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Abstract

The evolution of High-Performance Computing systems has taken a sharp turn in the last decade.
Due to the enormous energy consumption of modern platforms, miniaturization and frequency
scaling of processors have reached a limit. The energy constraints has forced hardware manufac-
turers to develop alternative computer architecture solutions in order to manage answering the
ever-growing need of performance imposed by the scientists and the society. However, e�ciently
programming such diversity of platforms and fully exploiting the potentials of the numerous dif-
ferent resources they o�er is extremely challenging. The previously dominant trend for designing
high performance applications, which was based on large monolithic codes o�ering many opti-
mization opportunities, has thus become more and more di�cult to apply since implementing and
maintaining such complex codes is very di�cult. Therefore, application developers increasingly
consider modular approaches and dynamic application executions. A popular approach is to im-
plement the application at a high level independently of the hardware architecture as Directed
Acyclic Graphs of tasks, each task corresponding to carefully optimized computation kernels for
each architecture. A runtime system can then be used to dynamically schedule those tasks on the
di�erent computing resources.

Developing such solutions and ensuring their good performance on a wide range of setups is
however very challenging. Due to the high complexity of the hardware, to the duration variability of
the operations performed on a machine and to the dynamic scheduling of the tasks, the application
executions are non-deterministic and the performance evaluation of such systems is extremely
di�cult. Therefore, there is a de�nite need for systematic and reproducible methods for conducting
such research as well as reliable performance evaluation techniques for studying these complex
systems.

In this thesis, we show that it is possible to perform a clean, coherent, reproducible study, using
simulation, of dynamic HPC applications. We propose a unique work�ow based on two well-known
and widely-used tools, Git and Org-mode, for conducting a reproducible experimental research.
This simple work�ow allows for pragmatically addressing issues such as provenance tracking and
data analysis replication. Our contribution to the performance evaluation of dynamic HPC ap-
plications consists in the design and validation of a coarse-grain hybrid simulation/emulation of
StarPU, a dynamic task-based runtime for hybrid architectures, over SimGrid, a versatile simula-
tor for distributed systems. We present how this tool can achieve faithful performance predictions
of native executions on a wide range of heterogeneous machines and for two di�erent classes of
programs, dense and sparse linear algebra applications, that are a good representative of the real
scienti�c applications.
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Résumé

Le calcul à hautes performances s'est vu contraint d'évoluer de façon radicalement di�érente durant
la dernière décennie. La miniaturisation et l'augmentation de la fréquence des processeurs a at-
teint ses limites en raison des consommations d'énergies déraisonnables induites. Cette contrainte
énergétique a conduit les fabricants de matériel à développer de nombreuses architectures alter-
natives a�n de répondre aux besoins toujours croissants de puissance de calcul de la communauté
scienti�que. Cependant, programmer e�cacement des plates-formes aussi diverses et exploiter
l'intégralité des ressources qu'elles o�rent s'avère extrêmement di�cile. L'approche classique de
conception d'application haute performance consistant à se reposer sur des codes monolithiques
o�rant de nombreuses opportunités d'optimisation est ainsi devenue de plus en plus di�cile à ap-
pliquer en raison de di�culté d'implémentation, de portabilité et de maintenance. Par conséquent,
les développeurs de telles applications considèrent de plus en plus couramment des approches mod-
ulaires et une exécution dynamique des di�érents composants. Une approche populaire consiste
à implémenter ces applications à relativement haut niveau, indépendamment de l'architecture
matérielle, en se reposant sur un paradigme basé sur la notion de graphe de tâches où chaque
tâche correspond à un noyau de calcul soigneusement optimisé pour chaque architecture cible. Un
système de runtime peut alors ensuite être utilisé pour ordonnancer dynamiquement ces tâches
sur les di�érentes ressources de calcul à disposition.

Garantir l'e�cacité de telles applications sur un large spectre de con�gurations reste néanmoins
un dé� majeur. En e�et, en raison de la grande complexité du matériel, de la variabilité des
temps d'exécution des calculs et de la dynamicité d'ordonnancement des tâches, l'exécution des
applications n'est pas déterministe et l'évaluation de la performance de ces systèmes est très
délicate. Par conséquent, il est nécessaire de disposer d'une méthodologie systématique, rigoureuse
et reproductible pour conduire de telles études et évaluer la performance de tels systèmes.

Dans cette thèse, nous montrons qu'il est possible d'étudier les performances de telles applica-
tions dynamiques à l'aide de simulations, et ce de façon �able, cohérente et reproductible. Nous
proposons dans un premier temps une méthode de travail originale basée sur deux outils couram-
ment utilisés dans notre communauté, Git et Org-mode, et permettant de mettre en oeuvre une
recherche expérimentale reproductible. Cette approche simple permet de résoudre de façon prag-
matique des problèmes tels que le suivi de la provenance des expériences ou la réplication de
l'analyse des données expérimentales. Dans un second temps, nous contribuons à l'évaluation de
performance d'applications dynamiques en concevant et en validant une simulation/émulation hy-
bride à gros grains de StarPU, un runtime dynamique utilisant le paradigme de graphes de tâches
et particulièrement adapté à l'exploitation d'architecture hybrides. Cette simulation est réalisée
à l'aide de SimGrid, un simulateur polyvalent de systèmes distribués. Nous présentons comment
notre approche permet d'obtenir des prédictions de performances d'exécutions réelles �ables sur
un large panel de machines hétérogènes. Nous appliquons notre approche à deux classes de pro-
grammes di�érentes, les applications d'algèbre linéaire dense et creuse, qui sont représentatives
d'un grand nombre d'applications scienti�ques.
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Chapter 1

Introduction

Computers have become an indispensable research tool in many scienti�c �elds such as physics,
medicine, engineering, etc. These machines can execute trillions of operations per second and
therefore perform computations that are far beyond from what humans could manually do. Still,
even such tremendous computational power is insu�cient for solving certain computational prob-
lems. Programs performing simulations in particle physics, earthquakes or astronomy all study
very large systems and have thus to perform vast amount of computation on huge data. High-
Performance Computing (HPC) is a computer science discipline that focuses on these groups of
applications as well as on the platforms required to execute them.

High power machines, often calledsupercomputers, went through an extremely rapid evolution
in the past 50 years. Thanks to the miniaturization and frequency scaling of the microchips,
the performance of the computers doubled approximately every 18 months. However, this trend
stopped a decade ago due to the technological limitations, namely energy consumption and heat.
In order to pursue performance growth, manufacturers started to produce computers with multiple
cores per processor and started to add the accelerator units. This allowed for breaking the problems
into smaller ones that can be executed in parallel. Therefore, modern HPC machines comprise
thousands to millions of cores, interconnected by fast networks.

The HPC community maintains the list of the fastest 500 computers in the world: the
TOP500 [Top]. This list ranks the computers by the achieved maximum number of FLOPS
(FLoating-point Operations Per Second) measured with the LINPACK benchmark [Don88]. To-
day's fastest supercomputer is �Tianhe-2� in China with 3,120,000 processor cores and it reaches
a peak performance of approximately 33 PetaFlops (1016 �oating-point operations per second). If
the previous trends continue, it is expected that 1 ExaFlops (1018 �oating-point operations per
second) will be reached in 2020.

The major challenge for achieving such a high performance is energy constraint. Supercomput-
ers and data centers already consume as much electricity as a small city and the price for powering
them for a few years is the same as the initial price of the hardware that it is composed of. There-
fore, it is estimated that the power budget for the future fastest computers should not exceed 20
MegaWatts. This requires performance e�ciency of 50 GFLOPS/Watt, which is far above the
current maximum of 5,2 GFLOPS/Watt achieved by the L-CSC computer [Greb]. Hence, there
is a huge energy-e�cient computing movement in HPC that established a new supercomputer
ranking. The Green500 list [Grea] is organized similarly to the TOP500, except that computers
are ranked according to their energy e�ciency.

The large diversity of hardware architectures and their respective complexity, on both TOP500
and Green500 lists, clearly indicate that no consensus has still been reached on the architecture
of the future supercomputers. For example, the top three machines on the Green500 list all use
di�erently designed accelerators produced by di�erent vendors [Greb]. The technology is evolving
extremely fast and it is hard to predict what kind of resources will be available to the applications
developers.

Implementing codes whose performance is portable across such diverse and complex platforms
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becomes extremely challenging. Having hundred times more processor cores rarely provides hun-
dred times faster execution due to the overheads of parallelization, communication and critical
path limits of the application. Such scaling issues are hard to overcome, as exploiting e�ciently
all resources provided by modern computer platforms is not trivial.

Until a few years ago, the dominant trend for designing HPC libraries mainly consisted of
designing scienti�c software as a single whole that aims to cope with both the algorithmic and
architectural needs. This approach may indeed lead to extremely high performance because the
developer has the opportunity to optimize all parts of the code, from the high level design of
the algorithm down to low level technical details such as data movements. However, such a
development often requires a tremendous e�ort, and is very di�cult to maintain. Achieving
portable and scalable performance has thus become extremely challenging, especially for irregular
codes.

There is a recent and general trend in using instead a modular approach where numerical
algorithms are written at a high level independently of the hardware architecture as Directed
Acyclic Graphs (DAG) of tasks. A task-based runtime system then dynamically schedules the
resulting DAG on the di�erent computing resources, automatically taking care of data movement
and taking into account the possible speed heterogeneity and variability. In such a way, runtimes
abstract the underlying architecture complexity through a common application program interface
(API).

However, dynamic task-based runtimes are hard to develop and the evaluation of their perfor-
mance raises two major challenges. First, these complex runtimes aim to support diverse platform
and parameter con�gurations. Therefore, to ensure that they achieve good performance on a
wide range of settings, numerous experiments need to be executed. Second, these runtimes use
dynamic scheduling techniques, which leads to non-deterministic executions. From one execution
to another, tasks are not executed in the same order or on the same resources, leading to di�er-
ent makespans, which makes performance evaluation and comparison even more di�cult than in
classical deterministic settings. Furthermore, this non-determinism often brings heisenbugs that
are very hard to locate.

Hence, there is a huge need for a reliable experimental methodology allowing to produce re-
producible results to evaluate the correctness of the execution and the good performance of the
runtimes on a wide range of settings. A possible solution is to conduct such experimental studies
using simulation, which can address the aforementioned issues.

In this thesis, we propose a sound methodology for experimentally evaluating the performance
of HPC application implemented on top of dynamic task-based runtimes, using faithful simulation
predictions. In our approach, the target high-end machines are calibrated only once to derive
sound performance models. These models can then be used at will to quickly predict and study
in a reproducible way the performance of resource-demanding parallel applications using solely a
commodity laptop. This allows for obtaining performance predictions of classical linear algebra
kernels accurate within a few percents and in a matter of seconds, which allows both runtime
and application designers to quickly decide which optimization to enable or whether it is worth
investing in additional hardware components or not. Moreover, this allows for conducting robust
and extensive scheduling studies in a controlled environment whose characteristics are very close
to real platforms while having a reproducible behavior.

1.1 Contributions

Figure 1.1 (left part) recaps the previously described system, where an application can be executed
either directly on the operating system (OS) or on top of a runtime. The goal of our research was
however not to directly contribute to the development of any of these blocks, but to propose a good
methodology and performance evaluation techniques to study them (right part of Figure 1.1).

In such a complex, multi-layer systems, it is impossible to master every part. Therefore, during
our research we closely collaborated with domain experts, most notably with:
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Figure 1.1: Diagram illustrating contributions (in gray) of our work that are related to methodology and
performance evaluation. In this thesis, for the simulation aspect of our work we consider solely the case
where applications rely on a runtime. Our work�ow for doing reproducible research is however completely
general.
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1. Application developers: EmmanuelAgullo , Suraj Kumar , Paul Renaud-Goud , Abdou
Guermouche , Alfredo Buttari , and Florent Lopez .

2. Runtime developers: SamuelThibault , and Marc Sergent .

3. Operating systems and computer architecture experts: BriceVideau , Jean-François
Méhaut , Augustin Degomme and numerous other researchers from teams MESCAL,
MOAIS, NANOSIM, CORSE and TIMA in Grenoble as well as experts from ARM and
the Barcelona Supercomputing Center.

Even though we studied several aspects in the area of methodology and performance evaluation,
the main contributions of this thesis are twofold. First, we developed a unique work�ow for doing
reproducible research on a daily basis when conducting empirical studies on modern computer
architectures. Second, we crafted a faithfulsimulation of a dynamic runtime system that
aids at its evaluation.

1.1.1 Methodology for conducting reproducible research

Computers, operating systems and software running on it have reached such a level of complexity
that it has become very di�cult (not to say impossible) to control them perfectly and to know
every detail about their con�guration and operation mode. Consequently, it becomes less and less
reasonable to consider computer systems as deterministic. Experiments that focus on measuring
the execution time or the performance of the application running on such setups have thus become
non replicable by essence. Hence, there is an urgent need for sound experimental methodology.

We inspired on other tools and approaches developed in the last few years in the domain of
reproducible research to develop a lightweight experimental work�ow based on standard tools
widely used in our community. We used such work�ow extensively throughout three years of
research, and we strongly believe that our scienti�c work greatly bene�ted from it. This work�ow
was published in:

ˆ [1] L. Stanisic, A. Legrand, and V. Danjean. An e�ective git and org-mode based work�ow
for reproducible research. ACM SIGOPS Operating Systems Review, 49:61 � 70, 2015.
Special Topic: Repeatability and Sharing of Experimental Artifacts.

ˆ [4] L. Stanisic and A. Legrand. E�ective reproducible research with org-mode and git.
In 1st International Workshop on Reproducibility in Parallel Computing, Porto, Portugal,
Aug. 2014.

ˆ [7] L. Stanisic, and A. Legrand. Actes du 10ème Atelier en Évaluation de Performances,
chapter Good practices for reproducible research, pages 29�30. Inria, 2014.

Moreover, we presented our solution on numerous occasions in order to encourage researchers
from our community to rede�ne their practices and develop similar work�ows that will aid them
in their daily work. The most important events where our approach was presented are:

ˆ LIG day on trace production in Grenoble, March 2015.

ˆ Plafrim day on performance of parallel codes in Bordeaux, December 2014.

ˆ REPPAR workshop on reproducibility in parallel computing in Porto, August 2014.

ˆ AEP workshop on performance evaluation in Nice, June 2014.

ˆ Join Laboratory for Petascale Computing (JLPC) summer school on performance metrics,
modeling and simulation of large HPC systems in Nice, June 2014.
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ˆ SyncFree European project meeting in Paris, May 2014.

ˆ COMPAS conference in Neuchâtel, April 2014.

ˆ ANR SONGS plenary meetings in Lyon, June 2013, and in Nice, January 2014.

Additionally, our approach served as a base for a platform sharing HPC application traces,
which is a joint project between researchers in Grenoble and Bordeaux [Traa].

Finally, we made a regular usage of a laboratory notebook comprising information about all the
experiments we conducted during the last three years. We opened this laboratory notebook and
made it publicly available so that anyone can inspect and possibly build upon our results [SSW].

1.1.2 Simulating dynamic HPC applications

Runtime systems are a promising approach for e�ciently exploiting the heterogeneous resources
o�ered by modern computers. However, their development and optimal utilization is not easy
to achieve, and it requires constant experimental validation on a wide range of di�erent setups.
Evaluating the performance of such systems is extremely challenging due to the diversity of the
experimental machines as well as the complexity of the code of the both application and the run-
time. Moreover, for the runtimes that use dynamic scheduling, the executions are non-deterministic
which makes evaluation even more di�cult.

To address these issues, we developed a coarse-grain simulation tool. Our solution can be
executed quickly and on a commodity machine, in order to evaluate the performance of the long
runtime execution on a large, hybrid clusters. Additionally, the simulation provides reproducible
results, which makes debugging of both the code and the performance much easier. Our tool
provides very accurate performance predictions for applications running on top of dynamic task-
based runtime and it was presented in the following papers:

ˆ [3] L. Stanisic, E. Agullo, A. Buttari, A. Guermouche, A. Legrand, F. Lopez, and B. Videau.
Fast and Accurate Simulation of Multithreaded Sparse Linear Algebra Solvers. 2015.
Submitted to the ICPADS conference.

ˆ [2] L. Stanisic, S. Thibault, A. Legrand, B. Videau, and J.-F. Méhaut. Faithful Perfor-
mance Prediction of a Dynamic Task-Based Runtime System for Heterogeneous Multi-Core
Architectures. Concurrency and Computation: Practice and Experience, page 16, May 2015.

ˆ [5] L. Stanisic, S. Thibault, A. Legrand, B. Videau, and J.-F. Méhaut. Modeling and
simulation of a dynamic task-based runtime system for heterogeneous multi-core architec-
tures. In Euro-par - 20th International Conference on Parallel Processing, Euro-Par 2014,
LNCS 8632, pages 50�62, Porto, Portugal, Aug. 2014. Springer International Publishing
Switzerland.

This work was also presented on several occasions:

ˆ ANR SOLHAR plenary meeting in Lyon, June 2015.

ˆ Mont-Blanc meeting in Barcelona, October 2014.

ˆ EuroPar conference Porto, August 2014.

ˆ JointLab for Petascale Computing (JLPC) workshop in Nice, June 2014, and in Barcelona
July 2015.

ˆ ANR SONGS plenary meetings in Lyon, June 2012, in Nice, January 2014, and in Nancy,
January 2015.
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Finally, we emphasize that our solution is not merely a proof of concept. This tool has been
fully integrated into a runtime, and can thus be used for performance evaluation studies of both
applications (block Application in Figure 1.1) and runtime (block Runtime in Figure 1.1). Some re-
searchers have already bene�ted from this tool, while investigating di�erent scheduling algorithms
for the studied application [ABED + 15].

1.2 Thesis organization

The rest of this thesis is organized as follows: Chapter 2 brie�y describes the evolution of the HPC
applications and machines. It states the challenges of e�ciently programming in such context and
introduces dynamic task-based runtimes as a possible solution. Developing such programs is a
process that requires constant empirical validation, which may be prohibitive for large computer
platforms. Therefore, simulation can be used to overcome such limits. In Chapter 3 we present
state of the art related to the tools for doing reproducible research and to the techniques for
doing di�erent types of simulation. Chapter 4 addresses the question of developing a lightweight
and e�ective work�ow for conducting experimental research on modern parallel computer systems
in a reproducible way. Our approach builds on two well-known tools, Git and Org-mode, and
enables to address, at least partially, issues such as running experiments, provenance tracking,
experimental setup reconstruction or replicable analysis. In Chapter 5, we present in detail how
we ported a dynamic task-based runtime on top of a simulator. We also present the models that are
essential to obtain good performance predictions. In Chapter 6, we show that our approach allows
for obtaining predictions accurate within a few percents for two dense linear algebra applications
on wide range of hybrid machines, within a few seconds on a commodity laptop. We validate
our models by systematically comparing traces acquired in simulation with those from native
executions. In Chapter 7, we show that it is also possible to conduct faithful simulation of the
behavior of an irregular fully-featured library both in terms of performance and memory on multi-
core architectures. Finally, in Chapter 8, we conclude with the contributions of our study, as well
as its current limitation and future directions.
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Chapter 2

Background

2.1 Programming challenges for HPC application developers

2.1.1 HPC applications

HPC applications are computer programs that require high-level computational power. They in-
clude a wide range of scienti�c applications from various domains, such as molecular modeling,
weather forecast, quantum mechanics, simulation for engineering/�nance/biology, etc. For ex-
ample, the SPECFEM3D [PKL+ 11] application simulates seismic wave propagation on local to
regional scales using continuous Galerkin spectral-element method. Another good representative
is BigDFT [Big12] that proposes a novel approach for electronic structure simulation based on the
Daubechies wavelets formalism [GNG+ 08, Nus82].

Executing these applications on a commodity machine is possible, but it could take many
months or even years to complete, which is too long for any practical purposes. One CPU being
insu�cient for such high software requirements, supercomputers were introduced. These machines
typically comprise thousands of nodes interconnected through high-speed networks and possibly
equipped with accelerators. For example, SPECFEM3D was executed in February 2013 on the
IBM BlueWaters machine using 693,600 cores.

To continue with the progress in their domains, researchers need their applications to focus on
more details which makes applications more complex, hence the need for even more computational
power. Nevertheless, with the technology we currently have at our disposal, this requirement is
not easy to ful�ll. Table 2.1 shows the list of the o�cially most powerful machines in the world in
the last years (ranked �rst on the TOP500 list), where the multiplicity of solutions can be clearly
observed. Indeed, the choice of components and methods with which future supercomputers will
be constructed is constantly debated between HPC experts, many new technologies emerging and
showing promising performance results.

Table 2.1: Ranked �rst on the TOP500 list, illustrating the diversity of architectures used to construct
modern HPC platforms.

Date Name CPU Accelerator Interconnect
06/2013 Tianhe-2 Intel Xeon Xeon Phi TH Exp.2
11/2012 Titan AMD Opteron Kepler Cray Gemini
06/2012 Sequoia IBM Power BQC / Custom
11/2011 K computer Fujitsu SPARC64 / Tofu
11/2010 Tianhe-1A Intel Xeon Fermi Proprietary
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2.1.2 Di�erent architectures used in HPC

In the previous decades, computing power of individual CPUs mainly improved thanks to the
frequency increase, miniaturization, and hardware optimizations (cache hierarchy and aggressive
cache policies, out-of-order execution, branch prediction, speculative execution, etc.). However,
frequency increase and hardware optimizations are now facing hard limits and incur unacceptable
power consumption. Power consumption grows more than quadratically with the growth of fre-
quency. Additionally, speculative execution performs many useless operations and although they
seem free in terms of scheduling on the CPU resources, in terms of power utilization they waste
a lot of energy. If supercomputers are to achieve a predicted performance in the following years,
the power e�ciency of individual CPUs will have to be reduced by a factor of 30.

Several di�erent approaches are envisioned. The �rst one attempts to improve the power con-
sumption and increase parallelism of standard Intel/AMD processors currently used in HPC. This
is performed through various frequency scaling techniques, increased number of cores per CPU,
additional support for vectorized instructions, and many other very sophisticated methods. Still,
performance improvements introduced by each new generation of such processors are becoming less
and less signi�cant. To achive desired GFLOPS per Watt ratio, radical changes in the approach
are needed.

Another approach is to build on existing low-power CPUs commonly used in embedded systems
and to try to improve their performance, as proposed by the European Mont-Blanc project [Mon].
The Mont-Blanc project aims at developing scalable and power e�cient HPC platform based
on low-power ARM technology. ARM (Advanced RISC Machine and, before that, the Acorn
RISC Machine) processors are particularly designed for portable devices as they have very low
electric power consumption. Nowadays, these CPUs are embedded on almost all mobile phones
and personal digital assistants. However, such CPUs have very di�erent characteristics and using
them in HPC is not straightforward.

Yet another solution is based on the use of large Non-Uniform Memory Access (NUMA) ma-
chines. These machines consist of multiple multi-core processors, each containing its own part
of the memory hierarchy, interconnected with the other processors through PCI bus. The time
processor needs to access the data in the memory is non-uniform as it depends whether the data
is stored in local or distant memory bank. These architectures can achieve great performance for
certain applications, however programming them e�ciently is very hard as data locality has to be
carefully controlled. Since obtaining a solution with optimally distributed data for a single NUMA
machine is already a challenge, constructing a supercomputer with multiple nodes based on this
architecture is even harder. With the current system this approach would be extremely complex
to program, thus it is unlikely to scale well.

Graphics Processing Unit (GPU) o�ers a very valuable addition to the CPUs in order to
provide more computation power. This hardware component was initially designed to accelerate
the image creation for the display output. However, in the last decade GPUs have been also
extensively used for doing computation. Although they have a limited �ow control and cache
memory, GPUs o�er a large number of small cores. These cores can be used in parallel very
e�ciently for arithmetic operations on large arrays. This makes GPUs a perfect candidate for
running applications containing operations such as matrix multiplication, which is often the case
with HPC codes. However, this requires to rearrange applications and distinguish between control
parts executed on CPUs and computation intensive parts executed on the GPUs. Moreover, data
transfers to the GPUs have to be carefully managed. Another alternative for executing intensive
computation parts of the application is to use coprocessors, such as the Intel MIC (Intel Many
Integrated Core Architecture), better known under its brand name Xeon Phi.

We presented only a few basic groups of processors and accelerators and each of them contains
various derivatives. Regardless of the choice or a mixture of these architectures, it is certain that
future supercomputers will require a large number of such components. These nodes will also
have to be e�ciently connected to minimize the cost of data transfers, using technologies such as
In�niBand, Quadrics, Ethernet, etc. However, programming an application on such a complex
hardware is becoming extremely di�cult.
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2.1.3 Exploiting machine resources

In order to exploit the resources of modern HPC machines, developers need to implement their
solutions as a highly parallel, distributed programs.

To bene�t from the computing power o�ered by huge number of nodes present in the super-
computers, it is necessary to execute a parallel application in which work is distributed between
processing units. On each node, computation tasks are executed while the input and the output
data of the tasks is exchanged with other nodes through network. Such communication is typ-
ically performed by passing messages. The programming paradigm that became a standard for
such applications is MPI (Message Passing Interface) [DHHW93, GLS99b].

Additionally, with multi-core machines it is also possible to make execution parallel within the
node itself, typically by running one or several threads/processes per processor core. These multi-
ple threads on the same node thus share RAM and cache memories, through which data exchange
is performed. A widely used API supporting such programming paradigm is OpenMP [DM98].

Another possibility is o�ered by Cilk [BJK + 95] and Cilk++ [Cil], which are extensions to the
standard C and C++ programming languages. Using these languages, the programmer can specify
using prede�ned key words what parts of the code should be executed in parallel.

GPGPU (General Purpose computation on the Graphics Processing Units) exploits the
huge computational potential of the GPUs, commonly using programming languages such as
CUDA [CUD07] or OpenCL [Opeb, SGS10]. CUDA is a programming model developed by Nvidia
that provides an API for using their GPUs for parallel computing. OpenCL has a similar goal, but
goes one step further as it aims at providing a possibility to program on heterogeneous platforms
in general, using any accelerator. Although OpenCL provides more opportunities, often CUDA
outperforms it in terms of performance due to the di�erences in memory model and better Nvidia
compilation optimizations.

Implementing an application using any of the aforementioned approaches is not trivial, as
it requires from developers to know well the concepts and syntax of each language. Moreover,
to optimize the application for distributed hybrid systems, developers have to combine several
di�erent languages with their distinctive paradigms and ensure that these will work e�ciently
together. Such a direct, rigid approach typically scales badly for most applications, both in terms
of implementation e�ort and �nal execution performance.

It is very hard to achieve good utilization of the resources for complex hardware setups. To
exploit the tremendous computation power o�ered by such systems, application needs to be divided
in a large number of smaller tasks. These tasks are executed on di�erent processing units, in
the order that respects the data dependencies between them. However, implementing dynamic
execution of the application is a real challenge. Programming tasks e�ciently is a �rst concern, but
managing the combination of computation execution and data transfers can also become extremely
complex, particularly when dealing with multiple GPUs. In the past few years, it has become very
common to deal with that through the use of an additional software layer, a runtime system, based
on the task programming paradigm.

2.1.4 Dynamic task-based runtimes

Whereas task-based runtime systems were mainly research tools in the past years, their recent
progress makes them now solid candidates for designing advanced scienti�c software as they provide
programming paradigms that allow the programmer to express concurrency in a simple yet e�ective
way and relieve him from the burden of dealing with low-level architectural details. Runtimes
abstract the complexity of the underlying hardware by o�ering a unique API for the application
developers, who implement both CPU and GPU implementations for the tasks.

Runtimes employ a very modular approach. First, applications are written at high level,
independently of the hardware architecture, as DAG of tasks where each vertex represents a
computation task and each edge represents a dependency between tasks, possibly involving data
transfers. Figure 2.1 shows a typical example of such task graph for the Cholesky factorization
application (, whose internals are detailed in Subsection 6.1.1). A second part is in charge of
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Figure 2.1: An example of DAG: task graph of the tiled Cholesky factorization of 5 � 5 matrix with the
block dimension 960, implemented in StarPU.
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scheduling the DAG, i.e., to decide when and where (on which processing unit) to execute each
task. In the third part, a runtime engine takes care of implementing the scheduling decisions, i.e., to
retrieve the data necessary for the execution of a task (taking care of ensuring the data coherency),
to trigger its execution and to update the state of the DAG upon its task completion. The fourth
part consists of the tasks code optimized for the target architectures. In most cases, the bottom
three parts need not to be written by the application developer since most runtime systems embed
o�-the-shelf generic scheduling algorithms. For example, work-stealing [ABP01], MCT [THW02b]
(Minimum Completion Time) or HEFT [THW02a] (Heterogeneous Earliest Finish Time) very
e�ciently exploit target architectures. Such runtimes can also take into account the NUMA
e�ects on architectures with large number of CPUs using shared memory [PJN08, BFG+ 09].
Application programmers are thus relieved from scheduling concerns and technical details.

As a result, the concern becomes choosing the right task granularity, task graph structure,
and scheduling strategies optimizations. Task granularity is of a particular concern on hybrid
platforms, since a trade-o� must be found between large tasks which are e�cient on GPUs but
expose little task parallelism, and a lot of small tasks for CPUs. The task graph structure itself
can have an in�uence on execution time, by requiring more or less communication compared to
computation, which can be an issue depending on the available bandwidth of the target system.
Last but not least, optimizing scheduling strategies has been a concern for decades, and the
introduction of heterogeneous architectures only makes it even more challenging.

However, no consensus has still been reached on a speci�c paradigm of the runtime. For
example, PTG (Parametrized Task Graph) approaches [BBD+ 12] consist of explicitly describing
tasks (vertices of the DAG) and their mutual dependencies (edges) by informing the runtime
system with a set of dependency rules. In such a way, the DAG is never explicitly built but can be
progressively unrolled and traversed in a very e�ective and �exible way. This approach can achieve
a great scalability on a very large number of processors but explicitly expressing the dependencies
may be a hard task, especially when designing complex schemes.

On the other hand, the STF (Sequential Task Flow) model simply consists of submitting
a sequence of tasks through a non blocking function call that delegates the execution of the
task to the runtime system. Upon submission, the runtime system adds the task to the current
DAG along with its dependencies which are automatically computed through data dependency
analysis [AK02]. The actual execution of the task is then postponed to the moment when its
dependencies are satis�ed. This paradigm is also sometimes referred to assuperscalar since it
mimics the functioning of superscalar processors where instructions are issued sequentially from a
single stream but can actually be executed in a di�erent order and, possibly, in parallel depending
on their mutual dependencies.

