethanol.  

1.3.3. The fermentation pathways 

 

Lactic acid bacteria are also classified as homofermentative or heterofermentative depending on 

the nature and concentration of the fermentation products of sugars. The metabolic pathways are 

illustrated in Figure 1.4. 
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1.3.3.1. The homofermentative pathway or EMP 
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Figure 1.4 Fermentative pathways found in lactic acid bacteria. (A) homofermentative pathway, (B) strict 

heterofermentative pathway  (C) optional heterofermentative pathway. P = phosphate BP biphophate, LDH = lactate 

dehydrogenase, PFL = pyruvate formate lyase and PDH = pyruvate dehydrogenase(Hofvendahl & Hahn-Hligerdal, 

2000). 
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The homofermentative lactic acid bacteria possess aldolase enzymes and convert almost 

quantitatively glucose into lactic acid (90-95%). One of the key enzymes of glycolysis is the 

fructose 1,6 diphosphate aldolase. This enzyme is present in all homofermentative species and 

can convert fructose biphosphate in triose phosphate (Abdel-Rahman, et al., 2013). 

Homofermentative bacteria usually contain high concentrations of fructose diphosphate (FDP). 

This molecule is an activator of enzyme synthesis in the final glycolytic pathway (pyruvate 

kinase and lactate dehydrogenase). 

 

Besides glucose, the homofermentative bacteria have the ability to ferment other mono or 

disaccharides that enter into the cell via the phosphotransferase system or in their free form, via a 

permease system. Nevertheless the main path for phosphorylated derivatives degradation is the 

Embden-Meyerhof pathway (Djidel, 2007). 

1.3.3.2. The heterofermentative pathway 

 
Heterofermentative bacteria produce ethanol, CO2, and optionally acetate besides lactate as 

shown in figure 1.4. Consequently, the maximal yield of lactic acid from glucose reaches 0.5 g of 

lactic acid per g of glucose (Abdel-Rahman, et al., 2011). They do not contain FDP aldose or 

triose phosphate isomerase. They are also devoid of a PEP-phosphotransferase system for 

glucose. Glucose is transferred to the cytoplasm through an active transport, and is 

phosphorylated by an ATP-dependent glucokinase. The 6P-glucose is converted into 6P-gluconic 

acid and then decarboxylated in 5P with CO2 liberation. This pentose-P is metabolized into triose 

phosphate and acetyl-P. Finally acetyl-P is reduced to ethanol and triose phosphate metabolized 

to lactic acid by the last reactions of the EMP pathway (Djidel, 2007). 

1.4. FERMENTATION OPERATING CONDITIONS AND 
PARAMETERS 

Lactic acid fermentation has been studied since 1935 using different types of microorganisms and 

operating conditions such as pH, carbon and nitrogen sources, temperature, inoculum size, initial 

substrate conditions (Hofvendahl & Hahn-Hligerdal, 1997). The parameters affecting the optimal 

production of lactic acid will be discussed hereafter. 

1.4.1. Microbial strain 

The selection of the production strain is one of the most important points for the process 

performance. High lactic acid yield and productivities and the ability to use cheap raw materials 

are among the factors that must be taken into account when choosing the microbial strain. Strain 

selection is generally done empirically. The strain used in this PhD work is Lactobacillus 

coryniformis subsp. torquens DSM 20004. This strain was chosen for its high growth and lactic 

acid production rates as well as its growth operational conditions (low optimal temperature, 
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pH= 6).Bacteria from this strain belong to the group II of lactobacillus classification; it means 

that they carry out an optional homofermentative metabolism. The cells are short, often coccoid 

rods, their size ranges from 0.8 to 3 µm. They produce exclusively D(-) Lactic acid (Wood & 

Holzapfel, 1995).  

1.4.2. Stresses affecting lactic acid bacteria metabolism and lactic acid production 

 

Lactic acid bacteria, like all microorganisms have a metabolism subject to regulations imposed 

by environmental constraints. It is necessary to distinguish the different types of stress that 

strongly impact the bacteria behaviour. One inhibition effect is characterized by the limitation in 

the microbial activity due to accumulation of inhibitory fermentation products (organic acids, 

bacteriocins) and, in the case of industrial processes, acidification of the culture medium. This 

stress increases throughout the fermentation, having various effects on metabolism. The 

accumulation of lactic acid, for example, causes an inhibition effect on growth. 

1.4.2.1. Effect of temperature 

 

Temperature is one of the most important environmental factors that affect lactic acid production. 

Some researchers have studied the temperature effect on lactic acid production. The optimal 

range of temperature for lactic acid production is between 30°C and 40°C. Lactic acid bacteria 

can be classified as mesophilic. Lactobacillus coryniformis subsp. Torquens is a mesophilic 

bacteria and its optimal temperature for producing lactic acid is comprised between 30 and 38°C. 

1.4.2.2. pH effect 

 

Concerning medium acidification, the pH of the culture is not inhibitory because the cells are 

able to maintain their intracellular pH near to the neutrality. However, this requires expending 

energy which imposes a metabolic regime where the energy used for growth is limited 

(Garrigues, et al., 1998). The fermentation pH is then either set at the beginning of the 

fermentation and then left to decrease with the increasing lactic acid concentration or it can be 

controlled by different techniques: base addition, elimination of lactic acid by extraction, 

adsorption or electro dialysis. The pH effects on fermentation have been studied and in all cases 

pH regulation with base addition resulted in higher or equal lactic acid concentration, yield and 

productivity than the process without pH control. Removing lactic acid by electro dialysis or 

extraction, including aqueous two-phase systems, were successful in some studies. The optimal 

pH for lactic acid production varies between 5.0 and 7.0 (Hofvendahl & Hahn-Hligerdal, 2000).  

1.4.2.3. Nutrients and nitrogen sources 

 

An important environmental stress which has a significant role in the development of lactic acid 

bacteria is related to the nutrients availability in the culture medium. As previously mentioned, 
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lactic acid bacteria require inorganic salts and vitamins to grow. Nevertheless, the major 

constraints on the growth metabolism are imposed by the lack of organic nitrogen (peptides, 

amino acids, bases, etc) and carbon substrates. Concerning the nitrogen source, six amino acids 

are essential for growth of lactic acid bacteria: glutamic acid, valine, methionine, isoleucine, 

leucine and histidine (Marshal & Law, 1984). Other amino acids are not essential, but they 

stimulate bacteria growth.  Some investigations have been aimed to study their addition effects 

(Monnet, et al., 1987). The nutrients can be added in the form of malt, sprout, corn steep liquor, 

yeast extract and peptone. It has been proved that lactic acid production increases with the 

concentration of nutrient supplement.  

1.4.2.4. Carbon sources 

 

A number of different carbon sources have been used for lactic acid production by fermentation 

using lactic acid bacteria. The product with the highest purity is obtained when a pure sugar is 

fermented, resulting in lower purification costs (Rashid, 2008). However, this is not economically 

favorable, because pure sugars are expensive raw materials and lactic acid is a cheap product. 

Instead, waste products from agriculture and forestry are used.  

1.5. RAW MATERIALS 
 

The trend towards environmental sustainability and the development of products from renewable 

resources have significantly increased the interest on fermentation processes (John, et al., 2007). 

This is the case of lactic acid produced by fermentation of renewable resources. As mentioned 

before, lactic acid produced in this study is aimed to be transformed into PLA. As the production 

of this polymer requires large amounts of lactic acid which is a relatively cheap product, one of 

the major challenges in its large-scale production is the cost of the raw material. Consequently, 

the use of cheap raw materials is required when considering the industrial feasibility of the 

process. The expected characteristics of raw materials are then: low prices, low levels of 

contaminants, fast production rates and high yields of product, reduced formation of by-products 

and good ability to be fermented without heavy pretreatments (Wee, et al., 2006). Research 

studies aiming at improving the efficiency and economics of lactic acid biotechnological 

production have been conducted. In particular, process development using cheap raw materials at 

minimal costs have been widely studied. These substrates were biomass-based unconverted 

starch, lignocellulosic unprocessed biomass, and waste (John, et al., 2007). 

1.5.1. Whey 

 

Whey, a by-product of cheese production usually employed for animal feed, is the most 

commonly used substrate for lactic acid production. It contains proteins, salts, and lactose. Whey 

can be hydrolyzed to glucose and galactose, deproteinized by ultrafiltration and desalted 

(Hofvendahl & Hahn-Hligerdal, 1997).  
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1.5.2. Molasses 

 

Molasses are by-products from sugar manufacturing, generally used as animal feed and for the 

production of bio-ethanol and yeasts. Moreover, they may be used for the production of lactic 

acid. Sucrose is the most abundant sugar in their composition, but due to its high concentration, 

the viscosity of the liquid is important, resulting in an increase of the operating costs. The most 

common strain to ferment molasses is Lactobacillus delbrueckii (Bath & Srivastava, 2008). 

1.5.3. Starch 

 

Another common substrate for the production of lactic acid is starch coming from grains or 

vegetal wastes (wheat, corn, cassava, potato, rye rice, sorghum, barley). It must be hydrolyzed to 

glucose and maltose to be fermentable by lactic acid bacteria. A detailed description of this raw 

material will be presented in the next chapter. 

 

1.6. CONCLUSIONS 

The interest in lactic acid, closely linked to its application in PLA production, has increased 

recently. There are two ways to produce lactic acid, the chemical and the biotechnological 

processes. The latter is preferred as it is more environmentally friendly. Although different 

microorganisms can be used for lactic acid production, lactic acid bacteria are the most widely 

used. In this work, we focused on the lactobacillus genre. In this chapter, characteristics of these 

bacteria genre were presented, as well as their different metabolic pathways and the key factors 

affecting bacterial growth and lactic acid production.  

Lactobacillus genre is classified according to its fermentation pathway in three groups: the 

strictly homofermentative bacteria, the facultative heterofermentative bacteria and the strictly 

heterofermentative bacteria. These bacteria require complex nutrients to grow and produce lactic 

acid. It is important to guarantee the nutritional needs for bacteria growth during the 

fermentation. In order to ensure these needs and to reduce the raw material cost, various cheap 

substrates have been proposed in the literature. As the nutritional requirements for bacteria are 

sometimes not ensured by these substrates, nutritional supplement (especially nitrogen sources) 

has been proposed. In this work, we focus on the use of wheat flour as the sole substrate (source 

of carbon and nitrogen) for lactic acid production. The development of the lactic acid production 

process using this substrate is described in the next chapter.  
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2. CHAPTER 2: PRESENTATION 
OF THE STUDIED PROCESS 

 

As mentioned before, this project is aimed at improving the performance of the lactic acid 

production process. One of the solutions proposed by CRIS (Centre de Recherche et d’Innovation 
Soufflet) and also described in the literature to reduce the production cost is to use wheat flour as 

raw material. Enzymatically hydrolyzed wheat flour can indeed provide almost all the necessary 

nutrients (carbon and nitrogen substrates) for the different strains of lactic acid bacteria, so the 

production of lactic acid can be performed without any supplementation or with a minimal one 

(Hetényi, et al., 2010).  

Worldwide wheat production is estimated at 717 million tons by the USDA in 2014/2015 (United 

States Department of Agriculture) while the worldwide consumption is expected to rise up until 

713 million tons. This production represents 30% of the whole cereal worldwide production. 

France is the first producer of cereals in the European Union and ranks sixth in the worldwide 

producers behind the U.S.A., China, India, Brazil and Russia. France has a total cereal production 

of 64 million tons; wheat by itself represents 37 million tons. France is the fifth producer of 

wheat in the world behind China, India, Russia and the U.S.A. (Lyddon, 2013). 

As a major compound of wheat, starch is a complex carbohydrate composed by chains of D-

glucose molecules. These molecules are linked to one another by O-glycosidic bonds which are 

stable at high pH but hydrolyzed at low pH. An aldehyde group is present at the end of the 

polymeric chain. Starch exists in the form of granules and contains two glucose polymers, 

amylose and amylopectin. Cereals generally contain 70% amylopectin and 30% amylose. 

Amylose is an essential linear molecule in which the glucose units are linked by α 1,4 linkages. 

This polymer has a crystalline structure with a double helix, containing six molecules of n-

glucose per turn. Unlike amylose, amylopectin has a highly branched structure with 4% to 6% α-

1,6  bonds on the connection points. The average length of the branch is 20 to 25 glucose units. 

The amylopectin molecule may have a molecular weight greater than 10
8
 g mol

-1
 which makes it 

the largest molecule in nature (Nigam & Singh, 1995).  In the raw state, the granules of starch 

have round or irregular shapes. Their size ranges from 1 to 100 µm long.  While amylopectin is 

soluble in water, amylose and starch granules themselves are insoluble in cold water. 

In solution, with increasing temperature, the structure of the granules changes: they include 

water, swell and burst forming a starch gel. This gelatinization occurs at different temperatures 

according to the size of the granules. The smaller the granules, the higher the gelatinization 

temperature is. During this process, amylose leaches out of the granule and causes an increase in 
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the viscosity of the slurry. Finally, the granules break apart resulting in a complete viscous 

colloidal dispersion (Van Maarel et al., 2002). 

In this chapter the improvement of the lactic acid production process using wheat flour as raw 

material is considered. First, the existing lactic acid production process using starch materials are 

described. Later, the process design is performed starting from the one proposed by Soufflet.  

Finally, the description of the entire process is presented. 

 

2.1. EXISTING PROCESSES 

2.1.1. Conventional process 

 
A conventional process for lactic acid production from starch is composed of three steps: a 

liquefaction step in which starch is transformed into glucose and oligosaccharides, a 

saccharification step in which oligosaccharides are transformed into glucose, and a 

fermentation step for the production of lactic acid by bacteria.  

2.1.1.1. Liquefaction step 

 

Starch is transformed into oligosaccharides and glucose by enzymatic hydrolysis. As enzymes are 

not able to act directly on the solid grains of starch, a relatively high temperature is needed to 

form gelled starch on which enzymes have a significant effect.  

The specific role of each enzyme involved in the hydrolysis of starch is presented in figure 2.1   

(Brandam, et al., 2003) . There are basically four groups of enzymes that convert starch into 

oligosaccharides (Van Maarel et al., 2002): the endoamylases, the exoamylases, the branching 

enzymes and the transferases. 

The endoamylases are able of breaking the 1,4 glycosidic linkages present in any inner part 

(endo) of the amylose or amylopectin chains. Most enzymes that transform starch belong to a 

family characterized by the homology of the amino acid sequence: the α-amylase family or 

family 13 glycosyl hydrolases according to the classification of (Henrissat, 1991). Enzymes of 

this family act on α-glycosidic bonds and hydrolyze this bond to produce α-anomeric mono or 

oligosaccharides and form α,1-4 or 1-6 glycosidic linkages. The enzyme α-amylase is present in a 

wide variety of microorganisms belonging to the Archaea and bacteria domains. Final products 

obtained with this enzyme are oligosaccharides of variable length with α configuration and with 

α- dextrins that constitute the branched oligosaccharides (Isomaltose, Branched DP3, Branched 

DP4, etc). 
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2.1.1.2. Saccharification step 

 

In the saccharification step, oligosaccharides are transformed into glucose using a specific 

enzyme, amyloglucosidase. This enzyme belongs to the family of α-amylase. As exoamylase, it is 

able to hydrolyze exogenously the α (1-4), α (1-6) and α (1-3) glycosidic linkages at the non-

reducing end of the oligosaccharide chains to produce glucose. The reaction depends strongly on 

the chain length and the operating conditions such as pH and temperature.  

2.1.1.3. Fermentation 

 

This step was described in detail in chapter 1. However, several important specific aspects must 

be reminded here. Lactic acid bacteria require a high level of nutrient supplementation including 

nitrogen source, vitamins and microelements (Hetényi, et al., 2010). To meet these needs, yeast 

extract is generally added to the medium as the best nutrient source, but its cost may compromise 

the process economy. Other alternative nitrogen sources are corn steep liquor, yeast autolysate, 

peptone and tryptone, but they are expensive too. As an economical alternative, the insoluble 

protein fraction of wheat (gluten) can also be utilized as nitrogen source for fermentation after a 

proteolytic digestion step. The wheat proteins hydrolysis will be considered in section 2.2.2 to 

improve the fermentation step.  
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Figure 2.1 Roleofdifferent enzymes in the hydrolysis of starch (Brandam, et al., 2003). 
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2.1.2. Other processes 

 

Figure 2.2, summarizes some of the different processes used for the bioproduction of lactic acid. 

These processes are further described in the following sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2.1. Simultaneous saccharification and fermentation 

 

The bioconversion of starch materials into lactic acid can be carried out more efficiently by 

coupling enzymatic hydrolysis and microbial fermentation of glucose in a single step, known as 

"Simultaneous Saccharification and Fermentation " (SSF). Figure 2.3 illustrates the comparison 

of this method with the conventional one.  

The SSF method offers several advantages over the conventional process such as the use of a 

single reactor, short processing time and increased lactic acid productivity. In most cases, the 

main advantage of SSF is the absence of a separated quantitative saccharification step before 

fermentation. Enzymatic hydrolysis, bacterial growth and production of lactic acid occur 

Renewable resources (Biomass) 

Conventional 

process 
Simultaneous saccharification 

and fermentation 
Direct lactic acid 

production 

Liquefied carbon 
source 
Saccharifying 

enzymes 

Liquefied carbon 
source 
Saccharifying enzymes 

and Lactic acid Bacteria 

Hydrolyzate 

containing glucose 

Simultaneous liquefaction 
saccharification and 
fermentation  
Amylolitic Lactic acid 

bacteria or Rhizopus 

Traditional 
Lactic acid 

bacteria 

Solid state 
fermentation 
Lactic acid bacteria 

Figure 2.2 Different fermentation processes of agro-industrial waste for the production of lactic acid (John, et 

al., 2007). 
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simultaneously. The potential inhibition of bacteria growth caused by glucose accumulation in 

the reactor may be avoided when using the SSF process.  

Numerous factors such as pH, temperature, substrate and product concentrations can affect the 

mechanisms of SSF. Nevertheless, the differences in optimal conditions for bacterial culture, 

enzymatic hydrolysis and lactic acid production in terms of pH and temperature lead to operation 

difficulties representing the main disadvantage of this fermentation technique. In many cases, a 

low pH (less than 5), and a high temperature (above 40 ° C), may be favorable for enzymatic 

hydrolysis, while these conditions are generally not advantageous for growth and lactic acid 

production (Jin, et al., 1999). 

 

 

 

 

 

 

 

 

 

 

2.1.2.2. Direct lactic acid production 

 

Direct lactic acid production with amylolytic lactic acid bacteria or fungi such as Rhizopus oryzae 

is possible but only a minority of lactic acid bacteria has the ability to produce enzymes that 

hydrolyze the starch. The latest research works aim at isolating amylolytic lactic acid bacteria for 

direct use on complex substrates such as starch wastes (Narita, et al., 2004) ; (Shibata, et al., 

2007). 

 

2.2. DESIGN OF THE PROPOSED PROCESS 

At the beginning of this work, the CRIS laboratory had determined the steps and the process 

conditions required for the transformation of starch into lactic acid by performing experimental 

campaigns. 

Figure 2.3 Lactic acid production processes fromstarch saccharification with Lactboacillus 

Lactis.(Hofvendahl & Hahn-Hligerdal, 2000). 
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This process consists of three main steps (in batch mode):  

- a first liquefaction step, to transform wheat starch mainly into maltose and glucose 

(besides other oligosaccharides) at 85°C. 

- a saccharification step in which maltose is partially hydrolyzed into glucose; this step 

takes place at a temperature of 55°C and pH 4.7.  

- the final step, in which the remaining maltose is transformed into glucose simultaneously 

with the glucose fermentation (Simultaneous saccharification and fermentation or SSF) at 

a temperature of 30°C and a pH of 5.7.  

This initial state was the basis of the process design studied in this PhD work. The following 

steps were adopted as a result of the optimization procedure described latter in this chapter 

(Figure 2.4):  

- the first step, liquefaction, was not modified; 

- the simultaneous saccharification and proteins hydrolysis (SSPH) represents the second 

step, here, the nitrogen source is supplied differently from the process proposed by 

Soufflet (saccharification step). This step was studied and optimized.  

- the third step is a simultaneous saccharification, proteins hydrolysis and fermentation step 

(SSPHF). At this stage, the remaining maltose and wheat proteins coming from the SSPH 

step are hydrolyzed simultaneously with the fermentation. The hydrolysis products, 

glucose and amino acids, are consumed by lactic acid bacteria for growth and lactic acid 

production. 

In the following the process design is described. First, experiments performed to optimize the 

culture broth (to guarantee nitrogen needs for bacteria growth) are described. Then, the 

development of a simultaneous saccharification and proteins hydrolysis (SSPH) step which may 

improve lactic acid productivity is presented. Later, the choice of the reactor’s operation mode is 
done keeping in mind the main objective of maximizing lactic acid productivity. Finally the 

whole process for the transformation of starch into lactic acid is summarized.  

All the experiments presented in this section were carried out in batch mode. First, because the 

process proposed by Soufflet is in batch and secondly, because we want to test many conditions, 

thus, experiments in batch mode are easier to be carried out. For this reason, in the following, an 

introduction of important aspects in batch biotechnological processes is presented in order to 

introduce the reader to the batch fermentation.  
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2.2.1. Batch fermentation 

2.2.1.1. Evolution of the biomass profile in batch mode 

 

Growth is the most essential response of microorganisms to their physiochemical environment. It 

results of the replication and change in cell size. Microorganisms can grow under different 

physical and chemical conditions. They require substrates to synthesize new cell material, 

extracellular products and for energy. For these reasons, growth, substrate consumption, 

maintenance and product formation are all closely related (Sinclair & Kristiansen, 1987). When a 

liquid nutrient medium is inoculated using a seed culture, the microorganisms selectively take up 

the dissolved nutrients from the medium and convert them into cells.  In a batch process, the cell 

concentration changes with time following the phases described hereafter: 

 

a) Lag phase: It is the period during which the cells adapt themselves to a new environment, 

it occurs immediately after inoculation. During this phase, cells synthetize new enzymes 

and stop the production of others.  No growth is observed. In some cases, this stage may 

be explained by the stress induced by the passage of cells from a concentrated medium to 
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Figure 2.4 Steps involved in the wheat flour transformation in lactic acid for the proposed process. 
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a diluted one. The duration of this phase depends on the age and size of the inoculum and 

the nutrient medium. Generally, the lag period increases with the age of the inoculum.  

b) Exponential phase: Once the cells adjust themselves to their new environment, they start 

to multiply at full capacity by leveraging the nutrients in the medium. As a result, the cell 

mass and cell number density increase exponentially with time, cell division follows an 

exponential function. The growth rate here is maximal and constant over time.  

c) Deceleration growth phase: In this phase growth decelerates due to either depletion of 

one or more essential nutrients or to the accumulation of toxic growth by-products.  

d) Stationary growth phase: This phase starts at the end of the deceleration phase. Here, the 

growth rate equals the death rate. In this stage, cells are still metabolically active and 

produce secondary metabolites.  

e) Death phase: At the end of the stationary phase, because of either nutrient depletion or 

toxic product accumulation, the death phase begins.  

Figure 2.5 summarizes the different phases described previously. 

 

 

Figure 2.5 Microbial growth curve. 

2.2.1.2. Product formation kinetics 

 

In many of the large scale industrial fermentation processes extracellular or intracellular product 

formation is the main objective, and biomass is only considered as an inevitable waste product. 

For such types of fermentation processes, the product formation kinetics are as much important as 

the growth kinetics.  

Microbial metabolites produced in a batch system can be classified in three major categories: 

(i) Growth-associated products: produced simultaneously with microbial growth. The 

specific rate of product formation is proportional to the specific growth rate.  



 Chapter 2: Presentation of the studied process  

 

79 

 

(ii) Nongrowth-associated product: its formation takes place during the stationary phase. 

Many secondary metabolites, such as antibiotics (for example, penicillin), are 

nongrowth-associated products. 

(iii) Mixed-growth associated product: its formation takes place during the exponential 

and the stationary growth phases. Lactic acid fermentation is part of this group.  

The relationship between the product formation and microbial growth becomes then a 

determining factor in the process optimization. Microbial product formation kinetics depends on 

many factors as pH, temperature, dissolved oxygen, the availability of substrates and the presence 

of inducers or repressors. Besides that, the metabolic state of the cell, the energy charge, the 

redox status and the presence of competing metabolic pathways can exert a considerable 

influence and may affect the product formation rate. The specific growth rate of an organism 

reflects the metabolic state of the cell. For this reason, the product formation rate is in most of the 

cases correlated to the specific growth rate. 

2.2.2. Proteins hydrolysis study-Protease choice 

Considering the process proposed by Soufflet, the first experiments presented here were aimed at 

optimizing the culture broth in order to increase the lactic acid productivity. Experiments in this 

section are performed during the simultaneous saccharification and fermentation (SSF) step (the 

third step in the Soufflet’s process).  
 

To meet the lactic acid bacteria nutritional needs, the insoluble protein fraction of wheat (gluten) 

is used as nitrogen source for fermentation in this work. As a matter of fact, the composition of 

proteins in wheat is almost 13%. Wheat proteins are classified according to their solubility in 

various solvents giving the following protein fractions: albumins, globulins, gliadins and 

glutenins. The latter (gluten) represents 80% of proteins fraction in wheat. The proteolysis (or 

hydrolysis) of gluten can be carried out either separately or simultaneously with starch hydrolysis 

(Rojan, et al., 2006). 

 

In order to guarantee a sufficient nitrogen supply (amino acids) during the simultaneous 

saccharification and fermentation (SSF) process different proteases (enzymes performing the 

proteins hydrolysis) are tested. The aim of these experiments is to find the protease leading to the 

highest lactic acid productivity .Considering that proteins hydrolysis is performed simultaneously 

with the SSF in this work, this step was renamed as: simultaneous saccharification, proteins 

hydrolysis and fermentation (SSPHF). Different protease enzymes at different concentrations are 

then tested in order to choose the most appropriate one. The materials and methods of these 

experiments are presented in the next section. 
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2.2.2.1. Materials and methods of protease choice experiments 

2.2.2.1.1. Experiments description 

 

Four proteases for proteins hydrolysis were tested: Prolyve PAC (P1),  Prolyve BS (P2), Prolyve 

4000 (P3) and Prolyve NP (P4). The goal was to determine optimal conditions for the enzymatic 

reaction in order to obtain the highest lactic acid productivity. The experiments were performed 

in 200 mL flasks with 100 mL of wheat flour solution. A previous presaccharification of 1.5 h (as 

proposed by the Soufflet process) was performed followed by a simultaneous saccharification 

proteins hydrolysis fermentation (SSPHF). Table 2.1shows the tested proteases as well as their 

optimal operational conditions (Data given by the enzymes supplier, Lyven). All proteases were 

studied at two different concentrations: 200 and 1400 mg of protease per kg of wheat, both values 

were chosen taking into account supplier recommendations concerning their optimal 

concentrations.   

Table 2.1Proteases tested for lactic acid process optimization. 

Protease Optimal pH stable at pH Stable 
until (°C) 

Optimal 
Temperature (°C) 

Prolyve PAC 2.5-3.0 2.3-6.0 60 55 

Prolyve BS 6.5-7.5 5.5-8.5 80 50 

Prolyve 4000 9.0-10.5 6.0-11.0 90 55 

Prolyve NP 6.8-7.0 6.0-10.0 60 50 

2.2.2.1.2. Inoculum preparation 

Lactobacillus coryniformis subsp. torquens DSM 20004 stored at -80°C, was grown in a medium 

containing 51 g glucose L
-1

, 4 g yeast extract L
-1

, 8 g meat extract L
-1

, 10 g peptone L
-1

, 5 g de 

sodium acetate L
-1

, 2 g triammonium citrate L
-1

, 2 g K2HPO4 L
-1

, 0.2 g MgSO4 L
-1

, 0.05 g 

MnSO4 L
-1

 and 1 g polysorbate 80 L
-1

. The strain was cultured in an incubator shaker MAXQ 

4000 (Thermo Scientific) in a 100 mL flask at 30°C. This culture was used to inoculate all the 

flasks of the assays.   

2.2.2.1.3. Preparation of starch solution: Liquefaction 

The liquefaction step was carried out at Soufflet in a 5 L bioreactor equipped with Baie inox 

controllers (Global Process Concept, La Rochelle, France). For the preparation of the wheat 

solution, the whole wheat flour was suspended in water at a concentration of 260 g L
-1

, heated to 

50°C and agitated at 200 rpm. The pH was regulated by a PID controller at 5.5, with addition of 

sodium hydroxide and sulfuric acid. Two enzymes were added: Lyvanol devisco plus and 

Lyquozyme SDCS (Lyven, Colombelles, France), each at a concentration of 94µLL
-1

. Afterwards 

the mixture was heated to 85 °C and maintained at this temperature for about 30 min for 
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liquefaction. Temperature was then decreased to 25 °C to prepare the resulting mixture for 

transportation. The final liquefied wheat solution was frozen and transported to the LGPM 

(Laboratoire de Génie des procédés et matériaux) laboratory of CentraleSupélec. 

2.2.2.1.4. Preparation of flasks 

 

One liter of the liquefied starch solution was thawed at 60°C in a water bath during 30 minutes. 

Then, it was diluted with distilled water to get a final wheat concentration of 130 g L
-1

. MnSO4 

was added at 0.05 g L
-1 

to the wheat solution and the pH was adjusted to 5.7 with NaOH (7N) and 

H2SO4 (2.5 N) addition. This solution was distributed in 15 flasks of 200 mL. The wheat solution 

volume in each flask was 100 mL. Calcium carbonate was added in each flask at a concentration 

of 30 g L
-1 

in order to buffer the wheat solution and to reduce the pH decrease with lactic acid 

production. Flasks were then sterilized for 20 min at 120°C.  

2.2.2.1.5. Pre-saccharification step 

 

Before the SSPHF, the amyloglucosidase enzyme (AMG) (Lyvanol GA, Lyven, Colombelles, 

France), was added to each flask (230 µL L
-1

) in order to start sugars hydrolysis. The enzymatic 

saccharification was carried out in an incubator shaker MAXQ 4000 (Thermo Scientific) at 50°C 

and 150 rpm during 1.5 h.  

2.2.2.1.6. Simultaneous saccharification proteins hydrolysis and 

fermentation (SSPHF) 

Once the pre-saccharification step finished, the temperature in the incubator was decreased to 

30°C. Each protease was added at two different concentrations: 200 and 1400 mg of enzyme Kg
-1

 

of wheat. In total, 8 different conditions were tested: 4 different proteases, each one at 2 

concentrations. All experiments were repeated twice (two replicates) in exception of the 

condition corresponding to prolyve NP at 1400 g Kg
-1

.  All the protease enzymes (Lyven, 

Colombelles, France) were diluted tenfold in a sodium acetate buffer solution (0.1 M, pH 5.7) 

and added at the same time with the inoculum to each flask. The initial biomass concentration 

equaled to 10
9
 cells ml

-1
.  This SSPHF step was performed during 48 h at 30°C and 150 rpm. 

2.2.2.1.7. Analyses 

 

In order to follow the evolution of cell, substrates (maltose and glucose) and lactic acid 

concentrations with time, samples were withdrawn from each flask at various time intervals. Cell 

counting was performed in a Thoma cell counting chamber. Before performing the chemical 

analysis, samples were first heated at 95°C for 15 minutes in order to inactivate the enzymes and 

filtered through 0.2 µm cellulose filters.  
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Glucose, maltose and lactate concentrations were measured on a Waters Alliance HPLC system 

(Water Corporation, Milford, MA) using a Shodex Sugar column (Shodex, Japan) after 

separation at 45 °C with 5 mM H2SO4 at 0.6 mL min
-1

, as mobile phase.  

Amino acids concentrations were measured using a colorimetric method (Friedman, 2004). The 

free acid nitrogen concentration (as glycine equivalent, this substance being used as a reference) 

was determined by spectrophotometry (Varioskan
TM

 Flash Multimode Reader, Thermo 

Scientific). 

 

In cell counting, the standard deviations of biomass measurements were determined using the 

technique reported in (Niemelä and Keskus, 2002). Standard deviation of maltose, glucose and 

lactic acid concentrations were determined considering uncertainties related to the HPLC method 

and of the sampling treatment. 

2.2.2.2. Results and discussion of the protease choice experiments 

 

The protease concentration did not have a significant effect on lactic acid productivity (Appendix 

A.1) for the pH and temperature tested conditions (pH=5.7, temperature= 30°C). Therefore only 

the results concerning the lowest concentration (200 mg kg
-1

) are presented in figure 2.6. It 

should be pointed out that the pH was not regulated and its value decreases during the 

fermentation due to lactic acid formation. The highest Free Acid Nitrogen (FAN) concentration, 

indicator for amino acids (see section 2.2.2.1.7), was obtained with the enzyme P4, Prolyve NP 

(Figure 2.6A) at 48h. A higher lactic acid concentration was obtained in this assay compared to 

those performed with P1 and P3 enzymes (Figure 2.6 B). At 24 h of fermentation, the 

productivity obtained with the Prolyve NP protease was 1.45 g.L
-1

h
-1

. At the end of the 

fermentation (at 48 h) the productivity was 1.04 g. L
-1

.h
-1

, proving that there was a reduction in 

the lactic acid production rate during the last 24 hours. Some authors using wheat flour as raw 

material in the lactic acid fermentation have obtained productivities similar to those obtained here 

using prolyve NP. In their case they use SAN Super 240 L (a commercial mixture of enzymes 

glucoamylase and protease) to perform the gluten hydrolysis. A productivity of 2.1 g.L
-1

h
-1

 was 

obtained by (Akerberg, et al., 1998) using Lactococcus lactis ssp. lactis ATCC 19435.  

Moreover, a lactic acid productivity of 0.8 g L
-1

h
-1

using Lactobacillus sp. MKT-878 NCAIM 

B02375 was obtained by (Hetényi, et al., 2010). This proves that the productivities values 

obtained in this work are consistent with the literature. From these results,  ProlyveNP at a 

concentration of 200 mg kg
-1

 was chosen for the following studies. 

