
HAL Id: tel-01248051
https://theses.hal.science/tel-01248051v1
Submitted on 23 Dec 2015 (v1), last revised 11 Jul 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dependable Eventual Consistency with Replicated Data
Types

Marek Zawirski

To cite this version:
Marek Zawirski. Dependable Eventual Consistency with Replicated Data Types. Computer science.
Universite Pierre et Marie Curie, 2015. English. �NNT : �. �tel-01248051v1�

https://theses.hal.science/tel-01248051v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
l’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Marek ZAWIRSKI

Pour obtenir le grade de

DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse :

Dependable Eventual Consistency with Replicated Data Types

soutenue le 14 janvier 2015

devant le jury composé de :

M. Marc SHAPIRO Directeur de thèse
M. Pascal MOLLI Rapporteur
M. Luís RODRIGUES Rapporteur
M. Carlos BAQUERO Examinateur
M. Jerzy BRZEZIŃSKI Examinateur
M. Sebastian BURCKHARDT Examinateur
M. Peter DICKMAN Examinateur
M. Pierre SENS Examinateur

Abstract

Web applications rely on replicated databases to place data close to their users, and to tolerate

failures. Many replication systems opt for eventual consistency, which offers excellent responsive-

ness and availability, but may expose applications to the complexity of concurrency and failures.

To alleviate this problem, recent replication systems have begun to strengthen their interface

with additional guarantees, such as causal consistency, which protects the application from

ordering anomalies, and Replicated Data Types (RDTs), which encapsulate concurrent updates

via high level object interface and ensure convergent semantics. However, dependable algorithms

for these abstractions come at a high cost in metadata size. This thesis studies three related

topics: (i) design of RDT implementations with minimized metadata; (ii) design of consistency

algorithms with minimized metadata; and (iii) the limits of the design space.

Our first contribution is a study of metadata complexity of RDTs. RDTs need metadata

to provide rich semantics under concurrency and failures. Several existing implementations

incur high overhead in storage space, in the number of updates, or polynomial in the number of

replicas. Minimizing metadata is nontrivial without impacting their semantics or fault-tolerance.

We design optimized set and register RDTs with metadata overhead reduced to the number of

replicas. We also demonstrate metadata lower bounds for six RDTs, thereby proving optimality of

four implementations. As a result, RDT designers and users can better navigate the design space.

Our second contribution is the design of SwiftCloud, a replicated causally-consistent RDT

object database for client-side applications, e.g., mobile or in-browser apps. We devise algorithms

to support high numbers of client-side partial replicas backed by the cloud, in a fault-tolerant

manner, with small and bounded metadata. We demonstrate how to support available and

consistent reads and updates, at the expense of some slight data staleness; i.e., our approach

trades freshness for scalability (small and bounded metadata, parallelism), and availability

(ability to switch between data centers on failure). Our experiments with thousands of client

replicas confirm the design goals were achieved at a low staleness cost.

iii

Acknowledgement

This work would not be possible without many inspiring and friendly people that I had a chance

to meet and work with.

I am thankful to my advisor, Marc Shapiro, for his insights and constant encouragement that

he offered me throughout our countless meetings. He taught me the role of communication and

gave me the opportunity to collaborate with other people. I joined Marc’s group on the grounds of

my BSc/MSc experience at PUT. For that period, I owe my gratitude to Jerzy Brzeziński.

I am grateful to Nuno Preguiça, who always had time to review “unsolvable” problems and

questionable solutions with me. I thank Nuno, as well as my other co-authors, Annette Bieniusa,

Sérgio Duarte, Carlos Baquero, and Valter Balegas for their exceptionally amicable attitude.

They all significantly contributed to Chapter 3 and Part III of this thesis.

I appreciate the guidance of Sebastian Burckhardt during my internship at Microsoft Re-

search. I thank Sebastian for the three inspiring and enjoyable months, his openness and

willingness to share his experience. His ideas considerably influenced Part II of this work.

I am thankful to all my committee members, to the reviewers in particular, for accepting to

take part in this process without hesitation, offering me their precious time and feedback.

Among many others, I would like to particularly thank Masoud Saeida Ardekani, Alexey

Gotsman, Pierre Sutra, and Hongseok Yang for our inspiring meetings, and all the ideas they

contributed with. The feedback I got from Peter Bailis, João Leitão, Allen Clement, Vivien Quéma,

Tyler Crain, and Basho’s team shaped the presentation along with my own view of this work.

I am grateful to Google (Googlers) for generously supporting me with a PhD fellowship, as

well as for matching me with an excellent team in Zürich for my superb internship experience.

The time I spent with my fellow grad-student friends is unforgettable. Thanks Masoud Saeida

Ardekani, Pierpaolo Cincilla, Lisong Guo, Florian David, Alejandro Tomsic, Valter Balegas, and

many others for sharing a round of beer with me, or a lap in Mario Kart, whenever (in)appropriate.

Thank you Pierpaolo, Florian and Kasia Kapusta for your nearly 24h/7j translation services.

I am indebted to my family, especially to my parents, my sister, and my brother, for their

support in all plans that I decided to carry out. They helped me take my first steps in this world,

speak first English and French words, and even write my first lines of code. The presence of

my dear friends all around the world has also been invaluable. Finally, I especially thank my

girlfriend Marta for all her patience, efforts and smile.

v

Table of Contents

List of Tables xiii

List of Figures xv

I Preliminaries 1

1 Introduction 3
1.1 Contributions . 4

1.1.1 Optimality of Replicated Data Types . 4

1.1.2 Causally-Consistent Object Database for Client-Side Applications 6

1.2 Organization . 8

1.3 Authorship and Published Results . 8

2 Replicated Data Types 9
2.1 Motivation . 10

2.2 System Model and Object Implementation . 14

2.2.1 Object Implementation Model . 15

2.2.2 Replication . 16

2.2.3 Examples . 17

2.2.3.1 Counter Implementations . 18

2.2.3.2 Register Implementations . 21

2.3 Specification of Intended Behavior . 24

2.3.1 Specification Model . 24

2.3.2 Examples . 28

2.3.2.1 Counter Specification . 28

2.3.2.2 Register Specifications . 28

2.3.2.3 Set Specifications . 29

2.4 Execution Model and Correctness . 31

2.4.1 Execution Model . 31

2.4.2 Implementation Correctness . 33

vii

TABLE OF CONTENTS

2.4.3 Implementation Categories . 34

2.4.3.1 Network Specifications . 34

2.4.3.2 Visibility Witnesses . 35

2.4.3.3 Main Categories . 35

II Optimality of Replicated Data Types 37

3 Metadata Space Complexity Problem 39
3.1 Problem Statement . 40

3.2 Optimizing Implementations . 42

3.2.1 Successful Optimizations . 42

3.2.1.1 Add-Wins Set . 42

3.2.1.2 Multi-Value Register . 48

3.2.2 Prior Implementations and Unsuccessful Optimizations 51

3.2.2.1 Last-Writer-Wins Register . 51

3.2.2.2 Remove-Wins Set . 52

3.2.2.3 Last-Writer-Wins Set . 53

3.2.2.4 Counter . 54

3.3 Summary . 54

4 Lower Bounds on Complexity and Implementation Optimality 55
4.1 Proof Technique . 56

4.1.1 Experiment Family . 56

4.1.2 Driver Programs . 58

4.2 Lower Bounds . 58

4.2.1 Counter . 58

4.2.2 Add-Wins Set . 61

4.2.3 Remove-Wins Set . 64

4.2.4 Last-Writer-Wins Set . 66

4.2.5 Multi-Value Register . 66

4.2.6 Last-Writer-Wins Register . 68

4.3 Summary . 68

5 Related Work and Discussion 71
5.1 Other Data Types . 72

5.2 State-Based Optimizations Beyond Our Metric . 72

5.2.1 Background Compaction of Stable Metadata 73

5.2.2 Finer-Grained Optimizations . 73

5.2.3 Custom Timestamps . 74

viii

TABLE OF CONTENTS

5.3 Other Implementation Categories . 75

5.3.1 State-Based Implementations With Smaller Messages 75

5.3.2 Optimizations Based on Topology Restrictions and Delayed Visibility . . . 76

5.3.3 Replicated File Systems . 77

5.4 Lower Bound Proofs in Distributed Computing . 78

IIICausally-Consistent Object Database for Client-Side Applications 79

6 Problem Overview 81
6.1 System Model and Basic Requirements . 82

6.2 Consistency with Convergence . 83

6.2.1 Causal Consistency . 84

6.2.2 Convergence with Replicated Data Types . 84

6.3 Application Programming Interface . 85

6.4 Challenge . 85

6.4.1 Metadata Design . 85

6.4.2 Causal Consistency with Partial Replication is Hard 86

7 The SwiftCloud Approach 87
7.1 Design . 88

7.1.1 Causal Consistency at Full Data Center Replicas 88

7.1.2 Causal Consistency at Partial Client Replicas 90

7.1.3 Failing Over: The Issue with Transitive Causal Dependency 91

7.1.3.1 Conservative Read: Possibly Stale, But Safe 91

7.1.3.2 Discussion . 92

7.2 Implementation . 93

7.2.1 Timestamps, Vectors and Log Merge . 93

7.2.2 Protocols . 94

7.2.2.1 State . 94

7.2.2.2 Client-Side Execution . 94

7.2.2.3 Transfer Protocol: Client to Data Center 95

7.2.2.4 Geo-replication Protocol: Data Center to Data Center 96

7.2.2.5 Notification Protocol: Data Center to Client 96

7.2.3 Object Checkpoints and Log Pruning . 97

7.2.3.1 Log Pruning in the Data Center . 97

7.2.3.2 Pruning the Client’s Log . 98

8 Experimental Evaluation 99
8.1 Prototype and Applications . 100

ix

TABLE OF CONTENTS

8.2 Experimental Setup . 101

8.3 Experimental Results . 102

8.3.1 Response Time and Throughput . 102

8.3.2 Scalability . 105

8.3.3 Tolerating Client Churn . 107

8.3.4 Tolerating Data Center Failures . 107

8.3.5 Staleness Cost . 108

9 Related Work 109
9.1 Consistency Models for High Availability . 110

9.2 Relevant Systems . 110

9.2.1 Replicated Databases for Client-Side Applications 111

9.2.1.1 Systems that Support Inter-Object Consistency 111

9.2.1.2 Systems that Support Intra-Object Consistency Only 113

9.2.1.3 Session Guarantees . 115

9.2.2 Geo-replicated Databases for Server-Side Applications 115

9.2.2.1 Approaches . 116

9.2.2.2 Comparison and Applicability to Client-Side Replication 117

10 Conclusion 119
10.1 Summary . 119

10.2 Limitations and Perspectives . 120

IV Appendix 123

A Additional Material on Replicated Data Types 125
A.1 Formal Network Layer Specifications . 125

A.2 Optimized Op-Based Implementations . 125

B Metadata Overhead Proofs 127
B.1 Standard Encoding . 127

B.2 Metadata Overhead of Specific Implementations . 127

B.3 Lower Bound Proofs . 135

B.3.1 Add-Wins Set . 136

B.3.2 Remove-Wins Set . 136

B.3.3 Last-Writer-Wins Set . 137

B.3.4 Multi-Value Register . 139

B.3.5 Last-Writer-Wins Register . 140

C Résumé de la thèse 143

x

TABLE OF CONTENTS

C.1 L’optimalité des types les données répliquées . 145

C.2 Une base de données causalement cohérente pour les applications coté client . . . 147

C.2.1 Présentation du problème . 148

C.2.1.1 La cohérence et la convergence . 150

C.2.1.2 La conception des métadonnées . 151

C.2.1.3 La cohérence causale avec une réplication partielle est dur 151

C.2.2 L’approche SwiftCloud . 152

C.2.2.1 Cohèrence causale dans les répliques complètes des Centre de

Données . 152

C.2.2.2 Cohèrence causale dans les répliques client partielles 154

C.2.2.3 Le basculement sur erreur: Le problème avec la dépendance

causale transitive . 155

C.2.2.4 Protocoles avec les métadonnées découplées et délimitées 157

C.2.3 La mise en œuvre et l’évaluation . 157

Bibliography 159

xi

List of Tables

1.1 Summary of metadata overhead results for different data types. 5

2.1 Comparison of op-based and state-based implementation categories. 36

4.1 Experiment family used in the lower bound proof for counter (Ctr). 59

4.2 Experiment family used in the lower bound proof for add-wins set (AWSet). 62

4.3 Experiment family used in the lower bound proof for remove-wins set (RWSet). 65

4.4 Experiment family used in the lower bound proof for last-writer-wins set (LWWSet). . 67

4.5 Experiment family used in the lower bound proof for multi-value register (MVReg). . . 69

4.6 Summary of metadata overhead results for different data types. 70

8.1 Characteristics of applications/workloads. 100

9.1 Qualitative comparison of metadata used by causally-consistent partial replication

systems. 112

A.1 Catalog of popular network specifications . 126

B.1 Standard encoding schemes for components of replica state and return values. 128

B.2 Experiment family used in the lower bound proof for last-writer-wins register (LWWReg).140

C.1 Sommaire des résultats de surcharge pour différents types de données. 146

xiii

List of Figures

2.1 Comparison of different approaches to conflicts on an example execution. 12

2.2 Components of the system model. 14

2.3 Time-space diagram of an execution of the op-based counter with three replicas. . . . 18

2.4 An example execution of the state-based counter with three replicas. 19

2.5 Semilattice of states (vectors) of the state-based counter implementation. 20

2.6 An example execution of the basic state-based multi-value register. 22

2.7 Components of implementation and specification models and their relation. 24

2.8 Examples of abstract executions for Ctr and MVReg data types. 26

2.9 Set semantics alternatives on an example operation context. 31

2.10 Definitions of the set of configurations and the transition relation. 32

3.1 Concrete executions of two implementations of add-wins set. 44

3.2 Semantics of a version vector in the optimized add-wins set. 46

3.3 Operation context of an add-wins set illustrating opportunity for coalescing adds. . . 47

3.4 Example execution of three different implementations of multi-value register (MVReg). 50

4.1 The structure of experiment family and implications on object state size. 57

4.2 Example experiment and test for counter (Ctr). 59

4.3 Example experiment and test for add-wins set (AWSet). 62

4.4 Example experiment and test for remove-wins set (RWSet). 65

4.5 Example experiment and test for last-writer-wins set (LWWSet). 67

4.6 Example experiment and test for multi-value register (MVReg). 69

6.1 System components, and their interfaces. 83

7.1 Example evolution of configurations for two DCs, and a client. 89

8.1 Response time for YCSB operations. 102

8.2 Maximum system throughput for different workloads and protocols. 103

8.3 Throughput vs. response time for different system configurations. 104

8.4 Maximum system throughput for a variable number of replicas. 105

xv

LIST OF FIGURES

8.5 Size of metadata for a variable number of replicas. 105

8.6 Storage occupation at a single DC in reaction to client churn. 107

8.7 Response time for a client that hands over between DCs. 108

8.8 K-stability staleness overhead. 108

C.1 Les composantes du système et leurs interfaces. 149

C.2 L’exemple d’évolution d’états de deux DCs et un client. 153

xvi

List of Algorithms

2.1 Template for data type implementation. 17

2.2 Op-based implementation of counter (Ctr). 18

2.3 State-based implementation of counter (Ctr). 19

2.4 State-based implementation of last-writer-wins integer register (LWWReg). 21

2.5 Basic state-based implementation of multi-value integer register (MVReg). 22

3.1 Naive state-based implementation of add-wins set (AWSet). 43

3.2 Optimized state-based implementation of add-wins set (AWSet). 45

3.3 Incorrect state-based implementation of multi-value integer register (MVReg). . . . 49

3.4 Optimized state-based implementation of multi-value integer register (MVReg). . . 51

3.5 State-based implementation of remove-wins set (RWSet). 52

3.6 State-based implementation of last-writer-wins set (LWWSet). 54

A.1 Optimized op-based multi-value integer register implementation (MVReg). 126

xvii

Part I

Preliminaries

1

Chapter 1

Introduction

High availability and responsiveness are essential for many interactive web applications. Such

applications often share mutable data between users in geographically distributed locations.

To ensure availability and responsiveness, they rely on geo-replicated databases or even on

client-side data replicas. Geo-replication provides users with access to a local replica in a nearby

data center, whereas client-side replication provides access to a local replica at a user’s device.

This local data access is neither affected by the cost of network latency between replicas nor

by failures (e.g., replica disconnection) [30, 37, 43, 44]. When, furthermore, performance and

availability of update operations are crucial for an application, then these updates need to be

also performed locally, without coordination with remote replicas. This entails that concurrent

updates must be accepted at different replicas and replicated asynchronously.

Unfortunately, asynchronous replication is at odds with strong consistency models, such as

linearizability or serializability [20, 53]. Strong consistency offers applications a single common

view of the distributed database, but requires to execute operations in a global total order at all

replicas (synchronous replication). The incompatibility of availability and fault-tolerance with

strong consistency, known as the CAP theorem, forces a choice of weaker consistency models, i.e.,

eventual consistency [44, 50, 79].

Under eventual consistency, replicas are allowed to diverge transiently due to concurrent

updates, but they are expected to eventually converge to a common state that incorporates

all updates [79, 100]. Intermediate states expose applications to consistency anomalies. This

is undesirable for users, and poses a challenge to the implementation of the database and

the application [43]. Difficulties include detection of concurrent conflicting updates, and their

convergent resolution, or protection from asynchronous delivery of updates and from failures.

Two complementary abstractions were proposed to alleviate the issues of eventually consistent

replication. These abstractions encapsulate the complexity of asynchronous replication and

failures behind an interface with a well-defined behavior. A dependable implementation of such

an interface guarantees the behavior regardless of the underlying infrastructure (mis)behavior.

First, Replicated Data Types (RDTs) expose data in the database as typed objects with high-

3

CHAPTER 1. INTRODUCTION

level methods. RDTs rely on type and method semantics for convergence [34, 92]. With RDTs,

the database consists of objects such as counter, set, or register, that offer read and update

methods, such as increment for a counter, or add and remove for a set. A data type encapsulates

convergent replication, and resolves concurrent updates according to the type’s defined semantics.

Second, causal consistency offers partial ordering of updates across objects [4, 66, 67]. In-

formally, under causal consistency, every application process observes a monotonically non-

decreasing set of updates, which includes its own updates, in an order that respects the causality

between operations. Applications are protected from causality violations, e.g., where read could

observe update b but not update a that b is based upon. Transactional causal consistency further

simplifies programming with atomicity. It guarantees that all the reads of a transaction come

from a same database snapshot, and either all its updates are visible, or none is [14, 66, 67].

These abstractions facilitate programming against a replicated database, but their dependable

implementation comes at the cost of storage and network metadata. Metadata is required,

for instance, to relate asynchronously replicated updates, i.e., to determine which one caused

another, or to compare replica states after a transient failure. Some metadata cost is inherent

to concurrency, and to uncertainty of the status of an unresponsive replica, which could be

unavailable either permanently or transiently (and could possibly perform concurrent updates).

This thesis studies the design of dependable RDT and causal consistency algorithms with

minimized metadata, and the limits and the trade-offs of their design space.

1.1 Contributions

This dissertation makes two main contributions in the area of dependable algorithms for eventual

consistency: a study of space optimality of RDTs, including impossibility results and optimized im-

plementations, and the design of a causally-consistent RDT database for client-side applications.

We discuss both contributions in more detail in the remainder of this section.

1.1.1 Optimality of Replicated Data Types

In the first part of the thesis, we consider the problem of minimizing metadata incurred by

RDT implementations. In addition to client-observable data, RDTs use metadata to ensure

correctness in the presence of concurrent updates and failures. The metadata manifests either

in the implementation of RDTs or in a middleware for updates dissemination. A category of

state-based RDT implementations, i.e., objects that communicate by exchanging their complete

state [92], uses metadata directly in the RDT state. Such state-based implementations are used,

for example, by server-side geo-replicated object databases [3]. Some state-based RDTs incur

substantial metadata overhead that impacts storage and bandwidth cost, or even the viability

of an implementation. On the other hand, the design of RDT implementations that reduce the

4

1.1. CONTRIBUTIONS

Data type
Existing implementation Optimized impl. Any impl.

Source Bounds bounds lower bounds

counter [92] Θ̂(n) — Ω̂(n)

add-wins set [93] Θ̂(m lgm) new: Θ̂(n lgm) Ω̂(n lgm)

remove-wins set [22] Ω̂(m lgm) — Ω̂(m)

last-writer-wins set [22, 56] Ω̂(m lgm) — Ω̂(n lgm)

multi-value register [77, 93] Θ̂(n2 lgm) new: Θ̂(n lgm) Ω̂(n lgm)

last-writer-wins register [56, 92] Θ̂(lgm) — Ω̂(lgm)

Table 1.1: Summary of metadata overhead results for different data types. Underlined implemen-
tations are optimal; n and m are the numbers of, respectively, replicas and updates; Ω̂,Ô,Θ̂ are
lower, upper and tight bounds on metadata, respectively.

size of metadata is challenging, as it creates a tension between correctness w.r.t. type semantics,

efficiency, and fault-tolerance.

We formulate and study the metadata complexity problem for state-based RDTs. We define a

metadata overhead metric, and we perform a worst-case analysis in order to express asymptotic

metadata complexity as a function of the number of replicas or of updates. An analysis of

six existing data type implementations w.r.t. this metric indicates that most incur substantial

metadata overhead, higher than required, linear in the number of updates, or square in the

number of replicas. We also observe that the concurrent semantics of a data type, i.e., its behavior

under concurrent updates, has a critical impact on the exact extent of the metadata complexity.

The two main contributions of this part of the thesis are positive results, i.e., optimized data

type implementations, and impossibility results, i.e., lower bound proofs on the relative metadata

complexity for some data type. It is natural to search for positive results first. However, it is

a laborious process that requires developing nontrivial solutions, potentially incorrect ones. A

lower bound sets the limits of possible optimizations and can show that an implementation is

asymptotically optimal. Our lower bound proofs use a common structure that we apply to each

data type using semantics-specific argument. This marks the end of the design process, saves

designers from seeking the unachievable, and may lead them towards new design assumptions.

Together, both kinds of results offer a comprehensive view of the metadata optimization problem.

Table 1.1 summarizes our positive and impossibility results for all studied data types. From

left to right, the table lists prior implementations and their relative complexity, expressed as

metadata overhead, as well as the complexity of our optimizations (if any), and our lower bounds

on complexity of any implementation. We underline asymptotically optimal implementations.

We show that the existing state-based implementation of counter data type is optimal. Counter

requires vector of integers to handle concurrent increments and duplicated or reordered messages.

Set data type interface offers a range of different semantics choices w.r.t. how to treat

concurrent operations on the same element to converge. For instance, a priority can be given to

5

CHAPTER 1. INTRODUCTION

some type of operation (add or remove) or operations can be arbitrated by timestamps (last-writer-

wins [56]). These alternatives are uneven in terms of the metadata cost. Prior implementations

all incur overhead in the order of the number of updates, as they keep track of the logical

time of remove operations. However, this is not necessary for all set variants. Our optimized

implementation of add-wins set reduces this cost to the optimum, i.e., the order of the number of

replicas, by adapting a variant of version vectors to efficiently summarize observed information

[77]. The lower bound on remove-wins set shows that such an optimization cannot be applied on

this semantics. It is an open problem whether it is possible for last-writer-wins set.

Register type also comes in different variants. Similarly, we show they are uneven in metadata

complexity. A last-writer-wins register uses timestamps to arbitrate concurrent assignments,

whereas multi-value register identifies values of all conflicting writes and presents them to the

application. The existing implementation of last-writer-wins register has negligible overhead

and is the optimal one. On the contrary, we find that the existing implementation of multi-value

register has substantial overhead, square in the number of replicas, due to inefficient treatment

of concurrent writes of the same value. Our optimization alleviates the square component, and

reaches the asymptotically optimal overhead, using nontrivial merge rules for version vectors.

1.1.2 Causally-Consistent Object Database for Client-Side Applications

In the second part of the thesis, we study the problem of providing object database with extended,

causal consistency guarantees across RDT objects, at the client-side.

Client-side applications, such as in-browser and mobile apps, are poorly supported by the

current technology for sharing mutable data over the wide-area. App developers resort to im-

plementing their own ad-hoc application-level cache and buffers, in order to avoid slow, costly

and sometimes unavailable round-trips to a data center, but they cannot solve system issues

such as fault tolerance, or consistency/session guarantees [34, 96]. Recent client-side systems

ensure only some of the desired properties, i.e., either make only limited consistency guarantees

(at the granularity of a single object or of a small database only), do not tolerate failures, and/or

do not scale to large numbers of client devices [18, 30, 37, 40, 69]. Standard algorithms for

geo-replication [8, 12, 46, 66, 67] are not easily adaptable, because they were not designed to

support high numbers of client replicas located outside of the server-side infrastructure.

Our thesis is that the system should be ensuring correct and scalable database access to client-

side applications, addressing the (somewhat conflicting) requirements of consistency, availability,

and convergence [68], at least as well as server-side systems. Under these requirements, the

strongest consistency model is transactional causal consistency with RDT objects [66, 68].

Supporting thousands or millions of client-side replicas, under causal consistency with RDTs,

challenges standard assumptions. To track causality precisely, per client, would create unac-

ceptably fat metadata; but the more compact server-side metadata management approach has

fault-tolerance issues. Additionally, full replication at high numbers of resource-poor devices

6

1.1. CONTRIBUTIONS

would be unacceptable [18]; but partial replication of data and metadata could cause anomalous

message delivery or unavailability. Furthermore, it is not possible to assume, like many previous

systems [8, 46, 66, 67], that the application is located inside the data center (DC), or has a sticky

session to a single DC, to solve fault tolerance or consistency problems [13, 96].

In the second part of the thesis, we address these challenges. We present the algorithms,

design, and evaluation of SwiftCloud, the first distributed object database designed for a high

number of replicas. It efficiently ensures consistent, available, and convergent access to client

nodes, tolerating failures. To achieve this, SwiftCloud uses a flexible client-server topology, and

decouples reads from writes. The client writes fast into the local cache, and reads in the past (also

fast) data that is consistent, but occasionally stale. Our approach includes two major techniques:

1. Cloud-backed support for partial replicas. To simplify consistent partial replication at

the client side and at the scale of client-side devices, we leverage the DC-side full replicas to

provide a consistent view of the database to the client. The client merges this view with his

own updates to achieve causal consistency. In some failure situations, a client may connect to

a DC that happens to be inconsistent with its previous DC. Because the client does not have

a full replica, it cannot fix the issue on its own. We leverage “reading in the past” to avoid

this situation in the common case, and provide control over the inherent trade-off between

staleness and unavailability: namely, a client observes a remote update only if it is stored in

some number K ≥ 1 of DCs [69]. The higher the value of K is, the more likely that an update

is in both DCs, but the higher is the staleness.

2. Protocols with decoupled, bounded metadata. Our design funnels all communication

through DCs. Thanks to this, and to “reading in the past,” SwiftCloud can use metadata

that decouples two aspects [61]: it tracks causality to enforce consistency, using small vectors

assigned in the background by DCs, and uniquely identifies updates to protect from duplicates,

using client-assigned scalar timestamps. This ensures that the metadata remains small and

bounded. Furthermore, a DC can prune its log independently of clients, replacing it with a

summary of delivered updates.

We implement SwiftCloud and demonstrate experimentally that our design reaches its

objective, at a modest staleness cost. We evaluate SwiftCloud in Amazon EC2, against a port

of WaltSocial [95] and against YCSB [42]. When data is cached, response time is two orders of

magnitude lower than for server-based protocols with similar availability guarantees. With three

DCs (servers), the system can accommodate thousands of client replicas. Metadata size does not

depend on the number of clients, the number of failures, or the size of the database, and increases

only slightly with the number of DCs: on average, 15 bytes of metadata per update, with 3 DCs,

compared to kilobytes for previous algorithms with similar safety guarantees. Throughput is

comparable to server-side replication for low locality workloads, and improved for high locality

7

CHAPTER 1. INTRODUCTION

ones. When a DC fails, its clients switch to a new DC in under 1000 ms, and remain consistent.

Under evaluated configurations, 2-stability causes fewer than 1% stale reads.

1.2 Organization

The thesis is divided into three parts. The first part contains this introduction and Chapter 2,

which introduces the common background of our work: RDT model with examples.

The second part focuses on the problem of RDT metadata complexity. In Chapter 3 we

formulate the problem, we evaluate existing implementations w.r.t. a common metadata metric,

we explore opportunities for improvement, and we propose improved implementations of add-wins

set and multi-value register RDTs. In Chapter 4, we formally demonstrate a lower bound for

metadata overhead of six data types, thereby proving optimality of four implementations. We

discuss the scope of our results and compare them to related work in Chapter 5.

The third part of the thesis presents the design of SwiftCloud object database. We overview

and formulate the client-side replication problem in Chapter 6. In Chapter 7, we present the

SwiftCloud approach, and demonstrate an implementation of this approach using small and safe

metadata. Chapter 8 presents our experimental evaluation. We discuss related work in Chapter 9,

where we categorize existing approaches and compare them to SwiftCloud.

Chapter 10 concludes the thesis.

1.3 Authorship and Published Results

Part of the presented material appeared in earlier publications with our co-authors.

Although we were involved in the formulation of the RDT model [34, 91–93], presented in

Chapter 2, it is not our main contribution, and it is not the focus of this thesis.

The semantics and optimizations of set RDTs were co-authored with Annette Bieniusa, Nuno

Preguiça, Marc Shapiro, Carlos Baquero, Sérgio Duarte, and Valter Balegas, and published as

a brief announcement at DISC’12 [23] and a technical report [21]. Some of the lower bounds

and large part of the theory behind it are a result of an internship with Sebastian Burckhardt

at Microsoft Research in Redmond. Both the optimized register RDT and four lower bounds

were published at POPL’14 [34], co-authored with Sebastian Burckhardt, Alexey Gotsman and

Hongseok Yang.

SwiftCloud was designed with Nuno Preguiça, Annette Bieniusa, Sérgio Duarte, Valter

Balegas, and Marc Shapiro. The first four contributed to its implementation, which drew from

an earlier prototype developed by Valter Balegas. This work is under submission, and partially

covered by an earlier technical report [104]. Some of the ideas related to the staleness vs. metadata

trade-off exploited in SwiftCloud were seeded in a short paper at EuroSys’12 HotCDP workshop

[86], co-authored with Masoud Saeida Ardekani, Pierre Sutra and Marc Shapiro.

8

Chapter 2

Replicated Data Types

Any problem in computer science can be solved with another level of indirection.

David Wheeler

Contents

2.1 Motivation . 10

2.2 System Model and Object Implementation . 14

2.2.1 Object Implementation Model . 15

2.2.2 Replication . 16

2.2.3 Examples . 17

2.2.3.1 Counter Implementations . 18

2.2.3.2 Register Implementations . 21

2.3 Specification of Intended Behavior . 24

2.3.1 Specification Model . 24

2.3.2 Examples . 28

2.3.2.1 Counter Specification . 28

2.3.2.2 Register Specifications . 28

2.3.2.3 Set Specifications . 29

2.4 Execution Model and Correctness . 31

2.4.1 Execution Model . 31

2.4.2 Implementation Correctness . 33

2.4.3 Implementation Categories . 34

2.4.3.1 Network Specifications . 34

2.4.3.2 Visibility Witnesses . 35

2.4.3.3 Main Categories . 35

9

CHAPTER 2. REPLICATED DATA TYPES

This chapter presents the background on the concept of Replicated Data Type (RDT), pre-

viously formalized in similar ways by Baquero and Moura [16], Roh et al. [85], and Shapiro

et al. [92].1 An RDT is a type of replicated object accessed via highly available methods, i.e.,

methods that provide immediate response, with well-defined concurrent semantics [34, 92]. RDT

objects encapsulate the complexity of convergent replication over distributed, unreliable infras-

tructure behind a relatively simple interface. RDTs include basic types such as counters, sets,

and registers.

In Section 2.1, we recall the motivation for RDTs. We outline what problems they address,

and what is specific to the RDT approach. In particular, we highlight what makes RDTs a popular

abstraction for managing highly available replicated data [3, 25, 95].

In Section 2.2, we introduce a formal model of a data type and its implementation. We illustrate

the model with examples from different categories of implementations, in order to demonstrate

the spectrum of RDT implementations, semantics, and some of the design challenges.

Not all RDT implementations provide useful behavior. We examine and specify what can

characterize the intended behavior in Section 2.3: from a primary convergence requirement, to a

precise specification of concurrent semantics of a data type. In Section 2.4, we define an execution

model that describes object implementation and allows us to formally relate an implementation

with a specification by a correctness condition. The correctness definition is parameterized, which

leads us to formal categorization of implementations.

The material in this chapter is a prerequisite to Part II of the thesis, and is recommended

reading before Part III. We highlight the relevant problems as they appear, in particular the

challenges related to metadata.

The formalism and presentation used throughout this chapter follows closely a more general

theory of Burckhardt et al. [33, 34], with some simplifications in both notation and model.

2.1 Motivation

High availability and responsiveness are important requirements for many interactive web

applications. These applications often share mutable data between users in geographically

distributed locations, i.e., data can be accessed and modified by users in different locations. To

address the requirements, applications often rely on geo-replicated databases that replicate data

across data centers spread across the world, or even on client-side data replicas at user devices

[37, 43, 66, 95]. Replication systems provide users with fast access to local replica. This local

access is unaffected by high network latency between replicas or by failures [43, 44, 66, 92, 95].2

1We use the term Replicated Data Types after a common model of Burckhardt et al. [34]. The same or specialized
concept appears in the literature under a variety of names: Conflict-free/Convergent/Commutative Replicated Data
Types (CRDT) [92, 93], Replicated Abstract Data Types (RADT) [85], or Cloud Types [32]. We highlight the differences
between these models where relevant.

2Inter-continental network round-trip times reach hundreds of milliseconds, which exceeds the threshold of
perception by human users and negatively impacts their experience [55, 89].

10

2.1. MOTIVATION

Failures are prevalent in large-scale systems, and range from individual server failures, variety of

data center failures, to network failures, including partitions [11, 57]. When client-side replication

is involved, extended replica disconnections are granted [79].

When high performance and availability of update operations are important to the application,

they need to be performed at a local replica, without coordination with remote replicas [15]. This

entails that updates must be accepted concurrently at different replicas and that they must be

replicated asynchronously, which causes replicas to diverge and to execute updates in different

orders. Unfortunately, this is inherently incompatible with strong consistency models, such as lin-

earizability [53] or serializability [20], which rely on a global total order of updates (synchronous

replication). This incompatibility, known as the CAP theorem [50], forces asynchronous replica-

tion to offer weaker consistency models only; namely, variants of eventual consistency [44, 79].

Under eventual consistency, replicas are allowed to transiently diverge under the expectation of

eventual convergence towards a common value that incorporates all updates.

Let us examine more closely the differences between strongly and eventually consistent data

replication. We discuss some challenges of implementing and using the latter that motivate our

interest in the RDT abstraction.

Any replication protocol needs to address conflicts, which we discuss next. Consider some

replicated data item. For example, assume that the item represents a set of elements, such as the

members of a group in a social network application, with the initial value {a,b}. In a replicated

system, two clients connecting to different replicas might concurrently overwrite it with values {a}

and {a,b, c}. Concurrent writes to the same item are conflicting. There are four main approaches

to address conflicts. One is to accept only some updates to prevent conflicts (strong consistency).

The other three optimistically accept all concurrent updates and resolve conflicts eventually

(eventual consistency). We review these approaches and illustrate them with the help of our {a,b}

example in Figure 2.1.

A. Conflict avoidance. Before accepting an update, the database executes a synchronous

protocol to agree on a common order of updates execution on all replicas. Such a protocol

consistently rejects all but one of the conflicting updates. This forces other writers to abort

and retry rejected operations [43]. As this solution is strongly consistent, it is easy to program

against, because replication is transparent to the application. However, it is not highly

available [50], so it is out of the scope of this work.

B. Conflict arbitration using timestamps. The database accepts all updates and replicates

them, but of two concurrent updates, one dominates the other, the “last” one according to

timestamps of write operations. This heuristic is known as last-writer-wins (LWW) [56]. Arbi-

trary updates may be lost, i.e., overwritten without being observed, even if they were reported

as accepted to the client [58]. In our example in Figure 2.1B, assuming that timestamp of {a}

is larger than that of {a,b, c}, the outcome of write({a,b, c}) is lost. This is not a satisfying

solution.

11

CHAPTER 2. REPLICATED DATA TYPES

read:{a,b} write({a,b,c})

read:{a,b} write({a})

read:{a}

read:{a}

{a,b}

{a,b}

client A

replica r1

replica r2

client B

sync. replication protocol:

consensus or equivalent

ACCEPTED

REJECTED

{a}

{a}

(A) Conflict avoidance approach with synchronous protocol offering strong consistency.

read:{a,b} write({a,b,c})

read:{a,b} write({a})

read:{a}

read:{a}

{a,b}

{a,b}

client A

replica r1

replica r2

client B

async. replication protocol:

arbitration / LWW

ACCEPTED

ACCEPTED

{a}

{a}

read:{a}

read:{a,b,c}

(B) Conflict arbitration approach with asynchronous protocol causing lost updates.

read:{a,b} write({a,b,c})

read:{a,b} write({a})

read:{a}||{a,b,c}

read:{a}||{a,b,c}

{a,b}

{a,b}

client A

replica r1

replica r2

client B

async. replication protocol:

conflict detection + app-level resolution

ACCEPTED

ACCEPTED

{a} || {a,b,c}

{a} || {a,b,c}

read:{a}

read:{a,b,c}

(C) Conflict detection approach with asynchronous protocol relying on application-level conflict resolution.

read:{a,b} add(c)

read:{a,b} remove(b)

read:{a,c}

read:{a,c}

{a,b}

{a,b}

client A

replica r1

replica r2

client B

async. replication protocol:

automatic DB-level conflict resolution

ACCEPTED

ACCEPTED

{a,c}

{a,c}

read:{a}

read:{a,b,c}

(D) Automatic conflict resolution approach with asynchronous protocol embedding conflict resolution.

Figure 2.1: Comparison of different approaches to conflicts on an example execution with two
clients issuing conflicting updates on two different replicas, r1 and r2. Boxes indicate operations
issued by clients; arrows indicate operation invocation and response.

C. Conflict detection and application-level resolution. To avoid lost updates, the database

detects concurrent writes after they were accepted, and presents the set of concurrently-

written values to the application. It is up to the application to resolve the conflict [44, 59, 80,

97]. Figure 2.1C illustrates this approach. Unfortunately, resolving conflicts is difficult ad-hoc

at the application layer, and may not converge. For example, it is not obvious how to combine

12

2.1. MOTIVATION

values {a} and {a,b, c} from our example without violating intentions of the clients that wrote

them. It may require the application to add more metadata to the values it stores (e.g., to

record the fact that b was removed and c was added), which may be costly and complex,

especially in the presence of replica failures [44]. As a last resort, the application may present

the conflict to the user and let the user decide or confirm its choice. In either case, however, the

conflict resolution may need to be run concurrently with other updates and across different

application processes or users, which may generate even more conflicts, and prevent or delay

database convergence [38].3 For example, one user may resolve the conflict to {a, c}, while

another resolves it to {a,b, c}, creating a new conflict. This approach can quickly become

unstable and complex at the application layer.

D. Automatic database-level conflict resolution. As an alternative, the database itself may

automatically resolve conflicting updates. This is different from the previous approach, be-

cause it assumes the database has enough knowledge to embed convergent conflict resolution

in the replication protocol. For example, as illustrated in Figure 2.1D, if the database is aware

that the read of {a,b} followed by the write of {a} is meant to remove element b from a set, and

the other pair is meant to add c, it can integrate both updates. This can be also more efficient

than the application-level solution, since the metadata can be managed by the database,

i.e., lower in the abstraction stack. The challenge is then to design a database protocol that

will tolerate concurrency and failures, still converging to a sensible value that integrates all

updates. For some updates the right integration is simple (e.g., add and remove of different

elements), for others it is harder (e.g., operations on the same element).

A Replicated Data Type (RDT) abstraction can express all three optimistic conflict resolution

approaches (B)–(D), and in particular, addresses the challenges of automated database-level

conflict resolution [34, 92]. The insight is to use typing to indicate semantics of a data item

(naming the role of object) and to mutate it via high-level object interface (naming the role of

operations), rather than low-level read-write operations. The database implementation, and in

particular a data type implementation class, can leverage the data type semantics to automate

and to optimize conflict resolution. The data type semantics can also serve as a contract describing

the interface to an application developer, thus separating concerns and responsibilities.

With RDTs, an application organizes its shared state as a collection of typed objects. For

instance counter objects have increment, decrement and read methods, whereas set objects

have add(a), remove(a) and read methods. It is an object implementation duty to handle the

burden of replication, and to resolve concurrent updates in a sensible manner, thereby releasing

application programmers from this duty. Moreover, some categories of RDT implementations also

address fault-tolerance of convergent replication, and tolerate messages reordering, message loss,

disconnected replicas etc.

3An alternative would be to coordinate conflict resolution. However, this results in an unavailable protocol, similar
to approach (A).

13

CHAPTER 2. REPLICATED DATA TYPES

replicated database

object impl.

instance

network layer

m
 =

 se
n

d
()

d
e

liv
e

r(m
)

replica r
1

object impl.

instance
v = do(…, t)

m
 =

 se
n

d
()

d
e

liv
e

r(m
)

replica r
n

client Z

(session)

method

calls
…

…

v = do(…, t)

timestamp

source

timestamp

source

client A

(session)

method

calls

Figure 2.2: Components of the system model.

An RDT operates at the limited scope of an object. It does not support conflict-resolution

involving complete database [24, 79], and does not address the other problems of eventual

consistency at a larger scale, across different objects. Specifically, it does not address the somewhat

orthogonal problem of update ordering, nor of atomicity guarantees. Examples of such desirable

mechanisms might include cross-object causal consistency and its transactional variants [4, 18,

66]. We do not consider such ordering and atomicity guarantees for simplicity here, although

the model we adopt can be extended to express them [34]. We return to intra-object ordering in

Section 2.4.3, and to inter-object ordering in Part III.

2.2 System Model and Object Implementation

In this section, we formalize an implementation model of Replicated Data Type. We use the model

of Burckhardt et al. [34] that can express existing implementations [16, 32, 85, 92].

Figure 2.2 gives an informal overview of the system components involved in our model. We

consider a replicated database that hosts one or more named objects on a set of replicas. We

assume that the database implements each object independently. In other words, a database

consists of a single object, without loss of generality.4 The type signature of an object defines

its interface. An object implementation defines its behavior, including its replication protocol.

An application has multiple processes that run client sessions. Each session issues a se-

quence of operations to a replica by calling methods; for simplicity, we assume that every

session matches exactly one logical replica. A database replica delegates method calls to the

corresponding object implementation. It responds by performing a local computation step. Local

processing ensures that all operations are highly available and responsive. Replicas communi-

4This assumption matches many models from the literature [16, 85, 92, 102], and recent industrial implementa-
tions of RDTs [3, 25]. It also allows us to express, in Part III, a system with independent object implementations yet
offering cross-object consistency.

14

2.2. SYSTEM MODEL AND OBJECT IMPLEMENTATION

cate in the background via a message passing network layer to exchange updates. An object

implementation includes functions that produce and apply messages.

2.2.1 Object Implementation Model

The type τ of an object comprises a type signature tuple (Opτ,Valτ), which defines the client

interface as a set of methods Opτ (ranged over by o) and a set of return values Valτ (ranged

over by v). For simplicity, all methods share the same return value domain, with a special value

⊥∈ Valτ for methods that do not return any value. Without loss of generality, we assume that

every type has a single side-effect free query method read ∈ Opτ, which returns the value of

an object. The remaining methods Opτ \{read} are called update methods and are assumed to

have side effects.

For example, a counter type, noted Ctr, has a signature (OpCtr,ValCtr). Methods OpCtr =
{inc,read}, respectively, increment and read the counter value. read returns a natural number,

ValCtr = N∪ {⊥}. Another example is an integer register type, noted LWWReg, with methods

OpLWWReg = {write(a) | a ∈ Z}∪ {read}. The latter returns integer values, ValCtr = Z∪ {⊥}. Note

that we model arguments of a method as part of a method name for simplicity.

An object is instantiated from an implementation class of some type, to be defined shortly.

An object is hosted on a set of database replicas ReplicaID (ranged over by r). We assume that

the database can provide the object implementation with unique timestamps from a domain

Timestamp (ranged over t), totally ordered by <. Scalar clocks, such as Lamport’s logical clock [64],

or real-time clock concatenated with a unique replica ID, can serve this purpose. For simplicity,

we often assume integer timestamps.

Definition 2.1 (Replicated Data Type Implementation). An implementation of replicated
data type τ is a tuple Dτ = (Σ, M, initialize,do,send,deliver), where:

• Set Σ (ranged over by σ) is the domain of replica states.

• Set M (ranged over by m) is the domain of messages exchanged between replicas.

• Function initialize : ReplicaID→Σ defines the initial state at every replica.

• Function do :Σ×Opτ×Timestamp→Σ×Valτ defines methods.

• Functions send :Σ→Σ×M and deliver :Σ×M →Σ define update replication primitives.

We call Dτ an implementation class of type τ. We refer to the components of a tuple Dτ using dot

notation, e.g., Dτ.Σ for its states.

We now discuss the role of implementation components and the intuition behind an execution

model, to be formalized later. The database instantiates the object at every replica r ∈ReplicaID
by initialize(r). From that point on, it manages the object at each replica using the three imple-

mentation functions explained next.

The client can perform a method o ∈Opτ on a selected replica at any time. Method invocation

causes the replica to perform do(σ, o, t) on the current object state σ ∈ Σ, with timestamp t ∈

15

CHAPTER 2. REPLICATED DATA TYPES

Timestamp. The timestamp can be used by the implementation to identify an update or to

arbitrate updates. The outcome is a tuple (σ′,v)= do(σ, o, t), where σ′ ∈Σ becomes the new object

state at the replica invoking the operation, and the operation return value v ∈Valτ is presented

to the client. Note that for queries σ′ =σ. Since method invocation is a local step, the client is

never blocked by an external network or replica failure.

Replication functions are applied by a database replica non-deterministically, when the

network receives a message or permits a transmission, and the replica decides to perform a

replication step. To send a message, a replica applies send(σ) with the local state of the object σ.

This produces a tuple (σ′, m)= send(σ), where σ′ is the new state of the object (send may have a

side-effect), and m is a message that the replica sends, or broadcasts, to all other replicas.5 When

a replica receives a message m, it can apply deliver(σ,m) on the object in state σ, which produces

the new state σ′ that incorporates message m.

2.2.2 Replication

Data type implementations can be categorized by how they replicate updates, and what re-

quirements they impose on the network layer. In our prior work, Shapiro et al. [92] propose

two main implementation categories: operation-based (op-based) and state-based. In op-

based implementation, each message carries information about the latest updates that have been

performed at the sender replica. Such message usually must not be lost, and sometimes requires

further ordering or no-duplication guarantees. In contrast, in state-based implementation, each

message carries information about all updates that are known to the sender; such messages

can be duplicated, lost or reordered. We will formalize these differences after we familiarize the

reader with their intuition. Both categories have the same expressive power, in the sense that

every state-based object can be also expressed as an op-based object and vice versa [92].

One of the main challenges are the two expectations behind an object implementation:

that the replicas converge towards a state that integrates all updates, and that both final and

intermediate results provide meaningful semantics. This is complicated, because the convergence

process driven by asynchronous replication is inherently concurrent itself, and with continuous

stream of new updates. Moreover, the network layer may drop, reorder or duplicate messages. To

achieve convergence and reasonable semantics, an implementation must often encode additional

metadata in its state when it performs updates (with do function), so that the replication protocol

(send and deliver functions) have enough information to interpret (reconcile) concurrent operations,

or to handle network failures.

We formulated sufficient convergence conditions specific to each of the two main implementa-

tion categories in a prior work [92]. For an op-based implementation to be convergent, it suffices

that all concurrently generated messages commute, i.e., they are insensitive to the order of
5A broadcast message produced by send may reach more than one replica, but the implementation can emulate a

unicast primitive on top of it, by encoding information about the intended recipient inside a message (at the expense
of unnecessary message complexity). None of our results is affected by this simplification.

16

2.2. SYSTEM MODEL AND OBJECT IMPLEMENTATION

Algorithm 2.1 Template for data type implementation.
1: Σ= 〈

definition of state domain
〉

M = 〈
definition of message domain

〉
2: initialize(r i) : σ . method that returns state σ ∈Σ
3: let σ=〈

definition of the initial state for replica r
〉

4: do(read, to) : v . timestamp to can be optionally used by a method
5: let a =〈

definition of return value
〉

6: do(update(arg), to) . update have no return value (v =⊥)
7: σ← 〈

definition of state mutation by method update(arg)
〉

8: send() : m
9: let m =〈

definition of generated message m ∈ M
〉

10: σ← 〈
definition of mutation to the local state

〉
11: deliver(m)
12: σ← 〈

definition of the state integrating message m
〉

delivery. For a state-based implementation to be convergent, it suffices that the domain of states

Σ form a (partially ordered) join semilattice, such that the deliver function is a join operator for

that lattice, and update methods can only cause the state to advance in the partial order of the

lattice. This typically requires that the object state represents some summary of its history, which

allows any two states to be integrated. We will illustrate these conditions alongside the following

example implementations, and return formally to the problem when we define a category-agnostic

convergence and semantics specification.

2.2.3 Examples

We illustrate the model with simple example implementations from both op-based and state-based

categories. They help us to highlight some of the design alternatives and challenges, as well as

primitive mechanisms used by implementations, such as clocks. More complex examples will

appear later. The selected examples are a small part of our catalog of implementations [93].

Template. Algorithm 2.1 serves as a template for presentation of all data type implementations.

The template presents, in pseudo-code, Definition 2.1 in a more readable manner. Text
〈
inside

brackets
〉

indicates parts that vary between data type implementations. We organize the code

in blocks by indentation. Types of arguments and return values are omitted, but can be easily

inferred from the type signature, or the implementation class. We assume all implementation

functions have access to the current state. Function can perform in-place mutations that define

the state after a function is applied. Components of the state are named in the return value of

initialize function. Comments are preceded with . a triangle symbol.