Many runtimes with di�erent paradigms (, optimized for slightly di�erent use cases,) have
been proposed. A complete review of them is out of the scope of this thesis and thus we present
only a few of the most currently used ones: QUARK [YKD] and PaRSEC [BBD+ 13] from ICL,
Univ. of Tennessee Knoxville (USA), Supermatrix [CVV+ 08] from University of Texas (USA),
Charm++ [KK96] from University of Illinois (USA), StarPU [ATNW11] from Inria Bordeaux
(France), KAAPI [GBP07] from Inria Grenoble (France), StarSs [PBAL09] from Barcelona Su-
percomputing Center (Spain).

Such wide range of tools and no standard API are the main reason why most of the HPC
applications haven't been ported yet on top of any runtime. Although this provides many bene�ts
on the long run, an initial coupling of the application with a speci�c runtime requires a signi�-
cant development e�ort. Still, even though there is a huge number of applications coming from
completely di�erent domains and trying to answer various scienti�c questions, their core is often
very similar to linear algebra problems. Indeed, the parts of the real scienti�c application that
generally consume most of the machine resources are related to certain arithmetical operations.
In order to decrease application execution time, one usually needs to optimize multiplication of
densely or sparsely �lled matrices on multiple processing units.
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2.1.5 Linear algebra applications

The researchers studying linear algebra problems are facing the same performance scalability and
hardware diversity issues, and thus they followed the same path and redeveloped their algorithms
to be based on dynamic task-based runtimes. Since such applications have typically much smaller
code base, implementing them on top of runtime requires less e�ort. Consequently, the current
trend is to evaluate the potential of runtimes using linear algebra kernels. Once results are validated
and good application performance is ensured, research will move to more complex use cases, which
are real HPC applications.

We focus on dense and sparse algorithms, which are two major groups of linear algebra appli-
cations.

Dense linear algebra

Solving dense linear algebra problems is the core of many applications in the �elds of computer sci-
ence, natural sciences, mathematics and social sciences. Therefore, e�ciently computing solutions
on ever changing computer architectures is of critical importance for obtaining a good, portable
performance of the whole application. To this end, many software packages have been developed.

BLAS (Basic Linear Algebra Subprograms) [LHKK79, DDCHD90] provides C and Fortran
routines for computing common linear algebra operations such as vector addition, dot products,
linear combinations, scalar multiplication and matrix multiplication. These operations are highly
optimized for the underneath architecture, taking advantage of many hardware extensions such
as SIMD (Single Instruction Multiple Data) instructions. There are many implementations of
BLAS, the most popular being ACML (AMD Core Math Library) [ACM14] and MKL (Intel
Math Kernel Library) [MKL12] that are proprietary vendor libraries well optimized for their
CPUs, and open source solutions OpenBLAS [Opea] and ATLAS [WPD01]. Moreover, there are
various extension of the standard BLAS interface such as cuBLAS (NVIDIA CUDA Basic Linear
Algebra Subroutines) [CUB] used for GPUs.

Many software packages are built on top of BLAS-compatible libraries. The most widely used
for HPC applications is probably LAPACK (Linear Algebra PACKage) [ABB + 99] library. The
main goal of this project is to provide the programmers with standard building blocks for perform-
ing basic vector and matrix operations. With these e�cient and scalable routines, developers can
ensure good performance of their applications and portability across all the machine containing
BLAS libraries. Therefore, both BLAS and LAPACK became a part of the standard software
stack for all HPC machines.

With the evolution of computers, these libraries had to evolve as well and be able to support
executions on distributed machine. This resulted in extensions such as BLACS (Basic Linear
Algebra Communication Subprograms) [DW97] and ScaLAPACK (Scalable LAPACK) [BCC+ 97].
BLACS is a message passing interface for linear algebra kernels. ScaLAPACK is a subset of
LAPACK, implemented for parallel distributed memory machines. It allows for solving dense and
banded linear systems, least squares problems, eigenvalue problems, and singular value problems.

However, the diversity of the computer architectures used nowadays for achieving maximal per-
formance required appropriate extension of the BLAS and the LAPACK. This lead to creation of
several spin-o� projects, such as MAGMA, PLASMA and DPLASMA. MAGMA (Matrix Algebra
on GPU and Multicore Architectures) [Mag] is a collection of linear algebra libraries for hetero-
geneous architectures. This project aims at exploiting the huge computational power provided by
GPUs, for doing linear algebra operations. It is based on the cuBLAS library, using the same in-
terfaces as the current standard BLAS and LAPACK libraries. PLASMA (Parallel Linear Algebra
for Scalable Multi-core Architectures) [ADH + 09] aims at optimizing linear algebra operations on
multi-core machines. There is also an extension of this library specialized for distributed memory
systems called DPLASMA [BBD+ 11]. Finally, there are e�orts for uniting the aforementioned
approaches in order to exploit simultaneously all the resources provided by hybrid, multi-core,
distributed memory machines. Examples of such initiatives are MORSE (Matrices Over Runtime
Systems at Exascale) [MOR] project, and recently its sub-project Chameleon [Cha].
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To maximize parallelism and achieve better performance, these libraries are generally based on
so-calledtile algorithms [BLKD09, QOQOG + 09]. In this approach, big matrices are divided into
smaller sub-matrices (tiles), which can then be treated separately by the application. This allows
for breaking the problem into �ne-grain tasks that can be executed in parallel.

However, for obtaining optimal utilization of processing units and hence the performance of
the whole application, these �ne grain tasks need to be dynamically scheduled. Therefore, the
previously described linear algebra libraries often rely directly on runtime systems. For exam-
ple, PLASMA [ADH + 09], DPLASMA [BBD + 11], and Chameleon [Cha], are executed on top of
QUARK [YKD], PaRSEC [BBD + 13], and StarPU [ATNW11], respectively.

Finally, recent advances in dense linear algebra community lead up to the point that the
OpenMP board has included similar features in the latest OpenMP standard 4.0 [Ope13] making
it possible to design more irregular algorithms, such as sparse direct methods, with a similar
approach.

Sparse linear algebra

Applications doing sparse matrix factorizations, sparse linear solvers, face very irregular workloads.
Hence, programming a parallel solution that e�ciently exploits machine resources is extremely
challenging.

Interestingly, to better extract potential parallelism, these solvers were already often designed
with, to some extent, the concept of task before having in mind the goal of being executed
on top of a runtime system. It is the case of the SuperLU [Li05] supernodal solver and the
MUMPS [ADKL01, AGLP06] multifrontal solver. These two solvers achieve parallelism in di�erent
ways, as SuperLU is based on a right-looking supernodal technique with static pivoting, while
MUMPS uses a multifrontal approach with dynamic pivoting [ADLL01]. Such di�erence causes
a contrasting application executions, as shown in Figure 2.2. SuperLU (bottom plot) has a very
regular pattern with clearly distinct computation/communication phases, while MUMPS (top
plot) has these two operations completely overlapping. The solvers based on such a dynamic task
scheduling like MUMPS, can thus greatly bene�t from using runtime systems.

Therefore, this application was recently ported on top of the StarPU runtime system [ABGL13]
(see Section 7.1 for more details). Another example is the PaSTIX solver that has been ex-
tended [LFR+ 14] to rely on either the StarPU or the PaRSEC runtime systems for performing
supernodal Cholesky and LU factorizations on multi-core architectures possibly equipped with
GPUs. Finally, Kim et al. [KE14] presented a DAG-based approach for sparseLDL T factoriza-
tions where OpenMP tasks are used and dependencies between nodes of the elimination tree are
implicitly handled through a recursive submission of tasks, whereas intra-node dependencies are
essentially handled manually.

2.2 Experimental challenges for HPC application developers

The increasing complexity of both hardware and software environment makes programming HPC
applications very hard. Moreover, if developers aim at having a solution that can be correctly
executed on various systems, while at the same time preserving a good performance, implementing
the applications becomes even more challenging. To achieve this goal it is essential to apply a
highly modular programming approach, dividing the application into tasks that can be executed
in parallel. Such solutions have to be validated in various contexts, which can only be acquired
through an iterative process that involves many empirical testings.

Using dynamic task-based runtimes and their API that abstracts the underlying system di-
versity can save time for the application development. Still, �nding the right way to couple the
application and the runtime is often not trivial. Developers need to adapt their codes to the
speci�c runtime paradigms, as well as choose the right task granularity, task graph structure, and
scheduling strategies optimizations. This demands understanding many sophisticated runtime
concepts, which is often, at least partially, based on trial and error method. Moreover, imple-
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Figure 2.2: Comparing di�erent scheduling algorithms of MUMPS and SuperLU sparse linear solvers
as done by Amestoy et al. in [ADLL01]. MUMPS has very irregular patterns, which makes it a good
candidate for using dynamic task-based runtime systems.
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menting runtime itself is a challenge, as it has to ensure both correct execution of all applications
on top of it and their good performance. Therefore, the runtime and its performance have to be
regularly evaluated for numerous scenarios by executing codes on di�erent machines.

Therefore, HPC developers for both applications and runtimes have a great need for a repro-
ducible executions of their programs in order to fully understand and improve both code and its
performance. Since execution time of the tasks exhibit certain variability, dynamic schedulers take
non-deterministic and opportunistic scheduling decisions. The resulting performance is thus far
from deterministic, which makes performance comparisons sometimes questionable and debugging
of non-deterministic deadlocks extremely hard.

There is equally a need for the extensive experimental studies. Constantly, when doing any
change to their code, developers have to test the new solution on a wide range of diverse computer
platforms and with large number of di�erent parameter values. This is necessary to ensure that
the resulting design choices are generic, and not only suited to the few basic setups at hand.

However, the desired machines are not always available to experiment on. In the HPC domain,
researchers often work with expensive hybrid prototype hardware that has a short lifetime due
to the rapid technological evolution. Therefore, research centers are typically moderating their
expenses on buying new machines. Moreover, the di�erent paths taken by manufacturers in the
pursuit for better performance as well as the recent advances in computer architectures, lead to
a large diversity of machine architectures used nowadays in HPC. Consequently, researchers have
only a very limited number of di�erent computers at their disposal and even these are typically
shared by many users. In such context, a dedicated access to the machine has to be planned
well in advance. Additionally, getting accurate measurement results for all combinations of input
parameters is nontrivial and requires reserving the target system for a long period, which can
become prohibitive.

Moreover, even with an unlimited access, running experiments on such machines is very costly
in terms of resources, time and energy. This is especially noteworthy for supercomputers, as they
contain huge number of nodes and disks, connected via large networks and cooled down with very
sophisticated cooling systems.

2.3 Conclusion

The described context emphasizes on the experimental nature of the studies on dynamic HPC
applications, especially the ones based on runtime systems. Indeed, compared to other computer
science domains, research in this �eld is extremely empirically oriented. However, there are no
standard experimental methods for conducting such studies.

Simulation is a technique proven to be extremely useful to study complex systems and which
could be a very powerful way to address these issues. Performance models can be collected for a
wide range of target architectures, and then used for simulating di�erent executions, running on a
single commodity platform. Since the execution can be made deterministic, experiments become
completely reproducible and the experimental setup is better controlled. This eases the debugging
of both the code and the performance of the application. If designed with a coarse-grain approach,
simulations can be much faster and require less resources than the real executions on the target
machine. This allows conducting larger experimental campaigns on a commodity machine, thus
minimizing the number of costly hours spent on a supercomputers. Additionally, it is possible
to try to extrapolate target architectures, for instance by trying to increase the available PCI
bandwidth, the number of GPU devices, etc. and thus even estimate performance which would
be obtained on hypothetical platforms.

Therefore, our goal is to contribute to the experimental/analysis methodology of dynamic HPC
applications through simulation. Taking into account the evolution of the HPC hardware and
software, we decided to focus on applications running on top of dynamic task-based runtimes as
we strongly believe that they will soon become a mainstream solution for e�ciently implementing
HPC applications.

15



CHAPTER 2. BACKGROUND

16



Chapter 3

Related Work

3.1 Reproducible research

In the recent years, the more and more frequent discovery of frauds or mistakes in published
results has shed the light on the importance of reproducible research [Ioa05, Rep, Ste11]. For
example, cancer studies of researchers leaded by Anil Potti from Duke University were published
in prestigious journals and used for three trials on patients, even though their results were not
reproducible at all. Some other researchers instantly reacted, pointing out several inconsistencies
with the data, but their opinion was ignored. It was only later that the scienti�c misconduct of
the study was disclosed and all publications retracted. Therefore, rigorous protocols have to be
put in place to avoid both accidental errors and voluntary manipulations of the published results.
It is expected from biologists or chemists to provide a detailed explanation on dozens of pages for
all methods and data that was part of their research. Without that no paper should be published
in a respected conference or journal.

However, computer science or at least the part of it that can be considered as experimental
science is relatively a young discipline and still doesn't have the standards regarding reproducibil-
ity. Since it is not mandatory, many decide to conveniently ignore this important aspect. They
hurry towards new results solely concentrating on their primary research topic, without noting
anything about the path they are passing through. In our �eld, researchers are more focused (and
rewarded) for positive results and novelties rather than on presenting failed attempts or redoing,
verifying and enlarging the work of others. Conferences and journals are full of success stories
and new algorithms, although undoubtedly there is a tremendous work and many failures behind
it. There are many useful lessons to take from �bad�, abnormal, negative, unexpected results as
well. Thus, consolidating existing work would produce better science and by that help the whole
community. To illustrate the current state in our �eld, researchers from the University of Ari-
zona [CPM+ 14] studied 613 articles from 8 of the top ACM conferences. They demonstrated how
for the most of these papers it was impossible to compile and run the source code (without even
looking at the results it would produce). Similar conclusion can be drawn from the studies done
in peer-to-peer [NBL+ 06] or MPI [CARL14] communities.

As a common excuse for ignoring the reproducibility of their work, most scientists blaim the
incredibly fast evolution of technology. It is true that both hardware and software of modern
computers rapidly changes and becomes increasingly complex. Dynamic and opportunistic op-
timizations are done at every level and even experts have troubles fully understanding them.
Such systems can no longer be considered as deterministic, especially when it comes to measuring
execution times of parallel multi-threaded programs. Controlling every relevant sophisticated com-
ponent during such measurements is almost impossible even in single processor cases [MDHS09],
making the full reproduction of experiments extremely di�cult. However, if studying computers
has become similar to studying a natural phenomena then it should use the same principles as
other scienti�c �elds that had them de�ned centuries ago. Although in computer science many
conclusions are commonly based on experimental results, articles generally poorly detail the exper-
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Figure 3.1: Ideally, the experimenter would keep track of the whole set of decisions taken to conduct
its research as well as all the code used to both conduct experiments and perform the analysis. Figure
inspired by Roger D. Peng et al. [Rog09].

imental protocol. Left with insu�cient information, readers have generally troubles reproducing
the study and building upon it. Yet, as reminded by Drummond [Dru09], reproducibility of exper-
imental results is the hallmark of science and there is no reason why this should not be applied to
computer science as well.

The ultimate goal of reproducible research is to bridge the current gap between the authors
and the article readers (see Figure 3.1) by providing as much material as possible on the scientist
choices and employed artifacts. As shown in the �gure, the path between de�ning the scienti�c
question one wants to answer to publishing its results has many phases. Typically, researchers
will iterate many times through the whole process and it is very important that they ensure
reproducibility or replicability of the results. The di�erence between terms the reproducibility
and replicability and their importance has been a topic of many discussions. In the rest of this
document, we will relate to the de�nitions given by Dror G. Feitelson [Fei15]:

Reproducibility is the reproduction of the gist of an experiment: implementing the same
general idea, in a similar setting, with newly created appropriate experimental appara-
tus.

Replicability is the recreation of the same experimental apparatus, and using it to per-
form exactly the same experiment.

If these de�nitions were to apply to the Figure 3.1, one would conclude that the experiments
part can be either reproducible or replicable depending on the type of experiments that are con-
sidered. However, analysis is replicable by essence.

Hence, a new movement promoting the development of reproducible research tools and prac-
tices has emerged, especially for computational sciences. In this context, scientist not only conduct
numerous simulations but also rely on complex repetitive computation intensive work�ows to an-
alyze large amount of data. As a consequence, the tools developed in this community generally
focus on replicability of data analysis and provenance tracking [SLP14]. Projects like Kepler [Kep]
or Taverna [Tav13] are very convenient for the scientists doing research in bioinformatics, astron-
omy or neuroscience, but unfortunately completely unadapted for researchers in our community.
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These huge, integrated frameworks do not leave enough �exibility for users, imposing many rules
and it is not in our culture to work with such tools. There are numerous platforms for sharing
scienti�c results and work�ows focusing on their replicability, e.g., RunMyCode [HPS14], Ac-
tivePapers [Hin11], myexperiments [RGS09] and many more. Even commercial publishers start to
promote their own (private) systems, such as Elsevier executable papers [Exe] . However, these
are at the moment inappropriate for large, complex source codes that depend on many external
libraries.

The main shortcomings of all these tools are that they are mostly made for deterministic pro-
cesses, �xed input data and working on a commodity machine. However, conducting experiments
on prototype, hybrid computers with a limited access and control rights require di�erent kind of
work�ows and techniques. Although HPC experiments involve running complex codes, sometimes
on distributed systems, they do not focus on execution results, but rather on the time taken to
run a program and how the machine resources were used. It is important to state that these
experiments are not replicable by essence. Nevertheless in such cases, researchers should still at
least aim at full reproducibility of their work.

One way to help with reproducibility is to use literate programming. This principle of writing
the code while at the same time documenting it, was de�ned more than 30 years ago by Donald
Knuth [Knu84]. Such a promising method was supposed to completely change the way people pro-
gram, as �surely nobody wants to admit writing an illiterate program�. Still, this never happened,
probably because writing codes with many �les, function calls and wrappers is too complicated for
such approach as it requires constant jumping from one part of the code to another. On the other
hand, literate programming is much easier to apply on the use cases that are naturally sequential,
e.g., for doing data analysis.

For every process during the study, the minimum is to save all code and input data. However,
this is far from enough to actually guarantee the reproducibility/replicability. We will now describe
aspects related to software, methodology and provenance tracking, which are often neglected by
researchers in our community. Additionally, we provide few most commonly used solutions to
address these speci�c problems with the explanations on why these are not enough for our research
context.

Code and data accessibility

It is widely accepted that tools like Git or svn are indispensable in everyday work on software
development. Additionally, they help at sharing the code and letting other people contribute.
GitHub [Gitb] and frameworks with similar philosophy are addressing these needs and thus becom-
ing increasingly popular solutions in the community. Using such tools for managing experiments
is however not that common. Public �le hosting services, such as Dropbox or Google Drive have
become a mostly used way to share data among scientists that want to collaborate. The unclear
durability of such service and the speci�c requirements scientists have in term of size and visibility
has lead to the development of another group of services (e.g., �gshare [Fig] and zenodo [Zen])
that are focused on making data publicly and permanently available while ensuring it is easily
understandable to everyone.

Platform accessibility

Many researchers conduct their experiments on large computing platforms such as
Grid5000 [BCAC+ 13] or PlanetLab [PACR03] and which have been speci�cally designed for large
scale distributed/parallel system experimentation. Using such infrastructures eases reproduction
but also requires to manage resource reservation and to orchestrate the experiment, hence the need
for speci�c tools [RSRVO13b, ABD+ 07]. However, the machines we considered in our study are
generally recent prototypes, some of them being rather unique and meant to be accessed directly
without any speci�c protocol.
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Setting up environments

It is necessary to carefully con�gure machines before doing experiments. Among the few tools
speci�cally designed for this purpose and based on recipes, we can cite Kameleon [RRE14], which
allows for reconstructing an environment step by step. Another approach consists in automatically
capturing the environment required to run the code (e.g., as done by CDE [SLP14, chap.4],
ReproZip [CSF13] and CARE [CAR]) or to use virtual machines so that code can be later re-
executed on any other computer. In our use case, experimental platforms are already set up by
expert administrators and we have neither the permission nor particular interest to modify their
con�guration.

Conducting experiments

Numerous tools for running experiments in a reproducible way were recently proposed [BRNR15].
These tools are not speci�cally designed for HPC experiments but could easily be adapted. An-
other set of related tools developed for computational sciences comprises Sumatra [SLP14, chap.3]
and VisTrails [SLP14, chap.2]. Such tools are rather oriented on performing a given set of com-
putations and do not o�er enough control on how the computations are orchestrated to measure
performances. They are thus somehow inadequate in our context. Some parts or ideas underlying
the previously mentioned tools could have been bene�cial to our case study. In our experiments,
simple scripts were su�cient although they often require interactive adaptations to the machines
on which they are run, making experiments engine that aim at automatic execution di�cult to
use.

Provenance tracking

Knowing how data was obtained is a complex problem [BNG15]. The �rst part involves collecting
meta-data, such as system information, experimental conditions, etc. In our domain, such part
is often neglected although experimental engines sometimes provide support for automatically
capturing it. The second part, frequently forgotten in our domain, is to keep track of any trans-
formation applied to the data. In such context, the question of storing both data and meta-data
quickly arises and the classical approach to solve these issues involves using a database. However,
this solution has its limits, as managing source codes or comments in a database is not convenient
and is in our opinion handled in a much better way by using version control systems and literate
programming.

Documenting

While provenance tracking is focused on how data was obtained, it is generally not concerned with
why the experiments were run and what the observations on the results are. These things have
to be thoroughly documented, since even the experimenters tend to quickly forget all the details.
One way is to encourage users to keep notes when running experiment (e.g., in Sumatra [SLP14,
chap.3] and BURRITO [GS12]), while the other one consists in writing a laboratory notebook
(e.g., with IPython [PG07]).

Extendability

It is hard to de�ne good formats for all project components in the starting phase of the research.
Some of the initial decisions are likely to change during the study, so the system has to be easy
to extend and modify. In such a moving context, integrated tools with �xed database schemes,
as done for example in Sumatra, seemed too rigid to us although they de�nitely inspired several
parts of our work�ow. A more �exible solution without SQL is used in other projects, such as
cTuning [Fur12].
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Replicable analysis

We believe that researchers should only trust �gures and tables that can be regenerated from raw
data that comprise su�cient details on how the experiments were conducted. Therefore, ensuring
replicable analysis is essential to any study. A popular solution is to rely on open-source statistical
software like R and knitr that simplify �gure generation and embedding in �nal documents [SLP14,
chap.1].

Conclusion

Although there is an urgent need for changing practices in computer science, how we should proceed
is not yet clear. There are widely recognized books and manuals [Jai91, Mon05] providing useful
general directions and hints, however �nding a right way to implement them on a speci�c tool
and problem is not straightforward. We presented some existing solutions partially addressing
di�erent challenges raised by the need for reproducible research and the list is not exhaustive.
However, none of them is completely satisfying the needs and constraints of our experimental
context. Therefore, we developed an alternative approach based on well-known and widely-used
tools, described in more details in Chapter 4.

3.2 Performance evaluation and simulation

In all scienti�c domains, empirical evaluation of certain systems is hard and even sometimes
impossible due to various technological, time or resource limitations. Many di�erent alternative
techniques based on simulation are possible and extensively used in biology, nuclear physics, chem-
istry, etc. The same applies to the HPC �eld and performance evaluation of modern computers
and parallel programs running on them. Indeed, in such context studying certain problemsin
vivo would require extremely powerful production machines and very long time, both not always
available to the researchers. Thus, many di�erent simulation approaches and tools have been
proposed in our community and we devote the rest of this section to their presentation.

3.2.1 Di�erent simulation approaches

Emulation

A �rst possible approach to predict the performance of a machine is to use an emulation. Emulators
are software that allow a computer system to mimic the behavior of another one. In this case, the
program creates an extra layer between an existing computer platform (host platform) and the
platform to be reproduced (target platform). Then, the host machine runs through this layer the
desired code, planned to be executed on the target platform. The observed performance of host
machine represent a good estimation of the possible target behavior. However, since everything
goes through an additional software layer, the execution is generally slowed down. Still, the
emulator typically knows the speed and the characteristics of both host and target machines, thus
to mimic the predicted behavior it can adjust the real speed by multiplying it with the necessary
factors.

In the past, many emulation approaches have been proposed, e.g., MicroGrid [XDCC04] that
allows studying various MPI applications in grid environments. This tool has a well developed CPU
controller, which permits to study a large heterogeneous grid of processors using a small cluster.
Another, more modern, approach that is suited not only for grid but also for Cloud, Peer-to-Peer
and HPC is Distem [SBJN13]. Distem provides to users the possibility to run experiments with
their codes on a large machine, mimicking the behavior of another large computer. It allows many
changes to the experimental environment both in terms of processor speed and network topology,
transforming a homogeneous machine into a completely heterogeneous platform. Although they
enable many interesting research using unmodi�ed code base, the main limit of these tools is that
for simulating behavior of a computer cluster they also require a cluster.
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Indeed, in emulation generic unmodi�ed codes are executed and that is very positive for the
users as it saves their time. On the other hand, these tools still contain certain approximations
and simpli�cations, since it is impossible to completely mimic every detail of the target machine
hardware. Such estimations introduce experiment bias that is very hard to control. For example,
if there are two processes of the parallel applications that are run on the cores of the same node,
they typically share several levels of cache. Hence, they could in�uence each other by evicting
cache lines of their neighbor in order to fetch their own data. Although one could have an intuition
about how big would be the in�uence of such phenomena for a speci�c execution, quantifying and
controlling it in general is much harder. Indeed, many emulators report that if the codes that are
executed with their tool are memory bound, the results are generally not so accurate as memory
behavior is di�cult to predict. Emulating the complete memory hierarchy of the target machine
is hardly an option, especially for the large scale emulators, as it is very challenging to take into
account all in�uential factors.

Cycle-accurate simulation

A solution for decreasing and better controlling the prediction error, not only for CPU caches but
for many other issues as well, is to use cycle-accurate simulations. This implies simulating pro-
gram execution as if it was run on the processing units cycle-by-cycle (or packet-by-packet when
simulating networks). These �ne-grain discrete event simulators are very complex but allegedly
they provide very accurate results. Nevertheless, their problem is that they take up to 1 million
times [LEE+ 97] more than the original runtime of the application. To execute the whole applica-
tion, one would need even larger machines than the ones that are being studied. For that reason,
cycle-accurate simulators are typically used only to study a few seconds of the program execution.
This rises the accuracy question of such predictions, since they are based only on isolated part of
the whole application [WM08]. In such conditions, even a minor error of the model on a micro level
can lead to very inaccurate predictions of the whole execution on a macro level. Since this error
propagation from micro to macro is very hard to control, the only way to decrease its in�uence
is to have very precise �ne-grain models for all parts of the target system. However, such models
are extremely di�cult to instantiate as they greatly depend on numerous environment parameters
that are beyond the control and expertise of the simulator developers. Thus, the sensibility and
bad scalability of such techniques makes them often inadequate and di�cult to rely on. Cycle-
accurate simulators can be great for understanding whether buying a CPU with larger cache or
a better arithmetic logic unit (ALU) would help, however it is not clear how this approach can
bring bene�t to an MPI application developer.

Coarse-grain simulation

Another path, is to construct discrete event simulators that are much more coarse-grain. In such
approach, complex components of the system are abstracted with simple models. For example,
CPUs can be described with a single parameter that is a number of �oating point operation
instructions per second (FLOPS) that it can perform. Even though this is a very rough approxi-
mation, when studying large systems, such level of granularity can provide satisfactory predictions
of the CPU behavior. The main advantage of this approach is that it is lighter and often faster
than the real execution on the target machine. Therefore, such solutions scale much better, which
allows for performing huge experimental campaigns using simulation that normally would not be
possible directly on the target system. Moreover, as the models are coarse-grain they are much
easier to instantiate. However, this approach has its weaknesses as well. Even though much better
control of the bias is provided, the accuracy loss due to modeling approximations are still hard
to evaluate. Additionally, �nding the right level of abstraction and the accurate models for every
component of the system is often not trivial.
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Hybrid approaches

There is a whole spectrum of solutions in between these major approaches. Many tools are trying
to �nd a good trade-o�, combining di�erent modeling techniques in the pursuit for the optimal
simulator/emulator of the problem of their interest. Integration of coarse-grain and �ne-grain
simulations are currently investigated for example within Structural Simulation Toolkit [RHB + 11]
project. SST is highly modular framework that aims at providing to the users di�erent tools for
studying both individual components of the computer systems and the parallel MPI application.
There are many tools targeting performance simulation of various aspects of HPC components
and applications. In the following we present some of these solutions stating their strong points
and weaknesses.

3.2.2 Simulating resources

Modeling communications

When simulating behavior of the target system, network topology and data transfers can be
modeled using di�erent approaches. The �rst way is to emulate the whole network with its tra�c,
which is very costly in terms of performance and thus rarely used in the HPC domain. Tools such
as ModelNet [VYW+ 02] aim at predicting performance of Internet-like environments. However, to
doing so, they need a whole cluster of machines to be executed on. These hardware requirements
are very hard to meet, thus the utilization of such emulators remains narrow.

Packet-level simulators, such as ns-3 [NS3], are another particularly popular approach in the
network protocol community and are widely considered as very accurate. In such solutions, transfer
of every single packet containing both data and control part is simulated. The OMNeT++ [Var01]
framework has been used by some research groups to build their own network simulations in various
contexts [MR09, PWTR09a]. However, all these approaches have a common shortcoming. Since
HPC applications typically transfer a huge amount of data between the workers, this generates
enormous number of messages passing through the network. Therefore, such packet-level modeling
of communication is hardly usable for parallel and distributed applications as their simulation is
too long, typically several orders of magnitude longer than the real execution [FC07]. This results
in scalability constraints that are often too prohibitive to the users, who thus favor faster but
less accurate approaches. These �ne-grain simulators are more appropriate for studying network
protocols than for HPC codes.

An alternative approach is to rely on simple delay-based, analytical models that ignore complex
network phenomena which are not crucial for the targeted machine. The LogP [CKP+ 93] model
characterizes networks with very few parameters:L for latency, o for the transmission overhead,g
for the gap that is a reciprocal to the bandwidth and P for the number of processors. This simpli�ed
approach proved to be su�cient for many studies involving communications, and also served as a
solid base for some other more advance solutions such as LogGP [AISS95] and LogGPS [IFH01].
Many modern simulators use a similar approach, sometimes adding more parameters to the model,
but sometimes also introducing additional simpli�cations. This allows for very scalable tools
which are suited to research on large systems with many processors and an over-provisioned
interconnect. Still, even though these simulators tend to provide good estimations for the very
high-end platforms, in the cases where network is the performance bottleneck of the application,
such approaches generally lead to completely inaccurate predictions. For example, PeerSim [MJ09],
SimBA [TKE + 07], EmBOINC [ETRA09] do not correctly take into account all bandwidth e�ects,
while LogGOPSim [HSL10], BigSim [ZKK04], MPI-SIM [BDP01a] completely ignore network
contention. Such constraints limit the usability of these simulators to the scenarios where a well
balanced application is executed on a machine with more than enough resources and there is
no external source of interference. Unfortunately, these idealized preconditions are less and less
satis�ed on modern HPC platforms.