2.2.3. Simultaneous saccharification and proteins hydrolysis. 

 

After choosing the protease, experiments aiming at improving the whole process were carried 

out. Taking into account that the optimal temperatures for proteins hydrolysis using Prolyve NP 

(Table 2.1) and saccharification are 50°C and 55°C, respectively, we decided to couple both 
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enzymatic reactions (the proteins hydrolysis and the saccharification) in a single step with the 

following conditions: temperature 50°C and pH 5.7. It should be noticed that the pH value 

remains the same that the one chosen for the proteases study (previous section) an only the 

temperature was modified (the one used for the study of the protease choice was 30°C).  The 

enzyme Prolyve NP is thus added at the beginning of the simultaneous saccharification and 

proteins hydrolysis (SSPH) step. This is expected to improve the whole process as the 

temperature is close to the optimal of the enzymatic activity unlike the SSPHF step which is 

performed at 30°C.  

 

 

Figure 2.6A) Free Acid Nitrogen (FAN) concentration and  B) lactic acid concentration during the fermentation. 

P1= Prolyve PAC, P2= Prolyve BS, P3= Prolyve 4000 and P4= Prolyve NP.  Fermentation conditions: 30°C and pH 

5.7 without pH regulation. The error bars represents the repetitiveness of the essay. 

2.2.4. Effect of SSPH duration 

 

The step of simultaneous saccharification and proteins hydrolysis proposed in this thesis is 

innovative in lactic acid bioproduction. It was put forward in order to guarantee high substrates 

concentration of both carbon and nitrogen sources at the beginning of the SSPHF (step which 

follows the SSPH). 

In order to evaluate the effect of the initial concentrations of carbon and nitrogen substrates on 

lactic acid concentration and productivity, the duration of the SSPH was studied. Four durations 

were tested. In the following, only results obtained with two durations are presented. The 

materials and methods of these two experiments are described. 

2.2.4.1. Materials and methods 

 

The experiments were performed in a 5 L bioreactor with 2.5 L of wheat flour solution. The pH 

was regulated at 5.7 (unlike the flasks experiments where the pH was not regulated). The free 

acid nitrogen, glucose, maltose, lactic acid and biomass concentrations were measured at various 

time intervals during the SSPH and the SSPHF steps. 
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2.2.4.1.1. Experiments description 

 

The tested SSPH durations were the following: 1.5 h (the hydrolysis time used by Soufflet), 

referred as experiment A and 6 h, referred as experiment B. Temperature was set at 50°C and  pH 

maintained at 5.7.  Once SSPH finished, the bioreactor was set at the SSPHF conditions (pH= 5.7 

and temperature=30°C). The experiments were performed in batch operation mode.  

2.2.4.1.2. Inoculum preparationand liquefaction 

Lactobacillus coryniformis subsp. torquens DSM 20004 stored at -80°C, was grown in a MRS 

culture medium. The culture propagations were performed as described in section 2.2.2.1.2. This 

culture was used to inoculate the bioreactor. The preparation of the starch solution and 

liquefaction are described in section 2.2.2.1.3. 

2.2.4.1.3. SSPH step 

 

A 5 L Biostat® B-DCU II bioreactor (Sartorious, Hamburg, Germany) was used to perform the 

SSPH and SSPHF steps. 2 L of liquefied starch solution were thawed at 60°C in a water bath 

during 30 minutes and then added to the bioreactor.  0.5 L of distilled water were added to the 

bioreactor to reach a final wheat concentration of 200 g L
-1

. MnSO4 was added at a concentration 

of 0.05 g L
-1 

to the wheat solution and the pH was adjusted to 5.7 and regulated by a PID pH 

controller with the addition of NaOH (7N) and H2SO4 (2.5 N). Then, the Amyloglucosidase 

enzyme (AMG) (Lyvanol GA, Lyven, Colombelles, France), was added to the reactor (230µL L
-

1
) in order to hydrolyze the sugars produced in the liquefaction step. At the same time, the 

Prolyve NP enzyme (Lyven, Colombelles, France) was diluted tenfold in a sodium acetate buffer 

solution ( 0.1 M, pH 5.7) and added (560 µL L
-1

) to hydrolyze wheat flour proteins. The 

temperature in the bioreactor was adjusted to 50°C and the agitation to 150 rpm during the SSPH.  

2.2.4.1.4. SSPHF step 

 

Once the SSPH step finished, the temperature in the bioreactor was decreased to 30°C. Then the 

inoculum was added to get an initial biomass concentration of 10
9
 cells ml

-1
.  The SSPHF step 

was performed during 74 h at 30°C and 150 rpm.  

2.2.4.1.5. Analyses 

 

The analyses performed to determine the FAN, biomass, glucose, lactic acid and maltose 

concentrations are described in 2.2.2.1.7. 

2.2.4.2. Results and discussion of the SSPH duration experiments 
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The evolution of FAN concentration with time during the SSPH and SSPHF steps is presented in 

figure 2.7. The negative x axis in this figure represents the SSPH step. For SSPH lasting 6 h 

(experiment B), a higher concentration in FAN was obtained compared to the experiment with 

SSPH of 1.5 h (Experiment A). Even at the end of the fermentation, the FAN concentration 

remained higher for the greater SSPH duration.  

Concentrations of glucose, maltose, lactic acid and biomass were monitored over time for both 

experiments (Figure 2.8). Glucose was exhausted after 23 h for experiment A (Figure 2.8A). The 

consumption of glucose by bacteria is then quicker than its production catalyzed by the 

amyloglucosidase enzyme. Moreover, no growth is reported after 23h and a stationary growth 

phase is reached.  

 

An increase of lactic acid concentration is observed even in the absence of glucose. This trend is 

expected as this lactobacillus genre has amylolytic properties. It means, bacteria are able to 

consume maltose, but this represents energy expenditure as they must synthetize the enzymes 

necessary for maltose hydrolysis. A higher initial glucose concentration is observed when the 

duration of the SSPH step increases, as expected (Figure 2.8.B). In this last case, glucose 

exhaustion occurs only after 72 h of fermentation.  

 

Only the exponential and stationary growth phases were perceived in the experiments (Figure 

2.8). For both assays, bacteria growth stops approximately after 21h, corresponding to a lactic 

acid concentration of about 40 gL
-1

. This suggests an inhibition effect of growth linked to lactic 

acid accumulation. This will be further discussed in the next chapter.  

In both experiments, lactic acid was produced during the stationary growth phase as lactic acid is 

a mixed growth associated product, produced both in exponential and stationary growth phases. 

Nevertheless, the lactic acid production rate in the stationary growth phase is higher in 

experiment B (0.93 g L
-1 

h
-1

) compared to the experiment A (0.54 g L
-1 

h
-1

). The production rate 

is higher when the glucose is not exhausted of the medium, as expected. The reaction time for the 

SSPH step was then fixed to 6 h for the next experiments in order to guarantee high initial 

glucose concentrations at the beginning of the SSPHF. Furthermore, the lactic acid productivity 

of the whole process (SSPH+SSPHF) remains similar. With SSPH of 6 h the productivity at 72 h 

of fermentation is 1.1 g L
-1

 h
-1

, while with a SSPH of 1.5 h the productivity is 1.0 g L
-1 

h
-1

.  

The hydrolysis rate of maltose was similar for both experiments (1.0g L
-1 

h
-1

and 1.2 g L
-1 

h
-1 

for 

experiments A and B respectively). In experiment A the initial maltose concentration was higher 

than in experiment B but it does not have an effect on the maltose hydrolysis. In conclusion, in 

order to guarantee high substrates concentration at the beginning of the culture, the SSPHF must 

be performed during 6 h. 
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Figure 2.7 Free acid nitrogen concentration during the SSPH and SSPHF steps. SSPH conditions=50°C and pH=5.7.  

SSPHF conditions: 30°C and pH 5.7. 

 

 

 
Figure 2.8 Concentration of the species during the fermentation. A) Fermentation with a previous SSPH step of 1.5 

h. B) Fermentation with a previous SSPH step of 6 h. Fermentation conditions: 30°C and pH 5.7. 

0

50

100

150

200

250

300

-7 13 33 53 73

 F
A

N
 c

o
n
ce

n
tr

at
io

n
 (

g
ly

ci
n
e 

eq
u
iv

al
en

t)
 m

g
 L

-1
  

Time (h) 

SSPH duration=1.5 h

SSPH duration=6 h

SSPH SSPHF 

1,0E+09

1,0E+10

0

20

40

60

80

100

120

0 20 40 60 80

B
io

m
as

s 
(c

el
ls

 m
l-1

) 

M
al

to
se

, 
G

lu
co

se
 a

n
d

 

 L
.A

. 
co

n
ce

n
tr

at
io

n
s 

(g
  

L
-1

) 

Time (h) 

Lactic Acid

Maltose

Glucose

Biomass

1,00E+09

1,00E+10

0

20

40

60

80

100

120

0 20 40 60

B
io

m
as

s 
(c

el
ls

 m
l-1

) 

M
al

to
se

, 
G

lu
co

se
 a

n
d

 L
.A

. 

co
n
ce

n
tr

at
io

n
s 

(g
 L

-1
) 

Time (h) 

Lactic Acid

Maltose

Glucose

Biomass



 Chapter 2: Presentation of the studied process  

 

87 

 

2.2.5. Simultaneous saccharification, proteins hydrolysis and fermentation 

 

The results previously presented were useful to establish the conditions of the different process 

steps allowing process optimization. The simultaneous saccharification and fermentation step 

proposed by Soufflet in a first approach was modified to include the proteins hydrolysis resulting 

in a simultaneous saccharification, proteins hydrolysis and fermentation step. This SSPHF step is 

the longest step and then, the critical one.  

 

All experiments presented in the previous sections were performed in batch mode of operation. 

Nevertheless, the productivity obtained in these conditions is known to be low compared with 

other bioreactor’s operation modes. Moreover, the development of a control strategy, one of the 

main objectives of this PhD, for a process operating in batch is difficult.  

For this reason, the different operation modes used in lactic acid fermentation processes were 

investigated in order to choose the most appropriate one. These operation modes are summarized 

in the following sections.  

2.3. PROCESS OPERATION CHOICE 

Although parameters such as the type and nature of substrates, and microorganisms and the 

fermentation broth characteristics (viscosity, composition, presence of solid particules, etc) must 

be taken into account when designing the fermentation process, the bioreactor operation mode is 

also an important factor when process performance improvements are considered. In the 

following section, the main operation modes used for lactic acid fermentation are presented. 

2.3.1. Batch Fermentation 

 

Batch is the simplest and most common mode of operation for fermentation. At the beginning of 

the fermentation, the reactor is filled with the culture medium; all carbon substrates and other 

components are added at the same time, except neutralizing agents for pH control, which are 

added during fermentation. After microbial inoculation, a lag phase is generally observed until 

the biological reaction begins. The main advantages of this mode are the reduction of the 

contamination risks (the bioreactor is closed) and the high lactic acid concentrations obtained in 

comparison to other processes (Hofvendahl & Hahn-Hligerdal, 2000). For lactic acid industrial 

production, the processes are mainly implemented in batch mode. However, batch fermentation 

suffers from low productivities, due to either substrate and/or product inhibitions.  

 

Different methods were developed in batch fermentation from starch materials in order to 

improve the process performance. The methods tested include the SSF (simultaneous 

saccharification and fermentation) process and the separate hydrolysis and fermentation process 

(SHF). In most of the cases the starch based culture medium is not sterilized, but various authors 

have reported fermentation processes from lignocellulosic or waste materials, using sterile 
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medium. Nevertheless, side-reactions such as Maillard reactions (between amino acids and 

reducing sugars) or formation of inhibitory furfural compounds may occur when complex 

carbohydrates are sterilized. Moreover, without sterilization step, a decrease in the energy 

consumption and equipment needs is reported (Zhang, et al., 2008).  

2.3.2. Fed-batch Fermentation 

 

This operation mode is used when high substrate concentrations cause microbial inhibitions, such 

as cell lysis and/or long lag phases. This kind of inhibition results in the decrease of growth, 

production and sugar consumption rates (Ding & Tan, 2006). Thus, low substrate concentrations 

can be maintained in the reactor using a fed-batch process. In this case, the substrate is fed 

continuously or intermittently to the fermenter. There is no output flow, so the broth volume in 

the reactor gradually increases during the fermentation. Nevertheless, this operation mode does 

not prevent inhibition resulting from the lactic acid accumulation. The factors to consider in fed-

batch fermentation are the time of the substrate feeding, the feeding procedures and the substrate 

concentration to be maintained in the fermenter.  Intermittent, constant and exponential feeding 

methods have been reported for production of lactic acid (Abdel-Rahman, et al., 2013).  

2.3.3. Repeated Fermentation 

 

This kind of operation involves repeated batch cycles of fermentation by inoculating a part or all 

of the cells from a previous batch into the next one. In comparison with batch culture, repeated 

batch operation requires less time for washing, sterilization and culture due to the high initial 

inoculation volumes that allow reduction of washing and sterilization for the intermediate batches 

(Ho, et al., 1997). In the repeated batch fermentation, the fermented broth is withdrawn at time 

intervals, and the residual part of the broth (the biomass) is used as an inoculum for the next 

batch. Among the methods used for the separation of the culture broth and the biomass, 

centrifugation and filtration methods may be applied. Repeated fermentation minimizes the 

fermentation time and increases the productivity. Thus, this process has gained a lot of attention 

recently. However, this operation mode seems difficult to be developed with a complex medium 

as wheat flourdue to the presence of wheat solid particles in the broth. 

 

2.3.4. Continuous Fermentation 

 

In a continuous fermentation, fresh medium is fed into the reactor with the same rate as the 

product exits from the fermenter. In the continuous operation a steady state is then established. 

Product inhibition occurring in batch or fed-batch fermentation may be avoided in this case. At 

steady state, the cells are maintained at constant physiological state and growth rate. The latter 

can be adjusted by changing the feed flowrate because the specific growth rate equals the dilution 

rate at steady-state (ratio between the feed flowrate and the reactor effective volume). Thus, the 

dilution rate is an important parameter that allows maximizing the process productivity. Indeed, 
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as the productivity is defined as the product of the dilution rate by the product concentration, high 

dilution rates increase the process productivity. Nevertheless, this is true only for a range of 

dilution rates lower than the maximal specific growth rate. For dilution rates values close or 

higher to the maximal specific growth rate, the washing out phenomena is observed.  

 

The concentrations of cells, products and substrates in the fermenter can be maintained constant 

during long periods (Bustos, et al., 2007). Therefore, this mode of operation is much easier to 

manage than a batch operation in which the fermenter must be emptied, cleaned, sterilized and 

refilled, after each campaign. One of its disadvantages is that the carbon substrates and the cells 

leaving the fermenter are wasted, unless recycled. Moreover, there is a decline in lactic acid 

concentration with an increase in the dilution rate; it could be a problem when considering the 

downstream processes as product is at low concentrations (diluted) (Abdel-Rahman, et al., 2013). 

These problems can be solved by using high cell density fermentations. 

2.3.5. Cells recycling 

 

In this operation mode the high cell density in the reactor is maintained by recycling the 

harvested cells from the culture broth. Membrane filtration techniques such as ultrafiltration 

microfiltration and cross-flow membrane may be used for recycling purposes. The membrane 

bioreactors are very efficient as they allow achieving complete cell recycling and in situ 

production and separation of the fermentation product. Nevertheless, the main inconvenient 

related to this fermentation technique is the membranes fragility and the fouling phenomenon 

(Djidel, 2007).  

2.3.6. Cell immobilization 

 

Cell immobilization techniques became one of the most used methods for increasing cell density 

in fermenters, which should result in higher lactic acid productivity. Moreover, this technique can 

be run in continuous mode, it reduces downstream processing by avoiding the cell separation step 

and reduces the risk of contamination due to the high cell concentration (Panesar, et al., 2007). 

Nevertheless, significant mass-transfer limitations are known as one of the disadvantages of the 

process (Kosseva, et al., 2009). 

 

The immobilization techniques are classified in four groups: surface attachment followed by 

bacterial growth, entrapment, containment and self-aggregation. The most used method is the 

formation of biofilms on surfaces due to its simplicity. Research works dealing with lactic acid 

production with immobilized cells were carried out in all operating modes (batch, fed-batch and 

continuous). Different bioreactors have been studied such as packed-bed reactors, continuous 

stirred-tank reactors, fibrous-bed reactors and fluidized-bed reactors (Abdel-Rahman, et al., 

2013).  
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2.3.7. Comparison between the different fermentation modes 

 

Besides the strain optimization and the use of alternative raw materials, the transition from 

traditional batch or fed-batch to continuous fermentation, conventional or with cell recycling, 

could lead to a better performance of the lactic acid production process. It is also important to 

consider associated downstream processing (Kamm, 2015). Table 2.2 summarizes the advantages 

and disadvantages of the main processes found in the literature. In order to compare the 

productivity and the lactic acid concentrations obtained by different fermentation modes, some 

experimental data reported in the literature are also compared in table 2.3.  

 

Table 2.2 Advantages and disadvantages of some fermentation processes (Abdel-Rahman, et al., 2013). 

Operation Mode Advantages Disadvantages 

Batch Fermentation -Simple operation                             

-High product concentration 

-Reduced risk of contamination 

-Low Productivity 

-Substrate and/or product 

inhibition 

Fed-Batch Fermentation -Overcome substrate inhibition 

problem 

-High product concentration 

- Product inhibition 

 

Repeated Fermentation -Time-saving process 

-Labor-saving 

-Omission of seed preparation 

time 

 

-Requirement of special 

devices (e.g. hollow fiber-

module) or special 

connection lines used for cell 

concentration  

-Difficult to  use with 

complex broth 

Continuous 

Fermentation 

-High productivity 

-Control of the growth rates 

-Less frequency shut down 

process 

-Incomplete utilization of the 

carbon source 

-Diluted product 

 
It should be reminded that the aim of the process optimization performed in this work is to 

maximize the lactic acid productivity, first by optimizing the operation conditions and secondly, 

by using a control strategy to maintain the bioprocess at the determined optimal operating 

conditions.  
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Table 2.3 Comparison between some different fermentation modes reported in the literature. 

Operation 
Mode 

EXAMPLES 

carbon 
source 

Micro- 
organism 

Reported data  
 

Fermentation method 

Reference 

L.A. 
concentra-
tion (g L-1) 

Produc-
tivity (g 
L-1 h-1) 

Batch Broken 

rice            

Lb. 

delbrueckii 

79 3.58 •SSF with glucoamylase,  5 L fermenter 
with 2.5 L of broth at 40°C, 150 rpm, 

pH=6, purity D= 96,1 % 

Nakano et 

al. (2012) 

Corn 

starch 

Lb. 

Plantarum 

73.2 3.86 •Performed in a 2 L bioreactor with 0,7 L of 
broth at 37°C, 100 rpm, pH control at 5.5, 

purity D=99.6 % 

Okano et al. 

(2009) 

Wheat 

flour 

Lb. 

delbrueckii 

106 1.6 •SSF with 1 L fermenter with 500 mL of 
broth at 37°C, 100 rpm, pH control at 5.5, 

purity D=99.7 % 

Hofvendahl 

et al. (1997) 

White 

rice bran 

hydroly-

sate 

Lb. 

Rhamnosus  

82 3.73 •SHF with glucoamylase and amylase, 5 L 
fermenter with 2 L of broth at 42°C, pH 

control at 6.2. (L-Lactate) 

Li et al. 

(2012) 

Fed-Batch Peanut 

and 

glucose 

Sporolactob

acillus Sp 

strain CASD 

207/226 3.8/4.4 • Pulse / multi pulse feeding. Reactor of 30 
L, 24 L of broth at 42 ° C, pH = 5.5, D = 

99.3% 

Wang et al. 

(2011) 

Glucose Lactobacillu

s rhamnosus  

170 2.6 Glucose feeding using a controler. 5 L 

fermenter at 42°C  and pH=5.5 

Li et al. 

(2010) 

Starch Lactobacillu

s 

amylophilus 

43.7 0.75 •5L Fermenter with an initial broth volume 
of 1L at 30°C, pH= 5.3 

Yen and 

Kang (2010) 

Glucose Lb. Lactis 210 2.2 •5 L Fermenter at 37°C, pH= 6.2. 
continuous feeding of the substrate 

Bai et al. 

(2003 ) 

Glucose Lb.  Casei 180 2.14 • 5 L Fermenter with 2.2 L broth at 42°C, 
pH= 6.2. Continuous feeding of the 

substrate. Exponential feeding 

Ding and 

Tan (2006) 

Repeated 
batch 

fermentation 

Sago 

starch 

Enterococcu

s faecium 

36.3 1.96 •3 L Fermenter at 30°C, 200 rpm, 

pH=6.5.At the end of each  fermentation 

cycle the broth is centrifuged and recycled  

Nolasco-

Hipolito et 

al. (2012) 

Glucose Enterococcu

s faecalis 

94 6.2 •2 L Fermenter with 1L broth at 38°C,200 
rpm and pH= 7. Cell recycling using a 

Hollow-fiber filtration unit 

Oh et al. 

(2003) 

Glucose Sporolactob

acillus Sp 

strain CASD 

87.3 1.81 • two reactor system in 500 mL flasks, 

200mL of broth at 42 ° C, 50 rpm, pH = 

5.7. Recycling only a part of the culture 

Zhao et al. 

(2010) 

Corn 

starch 

Rhizopus 

oryzae 

91 2.02 • 3 L Fermenter, 2 L of broth at 35 ° C, 300 

rpm. Small mycelial pellets of R. oryzae 

were produced after batch. Pellets were 

precipitated and used for the next batch. 

Yin et al. 

(1998) 

Continuous 
fermentation 

Sago 

starch 

Enterococcu

s faecium 

11.7 3.04 • Cell recycling via a polymer hollow fiber 
dilution rate D = 0.26 h-1 

Shibata et 

al. (2007) 

Glucose Lb. 

delbrueckii 

40 12 • Cell recycling via a polymer hollow fiber 
dilution rate D = 0.3 h-1, operating time 220 

h 

Major and 

Bull (1989) 

Glucose Lb. 

delbrueckii 

20.7 18 •A hollow fiber microfiltration module was 
used for cell recycling. D=0.87 h-1, 

operating time 36 h 

Tashiro et 

al. (2011) 

Glucose Lb. Lactis 

IO-1 

8.91 4.46  The cells were immobilized in a fixed bed 

reactor. Process continues dilution rate D = 

0.5 h-1 

Sirisansanee

yakul et al. 

(2007) 
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In order to be able to build a control strategy based on the substrate inlet flow (parameter usually 

considered as control factor in most of the control strategies) the process must be operated either 

in fed-batch or continuous modes. Moreover, repeated fermentation was not considered in this 

work as special devices are required (hollow fiber modules) for filtration and cell recycling. This 

is out of the scope of this work. Furthermore, as the culture broth used for lactic acid production 

is a mixture of wheat flour and water at 25% w/w, the filtration of such a complex broth could be 

difficult.  

 

Comparing fed-batch and continuous processes, it is clear that higher productivity values are 

found with continuous fermentation (see table 2.3). Furthermore, the use of fed-batch 

fermentation prevents inhibitions by substrates, but not by fermentation products. For these 

reasons, the fermentation in continuous mode was chosen for the following control 

implementation purpose. The high cell density methods were not taken into account as the studies 

of this kind of techniques are out of the scope of this work. Indeed, the wheat solution used as 

culture broth hinders the implementation of this type of methods.  In the next section, the 

description of the whole process is presented. 

 
2.4. COMPLETE PROCESS 

In this section a detailed description of the whole process is summarized. Taking into account the 

results obtained from the experiments previously presented (protease choice: type and 

concentration, and hydrolysis time, see sections 2.2.2 and 2.2.4) and the theoretical 

considerations concerning reactor operation modes, a process comprising three steps is proposed:  

 In the first step, starch is converted into maltose by the enzyme alpha-amylase. This step 

is performed at 85°C and a pH value of 5.5.  

 The second step is a simultaneous saccharification and proteins hydrolysis (SSPH) step 

allowing in the same time the partial conversion of maltose into glucose (using the 

enzyme amyloglucosydase AMG) and the partial hydrolysis of wheat proteins into amino 

acids (by the protease Prolyve NP). This step operates at the optimal operation conditions 

for both enzymes: 50°C and pH=5.7. 

 The simultaneous saccharification, proteins hydrolysis and fermentation (SSPHF) step 

occurs in the last step. It should be pointed out that at this stage, the remaining maltose 

and wheat proteins are hydrolyzed simultaneously into glucose and amino acids which are 

consumed by lactic acid bacteria for growth and lactic acid production.  

The reactions taking place in each step of the processand the bioreactors configuration are 

represented on figures 2.9 and 2.10, respectively. 
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Figure 2.10 Bioreactors configuration for lactic acid production from wheat flour. Continuous process. 

Figure 2.9 Process mechanisms. Liquefaction, Simultaneous saccharification and proteins hydrolysis 

(SSPH) and simultaneous saccharification, proteins hydrolysis and fermentation (SSPHF). 
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Growth 
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In order to maximize the productivity of the system, the complete process should be carried out in 

continuous mode and controlled. Nevertheless, this was not possible in the frame of this PhD, due 

to time and experimental constraints. SSPHF being the lengthiest step and thus the limiting one, 

we decided to focus our work on it, by performing it in continuous mode and controlling it. This 

strategy will certainly have a significant impact on lactic acid productivity of the whole process. 

It should be pointed out that the other steps are then carried out in batch mode.  

2.5. CONCLUSIONS 

Wheat flour was chosen as the raw material for lactic acid production in this work. This is mainly 

justified by the large wheat flour availability in France, its low cost and Soufflet’s expertise in the 

utilization of this cereal. The use of starch from wheat flour for lactic acid production involves 

enzymatic reactions prior to fermentation. Starch is thus transformed into maltose in a 

liquefaction step followed by hydrolysis where the maltose is transformed into glucose. The 

glucose is finally fermented to lactic acid. 

In this chapter the process design of the lactic acid production process was performed. A study of 

the hydrolyze of insoluble protein fraction of wheat (gluten) allowed us to choose Prolyve NP for 

the process. Moreover, a simultaneous saccharification, proteins hydrolysis and fermentation step 

(SSPHF) was developed.  

The process designed differs from the process initially proposed by Soufflet. Here, first, starch is 

liquefied followed by a simultaneous saccharification and proteins hydrolysis (SSPH) step where 

maltose and gluten are partially hydrolyzed. The final part of the SSPH is combined with the 

fermentation (Simultaneous Saccharification Proteins Hydrolysis and Fermentation, SSPHF). 

This means that maltose and gluten are partially hydrolyzed in the SSPH step and then the 

remaining maltose and gluten are hydrolyzed simultaneously with the fermentation. 

The choice of the bioprocess operation mode was done after literature survey; the continuous 

operation mode was chosen due to its advantages: an expected improvement in lactic acid 

productivity, the possibility of controlling the growth rate and the control the product inhibition 

problem. It was decided to focus on the modelling and control of the SSPHF step, the limiting 

step in the process, which will be presented in the next chapters. 
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3. CHAPTER 3: PROCESS 
MODELLING 

3.1. INTRODUCTION 
 
Models are important tools for optimizing complex biotechnological processes, and to predict 

bioreactor performance. A better understanding of the system behavior is assessed using 

mathematical models, together with carefully designed experiments. A model is a set of 

relationships between the variables of interest in the system being studied. The mathematical 

modelling of fermentation processes allows representing by equations, some of which are 

differential equations, the evolution of important or fundamental variables of the process. The 

variables considered are first and most generally cell, substrate and metabolites concentrations.  

 

A model represents a simplified reality. One of its purposes is to design large-scale fermentation 

processes using data obtained at small-scale (McNeil & Harvey, 1990). To describe a 

microbiological process, there are basically two types of models, structured and unstructured.  

 

 Structured or physiological models take into account the evolution of the internal 

composition of the microorganism. They describe the metabolic pathways and take into 

account the intracellular characteristics as the cell structure and their function and 

composition. Moreover, they have been reported to accurately describe lactic acid 

fermentation (Gadjil & Venkatesh, 1997)(Nielsen , et al., 1991).  

 The unstructured models use microbial kinetics to describe the evolution of growth rates, 

substrate utilization and metabolites production. Only the total cellular concentration is 

considered, and hence they do not involve any physiological characterization of the cells. 

Nevertheless, it has been proved that these models can accurately describe lactic acid 

fermentation in a wide range of experimental conditions and media (Bouguettoucha, et al., 

2011). 

 

This chapter is devoted to the development of a model for a SSPHF (simultaneous 

saccharification proteins hydrolysis and fermentation) in a continuous bioreactor (see section 

2.2.2.1.6). First, a state-of-the-art of kinetic models representing growth, lactic acid production 

and substrate consumption rates is presented. This literature survey mainly contains models 

describing batch fermenters (as most works in modelling deals with this operation mode) and 

only some describing continuous fermenters. In the second part, a description of the model 

development for the SSPHF continuous bioreactor is discussed. Later, the strategy used for 
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parameters identification is described. The developed model is finally experimentally validated 

through fermentation experiments. 

3.2. STATE-OF-THE-ARTON LACTIC ACID FERMENTATION 
MODELLING 

The modelling of bacterial growth and metabolites production in lactic fermentation operations 

generally considers the inhibition phenomenon exerted by the substrate and the product (lactic 

acid). The effects of other key parameters in the culture conditions are frequently not taken into 

account. Indeed, some of them, including pH and temperature, are often regulated and set 

constant. Other factors as agitation, dissolved oxygen concentration are generally not considered.  

The reactor used in the modelling approach is illustrated on figure 3.1. The variables of interest 

are X (biomass concentration in gL
-1

), S (glucose concentration in gL
-1

), P (lactic acid 

concentration in gL
-1

) and M (maltose concentration in gL
-1

). The model must include four 

dynamical equations describing their evolution with time. M0 and S0 represent the inlet maltose 

and glucose concentrations feeding the reactor, respectively. These concentrations are obtained 

from the SSPH (simultaneous saccharification and proteins hydrolysis) step (the previous one). It 

should be pointed out that the pH value in the SSPHF bioreactor is regulated by NaOH addition, 

thus, the bioreactor has in fact two inlet flows. Nevertheless, the NaOH inlet flow is very low 

compared to the flow rate feeding the bioreactor in glucose and maltose (35 times smaller). 

Consequently, the NaOH inlet flow is neglected for modelling. It is further discussed in section 

4.4. 

 

 

 

 

 

 

 

 

 

 

In the following, a literature survey of the kinetics models representing bacteria growth, product 

formation and substrate consumption are presented.   

 

Figure 3.1 SSPHF continuous bioreactor 

SSPHF 

 

 

  
S0,M0 

X,S,P,M 
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3.2.1. Kinetics of microbial growth 

 

In a well-stirred continuous fermentation, the mass balance of biomass in the bioreactor between 

time t and time t + dt, leads to:  

  (3.1) 

 

 

Where X is the biomass concentration at t (g L
-1

), µ  the specific growth rate (h
-1

), t  the time (h) 

and D the dilution rate (h
-1

) (defined as the ratio between the outlet flowrate and the culture broth  

volume). The first term in equation (3.1) µX represents the biomass production in the reactor 

corresponding to cell growth and the second term DX, the cell quantity withdrawn with the outlet 

flow per time. 

Some authors also take into account cell death considering an exponential decay for the decline 

phase: 

  
(3.2) 

 

With kd  the specific death rate (h
-1

).  

As previously mentioned, in the continuous operation the specific growth rate, µ , can be adjusted 

by changing the dilution rate. Nevertheless, µ  can also be significantly affected during 

fermentation due to different phenomena as carbon and nutrients limitation, product inhibition, 

etc. It is then important to identify these limitations and inhibitions to obtain a model describing 

accurately the growth rate kinetics. In a continuous bioreactor, when the steady state is achieved, 

the dynamic term in equation (3.1) is cancelled and the growth rate equals the dilution rate 

making the parameters identification associated to the limitation and inhibition effects on growth 

impossible to determine. 

 

In order to determine these effects, it is then easier to study the bioreactor behaviour in batch 

mode, with D = 0. This approach allows then to determine the growth and production parameters 

kinetics of the SSPHF bioreactor. In the following, a literature survey of kinetics growth models 

considering the main limitation and inhibition effects observed for different lactic acid production 

processes is presented.  

3.2.1.1. Carbon limitation 

 

Substrate limitation by the carbon substrate is usually described by the model proposed by 

Monod in 1942 (equation (3.3)):  

 

Sk

S

S 
 max  (3.3) 

DXX
dt

dX
 

XkDXX
dt

dX
d 
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where S is the substrate concentration (gL
-1

), kS is known as the saturation constant or half-

velocity constant and is equal to the concentration of the rate-limiting substrate when the specific 

growth rate is equal to one half of its maximum (Bailey & Ollis , 1986) and µmax is the maximum 

achievable growth rate (h
-1

) when S is much greater than kS. 

Some authors added a term for inhibition by the carbon substrate to the Monod model (Haldane 

model):  

 

iS kSSk

S

/2max


   (3.4) 

    

where ki is the substrate inhibition constant (gL
-1

). However, this substrate inhibition term was 

not relevant to describe the experimental data published by some authors(Altiok, et al., 2006).  

 

A growth kinetics depending on several limiting substrates was also described by some authors. 

The effect of both glucose (G) and fructose (F) concentrations during batch fermentations of 

Lactobacillus casei ssp. Rhamnosus on date juice was also examined (Nancib, 2007)and the 

following model was proposed: 

 

 

FdF
F

FGdG
G

Gtotal Xk
Fk

F
Xk

Gk

G
X 























 maxmax   (3.5) 

  

This model can be used when bacteria use more than one sugar substrate for growth and 

metabolite production. Growth parameters for glucose are referred with the subscript G and those 

for fructose are referred with subscript F. 