17

CHAPTER 2. REPLICATED DATA TYPES

Algorithm 2.2 Op-based implementation of counter (Ctr).
1: Σ=N0 ×N0 M =N0
2: initialize(r i) : (a,b)
3: let (a, b) = (0, 0) . a: current value; b: buffer of increments
4: do(read, to) : v
5: let v = a
6: do(inc, to)
7: a ← a+1 . record increment in the current value
8: b ← b+1 . record increment in the buffer
9: send() : d

10: let d = b . flush the buffer
11: b ← 0
12: deliver(d)
13: a ← a+d . add to the local value

r
1

inc

(1, 1)

(0, 0)

send:1

(1, 0)

r
2

(0, 0)

r
3

(0, 0)

inc

(1, 1)

deliver

(1, 0)

deliver

(2, 1)

deliver

(2, 0)

send:1

(2, 0)

deliver

(2, 0)

read:1

read:2

Figure 2.3: Time-space diagram of an execution of the op-based counter (Algorithm 2.2) with
three replicas. Every event is labelled with the execution step, the return value of the function
performing that step (above line; except for unlabelled initialize events), and replica state after
the step if it changed (below line). We indicate messages exchanged between replicas with arrows,
thus we omit repeating their content in deliver. Timestamps in do are specified only if used.

2.2.3.1 Counter Implementations

Op-based. Algorithm 2.2 presents an op-based implementation of a counter type (Ctr). The

state of a replica contains the current counter value, noted a, and an integer buffer that records

the number of local increments since the last message was sent, noted b. Each increment

operation, inc, simply increments both the current value and the buffer. When a replica sends a

message, the implementation flushes the buffer, i.e., the local buffer becomes the content of the

message and the buffer is zeroed. A replica that delivers a message increments its local counter

by the value provided in the message without modifying its local buffer.

Figure 2.3 illustrates both an example execution of the op-based counter, and our presentation

format of executions. After all replicas are initialized with the initialize function, clients at replica

r1 and r3 perform one inc each, which is implemented by the database replica applying the do
function. The read operation that follows at replica r1 yields value 1, which includes the outcome

of the earlier local increment. The message with update from r1 is generated using send, and

reaches r2 and r3 before r3 flushes his buffer. The message is incorporated using deliver, which

18

2.2. SYSTEM MODEL AND OBJECT IMPLEMENTATION

Algorithm 2.3 State-based implementation of counter (Ctr).
1: Σ=ReplicaID× (ReplicaID 7→N0) M =ReplicaID 7→N0
2: initialize(r i) : (r,vv)
3: let r = r i . replica ID
4: let vv=λs.0 . vector/map of number of increments per replica; initially zeros
5: do(read, to) : v
6: let v =∑

vv(s) . sum up all increments
7: do(inc, to)
8: vv← vv[r 7→ vv(r)+1] . increment own entry
9: send() : vvm

10: let vvm = vv
11: deliver(vvm)
12: vv←λs.max{vv(s),vvm(s)} . compute entry-wise maximum of vectors

r
1

inc

(r
1
, [1 0 0])

(r
1
, [0 0 0])

r
2

(r
2
, [0 0 0])

r
3

(r
3
, [0 0 0])

inc

(r
3
, [0 0 1])

read:1

read:2

send:[1 0 0]

deliver

 (r
2
, [1 0 0])

deliver

(r
3
, [1 0 1])

deliver

(r
1
, [1 0 1])

deliver

 (r
2
, [1 0 1])

send:[1 0 0]

deliver

(r
3
, [1 0 1])

send:[0 0 1]

read:2

Figure 2.4: An example execution of the state-based counter (Algorithm 2.3) with three replicas.
For brevity, we note vector [r1 7→ a, r2 7→ b, r3 7→ c] as [a b c].

adds its content to the counter value a, but does not touch his buffer b. Eventually, r3 sends a

message, flushing his buffer b, which reaches all remaining replicas. Replicas converge towards

value a = 2. At the end, a read at replica r1 yields return value 2.

Intuitively, the op-based counter converge if every replica eventually applies the send function

on every non-zero buffer and the network layer delivers every message to every replica exactly

once [34]; we will formalize these conditions later. The state converges, because the addition

operation employed in deliver is commutative, i.e., different increments can be delivered at replicas

in different order and produce the same effect. Furthermore, the value that the counter replicas

converge to is the total number of increments inc issued at all replicas [34].

State-based. Let us now consider a state-based implementation of counter, illustrated in

Algorithm 2.3. Recall that in state-based implementation a message can be lost, reordered or

duplicated, and should contain the complete set of operations known by the sender. A scalar

integer is insufficient in this case. To see why, consider two replicas that concurrently increment

their counter; if the current value of a counter was a scalar, the receiver’s replica would have no

means of distinguishing whether the received increment is already (partially) known locally or if

it is a fresh one. We will demonstrate this impossibility formally, in Part II of the thesis.

Instead, every replica of a state-based counter stores information about all increments

19

CHAPTER 2. REPLICATED DATA TYPES

[0 0 0]

[1 0 0] [0 1 0] [0 0 1]

[2 0 0] [0 2 0] [0 0 2]

[1 1 0]

[1 1 1]

[0 1 1]

...

...

...

[1 0 1]

Figure 2.5: Hasse diagram of a fragment of the join-semilattice of states (vectors) of the state-
based counter implementation. Solid arrows between states indicate a transitive reduction of <
order; dotted blue paths indicate replicate state transitions during execution from Figure 2.4. We
omit replica’s own ID in a state, which is irrelevant for the order, and show only vectors.

it knows about. These can be represented efficiently as a vector, formally a map from replica

identity to the number of increments, noted vv : ReplicaID→N0, such that each replica increments

its own entry only. A value of a counter is simply the sum of all entries in the vector vv. The inc

operation increments the replica’s own entry in the vector (the identity of this entry is recorded

as r during the initialization). To replicate, the state-based counter sends its complete vector. The

receiving replica computes entry-wise maximum with its own vector.

Figure 2.4 illustrates an execution of the state-based counter. Note that the first increment

at replica r1 reaches replica r3 both indirectly from replica r2, and later, directly in a delayed

message from r1. Nevertheless, all replicas converge towards a vector [r1 7→ 1, r2 7→ 1, r3 7→ 0],

which corresponds to counter value 2.

Baquero and Moura [16], and our later work [92], show that the maximum operator on a

vector used by deliver, together with the way the vector is incremented, guarantee convergence of

the counter state towards a maximum vector. Moreover, the maximum operator is resilient to

message duplication, loss, and out-of-order delivery. This is thanks to the fact that the domain of

states (vectors) is a semilattice under the partial order defined as:

vvv vv′ ⇐⇒ dom(vv)⊆ dom(vv′)∧∀r ∈ dom(vv′).vv(r)≤ vv′(r).(2.1)

(We note by < a strict variant of this relation.)

Each inc update advances the vector in the v order, whereas the entry-wise maximum

operator used by deliver is in fact the least upper bound of the semilattice:

(2.2) vvtvv′ =λr.max{vv(r),vv′(r)},

i.e., it generates the minimum vector that dominates both input vectors. We illustrate a fragment

of the lattice on Figure 2.5. Throughout an execution of the implementation, replica states advance

20

2.2. SYSTEM MODEL AND OBJECT IMPLEMENTATION

Algorithm 2.4 State-based implementation of last-writer-wins integer register (LWWReg).
1: Σ=Z×Timestamp M =Z×Timestamp
2: initialize(r i) : (a, t)
3: let a = 0 . register value
4: let t = t⊥ . timestamp; initially t⊥ =minTimestamp
5: do(read, to) : v
6: let v = a
7: do(write(ao), to)
8: if to > t then . sanity check for new timestamp
9: (a, t)← (ao, to) . overwrite

10: send() : (am, tm)
11: let (am, tm)= (a, t)
12: deliver((am, tm))
13: if tm > t then
14: (a, t)← (am, tm) . overwrite the existing value if the existing timestamp is dominated

in this lattice (indicated with dotted paths on the figure), adding each time more information

about the operations performed. Replicas traverse the lattice in parallel, while merging states

with least upper bound ensures that they converge.

Compared to the op-based implementation, the state of a replica has no designated outgoing

buffer, but the whole state is transferred instead. Therefore, state-based implementation transi-

tively delivers updates, i.e., a replica may serve as an active relay point (as r2 does for r3, in our

example). The implementation, however, is more complex.

It is possible to extend this solution to build a counter with an additional decrement method

[93], by using a separate vector for decrements. Ensuring strong invariants over a counter, e.g.,

ensuring that the value remains positive, is more difficult and requires stronger consistency

model in the general case.

2.2.3.2 Register Implementations

State-based LWW register. Another RDT example is an object that resolves concurrent

updates by arbitration, using approach (B) from Section 2.1. Algorithm 2.4 presents a state-based

register (LWWReg). Without loss of generality, we consider a register that stores integer values.

The register stores both a value, and a unique timestamp generated when the value was

written; the latter is not visible to the read operation. Concurrent assignments to the register are

resolved using the last-writer-wins (LWW) policy applied at all replicas: the write with a higher

timestamp wins and remains visible [56]. LWW guarantees that all replicas eventually select the

same value, since the order of timestamp is interpreted in the same way everywhere.

The implementation may use any kind of totally ordered timestamps. However, ideally, every

write should be provided with a timestamp higher than that of the current value, so it takes

effect. A popular implementation is a logical clock, or Lamport clock [64]. Lamport clock

21

CHAPTER 2. REPLICATED DATA TYPES

Algorithm 2.5 Basic state-based implementation of multi-value integer register (MVReg).
1: Σ=ReplicaID×P(Z× (ReplicaID 7→N0)) M =P(Z× (ReplicaID 7→N0))
2: initialize(r i) : (r, A)
3: let r = r i . replica ID
4: let A =; . non-overwritten entries: set of pairs (a,vv) with values and version vectors
5: do(read, to) : V
6: let V = {a | ∃vv : (a,vv) ∈ A} . all stored values are the latest concurrent writes
7: do(write(a), to)
8: let vv=⊔

{vv′ | (_,vv′) ∈ A} . compute entry-wise maximum of known vectors
9: let vv′ = vv[r 7→ (vv(r)+1)] . increment own entry to dominate other vectors

10: A ← {(a,vv′)} . replace the current value with the new entry
11: send() : Am
12: let Am = A
13: deliver(Am)
14: A ← {(a,vv) ∈ A∪ Am |6 ∃(a′,vv′) ∈ A∪ Am : vv< vv′} . keep non-overwritten entries

r
1

write(13)

(r
1
, {(13, [1 0 0])})

(r
1
, ∅)

r
2

(r
2
, ∅)

r
3

(r
3
, ∅)

write(39)

(r
3
, {(39, [0 0 1])})

send:{(13, [1 0 0])}

read:13

read:{13,39}

write(26)

 (r
2
, {(26, [1 1 1])})

deliver

(r
1
, {(26, [1 1 1])})

deliver

 (r
2
, {(13, [1 0 0])})

deliver

 (r
2
, {(13, [1 0 0]),

 (39, [0 0 1]})
send:{(39, [0 0 1])} deliver

(r
3
, {(26, [1 1 1])})

send:{(26, [1 1 1])}

Figure 2.6: An example execution of the basic state-based multi-value register (Algorithm 2.5).

is a pair (k, r) ∈ N×ReplicaID, where k is a natural number, and r is a replica ID. The order

of timestamps is defined on natural numbers first, and replica IDs serve as tie-breakers, i.e.,

(k, r) < (k′, r′) ⇐⇒ k < k′∨ (k = k′∧ r < r′). To generate a timestamp, replica r i computes the

highest number k it has observed in all timestamps so far, noted kmax, and assigns the generated

timestamp value (kmax +1, r i). The new timestamp is fresh and dominates the observed ones.

The implementation of LWW is simple, but as we illustrated in Figure 2.1B, LWW implies

that arbitrary assignments are entirely lost, despite being previously accepted.

State-based multi-value register. A popular alternative to LWW register is a multi-value

register (MVReg), implementing conflict-detection approach (C), which does not lose updates. The

multi-value register stores all non-overwritten values, and lets the application decide how to

resolve them. Thus, if there are concurrent updates, it returns a set of values, ValMVReg =P(Z),

rather than a single one.

Practical state-based implementations of multi-value register encode information about

overwritten values compactly, using a variation of version vectors by Parker et al. [77]. A

version vector has the same structure as the vector we described in the counter implementation:

it is a map from replica ID to the number of observed updates. The usage of a version vector is

22

2.2. SYSTEM MODEL AND OBJECT IMPLEMENTATION

more complex, and so is its semantics. In counter, a vector is associated directly with a state and

describes the number of increment events observed from each replica. In multi-value register,

a vector is associated with a value written in a certain state and represents the number of

operations from each replica that value overwrites. Equivalently, it represents the knowledge of

the replica that wrote the value, in terms of the number of observed writes from each replica. For

instance, a vector vv= {r1 7→ 3, r2 7→ 5} associated to a value indicates that the value overwrites

the first three writes from replica r1, and the first five from replica r2.

The intended behavior of multi-value register is to overwrite a value only if the writer of

the new value has observed (or could have observed) the overwritten value. To this end, the

implementation interprets the partial order v that vectors induce (Equation 2.1) as potential

causality between operations [64, 90]. If vectors of two values are ordered by vv1 v vv2, then

they are causally related: the operation with vv1 has been visible at the replica that issued the

operation with vv2, and could have caused or impacted the latter. Absence of causality between

operations indicates logical concurrency.

Algorithm 2.5 presents a multi-value register implementation based on a standard version

vector algorithm [1, 44, 59, 93]. The state of a replica contains local replica ID r, used to assign

vectors, and a set of entries A, pairs of values and their vectors. The entries represent the set

of non-overwritten values; formally, the entries represent an antichain of the causality relation

induced by v. Thus, read simply returns all values of the entries.

write operation overwrites the set of observed values. To this end, replica needs to produce

a vector that dominates them in causality. The replica applies the least upper bound operator

t on all observed vectors (Equation 2.2), and increments the replica’s own entry in the vector,

to strictly dominate observed vectors, according to <. The generated vector is assigned to the

written value and replaces the existing set of entries.

The replication protocol sends all entries. The receiving replica integrates local entries with

the received ones. It computes the new antichain, without losing any updates, as a union of local

and received entries with eliminated overwritten entries, according to their version vectors.

Figure 2.6 illustrates an example execution of the implementation. Clients at replicas r1

and r3 perform concurrent writes of values 13 and 39, respectively. Replica r2 receives their

updates, and identifies that these are writes that do not overwrite one another, since their vectors

are incomparable according to v. Therefore, the read at r2 returns {13,39}. The client at r2

subsequently overwrites the two values with value 26; the vector it assigns dominates known

vectors. Therefore, when it propagates his updates, his entry for value 26 overwrites existing

entries at r1 and r3.

Although vectors are a powerful concept that prevents data loss, they occupy space, in the

order of the number of replicas. As we shall see in Part II, for some types this cost is unavoidable.

23

CHAPTER 2. REPLICATED DATA TYPES

all concrete executions of impl. Dτ
(semantics of Dτ)

semantics of Dτ under

network specification T

concrete execution in implementation domain:

client trace, messaging steps, timestamps

witnesses

all abstract executions of τ

correct executions

w.r.t. specification of Fτ

abstract execution in specification domain:

client trace, visibility, arbitration

…

Figure 2.7: Components of implementation and specification models, and their relation through
correctness definition. Squares (resp. empty squares) indicate concrete (resp. abstract) executions.

2.3 Specification of Intended Behavior

The primary expectation behind any replicated object is convergence. Category-specific conver-

gence conditions can be successfully applied to implementations [92], including the examples

from the previous section. However, convergence alone is not sufficient. Towards what value the

object converges, and what are the intermediate states and their values, is also important. For

instance, an increment-only counter that provably converges towards 0, or occasionally returns

value 0 before it converges, does not provide the intended behavior.

A precise specification of type semantics can act as a contract between an application and a

data type implementation. There can be multiple implementations of the same type, including

different optimizations or models (e.g., Algorithm 2.2 vs. Algorithm 2.3). It would be natural to

express that these implementations behave in the same way. Implementation is often not an effec-

tive way of expressing semantics, since it requires considering low-level details of implementation

and execution (consider, for example, Algorithm 2.5, or an execution from Figure 2.4).

In this section, we define and illustrate a declarative RDT specification model, after Burck-

hardt et al. [34]. This form of specification offers a unified and concise representation of RDT

semantics, that embodies the convergence condition.

2.3.1 Specification Model

To introduce the specification model we rely on the reader’s intuitive understanding of the

execution model from the previous section. At a high level, our goal is to define a minimal abstract

description of each concrete execution that would express the behavior of an implementation,

and that would justify its correctness. We give an overview of the components involved in the

semantic description model and the definition of correctness condition in Figure 2.7. On the

left side, we illustrate sets of concrete executions in the low-level implementation domain. The

specification domain, on the right, is made of abstract executions, including a trace of client

24

2.3. SPECIFICATION OF INTENDED BEHAVIOR

operations with additional relations. A data type specification is defined on abstract execution

structure, and indirectly identifies a subset of abstract executions that satisfy the specification.

Our ultimate goal is to define a correctness condition for a data type implementation, that relates

each concrete execution with a witness abstract execution that satisfies the specification.

The client-observable behavior of an execution can be characterized by a trace that carries

information on operations performed by each client session, the order in which they were issued

by a client session, and their return values. The intended behavior concerns return values

in a trace. However, a trace alone is insufficient to specify the intended behavior, because it

is missing information about relation of operations performed in different client sessions (at

different replicas). For example, it is impossible to determine if a counter implementation behaves

correctly if the operations in the trace do not specify what increments were delivered to a replica

of the client that performed the operation. A trace must be extended with additional information.

Sequential specification. In a strongly-consistent setting, objects are, roughly speaking,

guaranteed to execute operations in the same sequence at all replicas. Therefore, the intended

behavior of type τ can be expressed as a sequential specification function Sτ : Op+
τ →Valτ, which

specifies the return value of the last operation in a provided sequence [34]. A trace extended with

a sequence of operations from the execution can be evaluated against a sequential specification.

For example, the sequential specification of a counter can be defined as [34]:

SCtr(ξ inc)=⊥;

SCtr(ξ read)= a where a is the number of inc operations in ξ,

where ξ ∈Op+
Ctr is any sequence of operations. Similarly, the semantics of a sequential register is:

SLWWReg(ξ write)=⊥;

SLWWReg(ξ read)= a iff the last operation in ξ|write is write(a),(2.3)

where ξ ∈Op+
LWWReg, and ξ|write is a restriction of ξ to write operations.

A client trace, extended with the sequence order, is correct if it satisfies the above specification.

Intuitively, a sequence with write(1) operation, followed by read that returns 1, is correct w.r.t.

SLWWReg, but a sequence with write(2), followed by a read returning 1 is not.

Concurrent specification. In the case of RDTs, the order of operations may not be the same

across replicas. Thus, a specification have more elaborate structure. Burckhardt et al. [34] identify

two complementary abstract orders that can impact the return value of an RDT operation:

1. A set of operations that are visible to the operation, and recursively, a set of operations that

was visible to them. In terms of implementation, visibility describes what operations were

delivered to the replica that performed the operation under consideration. The visibility

25

CHAPTER 2. REPLICATED DATA TYPES

inc

inc

read:1

read:2

read:2

ar

r
1
:

r
2
:

vis

vis vis

context of read:2

(A) Witness abstract execution for concrete execution of DCtr from Figure 2.4.

write(13)

write(39)

read read

ar

r
1
:

r
2
:

vis

r
3
:

write(26)
vis :{13,39}

:{26}

(B) Witness abstract execution for concrete execution of DMVReg from Figure 2.6.

Figure 2.8: Examples of abstract executions for Ctr and MVReg data types. We indicate transitive
reduction of visibility by arrows, arbitration by horizontal position of events, and replica order by
their vertical level. Dashed blue box indicates the context of the underlined blue operation.

abstracts away the details of the means of delivery. (e.g., what replication protocol category

and metadata were involved, what path that update followed through replicas until it was

delivered, whether there were duplicated messages delivered, lost messages, etc.)

2. An order in which concurrent operations are arbitrated. Arbitration abstracts away the

implementation of timestamps.

Formally, an abstract execution describes the client-observable effects of a concrete execution

(trace) with additional visibility and arbitration information, as follows.

Definition 2.2 (Abstract Execution). An abstract execution of a data type τ is a tuple A =
(E,repl,op,rval,ro,vis,ar), where:

• E ⊆Event is a set of events from a countable universe Event.
• Each event e ∈ E represents a replica repl(e) ∈ReplicaID performing an operation op(e) ∈Opτ

that returned value rval(e) ∈Valτ.

• ro⊆ E×E is a replica order, which is a union of strict total prefix-finite orders on events

at each replica.

• vis ⊆ E×E is an acyclic prefix-finite visibility relation.

• ar ⊆ E×E is a strict total prefix-finite arbitration relation.

We require that ro∪vis is acyclic, as we do not consider speculative systems [34], and assume

that local updates are immediately visible, i.e., ro⊆ vis. Pairs of events that are not ordered by

visibility are said concurrent. Visibility is often a partial order; we assume this in our examples.

26

2.3. SPECIFICATION OF INTENDED BEHAVIOR

We give two examples of abstract executions in Figure 2.8, which characterize concrete

executions of counter and multi-value register implementations from the previous section.6

Specification of a data type is defined on each event in an abstract execution and its context,

i.e., the set of events visible to that event.

Definition 2.3 (Operation Context). An operation context of operation o ∈Opτ for a data type

τ is a tuple L = (o,E,op,vis,ar), where: E ⊆Event is a finite subset of Event; op : E →Opτ defines

type of operations in E; vis ⊆ E ×E is an acyclic visibility relation; ar ⊆ E ×E is a strict total

arbitration relation. We note Contextτ the domain of contexts for type τ that obey this structure.

For abstract execution A, the context of event e ∈ A.E can be extracted with context function:

context(A, e)= (A.op(e),Ee, A.op|Ee , A.vis|Ee , A.ar|Ee),

where Ee = vis−1(e) are the events in E visible to e, and R|Ee indicates restriction of relation R

to the elements of Ee. For example, the context of the underlined blue read in Figure 2.8A is

indicated with a blue dashed line.

Definition 2.4 (Specification). A specification for a data type τ is a partial function Fτ :

Contextτ*Valτ that given an operation context for type τ specifies a return value.

By applying the specification to every event in an abstract execution, we obtain a correctness

condition for abstract executions.

Definition 2.5 (Correct Abstract Execution). An abstract execution A of type τ satisfies a
specification Fτ, noted A |=Fτ, if the return value of every operation in A is the one computed by

the specification applied to the context of that operation: ∀e ∈ A.E : A.rval(e)=Fτ(context(A, e)).

Specification defines the expected value for a given context in a deterministic way. The non-

determinism of a distributed execution is encapsulated in client invocations, and visibility and

arbitration relations of an abstract execution.

Note that Definition 2.5 embeds the safety aspect of the convergence requirement, which we

call confluence. Confluence requires that if two operations observe the same set of operations,

they must return the same value. Deterministic specification embodies this condition, and covers

implementation category-specific conditions, such as semilattice of states or commutativity of

operations. For eventual convergence, it remains to require the liveness aspect of convergence,

which we call eventual visibility of operations. Formally, we state it as a restriction on an

abstract execution A, that requires that operations are not infinitely invisible [34]:

(2.4) ∀e ∈ A.E : 6 ∃ infinitely many f ∈ A.E s.t. f 6 vis−−→ e,

where e vis−−→ f indicates that e and f are ordered by vis relation.

6In the general case more than one abstract execution may characterize a single concrete execution.

27

CHAPTER 2. REPLICATED DATA TYPES

Other desirable system properties that we do not discuss here, such as cross-object consistency

or session guarantees, can be also formulated as a condition on abstract executions [34].

Every type specification has an implementation (provided it does not return abstract events E,

invisible to the implementation). Intuitively, a naive state-based implementation of a specification

stores a complete graph of visibility and arbitration, and implements read as Fτ.

2.3.2 Examples

We illustrate the specification model with a few examples from Bieniusa et al. [23], Burckhardt

et al. [34], and a new one, covering the implementations from Section 2.2. These are primitive

data types that could be composed to build more complex objects [52]; we do not study composition

in this work.

2.3.2.1 Counter Specification

The specification of a counter (Ctr) is given by:

FCtr(read,E,op,vis,ar)= |{e ∈ E | op(e)= inc}|;(2.5)

FCtr(inc,E,op,vis,ar)=⊥,

i.e., read should return the number of all visible increment operations. For example, an abstract

execution from Figure 2.8A satisfies specification FCtr for every read since the number of visible

inc operations matches the return value.

Specification FCtr characterizes both Algorithm 2.2 and Algorithm 2.3 [34], as we formalize

later. However, although it is a reasonable and popular counter semantics [3, 5, 92], this is not

the only possible one. For example, one could imagine an alternative, where multiple concurrent

increments count as one.

Counter specification does not make use of the arbitration relation. Indeed, none of its

implementations (Algorithm 2.2 and Algorithm 2.3) uses timestamps.

2.3.2.2 Register Specifications

Last-writer-wins register. The specification of LWW register (LWWReg), characterizing Al-

gorithm 2.4 [34], is defined by:

FLWWReg(o,E,op,vis,ar)= SLWWReg(Earo),(2.6)

where Ear is a sequence of events in E ordered by arbitration. Thus, the specification is identical

to the sequential specification from Equation 2.3, applied to a context of operation linearly ordered

by arbitration. It does not make use of the visibility relation between events in a context.

Relying on sequential specification is appealing in its simplicity (it could also express the

counter specification FCtr), but in the general case this specification pattern cannot express all

semantics alternatives that do not lose arbitrary updates, as the following examples demonstrate.

28

2.3. SPECIFICATION OF INTENDED BEHAVIOR

Multi-value register. The specification of a multi-value register (MVReg), characterizing

Algorithm 2.5 [34], is given by:

FMVReg(read,E,op,vis,ar)= {a |∃e ∈ E : op(e)= write(a)∧ 6 ∃e′ ∈ E : e′ = write(b)∧ e vis−−→ e′}.(2.7)

(Hereafter, we omit specification of methods that do not return any value.)

Here, visibility acts as a causality relation. The read operation returns values of all the writes

that are not dominated in visibility by writes of other values.7

Specification of data types that use visibility structure, like multi-value register, is diffi-

cult to interpret if the visibility is not a partial (transitive) order [72]. Therefore, database

implementations often enforce transitivity of visibility for these objects, as we will discuss shortly.

Value-wins. In between LWW and multi-value registers, we propose a new value-wins regis-
ter (VWReg), which resolves concurrent assignments using a predefined order on values. Assuming

a totally ordered domain of values, such as integers, the signature of object is the same as the

LWW register, (OpVWReg,ValVWReg)= (OpLWWReg,ValLWWReg). We define the specification as follows:

FVWReg(read,E,op,vis,ar)=max{a |∃e ∈ E : op(e)= write(a)(2.8)

∧ 6 ∃e′ ∈ E : e′ = write(b)∧ e vis−−→ e′}.

Value-wins register can express data-driven conflict resolution. A specific case of a value-wins

register is a false-wins flag and a true-wins flag [3]. We shall see that some set types rely on a

similar approach.

If the order on the domain of values is partial, a similar extension to the multi-value register

is feasible. This could reduce the number of conflicts to resolve by the application (user).

2.3.2.3 Set Specifications

The set is an example of a primitive data type for which a concurrent specification is nontrivial.

Many alternatives are possible. As we shall see in Part II, the implementations are also complex.

Without loss of generality, we consider a set of integers, where element can be added or

removed, OpSet = {read}∪ {add(a) | a ∈Z}∪ {rem(a) | a ∈Z}, and read returns ValSet =P(Z)∪ {⊥}.

In our prior work, Bieniusa et al. [23] recommend that any concurrent semantics should

respect the sequential behavior as much as possible, in the sense that, for executions where the

sequential specification applied to all linear extensions of visibility produce the same return

value, that same value should be returned in the concurrent case. Some operations of a set are

independent, such as operations on different elements, or idempotent, such as adding (removing)

the same element twice, or removing it twice. For these independent or idempotent operations, a

concurrent semantics could reduce to the sequential one.
7Alternatively, an extended specification could also return a multiset of values to indicate to the application when

the same value was written concurrently [77, 93].

29

CHAPTER 2. REPLICATED DATA TYPES

Concurrent add and remove on the same element are problematic. Indeed, they have no

obvious sequential counterpart — according to sequential specification, the outcome depends on

the order. The following three set specifications are popular convergent heuristics that treat this

case in different ways, and otherwise rely on the common design principle of Bieniusa et al. [23].

The LWW set is specified as follows [23, 56]:

FLWWSet(read,E,op,vis,ar)= SSet(Earread),(2.9)

where LWWSet is a type with the same signature as Set, SSet is a standard sequential specification

of set, and Ear is defined as before. Concurrent operations on the same element are resolved

according to timestamp arbitration. The weakness of this approach is that it loses some arbitrary

concurrent updates on a same element, similarly to LWW register.

An alternative is to give priority to one of the operation types. A popular choice is the

add-wins set semantics (also known as observed-remove) defined as [3, 23, 34, 92]:

(2.10) FAWSet(read,E,op,vis,ar)= {a | ∃e ∈ E : op(e)= add(a)∧ 6 ∃e′ ∈ E : op(e′)= rem(a)∧ e vis−−→ e′},

where AWSet has the same signature as Set. In add-wins, whenever there are concurrent oper-

ations on the same element a, add(a) operation wins and “cancels” the effects of every visible

or concurrent rem(a) operation. Note that add-wins set specification could be also viewed as a

composition of presence flags (VWReg), one for each element, where a positive value wins.

The opposite approach is known as remove-wins set [23]:

(2.11) FRWSet(read,E,op,vis,ar)= {a | E|add(a) 6= ;∧∀e ∈ E|rem(a) : ∃e′ ∈ E|add(a) : e vis−−→ e′},

where RWSet has the same signature as Set, and E|o is the restriction of events E to operations o.

Element a is in the remove-wins set if all rem(a) operations are covered in visibility by some

visible add(a) operation.

Note that the set of covering add operations does not need to be the same for all removes.

Otherwise, the set would have an anomaly that violates the principle of Bieniusa et al. [23]:

consider two clients that concurrently perform operations rem(a);add(a) for the same element a;

although initially both clients observe element a in the set, after they synchronize, a disappears.

Both FAWSet and FRWSet definitions make nontrivial use of the visibility relation, since their

policy is applied only to concurrent operations. In the case of operations ordered by visibility, the

sequential semantics applies.

An example operation context in Figure 2.9 illustrates the three discussed set specifications

applied to read operation. The LWW set returns {13}, because add(13) ar−→ rem(13) ar−→ add(13),

whereas add(26) ar−→ rem(26). The add-wins set returns {13,26}, because both rem(a) operations are

concurrent in visibility with respective add(a) operations. Conversely, the remove-wins returns

an empty set.

Other alternatives include the counting set of Aslan et al. [10] and of Sovran et al. [95].

Here, an element is present if the difference between the number of visible add and remove

30

2.4. EXECUTION MODEL AND CORRECTNESS

add(13)

ar

vis

add(13)

rem(13)

L∈ContextSet

rem(26)

add(26)

vis

FAWSet(L,read)= {13,26}

FRWSet(L,read)=;
FLWWSet(L,read)= {13}

Figure 2.9: Set semantics alternatives illustrated on an operation context of read, with different
return value specifications. We show only transitive reduction of partial visibility order.

operations is positive. This approach has anomalous semantics, as it violates the principle of

Bieniusa et al. [23], similarly to the example that motivated remove-wins definition. Finally, an

alternative is to set a conflict flag in case of concurrent add(a) and rem(a) [23] (cf. approach (C)

from Section 2.1).

2.4 Execution Model and Correctness

In this section, we formalize a concrete execution model (Section 2.4.1), and relate concrete

executions and abstract executions with an implementation correctness definition (Section 2.4.2),

after Burckhardt et al. [34]. The correctness condition is parameterized with a pair of conditions,

which leads us to a formal definition of some implementation categories (Section 2.4.3). The

reader interested only in Part III of the thesis may proceed directly to Section 2.4.3.

2.4.1 Execution Model

We model a concrete execution of an implementation Dτ as a sequence of transitions over
configurations, according to the definitions of Figure 2.10. A configuration is a pair (R, N) ∈
Config, which describes the state of a database: R maps each replica to an object state, and N

maps all messages that were sent over network and can be delivered, identified by their message

ID, mid ∈MessageID. The initial empty configuration (R0, N0) starts with the initial state of an

object and no sent messages. A transition relation −→Dτ
: Config×Event×Config describes an

atomic execution step. An execution can be visualized as a finite or infinite sequence of transitions:

(R0, N0)
e1−→Dτ

(R1, N1)
e2−→Dτ

. . .
ek−→Dτ

(Rk, Nk) . . . ,

where every transition
e i−→Dτ

is explicitly labelled by a unique event e i and implicitly parameter-

ized by functions that record information about event e i, such as action(e i), replica(e i), etc.

There are three types of configuration transitions, corresponding to the three rules of Fig-

ure 2.10. In the first rule, replica r performs an operation o with timestamp t that transforms

state R(r) and yields a return value v, as computed by the implementation function do. We

record this information using functions replica, action, op, timestamp, and rval, respectively. In

the second rule, replica r sends a message m created by the implementation function send, which

transforms the state R(r), and puts a message into the map of sent messages N(mid)= m, using

31

CHAPTER 2. REPLICATED DATA TYPES

Configurations:

RState = ReplicaID→Dτ.Σ R0 =Dτ.initialize
NState = MessageID*Dτ.M N0 = []
Config = RState×NState (R0, N0) ∈Config

Transitions over configurations:

Dτ.do(o,σ, t)= (σ′,v) action(e)= do replica(e)= r op(e)= o timestamp(e)= t rval(e)= v

(R[r 7→σ], N) e−→Dτ
(R[r 7→σ′], N)

Dτ.send(σ)= (σ′,m) action(e)= send replica(e)= r mid ∉ dom(N) msg(e)=mid

(R[r 7→σ], N) e−→Dτ
(R[r 7→σ′], N[mid 7→ m])

Dτ.deliver(σ,m)=σ′ action(e)= deliver replica(e)= r msg(e)=mid

(R[r 7→σ], N[mid 7→ m]) e−→Dτ
(R[r 7→σ′], N[mid 7→ m])

Figure 2.10: Definitions of the set of configurations and the transition relation for a data type
implementation Dτ. (R, N) ∈Config is a configuration, and (R0, N0) is the initial configuration.

some fresh identifier mid. In the third rule, replica r delivers message N(mid) from the map of

sent messages N, which mutates its state R(r) according to the implementation function deliver.

Note that the transitions put no restriction whatsoever on when the first two rules can be

applied; the third rule requires only that every delivered message must have been previously

sent.8 Otherwise, there is no restriction on message delivery: messages can be lost, duplicated,

and reordered. We introduce these optional restrictions separately in Section 2.4.2.

We now define concrete execution, similarly to the abstract one.

Definition 2.6 (Concrete Execution). A concrete execution of a database with an implementa-

tion Dτ of a type τ is a tuple C = (E, eo, pre, post, action, replica, op, timestamp, rval, msg), where:

• E ⊆Event is a countable subset of events.

• eo⊆ E×E is a strict total prefix-finite execution order of transition events.

• pre,post : E →Config define, resp., predecessor and successor configurations, s.t.:

∀e ∈ E : pre(e) e−→Dτ
post(e), and ∀e, f ∈ E : e eo−→ f ∧ (6 ∃e eo−→ g eo−→ f) =⇒ post(e)= pre(f).

• The remaining are partial labelling functions: action tells a type of event; timestamp, op
and rval are defined for do events, where timestamp is injective to guarantee uniqueness;

msg : E →MessageID is defined for send and deliver events.

We denote the initial configuration of C by init(C)= C.pre(e0); if C is finite, we note the final
configuration by final(C)= C.post(ek), where ek is the last event.

8This translates into no creation property of network links, in a distributed systems parlance [36].

32

2.4. EXECUTION MODEL AND CORRECTNESS

2.4.2 Implementation Correctness

The semantics of an implementation can be characterized by all of its executions.

Definition 2.7 (Implementation Semantics). The semantics of an implementation Dτ, noted

�Dτ�, is the set of all its concrete executions that start in the empty configuration (R0, M0).

Some implementations (or categories of implementations) may not provide a meaningful

behavior under all executions, but only when certain network layer conditions are met. For

example, the op-based counter from Algorithm 2.2 requires operations to be delivered exactly

once, rather than an arbitrary number of times. Similarly, the LWW register may require a

condition on the order of supplied timestamps. We express such restrictions as a network layer
specification, noted T, a set of allowed concrete executions defined by a condition on concrete

executions.9 Therefore, when considering the correctness of an implementation, we will reason

about �Dτ�∩T, i.e., the semantics of an implementation Dτ under network specification T.

In order to state a correctness condition, we would like to relate each concrete execution with a

correct witness abstract execution, i.e., to find a correct representation of a concrete execution

in the specification domain. Both types of executions, given by Definitions 2.2 and 2.6, share a

similar structure, and most components of a witness execution can be directly extracted from the

concrete execution. Thus, we define a witness execution for concrete execution C ∈ �Dτ�∩T as:

(2.12) abs(C,V)= (C.E|do, E.replica|do, E.op|do, E.rval|do, ro(C)|do, V(C), ar(C)),

where components are restricted to client-observable do events of C, and replica order ro(C) and

arbitration order ar(C) are extracted from C, using information about replicas and timestamps:

e ro(C)−−−→ f ⇐⇒ e C.eo−−−→ f ∧C.replica(e)= C.replica(f)

e ar(C)−−−→ f ⇐⇒ e, f ∈ C.E|do∧C.timestamp(e)< C.timestamp(f)

The remaining witness component V(C) offers some freedom in the witness selection: visibility

order. A concrete execution specifies the delivery of messages and operation return values, but not

which operations must be visible after message delivery. This parameter varies across implemen-

tation categories, and we model it as a visibility witness function. A visibility witness takes

a concrete execution C, and produces the visibility order V(C) of its witness abstract execution.

We will give some examples of universal witness functions shortly. For a concrete application of

visibility witness, compare an execution in Figure 2.4 with the visibility in Figure 2.8A.

This leads us to the final definition of implementation correctness.

Definition 2.8 (Implementation Correctness). A data type implementation Dτ satisfies a type
specification Fτ w.r.t. network specification T and visibility witness V, noted Dτ sat[V,T]Fτ, if

the witness abstract execution of every concrete execution satisfies the specification:

∀C ∈ �Dτ�∩T : abs(C,V) |=Fτ.
9More precisely, we consider only prefix-closed specifications that restrict delivery events or timestamps only.

33

CHAPTER 2. REPLICATED DATA TYPES

All example implementations from Section 2.2.3 satisfy their specifications w.r.t. network

specifications and visibility witnesses of their respective categories, listed next. We are not

considering formal verification of correctness in this thesis, addressed by other work [34].

2.4.3 Implementation Categories

We now define and discuss a number of network specification and visibility witness choices that

together define implementation categories.

To specify them, we define the delivery order del(C) of a concrete execution C as follows:

e del(C)−−−−→ f ⇐⇒ e C.eo−−−→ f ∧C.action(e)= send∧C.action(f)= deliver∧C.msg(e)= C.msg(f).

2.4.3.1 Network Specifications

Network specification T defines what message delivery patterns are allowed. We reproduce a

number of popular network specifications [34], discuss them here, and formally define them in

Appendix A. They correspond to well-known definitions from distributed system models [36].

If an implementation tolerates lost, duplicated, and reordered delivery, it can operate under

any network specification Tany, such that �Dτ�∩Tany = �Dτ�. State-based implementations,

such as Algorithm 2.3, do tolerate any network specification.

The at-most-once delivery specification T≤1 requires that a message is not delivered twice

to the same replica, and never delivered to the sender’s replica, where it is already known.

At-least-once delivery T≥1 requires that every sent message must be eventually delivered

at every remote replica. The conjunction of the two is reliable delivery T1, or exactly-once
delivery. For example, the op-based counter from Algorithm 2.2 requires reliable delivery.

Some op-based implementations require additional ordering guarantees for message delivery.

An important condition is causal delivery Tc, where delivery of a message requires that all

messages known to the sender were delivered at the receiver [36]. In Appendix A.2, we give the

example of an optimized op-based multi-value register that requires reliable causal delivery.

Stronger delivery assumptions can make the object implementations simpler and more space-

efficient. However, implementing the underlying network delivery with stronger semantics can

be more complex and costly [36].

The behavior of some arbitration-based objects relies on the properties of timestamps. Causal
timestamp specification Tct requires that timestamp provided by a replica are greater than any

timestamp it has previously observed. This is the case, for instance, with Lamport clocks.

Note that correctness w.r.t. Definition 2.8 does not in itself ensure the liveness of convergence,

i.e., eventual visibility (Equation 2.4). This may require additional liveness restrictions, such

as that every update is eventually followed by send event, i.e., eventual flush specification Tf .

Moreover, even implementations that tolerate any network specification may require additional

fairness of network channels to ensure convergence, so that not all messages are lost [36].

34

2.4. EXECUTION MODEL AND CORRECTNESS

Our system model does not treat replica failures explicitly. Transient and permanent replica

failures are indistinguishable from lost messages. We discuss the consequences where relevant.

2.4.3.2 Visibility Witnesses

A visibility witness V specifies the visibility of events as affected by message delivery.

Implementations with a transitively delivering witness, e.g., state-based implementations,

transmit all updates known to the sender replica to the receiver replica. Formally:

Vstate(C)= (ro(C)∪del(C))+|do.

Conversely, implementations with a selectively delivering witness [34], e.g., op-based

implementations, transmit only the latest updates of the sender:

Vop(C)=ro(C)∪ {(e, f) | e, f ,∈ C.E|do∧∃e′, f ′ : e ro(C)−−−→ e′ del(C)−−−−→ f ′ ro(C)−−−→ f

∧¬∃e′′ : e ro(C)−−−→ e′′ ro(C)−−−→ e′∧C.action(e′′)= send}

Other possible witnesses include: protocols with intermediate approaches (i.e., neither op-

based nor state-based) [7], protocols that require additional communication round-trips to trans-

mit updates [5], or protocols with topology-restrictions [35].

An implementation with a witnesses that transmits updates earlier and transitively may

speed up convergence, especially during failures. However, it may also saturate the network with

larger messages.

Visibility witness and network specifications can together enforce desirable updates ordering

guarantees at an object level, such as causal consistency [4, 34]. We make use of it in Part III.

2.4.3.3 Main Categories

We conclude with a comparison of the two main implementation categories, op-based and state-

based, presented in Table 2.1. Although it is not an exhaustive list, other categories tend to be

some variation or combination of the two. We will discuss some of them in Chapter 5.

The main characteristics of an implementation category are its network specification and

visibility witness. Op-based implementations impose strong requirements on the network layer

specification; details depend on type and implementation, but in the common case, they rely on

reliable causal delivery. In contrast, state-based objects have almost no network requirements.

An op-based implementation transmits only the recent local updates, whereas a state-based

transmits all updates transitively.

The presence of different implementation categories raises a natural question: which one is

the best choice? There is no universal answer. We review this question from different angles, in

the rows of Table 2.1.

State and message metadata size is typically low for op-based implementations, and much

higher for state-based ones (compare, for instance, Algorithm 2.2 with Algorithm 2.3). Both of

35

CHAPTER 2. REPLICATED DATA TYPES

Op-based State-based

Network specification requirement
strong: up to T1c weak: Tany

(reliable causal delivery) (any, with fairness)

Transfer / visibility of updates selective: Vop transitive: Vstate

State metadata size lower higher

Multi-versioning integration external / easy (Part III) internal / more difficult

Cross-object guarantees integration external / easy (Part III) internal / more difficult

Bandwidth / buffer optimizations log reduction [35, 78] deltas [7, 45]

Topology-specific optimizations possible [35] possible [5]

Example implementations
SwiftCloud (Part III),

Riak DT [1]
Gemini [65], Walter [95]

Table 2.1: Comparison of op-based and state-based implementation categories.

them permit type-specific metadata optimizations. This motivates our metadata optimality study

in Part II for state-based implementations.

Low metadata size of the op-based implementations does not indicate their cost is always

lower in absolute terms, since the network layer specification that they require also has a cost.

The stronger the network specification, the smaller the op-based object metadata, but the higher

is the cost and the complexity of the update delivery protocol implementation. In contrast, the

delivery protocol for state-based implementations does not impose any significant cost, and in

particular, does not require to store a log of messages to send. On the other hand, the delivery

protocol is easily shared between op-based objects.

Another angle of comparison is support for cross-object consistency protocols, and their

multi-versioning mechanisms [14, 46, 66, 67]. These can be easily integrated externally with op-

based implementations, using a standard log-based implementation of the database. In contrast,

for state-based implementations this is more complex and less modular (it requires custom

implementation for every type).

These factors motivate our choice of op-based category for the SwiftCloud system with cross-

object consistency and versioning, described in Part III. Conversely, state-based implementations

are used by object stores implementing independent objects without cross-object consistency.

Bandwidth and buffer utilization optimizations are possible for variants of both categories.

Update delivery protocols for op-based implementations can use semantics of messages (updates)

to reduce the log of updates to propagate [35, 59, 78, 82]. Similarly, recent variants of state-

based implementations send only fragments of their states [7, 45], as we discuss in Chapter 5.

Topology-specific optimizations that rely on type semantics also exist for both categories [5, 35].

36

Part II

Optimality of Replicated Data Types

37

Chapter 3

Metadata Space Complexity Problem

Every town has a story. Tombstone has a legend.

Tombstone by George P. Cosmatos

Contents

3.1 Problem Statement . 40

3.2 Optimizing Implementations . 42

3.2.1 Successful Optimizations . 42

3.2.1.1 Add-Wins Set . 42

3.2.1.2 Multi-Value Register . 48

3.2.2 Prior Implementations and Unsuccessful Optimizations 51

3.2.2.1 Last-Writer-Wins Register . 51

3.2.2.2 Remove-Wins Set . 52

3.2.2.3 Last-Writer-Wins Set . 53

3.2.2.4 Counter . 54

3.3 Summary . 54

39

CHAPTER 3. METADATA SPACE COMPLEXITY PROBLEM

This chapter concerns the problem of minimizing the metadata cost incurred by RDT imple-

mentations. Metadata is information required by implementations to handle concurrent updates

and failures. For some implementations the space complexity of metadata is substantial, es-

pecially for state-based ones. Designing a space-optimized implementation is nontrivial — an

incorrect design may violate correctness under complex concurrency or failure scenarios. This

chapter studies this problem.

In Section 3.1, we define a metric for metadata overhead, which supports an asymptotic worst-

case analysis. In Section 3.2, we review some existing state-based implementations, and study the

opportunities for improvements. In particular, we look at a few difficult instances of the problem

for variants of set, register and counter types. For many of them existing implementations incur

an overhead in the order of the number updates, or in (the square of) the number the replicas

in the system. We present the design of two implementations that improve over the existing

ones, and minimize the metadata overhead down to the number of replicas. We also report on

unsuccessful optimization attempts.

3.1 Problem Statement

Object states in replicated data types include not only the client-observable content, but also

metadata needed for conflict resolution and for masking network failure. Similarly, messages

include metadata. The space taken by this metadata is a major factor of storage and bandwidth

cost, or even of feasibility. As illustrated earlier by both counter (Algorithm 2.3) and by register

(Algorithm 2.5) implementations, metadata is particularly large for state-based implementations.

Such implementations are used, for example, by object stores without cross-object consistency

guarantees, such as Riak 2.0 [3]. This motivates our study of state metadata complexity for

state-based implementations in this part of the thesis. We do not directly consider message size;

the size of a state sets a bound on the size of a message sending that state.1

To measure and compare space requirements of different implementations of a data type,

we need a common metric. To this end, we consider how data are represented. An encoding
of a set S is an injective function enc : S → Λ+ (i.e., encoding is decodable), where Λ is some

suitably chosen finite set of characters that is fixed and common for all data representation; for

example, binary encoding (Λ= {0,1}) or byte encoding (Λ= {0,1, . . . ,255}). Sometimes, we clarify

the domain being encoded using a subscript: e.g., encN(1) indicates the encoding of value 1 from

the domain of integers. For s ∈ S, we define lenS(s) as the length of encS(s), i.e., the number of

characters. The length can vary within the encoded domain: e.g., the length of encoding of an

integer k is proportional to its value, i.e., lenN0(k) ∈Θ(lgk). We use standard encodings schemes

for primitive values (such as integers, sets, tuples, etc.) used in object return values encValτ of

1We discuss some orthogonal work on message size optimizations in Chapter 5.

40

3.1. PROBLEM STATEMENT

each data type τ we consider; the standard encodings are explicitly specified in Appendix B.1. For

sake of generality, we allow arbitrary but fixed encoding of implementation states, encDτ.Σ.

The state of an object contains both client-observable value and metadata, and both can vary

within and across different executions. As the size of the value is a lower bound on the size of the

state, our analysis focuses on metadata, or how much overhead does the metadata causes. We

call metadata the part of the state that is not returned in a read query. Formally, for a concrete

execution C ∈ �DDτ
� and a read event e ∈ C.E|read, we define state(e) to be the state of the object

accessed at e: state(e)= R(C.replica(e)) for (R,_)= C.pre(e). The metadata overhead is the ratio

of the size of the object state over the size of the read value.

In this work, we focus on the worst-case analysis, which is relevant, for example, under high

concurrency or during network partitions. It does not necessarily represent average or long-term

behavior. We observe that for all the data types that we analyze the overhead is related to the

number of update operations and/or the number of replicas involved in an execution. We quantify

the worst-case overhead by taking the maximum of the overhead ratio over all read operations in

all executions with a given number of replicas n and update operations m.

Definition 3.1 (Maximum and Worst-Case Metadata Overhead). The maximum metadata
overhead of an execution C ∈ �DDτ

� of an implementation Dτ, noted mmo(Dτ,C), is:

mmo(Dτ,C)=max
{ lenDτ.Σ(state(e))

lenValτ(C.rval(e))
| e ∈ C.E|read

}
.

