
HAL Id: tel-01248125
https://theses.hal.science/tel-01248125v1
Submitted on 23 Dec 2015 (v1), last revised 11 Jul 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Garbage Collector for memory intensive applications on
NUMA architectures

Lokesh Gidra

To cite this version:
Lokesh Gidra. Garbage Collector for memory intensive applications on NUMA architectures. Dis-
tributed, Parallel, and Cluster Computing [cs.DC]. Inria Paris Rocquencourt; LIP6 - Laboratoire
d’Informatique de Paris 6, 2015. English. �NNT : �. �tel-01248125v1�

https://theses.hal.science/tel-01248125v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
l’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Lokesh GIDRA

Pour obtenir le grade de

DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse :

Garbage Collector for memory intensive applications on NUMA
architectures

soutenue le 28 septembre 2015

M. Gaël THOMAS Directeur de thèse
M. Marc SHAPIRO Directeur de thèse
M. Vivien QUEMA Rapporteur
M. Luis VEIGA Rapporteur
M. Albert COHEN Examinateur
M. Tim HARRIS Examinateur

ii

To my loving father

v

Acknowledgements

First and foremost, I would like to express my gratitude to my advisors Gaël Thomas, Marc Shapiro,
and Julien Sopena, for their essential guidance and insight throughout my graduate career. Their sup-
port and encouragement throughout the thesis have been very helpful, and without our many fruitful
discussions the result would surely not have been as good.

I would also like to thank my thesis jury for spending their valuable time to review and improve
the thesis quality. I am really thankful to them.

My sincere and warm thanks goes to all my colleagues at Regal group in LIP6 Lab for their
inspirations and helpful comments during my thesis. I especially thank Florian David, Brice Berna,
Suman Saha, Pierpaolo Cincilla, Gauthier Voron, Maxime Lorrillere, Thomas Preud’Homme, and
Sergey Legtchenko for devoting some of their precious time to help me on numerous occasions during
my work.

Special thanks to my wife, Vidhi for being encouraging and patient at every stage during my
doctoral studies. I kept her from so many holiday trips due to my thesis.

Needless to say, my family deserves a great deal of credit for my accomplishments. I thank my
parents and sisters for all their love and support. I especially thank my father for his innumerable
sacrifices to ensure my continuous professional growth.

I would like to thank again Gaël Thomas and Florian David. Without their support, I could not
have completed my PhD.

Finally, I would like to thank God for giving me the ability to do this work.

vii

Abstract

Large-scale multicore architectures create new challenges for garbage collectors (GCs). On contem-
porary cache-coherent Non-Uniform Memory Access (ccNUMA) architectures, applications with a
large memory footprint suffer from the cost of the garbage collector (GC), because, as the GC scans
the reference graph, it makes many remote memory accesses, saturating the interconnect between
memory nodes. In this thesis, we address this problem with NumaGiC, a GC with a mostly-distributed
design.

In order to maximise memory access locality during collection, a GC thread avoids accessing a
different memory node, instead notifying a remote GC thread with a message; nonetheless, NumaGiC
avoids the drawbacks of a pure distributed design, which tends to decrease parallelism and increase
memory access imbalance, by allowing threads to steal from other nodes when they are idle. Numa-
GiC strives to find a perfect balance between local access, memory access balance, and parallelism.

In this work, we compare NumaGiC with Parallel Scavenge and some of its incrementally im-
proved variants on two different ccNUMA architectures running on the Hotspot Java Virtual Machine
of OpenJDK 7. On Spark and Neo4j, two industry-strength analytics applications, with heap sizes
ranging from 160 GB to 350 GB, and on SPECjbb2013 and SPECjbb2005, NumaGiC improves over-
all performance by up to 94% over Parallel Scavenge, and increases the performance of the collector
itself by up to 5.4× over Parallel Scavenge. In terms of scalability of GC throughput with increasing
number of NUMA nodes, NumaGiC scales substantially better than Parallel Scavenge for all the ap-
plications. In fact in case of SPECjbb2005, where inter-node object references are the least among
all, NumaGiC scales almost linearly.

ix

Contents

1 Introduction 1

2 Background and Related work 5
2.1 Parallel Scavenge GC . 5

2.1.1 Heap Layout . 5
2.1.2 Object Allocation . 6
2.1.3 Parallelism in Parallel Scavenge . 6
2.1.4 Young Collection . 6
2.1.5 Full Collection . 8

2.2 ccNUMA architecture . 9
2.2.1 UMA vs. NUMA . 9
2.2.2 Machine used in the evaluation: AMD-48 11
2.2.3 Influence of memory placement . 13

2.3 Applications/Benchmarks and JVM used for evaluation 15
2.3.1 HotSpot Java Virtual Machine . 15
2.3.2 Spark . 15
2.3.3 Neo4j . 15
2.3.4 SPECjbb2005 . 15
2.3.5 DaCapo . 15

2.4 Related work . 16
2.4.1 Kernel and Operating Systems . 16
2.4.2 Garbage Collectors . 18

3 Evaluation of Existing Garbage Collectors on NUMA architectures 25
3.1 Selection of applications and garbage collector . 25
3.2 Scalability analysis . 26

3.2.1 Application scalability . 27
3.2.2 GC scalability . 28

3.3 Conclusion . 30

4 Synchronisation Primitives in Parallel Scavenge 31
4.1 Background . 31

4.1.1 Synchronisation mechanism . 31
4.1.2 Initialisation phase . 32
4.1.3 Parallel Phase . 32

x Contents

4.1.4 Final synchronisation phase . 34
4.2 Synchronisation optimisations . 34

4.2.1 Lock-free GC task queue . 35
4.2.2 Lazy GC parking . 35

4.3 Post-compact optimisations . 36
4.4 Evaluation . 36
4.5 Conclusion . 38

5 NumaGiC: a Garbage Collector for NUMA architectures 39
5.1 Interleaved Parallel Scavenge . 39
5.2 NUMA-friendly placement . 41

5.2.1 Object graph analysis . 41
5.2.2 NUMA-friendly placement . 43
5.2.3 Implementation details . 44

5.3 NumaGiC . 44
5.3.1 Local mode . 44
5.3.2 Work-stealing mode . 45
5.3.3 Switching between local and work-stealing modes 45

5.4 Evaluation of NumaGiC . 46
5.4.1 Hardware . 46
5.4.2 Applications and Benchmarks . 46
5.4.3 Evaluation of the policies . 47
5.4.4 Impact of transmit buffer size . 50
5.4.5 Memory access locality versus parallelism 51
5.4.6 Performance analysis . 53
5.4.7 Scalability . 54

5.5 Conclusion . 55

6 Conclusion and Future Work 57
6.1 Conclusion . 57
6.2 Future Work . 58

Bibliography 67

1

Chapter 1
Introduction

Large applications like data analytics engines [42], databases [32], scientific applications, application
servers and web servers have huge hardware resource requirements. The amount of data to process
and/or the number of user requests to serve, pushes these applications to easily consume all the CPU,
memory and I/O bandwidth available on a server machine, even requiring multiple such machines in
some cases.

Managed Runtime Environments (MREs) such as Java and C# are being increasingly preferred
for development of such applications due to the speed, portability and safety of development that
they provide. Improvements in techniques like Just In Time (JIT) compilation and automatic garbage
collection (GC) have made them competitive with other programming languages. Therefore, as with
any system software, for these applications to perform efficiently, it is essential for the MRE and its
components to be efficient.

One of the performance critical component of MREs is garbage collector (GC). A garbage col-
lector reclaims memory allocated to dead (unreachable) objects so that it can be used for new alloca-
tions. To identify the dead objects, it traverses through the entire object graph, starting from global
and stack variables, which are called roots in GC context. Objects which are unreachable during the
graph traversal would also be unreachable to the application. Therefore, they are considered dead and
thus their memory is safely recycled. The garbage collector is also responsible for compacting the
heap in order to defragment the memory. It does so by relocating all the live objects to a separate heap
location.

The cost of a garbage collection cycle1 depends on the amount of live data it processes, which in
turn depends on the memory requirement of the application. Furthermore, since the majority of large
applications are memory intensive, a considerable amount of time is spent in doing GC which makes
the GC performance even more critical. This thesis studies performance behavior of GC for large
applications on contemporary hardware architectures.

Unlike Symmetric Multi-Processors (SMP), which used to have a flat architecture with uniform
access latenices from one hardware location to any other location, the contemporary multi-core ar-
chitectures, called cache-coherent Non-Uniform Memory Access (cc-NUMA) architectures, have a

1 A collection cycle is one iteration of garbage collection out of all the iterations that are triggered during the entire
execution of the application.

2 Chapter 1 – Introduction

hierarchical design. At the first level there are various nodes, each consisting of multiple cores, a
last level cache, at least one memory controller which is responsible for a set of memory modules,
and finally a system bus which connects all these components. At higher level there is a network
which inter-connects these nodes to facilitate inter-node communication. This way the hardware hides
the physical distribution of memory from the software, which is necessary to support legacy multi-
threaded applications which assume a shared memory architecture. On such architectures, memory
access latency to access a node-local memory location is much smaller as compared to accessing a
memory location on a different node.

There exists many parallel garbage collectors to exploit multiplicity of processors [12, 15, 16,
35, 48, 52]. However, they were developed in the era of SMPs. Therefore, it is unclear how the
design shift in hardware from SMPs to cc-NUMA architectures will impact the GC’s performance.
In this thesis, I intend to find answer to this question. More precisely, I want to answer the following
questions:

1. What is the impact on GC’s performance when utilizing the existing parallel garbage collectors
on cc-NUMA architectures?

2. If the existing GCs fail to scale on contemporary hardware, then what are the bottlenecks?

3. Can these existing garbage collectors be redesigned to fix these bottlenecks? What would be an
ideal GC design for NUMA architecture?

A wide spectrum of real applications and benchmarks are evaluated to determine whether the
garbage collectors continue to improve their performance with every advancement in computer hard-
ware. The garbage collectors of the widely used Java virtual machine, called HotSpot, which is part
of OpenJDK Java Development Kit were chosen. The experiments were conducted on a 48-core 8-
node AMD machine. However, the evolution of hardware is emulated by running experiments on
varying number of CPU cores, starting from 1 to 48, with a fixed size increment at every step. The
results showed that after a certain number of cores, the GC throughput, which is the amount of live
data processed per unit of time, kept decreasing with increasing number of cores. Two sources of
inefficiencies have been experimentally identified: idling CPU cores, and excessive inter-node traffic.

Idling CPU cores. Since the existing parallel GCs were developed in the era of SMPs, their internal
data structures use synchronization primitives which scale well up to few threads, but drastically hurts
the scalability when a lot of GC threads are used, which is the case on contemporary hardware with
many cores. Today, the GC threads spend embarrassingly large amount of time in synchronizing and
very little time in doing the operation on the data structure. The issue was resolved by replacing the
GC-internal data structures with efficient lock-free versions. Using lock-free data structure improved
the scalability during the parallel execution of collection. Another synchronization related problem
is with wake-up/suspension of GC threads at start/end of the parallel phase of GC. To resolve this
issue, the thread management code is simplified to ensure that thread wake-up/suspension is done
with minimal synchronization. Together these two solutions have completely removed the explicit
waiting of GC threads during the parallel phase of the garbage collector, making the phase lock-free
[20].

3

Excessive inter-node traffic. Experiments revealed that a substantially huge amount of inter-node
remote access is done during garbage collection. The following two reasons are identified as the main
culprits:

1. Non-local memory access: A cc-NUMA hardware hides the distributed nature of the memory
from the application. The application thus unknowingly creates inter-node references when it
stores a reference to an object located on a given node into the memory of another node. In
turn, when a GC thread traverses the object graph, it silently traverses inter-node references and
thus processes objects on any memory node. Consequently, GC threads often access remote
memory, which causes a huge amount of inter-node traffic and slows down memory access.

2. Unbalanced memory access: When the physical memory associated with the object heap is
allocated from few nodes, but is accessed by threads running on all of them, it saturates the
memory controller(s) of these particular node(s), severely hurting scalability. This problem is
faced by GC threads as they are deployed on all the nodes. This problem arises due to a very
common application behaviour, where the applications have a serial initialization phase. This
phase forces a majority of physical pages (corresponding to the heap) to be allocated from only
those few nodes, where the initialization thread(s) run. Furthermore, since the same heap is
reused after every GC cycle, the problem is faced during every collection.

To overcome both problems, we propose NumaGiC [21]. First, NumaGiC solves the problem
of non-local memory access by using a mostly-distributed design. At the basis of NumaGiC, we
observe that the problem of non-local memory access can be solved by ensuring that a GC thread only
processes objects located on its own memory node. When a GC thread discovers an object located on
a different node, it could notify a GC thread located on the object’s home node, which continues the
scan locally. However, strictly applying this solution, unfortunately, degrades parallelism, because a
GC thread remains idle when it does not have local objects to collect, waiting for GC threads on other
nodes to reach some object(s) located on its own node. NumaGiC is thus designed to aim for memory
access locality during the GC, without degrading GC parallelism, by letting each GC thread switch
between two modes of execution. A GC thread starts with local mode, in which the GC focuses on
memory access locality. In this mode, the GC threads strictly follow the above described constraint.
When a GC thread runs out of local objects to process, it enters thief mode. This mode focuses on
parallelism and allows a GC thread to “steal” references to process from other nodes, and to access
such references itself, even if they are remote. A GC thread in thief mode regularly re-enters local
mode, in order to check whether some local reference has become available again, either sent by a
remote thread, or discovered by scanning a stolen reference.

Second, to solve the issue of unbalanced memory access, and also to prepare the heap for the
mostly-distributed design, NumaGiC includes a set of NUMA-friendly placement policies. The poli-
cies first ensure that the GC balances the memory among all the nodes, which solves the problem of
unbalanced memory accesses. This ensures that every node contributes in memory utilization, and
also to equalise the collection work between all GC threads. The policies also aim at minimising
the number of inter-node references. Since sending a reference is slightly more costly than remotely
accessing the associated object, sending a reference is beneficial only if, on average, the referenced
object itself references many objects on its own node. In this case, the cost of sending the reference
gets amortised over the memory access locality of the receiving GC thread.

NumaGiC is implemented in the Hotspot Java Virtual Machine of OpenJDK 7. It targets long-
running computations that use large data sets, for which a throughput-oriented stop-the-world GC

4 Chapter 1 – Introduction

algorithm is suitable2. NumaGiC is based on Parallel Scavenge, the default throughput-oriented GC
of Hotspot. Experiments compare NumaGiC with Parallel Scavenge. NumaGiC is evaluated against
two widely-used big-data engines, Spark [42] and Neo4j [32], with Java heaps sized from 110 GB to
350 GB. We also evaluate two industry-standard benchmarks, SPECjbb2013 [44], and SPECjbb2005
[43], along with the DaCapo 9.12 and SPECjvm2008 benchmarks. The experiments were conducted
on a 48-core 8 node AMD machine, having a total memory size of 256 GB, and on a 40-core Intel
Xeon E7 hyper-threaded machine with two execution units per core, with 4 nodes and total memory
size of 512 GB. The evaluation shows that:

• On applications with large heap, NumaGiC always increases the overall performance of appli-
cations on the two machines. With heap size that provide the best possible application perfor-
mance for the two evaluated GC, NumaGiC improves the overall performance of applications by
12% to 62% over Parallel Scavenge. This result shows that a mostly distributed design increases
substantially the performance of applications with large heap on NUMA machines, and that a
mostly distributed design seems to improve performance independently of the architecture.

• NumaGiC scales well with the number of nodes. At constant heap size, the GC throughput,
i.e., the number of live bytes processes per time unit, increases with the number of nodes. As
compared to Parallel Scavenge, NumaGiC never degrades performance.

• On applications with large heap with the most efficient heap size for all the GC, NumaGiC in-
creases collector throughput on the two machines by 2.2–5.2×, compared to Parallel Scavenge.

• On 33 applications from DaCapo 9.12 and SPECjbb2008 with smaller working set, NumaGiC
improves substantially the performance of 19 applications by more than 5%, and only degrades
the performance of a single application by more than 5% (by 8%). This result shows that a
mostly distributed design is almost always beneficial and statistically beneficial for more than
half of the applications with modest workload.

Organization of the document. The thesis is structured as follows:

• Chapter 2 gives background information required for understanding this research. It will cover
detailed explanations of the contemporary NUMA architectures and Parallel Scavenge garbage
collector, which is the baseline of our work. The chapter also presents State-of-the-art in the
field of this research.

• Chapter 3 establishes our problem statement. We present our throughput evaluation of all the
garbage collectors of OpenJdk7. The chapter then does a scalability analysis of Parallel Scav-
enge, our baseline garbage collector.

• Chapter 4 presents our solution to the problem of idling CPU cores during garbage collection.
This chapter evaluates our solution on real benchmarks.

• Chapter 5 presents NumaGiC, a distributed garbage collector that we have developed to counter
the problem of excessive inter-node traffic. It also compares NumaGiC’s performance with the
baseline GC on a wide range of applications.

2 A stop-the-world GC algorithm suspends the application during collection, in order to avoid concurrent access to the
heap by the application. A stop-the-world GC is opposed to a concurrent GC [25], which favours response time at the
expense of throughput, because it requires fine-grain synchronisation between the application and the GC.

5

• Finally, Chapter 6 concludes the thesis and discusses future research directions.

7

Chapter 2
Background and Related work

2.1 Parallel Scavenge GC

A garbage collector (GC) observes the memory of an application process, called the mutator. Starting
from some well-known roots, it records which objects are referenced, scans them for more references,
and so on recursively. Reachable objects are live; unreachable ones are garbage and are deallocated.

Parallel Scavenge is the default GC of the Hotspot Java Virtual Machine, and forms the starting
point for this work. Parallel Scavenge is a stop-the-world, parallel and generational collector [25].
This means that it suspends the application during a collection, spawns parallel GC threads, and
segregates objects into generations, under the observation that “most objects die young”, i.e., that in
many programs, most objects become garbage within a few GC cycles after their creation [3, 27, 50].

2.1.1 Heap Layout

A generational collector segregates the heap into multiple generations, and by collects the young
generation more frequently than the older one(s). As presented in Figure 2.1, Parallel Scavenge defines
three generations: a small young generation; a larger old generation; and a permanent generation,
similar to the old one, but much smaller.

Parallel Scavenge has two kinds of collections. A young collection collects only the young gen-
eration; a full collection collects all the generations. Parallel Scavenge leverages the generational
hypothesis by performing young collections much more frequently than full collections.

The young generation of Parallel Scavenge is divided into three spaces, an eden space and two
survivor spaces, called from-space and to-space. When a mutator, i.e., an application thread, allocates
an object, it resides initially in the eden space. Later, depending on age of the object, it is either
retained in young generation by copying it in the survivor spaces, or is promoted to the old generation.
This decision is taken during young collection.

The old and the permanent generations consist each of a single space. The old space contains ob-
jects that were promoted from the young generation, and the permanent space contains the Java class
definitions. Hereafter, we conflate the permanent with the old generation to simplify the presentation.

8 Chapter 2 – Background and Related work

�
���
������

�
���������

������������������������������

����
�����

����
�����

��
�����

����

����
��������

Figure 2.1 – Memory Layout of Parallel Scavenge

2.1.2 Object Allocation

To avoid synchronisation between the mutators at each object allocation, a mutator first allocates,
for its exclusive use, a large memory chunk from the eden space called a Thread-Local Allocation
Buffer (TLAB). Thereafter, it allocates objects from its TLAB, without synchronisation, using a bump
pointer. Similarly, promoting an object to the survivor space or to the old generation allocates from
Promotion-Local Allocation Buffers (PLAB), which are allocated from the to-space and the old gen-
eration.

2.1.3 Parallelism in Parallel Scavenge

Parallel Scavenge uses a master-slave design. The master thread, called the VM Thread, queues some
GC tasks, in a shared task queue. Then it starts the parallel phase, in which GC threads dequeue
tasks and perform the corresponding work. The various GC-tasks related to different parallel phases
of Parallel Scavenge are described below. However, the discussion of thread management is left for
chapter 4 to keep the explanation simple.

2.1.4 Young Collection

A young-generation collection is triggered when an allocation fails both to find space in the current
TLAB and to get a new TLAB from the eden space. The Parallel Scavenge young collection is a
copying algorithm. When it reaches a live object, it copies it elsewhere in order to compact the
memory. This design fights fragmentation, and ensures that dead memory can be recycled in large
chunks.

When a young-generation collection begins, the eden space contains those objects which are al-
located since last collection; the from-space contains those that survived a few collections, and the
to-space is empty.

Parallel Scavenge copies live objects of both the eden space and the from-space, either to the to-
space or to the old generation, according to their age (see Figure 2.1). At the end of collection, the
eden space and the from-space are empty and can be recycled, and to-space contains the surviving
young objects. In the next cycle, the eden space again serves to allocate new objects, and the from-
and to-spaces are swapped.