3.2.1.2. Product inhibition 

 

As mentioned previously, lactic acid has an inhibitory effect on bacteria growth (see section 

2.2.4.2). In order to take into account this inhibition effect, Luedeking and Piret proposed a linear 

relation between the specific growth rate and the product concentration (Luedeking & Piret, 

1959): 

 P  max  (3.6) 

where is a constant and P is the lactic acid concentration. Belhocine (1987) showed that this 

model leads to good results. Otherwise, several authors assumed a non-competitive inhibition by 

the product, so they added in their model an inhibition term to Monod equation (Ohara, et al., 

1992)(Pinelli, et al., 1997): 

: 


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Pk

k

Sk

S

p

P

s 
 max  (3.7) 

 

where kP is the product inhibition constant.  

The non-competitive inhibition equation (3.7) was also modified by adding a term taking into 

account a critical lactic acid concentration (Pmax) representing the product concentration above 

which bacteria do not grow (Ben Youssef, et al., 2005): 
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


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







max
max 1

P

P

Pk

k

Sk

S

p

P

s

  (3.8) 

      

Other authors added only the term of product inhibition to the Monod relation (Monteagudo, et 

al., 1997):  
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











max
max 1

P

P

Sk

S

s

  (3.9) 

 

Some authors modified equation (3.9) by the addition of a toxic power by the product 

(denoted n)(Kwon, et al., 2001) (Akerberg, et al., 1998)(Kumar Dutta, et al., 1996):  
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s P

P

Sk

S




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







max
max 1  (3.10) 

 

It is also possible to consider an exponential term to describe the product inhibition (Nandasana 

& Kumar, 2008): 
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i

s k

P

Sk

k

Sk

S
expmax  (3.11) 

 

In order to consider only the inhibitory effect by lactic acid, equation (3.10) can be modified 

(Peeva & Peev, 1997) 

  
056.013.6

1max




C

dP

P

kPk


 

 (3.12) 

 

whit kd as the cell death rate, kP as the product inhibition coefficient and PC the theoretical lactic 

acid concentration obtained after total substrate consumption.  
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3.2.1.3. Other growth kinetics 

 

The models presented in the previous sections take only into account the carbon substrate 

limitation (mainly using the Monod relation) and the product inhibition effect. Nevertheless, 

other limitation effects on growth have been observed during lactic acid fermentation, in 

particular due to nitrogen. As complex substrates (such as yeast extract) that contain nitrogen and 

other growth nutrients are expensive and only added in small amounts to the culture medium, 

nitrogen limitations may be observed instead of carbon limitations.  

 

Nevertheless it seems difficult to include these limitations in a growth model. Models involving 

these nutritional limitations are then rare. The following equation considers both carbon and 

nitrogen limitations (Leh & Charles, 1989): 

 

 

pr

k

S

k

S

k

pr

k prSSpr 


1

1
max  

(3.13) 

 

were pr and kpr are respectively the concentration and the saturation constant of ‘usable proteins’. 
The problem with this kind of expression is the definition of ‘usable protein’. This model can 
only be applicable if a clear definition and a method for the determination of the really ‘usable 
proteins’ by bacteria is given (Bouguettoucha, et al., 2011):  

 

Some authors have proposed models to describe their experimental data. However, some of them 

were not completely satisfactory from a cognitive point of view; indeed, some growth parameters 

did not have a biological meaning (Bouguettoucha, et al., 2011). As an example, the following 

equation was proposed by Amrane and Prigent (1994) to describe bacteria growth: 
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tdc
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

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max )exp(
1

1



  
(3.14) 

where c and d are constants.  

The Verlhust model was also proposed to describe experimental data(Amrane & Prigent, 

1994)(Diaz, et al., 1999)(Bouguettoucha, et al., 2008) 
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X
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where Xmax is the maximum biomass concentration obtained from nitrogen exhaustion. 
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In conclusion, the effects of nutritional limitations (by the carbon source) and the product 

inhibition are the main factors taken into account to describe the growth rate deceleration.  

 

Summarizing, many models have been proposed for describing the carbon limitation effect and 

most of them are modified versions of the Monod model. Concerning other limitation effects (as 

those observed by nitrogen), more research is needed to develop models describing correctly 

bacteria growth and having a real biological meaning. Indeed, most models found in the literature 

matched well with experimental data without having a clear biological meaning and they 

generally cannot be extended to other studies. The product inhibition effect has been observed in 

many studies, but authors have not agreed on the factor that leads to growth inhibition. The role 

of the bulk pH has been highlighted in some cases. According to some of them (Bouguettoucha, 

et al., 2011) this effect is only observed for processes without pH control, whereas for others a 

product inhibition effect could be observed even in fermentations with pH control (Kumar Dutta, 

et al., 1996)(Boonmee, et al., 2003). 

3.2.2. Production Kinetics 

 

The mass balance of lactic acid in a well-stirred continuous bioreactor leads to: 

 

 
DP

dt

dP
   (3.16) 

 

where the first term, (in g L
-1

 h
-1

) represents the production rate and the second one refers to the 

dilution effect. 

 

Different models have been proposed in the literature to describe the production kinetics in the 

lactic acid fermentation process. The Luedeking and Piret model is the most widely used. This 

model describes both growth associated and non-associated lactic acid productions (Luedeking & 

Piret, 1959): 

 XX    
(3.17) 

where α is the growth associated production coefficient and ȕ is the non-growth associated 

coefficient. Some authors (Keller & Gerhardt, 1975), (Akerberg, et al., 1998), (Kumar Dutta, et 

al., 1996) and (Boonmee, et al., 2003) successfully used this model.  

When lactic acid production is mainly non-growth associated (for stationary growth phase in 

batch fermentation), the following model was proposed by Peeva and Peev (1997):  

 





 Chapter 3: Process modelling  

 

102 

 

 )1(  PkX i  
(3.18) 

where, ki is the coefficient of inhibition by the product and α is an exponent. 

A logistic model to describe product dynamics in batch fermentation was also proposed in 

(Moldes, et al., 1999):  

 
PX

P

P
P

m








 10  (3.19) 

where P0 is the initial product concentration (gL
-1

) and Pm the maximal product concentration        

(gL
-1

). 

 

Most of the production kinetic models found in the literature consider the lactic acid production 

both in the exponential and stationary phases of growth for batch fermentations. Nevertheless, as 

in the continuous fermentation bacteria are continuously growing, the lactic acid production can 

be directly linked to the growth rate (the non-associated lactic acid production is inexistent). The 

obtained expression to describe the lactic acid production rate is then defined by (Lombardi, 

1996), (Bouguettoucha, et al., 2009)(Nancib, 2007): 

 

 
X

Y

Y

XS

PS    (3.20) 

 

where YPS (g lactic acid g
-1

 glucose) and YXS (g biomass g
-1

 glucose) are the yields of product and 

biomass on glucose, respectively. In equation (3.20) the production rate is directly associated to 

the growth rate by means of the yields. It means that when bacteria do not grow, lactic acid 

production stops.  

3.2.3. Substrate utilization 

 
Most works in lactic acid fermentation assume carbon as the limiting substrate, so they model its 

consumption. In continuous fermentation, the mass balance of the carbon substrate in the 

bioreactor leads to:  

 
)( 0 SSDr

dt

dS
S   (3.21) 

 

where  is the substrate consumption rate (g L
-1

 h
-1

), S the substrate concentration and S0 the 

substrate concentration in the inlet flow. The first term represents the glucose consumption for 

both bacteria growth and lactic acid production, the second term the difference between glucose 

input and output with inlet and outlet flows. 

Sr
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To describe the consumption rate, some authors used a model which considers its conversion to 

biomass and product and substrate consumption for cell maintenance (Aborhey & Williamson, 

1997), (Monteagudo, et al., 1997)and (Akerberg, et al., 1998).  

 

 
mX

Y
X

Y
r

PSXS
S   11

 (3.22) 

 

where YXS and YPS are defined as in (3.20) In this equation  is related stoichiometrically to the 

rates of biomass growth and lactic acid production. The first term describes the substrate 

consumption for bacteria growth and the second term for lactic acid production; they are 

considered as independent. The substrate used for energy maintenance is represented by the term 

mX and is usually assumed as negligible. This model is suitable for the stationary growth phase in 

which the first term is cancelled but it is redundant when bacteria are in the exponential growth 

phase. Indeed, the production rate already depends on the growth rate, so glucose consumption 

for bacteria growth and lactic acid production is normally already taken into account implicitly 

by the model. 

 

Other models have also been proposed (Ben Youssef, et al., 2005)(Trontel, et al., 2010):  

 

 
mXX

Y
r

XS
S  1

 (3.23) 

 

However the equation (3.23) can only be used when there is not lactic acid production during the 

stationary growth phase. This expression relates the glucose consumption directly to bacteria 

growth but states that when the growth rate is zero, there is no glucose consumption anymore. A 

model which links glucose consumption directly to the production rate has been proposed 

(Kumar Dutta, et al., 1996)(Altiok, et al., 2006): 

 

 
mX

Y
r

PS
S  1

 (3.24) 

    

This expression depends on the model used to describe the production rate. Table 3.1 summarizes 

some of the growth, lactic acid production and substrate consumption kinetics presented in this 

section. In the next section, we will focus on the development of a continuous model to represent 

the dynamical behaviour of variables of our system.  

Sr


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Table 3.1 Models found in the literature to describe the lactic acid fermentation with lactic acid inhibition. 

Strain Substrate Biomass growth Lactic acid production rate  Substrate utilization rate Reference 

Streptoco-

ccus 

Lactose 





















Pk

k

Sk

S

P

P

S
max  

 

XX    mX
Y

X
Y

r
PSXS

S   11
 

Aborhey 

and 

Williamso

n (1976) 

L. Lactis Glucose 
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n
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P

P

kSSk
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/
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mX

Y
X

Y
r

PSXS
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Akerberg 

et al. 

(1998) 

 L. casei  Whey nh

P

P

X

X


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
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Atiok et al 

(2006) 

  L. casei  Glucose 



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Youssef et 

al. (2005) 

L. 

delbureckii  

 Glucose n
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S
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
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
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max
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mX

Y
r

PS
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Kumar 

Dutta et al. 

(1996) 
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delbureckii  

 Glucose Pk

s
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S 


 max  X
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Lombardi 

(1996) 

 L. 

amylovorus 

 Starch 












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
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
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XX    
mXX

Y
r

XS
S  1

 
Trontel et 

al. (2010) 

 

X= Biomass concentration (g L
-1

), S= Substrate concentration (g L
-1

), P= Product concentration (g L
-1

), µ=growth rate(h
-1

), Ȗ= production rate(g L
-
1 h

-1
), rS= 

consumption rate (g L
-1

 h
-1

),  µmax= maximum specific growth rate (h
-1

), kS = half-saturation constant (g L
-1

), ki= substrate inhibition constant (g L
-1

),  kP= 

Product inhibition constant (g L
-1

),  Pmax= Product concentration above which bacteria do not grow (g L
-1

),  Xmax = maximum biomass concentration (g L
-1

), 

h=toxic power for biomass, n= toxic power of product, α= growth associated production coefficient ( g Product g cell
-1

), ȕ= non-growth associated production 

coefficient (g Product g cell
-1

h
-1

), YXS= biomass on carbon substrate Yield (g cell g
-1

 substrate), YPS= product on carbon substrate Yield (g cell g
-1

 substrate), m= 

maintenance energy coefficient (h
-1

).
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3.3. CONTINUOUS MODEL DEVELOPMENT 

The process of lactic acid production from wheat flour proposed in this work is innovative. 

Indeed, the type of microorganism, the substrate and the steps proposed have never been used 

before. In consequence, there is no model available in the literature.  

As it was mentioned before, our modelling approach focuses on the SSPHF (simultaneous 

saccharification, proteins hydrolysis and fermentation) step of the process.  

Before introducing our model, some hypotheses taken into account on its development must be 

presented. Amino acids from wheat flour are not considered in the model as their modelling is 

complex and they were assumed to be in excess (non limiting substrate). Thus, we consider the 

general case where glucose maybe the limiting substrate (the carbon source). It is simultaneously 

produced from maltose and consumed by the bacteria, thus mechanisms involved in maltose 

transformation and in lactic bacteria metabolism must be taken into account in the mathematical 

modelling approach.  

In the continuous operation, all variables, X, S, P and M remain constant once the steady state 

regime is reached. Nevertheless it is necessary to model the transition phases by means of 

dynamical equations. The mass balance equations describing the dynamics of these variables are 

performed for the well-stirred bioreactor presented in figure 3.1. However mixing is often not 

ideal in bioreactors. Therefore, the deviation from the ideal state must be assessed and quantified. 

The residence time distribution (RTD) method is one of the ways of characterizing the non-ideal 

behaviour of the reactor, ensuring a good representation of the phenomena occurring in it. The 

study of the resident time distribution was performed for the studied system and is presented in 

appendix B.1. It was found that the reactor has a dead volume of 9% that was taken into account 

in our modelling approach. The actual dilution rate (ratio between the flow rate and the net 

volume of the reactor) was calculated considering that the effective volume is 0.91 times the total 

volume of culture broth. In the following the development of the dynamic equations to describe 

the X, P, S and M variations is presented.  

3.3.1. Growth model for Lactobacillus coryniformis subsp. torquens 

3.3.1.1. Substrate effects 

 

The mass balance to the biomass (bacteria) is represented by equation (3.1). In order to formulate 

the growth kinetic model, it was necessary to study the system’s behaviour experimentally to 

identify possible limitation or inhibition effects on bacteria growth. Substrate limitation and 

inhibition effects were the first studied. Batch experiments at different initial glucose 

concentrations ranging from 10 to 80 g L
-1 

were performed as it facilitates the identification of the 

growth rate kinetics. The results are presented in appendix B.2.  
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No substrate limitation or inhibition was detected in the range of concentrations tested. 

Therefore, as no inhibition effect was observed, we used a simplified Monod kinetics taking only 

into account the substrate limitation effect, so that it can be used in a broader set of conditions 

than those of this work. This kinetics is reminded hereafter: 

 

Sk

S

S 
 max   

Generally kS has very low values, thus relatively low concentrations of glucose are sufficient for 

µ to reach its maximal value µmax. Some values of kS reported in the literature are presented in 

table 3.2 for different lactic acid bacteria strains. For the same strain in Pinelli’s work (Pinelli, et 

al., 1997), the glucose concentration must be lower than 0.016 gL
-1

to reduce the growth rate at a 

half of its maximal value. It proves that bacteria need very low glucose concentrations to grow. 

Lactobacillus coryniformis subsp. torquens DMS 20004 having a significant amylolyitic activity, 

is capable of producing enzymes that transform sugar starch into glucose. As a result, even when 

there is no glucose directly available in the bioreactor, the bacteria can still grow and produce 

lactic acid but at smaller rates. 

It was then impossible to determine the value of kS with our experimental results. The impact of 

this parameter on the model will be evaluated later in this chapter (see section 3.4.1.1.).  

Table 3.2 Half-saturation constant values reported in the literature for the Monod kinetic. 

Reference Microorganism μmax (h
-1) kS(gL-1) 

Boonme et al. (2003) Lactococcus lactis 1.1 1.32 

Schepers et al. 
(2002) 

Lactobacillus helviticus 0.7 0.22 

Akerberg et al. 
(1998) 

Lactococcus lactis 0.403 0.79 

Pinelli et al. (1997) Lactobacillus coryniformis subsp 

torquens 

0.737 0.0160 

Dutta et al. (1996) lactobacillus delbrueckii 0.0694 0.0967 

 

3.3.1.2. Product inhibition effect 

 

As presented in section 3.2.1.2, many authors reported a product inhibition effect on growth in 

lactic acid fermentation. Most of them identified this effect in fermentation performed without 

pH control but some studies showed that this inhibition can also exist in fermentations in which 

the pH is maintained constant at values higher than lactic acid pKa. In these cases, the inhibitor 

molecule is the dissociated form of lactic acid, the lactate.  
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The batch experiments performed with pH control at 5.7 presented in chapter 2 (section 2.2.4), 

showed that the bacteria growth stopped at 23 h when the glucose concentration in the reactor 

was still high (about 40-45 gL
-1

) and the concentration of lactate was about 40 gL
-1

. It is 

illustrated on figure 3.2.  

 

 

Figure 3.2 Evolution ofBiomass, glucose and lactic acid concentrations with time for a SSPHF in a 5 L reactor with 

pH regulated at 5.7. Inhibition effect by the lactate. 

 

Many growth rate models were considered for describing this inhibition effect in our work. 

Indeed, several kinetic models were tested by comparing experimental data to model results. The 

model proposed by (Monteagudo, et al., 1997) matched at best the experimental data obtained 

during the transition between exponential and stationary growth phases in our experiments 

(equation (3.9)). 

In contrast in all our experiments, a significant stationary phase with a small decline in cell 

concentration afterwards was observed after 72 h of fermentation, while bacteria continued to 

produce lactic acid at high rates. When applying the model proposed in equation (3.9), it did not 

match well our experimental data in the deceleration phase (after the stationary phase of growth). 

Therefore, we used the model proposed by (Kumar Dutta, et al., 1996), in which an exponent n, 

representing the toxic power of lactic acid was added: 

 n
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P
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S
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
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







max
max 1  (3.10) 

The n value should be chosen carefully as it has an important impact on the product inhibition 

term. For this reason, the impact of the n value on the inhibition term (1-P/Pmax) was studied.  
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Figure 3.3 illustrates the inhibition term as a function of the product concentration for different n 

integer values. To trace this figure, the Pmax value was fixed to 45 g L
-1

(the mean lactic acid 

concentration value above which bacteria did not grow in a set of experiments).  

The n value must be odd in order to model the bacteria growth deceleration after the stationary 

phase. The higher the n odd value, the later the deceleration phase occurs. It is more consistent 

with experimental results obtained in this work. The choice of this parameter will be discussed in 

the parameter identification section (3.4). 

 

 

Figure 3.3 Effect of the value ofn on the inhibiton term. 

In this study, the considered mass balance of the biomass concentration was the one illustrated in 

equation (3.1) with µ  represented by equation (3.10). 

3.3.2. Product formation model 

 

Experimental data from different batch experiments (Figure 3.2) showed that lactic acid is also 

produced in the stationary growth phase. Nevertheless, as the latter phase does not occur in 

continuous operation (bacteria are continuously growing), modelling the lactic acid production in 

the stationary growth phase is not considered.  

 

The model developed for the batch SSPHF fermenter is presented in appendix B.3. This model 

considers the lactic acid production in the stationary growth phase.  

 

The model used to describe the production rate in the continuous SSPHF bioreactor is the one 

presented in equation (3.20). The mass balance of the product concentration is then, the 

following:  
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DXX

Y

Y

dt

dP

PS

XS    (3.25) 

Equation (3.25) describes the lactic acid dynamics; the first term represents the production of 

lactic acid associated to bacteria growth and the second one refers to the dilution effect. It should 

be noticed that the production rate (the first term in the equation) is directly associated to the 

growth rate by means of the yields.  

3.3.3. Substrates utilization 

 

The development of the model describing the substrate consumption received particular attention 

as there are two kinetics to consider: maltose hydrolysis and fermentation. In fact, after the 

liquefaction and SSPH steps, besides maltose and glucose there are other sugars with longer 

chains that can be hydrolyzed to produce glucose. Nevertheless, as they are in low concentrations 

(compared to maltose and glucose), they were neglected. Consequently, only maltose and glucose 

dynamics were considered. 

 

3.3.3.1. Maltose dynamics 

 

A first order law was chosen to describe the maltose hydrolysis kinetics, similar to the proposed 

by (Akerberg, et al., 1998) who described the starch degradation kinetics. The obtained 

expression is the following: 

 Mkr MM   
(3.26) 

where  is the maltose degradation rate (g L
-1

 h
-1

) , kM  (h
-1

) is an empirical parameter defined 

as the maltose degradation constant (that depends mainly on the temperature) and M is the 

maltose concentration. Since temperature is maintained constant in this study (regulated to 30°C 

in all experimental assays), the kinetic parameter kM is then constant. The mass balance of 

maltose in the continuous bioreactor leads to: 

 

 
)( 0 MMDMk

dt

dM
M   (3.27) 

where M0 represents the maltose concentration in the feed of the bioreactor. The first term 

represents the first order maltose hydrolysis kinetics, the second term the difference between 

maltose input and output with inlet and outlet flows, respectively. 

3.3.3.2. Glucose dynamics 

 

Mr
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Glucose is simultaneously produced from maltose and consumed by the bacteria. Various 

substrate utilization models have been presented in the previous section. We consider a 

consumption growth-associated model (equation (3.23)) neglecting the maintenance term and 

introducing a term of production from maltose. The glucose mass balance in the SSPHF 

bioreactor leads to: 

 
)(

1
0 SSDMkX

Ydt

dS
M

PS

   (3.28) 

The first term represents the glucose consumption by bacteria, the second term considers the 

glucose formation from maltose hydrolysis and the final ones represent the glucose input and 

output with inlet and outlet flows, respectively. 

 

3.3.4. Continuous model overview 

 

To summarize all previous developments, the model developed to describe the variations of the 

concentrations of biomass, glucose, maltose and lactic acid in the continuous SSPHF reactor is 

described by the following four differential equations:  

 

 
DXX

dt

dX
    

 
DPX

Y

Y

dt

dP

PS

XS    (3.29) 

 
)(

1
0 SSDMkX

Ydt

dS
M

PS

    

 
)( 0 MMDMk

dt

dM
M    

with 

 n

S P

P

Sk

S













max
max 1   

 

where X, P, S and M are the biomass, lactic acid, glucose and maltose concentrations (g L
-1

),  µ 

the growth rate (h
-1

),  the production rate (g L
-1

 h
-1

), µmax the maximum specific growth rate    

(h
-1

), kS the half-saturation constant (g L
-1

), Pmax the  product concentration above which bacteria 

do not grow (g L
-1

),  n the toxic power of product, YXS the biomass on carbon substrate yield (g 

cell g
-1

 substrate), YPS the product on carbon substrate yield (g cell g
-1

 substrate), kM the maltose 

degradation constant (h
-1

) and M0 and S0 the maltose and glucose concentrations feeding the 

bioreactor (g L
-1

) , respectively. 
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The following parameters must then be determined for the considered fermentation conditions: 

parameters involved in the growth rate kinetics (µmax, kS, Pmax and n), yields YXS, and YPS and the 

kinetic constant kM. 

3.4. PARAMETERS IDENTIFICATION 

Once the model is defined, it is necessary to assign a numerical value to the parameters. These 

values can be based on a priori knowledge (values proposed in the literature) or derived from 

experimental data. As the process is complex and new, there are few parameter values available 

in the literature. Given the existence of nonlinearities in the model, the parameter identification is 

a difficult task.  

In order to determine the model parameters, a dedicated identification strategy was proposed. In a 

first step, this strategy is based on the study of the parametric sensitivity of the model. This study 

identifies the most influential parameters, depending on the scenario used. This method also 

provides a temporal profile of the sensitivity of the model with respect to its parameters. This 

simplifies the parameter identification procedure by fixing the values of some parameters (less 

influent ones) to those found in the literature. In a second step, the set of parameters considered 

as the most influent is identified by a nonlinear least squares procedure considering the 

simultaneous estimation of all remaining parameters. This approach was developed by Rocha 

(2003) for the identification of a culture model of E.coli and is further described in the following 

sections. 

3.4.1. Identification strategy 

3.4.1.1. Sensitivity analysis 

 

The sensitivity analysis is a rigorous approach which allows a better characterization of the 

model used. Moreover, this analysis also helps to guide the choice of identification protocols, 

focusing the identification experiments on the determination of the most influential parameters 

(Hafidi, 2008).  

3.4.1.2. Sensitivity functions 

 

Let nixi ,1,   the n  state variables of the considered model and pjj ,1,   the p model 

parameters. The sensitivity functions of the model with respect to the parameters are defined by: 

jix  / . These functions can be obtained after integration of the equations 














j

ix

dt

d


using the 

following equality: 
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dt
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d i

jj

i


 (3.30) 

The states dynamics are given by: 

 

 
),,( uxf

dt

dx
i

i   (3.31) 

     

where fi are nonlinear functions and represent the n differential dynamics of the state variables xi. 

Thus, from equations (3.30) and (3.31), it comes: 
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 (3.32) 

 

Therefore, the determination of the sensitivity functions is equivalent to solving an ordinary 

differential equations system of dimension n x p. However, the model parameters can have quite 

different magnitude orders, generating numerical difficulties during the sensitivity analysis. To 

solve this problem, it is better to normalize the sensitivity functions by considering  
jij x   /

(Huang, 2007). The latter expression is referred to as normalized sensitivity function.  

 

The calculation of the normalized sensitivity functions classifies the parameters according to their 

influence on the variables states, and thus determining the most influential parameters. Only the 

latter are identified according to the identification strategy proposed. This provides an easier 

parametric identification procedure.  

 

3.4.1.3. Determination of parameters to identify 

Expressions of sensitivity functions of the continuous model presented in the set of equations 

(3.29) are obtained from equations (3.30) to (3.32) leading to: 
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 (3.33) 

where  MPSXSSj kYYnPk ,,,,,, ¨maxmax  is the parameters vector, 7,1j .The state variables 

xi, 4,1i  represent the states X, S, P and M. As mentioned before, we focus on the determination 

of the normalized sensitivity functions in order to easily classify the parameters according to their 

influence. As the analytical determination of equation (3.33) is very complex, they are calculated 

numerically using the program CVodes (Serban & Hindmarsh, 2005) in the Matlab
TM

 

environment. 
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3.4.1.4. Sensitivity analysis for the continuous bioreactor 

 

The scenario considered for the sensitivity analysis consists in a continuous SSPHF bioreactor 

with a constant dilution rate equal to 0.12 h
-1

. The initial conditions for the simulation were 

X=1 gL
-1

, S=120 gL
-1

, P=15 g L
-1

and M=50 gL
-1

. All these values are related to a specific 

operating point that will be justified later in chapter 5 and considered for the control strategy. The 

evolution of the different state variables with time is presented in figure 3.4. It shows transition 

behaviour of states in the bioreactor. The variables tend to reach their steady state after 

approximately 20 h. 

 

Figure 3.5 represents the normalized sensitivity functions (  jij x   / ) of the 7 parameters 

involved in the model equations. Only the parameter kM has an effect on the maltose 

concentration as it can be expected due to its kinetics structure. Indeed, this state only depends on 

kM, on its own concentration and on the dilution rate. All the studied parameters influence the 

biomass, glucose and lactic acid concentration variations at different grades. The parameters are 

ranked according to their influence on each state variable in table 3.3.  

 

Figure 3.4 States evolution with time for sensitivity analysis of a continuous SSPHF bioreactor.  

Constant dilution rate= 0.12 h
-1
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Figure 3.5 Normalized sensitivity functions of model parameters for each state variable. Continuous SSPHF bioreactor with D=0.12 h
-1

.
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Table 3.3 Parameters classification according to their influence on each state variable (from the most influential 

to the least influential). SSPHF continuous bioreactor with D=0.12 h
-1

. 

Influence on X Influence on S Influence on P Influence on M 
µmax kM µmax kM 

Pmax µmax Pmax - 

YPS Pmax n - 

YXS YPS YPS - 

n n YXS - 

kS YXS kS - 

kM kS kM - 

 

The sensitivity functions of biomass with respect to the different parameters (first row in 

Figure 3.5) show that the most influential parameters on the biomass concentration are 

µmax(its sensitivity function has the highest amplitude, 1.38) and Pmax which has a sensitivity 

function with amplitude of 1.33. Both parameters are involved in the growth rate. It suggests 

that these parameters must be identified from the growth rate dynamics equation. The product 

and biomass on glucose yields have an important influence on the biomass concentration. 

They have both sensitivity amplitudes of 1.25.  The impact of toxic power of lactic acid (n) on 

growth is lower (sensitivity function amplitude= 1.1). The least influential parameters on X 

are kS and kM (each one with sensitivity function amplitude around 0.001). It can be explained 

by the high initial glucose concentration used for the simulation (which will be always the 

case in our work) and by the fact that maltose does not have a direct influence on the biomass 

dynamics so the kM value is not relevant in cells dynamics (for the tested culture conditions).  

 

Concerning the impact of parameters on S (second row in Figure 3.5), the most influential 

parameter is kM (with sensitivity function amplitude of 28). It is not surprising considering the 

contribution of maltose hydrolysis on the glucose concentration. The influence of µmax and 

Pmax on the glucose concentration is high (with sensitivity function amplitudes around 25), so 

their accurate identification is important. The other parameters have relatively high influence 

on S at different levels in exception of kS which has a very low influence (with sensitivity 

function amplitude equal to 0.105). 

 

The most influent parameters on P (third row in Figure 3.5) are those related to the growth 

rate kinetics, µmax ,Pmax and n that have sensitivity function amplitudes around 20. The 

biomass and product on glucose yields have less impact on this variable (sensitivity function 

amplitudes around 7). As for the biomass, the least influent parameters on P are kM and kS 

(with sensitivity function amplitudes equal to 0.017 and 0.085, respectively).  

 

The evaluation of the magnitude of the sensitivity functions allowed selecting the parameters 

that are influential on the model. In conclusion, the parameter kS is not influent on any of the 

states (for the range of glucose concentrations used in this work). So, its identification will not 

be performed since it will lead to a result with a poor accuracy. Its value is then fixed to the 

mean of values reported in the literature and summarized in table 3.2. This value is 0.5 gL
-1

.  
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The parameter identification of the toxic power (n) in the growth rate kinetics seems complex 

due to the equation structure; its value will be fixed to 3. This value was chosen taking into 

account its impact on the product inhibition term in the growth rate equation (see section 

3.3.1.2) and values reported by other authors working on lactic acid fermentation (Akerberg, 

et al., 1998)(Kwon, et al., 2001), who found power toxic values of 2.06 and 2.68, respectively. 

 

Summarizing, the parameters to be identified were reduced to five (µmax, Pmax, YPS, YXS and 

kM). The strategy used for their identification is presented in the next section. 

3.4.2. Towards an identification strategy 

 

The estimation of the set of parameter values is performed considering experimental data 

collected from experiments described later in the materials and methods section (3.5.1). The 

model parameters were determined by minimizing the following objective function. 
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In equation (3.34), RSE is the total residual sum of squares, the sum of squares of errors 

between the calculated model values (Xi,cal, Pi,cal, Si,cal and Mi,cal,) and experimental data (Xi,exp, 

Pi,exp, Si,exp and Mi,exp,). N is the number of observations. wX ,wP, wS, wM  are weighting factors 

tuned to normalize all terms in equation (3.34), they were fixed at 100, 1, 1 and 1, 

respectively considering the order of magnitude of each variable. 

 

The differential equations (3.29) based on biomass growth, substrate consumption and 

product formation are solved numerically (by fourth order Runge-Kutta method). The 

calculated data are then compared to the measured ones by computing the RSE. The 

parameter values that minimize RSE conduct to the best fitting of the experimental data. This 

can be achieved considering an approach leading to the global identification of all the 

parameters, using nonlinear least-square algorithms (e.g. Levenberg-Marquardt 

algorithm,(Fletcher, 1987)). MATLAB R2014 (MathWorks, US) was used to solve the 

optimization problem and to simulate the fermentation behaviour. The function ‘lsqnonlin’ 
was used for non-linear least square minimization of differences between experimental and 

calculated data. 

The optimization problem presented in equation (3.34) is however hard to solve, since there 

are several sub-optimal solutions (either because of the measurements accuracy or because of 

model mismatch). The determined optimal solution highly depends on the initialization of the 

parameter values in the optimization algorithm. The initialization could be determined by 

literature data, but unfortunately very limited literature data are available for the considered 
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bacteria. Thus, in order to solve this optimization problem, a specific identification procedure 

is developed.  

 

The proposed three-step identification procedure is summarized in figure 3.6. The main idea 

is to determine each parameter value independently, using each dynamics separately. In order 

to reduce the complexity of the identification procedure, the approach considered is to 

determine the parameters values in the transient state. Indeed, the identification of parameters 

at steady state seems difficult as the dynamic terms in equations (3.29) are cancelled. For this 

reason, the identification was performed in transient phase, in particular here for 

simplification, during batch operation phases where D=0. This approach is not new, the 

parameters identification in batch mode for further validation in continuous fermentation was 

also considered by Boonmee et al. (2003).  

 

 kM identification, from maltose dynamic (linear 

regression) 

 YXS identification, from glucose dynamic (linear 

regression) 

 YPS identification, from product dynamic (linear 

regression) 

  

 Determination of optimal vector  =[ kM,YXS, YPS] 

Identification of growth rate parameters  

 =[ max, Pmax] for fixed (set equal to 
(nonlinear regression) 

Determination of  =[max, Pmax] 

Determination of optimal model parameters 

Identification of all model parameters  =[ 
using =[ as initial guess 

(nonlinear regression) 

Step 1 

Step 2 

Step 3 

 

Figure 3.6 Identification procedure proposed to determine the model parameters. 

 

The parameters involved in glucose, maltose and lactic acid dynamics (kM, YXS and YPS) can be 

determined by linear regressions which do not need any initialization as it will be detailed 

later. Only the growth rate parameters have to be identified with a nonlinear least-square 

algorithm, leading to a non-convex optimization problem. In this case, the other parameters 

(kM, YXSand YPS) are fixed to the values obtained from linear fitting. Finally, the global 

problem in equation (3.34) is solved using the obtained parameter values as initial guess. In 

the following each identification step is described.  
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3.4.2.1. Step 1: Linear regression 

 

The sensitivity analysis showed that only one parameter, the maltose degradation constant 

(kM) has an effect on the maltose dynamics, It is easier to determine the value of this 

parameter for the batch phases, when D=0. With this approach, the mass balance of maltose is 

only represented by its first order kinetic as follows: 

 
Mk

dt

dM
M  (3.35) 

In equation (3.35), maltose dynamics only depends on its own concentration. kM can be then 

determined by linear regression from maltose concentration measurements. The time 

derivative of maltose concentration is approached by a finite difference method (Euler 

method). The discretized equation is: 

 
kM

kk Mk
t

MM



1  (3.36) 

where k represents the time index, and )( 1 kk ttt    

In the same way, the biomass on glucose yield can be determined from the glucose batch 

dynamics (equation (3.28)) by approaching the state derivative by a finite difference method 

(for D=0). Since the parameter kM is also involved in the substrate behaviour, it is eliminated 

by adding equations (3.27) and (3.28) leading to: 

 

dt

dX

Ydt

MSd

XS

1)(



 (3.37) 

This procedure allows decreasing the effect of the uncertainty on kM when determining the 

biomass on glucose yield coefficient. From equation (3.37) it can be noticed that YXS can still 

be derived by linear regression (by computing the derivative by a finite difference approach), 

based on biomass, glucose and maltose concentration measurements as follows: 
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with the same notation as in equation (3.36). The product on glucose yield YPS can be 

determined from equation (3.25) by linear regression, with the same method: 
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with the same notations as in (3.36).  