Finally, another solution could be to model network links with �ows, as it is done with TCP
simulations. The communications through the interconnect are described via �ows that share
bandwidths, simulating the network contention. Such approach is very �exible, as it allows for
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easily accounting for various phenomena present in the communication of the distributed programs
running on clusters. However, implementing and instantiating �ow models is not trivial.

Modeling CPU

The constant need for more computational power on one side and the technical and energy lim-
itation on the other, result in modern CPUs having an extremely complex architecture. Several
tools have been proposed for measuring various aspects of processor performance, most popular
being PAPI [BDG + 00] and likwid [THW10]. However, in order to improve the performance of
their applications even further, researchers need to understand the CPU behavior in details and
to this end, many rely on emulators and cycle-accurate simulators.

Developing such tools that would work not only on the current but also on the next gener-
ation processors requires great expertise. One of the most popular and recent solution is the
gem5 [BBB+ 11] simulator that is a product of a joint e�ort of numerous academic and indus-
trial institutions. It allows for investigating various di�erent computer architectures, including
ARM, ALPHA, MIPS, Power, SPARC, and x86, through diverse CPU and interconnect models.
There are many other cycle-accurate CPU simulators and emulators (e.g., MARSS [PACG11],
SESC [RFT+ 05]), and each of the proposed solutions has its own speci�cities. However, one
common characteristic for all of them is that they have very long simulation time. This allows
executing only a fractions of the total application, thus making con�dence in �nal results ques-
tionable. Additionally, these simulators/emulators are often proprietary and uniquely designed
for particular architectures which limits their usage even more.

An interesting solution that tries to limit this bad e�ect is Sniper [CHE + 14]. This x86 simulator
is based on interval code model [GEE10], which is a higher level abstraction of multi-core and
multiprocessor systems. This approach is based on analyzing the performance of the intervals
between two miss events of the processor, such as branch mispredictions or TLB/cache misses.
The authors reported a huge speedup in the simulation duration compared to the standard cycle-
accurate simulators, for the price of only several percents of the prediction error.

Another alternative technique is proposed in the PMaC framework [SCW+ 02]. In this macro-
scopic approach, the authors try to characterize the code as a whole with numbers that can
later be related to platform characteristics to evaluate performances. A binary instrumentation
tool based on cache simulation is executed to generate a signature for each sequential code block
(typically large for loops inside the program). These descriptions contain information about the
number of performed �oating point operation, number of memory references, cache misses, etc.
The characterization of the target machine is performed using the MultiMAPS [SCW+ 02] memory
benchmark that makes repeated data array accesses to measure the speed of the di�erent levels
of cache hierarchy. Finally, the two results are convoluted by merging processor and memory
requirements of the application to the machine capabilities [TCSS07]. The same principle is later
used for modeling network and then these two are again merged for the complete prediction of
the parallel application execution on a parallel system. Such framework for performance mod-
eling and prediction is faster than cycle-accurate simulation and more informative than simple
benchmarking of the application. The idea behind it is very intuitive and well structured.

However, this approach seems quite di�cult to apply on recent computer architectures. We
tried to employ similar techniques in our study on Intel and ARM caches [8] as a part of
SONGS [SON] and Mont-blanc [Mon] projects, but could not really apply it. The main problem
is that modern architectures have large number of parameters that dictate the CPU performance,
some of which are out of researchers' control. Good and stable performance is ultimately possible,
but only after a lot of hardware and environment tuning has been done. Such modi�cations are
speci�c to the experiment setup and are rarely portable. These issues can be very clearly observed
on ARM processors, that are rapidly changing their design in the last years. Even though re-
searchers from PMaC team reported good results on these architectures [LTJ+ 14], in our studies
we identi�ed several sources that can cause big performance variations [6].

Therefore, we believe that using code characterization and cache simulation can only provide
good CPU models for highly optimized programs and not too complex CPUs. Unfortunately, this
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is not the case during the period of code development and experimentation on various machine
architectures.

There are other simple approaches, such as the one proposed by BigSim [ZKK04]. Although
this simulation framework provides multiple methods for modeling CPUs, the preferred one is
when users themselves provide the code execution times. The Dimemas [BLGE03] solution, is
somehow similar and requires two input �les from the users. The �rst one is the trace of the
application execution, clearly indicating the parts where code is executed on the CPU. The second
�le is used for scaling, where the characteristics of the new architectures are described through
coe�cients with which the execution time of the corresponding code should be multiplied.

Finally, there is also a basic approach where necessary code is executed on the real machine,
measuring its duration. These benchmarked values are then used to construct models of the
code blocks corresponding to the computational parts of the applications. These models are later
consulted during the simulation, increasing simulation timer for the benchmarked values.

Modeling GPU

Using general-purpose programming models on graphics processing units (GPGPU) opens new
possibilities for improving the performance on parallel applications. Additionally, GPU micro-
architectures are typically less complex than the CPU ones, making them easier to model and
simulate. Still, several micro-benchmarking studies [WPSAM10, ZLN+ 15] showed that under-
standing and predicting code behavior on GPUs is not trivial and that there are many unexpected
phenomena to take into account.

Therefore, many detailed micro-architecture level simulators of GPUs have been developed in
the last years. For example GPGPU-Sim [BYF+ 09], one of the most commonly used cycle-accurate
GPU simulator, runs directly NVIDIA's parallel thread execution (PTX) virtual instruction set
and simulates every detail of the GPU. It is thus very useful for obtaining insights into architectural
design problems for GPUs. However, no comparison to an actual GPU is provided in [BYF+ 09]
and although the trends predicted by GPGPU-Sim are certainly interesting, it is not clear that it
can be used to perform accurate performance prediction of a real hardware. A few other GPU-
speci�c simulators have therefore been developed (e.g., Barra [CDDP10] for the NVIDIA G80
or Multi2Sim [UJM + 12] for the AMD Evergreen GPU). Such specialization allows Multi2sim to
report predictions within 5 to 30% of native execution for several OpenCL benchmarks. While this
prediction is quite impressive, it comes at the price of a very long simulation time as every detail
of the GPU is simulated. The average slowdown of simulations versus native execution is reported
to be 44; 000� while the one of GPGPU-Sim on a similar scenario is about90; 000� [UJM + 12].

Another approach, similar to the one described for the CPUs, is a simple delay-based model.
Parts of the application that are normally executed on GPUs are carefully benchmarked on the
target machine. These results are used to construct performance models needed by the simulator
so it can compute the timings that should be injected during the simulation. Such approach
is even more valid for GPUs than for CPUs, as their architecture is much simpler, making the
computation block durations easier to predict.

3.2.3 Simulating applications

Simulating MPI applications

There are di�erent types of HPC applications. Some are iterating through clearly divided phases,
where �rst processes compute certain tasks and after that they are all exchange messages with the
necessary data. In the other group, there are applications that can be described as tasks and try to
execute these tasks as soon as possible without prede�ned order, using opportunistic scheduling.

MPI applications typically have very regular computation/communication block patterns and
are thus a good candidate for accurate simulations. There are two main approaches for simulating
MPI applications: o�-line and on-line.

O�-line (or �post-mortem�) simulation is based on replaying previously obtained traces. This
means that the application is executed once on a real platform, either a target or a host machine,
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logging beginning and end time of every computation and communication, size of the exchanged
messages, memory footprint, etc. Later on a host machine, this log is injected into simulator,
possibly modifying the timings according to the di�erent characteristics of the target machine.
Such solution allows fast simulations of large platforms providing very useful information to the
MPI application developers. Therefore, many tools based on this approach have been developed
in the recent years [ZKK04, TLCS09, NnFG+ 10, ZCZ10, HGWW09, BLGE03].

Although this approach can provide very accurate predictions, it is limited to the speci�c
settings. Indeed the order of di�erent computation blocks is not deterministic for all applications
and it may depend on the order in which certain messages are sent or received, which itself depends
on network characteristics.

Moreover, if one wants to modify platform description, typically increasing the number of nodes,
the application patterns are likely to change as well. There are techniques proposed by [WM11]
or [CLT13] that allow for extrapolating the behavior at large scale of a parallel code from a few
traces at lower scale. However, the con�dence in such predictions is questionable as di�erent se-
tups often introduce some new phenomena that is di�cult to predict. For example, the number
of nodes will dictate the algorithms' load balancing of the work, creating more or less computa-
tion/communication blocks for each node. Additionally, this will in�uence the size of the messages
exchanged between the nodes, and in fact this size depending on the MPI implementation can
determine which mode of communication is used [BDG+ 13]. These modes have very di�erent
latency and bandwidth characteristics, and they can even have di�erent patterns for the collective
communication operations.

Still, there are use cases where the studied applications are deterministic and there is very little
contention due to interactions between the worker processes. The SuperLUDIST [LD03] simulator
was used in the recent study by Cicotti and al. [CLB09] for simulating parallel sparse Cholesky and
LU factorizations. The objectives of this research are very similar to ours (presented in Chapter 7),
as the authors aim at predicting the performance of sparse linear algebra applications. Their
simulation framework consists of the tools used for benchmarking machine characteristics and of
a simulation module speci�cally built for this application. The approach is based on three types
of models: memory, kernel and communication. Memory models are generated from the cache
simulator that preserves the whole state of the memory hierarchy, simulating every read and write
operation. Such approach contains all the shortcomings of the cycle-accurate CPU simulators
described in 3.2.2. The kernel models are based on the micro-benchmarks of BLAS routines.
When running simulation, timings measured by benchmarks for speci�c dimensions are injected
into simulator and in case there is no value for a requested dimension, the estimation computed
by a linear interpolation is provided. Although such approach may provided satisfactory results in
certain cases, we strongly believe that proper modeling (especially for the parameterized kernels)
demands for a more profound analytical and statistical studies. Finally, communication models
are taking into account di�erent size of the messages, but completely ignore possible network
contentions. The predictions presented by the authors are extremely accurate and the case studies
seem very useful. However, such approach is unlikely to work with other, more irregular and
dynamic sparse solvers such as MUMPS.

The main disadvantage of a simulation completely based on input traces or component descrip-
tions is that it implies deterministic execution of the application. Such approach disregards all
the noise and perturbations introduced by the operating system and the machine environment in
general, which have an important in�uence on the application performance on modern computers.

On-line MPI simulations try to cope with this challenges through the actual executions of
the code. The computation parts are executed on the host machines, while communication calls
are intercepted and passed to the simulator that again uses models to predict transfer durations.
This approach ensures that the computation/communication block patterns are correct even if
the number of nodes is increased or if the order of certain operations is changed. However, since
the intensive computations are actually executed, this solution is much slower than the classical
o�-line one. Therefore, simulators using this approach [PWTR09b, DHN96, BDP01b, Rie06]
typically add certain optimizations to improve simulators' performance and decrease simulation
time.
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Simulating task-based runtimes

Task-based runtime execution consists of running through a DAG that contains all the data de-
pendencies between the tasks. During the application execution, these tasks are scheduled to be
executed on the appropriate workers, typically CPUs or GPUs. The decision on which task is
going to be run on which worker is made dynamically, following the current state of the whole
system and some scheduling heuristics. Even if the heuristics stay the same, from one run to
another, the state of the system will evolve di�erently, since it is in�uenced by the environment
in which the code is executed. Consequently, the tasks are not going to be executed in the same
order on the same resources.

Simulating such an irregular execution is much harder than for classical MPI applications.
However, solutions can again be divided into o�-line(trace based) and on-line.

The BigSim [ZKK04] simulator proposes replaying traces generated by the CHARM++ run-
time [KK96]. This tool can use parallel discrete event simulation in order to scale better for large
problems. Still, to simulate a huge cluster of machines, BigSim requires another (smaller) clus-
ter. Traces generated by the simulator are very rich and enable various analysis and visualizations
studies of the executed code. This can be very useful to the program developers, as after the initial
trace acquisition, they can replay it on a smaller machine and rapidly evaluate their applications.
The trace on which simulation predictions are based however represents a unique execution of
the runtime. Therefore, any speci�cities of that single run with all the captured and uncaptured
phenomena will be present in all the following simulations, which is a considerable limitation of
this approach.

Another o�-line approach is used with TaskSim [RCV+ 12] that has recently been coupled
with the NANOS++ runtime system (on which OmpSs [ABI + 09] is based) to provide predictions
built from multiple levels of abstraction. This trace-driven simulator uses runtime as a dynamic
component for potential rescheduling of the task, based on the machine characteristics [RDC+ 11].
However, coming from computer architecture experts, this tool aims at being an alternative to
classical cycle-accurate simulators, such as Dinaro IV [Din]. Even though the reported performance
is much better than cycle-accurate simulations, this solution would not scale for larger runtime
executions on big platforms. Additionally, to the best of our knowledge, this tool addresses so far
only multi-core machines, without GPUs.

Nowadays, many researchers working with HPC applications, especially parallel linear algebra,
tend to implement them using dynamic scheduling of computation kernels in order to maximize
the performance on various architectures. In such context, simulations via trace replay is inade-
quate, as even the real executions greatly vary from one run to another due to the opportunistic
scheduling. In order to fully preserve dynamic behavior, the runtime must be the part of the
simulation.

Researchers from University of Tennessee Knoxville developed such a simulation tool [HKY+ 14]
on top of three widely used runtimes: OmpSs, StarPU and QUARK. Their solution is based on
carefully benchmarking computational kernels on the target machine, and then on injecting timings
according to the distributions of the measured values. During the simulation, the actual runtime
is executed on the host machine, and it is responsible for all data and task managements. Since
computational kernels are not executed, such solution makes time to run the simulation much
smaller than the native execution and the authors reported very accurate simulator predictions.
Moreover, their solution manages three di�erent runtimes, that all have di�erent internal structure,
which is a strong point of this work. However, certain abstractions and simpli�cations necessary to
implement this solution limit its usage. First, extending this tool on hybrid or distributed machines
would be extremely hard as so far it does not include any network model, not to mention network
contention model. Second, even though the authors try to minimize the in�uence of the cache
contention caused by the parallel thread execution, they do not address the question of the non-
uniform time to access the data present on NUMA machines. When executing applications on
machines that consists of multiple nodes, the time to fetch the data from the local and distant CPU
cache is di�erent, making the time to execute a computational kernel variable. Finally, the authors
measured that in their experiments standard BLAS and LAPACK routines have a stable behavior

27



CHAPTER 3. RELATED WORK

that can be approximated with a normal distribution. The observed variations are due to the cold
or warm cache state at the beginning of the kernel execution. However, our studies showed that
such behavior is present only in the well-balanced executions of relatively small problems. Longer
executions on complex platforms tend to demonstrate much more variability, and abstracting those
with a simple distribution is not possible. Moreover, kernels running on GPUs tend to have even
more irregular performance, as it greatly depends on the location of the data (see Section 6.2).

On-line simulation of the runtime appears to be the right approach, but implementing an ad
hoc simulator on top of a complex runtime code base is not straightforward. Such solutions are
however short-lived as they vastly depend on the speci�c version of the runtime and any major
evolution of runtime typically requires signi�cant changes to the simulator. Additionally, any
tool produced in this way is limited to only certain use cases. Once it can provide the accurate
predictions, researchers immediately demand for more complicated scenarios and machine setups,
which are again hard to extend due to the poor modularity of the initial approach. Therefore, it
is highly advisable to build solution using an already developed simulation framework that has a
solid internal simulation engine with the appropriate API for linking with the runtime.

3.2.4 SimGrid: a toolkit for Simulating Large Heterogeneous Systems

In the context of tuning HPC runtimes, expectations in term of simulation accuracy are extremely
high. It is thus di�cult to rely on a simulator that may provide the right trends but with a 50%
over/under estimation. Choosing the right level of granularity or the correct scheduling heuristic
can not be done without precise and quantitative predictions. Such inaccuracies can come typically
from an inadequate level of details and should be avoided. Therefore, we propose to use a top-down
modeling approach such as promoted by the SimGrid project [CGL+ 14], which provides aversatile
simulation toolkit to study the behavior of large-scale distributed systems like grids, clouds, or
peer-to-peer systems. It is performance oriented and scalable, using a delay-based approach rather
than slow cycle-accurate simulations of the resources.

SimGrid builds on �uid network models that have been proven as a reasonable alterna-
tive to both simple analytic models and expensive, di�cult-to-instantiate packet-level simula-
tions [VSCL13] and have been extended to simulate accurately MPI applications on Ethernet
networks [BDG+ 13]. Fluid models are used by simulators in di�erent domains [BCM+ 03, CLQ08,
OPF10, GB02, ZKK04]. These models represent communications by�ows that are simulated
as single entities rather than as sets of individual packets. The bandwidth allocated to �ows is
constrained by the network resource capacity. Transfer time of a message of the sizeS between
hosts i and j is computed with the following formula:

Ti;j (S) = L i;j + S=Bi;j ;

where L i;j and B i;j represent the end-to-end network latency and bandwidth, respectively, of
the route connectingi and j hosts. While latency parameter is independent and computing it may
be straightforward, bandwidth depends on all other �ows that share parts of the route. Hence, to
determine how much bandwidth is allocated to each �ow, the following formal problem has to be
solved:

Consider a connected network that consists of a set of links L, in which each linkl has
capacity B l . Consider a set of �ows F, where each �ow is a communication between
two network vertices along a given path. Determine a �realistic� bandwidth allocation
� f for �ow f , so that:

8l 2 L;
X

f going through l

� f � B l :

Therefore, with a computed bandwidth allocation and the size of the data that needs to be
transferred by each �ow, one can determine which �ow will complete �rst. Each time a �ow has
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completed its transfer or another �ow has started, the bandwidth allocation is reevaluated. This
allows for quickly stepping forward through simulated time, which makes this approach very scal-
able. Fluid network models generally assume steady-state of the �ows, and thus such models ignore
all transient phases between two steady-state operation points. However, this approach is are very
�exible and allows for easily accounting for the network topology and heterogeneity as well as many
non-trivial phenomena (e.g., RTT-unfairness of TCP or cross-tra�c interferences) [VSCL13] at a
very low simulation cost.

SimGrid can simulate computation blocks in di�erent ways, depending on the application
requirements. For example, both o�-line and on-line simulations of the MPI applications are
allowed. In a post-mortem simulation, computation timings and communication pattern are in-
jected from the previously obtained trace (possibly adjusting the values according to the target
machine characteristics). On the other hand, in on-line simulations the real code will be executed
on the host machine, thus directly injecting measured values into simulator. Many other scenarios
are also feasible for other use cases, and such �exibility is a strong point of this simulator.

In our research, we decided to investigate how SimGrid could be used to simulate runtime
systems. We believe that a coarse-grain approach used by this framework is the right method
to abstract the huge complexity of the studied systems and the heterogeneity of the machines.
Moreover, SimGrid is modeled with threads rather than states and transitions, which is the easiest
way to simulate dynamic applications. Additionally, SimGrid is portable across di�erent platforms
and operating systems, and due to its modular internal organization it is very easy to extend. All
this makes him a perfect candidate for our task.
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Chapter 4

Methodology

Our research is centered on performance evaluation of modern computer systems. To validate the
approach and models we developed, we had to perform numerous measurements on a wide variety
of machines. Some of them are part of larger platforms (e.g., Grid5000) for which a have whole
team of engineers is dedicated to provide optimal and reproducible environment to their users.
However, even these systems go through occasional hardware renewals, which makes experiments
impossible to reproduce. Another group of machines we used belong to regional centers comprising
both production and experimental clusters, where researchers share resources and where the access
is not fully dedicated. Finally, during our research we also had the access to the newest ARM
processors or NVIDIA K40 accelerators which we plugged in custom machines by hand. We were
doing that only temporarily for a few weeks by installing all necessary software layers and running
several sets of experiments. After the experiments were completed, we gave these chips to other
researchers so that they can perform their own studies. In such process, we completely lost control
on these experimental setup and reproducing experiments became quite haphazard.

Another important challenge for maintaining the reproducibility of our experiments comes
from the heterogeneity of the platforms. Experiments are conducted on prototype hardware that
sometimes contains a huge number of cores on the same node and a custom interconnect. Others
have GPUs with di�erent CUDA installations. Moreover, when dealing with processors initially
designed for mobile phones and tablets like ARM processors, an other type of problems arises.
These machines have limited resources, both in terms of memory, CPU power and disk space.
Even though these machines support operating systems based on Unix, software packages still
have very restricted availability. Therefore, experimental work�ow on such computers has to be
lightweight and with minimal dependencies.

Additionally, on some platforms we have only limited control and access to the environment
setup, as the machines are strictly managed by the administrators who maintain and update its
con�guration so that it matches the needs of most users. Even that would not be so harmful if
the image of the whole system could be saved and later redeployed, like on Grid5000 clusters or
on some machine belonging to the local laboratory. However, this is often not the cases, and the
experimenters have to work with environments on which they have very little control.

In such context, a presumably minor misunderstanding or inaccuracy about some parameters
at small scale can result in a totally di�erent behavior at the macroscopic level. Mytkowicz
et al. [MDHS09] show how unpredictable and unexpected the measurement bias can be. Using
di�erent compilation �ags and slightly changing the linking order for a simple single-threaded
benchmarking application can not only produce di�erent results, but also lead to completely
incorrect conclusions. We also encountered problems with inconsistent results in the initial phase
of our research, when we conducted a comparative study of CPU cache performance on various
Intel and ARM micro-architectures [8]. For that we used a simple memory benchmark, similar to
MultiMAPS [SCW + 02], which measures memory bandwidth when accessing consecutive �elds of
a varying size array, in a loop. Once all data has been accessed for the �rst time, if the whole array
can �t the L1 cache then any new access will be fast, resulting in high memory bandwidth values.
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On the other hand, if the array size is larger than the size of L1 cache, repetitively accessing all
�elds in a loop will result in many cache misses and thus will degrade the performance.

Figure 4.1 shows the result of 4 consecutive experiments on an ARM Snowball processor using
exactly the same source code and inputs. 42 repetitions for each memory size (on each plot) are
represented by boxplots. One can observe that there is very little variability in each experiment
set, but that the expected performance drop occurs at di�erent places. Extreme values of array
memory size always exhibit the same behavior, but the middle part (from 50% to 100% of the
L1 cache size) is unpredictable. Without going into details, after some e�orts, we �nally found
the source of this surprising phenomenon comes from the way operating system allocates physical
memory pages on ARM processor. In general, operating systems allocate nonconsecutive physical
memory pages, choosing them randomly from a pool of available pages. Since the set-associativity
of that generation of ARM processors is 4, while the L1 cache size is 32KB, without doing the
appropriate page coloring [Pag] bad choice of the physical pages will causes much more cache
misses, hence the drop of overall performance. During one experiment run, the same pages are
reused as we do malloc/free repeatedly on each array size. Hence, the arrays start from the same
physical memory location for each memory size during one experiment, which explains why there
is no variability in the results despite the randomization of the measurements.
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Figure 4.1: Reproducibility issue on ARM Snowball: 4 consecutive experiments with identical input
parameters behaving di�erently; 42 repetitions for each array size depicted by boxplots show no noise
within each single experiment.

What we learned from this example is that it is crucial to carefully collect all the useful meta-
data and to use well-planed experiment designs along with coherent analyses. Such details are
essential for a better understanding of the results and a good reproducibility of the experiments.

There is no standard way to perform research and measurements in our context. Many solutions
were presented in 3.1, but neither of them is applicable for us. Our goal was however not to
implement a new tool for conducting experiments, but rather to �nd a good combination of
already existing ones that would allow a painless and e�ective daily usage. We were driven by
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purely pragmatic motives, as we wanted to keep our work�ow as simple and comprehensible as
possible while o�ering the best possible level of con�dence in the reproducibility of our results.
Thus, we decided to work with a minimalistic set of simple, lightweight, and well-known tools.

We useOrg-mode , initially an Emacs mode for editing and organizing notes, that is based on
highly hierarchical plain text �les which are easy to explore and exploit. Org-mode has also been
extended to allow combining plain text with small chunks of executable code (Org-babel [SDDD12]
snippets). Such feature builds on the literate programming principles introduced by Donald
Knuth [Knu84] three decades ago, and for which there has been a renewed interest in the last
years. Although such tool is very convenient for conducting experiments and for writing scienti�c
documents, its use is not so common yet.

In addition, for version control system we decided to rely onGit , a distributed revision control
tool that o�ers an incredibly powerful and �exible branching mechanism.

We propose and describe in Subsection 4.1.1 a novel Git branching model for managing ex-
perimental results synchronized with the code that generated them. We have been using such
branching model for three years now and we identi�ed a few typical branching and merging oper-
ations, that we are currently packaging for the Debian Linux system.

Such branching model eases provenance tracking, experiments reproduction and data acces-
sibility. However, it does not address issues such as documentation of the experimental process
and writing the conclusions about the results, nor the acquisition of meta-data about the exper-
imental environment. To this end, in Subsection 4.1.2 we complete our branching work�ow with
an intensive use of Org-mode, which enables us to manage and keep in sync experimental results
and meta-data. It also provides literate programming through a laboratory notebook which is
very convenient and eases the edition of reproducible articles. We explain in Subsection 4.1.3 how
the laboratory notebook and the Git branching can be nicely integrated to ease the set up of a
reproducible article.

Through the whole Section 4.1, we demonstrate the e�ectiveness of this approach by providing
examples. We illustrate several points in the discussion by pointing directly to speci�c commits
inside our project repository.

Although we opened our whole Git repository for illustration purposes, this is not required by
our work�ow. There may be situations where researchers may want to share only parts of their
work. We discuss in Section 4.2 various code and experimental data publishing options that can
be used within such a work�ow.

4.1 A Git and Org-mode based work�ow

In this section, we present our work�ow for conducting experiments and writing articles about
the results, based on a unique Git branching model coupled with a particular usage of Org-mode.
Although these are well-known and widely used tools, to the best of our knowledge no one so
far has proposed using them in a similar manner for doing reproducible research. The approach
we present is lightweight, to make sure the experiments are performed in a clean, coherent and
hopefully reproducible way without being slowed down by a rigid framework. It fully ful�lled our
needs for conducting large experimental campaigns and we believe it would equally help anyone
doing research in a such context. However, the main ideas behind our solution are general and
can be applied to other �elds of computer science as well, possibly with some domain speci�c
adjustments as the environment in which experiments are performed can be very di�erent.

We remind the reader that every document and series of commits described herein can be
found at [SSW]. Links to Git commits with examples are provided in the rest of this thesis and we
encourage readers to inspect them. All our documents are plain text �les and can thus be opened
with any text editor or browser. However, since most of these �les are Org-mode documents, we
suggest to open them with a recent Emacs and Org-mode installation rather than within a web
browser. Options for pretty printing in web browsers exist, but are not fully mature yet. We are
currently working on making it easier for non Emacs users to easily exploit such data, following
the principles used by GitHub developers.
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Figure 4.2: Proposed Git branching scheme with 4 di�erent types of branches.

4.1.1 Git branching structure

Relying on a revision control system for under development code is nowadays a common practice.
It is thus a good habit to ensure that all source code changes are committed before running
experiments. These restrictions are already implemented in many tools, such as Sumatra [SLP14,
chap.3]. Knowing which revision of the source code was used to produce a given data makes
it theoretically possible to reproduce experimental results. However, in practice it can be quite
burdensome.

A �rst problem is that code and experimental results are often treated as two separate kinds
of objects. Being only loosely coupled, the link between some data and the code that produced
it is often hard to �nd and exploit, and sometimes it can even be completely lost. Therefore, we
suggest to store both of them in the same Git repository so as to ensure that they are always
perfectly synchronized. This greatly increases the con�dence level in the results and makes it
easier to obtain the code that produced a particular data set.

Storing everything in the same repository can quickly lead to an anarchic and unexploitable
system and hence it requires some organization and convention. To this end, we propose an
approach that consists in 4 di�erent types of branches, illustrated in Figure 4.2. The �rst branch,
named src, includes only the source code, i.e., the code and scripts required for running the
experiments and simple analyze. The second branch,data, comprises all the source code as well
as all the data and every single analysis report (statistical analysis results, �gures, etc.). These
two branches live in parallel and are interconnected through a third type of branches going from
src to data, the xp# branches (the �#� sign means that there are multiple branches, but all with
the same purpose). These are the branches where all the experiments are performed, eachxp#
branch corresponding to one set of experimental results. The repository has typically onesrc and
onedata branch, both started at the beginning of the project, while there is a huge number ofxp#
branches starting from src and eventually merged intodata that accumulates all the experimental
results. All these together induce a �ladder like� form of Git history. Finally, the fourth type of
branches is theart# branches which extend thedata branch. They comprise an article source
and all companion style �les, together with a subset of data imported from the data branch. This
subset contains only the most important results of the experiments, that appear in the tables and
�gures of the article.

By using Git as proposed, it is extremely easy to set up an experimental environment and to
conduct the experiments on a remote machine by pulling solely the head of thesrc or of an xp#
branch. This solves the problem of long and disk consuming retrieving of the whole Git repository,
as the src and xp# branches are typically very small.

On the other hand, one might want to investigate all the experimental data at once, which
can be easily done by pulling the head ofdata branch. This is meant for researchers that are
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not interested in the experimentation process, but only in the analysis and cross-comparison of
multiple sets of results. For such users, thesrc and xp# branches are completely transparent, as
they will retrieve only the latest version of the source code (including analysis scripts) and the
whole set of data.

Another typical use case is when one wants to write an article or a report based on some
experiment results. A completely new branch can then be created fromdata, selecting from the
repository only the data and analysis code needed for the publication and deleting the rest. This
way, the complete history of the study behind the article is preserved in the git structure (e.g., for
the reviewers) while the article authors can download only the data set they really need.

When used correctly, such Git repository organization can provide numerous bene�ts to the
researchers. However, it is not su�cient in our setting, since commit messages in Git history give
only coarse-grain indications about source code modi�cations. There is still a lot of information
missing about the environment setup of the machines, why and how certain actions were performed
and what the conclusions about the results are. We address all these questions with Org-mode
�les, as described in the following subsection.