2.1.4.1 GC Tasks

In order to parallelize the collection, Parallel Scavenge divides the collection work into multiple
GC tasks, which can be executed in parallel by multiple GC threads. In the case of young-generation
collection, there are three kind of tasks: root tasks, steal tasks and a single final task. Root tasks
contain the entry points of the object graph. Steal tasks are used to balance the load between the GC

2.1 – Parallel Scavenge GC 9

threads. They are ordered in the queue after the root tasks, and are fetched by GC threads once they
have fetched all the root tasks. Final task will be discussed in chapter 4 where we will discuss the GC
thread management of Parallel Scavenge.

Root tasks. A root task provides an entry point into the graph of live objects. The roots for young
collection are the global variables, the stacks of the mutator threads, and the old-to-young root objects,
i.e., the old-generation objects that reference objects in the young generation. Parallel Scavenge iden-
tifies the old-to-young root objects by instrumenting writes performed by the mutator. It divides the
old generation into chunks called cards [40, 51]. Each card has a corresponding bit in a card table, in-
dicating whether the card might contain a reference to the young generation. The GC traverses the card
table, in order to identify the cards that potentially contain old-to-young root objects. Each time an old
object is assigned with a reference towards the young generation, the Java Virtual Machine marks the
corresponding card table entry “dirty,” indicating the possible existence of a young-generation root.

A GC thread performs a depth-first traversal (DFT) of the graph of live objects, starting from the
addresses provided by the root tasks. For each object that a GC thread reaches, it creates a copy in the
PLAB appropriate for the object’s age, and installs a forwarding pointer to the new object in the old
object’s header. To avoid copying the same object concurrently with another thread, the GC thread
uses an atomic compare-and-swap (CAS) instruction to install the forwarding pointer. Then, the GC
thread pushes all the references contained in the object into a local DFT queue, which is implemented
as a lock-free bounded queue, backed by an overflow stack. After this, the GC thread repeatedly pops
a reference from its DFT queue, which it processes in the same way. When its DFT queue is empty,
the GC thread picks either another root task, or eventually a steal task.

Steal tasks. As the sub-graph reachable from a root task depends on mutator activity, the load of
the GC threads could be unbalanced, resulting in some GC threads remaining idle, while others still
having a large amount of work. To better balance the load, an idle GC thread “steals” a reference from
a randomly-chosen DFT queue and processes the corresponding sub-graph.1 To avoid conflicting
concurrent accesses to a DFT queue, the queue owner pushes and pops from the queue head, whereas
other GC threads pop (steal) from the tail.

A GC thread may be unable to steal, either because the parallel graph traversal is terminated, or
because its random choice never picked an overloaded GC thread even though one exists. To handle
the second case, the GC thread does not directly leave the steal task. Instead, after a number of
unsuccessful steal attempts, it enters a termination protocol. It first atomically increments a global
thread counter in order to indicate to other GC threads that it is in the termination protocol. Then,
the GC thread actively polls the global thread counter in a bounded loop. If the counter reaches the
number of GC threads, this means that all BFT queues are empty and therefore that the parallel phase
is terminated. In this case, the GC thread leaves the termination protocol. Otherwise, if the counter
has not reached the number of GC threads in the bounded loop, the GC thread “peeks” into the other
BFT queues. If all queues are empty, the GC thread also leaves the termination protocol, otherwise, it
atomically decrements the global thread counter and continues to steal.

1 Stealing is done from the queue only. The overflow stack is accessed solely by the owning thread.

10 Chapter 2 – Background and Related work

2.1.5 Full Collection

If an object promotion fails at any stage of a young-generation collection because the old space is full,
this indicates that the old generation needs to be collected. The GC thread that suffers the promotion
failure sets a flag and continues the parallel phase. After the parallel phase, if the flag is set, the VM
thread starts an old-generation collection.

Full Collection re-uses many of the data structures and algorithms used by young collection. It
uses a three-phase mark-compact algorithm, compacting the old generation by copying live objects to
the beginning of the old generation memory area to avoid fragmentation. In the first phase, called the
marking phase, the GC threads traverse the object graph in parallel and mark the live objects. In the
second, summary phase, Parallel Scavenge calculates (sequentially) the destination address of the live
objects; this mapping is organised in regions of 4 KB each. In the third, compacting phase, the GC
threads process the regions in parallel and copy the live objects to the beginning of the old generation.

2.1.5.1 Marking Phase

Marking phase’s functionality is very similar to the young collection. Like young collection, marking
also involves traversing through the object graph, visiting each live object. However, rather than
copying every visited object, marking involves atomically setting a bit in the mark bitmap indicating
that the object is alive, and updating summary data of the 4KB region which contains the object.
These data structures are used by the following two phases. Furthermore, the old-to-young reference
root set is not used in marking, as it is done on all the live objects, unlike young collection where only
young objects are supposed to be traversed.

2.1.5.2 Summary Phase

Summary phase is a sequential phase executed by VM thread. It further updates the summary data
of every region with additional information which is required for parallel compaction. Further details
of this additional information are not discussed as they are not required for this research work, and
would uneccessarily complicate the description.

The generational design of Parallel Scavenge ensures that the objects that are promoted to old
generation have a high life expectancy. This phenomenon, along with compaction ensures that long
living objects get accummulated towards the beginning of old generation. Therefore, progressively
with every full collection, a portion of old generation gets densely populated with live objects, and
hence the utility of compacting this dense portion diminishes accordingly. To overcome this, summary
phase computes a dense-prefix of old generation. This dense-prefix indicates the boundary between
the dense portion and the rest of the old generation, so that the portions can be handled differently in
an efficient manner.

2.1.5.3 Compact Phase

Compact phase moves all the live objects in the entire heap towards the beginning of old generation,
leaving a large contigous free space eliminating external fragmentation. This phase also updates all
the references to the new location in all the live objects. The following GC-tasks are used by compact
phase to parallelize the whole process:

2.2 – ccNUMA architecture 11

Compacting task is used by a GC thread to compact the heap during the compacting phase of the
full collector, by copying the regions, according to the mapping computed during the summary phase.
A GC thread copies the objects from (one or more) source regions to some empty destination region.
The destination region may be originally empty, or may become empty because its objects have been
copied elsewhere. This requires some synchronisation, which uses the pending queues. Initially, a GC
thread adds to its pending queue a subset of the empty regions. For each destination region, the GC
thread copies the corresponding objects from their source regions and updates the references contained
in the destination region. When a source region becomes empty, it is added to the GC thread’s pending
queue, and so on recursively.

Dense-prefix task As described in the summary phase, the utility of compacting the dense portion
in the beginning of old generation is very little. Therefore, the objects in this dense portion are not
moved, only their references are updated. This job of updating references of dense prefix objects is
performed by dense-prefix task. Multiple tasks, each updating a sub-portion of the entire dense portion
are utlized to parallelize this operation.

Steal task serves exactly the same purpose as in the case of young collection and marking phase,
to balance the workload among GC threads. However, since compaction is performed on region basis
rather than object, the regions (and not objects) are stolen from other GC threads’ pending queues.
Apart from this difference, the entire functionality is identical to that of young collection’s steal task.

A sequential post-compact phase follows the compact phase, which is executed by the VM thread.
Firstly, this phase updates references in all those objects which overlap with region boundaries. Such
overlapping regions are not updated during compaction to avoid synchronization issues. Secondly,
this phase updates the card-table. If the entire young generation is empty after the full collection, then
the card-table is reset. Otherwise, all its bits are set. Finally, this phase clears the summary data of all
regions and mark bitmap so that they can be used in the next full collection.

2.2 ccNUMA architecture

This section describes the characterstics of ccNUMA architecture which is commonplace in contem-
porary multicore architectures. Section 2.2.1 compares the legacy Uniform Memory Access architec-
tures with Non Uniform Memory Access architectures. Section 2.2.2 describes AMD-48, the machine
used for evaluation in this work. Section 2.2.3 discusses the impact of different memory placement
techniques on application performance.

2.2.1 UMA vs. NUMA

Originally, when multicore machines appeared in the market, they were typically called Symmetric
multiprocessors (SMP). In SMPs, a shared system bus, called front-side bus, served as the immediate
link between the CPU, which contained all the cores, and all other devices in the system, including
main memory. In this design, since a single shared system bus links the cores with memory, the
cost of accessing any memory address from any CPU core is uniform. Therefore, SMPs had what is
typically called Uniform Memory Access or simply UMA architectures. Figure 2.2a shows a simple
block diagram of a SMP machine.

12 Chapter 2 – Background and Related work

Core 1

Memory

Memory Controller

Core 2 Core 3 Core 4

System Bus

(a) UMA Architecture

M
C

M
em

o
ry
 B
an
k C

C

C

C

C

C

M
C

M
em

o
ry
 B
an
k C

C

C

C

C

C

M
C

M
em

o
ry B

an
k

C

C

C

C

C

C

C

C

C

C

C

C

M
C

M
em

o
ry B

an
k

NUMA node 1

NUMA node 3

NUMA node 2

NUMA node 4

Point-to-point
connections

(b) NUMA Architecture

Figure 2.2 – UMA and NUMA archs

The main issue with UMA architectures is that with every additional core, the traffic load on the
shared bus, and main memory would keep increasing linearly. Therefore, after a certain core count, it
is not possible for fixed bandwidth system bus and memory to serve all the cores as per their demand,
and thereby stals the cores more often, wasting CPU cycles. This is how the shared hardware resources
become bottlenecks and stop scaling with the increasing core count.

This problem with UMA architectures led to design of more complex architectures called Non-
Uniform Memory Acess architectures. In NUMA architectures, the CPU cores are partitioned into
multiple subsets, and each subset being grouped with an on-chip memory controller which controls
a dedicated memory bank, into a single NUMA node. Finally, all the NUMA nodes are connected to
each other and I/O controller using multiple point-to-point connections like AMD’s HyperTransport
and Intel’s QuickPath Interconnect (QPI). This way the contentious shared system bus is replaced with
multiple point-to-point connections, and main memory is partitioned multiplying the total memory
bandwidth n times with n partitions in place. Block diagram of a NUMA architecture is depicted in
figure 2.2b. Since a given CPU core has different distances to different memory banks, the memory
access latencies are accordingly different, which is why these architectures are called Non-Uniform
Memory Access. Accessing a local node memory bank is much faster as compared to accessing other
nodes’ memory banks.

In order to ensure backward compatibility for software, NUMA architectures often provide a
shared memory model with system-wide cache coherency. This is why these architectures are also
referred to as ccNUMA (cache-coherent Non-Uniform Memory Access). The hardware handles map-
ping memory addresses to the right NUMA nodes: typically, the range of memory addresses is split
into as many contiguous chunks as there are nodes, and addresses from chunk n are all mapped to the
n th NUMA node. If a hardware thread needs to access a memory address that is located in a remote
NUMA bank, then requests have to be sent on the interconnect to the node that owns that NUMA
bank, possibly with several hops if there is no direct interconnect link between the two nodes. This
indirection increases latency: local accesses are faster than remote accesses.

In figure 2.2b, each die is a NUMA node that is connected to its local memory bank. An example
of local NUMA access is shown in green: when a hardware thread reads data from memory, that data
is copied into its L2 and L1 cache from which it can access it. When a hardware thread needs to access

2.2 – ccNUMA architecture 13

Figure 2.3 – Source: siliconmechanics.com

remote data, however, it must request it to the die whose NUMA bank holds the data. In the figure,
any two dies have a direct interconnect link that connect them, therefore, one hop is sufficient. This is
not always the case: requests sometimes have to be forwarded across several nodes in more complex
NUMA architectures, which comes at an increased latency cost.

2.2.2 Machine used in the evaluation: AMD-48

AMD-48 is an x86 machine with four AMD Opteron 6172 CPUs (the Opteron 6100 series is code-
named “Magny-cours") [10]. The CPUs’ clock speed is 2.100GHz. Each of the CPUs has twelve
cores split across two dies: AMD-48 features 48 cores in total. AMD-48 provides one hardware
thread per core as there is no hardware multithreading. Each core has a local L1 and L2 cache, while
the L3 cache is shared among all six cores on the die. Each core has two dedicated 2-way set associa-
tive 64KB L1 caches, one for instructions and one for data, for a total of 128KB of L1 cache memory.
Each core also has a 16-way set associative 512KB cache that contains both instructions and data. The
six cores on each die share a 48-way set associative 6MB L3 cache. However, effectively only 5MB
can be used by software as 1MB is dedicated for probe filter (explained in section 2.2.2.1). All caches
have a 64-Byte cache line size. Each die is a NUMA node, therefore, AMD-48 has eight NUMA
banks. Each bank handles 32GB of 1.333GHz U/RDDR3 memory, for a total of 256GB quad-channel
main memory. The interconnect links between the eight dies do not form a complete graph: each die
is only connected to the other die on the same CPU and to three remote dies. Therefore, the diam-
eter of the interconnect graph is two: inter-core communications (fetching cache lines from remote
caches, or NUMA accesses, for instance) require at most two hops. The bandwidth of the interconnect
links between intra-CPU dies is three times that of links between inter-CPU dies. The structure of the
interconnect graph can be seen in figure 2.3, along with the rest the architecture of AMD-48. The
interconnect uses HyperTransport 3.0 links with a theoretical peak bandwidth of 25.6GB/s at 6.4GT/s
(GigaTransfers per second).

14 Chapter 2 – Background and Related work

(a) Broadcast (Snooping) (b) HTAssist (Clean data) (c) HTAssist (Dirty data)

Figure 2.4 – Snooping vs. Directory-based inter-node cache coherency mechanisms

2.2.2.1 HyperTransport Assist

Traditionally, multicore architectures use broadcast messages when a core requests for a cacheline
which is not found in its local caches and last-level cache. The requesting core broadcasts the request
on the shared bus, and waits for cacheline as response from all the cores and memory controller. In
case of a NUMA architecture, when a thread t1 in NUMA node n1 needs to access data from a cache
line that is stored in the caches of a core in NUMA node n2 , with the data being allocated in the
RAM of node n3, t1 sends a directed request to the home node of the requested cacheline, which is
node n3. Thereafter, node n3 broadbcasts probe request to all the nodes in the system. Meanwhile,
node n1 waits until it receives responses from all the nodes. This scenario is depicted in figure 2.4a.
Since this scenario is fairly common, the resulting probe requests increase the load on caches and
interconnect links, which may lead to non-negligible overhead. To prevent this, AMD Opteron CPUs
use an optimization known as HyperTransport Assist [10] (a.k.a. HT Assist). With HT Assist, part
of the highest level cache of die d3 , whose memory controller handles node n3 , holds a probe filter
(or cache directory) which maps every cached line which belongs to node n3 with nodes that hold the
line. Thanks to the probe filter, n3 on receiving the request from t1 looks up in its probe filter for the
corresponding entry. Since the entry stores n2 as the node containing the requested line, node n3 sends
a directed probe to node n2 instead of broadcast, which then responses back to node n1 directly. This
ensures that all communication is point-to-point, which is more efficient than broadcasting requests
to all caches in the hope that one of them will respond with the cache line. This scenario is shown in
figure 2.4.

This probe filter is fully inclusive i.e., there must be an entry for every line from that node which
is cached in the system. If the probe filter is full, then some previous entry must be replaced (causing
a potential writeback, plus invalidation of the previous entry’s data from all caches) to accommodate a
new request. On AMD-48, the size of probe filter is 1MB, and it can only cover 16MB of cache. This
means that the amount of data that can be cached from a particular memory controller is limited to
16MB, and hence unbalanced memory access beyond the 16MB limit may cause cache invalidations
due to probe filter’s capacity misses. To verify this, we conducted an experiment wherein multiple
threads read sequentially from thread-local buffers of 512KB size. The size is carefully chosen so
that the buffer fits within the core-local L2 cache. We compare three different memory mappings for
buffers to be allocated: (i) on node 0, (ii) on the same node as the accessing thread, and (iii) with
pages from all nodes in round robin.

In theory, there should not be any impact of buffers’ memory location, because the buffer should
fit entirely in the L2 cache. Therefore, when experimented with 15 threads, in all the three cases,

2.2 – ccNUMA architecture 15

operation finished in the same amount of time. This is becasue 15 buffers of 512KB each is lessar
than 16MB, the limit of probe filter’s capacity. The theory is proved true even when experimented
with 45 threads for (ii) and (iii). However, in case of (i), the operation took almost 10× more time to
finish than (ii) and (iii). This is because 45 buffers of 512KB each is larger than 16MB, and hence the
probe filter invalidations started taking place due to capacity constraints.

2.2.2.2 Access latencies on AMD-48

NUMA architectures offer non-uniform access latencies from any CPU core to different locations in
memory hierarchy. Boyd-Wickizer et al. use a set of tools in their paper about Corey [7] to measure
various metrics about their hardware. In particular, they provide an application named Memal that
loads cache lines in the requested level in the memory hierarchy of a given core c1, and reads them
from another given core c2, in order to measure the cost of a load operation. Many cache lines are
read and the benchmark returns the average access time. We used Memal to identify different access
latencies on AMD-48.

Access latencies from a core to its local L1 and L2 caches are 3 and 12 cycles respectively. Fur-
thermore, accessing node-local L3 cache and memory banks costs approximately 40 cycles and 140
cycles respectively. Moreover, when a core reads a line which is cached in the L1 or L2 cache of
another core in its own node, the access latency is same as that of L3 cache access, i.e. 40 cycles.

Inter-node access latencies are expected to be more than intra-node ones. Rightly so, inter-node
L3 cache and memory access costs approximately 214 cycles and 240 cycles respectively for nodes
that are 1-hop away, and 297 cycles and 330 cycles respectively for nodes that are 2-hop away. In-
terestingly, the difference between L3 cache and memory access latencies is only 20 cycles in case of
inter-node access. Whereas, in case of intra-node access, this difference increases substantially to 100
cycles.

Please note that the inter-node L3 cache access latencies discussed in previous paragraph are for
the cases where the cached line is located on the L3 cache of the line’s home node. This is not always
the case. The cache lines which contain shared data can be cached on a different node than its home
node. In such cases, the HT Assist’s 3-way communication on the AMD-48 machine can lead to
5-hop response in worst case. This translates to latency of approximately 375 cycles.

2.2.3 Influence of memory placement

In order to understand the influence of different memory placement on performance, we performed
an experiment on AMD-48. This experiment measures the impact of memory access imbalance and
locality, the main factors that impact performance [11].

Figure 2.5 summarises this evaluation. It contains one curve per placement algorithm, plotting the
speedup in completion time of a fixed number of operations executed by a varying number of threads.
Each operation consists of sequentially reading from a thread-local buffer that does not fit in the CPU
caches, triggering a physical memory access on every read. Threads are pinned on the nodes with a
round-robin policy. The placement algorithms are as follows:

• Unbalanced-Remote. All the buffers are allocated on Node 0. Access is (i) remote (except
for the threads running on Node 0), and (ii) unbalanced.

16 Chapter 2 – Background and Related work

1
4

8

12

16

20

24

28

32

36

40

44
47

1 4 8 12 16 20 24 28 32 36 40 44 47

S
pe

ed
up

Number of Threads

Unbalanced-Remote

Balanced-Remote

Balanced-Local

Unbalanced-Local

Linear Speedup

Figure 2.5 – Micro-benchmark showing performance impact of different memory placements.

• Balanced-Remote: The pages of all the buffers are allocated on all the nodes in round robin.
Access is (i) mostly remote, and (ii) perfectly balanced.

• Balanced-Local: Every buffer is allocated on the same node as its corresponding thread.
Access is (i) purely local, and (ii) perfectly balanced.

• Unbalanced-Local. The threads are first pinned on Node 0, and only these ones participate.
The curve is extended beyond Node 0 by adding idle threads. Access is (i) local only, and
(ii) unbalanced.

As shown in Figure 2.5, the performance of Unbalanced-Remote improves until 8 threads only,
whereas Balanced-Remote continues to improve up to 32 threads. We can conclude from this that
when load is unbalanced, fewer threads suffice to saturate the machine (either the memory controller(s)
and/or the interconnect between the nodes). This experiment shows that balancing the load has a huge
impact on scalability. Comparing Unbalanced-Remote with Unbalanced-Local shows that balancing
load is a higher priority than improving locality.

Furthermore, Balanced-Remote stops improving beyond 32 threads, whereas Balanced-Local con-
tinues to improve up to 40 threads, and has significantly better results. We conclude that improving
memory locality constitutes a secondary scalability objective, once balancing access among nodes has
been taken care of.

Balanced-Local also shows that even with a perfect balance and a perfect locality, the memory
controller eventually saturates, and that we can only expect to scale up to the 48 cores if the memory
accesses to the memory nodes are not too frequent. As the only difference between the two experi-
ments is the use of the interconnect in Balanced-Remote, we can also conclude that Balanced-Remote
stops scaling before Balance-Local because of the interconnect saturation.