 

In the first step of the identification procedure, three parameters are already determined by 

linear regression and using all available experimental data, namely kM, YPS, and YXS. 
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3.4.2.2. Step 2: Growth parameters identification 

 

The growth rate parameters, µmax and Pmax, are identified by nonlinear regression, solving the 

optimization problem (3.34) and fixing the other parameters values to those obtained in step 

1. The initial values are chosen randomly in an interval based on typical values found in the 

literature (a large search domain is taken into account since very few data are available for the 

considered bacteria). These intervals were fixed at [0, 1] (h
-1

) for µmax and [0,120] (gL
-1

) for 

Pmax. 

3.4.2.3. Step 3: Global parameters identification 

 

Finally, the optimization problem in equation (3.34) is solved starting from the model 

parameters determined in steps 1 and 2. 

3.5. EXPERIMENTAL VALIDATION 

3.5.1. Materials and methods 

3.5.1.1. Bioreactor description 

 

The studied set-up consists in a continuous stirred tank reactor (CSTR) (Figure 3.7). This 

figure presents all bioreactor entries and outputs as well as the available offline and online 

measurements. The bioreactor is a 5L tank in stainless steel 316L (Roughness <0.8 µm mirror 

polished). There are five controlled variables: temperature, pH, culture broth level in the 

bioreactor, agitation and feed flow rate. 

 

The temperature is controlled by a PID controller using a temperature sensor. When the 

temperature measured in the fermenter is higher than the setpoint, the controller opens a valve 

that allows cold water to flow in the exterior jacket of the bioreactor. In the other way, if the 

temperature is lower than the setpoint, the controller opens another valve to allow steam 

passing around the bioreactor.  

The pH is also regulated by a PID controller. When the pH value is lower than the setpoint, 

the controller activates a peristaltic pump to add sodium hydroxide to the broth. Otherwise, if 

the measured pH is higher, the controller activates another peristaltic pump which allows the 

addition of sulfuric acid into the bioreactor.  

The broth level in the reactor is controlled using a foam sensor situated just above the desired 

level. When the level of the broth reaches the foam sensor, this indicates a broth 

accumulation. The foam sensor sends a signal to a PID controller, which activates the 

peristaltic pump P2 (with constant flow) which controls the output flow (LC in Figure 3.7). In 

this way, the broth level is maintained constant, whether or not the input flow changes.  

A mechanical overhead stirring device ensures the medium mixing and is regulated by a PID 

controller which adjsuts the motor speed of the agitator to a fixed setpoint value. 

Finally the feed flow rate is regulated by a peristaltic pump with variable rotation speed. 
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Figure 3.7 Scheme of the 5L bioractor used for the SSPHF step. In red the outline measurements, in blue the 

controlled variables and in black the feeding and output flows. 

 

The online measurements available in the bioreactor, other than the ones used for the 

operation of the PID controllers described earlier, are related to the peristaltic pumps. The 

base, acid and output pumps (PB, PA and P2, respectively) work  at a constant rotation speed 

(29 rpm). Their rotation speed cannot be modified, so in order to change the flow rate in these 

pumps, it is necessary to modify their rotation duration. They are designed to work in a 

control loop as described before. Consequently, they do not run all the time, depending on the 
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controller action. So in order to calculate the mean flow rate passing in the pumps, it is 

necessary to sum the running times over a certain period. The bioreactor software has a 

totalizer fonction which allows recoding the rotation times in a time basis and theses results 

are used to determine the flow rate in each pump.  

The sole pump with variable flow in the set-up is the medium feeding pump (P1 in Figure 

3.7). This pump runs at a rotation speed value assigned by the operator but it can also be part 

of a control loop. Its use will be discussed in chapter 5 when the control design will be 

presented.  

3.5.1.2. SSPHF Experiments description 

 

In this work, the liquefaction and SSPH steps were perfomed in batch mode, whereas only the 

SSPHF step was performed in continuous mode. Two types of bioreactors are used, two 5 L 

bioreactors for the continuous experiments and a 12 L bioreactor to produce the wheat 

solution stock necessary to feed the continuous process (steps described afterwards). The 

SSPHF bioreactors are equipped with Baie inox controllers (Global Process Concept, La 

Rochelle France), in order to assure the control of temperature 30°C, pH 5.7, agitation 150 

rpm, feed flow and liquid level. A schematic diagram of the bioreactors configuration is given 

in Figure 3.8. After batch liquefaction and SSPH, the stock solution is maintained at 12°C.  

 

 

Figure 3.8 Bioreactors configuration to perform the continuous SSPHF. 

 

The SSPHF is performed in two 5L bioreactors in parallel with the same conditions for 

duplication. The SSPHF step is started in batch mode and then operated continuously with the 
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stock solution as feed. In the following, a description of the steps performed in the continuous 

bioreactor (5 L) is presented. 

Two experiments were performed in order to acquire experimental data in batch and 

continuous SSPHF, necessary for the parameters identification. In the first experiment, four 

dilution rates were tested: 0.05, 0.1, 0.15 and 0.31 h
-1

. These dilution rates were chosen 

considering model parameters obtained in the batch modelling (see appendix B.3.) and a 

steady state analysis of the continuous model that will be further discussed in chapter 5. With 

this approach the optimal range of dilution rates obtained is comprised between 0.01 and 0.02 

h
-1

. We decided also to test dilution rates lower (0.05 h
-1

) and higher (0.31 h
-1

) than those 

obtained as the optimal ones. The interest of testing different dilution rate is to identify 

experimentally those which allow obtaining the highest productivities. 

During the first 15 h, the bioreactor was operated in batch mode, then the first dilution rate 

(D1=0.1 h
-1

) was applied during 22 h. At 37 h the bioreactor was operated in batch mode 

again in order to increase the lactic acid concentration during 5 h. After the second batch 

period, a new dilution rate (D2= 0.05 h
-1

) was applied. After 60 h of culture, a higher dilution 

rate was tested (D3=0.31 h
-1

) in order to decrease the lactic acid concentration in the 

fermenters. Finally, at 63 h, the last dilution rate (D4=0.15 h
-1

) was applied.  

In the second experiment, the continuous fermentation was performed with two dilution rates, 

0.15 and 0.2 h
-1

. The bioreactor was operated in batch mode for the first 10 h. Afterwards, the 

continuous operation was started with a dilution rate D4 that equals 0.15 h
-1

. At 18 h, a new 

dilution rate D5=0.2 h
-1

 was applied. Finally, at 24 h, the fermenter contents were diluted three 

times with fresh medium and then the final batch sequence was performed during 6 h. The 

procedure is summarized in table 3.4.  

Table 3.4 Flow rates tested in experiments 1 and 2. 

 Step Designation Duration time (h) Dilution rate (h-1) 

Experiment 1 1 Batch phase 1=B1 15 0 

2 continuous phase 1= D1 22 0.1 

3 Batch phase 2=B2 5 0 

4 continuous phase 2= D2 21 0.05 

5 continuous phase 3= D3 3 0.31 

6 continuous phase 4=D4 4 0.15 

Experiment 2 1 Batch phase 3=B3 10 0 

2 continuous phase 4=D4 8 0.15 

3 continuous phase 5=D5 7 0.2 

4 Batch phase 4=B4 6 0 

 

Glucose and maltose concentrations feeding the bioreactor were different in each experiment. 

These conditions are summarized in table 3.5. 
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Table 3.5 Inlet glucose and maltose concentrations in each experiment 

Values(gL-1)  S0 M0 

Experiment 1 125 60 

Experiment 2 115 70 

 

3.5.1.3. Inoculum preparation 

Lactobacillus coryniformis subsp. torquens DSM 20004 stored at -80°C, was grown in a MRS 

medium in an incubator shaker MAXQ 4000 (Thermo Scientific). A first proliferation was 

performed at 30°C in 200 mL culture medium and agitated at 150 rpm during 24 h. For the 

second proliferation, the culture was transferred to a flask containing 500 mL fresh medium 

and agitated during 24 h. The cells were then harvested after centrifugation (3000 g, 3 min, 

20°C), resuspended in 100 mL distilled water (corresponding to 3% of the total working 

volume of the fermenter). This suspension was then used for the fermenter inoculation.  

3.5.1.4. Liquefactionand (SSPH) 

The preparation of the starch solution, liquefaction and SSPH are described in section 

2.2.2.1.3. 

3.5.1.5. Simultaneous saccharification and proteins hydrolysis 

(SSPH) 

Once the temperature attained 50°C in the bioreactor, pH was adjusted to 5.7 and the agitation 

set to 150 rpm. The experimental conditions were the same presented in section 2.1.2.1.  

3.5.1.6. Hydrolyzed wheat stock 

To feed the 5L fermenters (GPC, La Rochelle, France), a wheat solution (260 gL
-1

) was 

liquefied, then hydrolyzed in a 12 L bioreactor with the conditions described before. Once the 

SSPH step finished, the temperature in the fermenter was decreased to 12 °C in order to stop 

enzymes activities. This 12 L bioreactor (GPC, La Rochelle, France) fed the 5 L bioreactors 

(fermenters) in parallel and continuously, in order to guarantee the same feedstock for both 

fermenters. 

3.5.1.7. Analyses 

The analyses performed to determine the FAN, biomass, glucose, lactic acid and maltose 

concentrations are described in section 2.2.2.1.7.  

3.5.2. Experimental results 

3.5.2.1. Nitrogen substrate 

 

In order to determine if the nitrogen substrate was limiting during the SSPHF, measurements 

of the free acid nitrogen (FAN) concentration were performed during the experiments. Figure 

3.9 shows the evolution of the FAN concentration with time throughout the fermentation. The 

first 9 hours of each experiment were devoted to liquefaction and SSPH steps (without the 
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presence of bacteria); during these phases, the Free Acid Nitrogen (FAN) concentration was 

increased almost 5 times of its initial value. For the first batch phase (B1) the FAN 

concentration remained constant during the SSPHF step, suggesting that in this step the amino 

acids production rate (from wheat proteins) was equal to the consumption rate (by the cells). 

In the continuous phases, the FAN concentration was stable. 

 

 

Figure 3.9 Free Acid Nitrogen concentration throughout Experiments 1(    ) and 2(    ). Liquefaction and SSPH 

steps in the first 9 h and SSPHF step after time t=9h. Five dilution rates are tested:D1= 0.1 h
-1

, D2=0.05h
-1

, 

D3=0.31 h
-1

, D4=0.15 h
-1 

and D5=0.2 h
-1

. 

3.5.2.2. Variables behaviour during experiments 

 

The experimental results of SSPHF experiments described in the materials and methods 

section (see section 3.5.1.2.) are presented in figures 3.10 and 3.11. 

As shown in figure 3.10 (experiment 1), the cell concentration increased during the first phase 

of batch operation mode B1. When the first dilution rate (D1=0.1 h
-1

) was applied, the 

dilution effect slightly reduced the cell concentration; the system reached steady state after 22 

h of continuous mode. The lactic acid concentration, being directly related to the bacteria 

growth, slightly decreased. The glucose concentration decreased at the beginning of the 

fermentation in the batch phase (B1) as a result of its consumption; in continuous mode its 

concentration remained almost constant thanks to its continuous introduction into the reactor 

by the feed solution and the enzymatic degradation of maltose. Maltose was consumed for 

glucose production during the batch period, so its concentration decreased; then in the 
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continuous operation, it was also fed into the reactor and its concentration increased 

indicating a slower consumption than its supply. The maltose concentration in the bioreactor 

approached the inlet maltose concentration. 

At 42 h, after the second batch period (B2) where the biomass concentration increased, a new 

dilution rate (D2= 0.05 h
-1

) was applied. The steady state was quickly reached and all the 

concentrations were constant until the end of this step. After 60 h of culture, a higher dilution 

rate was tested (D3=0.31 h
-1

) in order to decrease the lactic acid concentration in the 

fermenters as shown in the figure. Finally, at 63 h, the last dilution rate (D=0.15 h
-1

) was 

applied. The bioreactor seemed to quickly reach the steady state. 

Figure 3.11 shows the experimental results for experiment 2. The bioreactor was operated in 

batch mode for the first 10 h of SSPHF. Then the continuous operation was started with the 

dilution rate D4=0.15 h
-1

. After 8 h, the cell, lactic acid and glucose concentrations were 

stable. The maltose concentration slightly increased in this phase, due to its unbalanced 

supply to the reactor and consumption; steady state was not reached for maltose, but it seems 

to have no significant effect on cell, lactic acid and glucose behaviour. After 18 h of 

experiment, a new dilution rate D5=0.2 h
-1

 was applied; the steady state was reached fast. 

Finally, the final batch (B4) sequence was performed after dilution of the fermenters content 

with fresh medium. 

The variables behaviour was as expected: in the batch phases, bacteria grew and produced 

lactic acid at high rates. In the continuous phases, lactic acid production rates values were 

higher than those obtained in previous batch experiments (see Chapter 2, section 2.2.4). It is 

because in the continuous operation it is possible to obtain higher productivities than in the 

batch one. In the experiments performed in continuous mode the production rate was around 2 

g L
-1 

h
-1

, compared to 1.0g L
-1 

h
-1 

for the previous batch experiments (see section 2.2.4). 

Indeed, in the latter experiments the end of the fermentation was performed in the stationary 

growth phase. 

In the continuous phases, it was not possible to completely reach the steady state for all the 

tested dilution rates, and more specifically for the dilution rate D3=0.3 h
-1 

as attempted (the 

dilution rate was very high inducing a washout phenomenon). In this case, the exhaustion of 

the biomass concentration was not reached as this dilution rate was tested only during 3h and 

then its value was reduced (to stop the washout). 

In summary, Glucose concentrations feeding the fermenter were high enough and no 

limitation by the substrate was observed in any experiment. The maltose concentration was 

high throughout the experiments. The maximal lactic acid concentration (around 30 g L
-1

) was 

obtained with the lowest dilution rate tested (D2=0.05 h
-1

) as expected. 
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Figure 3.10 Experimental  (   ) cell, glucose, maltose and lactic acid  concentrations for fermentation in batch 

and continuous operations for experiment 1. Four dilution rates are tested: D1= 0.1 h
-1

, D2=0.05h
-1

, D3=0.31 h
-1

 

and D4=0.15 h
-1

. 
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Figure 3.11 Experimental  (   ) cell, glucose, maltose and lactic acid concentrations for fermentation in batch and 

continuous operations for experiment 2.Two dilution rates tested D4= 0.15 h
-1 

and D5=0.2h
-1

. 

 

3.5.2.3. Comparison between the model and the experimental data 

 

The experimental data corresponding to the final batch phase of experiment 2, B4 (see table 

3.4) were used to identify the model parameters. The parameters are presented in table 3.6. 

The identified value of µmax is 0.28 h
-1

. This value has the same order of magnitude than the 

one reported by Akerberg et al. (1998), 0.22 h
-1

, obtained for another lactic acid bacteria strain 

but with the same substrate (whole-wheat flour). Our value is higher than the one (0.11 h
-1

) 

reported by Anuradha et al.(1999) for Lactobacillus delbrueckii using potato starch. The µmax 

value obtained in this work is nevertheless of the same order of magnitude. 
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The product inhibition effect in equation (3.10) is taken into account considering Pmax and n, 

which in this work were: 98.6g L
-1

and 3, respectively. The Pmax value is relatively close to the 

results reported by Akerberg, et al., (1998) and by Kwon, et al.(Kwon, et al., 2001), who 

found Pmax= 62.5 gL
-1

 and 114 gL
-1

, respectively. 

Concerning the yields obtained in this work: YXS = 0.053 g biomass g
-1

 glucose and YPS = 0.8 

g product g
-1

 glucose, they are lower than those reported by (Pinelli, et al., 1997) for the same 

species of bacteria, but with enriched glucose media: YXS = 0.197 g biomass g
-1

 glucose and 

YPS  = 0.990 g product g
-1

 glucose. The difference could be explained by the different 

composition of the culture media. 

The model described satisfactorily the evolution of the variables concentrations with time for 

batch and continuous operations (Figures 3.12 and 3.13).  

 

Concerning glucose concentration, the experimental data were slightly higher than the 

calculated values for several dilution rates, especially in experiment 2 (Figure 3.13). This 

could be explained by glucose production from sugars other than maltose, present in wheat, 

that were not taken into account in the model. Indeed, an additional experiment (data not 

shown) confirmed glucose production directly from starch. Therefore, our model 

underestimates the glucose concentrations.  

The first order kinetic equation is sufficient to describe maltose dynamics, the modeled 

maltose concentrations are in good agreement with experimental data. The prediction of cell 

and lactic acid concentrations is rather good.  

Table 3.6 Identified parameter values for a 5 L bioreactor with 9% death volume (Appendix B.1.) 

Parameter Identified Value 
µmax (h

-1
) 0.28 

Pmax (g L
-1

) 98.6 

YXS (g Cell g
-1

 Glucose) 0.053 

YPS (g Product g
-1

 Glucose) 0.8 

kM (h
-1

) 0.035 

kS (g L
-1

) 0.5 (fixed from literature) 

n 3 (fixed after several trials) 
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Figure 3.12 Experimental  (   ) and simulated ( ) cell, glucose, maltose and lactic acid  concentrations for 

fermentation in batch and continuous operations for experiment 1. Four dilution rates are tested: D1= 0.1 h
-1

, 

D2=0.05h
-1

, D3=0.31 h
-1

 and D4=0.15 h
-1

. 
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Figure 3.13 Experimental  (   ) and simulated (   ) cell, glucose, maltose and lactic acid concentrations for 

fermentation in batch and continuous operations for experiment 2. Two dilution rates tested D4= 0.15 h
-1 

and 

D5=0.2h
-1

. 

 

The confidence in the prediction of the model compared to the experimental data was 

assessed by the determination of the root-mean-square error (RMSE) and the normalized-root-

mean-square error (NRMSE). The RMSE is a measure of the differences between predicted 

values (by the model) and the real values (experimental data) and is defined by the following 

equation: 
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(3.40) 

 

where yi,exp is the experimental value, yi,cal the predicted value and N the number of 

experimental points. The NRMSE is defined as: 

 

minexp,maxexp, yy

RMSE
NRMSE


  (3.41) 

where yexp,max is the maximal experimental value and yexp,min is the minimal experimental 

value.  

Both, RMSE and NRMSE values were determined for cell, glucose, maltose and lactic acid 

concentrations. Their values are reported in table 3.7. 

The NRMSE values obtained in model validation with all experimental data remain in an 

acceptable range compared to those obtained with experimental data used for identification 

(B4). Calculated NRMSE values for cell and lactic acid concentrations are low. It proves the 

good agreement between experimental data and model predictions. Nevertheless, the 

calculated NRSME values for glucose concentration are high confirming that the glucose 

prediction is not so good. Concerning the NRMSE values for maltose concentration, the value 

obtained in experiment 1 is two times higher than the one obtained in experiment 2. It can be 

explained by the dispersion of experimental data obtained at the beginning of experiment 1 

due to some experimental problems. For the first 3 experimental points in the phase D2 of 

experiment 1, it was not possible to assure a constant flow feeding the bioreactor. 

Table 3.7RMSE and NRMSE values for each experiment 

Variable B4 (Identification)  Experiment 1 Experiment 2 
RMSE  
(g L-1) 

NRMSE 
(%) 

RMSE 
(g L-1) 

NRMSE 
(%) 

RMSE 
(g L-1) 

NRMSE 
(%) 

X 0.09 9.0 0.43 15.5 0.37 13.4 

S 2.41 17.9 5.85 24.7 6.20 26.2 

P 0.75 2.3 3.52 11.2 2.85 9.2 

M 1.28 4.7 5.14 24.9 2.61 12.7 

 

The model validation gave more satisfactory results for the experiment used to identify the 

parameters (experiment 2) than for the other. It can be explained by slight differences in in 

glucose and maltose feed concentrations. 

Even so, the proposed model performs well. This model is therefore able to predict the 

experimental results for experiments conducted in batch and continuous modes. 
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3.6. CONCLUSIONS 

In this chapter, the model development able to describe the variables behaviour in the SSPHF 

bioreactor was presented. First, a state-of-the-art on the available models for lactic acid was 

introduced. This allowed the establishment of the basis required for our model development. 

Batch experiments were performed to identify the inhibition and limitation phenomena on 

growth. Once the different phenomena having an impact on bacteria were identified, the 

model development for the continuous SSPHF bioreactor was performed.   

The proposed model consists of four dynamical equations describing the bacteria growth, 

substrates consumption and product formation (3.29).  Maltose was the sole sugar taken into 

account in the glucose dynamics. Parameter identification and validation were carried out 

using data from experiments performed in batch and continuous operation modes. Good 

agreement was found between the model and the experimental data. 

This model can now be used to accomplish the next objective of this work: the bioprocess 

productivity optimization and the development of a control strategy to achieve this optimal 

operation condition.  
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4. CHAPTER 4: MONITORING 
4.1. INTRODUCTION 

After model validation, the main problem of biotechnological processes control is the lack of 

reliable and low cost physical sensors capable of measuring the different state variables 

online. It is often difficult, for economic or technological reasons, to measure all the variables 

required for the control of the bioreactor. An alternative solution is to estimate the 

unmeasured states through the synthesis of observers. The principle of these “software 
sensors” is the reconstruction of the non-online measurable states, based on a dynamical 

model of the system and on the online available measurements. It is also possible to estimate 

other important variables in the system, for example the kinetic rates of growth or production.  

In this context, robust and reliable algorithms must be developed to estimate key variables and 

parameters both for process monitoring and control. The algorithms reported in the literature 

differ with respect to the measured and estimated variables, the known parameters, the type of 

observer convergence, the robustness issues, etc. (De Battista, et al., 2011). Asymptotic 

observers for state and parameter estimations in bioprocess were introduced for the first time 

by Aborhey and Williamson (1978). High-gain observers applied to bioreactors were studied 

by Farza et al. (1998); they were also treated in an adaptive approach by Bastin and Dochain 

(1986). More recently, hybrid state observers combining asymptotic and exponential 

approaches were developed (Bogaerts, et al., 2006). In order to deal with model uncertainties, 

sliding mode observers have also been described (Picó, et al., 2009) 

In this chapter, a brief state-of-the-art of the different observers used in bioprocesses is first 

presented. Then, a software sensor to reconstruct, online, the lactic acid concentration is 

developed. Later, observers (Extended and Unscented Kalman filters), based on the Kalman 

filter approach, are proposed to estimate the state variables of the system (cell, glucose, 

maltose and lactic concentrations). They are then validated in simulation. Since the rate of 

lactic acid production is an important parameter to assess the bioprocess performance, 

observers to estimate the lactic acid production rate are developed. Their performance is 

validated through simulations. The experimental validation of proposed observers will be 

presented in Chapter 5. 

4.2. STATE-OF-ART IN ESTIMATION TECHNIQUES 

There are mainly two kinds of estimation techniques, both using online measurements, to 

estimate system states: the methods based on simple mass balances and the methods based on 

observers. A mathematical model of the system is required in the latter case. The observer to 

consider is strongly connected to the accuracy and the uncertainties of model and data. In the 

following some state estimation methods used in biotechnological processes are discussed. 
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4.2.1. Balance Equation-Based Methods 

 

In this case, the estimation is based on theoretical and experimental relationships between the 

measured variables and the variables to be estimated. With this approach, by neglecting 

measurements errors, modelling uncertainties and instrument noises, only simple calculations 

are needed to estimate unmeasured variables. Different balance equation based methods have 

been proposed for bioprocesses. 

 

The estimation of the biomass concentration and the growth rate from oxygen measurements 

was first reported (Zabriskie & Humphrey, 1978). Mou and Cooney (1983) calculated the 

same parameters in penicillin fermentation by means of overall and instantaneous carbon 

balance equations; the estimations were implemented in a feedback control strategy to 

regulate the growth rate. An online estimation of biomass concentration technique for the 

Streptomyces avermitilis fermentation was based on the oxygen uptake rate, calculated from 

oxygen concentration measurements (Gbewonyo, et al., 1989). The online estimation of 

biomass from maintenance equations was performed by Beluham, et al.,(1995) for a baker’s 
yeast fermentation process and this estimation was used in a feedback control scheme. Finally 

in lactic acid fermentation, Lombardi (1996) proposed to estimate online the lactic acid 

concentration from the mass of base added to the bioreactor for pH regulation. This technique 

was also used in this work and will be discussed in section4.4.  

The disadvantage of the mass balance methods compared to the other methods is that they do 

not include system uncertainties or noises. In order to consider these aspects, the observer 

based methods have been developed.  

4.2.2. Observer Based Methods 

 

Observers estimate state variables from the knowledge of the mathematical model of the 

bioprocess and from the available measurements. Figure 4.1 presents the observer principle. It 

is coupled to the system using the measured output, y. In this figure, u is the control variable, 

x the state and x̂ the state estimate. 

       

    u          x     y   

        

 

     

     x̂       

Sensor Process 

Observer 

 

Figure 4.1 Observer principle 

Observers can be designed and implemented as linear observers or nonlinear observers. Most 

real systems often include system uncertainties. Various bioprocess estimation methods based 

on observers have been proposed during the last 50 years, each having advantages and 

drawbacks according to: its ability to consider measurements error, the need of using an 

(accurate) model describing the bioprocess, if there are local approximations (linearization of 
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nonlinear models) or not (nonlinear theory) and its convergence rate which can be determined 

taking into account the cultures conditions, or arbitrarily fixed (Bogaerts & Vande Wouwer, 

2003). Observers are classified in three types: exponential, asymptotic and hybrid observers. 

They are briefly presented hereafter. 

Exponential Observers 

The system state is reconstructed based on a process model and some available hardware 

sensor measurements. The system observability condition must be guaranteed in linear 

systems in order to design such observer. For nonlinear systems, at least the local 

observability condition (see appendix C.1) must be fulfilled (Kwakernaak & Sivan, 1972). 

The exponential observer uses a closed-loop structure; the measurements are used in a 

feedback path which drives the state estimates towards the true states of the process. Tuning 

parameters adjust the rate of convergence towards the true states. Nevertheless, this type of 

observer strongly depends on the model accuracy. Examples of exponential observers are: 

The extended Luenberger observer, the extended Kalman Filter, the receding horizon 

observer, and the high-gain observer (Bogaerts & Vande Wouwer, 2003). 

Asymptotic Observers 

Asymptotic observers are open-loop state estimation techniques using only a part of the 

process model and replacing the missing part by some available measurements assumed to be 

continuous in time and noise free. Therefore, the structure of the asymptotic observer does not 

have a correction term between the estimated output and its measurement. The main 

advantage of this kind of observer is the possibility to estimate the states without any a priori 

knowledge about the reaction kinetics. Nevertheless, the rate of convergence of the estimation 

towards the true states depends on the operation conditions (as the dilution rate)(Bastin & 

Dochain, 1990).   

Hybrid observers 

Hybrid observers combine the advantages of the exponential (adjustable convergence rate) 

and asymptotic (robust with respect to growth kinetics knowledge). This method considers the 

definition of a confidence level in the bioprocess model. According to this interval, the hybrid 

observer will oscillate between two extreme cases: it uses either an exponential observer 

structure when the model is assumed to be perfectly known or an asymptotic one in the 

opposite case (Bogaerts & Vande Wouwer, 2003). One example of this kind of observer is the 

interval observers which consist in an auxiliary dynamic system that provides guaranteed 

bounds of the state to be estimated. Interval observers incorporate uncertainty into the 

observer design, dealing with unknown dynamics, inputs and outputs. Nevertheless, know 

bounds on the uncertain terms are required (Rapaport & Dochain, 2005).  

 

4.3. KALMAN FILTER BASED METHODS 

The Kalman filter has been used for the last 50 years but is still in use nowadays, due to its 

small computational requirement and its status as the best estimator for one-dimensional 

linear systems with Gaussian error statistics (Anderson & Moore , 2005). Kalman filter is 



 Chapter 4: Monitoring  

 

136 

 

used to provide optimal estimates of unmeasured and measured states for time varying 

systems, in the presence of process and measurement noises, by using a mathematical model 

of the process. Its approach consists in minimizing the variance of the estimation error using 

an algorithm with two recursive steps. First, the process model is used to propagate the initial 

state estimates until a new measurement is available (prediction step). In the second step, the 

propagated model estimates are combined with the measurements to update or correct the 

estimates (Lewis, et al., 2008).  

There are different kinds of Kalman filter, depending on the nature of system dynamics 

(continuous or discrete, linear or not) and measurements (discrete or continuous). In the case 

of bioprocesses, the measurements are usually available at large sampling periods, as in this 

work, leading to the consideration of discrete measurements. However the bioreactor 

dynamics are continuous, so considering Kalman filter for continuous dynamics is generally 

preferred. Nevertheless, in this work, since the system dynamics is slow in comparison to 

sensors characteristic times, it will be discretized, leading to an estimation problem for 

discrete time system with discrete time measurements. The Kalman filter equations for this 

kind of systems are presented in the following sections, considering the cases of linear and 

nonlinear dynamics, since these two versions of the filter will be used in this work. In the case 

of nonlinear systems, two Kalman strategies will be detailed and tested: the Extended Kalman 

filter (EKF) and the Unscented Kalman Filter (UKF). 

4.3.1. Discrete Kalman Filter for linear systems 

The Kalman filter addresses the general problem of estimating the state vector 
n x of a 

discrete-time process that is governed by the linear stochastic recursive equation: 

 

 

  
111111   kkkkkkk wGuBxAx  

(4.1) 

with the measurement vector
py : 

 

  
kkkk vxCy   

(4.2) 

where k is the time index and u the control input. The random variables wk and vk represent the 

process and measurement noise, respectively. They are assumed to be non-correlated, white 

and with normal probability distributions given by: 

 

  
w  ̴ ),0( kQN  

v  ̴ ),0( kRN  
(4.3) 

where Qk and Rk are the uncorrelated respective covariance matrices. They are used to model 

the confidence in the system model for the first one ( w ) and the measurement quality for the 

second one ( v ).  

The nxn matrix Ak in equation (4.1) relates the state at time step k to the state k+1, in the 

absence of either a control input or process noise. The nxm matrix Bk relates the control input 
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 mu to the state x. The pxn matrix Ck in the measurement equation (4.2) relates the state to 

the measurement yk. 

Defining 
 nkx̂ as the a priori state estimate at step k (given knowledge of the process 

prior to step k), and 
 nkx̂ the a posteriori state estimate at step k (given measurement yk). 

It is then possible to define a priori and a posteriori estimate errors as (Welch & Bishop, 

1995): 

 

  

kkk

kkk

xxe

xxe

ˆ

,ˆ




   
 (4.4) 

The a priori estimation error covariance is defined as: 

 

  



  T

kkk eeEP  (4.5) 

where E is the mathematical expectation. The a posteriori estimate error covariance is defined 

as: 

   T
kkk eeEP  (4.6) 

In the following the Kalman filter algorithm is described. 

Algorithm  

Initialization phase: 

The initial estimated state vector is given by: 

 

  
 ,ˆ 00 xEx     T

xxxxE 00000 ˆˆ P  (4.7) 

where 0P  represents the covariance matrix of the estimation error, 0x  the state at the initial 

instant and 0x̂  its estimate. 

For k=1,…,∞ : 

Step 1. Prediction phase (between instants k-1 and k):  

In this step the a priori prediction of the state,

kx̂ ,is calculated using the model and the 

covariance matrix of the prediction error

kP : 

 

  
1111 ˆˆ 

  kkkkk uBxAx
 (4.8) 

 

  
1111 

  k
T
kkkk QAA PP

 (4.9) 

Step 2. Correction phase (at instant k, when a new measurement is available): 
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Update the prediction from the measurement ky  to obtain the a posteriori estimate kx̂ and 

the covariance matrix of the estimation error kP .The a posteriori estimate kx̂ is a linear 

combination of an a priori estimate 

kx̂ and a weighted difference between the actual 

measurement ky and a measurement prediction 
kk xC ˆ as follows: 

 

  

1)(   k
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T
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(4.10) 
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(4.11) 

 

  
)ˆ(ˆˆ   kkkkkk xCyKxx
 

 
(4.12) 

The difference 
)ˆ(  kkk xCy
in equation (4.12) is named the measurement innovation or the 

residual. It reflects the discrepancy between the predicted measurement 

kk xC ˆ

 and the actual 

measurement ky .The nxp matrix K in equation (4.11) is the gain that minimizes the a 

posteriori error covariance presented in equation (4.10). 

Step3. Repeat Steps 1 and 2 for the next sample. After each time and measurement update 

pair, the algorithm is repeated with the previous a posteriori estimates used to predict the new 

a priori estimates.  

Filter Parameters and Tuning 

The measurement noise Rk and the process noise Qk covariance matrices described by equation 

(4.3) might be selected prior to operation of the filter. In the case of the measurement noise 

covariance Rk, it can be easily determined considering the nature of the measurement and 

sensor characteristics. In the case of Qk, the choice is less obvious. Usually, this noise is added 

to represent the uncertainty on the process model. The filter performance in case of an 

uncertain model of the system can be improved by adding enough uncertainty via the 

selection of Qk. In this case, reliable process measurements are preferred.  