4.1.2 Using Org-mode for improving reproducible research

As mentioned in Section 3.1, several tools can help to automatically capture environment parame-
ters, to keep track of the experimentation process, to organize code and data, etc. However, none
of them addresses these issues in a way satisfying our experimental constraints, as these tools
generally create new dependencies on speci�c libraries and technologies that sometimes cannot
be installed on experimentation machines. Instead, we propose a solution based on plain text
�les, written in the spirit of literate programming, that are self-explanatory, comprehensive and
portable. We do not rely on a huge cumbersome framework, but rather on a set of basic, �exible
shell scripts, that address the following challenges.

Environment capture

The environment capture aims at getting every detail about the code, the libraries in use and
the system con�guration. Unlike the parallel computing �eld where applications are generally
expected to run in more or less good isolation of other users/applications, there are several areas
of computer science (e.g., networking, security, distributed systems, etc.) where fully capturing
such platform state is impossible. However, the principle remains the same, as it is necessary to
gather as much useful meta-data as possible, to allow comparison of experimental results with
each others and to determine if any change to the experimental environment can explain potential
discrepancies. This process should not be burdensome, but automatic and transparent to the
researcher. Additionally, it should be easy to extend or modify, since it is generally di�cult to
anticipate relevant parameters before performing numerous initial experiments.

Thus, we decided to rely on simpleshell scripts, that just call many Unix commands in
sequence to gather system information and collect the di�erent outputs. The meta-data that we
collect typically concern users logged on the machine during the experiments, the architecture
of the machine (processor type, frequency and governor, cache size and hierarchy, GPU layout,
etc.), the operating system (version and used libraries), environment variables and �nally source
code revisions, compilation outputs and running options. This list is not exhaustive and would
probably need to be adjusted for experiments in other domains.

Once such meta-data is captured, it can be stored either individually or accompanying results
data. One may prefer to keep these two separated, making the primary results unpolluted and
easier to exploit. Although some speci�c �le systems like HDF5 (as used in ActivePapers [Hin11])
provide a clean management of meta-data, our experimental context, where computing/storage
resources and our ability to install non-standard software are limited, hinders their use. Storing
such information in another �le of a standard �le system quickly makes information retrieval from
meta-data cumbersome. Therefore, we strongly believe that the experiment results should stay
together with the information about the system they were obtained on. Keeping them in the same
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�le makes the access straightforward and simpli�es the project organization, as there are less
objects to handle. Furthermore, even if data sustains numerous movements and reorganizations,
one would never doubt which environment setup corresponds to which results.

In order to permit users to easily examine any of their information, these �les have to be well
structured. The Org-mode format is a perfect match for such requirements as its hierarchical
organization is simple and can be easily explored. A good alternative might be to use the yaml
format, which is typed and easy to parse, or to develop a new speci�c format similar to e�orts
made in bioinformatics with the ISA software suite [RSBM+ 10]. However, we decided to stay with
Org-mode (which served all our needs) to keep our framework minimalist.

A potential issue of this approach is raised by large �les, typically containing several hundreds
of MB and more. Opening such �les can temporary freeze a text editor and �nding a particular
information can then be tedious. We have not yet met with such kind of scenario, but it would
certainly require some adaptations to the approach.

In the end, all the data and meta-data are gathered automatically using scripts (e.g.,
41380b54a7{run-experiment.sh#l220} or in Appendix B.1), �nally producing a read-only Org-
mode document (e.g., 1655becd0a{data-results.org} or in Appendix B.2) that serves as a detailed
experimental report.

The motivations for performing some experiments and observations about the results are stored
separately in the laboratory notebook.

Laboratory notebook

A paramount asset of our methodology is the laboratory notebook (labbook), similar to the ones
biologist, chemists and scientist from other �elds use on a daily basis to document the progress of
their work. For us, this notebook is a single �le inside the project repository, shared between all
collaborators. The main motivation for keeping a labbook is that anyone, from original researchers
to external reviewers, can later use it to understand all the steps of the study and potentially
reproduce and improve it. This self-contained unique �le has two main parts. The �rst one aims
at carefully documenting the development and use of the researchers' complex source code. The
second one is concerned with keeping the experimentation journal.

Documentation This part serves as a starting point for newcomers, but also as a good reminder
for everyday users. The labbook explains the general ideas behind the whole project and
methodology, i.e., what the work�ow for doing experiments is and how the code and data
are organized in folders. It also states the conventions on how the labbook itself should
be used. Details about the di�erent programs and scripts, along with their purpose follow.
These information concern the source code used in the experiments as well as the tools for
manipulating data and the analysis code used for producing plots and reports. Additionally,
there are a few explanations on the revision control usage and conventions. Moreover, this
part of the labbook contains a few examples how to run scripts, illustrating the most common
arguments and format. Although such information might seem redundant with the previous
documentation part, in practice such examples are indispensable even for experienced users,
since some scripts have lots of environment variables, arguments and options. It is also
important to keep track of major changes to the source code and the project in general
inside a ChangeLog. Since all modi�cations are already captured and commented in Git
commits, the log section o�ers a much more coarse-grain view of the code development
history. There is also a list with a brief description of every Git tag in the repository as it
helps �nding the latest stable or any other speci�c version of the code.

Experiment results All experiments should be carefully noted in this part, together with the key
input parameters, the motivation for running such experiment and the remarks on the results.
For each experimental campaign there should be a new entry that answers to the questions
�why�, �when�, �where� and �how� experiments were run and �nally what the observations on
the results are. Inside the descriptive conclusions, Org-mode allows for using both links and
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git-links connecting the text to speci�c revisions of �les. These hyperlinks point to crucial
data and analysis reports that illustrate a newly discovered phenomenon.

Managing e�ciently all these di�erent information in a single �le requires a solid hierarchi-
cal structure, which once again motivated our use of Org-mode. We also took advantage of the
Org-mode tagging mechanism (not to be mistaken for Git tags), which allows for easily extracting
information, improving labbooks' structure even further. For example, tags can be used to distin-
guish which collaborator conducted a given set of experiments and on which machine. Although
such information may already be present in the experiment �les, having it at the journal level
proved very convenient, making the labbook much easier to understand and exploit. Experiments
can also be tagged to indicate that certain results are important and should be used in future
articles.

Several alternatives exist for taking care of experiment results and progress on a daily basis.
We think that a major advantage of Org-mode compared to many other tools is that it is just a
plain text �le that can thus be read and modi�ed on any remote machine without requiring to
install any particular library, not even Emacs. Using a plain text �le is also the most portable
format across di�erent architectures and operating systems.

To illustrate our approach we provide two examples of labbook �les. The �rst one comprises
only the documentation parts related to the code development and usage (30758b6b6a{labbook}
or in Appendix B.3) and is obtained from the src branch or from the beginning of anxp# , while the
second one (01928ce013{labbook#l272} or in Appendix B.4) has a huge data section comprising
the notes about all the experiments performed since the beginning of the project.

Using literate programming for conducting experiments

In our �eld, researchers typically conduct experiments by executing commands and scripts in a
terminal, often on a remote machine. Later, they use other tools to do initial analysis, plot and
save �gures from the collected data and at the end write some remarks. This classical approach
has a few drawbacks, which we try to address using Org-babel, Org-mode's extension for literate
programming.

The main idea is to write and execute commands in Org-babel snippets, directly within the
experimentation journal, in our case the labbook. This allows for going through the whole ex-
perimentation process, step-by-step, alternating the execution of code blocks and writing text
explanations. These explanations can include reasons for running a certain snippet, comments on
its outputs, plan for next actions or any other useful remarks. At the end, this process can be
followed by a more general conclusion on the motives and results of the whole experimentation
campaign. Conducting experiments in such manner provides numerous bene�ts comparing to the
usual way scientists in our �eld work.

The �rst problem with the classical approach is that researchers save only the experiment
results (possibly with some meta-data), while all other seemingly irrelevant outputs of commands
are discarded. However, in case of failures, these outputs can occasionally be very helpful when
searching for the source of an error. Although, such outputs, along with the commands that
produced them, can sometimes be found in a limited terminal history, their exploration is a very
tedious and error-prone process. On the other hand, when using Org-babel, all snippet results are
kept next to it, which simpli�es the tracing of problems.

Second, since the preparation and management of experiments is a highly repetitive process,
grouping and naming sequences of commands in a single snippet can be very bene�cial. This
allows for elegantly reusing such blocks in future experiments without writing numerous scripts or
bulky �one-liners�.

Additionally, Org-babel permits to use and combine several programming languages, each with
its own unique purpose, inside the same �le. This again decreases the number of �les and tools
required to go through the whole experimentation process, making it simpler and more coherent.

Last, and probably the most important point, using this approach avoids documenting an
experimental process afterwards, which is generally tedious and often insu�cient. Researchers
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are frequently in a hurry to obtain new data, especially under the pressure of strict deadlines.
They do not dedicate enough time to describe why, where and how experiments were performed
or even sometimes what the conclusions about the results are. At that time, the answers to these
questions may seem obvious to the experimenters, hence they often neglect noting it. However,
after a few days or months, remembering all the details is not so trivial any more. Following
literate programming principles and taking short notes to explain the rationale and usage of code
snippets, while executing them, is quite natural and solves the previous issues. From our own
experience, it does not signi�cantly slow down the experimental process, while it provides huge
bene�ts later on.

Finally, the outcome of this approach is a comprehensible, well-commented executable code,
that can be rerun step-by-step even by external researchers. Additionally, it can also be exported
(tangled), producing a script that consists of all snippets of the same language. Such scripts can
be used to completely reproduce the whole experimentation process.

An example of this approach is provided in 0b20e8abd5{labbook#l950} or in Appendix B.5. It
is based on Shell snippets, and although it can be rerun only with the access to the experimental
machines, it provides both a good illustration of Org-babel usage for conducting experiments and
a faithful logging of the commands run to obtain these experimental data, which is paramount for
a researcher willing to build upon it.

4.1.3 Git work�ow in action

We now explain the typical work�ow usage of our Git branching scheme, that is also tightly linked
to the experimentation journal in Org-mode.

Branching and merging is a technical operation that can become cumbersome and generally
scares new Git users. That is why such Git interactions should be made as easy as possible with
new speci�c Git commands, which we are currently packaging. We introduce such commands
along with their intended use without going into the details of their implementation.

Managing experiments with Git

On Figure 4.3 we explain the typical work�ow usage of our branching scheme. Although it is
self-contained and independent from any other tool, we found it very practical to couple it with
our laboratory notebook.

Before even starting, the whole project needs to be correctly instantiated on every machine, as
shown in Phase 0. Thegit setup url command will clone the project from server, but without
checking out any of the branches. Additionally, it will take care of several con�guration options
regarding our future Git commands, ensuring that the work�ow works smoothly.

When everything is set, the researcher can start working on a code development inside the
src branch, committing changes, as shown in Phase 1. These modi�cations can impact source
code, analysis or even the scripts for running the experiments. Later, such modi�cations should
be tested and the correctness of the whole work�ow should be validated. Only then can one start
conducting real experiments by callinggit xp start foo . This command will create and checkout
a new branchxp/foo from the src. Then, this command will create, commit and push a new folder
for storing the results. We used the convention that these two (branch and folder) should always
have the same name, which eases the usage of both Git and labbook. Next, the newly created
branch is pulled on a remote machine B, usinggit xp pull foo . It will fetch only the last commit
of the xp/foo branch. As a result, machines for experimentation, such as machine B, get only the
code required to run the experiments, with neither the Git history nor any experimental data.
Meanwhile, machine A and all other users that want to develop code, do the analysis and write
articles will continue using the standard git pull command to get a complete Git repository,
although it can sometimes be quite memory and time consuming.

In Phase 2, we �rst verify that there has not been any code modi�cation before running the
experiment and we also automatically ensure that the latest version of the code has been compiled.
Then, experiments are run, generating new data. The resulting Org-mode data �les, containing
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Figure 4.3: Typical Git experimentation work�ow with di�erent phases, using two machines.
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Figure 4.4: Restart or reproduce experiments starting from a certain commit.

experiment outputs together with the captured environment meta-data, are then committed to the
Git repository. Such process may be repeated, possibly with di�erent input parameters. Finally,
the commited data is pushed to the server.

After that, the experiment results can be pulled on the machine that is used to do the analysis
(Phase 3). Important conclusions about the acquired data should be saved either in separate
reports, or even better as a newfoo entry inside the experiment results section in the labbook.
Results of the analysis could later trigger another round of experimentation and so on.

Finally, when all desired measurements are �nished,xp/foo is merged with the data branch
using git xp finish foo , as depicted in Phase 4. This command also deletes thefoo branch, to
indicate that the experimentation process is �nished and to avoid polluting the repository with
too many open branches. Still, a simple Git tag is created on its place, so if needed, the closed
branch foo can easily be found and investigated in future. Note that while in the src branch,
the labbook only has the documentation part, the xp# branches are populated with observations
about the experiments. Therefore, the merged labbook in thedata branch holds all the collected
experimental entries with comments, which makes their comparison straightforward.

One interesting option is to go through the entire work�ow depicted in Figure 4.3 directly
within the labbook, using the literate programming approach with Org-babel we described in
Section 4.1.2.

Reproducing experiments

The main goal of such work�ow is to facilitate as much as possible the reproduction of experiment
by researchers. This can be done by calling thegit xp start --from foo command, from the
machine we want to repeat the experiments. As displayed in Figure 4.4, this command will
checkout the desired revision of the code and create a new branch and folder based on the initial
xp# branch. From there, conducting the new experiments, noting the observations and later
merging with data branch is performed as usual.

It may happen that software components of the machines used for experiments are replaced
between two series of experiments. In many cases, this is done by the machine administrators
and the researchers conducting the experiments may have no permission to revert it. There could
thus be some important changes in the environment and repeated experiments might produce
di�erent results from the initial ones. Unfortunately, when dealing with experiments that cannot
be run on virtual machines, nothing can be done to avoid this problem. The best we can do is to
carefully track all the software used in the experiments. Therefore, if any signi�cant deviation of
the experimental results occurs, we can compare the meta-data and �nd the source of discrepancy.

It is also worth mentioning that if researchers want to reconduct a previous experiments, but
on a completely new machine, they will use this exact same approach.
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Figure 4.5: Handling source modi�cations that occurred during the experimentation.

Fixing code

Sometimes, while conducting the experiments on a remote machine, the researcher may need to
make few small source code modi�cations. These modi�cations have to be committed (since mea-
surements are never done using an uncommitted code), even though in most cases they represent
an ad hocchange, speci�c to an individual machine and its current installation. These minor, local
hacks would pollute the data branch and thus it has to be ensured that they are not propagated
when branches are merged. This protection is thus implemented inside thegit xp finish foo

command.
At the end of the foo branch, all source code changes are reverted. This means that we create

an �anti-commit� of all the previously committed source modi�cations inside that experimental
branch, as shown in Figure 4.5. This way modi�cations remain local tofoo and the experimental
setup can still be reproduced by pulling the revision before the revert operation.

If the researcher eventually recognizes that some of the source code modi�cations done inside
foo branch could be useful for the whole project, there are two ways to insert them in thesrc
branch. The �rst one involves rewriting Git history and it is not advised as it can introduce
incoherence between Git repositories. The second option is to simply cherry-pick the desired
commits. Although this approach produces some redundancy, it is easier, safer and enables to
keep the Git history comprehensible and consistent.

Making transversal analysis

Such Git organization, environment parameter capture and careful note taking in labbook also
simpli�es the comparison of data sets. Since thedata branch aggregates all thexp# branches, it is
the best location to analyze and compare these di�erent results with each others. The numerous
plain-text meta-data are easily exploited and incorporated in the analysis. Since each data �le
comprises the revision of the source code used to generate it, it is easy to backtrack to speci�c
commits and to exploit the labbook to explain unexpected behaviors.

Writing reproducible articles

Using the described work�ow on a daily basis makes the writing of reproducible articles straight-
forward. Figure 4.2 shows how researchers can create a new branch from thedata branch that
contains only useful experimental results by using thegit article start art1 command. This
command deletes all the unnecessary data from the new branch, keeping only the experiments
that are previously tagged in labbook with art1 keyword.

Occasionally, some important experiment results may have been overlooked or conducting
additional measurements becomes necessary. In such case, these new results can be added later
through merging with the updated data branch.

Using art1 branch is convenient for the collaborators writing an article that are not concerned
with the analysis part. For them it is possible to pull only the Git history of the article, not the

41



CHAPTER 4. METHODOLOGY

whole project.
The problem may occur if one wants to present experiment results that are stored in large �les.

Even though art1 branch is much smaller than thedata branch, its size still may be non-negligible.
Since certain contributors to the article may want to have the access only to its text and �gures,
doing long cloning and storing of the experiment data for them is unnecessary and burdensome.
A possible solution (, also used for writing this thesis) is to create a new repository for the paper,
while using tools such as git submodules to synchronize with theart1 branch. Therefore, only
researchers needing data to perform the analysis would checkout and pull any changes of the main
project. For other authors this stays transparent as they are not obliged to load the submodule.
They can work solely with the new �mini project� created for the speci�c paper that contains only
the text �le and the �nal �gures.

Regardless of whether the paper is written in theart1 branch or in a separate project, the
same principles used for conducting experiments with Org-babel can be applied when writing
an article. This approach allows combining the text of the paper with data transformations,
statistical analysis and �gure generation, all using generally di�erent programming languages. A
major advantage of this methodology is that a lot of code and text can be recycled from previous
analysis scripts and from the labbook.

Keeping everything in the same �le rather than to have it scattered in many di�erent ones,
makes everything simpler and greatly helps the writers. We did not encounter any particular issue
when multiple authors simultaneously worked on the same paper. This also simpli�es modi�cations
and corrections often suggested by reviewers since every �gure is easily regenerated by calling the
code snippet embedded next to it in the article.

The �nal result of the whole work�ow, is an article containing all the raw data that it depends
on together with the code that transformed it into tables and �gures, possibly along with the whole
history with the detailed explanations of how this data was obtained. This is very convenient not
only for the authors but also for the readers, especially reviewers, since all experimental and
analysis results can be inspected, referenced, or even reused in any other research project.

4.2 Publishing results

Making data and code publicly available is a good practice as it allows external researchers to
improve or build upon our work. However, at least in our domain it is not that commonly done,
in particular because it is not that trivial to do when the study was not conducted with a clean
methodology in mind from the beginning. If such intentions are not envisioned from the beginning
of the project, it is generally very tedious to document and package afterwards. Gathering all the
data required for an article can be cumbersome, as it is typically spread in di�erent folders on
di�erent machines. Explaining experiment design and results is even harder, since notes that were
taken months ago are often not precise enough. In the end, few researchers somehow manage to
collect all the necessary elements and put them in a tarball, to accompany the article. Nevertheless,
such data without appropriate comments is hardly understandable and exploitable by others. This
lowers the researchers' motivation to share their data as it will not be widely used.

The question of what parts of this whole history should go public can remain a sensitive topic.
We think that, at the very least, the data used to produce the article �gures and conclusions
should be made available. Of course, providing only already post-processed .csv tables with only
carefully chosen measurements can make the article replicable, but will not guarantee anything
about reproducibility of the scienti�c content of the paper. Therefore, meta-data of all experi-
ments should be made available as well. Likewise, it is desirable to provide more material than
what is presented, as it allows for illustrating issues that cannot be included in the document due
to lack of space. The most extreme approach would be to publish everything, i.e., the whole lab-
oratory notebook, acquired data and source code archived in a revision control system. Yet, some
researchers may have perfectly valid reasons for not publishing so much information (copyright,
company policy, implementation parts that the authors do not wish to disclose at the moment,
etc.).
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The methodology we propose allows for easily choosing which level of details is actually pub-
lished. From the wide spectrum of possible solutions, we present two we used so far.

4.2.1 The partially opened approach with �gshare hosting

When we �rst started writing the article on the modeling and simulation of dynamic task-based
runtimes [5], our Git repository was private and we had not considered to open it. To publish
our experimental data, we decided to use Figshare, which is a service that provides hosting for
research outputs, that can be shared and cited by others through the DOI mechanism.

Although our article was managed within an internal Git, publishing to �gshare required to
select, archive and upload all the data �les and to �nally annotate them in the web browser. This
could probably have been automated, but the REST API was not completely stable at that time,
so we had to do everything manually. Likewise, the Fidgit project [Fid] could help, but it was at
the early development stage and requires the whole Git repository to be hosted on GitHub, which
may raise other technical issues (in particular the management of large �les, whose size cannot
exceed 100MB).

Hosting all our raw data on �gshare also required adjusting our reproducible article. Data
are �rst downloaded from �gshare, then untared and post-processed. To this end, we again
used the literate programming feature of Org-babel and the way we proceeded is illustrated in
e926606bef{article#l85} or in Appendix B.6.

Finally, this resulted in a self-contained article and data archive [Z214]. This approach was
not so di�cult to use, although the interaction with �gshare was mostly manual, hence not as
e�ective as it could have been.

4.2.2 The completely open approach with public Git hosting

Using the previous approach, we somehow lost part of the history of our experimental process.
Some data sets were not presented, some experiments where we had not properly con�gured
machines or source codes were also missing. Nevertheless, it is clear that with highly technical tools
and hardware such as the ones we experimented with, good results are not only the consequence
of an excellent code, but also of expertise of the experimenters. Making failures available can
be extremely instructive for those willing to build upon our work and thus publishing the whole
labbook and Git history seemed important to us. In our case, this did not require additional work
except to move our private Git repository to a public project [SSW]. With all the information we
provide and an access to similar machines and con�gurations, others should be able to repeat our
experiments and to reproduce our results without much burden.

In the end, it is important to understand that even though we decided to completely open our
labbook to others, this step is not a prerequisite for writing reproducible articles. The level of
details that is made public can be easily adapted to everyone's preferences.

4.3 Conclusion

In this chapter, we did not intend to propose new tools for reproducible research, but rather
investigate whether a minimal combination of existing ones can prove useful. The approach we
describe is a good example of using well-known, lightweight, open-source technologies to properly
perform a very complex process like conducting computer science experimentation on prototype
hardware and software. It provides reasonable reproducibility warranties without taking away too
much �exibility from the users, o�ering good code modi�cation isolation, which is important for
ad hoc changes that are ineluctable in such environments. Since all the source code and data
are in Git repository, reconstructing experimentation setup is greatly simpli�ed. One could argue
that not all elements are completely captured, since operating system and external libraries can
only be reviewed but not reconstructed. To handle this, researchers could build custom virtual
appliances and deploy them before running their experiments but this is not an option on all
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experimental machines. Using virtual machines to run the experiments is not an option either,
since in our research �eld we need to do precise time measurements on real machines and adding
another software layer would greatly perturb performance observations.

We used this methodology for conducting our research on how to faithfully predict the per-
formance of complex HPC applications through simulation. Indeed, as explained earlier, such
study requires extensive experimental and simulation campaigns. The proposed work�ow based
on Git and Org-mode proved very e�cient. However, the main di�culty was to �nd a right level
of granularity and which notes, tests and errors should be recorded and which should be ignored.
Capturing absolutely everything can be counterproductive, as important information will be hid-
den in the large amount of data and it would be hard to exploit it. Finding the right trade-o� is
speci�c to every domain and scientist, and it evolves through the time.

Our approach was also a base for a joint project between researchers from Grenoble (MESCAL
and MOAIS teams) and Bordeaux (HeiPACS and STORM teams). We have created a common
Git repository on GitHub for sharing traces and analysis of di�erent application executions [Traa].
All �les are commited to the repository except very large traces that are stored at zenodo while our
Git contains only links to such data. This archive is envisioned to promote better collaboration not
only between researchers of these two centers, but also between application developers and trace
visualization experts. Although we haven't used the Git branching scheme presented in Figure 4.2,
we applied the same principles regarding code and data organization. More importantly, we
encouraged all participants to use Org-mode for environment capture and keeping laboratory
notebook by documenting their experiment results. A very useful feature provided by GitHub
(that will probably soon be available on other project hosting frameworks) is the pretty printing
of Org-mode �les. This enables a �forum-like� discussions about the experiment analysis through
directly editing the Org-mode document in a web browser [Dis].
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Chapter 5

Porting StarPU over SimGrid

In this chapter, we show how we crafted a coarse-grain hybrid simulation/emulation of
StarPU [ATNW11], a dynamic runtime system for heterogeneous multi-core architectures, on
top of SimGrid, a simulation toolkit speci�cally designed for distributed system simulation. We
start by brie�y presenting StarPU and the main principles behind porting StarPU over SimGrid,
then we present in more details three di�erent modeling aspects that we had to carefully take into
account.

5.1 Choosing a runtime candidate for simulation

As discussed throughout the Chapter 2, task-based runtime systems recently became a very pop-
ular solution to bridge the gap between performance and portability of HPC applications. From
a wide range of di�erent runtimes, we choose to focus our study on StarPU mainly for the two
following reasons.

First, StarPU is a dynamic task-based runtime system speci�cally designed to exploit hetero-
geneous multi-core architectures. It is a task programming library that handles low level concerns
such as task dependencies, optimization of heterogeneous scheduling, and optimization of data
transfers between main memory and discrete memories. In StarPU, tasks use abstractions named
codelets. This task decomposition allows the developer to propose multiple codelets speci�cally
optimized for each architecture (e.g., using CUDA or OpenCL for GPUs). StarPU can then select
at runtime the best codelet to use to execute each task. Through this uni�ed abstraction, StarPU
ensures portability of the code. On the other hand, portability of performance is obtained with
the help of schedulers that e�ciently exploit the heterogeneity of the machines. StarPU exploits
all resources to perform the computation, adequately choosing which task should be executed on
which processing unit, but also minimizing the amount of data transfers. Finally, this runtime is
structured in such a way that it provides the right level of granularity and abstraction as well as
the ability to obtain any relevant machine or task information, which makes it a good candidate
for simulation.

Another important reason for choosing this runtime was the motivation of the developers to
work on such a project. They strongly believed that both their users and themselves could greatly
bene�ts from having an accurate simulator. Their expertise was crucial for rapidly and correctly
porting StarPU on top of SimGrid and for further improving of the models. Additionally, the
StarPU development team puts a lot of e�orts on having a stable code base, which drastically eases
building other software layers on top of it. This is why there is a sustained e�ort in Bordeaux to
put linear algebra applications such as Chameleon [Cha],qr_mumps [ABGL13] or FMM [ABC + 14]
on top of StarPU. However, there is nothing speci�c to StarPU in the approach we followed.
The same kind of study could as well be done with other runtimes. In the following sections, we
present the main challenges that need to be addressed when porting a simulation of any dynamic
task-based runtime.
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5.2 Porting StarPU over SimGrid

StarPU scheduling is dynamic and opportunistic, hence it is not deterministic. Replaying an
execution trace, as it can be done for classical MPI applications (described in Subsection 3.2.3),
is thus not an option. The decisions taken when simulating should be as close as possible to the
ones taken in a native execution. Therefore, the most natural approach is to execute the StarPU
code related to scheduling decisions and to replace actual task execution with SimGrid calls, as
would be done in emulation. To be more precise, by emulation and simulation we consider:

Emulation: executing real applications in a synthetic environment, generally slowing
down the whole code.

Simulation: use a performance model to determine how much time a process should
wait.

To make sure that simulation is carried out in a reproducible and controlled manner, SimGrid
exports a speci�c thread API (similar to the POSIX one) that allows the SimGrid kernel to control
the scheduling of all application threads. In simulation, such threads run in mutual exclusion and
are scheduled upon completion of simulated data transfers and simulated computations. Therefore,
any direct regular call to the POSIX threads has to be abstracted as well (e.g., calling SimGrids'
xbt_mutex_acquire() instead of standard pthread_mutex_lock()) . Likewise, in simulation mode,
any memory allocation on CPUs or GPUs has to be faked as no actual data processing is done
and no actual GPU is necessarily available on simulation machines. They are thus replaced by
a call to MSG_process_sleep() to only simulate their overhead. Last, since schedulers may use
runtime statistics to take scheduling decisions, time has to be abstracted as well to make sure that
simulation time (as returned by MSG_get_clock()) is used instead of system time (as returned by
gettimeofday() ). This �ne-grain thread control is the key point that previous emulation attempts
from the ICL of the University of Tennessee Knoxville were missing, resulting in ample inaccuracies
due to improper synchronization between runtime threads and simulated time.

Therefore, when running on top of SimGrid, StarPU applications and runtime are emulated
since the actual code is executed, but any operation related to thread synchronization, actual
computations of CPU-intensive kernels, or data transfer is in factsimulated.

In other words, the control part of StarPU is executed to dynamically inject computation and
communication tasks in the simulator. Additionally, for all synchronizations, transfer requests and
memory allocation/deallocations, runtime is modi�ed to inject delays that increase simulation time
and account for the overhead of such operations.

In order to know how much time the tasks and delays will take, SimGrid relies on thekernel
and platform calibrations performed by StarPU [ATN09]. The result of the platform calibration is
an architectural description of the machine, specifying each CPU core or GPU with its processing
power and the interconnect of the whole machine. We choose to simply represent each processing
unit as a SimGrid host with speci�c characteristics. Each host comprises one or several threads
that manage synchronization and signaling to StarPU, whenever transfer or computation kernel
ends. Additionally, platform description contains measured latencies and bandwidths for commu-
nications between stated processing units and other machine resources. All these characteristics
are benchmarked beforehand on a target platform by StarPU or by few simple scripts. To sim-
ulate a desired machine, one would need to run only once these short calibrations. As a result,
such approach is very di�erent from the classical ones described in Section 3.2 where architecture
is modeled in detail and coarse-grain performances are derived from �ne-grain simulation of the
internals.

From a modeling perspective, we consider three main components to take into account: the
StarPU scheduling and control part, the communications between resources and �nally the com-
putations on di�erent computing units.
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5.3 Modeling the StarPU runtime

StarPU has been extended in collaboration with the StarPU developers to have two modes of
execution: Native and SimGrid. Assuming in the Native mode means to execute StarPU as usual,
running the tasks on processing units, transferring the data between them, etc. When running in
SimGrid mode, StarPU is executed on one machine, but only to simulate the behavior of another
machine.

Some parts of StarPU are modi�ed to use SimGrid function calls instead. Indeed, since the
StarPU runtime is dynamic, it is essential to design a faithful emulation of the control part
to produce scheduling decisions as close as possible to reality. Otherwise, this would damage
simulation prediction accuracy of the whole application execution. We will describe in the following
several important aspects of the runtime control part that have to be correctly managed.

5.3.1 Synchronization

To o�er deterministic and reproducible executions, SimGrid provides its own thread abstrac-
tions. Therefore, we made explicit modi�cations to the runtime to call SimGrid functions instead
of pthreads. We illustrate this kind of modi�cations with the conditional wait function shown
in Figure 5.1, where standard pthread_cond_wait() (line 22) is simply changed for SimGrids'
xbt_cond_wait() (line 10) in simulation mode. A similar principle is applied not only for synchro-
nization, but throughout the StarPU source code for all necessary modi�cations of the runtimes'
control part.