The worst-case metadata overhead of an implementation Dτ over all executions with n

replicas and m updates (2≤ n ≤ m), noted wcmo(Dτ,n,m), is:

wcmo(Dτ,n,m)=max{mmo(Dτ,C) | C ∈ �Dτ�∧n = |{C.replica(e) | e ∈ C.E}|
∧m = |{e ∈ C.E | C.op(e) ∈Opτ \{read}}|}.

The definition of mmo takes into account only states prior to read queries, which may appear

limited. However, wcmo definition quantifies over all executions, which includes any number of

read queries. Similarly, we consider only executions with m ≥ n, since we are interested in the

asymptotic overhead of executions where all replicas can be mutated (i.e., perform at least one

update operation); we ignore read-only replicas for brevity.

The definition of the worst-case metadata overhead allows us to express the asymptotic

complexity of implementations, a classical tool in worst-case analysis.

Definition 3.2 (Asymptotic Metadata Overhead). Consider an implementation Dτ and a positive

function f (n,m).

• f is an asymptotic upper bound, noted Dτ ∈ Ô(f (n,m)), if sup
n,m→∞

wcmo(Dτ,n,m)
f (n,m) <∞,

i.e., ∃K > 0 :∀m ≥ n ≥ 2 : wcmo(Dτ,n,m)< K f (n,m).

41

CHAPTER 3. METADATA SPACE COMPLEXITY PROBLEM

• f is an asymptotic lower bound, noted Dτ ∈ Ω̂(f (n,m)), if lim
n,m→∞

wcmo(Dτ,n,m)
f (n,m) 6= 0,

i.e., ∃K > 0 :∀m0 ≥ n0 ≥ 2 : ∃n ≥ n0,m ≥ n0 : wcmo(Dτ,n,m)> K f (n,m).

• f is an asymptotically tight bound, noted Dτ ∈ Θ̂(f (n,m)), if it is both an upper and a

lower asymptotic bound.

Note that we use the ĥat symbol to distinguish metadata overhead bounds from function bounds.

An asymptotic bound characterizes metadata overhead of an implementation concisely, and

serves to derive a notion of asymptotic implementation optimality.

Definition 3.3 (Optimality). Implementation Dτ is an asymptotically optimal state-based
implementation of type τ with an upper bound complexity Dτ ∈ Ô(f (n,m)) if it is correct, i.e.,

Dτ sat[Vstate,Tany]Fτ, and its upper bound is a lower bound for all correct implementations:

∀D′
τ :D′

τ sat[Vstate,Tany]Fτ =⇒ D′
τ ∈ Ω̂(f (n,m))

The goal of this part of the thesis is the design and/or identification of asymptotically optimal

state-based implementations.

3.2 Optimizing Implementations

In this section, we analyze the metadata overhead of some existing data type implementations,

and explore opportunities for improved, optimized designs.

3.2.1 Successful Optimizations

We begin with two successful nontrivial metadata optimizations using a variant of version vectors.

They reduce the overhead to the order of the number of replicas in the system.

3.2.1.1 Add-Wins Set

The set is one of the most fundamental data types. It can be used directly and as a basis for types

such as maps or graphs [27, 52, 93]. Among the alternatives discussed in Section 2.3.2.3, the

add-wins set semantics FAWSet (Equation 2.10) is a popular one [3, 45, 72].

Existing implementation. Algorithm 3.1 presents the basic state-based implementation of

add-wins set by Shapiro et al. [92], translated into our notation.

To implement add-wins, the idea is to distinguish different invocations of add(a) by attaching,

to each added element, a hidden unique token, or timestamp, t. We use a custom timestamp

t = (r,k), where r is the replica ID and k is a natural number assigned by that replica. The

concrete implementation stores a set A of active element instance triples (a, r,k), one for each

42

3.2. OPTIMIZING IMPLEMENTATIONS

Algorithm 3.1 Naive state-based implementation of add-wins set (AWSet).
1: Σ=ReplicaID×P(Z×ReplicaID×N0)×P(ReplicaID×N0)
2: M =P(Z×ReplicaID×N0)×P(ReplicaID×N0)
3: initialize(r i) : (r, A,T)
4: let r = r i . replica ID
5: let A =; . active element instances: triples (element a,replica r′,counter k)
6: let T =; . tombstones: timestamps of removed instances: pairs (replica r′,counter k)
7: do(read, to) : V
8: let V = {a | ∃r′,k : (a, r′,k) ∈ A} . return values of active instances
9: do(add(a), to)

10: let k =max{k′ | (_, r,k′) ∈ A∨ (r,k′) ∈ T ∨k′ = 0}+1 . next timestamp for new instance
11: A ← A∪ {(a, r,k)} . create and add a new instance of a
12: do(rem(a), to)
13: let D = {(a, r′,k) | ∃r′,k : (a, r′,k) ∈ A} . identify all instances of element a
14: A ← A \ D . remove them from active instances
15: T ← T ∪ {(r′,k) | (a, r′,k) ∈ D} . add their timestamps to tombstones
16: send() : (Am,Tm)
17: let Am = A
18: let Tm = T
19: deliver((Am,Tm))
20: A ← (A∪ Am)\{(a, r′,k) | (r′,k) ∈ T ∪Tm} . merge all instances, except tombstones
21: T ← T ∪Tm . merge sets of tombstones

add(a), rather than just elements. An element a is removed by removing every instance (a, r,k)

of that element from the active set and recording its timestamp (r,k) in a tombstone set T.

Timestamps in A and tombstones in T are therefore maintained as disjoint sets. An element

is in the set, i.e., is included in return value of read, if there is an instance of it in the active

set; tombstones are not visible to read, and they are used only during replication as a trace of

removal. A tombstoned element, can be always added again by creating a new instance (a, r′,k′)
with a fresh timestamp (r′,k′), different from the old one, (r′,k′) 6= (r,k). If the same element a

is both added and removed concurrently, the remove concerns only observed instances and not

the concurrently-added unique instance. Therefore the add wins, by adding a new instance. The

replication protocol transmits information about active and tombstone instances. The receiver

removes active instances that are present in the received tombstones set. Burckhardt et al. [34]

prove that this implementation indeed satisfies the specification FAWSet.

Figure 3.1A illustrates an example execution. Initially the state is empty. Replica r1 adds

some integer elements a and b, and later removes them by placing their timestamps in the

tombstone set. Concurrent add of element a at replica r2 generates a new instance. Therefore,

when replicas r1 and r2 synchronize, the instance of a from replica r2 “wins” over the remove

and makes a visible. Replica r3 delivers a message from r2 including all add updates, but no rem

updates, before it becomes disconnected (as indicated by a squiggly line). During disconnection, it

43

CHAPTER 3. METADATA SPACE COMPLEXITY PROBLEM

r
1

r
2

r
3

send

deliver

{(a,r
1
,1),(b,r

1
,2),(a,r

2
,1)} ∅

send

deliver

{(a,r
1
,1),(b,r

1
,2),(a,r

2
,1)}

 ∅

add(b)

{(a,r
1
,1),(b,r

1
,2)} ∅

rem(a)

{(b,r
1
,2)}

{(a,r
1
,1)}

send rem(b) ∅

{(a,r
1
,1),(b,r

1
,2)}

deliver

{(a,r
2
,1)}

{(a,r
1
,1),(b,r

1
,2)}

deliver

{(a,r
2
,1)}

{(a,r
1
,1),(b,r

1
,2)}

read:{a}

read:{a} deliver

{(a,r
2
,1), (c,r

3
,1)}

{(a,r
1
,1),(b,r

1
,2)}

read:{a,c}

add(c)

 {(a,r
1
,1),(b,r

1
,2),(a,r

2
,1),(c,r

3
,1 } ∅

send
unsafe GC period

add(a)

{(a,r
1
,1)} ∅

add(a)

{(a,r
2
,1)} ∅

A=∅

T=∅

A=∅

T=∅

A=∅

T=∅

(A) Execution of the naive implementation (Algorithm 3.1).

r
1

r
2

r
3

A=∅

vv=[0 0 0]

A=∅

vv=[0 0 0]

A=∅

vv=[0 0 0]

add(a)

{(a,r
1
,1)}

[1 0 0]

send

add(a)

{(a,r
2
,1)}

[0 1 0]

deliver

{(a,r
1
,1),(b,r

1
,2),(a,r

2
,1)}

[2 1 0]

send

deliver

{(a,r
1
,1),(b,r

1
,2),(a,r

2
,1)}

 [2 1 0]

add(b)

{(a,r
1
,1),(b,r

1
,2)}

[2 0 0]

rem(a)

{(b,r
1
,2)}

[2 0 0]

send rem(b) ∅

[2 0 0]

deliver

{(a,r
2
,1)}

[2 1 0]

deliver

{(a,r
2
,1)}

[2 1 0]

read:{a}

read:{a} deliver

{(a,r
2
,1), (c,r

3
,1)}

[2 1 1]

read:{a,c}

add(c)

 {(a,r
1
,1),(b,r

1
,2),(a,r

2
,1),(c,r

3
,1 }

 [2 1 1]

send

GC not needed

(B) Execution of the optimized implementation (Algorithm 3.2).
r

1
:

r
2
:

r
3
:

add(a) add(b) rem(a) rem(b) read:{a}

add(a)

add(c)

read:{a} read:{a,c}

(C) Witness abstract execution for the two executions. Arrows show visibility, arbitration is irrelevant.

Figure 3.1: Concrete executions of two implementations of add-wins set (AWSet), and their witness
abstract execution. Replica IDs in an object state, and message content for send (the copy of state)
are ommited. The period of interrupted connectivity is indicated with a squiggly line.

performs an add(c). After r3 reconnects to r2, replicas are still able to determine which elements

present in replica r3 were removed, and which are new, thanks to unique instances, and the

tombstone set.

This approach is correct, but incurs high metadata overhead, in the order of number of

updates m in an execution.

Theorem 3.1. Let DAWSet be the naive add-wins set implementation defined in Algorithm 3.1,

such that DAWSet sat[Vstate,Tany]FAWSet. The complexity of DAWSet is Θ̂(m lgm).

A formal proof is in Appendix B.2. Intuitively, every add requires a new instance (even

sequential or concurrent adds of a same element), which remains as a timestamp in the tombstone

set after being removed. The factor lgm is the cost of storing the identity of each instance.

44

3.2. OPTIMIZING IMPLEMENTATIONS

Algorithm 3.2 Optimized state-based implementation of add-wins set (AWSet).
1: Σ=ReplicaID× (ReplicaID→N0)×P(Z×ReplicaID×N0)
2: M = (ReplicaID→N0)×P(Z×ReplicaID×N0)
3: initialize(r i) : (r,vv, A)
4: let r = r i . replica ID
5: let vv=λs.0 . vector summarizing timestamps known to this replica
6: let A =; . active element instances: triples (element a,replica r′,counter k′)
7: do(read, to) : V
8: let V = {a | ∃r′,k : (a, r′,k) ∈ A} . return values of active instances
9: do(add(a), to)

10: let D = {(a, r,k) | ∃k : (a, r,k) ∈ A} . collect all instances of a created by local replica
11: A ← A∪ {(a, r,vv(r)+1)}\ D . add new instance of a and replace local instances if any
12: vv← vv[r 7→ vv(r)+1] . increment own entry in the vector
13: do(rem(a), to)
14: let D = {(a, r′,k) | ∃r′,k : (a, r′,k) ∈ A} . identify all instances of element a
15: A ← A \ D . remove them from active instances
16: send() : (vvm, Am)
17: let vvm = vv
18: let Am = A
19: deliver((vvm, Am))
20: let A′ = A \{(a, r′,k) 6∈ Am | k ∈N∧k ≤ vvm(r′)} . keep local instances not rem. remotely
21: let A′′ = Am \{(a, r′,k) 6∈ A | k ∈N∧k ≤ vv(r′)} . keep remote instances not removed locally
22: A ← A′∪ A′′

23: vv← vvtvvm . update vector to entry-wise maximum (cf. Equation 2.2)

Discarding instances is not simple. Unfortunately, getting rid of instances is not easy in a

system with failures. They protect from duplicated and reordered messages, and disconnected

replicas. A background garbage collection (GC) protocol could collect unnecessary instances

[51, 102] (we will discuss it in Chapter 5). However, this incurs overhead too, and requires update

stability for progress, i.e., every replica must acknowledge receiving an update. Replica can be

exempted from acknowledgment only if it permanently crashed, but such an exemption requires

perfect failure detector [36], thus network or replica failure can prevent GC for extended duration.

On the other hand, it is unsafe to GC an instance before it is known to be replicated everywhere.

An execution from Figure 3.1A, described earlier, illustrates this problem. While replica r3 is

disconnected (or failed), replicas r2 and r3 do not know if r3 received tombstones for elements a

and b. If they were to remove tombstone for a and b, when r3 connects again to r2, r2 would be

unable to distinguish a fresh instance of element c and previously removed instances of a and b.

Optimized implementation. Algorithm 3.2 presents a new optimized design of add-wins set

implementation. It addresses the metadata complexity problem by summarizing: (1) removed

and (2) re-added element instances. We explain our design by comparison to the naive one. We

describe optimization (1) first, assuming D =; in Line 10, which disables optimization (2).

45

CHAPTER 3. METADATA SPACE COMPLEXITY PROBLEM

r1:

r2:

r3:

(r1,1) (r1,2)

(a,r2,1)

(c,r3,1)

T(A,vv)

A
vv = 1

2

1

1 2 3...

Figure 3.2: Semantics of a version vector in the optimized add-wins set. The illustration refers
to the last state of replica r2, (r2,vv, A) in Figure 3.2. Horizontally-aligned boxes illustrate the
instances (timestamps) represented by vector entry for that replica, whereas dashed rectangles
represent the sets A and T(vv, A).

Optimization 1: Efficient summary of removed elements without tombstones. Our

solution is similar to the metadata of a replicated file system of Bjørner [24] (see Chapter 5).

It is based on the observation that an implementation does not need to store an explicit set

of tombstones to represent information about removals. If each replica assigns timestamps

contiguously, i.e., (r i,1), (r i,2), . . ., and the protocol ensures their in-order delivery (as in the case

of state-based transitive delivery), it suffices to recall the number of adds from each replica. Thus,

a version vector can compactly summarize knowledge about the timestamps that the replica has

observed. Formally, let function TS(vv) define the timestamps represented by a vector vv:

(3.1) TS(vv)= {(r,k) | r ∈ dom(vv)∧k ∈N∧k ≤ vv(r)}.

The concrete state in the optimized implementation is a triple (r,vv, A), where r is the replica

ID, vv is a vector, and A is a set of active instances. There is no tombstone set. The timestamps

represented by vv include both active instances A and timestamps of the missing tombstones.

Although the tombstones set is not part of state, it is possible to logically reconstruct it from

a concrete state (r,vv, A) of the optimized implementation. We can write: TS(vv) = {(r,k) | ∃a :

(a, r,k) ∈ A}]T(vv, A), where T(vv, A) is the logical tombstone set. Therefore:

(3.2) T(vv, A)=TS(vv)\{(r,k) | ∃a : (a, r,k) ∈ A}.

Figure 3.2 illustrates this relation between version vector vv, set A, and the computed tombstone

set T(vv, A). It is based on the example state of replica r2 from Figure 3.1B.

The optimized algorithm needs to use this new data structure. The add method now associates

an instance to the replica’s own entry in the vector, which is incremented. The rem method is

unchanged compared to the naive implementation, except for the absence of the tombstone set.

The most complex optimization concerns the deliver replication logic. Version vector is used to

check for timestamp inclusion.2 deliver computes the new set of active instances as a union of two

sets: local instances that were not removed remotely, and remote instances that were not removed

locally. In Line 20, the algorithm keeps a local instance unless the remote replica observed it

2Note that this is different from how the multi-value register (Section 2.2.3) uses vectors, comparing vectors
assigned to events to check if events are concurrent.

46

3.2. OPTIMIZING IMPLEMENTATIONS

add(b) add(a) add(a) add(b)

add(a) rem(a) add(a)

not needed

L∈ContextAWSet

FAWSet(L,read)= {a,b}

Figure 3.3: Operation context of an add-wins set illustrating opportunity for coalescing adds. The
set of operations that are irrelevant for semantics of read is indicated with a blue dashed shape.

previously (according to vvm) and does not include it as an active instance in Am anymore, which

indicates a remote removal. Similarly, in Line 21, the algorithm integrates a remote instance

unless the local replica observed it previously and removed it. The new version vector represents

the combined knowledge, i.e., the least upper bound (Equation 2.2) of local and remote vectors.

One way to reason about correctness of the optimization is to relate it with the naive im-

plementation. The deliver algorithm is equivalent to the naive implementation. Consider any

state (r, A,T) of the naive implementation (resp., an equivalent optimized state (r,vv, A)) and

a message (Am,Tm) (resp., an equivalent optimized message (vvm, Am)). The delivery of the

message in Line 20 of the naive implementation is equivalent to Line 22 of the optimized one:

A (i)← (A∪ Am)\{(a, r′,k) | ∃(r′,k) ∈ T ∪Tm}(3.3)

= (A \{(a, r′,k) | ∃(r′,k) ∈ T ∪Tm})∪ (Am \{(a, r′,k) | ∃(r′,k) ∈ T ∪Tm})
(ii)= (A \{(a, r′,k) | ∃(r′,k) ∈ Tm})∪ (Am \{(a, r′,k) | ∃(r′,k) ∈ T})

(iii)= (A \{(a, r′,k) 6∈ Am | (r′,k) ∈TS(vvm)})∪ (Am \{(a, r′,k) 6∈ A | (r′,k) ∈TS(vv)})
(iv)= (A \{(a, r′,k) 6∈ Am | k ∈N∧k ≤ vvm(r′)})∪ (Am \{(a, r′,k) 6∈ A | k ∈N∧k ≤ vv(r′)}),

where (i) is the assignment from Line 20 of the naive implementation; step (ii) is due to disjoint-

ness of A and T (also, Am and Tm), (iii) is an application of Equation 3.2, and (iv) comes from

application of Equation 3.1. A similar argument holds for vectors.

Optimization 2: Coalescing adds. Another optimization coalesces multiple active instances

of a same element. We observe that, among multiple add operations on the same element, only

the latest ones are relevant in the add-wins semantics. Consider for example an operation context

from Figure 3.3. The latest add(a) at replica r1 and r2, and the latest add(b) at r1 are sufficient

to determine the correct return value of read. Old adds become irrelevant when new adds arrive.

Therefore, we can “coalesce” them: rather than storing all instances of add(a), it suffices to record

a vector of the latest timestamps for element a generated by each replica, or equivalently, a set of

the latest timestamps for a from each replica.

The optimized add(a) method does exactly that in Line 10 of Algorithm 3.2. When a new

instance of element a is generated, the set D of prior instances of a generated by this replica is

discarded; D is an empty set or a singleton. This guarantees that in any state A the number of

different instances of a same element a is at most in the number of replicas n.

47

CHAPTER 3. METADATA SPACE COMPLEXITY PROBLEM

Figure 3.1B illustrates an execution of the optimized implementation, with the same client and

network behavior as Figure 3.1A. Note that replicas r1 and r2 are now unaffected by unavailability

of replica r3, and discard removed element instances immediately. When r3 communicates back,

the version vector of r2 prevents removed instances of a and b from reappearing.

Improvement. The two optimizations significantly reduce metadata overhead, down to the

order of the number of replicas n.

Theorem 3.2. Let D∗
AWSet be the optimized add-wins set implementation defined in Algorithm 3.2,

such that D∗
AWSet sat[Vstate,Tany]FAWSet. The complexity of D∗

AWSet is Θ̂(n lgm).

A proof is in Appendix B.2. Intuitively, the vector vv has n entries (or less, with some additional

minor optimizations that we omit), and every element a has at most n different instances in

the set A. The lgm factor is the size of a vector entry. In Chapter 4 we will show that this

implementation is optimal, i.e., further state reduction for the worst-case is impossible without

affecting fault-tolerance or semantics.

Burckhardt et al. [34] formally prove the optimization correct w.r.t. FAWSet specification.

Mukund et al. [72] offers an alternative proof via bisimulation between the naive and the

optimized implementation, along the lines of Equation 3.3 that shows part of the obligations.

Applicability. The optimization for add-wins set is relatively general and could be applied to

other similar types, for instance, an add-wins map object [3]. The optimized set can be also viewed

as an optimized implementation of a collection of value-wins registers FVWReg (Equation 2.8)

restricted to boolean values. Every register corresponds to a unique element; if an element is

present in the set, then the corresponding register has the winning value.

3.2.1.2 Multi-Value Register

The multi-value register is a basic primitive for conflict detection and application-level conflict

resolution. Its semantics FMVReg are specified in Equation 2.7.

Existing implementation. We first analyze the standard implementation from Algorithm 2.5

(Section 2.2.3), proposed in similar forms by different authors [44, 59, 93].

Theorem 3.3. Let DMVReg be the multi-value register implementation defined in Algorithm 2.5,

such that DMVReg sat[Vstate,Tany]FMVReg. The complexity of DMVReg is Θ̂(n2 lgm).

A proof is in Appendix B.2. The overhead may appear surprisingly high, since each value

stored by the implementation carries a single version vector, which could suggest an overhead

of n lgm. However, in the most costly case, the same value could be written concurrently by up

48

3.2. OPTIMIZING IMPLEMENTATIONS

Algorithm 3.3 Incorrect state-based implementation of multi-value integer register (MVReg).
1: Σ=ReplicaID×P(Z× (ReplicaID 7→N0)) M =P(Z× (ReplicaID 7→N0))
2: all other methods are identical to Algorithm 2.5
3: deliver(Am)
4: let A′ = {(a,

⊔
{vv | (a,vv′) ∈ A∪ AM}) | (a,_) ∈ A∪ AM} . compute max. vector per element

5: A ← {(a,vv) ∈ A′ | ∀(a′,vv′) ∈ A′ : vv 6< vv′} . keep elem. not dominated by any other elem.

to n replicas. In this case, the actual observable value is a singleton, whereas the state stores n

version vectors.3

We illustrate this problem in Figure 3.4A. Three replicas concurrently write value 0, assigning

it three different version vectors. A fourth replica r4 delivers their writes, and needs to store all

three vectors. This causes n2 lgm overhead, as demonstrated by a read operation on replica r4.

The overhead reduces only with subsequent writes.

This overhead may be problematic in practice, as we expect states made of concurrent writes

of the same value, which do not require conflict resolution, to last longer than transient states

with unresolved conflicting writes. Moreover, this happens in the desirable case of concurrent

convergent conflict resolution.

Incorrect optimization. In an optimization attempt, we explored the idea of merging the

vectors of identical elements in order to store at most one vector per unique value. Algorithm 3.3

applies this idea in the deliver function.

It merges two states by first merging entries for identical elements. The vector of a merged

entry is the least upper bound of all vectors for the element (Equation 2.2). This step eliminates

multiple entries per element, and brings the overhead down to Θ̂(n lgm). In the second step of

deliver, the implementation attempts to eliminate dominated entries, in the same way as the

original implementation, by removing an entry if it is dominated by another one. As it turns out,

these optimizations are incorrect. This demonstrates the difficulty of correct optimization.

Figure 3.4B illustrates the counterexample. When three concurrent writes of value 0 reach

replica r4, they are merged into a single vector, as explained above. However, each of replicas

r1, r2, and r3, subsequently overwrite value 1 with new values, respectively, 1, 2, and 3, being

unaware of each other’s updates. When these three writes reach r4, both earlier value 0, and the

new values remain in the state, since no vector dominates another. The read operation returns

all four values {0,1,2,3}, which is incorrect. As illustrated in the correct abstract execution in

Figure 3.4D, all three events of write(0) operation were overwritten in visibility by write(i)

where i ∈ {1,2,3}, therefore 0 should not appear in the return value at replica r4,

Correct optimization. Algorithm 3.4 presents a correct optimized design of multi-value

register implementation. This design uses a more complex logic to eliminate merged entries.

3Even for a variant of multi-value register that returns a multi-set in this case [93], the overhead would be n2.

49

CHAPTER 3. METADATA SPACE COMPLEXITY PROBLEM

r
1

 ∅

r
2

 ∅

r
3

 ∅

r
4

 ∅

read:{1,2,3}

write(0)

{(0, [1 0 0])}

send

write(0)

{(0, [0 1 0])}

write(0)

{(0, [0 0 1])}

send

send

deliver

{(0, [0 0 1])}

deliver

{(0, [0 0 1]),

 (0, [0 1 0])}

deliver

{(0, [0 0 1]),

 (0, [0 1 0]),

 (0, [1 0 0])}

read:{0}

write(1)

{(1, [2 0 0])}

send

write(2)

{(2, [0 2 0])}

write(3)

{(3, [0 0 2])}

send

send

deliver

{(3, [0 0 2]),

 (0, [0 1 0]),

 (0, [1 0 0])}

deliver

{(3, [0 0 2]),

 (2, [0 2 0]),

 (0, [1 0 0])}

deliver

{(3, [0 0 2]),

 (2, [0 2 0]),

 (1, [2 0 0])}

(A) Execution of the basic implementation (Algorithm 2.5).

r
1

 ∅

r
2

 ∅

r
3

 ∅

r
4

 ∅

read:{0,1,2,3}

write(0)

{(0, [1 0 0])}

send

write(0)

{(0, [0 1 0])}

write(0)

{(0, [0 0 1])}

send

send

deliver

{(0, [0 0 1])}

deliver

{(0, [0 1 1])}

deliver

{(0, [1 1 1])}

read:{0}

write(1)

{(1, [2 0 0])}

send

write(2)

{(2, [0 2 0])}

write(3)

{(3, [0 0 2])}

send

send

deliver

{(3, [0 0 2]),

 (0, [1 1 1])}

deliver

{(3, [0 0 2]),

 (2, [0 2 0]),

 (0, [1 1 1])}

deliver

{(3, [0 0 2]),

 (2, [0 2 0]),

 (1, [2 0 0]),

 (0, [1 1 1])}

(B) Execution of the incorrectly optimized implementation (Algorithm 3.3).

r
1

 ∅

r
2

 ∅

r
3

 ∅

r
4

 ∅

read:{1,2,3}

write(0)

{(0, [1 0 0])}

send

write(0)

{(0, [0 1 0])}

write(0)

{(0, [0 0 1])}

send

send

deliver

{(0, [0 0 1])}

deliver

{(0, [0 1 1])}

deliver

{(0, [1 1 1])}

read:{0}

write(1)

{(1, [2 0 0])}

send

write(2)

{(2, [0 2 0])}

write(3)

{(3, [0 0 2])}

send

send

deliver

{(3, [0 0 2]),

 (0, [1 1 1])}

deliver

{(3, [0 0 2]),

 (2, [0 2 0]),

 (0, [1 1 1])}

deliver

{(3, [0 0 2]),

 (2, [0 2 0]),

 (1, [2 0 0])}

(C) Execution of the correctly optimized implementation (Algorithm 3.4).
r

1
:

r
2
:

r
3
:

r
4
:

read:{1,2,3}

write(0)

write(0)

write(0)

read:{0}

write(1)

write(2)

write(3)

(D) Witness abstract execution for correct executions. Arrows show visibility, arbitration is irrelevant.

Figure 3.4: Example execution of three different implementations of multi-value register (MVReg),
and a corresponding abstract execution. Note the problematic concurrent writes of the same
value. The figure omit the replica ID. The message content for send is always a copy of the state.

50

3.2. OPTIMIZING IMPLEMENTATIONS

Algorithm 3.4 Optimized state-based implementation of multi-value integer register (MVReg).
1: Σ=ReplicaID×P(Z× (ReplicaID 7→N0)) M =P(Z× (ReplicaID 7→N0))
2: all other methods are identical to Algorithm 2.5
3: deliver(Am)
4: let A′ = {(a,

⊔
{vv | (a,vv′) ∈ A∪ AM}) | (a,_) ∈ A∪ AM} . compute max. vector per element

5: A ← {(a,vv) ∈ A′ | vv 6v⊔
{vv′ | ∃a′ 6= a : (a′,vv′) ∈ A′}}} . keep elem. not domin. by all others

Similarly to the previous implementation, deliver first merges entries with identical elements,

using the least upper bound of all vectors for the element as a merged vector. The second phase,

of eliminating dominated entries, is different. It removes an entry if the least upper bound of

vectors of entries for all other elements dominates the vector of that entry, i.e., it expresses the

case where an entry was merged, but different writes overwrite the original parts of the merged

entry. This rule subsumes the incorrect rule which considered only a direct domination by a single

entry. This logic allows to discard merged entries correctly, as proved by Burckhardt et al. [34].

An execution from Figure 3.4C illustrates how the optimized implementation corrects the

problematic counterexample. This time, when replica r4 delivers concurrent write(1), write(2),

and write(3) operations that overwrite write(0), it discards the entry for value 0 correctly.

Indeed, the merged vector it stores for value 0, namely [r1 7→ 1, r2 7→ 1, r3 7→ 1], is dominated by

the least upper bound of vectors for values 1, 2, and 3. Therefore, read on replica r4 yields {1,2,3}

correctly, as in the witness abstract execution (Figure 3.4D).

Theorem 3.4. Let D∗
MVReg be the multi-value register implementation defined in Algorithm 3.4,

such that D∗
MVReg sat[Vstate,Tany]FMVReg. The complexity of D∗

MVReg is Θ̂(n lgm).

A proof is in Appendix B.2. This implementation is guaranteed to store one entry per element,

yielding the overhead of a single vector. In Chapter 4, we will show that this implementation is

asymptotically optimal; in Chapter 5 we will also discuss a recent improvement of Almeida et al.

[6], with the same asymptotic complexity, but improved average case.

3.2.2 Prior Implementations and Unsuccessful Optimizations

A number of other important data types exist, for which we did not manage to find a correct

optimization. Some of them provide a similar behavior to add-wins set and multi-value register,

and could act as their replacement. We report on their complexity here, which motivates some of

the questions regarding optimality that we address in Chapter 4.

3.2.2.1 Last-Writer-Wins Register

In the presence of nonnegligible overhead of multi-value register implementation, it is natural to

investigate the complexity of arbitration-based last-writer-wins register. LWW register is specified

as FLWWReg in Equation 2.6. We presented the implementation in Section 2.2.3 (Algorithm 2.4).

51

CHAPTER 3. METADATA SPACE COMPLEXITY PROBLEM

Algorithm 3.5 State-based implementation of remove-wins set (RWSet).
1: Σ=P(Z×Timestamp)×P(Z×Timestamp) M =P(Z×Timestamp)×P(Z×Timestamp)
2: initialize(r i) : (A,T)
3: let T =; . remove instances: pairs (element a, timestamp t)
4: let A =; . add instances covering remove instances: pairs (element a, timestamp t)
5: do(read, to) : V
6: let V = {a | (∃t : (a, t) ∈ A)∧ (6 ∃t′ : (a, t′) ∈ T)} . elements with add instance but no rem ins.
7: do(add(a), to)
8: let D = {(a, t) ∈ T} . identify existing rem instances for element a
9: if D =; then

10: A ← A∪ {(a, to)} . add a new add instance for a if there is no remove instance to cover
11: else
12: A ← A∪D . otherwise, turn remove instances into add instances. . .
13: T ← T \ D and discard remove instances
14: do(rem(a), to)
15: T ← T ∪ {(a, to)} . add a new remove instance for element a
16: send() : (Am,Tm)
17: let Am = A
18: let Tm = T
19: deliver((Am,Tm))
20: T ← (T ∪Tm)\ (A∪ Am) . union remove instances excluding those covered by adds
21: A ← A∪ Am . union sets of add instances

Theorem 3.5. Let D∗
LWWReg be the last-writer-wins register implementation defined in Algo-

rithm 2.4, such that D∗
LWWReg sat[Vstate,Tany]FLWWReg. The complexity of D∗

LWWReg is Θ̂(lgm).

A proof is in Appendix B.2. LWW register incurs a negligible logarithmic overhead (the cost of

a timestamp). In Chapter 4, we will show that this marginal cost is unavoidable. Compared to

the multi-value register, the overhead is much lower for the LWW register, particularly when the

number of replicas is high or there is a replica churn, i.e., replicas disappear and join frequently.

3.2.2.2 Remove-Wins Set

Given that implementations of the add-wins set have noticeable overhead, it is natural to consider

other semantics of sets. Algorithm 3.5 is an implementation of remove-wins set semantics FRWSet

(Equation 2.10) by Bieniusa et al. [22].

The implementation is somewhat similar to the naive add-wins set, as it keeps track of every

add and rem operations in two sets: a set of add instances A with pairs (a, t), where a is an

element and t is a timestamp, and a set of remove instances T with the same type of pairs. The

two sets are disjoint. The read method returns an element a if there is an add(a) instance and

no rem(a) instance. The rem method simply creates a new remove instance. The add operation

turns any remove instances of the element into add instances, or, if there is none, creates a new

add instance. The replication protocol is similar to the naive add-wins set.

52

3.2. OPTIMIZING IMPLEMENTATIONS

To our surprise, the overhead of the remove-wins implementation is even higher than that of

the naive add-wins implementation. Recall that the naive add-wins implementation stored only

timestamps of removed elements, not their value. The implementation of remove-wins semantics

must store also the value of removed elements, because removes must dominate concurrent adds

unaware of their timestamps. Since removed elements are of variable, unbounded size, there is

no upper bound w.r.t. m or n.4 Formally, we can give only an underestimated lower bound.

Theorem 3.6. Let DRWSet be the remove-wins set implementation defined in Algorithm 3.5,

assuming that DRWSet sat[Vstate,Tany]FRWSet. The complexity of DRWSet is Ω̂(m lgm).

A proof is in Appendix B.2. Intuitively, the implementation stores at least a timestamp for

every remove operation, which incurs the worst-case overhead in the order of the number of

operations.

In Chapter 4, we prove that the remove-wins semantics requires to maintain precise informa-

tion about every rem operation, which makes it impossible to efficiently summarize information

about removed instances, similar to the add-wins set.5 A practical implementation can only resort

to a background garbage collection protocol [51, 56], which raises other issues.

3.2.2.3 Last-Writer-Wins Set

Another alternative set semantics is the last-writer-wins (LWW) FLWWSet, specified in Equation 2.9.

Algorithm 3.6 presents the implementation of LWW set of Bieniusa et al. [22], improved over

Shapiro et al. [93]. The implementation maintains the set of latest operations, one for each

element updated by either add or rem. The latest operation is selected according to the timestamp.

The type of operation is represented as a presence flag: 1 for add and 0 for remove. An element a

is included in read value if the operation with the latest timestamp has a positive flag value.

Although the implementation is simple, it also incurs an unbounded metadata overhead, as it

stores removed elements. Therefore, we claim only an underestimated lower bound.

Theorem 3.7. Let DLWWSet be the LWW set implementation defined in Algorithm 3.6, assuming

that DLWWSet sat[Vstate,Tany]FLWWSet. The complexity of DLWWSet is Ω̂(m lgm).

A proof is in Appendix B.2. Intuitively, the implementation stores timestamps for removed

elements, which incurs the overhead in the order of the number of removes.

It is an open problem whether storing timestamps per updated element is necessary for LWW

set semantics. In Chapter 3 we answer it only partially. It appears difficult to apply optimizations

inspired by the add-wins, since different removed elements may have different timestamps. If

this overhead is indeed unavoidable, one could only resort to background garbage collection [56].

4If all values stored in a set have a constant size, bound exists; however, metadata overhead metric would become
an absolute metadata metric in this case, and the m factor would be bounded by the (constant) cardinality of the
domain of values.

5Minor optimizations are possible. As they do not change the worst-case behavior, we omit them in Algorithm 3.5.

53

CHAPTER 3. METADATA SPACE COMPLEXITY PROBLEM

Algorithm 3.6 State-based implementation of last-writer-wins set (LWWSet).
1: Σ=P(Z×Timestamp× {0,1})
2: M =P(Z×Timestamp× {0,1})
3: initialize(r i) : S
4: let S =; . set of latest operations: triples (element a, timestamp t,presence-flag v)
5: do(read, to) : V
6: let V = {a | ∃t : (a, t,1) ∈ S} . return values of elements that are present (presence flag = 1)
7: do(add(a), to)
8: if to > t then . sanity check for new timestamp
9: let D = {(a, t,v) ∈ A} . replace the latest operation on a (if any). . .

10: A ← (A \ D)∪ {(a, to,1} with a positive presence flag
11: do(rem(a), to)
12: if to > t then . sanity check for new timestamp
13: let D = {(a, t,v) ∈ A} . replace the latest operation on a (if any). . .
14: A ← (A \ D)∪ {(a, to,0} with a negative presence flag
15: send() : Sm
16: let Sm = S
17: deliver(Sm)
18: S ← {(a, t,v) ∈ S∪Sm | ∀(a, t′,v′) ∈ S∪Sm : t′ 6= t =⇒ t′ < t} . keep the latest flag per elem.

Note that LWW set can be viewed as a collection of LWW boolean registers of presence flags,

one for each element, similarly to the add-wins set considered earlier as a collection of presence-

wins registers. Unlike the add-wins set, where some metadata can be shared in a collection, an

implementation of the LWW set is no cheaper than implementation of independent registers.

3.2.2.4 Counter

The counter implementation in Algorithm 2.3 (Section 2.2.3) uses vectors to keep track of the

number of increments per replica. We can now formally state its complexity.

Theorem 3.8. Let D∗
Ctr be the counter implementation defined in Algorithm 2.3, such that

D∗
Ctr sat[Vstate,Tany]FCtr. The complexity of D∗

Ctr is Θ̂(n).

A proof is in Appendix B.2. Intuitively, the size of a vector is n times bigger than the size of a

scalar counter value. In Chapter 4 we will prove that this implementation is optimal.

3.3 Summary

In this chapter, we introduced the metadata space complexity problem and investigated optimiza-

tion opportunities for six data types. We found that many implementations incur high metadata

overhead, linear in the number of updates, or polynomial in the number of replicas. We presented

two optimizations, for the add-wins set and the multi-value register. We also found that the

complexity of the best known implementations highly depends on the data type semantics.

54

Chapter 4

Lower Bounds on Complexity and
Implementation Optimality

Think it over, think it under.

Winnie-the-Pooh by A. A. Milne

Contents

4.1 Proof Technique . 56

4.1.1 Experiment Family . 56

4.1.2 Driver Programs . 58

4.2 Lower Bounds . 58

4.2.1 Counter . 58

4.2.2 Add-Wins Set . 61

4.2.3 Remove-Wins Set . 64

4.2.4 Last-Writer-Wins Set . 66

4.2.5 Multi-Value Register . 66

4.2.6 Last-Writer-Wins Register . 68

4.3 Summary . 68

55

CHAPTER 4. LOWER BOUNDS ON COMPLEXITY AND IMPLEMENTATION OPTIMALITY

In the previous chapter, we focused on positive results, i.e., implementations with reduced

metadata complexity. The design of optimized implementation is a laborious process that requires

developing non-trivial solutions. There is a limit to this process, beyond which optimizations

within an implementation category are impossible. In this chapter, we introduce general lower

bound proofs on metadata overhead, which identify the limits, i.e., we present impossibility

results. Lower bounds show that some of the presented implementations, and in particular our

optimized designs, are optimal.

In Section 4.1, we present a technique for proving a lower bound on metadata overhead that

applies to any state-based implementation of a certain type. In Section 4.2, we apply it to prove

optimality of four state-based implementations, and simply lower bounds for two other data

types. In Section 4.3, we summarize both positive and impossibility results from both chapters.

Together, they offer a comprehensive view of the metadata overhead problem.

Although we present optimization and impossibility results separately, as an intellectual

process, they influenced one another. Specifically, designing optimized implementations helped us

with lower bound proofs. Conversely, proofs directed us towards some optimizations. Generally,

they help to understand the limiting factors in the semantics and in the implementation category.

4.1 Proof Technique

Our previous proofs of lower and upper bounds for a single concrete implementation rely on

relatively standard techniques. (Which is why we deferred all prior proofs to the appendix).

However, proving a lower bound that applies to any implementation is challenging.

4.1.1 Experiment Family

The goal is to show that for any correct state-based implementation Dτ (that is, such that

Dτ sat[Vstate,Tany] Fτ), the object state must store some minimum amount of information. We

achieve this by constructing an experiment family, which is a collection of executions Cα of

the same size, where α ∈Q is an experiment index from some index set Q, that identifies an

individual experiment. Each experiment execution in the collection ends with a distinguished

culprit read event eα ∈Cα.E, where the overhead argument applies. Culprit reads execute in

the culprit object states, noted state(eα). The experiments are designed in such a way that the

object states must be distinct across experiments, which then implies a lower bound lg|Λ| |Q| on

the size of their encoding (i.e., the size required to encode an element of a set of cardinality |Q|).
To prove that the culprit states are distinct, we construct black-box tests that execute the

methods of Dτ on the states and show that the tests must produce different results for each

state(eα) provided Dτ is correct. In other words, the tests demonstrate that these states are

distinguishable by future steps of an execution, after the read. Formally, the tests induce a

read-back function that satisfies readback(state(eα))=α, relying on the data type specification.

56

4.1. PROOF TECHNIQUE

readback(state(e1))= 1 by Fτ

e1:read

state(e1)

m updates

n
 r

e
p

li
ca

s r1

r2

rn

…

eα:read

state(eα)
r1

r2

rn

…

…

e|Q|:read

state(e|Q|)
r1

r2

rn

…

…
 |
Q

|
 e

xe
cu

ti
o

n
s

C1

Cα

C|Q|

|Q| strings

experiment family (Definition 4.1)
execution phase test phase

state size (Lemma 4.1)

readback(state(e|Q|))=|Q| by Fτ

len(state(eα)) ≥ lg |Q|

readback(state(eα))= α by Fτ

Figure 4.1: Structure of experiment family and implications of Lemma 4.1 on the size of object
state encoding. For simplicity, the index set Q is a set of positive integers.

We encapsulate this core argument in the following definition and lemma.

Definition 4.1 (Experiment Family). An experiment family for an implementation Dτ is a

tuple (Q,n,m,C,e,readback) where Q is a finite index set, 2≤ n ≤ m, and for each experiment
index α ∈ Q, Cα ∈ �Dτ� is an experiment execution with n replicas and m updates, eα ∈
Cα.E|read is a culprit read in that execution and readback :Dτ.Σ→Q is a readback function

satisfying readback(state(eα))=α.

Lemma 4.1. If (Q,n,m,C,e,readback) is an experiment family for an implementation Dτ, then

the worst-case metadata overhead of Dτ is at least:

wcmo(Dτ,n,m)≥ blg|Λ| |Q|c / (maxα∈Q len(Cα.rval(eα))).

Proof. Since readback(state(eα))=α, the states state(eα) are all distinct and so are their encodings

enc(state(eα)), by injectivity. Since there are fewer than |Q| strings of length strictly less than

blg|Λ| |Q|c, for some experiment α ∈Q we have len(enc(state(eα)))≥ blg|Λ| |Q|c. Then

wcmo(Dτ,n,m)≥mmo(Dτ,Cα)≥ len(state(eα))
len(Cα.rval(eα))

≥ blg|Λ| |Q|c
maxα′∈Q len(Cα′ .rval(eα′))

.

The lemma indicates that some culprit read in the experiment family is responsible for the

worst-case metadata overhead related to the size of the family and of the returned value.

Figure 4.1 illustrates the structure of an experiment family, and shows the consequences of

Lemma 4.1 on the state space complexity.

57

CHAPTER 4. LOWER BOUNDS ON COMPLEXITY AND IMPLEMENTATION OPTIMALITY

To apply Lemma 4.1 to the best effect, we need to find experiment families with |Q| as large

as possible and len(Cα.rval(eα)) as small as possible. Finding such families for a specific data type

is challenging, as we have no systematic way to derive them. When searching for experiment

families for a given specification, we rely on intuitions about which situations force replicas to

store a lot of information.

4.1.2 Driver Programs

To simplify the presentation, we avoid specifying an experiment family directly as a sequence of

concrete execution steps, by defining it indirectly using a driver program that generate these

execution steps (e.g., see Table 4.1). A driver program is written in imperative pseudocode with

three types of instructions, each of which triggers a uniquely-determined configuration transition:

• v ← dor o t Do operation o at replica r with timestamp t, assign the return value to v.

• sendr(mid) Send a message with identifier mid at replica r.

• deliverr(mid) Deliver the message with identifier mid at replica r.
We structure code into procedures, and define a program as a sequence of procedure calls.

When a driver program terminates, it may produce return value from the last procedure.

For a program P, an implementation Dτ, and a configuration (R, N), we let exec(Dτ, (R, N),P) be

the concrete execution of the data type implementation Dτ starting in (R, N) that results from

running P; we define result(Dτ, (R, N),P) as the return value of P in this run.

Programs explicitly supply timestamps for the do instruction and message identifiers for

send and deliver instructions. We require that they do this correctly, i.e., that they respect the

uniqueness of timestamps, message IDs, and deliver only previously-sent messages. This is

the case for all our driver programs.1 For most of our programs, timestamps (arbitration) are

irrelevant, as they concern visibility-based data types, but we include them for completeness and

make use of them for arbitration-based data types.

4.2 Lower Bounds

In this section we apply the above proof technique to obtain lower bounds for six data types.

4.2.1 Counter

We begin with one of the simplest examples: the counter data type (Ctr).

Theorem 4.1. If DCtr sat[Vstate,Tany]FCtr, then the complexity of DCtr is Ω̂(n).

We start by formulating a suitable experiment family.

1Moreover, all executions generated by our driver programs respect causal timestamps Tct. Therefore, the results
hold also under a stronger network specification.

58

4.2. LOWER BOUNDS

Conditions on #replicas & #updates m ≥ n ≥ 2 ∧ m mod (n−1)= 0

Index set Q = ([2..n]→ [1.. m
n−1])

Family size |Q| = (m
n−1)n−1

Driver programs

1: procedure init
2: for all r ∈ [2..n] do
3: for all i ∈ [1.. m

n−1] do
4: dor inc rm+i

5: sendr(midr,i)

6: procedure exp(α)
7: for all r ∈ [2..n] do
8: deliver1(midr,α(r))

9: do1 read (n+2)m B eα
10: B (culprit read)

11: procedure test(r)
12: v ← do1 read (n+3)m

13: deliver1(midr, m
n−1

)
14: v′ ← do1 read (n+4)m

15: return m
n−1 − (v′−v)

Definition of exp. execution α ∈Q
Cα = exec(Dτ, (R0, N0), init;exp(α))

where (R0, N0)= (Dτ.initialize,;)

Definition of read-back function readback(σ)=λr : [2..n].result(Dτ, (Rinit[1 7→σ], Ninit),test(r))

readback :Dτ.Σ→Q where (Rinit, Ninit)= post(exec(Dτ, (R0, N0), init))

Table 4.1: Experiment family (Q,n,m,C,e,readback) used in the lower bound proof for counter
(Ctr).

1

2

3

inc send

mid2,2

inc send

mid2,3

inc send

mid3,1

inc send

mid3,2

inc

init exp(α) test(2)

α(2) = 1

α(3) = 3

configuration (Rinit[1→Rα(1)], Ninit)

deliver

read:4

eα

deliver

read:6

(v’)
deliver

send

mid2,1

inc

send

mid3,3

read:4

(v)

(A) Concrete execution C′
α.

read:4 (eα)

inc inc inc

read:4 (v) read:6 (v’)

inc inc inc

r
1
:

r
2
:

r
3
:

(B) Witness abstract execution abs(C′
α,Vstate). Arrows indicate visibility. Arbitration is not shown.

Figure 4.2: Example experiment (n = 3 and m = 6) and test for counter (Ctr). Dashed lines and
colors indicate phases of the experiment; blue dotted shape represents the configuration where
the test driver program is applied to read-back α(2); underlined read indicates the culprit read.

Lemma 4.2. If DCtr sat[Vstate,Tany] FCtr, n ≥ 2 and m ≥ n is a multiple of (n−1), then tuple

(Q,n,m,C,e,readback) as defined in Table 4.1 is an experiment family.

Informally, the idea of the experiments is to force replica 1 to remember one number for

each of the other replicas in the system, which then introduces an overhead proportional to n; cf.

59

CHAPTER 4. LOWER BOUNDS ON COMPLEXITY AND IMPLEMENTATION OPTIMALITY

the optimal implementation in Algorithm 2.3. We show one experiment execution in Figure 4.2,

together with the visibility witness for that execution. All experiments start with a common

initialization phase, defined by init, where each of the replicas 2..n performs m/(n−1) increments

and sends a message after each increment. All messages remain undelivered until the unique

experiment phase, defined by exp(α). There, replica 1 delivers exactly one message from each

replica r = 2..n, selected using α(r). An experiment concludes with the culprit read eα on replica 1.

The role of read-back is to determine the experiment index provided the culprit state of replica

1 in some experiment. Read-back works by performing separate tests for each of the replicas

r = 2..n, defined by test(r), i.e., it reads-back the index piece by piece. For example, to determine

which message was sent by replica 2 during the experiment in Figure 4.2, the program test(2):

reads the counter value at replica 1, getting 4; delivers the final message by replica 2 to it; and

reads the counter value at replica 1 again, getting 6. By observing the difference, the program

can determine which message from replica 2 was sent during the experiment: α(2)= 3− (6−4)= 1.

Note that all messages delivered during the read-back were sent during the initialization phase,

which is common to all executions.

Proof of Lemma 4.2. The only nontrivial obligation is to prove readback(state(eα)) = α. In the

following steps, we first demonstrate that applying program test in the final configuration of an

experiment produces the experiment index, and later that the test program does not rely on any

other information than the final state of replica 1.

Let the final configuration after the experiment phase be (Rα, Nα)= final(Cα). Then

α(r) (i)= result(DCtr, (R0, N0), (init;exp(α);test(r))) = result(DCtr, (Rα, Nα), test(r))
(ii)= result(DCtr, (Rinit[1 7→ Rα(1)], Ninit), test(r))= readback(Rα(1))(r) = readback(state(eα))(r),

where:

(i) This is due to DCtr sat[Vstate,Tany]FCtr, as we explained informally above. Let

C′
α = exec(DCtr, (R0, N0), (init;exp(α);test(r)))

be an extension of execution Cα with the test program steps (e.g., Figure 4.2A). Consider

the witness abstract execution abs(C′
α,Vstate) (e.g., Figure 4.2B). Then the operation context

of the first read in test(r) in the abstract execution contains
∑n

r=2α(r) increments, while that

of the second read contains (m/(n−1))−α(r) more increments. A correct implementation

DCtr must return the number of visible increments.