4.3.2. Extended Kalman Filter (EKF) 

 

The Kalman filter approach described in the previous section (section 4.3.1) can be used for 

processes described by linear stochastic discrete equations. Nevertheless, most biochemical 

systems of practical interest are inherently nonlinear. In this case an Extended Kalman Filter 

(EKF) technique can be used. The estimation is performed by linearizing the nonlinear model 

equations around the current estimate and then by applying the Kalman filter strategy to the 

linearized equations. The EKF estimation technique has been reported for state estimation of 

several biotechnological processes. Pons et al. (1988) have applied EKF for the estimation of 

state variables of a biotechnological process operated in batch and fed-batch modes. The EKF 

method was also used in Saccharomyces cerevisiae fermentation for states estimation in 

(Zorzetto & Wilson, 1996). The control of glucose during yeast fed-batch cultivation was 
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performed combined to an EKF approach by Hitzmann et al. (2000). Tebbani et al. (2015) 

used an Extended Kalman Filter to estimate the biomass concentration in a nonlinear control 

approach for the Prophyridium purpureum process.  

 

In the EKF strategy, the linearization of the estimation is performed around the current 

estimate using the partial derivatives of the process and measurement functions to compute 

estimates even if the system is represented by nonlinear equations. The EKF algorithm is 

detailed hereafter. 

Let us consider a process with a state vector  nx , governed by nonlinear stochastic 

differential equations: 

  
kkkk wuxx  ),(1 F

 
 

(4.13) 

with measurements given by
 py : 

 

  
kkk vxy  )(H

 
 

(4.14) 

The extended Kalman filter applied to the discrete system represented in equations (4.13) and 

(4.14) is an extension of the discrete Kalman filter in the linear case. It requires to linearize 

the equation around the estimated trajectories, and therefore to determine a discrete linear 

system, for which a linear discrete Kalman filter is applied.  

The EKF algorithm is presented hereafter.  

Algorithm 

Initialization phase: 

The initialization phase remains the same as presented in section 4.3.1 (see equation (4.7)). 

For k=1,…,∞ : 

Step 1.Prediction phase (between instants k-1 and k):  

 A priori prediction of the state, 
kx̂  

 

  
),ˆ(ˆ 11 

  kkk uxx F
 (4.15) 
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where the matrix 1kA is obtained by linearizing the dynamics around the actual estimation 

point 1ˆ kx : 
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(4.17) 

Step 2. Update phase at instant k: 
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Update the prediction from the measurement ky  to obtain the a posteriori estimate kx̂ . 
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(4.18) 
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(4.19) 

  

  
)ˆ(ˆˆ   kkkkkk xCyKxx
 

 
(4.20) 

where the matrix kC is obtained from: 
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(4.21) 

Step3. Repeat Steps 1 and 2 for the next sample.  

As the EKF method is based on the linear approximation of the system at a given time instant, 

it may introduce errors in the state estimate, which may lead to divergence. In order to 

overcome these drawbacks, other nonlinear state estimators have been developed such as the 

Unscented Kalman filter (UKF) (Kandepu, et al., 2008). In the next section the 

implementation of the UKF estimator is presented.   

4.3.3. Unscented Kalman Filter(UKF) 

 

The UKF observer uses a similar approach as the EKF, avoiding the linearization procedure 

and leading to a better robustness and rate of convergence (Kandepu et al., 2008). As the 

system in the present work has strong nonlinearities and uncertainties, the derivative-free 

UKF method seems attractive. In this case, the state distribution is represented by means of a 

minimal set of carefully chosen sampling points, the so-called sigma points. Each of these 

points is propagated through the nonlinearities and then the state estimate is calculated as the 

average mean of these transformed points (Julier & Uhlmann, 1997). The UKF algorithm is 

detailed hereafter. 

Consider the discrete-time nonlinear model described by equations (4.13) and (4.14) : 

Algorithm 

The UKF algorithm is given by: 

Initialization (k=0): 

The initialization phase remains the same as presented in section 4.3.1 (see equation (4.7)). 

For k=1,…,∞ :  

Step 1. Sigma points )( 1k  selection: 
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  101 ˆ   kk x  
(4.22) 

 

  
  ,,...,1,)(ˆ 111 nix ikkik   P  (4.23) 

 

  
  ,2,...,1,1,)(ˆ 111 nnix nikkik   P  (4.24) 

where )( 1k has a dimension of 2*n+1,  
ik 1P  is the i-th column of the square root of the 

covariance matrix of the previous time step (calculated by Cholesky factorization). The 
parameter is the scaling factor used to move the position of the sigma points around the mean 

value and is given by   n , with nkn  )( 0
2  and ),( 0k tuning parameters to 

choose. Usually  is small (10
-4≤ ≤ 1) and 0k ≥ 0 (generally k0 is set to zero). 

Step 2. Prediction. In this step, the sigma points )( 1k  are propagated through the nonlinear 

dynamics and the state prediction is calculated:   
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where
)(m

iW is a weighting factor given by: 

 

  




n

W
m)(

0  (4.27) 

 

  )(2

1)(




n
W

m
i  (4.28) 

The predicted covariance is computed using the following expression:  
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Where Q is the process noise covariance matrix and 
)(c

iW is a weighting factor given by 
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where  is a tuning parameter used to introduce prior knowledge of the distribution of the 

state (generally set to 2 for Gaussian distribution). 

Step 3. Updating. Using the predicted sigma points (4.25) and covariance (4.26), a new set of 

sigma points is computed and projected through the observation model. The predicted 

measurements are described by: 

  11   kkkY H  (4.32) 
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The covariance of the innovation and the cross-covariance matrix are then given by: 
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where Rk is the measurement noise covariance matrix.  

The estimations are updated using the classical Kalman filter equations:  

 

  

1
kkkk xyxykK PP  (4.36) 
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T
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Step4. Repeat Steps 1 to 3 for the next sample.  

It can be observed that in the UKF algorithm, Jacobian matrices are not needed as in the EKF 

one, making the UKF implementation easier. Indeed, with the UKF algorithm, it is not 

necessary to linearize the model to obtain the estimation of states, allowing changing the 

model (typically the specific growth rates) without any further developments. In section 4.5.2 

the performances of both proposed Kalman filters are tested and compared in simulation. 

 

4.4. ONLINE DETERMINATION OF THE LACTIC ACID 
CONCENTRATION 

In this work, the key variables are biomass, glucose, lactic acid and maltose concentrations. 

For the development of the control law it is necessary to measure at least one of the key 

variables in the system. There are some sensors available in the market for the monitoring of 

the biomass and glucose concentrations. However, they are expensive and their 

implementation seems difficult considering the complex culture broth used in this work 

(wheat flour solution).  

The aim of further developments is to reconstruct different states variables using online values 

of the lactic acid concentration. However, this cannot be measured online as mentioned 

previously. Thus, in this work, the lactic acid concentration is estimated by means of an 

online measured parameter, the mass of sodium hydroxide added to regulate the pH of the 

reactor. Lactic acid produced during the SSPHF step can be correlated to the mass of base 
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added to regulate pH at 5.7. Therefore, we developed a mathematical expression correlating 

these two variables, as presented in the following.  

4.4.1. Lactic acid concentration determination in the SSPHF bioreactor 

In the continuous SSPHF, the bioreactor actually has two inlet flows, the first one feeding the 

bioreactor with substrate and the second one adding the sodium hydroxide solution necessary 

to neutralize lactic acid. It is illustrated in figure 4.2. 

 

 

 

 

 

 

 

 

 

 

F1 represents the substrate feed flow and F2 the outlet flow. In fact, the latter is the sum of the 

substrate feed flow and the sodium hydroxide flow: 

 

  
NaFFF  12  

(4.39) 

In the experiments performed in continuous mode with pH control (see section 2.2.4) the 

sodium hydroxide flow is at least 35 times smaller than the substrate inlet flow. Consequently, 

F1is assumed to be equal to F2 as previously mentioned in chapter 3. The lactic acid 

concentration mass balance is then the one described by equation (3.25) and recalled here: 

 

  
DPX

Y

Y

dt

dP

XS

PS    (3.25) 

where P is the lactic acid concentration at t, D the dilution rate at t, X the biomass 

concentration at t (g L
-1

), YPS and YXS the yields of transformation of substrate into lactic acid 

and biomass respectively (in g g
-1

) and  the specific growth rate (h
-1

). 

The aim is then to consider this mass balance and the lactic acid neutralization by the sodium 

hydroxide to develop a technique for the determination of the lactic acid concentration. In the 

following, the development of a mathematical expression correlating the lactic acid 

concentration to the sodium hydroxide inlet flow is presented. 

 

 

  

F1 FNa 

 F2 

Figure 4.2  Feed flows and output flow in the SSPHF bioreactor 
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4.4.2. Weak Acids and Bases 

 

The following equation represents the acid-base equilibrium of an acid HA: 

 

 

  

  OHAOHHA 32  (4.40) 

The acid is strong if the acid dissociation is complete, it means that no more HA molecules are 

present in the solution. If the dissociation is not complete (weak acid), as for lactic acid, it is 

possible to consider the equilibrium 

 

   
3

A

A H O
K

HA

         (4.41) 

where KA is the equilibrium constant called “acidity constant” and which only depends on the 
temperature. It is also possible to define: 

 

  
AA KpK log  (4.42) 

From equations (4.41) and (4.42), the smaller the pKA value of the acid, the stronger it is.  

4.4.3. Lactic acid concentration determination from sodium hydroxide 

inlet flow 

In the studied SSPHF bioreactor, the acid-base reaction to be considered is the neutralization 

of a weak acid (lactic acid) by a strong base, sodium hydroxide.  

The acidity constant of lactic acid at the temperature in the bioreactor (30°C) is pKA= 3.88 and 

sodium hydroxide as a strong base is totally dissociated. The water constant at the same 

temperature is pKW=13.83. 

The chemical reactions to be considered are then:  

 

  

88.3
3323 10,   A

lactateacidLactic

KOHCHOHCOOCHOHCHOHCOOHCH  (4.43) 

 

  

  OHNaNaOH
hydroxydeSodium

 (4.44) 

 

  

83.13
32 102   WKOHOHOH  (4.45) 

The whole equation is then represented by: 

 OHCHOHCOOCHOHCHOHCOOHCH 233    (4.46) 

By representing lactic acid by HA and lactate by A
-
, the following equations are obtained: 
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(4.47) 

 

  
eqeq OHOH ][][10 3

83.13    (4.48) 

where the brackets []eq indicates the concentrations of each compound in the bioreactor at the 

equilibrium. As the bioreactor is regulated at pH= 5.7, from the pH definition, it is possible to 

determine the concentration of each dissociated ion by: 
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From equations (4.47) and (4.50), it is possible to determine the ratio lactate/lactic acid: 
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Then the ratio lactate/lactic acid is equal to 66. The total concentration of produced lactic acid 

is:  
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The neutralization is then quantitative. 

From the reaction represented by equation (4.46), one mole of NaOH reacts with one mole of 

lactic acid, the quantity (mol) of produced lactic acid is then equal to the quantity (mol) of 

sodium hydroxide added.  

The lactic acid production rate in g L
-1

 h
-1

 (defined as  ) at time t in the bioreactor can then 

be expressed as a function of the sodium hydroxide inlet flow by the following expression: 

 

  V

MCF
X

Y

Y LANaNa

XS

PS    (4.53) 

where V is the culture broth volume (L), FNa the sodium hydroxide flowrate added into the 

bioreactor for lactate neutralization (L h
-1

) at t, CNa the sodium hydroxide concentration in its 

inlet flow (mol L
-1

) and MLA the lactic acid molecular weight (g mol
-1

).  

Replacing the definition of lactic acid productivity obtained in equation (4.53) in terms of 

sodium hydroxide inlet flow in the lactic acid mas balance (equation (3.25)) the following 

expression is obtained: 

 

  DP
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dP LANa
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Discretizing the equation (4.54), the lactic acid concentration at each instant k is given by:  
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Equation (4.55) allows the determination of the lactic acid concentration in a continuous 

bioreactor at instant k+1 from the inlet sodium hydroxide flow, the dilution rate and the lactic 

acid concentration at instant k and the constants CNa, MLA, V .  The lactic acid concentration is 

updated each sampling time from the online measured variables FNa,k and Dk.  

The method was experimentally validated and is presented in appendix C.2.  Hereafter, the 

acid lactic concentration will be considered online available through its calculation from 

added NaOH measurements.  

4.5. STATE VARIABLES ESTIMATION 

In this section observers are proposed to estimate key variables that are not measured online 

from the available ones, namely lactic acid concentration. First, an observability analysis is 

performed to determine the feasibility of the construction of estimators for biomass, glucose 

and maltose concentrations using the online determined lactic acid concentration. 

4.5.1. Observability analysis 

 

From the observability definition presented in appendix C.1, the observability of the system 

was checked. Considering the system (equations (3.29)) in the following representation  
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with x=(X, S, M, P)
T
 , u=D , y=P and Fand H defined as: 
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 As x has dimension 4, it is necessary to calculate the first four Lie derivatives (defined in 

appendix C.1) as follows: 
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(4.62) 

The observation space is then defined by: 
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From equation (4.63), the observability distribution to collect the “gradient” vector of every 
component in  is then defined as follows: 
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Using the dynamics equations of the states in equation (4.57), it was possible to demonstrate 

that d  has rank=4. The rank conditions state that the system is observable. Observers to 

estimate the state variables can then be constructed for the studied system. The observability 

analysis will be further studied in chapter 5 considering the optimal operating point (see 

section 5.5.3). In the following the development of these observers is presented.  

4.5.2. EKF and UKF applied to the studied system 

The studied system is characterized by nonlinear differential equations. As previously 

mentioned, the evolution of state variables with time is slow making the system discretization 

possible. Moreover, there is only one variable available online, the lactic acid concentration 

with a sampling period denoted by Ts. The continuous system (equations (3.29)) can be 

discretized by the Euler method considering that the evolution of the system dynamics is slow 

enough in comparison to Ts. The discretized representation of the system with a sampling 

period Ts is governed by the following equations: 
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with 
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The EKF and UKF strategies can then be applied to the system, by adding fictitious state and 

measurement noises to the system equations (4.65) as in equations (4.13) and (4.14). The 

obtained observers’ structure is resumed in Figure 4.3. 
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 PMSX ˆ,ˆ,ˆ,ˆ  

Fermenter 

(X, S, M, P) 

 

Figure 4.3Extended Kalman Filter Structure 

where X̂ , Ŝ , M̂ and P̂  are the estimated biomass, glucose, maltose and lactic acid 

concentrations values. In order to simplify the observers’ implementation, the state and 
measurement noises are supposed to be stationary. Their variance matrices are then constant 

over time: 

 

  kRR

kQQ

k

k




 (4.67) 

 

The Kalman Filters may have convergence problems, according to the values given to the 

matrices Q and R. Therefore, they will be empirically chosen (by trial/error) in order to ensure 

an acceptable rate of convergence and the stability of the filter. The covariance matrix of the 

prediction error is initialized according to the accuracy of the initial variables concentrations 

and the uncertainty on the lactic acid concentration determination.  

4.5.3. Kalman filters performances in simulation 

 

The EKF and UKF performances are analyzed in simulation. The parameters and 

experimental conditions used for simulations are the same for both filters and are those 

presented in table 3.6 (see section 3.5.2.3). The initial conditions are summarized in table 4.1. 
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Table 4.1 Initial conditions for simulations  

Parameter Value 
X(0) (g L

-1
) 0.2 

S(0) (g L
-1

) 120 

M(0)(g L
-1

) 50 

P(0)(g L
-1

) 0 

 

The Lactic acid concentration is determined from online measurement of added NaOH. This 

technique leads to a low noise in the calculated lactic acid concentration. A centered Gaussian 

white noise is then applied to the latter with a standard deviation of 1%.  

 

The choice of covariance matrices Q and R is performed empirically in order to obtain a good 

compromise between convergence rate, accuracy and stability. The best simulation results 

were obtained with the following matrices values: 

 

 

  





















2.0000

0400

0040

00001.0

Q  

 

1R  

(4.68) 

 

In equation (4.68), Q was chosen considering the order of magnitude of each state variable. 

The covariance matrix of the initial prediction error 0P , which represents the threshold in the 

state initialization, has been chosen as the following diagonal matrix: 

 

  





















01.0000

0500

00100

00001.0

0P  

 

(4.69) 

In the same way than for the Q choice, 0P  was determined considering the order of 

magnitude of the state variables. 

The UKF tuning parameters are chosen as follows: 2 , 25.0 , k0=0. These values were 

determined either from literature or from a trial-and-error technique. The observer 

performance for the system will be analyzed using two approaches. First, a state initialization 

error is considered without any model uncertainty. Secondly, a robustness study of the 

observer performance is carried out, considering uncertainties on the model parameters. 
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4.5.3.1. Observers simulation in the nominal case 

 

The EKF and UKF strategies convergence is analyzed for an initialization error in biomass, 

glucose, maltose and lactic acid concentrations. No model parameter mismatch was 

considered in this first study (i.e. the model parameters considered in EKF and UKF 

algorithms are the same as those of the real system or simulated reference). Simulations are 

performed with the conditions presented in table 4.1. The performances of both estimators 

(EKF and UKF) are compared in figure 4.4. It illustrates biomass, glucose and maltose 

concentration estimations from the lactic acid concentration available online using the two 

observers. Simulations are performed during 60 h. The first 20 h of simulations represent the 

bioreactor behaviour in batch mode, with a dilution rate, D=0. After that, a D=0.1 h
-1

 was 

imposed. Both estimators allow estimating the cell, glucose and maltose concentrations from 

lactic acid concentration available online. Moreover, the estimations are not affected by the 

modification in the dilution rate at 20 h. It is important to notice that the filter convergence 

time could be improved by increasing values in matrices Q and R. Nevertheless it can impact 

the filter stability.  

 

Figure 4.4 Extended Kalman filter and Unscented Kalman filter comparison. Estimation of cell, glucose, 

maltose and lactic acid concentrations with initialization error in the nominal case. 
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When comparing estimations by EKF and by UKF, estimated values are similar in the 

nominal case. Nevertheless, the UKF estimations perform better and converge to the real 

values faster than the EKF estimations in the case of glucose concentration. 

 

4.5.3.2. Observers robustness analysis 

 

In order to test the Kalman filters robustness with respect to model uncertainties, a 20% non-

correlated parameters mismatch is applied to the real system (i.e. parameters of the real 

process are different by 20% from those used in the model considered in the observer). Values 

of the covariance matrices Q and in R are the same as those considered in the nominal case. 

The initialization error was also maintained. The performances of both filters are illustrated in 

figure 4.5. As it is shown, observers do not converge to the real system values at the end of 

the simulation (60 h).  

 

Figure 4.5 Extended Kalman filter and Unscented Kalman filter comparison. Estimation of cell, glucose, 

maltose and lactic acid concentrations with initialization error. 20% parameter mismatch between the real system 

model and the model used by EKF and UKF. 1% centred Gaussian white noise applied to P. 

 

0 10 20 30 40 50 60
0

2

4

C
e
ll 

(g
 L

-1
)

 

 

0 10 20 30 40 50 60
80

100

120

140

G
lu

c
o
s
e
 (

g
 L

-1
)

 

 

0 10 20 30 40 50 60
20

40

60

M
a
lt
o
s
e
 (

g
 L

-1
)

 

 

0 10 20 30 40 50 60
0

20

40

Time (h)

L
a
c
ti
c
 a

c
id

 (
g
 L

-1
)

 

 

simulated reference

EKF-estimated values

UKF-estimated values



 Chapter 4: Monitoring  

 

152 

 

Simulation results prove that the quality of the estimation by the Kalman filters tested highly 

depends on the quality of the model. This limitation is the main drawback of exponential 

observers, and specifically of the Kalman filter. Indeed, chosen values in the covariance 

matrix Q representing the model accuracy are low and then the filter tends to trust the model. 

The solution is then to increase the value of Q. However, it is difficult to guarantee the filters 

stability with high values of Q. Indeed, tuning the covariance process noise matrix, Q, while 

guarantying the filter stability can be a difficult task. Simulation results in appendix C.2 prove 

that high values in the Q matrix leads to stability problems in the Filters. 

It can be noticed that the UKF estimated values are closer to the real values than EKF 

estimated values. As the EKF method is based on the linear approximation of the system at a 

given time instant, it may introduce errors in the state estimation (Figure 4.5). The UKF 

performs better than the EKF but estimation remains dependent on the model quality. Model 

parameters must be accurately known in order to ensure the performance of the estimators. 

From this simulation study, it can be concluded that the Unscented Kalman filter is preferred 

since its implementation is easier (there is no need of model linearization) Moreover, a better 

performance compared with the Extended Kalman Filter was shown. 

Nevertheless, both estimators remain dependent on the model accuracy and it can be a 

drawback for further control design. The estimation of the lactic acid production rate is then 

proposed in this work given that its estimation can potentially reduce the complexity of the 

control design and because it is an important variable of the system. 

4.6. PRODUCTION RATE ESTIMATION 

This section focusses on the development of an estimator for the lactic acid production rate. 

The motivation is that the objective of this PhD work is to optimize the lactic acid production 

process. Thus, one measurement of the effectiveness and good performance of the process is 

the production rate defined, for a continuous operation mode, as the product between the 

dilution rate and the product (lactic acid) concentration. The production rate estimation 

approach was chosen considering the online determined lactic acid concentration. In the next 

sections different observers are proposed to estimate the production rate.  

The lactic acid production rate (denoted by  , ingL
-1

h
-1

) is defined as: 

 

  
X

Y

Y

XS

PS    (4.70) 

In the system model, the production rate is directly linked to the product concentration by: 

 

  
DP

dt

dP
   (4.71) 

Thus, the product concentration dynamics will be used to develop an estimate of .  
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It should be mentioned that due to restriction in the software for experimental validation, only 

observers with simple structures can be considered and developed. Three estimation strategies 

are therefore developed and will be presented hereafter.  

4.6.1. Numerical differentiation 

 

From the lactic acid concentration dynamics (equation (4.71)), a simple way to calculate an 

estimation of , denoted ̂  is to use the product concentration and its first order derivative: 

 

  

DPP  ̂  
(4.72) 

The first derivative P can be calculated by a backward differentiation technique. However, in 

case of noisy measurements of P, this approach can lead to a very bad estimation. A classical 

approach to avoid this phenomenon consists in filtering the noisy signal. In this work, the 

technique proposed in (Fliess, et al., 2008) was considered. It uses a moving horizon time-

integration of the noisy signal in order to reconstruct its first derivative.  

The first derivative of the product concentration is then calculated by: 

 

  
.)()2(

!3ˆ
0

3
 
T

dttPtT
T

P  (4.73) 

where [0,T] is a moving “short” time window. 

 

4.6.2. The Kalman filter 

  

In this section the linear Kalman filter principle presented in section 4.3.1 is considered in 

order to construct a linear estimator of the production rate. This approach is applied in two 

cases: constant and linear production rate models. These two cases are presented hereafter. 

Indeed, the production rate is constant at the steady state, and can be modeled by a linear 

model in the batch mode. Consequently, these two models are good candidates to model the 

real behaviour of the production rate. In addition, these models are among the simplest ones. 

4.6.2.1. Constant production rate model 

 

First, the production rate is assumed to be constant. The system to be considered for the 

estimation problem is as follows: 

 

  







0




 DPP
 (4.74) 

where is the derivative of the production rate. The observability analysis (see appendix C.1) 

was performed for the system represented by equations (4.74). The system is then represented 

by equation (4.56) with x=( P , )
T
 , u=D , y=P and Fand H defined as: 

 

  






 


0

DP
F  (4.75) 
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 01H  
(4.76) 

 As x has dimension 2, it is necessary to calculate the first two Lie derivatives as follows: 

 

  
PxL )(0 HF  

(4.77) 

 

  P(x)
x

(x)L
(x)L

n

i
i

i





 

1

0
1 F

H
H F

F  
(4.78) 

the observation space is then defined by: 

 

  
 (x)(x),L HHspan F

1  (4.79) 

From equation (4.79), the observability distribution to collect the “gradient” vector of every 
component in  is then defined as follows: 

 

  


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






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








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





Pd  (4.80) 

Using the dynamics equations of the states in equation (4.74), it was possible to determine 

that d  has rank=2. The rank conditions state that this new system is then observable. In 

order to develop the Kalman observer, this model (equation (4.74)) is first discretized. Indeed, 

the control and estimation strategies will be implemented online in a discrete form. As 

previously mentioned, the system dynamics are slow enough in comparison to the chosen 

sampling time, so that the Euler discretization scheme can be considered. Stochastic signals 

are further included in the model to take into account model uncertainties: 
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 (4.81) 

 

    k
k

k
k w

P
P 











01  (4.82) 

where Ts is the sampling time, P is the lactic acid concentration,  is the production rate, k in 

subscript represents the discrete time index, the dilution rate is discretized. v and w are the 

process and measurement noises respectively. They are assumed to be centered Gaussian 

white noises with constants covariance matrices Q and R respectively.  

The discrete Kalman filter algorithm is applied to the system (equations (4.81) and (4.82) to 

reconstruct the product concentration and production rate from the product concentration 

available online. The observer structure is illustrated in figure 4.6. 
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Figure 4.6 Kalman Filter structure for production rate estimation (constant model for  ). 

4.6.2.2. Linear production rate model 

 

Another possibility to model the evolution of the production rate with time is to consider a 

linear behaviour. This assumption is more accurate in case of a batch culture or during 

transient phase of a continuous culture. The model is in this case given by: 

 

  







0




 DPP
 (4.83) 

where is the second derivative of the estimated production rate. The observability analysis 

(see appendix C.1) was also performed for the system represented by equations (4.83). The 

system is then represented by equation (4.56) with x=( P , , )
T
 , u=D , y=P and F and H 

defined as: 
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(4.85) 

 As x has dimension 3, it is necessary to calculate the first three Lie derivatives as follows: 
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the observation space is then defined by: 

 

  
 (x)L(x)(x),L HHHspan FF

21 ,  (4.89) 
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From equation (4.89), the observability distribution to collect the “gradient” vector of every 
component in  is then defined as follows: 
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Using the dynamics equations of the states in equation (4.83), it was possible to determine 

that d  has rank=3. The rank conditions state that this new system is also observable. 

As in the previous case, the model is discretized and additive noise signals are included to 

model uncertainties: 
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In this case, the state to be estimated includes also the first derivative of the production rate. A 

discrete Kalman filter is used for the estimations in the system represented by equations (4.91) 

and (4.92).The observer structure is illustrated in figure 4.7. 
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Figure 4.7 Kalman Filter structure for production rate estimation (linear model for  ). 

 

4.6.3. Validation of observers performance in simulation 

 

In this section, the production rate estimation strategies are validated in simulation. Model 

parameters and initial conditions used for simulation are those presented in table 4.1.  

Simulations lasted 30 hours, with a sampling time Ts= 5 min. Two cases were considered: a 

constant (figures 4.8 and 4.9) and a time varying (Figure 4.10) dilution rate.  
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Results obtained with the numerical differentiation approach, the Kalman filter with a 

constant model for  (referred to as Kalman 1 hereafter) and the Kalman filter with a linear 

model for   (referred to as Kalman 2) are presented in Figure 4.8. A Gaussian white noise is 

applied to the lactic acid concentration, P, with a standard deviation of 1% (as in previous 

sections). The simulation started in batch mode (D = 0) and at 15 h and onwards, a dilution 

rate of 0.1 h
-1

 was applied. The initial value of   is calculated from the considered growth 

rate model (equation (3.29)). The covariance matrices Q and R for Kalman filter are chosen 

diagonal as follows. Kalman filter 1: Q=diag([0.01; 0.01]), R=0.01. Kalman filter 2: 

Q=diag([0.01; 0.01; 0.01]), R=0.01. These values were chosen considering the order of 

magnitude of variables in the system. The window for numerical differentiation is chosen 

equal to 20Ts (by a trial-and-error technique). 

 

Figure 4.8 Observer (production rate) performances for piecewise constant dilution rate 

 

 

Figure 4.9 Zoom on production rate estimation during the first 5 hours (on the left) and at steady state (on the 

right). 
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With the numerical differentiation method, a discontinuity is observed when the dilution rate 

changes. The two Kalman filters present better performance than the numerical 

differentiation. The zoom on the production rate (Figure 4.9) shows that the Kalman filter 1 

performs well when the dilution rate is not zero, but an offset is present when D = 0. In the 

case of the Kalman filter 2, an overestimation of the production rate occurs for the first 2 

hours of fermentation. Then, the estimated value of  is very close to the real one. In steady-

state both filters lead to quite similar performances. 

Secondly, a sinusoidal time varying dilution rate is considered (Figure 4.10) in order to test 

the performance of the three estimation strategies, even if this kind of variations is not 

necessarily realistic from the point of view of real operating conditions. In this case, no 

measurement noise was included to focus the study on the performance with respect to the 

dilution rate evolution. In addition, the estimators were initialized at 0 in order to study their 

performance with respect to initialization error. From Figure 4.10, it can be noticed the bad 

performance of the numerical differentiation strategy. This behaviour is mainly due to the 

choice of the sampling time which is not small enough in comparison to the variation of D. 

Consequently, the finite difference presents a poor accuracy. Another simulation was 

performed with a variation in the dilution rate less important than the considered in Figure 

4.10. The obtained results are presented in Figure 4.11. 

 

Figure 4.10 Observer (production rate) performances for sinusoidal dilution rate. 
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Figure 4.11 Observer (production rate) performances for sinusoidal dilution rate. Lower dilution rate variation.  

 

As it is proved in Figure 4.11, the estimation by the numerical differentiation technique 

performs better with lower variations in the dilution rate. Nevertheless, its performance is 

rather bad compared to the performances of the Kalman filters.  

The two Kalman filters reconstruct the production rate with a good accuracy. An error is 

however present but it remains small and bounded.  

From this simulation study, the estimation of the production rate from the lactic acid 

concentration is possible using a Kalman filter. Both, linear and constant models of 

production rate lead to good performances, with a slight superiority of the linear model. 

Nevertheless, the Kalman based on a constant production rate model provides the best 

compromise between performance and simplicity of implementation.  

 

4.7. CONCLUSIONS 

In this chapter the design of estimation strategies to reconstruct the state variables (glucose, 

biomass, maltose and lactic acid concentrations) of the SSPHF bioreactor was presented. 
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sodium hydroxide for pH regulation. Indeed, as the pH value in the bioreactor decreases with 

the increasing lactic acid concentration, the former must be regulated at constant value by 

adding sodium hydroxide. The considered approach exploits the online measurement of the 

sodium hydroxide inlet flow to obtain an online estimate of the lactic acid concentration. This 

approach allowed determining accurately the real lactic acid concentration in the bioreactor.  

For the online estimation of the other not measured state variables, two observers were 

proposed: the Extended Kalman Filter (EKF) and the Unscented Kalman filter (UKF). The 

latter exhibited better results in simulation as it does not require any linearization 

approximation approach. Nevertheless, both estimators are very depending on the model 

quality.  

Considering the importance of assessing the rate of lactic acid production during the 

fermentation process, the estimation of this variable from the calculated online lactic acid 

concentration was studied. Three different approaches were considered: a numerical 

differentiation method and two Kalman filters. The first Kalman filter approach considers a 

constant model for the production rate dynamics while the second one deals with a linear 

model. Simulations showed the accuracy and robustness of the proposed observers. The 

numerical differentiation method did not perform satisfactory, mainly in case of input 

discontinuities, whereas both Kalman filters performed well. The Kalman filter based on a 

constant production rate model provides the best compromise between performance and 

simplicity of implementation. It will be further implemented on the real system in chapter 5, 

combined to the control law. 
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5. CHAPTER 5: CONTROL 
STRATEGY 

5.1. INTRODUCTION 

Due to the expanding use of lactic acid the first monomer for the PLA (Poly Lactic Acid) 

production, more efficient and reliable processes to optimize its production are required. The 

process control becomes a must when trying to improve the process production operation. The 

main goals when applying control methods to this type of biotechnological processes are to 

improve operational stability and production efficiency (Ben Youssef, et al., 2005). 

Nevertheless, three main obstacles have hampered the development of modern control 

strategies in biotechnological processes: First, since bioprocesses involve living organisms, 

their dynamics are often poorly understood, strongly nonlinear and non-stationary; in 

addition, the replicability of experimental results is not guaranteed. Secondly, the 

microorganisms can suffer metabolic variations and physiological modifications over long 

operation periods resulting in a change in the model parameters values over time. Finally 

reliable sensors for real time monitoring of key variables are often lacking (Bastin & Dochain, 

1990). 

Despite these difficulties, several reference books and articles have been published during the 

last three decades. Proposed control techniques have been applied to various biotechnological 

processes such as biomass production, fermentations, anaerobic digestion, yeast production, 

penicillin production, microalgae cultures, etc. ((Pons, 1991);(Roux, et al., 1996);(Saha, et al., 

1999);(Hilgert, et al., 2004);(Mailleret, et al., 2004) ;(Marcos, et al., 2004); (Ramaswamy, et 

al., 2005); (Jenzch, et al., 2006);(Selișteanu, et al., 2007) ;(Becerra Celis, 2009)). 

In the case of lactic acid production, only few control strategies have been reported in the 

literature. Most of them concern fed batch cultures (Choi, et al., 2014) while other deal with 

continuous cultures using glucose as raw material. An adaptive on-line optimizing control 

strategy for maximizing lactic acid productivity from glucose has been proposed in (Shi, et 

al., 1990): two variables were measured online, the product and biomass concentrations.  

More generally, an adaptive predictive control strategy for regulating the biomass 

concentration in continuous fermentation processes was proposed by (Dahhou, et al., 1991). 

This predictive control scheme calculates the dilution rate from the on-line estimation of the 

specific growth rate (considered as a time varying parameter). Simulations were performed to 

demonstrate the efficiency of the control strategy.   

Lombardi (1996) proposed the regulation of lactic acid concentration in a bioprocess that used 

glucose as substrate. In this approach, the bioreactor is fed by two different inlet flows, one 

containing glucose, and other containing lactic acid. The control strategy consists in limiting 

bacteria growth by adding lactic acid at a low concentration while the glucose inlet flow is 
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maintained constant. The operational point of the bioreactor is determined to guarantee that 

the quantities of lactic acid introduced in the reactor are small. This approach was not 

experimentally validated. 