Although these changes were performed manually, it could have been done automatically for
pthreads. However, there are other operations (e.g., test and set, atomics) whose implementation
is not as simple as the example in the Figure 5.1. For such cases, writing the scripts to automatize
the generation of SimGrid code would be more burdensome than just modifying the functions one
by one.

5.3.2 Memory allocations

When executing StarPU in SimGrid mode, memory is not really allocated for data, as no actual
computation or communication is going to be performed. Memory allocation and deallocation
calls are thus changed to only inject delays into simulator. These timings depend on memory type
(RAM or GPU memory) and on the size of the bu�er that needs to be allocated.

However, SimGrid still keeps track of the information about the size of the allocated data,
as memories on target machine have �xed capacities. This is very important for ensuring that
simulation will never exceed the memory limits of the simulated platform. Overlooking this aspect
can lead to completely misleading predictions.

Nonetheless, there are some runtime related structures used in controlling and guiding StarPU
execution. For data structures it is still necessary to do real memory allocations, since StarPU is
emulated and the data inside these structures is needed for correctly executing the runtime. Thus,
it is impossible to automatically replace all malloc calls inside StarPU with SimGrid functions.
The modi�cations have to be performed carefully by a StarPU expert who knows exactly which
memory allocations belong to application data and which ones are part of the runtime core.

5.3.3 Submission of data transfers

The modeling of data transfers between RAM and GPU memories will be elaborated in Section 5.4.
However, not only communications, but also the submission of GPU transfers take a certain
amount of time. Neglecting these could change scheduling decisions and prediction of the total
program duration. Therefore, some �xed delays need to be injected into simulation for every data
transfer submission.

Changing the CUDA function calls for SimGrid code was once again done manually. Since
StarPU has a good level of abstraction and provides wrapper functions for any GPU transfer, this
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1 #ifdef STARPU_SIMGRID
2 int starpu_pthread_cond_wait (starpu_pthread_cond_t * cond ,
3 starpu_pthread_mutex_t * mutex )
4 {
5 _STARPU_TRACE_COND_WAIT_BEGIN();
6

7 if (!* cond )
8 STARPU_PTHREAD_COND_INIT( cond , NULL);
9

10 xbt_cond_wait (* cond , * mutex );
11

12 _STARPU_TRACE_COND_WAIT_END();
13

14 return 0;
15 }
16 #else
17 int starpu_pthread_cond_wait (starpu_pthread_cond_t * cond ,
18 starpu_pthread_mutex_t * mutex )
19 {
20 _STARPU_TRACE_COND_WAIT_BEGIN();
21

22 int p_ret = pthread_cond_wait ( cond , mutex );
23

24 _STARPU_TRACE_COND_WAIT_END();
25

26 return p_ret ;
27 }
28 #endif

Figure 5.1: Implementing the simulation mode requires some code modi�cations of StarPU. This sim-
ple example illustrates the SimGrid (lines 2-14) and Native (lines 16-25) modes for executing StarPU's
conditional wait.
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Transfer queue GPU memory GPU memory Pinned RAM
Operation management allocation deallocation allocation

(cudaMalloc ) (cudaFree ) (cudaHostAlloc )
Time 10� s 175� s 125� s 650� s/MB

Table 5.1: Typical duration of runtime operations.

code modi�cation had to be done in a single place. On the other hand, automatizing this process
for another runtime with di�erent internal organization would probably require implementing a
fake CUDA API, which would be quite tedious.

5.3.4 Scheduling overhead

Since StarPU is emulated, the actual scheduling of tasks is performed as well. However, the time
to compute a scheduling decision is not the same on the target simulated machine and on the
machine used for simulation. In our current solution, we decided to leave out these discrepancies
by completely ignoring the scheduling overhead in simulation mode, as its in�uence to the �nal
simulation accuracy seems minimal.

It is important to note that scheduling time is precisely measured in native traces. Thus, it
could be possible to take this into account when simulating target machine by injecting certain
delays every time StarPU has to choose a resource for running a task. However, implementing
this is not straightforward and for the studies we have performed so far, the cost of scheduling is
negligible and often covered by other operations that are executed in parallel.

5.3.5 Duration of runtime operations

We described how process synchronizations, memory allocations and submission of data transfer
requests are all faked in simulation mode, whereas such operations in native execution do take
time and have some in�uence on the overall performance. Several delays were thus included in the
simulation to account for their overhead and Table 5.1 depicts typical duration of such operations.
It is interesting to note that pinned RAM allocation is linear with memory size, since it has to pin
each physical page of the allocation, while other allocations have more standard, constant costs.

We measured the timings from Table 5.1 o�ine and realized that they are very similar for
all GPUs and CUDA versions we tested. Thus, we pragmatically decided to always inject the
same values for every simulation regardless of the target machine. This is improved further by
benchmarking the values for each GPU during the machine calibration and later adding this infor-
mation to the platform description. SimGrid would then use the benchmarking results and inject
the corresponding delays during the simulation, possibly even taking into account the variability of
the measured values. However, this would require some additional changes to the default StarPU
calibration and only for minimal bene�t. Thus, we do not plan to implement such extensions yet.

The other modi�cations to the StarPU code that had to be performed in order to get a viable
simulation are more related to the modeling of the communication between processing units and
to the modeling of the computation of kernels.

5.4 Modeling communication

In parallel applications, data is generally distributed across the memory of the computing units
that execute the tasks. Since, di�erent tasks require di�erent parts of the whole data, this implies
many exchanges of data blocks. When running a StarPU program, these data transfers are explicit.
However, if the transfer is done between CPU cores that share the same memory, no actual data
will be moved, only the pointers will be updated. This results in a problem regarding NUMA
architectures, where the time to retrieve data from the local and distant cache is not equal. In
order to correctly model this phenomena, one would have to precisely trace all the memory accesses.
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(a) Fatpipe (crude) model (b) Complete graph (pragmatic) model

(c) Treelike (elaborated) model

Figure 5.2: Communication and topology modeling alternatives. In the crude modeling, a single link is
used and communications do not interfere with each others. The pragmatic complete graph modeling
allows for accounting for both the heterogeneity of communications and the global bandwidth limitation
imposed by the PCI bus. Complex machine architecture demand for even more elaborated models.

This process is hard to implement and very costly in terms of performance. Therefore, for now
we concentrated solely on transfers involving GPUs as those are explicit and the data isde facto
moved via the PCI bus. In the rest of this thesis, when discussing communication, we will refer
only to CPU-GPU (RAM-GPU) and direct GPU-GPU transfers.

Due to the relatively low bandwidth of the PCI bus, applications running on hybrid platforms
often spend a signi�cant fraction of the total time transferring data back and forth between the
main RAM and the GPUs. Modeling communication between computing resources is thus of
primary importance. SimGrid models heterogeneity and contention in a simple way with a linear
model, fair with no performance degradation as if �ow control was perfect (see Subsection 3.2.4 for
more details). SimGrid also has a very �exible platform description that allows for running sim-
ulations of various computer architectures, without requiring any modi�cations to the simulator.
In such a context, there are many ways to represent PCI bus.

5.4.1 Di�erent PCI bus models

Since links through which the transfers are performed are just an abstraction, there is more than
one way to describe the network architecture. We have started with the simplest models that were
enough for initial use cases. Later, when the complexity of the experimental machine architectures
and the size of the application problem both increased, we had to upgrade our network models.
Figure 5.2 shows three di�erent types of PCI bus models we have developed so far.
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Fatpipe model

The macro data-�ow model [CJLL95, PY90] which is used in most theoretical DAG scheduling
studies assumes that communication delays are paid each time a task and one of its successors are
not assigned to the same processing units. This implicitly assumes a homogeneous and contention
free network.

Therefore, as a �rst approximation (see Figure 5.2(a)), we mimicked this model by introducing
a single non-shared link whose latency and transfer rate correspond to typical characteristics of
the PCI bus. The non-shared characteristic of the link means that any connection gets the full
capacity of the link regardless of the number of other competing �ows. However, such modeling
does not account for important architectural aspects. First, the bandwidth between CPU and
GPU is asymmetrical. Second, communication characteristics are not uniform among all pairs
of CPUs and GPUs, as it depends on the chipset architecture. Therefore, the fatpipe model is
e�ective only for very simplistic machines (the hypothetical ones) for which researchers want to
evaluate the characteristics of their application, scheduler or hardware.

Complete graph model

We decided to account for the shortcomings of the previous approach by using a dedicated up-
link and a downlink with di�erent characteristics for each pair of resources (see Figure 5.2(b)).
Furthermore, any communication between two resources has to go through a common shared
link (in bold), which represents the maximum capacity of the PCI bus. This creates a complete
graph with communication bandwidths and latencies measured for every possible transfer between
computation units, together with one link shared by everyone.

Even though the actual communication on the real machine is performed di�erently as there
is no direct connection between memories, this pragmatic approach provides very good results.
However, modeling network in such a way is limited to the machines on which all resources use the
same PCI bus. For bigger platforms with more complex architectures, more sophisticated models
are needed.

Treelike model

In HPC community, researchers often work with prototype hardware and non-standard architec-
tures. The hwloc [BCOM+ 10] output in Figure 5.4 depicts the Idgraf machine that has two CPUs
with 6 cores each, 8 GPUs and a very particular interconnect. Such architectures demand for
more elaborated models. The two previously presented solutions both use a single shared link for
modeling PCI bus contention. However, this approach cannot be applied for complex machines
such as the one on Figure 5.4, since communication between two pairs of resources can go through
completely di�erent routes. This results in sharing bandwidths only on particular links while on
others there is no interference at all.

Figure 5.2(c) shows a treelike model we created for Idgraf. This model imitates the machine
architecture, where routes between di�erent memories consist of many connected unidirectional
and bidirectional links. This way we ensure that transfers will be slowed down only on certain
parts of their route, depending on the current tra�c on that section of the network. Such a
complex network topology is generated automatically during the phase of the machine calibration.
In Figure 5.3 we display only a small piece of platform description �le, the one de�ning the route
between GPU6 and GPU2 (also presented as a dotted line on Figure 5.2(c)).

Although this last approach seems intuitive as it follows the architecture of the machine,
benchmarking the latency and the bandwidth of every link stays a challenging task.

5.4.2 Model based on calibration

Whichever network model is chosen from the previous subsection, it has to be instantiated with
the benchmarked values from the target machine. For that we use machine calibration functions
that were already part of the StarPU code. Indeed, even before running in native mode, StarPU
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1 <route src='CUDA6' dst='CUDA2' symmetrical='NO' >
2 <link_ctn id='CUDA6-CUDA2' />
3 <link_ctn id='PCI:0000:0d:00.0 down' />
4 <!-- Switch PCI:0000:[0d-0d] through -->
5 <link_ctn id='PCI:0000:[0d-0d] down' />
6 <!-- Switch PCI:0000:[0b-0d] through -->
7 <link_ctn id='PCI:0000:[0b-0d] down' />
8 <link_ctn id='PCI:0000:[0a-0d] through' />
9 <link_ctn id='PCI:0000:[0a-0d] down' />

10 <link_ctn id='PCI:0000:[00-13] through' />
11 <link_ctn id='PCI:0000:[00-13] down' />
12 <link_ctn id='Host' />
13 <link_ctn id='Host' />
14 <link_ctn id='PCI:0000:[80-8a] up' />
15 <link_ctn id='PCI:0000:[80-8a] through' />
16 <link_ctn id='PCI:0000:[81-84] up' />
17 <link_ctn id='PCI:0000:[81-84] through' />
18 <link_ctn id='PCI:0000:[82-84] up' />
19 <!-- Switch PCI:0000:[82-84] through -->
20 <link_ctn id='PCI:0000:[84-84] up' />
21 <!-- Switch PCI:0000:[84-84] through -->
22 <link_ctn id='PCI:0000:84:00.0 up' />
23 </route>

Figure 5.3: Excerpt of the Idgraf platform description �le generated using the treelike model. This
fragment de�nes the route used when communicating between GPU6 and GPU2 using CUDA.

benchmarks the PCI bus and all possible transfers in order to optimize its scheduling. We can
thus reuse this gathered information when running simulations as well. This step is necessary as
benchmarked values are typically much more precise than the data provided by hardware vendors.

Another important aspect that needs to be managed for parallel transfers is the contention.
Two transfers occurring at the same time and sharing a link will certainly interfere with each
other, thus degrading the performance for both. However, depending on the resources involved
in the communication, data transfers may also be serialized or not. For example, although most
CUDA transfers are serialized whenever they involve the same resource, on some systems it is
possible to transfer both from GPU0 to GPU1 and from GPU1 to GPU0 at the same time. Thus,
these serialization rules have to be additionally taken into account inside the network description.

Apart from the serialization, the performance of transfers can also heavily depend on both the
GPU type and the CUDA version. All this requires a sound model calibration protocol and very
careful capturing of the environment setup when doing the experiments. In such an experimental
context, our methodological approach (described in Chapter 4) proved to be very helpful.

Finally, once data is transferred to the memory of the speci�ed processing unit, it can be used
for computing the kernel and this is the last step that needs to be addressed by the simulation.

5.5 Modeling computation

When running simulation, the actual result of the application is of no interest. Hence the execution
of each computational part is replaced by a virtual delay accounting for its duration.

The basic model in SimGrid to manage computation is based on FLOPS. Each processing
unit in the system is characterized by its speed (FLOPS rate), and during the simulation the
user provides how much �oating-point operations a certain kernel needs to execute. From these
two values, SimGrid simply computes the duration (possibly taking into account contention on
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Figure 5.4: Architecture of the Idgraf machine with 12 cores, distributed on 2 NUMA nodes, 8 GPUs
and their interconnect.
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computational resources if used by several threads at the same time) and increases the simulation
time. Such approach is e�ective when simulating distributed, peer-to-peer or grid applications,
where a very rough estimation of the computation duration is su�cient. However, for HPC
applications, much more accurate predictions are needed, as computational blocks (kernels) are
smaller and occur more often. The kernel performances are measured on a real machine, and then
models accounting for both their mean duration and their variability are created.

The easiest way to obtain the duration of the kernels is from a native execution trace. The
captured timings are then just injected into simulator, using the replay technique so commonly
applied for MPI applications. However, as discussed in Subsection 3.2.3, this approach has many
shortcomings, from which the main one is that it requires executing StarPU on the target machine
every time there is a code modi�cation. It also strongly bias the simulation toward one particular
execution. Working in such a way is not only cumbersome, but it questions the very purpose of
using the simulation in the �rst place.

Instead, we propose a di�erent approach, aiming at �nding good, possibly parameterized,
models for this simulation purpose. Since the code of the computational kernels is rather stable,
these results are valid even if there are changes to the rest of the application or runtime. However,
to instantiate models one still needs to access the target machine and run calibration of the
kernels. Such calibration has to be performed only once and after that, numerous simulations can
be executed. Nonetheless, di�erent types of computation kernels require di�erent types of models.

Modeling parameter dependent kernels

HPC applications, particularly linear algebra applications, usually work with large matrices that
are divided into smaller blocks to maximize parallelism. Then, certain operations encapsulated
into runtime tasks are performed on the blocks. These operations can be implemented to rely on
standard libraries such as the BLAS, the LAPACK or the MKL. Whenever there is a basic matrix
operation on a single block, applications use standard functions provided by these libraries (GEMM,
POTRF, GEMQRT, etc.). The rationale is that the performance of such routines can be optimized for
each speci�c machine architecture. Nevertheless, depending on the operation and the structure of
the matrix, these kernels can be very diverse.

When the blocks are densely �lled, the time to execute a certain operation on a block of a matrix
will mostly depend on its geometry. For example, when doing a general matrix multiplication on
a square matrix, GEMMsubroutine can be characterized by a single parameter, the block dimension.
Typically, in the StarPU execution of dense linear algebra applications, such as Cholesky or LU
factorization, the block dimension is an input parameter de�ned by the user and it will not change
during the execution. Therefore, when simulating these applications, one only needs to calibrate
the kernels for a single parameter value. In practice, there are few optimal dimensions, depending
on whether the factorization is performed using CPUs, GPUs or both, and only kernels with such
block dimensions need to be calibrated. Such coarse-grain approach does not allow for predicting
the in�uence of a longer cache line or of a di�erent block size. However, it allows for performing
numerous simulations varying the whole matrix size or the scheduler, since the basic operation on
a block will always be the same.

On the other hand, calibrating kernels that work on sparse matrices is much harder. Since
they are �lled with many zeros, the time to execute a kernel will depend not only on the size of
the block, but also on its structure and on the number of non-zero values inside it. Benchmarking
such kernels with multiple parameters is thus much more complicated and time consuming, as
calibration needs to cover a huge experimental space. Additionally, in order to get accurate
models that faithfully re�ect kernel executions, the calibration has to be done non-uniformly
following certain properties of the sparse linear algebra applications. Still, it is generally plausible
to derive linear or polynomial models of such kernels, as we show in the Section 7.4.
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Modeling kernels with complex codes

Not all runtime tasks perform regular operations on a problem of a �xed size. Some kernels are
responsible for memory management of the application, which may be very complex and depend
on the state of the other kernels executed in parallel. There are also tasks that assemble results
from several other kernels, and for which the amount of data that will have to be processed is not
known in advance.

The input parameters of these type of kernels are not representative of the amount of work
they perform. Therefore, the duration of such tasks is impossible to predict based solely on their
inputs, and supplementary parameters are needed. These additional parameters describe certain
aspects of current the system, and can be related to the machine characteristics, the state of the
applications, etc. Such parameters are very speci�c to each task, and in order to identify them,
a good knowledge of the kernel code and the application behavior is required. Therefore, such
kernels often need alternative approaches for calibration and modeling.

Limitations due to the simplistic machine models

Our modeling approach is coarse-grain and is thus based on simplistic models of the machines. We
decided to neglect certain hardware phenomena. For example, memory hierarchy of the machine
and how the data is distributed have a big in�uence on the time to execute a kernel. Moreover,
we performed kernel calibrations on a single CPU in a dedicated surrounding, which ignores any
hardware contention that can greatly decrease the performance. A detailed list of the limitations
of our approach and the envisioned future improvements are presented in Subsection 8.2.1. Still,
the chosen level of abstraction and the kernel models that are presented in this section proved to
be su�ciently accurate for studying many applications.

5.6 Conclusion

In the previous chapter, we presented the main principles behind the SimGrid simulation of the
StarPU runtime. We gave several implementation details and discussed central elements for sim-
ulating dynamic task-based runtime systems for hybrid machines. Coding the main part of this
solution took a few days and represent no more than a few hundreds lines of code in total code
base few hundreds thousands of lines. This simple approach immediately provided good results for
basic use cases. However, validating, correcting and enlarging this approach has been a constant
process that lasted for almost three years.

The same ideas could be applied to other runtime systems and simulators. However, the amount
of work would mostly depend on the paradigms and the internal structure of such software. We
believe that the crucial advantage of our solution was a coarse-grain approach as well choosing
good runtime and simulator candidates. Both StarPU and SimGrid are modular with a good level
of abstraction, which eased the development of this new tool. Our solution enables to obtain very
accurate predictions for di�erent machines and applications, and we present the evaluation results
in the next two chapters.
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Chapter 6

Performance Prediction of Dense Linear
Algebra Applications

Designing and implementing simulation of the StarPU runtime was performed in parallel with
numerous experiments that guided us towards all the features that had to be improved, always
aiming at having more accurate simulation predictions. In this chapter, we present the most
relevant experimental results obtained during the study.

We start by presenting the applications and the architecture of the machines used to evaluate
our approach. Then, we provide details about the experiment design and the typical work�ow,
although the main principles behind the methodology are already described in Chapter 4.

Even though during a single application run, dense linear algebra kernels are executed on the
same problem size, their duration has certain variability. We address this issue and propose an
approach to account for it inside the simulation using histograms of duration distributions.

As previously presented, a careless modeling of any aspect of the runtime, of the communica-
tions or of the computations can lead to gross inaccuracies for particular combinations of machines
and applications. We show in this chapter that we managed to cover the most important issues,
which enables us to obtain excellent prediction of performance. We present results of the simula-
tion of heterogeneous machines with a wide range of di�erent GPUs. Additionally, we show how
our method could be equally applied to the executions that use both CPUs and GPUs for doing
computation. We equally exhibit current limits of our work regarding large NUMA machines, for
which we still do not have sound models. Finally, we demonstrate typical use cases for such a tool,
and from which StarPU users already bene�t.

6.1 Experimental settings

To make sure our approach is reliable and applicable on various use cases, we had to validate it
on a wide range of experimental settings. The most important elements of our experiments are
the applications and the simulated machines, and thus they will be presented in more details.

Additionally, it is worth mentioning that all the systems used in the experiments had a Unix
operating system, however with very di�erent distributions. Also we used di�erent libraries for
the computation kernels (BLAS, LAPACK, MKL, etc.) depending on their availability on the
target machine. The same applies to di�erent gcc compilers, used for compiling both StarPU and
SimGrid. However, all these software diversities we kept track of do not have a decisive in�uence
on the conclusions that are presented in the following sections.

6.1.1 Applications

We used two well-known and e�ciently implemented applications on top of StarPU: Cholesky
and LU factorization. The Cholesky decomposition is typically used for �nding numerical so-
lutions for partial di�erential equations and thus it is a good representative for many scienti�c
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1 for k = 1.. nblocks do
2 A[ k][ k] <- POTRF( A[ k][ k])
3 for i = k+1.. nblocks do
4 A[ i ][ k ] <- TRSM( A[ k][ k], A[ i ][ k ])
5 for i = k+1.. nblocks do
6 for j = k+1.. i do
7 A[ i ][ j ] <- GEMM( A[ i ][ k ], A[ j ][ k ], A[ i ][ j ])

Figure 6.1: Tiled Cholesky factorization.

applications. Figure 6.1 shows a pseudocode of tiled Cholesky implementation that was used
during our research. Details of the algorithm, its parallelization and possible optimizations have
already been extensively explained in many publications [ABED+ 15, Gus03, BLKD09] and we
only brie�y present here the main function of the kernels:

1. POTRF: The kernel performs the Cholesky factorization of a diagonal (lower triangular) tile
of the input matrix and overrides it with the �nal elements of the output matrix.

2. TRSM: The operation applies an update to an o�-diagonal tile of the input matrix, resulting
from factorization of the diagonal tile done by POTRFand overrides it with the �nal elements
of the output matrix. The operation is a triangular solve.

3. GEMM: The operation applies updates to an o�-diagonal tile of the input matrix, resulting
from factorization of the tiles to the left of it. The operation is a matrix multiplication.

Note that this is a simple StarPU implementation of the Cholesky algorithm, in particular it
does not use the SYRK subroutine.

The second application we used in our experiments is the LU decomposition based on Gaussian
elimination, another common algorithm, introduced by Alan Turing in his 1948 paper [Tur48]. In
terms of StarPU implementation, this application has a structure similar to Cholesky, only this
time relying on the SCAL, GER, TRSMand GEMMfunctions.

Concerning task granularity, for the executions running on GPUs we �xed a relatively large
block size (960 � 960) as it is representative of what is typically used to achieve good perfor-
mances [AAD+ 10, AAD+ 11]. In most of the experiments, the CPUs were only controlling the
execution and scheduling of tasks while GPUs had the roles of workers, meaning that the whole
computation was done entirely on the GPUs. We initially focused on this kind of scenario as GPUs
have a performance that is easier to predict and provide a signi�cant fraction of computational
power for dense linear algebra kernels. However, in Subsection 6.7 we also report experiments
conducted on a NUMA machine with a large number of cores (with no GPUs) and for which we
thus used a smaller block size (320� 320) that is much better suited to CPU resources. Finally,
we also investigated situations involving both CPUs and GPUs doing parallel computations.

Running such applications on top of runtime typically raises questions about the optimal block
size, the maximal GFLOPS rate, the in�uence of the scheduler, the transfers overhead, the memory
contention, etc. Moreover, researchers are often interested on how their solution would behave on
various architectures and platforms.

6.1.2 Machines

For dense linear algebra applications, the computational power of GPUs is generally much higher
than the one of CPUs. Figure 6.2 proves such statement by providing the GFLOPS rate for
the Cholesky application with StarPU when varying the size of the matrix from 1MB to several
GiB. All three experimental campaigns were performed on the same machine but used di�erent
computation resource sets: 8 cores on the left plot, 3 GPUs on the middle plot, and both CPUs and
GPUs on the one on the right. As expected, the hybrid solution provides the best performance

58



CHAPTER 6. PERFORMANCE PREDICTION OF DENSE LINEAR ALGEBRA APPLICATIONS

Name Processor Number of Cores Frequency Memory GPUs
Hannibal Intel Xeon X5550 2 � 4 2.67GHz 2 � 24GiB 3� QuadroFX5800
Attila Intel Xeon X5650 2 � 6 2.67GHz 2 � 24GiB 3� TeslaC2050
Mirage Intel Xeon X5650 2 � 6 2.67GHz 2 � 18GiB 3� TeslaM2070
Conan Intel Xeon E5-2650 2 � 8 2.0GHz 2 � 32GiB 3� TeslaM2075
Frogkepler Intel Xeon E5-2670 2 � 8 2.6GHz 2 � 16GiB 2� K20
Pilipili2 Intel Xeon E5-2630 2 � 6 2.6GHz 2 � 32GiB 2� K40
Idgraf Intel Xeon X5650 2 � 6 2.67GHz 2 � 36GiB 8� TeslaC2050
Idchire Intel Xeon E5-4640 24� 8 2.4GHz 24� 31GiB /

Table 6.1: Machines used for the dense linear algebra experiments.
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Figure 6.2: For dense linear algebra applications, most of the processing power is provided by GPUs.
These plots depict the performance of the Cholesky application on the Mirage machine (see Table 6.1). A
clearer view of these performance when restricting to CPU resources (8 cores) is provided in Figure 6.17
(4+4 cores).

and manages to take advantage of both resource types. Nevertheless, since GPUs provide the
major fraction of the processing power, we mostly concentrate on executions that use only GPUs
for computing kernels, even though we are able to accurately predict fully hybrid setups as well.

Therefore, we choose to use the systems described in Table 6.1 to study the validity our
models. All seven machines with GPUs have distinct characteristics and span three di�erent
GPU generations, which intends to demonstrate the validity of our approach on a range of diverse
machines. Additionally, we have experimented on a large NUMA machine without GPUs, but
with 24 nodes each having 8 cores.

For doing the simulations we used either the same target machines or more frequently a com-
modity laptop. It is an Intel Core i7-3720QM with four 2.6 GHz CPU cores, 8 GiB RAM memory
and no installation of CUDA libraries. Still, we remind that the characteristics of the machine
used for doing simulation have no in�uence as the results would be the same on any other machine.

6.2 Modeling kernel variability

Varying distance of the data and contention on di�erent resources (see Section 5.5), introduces a
variability of the execution time of the kernels. Moreover, even without these e�ects, operating
system and the non-determinism of today's machines adds some noise to the execution time.
Consequently, a kernel execution with �xed parameters will always take slightly di�erent time.

When running simulation, such variability can be modeled in di�erent ways. In the study
performed at the University of Tennessee Knoxville [HKY+ 14], researchers reported that the
kernel durations of their executions can be well approximated with a simple normal distribution(see
Figure 6.3). This may be valid for the kernels executed on a single multi-core CPUs, as in such
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Figure 6.3: Analysis of the kernel duration distribution as done by Haugen et al. in [HKY + 14]. A normal
law approximates the sample distribution very accurately. However we believe this is valid only for simple
multi-core CPUs.

cases the variability is mostly the product of di�erent cache states. However, when working with
GPUs, NUMA or hybrid machines, the placement of data and the time of its retrieval is much
more complex, which results in much more irregular kernel durations.

In our initial approach, we used the mean duration of each computation kernel. This approx-
imation was producing satisfactory results, as we were experimenting with dense linear algebra
kernels that have optimal block size of the matrix, which leads to good utilization of resources and
almost no idle time on computational units during the application run. In such context, modeling
kernels with a single constant is accurate enough for the intended purposes and the mean value
proved to be a good representative in our experiments. However, using a �xed value leads to a
deterministic schedule in simulation, which may bias the simulation and does not allow to verify
the ability of the scheduling algorithms to handle resource variability. Therefore, we performed a
deeper study on kernel durations, its deviation throughout the application execution and �nally
the best way to capture and replay all these phenomena in the simulation.

6.2.1 Analyzing kernel duration distributions

In order to study kernel execution time more closely, we modi�ed StarPU to capture the timing of
every computation during a native execution. Figure 6.4 shows the evolution of 23254GEMMkernels
durations as a time sequence during72; 000� 72; 000 Cholesky factorization on a multiple GPU
Attila machine (see Table 6.1). All observations were measured on single GPU and the kernel was
always executed on960� 960 size blocks.

The timings can be clearly divided into two groups. The �rst one consists of the smaller
durations, around 2.84 microseconds, that represent the vast majority of the measured values. This
is a minimal duration for the execution of GEMMkernel on 960� 960blocks with TeslaC2050 GPU.
In the second group are the higher value timings that can be much bigger than 2.84 microseconds
and for which one can observe a huge variability. These durations correspond to the cases where
the kernel was slowed down by a certain external factor. One reason could be that a matrix block
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Figure 6.4: GEMMkernel durations on a GPU in a single 72; 000� 72; 000 Cholesky factorization, presented
as a time sequence. Most of the values are around 2.84 microseconds, but there is a signi�cant number of
higher durations as well.

was not fully available at the beginning of the execution. Another one is that the computation
on GPU was done in parallel with a communication and since they both use the same GPU
memory, this introduced performance penalties for both operations. There are even more possible
sources of irregular performance, including di�erent synchronization and operating system issues.
However, the information about all these parameters are hard to capture and relate to the presented
trace. Thus, in the rest of this analysis we assume that the variability in Figure 6.4 comes from
independent, uncontrollable factors.

Such hypothesis implies that the durations of kernel executions are also independent. However,
this is not true as the larger duration values are often clustered together, as can be observed in
Figure 6.4. Due to the structure of the Cholesky application, this phenomenon is clearly noticeable
in the beginning of the execution and less towards the end, but for the other applications it could
be the opposite. In fact, these timings depend on the state of the system, the location of the data,
other kernels executed in parallel, the operating system, etc. Moreover, consecutive executions of
the kernel are likely to have an in�uence on each other.

Nonetheless, since parameters responsible for such performance degradation are hard to quan-
tify, we decided to ignore the dependencies between kernel durations on the Figure 6.4. Such
approximation seem plausible for this research, since when studying dynamic runtime schedulers
it is more important to ensure that there is a right number of longer duration tasks, than specifying
that these sometimes come in groups.