2.3 – Applications/Benchmarks and JVM used for evaluation 17

2.3 Applications/Benchmarks and JVM used for evaluation

2.3.1 HotSpot Java Virtual Machine

HotSpot Java Virtual Marchine is part of OpenJDK, mostly widely used Java Development Kit. We
run all our experiments on OpenJDK7.

2.3.2 Spark

Spark is an in-memory map-reduce engine for large-scale data processing [42]. We use Spark 0.9.0
to run a page-rank computation on a dataset consisting of a graph of 1.8 billion edges taken from the
Friendster social network [18]. The database itself is stored on disk. Following the Spark developers’
advice, we use the remaining RAM to mount an in-memory file system tmpfs for Spark’s intermediate
results.

For the scalability tests, we run with 40GB heap with first 100 million edges of the friendster
dataset.

2.3.3 Neo4j

Neo4j is an embedded, disk-based, fully transactional Java persistence engine that manages graph data
[32]. Neo4j caches nodes, relationships and properties in the Java heap, to accelerate computation.
We implemented a driver program that uses Neo4j 2.1.2 as a library package, and queries the database
for the shortest path between a given source node and 100,000 randomly-chosen destination nodes.
We use the native shortest-path algorithm of Neo4j, and execute it in parallel using the fork/join
infrastructure provided by the Java library. The database used for this experiment is also created from
the Friendster dataset. For the scalability tests, we use 32GB heap with first 100 million edges of the
friendster dataset.

2.3.4 SPECjbb2005

SPECjbb2005 is a business logic service-side application benchmark [43] that model supermarket
companies. SPECjbb2005 only models the middle tier server, using a set of identical threads, each
one modelling a warehouse; each warehouse runs in complete isolation. We run a warm-up round of
30 seconds, then a measurement round of eight minutes. For the scalability tests, we use 6GB heap
size.

2.3.5 DaCapo

The DaCapo 9.12 benchmarks are widely used to measure the performance of Java virtual machines.
We selected the largest workload for all the DaCapo applications and all the applications are run with
100MB heap size.

This section described those applications/benchmarks which are evaluated in all the following
chapters. Furthermore, the heap size and dataset size mentioned above is for the scalability tests in the
following chapters. For any other tests, the configuration details will be given in that chapter. More-
over, wherever any additional application/benchmark is used for evaluation, it will also be described
in the corresponding chapter.

18 Chapter 2 – Background and Related work

2.4 Related work

The advent of multicores have greatly changed the way we program software. From OS kernels to
application software, every layer of the software stack has been impacted. In this chapter we discuss
this change in software development as a consquence of the hardware evolution. Furthermore, since
the goal of our work is to improve the performance of garbage collectors on contemporary multicore
architectures, we will discuss the existing work in this field in great detail.

2.4.1 Kernel and Operating Systems

Majority of computers today are built using multicore processors, and future core counts, due to
moore’s law, are bound to further increase [6]. However, increase in core count alone cannot provide
the speedup that we would expect to get. The other hardware components like on-die network and
memory bandwidth also need to evolve. This neccessity has led to complicated architectures like
ccNUMA at present, and maybe something even more complicated in future. This trend demands the
systems research community to rethink if we need new OS techniques for future multicore hardware,
or if we simply need to apply existing techniques used in large multiprocessor systems in legacy
systems.

Before diving into the specific research contributions, it is worthwhile to broadly discuss different
aspects of contemporary and future multicore architectures that influence systems research. These
architectures encourage shared access of resources like system bus, memory controllers, program
variables etc. These shared resources become points of contention hindering system’s scalability.
Hence, avoiding contention is very critical and therefore majority of research projects in this domain
have tackled this issue. Remote access and access imbalance discussed in section 2.2.3 are two causes
which render hardware resources like interconnect and memory controllers contentious.

Another aspect to consider is of heterogeneous architectures. It has been shown that to effectively
exploit the increasing transistor count on the chips, instead of deploying multiple homogenous cores,
we should deplay few fast, and possibly complex, cores with a lot of slow, and possbily simple,
cores on a single chip. These different kinds of cores on the same chip may even not have the same
instruction set. Furthermore, special hardware components like Network interface card (NIC) and
GPUs are becoming more and more programmable. This allows, for instance, to run a network-bound
application to directly run on the NIC, eliminating the entire cost of bringing network packets close
to the general-purpose cores. These heterogeneous architectures opens up areas of research on how to
effectively exploit this heterogeneity.

Furthermore, it is believed that the increasing number of cores and the use of specialized co-
processors, like GPUs and programmable NICs, will make it impossible to have a system-wide cache-
coherency that is maintained by the hardware. The Intel Single-Chip Cloud Computer (SCC) [30] has
demonstrated how a non-cache-coherent system will look-like. This opens up another challenge for
systems software to deal with such a scenario.

Many new research operating systems have been proposed for future multicore hardware, mostly
focusing on eliminating contention. K42 [2] and Tornado [19] are designed to reduce it and improve
locality for cache-coherent NUMA architectures. These systems introduced clustered objects (each
cluster being an OS service), which optimize access to shared data through the use of partitioning
and replication techniques. However, it relies on cache-coherency provided by the hardware for com-
munication among different replicas. Neither of the two systems deal with the heterogeneity issue

2.4 – Related work 19

mentioned above. Similarly, Corey [7] advocates reducing contention within the OS by allowing ap-
plications to specify sharing requirements for OS data, effectively relaxing the consistency of specific
objects. It does so by exposing APIs to applications to avoid unnecessary sharing of kernel state. Its
abstractions (address range, kernel core, and share) ensure that each kernel data structure is used by
only one core by default, while giving applications the ability to specify when sharing of kernel data
is necessary.

Unlike K42, Tornado, and Corey, which rely on hardware’s cache-coherency for inter-core com-
munication, Barrelfish [4] is a shared-nothing distributed operating system. It uses a multikernel
model, which distributes replicated kernels on every core and uses message-passing instead of shared-
memory to maintain their consistency. Furthermore, Barrelfish strives to attain fine-grained under-
standing of application requirements for good scheduling decisions. Furthermore, the authors have
demonstrated that the multikernel design is easily adaptable to heterogeneous architectures.

Similar to Barrelfish, Helios [33], also aims at bridging the heterogeneity of different processing
units in a platform by using satellite kernels, which provide the same abstractions across different pro-
cessor architectures. However, unlike all the above systems, Helios does not try to reduce contention.
Instead it strives to ensure ease of developing, deploying and tuning applications on heterogeneous
platforms. Interestingly, even without trying to eliminate performance hurdles like contention, He-
lios gains substantial performance improvements by effectively exploiting programmable hardware
components like NICs and GPUs.

All the research efforts that we have discussed so far has built the systems from scratch. Boyd-
Wickizer et al., however, argue that there is no scalability reason to give up a traditional operating
systems yet [8]. They analyze Linux kernel on a 48-core cache-coherent NUMA machine with a set
of applications that are designed for parallel execution and stress kernel services. The authors show
that with standard parallel programming optimizations in the kernel and applications, most of the
kernel bottlenecks which are stressed by the applications can be removed.

In Cerberus paper [41], the authors make a bridge between two different approaches (i.e., design-
ing new OSes and refining comodity OSes) of scaling operating systems. Like Helios and Barrelfish,
Cerberus makes use of replicated kernels and state. However, it differs from existing work mainly
in that it aims at improving performance scalability of existing applications by using a backward-
compatible technique called OS clustering. Under this technique, Cerberus runs multiple commodity
OS instances on top of a virtual machine monitor to host one application. Furthermore, it provides the
POSIX programming interface to shared-memory applications. This way, the existing multi-threaded
applications require little or no porting effort.

Unlike all the above discussed systems which intend to improve kernel scalability (which certainly
in-turn improves application performance too), Carrefour proposes a new memory management algo-
rithm for cache-coherent NUMA systems, implemented inside Linux kernel, which directly impacts
applications’ performance by improving memory access [11]. The authors argue that member access
locality has been the design focus of existing operating systems that target NUMA architectures. How-
ever, modern NUMA hardware has much shorter remote access delays. On the other hand, congestion
on memory controllers and interconnects caused by memory traffic of memory-intensive applications
can have much larger impact. Furthermore, the authors showed that memory access imbalance has
considerably larger performance impact than remote access. To fix these issues, Carrefour’s algo-
rithm uses techniques like migration and replication of memory pages among NUMA nodes to avoid
memory traffic hotspots to ensure congestion free use of memory controllers and internconnect links.

We completely support Carrefour’s argument about congestion of memory controllers and inter-

20 Chapter 2 – Background and Related work

Papers
Characterstics

Description
Eliminates
Contention

Handles Non
Cache-Coherency

Handles H/W
Heterogeneity

K42, Tornado,
and Corey
[2, 7, 19]

Yes No No
Avoid sharing by partitioning/replicat-
ing data

Barrelfish [4] Yes Yes Yes
Avoid sharing using share-nothing
model

Helios [33] No Yes Yes
Ensures ease of development and de-
ployment on heterogeneous arch

Boyd-Wickizer et
al. [8]

Yes No No
Linux made to scale using standard par-
allel programming techniques

Cerberus [41] Yes No No
Reduce sharing by deploying multiple
comodity OSes on a VMM

Carrefour [11] Yes No No
Memory management algo providing
good local access without compromis-
ing balance

Table 2.1 – Summary of research papers on operating systems for contemporay multi-core hardware.

connect being more severe problem than access locality. That is why NumaGiC has a mostly dis-
tributed design instead of a purely distributed, prioritizing congestion freedom of memory controllers
and interconnect links, over remote access. However, we identified that a third factor, parallelism, also
plays a more important role than locality, and there is always a trade-off between locality, and paral-
lelism. Therefore, NumaGiC does not hesitate from doing occassional remote accesses, for which it
pays slightly higher cost of remote access, to ensure balanced memory access among NUMA nodes,
and also enough work for all GC threads sustain good parallelism.

Table 2.1 summarises all the research work that has been discussed in this section.

2.4.2 Garbage Collectors

2.4.2.1 Parallel Garbage Collectors

Being a very resource intensive operation, garbage collection must be very efficient and must finish
as quickly as possible. On multi-core architectures, one straight-forward way of finishing GC quickly
is to parallelize the operation. A parallel garbage collector generally, when the process runs out
of free heap space, stops all the application threads, then launches multiple GC threads, which then
finish the GC operation at the earliest possible, and then the application threads are resumed. Because
of this reason, they are also known as stop-the-world garbage collectors. Parallel garbage collectors
have been researched since a long time. Jones et al. discuss various techniques in great detail [25].
ParallelScavenge, the baseline GC of our work, is a parallel garbage collector which originates from
[16].

2.4.2.2 Concurrent Garbage Collector

Although parallel garbage collectors manages to reduce the GC time considerable by parallelizing the
process, but time-critical applications sometimes have even more strict time constraints. Specially for
applications which has large working set size, GC pauses incurred by parallel GCs may be completely
unacceptable. To deal with this issue, concurrent garbage collectors were invented to avoid (or at

2.4 – Related work 21

least reduce) the time when application threads are stopped for garbage collection. This is done by
making GC thread(s) work concurrently with the application threads for majority (if not entire) of the
garbage collection time2.

There has been much research on concurrent garbage collection, offering varying degree of con-
currency. Concurrent garbage collectors has to following two functions:

2.4.2.3 Concurrent marking.

In order for marking to work concurrently with the application threads, it is necessary that the garbage
collector marks all object(s) which are supposed to be live by the end of GC. However, the concurrency
introduces a race condition, which may cause GC to miss some live objects [14, 46]. For example, in
the scenario presented in Figure 2.6, C will be freed even through it is still used by the application. To
tackle this race condition, concurrent GCs use write barriers which intercept all updates to references.
For example, in Figure 2.6, when the reference to C is written in A, the write barrier informs the
collector that C must be scanned.

(a) GC runs (b) Application runs (c) GC runs

Figure 2.6 – Black means scanned. The GC scans A in 2.6a, then the application modifies the graph
in 2.6b, finally, the GC scans B but does not reach C in 2.6c because A is already scanned.

2.4.2.4 Heap Compaction.

While concurrent marking is quite straight-forward, compacting the heap concurrently is very com-
plex. The complexity arises due to the fact that compaction involves moving the live objects. While
moving an object, there is a time window during which there exists two copies of the same object.
During this time window, the application thread might modify the old copy, thereby making the new
copy inconsistent with the old one. Furthermore, compaction also involves updating the references to
live objects from old location to the new one. This means that during the reference update operation,
for a live object, there could be some references pointing to the old copy, and the rest to the new
copy. This could also potentially cause the two copies to be inconsistent. To deal with the problem of
concurrent compaction, there are following three ways:

Stop-the-world compaction. The simplest solution to the problem of compaction is to defer it as
much as possible, and do it when required in a stop-the-world fashion. This completely eliminates the
issue of inconsistency among dual copies of the live objects, as described in the previous paragraph.

2While some concurrent GCs stop all the application threads for very short time for collecting entry points into object-
graph, there exist so called on-the-fly GCs which never stop all the application threads at the same time.

22 Chapter 2 – Background and Related work

To defer the need of compaction as much as possible, the collector keeps track of all unallocated holes
in the heap [35]. This list of unallocated holes gets updated after every concurrent marking phase is
over. This ensures that the need for compaction only arises when an allocation request cannot be met
within the available free holes. At this point, all the applicaiton threads are stopped and compaction
performed to defragment the heap. This stop-the-world compaction brings back the issue of long
pauses during the compaction. To deal with which, Detlefs et al. [12] propose Garbage First, which
although stops the world for compaction, but logically partitions the heap into fixed-size regions,
which can be then independently compacted. The regions with maximum garbage are chosen first for
compaction, that is why the name ”Garbage First”.

Fragmented allocation. The need for compaction can be completely eliminated if objects are allo-
cated in fixed-size fragments. This approach is used in Schism garbage collector by Pizlo et al. [37].
Objects larger than the fragment size span multiple fragments which may not be contiguous. This
means that different fields of an object may require different number of address derefences to reach
the fields. However, since this garbage collector can be successfully used in a real-time systems as
eliminating need of compaction ensures that worst-case execution time can be predicted accurately,
as demonstrated in Schism.

Concurrent compaction. The two techniques of compaction discussed above are basically not con-
current. Although they are important components of garbage collectors which are concurrent as a
whole, but the objects are not moved, for the purpose of compaction, while the mutators are also run-
ning. Sapphire was the first concurrent copying collector [24]. It logically partitions the healp into
two semi-spaces, so that during collection, live objects can be replicated from one space to the other.
At the end of a collection cycle, all the memory in the old space is reclaimed. While the object is
being replicated, the consistency of two copies of an object are ensured using write barriers. How-
ever, Sapphire does not support simultaneous updates by several application threads to a single object,
while it is being replicated. It requires the threads to block on memory writes to an object that is being
copied. Furthermore, it effectively uses only half of the given heap, because the other half is reserved
for collection purposed.

Compressor, another concurrent compaction algorithm, exploits hardware traps for performing
compaction concurrently [26]. It performs compaction on page-by-page basis. This way it does not
have to reserve more than a page for compaction purpose. Furthermore, to ensure concurrent access
by application threads, it creates another to-virtual heap with the reserved page as its first page, and
without any read/write permission on it. Then, it stops the world to quickly update the roots so that
they start pointing to new location of their referents in the to-virtual heap. This ensures that now
application threads can only access to-virtual heap, and in absence read/write permission would get
system trap. This trap is serviced by moving the corresponding page from old space to to-virtual heap
and then enabling that page’s read/write permission. The only disadvantage of Compressor is that it
initially, right after beginning the compaction activity, the application threads suffer from a trap storm
yielding very low processor utilization for few milliseconds.

Another concurrent compaction algorithm, called STOPLESS, targets real-time applications, uses
a concept of wide objects while replicating objects [36]. A wide object represents an intermediate
representation of an object being copied. In other words, when an object is being copied, there are
three, instead of two copies of it, the third being the wide object. The wide objects are the same as
the actual object being copied, but it appends every field with a status field. Objects are copied field-

2.4 – Related work 23

by-field where every field is updated using a double-word compare-and-swap instruction so that the
status field appended to each field can also be updated along with the field.

So far all the concurrent garbage collectors that we have discussed offer a single space concurrent
collection. Even if the the heap is laid out in generational manner, only the full heap collections are
concurrent, not the intra-generational onces. The arguement in favour of this approach is that younger
generations are small and also create garbage more often and hence can be collected using some stop
the world garbage collector with short pauses. However, since full heap collections can be really
longe, they are done using concurrent garbage collector to avoid long pauses. On the other hand,
Tene et al. argue that on multi-gigabyte heaps, even young generation collections cannot be done in
stop-the-world fashion as the large generation size leads to intorlerably long pauses [48]. Therefore,
they propose C4, a Continuously Concurrent Compacting Collector, which supports simultaneous-
generational concurrent collections. It means that different generations in a generational heap setup
are simultanously collected, each using a concurrent garbage collector. C4 uses read barriers and
hardware traps to collect young and old generation simultaneously and concurrently, without com-
promising on data consistency. The read barriers are used to update references after compaction, and
hardware traps (by protecting memory access to heap regions), like in the case of Compressor, are
used to trap application threads while accessing a live object which has not been copied yet.

While concurrent garbage collectors ensure short response time, they incur extra cost of synchro-
nization with application threads using read/write barriers. Latest processors have started supporting
Hardware Transactional Memory. In [38], Ritson et al. explore use of HTMs for different syn-
chronization needs of garbage collectors. They explored three different garbage collection scenarios:
parallel copying, concurrent copying, and bitmap marking. For parallel copying, HTM was used in
place of using a compare-and-swap to establish a forwarding pointer in the old objects’ header word.
For concurrent copying, Sapphire collector was used to experiment this scenario [24]. Sapphire’s
collector thread uses compare-and-swap to update every field of objects in the to-space. HTM re-
placed these compare-and-swap operations. Similarly, in parallel bitmap marking, collector threads
use compare-and-swap operations to update bits in the bitmap. HTM, in this context too, was used to
replace the expensive compare-and-swap operations. The authors identified that HTM is most applica-
ble to concurrent collectors as the other two scenarios did not provide any considerable improvement.
The concurrent copying could gain substantially because it provided sufficient work to amortize the
cost of transaction setup.

2.4.2.5 Thread-local heaps

Another popular technique to improve concurrency in garbage collected languages is the use of thread-
local heap [1, 15, 29, 39, 47]. In this technique, every application threads has a its own private heap.
All allocations from a thread are done in its private heap. There is a shared heap too, which contains
all such objects which are shared among all the application threads. The main idea is that as long
as all objects in a thread-local heap are only accessible to its associated thread, the thread-local heap
can be collected independently of the rest of the heap, which contains other thread-local heaps and
the shared heap. To maintain this invariant, write barriers are used. Whenever a reference field in
an object belonging either to the shared heap or any thread-local heap i is updated to a referent in a
thread-local heap j, where i �= j, then the referent object and entire sub-graph reachable from it are
moved to the shared heap. This allows a thread to collect its private heap while the other application
threads continue to execute on their own private heaps and the shared heap. For the shared heap, any
of the garbage collection techniques discussed above can be utilized.

24 Chapter 2 – Background and Related work

Papers
Technique Used

Description
Marking Compaction NUMA-aware

Flood et al. [16] STW STW N/A
Generational parallel GC. Early version of
Parallel Scavenge

CMS and G1 [12,
35]

Co: WB STW N/A
Compaction in small regions to avoid long
pauses

Schism [37] N/A Fragmented
Allocation

N/A Eliminates need for compaction

Sapphire [24] Co: WB Co: WB N/A
Exploits Java memory model, does not sup-
port non-blocking shared modification

Compressor [26] N/A Co: MT N/A
Region-by-region compaction using mem-
ory protection

STOPLESS [36] Co: WB Co: Wide obj N/A
Uses Double-word CAS to move objects
field-by-field

C4 [48] Co: RB Co: MT N/A
Generational GC providing concurrent col-
lection in all generation simultaneously

Ritson et al. [38] Co: WB Co: HTM N/A
Evaluates use of HTM for concurrency con-
trol during various GC operations

Doligez and Leroy
[15]

Co: TLH Co: TLH N/A
Seggregates objects into shared and thread-
private ones to provide concurrenct garbage
collection

Ogasawara [34] STW STW Biased Lock
Moves objects to the node where they are
likely to be accessed by mutator next

Tikir and
Hollingsworth
[49]

STW STW H/W counter
Uses h/w counters to decide where to move
objects to improve application locality

Zhou and Demsky
[52]

STW STW Yes Targets only locality and not balance

Table 2.2 – Summary of research papers on various Garbage Collection Techniques (STW: Stop-The-
World, Co: Concurrent, WB: Write Barrier, RB: Read Barrier, MT: Memory Traps, HTM: Hardware
Transactional Memory, TLH: Thread-Local Heap).