A system with two bioreactors in cascade developed to maximize lactic acid production was 

proposed in (Ben Youssef, et al., 2000) using glucose as substrate. The control approach 

considered the substrate regulation using an adaptive predictive control structure and online 

measurements of the substrate concentration. The specific rates in the model (growth and 

production rates), required for the control law, were estimated online using an asymptotic 

observer. This approach was not validated experimentally, but simulations were encouraging.  

Petre et al. (2011) further studied the previous system and proposed an indirect adaptive 

controller based on a dynamical neural network. The effectiveness of this control approach 

was proved by simulations.  

Considering the control methods for lactic acid production from wheat flour, no work has 

been reported in the literature. Nevertheless, some works concerning control strategies for 

ethanol fermentation from starch materials can be found. A control strategy for the fed-batch 

Simultaneous Saccharification Fermentation process from Starch to Ethanol (SSFSE) was 

proposed in (Ochoa, et al., 2008). The control objective was to maintain the glucose 

concentration at a quasi-equilibrium state by feeding starch into the process.  An adaptive 

approach was considered estimating the glucose consumption and ethanol production rates in 

the bioreactor from starch and glucose concentrations, the latter were supposed to be 

measured. This approach was not experimentally validated due to the lack of online sensors to 

determine sugars concentrations.  

In conclusion, most works in control strategies applied to the lactic acid production have not 

been experimentally validated due to the lack of reliable sensors. It is then interesting to study 

these aspects. This chapter focuses on the development of control strategies for lactic acid 

production from wheat flour, and their validation by experiments. After a brief control system 

description, a steady state analysis is performed in order to determine the optimal operation 

point which maximizes the lactic acid production rate. Then a linearizing control strategy is 

proposed in order to maintain the process operating at the desired optimal operation point. 

Later, an adaptive control approach is proposed in order to reduce complexity in the control 

design and improve its robustness. Finally, the experimental validation of the best control 

strategy for the process concludes the chapter. 

 

5.2. CONTROL SYSTEM DESCRIPTION 

In the first place it is important to describe the different components of the control system: 

 The SSPHF (simultaneous saccharification, proteins hydrolysis and fermentation) 

bioreactor, represented by equations (3.29) is the system that we want to control. 

 The output variable is the lactic acid concentration, online estimated through the 

measurement of the sodium hydroxide inlet flow (see section 4.4). 
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 The input or control variable is the dilution rate whose manipulation affects the output 

variable and therefore makes its control possible.  

 The control objective is to regulate the lactic acid concentration at a desired value by 

modifying the dilution rate. The goal is to attain the best performances in lactic acid 

production rate, determined from a steady state analysis further described in the 

following sections. 

Considering these statements, the next step in the development of a control law is to 

determine the optimal operation point which leads to the highest lactic acid production rates.  

5.3. STATE SPACE REPRESENTATION OF THE SYSTEM 

In order to facilitate the reading and understanding of this chapter the dynamical, system will 

be represented in the state space formalism. The dynamical model of the bioreactor is recalled 

here: 
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The set of state equations (5.1) to (5.5) will be rewritten in the state-space formalism, as a 

continuous time nonlinear dynamic system, described in the general case by: 
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xhty

uxgxftx


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 (5.6) 

 

where x(t)  n  is the state vector, u(t)   m is the control vector, y(t)   p is the 

output vector, f=(f1,f2,…fn)
T
 is a vector field of 

n  → n  and h=(h1,h2,…,hp)
T
 is a 

nonlinear vector on
 p . Equations (5.6) are the evolution and the observation equations, 

respectively. Indeed, the proposed continuous model for the SSPHF step is an affine in 

control system and can be represented in the simplified form in equations (5.6) with 

dtdxx /  , x=(X, S,M,P)
T
 , u=D, y=P. g  and f are  given by: 
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(5.7) 

 

 

  

 

(5.8) 

 

The system represented by the equations (5.7) and (5.8) will be used for the mathematic 

developments in this chapter. 

5.4. OPTIMAL CONTINUOUS OPERATION 

5.4.1. Determination of steady state variables 

 

In order to calculate the optimal operational point of the bioreactor, first, the state variables at 

steady state must be determined. In this approach, they are expressed as function of the 

dilution rate, the control variable. Indeed, as the manipulation of this variable will lead to the 

control of the bioreactor, it is important to determine the behaviour of state variables if a 

change in the dilution rate is applied.  

In steady state conditions, the dilution rate equals the growth rate defined by equation (5.5) 

leading to: 
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where D  , S  and P   are the dilution rate, glucose and lactic acid concentrations at steady 

state, respectively. As in this work high substrate concentrations (100 g/L) are used, the 

Monod term is equal to 1; indeed, the kS value in equation (5.9) is generally very low (close to 

1 g L
-1

) according to several works (Akerberg, et al., 1998)(Ben Youssef, et al., 2000). The 

simplified equation (5.10) will then be used: 
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(5.10) 

The lactic acid concentration at steady state from (5.10) can then be represented by: 

  

(5.11) 

To determine the biomass concentration at steady state, the derivative in equation (5.2) is 

cancelled giving to: 

 
X
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Y
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PX 
  (5.12) 

where X  is the biomass concentration at steady state. As D , the biomass concentration at 

steady state can be represented as a function of the dilution rate by combining equations 

(5.11) and (5.12) as follows:  
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After cancelling the dynamic term in equation (5.3), the glucose concentration at steady state 

can be obtained: 
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M
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X
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D

MK
S  0  (5.14) 

where is the maltose concentration at steady state. Equation (5.14), shows that does not 

only depend on the biomass concentration but also on the maltose concentration and on the 

dilution rate. From equation (5.4), it is possible to determine the maltose concentration at 

steady state: 
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
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By combining equations(5.15) and(5.14) the following expression is obtained: 
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Finally, from equations (5.13) and (5.16), the glucose concentration at steady state becomes: 
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From equations (5.11),(5.13), (5.15) and (5.17), all variables at steady state are expressed only 

as functions of the dilution rate. This result is important as it reduces the number of 

experiments necessary to obtain the optimal operational conditions of the bioreactor.  

The experimental results obtained in the continuous experiments presented in chapter 3 (see 

section 3.5 ) were used to validate the steady state concentrations predicted by the model. 

Figure 5.1 shows the comparison of the model and experimental results at steady state. The 

prediction is rather accurate for biomass, lactic acid and maltose concentrations. The 

agreement for glucose concentration at steady state is less satisfactory due to its production 

from other sugars (than maltose) which was not taken into account in the model. 

Each point in Figure 5.1 represents an operation point; the aim is then to determine the one 

which makes the process more performant in terms of lactic acid productivity. In the 

following the determination of this optimal operation point is presented.  

 

Figure 5.1 Modelling the SSPHF step at steady state. Comparison between experimental values at steady state 

for experiment 1 (    ) and experiment 2 (    ) with the steady state model (      ). (A) Cell concentration, (B) 

Maltose concentration, (C) Lactic Acid concentration (D) Glucose concentration.  

 

5.4.2. Optimal operation point 

 

The experimental lactic acid production rate (in g L
-1

 h
-1

) at steady state (parameter to be 

maximized), defined as P * D was calculated for each experiment described in chapter 3 

(section 3.5.1.2) and estimated by the model (equations (5.11),(5.13), (5.15)) and (5.17)) for 

the range of dilution rates between [0.04 0.24] h
-1

 (Figure 5.2). This model predicts that the 

A B 

C D 
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productivity function is concave and has only one maximal value. It is due to the product 

inhibition effect. Indeed, for high lactic acid concentrations, the production rate decreases. 

The aim is to operate the process around this maximal productivity. Experimentally, it was 

not possible to find accurately the maximal productivity for two reasons: there are only few 

experimental points and for some points the perfect steady state conditions were not ensured. 

There is a large range of dilution rates (0.1 to 0.2 h
-1

) ensuring an important lactic acid 

production rate around 2.7 g L
-1

h
-1

. Considering the parabolic shape of the steady state 

production rate as a function of D , experimental data were fitted to an inverse parabola 

(Figure 5.2.) in order to facilitate the determination of the maximal productivity.  

 

 

Figure 5.2 Modelling the SSPHF step at steady state. Comparison between experimental production rate values 

and model at steady state for experiment 1 (    ) and experiment 2 (    ). (     ) steady state model (   ) 

Polynomial fitting of experimental production rates.  

In the following, two approaches are considered in order to determine more accurately the 

optimal operation point from experimental data and model predicted values. 

5.4.2.1. Polynomial interpolation of experimental data 

 

The optimal dilution rate can be determined by fitting experimental production rates to an 

inverse parabola and by estimating the maximum of the parabolic function: 

 42.069.4413.148 2  DD  (5.18) 

where DP is the production rate at steady state defined in the dilution range [0.04 to 0.24] 

h
-1

.  The obtained parabola (     ) is presented in Figure 5.2. The maximum value of   can be 

determined by cancelling its derivative with respect to D as in the following equation: 

 
69.4413.148*20  D

Dd

d
 (5.19) 
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Optimal values of dilution rate and production rate at steady state obtained using equation 

(5.19) were 0.15 h
-1

 and 2.95 g L
-1

 h
-1

, respectively.   

5.4.2.2. Using the developed model 

 

In this approach the steady state point for the system ((5.11),(5.13), (5.15) and (5.17)) is 

determined so that the lactic acid productivity is maximized. This problem is formulated as a 

single-variable constrained optimization problem as follows: 

 

  
PDD  maxarg

*
 

s.t.  Equations (5.11),(5.13), (5.15) and (5.17) 

max0 DD   

(5.20) 

where maxD  is the maximal dilution rate allowed by the experimental setup. The solution of 

this problem was determined numerically with a golden section search algorithm (Fletcher, 

1987). Then, from the optimal value of D (denoted 
*

D  ), the optimal setpoint (
*

X  , 
*

S , 

*
P  ,

*
M  ,

*
D ) can be determined from equations(5.11),(5.13), (5.15) and (5.17).The 

optimal solution obtained with this approach is 12.0* D h
-1

and 87.2*  g L
-1

 h
-1

. 

The optimal operational point values obtained by both approaches (polynomial interpolation 

and optimization problem formulation, see table 5.1) are similar and the lactic acid 

concentration mean value is then considered in the control law implementation. From these 

results, the control objective is to regulate the lactic acid concentration at the optimal value, 

21 gL
-1

.   

 

In the following the development of control strategies to maintain the SSPHF bioreactor at the 

optimal operation point is described.  

Table 5.1 Optimal operation point in the SSPHF bioreactor.  

Steady State 
Variable 

Polynomial 
Interpolation 

Optimization 
problem 

formulation 

 
Mean Values 

*
D  

0. 15 h
-1 

0. 12 h
-1 

0.13 h
-1

 

*
X  1.3gL

-1
 1.7 gL

-1
 1.5 gL

-1
 

*
S  113 gL

-1
 107.91 gL

-1
 110gL

-1
 

*
P  18 gL

-1
 24.61 gL

-1
 21gL

-1
 

*
M  56 g L

-1
 53 gL

-1
 54 gL

-1
 

*  2.95 g L
-1

h
-1

 2.87g L
-1

h
-1

 2.9 g L
-1

h
-1
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5.5. DEVELOPMENT OF A FEEDBACK LINEARIZING CONTROL 
STRATEGY 

For the control law development and its experimental validation, constraints related to the 

software capacity of the SSPHF bioreactor were taken into account. The bioreactor is 

equipped with a C-BIO software (Global Process Concept, La Rochelle France). This 

software has a calculation interface which can be used for the implementation of a control 

law. Nevertheless, due to restriction in the software (it only works with simple algorithms), 

only a simple control strategy must be designed.  

Various conventional control techniques such as PID control law are proposed in the industry 

for the regulation of bioreactors. Nonetheless, these techniques are based on linear tangent 

model approximations or even on linear “black box models” (Bastin & Dochain, 1990). As 

we have prior knowledge of the nonlinear dynamics of the system, improved control 

performances can be designed. It can be done by the exploitation of the nonlinear structure of 

the model to solve the control design problem. In a first approach, the Feedback Linearizing 

Control will be used. Its development is presented in the next section. 

5.5.1. Feedback Linearizing Control 

 

Feedback linearization is an approach for nonlinear control design that has gained a lot of 

attention in recent years. The main idea is to algebraically transform nonlinear dynamic 

systems into (fully or partially) linear ones, so that linear control techniques can be further 

applied. In conventional control, one first calculates a linearized approximation of the model 

and then the control design is achieved using a linear controller for the approximate model. 

However, the closed loop remains nonlinear and its global stability is difficult to assess, 

maybe only valid around the linearizing point. The feedback linearization control differs from 

conventional (Jacobian) linearization because it is achieved by exact state transformation and 

feedback, rather than by linear approximations of the dynamics. In this approach a nonlinear 

controller is obtained and designed to achieve a linear closed loop model which is 

unconditionally stable. The basic idea is to simplify the form of a system by choosing a 

different state representation (Hedrick & Girard, 2010).  

Let us introduce the feedback linearizing principle for a control affine system as the one 

represented by equation (5.6) and recalled here: 

 

  

 
))(()(

)()()()(

txhty

tutxgxftx


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 (5.21) 

 

Note that u appears linearly in equation (5.21). The controller design procedure for this kind 

of system is restricted to control affine systems. To ensure that the control law can be 

determined, it is usually assumed that the vector functions, f(x) and g(x), and the scalar 

function h(x) are of class C
∞ 

(i.e. have continuous derivatives of all orders).  
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In order to calculate the linearizing control law some definitions and mathematical tools are 

recalled in the following: 

Lie derivative for the control affine system 

Consider the derivative of the output y with respect to time: 
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Equation (5.22) can also be rewritten as: 
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The Lie derivative function, )(xhL f  corresponds to the derivative of the function h(x) along 

the trajectories of the system )(xfx  . In the same way, )(xhLg is called Lie derivative of 

h(x) with respect to g(x). 

Relative degree of a nonlinear system 

The relative degree of a system represents the number of times the output y has to be 

differentiated (with respect to time) until the control input u appears explicitly. It is defined 

as: 

 

  
 0)(:min 1 

 
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gg  (5.26) 

 

If the system has a well-defined relative degree, the first r time derivatives of y can be 

represented as:  
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It can be shown that the nonlinear functions in equation (5.26) are linearly independent. If the 

system has a relative degree r=n, then it can be totally linearized and will be equivalent to n 

integrators (where n is the dimension of the state vector). This new linear model has a new 

input û and the output y. The state feedback control law is chosen as in (Isodori, 1989): 
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In the case where r<n, the system will be partially linearizable and will be equivalent to r 

integrators, using the relation (5.29).  

5.5.2. Application of the feedback linearizing control principle to our 

system 

 

First the relative degree of the system must be determined. The relative degree of the system 

is 1 as it is necessary to differentiate only once the output, y=P, with respect to time to obtain 

the input u=D explicitly: 
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As r=1, only the product concentration dynamics can be linearized. The Lie derivatives 

necessary for the determination of the control law are calculated using equations (5.24),(5.25) 

and (5.28): 
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Replacing equations (5.31) and (5.32) in equation (5.29) it is possible to obtain the control 

law for the system: 
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The linearized system in equation (5.33) is equivalent to a simple integrator as r=1. In order to 

correct slight model/process mismatches and to reject disturbances, the control signal D̂  will 

be delivered by an outer-loop by means of a Proportional controller: 

 

 

  
)(ˆ

refPPGD   (5.34) 

where G is the controller gain and Pref  is the reference product concentration. The controller 

gain is tuned to provide a desired closed-loop time response 

 

The control law in equations (5.33) and (5.34) allows tracking the reference setpoint, Pref , 

coming from the signal D̂ .The control law obtained is illustrated in figure 5.3. 
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Figure 5.3 Feedback linearizing control architecture. 

 

To implement the control strategy illustrated on figure 5.3, all states variables must be known 

online by measurement or by estimation. Since only the lactic acid concentration is available 

online, the other states must be estimated. The states observers developed in chapter 4 (see 

section 4.5), Extended Kalman filter and Unscented Kalman filter, were used to estimate the 

biomass, glucose and maltose concentrations from the lactic acid concentration.  

5.5.3. Feedback linearizing control performance in simulation 

 

As stated before, the aim of the control law is to regulate the lactic acid concentration to its 

optimal value Pref=21 g L
-1

.This value was chosen considering the optimal operation points 

summarized in table 5.1.To test the observability at this operation point, the determinant of 

the observability matrix( d )was determined (see 4.5.1). This was possible as d  for the 

present system is a square matrix: 
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where the observation spacewas defined by equation (4.63) and recalled here: 

 

  
 (x)(x),L(x),L(x),L HHHH FFF

321   

The system is non-observable if det( d )=0. Moreover, small values of det( d ) imply weak 

observability since the observability matrix is close to singularity (Magni et al., 2009). The 

observability is then considered along predicted trajectories for X , M , S , P and D . The 

model parameters obtained in chapter 3 (see Table 4.1) were used to determine the 

determinant of the observability matrix. At the optimal equilibrium point, det( d ) is found 

equal to 2.25×10
-11

, very close to zero. The same test was done for various equilibrium points 

and parameter values. The det( d ) value was always as low as the value obtained with the 

optimal operation point. It means that even if the system is completely observable, it is 
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weakly observable. Thus, observers of state variables from P values available online can be 

not very accurate, depending in the considered operating conditions. Nevertheless, the 

performance of both developed state estimators coupled to the control loop was tested in 

simulation. 

Three control laws were tested and compared. The first one considers the classical feedback 

linearizing controller given by equations(5.33)and (5.34)(referred to as Ideal), where all state 

variables are assumed to be measured online. It is important to notice that even if all states are 

measured online, the control law in equations(5.33)and (5.34) depends on values of 

parameters YPS,YXS and μmax. Then, a prior knowledge of these parameters is required for the 

determination of the control law. In the second control law, the feedback linearizing controller 

is coupled to the EKF referred to as control EKF (see section 4.3.2). In the last control 

strategy, the state estimation is performed using the UKF estimation, referred to as control 

UKF (see section 4.3.3).  

Initial values considered for the real system differ from those used in the EKF and UKF 

estimators in order to highlight the estimator robustness with respect to initialization errors. 

Simulations consider a random 20% non-correlated parameter mismatch in the real system 

(parameters of the real process differ from those used in both estimators and in the control 

law). This helps to test the robustness of the estimation and control law with respect to model 

mismatch.A Gaussian white noise is added to the output, the lactic acid concentration P, with 

a standard deviation of 1%. 

The EKF and UKF tuning parameters are those chosen for the observers performance 

simulations (see section 4.5.3). Model parameters and initial conditions were presented in 

tables 3.6 and 4.1. The maximal dilution rate, Dmax,was fixed to 0.4 h
-1

 and the proportional 

controller gain was chosen as G=6h
-1

. This gain value was chosen considering that the 

feedback linearized control law is equivalent to an integrator (leading to a closed-loop system 

with transfer function that equals 1/(1+s/G), where s is the Laplace transform); and that the 

desired response time was chosen equal to 0.5 h (leading to 3/G=0.5). 

Obtained results when applying the three control laws are presented in figure 5.4. When the 

fermentation starts, the bioreactor operates in batch mode in order to increase the lactic acid 

concentration. Once this concentration is close to the desired set point, a feed is introduced in 

the bioreactor in order to dilute the product concentration and maintain its value at the desired 

optimal point. The set point is reached after about 10 h with good transient behaviour. It can 

be noticed that the noise on the lactic acid estimation leads to some fluctuations on the control 

input. This phenomena could be reduced by filtering the output.  

The comparison of the “ideal” trajectory (obtained with the Ideal control) with those obtained 
with the controller coupled with EKF and UKF shows that the three trajectories are very 

close. In all cases, the control law leads to a slight steady error (see zoom in figure 5.4). This 

is due to the parameter mistmatch. It is important to highlight that even in the “control ideal” 
approach, an offset due to the error in the parameters used in the control law (equation (5.33)) 

is observed. This offset can be corrected by the implementation of an integral controller in the 
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outer-loop of the control strategy.Generally, in this case an anti-windup device is also 

necessary because of control input saturation (Gonzalez, et al., 2014). This has not been 

reported here since this strategy, as mentioned later, has not been implemented in the 

bioreactor. Nevertheless, good performances were obtained with the proposed control laws 

including EKF or UKF. In the case of EKF, an offset of 0.2 g L
-1

in the set point tracking is 

observed, while the control law using the UKF provides an offset of only 0.004g L
-1

. 

 

 

Figure 5.4 Control law performances for reference tracking. Feedback linearizing control. Product concentration 

and dilution rateversus time. 
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The state variables predicted by the real model (without parameter mistmach) and their 

estimated values obtained from the EKF and UKF estimators are compared in figure 5.5. The 

UKF better estimates the biomass concentration than the EKF one. The EKF biomass 

concentration estimate diverges at the end of the simulation. The glucose concentration 

estimations by UKF are closer to the real values than those obtained by EKF. The estimations 

of maltose concentration by both approaches are good and converge to the real value. It 

should be noticed that even if some of the state variables are not well estimated by the 

observers, the regulation of the lactic acid concentration is rather good with both estimators.  

In conclusion, the control loop with the UKF filter shows better performances than the control 

law with EKF. Nevertheless considering the complexity of the UKF algorithm and as the 

bioreactor software for experimental validation is limited, the development of a simple 

control strategy is desired. In the next section the control approach is modified considering 

the experimental validation device and its capacities.  

 

Figure 5.5 State variables evolution with time. Model and initial state values mismatches between the real 

system and the considered model. 
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5.6. ADAPTIVE CONTROL STRATEGY 

As it was presented in the feedback linearizing control development in section5.5, the control 

design problem was solved by algebraic manipulations of the general dynamical model of the 

system. Nevertheless, the design was carried out assuming that the kinetics were known 

exactly which is not the case in this work. Moreover, in order to implement the feedback 

linearizing control, online estimators of the non-measured states were developed. However, in 

the state estimation, the quality of the estimate is not only related to the assumptions on 

uncertainty in the model and the parameters, but also to the convergence rate of the observers 

(Picó, et al., 2009). The simulation results showed that the observers proposed for the states 

estimation are very dependent on the model (see figure 5.5). Moreover as the system is 

weakly observable, this means that it is difficult to assure the good performance of the 

observers and consequently of the linearizing feedback control law.  

To improve this, it is possible to consider other types of potential variables to be estimated, in 

particular kinetic rates. When this approach is considered in the control loop, the controller 

obtained is called an adaptive controller because it has the potential to adapt itself to 

variations in the kinetics (Bastin & Dochain, 1990). Considering the production rate 

estimators developed in chapter 4 (see section 4.6), an adaptive control strategy including this 

estimator is proposed to track the reference set point. This approach can reduce estimator 

errors and allows obtaining a controller less sensitive to model accuracy. The control design 

considering this approach is presented in the following section. 

5.6.1. Adaptive control design 

 

In order to reduce the control dependency on the model quality, an adaptive control strategy, 

where only the production rate is online estimated, is proposed. By introducing   (defined by 

(4.70)) in equation (5.33), and replacing   by its estimate ̂ ,  the control law leads to: 

 

  
 ̂ˆ1

 D
P

D  (5.35) 

where D̂   is the control signal and is still given by(5.34), ̂ is the estimated production rate. 

The production rate was previously defined by equation (4.70) and is recalled here: 

 

  
X

Y

Y

XS

PS     

For the estimation of the production rate, ̂ , two Kalman filter showed good performances in 

simulation (see section 4.6.3). In the first Kalman filter approach, the estimation of the 

production rate was assumed to be constant: 

 

  







0




 DPP
  

where is the derivative of the production rate. In the second Kalman filter, the evolution of 

the production rate with time was considered to be linear. The model is in this case given by: 
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The advantage of the obtained adaptive controller (coupled to one of these Kalman filters) is 

that the estimation algorithm is simplified, and the controller (5.35) does not involve any 

growth model, leading to a more robust control strategy than the feedback linearizing control 

law (5.33). Moreover, the stability of the resulting closed-loop system can be proved as 

detailed hereafter: 

The demonstration of the stability of the control loop(Gonzalez, et al., 2001)was performed 

with the following assumptions:  

 All concentrations have finite values. 

 Only the lactic acid concentration is available online. 

 The functions for the model coefficients are bounded and unknown. 

 The observer used for the estimation of the production rate leads to a bounded 

estimation error. 

 The stability analysis is performed for the continuous operation, D>0.  

From equations (5.34) and (5.35) the linearizing controller is: 

 

  
 ̂)(

1
 PPG

P
D ref  (5.36) 

Renaming the regulation error as:  

 

  
)(

~
refPPP   (5.37) 

From equations (5.2)and (5.36), the dynamics for the regulation error is then: 

 