Figure 6.5 depicts the distribution of the GEMMkernels for the same trace. One can observe on
the top plot that there is a huge spike for the lower durations that causes the other bars to be
almost invisible, although we know from Figure 6.4 that there are many observations bigger than
3 microseconds. To address this issue, in the other plots of Figure 6.5, we zoom on the two groups
separately in order to analyze their distributions in more details.

The bottom left one shows the distribution of the lower value timings that occur in 96% of the
cases and take 87% of the overall duration ofGEMMkernels. Even though the measured values are
very stable, with only dozens of nanoseconds of di�erence, surprisingly one can observe that the
distribution is bimodal. We believe that the reason behind it is the imperfection of the tracing
tools. Indeed, since the tracing of the begin and the end time of the kernel is performed by
the CPU that is in charge of controlling the GPU execution, timestamps may be slightly biased.
Having a more precise measurements is possible, but would require to change the core of StarPU
pro�ling, which is not trivial to implement.

The bottom right plot of Figure 6.5 shows how the distribution of bigger duration values is
much more irregular even if the density plot tends to alleviate such e�ect. These timings occurred
in only 4% of the kernel executions during the application run. We point out that the y-axis on
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Figure 6.5: Distribution of GEMMkernel durations on a GPU in a single 72; 000 � 72; 000 Cholesky fac-
torization. Top plot presents the distribution constructed for all observations, while bottom ones are
reconstucted for two separate groups of observation depending on their duration value.
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(a) With standard histograms, the bins have uniform width, thus the distribution is poorly captured especially the
spike with the lower duration values.
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(b) With irregular histograms, the bins are chosen more precisely, with non-uniform widths, thus the histogram
approximation is more accurate.

Figure 6.6: Approximating GEMMduration with two types of histograms.

left and right plots of Figure 6.5 is not the same, as the ranges are from 0 to 100% and from 0 to
0.2%, respectively. Even though the higher duration values are rare compared to the �rst group,
their cumulative duration is 13% which is not negligible.

The kernel performance we presented is speci�c to the GPUs. However, when experimenting
with NUMA machines we also observed multimodal distributions. Accurately mimicking the
behavior of kernel execution inside the simulation requires to carefully capture all the details of
every execution mode. The easiest way is to replay the trace in simulation, but this approach
has many drawbacks (as described in more details in Section 3.2). Another path is to create
models based on distribution of the measured kernel durations. However, information about the
parameters responsible for such variability is hardly accessible. One possible solution is to try to
approximate duration distributions using histograms.

6.2.2 Using histograms to approximate distributions

The results presented in Figure 6.5 are captured for aGEMMkernel during a single Cholesky execu-
tion. However, even if the matrix dimension changes (and block dimension stays the same), the
kernel duration tends to exhibit similar performance behavior, since it is executed for exactly the
same data size. Therefore, it is enough to run a single Cholesky execution or even a well designed
calibration by the benchmarking script and to capture durations for every kernel. Such collection
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of data can then be used to analyze the computation duration distributions and to model it using
histograms. These models can then be used during the simulation to generate pseudo-random
variables from the histograms and inject them into simulator.

The main idea is to produce histograms and then save its parameters (bins and densities) into
a separate text �le. Later when running simulation and a speci�c kernel has to be executed (e.g.,
GEMMkernel on a GPU), SimGrid will consult the �le with histogram characteristics in order to
compute how much time the kernel execution will take. First it will pseudo-randomly choose a
bin according to its probability (e.g., there are 0.4% chance that the kernel duration is between
12 and 13 microseconds). Then it will uniformly pick a value from the chosen bin and return it to
the simulator as a predicted duration of the kernel.

This allows simulation to mimic the behavior of the real machine, where kernel durations may
greatly vary. Such advanced approach is more compatible with simulations of dynamic runtimes
than simple constant injection. However, it also has two major drawbacks.

The �rst shortcoming of this solution is that it assumes that the kernel durations used to
construct histograms are independent. Clustered higher value timings from the beginning of trace
shown in Figure 6.4 prove the opposite, but as already discussed this approximation is su�cient for
the studied use cases. The problem occurring in the simulation is that bins are chosen randomly
only according to their probability. In such a way, the character of the external parameters is
completely neglected, even though these factors actually dictate the possible kernel slowdown and
thus which bin should be selected. However, implementing this correlation would require knowing
many aspects of the system and in the context of the modern machines it is hardly possible.
Fortunately, in practice the runtime compensates quickly any longer executions of kernels by
using dynamic scheduling. Therefore, this drawback has a very small e�ect on the �nal results,
and we can continue using histograms without harming the simulation accuracy.

The second, much bigger problem, comes from the way standard histograms are computed.
These histograms use uniform bin-width in order to produce �gures that visually provide the most
information to the researchers doing the analysis. However, this type of histograms proved to
be a very bad solution for the distributions containing high, narrow spikes. More generally, such
standard histogram representations are not optimal for abstracting the kernel duration distribution
in models that are later used for simulation, as it is illustrated in Figure 6.6(a). This �gure
shows the distribution of the durations of GEMMkernel coming from the same trace as the one
on Figure 6.5. The output of the standard histogram computed by R, a programming language
for statistical computing, is displayed in the left plot of Figure 6.6(a). One can observe the two
previously described groups of values. The �rst one is presented as a huge spike between 2 and
3 microseconds occurring in 96% of the cases, and its zoomed version is shown in the middle
plot. The second group is with larger but infrequent values, thus they are hardly noticeable on
the histogram in the left plot due to the big di�erence in probability to the spike. Therefore, we
zoom on these kernel durations (changingy-axis range) on right plot of the same �gure. Since the
histogram uses a uniform bin-width (in this case of 1 microsecond) and there is a huge disproportion
of the number of occurrences in the two groups of values, the kernel characteristics are not well
captured and approximating this region by a uniform distribution is a very poor approximation.

One can clearly detect the bias standard histograms introduce by comparing the bottom left
plot of Figure 6.5 and the middle plot of Figure 6.6(a). The �rst one shows histogram distribution
generated only from the observations smaller than 3 microseconds, while the second one is only the
zoom on this range while the histogram is generated from all observations of the trace (both small
and big duration values). To make the comparison between two �gures easier, density distributions
computed for the bottom plots of Figure 6.5 are presented as fat lines on middle and right plots
of Figure 6.6(a). Indeed, when histogram is computed for the whole trace, all small values �t
into a single bin. Although such abstraction is correct, it is not precise enough for our simulation
purposes. The reason behind it is that if during the SimGrid execution this bin is chosen, the
simulator will pick any random value uniformly between 2 and 3 microseconds. Consequently, not
only that the kernel variability is not well simulated, but overall simulation accuracy decreases.
There are even cases where the simulator injects values that are much lower than the best possible
ones on the real machine, which may hinder the scheduling of the runtime and provide completely
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unrealistic predictions. Therefore, when we applied these models for simulating Cholesky and LU
applications, we observed much worse predictions accuracy compared to the simulations using a
simple constant (mean) value for each kernel.

An intuitive solution for this problem is to divide observations in two groups and analyze them
separately (as it was performed in the bottom two plots of Figure 6.5). Indeed, for this case or for
the histograms with manually chosen bins, the simulation predictions are much more accurate, as
we could carefully tune the values to optimally �t the distribution. However, other kernels may
have completely di�erent performance distributions, possibly with more than two groups or some
other speci�c behavior. Moreover, manually analyzing traces is very tedious as it has to be done
for every new kernel, block dimension and machine. Therefore, this process clearly needs to be
fully automatized.

Another approach is to use irregular histograms [DM09] that choose bins non-uniformly, cap-
turing better the distributions. The proposed solution aims at combining good properties of
equal-width histograms, that are capturing well the low density regions, and the equal-area his-
tograms which are good for capturing spikes in the distribution. The results of such approach
applied on the sameGEMMtrace are displayed in Figure 6.6(b). The bars on the left plot are very
narrow and hard to inspect, due to the high precision of the bin parameters. However, zooming
on two regions reveals that this representation indeed approximates real distribution much better
than the standard histograms. Instead of having a single huge bin for the smaller values, middle
plot of Figure 6.6(b) reveals that irregular histogram has two bins with the boundaries chosen
in a much better way, although there is still a room for improvement. Additionally, the distri-
bution of higher durations (right plot) is also captured in more details. A small shortcoming of
this approach is that the histogram descriptions doubles, increasing the size of the �le containing
its outputs. Still, for all applications and matrices we have studied so far, this negative e�ect
is negligible. Finally, when using estimations provided by this type of histograms in simulation,
application performance predictions proved to be very accurate.

Although this technique allows for obtaining di�erent simulated schedules by changing the seed
of the simulation, no signi�cant gain in term of accuracy could be observed for the applications
and machines we used so far. The makespan is always very similar in both cases (mean duration
vs. random duration following an irregular histogram approximation of the original distribution).
Nonetheless, the main reason behind it is that the linear algebra applications used in our ex-
periments are highly optimized for the StarPU runtime. We strongly believe that in some more
complex use cases, using �ne models such as irregular histograms may provide more accurate
predictions.

6.3 Evaluation methodology

We conducted series of experiments to (in)validate our modeling approach, searching for the
machines and parameter setup where simulation results would not match the reality. If found, we
would investigate model weaknesses or sometimes even the reasons why real executions where not
behaving as expected. All conclusions were drawn from analyzing and comparing the GFLOPS
rate, the makespans and the traces of StarPU on one hand (Native), and of StarPU on top of
SimGrid (SimGrid ) on the other.

Before running applications, StarPU needs to obtain a calibration of the platform, which
consists in measuring bandwidths and latencies of communication between each processing unit,
together with evaluating timings of computation kernels. Such information is used to guide StarPU
schedulers' decisions when delegating tasks to available workers. StarPU has thus been extended
to generate at the same time a SimGrid description of the platform (.xml �le), which is later used
in simulation. It is important to understand that only the calibration, which is meant to be run
once on the target system, is used in theSimGrid simulation and that it is not linked to the
application being studied. The only condition is that the application can use only computation
kernels that have been measured. Such a clear separation allowed the simulations presented in
this thesis to be easily performed on a personal laptop. This separation also allows for simulating
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machines we don't have access to, knowing merely their characteristics.
Therefore, our typical experimentation work�ow consists in iterating through the following

phases:

1. We calibrate the target machine and the kernels using the StarPU calibration.

2. We do many simulations of the target machine on a commodity laptop.

3. We experiment on a real target platform.

4. We do various analysis and comparison of the two experimental sets, validating simulation
predictions or potentially searching for the cause of the results discrepancy.

This whole work was done in the spirit of open science and reproducible research. Both StarPU
and SimGrid software are free and available online. All the source code and experiment results
presented in this paper are publicly available [SSW]. Supplementary data, which is not presented
in this thesis are also available at the same location along with all the scripts, raw data �les and
traces which allow to reproduce this work. The methodology used during the whole project is a
good example of conducting an exhaustive, coherent and comprehensible research (see Chapter 4
for more details).

Finally, assessing the impact of our various modeling attempts is quite di�cult. Some of them
are speci�cally linked to the modeling of the StarPU runtime, while others are more linked to
the modeling of communications or to the computation variability. Obtaining a good predictive
power is the combination of a series of improvements. Hence, comparing di�erent runtime modeling
options with a native execution while having a poor modeling of communications and computations
would not be very meaningful. So instead, we evaluate our di�erent runtime modeling options
while using the best options for communication and computation modeling we found. Likewise,
when we evaluate various communication modeling options, we always use the best modeling
option of runtime and computations, which allows us to evaluate how much accuracy may be lost
by overlooking this particular aspect.

6.4 Where the model needs to be carefully adapted

The �rst implementation of StarPU-SimGrid with initial simplistic models already provided ac-
curate simulation predictions for simple use cases such as the one in Figure 6.7. This is a typical
analysis performed throughout our study, where we compare the performance results obtained by
the native execution of StarPU on the target machine (Native with a solid line) to the SimGrid
prediction for the same machine and parameters (SimGrid with dotted line). Following the trends
in our community, we do not contrast overall duration of the application execution (makespans),
but instead we focus on the e�ective GFLOPS rates. We also vary the matrix size (on thex-axis),
by increasing the number of blocks, keeping the block size itself �xed (960� 960 for GPUs, and
320 � 320 for CPUs). Therefore, the line for both Native and SimGrid in Figure 6.7 actually
represents a set of 30 measurements, for the matrix dimension going from 960 to 28800. The fact
that two lines are very close to each other signi�es good results, as SimGrid accurately predicts
the performance of the target machine.

However, when we enlarged the evaluation by increasing the matrix size or by changing the
environment setup in certain ways, the results were not so precise any more. In the rest of this
section, we present three examples of the challenges we faced as well as the techniques we used to
overcome them.

6.4.1 GPU memory limit

Probably the most in�uential parameter for accurate modeling of runtime proved to be the size of
GPU memory. When there is not enough space to keep all the necessary matrix blocks, hardware
limits force the scheduler to swap data back and forth between the CPUs main memory and
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Figure 6.7: Initial results of StarPU simulation for the simplistic use cases were already very accurate.
More complex scenarious required more sophisticated models.
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Figure 6.8: Illustrating the in�uence of modeling runtime. Careless modeling of runtime may be perfectly
harmless in some cases, it turns out to be misleading in others.

GPUs. These data movements saturate the PCI bus, producing a tremendous impact on overall
performance. It is thus critical to keep track of the total size of memory load allocated by StarPU
during the simulation, in order to ensure the scheduler behaves in the same way for both real
native executions and simulations.

Figure 6.8 illustrates the importance of taking into account this parameter. Each curve depicts
the GFLOPS rate of experiments for 72 di�erent matrix dimensions (the matrix dimension 80,000
corresponds to� 25GiB). The Native solid line shows the execution of StarPU on the native ma-
chine, while the other two are the results of the simulation: naive for execution without runtime
adjustments and smart with GPU memory limit included. The left plot depicts a situation where
all these optimizations have very little in�uence as both naive and smart lines are almost overlap-
ping with the Native line. The reason behind it is that the Conan machine has GPUs with bigger
memory capacities and StarPU manages to control execution of Cholesky application without any
unnecessary memory swapping. On the other hand, for some other combinations of machines and
applications (right plot), having a precise modeling of runtime is critical as otherwise, simulation
may highly overestimate the performance for large matrix sizes. Nonetheless, we remind that
the excellent predictions achieved in these examples are also the result of the careful modeling of
communications and computations.

67



CHAPTER 6. PERFORMANCE PREDICTION OF DENSE LINEAR ALGEBRA APPLICATIONS

QuadroFX5800 TeslaC2050

TeslaM2075 K20
0

1000

2000

3000

0

1000

2000

3000

0 100 200 0 100 200
LD(pitch) parameter [KB] 

T
im

e 
[m

s]

0

250

500

750

20K 40K 60K 80K
Matrix dimension

G
F

LO
P

S

Experimental
Condition

SimGrid (naive
network modeling)
SimGrid (heterogeneous
network but no pitch)
SimGrid (smart)

Native

Figure 6.9: Transfer time of 3,600 KB using cu-

daMemcpy2D depending on the pitch of the ma-
trix.

Figure 6.10: Performance of the LU application
on Hannibal (QuadroFX5800 GPUs) using di�erent
modeling assumptions.

6.4.2 Speci�c GPUs/CUDA version

It was previously discussed how the di�erence between GPUs or CUDA versions can signi�cantly
in�uence the application performance. Each platform needs thus to be carefully calibrated when-
ever the environment is changed. Additionally, to move chunks of matrices between resources,
StarPU relies on the cudaMemcpy2D function. The performance of this function is not exactly the
same as the one ofcudaMemcpy, which was used in the original calibration process. More important,
it turns out that the pitch (i.e., the stride of the original matrices) can have a substantial impact
on transfer time on some GPUs (see Figure 6.9) whereas it can be relatively safely ignored on
others. Therefore, communication time is modeled as a piece-wise linear function of data payload
whose slope and intercept depend on the pitch of the matrix.

Again, for a given application and a given target architecture, it may not be necessary to take
care of all such details to obtain a good prediction. For example, as illustrated on Figure 6.10, a
naive network modeling such as the one on Figure 5.2(a) proved excellent predictions when matrix
dimension is smaller than 40,000. Beyond such size, a more precise modeling of the network (as
in Figure 5.2(b)) is necessary. Beyond 66,240, the behavior ofcudaMemcpy2D changes drastically
and has to be correctly modeled to obtain a good prediction of the performances.

This is certainly not the only example of an unexpected behavior related to a speci�c GPU
type. It is thus important that our models can easily integrate such knowledge into simulation
and �nally provide accurate predictions even for this kind of scenarios.

6.4.3 Elaborated communication model for complex machines

As discussed in Subsection 5.4.1, we have developed three di�erent types of communication models.
Figure 6.11 shows results of simulating the Idgraf machine with each of these network models. We
remind that Idgraf machine has 8 GPUs connected in a very peculiar way and thus time to transfer
data from one GPU to another varies greatly on their distance and the contention on the particular
links (more details on its architecture is given in Figure 5.4).

As expected, more sophisticated models provide much more accurate predictions, especially
for larger matrix size. However, there is still a room for improvement as can be observed from all
simulation results for matrix dimension larger than 90,000. In such cases, the huge matrix size
and the limited GPU memory lead to many data transfers, which completely saturates the PCI
bus. Even the treelike model does not handle well this amount of network contention, although it
was speci�cally designed for this particular machine.

We have illustrated only a few representative examples from a list of numerous issues that
had to be addressed during our study. After improving the implementation and applying the
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Figure 6.11: Simulating machines with complex architectures such as Idgraf (see Figure 5.4) require more
elaborated models.

appropriate models, we are able to provide very accurate SimGrid predictions of the StarPU
runtime. In the following sections, we present the �nal results for a wide range of machines using
the optimal models.

6.5 Accurate performance predictions for hybrid machines

Figure 6.12 depicts the performance as a function of the size of the matrix for the two applications
LU and Cholesky and for the seven di�erent hybrid systems described in Table 6.1. For all
combinations, the prediction obtained with SimGrid is very accurate. There are a couple of
scenarios for which the error is larger than a few percents but such discrepancies are actually
due to the fact that the prototype experimental machines are sometimes perturbed by other users,
operating system, etc. Regardless of that, these errors stay always lower than 6%, which is still very
precise. Additionally, the trend is perfectly predicted as well as the size beyond which performance
drops.

A closer look at traces allows for seeing that this approach does not only provide a good
estimation of the total runtime but also o�ers an accurate simulation of the scheduling details.
In Figure 6.13, we compare traces fromNative execution with SimGrid simulation, focusing only
on the most important states. DriverCopy corresponds to the CPU managing a data transfer
to the GPU, while POTRF, TRSM and GEMMare the three kernels that compose of the Cholesky
application. One can observe that GPUs perform all the computations, while CPUs provide them
with data. Additionally, CPU0 is responsible for doing all the scheduling. Since even with the
same parameters, native traces di�er from one execution to another, a point-to-point comparison
with a simulation trace would not make sense. However, we can check that both theNative and
the SimGrid traces are extremely close, which allows for studying and understand the potential
weaknesses of a scheduler.

6.6 Using both CPUs and GPUs for computation

It was illustrated earlier in Figure 6.2 that CPUs do not have a major in�uence on the performance
of the dense linear algebra applications used in this work. However, this may be di�erent for other
kind of applications with less optimized kernels. Therefore, we also investigated the situation where
both CPUs and GPUs are used for doing computation. The results are depicted in Figure 6.14,
which shows once again how ourSimGrid predictions compare favorably to real experiments in
hybrid setups.

Again, to illustrate the fact that not only the makespan is accurately predicted but that the
whole scheduling is correctly modeled as well, we compare two execution traces (see Figure 6.15).
These traces correspond to the experiments performed for the Mirage machine that has 3 GPUs
and 12 cores. 8 of them were used for doing computations, 3 for GPU transfer management and
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Figure 6.12: Checking predictive capability of our simulator in a wide range of settings.

1 was dedicated to scheduling and control of the runtime. These traces can be compared to the
ones of Figure 6.13, since in both cases, the same application and matrix size are used (only the
GPU slightly di�ers). The conclusion is that adding 8 CPU cores improved the performance by
approximately 20% and such conclusion can be drawn solely on simulations.

To convince the readers even further, we provide another trace comparison in Figure 6.16,
again based on the same experimental setup (the Mirage machine using 8 cores for computations,
3 for GPU transfers and 1 for scheduling) and application (Cholesky) only using a di�erent matrix
size and a di�erent implementation of the kernels. In this execution we did not use the MKL but
simple non-over optimized kernels and thus executing kernels on CPUs was 10 times slower than
in all other results from CPUs presented in this thesis. Although these results are not necessarily
interesting in terms of performance, we still think that it is important to show that we manage to
obtain accurate performance prediction in such context as well since not all users may have access
to the proprietary Intel libraries.

The general shape of the schedule in Figure 6.16 is the same in bothNative and SimGrid traces
and one can observe several characteristics of the scheduling algorithm:

ˆ The shortest kernel (POTRF) was executed mostly on CPU0, except in the very beginning
and at the end where it was executed on GPUs. This is due to the fact that although
the execution of POTRF is faster on the GPUs, GPUs are relatively more e�cient for GEMM

operations than CPU resources. The GPU resources should thus not be �wasted� for such
kernels when the application reaches steady-state. However, using the GPUs for such kernels
at the beginning and at the end of the schedule makes sense, since it allows for releasing
available tasks as soon as possible in the beginning and to improve the execution of the
critical ones in the end.

ˆ The TRSMkernels are executed on every CPU worker in the �rst part of the execution, while
they are performed regularly and much faster on the GPUs in the rest of the execution.
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Figure 6.13: Comparing execution traces (native execution on top vs. simulated execution at the bottom)
of the Cholesky application with a 72; 000 � 72; 000 matrix on the Conan machine but using only GPU
resources for processing the application.

Figure 6.14: Illustrating simulation accuracy for Cholesky application using di�erent resources of the
Mirage machine.

Figure 6.15: Comparing execution traces (native execution on top vs. simulated execution at the bottom)
of the Cholesky application with a 72; 000 � 72; 000 matrix on the Mirage machine using 8 cores and 3
GPUs as workers. Adding 8 cores, improved the performance by approximatelly 20% compared to the
performances obtained in Figure 6.13.
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Figure 6.16: Comparing execution traces (native execution on top vs. simulated execution at the bottom)
of the Cholesky application with a 48; 000 � 48; 000 matrix on the Mirage machine using 8 cores and 3
GPUs as workers. Executing kernels on CPUs is much longer since Intel MKL libraries were not used,
however simulation predictions are still very precise.

ˆ Only few GEMMkernels are run on CPUs in the initial phase of the execution, while they
are constantly executed on GPUs. Additionally, execution times of this kernel on GPUs
decreases during the application run.

All these phenomena are also present in theSimGrid trace. As expected, scheduling is not
identical, since StarPU is dynamic and with two native executions with the same parameters
traces would not be exactly the same neither. For example, there is a slight di�erence in the
distribution (the number of times) of TRSMkernels' allocation between CPUs and GPUs. It can
be explained by the fact that the execution time variability of this kernel was not accounted for
in this simulation. There was thus interest for the scheduler to execute 9 series of such kernels on
the CPUs in simulation although only 7 of them were done on the CPUs in the native execution.
We remind that this number varies from one native run to the other and that the simulation is
thus only slightly idealizing the real conditions in a deterministic way. However, all the trends of
the real execution are correctly accounted by the simulation.

6.7 Where the model breaks and is harder to adapt: NUMA
machines

The current shortcoming of our model is for the simulation of NUMA architectures. When exe-
cuting an application using only CPU resources, there is no explicit data transfers, as the workers
use shared memory to exchange data. Yet, the time to access the shared data depends on the used
memory banks. Additionally, e�ective memory bandwidth depends on e�cient utilization and is
particularly sensitive to suboptimal block size and memory strides. Such aspects are extremely
di�cult to model and are currently ignored in our simulations. Although this is not too harmful
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Figure 6.17: Illustrating the impact of deployment when using 8 cores on two NUMA nodes on the Mirage
machine.

Figure 6.18: Simulation predictions of Cholesky application with a 32; 000 � 32; 000 matrix (block size
320� 320) on large NUMA Idchire machine are precise for a small number of cores, but scale badly. The
reason is that the memory is shared, while models are not taking into account various NUMA e�ects.
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for systems with relatively few cores (like the ones we used in the previous experiments), it can
be much more annoying with larger architectures.

We present a set of experiments that illustrates the impact of the NUMA e�ect on the realism
of our predictions. On Figure 6.17, there are two di�erent experimentation setups on the same
Mirage machine, which has 12 cores that are distributed on two NUMA nodes (6+6). In these
experiments, we used only 8 cores, since the other 4 are normally in hybrid executions dedicated
to GPU transfers and scheduling as it is generally how the best performances are obtained in
practice. The plot on the left use an improper balancing of computing threads as 6 threads are
pinned to one node and only 2 on second node. On the other hand, the plot on the right is well
balanced (4+4). Since the simulation does not currently take the NUMA topology into account,
the SimGrid prediction is identical in both the left and the right plot. As one could however
expect, resources are more e�ciently used in the second case and thus the performance ofNative
executions are better in the second scenario and match theSimGrid predictions. In such small
platforms, our approach can thus provide a sound estimation of the performance that one should
expect but cannot account for the performance loss due to a bad deployment. In more extreme
setups, our predictions are however likely to be too optimistic.

To illustrate even further such di�culty, we conducted a similar experiment on Idchire that
has 24 NUMA nodes each with 8 cores. On Figure 6.18, one can once again observe that there is a
signi�cant di�erence in terms of performance between a good and a bad balancing of the cores for
the native executions. On such platforms, our SimGrid results provide decent predictions only for
execution with a very small number of cores, while for the other setups it greatly overestimates the
capabilities of the system. This is explained by our current inability to account for the performance
degradation of interfering memory-bound kernels, the NUMA e�ects and inter-node tra�c.

These are known limits of our approach that may be overcome by keeping track of data local-
ization and trying to model data movement more precisely. However, although the performance
loss incurred by interfering kernels that contend on the memory hierarchy can be measured, it is
quite di�cult to model. We are thus still investigating how to account for such situation.

6.8 Typical studies enabled by such approach

Con�dence in the simulation precision allows researchers to completely rely on the SimGrid mode
execution of StarPU. When doing exploration studies, they can run only simulations, which is
much faster and does not require access to the remote machine. Only when they know exactly
what code and parameters they want to study, they can do native experiments in order to validate
the simulation predictions and obtain real machine results. Such approach can be applied on
numerous use cases including various scheduler studies. Additionally, platform description of the
machine can be manually changed, so users can get a performance estimation for a machine that
does not exist or that they do no have access to.

6.8.1 Studying schedulers

One of the main challenges that StarPU developers encounter is how to e�ciently exploit all the
available heterogeneous resources. To address it, they develop di�erent scheduling techniques that
may be speci�cally tailored for a given type of machine architectures.

For example, the reason for the performance drop observed on Figure 6.12 and which is more
and more critical with newer GPUs can be explained by the need to move data back and forth
between the GPUs and the main memory whenever matrix size exceeds the memory size of the
GPUs. The scheduler we used in Figure 6.12 is theDMDA (Deque Model Data Aware) scheduler.
Although it schedules tasks where their termination time (including data transfer time) will be
minimal, it does not take care of the number of available data bu�ers on each GPU. Such greedy
strategy may be harmful as one GPU may be overloaded with work and forced to evict some data,
as it cannot handle the whole matrix. Two other strategiesDMDAR and DMDAS were designed
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Figure 6.19: Cholesky on Attila: studying the impact of di�erent schedulers.

to execute in priority tasks whose data is already on the GPU, before tasks whose data is not yet
available.

Therefore, we decided to check whether these two other schedulers could stabilize performances
at the peak or not. To this end, we �rst ran the corresponding simulations and obtained a positive
answer (Figure 6.19). Later, when the target system became accessible again, we con�rmed
these results by running the same experiments and as can be seen on Figure 6.19, our simulation
predictions were again perfectly accurate.

Researchers studying di�erent scheduling algorithms on the StarPU implementation of MAG-
MA/MORSE [MOR] (now Chameleon [Cha]) applications also bene�t from this simulation ap-
proach [ABED+ 15]. They have started to use extensively SimGrid simulations for screening ex-
periments. Indeed a major advantage of doing simulations rather than running real experiments,
is that simulations are fast, reproducible (, which simpli�es the analysis) and do not require an
access to the remote experimental cluster. Since our simulations provides reliable predictions, it
is possible to screen a wide range of parameters and quickly see whether a given approach seems
e�ective or not. Such exploratory measurements thus help re�ning the set of con�gurations that
are worth being tested in real environments.

6.8.2 Studying hypothetical platforms

Apart from rapidly testing di�erent scheduling alternatives on calibrated platforms, SimGrid can
as well be used for investigating potential performance of �ctional machines. One can modify an
existing platform description or create a new one, either by hand or with a script, adding more
processing units, changing the latencies and bandwidths of the network or changing the network
topology.

A good example of such approach can be observed in the study performed by Agullo et
al. [ABED + 15]. In their work, the authors were comparing theoretical performance boundaries
of Cholesky factorization with the ones observed on real heterogeneous machine. As a middle
solution, the authors additionally display a simulated performance prediction of the same target
machine, only with a slightly modi�ed platform description, having the communication cost equal
to zero. Although this means that all the data transfers between RAM and GPUs are instan-
taneous, which is impossible on a real machine, these results are still very interesting as they
show the maximal potential of the processing units of the target platform as well as the scheduler
behavior.

Another feature enabled by SimGrid is extrapolation, performed by increasing the number of
resources and investigating possible performance. However, such simulation predictions should be
taken with caution since they are based on a calibration of the initial machine, which can not
estimate well PCI bus contention, NUMA e�ects or any other phenomena that is introduced with
scaling. Therefore, the reliability of these predictions would be questionable, which is contrary to
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the accurate results were presented throughout this chapter.
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Chapter 7

Performance Prediction of Sparse Linear
Algebra Applications

After having achieved accurate simulation predictions for dense linear algebra applications such
as Cholesky and LU decompositions, we decided to focus on sparse linear solvers as we wanted to
validate that our approach could be applied to more irregular workloads as well.

In this study we consider qr_mumps [ABGL14, ABGL13], an implementation of the MUMPS
sparse direct solver on top of the StarPU runtime system. In this approach a multifrontal QR
factorization (a highly irregular algorithm) is programmed using the STF model (see Subsec-
tion 2.1.4).