2.4.2.6 NUMA-awareness in Garbage Collectors

There is not much research done on incorporating NUMA-awareness in garbage collection. Oga-
sawara [34] and Tikir and Hollingsworth [49] proposes to migrate objects to the node where the
thread which accesses that object most of the time is scheduled to run. This migration is done during
garbage collection. For this, Ogasawara uses dominant thread information stored in objects’ header.
An object which is locked or reserved using a biased lock [13] by a thread is migrated, along with the
whole sub-graph originating from that object, to the node where the thread was last dispatched be-
fore GC. Tikir and Hollingsworth take a different approach, in which they use hardware performance
counters to determine the most-accessed-from node of every object during the application execution.
And then this information is used during GC to migrate objects. Both of these research work intend to
use GC as a tool to improve object locality for application threads on NUMA architectures. Whereas,
in NumaGiC we intend to improve the GC’s performance on NUMA architectures. Furthermore, in
NumaGiC we ensure that both object access locality as well balance are maintained, which is not the
case with the above described two approaches as they only target locality, while it has been shown by
inventors of Carrefour that balance is much more important than locality [11].

The work that is closest to NumaGiC is by Zhou and Demsky [52]. The authors designed a parallel
NUMA-aware garbage collector on their proprietary Java Virtual Machine, targeting the TILE-Gx mi-

2.4 – Related work 25

croprocessor family, which allows software to deactivate cache-coherency on demand. They use this
feature and disable cache-coherency during garbage collections (not for the applications for backward
compatibility). In the collector, each core collects its own local memory, and sends messages when
it finds remote references. Zhou and Demsky focus on the locality of the application and the GC.
They do not consider balancing memory access among the nodes, but as discussed above, Carrefour
[11] show that memory access balance has a dramatic impact. They also do not consider reducing
inter-node references, whereas we observe that a distributed design is beneficial only if the number
of remote references is low. Finally, although Zhou and Demsky state that restricting GC threads to
accessing only local memory can degrade parallelism, they do not observe it in their evaluation, and
thus do not propose a solution. Our own evaluation shows that this issue is central to performance.

Table 2.2 summarises all the research work that has been discussed in this section.

27

Chapter 3
Evaluation of Existing Garbage

Collectors on NUMA architectures

Parallel garbage collectors came into existence when multiprocessors were simpler in design. How-
ever contemporary hardware is much more complex. Therefore, it is time to re-evaluate their scala-
bility. Hence, we conducted experiments to evaluate (1) GCs effect on application scalability, and (2)
GC scalability. This evaluation was conducted on AMD48 machine in Hotspot Java virtual machine
of OpenJDK7, described in chapter 2, section 2.2.3.

Hotspot provides three parallel/concurrent GCs: (1) The default GC of HotSpot, Parallel Scavenge
(please refer to chapter 2, section 2.1), (2) a generational concurrent mark-sweep GC (ConcMS),
consisting of a parallel copying young generation and a concurrent mark-sweep old generation [35];
and (3) Garbage First (G1) [12], which is a concurrent, incremental, parallel garbage collector.

3.1 Selection of applications and garbage collector

For this evaluation we wanted to use applications/benchmarks which cover diverse memory usage/ac-
cess patterns. While it is critical to have include memory-intensive applications for this excercise,
inclusion of cpu-intensive small memory footprint applications is also vital to cover the entire spec-
trum. Therefore, our set of applications/benchmarks include:

1. Spark and Neo4j, two memory-intensive real applications,

2. SPECjbb2005, a SPEC benchmark with large heap-size requirements, and

3. applications from DaCapo benchmark suite to cover smaller heap-size cases

Along with their diverse memory requirements, considering that our evaluation involves scala-
bility comparisions, it is important for the chosen applications/benchmarks to have good application
scalability. Furthermore, performing scalability study of all the applications of DaCapo benchmark
suite and the other three large heap-size applications on all the three garbage collectors of HotSpot for
the entire research work would take enormous amount of time. Therefore, we performed a throughput

28 Chapter 3 – Evaluation of Existing Garbage Collectors on NUMA architectures

(-) 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Spark
Neo4j

SPECjbb2005

Avrora
Eclipse

Fop
H2 Jython

Luindex

Lusearch

Pmd
Sunflow

Tomcat

Tradebeans

Tradesoap

Xalan

O
v
e
ra

ll
sp

e
e
d

u
p

Large Heap Small Heap

ConcMS relative to PS G1 relative to PS

Figure 3.1 – Evaluation of various applications with different heap size requirements with the three
GCs of HotSpot. Higher is better

experiment on all the DaCapo benchmark applications, and the other three applications using all the
three GCs of HotSpot. Then we chose the best performing garbage collector, and three most scalable
DaCapo applications, in addition to the three large heap-size applications, for all other evaluations in
our research.

Figure 3.1 shows the throughput of all the Dacapo applications and Spark, Neo4j, and SPECjbb2005.
All the DaCapo application are run using 100MB heap size, except for H2, Tradebeans, Tradesoap,
and Eclipse, which are run using 500MB heap size. SPECjbb2005 was run using 6GB heap size,
Neo4j with 32GB, and Spark with 130GB heap. The figures are relative to Parallel Scavenge. As fig-
ure 3.1 shows, among all the applications, only Avrora runs approximately 5% faster with ConcMS,
and G1 as compared to Parallel Scavenge. On all the other applications, Parallel Scavenge performs
either better, or comparable to ConcMS and G1. Particularly, on applications which has large heap
sizes, ConcMS and G1 are substantially slower as compared to Parallel Scavenge.

Therefore, considering this result we decided to use Parallel Scavenge as the base garbage col-
lector for this research work. Among all the applications, six applications are chosen for the scal-
ability analysis of this section (and all the scalability studies in the following chapters). These six
applications include the three larger heap size applications i.e. SPECjbb2005, Neo4j, and Spark. Fur-
thermore, among all the DaCapo benchmark applications, considering the result of figure 3.2, the
three most scalable applications are utilized, i.e. Sunflow, Lusearch, and Tomcat. Figure 3.2 shows
the comparison of speedup, i.e., the execution time with one thread compared to the execution time
with n threads, of all Dacapo benchmarks. This experiment was performed with a (relatively) very
huge initial heap size (26GB) to avoid triggering GC as much as possible. Furthermore, in order to
emulate a hardware with same number of cores as application threads in the experiment, we set CPU-
affinity for each run such that all the threads are packed in minimum number of required nodes. The
experiments were repeated three times and the average execution time is reported.

3.2 Scalability analysis

In this section we analyse the scalability of the six applications using Parallel Scavenge. We intend to
analyze:

3.2 – Scalability analysis 29

1

3

6

9

12

18

24

30

36
42
48

1 3 6 9 12 18 24 30 36 42 48

S
pe

ed
up

Number of Application Threads

Linear Speedup
Tradebeans
Tradesoap
Lusearch
Luindex
Eclipse
Sunflow
Avrora
Jython
Tomcat
Xalan
Pmd
Fop
H2

Figure 3.2 – Scalability comparison of DaCapo benchmarks with large heap size.

1. Scalability of application time/throughput with varying number of cores, and

2. Scalability of GC throughput with varying number of NUMA nodes.

3.2.1 Application scalability

This sub-section analyses the application scalability. We vary the number of cores used to run the
application. The cores are activated such that the minimum required nodes are used. This is done to
emulate a hardware with the specified number of cores. Figure 3.3 shows the completion time of five
applications: Spark, Neo4j, Sunflow, Lusearch, and Tomcat 1. The completion time consists of pause
time, which is the time spent in performing garbage collection, and application time, which is the time
taken by application threads.

Figure 3.3 shows that in case of Lusearch, Sunflow, and Tomcat the pause time starts increasing
after a certain number of cores. The increase in pause time compensates any improvement in applica-
tion time due to better application scalability, obstructing the overall scalability. In the case of Spark,
the pause time does not increase with increasing number of cores. On the other hand, the application
time continues to decrease. This trend leads to continuous increase in the proportion of time spent in
garbage collection, thereby increasing the dominance of garbage collector’s scalability in the overall
scalability. At 48 cores, the proportion of pause time in total completion time is above 50%. This
reflects the importance of garbage collector’s scalability. Furthermore, it reflects that, had the garbage
collector be scalable, in which case we must have observed a decreasing amount of pause time, the
overall scalability would have been even better. Finally, in the case of Neo4j, neither the pause time
increases, nor the pause time’s proportion in total completion time. This reflects that the application
itself lacks good scalability. However, since the proportion of pause time is large, a scalable garbage

1 SPECjbb2005 could not be included in figure 3.3 as it is a fixed-time benchmark. Completion and pause time remain
constant irrespective of the number of cores used.

30 Chapter 3 – Evaluation of Existing Garbage Collectors on NUMA architectures

(+)0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 6 12 24 36 48

Spark

(+)0

 2000

 4000

 6000

 8000

 10000

 12000

1 6 12 24 36 48

Neo4j

(+)0

 200

 400

 600

 800

 1000

 1200

1 6 12 24 36 48

Lusearch

(+)0

 1000

 2000

 3000

 4000

 5000

 6000

1 6 12 24 36 48

Sunflow

(+)0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 6 12 24 36 48

Tomcat

x-axis: Number of cores y-axis: Time in seconds

Figure 3.3 – Total completion time of the application and the time spent in GC.

collector could have positively affected the overall scalability, which is not happening with Parallel
Scavenge.

It is clear from the above result that garbage collector’s scalability plays a very significant role
in the overall scalability. To analyze the application scalability from a different perspective, fig-
ure 3.4 shows the completion time/application throughput curve of all the six applications (including
SPECjbb2005) with increasing number of cores and compares it with the linear improvement over
the 1-core performance of Parallel Scavenge. It is clear from the graphs that all the six applications
are far from optimal completion time (Application throughput in case of SPECjbb2005). Certainly,
it is impossible for some applications to attain the optimal completion time due to their inherent sub-
optimal scalability. However, there is definitely some room for improvement in application scalability
by improving the garbage collector’s scalability.

3.2.2 GC scalability

Figure 3.3 clearly indicates that the garbage collector’s scalability can play a vital role in the overall
scalability of the applications. The fact that pause time’s proportion in total completion time increases
with number of cores indicates that memory access pattern does get affected by the NUMA archicture.
Please recall that the cores are enabled such that minimum number of nodes are active to include the
active cores. This means that the NUMA effects become increasingly prominent with increasing core
count and hence start showing its impact.

To further analyse this effect, we study GC scalability in terms of NUMA nodes as well. This
scalability study is conducted with the help of GC throughput. GC throughput is computed as the
amount of live data processed during garbage collection per unit of time. GC scalability is analysed
with increasing number of NUMA node. The NUMA nodes are activated in steps, starting with one
active NUMA node. Therefore, the application threads as well as the GC threads are restricted to the
active nodes.

3.2 – Scalability analysis 31

Parallel Scavenge Linear Improvement

Spark Neo4j SPECjbb2005

A
pp

.S
ca

la
bi

lit
y

(+)0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 6 12 24 36 48
(+)0

 2000

 4000

 6000

 8000

 10000

 12000

1 6 12 24 36 48
(-)0

 200

 400

 600

 800

 1000

 1200

1 6 12 24 36 48

x-axis: Number of cores y-axis: Completion time (seconds), App. throughput (Kops/s) for SPECjbb2005

G
C

sc
al

ab
ili

ty

(-)0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1 2 4 6 8
(-)0

 1

 2

 3

 4

 5

 6

1 2 4 6 8
(-)0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 4 6 8

x-axis: Number of nodes y-axis: GC Throughput (GB/s)

Sunflow Lusearch Tomcat

A
pp

.S
ca

la
bi

lit
y

(+)0

 1000

 2000

 3000

 4000

 5000

 6000

1 6 12 24 36 48
(+)0

 200

 400

 600

 800

 1000

 1200

 1400

1 6 12 24 36 48
(+)0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 6 12 24 36 48

x-axis: Number of cores y-axis: Completion time (seconds)

G
C

Sc
al

ab
ili

ty

(-)0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 4 6 8
(-)0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 2 4 6 8
(-)0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 6 8

x-axis: Number of nodes y-axis: GC Throughput (GB/s)

Figure 3.4 – Application and GC scalability for the six applications. (+) = lower is better, (-) = higher
is better.

32 Chapter 3 – Evaluation of Existing Garbage Collectors on NUMA architectures

Figure 3.4 shows the GC scalability curves of the six applications with increasing number of
NUMA nodes. As shown in the figure, the GC throughput shows poor scalability. Lusearch and Sun-
flow show negative scalability after a certain number of NUMA node is reached. In case of the other
four applications, the GC throughput continues to improve with every increase in NUMA nodes. How-
ever, it is substantially far from linear speedup. Furthermore, the fact that negative effects of NUMA
architecture, does not hide away the negative effects of shared access contention on synchronisation
primitives. In fact, in case of small heap-size applications Lusearch, Tomcat, and Sunflow, there is a
possibility that the poor scalability is not due to NUMA-oblivous memory access, instead is due to
contention on some synchronisation primitive used inside the garbage collector. We will go into the
details of these possibilites in the following chapters.

3.3 Conclusion

In this chapter, we presented some preliminary results, obtained by experimenting GCs implemented
in OpenJDK7 on a 48-core NUMA machine. We chose the best performing garbage collector among
the three provided by Hotspot and conducted scalability analysis. The results suggest that GC acts as
a bottleneck for applications and does not scale. Rather than pause time decreasing, we observed an
increase as the number of cores increases. This establishes a genuine requirement to re-look at the
design of existing garbage collectors, which were designed before the NUMA architecture came into
existence, so that they can scale better on contemporary hardware.

33

Chapter 4
Synchronisation Primitives in Parallel

Scavenge

In this chapter the mechanism for shared access synchronisation in Parallel Scavenge is discussed.
The performance issues related to synchronisation that are experienced by Parallel Scavenge on large
multicores are described in detail. Furthermore, the solution that we implement is also explained.
Finally we present an experimental evaluation where we compare GC and application scalability of
this improved Parallel Scavenge with the baseline one.

4.1 Background

Chapter 2 described in detail the heap layout and algorithm of Parallel Scavenge. In this section
thread management of Parallel Scavenge is discussed. Parallel Scavenge consists of several phases.
Figure 4.1 shows all the phases involved in young collection. First, mutators are paused at the stop-
the-world barrier. During the initialisation phase, a single thread, called the VM thread, prepares GC
tasks, which are executed in the parallel phase by the GC threads. A Termination Protocol detects that
all GC threads have terminated the parallel phase; after which a barrier suspends the GC threads and
wakes up the VM thread. In the final phase, the VM thread mainly resizes the heap and wakes up the
mutators.

The same sequence of phases as shown in figure 4.1 is used during marking and compaction steps
of the old collection (please refer to chapter 2). Figure 4.2 shows the entire sequence of phases when
a full garbage collection is performed. All the phases inside the Stop-the-World pause of figure 4.1
are repeated twice in sequence, once for the marking step, and then for the compaction step. The final
phase of marking step, and init phase of compaction are merged into one phase as both of them are
performed by VM thread. Furthermore, the summary phase is also executed during this merged phase.

4.1.1 Synchronisation mechanism

As synchronisation between threads is a common performance bottleneck on a multicore machine
[28], we describe how it is implemented and used in Parallel Scavenge. Parallel Scavenge uses mon-

34 Chapter 4 – Synchronisation Primitives in Parallel Scavenge

��������
��
������

��������
�����

������
�����

����
�����

��������������
��������
����������

��������
��������
�������

��������
��������
�������

��������
��

�������
��
������

��������������
��������
����������

������������
��������

��������������������

Figure 4.1 – Phases of Young Collection in Parallel Scavenge

itors for this purpose. A monitor contains both a condition variable, to suspend and wake up threads,
and a lock to prevent concurrent accesses to shared data. Furthermore, since the condition variable of
a monitor is a shared variable, it is protected by the associated lock.

Parallel Scavenge uses two monitor pairs: a stop-the-world pair and a parallel pair. The stop-the-
world pair suspends the mutators and wakes up the VM thread at the beginning of the collection, and
vice-versa at the end. It consists of an App monitor, to synchronise the mutators, and an Init monitor,
to synchronise the VM thread. The parallel pair suspends the VM thread and wakes up the GC
threads at the beginning of the parallel phase, and vice-versa at the end. It consists of a VM monitor
to synchronise the VM thread; and a GC monitor to synchronise the GC threads, and to protect data
shared between the GC threads.

4.1.2 Initialisation phase

Being a stop-the-world collector, Parallel Scavenge has to ensure that all mutators are paused at the
beginning of a collection. The stop-the-world monitor pair coupled with a counter to know the number
of suspended mutators serves this purpose. As soon as all the mutators are suspended, the VM thread
initialises the queue of GC tasks by adding all the GC tasks (refer to chapter 2) which can be executed
in parallel by the GC threads in the parallel phase. Then, the VM thread synchronises with the GC
threads: it wakes up all the GC threads that are waiting on the GC monitor, and suspends itself by
waiting on the VM monitor.

4.1.3 Parallel Phase

In this phase, all the GC threads parallely execute the GC tasks added by the VM thread to the GC-task
queue in the initialisation phase. In order to dequeue a GC task for the shared GC-task queue, GC
threads need to synchornize, for which they use the lock inside the GC monitor.

It is critical that all the GC-tasks are executed completely, before moving to the next phase. There-
fore, a barrier is required at the end of the parallel phase which ensures that all the GC threads reach
that barrier before moving forward. In Parallel Scavenge, this barrier mechanism is implemented
inside termination protocol.

4.1 – Background 35

Figure 4.2 – Phases of Full Collection in Parallel Scavenge

4.1.3.1 Termination protocol

One of the similarities between young collection, marking, and compaction is that all of them make
use of steal tasks. These tasks have the responsibility of balancing the workload among all the GC
threads. The steal tasks also implement a termination detection protocol (a barrier in other words).
This termination protocol allows every GC thread to offer termination after a configures number of
steal attempts fail to fetch any work for the GC thread. When all the GC threads offer to terminate,
it indicates that the work is done, and hence all the threads have reached the barrier. Otherwise, after
waiting for other GC threads to join it in offering termination for a fixed amount of time, it checks
sequentially if any GC thread has work to do. If found one, the GC thread retracts its offer, and tries
to steal again.

4.1.3.2 Final task

A special task is added at the very end of the GC-task queue, called the final task. This task is suppose
to be picked up only after ensuring that the operations performed in the parallel phase are safely
finished. The final task aims to ensure that no GC thread is modifying the heap when the VM thread
restarts. Once a GC thread has left the termination protocol, it again attempts to pop a task from the
task queue. Since there is a single final task, only one GC thread succeeds. It thereby becomes the
leader, and coordinates with other GC threads using the parallel monitors (VM and GC). We call it
the final thread.

The other GC threads find the task queue empty. They increment a global thread counter protected
by the GC monitor. Then, they wake up the final thread and suspend themselves on the same monitor.
Conversely, the final thread waits on the GC monitor, until the global thread counter reaches the
number of GC threads. Once this is done, the final thread wakes up the VM thread using the VM
monitor. This constitutes entry into the final phase, where the VM thread is the only one running.

Note that, in the normal case studied here, this final synchronisation is redundant with the termi-
nation protocol because both ensure that all the GC threads have terminated their steal tasks. It is
required only in specific configurations (out of scope here) where there are no steal tasks.

36 Chapter 4 – Synchronisation Primitives in Parallel Scavenge

Figure 4.3 – Lazy GC thread parking after the parallel phases in Parallel Scavenge

4.1.4 Final synchronisation phase

The main purpose of the final phase varies between young collection, marking step, and the com-
paction step. In case of young collection, this phase adapts the sizes of the spaces and the young
generation. The sophisticated resizing policy of Parallel Scavenge is essential for performance, be-
cause it adapts the heap size to the needs of the application, based on factors such as space usage
and/or time taken by the collection cycle. In Parallel Scavenge, resizing is cheap, as it consists of
simply adjusting a set of pointers.

In case of marking step, the final synchronisation phase gets merged with the init phase of com-
paction step. This merged phase performs summary step, compaction of permanent generation, and
updating the task queue of GC tasks with GC tasks of compaction step.

In case of compaction step, the VM thread serially performs some post-compact operations in
the final phase. It updates the references of the objects which overlap more than one region (refer to
chapter 2). After that, it clears the mark bit-maps and summary data array so that these data structures
can be reused in the next full colleciton. Finally, it (re)sets the entire card table, depending on whether
the young generation contains live data after compaction or not.

Once the post parallel phase operations are done, the VM thread, in case of young collection and
compaction step, resumes the mutators using the stop-the-world monitor pair. It wakes up the mutators
with the App monitor, and then sleeps, awaiting the next collection with the Init monitor.

4.2 Synchronisation optimisations

Parallel Scavenge uses locks to synchronise access to internal shared data structures, such as the GC-
task queue and the condition variables. To implement lock acquisition, Parallel Scavenge first attempts
a fast-path atomic compare-and-swap (CAS) instruction, spinning for some number of iterations. If
this fails, the mutator falls back to a slow-path using Posix synchronisation primitives. CAS works
fine for a small number of threads, as the fast path generally succeeds. However, as observed by
Lozi et al. [28], on a large multicore, lock performance collapses under contention; this is particularly
severe when spinning on CAS. To avoid this issue, we study the code to find the most contended locks,
which we fix as explained next.

