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Abstract

In this thesis, we study the concept of free pre-Lie algelereegated by a (non-empty) set.
We review the construction by A. Agrachev and R. Gamkrel{di®f monomial bases in free
pre-Lie algebras. We describe the matrix of the monomialkbaectors in terms of the rooted
trees basis exhibited by F. Chapoton and M. Livernelldj.[ Also, we show that this matrix
is unipotent and we find an explicit expression for itsfogents, adapting a procedure imple-
mented for the free magmatic algebra by K. Ebrahimi-Fard Bniflanchon. We construct a
pre-Lie structure on the free Lie algehf{E) generated by a s&, giving an explicit presen-
tation of £(E) as the quotient of the free pre-Lie algelsf&, generated by the (non-planar)
E-decorated rooted trees, by some ideaWe study the Groébner bases for free Lie algebras
in tree version. We split the basis Bf decorated planar rooted trees into two p&f(d) and
T(J), whereJ is the ideal definingC(E) as a quotient of the free magmatic algebra generated
by E. HereT(J) is the set of maximal terms of elementsghfand its complemer®(J) then
defines a basis af (E). We get one of the important results in this thesis (Thedgeld), on
the description of the s€d(J) in terms of trees. We describe monomial bases for the pee-Li
(respectively free Lie) algebrg(E), using the procedure of Grébner bases and the monomial
basis for the free pre-Lie algebra obtained in Chdgter 2alinwe study the so-called classical
and pre-Lie Magnus expansions, discussing how we can finduasien for the pre-Lie case
which already incorporates the pre-Lie identity. We giveebinatorial vision of a numerical
method proposed by S. Blanes, F. Casas, and J. Rd}§ o a writing of the classical Magnus
expansion inL(E), using the pre-Lie structure.
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Résumé

Dans cette thése, nous étudions le concept d’algebre pribké engendrée par un ensem-
ble (non-vide). Nous rappelons la construction par A. Ageacet R. Gamkrelidz€l] des bases
de mondmes dans les algebres pré-Lie libres. Nous déchi@anatrice des vecteurs d’'une base
de mondmes en termes de la base d’arbres enracinés exposéedpapoton et M. Livernet
[14]. Nous montrons que cette matrice est unipotente et traiMar expression explicite pour
les codficients de cette matrice, en adaptant une procédure sugugrée Ebrahimi-Fard et
D. Manchon pour I'algebre magmatique libre. Nous constmssune structure d’algebre pre-
Lie sur I'algebre de Lie libre£(E) engendrée par un ensemlife donnant une présentation
explicite de£(E) comme quotient de I'algébre pré-Lie lib7e, engendrée par les arbres en-
racinés (non-planairegj-decorés, par un certain idédal Nous étudions les bases de Grobner
pour les algebres de Lie libres dans une présentation aeld@rbres. Nous décomposons
la base d’arbres enracinés planaikesiécorés en deux parti€¥J) et T(J), ou J est l'idéal
définissant£(E) comme quotient de I'algébre magmatique libre engendré& pki, T(J) est
'ensemble des termes maximaux des élément$ @ son complémerd(J) définit alors une
base def(E). Nous obtenons un des résultats importants de cette theéeremé 3.712) sur la
description de 'ensembl®(J) en termes d’arbres. Nous décrivons des bases de mondnres pou
I'algebre pré-Lie (respectivement l'algebre de Lie lib&)E), en utilisant les procédures de
bases de Grobner et la base de monémes pour I'algébre ptibe@btenue dans le Chapitre
[2. Enfin, nous étudions les développements de Magnus alessigré-Lie, discutant comment
nous pouvons trouver une formule de récurrence pour le ékiprqui integre déja I'identité
pré-Lie. Nous donnons une vision combinatoire d’'une méhmameérique proposée par S.
Blanes, F. Casas, et J. Ros dads §ur une écriture du développement de Magnus classique,
utilisant la structure pré-Lie d&(E).
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Introduction en Francais