  
~~~  PGP


 (5.38) 

where~ is the estimation error of the production rate(  ˆ~  ) and P
~

is the derivative of 

the regulation error. Solving(5.38)leads to: 

 

  
 dtGGtPtP

t

)(~))(exp()exp()0(
~

)(
~

0

   (5.39) 

where )0(
~
P  is the initial condition for )(

~
tP .  

 

Taking the absolute value of (5.39) we obtain: 

 

  
 dtGGtPtP
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And when t : 
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Let  )(~max~  m
 be the maximum value of )(~    (this maximum value exists from 

the bounded estimation error assumption), then: 
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leading to: 

 

  G
dtP

t

m
~

)(
~

lim 
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 (5.43) 

 

Thus, the steady error of the proposed controller is bounded. This error could be reduced by 

increasing the value of G. 

The estimation error of both production rate Kalman filters (proposed in chapter 4, section 

4.6) is bounded in our case. Thus, if any of these observers is implemented in the control 

loop, it leads to a stable controller. In the following, their performances in the control loop are 

tested in simulation.  

5.6.2. Adaptive control law performance in simulation 

 

Considering the good performance of the two Kalman filters proposed in chapter 4 (see 

section4.6.3) to estimate the production rate from the lactic acid concentration available 

online, they were chosen to be implemented in the adaptive control loop. The control strategy 

(5.36) is then studied in simulation. Performances of this strategy with both estimators are 

compared to those obtained by the classical state feedback control strategy given by (5.33) 

and (5.35), referred to as Control Ideal. In this case, the state variables are assumed to be 

available online. The control loops coupled with the Kalman filters are referred to as Kalman 

1 for the Kalman filter with the constant  model and Kalman 2 for the Kalman filter with 

linear model for . The control objective is the regulation of the lactic acid concentration at 

its optimal value. For simulations, the optimal operation point was chosen considering the 

optimal values presented in table 5.1. The lactic acid concentration was then regulated at 

21 g L
-1

. In order to test the robustness of the control laws with respect to model mismatch, a 

30% non-correlated parameters mismatch is applied to the real system (parameters of the real 

process are different by 30% from those used in the model considered in the control law). The 

performances of the control laws are illustrated on figure 5.6. The simulation parameters are 

the same asthose previously presented(see tables 3.6 and 4.1).The maximal dilution rate, 

Dmax,was fixed to 0.4 h
-1

 and the proportional controller gain was chosen as G=6 h
-1

. A 

Gaussian white noise is applied to the lactic acid concentration, P, with a standard deviation 

of 1%. 
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In all cases, at the beginning of the fermentation, the dilution rate is null: the fermenter 

operates in open-loop which corresponds to a batch operation. Once the product concentration 

reaches its reference value, the dilution rate is increased in order to maintain the lactic acid 

concentration constant and equal to its reference value.  

 

 

Figure 5.6 Adaptive control law performances for reference tracking. Product concentration, dilution rate  and 

production rate versus time 
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The set point is reached after 10 h of fermentation with a good transient behaviour. As shown 

in Figure 5.6, a steady state error is noticed using the control strategy “Control Ideal”. It is 
due to the parameter mismatch. Indeed a prior knowledge of model parameters is necessary to 

determine the control law (see equation (5.33)). Again, this steady error could have been 

corrected by the implementation of an integral action in the outer-loop (Gonzalez, et al., 

2014). The performance of both adaptive controllers (Kalman 1 and Kalman 2) is satisfactory. 

There is no steady error using the adaptive control strategy. It should be pointed out that these 

controllers are robust with respect to model mismatch since they do not use the growth model. 

As the adaptive controller performances are similar by using the constant   model (Kalman 

1) or the linear model (Kalman 2), the former is preferred as its practical implementation for 

experimental validation is easier and its performance in the control loop is slightly better. 

Globally, the proposed adaptive controller shows equivalent (in the nominal case) or better 

performances than the feedback linearizing control with all states supposed to be measured 

since the uncertain variable   involved in the linearizing law is online estimated. In addition, 

including the estimation of state variables in the ideal control could lead to worse 

performances, as it was observed in the section (5.5.3). The proposed control strategy presents 

a good transient response with good accuracy and robustness. 

 

5.7. COMPARISON OF THE CONTROL STRATEGIES 

In this section, estimators with the best performance in each control strategy are compared. In 

the feedback linearizing control approach, the control loop coupled to the Unscented Kalman 

filter estimating the state variables showed the best performances. Moreover its 

implementation is easier than the EKF one as there is no need of model linearization. In the 

adaptive linearizing control approach, the two developed strategies (with different model for 

the production rate dynamics) showed similar performances. Nevertheless, the Kalman filter 

with the constant model for  is preferred to the linear model approach, as its implementation 

is easier. The next step is to compare the performance of each control strategy to choose the 

one which will be experimentally validated. The simulation conditions are the ones presented 

in tables 3.6 and 4.1.In order to test the robustness of the control laws a 30% non-correlated 

parameter mismatch was considered between parameters used to simulate the real system and 

those used by the control laws. Figure 5.7 shows the performance of both control strategies.  

The adaptive control law leads to a better tracking of the set point. The set point value is 

reached with a good transient behaviour and without steady error. This controller is robust 

with respect to model mismatch. The controller with the linearizing control loop coupled to 

UKF leads to an offset with respect to the set point. It proves its dependency on the model as 

this control law uses the growth model to determine the control. However, the offset observed 

is low and bounded. The advantage of the feedback linearizing controller where all states are 

estimated with respect to the adaptive controller is that it allows determining the state 

variables values online. It is important for the process monitoring. Nevertheless, the state 

estimation needs an accurate model to give good estimates of state variables. In the 
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perspective of experimental implementation, given the simplicity of the adaptive control law 

structure, and as it showed better performance for reference tracking, it was chosen for 

experimental validation in the bioreactor. In the following section the experiments performed 

to validate the control law are described. 

 

 

Figure 5.7 Control laws performances for reference tracking. Product concentration and dilution rate versus 

time.  

5.8. EXPERIMENTAL VALIDATION OF THE CONTROL LAW 

The experimental validation of the adaptive control strategy was performed in the 5 L 

bioreactor described in section 3.5.1.1. For the implementation of the control law, the C-BIO 

software (Global Process Concept, La Rochelle France) was used as detailed later. The 

control objective is to regulate the lactic acid concentration to its optimal value. The 

performance and robustness of the adaptive control strategy are evaluated in a SSPHF 
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experiment in continuous mode. In order to simulate a real process (starting in batch 

operation) the initial lactic acid concentration was chosen as null. Only ascending changes in 

the set point were considered. The control performance is evaluated comparing the online 

calculation of lactic acid concentration with offline lactic acid concentration measurements. In 

the following a description of the validation experiments is presented. 

5.8.1. Control law implementation 

 

For the control validation, the C-BIO software (Global Process Concept, La Rochelle France) 

was used.The feature used for the control implementation is the calculation module (see 

appendix D.2. for further information) which performs calculations using the values recorded 

by the system as well as constant values. The calculations can only be constructed using 

operators and functions similar to those found in Microsoft Excel. Due to this restriction, a 

simple control law is more convinient for implementation in the software. Thus, the adaptive 

control strategy with the constant  model was implemented as detailled in appendix D.2. 

After the implementation of the control law, the experiment described in the following section 

was performed. 

5.8.2. Experiment description 

 

The materials and methods concerning the inoculum preparation, liquefaction, SSPH, SSPHF, 

wheat stock and analyses are those presented in chapter 3 (see section 3.5.1). The liquefaction 

and SSPHsteps are performed in batch mode. After inoculation, the control is activated in 

order to regulate the lactic acid concentration.A 12 L bioreactor was used to produce the 

wheat stock solution necessary to feed the continuous process. The regulation of temperature, 

pH, agitation, feed flow and liquid level was assured by Baie inox controllers. Two set points 

for the lactic acid concentration were tested during the experiment, the first one at 20 g L
-1

and 

the second one at 27 g L
-1

; they were chosen after the optimal lactic acid concentration 

obtained by modelling and by experimental fitting (21 g L
-1

) (see table 5.1). At the end of the 

experiment, a temperature perturbation was applied to the system in order to test the 

robustness of the control law. 

5.8.3. Experimental results 

5.8.3.1. Adaptive control law performance 

 

A 56 h experiment was performed in order to validate experimentally the adaptive control law 

for two different set points of lactic acid concentration (20 and 27 g L
-1

). The control is 

activated after inoculation; this means that all calculations started immediately after addition 

of cells to the fermenter. Experimental results are presented in figure 5.8.  
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Figure 5.8. Adaptive control law experimental validation. A Lactic acid concentration evolution with time. Pref 

1= 20g L
-1

(      ), Pref 2= 27 g L
-1

 (      ), lactic acid concentration available (      ) and lactic acid offline 

measurement (   ). B Dilution rate evolution with time. C Estimated production rate. 

The first setpoint was fixed to 20 g L
-1

. After inoculation, the control law behaviour is to 

operate in batch mode to increase the lactic acid concentration. The set point is reached after 

10 h then the reactor starts to operate continuously (the dilution rate is increased) in order to 

maintain the lactic acid concentration constant and equal to 20 g L
-1

. No overshoot of the set 

point is observed. It can be noticed that the noise on the lactic acid concentration available 

online is higher than the one predicted in simulation. This leads to fluctuations on the dilution 

rate (control input). This phenomenon could be reduced by filtering the output, as proposed in 

the section Conclusions and Perspectives. The offline lactic acid concentration measurements 

are in good agreement with those calculated online, proving a good performance of the lactic 

acid estimation from the sodium hydroxide flow.  
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At 26 h the setpoint was changed from 20 g L
-1

 to 27 g L
-1

. Then, the reactor operates in batch 

mode in order to concentrate lactic acid. Once the lactic acid concentration reaches the new 

setpoint, the dilution rate is increased. This time, the mean of dilution rates calculated by the 

control law are lower than those calculated during the first phase with a setpoint of 20 g L
-1

. 

Concerning the production rate, in the first phase (setpoint =20 g L
-1

) it is around2.6 g L
-1

h
-1

. 

In the second phase (setpoint= 27g L
-1

), it slightly decreases and at the end is equal to 2.1 g L
-

1 
h

-1
. It proves that the optimal lactic acid concentration is closer to 20 g L

-1
than to 27 g L

-1
. 

 

5.8.3.2. Adaptive control law robustness analysis 

 

In this section, the robustness study of the adaptive control law with respect to disturbances is 

presented. Experimental results are summarized in Figure 5.9. At t=17 h, for a setpoint equal 

to 27 g L
-1

,a temperature disturbance was applied. The temperature in the fermenter was 

modified from 30°C to 20°C until the end of the experiment. The study of the effect of the 

temperature on lactic acid production is presented in appendix D.2. These experimental 

results show that the lactic acid productivity at 20°C is four times lower than the one obtained 

at 30°C. Figure 5.9 shows that the control law is robust with respect to this important 

temperature reduction. Despite the disturbance, the control law regulates and stabilizes the 

lactic acid concentration at its reference value reducing the dilution rate. From figure 5.9, the 

online calculation of lactic acid concentration slightly decreases after the disturbance moment. 

The control acts immediately to maintain the lactic concentration at the desired value and 

after that, both lactic acid concentration and dilution rate stabilize. On the other hand, the 

lactic acid production rate decreases considerably after the disturbance proving that this 

temperature reduction affects significantly the lactic acid production, as expected. In 

conclusion, the developed adaptive control strategy performs satisfactory with respect to 

changes in the set point as well as to temperature disturbances. Results prove that this control 

strategy allows regulating the lactic acid concentration at the desired value. Moreover the 

online estimation of the lactic acid production rate is possible.  

 

From experimental results (Figure 5.8) it was found that the optimal operation point is around 

20 g L
-1

, leading to a lactic acid production rate of 2.6 g L
-1

 h
-1

. 
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Figure 5.9 Adaptive control lawrobustness study. A Temperature disturbance. B Lactic acid concentration 

evolution with time. Pref 2= 27g L
-1

 (      ), lactic acid concentration available online (     ) and lactic acid 

offline measurement (    ). C Dilution rate evolution with time. D Estimated production rate. 

 

5.8.3.3. Validation of the bioprocess monitoring 

 

Experimental results obtained with the validation experiment of the adaptive control law were 

used to validate the biomass, glucose and maltose concentration estimators, EKF and UKF. 

Indeed, knowing the variables concentrations can be relevant for the process monitoring. Two 

estimation approaches were studied in section 4.5.3, the Extended Kalman Filter and the 

Unscented Kalman Filter. In this section, the observers performance is evaluated comparing 

the state variables estimations from the lactic acid concentration available online with offline 

biomass, glucose and maltose concentrations measurements. Results are presented in figure 
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5.10.The filters parameters were those used for simulation tests (see section 4.5.3). This 

results show that the biomass concentration is not accurately estimated by any of the 

estimators. At the beginning, UKF shows better performance but in the last 5 h, there is a 

significant offset between experimental and estimated values. On the other hand, the EKF 

estimated values are closer to the real ones at the end of the simulation. These results prove 

once again that the estimators tested are dependent on the model. Concerning the glucose 

concentration, estimations by both approaches are rather good considering that the model is 

not accurate (it does not consider the glucose produced from other sugars than maltose). The 

UKF estimations of glucose concentration are closer to the real values than the EKF 

estimates. The maltose concentration is more accurately estimated by UKF than EKF. In 

conclusion, considering the complexity of the model considered in this work, the estimations 

of the key variables of the process are rather good, especially by the UKF approach. Further 

work remains necessary to improve the state variables estimation.  

 

Figure 5.10 Estimators experimental validation from lactic acid concentration available online. Comparison with 

experimental data from adaptive control law experiment. 
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5.9. CONCLUSION 

In this chapter the development of control strategies for the SSPHF continuous process was 

described. The following considerations were taken into account to design the control 

strategy: the dilution rate was chosen as the control variable; the lactic acid concentration was 

the output variable which was available online; the final goal of the control law was to 

optimize the bioprocess by maximizing its productivity. Therefore, the lactic acid 

concentration was regulated to an optimal value which maximizes the lactic acid productivity. 

For the determination of this optimal value, corresponding to an optimal operation point, first, 

a steady state analysis of the system was performed. System variables at steady state were 

then expressed as a function of the control variable (dilution rate), Then, the optimal operation 

point was determined from experimental data and using the steady state study of the process. 

The next step was to develop control strategies to regulate the lactic acid concentration at the 

desired value. In the first approach, a feedback linearizing controller was proposed to track 

the reference set point, requiring the online measurement or estimation of all state values. A 

proportional controller was added in the outer loop in order to obtain a desired closed-loop 

time response. The estimation of state variables not measured online was tested using two 

observers proposed in chapter 4: the Extended Kalman Filter (EKF) and the Unscented 

Kalman filter (UKF). This latter exhibited better results in simulation as it does not require the 

linearization approximation approach considered by the EKF. Nevertheless, both estimators 

are very dependent on the model quality. Thus, in order to avoid the model dependency and 

reduce the control law complexity, a second approach was considered.  

In the second control strategy an adaptive controller was developed including only the 

estimation of the lactic acid production rate. Two Kalman filters estimating the lactic acid 

production rate were implemented in the control law. The first one considers a constant model 

for the production rate dynamics and the second one a linear model. Simulations showed the 

accuracy and robustness of the proposed control strategy. Both Kalman filters performed well 

but the former was preferred as its implementation in the bioreactor software was easier.  

Performances of the feedback linearizing controller with UKF and the adaptive controller 

were compared. Simulations considered a 30% non-correlated parameter mismatch between 

parameters used to simulate the real system and those used by the controllers. An offset with 

respect to the set point was noticed with the feedback linearizing controller with UKF while 

the adaptive controller tracked accurately the reference set point as it was not impacted by the 

model parameter mismatch. The adaptive controller was then chosen to be experimentally 

validated due to its good performance and easier implementation.  

The adaptive control strategy was then experimentally validated in a continuous SSPHF 

bioreactor. Results proved the good performance of the adaptive control strategy. The lactic 

acid concentration was regulated at two different set points with accuracy, good transient 

behaviour and without overshoot. The robustness of the control law was proved when a 

temperature disturbance was introduced in the system. Finally, the EKF and UKF estimations 
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were also experimentally validated using lactic acid concentration available online. The UKF 

performance was rather good considering that this estimator is very dependent on the model 

and that the system is weakly observable. However, further work is required to improve the 

estimator performance.  
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CONCLUSIONS AND 
PERSPECTIVES 

 

CONCLUSIONS 
 

This work aimed at maximizing the lactic acid production from wheat flour by a 

Lactobacillus strain in order to meet the SouffletGroup goal of optimizing this bioprocess.  

According to Soufflet industrial policy, involving the use of cereal-based ingredients to 

replace chemical-based ones in the production of value-added products, wheat flour was 

chosen thanks to its low cost and its potential ability to bring all the nutrient needs for the cell 

growth and lactic production. The maximization of the productivity was successfully 

accomplished if we compare the lactic acid productivities obtained by the process used by 

Soufflet at the beginning of this PhD work and those obtained by the process and control 

strategy developed here. Indeed, the productivity was increased two fold. 

 

This work was performed in three main steps:  First, the optimization of the lactic acid 

production process (medium and reactor’s operation mode) was considered. The second step 

concerns the development of a mathematical model to better understand the dynamics taking 

place in the bioreactor. In the last step, a control strategy to regulate the lactic acid 

concentration at its optimal value was developed. In the following the main conclusions 

obtained for each step are summarized. 

Process optimization (Chapters 1 and 2) 

 

Wheat flour transformation to lactic acid involves enzymatic reactions that make available the 

nutrients for the microorganisms. In the conventional process, the starch contained in wheat 

flour is first transformed into oligosaccharides (mainly maltose) in a liquefaction step 

followed by saccharification where maltose is transformed into glucose; in the last step, 

glucose is fermented to lactic acid. 

 

The process optimization of this work started from the lactic acid production process 

proposed by the Soufflet Group which comprises three steps: Liquefaction, pre-

saccharification and simultaneous saccharification and fermentation. The considered aspects 

were the ability of wheat flour to meet the needs of bacteria (especially the nitrogen ones) 

without further supplementation and the possibility to minimize the number of the process 

steps. 

A first study confirmed the capacity of the culture broth to fulfill all the nitrogen needs of 

lactic acid bacteria, by hydrolysis of the insoluble protein fraction of wheat (gluten) into 

amino acids. It led to the choice of Prolyve NP among several industrial proteases. 
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In conclusion, an innovative process was proposed consisting of two major steps following 

the classical liquefaction one giving mainly maltose:  

 A simultaneous saccharification and proteins hydrolysis (SSPH), in which maltose and 

gluten are only partially hydrolyzed into glucose and amino acids respectively; 

experiments in a 5 L bioreactor attested the feasibility of the operation and lead to the 

choice of its reaction time (6 h). 

 A simultaneous saccharification, proteins hydrolysis and fermentation (SSPHF) in 

which the remaining maltose and gluten were hydrolyzed simultaneously with the 

fermentation; the feasibility of this step was also confirmed by experiments performed 

in a pilot bioreactor. This step was identified as the limiting step of the process  

In addition a literature survey allowed choosing the best operation mode for the process, the 

continuous mode, due to its greater industrial feasibility, improved productivity and its 

potential for the control design. The modelling and control development were thus devoted to 

the SSPHF step as it was the limiting step in the process and operating in continuous mode. 

Modelling (Chapter 3) 

 

The modelling approach to describe the microbial behaviour was based on an unstructured 

model that by definition, does not involve any physiological characterization of the cells. 

Thus only the total cell concentration was considered. First, a literature survey on modelling 

of lactic acid production was used to establish the basis for the model development. Then the 

main phenomena affecting cell metabolism (growth and lactic acid production)were studied in 

batch experiments.  

 

Later the SSPHF continuous model was developed. The model considers four dynamical 

equations describing bacteria growth, glucose and maltose consumption and lactic acid 

production. For modelling, the amino acids dynamics was not taken into account. In the 

equation used to describe the growth kinetics, glucose was considered as the limiting 

substrate. Moreover, an inhibition factor associated to lactic acid was also included in this 

kinetics. The enzymatic transformation of maltose into glucose was also introduced in the 

modeling approach. Although glucose may be produced by various sugars presented in the 

wheat, maltose was the sole sugar taken into account in the glucose dynamics. The model 

describes then the variables (maltose, glucose, lactic acid and biomass) behaviour in the 

SSPHF bioreactor.  

 

Due to the model complexity and strong nonlinearities, an identification strategy was 

developed in order to determine the model parameters. First, the most influential parameters 

were determined through a sensitivity analysis. Then some model parameters particularly 

difficult to identify were fixed at values found in the literature or given by simulation tests. 

Finally, a well-structured identification strategy was proposed. The parameters involved in 

cell growth, substrate consumption and product formation were determined and ultimately 
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validated via experimental data obtained in continuous SSPHF experiments. A good 

agreement was found between the model and the experimental data. 

Monitoring (Chapter 4) 

 

Due to the lack of reliable sensors to measure online the key variables in the system, 

estimators were developed as they would be necessary for a further control design. In a first 

step, an online sensor to determine the lactic acid concentration was developed. This estimator 

calculates the lactic acid concentration from the online measurement of the sodium hydroxide 

inlet flow (necessary to regulate pH at a constant value). This approach allowed accurately 

determining the lactic acid concentration in the bioreactor in real time.  

 

The other key variables of the system (biomass, glucose and maltose concentrations) that 

cannot be measured and are required for the process monitoring were estimated online by two 

observers based on the Kalman Filter principle: The Extended Kalman Filter (EKF) and the 

Unscented Kalman filter (UKF). The latter does not require the linearization approximation 

approach considered by EKF. As a result UKF exhibited better results in simulation. 

Nevertheless, both estimators are very depending on the model quality.  

The lactic acid production rate was estimated from the lactic acid concentration available 

online as it is indeed a measure of the process productivity. For lactic acid production rate 

estimations, three different approaches were considered: a numerical differentiation method 

and two Kalman filters. The first Kalman filter approach considers that the production rate 

dynamics is constant and the second one considers a linear behaviour. The numerical 

differentiation method did not give good results estimating the production rate. In contrast, 

both Kalman filters showed good performances. 

Control strategy (Chapter 5) 

 

The main objective in developing a control method for the SSPHF continuous bioreactor was 

to improve operational stability and efficiency of lactic acid production. Minimal prior 

modelling and on-line estimation were the basis of the development of control strategies. The 

first step to construct a control law was to determine the optimal operation point which 

maximizes the lactic acid productivity; the control objective would then be to operate the 

process around this point. The optimal operation point was determined using experimental 

data and the model developed in chapter 3. 

 

The next step in the development of the control strategy was to establish the control objective. 

As the process purpose is to produce lactic acid with high productivity, the control was 

conceived to regulate the lactic acid concentration at its optimal value by modifying the 

dilution rate. Based on the control affine property of the system, a feedback linearizing 

controller was considered in the first place. This approach requires the online measurement or 

estimation of all state variables. Observers developed in chapter 4 for state variable estimation 

(EKF and UKF) were implemented in the feedback linearizing control law. Their 
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performances (in the state variables estimation) were rather good, at least in simulation. 

Finally, due to the dependency of both estimators on the model quality another approach was 

considered as an alternative strategy. 

An adaptive controller with the lactic acid production rate as the sole estimation was 

considered in the second step. This adaptive control strategy showed better performances in 

simulation than the feedback linearizing control approach. Moreover, the adaptive controller 

is robust with respect to model mismatches and its implementation in the bioreactor software 

is easier. This adaptive controller was then chosen to be experimentally validated in the 

continuous SSPHF bioreactor. Ascending steps tests proved the efficiency and accuracy of the 

control law. The lactic acid concentration was well regulated at two different set points. The 

set points were reached with good transient behaviour and without overshoot.  

The robustness of the control strategy was studied with respect to temperature perturbations. 

Results proved that the control can adapt itself to variations in the production rate after a 

perturbation. Finally experimental data obtained with these final control validation 

experiments were useful to validate the state variables estimators EKF and UKF. The UKF 

showed the best performances. Nevertheless, a further study on the parameters tuning must be 

performed in order to obtain better estimates of the state variables.   

PERSPECTIVES 

The results presented in this PhD work reveal many interesting perspectives. They are 

summarized in the following sections.  

Medium optimization 

 

Concerning the medium optimization, various approaches can be considered to maximize the 

lactic acid productivity.  

 

The wheat concentrations used in this work are significant leading to high initial glucose 

concentrations at the end of the SSPH step, in order to avoid glucose exhaustion during the 

SSPHF step. This approach allowed the identification of some phenomena as lactic acid 

inhibition effect on growth. Nevertheless, considering that the optimal lactic acid 

concentration is around 20 gL
-1

, with the conditions considered in this work, the glucose 

concentration in the output flow is very high as only a small part of glucose is transformed 

into lactic acid. Moreover, the glucose is consumed and produced at the same time in the 

bioreactor, thus its output concentration is similar to its concentration in the inlet flow (around 

100 g L
-1

). If not reused, the substrate, highly concentrated in the output flow of the reactor, is 

wasted. This may negatively impact the economy of the process. It is then important to try to 

reduce its concentration in this flow. To do so, a study of the wheat concentration in the 

culture medium can then be performed. It should be pointed out that the diminution of wheat 

charge in the broth solution must be performed carefully. Indeed, the proteins hydrolysis 

study was performed for a culture medium containing high levels of wheat, thus the 

diminution of the wheat charge can lead to lower performance in the hydrolysis of gluten. A 
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more detailed kinetic study of the SSPH and SSPHF steps must then be performed in order to 

find a good compromise between a low wheat concentration (leading to a lower initial glucose 

concentration) without altering considerably the availability of nitrogen substrates in the 

medium. 

Another disadvantage of a very concentrated wheat solution is related to hydrodynamic 

problems. The residence time distribution study showed that the bioreactor operating in 

continuous mode has a dead volume of 9%. It is due to the high wheat concentration in the 

culture medium leading to a significant viscosity and to the reduced agitation speed. Thus 

decreasing the wheat concentration in the culture medium will reduce its viscosity and 

improve mixing, which will be especially useful for larger fermenters. Moreover, the dead 

volume in the fermenter can be reduced by increasing agitation inside the vessel, but resulting 

in the same time in an increase of energy consumption. 

Modelling 

Further experiments could be planned in order to improve the identification strategy of the 

model parameters. Indeed more data must be available in order to identify limiting or 

inhibition phenomena on growth, other than those taken into account. Experimental results 

showed that the glucose production from other sugars than maltose is almost 10% of the total 

glucose quantity, thus it can be interesting to introduce a term considering this phenomenon in 

the glucose dynamics.  

The identification of KS and n growth parameters can be considered using a more rigorous 

approach. To do so, the improvement of the biomass concentration measurement must be 

considered. Indeed the cell count technique leads to high uncertainty and highly depends on 

the experimental procedure used for the measurement (i.e. samples dilution, person counting, 

etc). Moreover this technique is time consuming and often provides an overestimate of the 

number of cells due to their unequal distribution in the medium or the presence of damaged or 

non-cultivable cells. Some techniques to measure the biomass concentration online are 

available. They include biomass probes based on near infrared (NIR) light absorption or 

dielectric spectroscopy (Kiviharju, et al., 2007). Nevertheless, considering the complex 

culture medium used in this work, only the dielectric spectroscopy probe seems convenient. 

The implementation and improvement of this type of technique should be further studied.  

It will be interesting to test the developed model with other microorganisms and substrates as 

corn flour. Further experiments must be performed in order to identify the model parameters  

A detailed kinetic study of starch liquefaction (in the liquefaction step) and maltose 

saccharification (in the SSPH step) is important for modelling the whole starch transformation 

process. It could be further useful to develop a control strategy for the three bioreactors in 

cascade.   

Monitoring and Control 

For the process monitoring, the estimators of the biomass, glucose and maltose concentrations 

must be improved. Observers developed for the state variables estimation are dependent on 
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the model accuracy. As there are some modelling mismatches in the developed model, the 

state estimations by these observers lead to an estimation of some state variables that can be 

improved. As an alternative, The Unscented Kalman filter can be considered using a Monte 

Carlo approach leading to better estimations of the state variables. 

Asymptotic observers, which consider a state transformation in order to avoid using the 

kinetic model, can also be developed. Nevertheless, these observers have a convergence rate 

imposed by the process dilution rate. An interesting approach for state variables estimation is 

the implementation of a hybrid observer as proposed by (Hulhoven, et al., 2006). This 

approach combines the advantage of exponential and asymptotic observers estimating a level 

of confidence in the process model. According to this confidence level the hybrid observer 

evolves between two limit cases: model perfectly known or kinetic model unknown. The 

development of a hybrid observer can be considered for the studied system.  

Concerning the control strategy, results proved the performance of the adaptive control loop 

for the lactic acid concentration regulation. Nevertheless, high fluctuations in the control 

variable were observed due to the measurement noises. In order to reduce these phenomena, 

these noises can be filtered. A possible technique to filter the noisy measured signal is the one 

proposed in (Fliess, et al., 2008), which can be further studied.  

Since the aim of the control strategy is to maximize the lactic acid process productivity, one 

interesting approach considers the regulation of the lactic acid production rate instead of its 

concentration. This approach is mainly justified as the location of the optimum operation 

point can change during the fermentation.  Indeed bacteria are inherently unpredictable and 

disturbances, such as changes in feed concentration or drifts caused by enzymatic deactivation 

or environmental changes, can lead to modify the optimum operation point significantly. In 

these cases the system will work under suboptimal conditions. Consequently, an on-line 

optimization strategy could be integrated in the control algorithm to track the changing 

optimum point. 

For our application, an optimizing nonlinear model predictive control strategy can be 

developed, considering the on-line lactic acid production rate optimization. This approach 

allows determining online the optimum production rate ( ) which can be then determined at 

intervals larger than the sampling time. Then, the control objective would be the regulation of 

the lactic acid production rate at the optimal value ref obtained from the online optimization 

approach, (e.g. by means of a nonlinear predictive control (NMPC) strategy). 

Finally, a global control strategy for the process (liquefaction-SSPH-SSPHF) can be 

developed in order to optimize the whole process. To do so, it is necessary to develop mass 

balance models for each bioreactor and to measure at least one of the key variables in each 

one. In a first instance, we propose the development of a control law for the two last steps 

(SSPH and SSPHF). In the case of the SSPH bioreactor, if only the maltose saccharification 

kinetics is considered for modelling, one can define two key variables, the glucose and 

maltose concentrations. The maltose kinetics (representing the SSPH) differs from the one 

presented in this work for the SSPHF (see equation (3.27)) on the kM value (maltose 
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degradation constant). Indeed, this parameter depends on the temperature which is not the 

same in both bioreactors.  

It is also necessary to measure one of the key variables in the SSPH bioreactor. We propose to 

measure online the glucose concentration. To do so, a YSI immobilized enzyme biosensor 

(YSI (UK) Ltd., United Kingdom) can be used. This equipment is already available at 

Soufflet to perform off-line measurements; nevertheless, it can be used to provide online 

measurements of glucose concentration by automatic sampling and treatment. A special 

device (proposed by the YSI biosensor provider) must be acquired in order to implement the 

automatic sampling. This online glucose concentration measurement is not only necessary for 

the control design of the SSPH bioreactor, but also can improve the process monitoring and 

the control strategy for the SSPHF. 

Industrial perspectives 

The whole three steps process of wheat transformation into lactic acid should be implemented 

in an industrial bioreactor system in order to make the process industrially exploitable. 

Modelling and control approaches must be developed for the implementation in a real 

industrial system.  

Concerning the presented adaptive control strategy, it can be used for other industrial process 

where the product of interest is measured online.  
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APPENDIXES 

APPENDIX A.1 Protease study (complement) 

 

In this section, all the results of the protease choice experiments are presented including both 

concentrations tested. The concentration 200 mg Kg
-1

is presented as C1 and the concentration 

1400 mg Kg
-1

 is referredas to C2. Figure A.2.1 shows the free acid nitrogen concentration 

(FAN) during the SSPHF. Figure A.2.2 is presented in order to show the impact of the FAN 

on lactic acid production. 

 

 

Figure A.2.1. Free Acid Nitrogen (FAN) concentration during the fermentation. P1= Prolyve PAC, P2= Prolyve 

BS, P3= Prolyve 4000 and P4= Prolyve NP. C1= 200g Kg
-1

, C2=1400 gKg
-1. Fermentation conditions: 30°C and 

pH 5.7. 

 

 

Figure A.2.2. lactic acid concentration during the fermentation. P1= Prolyve PAC, P2= Prolyve BS, P3= 

Prolyve 4000 and P4= Prolyve NP. C1= 200g Kg
-1

, C2=1400 g Kg
-1. Fermentation conditions: 30°C and pH 5.7. 
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The protease concentration effect on lactic acid productivity was not important for almost all 

proteases tested. Only a small effect was detected using the protease P3. Nevertheless, this 

protease showed the worst performance. Only a small concentration effect on FAN production 

was detected for the protease Prolyve NP (P4) from comparison of obtained results with each 

concentration (P4C1 and P4C2) in figure A.2.1. Nevertheless, as the experiment P4C2 

(Prolyve Np at 1400 g Kg
-1

) did not have a replica, the experimental FAN measurements 

obtained for this condition can be questionable. Moreover, it is possible to see that the 

experiments performed with P4 had the highest lactic acid concentrations regardless of the 

protease concentration used. For this reason, the lowest concentration was chosen as the 

optimal one for the process.  
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APPENDIX A.2 Data Sheet of Prolyve NP 
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APPENDIX B.1Residence time distribution 

 

As the culture broth is very complex (wheat flour) and has a significant viscosity compared to 

water, the ideal behaviour of the bioreactor must be checked. Indeed the proposed modelling 

approach is based on mass balance for a perfectly stirred tank bioreactor. In order to 

characterize the mixing in the bioreactor, the residence time distribution (RTD) was 

performed. 

Experiment Description 

The residence time distribution (RTD) was studied in the 5 L bioreactor used for the 

continuous SSPHF. For the RTD determination a solution of NaCl at 2.8 M was used as tracer 

and the conductivity was the variable measured over time.  

The broth was the liquefied wheat flour that fed the fermentation reactor. No bacteria or 

enzymes were added in the broth in order to reduce the biological reactions and the possible 

interferences on conductivity.  

First of all, experiments aiming at determining the conductivity of the broth for different NaCl 

concentrationswere carried out (figure B.1.1). Accordingly, there is a perfect linearity 

between the parameters showing that conductivity is a good measurement of NaCl 

concentration in the considered medium. 

 

 

Figure B.1.1  Correlation between the conductivity and the NaCl concentration 

 

The RTD was determined experimentally by injecting 35mL of the NaCl solution into the 

tank at time zero and collecting samples at 5 minutes intervals for conductivity measurements. 

Two flow rates were tested: 0.35 Lh
-1

 and 0.7 L h
 -1

, with replicates (corresponding to 

dilutions rates with ideal mixing equal to 0.11 and 0.22 h
-1

, respectively). 
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Results and analysis 

Assuming a well-mixed reactor, a mass balance on NaCl was done: 

 

0NaCl
NaCl C

V

F

dt

dC
  

(B.1.1) 

 

where  is the concentration of NaCl at time t, is the concentration of NaCl in 

the fermenter at the beginning of the assay, F is the output flow, V is the effective volume of 

the bioreactor and t is the time.  

The integration of the equation B.1.1 leads to: 

 






 t

V

F

C

C

NaCl

NaCl exp

0

 
(B.1.2) 

 

In the case of the pulse assay performed here, the concentration increases in the first minutes 

reaching a maximum concentration, then it decreases (equation B.1.2.). There is then a gap 

between the time of tracer injection and the time of the concentration peak, the difference 

between these two instants was named t1.  

In order to take into account this lag time,the theoretical relation was modified leading to: 