4.2 – Synchronisation optimisations 37

4.2.1 Lock-free GC task queue

Issue. Parallel Scavenge synchronises access to the GC-task queue by using the GC monitor’s lock.
At the beginning of the parallel phase, all the GC threads access the task queue at the same time. The
lock becomes contended, and its performance degrades drastically. Many GC threads wait for a long
duration, preventing them from participating in the parallel phase, sometimes for the whole duration
of a collection.

Solution. The task queue has First-In-First-Out semantics. In Parallel Scavenge, it is implemented
as a singly-linked list. To avoid the performance collapse caused by lock acquisition, we implement
the task queue with a Michael-Scott lock-free queue [31]. Recall that the VM thread enqueues tasks
during the initialisation phase, which are dequeued during the parallel phase. Thus, there is no con-
currency between enqueue and dequeue operations, but only between dequeues. Therefore, the VM
thread enqueues without synchronisation, and GC threads dequeue using atomic CAS operations.

4.2.2 Lazy GC parking

Issue. When a GC thread executes the final task, all GC threads request the GC monitor’s lock in
order to synchronise the end of the parallel phase. However, this lock request immediately follows the
termination protocol, and therefore all the GC threads reach this point at roughly the same time. As a
consequence, the lock gets contended and its performance collapses.

Solution. To avoid this issue, we remove the GC monitor’s lock. The lock was used for three
purposes: first, to protect the task queue; second, to protect the global thread counter which is used
for the barrier at the end of the parallel phase; and third, to protect the associated condition variable
of the GC monitor, which is used to suspend the GC threads.

The first use is already taken care by the lock-free task queue. For the second case, we remove the
redundant synchronisation in the final task (see Section 4.1.3.2). Instead of waiting for the other GC
threads, the final thread simply wakes up the VM thread, and then suspends itself. Other GC threads
suspend themselves without any synchronisation. After this change, the global thread counter is not
required anymore.

For the last case, we replace the condition variables of VM and GC monitors with Linux’s
futex_wait calls [17]. A futex_wait has the semantics of an atomic compare-and-sleep, and
does not require acquiring a lock. Figure 4.3 depicts our solution.

However, our modifications potentially introduce a new race condition if a GC thread gets pre-
empted after the termination protocol, but before suspending itself. In this scenario, the VM thread
may wake up the mutator threads, a new collection may begin and the VM thread may wake up the
GC threads to begin the new parallel phase. If the delayed GC thread suspends itself on the futex at
this step, it will never be woken up by the VM thread, leading to a deadlock. This issue is depicted in
figure 4.4.

This was not a problem in Parallel Scavenge because, during the whole execution of the final task,
the GC threads own the lock of the GC monitor. Acquiring this lock is required to wake up the GC
threads with the GC monitor to begin the new parallel phase. Therefore, the GC threads inevitably
suspend themselves before receiving the wake up notification. However, this condition does not hold
with our optimisations as the GC monitor does not exist anymore.

38 Chapter 4 – Synchronisation Primitives in Parallel Scavenge

Figure 4.4 – Deadlock arising out of lazy GC thread parking

To solve this problem, we use a timestamp, which is incremented atomically by the VM thread
before the parallel phase. To suspend itself, a GC thread uses the futex to atomically check whether the
timestamp has been modified before sleeping. If it was not modified, the futex call suspends the GC
thread. Otherwise, it returns, and the GC thread directly enters the new parallel phase, thus avoiding
the deadlock.

4.3 Post-compact optimisations

The three post-compact operations: updating references of overlapping objects, clearing data struc-
tures, and (re)setting card table, can very easily be parallelised. Since all these operations are per-
formed on list-type data structures, we simply partition these data structures into multiple slices, one
per GC thread, and then deploy all the available GC threads to work on these slices in parallel.

4.4 Evaluation

Taking forward the scalability evaluation introduced in section 3.2 of chapter 3, in this section we
compare the implications of the improvements explained in this chapter with the baseline Parallel
Scavenge GC. Figure 4.5 shows the result of application scalability, and GC scalability compared
in terms of NUMA nodes. For simplicity, the modified ParallelScavenge GC which contains the
improvements explained in this chapter is called SynchroPS. In terms of GC scalability, SynchroPS
scales better than Parallel Scavenge for all the applications, except SPECjbb2005. However, the
scalability of SynchroPS is substantially less than linear scale.

4.4 – Evaluation 39

Parallel Scavenge SynchroPS Linear Improvement

Spark Neo4j SPECjbb2005

A
pp

.S
ca

la
bi

lit
y

(+)0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 6 12 24 36 48
(+)0

 2000

 4000

 6000

 8000

 10000

 12000

1 6 12 24 36 48
(-)0

 200

 400

 600

 800

 1000

 1200

 1400

1 6 12 24 36 48

x-axis: Number of cores y-axis: Completion time (seconds), App. throughput (Kops/s) for SPECjbb2005

G
C

sc
al

ab
ili

ty

(-)0

 1

 2

 3

 4

 5

 6

1 2 4 6 8
(-)0

 1

 2

 3

 4

 5

 6

1 2 4 6 8
(-)0

 1

 2

 3

 4

 5

 6

1 2 4 6 8

x-axis: Number of nodes y-axis: GC Throughput (GB/s)

Sunflow Lusearch Tomcat

A
pp

.S
ca

la
bi

lit
y

(+)0

 1000

 2000

 3000

 4000

 5000

 6000

1 6 12 24 36 48
(+)0

 200

 400

 600

 800

 1000

 1200

 1400

1 6 12 24 36 48
(+)0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 6 12 24 36 48

x-axis: Number of cores y-axis: Completion time (seconds)

G
C

Sc
al

ab
ili

ty

(-)0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 4 6 8
(-)0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 4 6 8
(-)0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 6 8

x-axis: Number of nodes y-axis: GC Throughput (GB/s)

Figure 4.5 – Application and GC scalability for the six applications. (+) = lower is better, (-) = higher
is better.

40 Chapter 4 – Synchronisation Primitives in Parallel Scavenge

The case of SPECjbb2005 is special because of the memory allocation pattern of this application.
SPECjbb2005 has an initilization phase which is executed by a single thread. This initilization phase
allocates enough objects to consume almost the entire eden space. Considering this scenario, and
the fact that kernel allocates pages using first-touch policy wherein pages are taken from the same
NUMA node where the faulting thread is executing. This results in a major portion of the eden space
being mapped on a single NUMA node. Furthermore, the generational design of GC ensures that the
same eden space mapping is reused after every young collection as all the live objects are moved to
either the survivor space or old generation. This leads to increasing pressure on the node’s memory
controller with increasing number of GC threads, eventually saturating the memory controller after a
certain number of threads are reached.

This allocation pattern should affect both Parallel Scavenge and SynchroPS equally. Then why
does SynchroPS unexpectedly perform worse than Parallel Scavenge? The contention on mutex lock
(please refer to subsection 4.2.1) plays a positive role in overcoming the memory controller saturation
problem for Parallel Scavenge GC. As the contention on the mutex lock obstructs the GC threads
to perform GC work (and hence memory access) all at the same time, the pressure on the memory
controller gets reduced proportionately, leading to better GC throughput even with lessar parallelism
than what SynchroPS provides. This phenomenon shows the importance of memory access balance.

For Application scalability, the quantum of its improvement, as shown in figure 4.5, in case of all
the six applications depends on the proportion of pause time in the completion time of that application,
and the improvement in GC scalability. Therefore, Spark and Lusearch has benefited the most as
these two applicaitons have the highest proportion of pause time in completion time; Neo4j, Sunflow,
and Tomcat benefit from better GC scalability, but not as much as Spark and Lusearch. Finally, in
case of SPECjbb2005, the difference in application scalability of Parallel Scavenge and SynchroPS is
negligible.

4.5 Conclusion

In this chapter we explained all the standard multi-core optimizations, which are not related to NUMA
architectures, that we implemented in Paralellel Scavenge. We also compared the scalability of par-
allel Scavenge and its improved version, that we call SynchroPS. The results show that, except for
SPECjbb2005, the result for the other five applications, as expected, was better with SynchroPS than
Parallel Scavenge. However, the scale of GC improvement with SynchroPS is substantially less than
the linear curve. As the parallel phase of SynchroPS is entirely lock-free, we do not think that Syn-
chroPS can be further optimized with new synchronization optimizations. Thus, we suspect that the
lack of scalability of the GC is caused by another phenomenon: the lack of NUMA awareness.

41

Chapter 5
NumaGiC: a Garbage Collector for

NUMA architectures

This chapter analyses memory access pattern of Parallel Scavenge garbage collector using repre-
sentative applications to identify NUMA issues. Using this analysis, we describe the design of our
proposed garbage collector NumaGiC, a mostly-distributed GC. Finally, we evaluate NumaGiC using
a wide range of real applications and benchmarks by comparing it with different variants of Parallel
Scavenge.

5.1 Interleaved Parallel Scavenge

The original Parallel Scavenge, and the improved version SynchroPS (refer chapter 4) suffers from
memory access imbalance on NUMA machines, which drastically degrades its performance [20].
Since it is a rather simple fix, and to ensure a fair comparison, we created a modified version of
SynchroPS, which we shall call InterPS. InterPS uses an interleaved memory placement policy, in
which pages are mapped from different physical nodes in round-robin. This ensures that memory is
approximately uniformly allocated from all the nodes, and hence, memory access is expected to be
uniformly and randomly distributed among all the nodes.

To evaluate the effect of memory interleaving, we use the same scalability experiments as used in
previous chapters (refer to chapters 3 and 4). Figure 5.1 shows very interesting results. Out of the six
applications that we experimented, while three applications, namely Sunflow, Lusearch, and Tomcat
showed no improvement over SynchroPS; Spark and Neo4j show negative performance by using
InterPS as compared to SynchroPS; only SPECjbb2005 gained substantial performance improvement
by interleaving the memory across NUMA nodes.

Sunflow, Tomcat, and Lusearch did not gain from memory interleaving due to their very small
working set size. The three applications do not create enough memory pressure to show any visible
impact of better memory balance due to memory interleaving.

42 Chapter 5 – NumaGiC: a Garbage Collector for NUMA architectures

Parallel Scavenge SynchroPS InterPS Linear Improvement

Spark Neo4j SPECjbb2005

A
pp

.S
ca

la
bi

lit
y

(+)0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 6 12 24 36 48
(+)0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 6 12 24 36 48
(-)0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

1 6 12 24 36 48

x-axis: Number of cores y-axis: Completion time (seconds), App. throughput (Kops/s) for SPECjbb2005

G
C

sc
al

ab
ili

ty

(-)0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1 2 4 6 8
(-)0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1 2 4 6 8
(-)0

 1

 2

 3

 4

 5

 6

1 2 4 6 8

x-axis: Number of nodes y-axis: GC Throughput (GB/s)

Sunflow Lusearch Tomcat

A
pp

.S
ca

la
bi

lit
y

(+)0

 1000

 2000

 3000

 4000

 5000

 6000

1 6 12 24 36 48
(+)0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 6 12 24 36 48
(+)0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 6 12 24 36 48

x-axis: Number of cores y-axis: Completion time (seconds)

G
C

Sc
al

ab
ili

ty

(-)0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 4 6 8
(-)0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 4 6 8
(-)0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 6 8

x-axis: Number of nodes y-axis: GC Throughput (GB/s)

Figure 5.1 – Application and GC scalability for the six applications. (+) = lower is better, (-) = higher
is better

5.2 – NUMA-friendly placement 43

In case of Spark and Neo4j, we saw a negative impact of memory interleaving. Both these ap-
plications are very memory intensive and therefore any variation in the memory access pattern would
undoubtedly have an visible impact on the performance. However, as we see in figure 5.1, enforcing
a perfect memory balance had a negative impact. Although memory interleaving provides perfect
memory access balance, but it comes at a cost of very poor memory access locality. In fact, because
of the round-robin interleaving, on average, out of every n accesses by a thread, n − 1 accesses are
necessarily remote. These two applications possibly have a reasonably good memory access balance,
as well as some natural access locality. However, interleaving the heap completely destroyed access
locality to provide perfect memory access balance. Therefore, the marginal improvement in memory
access balance, and complete destruction of access locality had such an adverse impact on these two
applications that it degraded these applications’ performance as compared to SynchroPS.

SPECjbb2005, on the other hand, substantially gained because of memory interleaving. This
happens because with SynchroPS and Parallel Scavenge, the application gets majority of physical
memory corresponding to the young generation mapped onto a single NUMA node. This happens
due to a single-threaded initilisation phase of SPECjbb2015. This behavior saturates the memory
controller on the particular node and hence impacting the performance. Memory interleaving of In-
terPS fixes this problem. This shows that memory interleaving is better than accessing memory only
from few NUMA nodes (as with SPECjbb2005), even though interleaving destroys memory access
locality (as with Spark and Neo4j). This experiment clearly shows that just using an interleaved space
is not a satisfactory solution to better exploit NUMA topology, and that a better memory placement is
required to avoid remote memory accesses.

5.2 NUMA-friendly placement

Before turning to the GC algorithm itself, we present NUMA-friendly policies designed to optimise
the memory placement for the mostly-distributed design. As stated in the introduction, since sending
an inter-node reference is slightly more expensive than remotely accessing a small object, we aim
to minimise the number of inter-node references, improving what we call the spatial NUMA locality
property. Furthermore, also as explained in the introduction and as shown in case of SPECjbb2005
(see figure 5.1), memory allocation balance is important, to avoid saturating some memory nodes.

Placement occurs, either when the mutator first allocates an object, or when the GC copies an ob-
ject to a new location. To be efficient, the placement decision should take less time than the benefit of
improved memory placement. For instance, we found that the aggressive graph partitioning heuristics
of Stanton and Kliot [45], although highly effective to minimise the number of inter-node references
and to balance the memory allocation among the nodes, are much too costly for our purpose.

Therefore, we focus on simple policies that require only local information, are computed quickly,
and have a small memory overhead. Placement may be somewhat suboptimal, but should remain
satisfactory relative to the low computation overhead. In order to identify interesting policies, we
first analyse the natural object graph topology created by several applications. Then, based on this
analysis, we propose NUMA-friendly placement policies that leverage this topology.

5.2.1 Object graph analysis

In order to improve the spatial NUMA locality and the memory allocation balance, we first analyse
the object graphs of five applications, chosen for their diverse allocation patterns:

44 Chapter 5 – NumaGiC: a Garbage Collector for NUMA architectures

Heap
Proportion of Thread

size
clustered references allocation

Young Old-to-young All imbalance
Spark 32GB 0.99 0.91 0.53 0.10
Neo4j 32GB 0.99 0.72 0.27 0.21
SpecJBB2013 24GB 0.99 0.99 0.51 0.07
SpecJBB2005 4GB 1.00 0.18 0.55 0.09
H2 2GB 0.77 0.16 0.50 0.40

Table 5.1 – Analysis of the object graph

1. Spark, the multi-threaded map-reduce engine [42];

2. Neo4j, the embedded, disk-based, fully transanctional Java persistence engine that manages
graph data [32];

3. SPECjbb2013, the business logic service-side application benchmark that defines groups of
threads with different behaviours [44];

4. SPECjbb2005, another business logic service-side application benchmark where all the threads
have the same behaviour [43]; and

5. H2, an in-memory database from the DaCapo 9.12 benchmark [5, 22].

Please note that Sunflow, Lusearch, and Tomcat are not included in this analysis. This is because,
as seen in figure 5.1, these three applications have memory footprints that are to small to be effected
by any memory access pattern modifications.

We analyse the topology created by the applications in HotSpot 7 running 48 GC threads on an
AMD Magny-Cours machine with 48 cores and eight memory nodes. We use a customised version
of InterPS, which ensures that the objects allocated by a mutator thread running on node i always
stay on node i.1 In this experiment, as in all the experiments presented in the thesis, we let the Linux
scheduler place the mutator threads on the cores. Table 5.1 reports the following metrics:

• The heap size that we set for the experiment.
• The proportion of clustered references, defined as the following ratio: the number of references

between objects allocated by the mutator threads of the same node, divided by the total number
of references. We report separately the proportion of clustered references between young ob-
jects, from old to young objects, and among all the objects. The first two are traversed during
a young collection, while all the references are traversed during a full collection. In order to
gather representative numbers, we ignore the first few collections to avoid warm-up effects, and
thus measure the proportion of clustered references on a randomly chosen and representative
snapshot of memory taken during the 8th full collection for Spark, 5th for Neo4j, SPECjbb2005
and SPECjbb2013, and 3th for H2.

• The thread allocation imbalance, defined as the standard deviation over the average number of
objects allocated by the mutator threads running on each node.

We observe that the proportion of clustered references is always high, especially between young
objects. Indeed, our experiment reports a proportion between 77% and 100% between young objects,
between 16% and 99% from old to young objects and between 27% and 55% for all the references,

1This version of InterPS is exactly the pure distributed algorithm described in Section 5.4.5.

5.2 – NUMA-friendly placement 45

whereas, if clustering were random, we would expect a proportion of clustered reference equal to
1/8 = 12.5% with eight nodes. This shows that the applications considered have a natural tendency
to cluster their objects.

Furthermore, we observe that memory allocation imbalance varies between the applications, from
highly balanced for Spark, SPECjbb2013 and SPECjbb2005, to imbalanced for H2. This confirms the
need for placement policies to counter-balance the latter case.

5.2.2 NUMA-friendly placement

We have designed our placement policies based on the above observations. We can leverage the
observation that the mutator threads of the same node tend to naturally cluster the objects which
they allocate to the objective of spatial NUMA locality: all we need to do is to ensure that an object
allocated by a mutator thread is placed on the same node as the mutator thread. This requires the
garbage collector to move live objects while copying/compacting to the same node where they are
originally allocated. This, in addition to the node-local clustering observation, will ensure that the
garbage collector does not create any spurious inter-node references.

In addition to improving locality for the GC, this memory placement policy also has the interesting
side-effect of improving application locality, because a mutator thread tends to access mostly the
objects that it has allocated itself.

We also observed an imbalanced allocation pattern in some applications. Therefore, always plac-
ing all objects allocated by a mutator thread on the same node would be detrimental to memory
allocation balance. Therefore, we should also design policies to alleviate this imbalance, by migrating
objects from overloaded memory nodes to underloaded memory nodes during collection.

With this in mind, we designed four different and complementary policies:

• Node-Local Allocation places the object allocated by a mutator thread on the same node where
the mutator thread is running.

• The Node-Local Root policy ensures that the roots of a GC thread are chosen to be located
mostly on its running node.

• During a young collection, Node-Local Copy policy copies a live object to the node where the
GC thread is running.

• During the compacting phase of a full collection, the Node-Local Compact policy ensures that
an object being compacted remains on the same node where it was previously located.

The first policy ensures that a mutator thread allocates to its own node initially. The other three
avoid object migration, so that the object stays where it was allocated. The middle two avoid object
migration during a young collection because a GC thread on node i mainly processes objects of node
i and copies them on node i. The node-local compact policy simply prevents object migration during
a full collection.

For applications with an imbalanced allocation pattern, the Node-Local Copy policy, in conjunc-
tion with stealing, also tends to re-balance the load. Consider the case where Node A hosts more
objects than Node B. Consequently, processing on Node B will finish sooner than Node A. As pre-
sented in section 2.1, rather than remaining idle, the GC threads on Node B will start “stealing” i.e., to
process remaining objects of Node A. The Node-Local Copy policy ensures that GC threads on B will
copy the objects to B, restoring the balance.

46 Chapter 5 – NumaGiC: a Garbage Collector for NUMA architectures

5.2.3 Implementation details

In order to be able to map virtual addresses to nodes, we make use of fragmented spaces. A frag-
mented space is partitioned into logical segments, where the virtual address range of each segment is
physically allocated on a different node. In contrast to an interleaved space (which maps pages ran-
domly from all nodes, see Section 5.1), a fragmented space allows a GC thread to retrieve the segment
and NUMA location of an object from its virtual address. The GC thread can also place an object
onto a specific NUMA node by using a segment mapped to the desired node. We implement a variant
of InterPS which, for young generation, uses fragmented spaces to ensure node-local object alloca-
tion. We call this garbage collector NAPS (Node-local Allocating Parallel Scavenge). NAPS still uses
an interleaved space for old generation as in the case of InterPS. NAPS implements the Node-Local
Allocation policy fully, while Node-Local Copy policy is partially supported: copy of young objects
from eden space to survivor space is node-local; however, due to an interleaved old generation, object
promotions from young to old generation are not node-local.