(ii) We have Nα = Ninit because exp(α) does not send any messages. Also, Rα and Rinit[1 7→
Rα(1)] can differ only in the states of the replicas 2..n. These cannot influence the run of

test(r), since it performs execution steps on replica 1 only.

60

4.2. LOWER BOUNDS

Proof of Theorem 4.1. To fulfill the definition of lower bound Ω̂ (Definition 3.2), for any given

n0,m0, we pick n = n0 and some m ≥ n0 such that m is a multiple of (n−1) and m ≥ n2. Take the

experiment family (Q,n,m,C,e,readback) given by Lemma 4.2. Then for any α, Cα.rval(eα) is at

most the total number of increments m in Cα, by FCtr. Using Lemma 4.1 and m ≥ n2, for some

constants K1,K2,K3,K independent from n0,m0 we get:

wcmo(DCtr,n,m)≥blg|Λ| |Q|c/(maxα∈Q len(Cα.rval(eα)))

≥K1
lg|Λ|(m

n−1)n−1

lenN(m)
≥ K2

n lg(m/n)
lgm

≥ K3
n lg

p
m

lgm
≥ Kn.

Our experiment family illustrates a specific case where the overhead may reach level Θ̂(n). It

is not exhaustive, in the sense that many other executions with n replicas and m updates may

reach the same level of overhead. Other scenarios may be more complex, e.g., involve replicas

that were disconnected for a long time and communicate back, or transitive delivery of updates.

4.2.2 Add-Wins Set

Theorem 4.2. If DAWSet sat[Vstate,Tany]FAWSet, then the complexity of DAWSet is Ω̂(n lgm).

Lemma 4.3. If DAWSet sat[Vstate,Tany]FAWSet, n ≥ 2 and m ≥ n is such that (m−1) is a multiple

of (n−1), then the tuple (Q,n,m,C,e,readback) in Table 4.2 is an experiment family.

The main idea of the experiments defined in this lemma is to force replica 1 to remember the

number of observed element instances even after they have been removed at that replica; cf. the

optimized add-wins set implementation from Section 3.2.1.1. The experiments follow a similar

pattern to those for Ctr, but use different operations. In the init phase, each replica 2..n performs
m−1
n−1 operations, adding a designated element 0, which are interleaved with sending messages. In

the experiment phase exp(α), one message from each replica r = 2..n, selected by α(r), is delivered

to replica 1. At the end of execution, replica 1 removes 0 from the set and performs the culprit

read eα. The return value of this read is always the empty set, by FAWSet.

To perform the read-back of α(r) for replica r = 2..n, test(r) delivers all messages by replica

r to replica 1 in the order they were sent and, after each such delivery, checks if replica 1 now

reports the element 0 as part of the set. From DAWSet sat[Vstate,Tany]FAWSet and the definition of

FAWSet from Equation 2.10, we get that exactly the first α(r) such deliveries will have no effect on

the contents of the set: the respective add operations have already been observed by the remove

operation that replica 1 performed in the experiment phase. Thus, if 0 appears in the set right

after delivering the i-th message of replica r, then α(r)= i−1. If 0 does not appear by the time

the loop is finished, then α(r)= (m−1)/(n−1).

For example, consider an experiment and test(2) in Figure 4.3. The read-back delivers the

first message from replica 2 at replica 1, and reads value ;, since all visible adds are covered

61

CHAPTER 4. LOWER BOUNDS ON COMPLEXITY AND IMPLEMENTATION OPTIMALITY

Conditions on #replicas & #updates m ≥ n ≥ 2 ∧ (m−1) mod (n−1)= 0

Index set Q = ([2..n]→ [1.. m−1
n−1])

Family size |Q| = (m−1
n−1)n−1

Driver programs

1: procedure init
2: for all r ∈ [2..n] do
3: for all i ∈ [1.. m−1

n−1] do
4: dor add(0) rm+i

5: sendr(midr,i)

6: procedure exp(α)
7: for all r ∈ [2..n] do
8: deliver1(midr,α(r))

9: do1 rem(0) (n+2)m

10: do1 read (n+3)m B eα
11: B (culprit read)

12: procedure test(r)
13: for all i ∈ [1..(m−1

n−1)] do
14: deliver1(midr,i)
15: v ← do1 read (n+4)m+i

16: if 0 ∈ v then
17: return i−1
18: return m−1

n−1

Definition of exp. execution α ∈Q
Cα = exec(Dτ, (R0, N0), init;exp(α))

where (R0, N0)= (Dτ.initialize,;)

Definition of read-back function readback(σ)=λr : [2..n].result(Dτ, (Rinit[1 7→σ], Ninit),test(r))

readback :Dτ.Σ→Q where (Rinit, Ninit)= post(exec(Dτ, (R0, N0), init))

Table 4.2: Experiment family (Q,n,m,C,e,readback) used in the lower bound proof for add-wins
set (AWSet).

1

2

3

rem(0) deliver

read:∅

eα

deliver

read:∅

(v1)

deliver

read:{0}

(v2)

deliver

init exp(α) test(2)

α(2) = 1

α(3) = 3

configuration (Rinit[1→Rα(1)], Ninit)

add(0) send

mid2,1

add(0) send

mid2,2

add(0) send

mid2,3

add(0) send

mid3,1

add(0) send

mid3,2

add(0) send

mid3,3

(A) Concrete execution C′
α.

rem(0) read:∅ (eα)

add(0) add(0) add(0)

read:∅ (v1) read:{0} (v2)

add(0) add(0) add(0)

r
1
:

r
2
:

r
3
:

(B) Witness abstract execution abs(C′
α,Vstate). Arrows indicate visibility. Arbitration is not shown.

Figure 4.3: Example experiment (n = 3 and m = 7) and test for add-wins set (AWSet). Dashed
lines and colors indicate phases of the experiment; blue dotted shape represents the configuration
where the test driver program is applied to read-back α(2); underlined read indicates the culprit
read.

by remove. Next, it delivers the second message from replica 2 and reads again, which returns

value {0} this time, because the second add(0) from replica 2, concurrent to rem(0), became visible.

Therefore, the second send was the first that made element 0 appear, which indicates how many

add(0) operations from replica 2 were sent to replica 1 during the experiment: α(2)= 2−1= 1.

62

4.2. LOWER BOUNDS

Proof of Lemma 4.3. The only nontrivial obligation is to prove that readback(state(eα))=α. Let

(Rα, Nα)= final(Cα). Then

α(r) (i)= result(DAWSet, (R0, N0), (init;exp(α);test(r))) = result(DAWSet, (Rα, Nα), test(r))
(ii)= result(DAWSet, (Rinit[1 7→ Rα(1)], Ninit), test(r))= readback(Rα(1))(r) = readback(state(eα))(r),

where:

(i) This is due to DAWSet sat[Vstate,Tany]FAWSet, as we explained informally above. Let

C′
α = exec(DAWSet, (R0, N0), (init;exp(α);test(r))).

be an extension of experiment Cα with the steps of test program (e.g., Figure 4.3A), and

abs(C′
α,Vstate) be the witness abstract execution of this extension (e.g., Figure 4.3B). Let vi

denote value of a read into v in the i-th iteration of the loop in the program test(r) (Line 15).

By FAWSet the value of vi is determined by the set of visible add and rem operations in the

operation context, and their relation. The operation context contains:

(a) first max(α(r), i) operations add(0) from replica r, and

(b) first α(r′) operations add(0) from every replica r′ 6= r, and

(c) and a single rem(0) made on replica 1.

We will now analyze the visibility relation between all add(0) and rem(0) events. None of

the add(0) observed the rem(0) in its operation context in abs(C′
α,Vstate). The operation

context of rem(0) includes the first α(r′) operations add(0) from every replica r′, including

replica r, i.e., it covers events (b) and part of events (a). Therefore, read into vi observes

max(0, i−α(r)) operations add(0) from r that were not visible to rem(0). By specification

FAWSet the return value of the read in this case is:

vi =
{

{0} if i−α(r)> 0

; otherwise

i.e., {0} appears in the return value when read observes add(0) concurrent to rem(0).

Therefore:

α(r)=min{i | vi+1 = {0}∨ i = m−1
n−1

}.

(ii) We have Ninit = Nα because exp(α) does not send any messages. Besides, Rinit[1 7→ Rα(1)]

and Rα can differ only in the states of the replicas 2..n. These cannot influence the run of

test(r), since it performs execution steps on replica 1 only.

A proof of Theorem 4.2 is similar to the proof for the counter. Thus, we defer it to Appendix B.3.

Since the remaining proofs also follow a similar structure, hereafter we focus on the intuition

and their distinctive aspects, and refer the reader interested in the details to the appendix.

63

CHAPTER 4. LOWER BOUNDS ON COMPLEXITY AND IMPLEMENTATION OPTIMALITY

4.2.3 Remove-Wins Set

Theorem 4.3. If DRWSet sat[Vstate,Tany]FRWSet, then the complexity of DRWSet is Ω̂(m).

Lemma 4.4. If DRWSet sat[Vstate,Tany]FRWSet, m ≥ n ≥ 3 and m is a multiple of 4, then the tuple

(Q,n,m,C,e,readback) in Table 4.3 is an experiment family.

The main idea of the experiments is to force replica 1 to remember a bit of information about

every element removed from the set; cf. the implementation of remove-wins set in Algorithm 3.5,

which remembers even more information in tombstone instances. The structure of the experiment

is different from previous examples. Since the overhead bound is independent of the number of

replicas, three replicas are sufficient for the experiment; the remaining replicas perform only

“dummy” read operations to fulfill the wcmo definition w.r.t. the number of replicas n. In the init

phase, replica 2 performs m/4 remove operations for elements 1..m/4, interleaved with sending

messages; concurrently, replica 3 also removes all these elements, sends a message, adds all

of them again, and sends another message, performing m/2 operations in total. Removes from

replica 3 will hide and uncover elements when desired.

In the experiment, replica 1 delivers a subset of the messages with removes sent by replica 2

in the order that they were sent, and adds elements i = 1..m/4. The subset of messages to deliver

is controlled by index α which contains a set of elements. If an element a is in α, then replica 1

delivers a message containing rem(a) operation from replica 2 before replica 1 adds a to the set;

otherwise it adds a to the set without being aware of the concurrent remove. Eventually, replica 1

delivers a message from replica 3 that removes all elements, and performs the culprit read. The

read returns an empty set, by FRWSet, since removes from replica 3 dominate all adds.

The read-back function retrieves the whole index α at once. First, it delivers the last messages

from replicas 2 and 3 to replica 1, which includes all removes at replica 2 and all adds at replica 3,

dominating previous removes from replica 3. Then it performs a read that returns the set of

elements corresponding directly to the index α. To understand how it works, consider the witness

abstract execution for this execution (e.g., Figure 4.3B). The read observes the complete set of

add and remove operations from all replicas. The visibility relation is partially determined by

the experiment index α. All removes from replica 3 are covered by adds at replica 3, whereas a

subset of removes from replica 2 is covered by adds from replica 1, according to the experiment

index α; remaining removes are concurrent to adds. From FRWSet, those elements for which there

is a removes without covering add must not appear in the read return value.

For example, consider an experiment and test in Figure 4.4. In the experiment phase, we

observe that add(1) and add(3) at replica 1 observe, respectively, rem(1) and rem(3) from replica 2,

whereas add(2) is concurrent to rem(2) at replica 2. Therefore, when the read-back delivers the

last message from replica 3 to replica 1, the read returns value {1,3}.

Formal proofs of Lemma 4.4 and Theorem 4.3 are in Appendix B.3.

64

4.2. LOWER BOUNDS

Conditions on #replicas & #updates m ≥ n ≥ 3 ∧ m mod 4= 0

Index set Q =P({1, . . . ,m/4})

Family size |Q| = 2m/4

Driver programs

1: procedure init
2: for all i ∈ [1.. m

4] do
3: do2 rem(i) i

4: send2(mid2,i)
5: do3 rem(i) m+i

6: send3(mid3,1)
7: for all i ∈ [1.. m

4] do
8: do3 add(i) 2m+i

9: send3(mid3,2)
10: for all r ∈ [4..n] do . dummy
11: dor read 3m+ j . reads

12: procedure exp(α)
13: for all i ∈ [1.. m

4] do
14: if i ∈α then
15: deliver1(mid2,i)
16: do1 rem(0) 4m+i

17: deliver1(mid3,1)
18: do1 read 5m+1 B eα
19: B (culprit read)

20: procedure test
21: deliver1(mid2,m/4)
22: deliver1(mid3,2)
23: v ← do1 read 4m+2

24: return v

Definition of exp. execution α ∈Q
Cα = exec(Dτ, (R0, N0), init;exp(α))

where (R0, N0)= (Dτ.initialize,;)

Definition of read-back function readback(σ)= result(Dτ, (Rinit[1 7→σ], Ninit), test)
readback :Dτ.Σ→Q where (Rinit, Ninit)= post(exec(Dτ, (R0, N0), init))

Table 4.3: Experiment family (Q,n,m,C,e,readback) used in the lower bound proof for remove-
wins set (RWSet).

1

2

3

init
exp(α) test

configuration (Rinit[1→Rα(1)], Ninit)

rem(1) send

mid2,1

add(1) del

read:∅

eα

rem(2) send

mid2,2

rem(3) send

mid2,3

del

rem(1) rem(2) send

mid3,1

add(1) send

mid3,2

read:{1,3}

(v)

del

rem(3) add(2) add(3)

add(2) add(3) del

del

(A) Concrete execution C′
α.

read:∅ (eα)

rem(1) rem(2) rem(3)

read:{1,3} (v)

rem(1) rem(2) rem(3)

r
1
:

r
2
:

r
3
:

add(1) add(2) add(3)

add(1) add(2) add(3)

(B) Witness abstract execution abs(C′
α,Vstate). Arrows indicate visibility. Arbitration is not shown.

Figure 4.4: Example experiment (n = 3 and m = 12) and test for remove-wins set (RWSet). Dashed
lines and colors indicate phases of the experiment; blue dotted shape represents the configuration
where the test driver program is applied to read-back α; underlined read indicates the culprit
read.

65

CHAPTER 4. LOWER BOUNDS ON COMPLEXITY AND IMPLEMENTATION OPTIMALITY

4.2.4 Last-Writer-Wins Set

Theorem 4.4. If DLWWSet sat[Vstate,Tany]FLWWSet, then the complexity of DLWWSet is Ω̂(n lgm).

Lemma 4.5. If DLWWSet sat[Vstate,Tany]FLWWSet, n ≥ 2 and m is a multiple of 2n−2, then the tuple

(Q,n,m,C,e,readback) in Table 4.4 is an experiment family.

The idea of the experiments is to force replica 1 to remember the latest timestamp it observed

from each replica, for some elements, which then introduces an overhead proportional to the

n lgm. The existing implementation in Algorithm 3.6 introduces higher overhead.

In the init phase of experiments, each replica 2..n performs m
2(n−1) operations, interchangeably

adding and removing the same element equal to replica ID, and sending a message after each

operation. We use monotonically growing timestamps for operations at each replica, which induces

their arbitration order consistent with the order of operations at each replica. All messages send

in the init phase of the program are undelivered until the second phase, defined by exp(α). In

the experiment phase exp(α), one message from each replica r = 2..n is delivered to replica 1,

selected by 2α(r). This message includes the first α(r) add operations and the first α(r) remove

operations at replica r. The experiment concludes with the culprit read eα. The read returns an

empty set, by FLWWSet, since among the visible operations, removes are the latest in arbitration

for each element.

To perform the read-back of α(r) for replica r = 2..n, test(r) delivers all odd messages by replica

r to replica 1 in the order they were sent. After delivery of each message, the test checks if replica 1

now reports the element r as part of the set. Each odd message includes one add operation that

is not covered by subsequent remove at replica 1. From DLWWSet sat[Vstate,Tany]FLWWSet and the

definition of FLWWSet, we get that exactly the first α(r) such deliveries will have no effect on the

contents of the set: they deliver add(r) operations that have been already observed by the rem(r)

operation (delivered at replica 1 in the experiment phase) that dominates them in the arbitration

order. Thus, if element r appears in the set right after delivering the i-th message of replica r,

then α(r)= i−1. If r does not appear by the time the loop is finished, then α(r)= m/(2n−2).

For example, consider an experiment and test(2) in Figure 4.5. The read-back delivers the

first message from replica 2 at replica 1, and reads value ;, since all visible adds are covered

in arbitration by visible remove; next, it delivers the second odd (third overall) message from

replica 2 and reads again, which returns value {2} this time, because the second add(2) from

replica 2 is the latest operation in arbitration among all the visible operations on element 2.

Therefore, the second send was the first that made element 2 appear, which indicates how many

rem(2) operations from replica 2 was delivered to replica 1 during the experiment: α(2)= 2−1= 1.

Formal proofs of Lemma 4.5 and Theorem 3.7 are in Appendix B.3.

4.2.5 Multi-Value Register

Theorem 4.5. If DMVReg sat[Vstate,Tany]FMVReg, then the complexity of DMVReg is Ω̂(n lgm).

66

4.2. LOWER BOUNDS

Conditions on #replicas & #updates m ≥ n ≥ 2 ∧ m mod (2n−2)= 0

Index set Q = ([2..n]→ [1.. m
2n−2])

Family size |Q| = (m
2n−2)n−1

Driver programs

1: procedure init
2: for all r ∈ [2..n] do
3: for all i ∈ [1.. m

2n−2] do
4: dor add(r) 2ni+r

5: sendr(midr,2i−1)
6: dor rem(r) 2ni+n+r

7: sendr(midr,2i)

8: procedure exp(α)
9: for all r ∈ [2..n] do

10: deliver1(midr,2α(r))

11: do1 read 3nm B eα
12: B (culprit read)

12: procedure test(r)
13: for all i ∈ [1..(m

2n−2)] do
14: deliver1(midr,2i−1)
15: v ← do1 read 4nm+i

16: if r ∈ v then
17: return i−1
18: return m

2n−2

Definition of exp. execution α ∈Q
Cα = exec(Dτ, (R0, N0), init;exp(α))

where (R0, N0)= (Dτ.initialize,;)

Definition of read-back function readback(σ)=λr : [2..n].result(Dτ, (Rinit[1 7→σ], Ninit),test(r))

readback :Dτ.Σ→Q where (Rinit, Ninit)= post(exec(Dτ, (R0, N0), init))

Table 4.4: Experiment family (Q,n,m,C,e,readback) used in the lower bound proof for last-writer-
wins set (LWWSet).

1

2

3

add(2)8

del

read72:∅

eα

rem(2)11

del

add(3)9 send

mid3,1

rem(3)12 send

mid3,2

add(3)15 send

mid3,3

read97:∅

(v1)

del

read98:{2}

(v2)

del

init exp(α) test(2)

α(2) = 1

α(3) = 2

configuration (Rinit[1→Rα(1)], Ninit)

rem(3)18

send

mid2,1

send

mid2,2

add(2)14 send

mid2,3

rem(2)17 send

mid2,4

send

mid3,4

(A) Concrete execution C′
α.

read:∅ (eα)
read:∅ (v1) read:{2} (v2)

add(2) rem(2)

r
1
:

r
2
:

r
3
:

add(2) rem(2)

add(3) rem(3) add(3) rem(3)

ar

(B) Witness abstract execution abs(C′
α,Vstate). Solid arrows indicate visibility. Horizontal position indicates

arbitration order.

Figure 4.5: Example experiment (n = 3 and m = 8) and test for last-writer-wins set (LWWSet).
Dashed lines and colors indicate phases of the experiment; blue dotted shape represents the
configuration where the test driver program is applied to read-back α(2); underlined read indicates
the culprit read.

67

CHAPTER 4. LOWER BOUNDS ON COMPLEXITY AND IMPLEMENTATION OPTIMALITY

Lemma 4.6. If DMVReg sat[Vstate,Tany]FMVReg, n ≥ 2 and m ≥ n is such that (m−1) is a multiple

of (n−1), then the tuple (Q,n,m,C,e,readback) in Table 4.5 is an experiment family.

The experiments are similar to the add-wins set experiments. The idea is to force replica 1

to remember a number of write operations from each replica dominated by the current write,

which then introduces an overhead proportional to n lgm; cf. the optimized implementation

in Algorithm 3.4. All experiments start with the init phase, where each of the replicas 2..n

performs (m−1)/(n−1) writes write(0) and sends a message after each write. All messages

remain undelivered until the second phase, defined by exp(α). There replica 1 delivers exactly one

message from each replica r = 2..n, selected using α(r), and subsequently overwrites the register

with write(1). An experiment concludes with the culprit read eα on the first replica that returns

the result of the last write, {1}.

The read-back works by performing separate tests for each replica r = 2..n, defined by test(r).

To determine which message was sent by replica r during the experiment, the program test(r)

enforces (re)delivery of all messages sent by replica r to replica 1, in the order they were sent,

and performs a read after each delivery. By inspecting the return value of each such read, the

program identifies the first message that causes read to return both values 0 and 1. By FMVReg,

this corresponds to observing write(0) performed at r that was not visible at the time of write(1),

i.e., that is concurrent to write(1); the index of this message corresponds to α(r)+1.

For example, consider an experiment and test(2) in Figure 4.6. The read-back delivers the first

message from replica 2 at replica 1, and reads value {1}, since all visible write(0) are covered by

write(1); next, it delivers the second message from replica 2 and reads again, which returns value

{0,1} this time, because the second write(0) from replica 2, concurrent to write(1), became visible.

Therefore, the second send was the first that made value 1 appear, which indicates how many

write(0) operations from replica 2 were sent to replica 1 during the experiment: α(2)= 2−1= 1.

Formal proofs of Lemma 4.6 and Theorem 4.5 are in Appendix B.3.

4.2.6 Last-Writer-Wins Register

Theorem 4.6. If DLWWReg sat[Vstate,Tany]FLWWReg, then the complexity of DLWWReg is Ω̂(lgm).

A proof is Appendix B.3. It is a specific case of Theorem 4.4, and of minor practical importance.

4.3 Summary

Table 4.6 summarizes our positive and impossibility results for all studied data types. From left to

right, the table lists prior implementations and their complexity, as well as our optimizations (if

any) and their complexity, and lower bounds on complexity of any implementation. We underline

every implementation optimal in the sense of Definition 3.3, i.e., with an upper bound that

matches a general lower bound.

68

4.3. SUMMARY

Conditions on #replicas & #updates m ≥ n ≥ 2 ∧ (m−1) mod (n−1)= 0

Index set Q = ([2..n]→ [1.. m−1
n−1])

Family size |Q| = (m−1
n−1)n−1

Driver programs

1: procedure init
2: for all r ∈ [2..n] do
3: for all i ∈ [1.. m−1

n−1] do
4: dor write(0) rm+i

5: sendr(midr,i)

6: procedure exp(α)
7: for all r ∈ [2..n] do
8: deliver1(midr,α(r))

9: do1 write(1) (n+2)m

10: do1 read (n+3)m B eα
11: B (culprit read)

12: procedure test(r)
13: for all i ∈ [1..(m−1

n−1)] do
14: deliver1(midr,i)
15: v ← do1 read (n+4)m+i

16: if v = {0,1} then
17: return i−1
18: return m−1

n−1

Definition of exp. execution α ∈Q
Cα = exec(Dτ, (R0, N0), init;exp(α))

where (R0, N0)= (Dτ.initialize,;)

Definition of read-back function readback(σ)=λr : [2..n].result(Dτ, (Rinit[1 7→σ], Ninit),test(r))

readback :Dτ.Σ→Q where (Rinit, Ninit)= post(exec(Dτ, (R0, N0), init))

Table 4.5: Experiment family (Q,n,m,C,e,readback) used in the lower bound proof for multi-value
register (MVReg).

1

2

3

write(0)

write(1) del

read:{1}

eα

del

write(0) send

mid3,1

write(0) send

mid3,2

write(0)

read:{1}

(v1)

del

read:{0,1}

(v2)

del

init exp(α) test(2)

α(2) = 1

α(3) = 3

configuration (Rinit[1→Rα(1)], Ninit)

send

mid2,1

write(0) send

mid2,2

write(0) send

mid2,3

send

mid3,3

(A) Concrete execution C′
α.

write(1) read:{1} (eα)

write(0) write(0) write(0)

read:{1} (v1) read:{0,1} (v2)

write(0) write(0) write(0)

r
1
:

r
2
:

r
3
:

(B) Witness abstract execution abs(C′
α,Vstate). Arrows indicate visibility. Arbitration is not shown.

Figure 4.6: Example experiment (n = 3 and m = 7) and test for multi-value register (MVReg).
Dashed lines and colors indicate phases of the experiment; blue dotted shape represents the
configuration where the test driver program is applied to read-back α(2); underlined read indicates
the culprit read.

69

CHAPTER 4. LOWER BOUNDS ON COMPLEXITY AND IMPLEMENTATION OPTIMALITY

Data type
Prior implementation Optimized implementation Any impl.

Definition Bounds Definition Bounds lower bound

Ctr Alg. 2.3 [92] Θ̂(n) — — Ω̂(n)

AWSet Alg. 3.1 [93] Θ̂(m lgm) new: Alg. 3.2 Θ̂(n lgm) Ω̂(n lgm)

RWSet Alg. 3.5 [22] Ω̂(m lgm) — — Ω̂(m)

LWWSet Alg. 3.6 [22, 56] Ω̂(m lgm) — — Ω̂(n lgm)

MVReg Alg. 2.5 [77, 93] Θ̂(n2 lgm) new: Alg. 3.4 Θ̂(n lgm) Ω̂(n lgm)

LWWReg Alg. 2.5 [56, 92] Θ̂(lgm) — — Ω̂(lgm)

Table 4.6: Summary of metadata overhead results for different data types. Underlined imple-
mentations are optimal; n and m, are, respectively, the number of replicas and updates in an
execution; Ω̂,Ô,Θ̂ are lower, upper and tight bounds on metadata, respectively.

For the counter data type (Ctr), the existing state-based implementation is optimal.

The set data type offers a range of different semantics choices, (AWSet,RWSet,LWWSet) which

are uneven in terms of the metadata space complexity. Prior implementations all incur overhead

in the order of number of updates, at least (recall that for remove-wins and LWW sets there

is no upper bound, as actual elements are stored, and their size is variable). However, this

is not necessary for all implementations of all variants. Our improved design of add-wins set

implementation reduces this cost to the order of number of replicas, which we prove is the optimal

achievable cost. Furthermore, this is asymptotically the cheapest known implementation of all

three sets. This optimization is impossible for the remove-wins set, as our lower bound shows:

the order of number of updates or worse is necessary. The existing implementation of the LWW

set incurs similar overhead, but it is an open problem whether this is necessary. We managed

neither to improve it, nor to prove it is impossible, although we conjecture the latter.

The register type also comes in different variants (MVReg,LWWReg), which too, are uneven

in the metadata complexity. The existing implementation of the LWW register has negligible

overhead and is the optimal one. On the contrary, the existing implementation of the multi-

value register has a substantial overhead, in the square of the number of replicas, due to

inefficient treatment of concurrent writes of the same value. Our optimizations alleviate the

square component, and reach the asymptotically optimal metadata overhead.

70

Chapter 5

Related Work and Discussion

We know no more than you. . . But maybe it is worth investigating the unknown,
if only because the very feeling of not knowing is a painful one.

Krzysztof Kieślowski

Contents

5.1 Other Data Types . 72

5.2 State-Based Optimizations Beyond Our Metric . 72

5.2.1 Background Compaction of Stable Metadata 73

5.2.2 Finer-Grained Optimizations . 73

5.2.3 Custom Timestamps . 74

5.3 Other Implementation Categories . 75

5.3.1 State-Based Implementations With Smaller Messages 75

5.3.2 Optimizations Based on Topology Restrictions and Delayed Visibility . . . 76

5.3.3 Replicated File Systems . 77

5.4 Lower Bound Proofs in Distributed Computing . 78

71

CHAPTER 5. RELATED WORK AND DISCUSSION

In previous chapters we introduced the metadata complexity problem, presented positive and

impossibility results for six data types, and related them to known state-based implementations.

In this chapter, we discuss the scope of these results, in reference to other related work. Although

a formal model of RDTs is a recent development [34, 92], there is already a sizeable body of work

on RDTs, and some older algorithms use similar techniques.

Specifically, in Section 5.1 we discuss the completeness of our results in terms of data

type coverage. In Section 5.2, we discuss known and potential optimizations to state-based

implementations that are not covered by our metadata metrics. In Section 5.3, we discuss our

results for state-based category compared to other approaches proposed in the literature. Finally,

in Section 5.4, we compare our complexity proofs to similar ones in the field of distributed

computing.

5.1 Other Data Types

Our metadata analysis cannot be exhaustive in terms of data types, although we cover many

important primitive types, from which other data types can be derived by composition [27, 52].

An important data type absent in our analysis is the list. A list object is a dynamically-sized

totally ordered list of elements, where an element can be inserted at or removed from a designated

position [48, 73, 76, 81, 85, 101]. One of the most important usages of the list type is a model of a

shared document in collaborative editing applications [48, 76, 81, 101].

Implementing a list is far from trivial. There is a long history of incorrect designs [74], and

specifications are implementation-driven. Moreover, all known implementations suffer from high

bounds on metadata overhead, in the order of the number of updates. Every implementation

stores some trace of removed elements, in order to position concurrently inserted elements

correctly. This manifests in metadata either as tombstones [75, 76, 85], or as position identifiers

of unbounded size [73, 81, 101]. We conjecture this is fundamental to the list semantics; the proof

is a major direction of future work.

5.2 State-Based Optimizations Beyond Our Metric

Our definitions of metadata metrics (Definition 3.2) and optimality (Definition 3.3) are oriented

towards worst-case asymptotic analysis and generality; so are our optimizations and lower

bounds. However, there are multiple sensible ways of formulating the concepts of complexity and

optimality, some of which can express optimizations that our results do not cover. In this section,

we motivate our choice for the definitions, and discuss some of their properties. We identify some

optimizations from the literature, and potential optimizations, not covered by our formulation,

and we evaluate their significance.

72

5.2. STATE-BASED OPTIMIZATIONS BEYOND OUR METRIC

5.2.1 Background Compaction of Stable Metadata

Our definition of maximum metadata overhead (Definition 3.1) concerns the worst situation in an

execution. This worst case may involve relatively short-lived peaks in metadata and only a subset

of replicas. This perspective is important as it models what could happen under high concurrency

or failure scenarios. For instance, the case where a set of replicas is partitioned away, or a replica

becomes unresponsive. It shows the capacity that the system should be planned for.

Nevertheless, there exist RDT implementations that can compact, or specifically garbage
collect (GC), metadata that is not useful anymore. In particular, stable updates [56, 93] can

often be collected. An update is stable if it is known to be replicated at all replicas. For example,

in a set implementation, a stable tombstone can be discarded. When all replicas have received

a given tombstone instance, then it is guaranteed that no further message will include the

tombstone, except for a possibly delayed message. If furthermore, the implementation protects

itself from delayed messages, a replica can discard the stable tombstone safely.

Johnson and Thomas [56] use this protocol to discard timestamps of removed entries in a

LWW map, whereas Wuu and Bernstein [102] use it for a map where elements are guaranteed to

be added no more than once. A list implementation by Roh et al. [85] also uses stability to collect

removed list elements.

A stability protocol computes stable updates that can be compacted [51, 56, 102]. The

stability protocol maintains information about the set of updates that each replica has received.

Such information is typically encoded as a one-dimensional vector or a two-dimensional matrix.

Stability-based metadata compaction has its own drawbacks. The data structures of the

stability protocol incur an overhead on their own [56, 102]. It takes time until stability is detected

by the protocol. Finally, stability protocol is not live in the presence of failures, since it requires

to communicate with every replica. Our model assumes a static or grow-only set of replicas and

does not explicitly consider their failures. However, even under a model that explicitly considers

dynamic set of replicas and their failures, it requires a perfect failure detector to safely eliminate

an unresponsive replica from the set of correct replicas that must acknowledge an update.1 In

contrast, with our metadata design from Section 3.2.1, an implementation discards information

right away, independent of network conditions, and does not require additional GC. Nevertheless,

for some data types (e.g., the remove-wins set or the list), our optimizations are not applicable

and the GC approach is the only way to decrease metadata size.

5.2.2 Finer-Grained Optimizations

Our definition of implementation optimality (Definition 3.3) is relatively coarse-grained, in the

sense that the optimal implementation is not required to incur minimum overhead in every

execution. Instead, it suffices that it performs well enough in all cases, incurring an overhead that

1Similarly, there is no other safe known way of removing an entry of a replica from the version vector in our
optimizations from Section 3.2.1.

73

CHAPTER 5. RELATED WORK AND DISCUSSION

is no higher than any other implementation in the worst-case. In practice, some optimizations for

cases other than worst-case are also desirable, albeit they tend to be less fundamental.

Many minor finer-grained optimizations can be considered. For example, a multi-value register

does not need to store a complete vector until every replica performs at least one write.

An important exception is the recent work of Almeida et al. [6]. They improve over our

optimized multi-value register implementation (Algorithm 3.4) in the case when different values

are written concurrently. Their implementation uses a new dotted version vector set metadata,

which consists of a single vector extended with a set of at most n scalar timestamps. The storage

requirements of their register is equivalent to a single vector, regardless of the number of

concurrent values stored in the state. In contrast, our optimized implementation stores one

vector per value stored in the state. Both implementations are asymptotically optimal, i.e., their

overhead is bounded by Θ̂(n lgm), but the one of Almeida et al. [6] performs better for common

executions. In particular, it incurs a lower size of absolute state.

As a first approach, we chose to not use a fine-grained optimality definition, suitable for such

optimizations. Indeed, this could tie the definition too closely to a particular implementation or a

data type. The metric would need to be type- or implementation-specific, increasing complexity

and decreasing readability. Moreover, it could make optimality proofs more implementation-

specific, i.e., difficult and tedious. It is an open question whether an implementation-agnostic

metric that captures such optimizations exists. With our coarse-grained definition, lower bound

proofs are not specific to any particular implementation (cf. Chapter 4), and the metric is general

and concise.

5.2.3 Custom Timestamps

Our model and bounds require that the implementations of an arbitration-based type, such as

LWW register or LWW set, use externally-provided timestamps to arbitrate updates, rather than

any internal mechanism. This requirement stems from the fixed definition of witness abstract

execution (Equation 2.12), which is part of the implementation correctness condition. Thanks to

external timestamps all implementations can support any type of timestamp and cross-object

arbitration consistency properties [34] (e.g., a consistent choice of the “last” writer among different

LWW registers). However, such a lack of flexibility in timestamp choice can appear as a potential

implementation restriction. Although we are not aware of any space optimizations based on

the use of implementation-assigned timestamps for arbitration, our lower bound proofs are

limited to implementations that do respect external timestamps. Note that all of our lower bound

proofs provide only causal timestamps, so the implementations do not actually need to handle

particularly adversary timestamps.

74

5.3. OTHER IMPLEMENTATION CATEGORIES

5.3 Other Implementation Categories

A number of recent implementations or implementation categories extend the concept of the state-

based category. Extensions related to metadata optimization include message size optimizations

and topology restrictions.

5.3.1 State-Based Implementations With Smaller Messages

Pure state-based implementations have the drawback that they transfer the complete state in

each message [7]. Recent extensions address this problem, at a modest expense in state size.

Almeida et al. [7] propose a new implementation category: state-based with deltas. The

core idea is that each replica maintains not only a complete durable object state (as in state-based),

but also a smaller buffer of recent updates, called deltas, which does not need to be durable.

The expectation is that, in the common case, the system transfers only deltas, and resorts to

complete state transfer only as a fallback (e.g., when the buffer has been discarded).2 In contrast

to op-based implementation, the buffer of deltas is not just a log of independent updates, but

a compressed representation of updates using their semantics. A custom but type-independent

protocol is used to disseminate deltas; optionally, to maintain causality. The challenge for this

category of implementations is to design deltas significantly smaller than the complete state.

Almeida et al. present two examples of efficient adaptations of existing state-based imple-

mentations to deltas. For example, the delta-based counter buffers, as a delta, only the modified

entries of the increments vector (cf. Algorithm 2.3); in the common case, only a small number

of vector entries are transferred rather than full vector. In the absence of causal delivery, the

optimized add-wins set (Algorithm 3.2) adaptation is more challenging. Recall that the optimiza-

tion uses a vector to represent a set of element instances with contiguous timestamps, but delta

instances might be non-contiguous. A more general representation is needed, e.g., concise version

vectors [70], or their interval-based representation [24], which support timestamp gaps in the set.

The deltas category optimizes message size, which is a problem mostly orthogonal to the state

optimization problem that we considered. In examples provided by Almeida et al. [7], the reduced

message size comes at cost of a slight increase in local storage size: a new non-durable delta

buffer and bookkeeping metadata on successful deliveries are needed. These examples do not

contradict our complexity bounds, which hold for the complete state and fall-back state transfer.

Deftu and Griebsch [45] propose a somewhat similar extension, tailored specifically to the

basic add-wins set (Algorithm 3.1). Their set implementation stores all element instances until

discarded by a GC protocol. The GC protocol is not specified formally. Storing instances serves

a purpose of naive delta implementation (a replica can request from another replica all new in-

2In terms our formal model from Chapter 2, this means that there are two kinds of send and deliver events, and a
new visibility witness, V 6=Vstate, treats each kind differently.

75

CHAPTER 5. RELATED WORK AND DISCUSSION

stances since a certain logical time), but increases space requirements.3 To accommodate sets that

do not fit on a single machine and/or to improve synchronization efficiency, the implementation of

Deftu and Griebsch supports object sharding, which we do not consider.

Our original optimized add-wins set implementation [21] (not presented in this thesis) com-

bined both state- and op-based replication, allowing updates to be delivered either as individual

operations, under causal delivery, or as complete state, under any delivery condition. Mukund

et al. [72] discuss a follow-up on this idea, and extends it to support a new, weaker delivery

network specification for op-based messages, k-causal delivery. Under k-causal delivery, a mes-

sage can be delivered if the receiver has not missed more than k−1 causal dependencies from

the sender. Mukund et al. generalize our solution from causal delivery to k-causal delivery, by

(i) replacing version vectors with an interval-based representation [24]; and by (ii) arbitrarily

extending specification FAWSet to handle visibility that is not transitive. The efficiency of their

implementation depends on k: the higher k, the higher metadata overhead. With k = 1, it reduces

to our optimization. The practical significance of the optimization is unknown, since we are

unaware of any k-causal delivery protocol.

Similarly to deltas, these designs are also orthogonal to our work, as they concern message

size.

5.3.2 Optimizations Based on Topology Restrictions and Delayed Visibility

Our results assume a full network communication topology, where every pair of replicas commu-

nicates directly. An important group of optimizations make use of a restricted topology to reduce

the metadata overhead; in particular, of variants of the client-server topology.

For example, the metadata overhead of the state-based counter is proportional to the number

of vector entries, i.e., the number of replicas. This can be too much in a large or dynamic system.

To address this issue, Almeida and Baquero [5] propose counters optimized for a tiered topology,

where replicas in the lowest tier cannot communicate directly with one another, but only via

small set of replicas in a higher tier. In the simplest case, i.e., two tiers, it reduces to client and

server replicas. The goal is to use a smaller number of vector entries in the average case, in the

order of the number of servers, by eventually representing all client increments in these limited

server entries.

The state of client and server replica is different in Almeida’s counter. They share a vector

of entries for server replicas. Additionally, a client replica maintains a single entry for his own

increments that are not included in server entries so far. The increments from this entry are

handed off to the server tier replicas by means of a fault-tolerant non-blocking two-phase protocol.

When a hand-off instance succeeds, the increments are exposed through the server tier to all

replicas, without “polluting” their vectors with the client entry, and do not leave any trace on

3The implementation of Almeida et al. [7], described earlier, demonstrates that storing indidividual instances is
not necessary to generate deltas.

76

5.3. OTHER IMPLEMENTATION CATEGORIES

server replicas. However, until a hand-off instance finishes, i.e., between the first and the second

round of the protocol, the server replica needs to maintain a dedicated slot for the protocol

instance, to tolerate potential message duplicates from the client. In the worst-case, if the client

fails after the first round, an unused slot remains opened in the server tier forever.

For such a protocol, it is useful to define metadata overhead separately for client and server

replicas. The worst case for a server replica is identical to the normal state-based counter, since

every client may fail after the first round of the protocol. Under favorable conditions, the common

case is better. The worst case for a client replica is significantly improved, since it requires only

one vector entry per server replica. Thus, servers can amortize the metadata cost for clients.

Our general lower bound proofs do not cover this protocol, due to different visibility witness.

This protocol could be characterized by a visibility witness V 6=Vstate, which exposes updates only

after an extra round of messages. We conjecture that the lower bound for server replicas for this

category of protocols is the same as in the state-based implementation; the proof for such flexibly

delayed visibility witnesses is future work.

Topology restrictions are also successfully applied to variants of op-based implementations.

This is the case for our SwiftCloud system from Part III, and for a protocol of Burckhardt et al.

[35], which assume multiple servers or a single server, respectively. The protocol of Burckhardt

additionally allows to apply semantics-specific reduction on the log of stored or transferred

operations.4 In a previous work [103], we also show a protocol for tree-based list implementation,

where the tree can be compacted (rebalanced) at a small set of servers, independently from

concurrent operations at client replicas, to optimize message size.

5.3.3 Replicated File Systems

A number of replicated file systems, such as Ficus [80], Coda [59], or DFS-R [24], rely on eventually

consistent replication. Some of them use the state-based replication model, and share similarities

with state-based RDT implementations.

Bjørner [24] describes DFS-R, a replicated file system that ships with Microsoft products.

DFS-R can be viewed as a complex RDT object. Its state is a map from unique file identifier to file

record (including file name, data etc.), and a version vector. When a file is created, it is assigned

a unique id. A file can be also updated, deleted, and moved. DFS-R uses the LWW approach to

resolve concurrent updates to the same file identifier, and more complex heuristics at the global

file system level. When a file is deleted and created again, it uses a fresh identifier.

DFS-R implementation shares commonalities with the two add-wins set implementations.

In fact, we can see part of an DFS-R as an implementation of a token set, which supports two

updates: creation of a fresh token (file identifier) and removal of an existing token. Token set is

almost equivalent to the set of element instances in the add-wins implementations.
4Somewhat similar optimization techniques have been exploited in the context of log-based protocols without topol-

ogy restrictions: Conway et al. [41] propose automated synthesis of optimized general purpose log-based distributed
applications, whereas Baquero et al. [17] propose manually optimized op-based RDT implementations.

77

CHAPTER 5. RELATED WORK AND DISCUSSION

In this context, it is interesting how DFS-R treats remove operations and tombstones. Bjørner

describes two approaches to removal: a standard tombstone-based and a tombstone-free. The

latter relies on the knowledge in a version vector, maintained along a map of file identifiers to

file records (tokens). By using timestamps as tokens, version vector can serve as a summary of

all observed tokens. Our first optimization to the optimized add-wins set in Section 3.2.1.1 can

be viewed as an adaptation of the tombstone-free implementation of a token set in Bjørner’s file

system, to build an implementation of a high level set RDT.

5.4 Lower Bound Proofs in Distributed Computing

The distributed computing community has studied the complexity of implementing different

distributed or concurrent abstractions, and has developed techniques to demonstrate asymptotic

lower bounds on their complexity. It is natural to compare our lower bound proofs to these works.

According to the survey of Fich and Ruppert [49], most of these works consider either system

models or metrics significantly different from ours. Results for message passing models are

usually concerned with time and message complexity required to solve a certain problem, or

size of messages involved. Results for shared memory models typically evaluate the number of

registers or other objects required to solve a problem. Nevertheless, the core counting argument

of the lower bound proofs is often similar: the goal is to demonstrate that there is a (large) set of

states that are distinguishable, because if they are not, the correctness would be affected. The

structure of our experiment family, in particular the states during culprit reads in Definition 4.1,

takes a similar approach.

The most relevant is the work of Charron-Bost [39], who proves that the size of vector clocks

[71] is optimal to represent the happens-before relation of a computation. Happens-before relation

is a counterpart of the visibility relation at the level of concrete executions. Specifications of multi-

value register (MVReg), sets (AWSet and RWSet), and other data types, rely crucially on visibility.

However, Charron-Bost’s result does not translate into a lower bound on their implementation

complexity. A specification may not require complete knowledge about the relation for all pair

of events, and an implementation may not even need to store information about all events. It is

often sufficient to store a fragment of this knowledge, using a semantics-optimized representation.

For example, the optimized add-wins set implementation (Algorithm 3.2) does not require to store

a complete vector clock about every rem event it observed. Instead, it stores only a version vector

that summarizes all known operations, and a vector for each visible element (corresponding to

add event).

78

Part III

Causally-Consistent Object Database
for Client-Side Applications

79

Chapter 6

Problem Overview

What’s normal anyways?

Forrest Gump by Robert Zemeckis

Contents

6.1 System Model and Basic Requirements . 82

6.2 Consistency with Convergence . 83

6.2.1 Causal Consistency . 84

6.2.2 Convergence with Replicated Data Types . 84

6.3 Application Programming Interface . 85

6.4 Challenge . 85

6.4.1 Metadata Design . 85

6.4.2 Causal Consistency with Partial Replication is Hard 86

81

CHAPTER 6. PROBLEM OVERVIEW

In this chapter we introduce a client-side replication problem that we study and that we

address in the remaining part of the thesis. The problem concerns client-side applications,

such as in-browser and mobile apps, which are poorly supported by the current technology for

sharing mutable data over the wide-area. App developers resort to implementing their own

ad-hoc application-level cache and buffer [60, 94], in order to avoid slow, costly and sometimes

unavailable round-trips to a data center, but they are not in the position to solve system issues

such as fault tolerance, or consistency/session guarantees [34, 96]. Recent client-side systems

ensure only some of the desired properties, i.e., either make only limited consistency guarantees

(at a granularity of a single object or a small database only), do not tolerate failures, and/or

do not scale to large numbers of client devices [18, 30, 37, 40, 69]. Standard algorithms for

geo-replication [8, 12, 46, 66, 67] were not designed to support high numbers of client replicas

outside of the server-side infrastructure.

Our thesis is that it is possible to build a scalable fault-tolerant system that takes the

responsibility of providing client-side applications a local database access that is available,

(causally) consistent, and convergent, i.e., that addresses the client-side replication problem.

Before we demonstrate such a system, we define the problem more precisely and highlight the

challenges. In Section 6.1, we outline the system model and basic requirements. In Section 6.2,

we motivate and define causal consistency model for RDT objects. In Section 6.3, we summarize

the requirements with the client API. In Section 6.4, we show why the problem is nontrivial;

first, by discussing prior metadata designs, and why it is difficult to apply them in the context of

client-side replication; second, why partial client-side replication complicates the problem.

Hereafter, we depart from the rigorous formalism of Part II, since our focus is not anymore on

the RDT model and RDT implementation metadata itself, but on the update delivery layer. We

focus on log-exchange protocols supporting both op-based RDTs, with strong message delivery

requirements, and consistency across objects. We believe that a less rigorous description is

adequate in the context of research and system engineering challenges of log-exchange protocols.

6.1 System Model and Basic Requirements

We consider support for a variety of client-side applications sharing a database of RDT objects

that the client can read and update. We aim to scale to thousands of clients, spanning the whole

internet, and to a database of arbitrary size.

Figure 6.1 illustrates our system model. A cloud infrastructure connects a small set (say,

tens) of geo-replicated data centers, and a large set (thousands) of clients. A DC has abundant

computational, storage and network resources. Similarly to Sovran et al. [95], we abstract a DC as

a powerful sequential process that hosts a full replica of the database.1 DCs communicate in a

1We refer to prior work for the somewhat orthogonal issues of ensuring parallelism and fault-tolerance within a
DC, using sharding and replication, respectively [8, 46, 66, 67]. We discuss them in Chapter 9.

82

6.2. CONSISTENCY WITH CONVERGENCE

DC#

DC#

DC# C#

C#

C#

C#

C#

C#

notification

A"

P"

I"

C# C#

C#

A"

P"

I"

A"

P"

I"

App#

App#

App#

geo-replication

transfer

fail-over!

Figure 6.1: System components (Application processes, Clients, Data Centers), and their inter-
faces. Arrows indicate protocols over wide-area (high latency, unreliable) network connections.

peer-to-peer way. A DC may fail (due to disaster, power outage, WAN partition or misconfiguration,

etc. [11, 57]) and recover with its persistent memory intact.

Clients do not communicate directly, but only via DCs.2 Normally, a client connects to a single

DC; in case of failure or roaming, to zero or more. A client may fail and recover (e.g., disconnection

during a flight) or permanently (e.g., destroyed phone) without prior warning. We consider only

non-byzantine failures.

Client-side apps often require high availability and responsiveness for good user experi-

ence, i.e., to be able to read and update data quickly and at all times. This can be achieved by

replicating RDT objects locally, and by synchronizing updates in the background. However, a

client has limited resources; therefore, it hosts a cache that contains only the small subset of the

database of current interest to the local app. It should not have to receive messages relative to

objects that it does not currently replicate [18, 88]. For similar reasons, control messages and

piggy-backed metadata should have small and bounded size.

Since a client replica is only partial, there cannot be a guarantee of complete availability of

all operations. The best we can expect is partial availability, whereby an operation returns

without remote communication if the requested object is cached; and after retrieving the object

from a remote node (DC) otherwise. If the object is not there and the network is down, the

operation may be unavailable, i.e., it either blocks or returns an error.

6.2 Consistency with Convergence

Application programmers wish to observe a single, consistent view of the database. With avail-

ability and convergence requirements, consistency options are limited [50, 68]. In Section 2.1,

we outlined why strongly consistent (i.e., linearizable) objects are unachievable in an available

system, which is why we resort to RDTs. Similarly, strong consistency across objects, e.g., serial-

izability [20], is unachievable too. Nevertheless, some inter-object guarantees are achievable.

2Although auxiliary client-to-client communication is viable in some environments, we do not consider it here.

83

CHAPTER 6. PROBLEM OVERVIEW

6.2.1 Causal Consistency

We consider support for the strongest known available and convergent consistency model: causal

consistency with RDT objects [4, 68].