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(B.1.3) 

 

The effective dilution rate imposed in the reactor is determined then by the slope of the curve 

of  -ln(CNaCl/CNaCl0) versus (t-t1). 

Results are presented infigures B.1.2 to B.1.5.  

 

Figure B.1.2 Comparison between the real and the ideal behaviour of the bioreactor with a flow rate equal to 

0.35 L h
-1

 (Ideal dilution rate=0.1 h
-1

). Replicate 1. 
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Figure B.1.3 Comparison between the real and the ideal behaviour of the bioreactor with a flow rate equal to 

0.35 L h
-1

. (Ideal dilution rate=0.1 h
-1

). Replicate 2. 

 

Figure B.1.4 Comparison between the real and the ideal behaviour of the bioreactor with a flow rate of 0.7 L h
-1

. 

(Ideal dilution rate=0.2 h
-1

). Replicate 1. 

 

 

Figure B.1.5 Comparison between the real and the ideal behaviour of the bioreactor with a flow rate of 0.7 L h
-1

. 

(Ideal dilution rate=0.2 h
-1

).  Replicate 2. 

From these results it is possible to conclude that there is a dead volume in the bioreactor. The 

residence time is lower than the ideal one (Table B.1.1). The elements passing through the 

bioreactor stay less time in the bioreactor because of the dead volume. 
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Table B.1.1Comparison between the real and ideal residence times and volumes for each experiment 

Assay Flow rate 
(Lh-1) 

Ideal τ 
(h) 

real τ 
(h) 

Ideal 
Volume(L) 

real volume 
(L) 

% effective 
volume 

Assay 1 F1 0.36 8.94 8.08 3.20 2.89 90.39 

Assay 1 F2 0.35 9.20 8.19 3.20 2.85 89.01 

Assay 2 F1 0.72 4.42 4.11 3.20 2.98 93.03 

Assay 2 F2 0.68 4.68 4.28 3.20 2.93 91.49 

          Deviation Average (%) 90.98 

 

The average deviation between the real volume and the ideal one is 90.1%. In order to take 

into account this non ideal behaviour,it is necessary to introduce a coefficient in the dilution 

rate determination (in modelling and control). This coefficient will be introduced by equation 

B.1.4: 

 

 realVFD /  where mediumculturereal VV *91.0   (B.1.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Appendixes  

 

217 

 

APPENDIX B.2 Substrate effects on growth and lactic acid production  

 

The aim of this study was to determine the impact of the initial glucose concentration on 

bacteria growth and lactic acid production kinetics.  

 

In this work, usually the carbon source is provided by the liquefaction and further 

saccharification of starch to maltose and glucose. Nevertheless, in order to control the carbon 

source supplied at the beginning of the experiment, the carbon substrate was provided by 

commercial glucose added to the wheat flour solution at different initial concentrations. The 

nitrogen source was provided by the wheat proteins hydrolysis using the enzyme Prolyve NP. 

In this case, the proteins hydrolysis started simultaneously with the fermentation. The FAN 

(Free Acid Nitrogen), biomass, glucose, maltose and biomass concentrations were measured 

during the experiments. 

Materials and methods 

Experiments description 

Two experimental campains were carried out. In the first one, the initial glucose 

concentrations tested were: 33, 43, 53 and 70 g L
-1

. Two repicates were performed for each 

concentration tested. In the second experimental campain, the initial glucose concentrations 

tested were: 12 and 22 g L
-1

, each one with two replicates.  The experiments were performed 

in 200 mL flasks with 100 ml of wheat flour solution. The proteins hydrolysis was performed 

simultaneously with the fermentation. 

Inoculum preparation  

Lactobacillus coryniformis subsp. torquens DSM 20005 stored at -80°C, was grown in MRS. 

The strain was cultured in an incubator shaker MAXQ 4000 (Thermo Scientific) in a 100 mL 

flask at 30°C. This culture was used to inoculate all the flasks tested.   

Preparation of starch solution: Liquefaction 

The liquefaction step was carried out in the Soufflet Laboratory in a 5 L reactor as described 

in section 2.2.2.1.3. 

Preparation of flasks 

1.5 L of the liquefied starch solution was thawed at 60°C in a water bath during 30 minutes. 

Then it was diluted with distilled water to get a final wheat concentration of 130 g L
-1

. MnSO4 

was added at 0.05 g L
-1

 to the wheat solution and pH was adjusted to 5.7 with the addition of 

NaOH (7N) or H2SO4 (2.5 N). This solution was distributed in flasks. The wheat solution 

volume in each flask was 100 mL. Glucose was added to each flask in order to obtain the 

target initial glucose concentration. Calcium carbonate was then added to each flask at a 

concentration of 30 g L
-1

in order to buffer the wheat solution and to reduce the pH decrease 

due to lactic acid production. Flasks were then sterilized for 20 min at 120°C. 
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Simultaneous proteins hydrolysis and fermentation (SPHF) 

The solution containing the protease Prolyve NP (Lyven, Colombelles, France) was diluted 

tenfold in a sodium acetate buffer solution (0.1 M, pH 5.7). The SPHF step started with the 

addition of the protease Prolyve NP (200 mg of enzyme Kg
-1

 of wheat) and the inoculation in 

each flask. The initial biomass concentration was 10
9
 cellsmL

-1
.  In the first campaign, the 

SPHF step was performed during 48 h at 30°C and with an agitation 150 rpm. In the second 

campaign the step was performed during 48 h as well but only results concerning the first 24 h 

are presentedas flasks were contaminated at the last phase of the experiment.  

Analyses 

In order to measure the cell, substrates (maltose and glucose) and lactic acid concentrations, 

samples were withdrawn from each flask at various time intervals. Analyses performed to 

determine biomass, glucose, maltose and lactic acid concentrations are further detailed in 

section2.2.2.1.7. 

Results and discussion 

The evolution of the Free Acid Nitrogen (FAN) concentration with time is presented on figure 

B.2.1. A similar trend is obtained for all tested conditions. Cell concentration with time was 

also similar in all flasks (figure B.2.2). Cells reached the stationary growth phase after 

approximately 24 h.  

Concerning maltose (figure B.2.3), its concentration remained almost constant with time in all 

flasks suggesting that no starch saccharification occurred during the experiments. On the other 

hand the glucose consumption rate was similar in all flasks (Figure B.2.4) and its exhaustion 

occurred after 48 h for the smallest initial glucose concentration tested (34g L
-1

). Similar 

lactic acid production was observed in the different conditions (figure B.2.5). During the 

stationary growth phase cells continued to produce lactic acid at a similar rate than in the 

exponential growth phase. 

 

Figure B.2.1. Free Acid Nitrogen (FAN) concentration during the SPHF for different initial glucose 

concentration values: 33, 43, 53 and 70 g L
-1

Conditions: 30°C and pH 5.7. 
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Figure B.2.2. Biomass concentration during the SPHF for different initial glucose concentration values: 33, 43, 

53 and 70 g L
-1

Conditions: 30°C and pH 5.7. 

 

 

Figure B.2.3. Maltose concentration during the SPHF for different initial glucose concentration values: 33, 43, 

53 and 70 g L
-1

Conditions: 30°C and pH 5.7. 

. 

Figure B.2.4. Glucose concentration during the SPHF for different initial glucose concentration values: 33, 43, 

53 and 70 g L
-1

Conditions: 30°C and pH 5.7. 
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Figure B.2.5. Lactic acid concentration during the SPHF for different initial glucose concentration values: 33, 

43, 53 and 70 g L
-1 

Conditions: 30°C and pH 5.7. 

 

According to the results, the growth rate (0.1 h
-1

) was not limited by glucose in the range of 

concentrations tested. Additionally, no effect of the initial glucose concentration on lactic acid 

production rate (1.1 g L-
1
 h

-1
) was observed.  

Lower initial glucose concentrations were then tested in a new campaign (12 g L
-1

and                     

22 g L
-1

). Results from this second experimental campaign are presented in the following 

figures: 

 

Figure B.2.6. Free Acid Nitrogen (FAN) concentration during the SPHF for different initial glucose 

concentration values: 12 and 22 g L
-1

Conditions: 30°C and pH 5.7. 
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Figure B.2.7. Biomass concentration during the SPHF for different initial glucose concentration values: 12 and 

22 g L
-1

Conditions: 30°C and pH 5.7. 

 

Figure B.2.8. Maltose concentration during the SPHF for different initial glucose concentration values: 12 and 

22 g L
-1

Conditions: 30°C and pH 5.7. 

 

Figure B.2.8. Glucose concentration during the SPHF for different initial glucose concentration values: 12 and 

22 g L
-1

Conditions: 30°C and pH 5.7. 
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Figure B.2.9. Lactic acid concentration during the SPHF for different initial glucose concentration values: 12 

and 22 g L
-1

Conditions: 30°C and pH 5.7. 

 

The stationary growth phase was not reached for this experimental campaign.  Concerning the 

maltose concentration (figure B.2.7), its concentration remained the same and almost constant 

in all flasks. The evolution of the glucose concentration during the SPHF is presented in 

figure B.2.8. The glucose consumption rate was similar in all flasks and its exhaustion was 

only obtained in flasks with an initial glucose concentration of 12 g L
-1

after 24 h. The lactic 

acid concentration at the end of the experiment was higher at 24 g L
-1

than at 12 g L
-1

 of 

glucose concentration (figure B.2.9).  

It proves that when the glucose is exhausted (as in the case of flasks with an initial glucose 

concentration of 12 g L
-1

), the production rate is affected significantly. In this experiment, the 

production rate obtained at 24 h was 0.9 g L
-1

h
-1

 in flasks with an initial glucose concentration 

equal to 24 g L
-1

compared to 0.6g L
-1

h
-1

for the lower initial glucose concentration (12 g L
-1

) . 

It is then important to ensure that glucose will not be exhausted during the fermentation in 

order to get high lactic acid production rates. 

In conclusion, no inhibition or limitation effects on growth were detected in the range of 

initial glucose concentration tested. A limitation effect by the glucose on lactic acid 

production was observed in experiments with an initial glucose concentration equal to 12 gL
-

1
. 
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APPENDIX B.3 Batch modelling 

 

For the batch modelling, it is important to model the different phases as the lag, exponential, 

stationary and death phases occurring successively, unlike the continuous modelling, where 

growth cannot be segregated into phases. In consequence, the batch model must take into 

account phenomena in all growth phases, particularly the lactic acid production in the 

stationary growth phase. 

 

In the following, the model developed for the bioprocess operated in batch mode is described. 

As previously presented, a significant lactic acid production is observed during the stationary 

growth phase (see section2.2.4). Thus, in our approach, lactic acid production in exponential 

and stationary growth phases is considered and represented by the Luedeking and Piret (1959) 

model.  

Summarizing, the batch model of the SSPHF process is described by the following four 

differential equations:  

 

 
X

dt

dX   (B.3.1) 

 
XX

dt

dP    (B.3.2)  

 
MkXX

Ydt

dS
M

PS

 )(
1   (B.3.3) 

 
Mk

dt

dM
M  (B.3.4) 

   

with 

 n

S P

P

Sk

S




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







max
max 1  (B.3.5) 

 

where  is the specific growth rate (in h
-1

),α is the growth associated production coefficient 

(in g g
-1

),ȕ is the non-growth associated coefficient (in g g
-1

h
-1

), YPSis the product yieldwith 

respect to glucose (in g g
-1

), kM is the maltose degradation constant (in h
1

), the maximal 

specific growth rate (in h
-1

), kS is the half saturation constant (g L
-1

), n the lactic acid inhibitor 

power and Pmax themaximal lactic acid concentration above which bacteria do not grow 

(in g L
-1

). The first term in equation (B.3.5) represents the growth limitation by the substrate 

according to the Monod model. The second term refers growth inhibition by the product (i.e. 

for high product concentration, the growth rate decreases). 

The production rate in equation (B.3.2) is associated to the growth rate by means of the α 

coefficient and to the cell concentration by the ȕcoefficient. Unlike the continuous model 

max
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where the glucose consumption was linked to bacteria growth, in the batch case the glucose 

consumption was directly linked to the lactic acid production rate. With this approach, lactic 

acid production in the stationary growth phase is considered in all dynamics.  

Identification strategy 

In order to determine the evolution of biomass, product, substrate and maltose concentrations 

with time, thefollowing parameters must be identified: the coefficients involved in the specific 

growth rate (μmax , kS, Pmax, andn), and coefficients α , ȕ , kM,YPS. The experimental data used 

to identify the model parameters are those obtained from hydrolysis time experiments (see 

section 2.2.4).  

The identification strategy was the one developed in Gonzalez et al. (2013) and adapted to the 

final proposed batch model (equations (B.3.1) to (B.3.5)).The three-step identification 

procedure is summarized in figure B.3.1. The main idea is to determine each parameter value 

independently, using each state measurement separately. As presented in chapter 3,kSandn 

were fixed to 0.5 g L
-1

and 3, respectively.  

 kM identification, from maltose dynamic (linear 

regression) 

 α and ȕ identification, from glucose dynamic (linear 

regression) 

 YPS identification, from product dynamic (linear 

regression) 

  

 Determination of optimal vector  =[kM, α, ȕ, YPS ] 

Identification of growth rate parameters  

 =[max, Pmax] for fixed (set equal to 
(nonlinear regression) 

Determination of  =[ max, Pmax] 

Determination of optimal model parameters 

Identification of all model parameters  =[ 
using =[ as initial guess 

(nonlinear regression) 

Step 1 

Step 2 

Step 3 

 

Figure B.3.1 Identification strategy for batch modelling. 
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Results and discussion 

The parameters were identified using experimental data of the bioreactor experiment 

performed with a hydrolysis time of 6 h and validated on experimental data of experiment 

with a hydrolysis time of 1.5 h (section 2.2.4).  The set of parameters obtained is presented in 

table B.3.1. 

Table B.3.1 Identified model parameters for batch operation 

Parameter Identified Value 
µmax (h

-1
) 0.28 

Pmax (g L
-1

) 101.75 

ȕ (g Productg
-1

 Cell h
-1

) 0.12 

α (g Product g
-1

 Cell) 19.75 

1/YPS (g Product g
-1

Glucose) 1.40 

kM (h
-1

) 0.02 

kS (gL
-1

) 0.5 (fixed from literature) 

n 3 (fixed after several trials) 

 

The fermentations used for parameters identification and validation were performed under the 

same operating conditions, only the initial maltose and glucose concentrations changed. 

Experimental and simulated data from both fermentations are presented in figures B.3.2 and 

B.3.3.  From the collected data, it can be noticed that there is a small lag phase at the 

beginning of the fermentation that is not modeled and can affect the model performance. 

There was a significant period of non-growth associated lactic acid production in both 

experiments.  

 

Moreover, glucose was exhausted in the experiment with 1.5 h hydrolysis (Figure B.3.3.) after 

23 h. Nevertheless we suspect that bacteria continued lactic acid production using maltose as 

a substrate. Concerning the product evolution with time, it is accurately predicted by the 

model.Predicted maltose concentrations are very close to the measured ones, showing a good 

model accuracy. Glucose prediction by the model is notsatisfactory; This is certainly due to 

glucose production by other sugars than maltose that is not modeled and also to measurement 

uncertainties.  

 

The identified model is validated considering the 1.5 h experiment. Obtained results are given 

on Figure B.3.3. In general, a good agreement between calculated and measured data is 

observed. This model is useful to predict the variables behaviour in a batch bioreactor under 

the SSPHF conditions used in this work.   
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Figure B.3.2 Model parameters identification with experimental data from 6 h hydrolysis experiment  

 

 

Figure B.3.3 Model parameters validation on experimental data from 1.5 h hydrolysis experiment.  
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APPENDIX C.1 Observability analysis 

 

Consider the system in the form: 

 

 

  ))((()(

))(),(()(

txty

tutxtx

H

F




 (C.1.1) 

We assume that Nx  where N is an open subset of 
 n , 

 mu ,  py . It is also 

necessary to assume that the system is complete, it means that for every bounded measurable 

input u and every Nx it exists a solution ))(),(()( tutxtx F  such that 0)0( xx  and 

Ntx )( for all  py . 

),,,( 00 utxty is defined as the output of the system in equation (C.1.1) related to the initial 

condition at the instant 0tt   and to the input )(tu . 

In general, the inputs do not describe all the space 
 m  but just one part W of

 m . This 

constraint is imposed by the physical process. The entries in question are called eligible 

entries; their evolution space is denoted W.  

 

Some definitions related to the observability are given hereafter (Anguelova, 2007) 

Definition 4.1  

A pair of points 0x and 1x in N are W-distinguishable if it exists a measurable bounded input 

)(tu  defined on the interval [0,T]that generates solutions )(0 tx  and )(1 tx of ))(),()( tut(xtx F

satisfying ii xx )0(  such that Wtx i )( for all  Tt ,0  and ))(())(( 10 txtx HH  for some 

 Tt ,0 . We denote by ),( 0 WxI all points Wx 1 that are not W-distinguishable from 0x . 

Definition 4.2  

The system in equation (C.1.1) is W-observable or just observable if there are no pairs of 

distinct points that are indistinguishable. This means that if a system is observable, thesystem 

output measurement corresponds to a unique value for each state variable at a given time.  

Definition 4.3  

The system in equation (C.1.1) is observable at Nx 0 if 00 ),( xNxI  . 

Definition 4.4  

The system in equation (C.1.1) is locally observable at Nx 0 if for every open neighborhood 

W of 0x ,  00 ),( xNxI  . 

Both observability definitions ensure that a point at Nx 0 can be distinguished from every 

other point in N. In practice, it is often enough to be able to distinguish between neighbors in 

N. It is then necessary to introduce two new definitions. 
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Definition 4.5 

The system in equation (C.1.1) has the distinguishability property at Nx 0 if 0x has an open 

neighborhood V such that 00 ),( xVNxI  . 

For a system having the distinguishability property, any point 0x can be distinguished from 

neighboring points but there could be arbitrarily large intervals of time [0,T] in which the 

points cannot be distinguished. Another concept is presented in order to fix a limit on the time 

interval: 

Definition 4.6 

The system in equation (C.1.1) has the local distinguishability property at Nx 0 if 0x has an 

open neighborhood V such that for every open neighborhood W of 0x , 00 ),( xVNxI  . 

Local observability implies local distinguishability setting V equal to N. Therefore, if a system 

does not have the local distinguishability property at some 0x , it is not locally observable at 

the point either.  

The observability rank condition (ORC) 

In this section, the determination of the local distinguishability property of a system is 

presented using the “observability rank condition” (Hermann & Krener, 1977), first in the 

case of a linear system and then for a nonlinear one. 

Condition for linear systems 

Consider a stationary linear systemwith a linear output equation as the following: 

 

  )()(

)0(),()()( 0

tCxty

xxtButAxtx




 (C.1.2) 

where
n xnA and 

n xpC are constant matrices with n the state vector dimension.  The 

observability matrix is then defined by: 

 

  





















1

)(

n
CA

CA

C


 (C.1.3) 

The system is observable if the observability matrix   has rank n. 

Condition for nonlinear Systems 

In the case of the nonlinear system with a nonlinear equation given in (C.1.1), the 

observability criterion (C.1.3) cannot be applied. It is then necessary to use a more general 

criterion to determine the observability of this kind of systems. It can be done using the Lie 

algebra. 
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Let us introduce the Lie derivative, a directional derivative for a scalar field )(xH , with 

 n)( tx along the direction of a n-dimensional vector field )(xF . The mathematical 

expression is described by: 

 

  

 



n

i i

x
x

x
xL

1
)(

)(
)( F

H
HF  (C.1.4) 

As xx  /)(H is a 1xn gradient vector of the scalar )(xH , the norm of a gradient vector 

represents the maximum rate of function value changes, and the product of the gradient and 

the vector field )(xF in C.1.4 becomes the directional derivative of )(xH along )(xF . Thus, 

the Lie derivative of a scalar field defined by C.1.4  is also a scalar field. If the operation in 

equation C.1.4  is repeated k times, it gives: 
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 for k ≥1 (C.1.5) 

with  

 

  
)()(0

xxL HHF   (C.1.6) 

If each component of a vector field  pH )(x is considered to take a Lie derivative along 

 nF )(x , then all components can be replaced on concurrently and the result is a vector 

field that has the same dimension as )(xH ; its ith element is the Lie derivative of the ith 

component of )(xH . Namely, if  Tp x...xx )()()( 1 HHH  and each component )(xiH  is a 

scalar field, then the Lie derivative of the vector field )(xH is defined as(Anguelova, 2007): 
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 (C.1.7) 

With the Lie derivative concept, it is possible to define an observation space   over 
 p as 

the set of all linear combinations formed from the derivatives of the Lie function of )(xH : 

 

  
 )1

(x(x),...,L(x),L
n HHHspan FF
  (C.1.8) 

This space is spanned by all up to (n -1) order Lie derivatives of the output function )(xH . It 

is also necessary to define an observability distribution, denoted by d , which collects the 

“gradient” vector of every component in : 

 

  
 (x)(x),...,dL(x),dLdd

n HHH FF
1  (C.1.9) 

With these definitions, the following theorem is proposed for testing the observability of the 

system  (Kheir, 1996).  
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Theorem 4.1 

The system (C.1.1) is observable if and only if dim ( d )= n. It is locally observable at some 

point ix if ),( uxd i  has full rank at this point for all u .  
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APPENDIX C.2 Experimental validation of the lactic acid concentration determination 

from sodium hydroxide 

In this appendix, the method to estimate the lactic acid concentration from sodium hydroxide 

flow added to the bioreactor is experimentally validated. In this case, experimental results 

obtained with experiment 2 in chapter 3 (see section 3.5.2) were used to validated the method. 

The lactic acid concentration at each instant k is given by:  

 

 

  kkkkk
LANa

kNak PttPD
V

MC
FP 






   )( 1,1  (C.2.1) 

Equation (C.2.1.)(4.55) was used to determine the lactic acid concentration at instant k+1 

from the sodium hydroxide inlet flow measured each hour during the experiment and from the 

known dilution rates. Figure C.2.1. shows the comparison between offline lactic acid 

concentration measurement using HPLC (High performance liquid chromatography) and the 

online determination using the sodium hydroxide inlet flow at a sampling time of 1 hour.  

 

Figure C.2.1. Comparison between the lactic acid concentration offline measurements with the online lactic acid 

concentration determination from sodium hydroxide inlet flow. (  ) Online determination of lactic acid 

concentration, (  ) Offline measurements of lactic acid concentration by HPLC. Results of experiment 2 

(modelling experimental validation, section 3.5.2). 

 

As it is shown in figure C.2.1, the lactic acid concentration is well determined from the 

sodium hydroxide inlet flow when comparing to the offline measurements. It should be 

pointed out that the sampling time was considerably high (1 hour). The accuracy of the lactic 

acid concentration determination can be improved by reducing the sampling time. For the 

next experiments this sampling time was reduced until 5 minutes. 
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APPENDIX C.3 Influence of the process noise covariance matrix. 

Simulations using higher values in the Q matrix than those used in Figure 4.5 were performed 

and are presented hereafter. Values in the Q matrix were chosen as diag ([10; 100; 100; 10]). 

 

Figure C.3.1.Extended Kalman filter and Unscented Kalman filter comparison. Estimation of cell, glucose, 

maltose and lactic acid concentrations with initialization error. 20% parameter mismatch between the real system 

model and the model used by EKF and UKF. 1% centred Gaussian white noise applied to P. Higher values in the 

Q matrix.  

The performance of both estimators is worst in figure C.3.1. than in figure 4.5, where values 

in the Q matrix were smaller. The EKF diverges at the end of the simulation proving that the 

filter stability is not guaranteed with high values in the Q matrix. Concerning the UKF 

performance, its prediction is less accurate but the filter remains still stable. Thetuning of the 

Q matrix must be then performed carefully in order to obtain the best performances. 
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APPENDIX D.1 Control law implementation in the C-BIO software 

 

For the control validation, the C-BIO software was used.The feature used for the control 

implementation is the calculation module (Figure D.2.1). This module allows creating 

calculations using the values recorded by the system and constant values. The calculations are 

constructed using operators and functions similar to those found in Microsoft Excel. These 

calculations can be used to represent a sensor input allowing the user to buil a “virtual” 
regulator. 

 

The adaptive control strategy with the constant  model was implemented in the C-BIO 

software as shown in figure D.2.1. The first column represent the online measurements of the 

bioreactor and the next two columns their past and actual values. The fourth column has all 

the constant values that can be modified by the user. The fifth column shows the formulas; all 

the control law equations are implemented here. Their current values are presented in the 

seventh column. This module allows then the calculation of the control variable (D) to 

regulate the lactic acid concentration at the reference value (Pref). In the following the 

procedure performed to implement the control law is presented.   

 

 

Figure D.2.1.Control law implementation in the C-BIO software. 
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Procedure and control law algorithm 

In chapter 4 (section 4.4) a method to estimate online the lactic acid concentration from the 

sodium hydroxide inlet flow was presented. Nevertheless, the bioreactor system does not 

provide directly the sodium hydroxide inlet flow NaF . Thus,this must be determined from one 

of the system online measurements. As previously mentioned (see section 3.5.1.1), the 

bioreactor software has a totalizer fonction for each peristaltic pump (with fixed rotation 

speed) which registers the time of rotation of the corresponding pump in a time basis 

(sampling time, Ts).  The totalizer (TNa) of the sodium hydroxide pump or PB (Figure 3.7) (h) 

can then be used to determine the sodium hydroxide inlet flow, NaF . Then this information is 

used for the online calculation of the lactic acid concentration, the estimation of production 

rateand the determination of the control law.  

For the implementation of the control law in the C-BIO software, all equations necessary for 

the control law were transformed into simple calculations. Thus, the matricial equations 

presented in sections 4.3.1 and 4.6.2.1 for the estimation of the production rate were 

developed leading to a set of equations. The whole calculation algorithm is represented in 

tables D.2.1 and D.2.2. Each calculation is updated at each sampling time, Ts (5 min). All 

equations presented in these tables were implemented in the C-BIO software as Microsoft 

Excel functions.As it is shown in table D.2.2 after the calculation of all equations of the 

control law, the control variable is in fact the rotation speed of the feeding pump, P1 (Figure 

3.7).  
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Table D.2.1. Algorithm for the determination of the control law in the C-BIO software of the bioreactor.  

Step Equation or description variables 

Sensor (rotation 
time of base pump) 

Acquired magnitude. A/D. 

Converter of the continuous signal in a discrete signal at instant k (rotation 

time of base pump ) 

NaT = totalizer base pump (h) 

k= time index (h) 

NaF determination 

from NaT  

 

sNa

kNakNa
kNa

T

TT
F


72*)( 1,,

,


  

 

Na = sodium hydroxyde density (g mL
-1

) 

Ts = sampling time (h) 

FNa =Sodium hydroxide inlet flow (L h
-1

) 

72 represents the correlation between the base pump 

totalizer and FNa 

 
P determination 
from NaF  

 

ks
real

kkLANakNa
k PT

V

PFMCF
P 







 


,
1  

 

CNa = Sodium hydroxide concentration mol L
-1

 

Vreal = effective volume of the bioreactor (L) 

P = lactic acid concentration (g L
-1

) 

MLA= lactic acid molecular weight (g mol
-1

) 

F= Feed flow rate( h
-1

) 

Kalman filter 
algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Initialization  step : 
Variables                                      Constants 

00 P


1.01 Q  
0ˆ0  02 Q  

1.001 ,P 03 Q
 

002 ,P 1.04 Q  
003 ,P R 0.01 

1.004 ,P
 

Prediction step : 

  kskk
-

k TDPP ̂1ˆ 


 

k
-
k  ˆˆ 

 

  1
2

432
2

11 )1)((1 QTTDTTD s,ksk,k,kssk,k
-
,k  PPPPP

 

  2422 1 QTTD ,kssk,k
-
,k  PPP

 

  3433 1 QTTD ,kssk,k
-
,k  PPP

 

444 Q,k
-
,k  PP

 

 

0P̂ = initial lactic acid concentration (h
-1

) 

0̂ = initial production rate (h
-1

) 

0,40,30,20,1 ,,, PPPP
are the first, second, third and fourth  

components of the  initialization error covariance matrix, 

respectively. 

 

4321 Q,Q,Q,Q
are the first, second, third and fourth  

components of the process noise error covariance matrix, 

respectively. 

 


P̂  lactic acid predicted value (g L

-1
) 

̂ production rate predicted value (g L
-1 

h
-1

) 

----
4321 ,,, PPPP

are the first, second, third and fourth  

components of the  error covariance matrix prediction, 

respectively. 

 

D= dilution rate (F/Vreal)h
-1
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Table D.2.2Algorithm for the determination of the control law in the C-BIO software of the bioreactor (continuation) 

Step Equation or description variables 

 
Kalman filter 
algorithm 
 

Correction step 

  
,k,k

RK k 11
/,1 PP

 

  
,k,k

RK k 13
/,2 PP

 

   kkkk PPKPP ˆˆ
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-
kk PPK ˆ(ˆˆ 2

 

 k
-
,k,k K ,111 1 PP

 

 k
-
,k,k K ,122 1 PP

 
-
,k

-
,kk,k K 31,23 PPP 

 
-
,k

-
,kk,k K 42,24 PPP 

 

 

1K first component of the Kalman gain  

2K second component of the Kalman gain  

 

P̂ lactic acid updated value (g L
-1

) 

̂ production rate updated value (g L
-1 

h
-1

) 

 

4321 ,,, PPPP
are the first, second, third and fourth  

components of the  updated error covariance matrix , 

respectively. 

 

Error calculation 
krefk PPError   Pref= Reference lactic acid concentration (g L

-1
) 

Proportional 
action calculation 

 

)(ˆ
krefk PPGD   

D̂ = proportioned signal by the proportional controller.  

G = proportional regulator gain 

Calculation of the 
linearized control 
law 

 kk
k

k D
P

D ̂ˆ1
  

s.t. 
4.00  kD

 

 

 

̂ = production rate value estimated by the Kalman filter.  

 

Determination of 
feed flow pump 
speed  
 Fr (rpm) 

 

053.0

* realkF VDr 

 

 

where 0.053is the correlation between the feed flow rate 

and the speed of its respective peristaltic pump 

D/A 
converter 

Converter of the discrete signal (rpm) in a continuous signal (action on the 

outlet flow pump) 
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APPENDIX D.2 Determination of the temperature disturbance effect on lactic acid 

production 

In the experimental validation of the adaptive control law, the system was subject to a 

temperature disturbance in order to test the robustness of the control strategy. In this 

appendix, the study of temperature reduction effect in the SSPHF process from 30°C to 20°C 

is presented. The aim is to determine if cells are inhibited by this disturbance and to quantify 

its impact on the lactic acid production rate.  

Materials and Methods 

The materials and Methods for wheat solution preparation, inoculum preparation, 

liquefaction, SSPH and analytical methods are those presented in the materials and methods 

description of experiments performed for the continuous SSPHF model validation (see section 

3.5.1). The SSPHF was performed in batch operation in two 5 L bioreactor each one with 3.2 

L of culture broth. The temperature in fermenter number 1 was fixed to 30°C during all the 

experiment and to 20°C in the fermenter number 2. The pH value in both fermenters was 

regulated to 5.7 by the addition of sodium hydroxide. The online determination of the lactic 

acid concentration was performed by its online calculation from the sodium hydroxide inlet 

flow. Biomass, glucose, maltose and lactic acid concentrations were measured offline using 

cell counting and HPLC at different time intervals.  

 Results  

Lactic acid concentration online and offline values obtained in the two batch SSPHF 

experiments are summarized on figure D.2.1. This figure proves that lactic acid bacteria are 

strongly disturbed by changes in the temperature. The lactic acid concentration profiles are 

very different. The lactic acid concentrations obtained in the fermenter at 30°C are 4 times 

higher than those obtained in the fermenter at 20°C. For example at 17 h the lactic acid 

concentration in the fermenter at 30°C is around 27 g L
-1

while in the fermenter at 20°C, it is 

just 6 g L
-1

. It means that the production rate was of 1.8 g L
-1

h
-1

in the first case and of 0.4 g L
-

1
h

-1
in the second case. There are some slight differences between the lactic acid concentration 

estimated online from the sodium hydroxide flow and the lactic acid concentration measured 

offline (by HPLC). These errors are acceptable considering the estimation error of the 

technique.  

These results prove that a temperature disturbance in the SSPHF bioreactor (from 30°C to 

20°C) reduces significantly the production rate. The control law must then adapt itself to this 

kind of disturbance in order to track the reference set point.  
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Figure D.2.1. Lactic acid evolution with time during SSPHF experiments at different temperatures: 20°C and 

30°C. (   ) Offline measurement of lactic acid at 20°C, (     ) Offline measurement of lactic acid at 30°C, (       ) 

Online measurement of lactic acid at 30°C, (         ) Online measurement of lactic acid at 20°C. 
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APPENDIX D.3 Glossary 

 

Name Definition 
Aerotolerant Surviving and growing in small amounts of air; said of anaerobic 

microorganisms 

Aerobe An organism, especially a bacterium, that requires air or free oxygenfo

r life 

Anaerobe An organism that lives and grows in the absence of molecular oxygen 

Anaerobiosis  Metabolic processes occurring in the absence of molecular oxygen 

Amylolytic    Conversion of starch into sugar by the action of acids or enzymes such 

as amylase 

Amylopectin Soluble polysaccharide and highly branched polymer of glucose found 

in plants. It is one of the two components of starch, the other being 

amylose 

 

Amylaceous Pertaining to, or the nature of, starch 

Bacteriocins Proteinaceous toxins produced by bacteria to inhibit the growth of 

similar or closely related bacterial strain(s) 

Bacteriophage Virus that infects and replicates within a bacterium 

Betabacterium A genus or subgenus of heterofermentative lactobacilli 

Biosorption Physiochemical process that occurs naturally in certain biomass which 

allows it to passively concentrate and bind contaminants onto its 

cellular structure 

Catalase negative Bacteria that may be anaerobes, or they may be facultative anaerobes 

that only ferment and do not respire using oxygen as a terminal 

electron acceptor 

Cell lysis Refers to the breaking down of the membrane of a cell, often by viral, 

enzymatic, or osmotic mechanisms that compromise its integrity 

Chirality 
(chemistry) 

A molecule is considered chiral if there exists another molecule that is 

of identical composition, but which is arranged in a non-superposable 

mirror image 

Chemoorganotroph An organism that depends on organic chemicals for its energy and carb

on 

 

Cytosine One of the four main bases found in DNA and RNA, along with 

adenine, guanine and thymine (uracil in RNA) 

Enantiomers Chiral molecules that are mirror images of one another. Furthermore, 

the molecules are non-superimposable on one another 

 

endo-amylase An enzyme acting on internal glycosidic bonds 

http://en.wikipedia.org/wiki/Polymer
http://en.wikipedia.org/wiki/Glucose
http://en.wikipedia.org/wiki/Starch
http://en.wikipedia.org/wiki/Toxin
http://en.wikipedia.org/wiki/Bacteria
http://en.wikipedia.org/wiki/Bacterium
http://en.wikipedia.org/wiki/Biomass
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/RNA
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exo-amylase enzyme acting on a glycosidic bond near an end of the polysaccharide 

hemeprotein Metalloprotein containing a heme prostetic group- an organic 

compound that allows a proteinto carry out several functions that it 

cannot do alone 

gelatinization of 
starch 

Process of breaking down the intermolecular bonds of starch molecules 

in the presence of water and heat, allowing the hydrogen bonding sites 

(the hydroxyl hydrogen and oxygen) to engage more water 

glycolysis Metabolic pathway that converts glucose into pyruvate 

Gram staining Differentiates bacteria by the chemical and physical properties of their 

cell walls by detecting peptidoglycan, which is present in a thick layer 

in gram-positive bacteria 

Heterofermentative That undergoes fermentation to produce more than one product 

Hexoses Monosaccharide with six carbon atoms 

Homofermentative That undergoes fermentation to produce only one product 

Hydrolysate Refers to any product of hydrolysis 

Hydrolysis  Reaction involving the breaking of a bond in a molecule using water. 

The reaction mainly occurs between an ion and water molecules and 

often changes the pH of a solution 

Lignocellulosic 
biomass 

Refers to plant dry matter 

Mesophile Organisms that grows best in moderate temperature, neither too hot nor 

too cold, typically between 20 and 45 °C 

Monomer Molecule that may bind chemically to other molecules to form a 

polymer 

Oligomer Molecular complex that consists of a few monomer units 

Oligosaccharide Saccharide polymer containing a small number (typically three to nine) 

of simple sugars 

Pentose Monosaccharide with five carbon atoms 

PEP-
phosphotransferase 
system 

Sugar transport system that couples the transport of a sugar to its 

phosphorylation. The phosphate group is derived from 

phosphoenolpyruvate (PEP) and transferred via the general PTS 

proteins Enzyme I (EI) and HPr to the substrate-specific Enzymes II 

(EII) to the incoming sugars 

Polycondensation A chemical condensation leading to the formation of a polymer by the 

linking together of molecules of a monomer and the releasing of water 

or a similar simple substance 

Phosphorylation Addition of a phosphate (PO4
3−

) group to a protein or other organic 

molecule 

Probiotics Microorganisms that are believed to provide health benefits when 

consumed 

Saccharification Process of breaking a complex carbohydrate (as starch or cellulose) 

into its monosaccharide components 
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Saccharolityc of breaking the glycosidic bonds in saccharides. 

Steroisomer: Isomeric molecules that have the same molecular formula and 

sequence of bonded atoms (constitution), but that differ only in the 

three-dimensional orientations of their atoms in space  

Stereocomplex 
biopolymer 

A stereoselective interaction between two complementing 

stereoregular polymers, that interlock and form a new composite, 

demonstrating altered physical properties in comparison to the parent 

polymers 

Streptobacterium A supposed variety of bacterium, consisting in reality of several 

bacteria linked together in the form of a chain. 

Thermobacterium Thermobacterium:  Any of various thermoduric lactobacilli often 

considered to constitute a subgenus (Thermobacterium) of the 

genus Lactobacillus 

Transferase The general name for the class of enzymes that enact the transfer of 

specific functional groups (e.g. a methyl or glycosyl group) from one 

molecuel (called the donor) to another (called the acceptor) 
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Résumé en français : 

Cette thèse de doctorat porte sur l’optimisation du bioprocédé de production d’acide lactique à 
partir de la farine de blé. L'acide lactique s’avère en effet de plus en plus attractif pour la 

production de PLA (acide poly lactique), un bio polymère, d’autant plus que différentes 

matières premières peu coûteuses comme la farine de blé sont désormais utilisées comme 

sources de carbone pour sa production. Cette thèse comprend trois parties principales. Une 

première partie propose pour l’optimisation du procédé de transformation du blé un schéma 

innovant composé de trois étapes successives : une liquéfaction, suivi d’une étape de 

saccharification et hydrolyse des protéines simultanées (SSPH) et une étape finale de 

saccharification, hydrolyse des protéines et fermentation simultanées (SSPHF). La deuxième 

partie s’intéresse à la modélisation de l’étape SSPHF (étape limitante) dans un bioréacteur 

continu. La détermination des paramètres du modèle ainsi que leur validation sont réalisées à 

l’aide de campagnes d’essais sur un bioréacteur de 5 L. 

Enfin, la dernière partie développe la mise en œuvre de stratégies de commande permettant de 

maintenir le bioprocédé à son point optimal de fonctionnement. Pour ce faire, du fait de 

l’absence de capteurs pour la mesure en temps réel des concentrations des variables clé dans 

le bioréacteur, des estimateurs de ces concentrations ainsi que du taux de production en acide 

lactique sont tout d’abord élaborés. Des stratégies de commande régulant la concentration 

d’acide lactique à sa valeur optimale sont ensuite synthétisées et comparées en simulation. 

Une commande adaptative combinant une commande linéarisante par retour d’état et un 
estimateur du taux de production en acide lactique est finalement retenue et validée 

expérimentalement sur un réacteur instrumenté. Cette dernière s’est avérée robuste vis-à-vis 

des erreurs de modélisation et a permis lors des expériences de doubler la productivité de 

l’acide lactique.  

Mots-clés : Bioprocédé, acide lactique, farine de blé, estimateur d’état, commande adaptative 

Résumé en anglais: 

This PhD thesis focuses on the optimization of the bioprocess of lactic acid production from 

wheat flour. Indeed, lactic acid has received much attention for the production of PLA (Poly 

Lactic Acid), a biopolymer, since different inexpensive raw material such as wheat flour are 

now used as carbon source for its production. This work was performed in three main steps. 

In the first step, an innovative wheat transformation process is proposed, whose main steps 

are the following: a liquefaction followed by a simultaneous saccharification, proteins 

hydrolysis (SSPH) and and a final simultaneous saccharification, proteins hydrolysis and 

fermentation (SSPHF). Secondly, the modeling of the SSPHF (limiting step) in a continuous 

bioreactor is considered. The determination and validation of model parameters is performed 

by means of experimental campaigns in a 5 L bioreactor.  

In the last step, the development of control strategies to maintain the process at its optimal 

operating point is considered. To do so, due to the absence of sensors for real-time 

measurement of the concentrations of key variables of the bioreactor, estimators of these 

concentrations and of the lactic acid production rate are first developed. Then, control 

strategies for regulating the lactic acid concentration at its optimal value are designed and 

compared in simulation. An adaptive control combining a state feedback linearizing control 

and an estimator of the lactic acid production rate is finally chosen to be experimentally 

validated on an instrumented reactor. This strategy showed good robustness features with 

respect to modeling mismatches and was able during experiments to increase twice the lactic 

acid productivity. 

Keywords: Bioprocess, lactic acid, wheat flour, state estimator, adaptive control. 