In NumaGiC, we further extend NAPS implementation to the old generation, by adding a per-
segment compacting algorithm, which applies the Node-Local Compacting policy of not migrating
objects between nodes. Besides the goal of enforcing the spatial NUMA-locality and the memory
allocation balance, we have also optimised the memory access locality during the compacting phase
by ensuring that a GC thread selects the regions of its node before stealing the regions of the other
nodes.

In order to implement the Node-Local Root policy, we partition the card table into segments.
Each segment of the card table corresponds to a segment of the old generation, and hence identifies
old-to-young roots from a given node.

Also for the Node-Local Root policy, we ensure that a GC thread processes the stack of a mutator
thread running on its node, which mainly contains references allocated by the mutator thread, thus
allocated on the same node, thanks to the Node-Local Allocation policy.

5.3 NumaGiC

NumaGiC focuses on improving memory access locality without degrading parallelism of the GC. A
GC thread normally runs in local mode, in which it collects its own node’s memory only. It switches
to work-stealing mode when parallelism degrades. In work-stealing mode, a GC thread can steal work
from other threads, and is allowed to collect the memory of other nodes remotely.

We present the two modes and the conditions for switching between them.

5.3.1 Local mode

In local mode, a GC thread collects its local memory only. When processing a reference, the GC
thread checks for the home node of the referenced object, i.e., the node that hosts the physical memory
mapped at the virtual address of the object. If the home-node is the node of the GC thread, then the GC
thread processes2 the object itself. Otherwise, it sends the reference to the home node of the object,
and a GC thread attached to the remote home node will receive and process the reference. Checking
the home-node of an object is fast, as it consists of looking up a virtual address in a map of segments
of the fragmented spaces (see Section 5.2.3).

2 Processing an object means copying it during young collection, and marking it live during full collection.

5.3 – NumaGiC 47

Moreover, when a GC thread idles in local mode, it may steal work from the pending queues
(described in section 2.1) of the other GC threads of its node, but not from remote nodes.

Communication infrastructure. Our initial design used a single channel per node, where other
nodes would post messages; experience shows that this design suffers high contention between senders.
Therefore, NumaGiC uses a communication channel per each pair of nodes, implemented with an
array-based lock-free bounded queue [23].

Because multiple threads can send on the same queue, sending a message is synchronised thanks
to an atomic compare-and-swap, a relatively costly operation. In order to mitigate this cost, references
are buffered and sent in bulk. The evaluation of Section 5.4.4 shows that buffering 16 references for
the full collections, and 128 references for young collections gives satisfactory performance.

A GC thread checks the receiving end of its message channels regularly, in order to receive mes-
sages: (i) when it starts to execute a GC task, and (ii) regularly while stealing from other threads of
the same node.

5.3.2 Work-stealing mode

In work-stealing mode, a GC thread may steal from any node, and may access both local or remote
memory. In work-stealing mode, a GC thread steals references from three groups of locations; when
it finds a reference to steal in one of these groups, it continues to steal from the same group as long
as possible, in order to avoid unsuccessful steal attempts. The first group consists of its own transmit
buffers, cancelling the messages it sent that were not yet delivered. The second group consists of the
receive side of other nodes’ communication channels. The third group consists of the pending queues
of other GC threads.

When a GC thread does not find references to steal, it waits for termination. Classically, asyn-
chronous communication creates a termination problem [9]. For instance, even though a GC thread
might observe that its pending queues and its receive channel are all empty, this does not suffice to
terminate it, because a message might actually be in flight from another GC thread.

To solve this problem, a GC thread does not enter the termination protocol of the parallel phase
(described in Section 2.1) unless it observes that all of the messages that it has sent have been deliv-
ered. For this purpose, before entering the termination protocol, it verifies that the remote receive side
of every of its communication channels is empty, by reading remote memory.

After having observed that all its sent messages are received, a GC thread waits for termination,
by incrementing a shared counter and regularly checking all termination.

5.3.3 Switching between local and work-stealing modes

A GC thread enters work-stealing mode when it does not find local work: when its local pending
queue is empty, when its steal attempts from the pending queues of the GC threads of its node have
failed, and when its receive channels are empty.

Once a GC thread is in work-stealing mode, it adapts to current conditions by regularly re-entering
local mode. The rationale for this adaptive behaviour is two-fold. First, local work can become
available again if a stolen object or one of its reachable objects is local; in this case, it makes sense
to switch back to the local mode, because the received reference will often open up a significant sub-
graph, thanks to spatial NUMA locality created by the heuristics. Second, re-entering local mode and

48 Chapter 5 – NumaGiC: a Garbage Collector for NUMA architectures

Figure 5.2 – State transition diagram depicting switching between local and work-stealing modes.

back to work-stealing mode ensures that the GC thread will retry to steal from all the groups, regularly
checking all sources of work again, especially its receive channels.

Figure 5.2 shows the state transition between the two modes explained above. We tuned the
frequency of re-entering local mode, finding that switching back to local-mode every 1024 stolen
objects gives satisfactory performance in all our experiments.

5.4 Evaluation of NumaGiC

This section studies the performance of NumaGiC, using both standard benchmarks (SPECjbb2013,
SPECjbb2005, SPECjvm2008, and Dacapo) and widely-used, industrially-relevant applications (Spark,
and Neo4j). Although most of the experimental setup is already described in chapter 2 section 2.3,
for a more complete evaluation, we have added an additional NUMA machine, and two benchmarks.
These are described in the following sub-section. The sub-section will also desribe the heap-size and
workloads used in all the applications. Following that, we study the impact of the policies presented
in Section 5.2, and the impact of some design parameters and trade-offs on a small set of experiments.
Finally, we undertake a full-scale evaluation of the impact of NumaGiC followed by an analysis of its
scalability.

5.4.1 Hardware

In addition to the machine described in chapter 2, called Amd48 hereafter, a second machine, called
Intel80 hereafter, is also used for evaluation. Intel80 is an Intel server with four Xeon E7-2860 pro-
cessors, each consisting of a single node. Each node has 10 cores (2.27 GHz clock rate) and 128 GB
of RAM. Each core carries two hyper threads. In total, there are 40 cores (80 hardware threads) and
512 GB RAM on four nodes. The nodes are interconnected by QuickPath Interconnect links, with a
maximum distance of two hops. The system runs a Linux 3.8.0 64-bit kernel and gcc 4.7.2. NumaGiC
is configured with 48 GC threads on Amd48 and 80 GC threads on Intel80.

5.4.2 Applications and Benchmarks

Our evaluation uses two big-data analytics engines, two industry-standard benchmarks, and two
benchmark suites.

5.4 – Evaluation of NumaGiC 49

Spark On Amd48, we use two configurations, one with 100 million edges, and the other with 1
billion edges. For the first one, we set the heap size to 32 GB. The computation triggers approxi-
mately 175 young and 15 full collections and lasts for roughly 22 minutes with InterPS (Interleaved
Parallel Scavenge), which is sufficiently short to run a large number of experiments. This is also the
configuration used for the evaluation of the memory-placement policies of Section 5.4.3. The second
configuration is much more demanding; we run it with heap sizes increasing from 110 GB to 160 GB,
in steps of 25 GB. On Intel80, we measure only the 1.8-billion edge configuration, with heap sizes
ranging from 250 GB to 350 GB, in steps of 50 GB. The experiments are run on all the cores of the
machine.

Neo4j On Amd48, we use the first billion edges, and on Intel80, we use all the 1.8 billion edges.
We run it with heap sizes ranging from 110 GB to 160 GB, in steps of 25 GB on Amd48, and from
250 GB to 350 GB, in steps of 50 GB, on Intel80. We follow the advice of the Neo4j developers, to
leave the rest of the RAM for use by the file-system cache. This experiment also makes use of all the
available RAM and all the cores.

SPECjbb2005 and SPECjbb2013 SPECjbb2005 and SPECjbb2013 are two business logic service-
side application benchmarks [43, 44] that model supermarket companies. SPECjbb2013 models all the
components of the company, using a larger number of threads with different behaviours, interacting
together.

On Amd48 (resp. Intel80), we evaluate different heap sizes, from 4 GB to 8 GB, in steps of 2 GB
(resp. from 8 GB to 12 GB, in steps of 2 GB). For SPECjbb2013, we let the benchmark compute the
maximal workload that can be executed efficiently on the machines, which ensures that all mutator
threads are working. On both Amd48 and Intel80, we evaluate different heap sizes, from 24 GB to
40 GB, in steps of 8 GB.

DaCapo 9.12 and SPECjvm2008 The DaCapo 9.12 and SPECjvm2008 benchmarks are widely
used to measure the performance of Java virtual machines. They include 52 real applications with
synthetic workloads; we retained all 33 that are multi-threaded.

For the DaCapo applications, we selected the largest workload. For the SPECjvm2008 applica-
tions, we have fixed the number of operations to 40 because this value ensures that all the mutator
threads are working. We do not configure a specific heap size, instead, relying on Hotspot’s default
resizing policy. The experiments execute with one mutator thread and one GC thread per core.

The resulting heap sizes are the smallest of our evaluation and; therefore, we expect that the impact
of GC on overall performance will be small. These benchmarks are also not representative of the big-
data applications targeted by the NumaGiC design. Nonetheless, we include them in our evaluation,
both for completeness, and to evaluate the performance impact of NumaGiC’s multiple queues, which
should be most apparent in such applications with a small memory footprint.

5.4.3 Evaluation of the policies

This section presents an evaluation of the placement policies discussed in Section 5.2.2. For this
analysis, we focus on Spark with a 32 GB heap size running on the AMD Magny-Cours with 48 cores
and 8 nodes. The results are similar for the other evaluated applications and on both machines.

Figure 5.3 reports the following metrics from the experiment:

50 Chapter 5 – NumaGiC: a Garbage Collector for NUMA architectures

Experiment Heap layout Node-Local
Name Young Old Allocation Copy Compact Root

InterPS Interleaved Interleaved No No No No
InterPS+Numa Fragmented Fragmented Yes Yes Yes Yes
InterPS+Compact Interleaved Fragmented No Promotion� Yes No
InterPS+CompRoot Interleaved Fragmented No Promotion� Yes Yes
NAPS Fragmented Interleaved Yes Intra-young genδ No No

�: Only during promotion to the old generation.
δ: Only copies from eden to survivor space during young collection.

(a) Spatial NUMA locality (%) (b) Access imbalance (%) (c) Access locality (%)

(-) 0

 20

 40

 60

 80

 100

(+) 0

 20

 40

 60

 80

 100

(-) 0

 20

 40

 60

 80

 100

(d) Interconnect traffic (GB/s) (e) GC Throughput (GB/s)

(+) 0

 10

 20

 30

Young Mark Comp (-) 0

 1

 2

 3

Figure 5.3 – Evaluation of the NUMA-friendly placement policies. (+) = lower is better, (-) = higher
is better.

• Spatial NUMA locality: the ratio of number of local references (i.e., between objects on the
same node) in the object graph to the total number of references. As for the graph analysis
(see Section 5.2.1), we measure the Spatial NUMA locality on the snapshot of the object graph
taken during the 8th full collection. Higher is better.

• Memory access imbalance: for each GC thread, we compute the standard deviation of the ratio
of number of accesses to each node over the total number of accesses, and then report the
average. Lower is better.

• Memory access locality: the ratio of local memory accesses (read or write) performed by the
GC threads, over the total number of memory accesses. Higher is better.

• Interconnect traffic: the average number of GB/s transmitted on the interconnect by a node
during collection. We report separately traffic during the young collections, during the marking
phases of the full collections, and during the compacting phases of the full collections. Lower
is better.

• GC throughput: the number of gigabytes of live data scanned per second by the collector.
Higher is better.

To characterise the effect of each policy, we compare different variants. The baseline is InterPS
(see Section 5.1). As indicated in the table of the figure, InterPS+Numa extends InterPS with frag-
mented spaces and the four NUMA-friendly placement policies described in Section 5.2.2. We ob-
serve that the policies improves spatial NUMA locality, as the InterPS+Numa algorithm increases the
fraction of local references from 12% to 42% (see Figure 5.3.a). We also observe that memory access
balance is slightly better with InterPS+Numa than with InterPS, with a standard deviation of 2.8%

5.4 – Evaluation of NumaGiC 51

vs. 11%, which is already low (see Figure 5.3.b).

In the rest of this section, the variants InterPS+Compact, InterPS+CompRoot and NAPS enable a
finer-grain comparison. InterPS+Compact turns on fragmented spaces only in the old generation, does
Node-Local Compacting during a full collection, and does Node-Local Copy when promoting from
young to old generation, but not when copying from young to young generation. InterPS+CompRoot
is the same as InterPS+Compact, with the addition of Node-Local Root policy. NAPS uses fragmented
spaces in the young generation only, and enables the Node-Local Allocation and Node-Local Copy
policies when copying from the young to the young generation, but not when promoting from the
young to the old generation.

Thanks to the rebalancing effect of the Node-Local Copy policy used in conjunction with stealing,
we observe that memory access balance remains good in all the experiments, with a 20% standard
deviation in the worst case (see Figure 5.3.b). Consequently, we focus only on spatial NUMA locality
in what follows.

Spatial NUMA locality Observe that the Node-Local Compact policy, in conjunction with the
Node-Local Copy policy during object promotion, yields the highest single improvement of spatial
NUMA locality, from 12% with InterPS to 32% with InterPS+Compact (see Figure 5.3.a). When a
GC thread promotes an object from the young to the old generation, the Node-Local Copy policy
copies a root object and its reachable sub-graph to the node of the GC thread, thus avoiding remote
references in the object graph. Thereafter, the Node-Local Compact policy preserves this placement
during full collections by preventing object migration. We have measured that 75% of the references
are between objects of the old generation. For this reason, improving spatial NUMA locality in the
old generation has a large impact on the overall spatial NUMA locality, since it concerns a large part
of the heap.

Comparing InterPS+CompRoot with InterPS+Compact, we observe that the Node-Local Root
policy alone does not have a significant effect on spatial NUMA locality. In InterPS+CompRoot, the
young space is interleaved. Memory pages in the heap are allocated in round robin from every nodes,
thus, old-to-young root references and young-young references are randomised between the nodes,
exactly as in InterPS+Compact.

Comparing InterPS with NAPS, observe that the Node-Local Copy and Allocation policies alone
do not have a significant effect on spatial NUMA locality. NAPS improves it inside the young gen-
eration, but old-to-young references are still random because the old space is interleaved. We have
measured that only 6% of the references are inside the young generation in Spark; thus NAPS has
only a marginal effect on spatial NUMA locality. NAPS uses these two policies, not to improve
spatial NUMA locality, but only to improve memory access balance, because the Node-Local Copy
policy, in conjunction with stealing, re-balances the load (as explained in Section 5.2.2).

Comparing InterPS+Compact with InterPS+Numa, observe that the Node-Local Copy and Allo-
cation policies, when used in conjunction with the two other policies, improve spatial NUMA locality
from 32% to 42%. In this case, old-to-young and young-to-old references, which concern 19% of the
references, have a better spatial NUMA locality (roughly 50% of these references are local). This is
because the conjunction of all the placement policies ensures that objects allocated by some applica-
tion thread are allocated on its same node, and remain there when they are copied.

To summarise, this study shows that, individually, each of the policy does not have a drastic effect
on spatial NUMA locality, but that, when they are used in conjunction, they multiply the spatial
NUMA locality by 3.5×.

52 Chapter 5 – NumaGiC: a Garbage Collector for NUMA architectures

(a) Full collector (b) Young collector

G
C

T
hr

ou
gh

.
(G

B
/s

)

 0
 1
 2
 3
 4

1 8 16 32
 0
 1
 2
 3
 4

1 8 16 32 64 128 192

x-axis: # of references per buffer

Figure 5.4 – GC throughput of NumaGiC with varying transmit buffer sizes (higher is better).

GC throughput improvements It is interesting to observe that our NUMA-friendly placement poli-
cies have the side-effect of improving GC throughput (Figure 5.3.e). This is because they also improve
memory access locality (Figure 5.3.c).

Node-Local Compaction improves memory access locality, from 13% with InterPS to 20% with
InterPS+Compact. As explained in Section 5.2.3, a GC thread first processes the regions of its node
before stealing, which avoids many remote access during the compacting phase (Figure 5.3.c). This
improved memory access locality drastically reduces interconnect traffic during the compacting phase
(7.5 GB/s instead of 25.1 GB/s, see Figure 5.3.d).

Node-Local Root alone also improves memory access locality substantially, with 33% local ac-
cess in InterPS+CompRoot, compared to 20% for InterPS+Compact (Figure 5.3.c). This is because a
GC thread selects old-to-young root objects from its own node during a young collection. Moreover,
when combined with the other policies, the Node-Local Copy and Node-Local Allocation policies
ensure that a root object generally references objects on the same node. As a result, memory ac-
cess locality improves substantially, from 33% with InterPS+CompRoot, to 47% with InterPS+Numa
(Figure 5.3.c).

Overall, the improved memory access locality translates to better GC throughput, reaching 3.0 GB/s
with InterPS+Numa, compared to 1.0 GB/s for InterPS (Figure 5.3.e).

5.4.4 Impact of transmit buffer size

One of the internal design parameters of NumaGiC is transmit buffer size (see Section 5.3.1); we
study its impact on performance. For this experiment, we run Spark with the small workload on
Amd48. Figure 5.4 reports the GC throughput of NumaGiC, i.e., the number of gigabytes of live data
collected per second, with varying transmit buffer sizes. Figure 5.4.a varies the buffer size used in the
full collector, and sets a fixed size of 128 references for the young collector. Figure 5.4.b varies the
buffer size used by the young collector, and sets the full-collector’s buffer size to 16 references.

We observe that performance increases quickly with buffer size. However, the increase ceases
around 16 references (resp. 128) for the full (resp. young) collector. Experiments with other appli-
cations, not reported here, confirm that these values give good performance, on both Amd48 and on
Intel80. Therefore, we retain these values in the rest of our experiments.

5.4 – Evaluation of NumaGiC 53

(a) Access locality (%) (c) GC Throughput (GB/s)
(b) Access imbalance (%) (d) Parallelism (%)

(-) 0

 20

 40

 60

 80

 100

(+) 0

 20

 40

 60

 80

 100

(-) 0

 1

 2

 3

(-) 0

 20

 40

 60

 80

 100

InterPS+Numa Pure Distributed NumaGiC

Figure 5.5 – Memory access locality versus parallelism. (-) = higher is better, (+) = lower is better

5.4.5 Memory access locality versus parallelism

As stated in the introduction, enforcing memory access locality can be detrimental to parallelism. To
highlight this issue, we run Spark with the small workload on Amd48 with three different GC set-ups:
InterPS+Numa, which adds all the NUMA-friendly placement policies of Section 5.2.2 to Parallel
Scavenge Baseline (InterPS), Pure Distributed, a version of NumaGiC in which a GC thread always
stay in local mode, and full NumaGiC.

Figure 5.5 reports three metrics defined in Section 5.4.3, the memory access locality (a), the
memory access imbalance (b) and the GC throughput (c). It also reports the parallelism of the GC (d),
defined as the fraction of time where GC threads are not idle. We consider idle time to be the time in
the termination protocol, i.e., where it synchronises to terminate the parallel phase (see section 2.1).

We can observe that memory access balance remains good with Pure Distributed (Figure 5.5.b).
However, this observation is not significant. For example, memory allocation, and thus access, is
imbalanced with H2, as shown in Table 5.1. Indeed, by construction, Pure Distributed algorithm does
not migrate objects, and therefore, memory access balance by the GC is directly correlated to the
allocation pattern of the mutator.

Moreover, for Spark, although Pure Distributed improves memory access locality substantially
over InterPS+Numa (Figure 5.5.a), throughput decreases, from 3.0 GB/s down to 2.5 GB/s (Fig-
ure 5.5.c). This is caused by degraded parallelism, because GC threads are idle 26% of the time
in the Pure Distributed algorithm, against only 11% in InterPS+Numa (Figure 5.5.d).

Analysing this problem, we observe a sort of a convoy effect, in which nodes take turns, working
one after the other. Because the NUMA-friendly policies reinforce spatial NUMA locality, the object
graph tends to structure itself into connected components, each one allocated on a single node, and
linked to one another across nodes. We observe furthermore that the out-degree of object is small,
2.4 on average, and that the proportion of roots in the full object graph is around 0.008% (roughly
15,000 objects), also quite small. As a result, the number of connected components reached by the
full collector at a given point in time tends to be relatively small, and sometimes even restricted to
a subset of the nodes. In this case, some GC threads do not have any local work. Since, by design,
the pure distributed algorithm prevents remote accesses, the GC threads remain idle, which degrades
parallelism.