Definition 6.1 (Causal Order and Consistency). Let an execution H be a set of sequences (one per

application process session) of object operation invocations with their return values. Operations e

and f are potentially causally-related in H, noted e → f and called causal order, if:

A. An application process session invoked f after it invoked e; or

B. Read f observed update e on the same object; or

C. There exists an operation g ∈ H such that e → g → f .

An execution H is causally consistent if every read operation in H observes all the updates

that causally precede the read, applied in some linear extension of causal order.

Informally, under causal consistency, every process observes a monotonically non-decreasing

set of updates, including its own updates, in an order that respects the causality between

operations.3 The following well-known example illustrates it [66]. In a social network, Bob sets

permissions to disallow his boss Alice from viewing his photos. Some time later, Bob posts a

questionable photo of himself. Without causal consistency, Alice may view the bad photo, delivered

before the new permissions. Under causal consistency, the change of permission is guaranteed to

be delivered before the post, and Alice cannot view the photo.

More generally, if an application process reads object x, and later reads object y, and if the

state of x causally-depends on some update u to y, then the state of y that it reads will include

update u. When the application requests y, we say there is a causal gap if the local replica has

not yet delivered u. The system must detect such a gap, and wait until u is delivered before

returning y, or avoid a gap in the first place. Otherwise, reads with a causal gap expose both

application programmers and users to ordering anomalies [66, 67].

We consider a transactional variant of causal consistency to better support multi-object

operations. A transaction is a sequence of operations issued by a single client session. All

the reads of a causal transaction come from a same database snapshot, and either all its

updates are visible as a group, or none is [14, 66, 67]. Causal transactions facilitate, for instance,

maintenance of secondary indices and symmetric relations [14], and object composition [52].

6.2.2 Convergence with Replicated Data Types

Recall from Section 2.3 that convergence consists of safety and liveness components:

1. Eventual visibility / at-least-once delivery (liveness): an update that is delivered (i.e., is

visible by the app) at some node, is eventually delivered to all (interested) connected nodes; for

timely convergence, we require that it is delivered after a finite number of message exchanges;

3This subsumes the well-known session guarantees, such as read-your-writes or monotonic reads [34, 96].

84

6.3. APPLICATION PROGRAMMING INTERFACE

2. Confluence (safety): two nodes that delivered the same set of updates read the same value.

Causal consistency alone is not enough to guarantee confluence, as two replicas might deliver

concurrent updates in different orders. Therefore, we rely on RDT objects for order-insensitive

confluence. Specifically, we consider the op-based implementation category. Recall that op-based

objects can use a common update delivery protocol to enforce consistency, and to share metadata,

across objects. The metadata cost lies primarily in the delivery protocol. The delivery protocol

can be topology-optimized and can address the problem once and for all. In contrast, state-based

objects do not easily support cross-object consistency, and require type-specific optimizations.

Implementations of op-based RDTs require adequate support from the system, especially

in terms of network layer guarantees (cf. discussion in Section 2.4.3). Many existing causal

consistency protocols offer only LWW register support [8, 18, 46, 66, 67, 69], which is simpler

than general purpose support of higher-level types such as sets or counters. For instance, as

high-level RDT updates are often not idempotent (consider for instance inc in counter), safety

also demands at-most-once delivery. Op-based implementations, especially optimized ones,

often require causal delivery of object updates. Since an RDT object’s value may be defined not

just by the last update (as in the case of LWW register), but also depend on earlier updates, causal

dependencies may span several different object updates, and need to be encoded and respected.

6.3 Application Programming Interface

To summarize, our client API resembles both modern object stores, such as Riak 2.0 or Redis, and

prototype causal transactional stores, such as COPS or Eiger [3, 66, 67, 84]:4

• begin_transaction() Opens a causal transaction (at most one at a time).

• read(object_id) : v Performs read on object object_id with return value v.

• update(object_id,method) Performs an update operation method on object_id.

• commit_transaction() Terminates the open transaction.
Object id embeds an object type. A read can be configured to create a non-existent object. The

implementation additionally supports fine control over caching, and a non-blocking API.

6.4 Challenge

Although each of discussed requirements may seem familiar or simple in isolation, the combina-

tion with scalability to high numbers of nodes and database size is a novel challenge.

6.4.1 Metadata Design

System metadata serves to identify individual updates, and sets of updates, to ensure correct

delivery. Metadata is piggy-backed on update messages, increasing the cost of communication.

4Unlike COPS or Eiger, we consider interactive transactions, i.e., accessed objects do not need to be predefined.

85

CHAPTER 6. PROBLEM OVERVIEW

One common metadata design assigns each update a timestamp as soon as it is generated on

some originating node. This is flexible and supports tracking causality at a fine grain. However,

the metadata data structures tend to grow “fat.” For instance, dependency lists [66] grow with

the number of updates (cf. Du et al. [46], Lloyd et al. [67, Section 3.3]), whereas version vectors

[18, 69] grow with the number of clients (indeed, our experiments show that their size becomes

unreasonable). We call this the Client-Assigned, Safe but Fat approach.

An alternative delegates timestamping to a small number of DC servers [8, 46, 67]. This

enables the use of small vectors, at the cost of losing some parallelism. However, this is not

fault tolerant if the client does not reside in a DC failure domain. For instance, it may violate

at-most-once delivery. Consider a client transmitting update u to be timestamped by DC1. If it

does not receive an acknowledgement, it retries, say with DC2 (fail-over). This may result in u

receiving two distinct timestamps, and being delivered twice. Duplicate delivery violates safety

for many op-based RDTs, or otherwise increases their space and implementation complexity

[5, 34, 67]. We call this the Server-Assigned, Lean but Unsafe approach.

Clearly, neither “fat” nor “unsafe” is satisfactory.

6.4.2 Causal Consistency with Partial Replication is Hard

Since a partial replica receives only a subset of the updates, and hence of metadata, it could miss

some causal dependencies [18]. Consider the following example: Alice posts a photo on her wall

(update e). Bob sees the photo and mentions it in a message to Charles (update f), who in turn

mentions it to David (update g). When David looks at Alice’s wall, he expects to observe update e

and view the photo. However, if David’s machine does not cache Charles’ inbox, it cannot observe

the causal chain e → f → g and might incorrectly deliver g without e. Metadata design should

protect from such causal gaps, caused by transitive dependency over absent objects.

Failures complicate the picture even more. Suppose David sees Alice’s photo, and posts a

comment to Alice’s wall (update h). Now a failure occurs, and David’s machine fails over to a

new DC. Unfortunately, the new DC has not yet received Bob’s update f , on which comment

h causally depends. Therefore, it cannot deliver the comment, i.e., fulfill convergence, without

violating causal consistency. David cannot read new objects from the DC for the same reason.5

Finally, a DC logs an individual update for only a limited amount of time, but clients may

be unavailable for unlimited periods. Suppose that David’s comment h is accepted by the DC,

but David’s machine disconnects before receiving the acknowledgement. Much later, after h has

been executed and purged away, David’s machine comes back, only to retry h. This could violate

at-most-once delivery; some previous systems avoid this with fat version vectors [18, 69] or with

log compaction protocol that relies on client availability [61].

5Note that David can still perform update. However, the system as a whole does not converge.

86

Chapter 7

The SwiftCloud Approach

I don’t have to wait to realize the good old days.

Ziggy Marley

Contents

7.1 Design . 88

7.1.1 Causal Consistency at Full Data Center Replicas 88

7.1.2 Causal Consistency at Partial Client Replicas 90

7.1.3 Failing Over: The Issue with Transitive Causal Dependency 91

7.1.3.1 Conservative Read: Possibly Stale, But Safe 91

7.1.3.2 Discussion . 92

7.2 Implementation . 93

7.2.1 Timestamps, Vectors and Log Merge . 93

7.2.2 Protocols . 94

7.2.2.1 State . 94

7.2.2.2 Client-Side Execution . 94

7.2.2.3 Transfer Protocol: Client to Data Center 95

7.2.2.4 Geo-replication Protocol: Data Center to Data Center 96

7.2.2.5 Notification Protocol: Data Center to Client 96

7.2.3 Object Checkpoints and Log Pruning . 97

7.2.3.1 Log Pruning in the Data Center . 97

7.2.3.2 Pruning the Client’s Log . 98

87

CHAPTER 7. THE SWIFTCLOUD APPROACH

In this chapter, we present the design, algorithms, and evaluation of SwiftCloud, a distributed

RDT object database that addresses the challenges of client-side replication. It efficiently ensures

causally consistent, available, and convergent access to high number of client replicas, tolerating

failures. To achieve this, SwiftCloud uses a flexible client-server protocol. The client writes fast

into the local cache, and reads in the past (also fast) data that is consistent, but occasionally stale.

In Section 7.1, we present the design of SwiftCloud, based on the cloud-backed support for

partial replicas. To avoid the complexity of consistent partial replication at the client side and

at the scale of client-side devices, we leverage the DC’s full replicas to provide a consistent view

of the database to the client. The client merges this view with his own updates. To tolerate DC

failures, we explore a trade-off between liveness and data freshness, and serve clients a slightly

delayed, but consistent and sufficiently replicated version.

In Section 7.2, we show how to realize the abstract design with concrete protocols using a form

of lean and safe metadata. Thanks to funnelling communication through DCs and to “reading

in the past,” we can use a metadata design that decouples two aspects: causality tracking using

small vectors assigned in the background by DCs, and unique identification of updates to protect

from duplicates, using client-assigned scalar timestamps. This ensures that the size of metadata

is small and bounded, and allows DC to prune its log independently of clients’ availability.

7.1 Design

We first describe an abstract design that addresses the client-side replication challenges, starting

from the failure-free case, and then, how we support DC failure. Our design demonstrates

how to apply principles of causally consistent algorithms for full replication systems to build a

cloud-based support for partial client replicas.

7.1.1 Causal Consistency at Full Data Center Replicas

Ensuring causal consistency at full geo-replicated DC replicas is a well-known problem [4, 46,

66, 67]. Our design is primarily based on a log-based approach that stores updates in a log and

transfers them incrementally, combined with checkpointing optimizations [18, 79], where the

system occasionally stores and transmits the state of an object, called checkpoint, in place of

the complete log. We focus on the log-based angle, and discuss checkpoints only where relevant.

A database version is made of any subset of updates, noted U, ordered by causality. A

version maps object identifiers to object state, by applying the relevant subsequence of the

updates log. The value of an object in a version is exposed via the read API. Our log-based

implementation stores the state in log chunks, one per object, ordered in a linear extension of

their causal order.

We say that a version U has a causal gap, or is inconsistent if it is not causally-closed, i.e.,

if ∃u,u′ : u → u′∧u 6∈U ∧u′ ∈U. As we illustrate shortly, reading from an inconsistent version

88

7.1. DESIGN

x.add(1) x.add(3)

V
1 V

2

y.add(2) y.add(1)

U
1

(A) Initial configuration.

x.add(1) x.add(3)

V
1 V

2

y.add(2) y.add(1)

x.add(4)

U
C

read x

{1,3}

(B) Continuation from 7.1A to risky configuration.

x.add(1)
x.add(3)

V
1 V

2

y.add(2) y.add(1)

x.add(4)
read x

{1}

U
C

(C) Read-in-the-past: continuation from 7.1A to conservative configuration.

Figure 7.1: Example evolution of configurations for two DCs, and a client. x and y are sets; box =
update; arrow = causal dependence (an optional text indicates the source of dependency); dashed
box = named database version/state.

should be avoided, because, otherwise, subsequent accesses might violate causality. On the other

hand, waiting for the gap to be filled would increase latency and decrease availability. To side-step

this conundrum, we adopt the approach of “reading in the past” [4, 66]. Thus, a DC exposes a

gapless but possibly delayed state, noted V .

To illustrate, consider the example of Figure 7.1A. Objects x and y are of type set. DC1 is

in state U1 that includes version V1 ⊆U1, and DC2 in a later state V2. Versions V1 with value

[x 7→ {1},y 7→ {1}] and V2 with value [x 7→ {1,3},y 7→ {1,2}] are both gapless. However, version U1,

with value [x 7→ {1,3},y 7→ {1}] has a gap, missing update y.add(2). When a client requests to

read x at DC1 in state U1, the DC could return the most recent version, x : {1,3}. However, if the

application later requests y, to return a safe value of y requires to wait for the missing update

from DC2. By “reading in the past” instead, the same replica exposes the older but gapless version

V1, reading x : {1}. Then, the second read will be satisfied immediately with y : {1}. Once the

missing update is received from DC2, DC1 may advance from version V1 to V2.

A gapless algorithm maintains a causally-consistent, monotonically non-decreasing progres-

sion of replica states [4]. Given an update u, let us note u.deps its set of causal predecessors,

89

CHAPTER 7. THE SWIFTCLOUD APPROACH

called its dependency set. If a full replica, in some consistent state V , receives u, and its depen-

dencies are satisfied, i.e., u.deps⊆V , then it applies u. The new state is V ′ =V ⊕ {u}, where we

note by ⊕ a log merge operator that filters out duplicates caused by failures, further discussed

in Section 7.2.1. State V ′ is consistent, and monotonicity is respected, since V ⊆V ′.

If the dependencies are not met, the replica buffers u until the causal gap is filled.

7.1.2 Causal Consistency at Partial Client Replicas

As a client replica contains only part of the database and its metadata, this complicates con-

sistency [18]. E.g., encoding and respecting causal dependencies is more difficult. To avoid the

complexity of the protocol and to minimize metadata size, we leverage the DC’s full replicas to

manage large part of gapless versions for the clients.

Given some interest set of objects the client is interested in, its initial state consists of the

projection of a DC state onto the interest set. This is a causally-consistent state, as shown in the

previous section. Client state can change either because of an update generated by the client

itself, called an internal update, or because of one received from a DC, called external. An

internal update obviously maintains causal consistency. If an external update arrives, without

gaps, from the same DC as the previous one, it also maintains causal consistency.

More formally, consider some recent DC state, which we will call the base version of the

client, noted VDC. The interest set of client C is noted O ⊆ x,y, The client state, noted VC, is

restricted to these objects. It consists of two parts. One is the projection of base version VDC onto

its interest set, noted VDC|O. The other is the log of internal updates, noted UC. The client state

is their merge VC =VDC|O ⊕UC|O. On cache miss, the client adds the missing object to its interest

set, and fetches the object from base version VDC, thereby extending the projection.

Safety. Base version VDC is a monotonically non-decreasing causal version (it might be slightly

behind the actual current state of the DC due to propagation delays). By induction, internal

updates can causally depend only on internal updates, or on updates taken from the base version.

Therefore, a hypothetical full version VDC ⊕UC would be causally consistent. Its projection is

equivalent to the client state: (VDC ⊕UC)|O =VDC|O ⊕UC|O =VC.

Liveness. This approach ensures partial availability. If a version is in the cache, it is guaran-

teed causally consistent, although possibly slightly stale. If it misses in the cache, the DC returns

a consistent version immediately. Furthermore, the client app can write fast, because it does not

wait to commit updates, but the client replica transfers them to its DC in the background.

Convergence is ensured, because (i) the client’s base version is maintained up to date by the

DC, in the background, and internal log is propagated to the DC; and (ii) RDTs are confluent.

90

7.1. DESIGN

7.1.3 Failing Over: The Issue with Transitive Causal Dependency

The approach described so far assumes that a client connects to a single DC. In fact, a client can

switch to a new DC at any time, in particular in response to a failure. Although each DC’s state

is consistent, an update that is delivered to one is not necessarily delivered in the other (because

geo-replication is asynchronous, to ensure availability and performance at the DC level [15]),

which may create a causal gap in the client.

To illustrate the problem, return to the example of Figure 7.1A. Consider two DCs: DC1 is in

(consistent) state V1, and DC2 in (consistent) state V2; DC1 does not include two recent updates

of V2. Client C, connected to DC2, replicates object x only; its state is V2|{x}. Suppose that the

client reads the set x : {1,3}, and performs update u : x.add(4), transitioning to the configuration

shown in Figure 7.1B.

In this configuration, if the client now fails over to DC1, and the two DCs cannot communicate,

the system is not live:

(1) Reads are not available: DC1 cannot satisfy a request for y, since the version read by the

client is newer than the DC1 version, V2 6⊆V1.

(2) Updates cannot be delivered (divergence): DC1 cannot deliver u, due to a missing dependency:

u.deps 6⊆V1.

Therefore, DC1 must reject the client to avoid creating the gap in state V1 ⊕UC.1

7.1.3.1 Conservative Read: Possibly Stale, But Safe

To avoid such gaps that cannot be satisfied, we use an approach similar to Mahajan et al. [69],

and depend on updates that are likely to be present in the fail-over DC, called K-stable updates.

A version V is K-stable if every one of its updates is replicated in at least K DCs, i.e.,

|{i ∈DC |V ⊆Vi}| ≥ K , where K ≥ 1 is a threshold configured w.r.t. expected failure model, and DC

is a set of all data centers. To this effect, in our system every DC maintains a consistent K-stable
version V K

i ⊆ Vi, which contains the updates for which DCi has received acknowledgements

from at least K −1 distinct other DCs.

A client’s base version must be K-stable, i.e., VC =V K
i |O ⊕UC|O, to support failover. In this

way, the client depends, either on external updates that are likely to be found in any DC (V K
i), or

internal ones, which the client can always transfer to the new DC (UC).

To illustrate, let us return to Figure 7.1A, and consider the conservative progression to

configuration in Figure 7.1C, assuming K = 2. The client’s read of x returns the 2-stable version

{1}, avoiding the dangerous transitive dependency via an update on y. If DC2 is unavailable, the

client can fail over to DC1, reading y and propagating its update remain both live.

Correctness with K-stability. By the same arguments as in Section 7.1.2, a DC version V K
i

is causally consistent and monotonically non-decreasing, and hence the client’s version as well.

1The DC may accept to store client’s updates to improve durability, but it cannot deliver them or offer notifications.

91

CHAPTER 7. THE SWIFTCLOUD APPROACH

Note that a client observes his internal updates immediately, even if not K-stable. Our approach

is flexible w.r.t. which consistent version the DC offers to the client as a base version.

Parameter K can be adjusted dynamically. Decreasing it has immediate effect without im-

pacting correctness. Increasing K has effect only for future updates, to preserve montonicity.

7.1.3.2 Discussion

The source of the problem with the basic algorithm from Section 7.1.2 is an indirect causal

dependency on an update that the two replicas do not both know about (y.add(2) in our example).

As this is an inherent issue, we conjecture a general impossibility result, stating that genuine

partial replication, causal consistency, partial availability and timely at-least-once delivery

(convergence) are incompatible. Accordingly, some requirements must be relaxed.

Note that in many previous systems, this impossibility translates to a trade-off between

consistency and availability on the one hand, and response time and throughput on the other

[43, 66, 95]. By “reading in the past,” we displace this to a trade-off between freshness and

availability, controlled by adjusting K . A higher K increases availability, but updates take longer

to be delivered;2 in the limit, K = N ensures complete availability, but no client can deliver a

new update when some DC is unavailable. A lower K improves freshness, but increases the

probability that a client will not be able to fail over, and that it will block until its original DC

recovers. In the limit, K = 1 is identical to the basic protocol from Section 7.1.2, and is similar to

previous blocking session-guarantee protocols [96].

K = 2 is a good compromise for deployments with three or more DCs that covers common

scenarios of a DC failure or disconnection [43, 57]. Our evaluation with K = 2 shows that it incurs

a negligible staleness.

Network partitions. Client failover between DCs is safe and generally live, except in the

unlikely case when the original set of K DCs were partitioned away from both other DCs and

the client, shortly after they delivered a version to the client. In this case, the client blocks. To

side-step this unavoidable possibility, we provide an unsafe API to read inconsistent data.

When a set of fewer than K DCs is partitioned from other DCs, the clients that connect to

them are available and safe, but do not deliver their mutual updates until the partition heals.

To improve liveness in this scenario, SwiftCloud supports two heuristics: (i) a partitioned DC

announces its “isolated” status, automatically recommending clients to use another DC, and

(ii) clients who cannot reach another DC that would satisfy their dependencies can use the

isolated DCs with K temporarily lowered, risking unavailability if another DC fails.

Precision vs. missing dependencies. The probability of a client blocked due to an unsatisfied

transitive causal dependency depends on many factors, such as workload- and deployment-

2The increased number of concurrent updates that this causes is not a big problem, thanks to RDTs.

92

7.2. IMPLEMENTATION

specific ones. Representation of dependencies also contributes. SwiftCloud uses coarse-grained

representation of dependencies, at the granularity of the complete base version used by the client.

This may cause a spurious missing dependency, when a DC rejects a client because it misses some

update that is not an actual dependence. Finer-grained dependency representation, such as in

causality graphs [66], or resorting to application-provided explicit dependencies under a weaker

variant of causal consistency [12], avoid some spurious dependencies at the expense of fatter

metadata. However, the missing dependency issue remains under any dependency precision.

Thus, our approach is to fundamentally minimize the chances of any missing dependency, both

genuine and spurious.

7.2 Implementation

We now describe a metadata and concrete protocols implementing the abstract design.

7.2.1 Timestamps, Vectors and Log Merge

The SwiftCloud approach requires metadata: (1) to uniquely identify an update; (2) to encode its

causal dependencies; (3) to identify and compare versions; (4) and to identify all the updates of a

transaction. We now describe a type of metadata, which fulfills the requirements and has a low

cost. It combines the strengths of the two approaches outlined in Section 6.4.1, and is both lean

and safe

Recall that a logical timestamp is a pair (i,k) ∈ (DC∪C)×N, where i identifies the node

that assigned the timestamp (either a DC or a client) and k is a sequence number. Similarly

to the solution of Ladin et al. [61], our metadata assigned to some update u combines both:

(i) a single client-assigned timestamp u.tC that uniquely identifies the update, and (ii) a set

of zero or more DC-assigned timestamps u.TDC. Before being delivered to a DC, the update

has no DC timestamp; it has one thereafter; it may have more than one in case of delivery to

multiple DCs (on failover). The updates in a transaction all have the same timestamp(s), to

ensure all-or-nothing delivery [95]. Our approach provides the flexibility to refer to an update via

any of its timestamps, which is handy during failover.

We represent a version or a dependency as a version vector [77], introduced in Sec-

tion 2.2.3. Recall that a version vector is a partial map from node id to integer, e.g., vv =
[DC1 7→ 1,DC2 7→ 2], which we interpret as a set of timestamps. For example, when vv is used

as a dependency for some update u, it means that u causally depends on a set of timestamps

TS(vv)= {(DC1,1), (DC2,1), (DC2,2)} (TS is defined in Equation 3.1). In SwiftCloud protocols, every

vector has at most one client entry, and multiple DC entries; thus, its size is bounded by the

number of DCs, limiting network overhead. In contrast to a dependence graph [66], a vector

compactly represents transitive dependencies and can be evaluated locally by any node.

93

CHAPTER 7. THE SWIFTCLOUD APPROACH

A version decoding function V of vector vv on a state U selects every update in state U

that matches the vector (it is defined for states U that cover all timestamps of vv):

V(vv,U)= {u ∈U | (u.TDC∪ {u.tC})∩TS(vv) 6= ;}

For the purpose of the decoding function V, a given update can be referred equivalently through

any of its timestamps, which we leverage for failover. Moreover, V is stable with growing state U ,

which is handy to identify a version in a (large) state that undergoes concurrent log appends.

The log merge operator U1 ⊕U2, which eliminates duplicates, is defined using client times-

tamps. Two updates u1 ∈U1,u2 ∈U2 are identical if u1.tC = u2.tC. The merge operator merges

their DC timestamps into u ∈U1 ⊕U2, such that u.TDC = u1.TDC∪u2.TDC.

7.2.2 Protocols

We are now in the position to describe the concrete protocols of SwiftCloud, by following the

lifetime of an update, and with reference to the names in Figure 6.1.

7.2.2.1 State

A DC replica maintains its state UDC in durable storage. The state respects causality and

atomicity for each individual object, but due to internal concurrency, this may not be true across

objects. Therefore, the DC also has a vector vvDC that identifies a safe, monotonically non-

decreasing causal version in the local state, which we note VDC =V(vvDC,UDC). Initially, UDC is

an empty log of updates, and vvDC is zeroed.

A client replica stores the commit log of its own updates UC, and the projection of the base

version from the DC, restricted to its interest set O, VDC|O, as described previously in Section 7.1.2.

It also stores a copy of vector vvDC that describes the base version.

7.2.2.2 Client-Side Execution

When the application starts a transaction τ at client C, the client replica initializes it with

an empty buffer of updates τ.U = ; and a snapshot vector of the current base version

τ.vvDeps= vvDC; the base version can be updated by the notification protocol concurrently with

the transaction execution. A read in transaction τ is answered from the version identified by the

snapshot vector, merged with recent internal updates, τ.V =V(τ.vvDeps,VDC|O)⊕UC|O ⊕τ.U. If

the requested object is not in the client’s interest set, x 6∈O, the clients extends its interest set,

and returns the value once the DC updates the base version projection.

When the application issues internal update u, it is appended to the transaction buffer

τ.U ← τ.U ⊕ {u}, and included in any later read. To simplify the notation, and without loss of

generality, we assume hereafter that a transaction performs at most one update.3 The transaction
3This is easily extended to multiple updates, by assigning the same timestamp to all the updates of the same

transaction, ensuring the all-or-nothing property of causal transactions [95].

94

7.2. IMPLEMENTATION

commits locally at the client; it never fails. If the transaction made update u ∈ τ.U, the client

replica commits it locally as follows: (1) assign it client timestamp u.tC = (C,k), where k counts

the number of committed transactions at the client; (2) assign it a dependency vector initialized

with the transaction snapshot vector u.vvDeps = τ.vvDeps; (3) append it to the commit log of

local updates on stable storage UC ←UC ⊕ {u}. This terminates the transaction, which becomes

irrevocable; the client can start a new one, which will observe the committed updates.

7.2.2.3 Transfer Protocol: Client to Data Center

The transfer protocol transmits committed updates from a client to its current DC, in the

background. It repeatedly picks the first unacknowledged committed update u from the log. If

any of u’s internal dependencies has recently been assigned a DC timestamp, it merges this

timestamp into the dependency vector, u.vvDeps. Then, the client sends a copy of u to its current

DC. The client expects to receive an acknowledgement from the DC, containing the timestamp(s)

T that the DC assigned to update u. If so, the client records the DC timestamp(s) in the original

update record u.TDC ← T. T is a singleton set, unless failover was involved.

The client may now iterate with the next update in the log.

A transfer request may fail for three reasons:

A. Timeout: the DC is suspected unavailable; the client connects to another DC (failover) and

repeats the protocol.

B. The DC reports a missing internal dependency, i.e., it has not received some update of the

client, as a result of a previous failover. The client recovers by marking as unacknowledged

all internal updates starting from the oldest missing dependency, and restarting the transfer

protocol from that point.

C. The DC reports a missing external dependency; this is also an effect of failover. In this

case, the client tries yet another DC. The approach from Section 7.1.3.1 avoids repeated

failures.

Upon receiving update u, the DC verifies if its dependencies are satisfied, i.e., if TS(u.vvDeps)⊆
TS(vvDC). (If this check fails, it reports an error to the client, indicating either case (B) or (C)).

If the DC has not received this update previously, as determined by the client-assigned times-

tamp, i.e., ∀u′ ∈ UDC : u′.tC 6= u.tC, the DC does the following: (1) assign it a DC timestamp

u.TDC ← {(DC,vvDC(DC)+1)}, (2) store it in its durable state UDC ⊕ {u}, (3) make the update

visible in the DC version VDC, by incorporating its timestamp(s) into vvDC. This last step makes

u available to the geo-replication and notification protocols, described hereafter. If the update

has been received before, the DC only looks up its previously-assigned DC timestamps, u.TDC. In

either case, the DC acknowledges the transfer to the client with the DC timestamp(s). Note that

some of these steps can be parallelized between transfer requests received from different client

replicas, e.g., using batching for timestamp assignment.

95

CHAPTER 7. THE SWIFTCLOUD APPROACH

7.2.2.4 Geo-replication Protocol: Data Center to Data Center

The geo-replication protocol relies on a uniform reliable broadcast across DCs [36]. An update

enters the geo-replication protocol when a DC accepts a fresh update during the transfer protocol.

The accepting DC broadcasts it to all other DCs. The broadcast implementation stores an update

in a replication log until every DC receives it. A DC that receives a broadcast message containing

u does the following: (1) if the dependencies of u are not met, i.e., if TS(u.vvDeps) 6⊆ TS(vvDC),

buffer it until they are; and (2) incorporate u into durable state UDC ⊕ {u} (if u is not fresh, the

duplicate-resilient log merge ⊕ safely unions all timestamps), and incorporate its timestamp(s)

into the DC version vector vvDC. This last step makes it available to the notification protocol. The

K-stable version V K
DC, and a corresponding vector vvK

DC, are maintained similarly.

7.2.2.5 Notification Protocol: Data Center to Client

A DC maintains a best-effort notification session, over a FIFO channel, to each of its connected

clients. The soft state of a session at a DC includes a copy of the client’s interest set O and the last

known base version vector used by the client, vv′DC. Both of them can be recovered from the client

when necessary, and the client provides both to initiate a session. The DC accepts a new session

only if its own state is consistent with the base version of the client, i.e., if TS(vv′DC)⊆TS(vvDC).

Otherwise, the DC would cause a causal gap with the client’s state; in this case, the client is

redirected to another DC (the solution from Section 7.1.3.1 avoids repeated rejections).

The DC sends over each channel a causal stream of update notifications.4 Notifications are

batched according to either time or to rate [18]. A notification packet consists of a new base

version vector vvDC, and a log of all the updates Uδ to the objects of the interest set, between the

client’s previous base vector vv′DC and the new one. Formally:

(7.1) Uδ = {u ∈UDC|O | u.TDC∩ (TS(vvDC)\TS(vv′DC)) 6= ;}.

The client applies the newly-received updates to its local state, described by the old base version,

VDC|O ←VDC|O ⊕Uδ, and assumes the new vector vvDC. If any of received updates is a duplicate

w.r.t. to the old version or to a local update, the log merge operator handles it safely. Note that

transaction atomicity is preserved by Equation 7.1, since all updates of a transaction share a

common timestamp.

When the client detects a broken channel, it reinitiates the session, possibly on a new DC.

The interest set can change dynamically. When an object is evicted from the cache, the

notifications are lazily unsubscribed to save resources. When it is extended with object x, the DC

responds with the current version of x, which includes all updates to x up to the base version

vector. To avoid races, a notification includes a hash of the interest set, which the client checks.

4Alternatively, the client can ask for invalidations instead, trading responsiveness for lower bandwidth utilization
and higher DC throughput [18, 69].

96

7.2. IMPLEMENTATION

7.2.3 Object Checkpoints and Log Pruning

The log-based representation of database state contributes to substantial storage and, to smaller

extent, network costs. This is a reminiscent of the similar problem at the object level of state-

based RDT implementations from Part II, which manifests here in the log-exchange protocol for

op-based implementations.

To avoid unbounded growth of the log, a background pruning protocol replaces the prefix

of the log by a checkpoint. In the common case, a checkpoint is more compact than the corre-

sponding log of updates. For instance, a log containing one thousand increments to an op-based

counter object from Algorithm 2.2, including system timestamps, can be replaced by a checkpoint

containing just the number 1000, and system metadata, a version vector.

7.2.3.1 Log Pruning in the Data Center

The log at a DC provides (i) unique timestamp identification of each update, which serves to

filter out duplicates by ⊕ operator, to ensure reliable causal delivery, as explained earlier, and

(ii) the capability to compute different versions, for application processes reading at different

causal times. Conversely, for the protocol described so far, an update u is expendable once all of

its duplicates have been filtered out, and once u has been delivered to all interested application

processes. However, evaluating expendability precisely would require access to the client replica.

In practice, we need to prune aggressively, but still avoid the above issues, as we explain next.

In order to reduce the risk of pruning a version not yet delivered to an interested application,

we prune only a delayed version vv∆DC, where ∆ is a real-time delay [66, 67]. If this heuristic

fails, the consequences are not fatal: an ongoing client transaction may need to restart and repeat

prior reads or return inconsistent data if desired, but the committed updates are never aborted.

To avoid duplicates, we extend our DC local metadata as follows. DCi maintains an at-most-
once guard G i, which records the sequence number of each client’s last pruned update G i :C→N.

Whenever the DC receives a transfer request or a geo-replication message for update u with

timestamp (C,k)= u.tC and cannot find it in its log, it checks the at-most-once guard entry G i(C)

whether u is contained in the checkpoint. If the update was already pruned away (G i(C) ≥ k),

it is recognized as a pruned duplicate. In this case, the DC neither assigns the update a new

timestamp (as it normally does in geo-replication protocol), nor stores it in the durable statate,

nor delegates the actual update to the notification protocol (as in transfer and geo-replication

protocols), but it updates its version vector to include all existing timestamps of the update; in

transfer reply, the DC overapproximates u’s timestamps by vector vvDC, since the information

about the exact set of update’s DC timestamps is discarded.

The notification protocol also uses checkpoints. On a client cache miss, the DC does not send

updates log for an object, but the object state that consists of the most recent checkpoint of the

object and the client’s guard entry, so that the client can merge it with his updates safely.

Note that a guard is local to and shared by all objects at a DC. It is never fully transmitted.

97

CHAPTER 7. THE SWIFTCLOUD APPROACH

7.2.3.2 Pruning the Client’s Log

Managing the log at a client is comparatively simpler. A client logs his own updates UC, which

may include updates to object that is currently out of his interest set — this enables the client to

read its own updates, and to propagate them lazily to a DC when connected and convenient. An

update u can be discarded as soon as it appears in K-stable base version vector vvK
DC, i.e., when

the client becomes dependent on the presence of u at a DC.

98

Chapter 8

Experimental Evaluation

If you torture the data enough, nature will always confess.

Ronald H. Coase

Contents

8.1 Prototype and Applications . 100

8.2 Experimental Setup . 101

8.3 Experimental Results . 102

8.3.1 Response Time and Throughput . 102

8.3.2 Scalability . 105

8.3.3 Tolerating Client Churn . 107

8.3.4 Tolerating Data Center Failures . 107

8.3.5 Staleness Cost . 108

99

CHAPTER 8. EXPERIMENTAL EVALUATION

YCSB [42] SocialApp à la WaltSocial [95]
Type of objects LWW map set, counter, LWW register
Object payload 10×100 bytes variable

Read transactions
read fields read wall† (80%)

(load A: 50% / load B: 95%) see friends (8%)

Update transactions
update field message (5%)

(load A: 50% / load B: 5%) post status (5%)
add friend (2%)

Objects / transactions 1 (non-transactional) 2–5
Database size 50,000 objects 50,000 users / 400,000 objects

Object popularity uniform / Zipfian uniform
Session locality 40% (low) / 80% (high)

† read wall is an update in metadata experiments, where page view statistics are enabled

Table 8.1: Characteristics of applications/workloads.

We implement SwiftCloud and evaluate it experimentally to determine the quality and

the cost of the properties that serve our requirements, in comparison to other protocols. In this

chapter, we describe our prototype and applications (Section 8.1), experimental setup (Section 8.2),

and experiments (Section 8.3).

In particular, we show that SwiftCloud provides: (i) fast response, under 1 ms for both

reads and writes to cached objects (Section 8.3.1); (ii) scalability of throughput with the number

of DCs, and support for thousands of clients with small metadata size, linear in the number

of DCs (Section 8.3.2); (iii) fault-tolerance w.r.t. client churn (Section 8.3.3) and DC failures

(Section 8.3.4); and (iv) modest staleness cost, under 3% of stale reads (Section 8.3.5).

8.1 Prototype and Applications

SwiftCloud, and the benchmark applications are implemented in Java. SwiftCloud uses Berke-

leyDB for durable storage (turned off in the present experiments), a custom RPC implementation,

and Kryo for data marshalling [2]. A client cache has a fixed size and uses an LRU eviction policy;

more elaborate approaches, such as object prefetching [18], are feasible. Applications can use

predefined RDT types, as well as define their own op-based implementations.

Along the lines of previous studies of causally consistent systems [8, 12, 67, 95], we use two

different benchmarks, YCSB and SocialApp, summarized in Table 8.1.

Yahoo! Cloud Serving Benchmark (YCSB) [42] serves as a kind of micro-benchmark, with

simple requirements, measuring baseline costs and specific system properties in isolation. It has

a simple key-field-value object model, implemented as a LWW map RDT (a generalization of

LWW set), using a default payload size of ten fields of 100 bytes each. YCSB issues transactions

100

8.2. EXPERIMENTAL SETUP

with single-object reads and writes. We use two of the standard YCSB workloads: update-heavy

Workload A, and read-dominated Workload B. The object access popularity can be set to either

uniform or Zipfian. YCSB does not rely on transactional semantics or high-level RDTs.

SocialApp is a social network application modelled closely after WaltSocial [95].1 It employs

high-level data types such as sets, for friends and posts, LWW register for profile information,

counter for counting profile visits, and inter-object references (implemented at the application

level). Many SocialApp objects grow in size over time (e.g., sets of posts).2 SocialApp accesses

multiple objects in a causal transaction to ensure that operations such as reading a wall page

and profile information behave consistently. Percentage in parentheses next to the operation type

in Table 8.1 indicate the frequency of each operation in the workload. The SocialApp workload is

read-dominated, but the ostensibly read-only operation of visiting a wall can actually increment

the wall visit counter when statistics are enabled, in metadata experiments. The user popularity

distribution is uniform.

We use a 50,000-user database for both applications, except for a smaller 10,000-user database

for metadata experiments, to increase the stability of measurements.

In order to model the locality behavior of a client, which is a condition to benefit from any

kind of client-side replication, both YCSB and SocialApp workloads are augmented with a facility

to control access locality, mimicking social network access patterns [19]. Within a client session,

a workload generator draws uniformly from a pool of session-specific objects with either 40%

(low locality) or 80% (high locality) probability. For SocialApp, the pool contains objects of user’s

friends. Objects not drawn from this local pool are drawn from the global (uniform or Zipfian)

distribution described above. The size of the local pool is smaller than the size of cache.

8.2 Experimental Setup

We run three DCs in geographically distributed Amazon EC2 availability zones (Europe, Virginia,

and Oregon), and a pool of distributed clients, with the following Round-Trip Times (RTTs):

Oregon DC Virginia DC Europe DC
nearby clients 60–80 ms 60–80 ms 60–80 ms

Europe DC 177 ms 80 ms
Virginia DC 60 ms

Each DC runs on a single m3.m EC2 instance, cheap virtual hardware, equivalent to one core

64-bit 2.0 GHz Intel Xeon virtual processor (2 ECUs) with 3.75 GB of RAM, and OpenJDK7 on

Linux 3.2. Objects are pruned at random intervals between 60–120 s, to avoid bursts of pruning

1SocialApp implements WaltSocial’s user registration operation partially, since user uniqueness with custom user
names requires additional support for strong consistency.

2In practice, this could be an issue, however, a recent work of Briquemont et al. [26] demonstrates how to
implement object sharding in a SwiftCloud-like system.

101

CHAPTER 8. EXPERIMENTAL EVALUATION

Server replicas only SwiftCloud w/client replicas

0
R

T
T

1
R

T
T

2
R

T
T

locality potential

locality potential

0
R

T
T

1
R

T
T

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Low
 locality

H
igh locality

0 50 100 150 200 250 0 50 100 150 200 250
operation response time [ms]

C
D

F
 fo

r
al

l s
es

si
on

s

read

update

Figure 8.1: Response time for YCSB operations (workload A, Zipfian object popularity) under
different system and workload locality configurations, aggregated for all client sessions.

activity. We deploy 500–2,500 clients on a separate pool of 90 m3.m EC2 instances. Clients load

DCs uniformly and use the closest DC by default, with a client-DC RTT ranging in 60–80 ms.

For comparison, we provide three protocol modes based on the SwiftCloud implementation:

A. SwiftCloud mode (default) with client cache replicas of 256 objects, and refreshed with

notifications at a rate of approx. 1 s by default;

B. Safe But Fat metadata mode with cache, but with client-assigned metadata only, modeled

after PRACTI, or Depot without cryptography [18, 69];

C. Server-side replication mode without client caches. In this mode, a read incurs one RTT to

a DC, whereas an update incurs two RTTs, modelling the cost of a synchronous writes to a

quorum of servers to ensure fault-tolerance comparable to SwiftCloud.

8.3 Experimental Results

8.3.1 Response Time and Throughput

We run several experiments to evaluate SwiftCloud’s client-side caching, with reference to the

caching locality potential and geo-replication on server-side only. For each workload we evaluate

the system stimulated with different rates of aggregated incoming transactions, until it becomes

saturated. We use a number of clients that is throughput-optimized for each workload and

protocol mode. We report aggregated statistics for all clients.

Response time. Figure 8.1 shows response times for YCSB, comparing server-side (left side)

with client-side replication (right side), under low (top) and high locality (bottom), when the

system is not overloaded. Recall that in server-side replication, a read incurs a RTT to the

DC, whereas a fault-tolerant update incurs 2 RTTs. We expect SwiftCloud to provide much

102

8.3. EXPERIMENTAL RESULTS

+107%

+7%
+14%

+102%

+128%

+9% −11%−14%

+39% +1%

High locality workload Low locality workload

0

5000

10000

15000

20000

25000

Soc
ial

App

YCSB A

YCSB A
, u

nif
or

m

YCSB B

YCSB B
, u

nif
or

m

Soc
ial

App

YCSB A

YCSB A
, u

nif
or

m

YCSB B

YCSB B
, u

nif
or

m

m
ax

. t
hr

ou
gh

pu
t [

tx
n/

s]
SwiftCloud w/client replicas
server replicas only

Figure 8.2: Maximum system throughput for different workloads and protocols. Percentage over
bars indicates throughput increase/decrease for SwiftCloud compared to server-side replication.

faster response, at least for cached data. Indeed, the figure shows that a significant fraction of

operations respond immediately in SwiftCloud mode, and this fraction tracks the locality of the

workload (marked “locality potential” on the figure), within a ±7.5 percentage-point margin.3 The

remaining operations require one round-trip to the DC, indicated as 1 RTT.

These results demonstrate that the consistency guarantees and the rich programming inter-

face of SwiftCloud do not affect responsiveness of cached read and updates.

Our measurements for SocialApp show the same message, we do not report them here. An

important lesson from a preliminary evaluation of SocialApp (not plotted) was that transactions

involving reads on more than one object may incur multiple RTTs, compared to 1 RTT for

server-side replication. We optimized our implementation to use predeclared objects and parallel

reads to bring the response time down to 1 RTT. However, some transactions involving several

predefined objects, yet producing small return value, could benefit from optional server-side

execution support.

Maximum throughput. In the next study, we saturate the system to determine its maximum

aggregated throughput. Figure 8.2 compares SwiftCloud with server-side replication for all

workloads. Client-side replication is a mixed blessing: it lets client replicas absorb read requests

that would otherwise reach the DC, but also puts extra load of maintaining client replicas on DCs.

SwiftCloud’s client-side replication consistently improves throughput for high-locality workloads,

by 7% up to 128%. It is especially beneficial to read-heavy workloads. In contrast, low-locality

workloads show no clear trend; depending on the workload, throughput either increases by up to

3A detailed analysis reveals the sources of this error margin. The default Zipfian object access distribution of
YCSB increases the fraction of local accesses due to added “global" locality (up to 82 % local accesses for target 80 %
of workload session locality). On the other hand, low locality workload decreases amount of local accesses, due to
magnified imperfections of the LRU cache eviction algorithm (down to 34 % local accesses for target 40 %).

103

CHAPTER 8. EXPERIMENTAL EVALUATION

YCSB A (50% updates) YCSB B (5% updates)

1

10

100

1000

1

10

100

1000

Z
ipfian distrib.

uniform
 distrib.

1250 2500 5000 5000 10000 20000
throughput [txn/s]

re
sp

on
se

 ti
m

e
[m

s]

server replicas only, 70th percentile of response time (exp. local)
client replicas, 70th percentile of response time (exp. local)
server replicas only, 95th percentile of respone time (remote)
client replicas, 95th percentile of respone time (remote)

Figure 8.3: Throughput vs. response time for different system configurations and YCSB variants.

38%, or decrease by up to 11% with SwiftCloud.

Throughput vs. response time. Our next experiment studies how response times vary with

server load and with the staleness settings. The results show that, as expected, cached objects

respond immediately and are always available, but the responsiveness of cache misses depends

on server load.

For this study, Figure 8.3 plots throughput vs. response time, for YCSB A (left side) and B

(right side), both for the Zipfian (top) and uniform (bottom) distributions. Each point represents

the aggregated throughput and latency for a given transaction incoming rate, which we increase

until reaching the saturation point. The curves report two percentiles of response time: the lower

(70 th percentile) line represents the response time for requests that hit in the cache (the session

locality level is 80%), whereas the higher (95 th percentile) line represents misses, i.e., requests

served by a DC.

As expected, the lower (cached) percentile consistently outperforms the server-side baseline,

for all workloads and transaction rates. A separate analysis, not reported in detail here, reveals

that a saturated DC slows down its rate of notifications, increasing staleness, but this does not

impact response time, as desired. In contrast, the higher percentile follows the trend of server-side

replication response time, increasing remote access time with DC load.

Varying the target notification rate (not plotted) between 500 ms and 1000 ms, reveals the

same trend: response time is not affected by the increased staleness. At a longer refresh rate,

notification batches are less frequent but larger. This increases throughput for the update-heavy

YCSB A (up to tens of percent points), but has no effect on the throughput of read-heavy YCSB B.

104

8.3. EXPERIMENTAL RESULTS

●
●

● ●

● ● ●
●

● ● ● ● ●● ● ● ● ●
/ limit

●

● ●

●

●

●

●
●

●
●

●

●
●

● ●
●

●

●

/ limit

● ● ●
● ●

● ● ● ● ●

● ●
● ● ●●

● ● ● ●

YCSB A, uniform YCSB B, uniform SocialApp

0

5000

10000

15000

20000

25000

500 1500 2500 500 1500 2500 500 1500 2500
#client replicas

m
ax

. t
hr

ou
gh

pu
t [

tx
n/

s] ●●

●●

refresh rate 1s
refresh rate 10s

3 DC replicas
1 DC replica

Figure 8.4: Maximum system throughput for a variable number of client and DC replicas.

YCSB A, uniform YCSB B, uniform SocialApp w/stats

max. notification data max. notification data max. notification data

10

100

1K

10K

100K

500 1500 2500500 1500 2500500 1500 2500
#client replicas

no
tif

ic
at

io
n

m
et

ad
at

a
[B

]

1 DC replica
3 DC replicas

SwiftCloud metadata
Safe But Fat metadata (Depot*)

Figure 8.5: Size of metadata in notification message for a variable number of replicas, mean and
standard error. Normalized to a notification of 10 updates.

We expect the impact of refresh rate to be amplified for workloads with very low rate of updates.

8.3.2 Scalability

Next, we measure how well SwiftCloud scales with increasing numbers of DC and of client

replicas. Of course, performance is expected to increase with more DCs, but most importantly,

the size of metadata should be small, should increase only marginally with the number of DCs,

and should not depend on the number of clients. Our results support these expectations.

In this experiment, we run SwiftCloud with a variable number of client (500–2500) and

DC (1–3) replicas. We report only on the uniform object distribution, because under the Zipfian

distribution different numbers of clients skew the load differently, making any comparison

meaningless. To control staleness, we run SwiftCloud with two notification rates: 1 s and 10 s.

105

CHAPTER 8. EXPERIMENTAL EVALUATION

Throughput. Figure 8.4 shows the maximum system throughput on the Y axis, increasing the

number of replicas along the X axis. The thin lines are for a single DC, the bold ones for three

DCs. Solid lines represent the fast notification rate, dashed lines the slow one. The figure shows,

left to right, YCSB Workload A, YCSB Workload B, and SocialApp.

The capacity of a single DC in our hardware configuration peaks at 2,000 active client replicas

for YCSB, and 2,500 for SocialApp. Beyond that, the DC drops excessive number of packets.

As to be expected, additional DC replicas increase the system capacity for operations that

can be performed at only one replica such as read operations or sending notification messages.

Whereas a single SwiftCloud DC supports at most 2,000 clients, with three DCs SwiftCloud

supports at least 2,500 clients for all workloads. Unfortunately, as we ran out of resources for

client machines at this point, we cannot report an upper bound.

For some fixed number of DCs, adding client replicas increases the aggregated system

throughput, until a point of approximately 300–500 clients per DC, where the cost of maintaining

client replicas up to date saturates the DCs, and further clients do not absorb enough reads to

overcome these costs. Note that the lower refresh rate can reduce the load at a DC by 5 to 15%.

Metadata. In the same experiment, Figure 8.5 presents the distribution of metadata size

notification messages. (Notifications are the most common and the most costly network messages.)

We plot the size of metadata (in bytes) on the Y axis, varying the number of clients along the

X axis. Left to right, the same workloads as in the previous figure. Thin lines are for one DC,

thick lines for three DCs. A solid line represents SwiftCloud “Lean and Safe” metadata, and

dotted lines the classical “Safe but Fat” approach. Note that our Safe-but-Fat implementation

includes the optimization of sending vector deltas rather than the full vector [69]. Vertical bars

represent standard error across clients. As notifications are batched, we normalize metadata size

to a message carrying exactly 10 updates, corresponding to under approx. 1 KB of data.

The experiment confirms that the SwiftCloud metadata is small and constant, at 100–

150 bytes/notification (10–15 bytes per update); data plus metadata together fit inside a single

standard network packet. It is independent both from the number of client replicas and from

the workload; and from the number of objects in the database, as an additional experiment (not

plotted) validates. Increasing the number of DC replicas from one to three causes a negligible

increase in metadata size, of under 10 bytes. We attribute some variability across clients (bars) to

the data encoding and inaccuracies of measurements, including the normalization process.

In contrast, the classical Safe but Fat metadata grows linearly with the number of clients and

exhibits higher variability. Its size reaches approx. 1 KB for 1,000 clients in all workloads, and

10 KB for 2,500 clients. Clearly, metadata being up to 10× larger than the actual data represents

a substantial overhead.