In the rest of the chapter, we provide details about this application, and present few necessary
adjustments needed for simulating its execution with SimGrid. Later, we follow the same organi-
zation as in Chapter 6. First, we describe the experimental settings, some speci�cities of the kernel
modeling and the methodology. Then we present an experimental evaluation and a few typical use
cases. Due to the di�erence of complexity between dense and sparse algorithms, we had to adapt
our evaluation to this speci�c context. In particular, modeling of the computational parts had
to be modi�ed, as the duration of qr_mumps kernels completely depend on kernel parameters that
vary during the execution. Additionally, as we validate our approach on a set of of sparse matrices,
which all generate distinctive factorization and very di�erent DAGs, we reduced our experimental
campaign to fewer target machines. Finally, to demonstrate the diversity of the studies o�ered
by simulation approach, we present di�erent use cases from the ones of Section 6.8: we show how
our tool allows for conducting studies related to the memory footprint of the application, as well
as extrapolation of the target machines.

7.1 qr_mumps, a task-based multifrontal solver

The multifrontal method, introduced by Du� and Reid [DR83] as a method for the factorization
of sparse, symmetric linear systems, can be adapted to theQR factorization of a sparse matrix
thanks to the fact that the R factor of a matrix A and the Cholesky factor of the normal equation
matrix AT A share the same structure under the hypothesis that the matrixA is Strong Hall.
As in the Cholesky case, the multifrontal QR factorization is based on the concept ofelimination
tree introduced by Schreiber [Sch82] expressing the dependencies between elimination of unknowns.
Each vertex f of the tree is associated withkf unknowns ofA. The coe�cients of the corresponding
kf columns and all the other coe�cients a�ected by their elimination are assembled together into
a relatively small dense matrix, called frontal matrix or, simply, front , associated with the tree
node (see Figure 7.2). An edge of the tree represents a dependency between such fronts. The
elimination tree is thus a topological order for the elimination of the unknowns; a front can only
be eliminated after its children. We refer to [ADP96, Dav11, But13] for further details on high
performance implementation of multifrontal QR methods.
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1 forall fronts f in topological order
! allocate and initialize front

3 call activate(f)

5 forall children c of f
forall blockcolumns j=1...n in c

7 ! assemble column j of c into f
call assemble(c(j), f)

9 end do
! Deactivate child

11 call deactivate(c)
end do

13
forall panels p=1...n in f

15 ! panel reduction of column p
call panel(f(p))

17 forall blockcolumns u=p+1...n in f
! update of column u with panel p

19 call update(f(p), f(u))
end do

21 end do
end do

23

forall fronts f in topological order
! allocate and initialize front
call submit(activate, f:RW, children(f):R)

forall children c of f
forall blockcolumns j=1...n in c

! assemble column j of c into f
call submit(assemble, c(j):R, f:RW)

end do
! Deactivate child
call submit(deactivate, c:RW)

end do

forall panels p=1...n in f
! panel reduction of column p
call submit(panel, f(p):RW)
forall blockcolumns u=p+1...n in f

! update of column u with panel p
call submit(update, f(p):R, f(u):RW)

end do
end do

end do
call wait_tasks_completion()

Figure 7.1: Sequential version (left) and corresponding STF version from [ABGL14] ( right ) of the multi-
frontal QR factorization with 1D partitioning of frontal matrices.

Figure 7.2: Typical elimination tree: each node corresponds to a front and the resulting tree is traversed
from the bottom to the top. To reduce the overhead incurred by managing a large number of fronts,
subtrees are pruned and aggregated into optimized sequential tasks (Do_subtree ) depicted in gray.

Figure 7.3: Processing a front requires a complexe series ofPanel and Update tasks induced by the staircase
structure. The dependencies between these operations expressed by the STF code leads to a �ne-grain
DAG dynamically scheduled by the runtime system.
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The multifrontal QR factorization then consists in a tree traversal following a topological
order (see line 1 in Figure 7.1 (left)) for eliminating the fronts. First, the activation (line 3)
allocates and initializes the front data structure. The front can then be assembled (lines 5-12)
by stacking the matrix rows associated with the kf unknowns with uneliminated rows resulting
from the processing of child nodes. Once assembled, thekf unknowns are eliminated through a
completeQR factorization of the front (lines 14-21). This produceskf rows of the globalR factor,
a number of Householder re�ectors that implicitly represent the global Q factor and a contribution
block formed by the remaining rows. These rows will be assembled into the parent front together
with the contribution blocks from all the sibling fronts.

One distinctive feature of the multifrontal QR factorization is that frontal matrices are not
entirely full but, prior to their factorization, can be permuted into a staircase structure that allows
for moving many zero coe�cients in the bottom-left corner of the front (see Figure 7.3) and for
ignoring them in the subsequent computation. Although this allows for a considerable saving
in the number of operations, it makes the workload extremely irregular and the cost of kernels
extremely hard to predict even in the case where a regular partitioning is applied to fronts, which
makes it challenging to model.

Figure 7.1 (right) shows the 1D STF version [ABGL14, ABGL13] (used in the present study)
of the multifrontal QR factorization described above. Instead of making direct function calls
(Activate , Assemble , Deactivate , Panel , Update ), the equivalent STF code submits the corre-
sponding tasks (see Figure 7.3). Since the data onto which these functions operate as well as their
access mode (Read, Write or Read/Write) are also speci�ed, the runtime system can perform the
superscalar analysis while the submission of task is progressing. For instance, as anAssemble task
accesses a block-columnf(i) before aPanel task accesses the same block-column in Write mode, a
dependency between those two tasks is inferred. Since the number of fronts in the elimination tree
is commonly much larger than the number of resources, the above-mentioned partitioning strategy
is not applied to all of them. A technique similar to that proposed by Geist and Ng [GN89] and
described in [But13] under the name oflogical tree pruning is used. Through this technique, a
layer in the elimination tree is identi�ed such that each subtree rooted at this layer is treated in
a single task with a purely sequential code. This new type of tasks, which are namedDo_subtree ,
is represented in Figure 7.2 as the gray layer. It was previously shown [ABGL14] that the STF
programming model allows for designing a code that achieves a great performance and scalability
as well as an excellent robustness when it comes to memory consumption.

As a conclusion, the multifrontal method provides two distinct sources of concurrency: tree
and node parallelism. The �rst one stems from the fact that fronts in separate branches are
independent and can thus be processed concurrently; the second one from the fact that, if a front
is large enough, multiple threads can be used to assemble and factorize it. Modern implementations
exploit both sources of concurrency which makes scheduling di�cult to predict, especially when
relying on dynamic scheduling, which is necessary to fully exploit the parallelism delivered by such
an irregular application.

7.2 Porting qr_mumps on top of SimGrid

Porting qr_mumps on top of SimGrid required only two minor modi�cations to the original qr_mumps

code. The compilation process (along with the necessary environment variables) had to be adapted
to the simulation mode of StarPU and the main function of the qrm_test program used to execute
factorization with qr_mumps had to be changed for thestarpu_main subroutine. Indeed, SimGrid
has its own main function that is required to initialize the simulation before running the simulated
application.

Compared to the previously described study on the simulation of dense linear algebra ap-
plications with StarPU and SimGrid (see Chapter 5 and 6), the main di�culty arises from the
application structure and from the fact that tasks (computation kernels) are called with a wide
range of input parameters. When working with dense matrices, it is common to use a global �xed
block size and a given kernel type (e.g.,dgemm) is therefore always called with the same parameters

79



CHAPTER 7. PERFORMANCE PREDICTION OF SPARSE LINEAR ALGEBRA APPLICATIONS

Name Processor Number of Cores Frequency Memory GPUs
Fourmi Intel Xeon X5550 2 � 4 2.67GHz 2 � 12GiB /
Riri Intel Xeon E7-4870 4 � 10 2.4GHz 4 � 256GiB /

Table 7.1: Machines used for the sparse linear algebra experiments.

throughout the execution, which makes its duration relatively stable and easy to model. In the
qr_mumps factorization, the amount of work that has to be done by a given kernel greatly depends
on its input parameters. These parameters may or may not be explicitly given to the StarPU
runtime and we thus had to rework the qr_mumps task submission model to ensure StarPU can
propagate these information to SimGrid. Some parts of the StarPU code responsible for interact-
ing with SimGrid were also modi�ed to detect speci�c kernel parameters and predict durations
based on such parameters. We have also extended the StarPU tracing mechanism so that they are
traced as well, which is indispensable to obtain traces that can be both analyzed and compared
between real and simulated executions.

7.3 Experimental settings

To evaluate the quality of our approach, we used two di�erent kind of nodes from the Plafrim [PLa]
platform (see Table 7.1) The Fourmi nodes proved to be easier to model as their CPU architecture
is well balanced with 4 cores sharing L3 cache on each of the 2 NUMA nodes. Such con�guration
leads to little cache contention. However, the RAM of these nodes is limited and thereby limits the
matrices that can be factorized to a certain size. Although the huge memory of the Riri machine
puts almost no restriction on the matrix choice, its memory hierarchy with 10 cores sharing the
same L3 cache leads to cache contention that is harder to model.

The matrices we used for evaluating our approach are presented in Table 7.2 and come from
the UF Sparse Matrix Collection [UFM] plus one from the HIRLAM [HIR] research program.

Table 7.2: Matrices used for the sparse linear algebra experiments.

Matrix m n nz GFLOPS
tp-6 143 000 1 010 000 11 500 000 277.7

karted 46 500 133 000 1 770 000 279.9
EternityII_E 11 100 262 000 1 570 000 566.7

degme 186 000 659 000 8 130 000 629.0
hirlam 1 390 000 452 000 2 710 000 2401.3
TF16 15 400 19 300 216 000 2656.0

e18 24 600 38 600 156 000 3399.1
Rucci1 1 980 000 110 000 7 790 000 12768.1

sls 1 750 000 62 700 6 800 000 22716.6
TF17 38 100 48 600 586 000 38209.3

7.4 Modeling qr_mumps kernels

Figure 7.4 shows the distribution of duration for each kernel for a typical qr_mumps factorization
of the e18 matrix. As expected, since some kernels have non �xed input parameters, variability is
very important compared to the dense case and most kernels exhibit several modes.Do_subtree

and Activate have only a few samples, but one can already suspect that they cannot be modeled
by a simple random variable. For thePanel , Update and Assemble operations, the situation is even
more certain: the several modes and particular shapes clearly originate from the structure of the
application.
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Figure 7.4: Distribution of the qr_mumps kernel duration when factorizing the e18 matrix (see Table 7.2).
The distribution shapes is similar for other matrices. Most kernels have a (di�cult to model) multi-modal
distribution.

Figure 7.5: Duration of the Panel kernel as a time sequence for thee18 matrix. The patterns suggest
that this duration depends on speci�c parameters that evolve throughout the execution of the application.
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To illustrate the structure of the application execution, we propose to focus on thePanel kernel.
Indeed, this factorization function is called regularly and can thus be thought as a �temporal
marker� that provides a signature of the application execution. To analyze this signature, we
use a time sequence (see Figure 7.5) that depicts the evolution of the duration ofPanel calls
throughout the whole application. The x-axis represents the moment eachPanel task started its
execution while the y-axis represents its duration. The color is related to the task id of the task,
which is stable during two executions of the application. The trace analyzed in this plot is the
same as the one used in Figure 7.4, only with more details (starting time and task id) on the
Panel kernel. Figure 7.5 illustrates the fact that the duration of the kernel implicitly depends
on the time it started, more precisely on the task parameters that depend on the application
structure. Such kind of visualization analysis allows for checking whether the phenomenon is
structured or not, hence whether some external parameter in�uence the duration and should be
taken into account. In the case of Panel , these parameters can be obtained by inspecting the
matrix structure, without even doing the factorization for real. This eases the modeling of such
kernels since such information can be used to de�ne the region in which such parameters evolve
and to design an informed experiment design to characterize the performance of the machine.

We repeated similar analyses for other kernels and discovered thatUpdate had a similar struc-
ture. The other three kernels (Do_subtree , Activate and Assemble ) show di�erent behavior and the
explaining parameters were more di�cult to identify. In the following we describe our modeling
choices for each kernel, detailing how and why particular parameters proved to be crucial.

7.4.1 Simple negligible kernels

As illustrated by Figure 7.4 (top-right histogram), the Deactivate kernel has a very simple duration
distribution. We remind that this kernel is responsible solely for deallocating the memory at the
end of the matrix block factorization. It is thus not surprising that these tasks are very short (a
few milliseconds) and are negligible compared to the other kernels. Furthermore, there are only a
few instances of such tasks even for large matrices and the cumulative duration of theDeactivate

kernels is thus generally less than 1% of the overall application duration (makespan). Therefore,
we decided to simply ignore this kernel in the simulation, injecting zero delay whenever it occurs.
So far, this simpli�cation has not endangered the accuracy of our simulation tool.

7.4.2 Parameter dependent kernels

Certain qr_mumps kernels (Panel and Update ) are mostly wrappers of LAPACK/BLAS routines in
which the vast majority of the total execution time is spent. Their duration depends essentially
on their input arguments, which de�ne the geometry of the submatrix on which the routines work.
Although these routines execute very di�erent kind of operations, they can be modeled in a similar
way.

Panel The duration of the Panel kernel mostly depends on the geometry of the data block which it
operates upon, i.e., onMB (height of the block), NB (width of the block) and BK (number of rows
that should be skipped). This kernel simply encapsulates the standarddgeqrt LAPACK subroutine
that performs the QR factorization of a dense matrix of sizem � n with m = MB � (BK � 1) � NB
and n = NB . Therefore, its a priori complexity is:

TPanel = a + 2b(NB 2 � MB ) � 2c(NB 3 � BK ) +
4d
3

NB 3;

wherea, b, c and d are machine and memory hierarchy dependent constant coe�cients. Note that
formula above matches the theoretical complexity of the operation.

Such linear combination of parameter products �ts the linear modeling framework and the
summary of the corresponding linear regression is given in Table 7.3. For each parameter combi-
nation in the �rst column ( NB 3, NB 2 � MB , and NB 3 � BK ), an estimation of the corresponding
coe�cient is provided along with the 95% con�dence interval. These values correspond to thea,
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Table 7.3: Linear Regression of Panel kernel.

Panel Duration

NB 3 1:50� 10� 5 (1:30� 10� 5, 1:70� 10� 5) ���

NB 2 � MB 5:49� 10� 7 (5:46� 10� 7, 5:51� 10� 7) ���

NB 3 � BK � 5:52� 10� 7 (� 5:57� 10� 7, � 5:48� 10� 7) ���

Constant � 2:49� 101 (� 2:83� 101, � 2:14� 101) ���

Observations 493
R2 0:999

Note: � p< 0.1; �� p< 0.05; ��� p< 0.01

2b, 2c and 4d
3 from the previous formula. The standard errors are always at least one order of

magnitude lower than the corresponding estimated values, which means that the coe�cient esti-
mates is quite good. Furthermore, the three stars for each parameter in the last column indicate
that the estimates of the coe�cients are all signi�cantly di�erent from 0, which means that these
parameters are signi�cant. This hints that the model is minimal and that we can not simplify
it further by removing parameters without damaging its precision. Finally, the most important
indicator is the adjusted R2 value. The coe�cient of determination, denoted R2, indicates how
well data �t a statistical model. This coe�cient ranges from 0 to 1. An R2 of 0 indicates that
the model explains none of the variability of the response data around its mean while anR2 of 1
indicates that the regression line perfectly �ts the data. In our caseR2 is extremely good, as it is
almost 1, which indicates that our model has a very good predictive power.

We also checked the linear model hypothesis by analyzing the corresponding standard plots
provided by the statistical language R and which are displayed in Figure 7.6. The �rst one indicates
that the residuals are indeed unstructured and homoscedastic. The second one allows for checking
the normality assumption. Although it does not hold perfectly in our case, it is known to not
harm the quality of the regression and of the model. Finally, the third one allows for checking
through a sequence plot that the residuals are not structured along time and that there has been
for example no temporal perturbation.

Note that although the results presented in this section only concern a singleqr_mumps factor-
ization of e18 matrix, they are perfectly general. For all the other matrices and experiments we
conducted, the regression is always just as good with very highR2 value (above 0.98).

Update The duration of the Update kernel also depends on the geometry of the data upon which
it operates, de�ned by the sameMB , NB , and BK parameters. This kernels simply wraps the
LAPACK dgemqrt routine which applies k Householder re�ections of sizem; m � 1; :::; m � k + 1
on a matrix of size m � n where m, n and k are equal to MB � (BK � 1) � NB , NB and NB ,
respectively. Therefore, itsa priori complexity is de�ned as:

TUpdate = a0+ 4b0(NB 2 � MB ) � 4c0(NB 3 � BK ) + 3 d0NB 3

The same approach can thus be used and the R regression summary is provided in Table 7.4.
The coe�cient estimates are obviously di�erent from the ones of the Panel kernel since the nature
of the two kernels is di�erent. The most notable di�erence is certainly the NB 3 coe�cient whose
in�uence cannot be accurately estimated and may thus appear as insigni�cant. However, this can
be explained by the fact that for this particular matrix, the parameter range of BK is limited,
which leads to a confounding of the e�ects ofNB 3 with the ones of NB 3 � BK .

It is also interesting to note that this model is based on a much larger set of observations,
which is expected since onePanel is followed by many Update s. Finally, the R2 value reported in
Table 7.4 is again very close to1, which shows the excellent predictive power of this simple model.
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Figure 7.6: Analysing linear model for Panel kernel.
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Table 7.4: Linear Regression of Update kernel.

Update Duration

NB 3 1:59� 10� 9 (� 6:93� 10� 8, 7:25� 10� 8)
NB 2 � MB 4:37� 10� 7 (4:36� 10� 7, 4:37� 10� 7) ���

NB 3 � BK � 4:37� 10� 7 (� 4:38� 10� 7, � 4:36� 10� 7) ���

Constant 8:33� 10� 1 (7:12� 10� 1, 9:54� 10� 1) ���

Observations 20,893
R2 0:998

Note: � p< 0.1; �� p< 0.05; ��� p< 0.01

/* Injecting panel time */
static inline double xbt_panel_time (double MB, double NB, double BK)
{

// Computed from matrix: e18.mtx
// Adjusted R-squared: 0.999
return -24.89 + ( NB* NB* NB)*(1.50e-05) +

( NB* NB)* MB*(5.49e-07) + ( NB* NB* NB)* BK*(-5.52e-07);
}
/* Injecting update time */
static inline double xbt_update_time (double MB, double NB, double BK)
{

// Computed from matrix: e18.mtx
// Adjusted R-squared: 0.999
return 0.83 + ( NB* NB* NB)*(1.59e-09) +

( NB* NB)* MB*(4.37e-07) + ( NB* NB* NB)* BK*(-4.37e-07);
}

Figure 7.7: Automatically generated code for computing the duration of Panel and Update kernels.

Simulation

From the previous R linear regressions (Table 7.3 and 7.4), we automatically generate C code for
the simulation of these kernels (see Figure 7.7) and link it to SimGrid. When simulatingqr_mumps,
wheneverPanel or Update is called, their parameters are given as an input to these functions. The
calling thread is then blocked during the corresponding duration estimation, thereby increasing
the simulation time without actually executing the tasks.

It is important to understand that these two kernels are the most critical ones regarding overall
simulation accuracy and that the precision of their estimation greatly in�uences both the makespan
and the dynamic scheduling.

7.4.3 Matrix dependent kernels

Modeling kernels based on their signature is quite natural but it is unfortunately not applicable
to all kernels. Some of them are more than simple calls to regular LAPACK/BLAS subroutines.
These tasks execute a sequence of operations that depends on the matrix structure as well as on the
organization of the previously executed tasks. Therefore, such kernels cannot be modeled simply
from their input parameters. The actual amount of work performed by the task can however
be estimated by taking into account the size of the submatrix and its internal structure. Such
complexity is required as large parts of the matrix blocks are �lled with zeros and are thus skipped.
Three kernels require a speci�c expertise on the multifrontalQR method and on theqr_mumps code
to provide such workload estimates.

ˆ Do_subtree : Both an estimation of the number of �oating point operations it needs to perform
and the number of nodes it has to manage are required to model the duration of this kernel.
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ˆ Activate : The duration of this kernel is mainly governed by two factors: the number of
coe�cients that have to be set to zero and the number of non-zero coe�cients it has to
assemble from children nodes.

ˆ Assemble : The complexity of this kernel is directly linked to the total number of non-zero
coe�cients that needs to be copied to the parent node. However, such memory intensive
operation is more subject to variability than the other computing kernels.

Analyzing the execution of these kernels and constructing models can then be performed as in
Subsection 7.4.2 using the R language and simple linear regressions. Table 7.5 presents a summary
of the prediction quality for each kernel as well as the minimal number of parameters that have to
be taken into account. For all of them, the adjusted R2 is close to 1, which indicates an excellent
predictive power.

Table 7.5: Summary of the modeling of each kernel based on thee18 matrix on Fourmi (see Section 7.3
for more details).

Panel Update Do_subtree Activate Assemble

1. NB NB #FLOPS #Zeros #Coe�
2. MB MB #Nodes #Assemble /
3. BK BK / / /

R2 0.99 0.99 0.99 0.99 0.86

7.4.4 Accounting for kernels variability

Due to the speci�city of the kernel models, we did not perform a histogram study for sparse kernels
similar to the one we did for dense linear algebra kernels presented in Section 6.2. During the whole
sparse application run there are typically only a few kernel executions with exactly the same values
for each parameter. Thus, it makes no sense from a statistical point of view to create histograms
for each one of them, as they would be based only on few observations. However, we strongly
believe that the simulation results presented in the following sections are not signi�cantly biased
by the fact that the kernel with speci�c parameters is always replaced with the same constant
computed from the model.

One should still add a supplementary variability to the injected values, based on the residuals
of the linear model. In other words, to each value computed from the formulas presented in
Figure 7.7 a random value that sampled from the residuals could be added. Later, by modifying
the seed of the random generator, researchers could execute large number of experiments that
will all have a slightly di�erent kernel timings and consequently di�erent scheduling and overall
makespan. Such studies are very interesting for testing the robustness of the scheduler. Although
we have not yet performed such research due to lack of time, implementing such extension to our
current solution would be straightforward.

7.5 Evaluation methodology

The execution time of a single kernel on a certain machine greatly depends on the machine char-
acteristics (namely CPU frequency, memory hierarchy, compiler optimization, etc.). Obtaining
accurate timing is thus a critical step of the modeling. To predict the performance of the fac-
torization of a set of matrices on a given experimental platform, we need to �rst benchmark the
kernels identi�ed in the previous section.

For the kernels that have clear dependency on the matrix geometry (Panel and Update ), we
wrote simple sequential benchmarking scripts, that pseudo-randomly choose di�erent parameter
values, allocate the corresponding matrix and �nally run the kernel, capturing its execution time.
However, for kernelsDo_subtree , Activate and Assemble whose code is much more complex and
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depends on many factors, including even dependencies on previously executed tasks, creating a
simplistic arti�cial program that would mimic such a sophisticated code is very di�cult.

Indeed, since each sparse matrix has a unique structure, the corresponding DAG is very di�erent
and the kernel parameters (such as height and width) greatly vary from one matrix factorization
to another. For example, the qr_mumps factorization of a certain matrix may execute a very large
number of �small� Do_subtree kernels (each with a small amount of work), while some others
matrices (, such ase18 as shown in Figure 7.2), have much fewer instances of this kernel, but
with a bigger workload. Consequently, it is very hard to construct a single linear model that is
appropriate for both use cases. The inaccuracies caused by such model imperfection can produce
either underestimation or overestimation of the kernel duration and thus of the whole application
makespan as well. Therefore, to benchmark such kernels we rely on traces generated by a real
qr_mumps execution (possibly on di�erent matrices as the ones that need to be studied).

The result of this benchmark is analyzed with R to obtain linear models that are then provided
to the simulation. At each step of the regression, we control that the models are adequate through
a careful inspection of the regression summaries and of the residual plots. These models are then
linked with the simulator and the experimental platform is then of no longer use asqr_mumps

can then be run in simulation mode on a commodity laptop. Using a recent and more powerful
machine only improves the simulation speed and possibly allows for running several simulations
in parallel. In such simulations, we recall that the code of qr_mumps and of StarPU is run for
real (the application and the runtime are emulated) but all computation intensive and memory
consuming operations are faked and converted into simple simulation delays. SimGrid is solely
used for managing the simulated time and the synchronization between the di�erent threads.

To evaluate the validity of our approach, we need to compare real execution outcomes with
simulations outcomes. Therefore, we executeqr_mumps for the di�erent matrices and collect not
only the execution time but also an execution trace with information for each kernel as well as when
memory is allocated and deallocated. When running in simulation mode, due to the structure of
our integration, we can collect a trace of the same nature and thus compare the real execution to
the simulation in details.

Finally, our experimentation work�ow follows the same four steps as for the dense linear algebra
application study:

1. We run once a designed calibration campaign on the target machine that spans the desired
parameter space corresponding to the di�erent matrices.

2. We analyze the benchmarking outputs and execution traces, �tting the observations into
linear models for each kernel. We add such models to SimGrid.

3. We run simulations on a commodity machine.

4. We validate the simulation accuracy by comparing makespans, traces and memory consump-
tion with the native executions.

Following the principles and the Git/Org-mode work�ow presented in Chapter 4, all the results
that are given in this document are also available online [SSW] for further inspection. We also
provide on Github an example of an easy to access pretty-printed report on the trace [Trab]
(similar to the one in Appendix B.2) as well as information on how the trace was captured, as a
part of the joint trace collection project [Traa].

We remind that this repository additionally contains source code of qr_mumps, StarPU and
SimGrid along with all the scripts for running the experiments, the calibrations and conducting
the analysis, making our work as reproducible as possible. Supplementary data (e.g., produced by
�unsuccessful� experiments and that can be very informative to the reader) can also be found at
the same location.
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Figure 7.8: Makespans on the 8 CPU cores Fourmi machine for 10 di�erent matrices. Native results
on 3 largest matrices are not presented, because they are too long, since the factorization exceeds RAM
memory capacities of the Fourmi machine.

Figure 7.9: Gantt chart comparison on the 8 CPU cores Fourmi machine.

7.6 Simulation quality evaluation

7.6.1 Evaluation on the Fourmi machine

Figure 7.8 depicts the overall execution time ofqr_mumps when factorizing the di�erent matrices of
Table 7.2. The SimGrid predictions are very accurate, as they are never bigger than 3%. It should
be noted that our predictions are systematically slight underestimations of the actual execution
time as our coarse-grain approach ignores the runtime overhead and a few cache e�ects.

Still, focusing solely on a single number at the end of the execution hides all the details about
the operations performed during the execution. Therefore, we also investigated the whole schedul-
ing in details, comparing Native to SimGrid execution traces. An example of such investigation
for the e18 matrix (it is the one exhibiting the largest di�erence between Native and SimGrid
makespans) is shown in Figure 7.9. To make the Gantt charts as readable as possible, we retain
only the modeled kernels and idle state, �ltering overlapping states related to the runtime control.

qr_mumps starts by executing many Do_subtree kernels and executes all the remaining ones soon
after. Most of the time is spent running Update operations while thePanel operations are executed
regularly. Towards the end, there are fewer and fewer tasks with more and more dependencies
between them, and many cores have thus to remain idle. The Native and SimGrid traces are
extremely close. A noticeable di�erence can be seen at the very beginning as in the simulation all
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Figure 7.10: Comparing kernel distribution duration on 8 CPU cores Fourmi machine.

workers start exactly at time 0, they all pick only Do_subtree tasks that are the leaves of the DAG
and thus the �rst ready tasks. Although the real execution tends to run in the same manner, it
is not so strict and several workers pickActivate tasks available right after the �rst Do_subtree

terminates. Another small discrepancy between the two traces can be noticed at the end of the
execution where the idle time is distributed in a quite di�erent way. This is however related to
the di�erence of scheduling decisions taken by the runtime. Indeed, we remind that the StarPU
runtime schedules tasks dynamically and thus even two consecutive Native executions can lead
to quite di�erent execution structures even if their total duration is generally similar. Idle time
distributions similar to the one of the SimGrid trace can also be observed in real executions.

However, the gantt charts of such densely packed traces of dynamic schedules can sometimes
be misleading. The �rst issue comes from the fact that there is a huge number of very small states
that have to be aggregated during the graphical representation which is limited by the screen or
printer resolution. Many valuable information can be lost in such process and the result may be
biased [MSL13]. Second, it is very hard to quantify the resemblance of two traces corresponding
to dynamic schedules, as even when the task graph is �xed, the tasks will naturally have very
di�erent starting times from an execution to another. Therefore, we compared di�erent and more
controlled aggregates.

For example, Figure 7.10 compares the distributions of the duration of each kernel for a real
execution and a simulation (we use the same two traces of thee18 matrix that were used earlier).
The upper row presents kernel distributions from the Native trace, while in the bottom row are
the ones predicted by the SimGrid simulation. The modeling technique described in Section 7.4
proves very satisfactory, since distributions match quite accurately. The only kernel for which
we can observe a slightly larger discrepancy isAssemble , which was indeed very hard to model
and had the worst R2 value. However, in practice this kernel is rarely on the critical path of the
qr_mumps execution and is often overlapped by other kernels. Additionally, the overall duration of
all Assemble tasks is relatively small compared to others and thus such inaccuracies of the model
do not greatly a�ect the �nal simulation prediction.

Studying distribution applies a temporal aggregation and discards any notion of time such
as when a speci�c task was executed. This can hide interesting facts about certain events or a
particular group of tasks that occurred in a distinct period of time during the whole application
run. Figure 7.11 tracks the execution of thePanel kernel and indicates the duration of the tasks at
each time. To ease the correspondence between the real execution and the simulation, the color of
each point is related to the task id of the task. Both colors and the pattern of the points suggest
that the traces match quite well. Even though the scheduling is not exactly the same, it is still
very close. Similar analysis have been performed for all the other kernels as well and the results
were very much alike.
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Figure 7.11: Comparing Panel as a time sequence on 8 CPU cores Fourmi machine. Color is related to
the task id.

7.6.2 Evaluation on the Riri machine

To validate our approach, we have experimented on a di�erent architecture. The results are
presented in Figure 7.12 and show a more important error of the SimGrid predictions, that is now
averaging 8.5%. Such inaccuracy mostly comes from the fact that Riri has a speci�c architecture,
where the 10 cores used for the experiments are all share the same L3 cache. The pressure on the
cache produced by all the workers executing kernels in parallel decrease the overall performance,
which is not correctly captured by our models. Still, the SimGrid predictions stay reasonably close
to the Native ones and can thus be very useful to users and developers.