54 Chapter 5 – NumaGiC: a Garbage Collector for NUMA architectures

InterPS NumaGiC

Spark Neo4j
Amd48 Intel80 Amd48 Intel80

G
C

T
hr

ou
gh

pu
t(

G
B

/s
)

H
ig

he
ri

s
be

tte
r

 0

 1

 2

 3

 4

 5

 6

110 135 160
 0

 2

 4

 6

 8

250 300 350
 0

 1

 2

 3

 4

110 135 160
 0

 1

 2

 3

 4

250 300 350

C
om

pl
et

io
n

Ti
m

e
(s

ec
)

L
ow

er
is

be
tte

r

 0

 1

 2

110 135 160
 0

 1

 2

250 300 350
 0

 1

 2

 3

110 135 160
 0

 2

 4

 6

250 300 350

SPECjbb2013 SPECjbb2005
Amd48 Intel80 Amd48 Intel80

G
C

T
hr

ou
gh

pu
t(

G
B

/s
)

H
ig

he
ri

s
be

tte
r

 0

 1

 2

 3

24 32 40
 0

 1

 2

24 32 40
 0

 2

 4

 6

 8

 10

4 6 8
 0

 2

 4

 6

 8

 10

 12

8 10 12

A
pp

.T
hr

.(
1
0
4

O
p/

s)
H

ig
he

ri
s

be
tte

r

 0

 1

 2

 3

 4

 5

24 32 40
 0

 1

 2

 3

 4

 5

24 32 40
 0

 20

 40

 60

 80

4 6 8
 0

 20

 40

 60

 80

8 10 12

Figure 5.6 – Evaluation of the applications with large heap. x-axis: Heap size in GB.

5.4 – Evaluation of NumaGiC 55

Observe that NumaGiC corrects this problem by providing the best of the InterPS+Numa and
the Pure Distributed algorithms. The parallelism of NumaGiC remains at the level of InterPS+Numa
(11% of idle time for InterPS+Numa against 13% for NumaGiC, see Figure 5.5.d). At the same time,
NumaGiC degrades memory access locality slightly, compared to Pure Distributed (from 88% to 72%
of local accesses, see Figure 5.5.a), but it remains largely improved over InterPS+Numa (47% of
local accesses). Thanks to improved memory access locality GC throughput increases from 3 GB/s in
InterPS+Numa, to 3.5 GB/s in NumaGiC (Figure 5.5.c).

5.4.6 Performance analysis

This sections studies the impact of NumaGiC, both on GC performance (throughput and duration of
the GC phase), and on overall performance (how end-to-end application performance is impacted by
NumaGiC).

Figure 5.6 reports GC throughput and overall speedup of Spark , Neo4j, SPECjbb2005 and SPEC-
jbb2013 on Amd48 and Intel80. We report the average and standard deviation over 3 runs.

As explained earlier, we vary the heap size. We were unable to identify the minimal heap size for
Spark and Neo4j because the runs last too long. For example, on Amd48, the computation of Neo4j
lasts for 2h37 with InterPS and a heap size of 110 GB, but does not complete even in 12 hours with a
heap size of 100 GB. For this reason, for Spark and Neo4j, we use the smallest heap size that ensures
that the application terminates in less than 8 hours.

Observe that NumaGiC always improves the GC throughput over InterPS, up to 5.4× on Amd48
and up to 4.2× on Intel80, which translates into an overall improvement (application + GC) up to
94% on Amd48 and up to 82% on Intel80. With heap sizes that provide the best overall performance
for all the GC (160 GB on Amd48 and 350 GB on Intel80 for Spark and Neo4j, 8 GB and 12 GB for
SPECjbb2005, 40 GB and 40 GB for SPECjbb2013), the overall improvement ranges between 12%
and 57% on Amd48 and between 14% and 62% on Intel80.

Figure 5.7 reports the GC throughput and the speedup, in terms of completion time, of the Da-
Capo and SPECjvm2008 benchmarks on Amd48. Since these applications have small workloads, we
expect the performance impact of GC to be modest. Nonetheless, observe that, compared to InterPS,
NumaGiC improves the overall performance of 19 applications by more than 5% (up to 143% for Sci-
mark.sparse.large), does not change it by more than 5% for 13 of them, and degrades performance by
more than 5% in a single application (Xalan, degraded by 8%). For this application, GC throughput
actually improves, but, as we let Hotspot use its default resizing policy, this modifies the heap resizing
behaviour, causing the number of collections to double. In summary, even for small heaps, more than
half of the applications see significant overall improvement thanks to the the better memory access
locality of NumaGiC, and with the sole exception of Xalan, NumaGiC never degrades performance
relative to InterPS.

To summarise, big-data applications with a large heap benefit substantially from NumaGiC. It
significantly improves garbage collector throughput, which translates into a significant overall appli-
cation improvement. With small heap sizes, NumaGiC is either neutral (most cases), rarely degrades
performance somewhat (one application), and improves overall performance in more than half of the
evaluated applications. Furthermore, the fact that the improvements remain similar on two different
hardware architectures tends to show that our mostly-distributed design is independent from a specific
hardware design.

56 Chapter 5 – NumaGiC: a Garbage Collector for NUMA architectures

(-) 0

 0.5

 1

 1.5

Com
piler.com

piler

Com
piler.sunflow

Com
press

Crypto.aes

Crypto.rsa

Crypto.signverify

Derby

M
pegaudio

Scim
ark.fft.large

Scim
ark.fft.sm

all

Scim
ark.lu.large

Scim
ark.lu.sm

all

Scim
ark.m

onte_carlo

Scim
ark.sor.large

Scim
ark.sor.sm

all

Scim
ark.sparse.large

Scim
ark.sparse.sm

all

Serial

Sunflow

Xm
l.transform

Xm
l.validation

avrora

eclipse

fop
h2 jython

luindex

lusearch

pm
d

sunflow

tom
cat

tradebeans

xalan

O
v
e
ra

ll
sp

e
e
d
u
p

Figure 5.7 – Evaluation of applications with small heap (DaCapo and SPECjvm2008). Higher is
better.

5.4.7 Scalability

Recalling from section 3.2 of chapter 3, we identified different ways in which garbage collection
time affects the five applications that we have been using to analyse GC performance in this thesis.
For Sunflow, Lusearch, and Tomcat we identified increase in pause time with increasing number of
cores as a concern. For Spark we observed that although the application scales, the pause time stays
constant with increasing number of cores. This eventually leads to a situation where GC consumes
more than 50% of the total completion time. Finally, for Neo4j, we showed that both the pause time
and the completion time become stagnant with increasing number of cores. All these cases reflect that
garbage collectors scalability is crucial in all cases.

In this regard, we conducted the same experiment with NumaGiC as the GC. Figure 5.8 shows the
results of the experiments. As shown, in case of Sunflow, Lusearch, and Tomcat, the pause time does
not increase with increasing number of cores anymore. Unfortunately, due to very small working set
size, the GC does not have enough work to utilize all the cores that a contemporary hardware provides.
After a certain number of cores, the cost of synchronisation among all the GC threads overtakes the
amount of GC work that each thread can perform during a collection cycle. Therefore, with these
three applications the NumaGiC fails to scale.

In case of Spark and Neo4j, NumaGiC continues to reduce pause time with increasing number
of cores. Furthermore, it ensures that the proportion of time spent in garbage collection out of total
completion time does not grow with increasing number of cores. The experiment results shown in
figure 5.8 confirm that NumaGiC ensures that GC does not become a hurdle in the scalability of an
applications’ overall performance.

Next we study the scalability of all the garbage collectors discussed in this thesis. For all the six
applications, we study the application scalability, GC scalability with increasing number of NUMA
nodes.

As shown in the figure 5.9, NumaGiC scales with increasing number of NUMA nodes substan-
tially better than all the other three GCs. NumaGiC scales almost linearly in case of SPECjbb2005,
slightly less in case of Spark, and further less in case of Neo4j. This variation of scalability is di-
rectly related to the proportion of clustered objects of each application, as shown in Table 5.1. An
application such as SPECjbb2005 has a high proportion of clustered objects, or in other words low
inter-node sharing, which leads to higher scalability. In contrast, Neo4j has a lower proportion of
clustered objects, hence lower scalability. In this case, more inter-node shared objects cause more
inter-node messages in NumaGiC, which in turn degrades performance.

5.5 – Conclusion 57

(+)0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 6 12 24 36 48

Spark

(+)0

 2000

 4000

 6000

 8000

 10000

 12000

1 6 12 24 36 48

Neo4j

(+)0

 200

 400

 600

 800

 1000

 1200

 1400

1 6 12 24 36 48

Lusearch

(+)0

 1000

 2000

 3000

 4000

 5000

 6000

1 6 12 24 36 48

Sunflow

(+)0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 6 12 24 36 48

Tomcat

x-axis: Number of cores y-axis: Time in seconds

Figure 5.8 – Total completion time of the application and the time spent in GC.

In case of less memory intensive applications, namely, Sunflow, Lusearch, and Tomcat, NumaGiC
always scales better than all the other GCs with increasing number of NUMA nodes. However, the
scalability is much poorer than in the case of memory intensive applications discussed in the previous
paragraph. This is due to smaller working set size of these applications. The size of live data that
is to be processed by GC threads during every collection cycle is much smaller in case of Sunflow,
Lusearch, and Tomcat and hence the time spent by GC threads in doing real work eventually becomes
substantially smaller, while the burden of synchronisation among GC threads, at best, stays constant.
To give an idea, in case of Tomcat, the total amount of live data processed during the entire application
run is apprximately 17GB, whereas in case of Spark, it is approximately 433GB.

Finally, in the application scalability curves of the six applications also, NumaGiC lets the ap-
plication perform better than all the other GCs. Although this experiment has more influence of
applications’ own scalability rather than GCs’, still the purpose of these curves was to demonstrate
that NumaGiC aids the applications in attaining the best possible performance among all the GCs that
we have studied in this thesis.

5.5 Conclusion

In this chapter, we presented the rationale and the detailed design of NumaGiC, a mostly-distributed,
adaptive GC for ccNUMA architectures. NumaGiC is designed for high throughput, to be used for
long-running applications with a large memory footprint, typical of big-data computations. NumaGiC
demonstrates high memory access locality without loss of parallelism, which translates to a drastic
reduction of interconnect traffic, and to a substantial improvement of GC throughput, which trans-
lates to an overall speedup between 12% and 94% over InterPS on the two ccNUMA machines for
applications with large heaps.

58 Chapter 5 – NumaGiC: a Garbage Collector for NUMA architectures

Parallel Scavenge SynchroPS InterPS
Linear Improvement NumaGiC

Spark Neo4j SPECjbb2005

A
pp

.S
ca

la
bi

lit
y

(+)0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 6 12 24 36 48
(+)0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 6 12 24 36 48
(-)0

 200

 400

 600

 800

 1000

 1200

 1400

1 6 12 24 36 48

x-axis: Number of cores y-axis: Completion time (seconds), App. throughput (Kops/s) for SPECjbb2005

G
C

sc
al

ab
ili

ty

(-)0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1 2 4 6 8
(-)0

 1

 2

 3

 4

 5

 6

 7

1 2 4 6 8
(-)0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 4 6 8

x-axis: Number of nodes y-axis: GC Throughput (GB/s)

Sunflow Lusearch Tomcat

A
pp

.S
ca

la
bi

lit
y

(+)0

 1000

 2000

 3000

 4000

 5000

 6000

1 6 12 24 36 48
(+)0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 6 12 24 36 48
(+)0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 6 12 24 36 48

x-axis: Number of cores y-axis: Completion time (seconds)

G
C

Sc
al

ab
ili

ty

(-)0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 2 4 6 8
(-)0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 4 6 8
(-)0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 6 8

x-axis: Number of nodes y-axis: GC Throughput (GB/s)

Figure 5.9 – Application and GC scalability for the six applications. (+) = lower is better, (-) = higher
is better.

59

Chapter 6
Conclusion and Future Work

This chapter concludes this dissertation. It also discusses future work direction which is not only an
obvious extension to our work, but also a necessary one.

6.1 Conclusion

In this research work, a study of effects of NUMA architecture on garbage collectors has been con-
ducted. In a preliminary evaluation of existing garbage collectors on a NUMA machine revealed that
the existing garbage collectors fail to scale with increasing number of NUMA nodes. In fact, in some
cases they scale negatively. Furthermore, garbage collectors tend to consume a non-negligible amount
of total completion time of applications. This makes the problem of poor garbage collector scalability
a vital issue to be resolved.

On further analysis, two issues were identified as the root cause for the poor scalability of garbage
collectors. Firstly, high contention while synchronizing access to GC-internal shared data structures
was observed, specially in case of applications which are less memory intensive. This problem was
solved using standard parallel-programming techniques by replacing lock-based data structures with
their lock-free counterparts.

The second problem, and rather more complex one, is of NUMA-obliviousness in the way garbage
collectors process live objects. We identified that the applications naturally create clusters of objects
with few inter-cluster references. However, due to NUMA-obliviousness, Parallel Scavenge destroys
this naturally created clusters when it moves objects for promotion/compaction.

To solve the issue, we proposed NumaGiC, a mostly-distributed garbage collector. NumaGiC
strives to esnure that object-clusters which are created by the application threads are not destroyed. In
fact, it uses load-balancing as an opportunity to enhance size of the clusters, further reducing inter-
cluster references, and hence inter-node references.

In our evaluation, NumaGiC showed substantial improvement in GC’s performance, which in turn
leads to up-to 61% speedup in application performance with heap sizes that provide best performance.
Furthermore, our scalability analysis show thaat NumaGiC scales substantially better than other Paral-
lel Scavenge variants. Interestingly, NumaGiC’s scalability depends on the density of object clusters.
Applications with smaller clusters (high inter-node sharing, like Neo4j) leads to more messages to

60 Chapter 6 – Conclusion and Future Work

be sent/received and hence leaves less room for garbage collector to be scalable. On the other hand,
applications with dense clusters (and hence few inter-node references, like SPECjbb2005) scale much
better.

6.2 Future Work

Parallel Scavenge, a stop-the-world garbage collector, was chosen as our baseline because among the
three garbage collectors provided by Hotspot, Parallel Scavenge offered the best application through-
put. However, as the heap size requirements of applications are growing, the consequent increase in
garbage collection pauses are becoming intolerably large. Therefore concurrent garbage collectors are
fast replacing their stop-the-world counterparts. This raises certain questions:

1. Would the learnings of this dissertation of NUMA-effects on garbage collector apply to concur-
rent garbage collectors too?

2. If concurrent garbage collectors get adversely affected by NUMA-effects, then, considering
that concurrent garbage collectors do not block application threads’ progress1, does it matter if
a concurrent garbage collector does not perform efficiently on a NUMA machine?

3. If the answer to both the above questions is yes, then what needs to be done to make concurrent
garbage collectors perform efficiently on NUMA architecture? Would the ideas of NumaGiC
also apply to concurrent garbage collectors?

To shed some light on the importance of NUMA-awareness in concurrent garbage collectors, we
discuss two issues that would arise while using a NUMA-oblivious concurrent garbage collector on a
NUMA machine:

• Indeed concurrent garbage collectors do not block application threads’ progress directly. How-
ever in situations where before a garbage collection cylce could finish and return back free
space, if application threads run out of free space for object allocation, then they are forced to
block until the garbage collection cycle finishes. With the adverse effect of NUMA-architecture,
this cycle could take substantially longer to finish, and hence causing the situation described
above. Furthermore, since the completion time of a GC cycle is proportional to the amount of
live data to be processed, in case of memory-intensive applications using very large heaps, the
situation can arise easily.

• In case of stop-the-world garbage collectors, if the garbage collector does not perform effi-
ciently, the direct impact is only on its own performance. The application only gets indirectly
affected due to longer GC pauses. On the other hand, in case of concurrent garbage collectors,
since the GC threads work concurrently with application threads, they can severely affect the
application’s performance as well. For instance, if the GC threads create a lot of interconnect
traffic, in a concurrent setup, this could slowdown application threads, even if they are doing
very little inter-node access.

1Even if threads are blocked, the pause is not proportional to heap size (refer to chapter 2).

6.2 – Future Work 61

The above two issues, we believe, creates a strong case for designing a NUMA-aware concurrent
garbage collector. The design of NumaGiC is applicable to any parallel garbage collector which
moves objects. Therefore, we strong believe, that the ideas proposed in this dissertation would be
very useful for building a NUMA-aware concurrent garbage collector.

63

Résumé de la thèse

65

Les applications comme les moteurs de recherches [42], les bases de données [32], les applications
scientifiques, les serveurs d’applications et les serveurs web nécessitent l’utilisation de ressources
matérielles conséquentes. La quantité de données et/ou le nombre de requêtes à traiter amènent ces
applications à consommer tout le temps CPU, la mémoire et la bande passante disponible sur un
serveur, voir sur plusieurs serveurs.

Les langages basés sur une machine virtuelle (MREs), tels que Java et C#, sont de plus en plus
utilisés pour le développement de telles applications du fait de leur vitesse, leur portabilité et de la
sûreté de développement qu’ils permettent. L’améliorations de techniques comme la compilation à la
volée (JIT) ou le ramasse-miettes (GC) en ont fait des langages compétitifs, au même titre que d’autres
langages de programmation. Cependant, comme pour tout autre logiciel, il est essentiel, pour que les
applications soient efficaces, que le MRE et ses composants soient efficaces.

Un des goulots d’étranglement d’un MRE est le ramasse-miettes (GC). Un ramasse-miettes libère
la mémoire allouée aux objets morts (inatteignables), de manière à ce qu’elle puisse être utilisée pour
de nouvelles allocations. Pour repérer ces objets, il parcours entièrement le graphe d’objets, en partant
des variables globales et de celles sur la pile, appelées racines dans le contexte des ramasse-miettes.
Les objets inatteignables par le parcours de ce graphe le sont également pour l’application. Aussi
sont-ils considérés morts et leur mémoire peut être libérée. Le ramasse-miette s’assure également de
compacter le tas de manière à défragmenter la mémoire, en déplaçant tous les objets vivants vers une
nouvelle partie du tas.

Le coût d’un cycle de ramasse-miettes2 dépend de la quantité d’objets vivants traités, qui elle,
dépend de la quantité de mémoire nécessaire à l’application. Puisque la plupart des applications consi-
dérées sont intensives en mémoire, le ramasse-miettes constitue une dépense de temps considérable,
aussi sa performance est-elle critique. Cette thèse a pour objet la performance du ramasse-miettes
pour ces applications sur les architectures matérielles actuelles.

A la différence des Symmetric Multi-Processors (SMP), dotées d’une architecture avec des la-
tences d’accès uniformes entre les différents matériels, les architectures multi-coeur actuelles, appe-
lées cache-coherent Non-Uniform Memory Access (cc-NUMA) ont une structure hiérarchique. Le
premier niveau est composé de noeuds, chacun composé de plusieurs coeurs, d’un cache partagé, d’au
moins un contrôlleur mémoire responsable d’un ensemble de modules mémoire, ainsi que d’un bus
système qui relie tous ces composants. Au niveau supérieur se trouve un réseau qui inter-connecte
ces noeuds pour permettre la communication inter-noeuds. De cette manière, le matériel masque
la topologie mémoire au logiciel, de manière à assurer la rétro-compatibilité avec les applications
multi-threadées qui fonctionnent en mémoire partagée. Sur ces architectures, les latences d’accès à la
mémoire locale au noeud est bien plus faible que pour un accès à la mémoire d’un noeud distant.

Il existe plusieurs ramasse-miettes parallèles qui exploitent la multiplicité des processeurs [12,
15, 16, 35, 48, 52]. Cependant, ils ont été développés durant l’ère des multiprocesseurs symétriques
(SMP). En conséquence, l’impact du passage de la conception des architectures SMP aux architectures
cc-NUMA sur les performances du ramasse-miette restent à déterminer. Dans cette thèse, j’ai pour
but de trouver des réponses à ces questions. Plus précisément, je souhaite répondre aux questions
suivantes :

1. Lors de l’utilisation des ramasse-miettes existants sur des architectures cc-NUMA, comment
sont impacté leur performances ?

2 Un cycle de ramassage est une itération du ramasse-miettes parmis toutes les itérations déclenchées pendant l’exécution
de l’application.

66

2. Si les ramasse-miettes existants échouent à passer à l’échelle sur des architectures modernes,
où se trouve le goulot d’étranglement ?

3. Est-ce que ces ramasse-miettes existants peuvent être modifiés pour éviter ces goulot d’étran-
glement ? Qu’est-ce que serait un ramasse-miette idéal pour une architecture NUMA ?

Un large spectre d’applications réelles et de benchmarks sont évalués pour déterminer si les
ramasse-miettes continuent à améliorer leur performances avec chaque avancement matériel. Le ramasse-
miette de la JVM, HotSpot, est très utilisé, et fais parti du kit de développement java OpenJDK. Les
expériences sont effectuées sur une machine AMD de 48 cœurs répartis sur 8 nœuds. Cependant,
l’évolution du matériel est émulé en effectuant des expériences sur un nombre de CPU qui varie de 1
à 48, avec un incrément fixe à chaque étape. Les résultats montrent que au delà d’un certain nombre
de cœurs, le débit du ramasse-miette, soit le montant de donnée vivantes traitées par unité de temps,
continue de diminuer avec un nombre de cœurs qui augmente. Deux sources d’inefficacités ont été
identifiées expérimentalement : des cœurs oisifs et un trafic inter-nœuds excessif.