106

8.3. EXPERIMENTAL RESULTS

YCSB − all objects SocialApp − stats counters

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

1K

10K

100K

1M

10M

100M

0 1000 2000 3000 4000 0 1000 2000 3000 4000
#unavailable client replicas

st
or

ag
e

oc
cu

p.
 [B

]

●

SwiftCloud
(SwiftCloud's at−most−once guard only)
Lean But Unsafe approach w/o at−most−once guarantees

Figure 8.6: Storage occupation at a single DC in reaction to client churn for Lean-and-Safe
SwiftCloud and Lean-but-Unsafe alternative.

8.3.3 Tolerating Client Churn

We now turn to fault tolerance. In the next experiment, we evaluate SwiftCloud under client

churn, by periodically disconnecting client replicas and replacing them with a new set of clients.

At any point in time, there are 500 active clients and a variable number of disconnected clients,

up to 5000. Figure 8.6 illustrates the storage occupation of a DC for representative workloads,

which is also a proxy for the size of object checkpoints transferred. We compare SwiftCloud’s log

compaction to a protocol without at-most-once delivery guarantees (Lean But Unsafe).

SwiftCloud storage size is approximately constant. This is achievable safely thanks to the

at-most-once guard table per DC. Although the size of the guard (bottom curve) grows with the

number of clients, it requires orders of less storage than the actual database itself.

A protocol without at-most-once delivery guarantees can use Lean-but-Unsafe metadata,

without SwiftCloud’s at-most-once guard. However this requires higher complexity in each RDT

implementation, to protect itself from duplicates (cf. state-based implementations from Part II).

This increases the size of objects, impacting both storage and network costs. As is visible in

the figure, the cost depends on the object type: none for YCSB’s LWW map, which is naturally

idempotent, vs. linear in the number of clients for SocialApp’s Counter objects.

We conclude that the cost of maintaining SwiftCloud’s shared at-most-once guard is negligible,

and easily amortized by the possible savings and the stable behavior it provides.

8.3.4 Tolerating Data Center Failures

The next experiment studies the behavior of SwiftCloud when a DC disconnects. The scatterplot

in Figure 8.7 shows the response time of a SocialApp client application as the client switches

between DCs. Each dot represents the response time of an individual transaction. The client runs

on a private machine outside of EC2. Starting with a cold cache, response times quickly drops

to near zero for transactions hitting in the cache, and to around 110 ms for misses. Some 33 s

into the experiment, the current DC disconnects, and the client is diverted to another DC in a

different continent. Thanks to K-stability the fail-over succeeds, and the client continues with

107

CHAPTER 8. EXPERIMENTAL EVALUATION

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 10 20 30 40 50 60 70 80

re
sp

on
se

 ti
m

e
[m

s]

time [s]

/ transient DC failure /

Figure 8.7: Response time for a client that hands over between DCs during a 30 s failure of a DC.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 0 5000 10000 15000 20000 25000

st
al

e
re

ad
s

[%
]

#users in SocialApp

transactions
individual reads

Figure 8.8: K-stability staleness overhead.

the new DC. Its response time pattern reflects the higher RTT to the new DC. At 64 s, the client

switches back the initial DC, and performance smoothly recovers to the initial pattern.

Recall that a standard server-side replication system with similar fault-tolerance incurs high

response time (cf. Section 8.3.1, or Corbett et al. [43]) and does not ensure at-most-once delivery.

8.3.5 Staleness Cost

The price to pay for our read-in-the-past approach is an increase in staleness. Our next experiment

illustrates the impact of K-stability for evaluated workloads. A read incurs staleness overhead if a

version more recent (but not K-stable) than the one it returns exists at the current DC of a client

that performed the read. A transaction is stale if any of its reads is stale. In the experiments so

far, we observed a negligible number of stale reads. The reason is that the window of vulnerability

(the time it takes for an update to become K-stable) is small: approximately the RTT to the

closest DC. For this experiment, we artificially increase the probability of staleness by various

means: using a smaller database, setting cache size to zero, and transferring to the farthest DC,

with a RTT of around 170 ms. We run the SocialApp benchmark with 1000 clients in Europe

connected to the Ireland DC and replicated in the Oregon DC.

Figure 8.8 shows that stale reads and stale transactions remain under 1% and 2.5% respec-

tively. This number decreases as we increment the size of the database. This shows that even

under high contention, accessing a slightly stale snapshot has very little impact on the data read

by transactions.

108

Chapter 9

Related Work

If somebody wants a sheep, that is a proof that one exists.

The Little Prince by Antoine de Saint-Exupéry

Contents

9.1 Consistency Models for High Availability . 110

9.2 Relevant Systems . 110

9.2.1 Replicated Databases for Client-Side Applications 111

9.2.1.1 Systems that Support Inter-Object Consistency 111

9.2.1.2 Systems that Support Intra-Object Consistency Only 113

9.2.1.3 Session Guarantees . 115

9.2.2 Geo-replicated Databases for Server-Side Applications 115

9.2.2.1 Approaches . 116

9.2.2.2 Comparison and Applicability to Client-Side Replication 117

109

CHAPTER 9. RELATED WORK

In this chapter, we categorize and present the work related to SwiftCloud, and compare to it.

We discuss relevant theory, in Section 9.1, and relevant systems and algorithms, in Section 9.2.

9.1 Consistency Models for High Availability

Causal consistency. Ahamad et al. [4] propose the original causal consistency model for

shared memory, with highly available read and writes. Their definition concerns only updates

ordering, and does not embody the confluence requirement, i.e., replicas may not converge in

the presence of concurrent updates (although it is rarely the case for practical implementations).

More recently, Lloyd et al. [66] and Mahajan et al. [68] independently strengthen the original

definition with the confluence requirement. This model is sometimes called causal+ consistency

[8, 66]. Burckhardt et al. [33] provide a formal and abstract treatment of these definitions, by

explicitly modelling confluence with RDTs; it is a generalization of the model we use in Chapter 2

to the multi-object setting.

Trade-offs. Mahajan et al. [68] prove that no stronger consistency model than causal con-

sistency is available and convergent, in full replication system. They do not consider partial

replication. We conjecture, in Section 7.1.3.2, that these properties are not simultaneously achiev-

able under partial replication, and show how to weaken one of them. Bailis et al. [13] also study

liveness and limits of a variety of weak consistency models, including causal consistency and weak

transactional models. They give an argument for a similar impossibility of highly available causal

consistency for a client switching server replicas, but do not take into account the capabilities of

a client replica, as we do in our solution.

Transactions. Lloyd et al. propose two extensions to causal consistency that facilitate multi-

object programming: read-only and write-only transactions [66, 67] (Burckhardt et al. [31] also

propose a similar model). A read-only transaction reads from a consistent snapshot [66]. A write-

only transaction, proposed independently of our work, ensures atomic visibility of all updates in

a transaction [67]. The transactions of Lloyd are non-interactive, i.e., the application needs to

predefine the set of accessed objects. SwiftCloud supports interactive read-update transactions.

Atomic visibility transactions can be considered independently from causal consistency. Bailis

et al. [14] argue that atomic transactions without causality incur lower cost and are sufficiently

strong. SwiftCloud, similarly to non-interactive transactional systems like Eiger [67], supports

transactions that are both atomic and causal, interactively.

9.2 Relevant Systems

In this section, we overview relevant replication systems and algorithms that support consistent,

available and convergent data access, at different scales, scopes, and to different extent.

110

9.2. RELEVANT SYSTEMS

For directly comparable causally-consistent partial replication systems, we evaluate their

metadata in Table 9.1. The columns indicate: (i) the extent of support for partial replication;

(ii) which nodes assign timestamps; (iii) the worst-case size of causality metadata; (iv) the scope

of validity of metadata representing a database version (is it valid only in a local replica or

anywhere); (v) whether it ensures at-most-once delivery; (vi) whether it supports general RDTs.

9.2.1 Replicated Databases for Client-Side Applications

Replication systems for client-side applications have been previously proposed in the literature

and some systems have been deployed in production. Some of them use client-side replicas.

9.2.1.1 Systems that Support Inter-Object Consistency

The most relevant systems are the ones that provide causal consistency support for a large

database with many objects.

PRACTI. PRACTI [18] is a seminal work on causal consistency under partial replication.

PRACTI uses Safe-but-Fat client-assigned metadata and an ingenious log-exchange protocol that

supports an arbitrary communication topology. It implements flexible replication options including

lazy checkpoint transfer, object prefetching etc., absent in SwiftCloud implementation. While

the generality of PRACTI has advantages, it is not viable for a large-scale client-side replication

deployment: (i) its fat metadata approach (version vectors sized as the number of clients) is

prohibitively expensive (see Figure 8.5), and (ii) any replica can make another one unavailable,

because of the indirect dependence issue discussed in Section 7.1.3.2. Our cloud-backed support

of client-side replication addresses these issues at the cost of lower flexibility in communication

topology. We are considering support for a limited form of peer-to-peer communication that would

not cause these issues, e.g., between devices of a same user or a local group of collaborators.

Depot. Our high availability techniques are similar to those of Depot [69]. Depot is a causally-

consistent system, which provides client-side applications a reliable storage on top of untrusted

cloud replicas. In the normal mode of operation, Depot replicates only metadata at the clients. To

tolerate Byzantine cloud behavior, Depot additionally uses cryptographic metadata signatures, in

order to detect misbehavior, as well as fat metadata, in order to support direct client-to-client

communication. Furthermore, it either exposes updates signed by K different servers or forces

clients to receive all transitive causal dependencies of their reads. This conservative approach is at

odds with genuine partial replication at the client side. Although Depot does not replicate all data

to the client, it does require that every client processes the metadata of every update, and puts

the burden of computing a K-stable version on the client. In the case of extensive failures and DC

partitions, it additionally floods all updates to the client, not only the fat metadata. In contrast,

SwiftCloud relies on DCs to compute K-stable and consistent versions with lean metadata. In

111

CHAPTER 9. RELATED WORK

System
P

artialreplication
T

im
estam

p
C

ausality
m

etadata
Version

m
etadata

≤
1

R
D

T
s

support
assignm

ent
size

O
(#entries)

validity
delivery

support

Safe
P

R
A

C
T

I
[18]

arbitrary,no
sharding

any
replica

#replicas≈
10

4–10
5

global
yes

possibly
yes

but
D

epot
[69]

partialdata
at

client
any

replica
#replicas≈

10
4–10

5
global

yes
possibly

yes

Fat
C

O
P

S-G
T

[66]
D

C
sharding

database
client

|causality
subgraph|

local(D
C

)
yes

possibly
yes

B
olt-on

[12]
externalsharding

D
C

server
|explicit

causality
subgraph|

local(D
C

)
no

LW
W

only

L
ean

E
iger

[67]
D

C
sharding

D
C

server
(shard)

#objects≈
10

6
local(D

C
)

yes ‡
counter,LW

W

but
O

rbe
[46]

D
C

sharding
D

C
server

(shard)
#servers≈

10
2–10

3
global †

no
LW

W
only

U
nsafe

C
hainR

eaction
[8]

D
C

sharding
D

C
(fullreplica)

#D
C

s≈
10

0–10
1

local(D
C

)
no

LW
W

only

W
alter

[95]
arbitrary,no

sharding
D

C
#D

C
s≈

10
0–10

1
global

no
LW

W
only

L
ean

&
Sw

iftC
loud

no
D

C
sharding,

D
C

(fullreplica)
#D

C
s≈

10
0–10

1
global

yes
yes

Safe
partialat

client
+

client
replica

+
1

client
entry

†
not

live
during

D
C

failures
‡

only
for

server-side
replicas

Table
9.1:Q

ualitative
com

parison
ofm

etadata
used

by
causally

consistent
system

s
w

ith
som

e
support

for
partialreplication.“T

im
estam

p
assignm

ent”
indicates

w
hich

nodes
assign

tim
estam

ps.“C
ausality

m
etadata”

indicates
the

type
and

m
axim

um
cardinality

of
entries

in
causality

m
etadata,given

as
the

expected
order

ofm
agnitude

(e.g.,w
e

expect
hundreds

to
thousands

servers).“V
ersion

m
etadata”

indicates
ifa

m
etadata

to
represent

a
consistent

version
is

valid
only

in
a

localreplica
(D

C
),or

globally;for
the

latter,ifit
is

fault-tolerant
or

not.“≤
1

delivery”
indicates

at-m
ost-once

delivery
support.

112

9.2. RELEVANT SYSTEMS

the event of an extensive failure that cannot be handled by K-stability, SwiftCloud provides the

flexibility to decrease K dynamically or to weaken consistency. Depot tolerates Byzantine clients

by refusing misbehavior, or by representing late-detected misbehavior as concurrent updates.

Our current implementation does not address Byzantine failures.

Both PRACTI and Depot use Safe-but-Fat metadata, as indicated in Table 9.1. They support

only LWW registers, but their rich metadata could conceivably accommodate other RDTs too.

9.2.1.2 Systems that Support Intra-Object Consistency Only

Some other systems ensure consistency only for individual objects, or for a small fully-replicated

database, accessed from client-side applications.

Lazy Replication. Lazy Replication technique of Ladin et al. [61] includes causal consistency

protocols for client-side application accessing server replicas, which share many similarities

with SwiftCloud. In Lazy Replication, every server node hosts a full replica of the database.

There is no client-side replica; server replicas execute operations on behalf of the clients. A client

operation issues query or update requests to one or more server replicas; update requests are

asynchronously replicated across servers. To implement this scheme, Ladin et al. propose safe and

lean metadata similar to the metadata we employed in SwiftCloud. It involves client-assigned

timestamps to ensure at-most-once execution of client operations and server-assigned (DC-

assigned) timestamps to encode operation dependencies. To achieve high availability, similarly

to SwiftCloud, (i) an update can reach multiple servers that can assign it multiple timestamps

safely; and moreover (ii) in a later work, Ladin et al. [62] also suggest reading only stable updates,

but that forces Lazy Replication clients to execute them synchronously.

Our work differs in a number of aspects. Lazy Replication considers only global operations, at

the scope of the entire database, with possibly complex conflict resolution. Instead, we structure

the database into smaller RDT objects, making them the elementary replication and confluence

unit, and provide causal transactions across RDT objects to implement global operations, includ-

ing reads from a snapshot and atomic updates. Primarily, this allows SwiftCloud to offer partial

client replicas that host only a subset of objects. We demonstrate how to leverage such client

replicas to offer causal consistency with increased availability and responsiveness on cached

objects (in contrast, Lazy Replication performs all operations on server replicas), and how to

combine local updates with K-stable updates into a consistent view (without resorting to slow

and unavailable synchronous updates of Lazy Replication). Moreover, our database structure

translates into more structured implementation and provides natural parallelism potential,

enabling multi-versioning and sharding techniques (cf. related work in Section 9.2.2).

Ensuring at-most-once execution incurs some cost, both in Lazy Replication and in SwiftCloud.

Lazy Replication uses client-driven log compaction protocol that relies on replicas availability

and loosely-synchronized clocks for progress. In contrast, SwiftCloud relies on at-most-once guard

113

CHAPTER 9. RELATED WORK

table and prunes the log aggressively. Our solution is optimized for the worst-case, whereas

Lazy Replication is optimized for a favorable case where client replicas do not disappear without

warning. The technique of Lazy Replication could be also incorporated into SwiftCloud. However,

it comes with a trade-off, caused by clock skew and network delay, between a fraction of rejected

transfer requests and log pruning period.

In addition to causal consistency, Lazy Replication offer other consistency modes for operations.

In particular, it allows the application to explicitly specify causal dependencies for each operation,

using application-specific knowledge. This solutions adds complexity and results in a weaker

form of causal consistency, but can potentially increase performance and availability; additionally,

it can serve as a tool to implement dependencies across different server-side services [62]. In

addition to causal consistency, Ladin et al. also describe a protocol extension that supports

strongly consistent, server-ordered or externally-ordered operations.

Bayou. Bayou [79, 97] is an influential weakly-consistent replicated database system for mobile

computing environments with weak connectivity. A Bayou node replicates the full database, and

communicates in peer-to-peer manner with other nodes. Bayou also predates the RDT concept,

and delegates conflict detection and resolution logic to the application. The application defines a

write to comprise three parts: an update, a dependency check, which specifies the conditions in

which the update can be executed, and a merge procedure. A replicated write is applied locally if

the dependency check succeeds. Otherwise, the merge procedure modifies the original update.

A write operation can be submitted to any Bayou node, but a single primary node assigns a

stable reference execution order followed thereafter by all replicas; this is can be viewed as the

stable prefix of an arbitration order in the RDT specification model (Section 2.3) [32]. Each Bayou

server maintains two data versions: committed and tentative. The committed version reflects the

execution of write operations that have been assigned a fixed position in the reference execution

order. The tentative version extends the committed version with non-stable writes, for which the

final position in the execution order is not known.

The main advantage of Bayou is high flexibility. It can express consistency stronger than

causal, provided the application is willing to wait until its write is committed, i.e., at the expense

of responsiveness and availability. However, Bayou does not tolerate all failures, its programming

model is not modular, and the system does not scale with database size (due to full replication) or

with system size (as it uses fat version vectors).

TouchDevelop. TouchDevelop [30] is a recent mobile application framework, somewhat similar

to Bayou, but optimized for a star communication topology. A primary data replica resides in the

cloud, and all mobile devices synchronize with that replica. TouchDevelop provides a programming

model based on a set of predefined Cloud Types [32], which is a category of RDTs similar to

op-based. It provides facilities to compose and to couple objects, using a few predefined patterns.

From a consistency perspective, the database can be considered a single large object. Just like

114

9.2. RELEVANT SYSTEMS

in Bayou, to implement stronger consistency, an application can enforce and await synchronous

synchronization with the cloud, in order to determine the final position of recent operations in

the execution order (arbitration order).

A recent work of Burckhardt et al. [35] presents TouchDevelop protocols. Although indepen-

dent from SwiftCloud, both designs have major similarities. Likewise to SwiftCloud, TouchDe-

velop also relies on a hybrid of client-assigned and cloud-assigned update timestamps, and on a

shared at-most-once guard on the cloud replica. However, it assumes only a single cloud replica

(DC). Therefore, TouchDevelop (i) assigns at most one cloud timestamp per update, meaning that

a version is identified by a scalar timestamp rather than a vector; (ii) can use the presence of a

central replica to apply an optimized log reduction scheme that saves bandwidth and storage; and

(iii) does not tolerate cloud replica failures (or assumes a synchronous fault-tolerant protocol).

Similarly to Bayou, TouchDevelop does not support partial replication, nor a large database.

Database of independent objects. A number of other systems provide partial database

replication without cross-object guarantees, i.e., they provide several independent small objects.

The Google Drive Realtime API [37] is a framework for programming responsive web applications

with replicated objects backed by the cloud. It provides op-based RDTs with a fixed structure,

based on Operational Transformation functions to resolve concurrent updates [48]. Mobius [40]

provides both data replication and messaging facilities for mobile applications backed by the

cloud, with a range of cloud-controlled caching and freshness policies. Cimbiosys [83] supports

partial replication with content-based filtering, supporting various topologies, such as a hierarchy

of personal devices and a cloud.

Compared to SwiftCloud, the implementations of these system can be simpler or more flexible,

at the expense of consistency (programming) model limited to the reduced scope of an object.

9.2.1.3 Session Guarantees

Session guarantees are desirable client-centric consistency properties for systems where a client

may use several servers [96]. They include monotonic reads, read-your-writes, and others. In our

context, their conjunction is equivalent to causal consistency [28, 34]. The original session guar-

antees algorithm of Terry et al. [96] is not available in the presence of faults, which corresponds

to K = 1 parameter in SwiftCloud. Brzeziński et al. [29] describe a fault-tolerant protocol that

also relies on K-stability. However, their protocol assumes that updates are synchronous and

must be atomically accepted by K servers. In contrast, updates in SwiftCloud are asynchronous,

and the transfer protocol tolerates partial failures.

9.2.2 Geo-replicated Databases for Server-Side Applications

A number of server-side geo-replicated systems support variants of causal consistency across

DCs. We first present unique aspects of these approaches, and then evaluate them in the context

115

CHAPTER 9. RELATED WORK

of applicability to client-side applications, comparing them to SwiftCloud.

9.2.2.1 Approaches

Several recent geo-replication systems scale-out by sharding [8, 12, 46, 66, 67], which is a specific

case of partial replication, where full replica is split into disjoint shards. Each shard can be

replicated by a different server within a DC to increase overall throughput. However, shards

require additional metadata and communication to ensure consistency.

COPS-GT. COPS-GT, a variant of COPS [66] with read-only causal transactions, is an in-

fluential design with sharding. COPS-GT assigns metadata to updates at database clients; it

records fine-grained dependencies of all operations (versions) directly or indirectly observed by

the client, on all shards. The dependencies have two roles. First, they ensure monotonic causal

progression of DC states (cf. Section 7.1.1). COPS-GT geo-replicates an update to a shard in a

remote DC together with the dependencies. The receiving server applies the update only when

all dependencies are satisfied in a local DC. To verify dependencies on other shards, the server

contacts respective shards servers in its local DC. Second, dependencies provide a way to compute

a consistent database snapshot. COPS-GT stores dependencies with updates; therefore, servers in

a DC collectively store the complete dependency graph, which they use to construct a consistent

snapshot across shards.

Later publications show that using a complete dependency graph is costly [8, 12, 46, 67].

Bolt-on. Bailis et al. [12] reduce the number of dependencies by forcing application to provide

(fewer) explicit causal dependencies, like in a variant of Lazy Replication. They build a weaker

variant of causal consistency with a safety layer on top of a scalable eventually consistent sharded

database, e.g., Cassandra [63]. A background process computes causal cut of the database,

avoiding races at the underlying database.

Eiger. Eiger [67] proposes several optimizations to avoid the cost of maintaining a complete

causality graph: (i) it assigns timestamps at a limited number of shard servers rather than

clients; (ii) it transfers only direct update dependencies; and (iii) it reduces the number of

dependencies on updates on a same object with coarser-grained dependencies. To compute a

consistent database snapshot without a dependency graph, Eiger relies on logical timestamps

assigned in a DC, and valid only locally. Eiger is the first published system that provides atomic

write causal transactions. It uses a non-blocking variant of two-phase commit protocol with a

coordinator. Bailis et al. [14] later generalize the commit protocol and propose decentralized

alternatives.

Orbe. Orbe [46] also assigns timestamps at shard servers. Orbe generalizes COPS’s depedency

representation with a sparsely encoded matrix clock, with one entry per shard replica. By

116

9.2. RELEVANT SYSTEMS

assigning update timestamps contiguously at each shard replica, multiple dependencies on

a shard replica can be encoded with a single matrix entry, reducing the size of transmitted

metadata. Orbe uses dependencies only to ensure monotonic causal progression of states, and

implements read-only transactions using another mechanism. To compute a snapshot, it relies on

a global real-time clock. When it reads from a snapshot at a shard server, it may need to wait out

some uncertainty period to ensure consistency, risking unavailability.

ChainReaction. ChainReaction [8] takes a different approach to sharding and replication.

ChainReaction uses dedicated replication protocols within a DC, based on a variant of chain

replication [98].1 The protocol is optimized for reads; it is slower for updates, as it accepts an

update only after all of its dependencies are fully replicated in the local DC. For geo-replication,

ChainReaction relies on a geo-replication service that is shared between all shards. This service

enforces coarse-grained causal dependencies independent of shards, using version vectors, similar

to the DC-assigned metadata in SwiftCloud. In order to avoid the bottleneck of sequential

processing at the shared geo-replication service, ChainReaction additionally uses bloom filters

to encode finer-grained dependencies, which enables more processing parallelism. Similarly,

ChainReaction relies on a shared operation sequencer within a DC to implement read-only

transactions. The sequencer logically serializes all updates and read transactions in a DC.

Causal dependencies and stability. All these algorithms make use of full stability condition

to spare unnecessary causal dependencies on stable updates. Further, Du et al. [47] propose to

expose only n-stable updates and client’s own updates (as in SwiftCloud), to reduce dependency

messages and increase throughput.

Walter. Walter [95] is a partial geo-replication system, i.e., a system without a DC sharding

support, but with arbitrary partial replication at a global scale. Walter supports causal consistency

with a single predefined RDT counting-set type (cf. Section 2.3.2.3) and an additional support for

strongly consistent register type, mixing weakly and strongly consistent transactions.2 Walter

provides general purpose read-update transactions, using a metadata based on timestamp and

version vectors, the same as DC-assigned metadata of SwiftCloud.

9.2.2.2 Comparison and Applicability to Client-Side Replication

Geo-replication systems offer causal consistency only to a client tied to a specific DC replica in its

failure domain. None of the existing designs is directly applicable to client-side replication, both

due to metadata design, and other issues, summarized in Table 9.1 and below.

Geo-replication protocols do not tolerate client or DC failures. All existing designs suffer from

the transitive dependency issue from Section 7.1.3.2, violating consistency or availability for
1Other work treat replication in a DC as an orthogonal aspect, and assume linearizable object in a DC [46, 66, 67].
2More precisely, Walter offers a Parallel/Non-Monotonic variant of Snapshot Isolation [87, 95].

117

CHAPTER 9. RELATED WORK

a remote client. They mostly rely on Lean-but-Unsafe metadata (Eiger, Orbe, ChainReaction,

and Walter), which does not offer at-most-once delivery for operations on client-side replicas

and assumes that data is updated by overwriting, or otherwise rely on the overly costly Safe-

but-Fat metadata (COPS-GT and Bolt-on). This is a consequence of designing for LWW register

support only, which makes implementing other RDTs more complex and costly (see, for example,

Figure 8.6).

Another type of metadata used by these systems is a version representation, which identifies

a snapshot to read, and can also serve to compare states when replicas synchronize. Many

geo-replication systems use a version representation valid only in a local DC. This makes

implementation of failover between DCs difficult. Orbe is one exception, as it uses a globally valid

real-time clock, but its read protocol is prone to DC outages. Walter and SwiftCloud represent a

version with a globally valid version vector, the same that they use for causality metadata.

The exact size of causality metadata depends on runtime factors, whereas the worst-case

size is primarily impacted by the location of timestamp assignment. When fewer nodes assign

metadata, it tends to be smaller, but this may limit throughput scalability with database size. For

instance, SwiftCloud, Walter and ChainReaction offer the smallest guaranteed size of causality

metadata, but do not provide sharding, or rely on a centralized component to support sharding.

SwiftCloud support for sharding is limited compared to the most scalable decentralized server-

side designs. The presented design does not support sharding; our earlier prototype [104] (not

evaluated in this thesis) offered sharding with a centralized component, similar to ChainReaction.

Reconciling client-side replication with a more decentralized sharding support, without growing

metadata size (like some decentralized sharding protocols, e.g., Eiger or Orbe), is future work.

118

Chapter 10

Conclusion

This chapter concludes the thesis with a summary of findings from both parts of the thesis, and

of their limitations, and identifies areas for future work.

10.1 Summary

In this thesis, we studied the design of dependable and efficient algorithms for RDTs and causal

consistency, and explored the trade-offs between dependability and metadata optimizations.

Our two main contributions are: a comprehensive study of metadata space optimality for RDT

implementations, including new optimized designs and impossibility results, and the design of a

scalable causally-consistent RDT database for client-side applications.

Metadata optimization for state-based RDT implementations. In the first part of the

thesis, we considered the problem of minimizing metadata incurred by state-based RDT imple-

mentations, i.e., objects communicating by exchanging their complete state. They can be found,

for instance, in server-side geo-replicated object databases without cross-object consistency guar-

antees. The design of optimized implementations, to reduce the size of metadata, is nontrivial, as

it creates a tension between correctness w.r.t. type semantics, efficiency, and fault-tolerance.

We formalized worst-case metadata overhead analysis and applied it to six existing

data type implementations. We found that most of them incur substantial overhead, linear in

the number of updates, or polynomial in the number of replicas. Moreover, we found that the

concurrent semantics of a data type has a critical impact on the extent of the overhead.

Our first major contribution are optimized designs of add-wins set and multi-value
register RDTs. Existing implementations store a trace of removed elements (tombstones) or of

concurrently assigned values. We proposed safe optimizations based on algorithms that efficiently

aggregate removed information using a variant of version vectors [77]. These optimizations

reduce the metadata overhead by orders of magnitude, down to the number of replicas.

119

CHAPTER 10. CONCLUSION

The second contribution are lower bound proofs on metadata overhead of any state-based

implementation of a data type. A lower bound sets the limits of possible optimizations and can

prove that an implementation is asymptotically optimal. We applied a common technique for

proving lower bounds to six data types using a semantics-specific argument, proving optimality

of four implementations (including our two optimizations), and near-optimality of another one.

These results are complementary and together offer a comprehensive view of the metadata

optimization problem. It is natural to search for optimizations first, although it is a laborious

process that requires developing nontrivial solutions. Our lower bounds results help to save

designers from seeking the unachievable, and to lead them towards new design assumptions.

Causally-consistent object database for client-side applications. In the second part of

the thesis we studied the problem of providing extended causal consistency guarantees, across

object boundaries, and beyond server-side infrastructure, i.e., at the client-side. Client-side (e.g.,

in-browser and mobile) apps are poorly supported by the current technology for sharing mutable

data over the wide-area. Existing systems ensure only some of the desired properties. They offer

limited consistency or fault-tolerance guarantees, and/or do not scale.

We presented the design of SwiftCloud, the system that offers client-side apps a causally-

consistent, available and convergent local access to partial database replica, i.e., an interface

comparable to server-side systems. SwiftCloud relies on op-based RDT implementations, i.e.,

objects that transfer individual operations via log-exchange protocol. The main challenge was the

design of a log-exchange protocol that ensures causal consistency and supports RDTs.

Experimental evaluation demonstrates that our fault-tolerant cloud-backed support for
partial client replicas is able to provide immediate response on reads and updates on local

objects, and to maintain consistency and throughput of a server-side replication system. Our

protocols handle failures nearly transparently, at the only cost of approx. 1 % of stale reads.

SwiftCloud leverages metadata that separates causality tracking from update identi-
fication [61]. Our experiments demonstrated that with this metadata, a configuration with 1–3

DCs (servers) scales up safely to thousands of concurrent clients with metadata size of 15 bytes

per update, independent of the number of clients (both available and unavailable ones).

SwiftCloud’s design leverages a common principle that helps to achieve several goals: client

buffering and controlled staleness can absorb the cost of scalability, availability, and consistency.

10.2 Limitations and Perspectives

Several aspects remain open for improvements and investigation.

Open metadata optimization problems. Some questions regarding the metadata overhead

remained open. We would like to take into account a wider range of implementation categories

in our metadata complexity analysis and optimizations. We also wish to improve lower bounds,

120

10.2. LIMITATIONS AND PERSPECTIVES

or implementations, for costly data types that use arbitration to resolve concurrency, such

as the LWW set (Algorithm 3.6) or the list (Section 5.1). For example, several existing list

implementations suffer from high metadata size [48, 73, 76, 81, 85, 101], in the order of the

number of updates. We conjecture this is necessary in a peer-to-peer communication topology,

and avoidable for restricted topologies. To this end, we study variants of the list specification.

Optimized composite objects, object shards. We witness growing importance of object

composition techniques [27, 52]. Composition at the specification level can translate directly

into composition of object implementations [52]. However, we observe that composition permits

optimizations based on composed semantic and on metadata sharing between composed objects

(cf. our optimized add-wins set vs. a naive register-based implementation); object shards are a

specific case of composite object implementations that could leverage similar metadata sharing

optimizations. We are looking into ways of using faimiliar optimization patterns to facilitate, or

automate, synthesis of efficient composite type implementations and shard implementations.

Scalable Data Center implementation in SwiftCloud. Our DC implementation of Swift-

Cloud has a centralized architecture, with limited throughput scalability. We wish to extend it

with decentralized sharding support [46, 66, 67], without overly increasing the size of metadata.

We believe this is possible to achieve by, once again, trading data freshness for performance, i.e.,

by managing a slightly stale consistent version at a high throughput, with small metadata [47].

Support for untrusted clients. Database clients cannot be trusted. An adequate protection,

both for data and metadata, is missing in SwiftCloud. We are considering an adaptation of Depot’s

support for Byzantine clients, to detect forged metadata at the DC perimeter, and to translate any

Byzantine behavior into concurrency [69]. Moreover, standard access control algorithms and new

privacy mechanisms are required. For the latter, partial RDTs [26] or lenses [54] could address

the problem at the object level. They are also useful independent of security concerns, as they

help to save client bandwidth and to integrate server- and client-side application logic [26, 99].

Beyond causal transactions. Causal transactions with RDTs is a powerful model, but some

rare operations require strongly consistent objects. For instance, we observed that our SocialApp

port would benefit from strongly consistent user registration. Similarly, conflict handling (even

strong) at the granularity of an object is sometimes insufficient, e.g., to enforce cascading deletes.

It currently requires ad-hoc solutions in the application logic. Prior work demonstrates that

combining strong and weak consistency is possible on shared data [65, 95]. We are looking into

ways of integrating server-side strong consistency support, akin to the models of Burckhardt

et al. [32], Ladin et al. [61], Red-Blue [65], or Walter [95].1 Determining adequate programming

models and tools, to address such challenges of eventual consistency, is an open problem [9].

1Server-side execution can be also beneficial for transactions that involve a lot of data to produce a small result.

121

Part IV

Appendix

123

Appendix A

Additional Material on Replicated
Data Types

A.1 Formal Network Layer Specifications

Table A.1 defines formally network specifications discussed in Section 2.4.3.

A.2 Optimized Op-Based Implementations

We present some optimized op-based implementations here to better illustrate mechanisms used

by the op-based category, compared to the state-based category, and their cost.

Multi-value register. Algorithm A.1 defines an optimized op-based multi-value register imple-

mentation . The optimized op-based implementations does not rely on vectors as the state-based

implementation does (which can be costly in size, as we show in Chapter 4), but on the network

layer delivery guarantees.

The state of an object is a set of active entries, pairs of values and unique IDs (timestamps),

and a buffer of recently written or overwritten values. Read operation simply returns the values

of active entries. Write operation records the value and all overwritten entries in the buffer, and

replaces the set of active entries with the newly written value. Replication protocol flushes the

buffer. The receiver integrates the message by removing ever local entry that was overwritten by

a remote replica, and storing a new remotely written value, if any. The protocol requires that the

latter is always a fresh value that is never overwritten locally. This can be achieved with reliable

causal delivery network specification T1c (defined in Table A.1).

Note that the state incurs almost no overhead due to removed elements or vectors, compared

to the state-based implementation from Algorithm 2.5 or Algorithm 3.4. However, the correctness

of the replication protocol requires stricter, more costly delivery conditions.

125

APPENDIX A. ADDITIONAL MATERIAL ON REPLICATED DATA TYPES

Specification Symbol Condition on executions

Any delivery Tany —

At-most-once delivery T≤1
(∀e, f , g ∈ C.E : e del(C)−−−−→ f ∧ e del(C)−−−−→ g

∧C.replica(f)= C.replica(g) =⇒ f = g)

(∀e, f ∈ C.E : e del(C)−−−−→ f =⇒ C.replica(e) 6= C.replica(f))

At-least-once delivery T≥1 (∀e ∈ C.E : ∀r, r′ : C.action(e)= send∧ C.replica(e)= r 6= r′

=⇒ ∃ f ∈ C.E : C.replica(f)= r′∧ e del(C)−−−−→ f)

Reliable delivery T1 T≥1∩T≤1

Causal delivery Tc ∀e, f ∈ C.E : C.action(e)= send∧ e (ro(C)∪del(C))+−−−−−−−−−−−→ f

=⇒ e ro(C)−−−→ f ∨∃g ∈ C.E : e del(C)−−−−→ g ro(C)∗−−−−→ f

Rel. causal delivery T1c T1∩Tc

Causal timestamps Tct (ro(C)∪del(C))+ ⊆ ar(C)

Eventual flush Tf ∀e ∈ C.E : C.action(e)= do

=⇒ ∃ f ∈ C.E : C.action(f)= send∧ e ro(C)−−−→ f

Table A.1: Catalog of popular network specifications (variation of Burckhardt et al. [34]).

Algorithm A.1 Optimized op-based multi-value integer register implementation (MVReg).
Σ=P(Z×Timestamp)3 M =P(Z×Timestamp)2

initialize(r i) : (W ,bw,bR)
let W =; . set of non-overwritten values with their unique IDs (timestamps)
let bw =; . buffer of the latest written value
let bR =; . buffer of the latest overwritten values

do(read, to) : V
let V = {a | ∃t : (a, t) ∈W} . return the current state modulo timestamps and the buffer

do(write(a), to)
bw ← {(a, to)} . record the last write in the buffer
bR ← bR ∪W . add overwritten values to the buffer
W ← {(a, to)} . update the current state

send() : (wm,Rm)
let (wm,Rm)= (bw,bR) . flush the buffer
(bw,bR)= (;,;)

deliver((wm,Rm))
W ← (W \ Rm)∪wm . keep only overwritten values; add new values

Similar optimizations are possible for other data types, such as add-wins set. We adopted

them in our RDT implementations for the SwiftCloud system from Part III. In addition to the

presented optimizations of state size, further optimizations of message size are also feasible [17].

126

Appendix B

Metadata Overhead Proofs

B.1 Standard Encoding

Table B.1 presents standard recursive encoding schemes for values from different domains and

their asymptotic cost. These schemes are employed to encode replica state and return values

throughout all our complexity proofs.

B.2 Metadata Overhead of Specific Implementations

Tight bound for an implementation is a conjunction of an upper and lower bound. In order to

demonstrate upper bounds of a specific implementation, we need to make a general argument

about every execution. On the other hand, to demonstrate an implementation of a data type

is suboptimal, we need to show a lower bound higher than the upper bound of the optimal

implementation, using a specific counter-example execution for a given n and m The following

proofs follow this scheme. We do not prove implementation-specific lower bounds for optimal

implementations, since they are covered by a general lower bound theorems from Section 4.2.

Theorem B.1. Let DAWSet be the naive add-wins set implementation defined in Algorithm 3.1,

such that DAWSet sat[Vstate,Tany]FAWSet (by [34]). The complexity of DAWSet is Ô(m lgm).

Proof. Consider any execution C ∈ �DAWSet� with n replicas, m ≥ n updates, and any read event

e in this execution (assuming there is at least one).

Recall that the state of a set replica at the time of read is a tuple (r,k, A,T)= state(e), where

r is a replica ID, k is a counter of locally assigned timestamps, A is a set of active instances

(a, r′,k′) ∈ S with element a and timestamp (r′,k′), and T is a set of timestamps of removed

elements. We first establish some properties of state. By definition of add, k ≤ m for any state

and timestamp in this execution. By inspection of add, rem, and deliver, the only mutators of

sets A and T, an invariant (a, r′,k′) ∈ A =⇒ (r′,k′)) 6∈ T holds. By definitions of add and deliver,
|A| ≤ m. Similarly, by definitions of rem and deliver, |T| ≤ m. Moreover, since only add generate

127

APPENDIX B. METADATA OVERHEAD PROOFS

Encoded object & domain s ∈ S Encoding scheme encS(s) and asymp. length lenS(s)

u ∈U with t.o. ≤U (e.g. N)
standard variable length encoding
len(u) ∈Θ(1+ lg |U−1(u)|) where U−1(u)= {u′ | u′ ≤U u}

(u1, . . . ,uk) ∈U1 ×·· ·×Uk
enc(u1, . . . ,uk)= encN(k) ·encU1(u1) · . . . ·encUk (uk)
len(u1, . . . ,uk) ∈Θ(1+∑k

i=1 lenUi (ui))

U ⊆U ′ s.t. U = {u1, . . . ,uk}
enc(U)= enc(u1, . . . ,uk)
len(U) ∈Θ(1+∑

u∈U lenU ′(u))

f : U →V s.t. U = {u1, . . . ,uk}
enc(f)= enc(f (u1), . . . , f (uk))
len(f) ∈Θ(1+∑

u∈U lenV (f (u)))

f : U *V s.t. dom(f)= {u1, . . . ,uk}
enc(f)= enc(u1, f (u1)), . . . , (uk, f (uk)))
len(f) ∈Θ(1+∑

u∈dom(f)(lenU (u)+ lenV (f (u))))

Table B.1: Standard encoding schemes for components of replica state, return values, and their
cost. We denote concatenation of strings by · symbol.

new timestamps and remaining functions only transfer them between components A and T,

|A| + |T| ≤ m. Let U(A) = {a | ∃(a, r′,k′) ∈ A}. Then, for some constants K1, K2, K3 and K4, the

state can be encoded with at most:

len(A,T)≤ K1(1+ lgn+ lgm+ ∑
(a,r′,k′)∈A

(lenZ(a)+ lgn+ lgm)+|T|(lgn+ lgm))

≤ K2(1+m lgm+ ∑
(a,_,_)∈A

lenZ(a))

≤ K3(1+m lgm+m
∑

a∈U(A)
lenZ(a))

≤ K4m lgm(1+ ∑
a∈U(A)

lenZ(a)).

For some constant K5, return value V = C.rval(e) of read consumes no less than:

lenP(Z)(V)≥ K5(1+ ∑
a∈V

lenZ(a))

.

By the definition of read, the set of returned values V matches the active elements, i.e.,

V =U(A). Thus, for some constant K the overhead is:

len(r, A,T)
len(V)

≤ K
m lgm(1+∑

a∈U(A) lenZ(a))
1+∑

a∈U(A) lenZ(a)
= Km lgm,

which satisfies the Ô definition.

Theorem B.2. Let DAWSet be the naive add-wins set implementation defined in Algorithm 3.1,

such that DAWSet sat[Vstate,Tany]FAWSet (by [34]). The complexity of DAWSet is Ω̂(m lgm).

128

B.2. METADATA OVERHEAD OF SPECIFIC IMPLEMENTATIONS

Proof. Consider the following driver program (introduced in Section 4.1) defined for any positive

n and m such that m mod 2= 0:

1: procedure inflate(n,m)

2: for all i ∈ [1..(m/2)] do
3: do1 add(i) 2i

4: do1 rem(i) 2i+1

5: do1 read m+2 . read e∗

6: for all i ∈ [2..n] do
7: doi read m+1+i . dummy read on other replicas to fulfill wcmo definition

Given any number of replicas n0 and any number of updates m0 ≥ n0, we pick n = n0 and m = 2m0

to demonstrate overhead on execution:

C = exec(DAWSet, (DAWSet.initialize,;), inflate(n,m)).

Clearly, the execution has n replicas and m updates. The execution is well-defined since the

driver program uses message identifiers and timestamps correctly. Let (r,k, A,T)= state(e∗) be

the state of replica 1 at the time of read e∗, where A is a set of active instances and T is a set of

timestamps of removed instances. By definitions of add and rem in DAWSet, counter k = m, the

set of active instances is empty for this execution, A =;, whereas the set of removed instances

contains tombstones for all removed elements, |T| = m/2. Thus, for some constants K1 and K2,

state (r,k, A,T) needs to occupy at least:

len(r,k, A,T,)≥ K1

m/2∑
i=1

(lgn+ lgm+ lenZ(i))≥ K2m lgm.

By definition of read, the return value of read e∗ is an empty set, C.rval(e∗)=;, which can

be encoded with a constant length string. Therefore, for some constant K the overhead at the

time of read e∗ fulfills the definition of Ω̂:

wcmo(DAWSet,n,m)≥mmo(DAWSet,C)≥ len(r,k, A,T)
len(C.rval(e∗))

≥ Km lgm.

Theorem B.3 (Originally, Theorem 3.1). Let DAWSet be the naive add-wins set implementation

defined in Algorithm 3.1, such that DAWSet sat[Vstate,Tany] FAWSet (by [34]). The complexity of

DAWSet is Θ̂(m lgm).

Proof. By Theorem B.1 and Theorem B.2.

Theorem B.4. Let D∗
AWSet be the optimized add-wins set implementation defined in Algorithm 3.2,

such that D∗
AWSet sat[Vstate,Tany]FAWSet (by [34]). The complexity of D∗

AWSet is Ô(n lgm).

129

APPENDIX B. METADATA OVERHEAD PROOFS

Proof. Consider any execution C ∈ �D∗
AWSet� with n replicas, m ≥ n updates, and any read event

e in this execution (assuming there is at least one).

Recall that the state of a set replica at the time of read is a tuple (r,vv, A)= state(e), where r

is a replica ID, vv is a version vector (a map from replica ID to integers), and A is a set of active

instances. Each instance (a, r′,k′) ∈ A is made of an element a, a replica ID r′, and an integer

k′, where (r′,k′) is a timestamp. We first establish some properties of state. By definition of add,

send and deliver, the only mutators of vector vv, vector entries are bounded by number of updates,

i.e., vv(r′) ≤ m in any state for any replica r′. Similarly, by definition of mutators of the set of

instances A, ∀(a, r′,k′) ∈ A : k′ ≤ m. Finally, thanks to the definition of operation add, there is at

most n different instances of any element a in A (the optimization noted as coalescing adds). Let

U(A)= {a | ∃(a, r′,k′) ∈ A}. Then, for some constants K1 and K2, component A of the state can be

encoded with a string no bigger than:

len(A)≤ K1(1+ ∑
(a,r′,k′)∈A

(lenZ(a)+ lgn+ lgm))≤ K2(1+n
∑

a∈U(A)
(lenZ(a)+ lgm)).

Therefore, for some constants K3 and K4, a complete state occupies at most:

len(r,vv, A)≤ K3(lgn+n lgm+n
∑

a∈U(A))
(lenZ(a)+ lgm))≤ K4n lgm(1+ ∑

a∈U(A)
lenZ(a)).

For some constant K5, return value V = C.rval(e) of read consumes no less than:

lenP(Z)(V)≥ K5(1+ ∑
a∈V

lenZ(a)).

From the definition of read, we observe that V = U(A). Thus, for some constant K , the

overhead is bounded by:

len(r,vv, A)
len(V)

≤ K
n lgm(1+∑

a∈U(A) lenZ(a))
1+∑

a∈U(A) lenZ(a)
= Kn lgm,

which satisfies the Ô definition.

Theorem B.5 (Originally, Theorem 3.2). Let D∗
AWSet be the optimized add-wins set implementation

defined in Algorithm 3.2, such that DAWSet sat[Vstate,Tany] FAWSet (by [34]). The complexity of

D∗
AWSet is Θ̂(n lgm).

Proof. By Theorem B.4 and Theorem 4.2.

Theorem B.6. Let DMVReg be the basic multi-value register implementation defined in Algo-

rithm 2.5, such that DMVReg sat[Vstate,Tany]FMVReg. The complexity of DMVReg is Ô(n2 lgm).

Proof. Consider any execution C ∈ �DMVReg� with n replicas, m ≥ n updates, and any read event

e in this execution (assuming there is at least one).

Recall that the state of a register replica used in the read is a tuple (r, A)= state(e), where r is

a replica ID and A is a set of active entries; each entry (a,vv) ∈ A is made of value a and a version

130

B.2. METADATA OVERHEAD OF SPECIFIC IMPLEMENTATIONS

vector vv (a mapping from a replica ID to an integer). By definitions of write operation and

deliver function, the two mutators of entries in A, ∀(a,vv) ∈ A, r′ ∈ReplicaID.vv(r′)≤ m. Also, by

definitions of write and deliver (alternatively, by specification FMVReg applied to visibility witness),

the number of concurrent entries in the state cannot exceed the number of sources of concurrency:

|A| ≤ n. Let U(A)= {a | ∃(a,vv) ∈ A}. Then, for some constants K1, K2 and K3, state (r, A) can be

encoded with a string no bigger than:

len(r, A)≤ K1(lgn+ ∑
(a,vv)∈A

(len(a)+n lgm))

≤ K2(lgn+n
∑

a∈U(A)
(len(a)+n lgm))

≤ K3n2 lgm(1+ ∑
a∈U(A)

len(a)).

For some constant K4, return value V = C.rval(e) of read consumes no less than:

lenP(Z)(V)≥ K4(1+ ∑
a∈V

len(a)).

From the definition of read, we observe V =U(V). This leads to the overhead limit that holds

for some constant K :

len(r, A)
len(V)

≤ K
n2 lgm(1+∑

a∈U(A) len(a))
1+∑

a∈U(A) lenZ(a)
= Kn2 lgm,

which satisfies the definition of Ô.

Theorem B.7. Let DMVReg be the baisc multi-value register implementation defined in Algo-

rithm 2.5, such that DMVReg sat[Vstate,Tany]FMVReg. The complexity of DMVReg is Ω̂(n2 lgm).

Proof. Consider the following driver program (introduced in Section 4.1) defined for any positive

n and m such that m−n
n ≥ 1 and (m−n) mod n = 0:

1: procedure inflate(n,m)

2: for all r ∈ [1..n] do
3: for all i ∈ [1..(m−n

n)] do
4: dor write(0) r m−n

n +i

5: sendr(midr,0)

6: for all r ∈ [1..n] do
7: for all r′ ∈ [1..n]\{r} do
8: deliverr(midr′,0)

9: dor write(1) 2m+r

10: sendr(midr,1)

11: if r 6= 1 then
12: deliver1(midr,1)

131

APPENDIX B. METADATA OVERHEAD PROOFS

13: do1 read 2m+n+1 . read e∗

Given any number of replicas n0 and any number of updates m0 ≥ n0, we pick n = n0 and

m ≥ n0 such that m−n is divisible by n, (m−n)≥ n2 and (m−n)2 ≥ m. We demonstrate overhead

on execution:

C = exec(DMVReg, (DMVReg.initialize,;), inflate(n,m)).

Clearly, the execution has n replicas and m updates. The execution is well-defined since the

driver program uses message identifiers and timestamps correctly. Let (r, A)= state(e∗) be the

state of replica 1 at the time of read e∗, where r is a replica ID and A is a set of entries (a,vv)

with a value a and a version vector vv. By definition of implementation and program execution,

A contains n entries (1,vv1), (1,vv2), . . . , (1,vvn) with concurrent vectors, such that each vector

vvi has values: ∀r′.vvi(r′)≥ m−n
n . Therefore, for some constants K1, K2, K3, K4, K5, K6 encoded

state (r, A) string has a length bounded by:

len(r,V)≥ K1 lgn+
n∑

i=1
(lenZ(1)+

n∑
j=1

lg
m−n

n
)≥ K2n2 lg

m−n
n

≥ K3n2 lg
p

m−n ≥ K4n2 lg(m−n)≥ K5n2 lg
p

m ≥ K6n2 lgm.