Les structures d’algébre pré-Lie apparaissent dans deaidesdivers des mathématiques :
la géométrie diérentielle la théorie quantique des champes équations diérentiellesElles
ont été étudiées intensivement récemment; nous nous m&fé.g. aux articles de survol :
[10,[12]39. Les algébres pré-Lie libres avaient déja été étudiéed98% par A. Agrachev et
R. V. Gamkrelidze dans leur travail conjoinChronological algebras and nonstationary vector
fields' [[1], et aussi par D. Segal dardg]. En particulier, ces deux articles donnent une con-
struction de bases de mondmes, avec des approdii@sedies. En outre, les arbres enracinés
sont un sujet classique, étroitement lié aux algebres éHs apparaissent par exemple dans
I'étudedes champs de vectels3], 'analyse numériqufg], et plus récemment dars théorie
quantique des chamfj6]. Des bases pour les algebres pré-Lie libres en termesrdsadn-
racinés ont été introduites par F. Chapoton et M. Livernesd®], utlisant le point de vue des
opérades. A. Dzhumadil’Daev et C. Léfwall ont décrit indéga@mment deux bases pour des
algébres pré-Lie libres, une base utilisant le conceptbdéar enracinés, et I'autre obtenue en
considérant une base pour I'algébre (non-associative) fitbdulo la relation pré-Li¢lf).

Cette thése consiste en quatre chapitres principaux. Lpiteéld est un chapitre prélimi-
naire qui contient, & son tour, quatre sections, dans l#segueus rappelons certaines notions
importantes dont nous avons besoin dans cette these : Esr@tgmagmatiques libres, les ar-
bres enracinés, les algeébres de Lie, les algebres préekibalses de Grobner, .

Le Chapitré 2 est une version généralisée de notre travasl agiaarticle publié au Séminaire
Lotharingien de Combinatoir2]. Le contenu de ce chapitre est détaillé dans son introglucti
Dans ce chapitre, nous décrivons une meéthode explicite fpouver des bases de mondémes
convenables pour les algebres pré-Lie libres avec plusggmérateurs, utilisant le travail con-
joint [1] de A. Agrachev et R. Gamkrelidze, I'articlg][s’en tenant au cas d’un seul générateur.

Rappelons que I'éspace® engendré par les arbres enracinés (non-planaires) déuarés
un ensembleéE forme avec I'opération de gffe "—" I'algébre pré-Lie libre engendrée par
E [14,[19. Un monbme dans l'algébre pré-Lie libre engendréepast un mot parenthésé
constitué des générateyks: a € E} et I'opération de grée pré-Lie "— ", par exemple, dans
le cas avec un seul générateur :



2 INTRODUCTION EN FRANCAIS

(6> 0> (e (6> 9)=] > (e

_ o (vl

ERRAEILO

Nous sommes intéressés en particulier a des bases de momdenasus appellerons "bases
arborescentes”. A chaque mondme nous pouvons associegrame"t’énergie minimale" en
remplacant 'opération de gifte ” — ” par le produit de Butchers%". Une base de monémes de
7E sera appelée une "base arborescente" si les termes d&n@rimale de chague mondéme
redonnent la base d’arbres de Chapoton-Livernef e Nous montrons que les bases ar-
borescentes sont en correspondance biunivoque avec lestche S(t) d’ un représentant
planaire pour chaque arbte Nous donnons une expression explicite pour lesfments de
ces mon6mes dans la base d’arbres enracinés, présentant@matrice carrées(s, t)] S 1eTE
pour chaque degné > 0, utilisant un travail de K. Ebrahimi-Fard et D. Manchonrfrpubli€)
rappelé dans Sectién 2.1. Ici nous allons supposer que elggnérateur est de degré 1, sauf
dans les Paragraphes 2]2.[ et 2.2.2.