Les cœurs oisifs Puisque les ramasse-miettes parallèles ont été développés à l’ère des multiproces-
seurs, leurs structures de données internes utilisent des primitives de synchronisation qui passent à
l’échelle pour quelques fils d’exécutions, mais qui impactent très négativement le passage à l’échelle
quand un grand nombre de fils d’exécutions ramasse-miette sont utilisés, ce qui est le cas sur du ma-
tériel moderne avec un grand nombre de cœurs. Aujourd’hui les fils d’exécutions de ramasse-miette
passent un temps extrêmement important à se synchroniser et très peu de temps à faire des opérations
sur les structures de données. Le problème à été résolu en remplaçant les structures de données in-
ternes au ramasse-miette par des structures de données efficaces et sans verrous. Utiliser ces structures
a amélioré le passage à l’échelle durant l’exécution des collections parallèles. Un autre problème relié
à la synchronisation vient avec le réveil et la suspension des fils d’exécutions du ramasse-miette au
début et à la fin des phases parallèles du ramasse-miette. Pour résoudre ce problème, le code de gestion
des fils d’exécutions est simplifié pour assurer que le réveil et la suspension des fils d’exécutions est
fait avec un minimum de synchronisation. Ensemble, ces deux solutions ont complètement retiré l’at-
tente explicite des fils d’exécutions du ramasse-miette pendant la phase parallèle du ramasse-miette,
rendant cette phase sans verrou [20].

Trafic inter-nœud excessif. Les expériences révèlent qu’un nombre substantiellement haut d’ac-
cès distants inter-nœud sont effectués pendant une collection du ramasse-miette. Les deux raisons
suivantes sont identifiées comme principales causes :

1. Accès mémoire non local : Le matériel cc-NUMA cache la nature distribuée de la mémoire à
l’application. Ainsi l’application crée sans le savoir des références inter-nœud quand elle stocke
une référence à un objet localisé sur un nœud donné dans la mémoire d’un autre nœud. À son
tour, quand un fil d’exécution ramasse-miette traverse le graphe d’objet, il traverse silencieu-
sement des références inter-nœud et ainsi traite des objets pouvant provenir de n’importe quel
nœud. En conséquence, les fils d’exécution ramasse-miette accèdent souvent à la mémoire dis-
tante, ce qui cause un trafic inter-nœud important et ralenti les accès mémoires.

2. Accès mémoire déséquilibrés :
Lorsque la mémoire physique associée au tas de l’objet est allouée depuis quelques nœuds mais
est accédée par des threads s’exécutant sur chacun d’eux, cela sature le(s) contrôleur(s) mémoire

67

de ces nœuds, ce qui limite fortement le passage a l’échelle. Ce problème est rencontré par les
threads du GC car ils sont déployés sur tous les nœuds. Ce problème se pose en raison d’un
comportement habituel des applications, où l’application a une phase d’initialisation en série.
Cette phase force une majorité des pages physiques (qui correspondent au tas) à être allouées
uniquement depuis quelques nœuds, où le(s) threads d’initialisation s’exécutent. Par ailleurs,
puisque le même tas est utilisé après chaque cycle de ramasse miettes (GC), le problème se
pose à chaque ramassage.

Pour surmonter ces problèmes, nous proposons NumaGiC [21]. D’abord, NumaGiC règle le pro-
blème des accès mémoire non-locaux en utilisant une conception essentiellement distribuée. À la base
de NumaGiC, nous observons que le problème des accès mémoire non-locaux peuvent être résolus
en s’assurant qu’un thread GC traite uniquement les objets présents dans la mémoire de son noœud.
Lorsqu’un thread GC découvre un objet présent dans un nœud différent, il pourrait notifier le thread
GC présent sur le nœud qui héberge l’objet, qui continue le scan localement. Cependant, appliquer
strictement cette solution dégrade le parallélisme, puisqu’un thread GC reste inactif tant qu’il n’a
pas d’objet locaux à récupérer, attendant que des threads GC d’autres nœuds atteignent des objet(s)
présents sur son propre nœud. Ainsi, NumaGiC est conçu pour viser la localité des accès mémoire
pendant le ramassage, sans dégrader le parallélisme du GC, en permettant à chaque thread GC de
passer entre deux modes d’exécution. Un thread GC commence en mode local, dans lequel le GC se
concentre sur la localité des accès mémoire. Dans ce mode, le thread GC suit strictement la contrainte
décrite précédemment. Lorsqu’un thread GC n’a plus d’objets locaux à traiter, il entre en mode vol. Ce
mode se concentre sur le parallélisme et permet à un thread GC de “voler” des références à des pro-
cessus depuis d’autres nœuds, et d’accéder à ces référence par lui même, même si elles sont distantes.
Un thread GC en mode vol peut régulièrement revenir en mode local pour vérifier si de nouvelles
références locales sont disponibles, soit envoyées par un autre thread, soit découvertes en scannant
une référence volée.

Ensuite, pour résoudre le problème des accès mémoire déséquilibrés, mais aussi pour préparer
le tas au design essentiellement distribué, NumaGiC inclut un ensemble de politiques de placement
adaptées au architectures NUMA. Ces politiques permettent d’abord que le GC équilibre les accès
mémoire entre les nœuds, ce qui permet de résoudre le problème des accès mémoire déséquilibrés.
Ceci permet de faire en sorte que chaque nœud contribue à l’utilisation de la mémoire, mais aussi de
répartir le travail entre tous les threads GC. Les politiques permettent aussi de minimiser le nombre de
références inter-nœuds. Puisqu’envoyer une référence est plus coûteux que d’accéder à distance l’objet
correspondant, envoyer une référence est bénéfique uniquement si, en moyenne, l’objet référencé
référence plusieurs autres objets sur son propre nœud. Dans ce cas, le coût de l’envoi d’une référence
est amorti par la localité des accès mémoire du thread GC receveur.

NumaGiC est implémenté dans Hotspot, la machine virtuelle Java d’OpenJDK 7. Il cible les ap-
plications ayant de longues phases de calculs sur de larges ensembles de données pour lesquelles
un ramasse-miettes bloquant "stop-the-world" orienté débit n’est pas approprié3. NumaGiC est basé
sur Parallel Scavenge, le ramasse-miettes par défaut orienté débit de Hotspot. Les expérimentations
comparent NumaGiC avec Parallel Scavenge. NumaGiC est évalué sur deux applications big-data lar-
gement utilisées, Spark [42] et Neo4j [32], avec une taille du tas Java allant de 110 GB à 350 GB. Nous
évaluons également deux benchmarks de niveau industriel, SPECjbb2013 [44] et SPECjbb2005 [43],

3 Un ramasse-miettes bloquant suspend l’application pendant la collection des objets afin d’éviter les accès concurrents
au tas. Un ramasse-miettes bloquant est l’opposé d’un ramasse-miettes concurrent [25] qui favorise le temps de réponse aux
dépens du débit car il requiert une synchronisation à grain-fin entre l’application et le ramasse-miettes.

68

ainsi que les benchmarks DaCapo 9.12 et SPECjvm2008. Les expérimentations ont été effectuées sur
un serveur AMD de 48 cœurs et 8 noeuds ayant 256 GB de mémoire vive, ainsi que sur un serveur In-
tel Xeon E7 hyper-threadé de 40 cœurs avec 2 unités d’exécution par cœur, 4 noeuds et ayant 512 GB
de mémoire vive. L’évaluation montre que :

• Sur les applications avec un tas de taille importante, NumaGiC améliore toujours les perfor-
mances générales sur les deux machines. Avec la taille de tas permettant d’avoir les meilleures
performances possibles avec les deux ramasse-miettes évaluées, NumaGiC améliore les perfor-
mances générales des applications de 12% à 62% par rapport à Parrallel Scavenge. Ce résul-
tat montre qu’une conception essentiellement répartie augmente considérablement les perfor-
mances des applications avec un tas de taille importante sur des architectures NUMA, et semble
améliorer les performances indépendamment de l’architecture.

• NumaGiC passe correctement à l’échelle par rapport au nombre de nœuds. Pour une taille de tas
constant, le débit du ramasse-miette i.e, le nombre d’octets traités par unité de temps, augmente
avec le nombre de nœuds. Par rapport à Parrallel Scavenge, NumaGiC ne dégrade jamais les
performances.

• Sur les applications avec un tas de taille importante avec la taille la plus efficace pour tous les
ramasse-miettes, NumaGiC augmente le débit de collection sur les deux machines de 2.2–5.2×,
comparé à Parallel Scavenge.

• Sur les 33 applications de DaCapo 9.12 et SPECjbb2008 avec des plus petites charges de travail,
NumaGiC augmente considérablement les performances de 19 applications de plus de 5%, et
dégrade les performances d’une seule application de plus de 5% (de 8%). Ce résultat montre
qu’une conception principalement répartie est presque toujours bénéfique et statistiquement
bénéfique pour 50% des applications avec des charges de travail moderées.

Organisation du document. La thèse est structurée de la manière suivante :

• Le Chapitre 2 donne le contexte et les informations requis pour comprendre cette recherche. Il
inclut des explications détaillées des architectures NUMA actuelles et du ramasse-miettes Pa-
rallel Scavenge qui est le point de comparaison de notre travail. Ce chapitre présente également
l’état de l’art du domaine de cette recherche.

• Le chapitre 3 établie notre problématique. Nous présentons notre évaluation du passage à
l’échelle de tous les ramasse-miettes d’OpenJdk7. Il présente aussi les goulots d’étranglement
que nous avons identifiés dans le passage à l’échelle des ramasse-miettes.

• Le chapitre 4 présente notre solution au problème de cœurs oisifs durant une collection du
ramasse-miette. Ce chapitre évalue notre solution sur des benchmarks réels.

• Le chapitre 5 présente NumaGiC, un ramasse-miette distribué que nous avons développé pour
résoudre le problème de trafic inter nœud excessif. Il compare aussi les performances de Numa-
GiC avec le ramasse-miette de base sur un grand nombre d’applications.

• Finalement, le chapitre 6 conclue la thèse et discute des futures directions de recherche.

69

Bibliography

[1] T. A. Anderson. Optimizations in a private nursery-based garbage collector. In proceedings
of International Symposium on Memory Management ’10, pages 21–30. ACM, 2010.

[2] J. Appavoo, M. Auslander, M. Butrico, D. M. da Silva, O. Krieger, M. F. Mergen, M. Ostrowski,
B. Rosenburg, R. W. Wisniewski, and J. Xenidis. Experience with k42, an open-source, linux-
compatible, scalable operating-system kernel. IBM Syst. J., 44(2):427–440, Jan. 2005. ISSN
0018-8670. doi: 10.1147/sj.442.0427. URL http://dx.doi.org/10.1147/sj.442.0427.

[3] A. W. Appel. Simple generational garbage collection and fast allocation. Software-Practice &
Experience, 19(2):171–183, 1989.

[4] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach,
and A. Singhania. The multikernel: a new OS architecture for scalable multicore systems. In
proceedings of Symposium on Operating Systems Principles ’09, pages 29–44. ACM, 2009.

[5] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley, R. Bentzur, A. Diwan,
D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann. The
DaCapo benchmarks: Java benchmarking development and analysis. In proceedings of Object-
Oriented Programming, Systems, Languages & Applications ’06, pages 169–190. ACM, 2006.

[6] S. Borkar. Thousand core chips: A technology perspective. In Proceedings of the 44th Annual
Design Automation Conference, DAC ’07, pages 746–749, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-627-1. doi: 10.1145/1278480.1278667. URL http://doi.acm.org/10.1145/
1278480.1278667.

[7] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris, A. Pesterev, L. Stein,
M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey: An operating system for many cores. In
Proceedings of the 8th USENIX Conference on Operating Systems Design and Implementation,
OSDI’08, pages 43–57, Berkeley, CA, USA, 2008. USENIX Association. URL http://dl.acm.
org/citation.cfm?id=1855741.1855745.

[8] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek, R. Morris, and N. Zel-
dovich. An analysis of linux scalability to many cores. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, OSDI’10, pages 1–8, Berke-
ley, CA, USA, 2010. USENIX Association. URL http://dl.acm.org/citation.cfm?id=1924943.
1924944.

70 BIBLIOGRAPHY

[9] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed
systems. Transactions On Computer Systems, 3(1):63–75, 1985.

[10] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes. Cache hierarchy and
memory subsystem of the amd opteron processor. IEEE Micro, 30(2):16–29, 2010.

[11] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers, V. Quema, and M. Roth.
Traffic management: A holistic approach to memory placement on NUMA systems. In proceed-
ings of Architectural Support for Programming Language and Operating Systems ’13, pages
381–394. ACM, 2013.

[12] D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-first garbage collection. In proceedings
of International Symposium on Memory Management ’04, pages 37–48. ACM, 2004.

[13] D. Dice, M. Moir, and W. Scherer. Quickly reacquirable locks, Oct. 12 2010. URL http:
//www.google.com/patents/US7814488. US Patent 7,814,488.

[14] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. On-the-fly
garbage collection: an exercise in cooperation. Communications of ACM, 21(11):966–975, 1978.

[15] D. Doligez and X. Leroy. A concurrent, generational garbage collector for a multithreaded im-
plementation of ml. In proceedings of Symposium on Principles of Programming Languages ’93,
pages 113–123. ACM, 1993.

[16] C. H. Flood, D. Detlefs, N. Shavit, and X. Zhang. Parallel garbage collection for shared memory
multiprocessors. In proceedings of Java Virtual Machine Research and Technology Sympo-
sium ’01, pages 21–21. USENIX Association, 2001.

[17] H. Franke and R. Russell M. K. Fuss, futexes and furwocks: Fast userlevel locking in Linux. In
proceedings of Ottawa Linux Symposium, OLS ’02, pages 479–495, 2002.

[18] Friendster. SNAP: network datasets: Friendster social network. http://snap.stanford.edu/data/
com-Friendster.html, 2014.

[19] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado: Maximizing locality and concur-
rency in a shared memory multiprocessor operating system. In Proceedings of the Third Sym-
posium on Operating Systems Design and Implementation, OSDI ’99, pages 87–100, Berkeley,
CA, USA, 1999. USENIX Association. ISBN 1-880446-39-1. URL http://dl.acm.org/citation.
cfm?id=296806.296814.

[20] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. A study of the scalability of stop-the-world
garbage collectors on multicores. In proceedings of Architectural Support for Programming
Language and Operating Systems ’13, pages 229–240. ACM, 2013.

[21] L. Gidra, G. Thomas, J. Sopena, M. Shapiro, and N. Nguyen. Numagic: A garbage collector
for big data on big numa machines. In proceedings of Architectural Support for Programming
Language and Operating Systems ’15, pages 661–673. ACM, 2015.

[22] H2. H2 database engine. http://www.h2database.com/, 2014.

[23] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, 2008.

BIBLIOGRAPHY 71

[24] R. L. Hudson and J. E. B. Moss. Sapphire: Copying gc without stopping the world. In Pro-
ceedings of the 2001 Joint ACM-ISCOPE Conference on Java Grande, JGI ’01, pages 48–57,
New York, NY, USA, 2001. ACM. ISBN 1-58113-359-6. doi: 10.1145/376656.376810. URL
http://doi.acm.org/10.1145/376656.376810.

[25] R. Jones, A. Hosking, and E. Moss. The garbage collection handbook: the art of automatic
memory management. Chapman & Hall/CRC, 1st edition, 2011.

[26] H. Kermany and E. Petrank. The compressor: Concurrent, incremental, and parallel compaction.
In Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’06, pages 354–363, New York, NY, USA, 2006. ACM. ISBN 1-
59593-320-4. doi: 10.1145/1133981.1134023. URL http://doi.acm.org/10.1145/1133981.
1134023.

[27] H. Lieberman and C. Hewitt. A real-time garbage collector based on the lifetimes of objects.
Communications of ACM, 26(6):419–429, 1983.

[28] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller. Remote core locking: migrating
critical-section execution to improve the performance of multithreaded applications. In proceed-
ings of USENIX Annual Technical Conference ’12, pages 65–76. USENIX Association, 2012.

[29] S. Marlow and S. Peyton Jones. Multicore garbage collection with local heaps. In proceedings
of International Symposium on Memory Management ’11, pages 21–32. ACM, 2011.

[30] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal,
N. Borkar, G. Ruhl, and S. Dighe. The 48-core scc processor: The programmer’s view. In
Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pages 1–11, Washington, DC, USA, 2010. IEEE
Computer Society. ISBN 978-1-4244-7559-9. doi: 10.1109/SC.2010.53. URL http://dx.doi.
org/10.1109/SC.2010.53.

[31] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and blocking concurrent
queue algorithms. In proceedings of Principles of Distributed Computing ’96, pages 267–275.
ACM, 1996.

[32] Neo4j. Neo4j – the world’s leading graph database. http://www.neo4j.org, 2014.

[33] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and G. Hunt. Helios: Heterogeneous
multiprocessing with satellite kernels. In Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles, SOSP ’09, pages 221–234, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-752-3. doi: 10.1145/1629575.1629597. URL http://doi.acm.org/10.1145/
1629575.1629597.

[34] T. Ogasawara. NUMA-aware memory manager with dominant-thread-based copying GC. In
proceedings of Object-Oriented Programming, Systems, Languages & Applications ’09, pages
377–390. ACM, 2009.

[35] OpenJDK Memory. Memory management in the Java HotSpotTM virtual machine. Technical
report, Sun Microsystems, 2006.

72 BIBLIOGRAPHY

[36] F. Pizlo, D. Frampton, E. Petrank, and B. Steensgaard. Stopless: a real-time garbage collector
for multiprocessors. In proceedings of International Symposium on Memory Management ’07,
pages 159–172. ACM, 2007.

[37] F. Pizlo, L. Ziarek, P. Maj, A. L. Hosking, E. Blanton, and J. Vitek. Schism: fragmentation-
tolerant real-time garbage collection. In proceedings of Programming Language Design and
Implementation ’10, pages 146–159. ACM, 2010.

[38] C. G. Ritson, T. Ugawa, and R. E. Jones. Exploring garbage collection with haswell hard-
ware transactional memory. In Proceedings of the 2014 International Symposium on Memory
Management, ISMM ’14, pages 105–115, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2921-7. doi: 10.1145/2602988.2602992. URL http://doi.acm.org/10.1145/2602988.
2602992.

[39] K. Sivaramakrishnan, L. Ziarek, and S. Jagannathan. Eliminating read barriers through procrasti-
nation and cleanliness. In proceedings of International Symposium on Memory Management ’12,
pages 49–60. ACM, 2012.

[40] P. Sobalvarro. A lifetime-based garbage collector for LISP systems on general-purpose comput-
ers. Technical report, Cambridge, MA, USA, 1988.

[41] X. Song, H. Chen, R. Chen, Y. Wang, and B. Zang. A case for scaling applications to many-core
with OS clustering. In proceedings of EuroSys ’11, pages 61–76. ACM, 2011.

[42] Spark. Apache Spark– lightning-fast cluster computing. http://spark.apache.org, 2014.

[43] SPECjbb2005. SPECjbb2005 home page. http://www.spec.org/jbb2005/, 2014.

[44] SPECjbb2013. SPECjbb2013 home page. http://www.spec.org/jbb2013/, 2014.

[45] I. Stanton and G. Kliot. Streaming graph partitioning for large distributed graphs. In proceedings
of Knowledge Discovery and Data Mining ’12, pages 1222–1230. ACM, 2012.

[46] G. L. Steele, Jr. Multiprocessing compactifying garbage collection. Communications of ACM,
18(9):495–508, 1975.

[47] B. Steensgaard. Thread-specific heaps for multi-threaded programs. In proceedings of Interna-
tional Symposium on Memory Management ’00, pages 18–24. ACM, 2000.

[48] G. Tene, B. Iyengar, and M. Wolf. C4: the continuously concurrent compacting collector. In pro-
ceedings of International Symposium on Memory Management ’11, pages 79–88. ACM, 2011.

[49] M. M. Tikir and J. K. Hollingsworth. NUMA-aware Java heaps for server applications. In
proceedings of International Parallel & Distributed Processing Symposium ’05, pages 108–117.
IEEE Computer Society, 2005.

[50] D. Ungar. Generation scavenging: A non-disruptive high performance storage reclamation al-
gorithm. In proceedings of SIGSOFT/SIGPLAN software engineering symposium on Practical
software development environments ’84, pages 157–167. ACM, 1984.

[51] P. R. Wilson and T. G. Moher. A "card-marking" scheme for controlling intergenerational refer-
ences in generation-based garbage collection on stock hardware. SIGPLAN Notice, 24(5):87–92,
1989.

BIBLIOGRAPHY 73

[52] J. Zhou and B. Demsky. Memory management for many-core processors with software con-
figurable locality policies. In proceedings of International Symposium on Memory Manage-
ment ’12, pages 3–14. ACM, 2012.