By definition of read, the return value V of read e∗ is a singleton set, C.rval(e∗)= {1}, which

can be encoded with a constant length string.1 Therefore, for some constant K the overhead at

the time of read e∗ fulfills the definition of Ω̂:

wcmo(DMVReg,m,n)≥mmo(DMVReg,C)≥ len(r, A)
len(C.rval(e∗))

≥ K
n2 lgm

1
= Kn2 lgm.

Theorem B.8 (Originally, Theorem 3.3). Let DMVReg be the multi-value register implementation

defined in Algorithm 2.5, such that DMVReg sat[Vstate,Tany] FMVReg. The complexity of DMVReg is

Θ̂(n2 lgm).

Proof. By Theorem B.6 and Theorem B.7.

Theorem B.9. Let D∗
MVReg be the basic multi-value register implementation defined in Algo-

rithm 3.4, such that D∗
MVReg sat[Vstate,Tany]FMVReg. The complexity of D∗

MVReg is Ô(n lgm).

Proof. Consider any execution C ∈ �D∗
MVReg� with n replicas, m ≥ n updates, and any read event

e in this execution (assuming there is at least one).

Recall that the state of a register replica used in the read is a tuple (r, A)= state(e), where

r is a replica ID and A is a set of active entries; each entry (a,vv) ∈ A is made of value a and a

version vector vv (a mapping from a replica ID to an integer). By definitions of write operation

1If the multi-value register would return a multi-set of values, it would also require a maximum of lgn extra
overhead.

132

B.2. METADATA OVERHEAD OF SPECIFIC IMPLEMENTATIONS

and deliver function, the two mutators of entries in A, ∀(a,vv) ∈ A, r′ ∈ ReplicaID.vv(r′) ≤ m.

Let U(A) = {a | ∃(a,vv) ∈ A}. The definition of deliver ensures that every a is unique in A, i.e.,

|U(A)| = |A|. Then, for some constants K1, K2 and K3, state (r, A) can be encoded with a string

no bigger than:

len(r, A)≤ K1(lgn+ ∑
(a,vv)∈A

(len(a)+n lgm))

≤ K2(lgn+ ∑
a∈U(A)

(len(a)+n lgm))

≤ K3n lgm(1+ ∑
a∈U(A)

len(a)).

For some constant K4, return value V = C.rval(e) of read consumes no less than:

lenP(Z)(V)≥ K4(1+ ∑
a∈V

len(a)).

From the definition of read, we observe V =U(V). This leads to the overhead limit that holds

for some constant K :

len(r, A)
len(V)

≤ K
n lgm(1+∑

a∈U(A) len(a))
1+∑

a∈U(A) lenZ(a)
= Kn lgm,

which satisfies the definition of Ô.

Theorem B.10 (Originally, Theorem 3.4). Let D∗
MVReg be the multi-value register implementation

defined in Algorithm 3.4, such that D∗
MVReg sat[Vstate,Tany] FMVReg. The complexity of D∗

MVReg is

Θ̂(n lgm).

Proof. By Theorem B.9 and Theorem 4.5.

Theorem B.11 (Originally, Theorem 3.6). Let DRWSet be the basic add-wins set implementation

defined in Algorithm 3.5, assuming that DRWSet sat[Vstate,Tany]FRWSet. The complexity of DRWSet

is Ω̂(m lgm).

Proof. Consider the following driver program (introduced in Section 4.1) defined for any positive

n and m:

1: procedure inflate(n,m)

2: for all i ∈ [1..m] do
3: do1 rem(i) i

4: do1 read m+1 . read e∗

5: for all i ∈ [2..n] do
6: doi read m+i . dummy read on other replicas to fulfill wcmo definition

133

APPENDIX B. METADATA OVERHEAD PROOFS

Given any number of replicas n0 and any number of updates m0 ≥ n0, we pick n = n0 and m = m0

to demonstrate overhead on execution:

C = exec(DRWSet, (DRWSet.initialize,;), inflate(n,m)).

Clearly, the execution has n replicas and m updates. The execution is well-defined since the

driver program uses message identifiers and timestamps correctly. Let (A,T)= state(e∗) be the

state of replica 1 at the time of read e∗, where A is a set of add instances and T is a set of

removed instances. By definitions of add and rem in DRWSet, the set of add instances is empty

for this execution, A =;, whereas the set of remove instances contains all removed elements

with timestamps of remove operations, |T| = m. We assume Lamport clock [64] as a timestamp t,

the best known space-efficient timestamp implementation, made of a pair t = (k, r), where k is a

natural number, r is a replica ID, and k ≤ m. Thus, for some constants K1 and K2, state (A,T)

needs to occupy at least:

len(A,T,)≥ K1

m∑
i=1

(lgn+ lgm+ len(i))≥ K2m lgm.

By definition of read, the return value of read e∗ is an empty set, C.rval(e∗)=;, which can

be encoded with a constant length string. Therefore, for some constant K the overhead at the

time of read e∗ fulfills the definition of Ω̂:

wcmo(DRWSet,n,m)≥mmo(DRWSet,C)≥ len(A,T)
len(C.rval(e∗))

≥ Km lgm.

Theorem B.12 (Originally, Theorem 3.7). Let DLWWSet be the last-writer-wins set implementation

defined in Algorithm 3.6, assuming that DLWWSet sat[Vstate,Tany]FLWWSet. The complexity of DLWWSet

is Ω̂(m lgm).

Proof. The proof is identical to the proof of Theorem 3.6 above, except for a constant factor

introduced by visibility flag that does not play any role in Ω̂ definition.

Theorem B.13. Let D∗
Ctr be the counter implementation defined in Algorithm 2.3, such that

D∗
Ctr sat[Vstate,Tany]FCtr (by [34]). The complexity of D∗

Ctr is Ô(n).

Proof. Consider any execution C ∈ �D∗
Ctr� with n replicas, m ≥ n updates, and any read event e

in this execution (assuming there is at least one). Let m′ be the number of inc operations visible

to the read in the witness abstract execution of this execution, i.e., m′ = |{e′ | e′ ∈ (Vstate(C))−1(e)∧
C.op(e)= inc}|; clearly, m′ ≤ m.

Recall that the state of a counter replica used in the read is a tuple (r,v)= state(e), where r is a

replica ID and v is a map (vector) from replica ID to the number of increments made at that replica.

134

B.3. LOWER BOUND PROOFS

By definitions of inc and deliver, the two mutators of component v, ∀s ∈ ReplicaID.v(s) ≤ m′.
Therefore, for some constants K1 and K2, state (r,v) can be encoded as a string bounded by:

len(r,v)≤ K1(lgn+n lg(m′+1))≤ K2n lg(m′+1)

By FCtr, the value of a counter must be m′, hence the return value v = C.rval(e) encoding is

bounded by: lenN(v)≥ K3(lg(m′+1)) for some constant K3. Finally, for some constant K , metadata

overhead is bounded by:
len(r,v)
len(v)

≤ K
n lg(m′+1)
lg(m′+1)

)= Kn,

which satisfies the Ô definition.

Theorem B.14 (Originally, Theorem 3.8). Let D∗
Ctr be the counter implementation defined in

Algorithm 2.3, such that D∗
Ctr sat[Vstate,Tany]FCtr (by [34]). The complexity of D∗

Ctr is Θ̂(n).

Proof. By Theorem B.13 and Theorem 4.1.

Theorem B.15. Let D∗
LWWReg be the last-writer-wins register implementation defined in Algo-

rithm 2.4, such that D∗
LWWReg sat[Vstate,Tany]FLWWReg (by [34]). The complexity of D∗

LWWReg is Ô(lgm).

Proof. Consider any execution C ∈ �D∗
LWWReg� with n replicas, m ≥ n updates, and any read event

e in this execution (assuming there is at least one).

Recall that the state of a register replica used in the read is a tuple (a, t)= state(e), where a is

a register value and t is a timestamp of the value. We assume Lamport clock [64] as a timestamp

t, where timestamp is a pair t = (k, r) with a natural number k ≤ m, and with replica ID r. For

some constant K1, state (a, t) encoding is bounded by: len(a, t)≤ K1(lenZ(a)+ lgm+ lgn)

Note that return value v = C.rval(e) of read matches the register value stored in the state (cf.

the definition of read for D∗
LWWReg), v = a. Therefore, for some constants K2, K (picked indepen-

dently of a, n and m) we obtain the following bound on metadata overhead:

len(a, t
len(v)

≤ K2
len(a)+ lgm+ lgn

len(a)
≤ K lgm,

which satisfies the Ô definition.

Theorem B.16 (Originally, Theorem 3.5). Let D∗
LWWReg be the last-writer-wins register implemen-

tation defined in Algorithm 2.4, such that D∗
LWWReg sat[Vstate,Tany]FLWWReg (by [34]). The complexity

of D∗
LWWReg is Θ̂(lgm).

Proof. By Theorem B.15 and Theorem 4.6.

B.3 Lower Bound Proofs

This section contains proofs of theorems and lemmas from Section 4.2.

135

APPENDIX B. METADATA OVERHEAD PROOFS

B.3.1 Add-Wins Set

Theorem B.17 (Originally, Theorem 4.2). If DAWSet sat[Vstate,Tany]FAWSet, then the complexity

of DAWSet is Ω̂(n lgm).

Proof of Theorem 4.2. Given n0,m0, we pick n = n0 and some m ≥ n0 such that (m− 1) is a

multiple of (n− 1) and m ≥ n2. Take the experiment family (Q,n,m,C,e,readback) given by

Lemma 4.3. For any α ∈Q, Cα.rval(eα)=;, which can be encoded with a constant length. Using

Lemma 4.1 and m ≥ n2, for some constants K1,K2,K we get:

wcmo(DAWSet,n,m)≥ blg|Λ| |Q|c / (maxα∈Q len(Cα.rval(eα)))≥ K1n lg(m/n)≥ K2n lg
p

m ≥ Kn lgm.

B.3.2 Remove-Wins Set

Lemma B.1 (Originally, Lemma 4.4). If DRWSet sat[Vstate,Tany] FRWSet, m ≥ n ≥ 3 and m is a

multiple of 4, then the tuple (Q,n,m,C,e,readback) in Table 4.3 is an experiment family.

Proof. Some parts of the proof are straightforward, such as checking that n and m match

the number of replicas/updates, and that the driver programs use message identifiers and

timestamps correctly. The only nontrivial obligation is to prove readback(state(eα)) = α. Let

(Rα, Nα)= final(Cα). Then

α(r) (i)= result(DRWSet, (R0, N0), (init;exp(α);test(r)))

= result(DRWSet, (Rα, Nα), test(r))
(ii)= result(DRWSet, (Rinit[1 7→ Rα(1)], Ninit), test(r))

= readback(Rα(1))(r) = readback(state(eα))(r),

where:

(i) This is due to DRWSet sat[Vstate,Tany]FRWSet, as we explained informally before. Let

C′
α = exec(DRWSet, (R0, N0), (init;exp(α);test(r)))

be an extension of experiment Cα with the steps of test program, and abs(C′
α,Vstate) be the

witness abstract execution of this extension. Let v denote the value of a read in the program

test, which is also the return value of that program. By FRWSet the value of v is determined

by the set of visible add and rem operations in the operation context, and their relation. The

operation context contains all add and rem operations. We analyze the relation of operation

in the context element-wise, since the specification FRWSet is also formulated element-wise.

Consider element a. The read observes the following operations on a:

(a) a sequence of rem(a) followed by add(a), both performed at replica 3, and concurrent

136

B.3. LOWER BOUND PROOFS

(b) rem(a) operation performed at replica 2, either followed by, or concurrent with, add(a)

at replica 1, depending whether a ∈α or not.

If rem(a) and add(a) in (b) are sequential, then a ∈ v according to FRWSet, since all rem(a) in

the context are covered by some add(a). Otherwise, a 6∈ v, since there is a rem(a) that is not

covered by any add(a). Therefore, by lifting the argument to all elements, v =α.

(ii) We have Ninit = Nα because exp(α) does not send any messages. Besides, Rinit[1 7→ Rα(1)]

and Rα can differ only in the states of the replicas 2..n. These cannot influence the run of

test(r), since it performs execution steps on replica 1 only.

Theorem B.18 (Originally, Theorem 4.3). If DRWSet sat[Vstate,Tany]FRWSet, then the complexity

of DRWSet is Ω̂(m).

Proof. Given n0,m0, we pick n =max{n0,3} and some m ≥ n such that m is a multiple of 4. Take

the experiment family (Q,n,m,C,e,readback) given by Lemma 4.4. For any α ∈Q, Cα.rval(eα)=;
by FRWSet applied to the witness, which can be encoded with a constant length. Using Lemma 4.1

and m ≥ n2, for some constant K we get:

wcmo(DRWSet,n,m)≥ blg|Λ| |Q|c / (maxα∈Q len(Cα.rval(eα)))≥ Km.

B.3.3 Last-Writer-Wins Set

Lemma B.2 (Originally, Lemma 4.5). If DLWWSet sat[Vstate,Tany]FLWWSet, n ≥ 2 and m ≥ n is such

that m is a multiple of 2n−2, then the tuple (Q,n,m,C,e,readback) in Table 4.4 is an experiment

family.

Proof. Some parts of the proof are straightforward, such as checking that n and m match

the number of replicas/updates, and that the driver programs use message identifiers and

timestamps correctly. The only nontrivial obligation is to prove readback(state(eα)) = α. Let

(Rα, Nα)= final(Cα). Then

α(r) (i)= result(DLWWSet, (R0, N0), (init;exp(α);test(r)))

= result(DLWWSet, (Rα, Nα), test(r))
(ii)= result(DLWWSet, (Rinit[1 7→ Rα(1)], Ninit), test(r))

= readback(Rα(1))(r) = readback(state(eα))(r),

where:

137

APPENDIX B. METADATA OVERHEAD PROOFS

(i) This is due to DLWWSet sat[Vstate,Tany]FLWWSet, as we explained informally before. Let

C′
α = exec(DLWWSet, (R0, N0), (init;exp(α);test(r)))

be an extension of experiment Cα with the steps of test program, and abs(C′
α,Vstate) be

the witness abstract execution of this extension. Let vi denote value of a read into v in

the i-th iteration of the loop in the program test(r) (Line 15). By FLWWSet the value of vi is

determined by the set of visible add and rem operations in the operation context, and their

arbitration relation. The operation context contains:

(a) first max(2α(r),2i−1) operations (add(r) and rem(r)) from replica r, and

(b) unrelated operations on other elements from other replicas.

By FLWWSet, v must include element r if among visible updates concerning r, add(r) is

the latest in the arbitration order ar(C′
α). Therefore, we will now consider the arbitration

relation between visible add(r) and rem(r) events. If an even number of operations form r

is visible (2α(r)), then the latest one must be rem(r). If an odd number of operations form r

is visible (2i+1), then the latest one must be add(r), By specification FLWWSet the return

value of the read is in this case:

vi =
{

{r} if i−α(r)> 0

; otherwise

i.e., {0} appears in the return value when read observes add(r) that was not observed in

the culrpit read. Therefore:

α(r)=min{i | vi+1 = {r}∨ i = m
2n−2

}.

(ii) We have Ninit = Nα because exp(α) does not send any messages. Besides, Rinit[1 7→ Rα(1)]

and Rα can differ only in the states of the replicas 2..n. These cannot influence the run of

test(r), since it performs execution steps on replica 1 only.

Theorem B.19 (Originally, Theorem 4.4). If DLWWSet sat[Vstate,Tany]FLWWSet, then the complexity

of DLWWSet is Ω̂(n lgm).

Proof. Given n0,m0, we pick n = n0 and some m ≥ n0 such that m is a multiple of 2(n−1) and

m ≥ n2. Take the experiment family (Q,n,m,C,e,readback) given by Lemma 4.5. For any α ∈Q,

Cα.rval(eα)=; by FLWWSet applied to the witness abstract execution; empty set can be encoded

with a constant length. Using Lemma 4.1 and m ≥ n2, for some constants K1,K2,K we get:

wcmo(DLWWSet,n,m)≥ blg|Λ| |Q|c / (maxα∈Q len(Cα.rval(eα)))≥ K1n lg(m/n)≥ K2n lg
p

m ≥ Kn lgm.

138

B.3. LOWER BOUND PROOFS

B.3.4 Multi-Value Register

Lemma B.3 (Originally, Lemma 4.6). If DMVReg sat[Vstate,Tany]FMVReg, n ≥ 2 and m ≥ n is such

that (m− 1) is a multiple of (n− 1), then the tuple (Q,n,m,C,e,readback) in Table 4.5 is an

experiment family.

Proof. Some parts of the proof are straightforward, such as checking that n and m match

the number of replicas/updates, and that the driver programs use message identifiers and

timestamps correctly. The only nontrivial obligation is to prove readback(state(eα)) = α. Let

(Rα, Nα)= final(Cα). Then

α(r) (i)= result(DMVReg, (R0, N0), (init;exp(α);test(r)))

= result(DMVReg, (Rα, Nα), test(r))
(ii)= result(DMVReg, (Rinit[1 7→ Rα(1)], Ninit), test(r))

= readback(Rα(1))(r) = readback(state(eα))(r),

where:

(i) This is due to DMVReg sat[Vstate,Tany] FMVReg, as we explained informally before. Let vi

denote value of a read into v in the i-th iteration of the loop in the program test(r). By

FMVReg the value of vi is determined by the set and relation of visible writes in the operation

context. Let

C′
α = exec(DMVReg, (R0, N0), (init;exp(α);test(r))).

Then the operation context in abs(C′
α,Vstate) of the read into vi in test(r) contains:

(a) first max(α(r), i) operations write(0) from replica r, and

(b) first α(r′) operations write(0) from every replica r′ 6= r, and

(c) and a single write(1) made on replica 1.

We will now analyze the visibility relation between writes write(0) and write(1). None of

writes write(0) observed write(1) in its operation context in abs(C′
α,Vstate). The operation

context of write(1) includes first α(r′) operations write(0) from every replica r′, including

replica r. That means, read into ui observes max(0, i−α(r)) operations write(0) from r

that were not visible to write(1). By specification FMVReg the return value of the read is in

this case:

vi =
{

{0,1} if i−α(r)> 0

{1} otherwise

i.e., 0 appears in the return value whenever there is write(0) concurrent to write(1) visible.

Therefore:

α(r)=min{i | vi+1 = {0,1}∨ i = m−1
n−1

}.

139

APPENDIX B. METADATA OVERHEAD PROOFS

Conditions on #replicas & #updates m ≥ n ≥ 2

Index set Q = [1..m]

Family size |Q| = m

Driver programs

1: procedure init
2: for all i ∈ [1.. m

2n−2] do
3: do2 write(i mod 2) i

4: send2(midi)
5: for all r ∈ [3..n] do . dummy
6: dor read m+r . reads

7: procedure exp(α)
8: deliver1(midα)
9: do1 read m+n−1 B eα

10: B (culprit read)

11: procedure test(r)
12: v ← do1 read 2m

13: for all i ∈ [1..m)] do
14: deliver1(midr,i)
15: v′ ← do1 read 2m+i

16: if v′ 6= v then
17: return i−1
18: return m

Definition of exp. execution α ∈Q
Cα = exec(Dτ, (R0, N0), init;exp(α))

where (R0, N0)= (Dτ.initialize,;)

Definition of read-back function readback(σ)= result(Dτ, (Rinit[1 7→σ], Ninit),test)
readback :Dτ.Σ→Q where (Rinit, Ninit)= post(exec(Dτ, (R0, N0), init))

Table B.2: Experiment family (Q,n,m,C,e,readback) used in the lower bound proof for last-writer-
wins register (LWWReg).

(ii) We have Ninit = Nα because exp(α) does not send any messages. Besides, Rinit[1 7→ Rα(1)]

and Rα can differ only in the states of the replicas 2..n. These cannot influence the run of

test(r), since it performs events on replica 1 only.

Theorem B.20 (Originally, Theorem 4.5). If DMVReg sat[Vstate,Tany]FMVReg, then the complexity

of DMVReg is Ω̂(n lgm).

Proof. Given n0,m0, we pick n = n0 and some m ≥ n0 such that (m−1) is a multiple of (n−1) and

m ≥ n2. Take the experiment family (Q,n,m,C,e,readback) given by Lemma 4.6. Then for any α,

Cα.rval(eα)= {1} by FMVReg applied to the witness abstract execution; singleton set can be encoded

with a constant length string. Using Lemma 4.1 and m ≥ n2, for some constants K1,K2,K3,K

independent from n0,m0 we get:

wcmo(DMVReg,n,m)≥ blg|Λ| |Q|c / (maxα∈Q len(Cα.rval(eα)))≥ K1
lg|Λ|(m−1

n−1)n−1

lenP(Z)({0})

≥ K2
n lg(m/n)

1
≥ K3n lg

p
m ≥ Kn lgm.

B.3.5 Last-Writer-Wins Register

Theorem B.21 (Originally, Theorem 4.6). If DLWWReg sat[Vstate,Tany]FLWWReg, then the complexity

of DLWWReg is Ω̂(lgm).

140

B.3. LOWER BOUND PROOFS

Lemma B.4. If DLWWReg sat[Vstate,Tany]FLWWReg, n ≥ 2 and m ≥ n, then tuple (Q,n,m,C,e,readback)

as defined in Table B.2 is an experiment family.

The idea of the experiments is to force replica 1 to remember the number of writes that the

write of the current value dominates, which then introduces an overhead proportional to the lgm,

the minimum cost of storing a timestamp; cf. the implementation in Algorithm 2.4. Only two

replicas are involved the experiment, since the overhead is not related to the number of replicas.

Other replicas perform only dummy reads to ensure that execution uses at least n replicas, and

fulfills wcmo definition.

All experiments start with a common initialization phase, defined by init, where replica

2 performs m write operations, writing interchangeably values 0 and 1, starting with 1, and

sending a message after each write. For each write operation we define a timestamp such that

the execution of driver program consists of the arbitration order consistent with the order of

operations on replica 2. All messages send in the init phase of the program are undelivered until

the second phase, defined by exp(α). There replica 1 receives exactly one message from replica 2,

selected using α. An experiment concludes with the read eα on the first replica.

The read-back works by performing a test defined by test program. To determine which

message was delivered by replica 1 during the experiment, it first performs a reference read on

the first replica, and then forces (re)delivery of all messages sent by replica 2 to replica 1, in

the order they were sent, performing a read after each message delivered. By comparing return

value of each such read with the reference read, the program identifies the first message that

makes the read include an outcome of write operation dominating in arbitration order all write

operations observed in the reference read; the index of this message corresponds to α+1.

Proof of Lemma B.4. Some parts of the proof are straightforward, such as checking that n and

m match the number of replicas/updates, and that the driver programs use message identifiers

and timestamps correctly. The only nontrivial obligation is to prove readback(state(eα))=α. Let

(Rα, Nα)= final(Cα). Then

α(r) (i)= result(DLWWReg, (R0, N0), (init;exp(α);test(r)))

= result(DLWWReg, (Rα, Nα), test(r))
(ii)= result(DLWWReg, (Rinit[1 7→ Rα(1)], Ninit), test(r))

= readback(Rα(1))(r) = readback(state(eα))(r),

where:

(i) This is due to DLWWReg sat[Vstate,Tany]FLWWReg, as we explained informally above. Let

C′
α = exec(DLWWReg, (R0, N0), (init;exp(α);test)).

Then the operation context in abs(C′
α,Vstate) of the reference read into v in test contains α

first write operations. By FLWWReg, v must reflect value of the visible write that is the latest

141

APPENDIX B. METADATA OVERHEAD PROOFS

in the arbitration order ar(C′
α). By assigned timestamps the arbitration order corresponds

to the order of write operations on replica 2. Hence, v =α mod 2.

Let v′i denote value of a read into v′ in the i-th iteration of the loop in the program

test. The operation context of read into v′i in abs(C′
α,Vstate) contains max(i,α) first write

operations performed at replica 2. Again, by specification FLWWReg the value must be v′i =
max(i,α) mod 2.

By comparing values of v and all v′i, we obtain:

α=min{i | v 6= v′i+1 ∨ i = m}.

(ii) We have Ninit = Nα because exp(α) does not send any messages. Besides, Rinit[1 7→ Rα(1)]

and Rα can differ only in the states of the replicas 2..n. These cannot influence the run of

test, since it performs events on replica 1 only.

Proof of Theorem 4.6. Given n0,m0, we pick n = n0 and m = m0. Take the experiment family

(Q,n,m,C,e,readback) given by Lemma B.4. Then for any α, return value Cα.rval(eα) ∈ {0,1} by

FLWWReg applied on the witness execution; set {0,1} can be encoded with a constant length string.

Using Lemma 4.1 for some constants K1,K independent from n0,m0 we get:

wcmo(DLWWReg,n,m)≥ blg|Λ| |Q|c / (maxα∈Q len(Cα.rval(eα)))≥K1
lg|Λ|(m)

1
≥ K lgm.

142

Appendix C

Résumé de la thèse

La haute disponibilité, ainsi que la réactivité sont les qualités essentielles des applications

web interactifs partageant les données modifiables. Pour assurer ces exigences, les applications

comptent sur les bases de données géo-réplicatives répliquant les données dans des endroits

géographiquement dispersés à travers le monde. La géo-réplication permet aux utilisateurs

d’accéder à la réplique locale des données située dans le centre de donnée le plus proche ou sur

leur propre station. De plus, l’accès aux données locales n’est pas entravé par le coût de la latence

du réseau connectant les répliques, ni par l’impact des défaillances de l’infrastructure [43, 44, 95].

Lorsque les performances et la disponibilité des opérations de mise à jour sont cruciales pour le

fonctionnement de l’application, les opérations de mises à jour doivent être également réalisées

localement, sans la coordination avec les répliques distantes. Cela implique une acceptation

des mises à jours simultanées se reproduisant d’une façon asynchrone. Malheureusement, cela

est en conflit avec les modèles de forte cohérence de données, notamment avec l’atomicité ou la

sérialisation [20, 53]. La forte cohérence offre aux applications une vue unique de la base de

données distribuée, mais nécessite une exécution des opérations suivant un ordre global sur

toutes les répliques à l’aide de la réplication synchrone. L’incompatibilité entre la disponibilité,

la tolérance aux pannes et la forte cohérence, connue sous le nom du théorème CAP, force la

réplication asynchrone à se recourir aux plus faibles modèles de cohérence à terme [44, 50, 79].

Dans le cas de la cohérence à terme, les répliques sont autorisées à s’écarter de façon

transitoire, par exemple, au cours des mises à jour simultanées ou pendant une panne de réseau.

Cependant, les répliques doivent, à terme, converger vers un état commun intégrant toutes les

mises à jour [79, 100]. Les états intermittents exposent l’application au risque des anomalies de

cohérence, qui sont non seulement embarrassantes pour les utilisateurs, mais aussi complique la

réalisation de l’application, ainsi que de la base de données [43]. Les défis comprennent surtout

la détection des mises à jours simultanés étant en conflit, leur résolution convergente, ainsi que

143

APPENDIX C. RÉSUMÉ DE LA THÈSE

le traitement des livraisons asynchrones des mises à jour et des échecs.

Deux abstractions complémentaires ont été proposées pour atténuer les problèmes de la

réplication dans le cas de la cohérence à terme. Ces abstractions prennent en compte la complexité

de la réplication asynchrone et les échecs derrière une interface fiable, à savoir une interface avec

un comportement bien défini, qui est garanti quel que soit le comportement de l’infrastructure

sous-jacente.

Tout d’abord, les Types de Données Répliquées (RDTs) exposent les données de la base de

données comme des objets classifiés possédant des méthodes de haut niveau. Elle se basent sur

le type et la sémantique de la méthode pour assurer la convergence vers un état raisonnable

[34, 92]. La base de données comprenant des RDTs contient des objets de types tels que le

compteur, l’ensemble où le registre, possédant des méthodes de l’écriture et de mise à jour, tel

que l’incrémentation pour le compteur ou l’ajout et la suppression pour l’ensemble. Un type de

données encapsule la réplication et s’oocupe de la résolution des mises à jour simultanées en se

basant sur la sémantique définie. Ainsi, les RDTs fournissent un fiable bloc de construction.

Deuxièmement, la cohérence transactionnelle causale offre un ordonnancement partiel des

mises à jour et des garanties de visibilité indépendantes des frontières de l’objet [4, 66, 67].

Officieusement, sous cohérence causale, tous les processus de l’application observent un ensemble

non-décroissant de mises à jour, qui comprend ses propres mises à jour, dans l’ordre respectant

les causalités entre les opérations. Les applications sont protégées des violations de causalité,

par exemple d’une situation où la méthode d’écriture pourrait observer la mise à jour de b, mais

ne pourrait pas mettre à jour a sur laquelle b se baserait.

Ces abstractions fiables facilitent la programmation de la base de données cohérente à terme,

mais entrennent un cout de stockage et un surcoût des métadonnées dans le réseau causé par

l’information de la causalité et l’historique des opérations. Cette thèse étudie la conception

des fiables RDTs et des fiables algorithmes de cohérence causale utilisant des métadonnées

minimisées, ainsi que les limites et les compromis de leur espace de conception.

Contributions. Cette thèse apporte deux contributions dans le domaine de la fiabilité des

algorithmes de la cohérence à terme: une étude de l’espace optimale des implémentations des

RDTs, y compris des mises en œuvre optimisées et des résultats d’impossibilité, ainsi que la

conception des bases de données causalement cohérentes incluant les RDTs pour les applications

côté client. Nous présentons un aperçu de ces résultats dans le reste de ce résumé.

144

C.1. L’OPTIMALITÉ DES TYPES LES DONNÉES RÉPLIQUÉES

C.1 L’optimalité des types les données répliquées

Dans la première partie de la thèse, nous considérons le problème de minimisation des métadon-

nées encourues par les implémentations des RDTs. En plus des données observables par le client,

les métadonnées sont utilisées par les réalisations des RDTs fiables pour assurer l’exactitude

dans le cas des mises à jour simultanées et des échecs. Pour beaucoup de réalisations des RDTs, le

surcoût causé par les métadonnées est important et impacte le rendement, le stockage et le coût

de la bande passante, ou encore la viabilité de la réalisation. Malheureusement, l’optimisation

des réalisations dans le but de réduire la taille des métadonnées est non-triviale. Elle crée des

tensions entre l’exactitude de la sémantique des types, de l’efficacité et de la tolérance aux pannes.

Nous formulons et étudions la minimisation des métadonnées pour une catégorie de réalisa-

tions des RDTs basée sur l’état, par exemple sur des objets communiquant en échangeant leur

état complet [92]. Des réalisations similaires sont utilisées, par exemple, par les bases de données

d’objets [3]. Nous définissons une métrique du surcoût des métadonnées nous permettant de con-

duire une analyse du pire des cas des réalisations, ainsi que d’exprimer le surcoût asymptotique

en fonction du nombre de répliques et des mises à jour. Une analyse des réalisations de type de

données existantes indique que beaucoup d’entre eux encourent un surcoût important, linéaire

en fonction du nombre des mises à jour, des répliques où des deux éléments. Nous observons

que la sémantique simultanée d’un type de données, à savoir le comportement sous mises à

jour simultanées, possède un impact critique sur l’étendue exacte de la surcharge, même parmi

les variantes de types partageant la même interface (par exemple, différentes variantes de la

sémantique répliquée de l’ensemble).

Les deux principales contributions de cette partie de la thèse ont mené aux résultats positifs, à

savoir aux réalisations optimisées de type de données, ainsi qu’aux résultats négatifs, à savoir aux

preuves du minorant du surcoût des métadonnées pour un certain type de données. Il est naturel

de rechercher tout d’abord des résultats positifs. Par exemple, nous avons constaté, que l’un des

types de métadonnées commun constitue une trace des éléments supprimés (des pierres tombales)

ou des valeurs écrasées. Nous proposons deux optimisations en se basant sur un algorithme

subtil, mais efficace, qui rassemble les informations sur les données supprimées/écrasées en

utilisant une variante des vecteurs de version [77]. L’optimisation est un processus intellectuel

laborieux, qui nécessite le développement des solutions non triviales, et qui expose au risque

la justesse de la solution existante. Nos résultats négatifs peuvent aider à identifier la fin du

processus de l’optimalisation. Une fin bien définie empêcherait les concepteurs de mener une

recherche irréalisable et pourrait les guider dans le développement de nouvelles hypothèses de

145

APPENDIX C. RÉSUMÉ DE LA THÈSE

Type de données
Ancienne réalisation Réal. optimisé Tout réal.

Source Bornes Bornes Minorant

compteur [92] Θ̂(n) — Ω̂(n)

ensemble ajout-gagnant [93] Θ̂(m lgm) Θ̂(n lgm) Ω̂(n lgm)

ensemble supréssion-gagnante [22] Ω̂(m lgm) — Ω̂(m)

ensemble dérnier-écrivaint-gagnant [22, 56] Ω̂(m lgm) — Ω̂(n lgm)

registre multi-valeurs [77, 93] Θ̂(n2 lgm) Θ̂(n lgm) Ω̂(n lgm)

registre dérnier-écrivaint-gagnant [56, 92] Θ̂(lgm) — Ω̂(lgm)

Table C.1: Sommaire des résultats de surcharge pour différents types de données. Les réalisations
surlignées sont optimales; n est le nombre de répliques, m est le nombre de mises à jour dans
une exécution; Ω̂,Ô,Θ̂ notées, respectivement, minorant, majorant et borne exacte.

conception. Une preuve du minorant, qui s’applique à tout réalisation basée sur l’état d’un certain

type, établie un limite d’optimalisations possibles et peut prouver qu’une réalisation particulière

est asymptotiquement optimale. Nos preuves du minorant utilisent une construction générique

non-triviale basée sur la sémantique du spécifique du type de données concerné . Réunis, nos

résultats positifs, ainsi que négatifs, donnent une vision globale du problème d’optimisation des

métadonnées.

Table C.1 résume nos résultats positifs et négatifs pour tous les types de données étudiés.

De gauche à droite, le tableau présente les implémentations antérieures et leurs complexités, la

complexité de nos optimisations (dans le cas échéant), ainsi que les bornes inférieures de la com-

plexité. Nous soulignons chaque réalisation asymptotiquement optimale, soit une optimalisation

avec une borne supérieure correspondante à la borne inférieure générale.

Pour le type de données des compteurs, la réalisation existante basée sur l’état est optimale.

Une telle réalisation exige l’utilisation des vecteurs d’entiers pour tenir compte des augmentations

simultanées, ainsi que des messages simultanée ou réordonnées.

L’interface de type de données de l’ensemble offre une large gamme de choix sémantique en

accord avec la façon avec laquelle les opérations concurrentes sont traitées sur le même élément:

la priorité devrait être accordée pour certain type d’opérations (ajout ou suppression), par contre

d’autre opération nécessites d’être arbitrées par des horodateurs (dernier–écrivain-gagnant) [23,

56]. Ces différents types de procédure sont inégaux en termes de coût des métadonnées. Toutes

les réalisations antérieures subissent le problème du surcoût de l’ordre de grandeur de nombres

de mises à jour correspondant au moins aux traces des éléments supprimés. Cependant, cela

n’est pas nécessaire dans tous les cas de variante d’ensemble. Notre optimisation d’un ensemble

ajout-gagnant réduit ce coût au nombre des répliques en utilisant une adaptation non-triviale des

146

C.2. UNE BASE DE DONNÉES CAUSALEMENT COHÉRENTE POUR LES APPLICATIONS
COTÉ CLIENT

vecteurs de versions. De plus, cela est (asymptotiquement) la moins cher des réalisations connues

pour toutes sortes d’ensembles. La borne inférieure pour l’ensemble suppression-gagnante montre,

que telle optimalisation n’est pas possible dans le cas d’une sémantique suppression-gagnante.

La question si cela est possible pour un ensemble dernier-écrivain-gagnant reste ouverte.

Le type de registre possède aussi de nombreuses variantes, qui eux aussi sont inégaux en

terme de coût des métadonnées encouru. Une variante du registre de type dernier-écrivain-

gagnant utilise le horodatage pour arbitrer les attributions simultanées, tandis que le registre

multi-valeur identifie les valeurs de tous les conflits d’écriture pour les présenter à l’application.

La réalisation existante du registre dernier-écrivain-gagnant est caractérisée par un surcoût

négligeable et est considérée comme optimale. Au contraire, la réalisation actuelle du registre

à valeurs multiples possède un surcoût important en terme de carré de nombre de répliques

due à un traitement inefficace des écritures simultanées de la même valeur. Nos optimisations

atténuent la composante carré, et atteignent la surcharge de métadonnées asymptotiquement

optimal en utilisant une règles de fusion pour les vecteurs de versions.

C.2 Une base de données causalement cohérente pour les

applications coté client

Dans la deuxième partie de la thèse, nous étudions le problème de la fourniture des garanties

étendues de la cohérence (causale), à travers les frontières de l’objet et au-delà de l’infrastructure

côté serveur, pour les applications côté client.

Nous considérons le problème de la réplication côté client. La technologie actuelle est peu

adaptée pour supporter le partage de données envers une large zone dans des applications côté

client, comme par exemple dans le navigateur ou les applications mobiles. Les développeurs

d’applications font recours à la mémoire cache et aux tampons, afin d’éviter des lents, coûteux

et parfois indisponible allers-retours au centre de données. Cependant, ils ne sont pas capables

de résoudre les problèmes du système tels que la tolérance aux pannes, ou les garanties de

cohérence / session [34, 96]. Les systèmes côté client assurent seulement quelques-unes des

propriétés souhaitées. Notamment, ils assurent des garanties de cohérence limitées (seulement

à la granularité d’un objet unique ou celle d’une petite base de données), ne tolèrent pas les

défaillance et/ou ne peuvent pas intégrer un grand nombre de périphérique clients.

Notre thèse est que le système doit être responsable d’assurer un accès correct et évolutif à la

base de données aux applications côté client. Il doit répondre aux exigences (parfois contradic-

toires) de la cohérence, de la disponibilité et de la convergence [68] au moins aussi bien que les

147

APPENDIX C. RÉSUMÉ DE LA THÈSE

systèmes de géo-réplication récents. Dans ces conditions, le modèle de cohérence le plus fort est

une variante de la cohérence causale pour les objets de RDTs.

La possibilité d’offrir des milliers ou mêmes des millions de répliques côté client avec la

cohérence causale conteste les hypothèses standard. Pour tracer avec précision et par client la

causalité dans et entre les objets il faut utiliser un nombre inacceptable de métadonnées. De

l’autre côté, un management compact des métadonnées du côté serveur possède une tolérance aux

pannes plus faible. De plus, une réplication complète dans un grand nombre de dispositifs pauvres

en ressources serait inacceptable [18]. Mais aussi une réplication partielle des données et des

métadonnées pourrait être la source d’indisponibilité ou des anomalies de livraison de messages.

Par ailleurs, il n’est pas possible de supposer, comme dans nombreux systèmes antérieurs, que la

tolérance aux pannes et la cohérence sont résolues, seulement parce que l’application est localisé

à l’intérier d’un centre de données (DC), ou parce qu’elle possède une session collante avec un

seule DC [13, 96].

Dans cette partie de la thèse, nous abordons les défis mentionnés. Nous présentons les

algorithmes, la conception et l’évaluation du SwiftCloud — la première base de données d’objets

distribuée conçue pour un grand nombre de répliques. Elle assure d’une façon efficace un accès

constant, disponible, et convergent aux nœuds clients, supporte les défaillances et consume peut

de métadonnées. Pour atteindre ce but, le SwiftCloud utilise une topologie de client-serveur

flexible, et découple l’écriture et la lecture. Le client écrit rapidement dans le cache local, et lit

dans le passé (aussi rapidement) les données qui sont compatibles, mais parfois altérées.

C.2.1 Présentation du problème

Nous considérons le support pour une variété d’applications côté clients partageant une base

de données des objets de RDTs, que le client peut lire ou modifier. Nous visons à s’adapter aux

milliers de clients couvrant l’ensemble de l’internet, ainsi qu’à une base de données de taille

arbitraire.

Figure C.1 présente le modèle de notre système. Une infrastructure “cloud” relie un petit

ensemble (par exemple, une dizaine) de centres de données géo-réplicatifs, ainsi qu’un grand

nombre (des milliers) de clients. Un DC dispose d’abondantes ressources de calcul, de stockage

et de réseau. De même que Sovran et al. [95], nous faisons abstractions d’un DC comme un

processus séquentiel hébergeant des répliques complètes de la base de données.1 Le DC

1 Les traveaux antérieurs abordent les questions un peu orthogonales du parallélisme et de la tolérance aux
pannes dans un DC [8, 46, 66, 67].

148

C.2. UNE BASE DE DONNÉES CAUSALEMENT COHÉRENTE POUR LES APPLICATIONS
COTÉ CLIENT

DC#

DC#

DC# C#

C#

C#

C#

C#

C#

notification

A"

P"

I"

C# C#

C#

A"

P"

I"

A"

P"

I"

App#

App#

App#

geo-replication

transfer

fail-over!

Figure C.1: Les composantes du système (Les processus d’application, Clients, Centre de Donnés)
et leurs interfaces.

communique d’une manière pair à pair. Il peut tomber en panne et se rétablir en laissant sa

mémoire persistante intacte.

Les clients ne communique pas directement entre eux, mais ils passent par les DCs. D’habitude,

un client se connecte à un seul DC ; dans le cas d’une panne ou d’un client migrant , à zéro ou

plus. Un client peut tomber en panne et se rétablir (par exemple, durant un vol) ou être détruit

(par exemple, un téléphone détruit) sans avertissement.

Les applications côté client souvent exige une haute disponibilité, ainsi qu’une haute

réactivité pour satisfaire pleinement la demande de l’utilisateur. Elles doivent être capables de

lire et écrire les données rapidement et à tous moments. Cela peut être réaliser en répliquant les

données en local, et en synchronisant les mis à jour dans la tâche de fond. Cependant, un client

possède des ressources limitées. En cette raison, il dispose d’une mémoire cache contenant

seulement un sous-ensemble de la base de données intéressant de point de vue de l’application

courante. Il n’est pas supposé de recevoir des messages relatifs aux objets non-répliqués au

moment donné. [88]. Finalement, les messages de control, ainsi que les métadonnées venant avec,

devrait être d’une taille petite et délimitée.

Puisque la réplique du client et seulement partielle, nous ne pouvons pas avoir une garantie

d’une disponibilité complète. Le meilleur que nous pouvons expecter est la disponibilité par-

tielle, dans le cas de laquelle l’opération retourne le résultat sans communication distante, si

les données demandés sont dans le cache, et récupère les données d’un nœud distant dans le

cas contraire. Si les données ne sont pas disponibles et le réseau est en panne, l’opération peut

s’avérer non-disponible. Dans ce cas là elle serra bloquée ou elle retournera une erreur.

149

APPENDIX C. RÉSUMÉ DE LA THÈSE

C.2.1.1 La cohérence et la convergence

Les développeurs d’application souhaitent accéder à une vue consistante de la base de données

globale. Néanmoins, vu l’exigence de la disponibilité, les possibilités de consistance sont limitées

selon le théorème CAP mentionnée avant [50, 68].

Dans cette partie de la thèse, nous considérons un support pour le modèle de cohérence le

plus fort et convergeant : le modèle de la cohérence causale pour les objets de RDTs [4, 68].2 Dans

le cas de la cohérence causale, si un processus d’application lit un objet x, et après lit un objet

y, et que l’état de x dépend causalement de certaines mises à jour u de y, alors l’état y lu par le

processus inclus la mise à jour u.

Quand l’application demande y, nous disons qu’il y a une lacune causale si la réplique locale

n’a pas encore reçue u. Le système doit détecter cette lacune et attendre le moment de la livraison

de u avant retourner y. Cependant, il est conseillé tout d’abord d’éviter la lacune. Autrement, la

lecture dans la présence d’une lacune causale expose au risque d’anomalie les développeurs, ainsi

que les utilisateurs [66, 67].

Nous considèrons une variante transactionelle de la cohèrence causale pour un meilleurs

support des opérations multi-objects : tous les opérations de lecture pendant une transaction

causale viennent du même aperçu de la base de données et soit tous les mises à jour sont visibles

autant que groupe d’une façon atomique ou aucune ne l’est [14, 66, 67].

Une autre exigence constitue la convergence, qui est construit de deux propriétés : (i) Au

moins une livraison (vivacité): une mise à jour délivrée (à savoir visible par l’application) dans

un nœud, doit être délivrée dans chaque nœud (intéressé) après un nombre finis d’échange de

messages ; (ii) Confluence (sûreté): deux nœuds ayant délivrer le même ensemble de mises à

jour lisent la même valeur.

La cohérence causale n’est pas suffisante pour garantir la confluence, car deux répliques

peuvent recevoir les mêmes mises à jour dans différents ordres. En conséquence, nous nous

fions sur les objets de RDTs pour la confluence. Spécifiquement, nous utilisons une réalisation

RDTs la catégorie basée sur les opérations [92] qui dépend des protocoles externes d’échange de

logs, permettant d’utiliser un système globale de livraison des mises à jour et des protocoles de

consistance pour les objets, ainsi que de partager les métadonnées. L’implémentation des objets

de RDTs est facilitée par un support adéquat de la part du système. Par exemple, une valeur

d’objet est définie non seulement par la dernière mise à jour, mais aussi elle dépend des mises à

jour précédentes ; la consistance causale s’avère utile, car elle assure que les mises à jour ne sont

2Cela englobe aussi les garanties de sessions [34].

150

C.2. UNE BASE DE DONNÉES CAUSALEMENT COHÉRENTE POUR LES APPLICATIONS
COTÉ CLIENT

pas perdues ou délivrées hors ordre. Comme les mise à jour de RDTs de haut niveau sont souvent

idempotentes (par exemple incrementation()), la sûreté exige au maximum une livraison.

Même si en isolation chaque exigence semble simple, la combinaison avec l’adaptabilité à un

grand nombre de nœuds et à taille de la base de données constitue un nouveau défi.

C.2.1.2 La conception des métadonnées

Les métadonnées servent à identifier les mises à jour et à assurer l’exactitude. Les métadonnées

sont associées aux messages de mises à jour en augmentant le coût de la communication.

Une méthode populaire de conception des métadonnées associe à chacune des mises à jour un

horodatage dans le moment de la génération dans un des nœuds. La structure des métadonnées

de causalité a tendance à devenir “lourde”. Notamment, la liste des dépendances [66] grandi

avec le nombre des mises à jour (cf. Du et al. [46], Lloyd et al. [67]), alors que les vecteurs de

version [18, 69] grandissent avec le nombre de clients (en effet, nos experiments montrent que

leur taille devient déraisonnable). Nous nommons cela l’approche Attribuée Client, Sécurisé

mais Gros.

Une alternative délègue l’horodatage à un nombre de serveurs du DC [8, 46, 67]. Cela permet

d’utiliser des vecteurs de plus petite taille, mais implique une perte de parallélisme. Cependant,

cette configuration n’est pas tolérante aux pannes si le client réside en dehors du DC. Par exemple,

la contrainte d’au maximum une livraison peut être violée. Considérons un client transmettant la

mise à jour u au DC1 pour la horodatée. S’il ne reçoit pas d’acquittement, il réessaye en l’envoyant

au DC2 (basculement sur erreur). En résultat, u peut recevoir deux estampilles différentes et

être délivrée deux fois. La livraison dupliquée viole la contrainte de sûreté de plusieurs types

d’objets de RDTs, et dans autre cas, complique l’implémentation. [5, 34, 67]. Nous nommons cela

l’approche Attribuée Serveur, Maigre mais Non Sécurisée.

Clairement, aucune des approches, ni “gros”, ni “maigre”, est satisfaisantes.

C.2.1.3 La cohérence causale avec une réplication partielle est dur

Puisque une réplique partielle reçoit seulement une partie des mises à jour, ainsi qu’en con-

séquence des métadonnées, elle peut manquée de quelques dépendances causales [18]. Consid-

érons l’exemple suivant : Alice télécharge une photo d’elle sur le mur d’un réseau social populaire

(mise à jour a). Bob voit la photo et la mentionne dans un message destiné à Charles (mise à

jour b), qui à son tour là mentionne à David (mise à jour c). Quand David regarde le mur d’Alice,

il attend de trouver la mise à jour a et voir la photo. Cependant, si la machine de David ne

sauvegarde pas le message de Charles dans sa mémoire cache, elle ne pourra pas observer la

151

APPENDIX C. RÉSUMÉ DE LA THÈSE

chaine causale a → b → c et peut délivrer le message c sans a. La conception des métadonnées

devrait protéger d’une lacune causale pareille, causé par la dépendance transitive entre des objets

absents.

Cependant, les pannes compliquent la situation encore plus. Supposons que David voit la

photo d’Alice et ajoute commentaire sur le mur d’Alice (mise à jour d). Maintenant, une panne se

produit et la machine de David bascule vers un autre DC. Malheureusement, le nouveau DC n’a

pas encore reçue le message de Bob avec la mise à jour b, de laquelle d dépend causalement. Par

conséquence, le DC ne peut pas délivrer le commentaire, ainsi que respecter la convergence sans

la violation de la cohérence causale. David ne pourra pas lire les nouveaux objets du DC pour la

même raison.3

C.2.2 L’approche SwiftCloud

Nous proposons un modèle soulevant les défis mentionnés. Premièrement, nous le décrivons dans

un cas sans pannes. Deuxièmement, nous traitons le cas de la panne du DC. Finalement nous

introduisons une nouvelles forme de métadonnées utilisée dans notre solution.

C.2.2.1 Cohèrence causale dans les répliques complètes des Centre de Données

Le problème de la garantie de la cohérence dans les DCs complétement répliqués est bien connu

[4, 46, 66, 67]. Nous se concentrons sur les protocoles basées sur les logs, transmettant les

opérations d’une façon incrémentale [18, 79].

Une version de base de données, notée U , est un sous-ensemble des mises à jour ordonné

selon la causalité. Une version associe les identifiants des objets à leurs valeurs (exposé par les

méthodes read) en appliquant une subséquence pertinente de log au état initial de chaque objet.

Nous disons qu’une version U possède une lacune causale ou est incohérente lorsqu’elle n’est

pas causalement fermée, soit si ∃u,u′ : u → u′∧u 6∈ U ∧u′ ∈ U. Comme nous l’avons illustré, la

lecture d’une version incohérente doit être évitée afin d’éviter des violation de causalité. D’autre

part, l’attente de la disparition de la lacune peut augmenter la latence et diminuer la disponibilité.