Le Chapitre B contient trois sections principales. Danshapitre, nous considérons a la
fois I'algébre pré-Lie libre7E, — ) et 'algébre de Lie librg £(E),[-,-]) engendrées par un
ensemble :

E=EUBE,UEz3L---,

ou chaqueE; est un ensemble fini de générateurs de dggrié s’avere que l'algebre de Lie
libre £(E) posséde une structure pré-Lie naturelle. Ce résultatleegtte nouveau (rappelons
que si n'importe quelle algébre pré-Lie induit une struetde Lie correspondante par anti-
symeétrisation du produit pré-Lie, I'inverse est raremenat Y10]). Nous donnons une présen-
tation explicite de£(E) comme le quotien7 5/I, ou | est l'idéal de7 E engendré par des
“relations d’anti-symétrie pondérée" :

|I9s >t + tjt — s.

Nous rappelons le travail de T. Moid]]] sur les bases de Grobner, et nous I'adaptons a un con-
texte non-associatif magmatique, en suivdg}.[ Dans ce chapitre, nous décrivons des bases de
mondmes pour l'algébre pré-Lie (respectivement de Lie)ifi(E), utilisant les procédures de
bases de Grébner et notre travail du Chapilre 2, sur la bas®démes pour I'algébre pré-Lie
libre 7°E.



INTRODUCTION EN FRANCAIS 3

Le Chapitré # est détaillé dans son introduction et se comgesjuatre sections. Il est con-
sacré au développement de Magnus, un outil important pesoud¥e I'équation dierentielle
linéaire bien connue :

0 = Sy(0) = ay(). y(0) = 1

De nombreux travaux ont été dédiés a I'écriture du dévelogoe de Magnus classique
en terme de structures algebriques et combinatoires : débds de Rota-Baxter, les algebres
dendriformes, les algebres pré-Lie,, voir par exemplelZ2Q,[21,/1%. Nous étudions ici une
généralisation de ce dernier appelé le développement daldggeé-Lie, et nous donnons une
étude breve sur ce développement dans ce chapitre. Un cddagermes du développement de
Magnus classique et pré-Lie utilisant les arbres binail@sgires a été proposé par A. Iserles et
S. P. Nosett B(Q]. K. Ebrahimi-Fard et D. Manchon ont proposé un autre cogegedes arbres
enracinés planaire2]]. Certaines tentatives ont été faites pour réduire le nendertermes
de ce développement : nous discutons cette réduction dsuSeltion§ 412, 4.3 en utilisant le
codage de K. Ebrahimi-Fard avec D. Manch@f]] [21], et un travail de F. Chapoton avec F.
Patras(15].

La formule introduite par F. Chapoton et F. Patras dans lewatl [15] sur I'écriture du
développement de Magnus pré-Lie, utilisant 'algébre desGman-Larson, attire notre atten-
tion. Nous étudions cette formule brievement dans les @e#d.2[ 4.3, et nous comparons ses
termes avec d’autres termes du développement de Magnlisgooétenu par K. Ebrahimi-Fard
et D. Manchon dans leur travaR]]. Nous observons que cette formule est optimale jusqu’au
degré 5, en ce qui concerne le nombre de termes du développdenklagnus pré-Lie.

Dans la derniére section du Chapltte 4, nous regardons ajimement de Magnus pré-
Lie dans I'algebre de Lie libr&£(E). Les relations d’anti-symétrie pondérée conduisent a une
réduction supplémentaire du nombre de termes. Le cas ylétic’'un seul générateur dans
chaque degré est étroitement lié au travail de S. Blanesasa<Cet J. Ro&l. Nous donnons
une version combinatoire du travail de les trois auteursant notre travail du Chapittd 3, sur
la base de monémes d’algébre de Lie lifE).