One step further in our experimental campaign was to compare executions on the full machine,
using all 40 cores. As expected, the largest prediction error doubled (Figure 7.12), but the results
can still be considered as good since all the tendencies are well captured. In particular, non trivial
results can be obtained such as the fact that theTF17 matrix bene�ts much more from using
several nodes than the sls matrix.
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Figure 7.12: Results on the Riri machine using 10 or 40 CPU cores. When using a single node (10 cores),
the results match relatively well although not as well as for the Fourmi machine due to a more complex and
packed processor architecture. When using 4 nodes (40 cores), the results are still within a reasonnable
bound despite the NUMA e�ects.
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Figure 7.13: Memory consumption evolution. The blue and red parts correspond to the Do_subtree and
Activate contribution.

7.7 Typical studies enabled by such approach

7.7.1 Memory consumption

Working on several parts of the elimination tree in parallel provides more scheduling opportunities,
which improves processor occupancy. But it also increases memory requirements, which can have
a very negative in�uence on performance. The most critical criteria regarding memory is the peak
memory consumption of the application. A single wrong scheduling decision can dramatically
increase it and potentially result in memory swapping between the RAM and the disk.

Since the amount of work that can be executed in parallel is generally limited and very matrix
dependent, �nding the right trade-o� between memory consumption and the e�cient use of the
whole set of available cores is crucial for obtaining the best performance [MSV13]. To evaluate a
new factorization algorithm or a di�erent scheduling strategy, one thus has to perform a large num-
ber of costly experiments on various matrices. Using simulation can greatly reduce the cost of such
study as it does not require the access to the actual experimental machines, often shared between
many users. It can be performed much faster and several simulations with di�erent parameters
can even be run in parallel. In our solution no actual memory is neither allocated nor deallocated
for the data, as the correspondingmalloc calls are only simulated by SimGrid. However, the size
for the required array allocation and deallocation is still traced. This allows for reconstructing
memory usage, providing the memory peak prediction of the simulation. Since SimGrid faithfully
represents the runtime execution (as it was presented in the previous subsections), its execution
will go through the DAG in a very similar way to the Native run. Therefore, the memory peak
predicted by SimGrid will be very close to the one observed in Native experiments.

Beyond the memory peak, it is also interesting to study the evolution of memory consumption
throughout the execution. Figure 7.13 shows the evolution of the total amount of memory allocated
by qr_mumps when factorizing the hirlam matrix for three Native executions and for a simulation.
The three Native executions correspond to three consecutive runs performed with exactly the same
source code and environment. Such analysis allows for identifying where the scheduling was not
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Figure 7.14: Extrapolating results for e18 matrix on 100 and 400 CPU cores.

optimal and what parts of the application should be improved to increase the overall performance.
Although the memory consumption evolution is very similar between di�erent experiments it is
far from being identical since runtime scheduling decisions are made dynamically. The evolution
predicted by SimGrid is remarkably di�cult to distinguish from the three other ones, which shows
that our approach allows for faithfully predicting memory consumption during the application
execution.

7.7.2 Extrapolation

When su�cient care is taken on benchmarking and kernel pro�ling, we believe that our approach
allows for performing faithful performance prediction of the execution on large computer platforms.
Based on models obtained from a single CPU calibration, we can extrapolate the simulation on a
larger numbers of cores. These simulation results are certainly not as accurate as the ones presented
in Section 7.6, but can still show general trends. New phenomenon that haven't been observed
yet may occur at large scale but the simulation somehow allows for obtaining an �optimistic�
performance prediction that will be achieved �if nothing goes wrong�. Researchers can thus observe
how their matrix factorization would perform in an ideal context. Since certain parts tend to be
generally underestimated (e.g., data fetching and contention) in the simulations, SimGrid results
provide theoretical performance bound, above which application could not pass on the target
machine.

Figure 7.14 shows the performance obtained when factorizing thee18 matrix with di�erent
numbers of cores. Together with the overall makespan, we indicate how much time in average
each core spends idle. With a small number of workers, each thread has enough work asqr_mumps

is well parallelized. However, the execution is limited by the critical path in the DAG of tasks
and thus above a given platform size, most of the cores remain idle, waiting for task dependencies
to be satis�ed. Increasing the number of threads beyond this point does not improve the overall
performance, but only decreases the e�ciency of the workers. After comparing our simulation
results to the Native execution for up to 40 cores on the riri machine, we decided to use the
same kernel models and investigate what performance could be expected from a larger machine
comprising the same kind of nodes. The simulation results actually predict that, for this matrix,
the makespan will not improve any further and that most cores will be idle. Investigating more
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in detail the trace simulated for 100 cores would allow to know whether the critical path is hit or
if further improvements can still be expected with a better scheduling.
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Chapter 8

Conclusion and Future Work

In this thesis we focused on two important aspects in the domain of methodology and perfor-
mance evaluation for conducting empirical studies of dynamic HPC applications. In the following
chapter, we conclude on these two aspects separately. We start by describing the advantages and
the drawbacks of our methodology for conducting reproducible research. Then, we recapitulate
the achieved results and present the current limitations of our simulation of dynamic task-based
runtime systems. Finally, we detail several possible research directions opened by the various
studies we conducted for this thesis.

8.1 Methodology for conducting reproducible research

We believe that the methodology we applied throughout three years of this thesis is a good example
of how studies in our �eld should be performed. Before each measurement, we automatically log
information about the machine, such as the current CPU frequency and governor, the memory
hierarchy, the versions of Linux and gcc, etc., (see for example an excerpt of the script and the
output �le in Appendix B.1 and B.2). We also systematically and automatically recompile software
before using it to conduct experiments, and keep all the con�guration and compilation outputs.
Additionally, we enforce that all changes to the source code are committed in the revision control
system and we keep track of the hash of the Git/SVN version of the source code. We even went one
step further in using versioning systems, as we stored all the experiment data in the same repository
as the source code of our project. This enables provenance tracking, i.e, to bind the results that
were obtained with the corresponding code, so that they can be later easily investigated, compared
or reproduced. Finally, we save the measurement results (makespan, GFLOPS rate) together with
execution traces. Since during the development period, the work�ow and the data format can
go through several changes and adjustments, we used a laboratory notebook to keep track of the
most important modi�cations.

Only by applying such approach, we were able to manage more than 10,000 experiments
and 40GiB of data. All these experiment results carry a valuable information. Some of them
are good results that were later published, others are unsuccessful, bogus experiments that are
equally important as the reason behind their failure provides knowledge about the studied system.
Therefore, it is an imperative to keep all these experiment results well organized and easy to
access as well as to keep notes about every experimental campaign, for which we once again used
a laboratory notebook.

In our research, we were not only concerned about the reproducibility of our experiments, but
also about the replicability of the analysis we were performing on the collected data. Hence, all
the papers we have written, including this thesis , combine within a single plain text �le the
body of the article along with the complete analysis of the data, all of which are later exported
into a standard pdf document (see Appendix B.6). It has a hierarchical structure, with di�erent
types of code, including Shell (to manipulate data �les), R (for plotting �gures) and LATEX (to
�nely control formatting details). We made all raw data and traces publicly available in the Git
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repository of the project on [SSW]. To replicate the article, all these data should �rst be cloned
and unpacked. Then, raw data �les that contain many additional metadata are parsed and �ltered
to extract all useful information into csv �les. Finally, R is used to load, process and plot data,
ensuring that all �gures are consistent throughout the whole article. This way, our experimental
and analysis results can be inspected, referenced, or even reused in any other research project.

Our methods drove a great attention in the community, especially among young researchers,
and we were asked to present it on numerous occasions. This had an impact on many researchers,
who later applied some of our techniques and methodology to their daily work�ows, which greatly
improved clarity, exploitability and mostly reproducibility of their work. One of the examples is
the current collaboration between researchers from Grenoble and Bordeaux for sharing execution
traces [Traa].

Finally, since our solution is based on simple, widely known tools, even people from other �elds
could apply it. As an illustration, our publication in the SIGOPS Operating Systems Review [1])
raised the interest of a researcher who wants to apply our work�ow on his studies on East-Asian
languages.

Current limitations and future work

The main drawback of our approach is that it has many not so common conventions along with
a steep learning curve, hence it is di�cult for new users. Moreover, it requires an expertise in
Org-mode, preferably using Emacs text editor, together with a good understanding of Git. We
acknowledge that some researchers are more used to other editors such as Vi/Vim and will not
switch them easily. Although it is still possible to use them in our context, as Org-mode is a
plain text �le that can be edited anywhere, it would be much harder to bene�t from many of its
special features. We believe that the tools we used provide bene�ts that are worth investing time
but we also understand the need to simplify its use. There are thus currently many initiatives
to port Org-mode to make it work completely in Vi or in web browsers. Some of them already
work, but are not fully mature or complete yet. We are thus quite con�dent that Org-mode will
be completely Emacs independent in the near future.

There is also a problem regarding the management and storing of large data �les in repositories,
and which is well-known to the community. This has been already solved for the Mercurial revision
control tool, but even after an exhaustive research we could not �nd a satisfactory solution for
Git. Many tools have been proposed, e.g.,git-annex , but they all have their shortcomings.
Such tools are generally meant to be alternatives to synchronization services like Dropbox and
Google Drive rather than to help dealing with large data traces originating from remote machine
experiments. Having large Git repositories of several GiB does not hinder daily committing, but
can signi�cantly slow down pull and checkout operations of branches comprising a huge number
of data sets (typically the data and art# branches).

It is also still unclear how this approach would scale to a large number of users working
simultaneously, doing code modi�cations and experiments in parallel. In theory, it should work if
everyone has su�cient experience of the tools and work�ow, but we have never tried it with more
than few persons. Another interesting feature that we have not experienced yet is collaboration
with external users. These researchers could clone our project, work on it on their own, try to
reproduce the results and build upon our work, potentially improving the code and contribute
data sets back. Even though such utilization should work smoothly, there could be some pitfalls
that we have not anticipated yet.

One could also ask the question of whether providing so much information is of any interest as
too much information may make the most important things harder to distinguish. Regardless of
the answer to this question, we believe anyway that beyond the actual experimental content of our
open laboratory notebook, its structure and the techniques we used to keep track of information
or to make analysis could be useful to others.

In the near future, we plan to �nish implementing simple scripts that will completely automate
our work�ow. These scripts will be packaged and available on the debian Linux system, in the same
way as thegit-flow approach for software development, only this time for managing experimental
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research.

8.2 Simulating dynamic HPC applications

In this thesis, we have explained how to model and simulate a task-based runtime system running
on hybrid multi-core architecture comprising several GPUs. Unlike �ne-grain GPU simulators
that have been proposed in the past and which focus on architectural details of GPUs, our coarse-
grain approach relies on SimGrid and allows for accurately predicting the actual running time
and to perform extremely quickly extensive simulation campaigns to study various alternatives.
We demonstrated the precision of our simulations using the critical method, i.e., by testing our
models and by conducting as much experiments as possible in a large variety of settings (two
standard dense linear algebra applications, seven di�erent generations of GPUs, several scheduling
algorithms) until we �nd a situation where our simulation fails at producing a good prediction, in
which case we �xed our modeling. Such a tool is extremely interesting for both StarPU developers
and users as it allows (i) for easily and accurately evaluating the impact of various parameters or
scheduling alternatives (ii) for tuning and debugging applications on a commodity laptop (instead
of requiring a dedicated access to a high-end machine) in a reproducible way (iii) for obtaining
reliable performance estimations that may allow for detecting problems with some real experiments
(perturbation, con�guration issue, etc.).

It is important to mention that the time to run each simulation of these applications is much
shorter than the one needed to conduct a real experiment. Compared to architecture-level simu-
lators whose average slowdown of simulations versus native execution is of the order of magnitude
of several dozens of thousands, our coarse-grain simulation allows for obtaining a speedup of ten
to a hundred depending on the workload and on the speed of the machine. Additionally, since the
target system is not required anymore, it is easy to run series of simulations in parallel.

Furthermore, we extended this work on dynamic dense linear algebra applications, by consid-
ering a sparse multifrontal linear algebra solverqr_mumps. Modeling the irregular internals of such
application is much more challenging and required a careful study. We show through extensive
experimental results that we manage to accurately predict both the performance and the memory
usage of such applications. Once again, our proposal allows for quickly simulating such dynamic
applications using only commodity hardware instead of expensive high-end machines. As an illus-
tration, factorizing the TF17 matrix on a 40 core machine requires 157s and 58GiB of RAM while
simulating its execution on a laptop only takes 57s and 1.5GiB of RAM. Being able to quickly ob-
tain performance and details of memory consumption of such applications on a commodity laptop
is a very useful feature to theqr_mumps users and developers, as they can easily test the in�uence
of various scheduling, parameters or even code modi�cations.

The SimGrid simulation mode is thus integrated in the latest versions of StarPU and of
qr_mumps. Implementing such a faithful simulation tool was however not straightforward. Al-
though the �nal solution contains relatively small number of code line changes (approximately a
few hundreds) compared to the huge code base of SimGrid (106,350 lines) and StarPU (172,251
lines), programming them required much e�ort. Developing such a complex software requires a
good understanding of paradigms and a good integration of the tools on all layers: application,
runtime and simulation. This high complexity probably explains the few successful attempts in
simulating runtimes. The main reason why our solution worked and provided such accurate pre-
dictions is a good choice of runtime and simulators, as both StarPU and SimGrid have a good,
modular design of internals that allows for coupling with other tools.

The motivation for developing our solution came from the StarPU users and developers that
had a great need for such a tool for their daily work. Therefore, we developed a stable tool that
could be used by many researchers that want to evaluate the performance of their application,
hence our solution quickly became much more than just a prototype. The results presented in
this thesis are only a �rst step, as our approach can be easily extended to many other interesting
studies.
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8.2.1 Current limitations

The simulation tool we have crafted is coarse-grain and is thus based on certain runtime and
hardware abstractions. Although our models are good enough for achieving faithful simulation
predictions for the programs and machines we have studied so far, these models are still not perfect.
There are several minor sources of inaccuracy of our solution, such as the fact that not all parts
of the StarPU are simulated, there is the environment noise, the error of the kernel models, etc.
These can be mitigated but hardly completely avoided, as the systems we are studying are very
complex and their performance is non-deterministic. There are however other more fundamental
shortcomings that we have neglected so far and that can possibly be accounted for with more
advanced modeling.

Modeling memory distance

First, even before executing a kernel, the matrix block needs to be fetched in local memory. If
data is not available from previous tasks, this requires explicit transfers from the main memory
or from the GPUs, applying the communication models described in Section 5.4.

The problem however arises for the CPUs that share parts of the memory hierarchy, which is
especially noticeable for NUMA machines. On such architectures, the data needed to execute a
kernel can be stored either in local or in distant cache, or in the main memory. Therefore, the time
to fetch the data is non-uniform. The StarPU runtime is based on a paradigm where CPU workers
use shared memory for communication and there are thus no explicit data transfers. Consequently,
during the whole application run, the exact same kernel with the exact same parameters will take
varying time to be executed, since its input data will be located on di�erent places. Additionally,
a lot of data fetching from the distant caches could cause a memory bandwidth contention of the
PCI bus, slowing down kernels even more. These e�ects could be mitigated through optimized
scheduling and careful data distribution, but it is very hard (if not impossible) to completely
discard such factors. Moreover, the larger machine, the more signi�cant this e�ect becomes.

Without knowing the exact mapping of the memory throughout the whole application exe-
cution, the NUMA e�ect is very hard to model and integrate into the simulation. Therefore,
many researchers working in this domain [SCW+ 02, CLB09, RCV+ 12] couple their application or
runtime simulator to another cycle-accurate cache simulator, responsible for managing the mem-
ory hierarchy with all data and its distance. We believe that such approach su�ers from many
restrictions (in particular in terms of speed and scalability), and that much more coarse-grain
methods should be applied. However, we have not yet found a satisfying alternative solution and
we continue exploring di�erent options. Still, for most of the applications we have studied so far,
the aforementioned issue have a limited in�uence, thus we were able to completely ignore these
memory related e�ects without harming the accuracy of the simulation predictions.

Modeling contention

In parallel applications, kernels are often slowed down by their neighbors that also execute certain
operations in the same time. Combined with di�ering memory distance of the data, this introduces
variability to the kernel durations. It is possible to account for such variability in the simulation
considering that it as a random noise and a possible solution for dense linear algebra applications
is presented in Section 6.2. However, better modeling these phenomena is much more challenging.
The performance degradation due to contention occurs on di�erent levels depending on the shared
resource.

Multithreaded applications may be run with more than one thread executed per CPU core or
GPU device. SimGrid supports such contentions through fair dividing of the resource capacity
between the threads, similar to the bandwidth sharing in communication �ows. However, we have
not yet tested such feature for the processing units, as these applications introduce additional
complexity and many new phenomena. Although this path undoubtedly carries many interesting
research topics, in the scope of this work we have decided to focus solely on one thread per core
executions.
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When calibrating kernels on a single core and later using these values in the simulation, we
assume that there is no interference between CPUs. However, when running parallel application,
multiple kernels will be executed on cores that share some parts of the memory hierarchy. Con-
sequently, these parallel kernels will compete for CPU caches, possibly evicting some data and
slowing down each others. This is the main explanation why most of our simulation predictions
tend to slightly underestimate the execution time of the kernels which produces shorter overall
makespan.

Finally, there is another hypothesis in our models which implies that computation and com-
munication on processing unit are independent and can be executed in parallel without damaging
the performance of neither of those operations. Such assumption is not completely true, especially
on certain generations of GPUs. However, measuring and injecting this degradation is not trivial,
and since it would add only small bene�t to the simulation accuracy, we decided to ignore it for
the moment.

Simulation of sub-optimal native executions

Despite all these assumptions, our approach provides users with a sound baseline to compare with.
The di�erences between Native and SimGrid can reveal not only modeling/simulation weaknesses
but also application or machine issues. An example of such case is presented in Subsection 6.4.2,
where it is demonstrated how a certain model of GPUs has a sub-optimal time of transfer when
using a large pitch of the matrix as an input parameter.

We can refer to another illustrative example for qr_mumps application. When studying the ma-
trix cat_ears_4_4 (also from the UF Sparse Matrix Collection), one can observe large discrepancy
of native makespan and the one predicted by the simulation. When investigating the elimination
tree in more details, it reveals that the matrix factorization is not optimally balanced between
tasks (see Figure 8.1). There is a huge number of very smallDo_subtree kernels (grey nodes on
the Figure 8.1) and the elimination tree is unnecessary deep, which all makes the execution longer.
Consequently, the range of kernel parameters duringcat_ears_4_4 factorization are very di�erent
from the one of other matrices and thus the resulting models for such kernels are not completely
appropriate, which damages simulation accuracy. However, before improving modeling one would
probably want to �x the native execution for this matrix, generating a completely di�erent (more
balanced) DAG. Perhaps with such modi�cation, no changes to the simulation would be needed
after all.

There is another recurrent case where the nativeqr_mumps execution runs into problems which
make its simulation inaccurate. For very large matrices, the factorization operation may require
more memory than what is physically available on the system. As a result, part of the data
is automatically swapped to disk by the virtual memory manager which causes disk thrashing.
This produces tremendous decrease of overall performance because the access to data on disk
is orders of magnitude slower than to the main memory. If paging is handled by the operating
system and runtime has no control of it, the exact location of pages (memory or disk) is unknown
during the simulation and SimGrid can thus not predict the time to fetch data. An alternative
that could circumvent this issue is to use out-of-core implementations, which has already been
implemented for the MUMPS solver [ALG06], but not yet on top of the StarPU runtime. Such an
implementation could then bene�t from the recently developed SimGrid's disk models.

Model universality

A key di�culty of our approach relies in obtaining of a general model for every kernel that can
be applied to the simulation of any matrix. Since each sparse matrix presented in Table 7.2 has
a unique structure, the DAG of tasks generated to solve it on a parallel machine also depends on
these characteristics. Therefore, the parameters of the kernel (such as height and width) greatly
vary from one matrix factorization to another. For example, the qr_mumps factorization of the
cat_ears_4_4 executes a large number of �small�Do_subtree kernels (each with a small amount
of work), while most others matrices, such ase18 (see Figure 7.2), have much fewer instances
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Figure 8.1: Elimination tree for cat_ears_4_4 matrix, rotated for 90 degrees to �t the page. The graph
is extremely badly balanced and has a comb-like structure with a huge number of Do_subtree kernels
presented as grey nodes.
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of this kernel, but with a bigger internal workload. Consequently, it is very hard to construct a
single linear model that is appropriate for both use cases. The inaccuracies caused by such model
imperfection can produce either underestimation or overestimation of the kernel duration and thus
of the whole application makespan as well.

The simplest solution for this problem would be to use piecewise linear models instead of
simple linear ones. This should account for the particular parameter distribution and group the
related observations. Constructing such models in practice however proved to be very challenging,
as the observations are not following any natural law that divides them into groups and they are
also greatly a�ected by external factors (kernels executed at the same time on the other cores,
operating system, etc.). Thus, choosing where to put breakpoints to separate di�erent segments
is unclear. We could decide to completely rely on statistical tools that would help us �nd the best
�tting piecewise linear model from the traces. However, such model would be very dependent on
the measured values and thus not robust enough for a more general use. The decision where the
breakpoints are made would have a huge in�uence on the simulation prediction.

8.2.2 Future work

Scaling to larger platforms

Our �rst goal in the future will be to upgrade the current solution so it allows for obtaining faithful
simulation predictions on much larger platforms.

To this end, we plan to improve models for CPU cache contention and non-uniform memory
access time. Indeed, when applications execute numerous computation kernels in parallel, many of
them are slowed down compared to their optimal duration. If such decrease of performance is not
correctly modeled, the error is propagated in�uencing the scheduling of the future kernels. This
does not only produce overly optimistic simulation predictions of the overall application duration,
but also generates unrealistic traces of the execution.

We believe that the problem on modeling contention on CPUs and CPU caches can be ad-
dressed by calibrating parallel kernel execution. One could analyze native execution traces and
observe which combination of kernels is mostly run at the same time. Then, a parallel benchmark-
ing program could be run, where kernels would be adequately slowed down by their neighbors.
Models constructed from such calibration would represent better the native execution. However,
implementing such approach is not straightforward, as choosing which kernels to run in parallel
and with which parameters, depends greatly on application inputs (in the case of sparse linear
algebra application the main input is the matrix). Therefore, constructing a single model for each
kernel becomes even more complex. Additionally, for certain applications, such solution only al-
leviates the problem of running the application with di�erent numbers of CPU cores, as changing
the number of workers may also lead to di�erent DAG of tasks with di�erent characteristics. This
is the case forqr_mumps where the depth of the elimination tree depends on the number of workers
and thus two executions with di�erent numbers of processing units will lead to the execution of
the kernels with di�erent sets of input parameters. Still, we believe that doing a more elaborate
parallel kernel calibration would improve simulation accuracy and we plan to do it in the near
future.

Similar to the shared caches, the problem of varying data distance on NUMA architectures
could be addressed by an advanced calibration of parallel kernels. However, benchmarking NUMA
machines is even more complex as it requires distributing data over nodes following the same
patterns as in the native execution. This demands tracing memory banks used during the native
run. Even if such a sophisticated calibration is carefully performed and accurate kernel models
are derived from it, this approach would require mapping the whole memory hierarchy inside the
simulation. Even though we believe this approach is possible and it could provide more accurate
simulation predictions, implementing it is very challenging and deserves its own proper study. For
now in our solution we ignored these memory related e�ects, as all aforementioned issues have
a limited in�uence on the problems we have studied so far. However, this stays as a signi�cant
limitation of our approach if one wants to evaluate the performance of systems on a larger scale.
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Another missing feature for predicting performance of large clusters is the ability to simulate
distributed applications. Indeed, all our studies so far were within a single node (or using NUMA
shared memory). Still, StarPU was recently extended to exploit clusters of hybrid machines by
relying on MPI. Since SimGrid's ability to accurately simulate MPI applications has already been
demonstrated [BDG+ 13], combining both works should allow for obtaining good performances
predictions of complex applications on large-scale high-end HPC infrastructures. Implementing
this solution however is not straightforward as it requires integrating two di�erent SimGrid APIs:
MSG used in our solution for simulating hybrid machines and SMPI used for simulating MPI
applications. Although both of these APIs rely on the same SimGrid core beneath, combining
them was never intended in the initial SimGrid design and thus many small adjustments to the
code are required. Moreover, to simulate StarPU MPI applications several technical challenges
have to be overcome, such as segment data sharing for privatizing global variables, initialization
of the StarPU application, initialization of MPI, etc.

There is an ongoing work on porting StarPU MPI applications on top of SimGrid, and most
of the aforementioned issues have already been solved. There are still a few technical details to
�x, and after these are resolved we will soon start to experiment with various applications and
machines. We believe that this approach can also provide very faithful simulation predictions, but
it needs to be validated on a wide range of settings. If the results are positive, then this approach
should be even more useful to the community, as the resource saving when executing simulation
on a commodity machine instead of running a real executions on a large cluster is even larger than
in the case of single-node hybrid setups.

Controlling the simulation quality

An important aspect of the simulation that we have not addressed during this thesis is the validity
domain of our simulation predictions. Our models are checked and calibrated on speci�c machines
and speci�c inputs. They can easily be extrapolated to other setups but the accuracy of the
obtained predictions is then more questionable. For example, our kernel models forqr_mumps

are calibrated with speci�c matrices. We can use these models to simulate the factorization of a
new matrix that we never calibrated before. However, if this matrix has some peculiar structure
that leads to the execution of the kernels with input parameters that are very di�erent from the
parameter space explored with the initial calibration, the simulation might provide inaccurate
predictions.

To validate the faithfulness of our simulation tool, we constantly compared native and Sim-
Grid traces (see Figure 6.13, 6.15, 6.16 and 7.9). However, event for two stable, consecutive native
executions, due to the small variability of kernel durations and the non-determinism of the mod-
ern machines, the scheduling decisions and hence the resulting traces are always quite di�erent.
Although two traces may visually look alike, we have not found an appropriate criteria to for-
mally quantify this resemblance. We have considered di�erent techniques of trace aggregation
and statistical analysis, which all ended up to be only partially suitable for these use case. We
have dedicated a signi�cant time of our research to this topic, but have not yet found a satisfying
solution. We believe that this speci�c question deserves a full study of its own and that it is the
key to an in-depth understanding of the performance of such dynamic applications.

Opening new horizons

Building on the very accurate simulation predictions of the basic dense and sparse linear algebra
applications, we would like to extend our study to other, more complex, use cases. The �rst step
will be to investigate advanced versions of theqr_mumps solver, as such research requires little
additional implementation e�ort.

In the research performed during this thesis, we have decided to �x the width of the block when
factorizing parts of the matrix in order to simplify the modeling problem. In the near future, we
intend to investigate the executions that rely on 2D partitioning of the sparse matrices into tiles,
which allows for breaking down the panel factorization and thus for increasing the parallelism of
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the application. In such executions, the number of parameters for the computation kernels will
increase and we will have to revise our models. Still, the main principles of theqr_mumps execution
are not signi�cantly changed, therefore we believe that with the adjusted models performance
predictions will be equally accurate as the ones for the 1D code.

qr_mumps was recently extended with a memory-aware scheduling algorithm [ABGL14] that
applies strict memory bounds on the application. This solution add limitations that can ensure
that the application will never exceed the RAM memory of the machine, while at the same time
maximizing the parallelism of the execution. However, this algorithm is implemented partially
in the application itself (part that keeps control of the allocated memory) and partially in the
StarPU tasks of the application (part which indicates allocations and deallocations of the memory
needed for doing a factorization). Since StarPU kernels are not executed in the simulation but
only replaced by the delay representing their duration, simulating this version of qr_mumps would
require some modi�cations to the source code so that simulation can maintain the same memory
limitations as the native execution.

When we conducted our research, the GPU version ofqr_mumps was still under development.
Therefore, we decided to �x the evaluation of our approach to a more stable code version, where
computations are performed solely on CPUs. In such context, since all workers use the same shared
memory, there is no explicit data transfers and thus no need for advanced communication models
as described in Section 5.4. Still, based on experience with dense linear algebra applications and
the excellent results observed for heterogeneous machines (see Figure 6.12), we strongly believe
that for qr_mumps using GPUs, our simulation predictions will be equally accurate.

Apart from di�erent version of qr_mumps, we would also like to extend our study to other
more complex applications implemented on top of StarPU, e.g., Fast Multipole Methods (FMM)
(, introduced by Greengard and Rokhlin [GR87],) which can be applied on particle simulations
problems where computing pair-wise interactions is reduced from quadratic to linear complexity.
There are many implementations of FMM on top of di�erent runtimes [CWO + 10, CWO+ 10, YB12]
including the one on top of StarPU [ABC+ 14]. This type of applications have even more irregular
workloads than sparse linear algebra kernels. Hence, simulating them certainly contains many
new challenges that are hard to anticipate.

Finally, the ultimate goal of our research is to simulate executions of full-�edged dynamic sci-
enti�c HPC applications running on top of hybrid clusters. Thanks to the e�orts of the StarPU
developers on the stability of their software, real applications should be ported on top of StarPU in
a near future and would then easily bene�t from our work. Another possibility could be to directly
target the simulation of speci�c applications such as BigDFT. BigDFT has been already success-
fully simulated with SMPI SimGrid [BDG + 13], but only for single-core multi-node machines. A
support for GPUs is also available in BigDFT, but as it is built directly on top of CUDA and not
of a runtime system such as StarPU, one would have to signi�cantly modify BigDFT to bene�t
from our work. It is also important to note that the development of direct GPU-GPU communi-
cations over the networks in BigDFT is underway. Being able to simulate such kind of operations
would not only be valuable to the BigDFT developers, but also interesting from the modeling
and performance evaluation point of view. Moreover, the control �ow of BigDFT is currently
static but the developers are considering moving to more dynamic task-based approaches using
OpenMP. Such an irregular dynamic application would be a perfect use case for our future studies.
Implementing simulation of an OpenMP application (even if using a restricted set of the OpenMP
standard) would however require signi�cant development work. A possible solution could reside
in the recent e�orts of speci�c OpenMP compilers, such as KSTAR [KST] project that aims at
directly compiling OpenMP programs to StarPU and KAAPI.
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Figure B.1: Script for running experiments and automatically capturing meta-data.
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Figure B.2: Output of the execution containing both meta-data and the experiment results.
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Figure B.3: Documentation part of the laboratory notebook.
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Figure B.4: Notes about all experimentation results stored in laboratory notebook.
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Figure B.5: Conducting experiments directly from the laboratory notebook.
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Figure B.6: Org-mode article contains both text and the analysis code.
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