Pour éluder cette énigme, nous adoptons une approche de “lecture dans le passé” [4, 66]. Ainsi, le

DC expose un état V , sans lacune mais retardé.

Pour illustrer, nous considérons l’exemple de Figure C.2A. Les objets x et y sont du type

ensemble. DC1 est dans l’état U1 incluant la version V1 ⊆ U1, et DC2 dans un état ultèrieur

V2. Les versions V1 avec la valeur [x 7→ {1}, y 7→ {1}] et V2 avec la valeur [x 7→ {1,3}, y 7→ {1,2}] ne

possèdent pas de lacune.

3 Du point de vue de David, l’écriture reste disponible. Cependant, le système dans son ensemble ne converge pas.

152

C.2. UNE BASE DE DONNÉES CAUSALEMENT COHÉRENTE POUR LES APPLICATIONS
COTÉ CLIENT

x.add(1) x.add(3)

V
1 V

2

y.add(2) y.add(1)

U
1

(A) L’état initial.

x.add(1) x.add(3)

V
1 V

2

y.add(2) y.add(1)

x.add(4)

U
C

read x

{1,3}

(B) Continuation depuis C.2A vers un état à risque.

x.add(1)
x.add(3)

V
1 V

2

y.add(2) y.add(1)

x.add(4)
read x

{1}

U
C

(C) Lecture dans le passé: continuation depuis C.2A vers un état prudent.

Figure C.2: L’exemple d’évolution d’états de deux DCs et un client. x et y sont les objets; boîte =
mise à jour; flèche = dépendance causale (un texte facultatif indique la source de la dépendance);
boîte pointillée = versions de bases de données nommées /les états.

Cependant, la version U1, avec la valeur [x 7→ {1,3}, y 7→ {1}] possède une lacune, une mise à

jour manquante y.add(2). Quand le client demande de lire x au DC1 dans l’état U1, le DC pourrait

retourner la version la plus récente, x = {1,3}. Cependant, si l’application demande ultérieurement

y, pour retourner une valeur y sécurisée, il devra attendre la mise à jour manquante de la part

de DC2. En choisissant de “la lecture dans le passé”, la même réplique expose la version ancienne

V1 mais sans la lacune, en lisant x = {1}. Puis, la seconde lecture sera satisfaite immédiatement

avec y= {1}. Une fois la mise à jour manquante est reçue de la part du DC2, le DC1 peut passer

de la version V1 à la version V2.

Un algorithme sans lacune maintient un état de réplique causalement cohérent avec progres-

sion monotone non décroissante [4]. Donné la mise à jour u, nous notons u.deps son ensemble

de prédécesseurs causales, dit son ensemble de dépendances. Si une réplique complète étant

dans un état cohérant V , reçoit u, et si ses dépendances sont satisfaites, soit u.deps ⊆ V , elle

153

APPENDIX C. RÉSUMÉ DE LA THÈSE

applique u. Le nouveau état est V ′ =V ⊕ {u}, où nous notons ⊕ un opérateur de fusion de log,

qui filtre tous les doubles survenus pendant la transmission. L’état V ′ est cohérent, ainsi que son

monotonie est satisfaite, car V ⊆V ′.

Si les dépendances ne sont pas remplies, la réplique met u dans la mémoire du tampon

jusqu’au remplissement de la lacune.

C.2.2.2 Cohèrence causale dans les répliques client partielles

La cohérence se complique, quand la réplique client possède seulement une partie de la base de

données et de ses métadonnées [18]. Pour éviter la complexité du protocole et pour mimiser la

taille des métadonnées requis, nous nous s’appuyons sur les répliques complètes des DCs pour

gérer des versions sans lacune pour le client.

Donné un ensemble d’intérêt des objets intéressants le client, son état initiale consiste

d’une projection d’un état du DC envers l’ensemble. Celui-ci est un état causalement consistent

comme démontré dans les sections précédentes.

L’état client peut change à cause d’une mise à jour générée par le client lui même, notée une

mise à jour interne, ou à cause d’une mise à jour reçue du DC, notée externe. Evidement, une

mise à jour interne maintient la cohérence causale. Si une mise à jour externe arrive, sans lacune,

du même DC que la précédente, elle maintient aussi la cohérence causale.

Plus formellement, nous considérons un état récent du DC, que nous nommons l’état de base

du client, noté VDC. L’ensemble d’intérêt du client C est noté O ⊆ x, y, L’état du client, noté VC

est limité à ces objets. Il se compose de deux parties. La première est la projection de la version

de base VDC sur l’ensemble d’intérêt, noté VDC|O. L’autre est le log des mises à jour interne, noté

UC. L’état client est leur fusion VC = VDC|O ⊕UC|O. Dans le cas de manque de mémoire cache,

le client ajoute les objets manquant à l’ensemble d’intérêt et récupère les objets à partir de la

version de base VDC, étendant ainsi la projection.

La version de base VDC est une version monotone, non-décroissante et causale (elle peut

être un peu retardée en comparaison avec la version actuelle du DC en raison des délais de

propagation). Par induction, les mises à jour internes peuvent dépendre causalement uniquement

des mises à jour internes ou des mises à jour prises de la version de base. Ainsi, une version

hypothétique complète VDC ⊕UC serrait causalement cohérente. Sa projection est équivalente au

état client : (VDC ⊕UC)|O =VDC|O ⊕UC|O =VC.

Cette approche assure la disponibilité partielle. Si une version se trouve dans la mémoire

cache, elle a la garantie d’être causalement cohérente, bien qu’elle peut être une peu viciée. Si

la version ne se trouve pas dans la mémoire cache, le DC retourne immédiatement une version

154

C.2. UNE BASE DE DONNÉES CAUSALEMENT COHÉRENTE POUR LES APPLICATIONS
COTÉ CLIENT

cohérente. De plus, la réplique client peut écrire vite, car elle ne doit pas attendre les mises à jour

à venir (elle les transmet au DC dans la tâche de fond).

La convergence est assurée vu que la version de base du client est maintenue à jour par le

DC dans la tâche de fond.

C.2.2.3 Le basculement sur erreur: Le problème avec la dépendance causale

transitive

L’approche décrite assume que le client se connecte à un seul DC. Cependant, le client peut

basculer vers un autre DC à tout moment, particulièrement dans une situation de panne. Bien

que chaque état du DC est cohérent, une mise à jour délivrée à un DC n’est pas nécessairement

délivrée aux autres (puisque la géo-réplication est asynchrone pour assurer la disponibilité et la

performance au niveau de DC [15]). Cela peut créer une lacune causal chez le client.

Pour illustrer ce problème, nous retournons vers l’exemple présenté sur Figure C.2A. Consid-

érons deux DCs: DC1 est dans un état (cohérent) V1, et DC2 est dans un état (cohérent) V2; DC1

n’inclus pas les deux dernières mises à de V2. Le client C, connecté au DC2, réplique seulement

l’objet x; son état est V2|{x}. Supposons que le client lit l’ensemble x = {1,3}, et effectue la mise à

jour u= add(4), en évoluant ainsi vers l’état présenté sur Figure C.2B.

Si en ce moment le client bascule vers DC1, et que les des DCs ne peuvent pas communiquer,

le système n’est pas vivant:

(1) La lecture n’est pas disponible: le DC1 ne peut satisfaire une requête de y, car la version

écrite par le client est plus récente que celle du DC1, V2 6⊆V1.

(2) Les mises à jour ne peuvent pas être livrées (la divergence): le DC1 ne peut pas délivrer u, en

raison de manque de dépendance: u.deps 6⊆V1.

Par conséquent, DC1 doit rejeter le client pour éviter la création d’une lacune dans l’état V1 ⊕UC.

La lecture prudente: éventuellement viciée, mais sécurisée. Pour éviter la formation

des lacunes ne pouvant pas être satisfaites, l’idée est de dépendre des mises à jour probablement

présentes pendant le basculement du DC, notées K-stable.

Une version V est K-stable si toutes ses mises à jour sont répliquées dans aux moins K DCs,

soit, |{i ∈DC |V ⊆Vi}| ≥ K , où K ≥ 1 est un seuil configuré selon les modèles d’échec. Dans ce sens,

le SwiftCloud maintient une version cohérente K-stable V K
i ⊆ Vi, contenant les mises à jour

pour lesquelles le DCi a obtenu des acquittements de la part d’au moins K −1 DCs différents.

La version de base du client doit être K-stable, soit, VC = V K
i |O ⊕UC|O, pour supporter le

basculement sur erreur.

155

APPENDIX C. RÉSUMÉ DE LA THÈSE

De cette façon, le client dépend des mises à jour externe qu’il peut trouver dans presque

chaque DC (V K
i) ou des mises à jour internes qu’il peut toujours transférer vers le nouveau DC

(UC).

Pour illustrer, nous retournons vers Figure C.2A, et considérons la progression prudente vers

l’état présentée sur Figure C.2C, en assumant K = 2. La lecture client du x retourne la 2-stable

version {1} en évitant la dépendance dangereuse via une mise à jour de y. Si le DC2 n’est pas

disponible, le client peut basculer vers le DC1, la lecture de y et la propagation de sa mise à jour

restent toujours en vie.

En raison des mêmes arguments que dans Section C.2.2.2, une version de DC V K
i est causale-

ment cohérente et monotonement non-décroissante, d’où la version cliente aussi possède ces

caratéristiques. Notons que le client observe ses mises à jour internes immédiatement, même si

il n’est pas K-stable.

La discussion. La source de problème est dans la dépendance causale indirecte d’une mise à

jour de laquelle les deux répliques ne sont pas conscientes (y.add(2) dans notre exemple). Comme

cette question est inhérente, nous supposons un résultat général d’impossibilité, déclarant que la

réplication véritablement partielle, la cohérence causale, la disponibilité partielle et la livraison

au-moins-une-fois rapide (convergence) sont incompatibles. En conséquence, certaines conditions

doivent être assouplies.

Remarquons que dans beaucoup de systèmes précédents, cette impossibilité impliqué un

compromis entre, d’une part, la cohérence et la disponibilité et performance de l’autre [43, 66, 95].

En “lisant le passé,” nous déplaçons cela vers un compromis entre la fraîcheur et la disponibilité,

contrôlées par l’ajustement de K . Un K plus haut augmente la disponibilité, mais les mises à jour

prennent plus de temps pour être livrées;4 Dans une certaine limite, K = N assure une complète

disponibilité, mais aucun client ne peut délivrer une mises à jour si un DC n’est pas disponible.

Un K inférieur améliore la fraîcheur, mais augmente la probabilité que le client ne pourra pas

basculer sur erreur et qu’il attendra la récupération du DC. Dans une certaine limite, K = 1 est

identique que le protocole de base de Section C.2.2.2, ainsi que similaire au protocoles précédents

bloquant des garanties session [96].

K = 2 constitue un bon compromis pour le déploiement de trois ou plus DCs couvrant les

scénarios commun incluant la panne du DC ou la déconnexion [43, 57]. Notre évaluation avec

K = 2 montre qu’il encourt un manque de fraîcheur négligeable.

4 L’augmentation du nombre des mises à jour concurrentes, que cela implique, n’est pas un problème grâce aux
RDTs.

156

C.2. UNE BASE DE DONNÉES CAUSALEMENT COHÉRENTE POUR LES APPLICATIONS
COTÉ CLIENT

C.2.2.4 Protocoles avec les métadonnées découplées et délimitées

Grace à la communication canalisante entre DCs et la “lecture dans le passé,” notre implémen-

tation de l’approche SwiftCloud peut utiliser un nouveau modèle de métadonnées qui découple

deux aspect. Il trace la causalité dans le but de renforcer la cohérence, en utilisant des petits

vecteurs attribués dans la tâche de fond par le DCs, et il identifie de manière unique les mises à

jour à protéger des doublures causé par la retransmission,5 en utilisant un horodatage scalaire

assigné par le client. En conséquence, une mise à jour possède deux types d’estampilles : une

estampille assignée par un simple client et une estampille assignée par un ou plus DCs. Avant

d’être délivrées dans un DC, les mises à jour ne possèdent pas d’estampille ; elle posséderont une

par la suite ; une mise à jour peut avoir plus qu’une estampille dans le cas d’une livraison aux

plusieurs DCs (pendant le basculement, Section 7.1.3.1). Une fois l’estampille d’un DC assignée,

une mise à jour peut être efficacement référencée en utilisant les vecteurs de causalité. Un vecteur

de causalité associe l’identifiant du DC à un nombre naturel k, en indiquant les dépendances des

k mises à jour transmises à ce DC. La taille des métadonnées causales est petite et délimitée,

étant donné qu’elles possèdent une entré pour chaque DC. De plus, grace à l’extention décrite

dans cette thèse, un DC peut élaguer ces logs indépendamment de la disponibilité client, en

assurant la sûreté en stockant un sommaire local des mises à jour délivrées.

C.2.3 La mise en œuvre et l’évaluation

Nous implémentons le SwiftCloud et démontrons expérimentalement que notre modèle atteint ses

objectifs avec un coût modeste de manque de fraîcheur. Nous évaluons le SwiftCloud dans Amazon

EC2, contre un port de WaltSocial [95] et contre YCSB [42]. Quand la mémoire cache est utilisée,

le temps de réponse est d’un ordre de grandeur deux fois plus faible que pour les protocoles

basés sur le serveur avec des garanties de disponibilité similaires. Avec trois serveurs de DC, le

système peut accueillir des milliers de répliques client. La taille des métadonnées ne dépend pas

du nombre des clients, du nombre des panne ou de la taille de la base de données. Elle augmente

légèrement seulement avec le nombre des DCs: en moyenne, 15 octets de métadonnées par mise

à jour, avec 3 DCs, comparé aux kilooctets des algorithmes précédents aves les mêmes garanties

de sûreté. Le débit est comparable à la réplication côté serveur pour une faible localité de charge,

et amélioré pour une haute localité. Quand un DC tombe en panne, ses clients basculent vers un

nouveau DC dans les 1000 ms, ainsi que restent cohérents. Sous conditions normales, la version

2-stable est la cause de moins d’1% de lectures viciées.

5 Causé par les pannes réseaux, le DC, les pannes du client, le basculement sur erreur.

157

Bibliography

[1] Riak distributed database, 2010. URL http://basho.com/riak/.

[2] Kryo Java serialization library, version 2.24, 2014. URL https://github.com/

EsotericSoftware/kryo.

[3] Data Types in Riak, October 2014. URL http://docs.basho.com/riak/latest/theory/

concepts/crdts/.

[4] Mustaque Ahamad, James E. Burns, Phillip W. Hutto, and Gil Neiger. Causal memory. In

Proc. 5th Int. Workshop on Distributed Algorithms, pages 9–30, Delphi, Greece, October

1991.

[5] Paulo Sérgio Almeida and Carlos Baquero. Scalable eventually consistent counters over

unreliable networks. Technical Report arXiv:1307.3207, July 2013. URL http://arxiv.

org/abs/1307.3207.

[6] Paulo Sérgio Almeida, Carlos Baquero, Ricardo Gonçalves, Nuno Preguiça, and Victor

Fonte. Scalable and accurate causality tracking for eventually consistent stores. In Int.

Conf. on Distr. Apps. and Interop. Sys. (DAIS), Berlin, Germany, June 2014.

[7] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Efficient state-based CRDTs by

delta-mutation. Technical Report arXiv:1410.2803, 2014. URL http://arxiv.org/abs/

1410.2803.

[8] Sérgio Almeida, João Leitão, and Luís Rodrigues. ChainReaction: a causal+ consistent

datastore based on Chain Replication. In Euro. Conf. on Comp. Sys. (EuroSys), April 2013.

[9] Peter Alvaro, Peter Bailis, Neil Conway, and Joseph M. Hellerstein. Consistency without

borders. In Symp. on Cloud Computing (SoCC), Santa Clara, CA, USA, October 2013.

[10] Khaled Aslan, Pascal Molli, Hala Skaf-Molli, and Stéphane Weiss. C-Set: a Commutative

Replicated Data Type for Semantic Stores. In RED: Fourth International Workshop on

REsource Discovery, Heraklion, Greece, May 2011.

159

http://basho.com/riak/
https://github.com/EsotericSoftware/kryo
https://github.com/EsotericSoftware/kryo
http://docs.basho.com/riak/latest/theory/concepts/crdts/
http://docs.basho.com/riak/latest/theory/concepts/crdts/
http://arxiv.org/abs/1307.3207
http://arxiv.org/abs/1307.3207
http://arxiv.org/abs/1410.2803
http://arxiv.org/abs/1410.2803

BIBLIOGRAPHY

[11] Peter Bailis and Kyle Kingsbury. The network is reliable: An informal survey of real-world

communications failures. ACM Queue, 2014.

[12] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Bolt-on causal consistency.

In Int. Conf. on the Mgt. of Data (SIGMOD), pages 761–772, New York, NY, USA, 2013.

doi: 10.1145/2463676.2465279. URL http://doi.acm.org/10.1145/2463676.2465279.

[13] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion

Stoica. Highly Available Transactions: Virtues and limitations. In Int. Conf. on Very Large

Data Bases (VLDB), Riva del Garda, Trento, Italy, 2014.

[14] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Scalable

atomic visibility with RAMP transactions. In Int. Conf. on the Mgt. of Data (SIGMOD),

2014.

[15] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, and Ion

Stoica. Coordination avoidance in database systems. In Int. Conf. on Very Large Data

Bases (VLDB), Kohala Coast, Hawaii, 2015. To appear.

[16] Carlos Baquero and Francisco Moura. Using structural characteristics for autonomous

operation. Operating Systems Review, 33(4):90–96, 1999. ISSN 0163-5980. doi: http:

//doi.acm.org/10.1145/334598.334614.

[17] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Making operation-based CRDTs

operation-based. In Int. Conf. on Distr. Apps. and Interop. Sys. (DAIS), Berlin, Germany,

June 2014.

[18] N Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Yalagandula, and

J. Zheng. PRACTI replication. In Networked Sys. Design and Implem. (NSDI), pages 59–72,

San Jose, CA, USA, May 2006. Usenix, Usenix. URL https://www.usenix.org/legacy/

event/nsdi06/tech/belaramani.html.

[19] Fabrício Benevenuto, Tiago Rodrigues, Meeyoung Cha, and Virgílio Almeida. Characteriz-

ing user behavior in online social networks. In Internet Measurement Conference (IMC),

2009.

[20] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and

Recovery in Database Systems. Addison-Wesley, 1987. URL http://research.microsoft.

com/pubs/ccontrol/.

[21] Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc Shapiro, Carlos Baquero, Valter

Balegas, and Sérgio Duarte. An optimized conflict-free replicated set. Technical Report

RR-8083, Institut National de la Recherche en Informatique et Automatique (Inria), Roc-

quencourt, France, October 2012. URL http://hal.inria.fr/hal-00738680.

160

http://doi.acm.org/10.1145/2463676.2465279
https://www.usenix.org/legacy/event/nsdi06/tech/belaramani.html
https://www.usenix.org/legacy/event/nsdi06/tech/belaramani.html
http://research.microsoft.com/pubs/ccontrol/
http://research.microsoft.com/pubs/ccontrol/
http://hal.inria.fr/hal-00738680

BIBLIOGRAPHY

[22] Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc Shapiro, Carlos Baquero, Valter

Balegas, and Sérgio Duarte. An optimized conflict-free replicated set: Additional material.

Unpublished extension of the technical report [21], October 2012.

[23] Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc Shapiro, Carlos Baquero, Valter

Balegas, and Sérgio Duarte. Brief announcement: Semantics of eventually consistent

replicated sets. In Int. Symp. on Dist. Comp. (DISC), volume 7611 of Lecture Notes in

Comp. Sc., pages 441–442, Salvador, Bahia, Brazil, October 2012. Springer-Verlag. doi:

10.1007/978-3-642-33651-5_48.

[24] Nikolaj Bjørner. Models and software model checking of a distributed file replication

system. In Formal Methods and Hybrid Real-Time Systems, pages 1–23, 2007. URL

http://dx.doi.org/10.1007/978-3-540-75221-9_1.

[25] Jonas Bonér. Server-managed CRDTs based on Akka. https://github.com/jboner/

akka-crdt, 2014.

[26] Iwan Briquemont, Manuel Bravo, Zhongmiao Li, , and Peter Van Roy. Optimising client-side

geo-replication with partially replicated data structures. In submission, 2014.

[27] Russell Brown, Sean Cribbs, Christopher Meiklejohn, and Sam Elliott. Riak DT map:

A composable, convergent replicated dictionary. In W. on the Principles and Practice of

Eventual Consistency (PaPEC), Amsterdam, the Netherlands, 2014. Assoc. for Computing

Machinery.

[28] Jerzy Brzeziński, Cezary Sobaniec, and Dariusz Wawrzyniak. From session causality to

causal consistency. In Euromicro Conference on Parallel, Distributed and Network based

Processing, 2004.

[29] Jerzy Brzeziński, Dariusz Dwornikowski, Łukasz Piątkowski, and Grzegorz Sobański. K-

resilient session guarantees synchronization protocol for mobile ad-hoc networks. Parallel

Processing and Applied Mathematics, 7203:30–39, 2012.

[30] Sebastian Burckhardt. Bringing TouchDevelop to the cloud. Inside Microsoft Re-

search Blog, October 2013. URL http://blogs.technet.com/b/inside_microsoft_

research/archive/2013/10/28/bringing-touchdevelop-to-the-cloud.aspx.

[31] Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Mooly Sagiv. Eventually

consistent transactions. In Euro. Symp. on Programming (ESOP). Springer-Verlag, April

2012.

[32] Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Benjamin P. Wood. Cloud

types for eventual consistency. In Euro. Conf. on Object-Oriented Pging. (ECOOP), pages

161

http://dx.doi.org/10.1007/978-3-540-75221-9_1
https://github.com/jboner/akka-crdt
https://github.com/jboner/akka-crdt
http://blogs.technet.com/b/inside_microsoft_research/archive/2013/10/28/bringing-touchdevelop-to-the-cloud.aspx
http://blogs.technet.com/b/inside_microsoft_research/archive/2013/10/28/bringing-touchdevelop-to-the-cloud.aspx

BIBLIOGRAPHY

283–307, Berlin, Heidelberg, 2012. Springer-Verlag. doi: 10.1007/978-3-642-31057-7_14.

URL http://dx.doi.org/10.1007/978-3-642-31057-7_14.

[33] Sebastian Burckhardt, Alexey Gotsman, and Hongseok Yang. Understanding eventual

consistency. Technical Report MSR-TR-2013-39, Microsoft Research, Redmond, WA, USA,

March 2013. URL http://research.microsoft.com/apps/pubs/?id=189249.

[34] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. Replicated

data types: Specification, verification, optimality. In Symp. on Principles of Prog. Lang.

(POPL), pages 271–284, San Diego, CA, USA, January 2014. doi: 10.1145/2535838.2535848.

URL http://doi.acm.org/10.1145/2535838.2535848.

[35] Sebastian Burckhardt, Daan Leijen, and Manuel Fahndrich. Cloud types: Robust abstrac-

tions for replicated shared state. Technical Report MSR-TR-2014-43, Microsoft Research,

Redmond, WA, USA, March 2014. URL http://research.microsoft.com/apps/pubs/

default.aspx?id=211340.

[36] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. Introduction to Reliable and

Secure Distributed Programming. Springer Publishing Company, Incorporated, 2nd edition,

2011. ISBN 3642152597, 9783642152597.

[37] Brian Cairns. Build collaborative apps with Google Drive Realtime API. Google Apps De-

velopers Blog, March 2013. URL http://googleappsdeveloper.blogspot.com/2013/

03/build-collaborative-apps-with-google.html.

[38] Baquero Carlos. Scaling up reconciliation in eventual consistency,

November 2012. URL http://haslab.wordpress.com/2012/11/28/

scaling-up-reconciliation-in-eventual-consistency/.

[39] Bernadette Charron-Bost. Concerning the size of logical clocks in distributed systems.

Information Processing Letters, 39(1), 1991.

[40] Byung-Gon Chun, Carlo Curino, Russell Sears, Alexander Shraer, Samuel Madden, and

Raghu Ramakrishnan. Mobius: Unified messaging and data serving for mobile apps. In

Int. Conf. on Mobile Sys., Apps. and Services (MobiSys), pages 141–154, New York, NY,

USA, 2012.

[41] Neil Conway, Peter Alvaro, Emily Andrews, and Joseph M Hellerstein. Edelweiss: Auto-

matic storage reclamation for distributed programming. Proc. VLDB Endow., 7(6), 2014.

[42] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.

Benchmarking cloud serving systems with YCSB. In Symp. on Cloud Computing (SoCC),

pages 143–154, Indianapolis, IN, USA, 2010.

162

http://dx.doi.org/10.1007/978-3-642-31057-7_14
http://research.microsoft.com/apps/pubs/?id=189249
http://doi.acm.org/10.1145/2535838.2535848
http://research.microsoft.com/apps/pubs/default.aspx?id=211340
http://research.microsoft.com/apps/pubs/default.aspx?id=211340
http://googleappsdeveloper.blogspot.com/2013/03/build-collaborative-apps-with-google.html
http://googleappsdeveloper.blogspot.com/2013/03/build-collaborative-apps-with-google.html
http://haslab.wordpress.com/2012/11/28/scaling-up-reconciliation-in-eventual-consistency/
http://haslab.wordpress.com/2012/11/28/scaling-up-reconciliation-in-eventual-consistency/

BIBLIOGRAPHY

[43] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Fur-

man, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson

Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-

nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi

Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner:

Google’s globally-distributed database. In Symp. on Op. Sys. Design and Implementa-

tion (OSDI), pages 251–264, Hollywood, CA, USA, October 2012. Usenix. URL https:

//www.usenix.org/system/files/conference/osdi12/osdi12-final-16.pdf.

[44] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash

Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner

Vogels. Dynamo: Amazon’s highly available key-value store. In Symp. on Op. Sys. Principles

(SOSP), volume 41 of Operating Systems Review, pages 205–220, Stevenson, Washington,

USA, October 2007. Assoc. for Computing Machinery. doi: http://doi.acm.org/10.1145/

1294261.1294281.

[45] Andrei Deftu and Jan Griebsch. A scalable conflict-free replicated set data type. In Int.

Conf. on Distributed Comp. Sys. (ICDCS), pages 186–195, Washington, DC, USA, 2013.

[46] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel. Orbe: Scalable causal

consistency using dependency matrices and physical clocks. In Symp. on Cloud Computing

(SoCC), pages 11:1–11:14, Santa Clara, CA, USA, October 2013. Assoc. for Computing

Machinery. doi: 10.1145/2523616.2523628. URL http://doi.acm.org/10.1145/2523616.

2523628.

[47] Jiaqing Du, Calin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel. Closing the perfor-

mance gap between causal consistency and eventual consistency,. In W. on the Principles

and Practice of Eventual Consistency (PaPEC), Amsterdam, the Netherlands, 2014. URL

http://eventos.fct.unl.pt/papec/pages/program.

[48] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. In Int. Conf. on the

Mgt. of Data (SIGMOD), pages 399–407, Portland, OR, USA, 1989. Assoc. for Computing

Machinery. doi: http://doi.acm.org/10.1145/67544.66963.

[49] Faith Fich and Eric Ruppert. Hundreds of impossibility results for distributed computing.

Distrib. Comput., 16(2-3):121–163, September 2003. doi: 10.1007/s00446-003-0091-y. URL

http://dx.doi.org/10.1007/s00446-003-0091-y.

[50] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002. ISSN 0163-

5700. doi: http://doi.acm.org/10.1145/564585.564601.

163

https://www.usenix.org/system/files/conference/osdi12/osdi12-final-16.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-16.pdf
http://doi.acm.org/10.1145/2523616.2523628
http://doi.acm.org/10.1145/2523616.2523628
http://eventos.fct.unl.pt/papec/pages/program
http://dx.doi.org/10.1007/s00446-003-0091-y

BIBLIOGRAPHY

[51] Richard A. Golding. Weak-consistency group communication and membership. PhD thesis,

University of California Santa Cruz, Santa Cruz, CA, USA, December 1992. URL ftp:

//ftp.cse.ucsc.edu/pub/tr/ucsc-crl-92-52.ps.Z. Tech. Report UCSC-CRL-92-52.

[52] Alexey Gotsman and Hongseok Yang. Composite replicated data types. In submission,

2014. URL http://software.imdea.org/~gotsman/papers/compos.pdf.

[53] Maurice Herlihy and Jeannette Wing. Linearizability: a correcteness condition for concur-

rent objects. ACM Transactions on Programming Languages and Systems, 12(3):463–492,

July 1990. URL http://doi.acm.org/10.1145/78969.78972.

[54] Martin Hofmann, Benjamin Pierce, and Daniel Wagner. Symmetric lenses. In Symp. on

Principles of Prog. Lang. (POPL), pages 371–384, New York, NY, USA, 2011. Assoc. for

Computing Machinery.

[55] Caroline Jay, Mashhuda Glencross, and Roger Hubbold. Modeling the effects of delayed

haptic and visual feedback in a collaborative virtual environment. ACM Trans. Comput.-

Hum. Interact., 14(2), August 2007. doi: 10.1145/1275511.1275514. URL http://doi.acm.

org/10.1145/1275511.1275514.

[56] Paul R. Johnson and Robert H. Thomas. The maintenance of duplicate databases. Internet

Request for Comments RFC 677, Information Sciences Institute, January 1976. URL

http://www.rfc-editor.org/rfc.html.

[57] Aman Kansal, Bhuvan Urgaonkar, and Sriram Govindan. Using dark fiber to displace

diesel generators. In Hot Topics in Operating Systems, Santa Ana Pueblo, NM, USA, 2013.

[58] Kyle Kingsbury. Call me maybe: Cassandra. http://aphyr.com/posts/

294-call-me-maybe-cassandra/, September 2013.

[59] James J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system.

ACM Trans. on Comp. Sys. (TOCS), 10(5):3–25, February 1992. URL http://www.acm.

org/pubs/contents/journals/tocs/1992-10.

[60] Robert Kroeger. Gmail for mobile HTML5 series: Cache pattern for offline HTML5 web

applications. Google Code Blog, June 2009. URL http://googlecode.blogspot.com/

2009/06/gmail-for-mobile-html5-series-cache.html.

[61] Rivka Ladin, Barbara Liskov, and Liuba Shrira. Lazy replication: Exploiting the semantics

of distributed services. Operating Systems Review, 25(1):49–55, January 1991.

[62] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. Providing high

availability using lazy replication. Trans. on Computer Systems, 10(4):360–391, November

1992. URL http://dx.doi.org/10.1145/138873.138877.

164

ftp://ftp.cse.ucsc.edu/pub/tr/ucsc-crl-92-52.ps.Z
ftp://ftp.cse.ucsc.edu/pub/tr/ucsc-crl-92-52.ps.Z
http://software.imdea.org/~gotsman/papers/compos.pdf
http://doi.acm.org/10.1145/78969.78972
http://doi.acm.org/10.1145/1275511.1275514
http://doi.acm.org/10.1145/1275511.1275514
http://www.rfc-editor.org/rfc.html
http://aphyr.com/posts/294-call-me-maybe-cassandra/
http://aphyr.com/posts/294-call-me-maybe-cassandra/
http://www.acm.org/pubs/contents/journals/tocs/1992-10
http://www.acm.org/pubs/contents/journals/tocs/1992-10
http://googlecode.blogspot.com/2009/06/gmail-for-mobile-html5-series-cache.html
http://googlecode.blogspot.com/2009/06/gmail-for-mobile-html5-series-cache.html
http://dx.doi.org/10.1145/138873.138877

BIBLIOGRAPHY

[63] Avinash Lakshman and Prashant Malik. Cassandra, a decentralized structured storage sys-

tem. In W. on Large-Scale Dist. Sys. and Middleware (LADIS), volume 44 of Operating Sys-

tems Review, pages 35–40, Big Sky, MT, USA, October 2009. ACM SIG on Op. Sys. (SIGOPS),

Assoc. for Computing Machinery. doi: http://dx.doi.org/10.1145/1773912.1773922.

[64] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Com-

munications of the ACM, 21(7):558–565, July 1978. URL http://doi.acm.org/10.1145/

359545.359563.

[65] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo

Rodrigues. Making geo-replicated systems fast as possible, consistent when necessary. In

Symp. on Op. Sys. Design and Implementation (OSDI), pages 265–278, Hollywood, CA,

USA, October 2012.

[66] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t

settle for eventual: scalable causal consistency for wide-area storage with COPS. In Symp.

on Op. Sys. Principles (SOSP), pages 401–416, Cascais, Portugal, October 2011. Assoc. for

Computing Machinery. doi: http://doi.acm.org/10.1145/2043556.2043593.

[67] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Stronger

semantics for low-latency geo-replicated storage. In Networked Sys. Design and Implem.

(NSDI), pages 313–328, Lombard, IL, USA, April 2013. Usenix. URL https://www.usenix.

org/system/files/conference/nsdi13/nsdi13-final149.pdf.

[68] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin. Consistency, availability, and conver-

gence. Technical Report UTCS TR-11-22, Dept. of Comp. Sc., The U. of Texas at Austin,

Austin, TX, USA, 2011.

[69] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi, Mike Dahlin,

and Michael Walfish. Depot: Cloud storage with minimal trust. Trans. on Computer

Systems, 29(4):12:1–12:38, December 2011. doi: 10.1145/2063509.2063512. URL http:

//doi.acm.org/10.1145/2063509.2063512.

[70] Dahlia Malkhi and Douglas B. Terry. Concise version vectors in WinFS. Distributed

Computing, 20(3):209–219, October 2007. doi: http://dx.doi.org/10.1007/s00446-007-0044-y.

[71] Friedmann Mattern. Virtual time and global states of distributed systems. In Int. W.

on Parallel and Distributed Algorithms, pages 215–226. Elsevier Science Publishers B.V.

(North-Holland), 1989.

[72] Madhavan Mukund, Gautham Shenoy, and S. P. Suresh. Optimized OR-sets without

ordering constraints. In Int. Conf. on Distributed Comp. and Net. (ICDCN), pages 227–241.

Springer, 2014.

165

http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final149.pdf
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final149.pdf
http://doi.acm.org/10.1145/2063509.2063512
http://doi.acm.org/10.1145/2063509.2063512

BIBLIOGRAPHY

[73] Brice Nédelec, Pascal Molli, Achour Mostefaoui, and Emmanuel Desmontils. LSEQ: An

adaptive structure for sequences in distributed collaborative editing. In Proceedings of the

ACM Symposium on Document Engineering, DocEng ’13, pages 37–46, New York, NY, USA,

2013. Assoc. for Computing Machinery. URL http://doi.acm.org/10.1145/2494266.

2494278.

[74] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. Proving correctness of

transformation functions in collaborative editing systems. Technical Report RR-5795, LO-

RIA – INRIA Lorraine, December 2005. URL http://hal.inria.fr/inria-00071213/.

[75] Gérald Oster, Pascal Molli, Pascal Urso., and Abdessamad Imine. Tombstone Transforma-

tion Functions for ensuring consistency in collaborative editing systems. In Int. Conf. on

Coll. Computing: Networking, Apps. and Worksharing (CollaborateCom), November 2006.

[76] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. Data consistency for

P2P collaborative editing. In Int. Conf. on Computer-Supported Coop. Work (CSCW), pages

259–268, Banff, Alberta, Canada, November 2006. ACM Press. doi: http://doi.acm.org/

10.1145/1180875.1180916. URL http://www.loria.fr/~molli/pmwiki/uploads/Main/

oster06cscw.pdf.

[77] D. Stott Parker, Jr., Gerald J. Popek, Gerald Rudisin, Allen Stoughton, Bruce J. Walker,

Evelyn Walton, Johanna M. Chow, David Edwards, Stephen Kiser, and Charles Kline.

Detection of mutual inconsistency in distributed systems. IEEE Trans. on Soft. Engin.,

SE-9(3):240–247, May 1983.

[78] José Pereira, Luís Rodrigues, and Rui Oliveira. Semantically reliable multicast: Definition,

implementation, and performance evaluation. IEEE Trans. on Computers, 52(2):150–165,

February 2003. ISSN 0018-9340. doi: 10.1109/TC.2003.1176983. URL http://dx.doi.

org/10.1109/TC.2003.1176983.

[79] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers. Flexible update

propagation for weakly consistent replication. In Symp. on Op. Sys. Principles (SOSP),

pages 288–301, Saint Malo, October 1997. ACM SIGOPS. URL http://doi.acm.org/10.

1145/268998.266711.

[80] Gerald J. Popek, Richard G. Guy, Thomas W. Page, Jr., and John S. Heidemann. Replication

in Ficus distributed file systems. In IEEE Computer Society Technical Committee on

Operating Systems and Application Environments Newsletter, volume 4, pages 24–29.

IEEE, IEEE Computer Society, 1990.

[81] Nuno Preguiça, Joan Manuel Marquès, Marc Shapiro, and Mihai Leţia. A commutative

replicated data type for cooperative editing. In Int. Conf. on Distributed Comp. Sys. (ICDCS),

166

http://doi.acm.org/10.1145/2494266.2494278
http://doi.acm.org/10.1145/2494266.2494278
http://hal.inria.fr/inria-00071213/
http://www.loria.fr/~molli/pmwiki/uploads/Main/oster06cscw.pdf
http://www.loria.fr/~molli/pmwiki/uploads/Main/oster06cscw.pdf
http://dx.doi.org/10.1109/TC.2003.1176983
http://dx.doi.org/10.1109/TC.2003.1176983
http://doi.acm.org/10.1145/268998.266711
http://doi.acm.org/10.1145/268998.266711

BIBLIOGRAPHY

pages 395–403, Montréal, Canada, June 2009. doi: http://doi.ieeecomputersociety.org/10.

1109/ICDCS.2009.20. URL http://lip6.fr/Marc.Shapiro/papers/icdcs09-treedoc.

pdf.

[82] Nuno Preguiça, J. Legatheaux Martins, Henrique Domingos, and Sérgio Duarte. Data man-

agement support for asynchronous groupware. In Int. Conf. on Computer-Supported Coop.

Work (CSCW), pages 69–78, New York, NY, USA, 2000. Assoc. for Computing Machinery.

ISBN 1-58113-222-0. doi: 10.1145/358916.358972. URL http://doi.acm.org/10.1145/

358916.358972.

[83] Venugopalan Ramasubramanian, Thomas Rodeheffer, Douglas B. Terry, Meg Walraed-

Sullivan, Ted Wobber, Cathy Marshall, and Amin Vahdat. Cimbiosys: A platform for

content-based partial replication. In Networked Sys. Design and Implem. (NSDI), 2009.

[84] Redis. Redis is an open source, BSD licensed, advanced key-value store. http://redis.

io/, May 2014.

[85] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. Replicated Abstract Data

Types: Building blocks for collaborative applications. Journal of Parallel and Dist. Comp.,

71(3):354–368, March 2011. doi: http://dx.doi.org/10.1016/j.jpdc.2010.12.006.

[86] Masoud Saeida Ardekani, Marek Zawirski, Pierre Sutra, and Marc Shapiro. The space

complexity of transactional interactive reads. In Int. W. on Hot Topics in Cloud Data

Processing (HotCDP), Bern, Switzerland, April 2012. Assoc. for Computing Machinery. doi:

10.1145/2169090.2169094. URL http://doi.acm.org/10.1145/2169090.2169094.

[87] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. Non-Monotonic Snapshot

Isolation: scalable and strong consistency for geo-replicated transactional systems. In

Symp. on Reliable Dist. Sys. (SRDS), pages 163–172, Braga, Portugal, October 2013.

IEEE Comp. Society. doi: 10.1109/SRDS.2013.25. URL http://lip6.fr/Marc.Shapiro/

papers/NMSI-SRDS-2013.pdf.

[88] Nicolas Schiper, Pierre Sutra, and Fernando Pedone. P-Store: Genuine partial replication

in wide area networks. In Symp. on Reliable Dist. Sys. (SRDS), pages 214–224, New Dehli,

India, October 2010. IEEE Comp. Society. URL http://doi.ieeecomputersociety.org/

10.1109/SRDS.2010.32.

[89] E. Schurman and J. Brutlag. Performance related changes and their user impact, June 2009.

URL https://www.youtube.com/watch?v=bQSE51-gr2s. Velocity Web Performance and

Operations Conference.

[90] Reinhard Schwarz and Friedemann Mattern. Detecting causal relationships in distributed

computations: In search of the holy grail. Distributed Computing, 7(3):149–174, 1994. ISSN

0178-2770. doi: 10.1007/BF02277859. URL http://dx.doi.org/10.1007/BF02277859.

167

http://lip6.fr/Marc.Shapiro/papers/icdcs09-treedoc.pdf
http://lip6.fr/Marc.Shapiro/papers/icdcs09-treedoc.pdf
http://doi.acm.org/10.1145/358916.358972
http://doi.acm.org/10.1145/358916.358972
http://redis.io/
http://redis.io/
http://doi.acm.org/10.1145/2169090.2169094
http://lip6.fr/Marc.Shapiro/papers/NMSI-SRDS-2013.pdf
http://lip6.fr/Marc.Shapiro/papers/NMSI-SRDS-2013.pdf
http://doi.ieeecomputersociety.org/10.1109/SRDS.2010.32
http://doi.ieeecomputersociety.org/10.1109/SRDS.2010.32
https://www.youtube.com/watch?v=bQSE51-gr2s
http://dx.doi.org/10.1007/BF02277859

BIBLIOGRAPHY

[91] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Convergent and

commutative replicated data types. Technical Report 104, June 2011. URL http://www.

eatcs.org/images/bulletin/beatcs104.pdf.

[92] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated

data types. In Int. Symp. on Stabilization, Safety, and Security of Distributed Systems (SSS),

volume 6976 of Lecture Notes in Comp. Sc., pages 386–400, Grenoble, France, October 2011.

Springer-Verlag. doi: 10.1007/978-3-642-24550-3_29. URL http://www.springerlink.

com/content/3rg39l2287330370/.

[93] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive

study of Convergent and Commutative Replicated Data Types. Technical Report RR-7506,

Institut National de la Recherche en Informatique et Automatique (Inria), Rocquencourt,

France, January 2011. URL http://hal.archives-ouvertes.fr/inria-00555588/.

[94] Craig Shoemaker. Build an HTML5 offline application with Application Cache, Web

Storage and ASP.NET MVC. CODE Magazine, 2013. URL http://www.codemag.com/

Article/1112051.

[95] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional storage for

geo-replicated systems. In Symp. on Op. Sys. Principles (SOSP), pages 385–400, Cascais,

Portugal, October 2011. Assoc. for Computing Machinery. doi: http://doi.acm.org/10.1145/

2043556.2043592.

[96] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer, Marvin M. Theimer,

and Brent B. Welch. Session guarantees for weakly consistent replicated data. In Int. Conf.

on Para. and Dist. Info. Sys. (PDIS), pages 140–149, Austin, Texas, USA, September 1994.

[97] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J. Spreitzer,

and Carl H. Hauser. Managing update conflicts in Bayou, a weakly connected replicated

storage system. In Symp. on Op. Sys. Principles (SOSP), pages 172–182, Copper Mountain,

CO, USA, December 1995. ACM SIGOPS, ACM Press. URL http://www.acm.org/pubs/

articles/proceedings/ops/224056/p172-terry/p172-terry.pdf.

[98] Robbert van Renesse and Fred B. Schneider. Chain replication for supporting high

throughput and availability. In Symp. on Op. Sys. Design and Implementation (OSDI),

pages 91–104, San Francisco, CA, USA, December 2004. Usenix, Usenix. URL http:

//www.usenix.org/events/osdi04/tech/renesse.html.

[99] Kaushik Veeraraghavan, Venugopalan Ramasubramanian, Thomas L. Rodeheffer, Dou-

glas B. Terry, and Ted Wobber. Fidelity-aware replication for mobile devices. In Int. Conf.

on Mobile Sys., Apps. and Services (MobiSys). Assoc. for Computing Machinery, June 2009.

URL http://research.microsoft.com/apps/pubs/default.aspx?id=80670.

168

http://www.eatcs.org/images/bulletin/beatcs104.pdf
http://www.eatcs.org/images/bulletin/beatcs104.pdf
http://www.springerlink.com/content/3rg39l2287330370/
http://www.springerlink.com/content/3rg39l2287330370/
http://hal.archives-ouvertes.fr/inria-00555588/
http://www.codemag.com/Article/1112051
http://www.codemag.com/Article/1112051
http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/p172-terry.pdf
http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/p172-terry.pdf
http://www.usenix.org/events/osdi04/tech/renesse.html
http://www.usenix.org/events/osdi04/tech/renesse.html
http://research.microsoft.com/apps/pubs/default.aspx?id=80670

BIBLIOGRAPHY

[100] Werner Vogels. Eventually consistent. ACM Queue, 6(6):14–19, October 2008. doi: http:

//doi.acm.org/10.1145/1466443.x.

[101] Stéphane Weiss, Pascal Urso, and Pascal Molli. Logoot: a scalable optimistic replication

algorithm for collaborative editing on P2P networks. In Int. Conf. on Distributed Comp.

Sys. (ICDCS), Montréal, Canada, June 2009.

[102] Gene T. J. Wuu and Arthur J. Bernstein. Efficient solutions to the replicated log and dictio-

nary problems. In Symp. on Principles of Dist. Comp. (PODC), pages 233–242, Vancouver,

BC, Canada, August 1984. URL http://doi.acm.org/10.1145/800222.806750.

[103] Marek Zawirski, Marc Shapiro, and Nuno Preguiça. Asynchronous rebalancing of a

replicated tree. In Conf. Française sur les Systèmes d’Exploitation (CFSE), Saint-Malo,

France, May 2011.

[104] Marek Zawirski, Annette Bieniusa, Valter Balegas, Sérgio Duarte, Carlos Baquero, Marc

Shapiro, and Nuno Preguiça. SwiftCloud: Fault-tolerant geo-replication integrated all the

way to the client machine. Technical Report RR-8347, Institut National de la Recherche

en Informatique et Automatique (Inria), Rocquencourt, France, August 2013. URL http:

//hal.inria.fr/hal-00870225/.

169

http://doi.acm.org/10.1145/800222.806750
http://hal.inria.fr/hal-00870225/
http://hal.inria.fr/hal-00870225/

	List of Tables
	List of Figures
	Preliminaries
	Introduction
	Contributions
	Optimality of Replicated Data Types
	Causally-Consistent Object Database for Client-Side Applications

	Organization
	Authorship and Published Results

	Replicated Data Types
	Motivation
	System Model and Object Implementation
	Object Implementation Model
	Replication
	Examples
	Counter Implementations
	Register Implementations

	Specification of Intended Behavior
	Specification Model
	Examples
	Counter Specification
	Register Specifications
	Set Specifications

	Execution Model and Correctness
	Execution Model
	Implementation Correctness
	Implementation Categories
	Network Specifications
	Visibility Witnesses
	Main Categories

	Optimality of Replicated Data Types
	Metadata Space Complexity Problem
	Problem Statement
	Optimizing Implementations
	Successful Optimizations
	Add-Wins Set
	Multi-Value Register

	Prior Implementations and Unsuccessful Optimizations
	Last-Writer-Wins Register
	Remove-Wins Set
	Last-Writer-Wins Set
	Counter

	Summary

	Lower Bounds on Complexity and Implementation Optimality
	Proof Technique
	Experiment Family
	Driver Programs

	Lower Bounds
	Counter
	Add-Wins Set
	Remove-Wins Set
	Last-Writer-Wins Set
	Multi-Value Register
	Last-Writer-Wins Register

	Summary

	Related Work and Discussion
	Other Data Types
	State-Based Optimizations Beyond Our Metric
	Background Compaction of Stable Metadata
	Finer-Grained Optimizations
	Custom Timestamps

	Other Implementation Categories
	State-Based Implementations With Smaller Messages
	Optimizations Based on Topology Restrictions and Delayed Visibility
	Replicated File Systems

	Lower Bound Proofs in Distributed Computing

	Causally-Consistent Object Database for Client-Side Applications
	Problem Overview
	System Model and Basic Requirements
	Consistency with Convergence
	Causal Consistency
	Convergence with Replicated Data Types

	Application Programming Interface
	Challenge
	Metadata Design
	Causal Consistency with Partial Replication is Hard

	The SwiftCloud Approach
	Design
	Causal Consistency at Full Data Center Replicas
	Causal Consistency at Partial Client Replicas
	Failing Over: The Issue with Transitive Causal Dependency
	Conservative Read: Possibly Stale, But Safe
	Discussion

	Implementation
	Timestamps, Vectors and Log Merge
	Protocols
	State
	Client-Side Execution
	Transfer Protocol: Client to Data Center
	Geo-replication Protocol: Data Center to Data Center
	Notification Protocol: Data Center to Client

	Object Checkpoints and Log Pruning
	Log Pruning in the Data Center
	Pruning the Client's Log

	Experimental Evaluation
	Prototype and Applications
	Experimental Setup
	Experimental Results
	Response Time and Throughput
	Scalability
	Tolerating Client Churn
	Tolerating Data Center Failures
	Staleness Cost

	Related Work
	Consistency Models for High Availability
	Relevant Systems
	Replicated Databases for Client-Side Applications
	Systems that Support Inter-Object Consistency
	Systems that Support Intra-Object Consistency Only
	Session Guarantees

	Geo-replicated Databases for Server-Side Applications
	Approaches
	Comparison and Applicability to Client-Side Replication

	Conclusion
	Summary
	Limitations and Perspectives

	Appendix
	Additional Material on Replicated Data Types
	Formal Network Layer Specifications
	Optimized Op-Based Implementations

	Metadata Overhead Proofs
	Standard Encoding
	Metadata Overhead of Specific Implementations
	Lower Bound Proofs
	Add-Wins Set
	Remove-Wins Set
	Last-Writer-Wins Set
	Multi-Value Register
	Last-Writer-Wins Register

	Résumé de la thèse
	L’optimalité des types les données répliquées
	Une base de données causalement cohérente pour les applications coté client
	Présentation du problème
	La cohérence et la convergence
	La conception des métadonnées
	La cohérence causale avec une réplication partielle est dur

	L’approche SwiftCloud
	Cohèrence causale dans les répliques complètes des Centre de Données
	Cohèrence causale dans les répliques client partielles
	Le basculement sur erreur: Le problème avec la dépendance causale transitive
	Protocoles avec les métadonnées découplées et délimitées

	La mise en œuvre et l’évaluation

	Bibliography