CHAPTER O

Introduction

Pre-Lie algebra structures appear in various domains dienaatics.differential geometry
quantum field theorydifferential equationsThey have been studied intensively recently; we
refer e.g. to the survey paperdQ[12)39. Free pre-Lie algebras had already been studied as
early as 1981 by A. Agrachev and R. V. Gamkrelidze in them@vork "Chronological alge-
bras and nonstationary vector fieldig], and also by D. Segal iiff]. In particular, both papers
give a construction of monomial bases, witlffelient approaches. Besides, rooted trees are a
classical topic, closely connected to pre-Lie algebrasyTdppeared for example in the study
of vector fields[13], numerical analysi§8], and more recently imuantum field theor{16].
Bases for free pre-Lie algebras in terms of rooted trees wén@luced by F. Chapoton and M.
Livernet in [14], using the point of view of operads. A. Dzhumadil'Daev andLGfwall de-
scribed independently two bases for free pre-Lie algelorasusing the concept of rooted trees,
and the other obtained by considering a basis for the free-&ssociative) algebra modulo the
pre-Lie relation[L9].

This thesis consists in four main chapters. Chdgter 1 islanprary chapter that contains,
in turn, four sections, in which we recall some importani¢sghat we need in this thesis: free
magmatic algebras, rooted trees, Lie algebras, pre-Lebadg, Grobner bases and others.

ChaptefR is a generalized version of our work in a publistampin Séminaire Lotharingien
de Combinatoired]. The contents of this chapter are detailed in its introaunctin this chapter,
we describe an explicit method for finding suitable monorbesdes for free pre-Lie algebras
with several generators, using the joint woik ¢f A. Agrachev and R. Gamkrelidze, the paper
[2] sticking to the single generator case.

Recall that the spacgF® spanned by (non-planar) rooted trees decorated by B fmims
with the grafting operation = " the free pre-Lie algebra generatedBy14,/19. A monomial
in the free pre-Lie algebra generatedbys a parenthesized word built up from the generators
{3 : a € E} and the pre-Lie grafting operation> ”, for example, in the single generator case:
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We are interested in particular monomial bases which wiltadked "tree-grounded”. To
each monomial we can associate a "lower-energy term" byacam the grafting operation
"—" by the Butcher productss”. A monomial basis of & will be called "tree-grounded" if
the lower-energy terms of each monomial give back the Clumpbivernet tree basis of E.
We show that tree-grounded monomial bases are in one-t@a@mespondence with choices
t — S(t) of a planar representative for each tteeWe give an explicit expression for the
codficients of these monomials in the basis of rooted trees, tkhibieng a square matrix
|[,6’5(s,t)]|51t€75E for each degree > 0, using the joint work of K. Ebrahimi-Fard and D. Man-
chon (unpublished) reviewed in Sectionl2.1. Here we willmge that each generator is of
degree 1, except in Paragraphs 2.2.1[and]2.2.2.

ChaptefB contains three main sections. In this chapter,omsider both the free pre-Lie
algebra 7 E, — ) and the free Lie algebra’(E), [, -]) generated by a set:

E=EUBEUEzU---,

where eaclE; is a finite set of generators of degrgelt turns out that the free Lie algebra
L(E) possesses a natural pre-Lie structure. This result seebesew (recall that if any pre-
Lie algebra yields a corresponding Lie structure by antisptmizing the pre-Lie product, the
converse is rarely truéll]). We give the explicit presentation of(E) as the quotient /I,
wherel is the ideal of/ E generated by "weighted anti-symmetry relations":

|l9s > t+ t|t — s.

We review the work of T. Moral41] on Grébner bases, and adapt it to non-associative,
magmatic context, followindllg]. In this chapter, we describe monomial bases for the pee-Li
(respectively free Lie) algebr&(E), using the procedures of Grobner bases and our work de-
scribed in Chaptdr 2, in the monomial basis for the free pesalgebrar E.

Chaptef# is detailed in its introduction by four sectionss tledicated to study the so-called
Magnus expansion, an important tool to solve the well-knbnear diferential equation:

. d
YO = Gy = ay®), y(0) = 1. 0.1)
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Many works have been raised to write the classical Magnuaresipn in terms of algebro-
combinatorial structures: Rota-Baxter algebras, deodrifalgebras, pre-Lie algebras and oth-
ers, see for exampl@Q,[21,1% for more details about these works. Particularly, we stady
generalization of the latter called pre-Lie Magnus expamsand we give a brief survey about
this expansion in this chapter. An approach has been des@ltppencode the terms of the
classical and pre-Lie Magnus expansions respectively, bisdtles with S. P. Nisett using
planar binary trees30], and by K. Ebrahimi-Fard with D. Manchon using planar rabtees
[21] respectively. Some attempts have been made to reduce thieemwf terms of this expan-
sion: we discuss in Sectiohs #.2,14.3 this reduction, usiagte-Lie structure corresponding to
the works of K. Ebrahimi-Fard with D. Manchdg(), [21], and F. Chapoton with F. Patrak).

The formula introduced by F. Chapoton and F. Patras in theik JL5] on the writing of
the pre-Lie Magnus expansion, using the so-called Grosdraeson algebra, attracts our atten-
tion. We study this formula briefly in Sectiohs ¥.Z2,14.3, arela@@mpare its terms with another
pre-Lie Magnus expansion terms obtained by K. Ebrahimdad D. Manchon in their work
[21]. We observe that this formula can be considered as optipm&d degree five, with respect
to the number of terms in the pre-Lie Magnus expansion.

In the last section of ChaptEl 4, we look at the pre-Lie Magewgansion in the free Lie
algebraZ(E). The weighted anti-symmetry relations lead to a furthduction of the number
of terms. The particular case of one single generator in eaghee is closely related to the
work of S. Blanes, F. Casas and J. Rdfs We give a combinatorial version of this work of the
three authors, using our work described in Chdpter 3, in theamial basis of free Lie algebra
L(E).






CHAPTER 1

Preliminaries

The aim of this preliminary chapter is to review some bades tve need in this thesis.

1.1. Free magmas and free magmatic algebras

Definition 1.1. A magma is a set M together with a binary operatigh Without any property
imposed.

Let E be a set. The free magma o¥eis the magmav(E) generated b¥. The free magma
M(E) has the following universal property: for any other magsavith a mapf : E - N
there is a uniqgue magmatic extensionfdirom M(E) into N. It can be presented as the set of
well-parenthesized words dawith letters in the alphabdf, endowed with the concatenation
product [7] [144].

Denote byME the linear span (over some base fikldof the free magm#(E). The space
Mg forms a free algebra, together with the produttdf the magma, which is called the free
magmatic algebra.

1.2. Trees

In graph theory, a tree is a undirected connected finite grajthout cycles2?2]. A rooted
tree is defined as a tree with one designated vertex calladtteThe other remaining vertices
are partitioned intck > 0 disjoint subsets such that each of them in turn represerdstad
tree, and a subtree of the whole tree. This can be taken asuesikecdefinition for rooted
trees, widely used in computer algorithf3§]. Rooted trees stand among the most important
structures appearing in many branches of pure and applidtematics.

In general, a tree structure can be described as a "brarigkiagjonship between vertices,
much like that found in the trees of nature. Many types ofsdefined by all sorts of constraints
on properties of vertices appear to be of interest in comobiies and in related areas such as
formal logic and computer science.

1.2.1. Planar binary trees.

Definition 1.2. A planar binary tree is a finite oriented tree embedded in tlaa@, such that
each internal vertex has exactly two incoming edges and otgoong edge. One of the internal
vertices, called the root, is a distinguished vertex with tacoming edges and one edge, like a
tail at the bottom, not ending at a vertex.
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The incoming edges in this type of trees are internal (commgewo internal vertices), or
external (with one free end). The external incoming edgesalled the leaves. We give here
some examples of planar binary trees:

YN YNV YV

where the single edgd " is the unique planar binary tree without internal verticEse degree

of any planar binary tree is the number of its leaves. Den;ot'égﬁ (respectivelw;?‘”) the set
(respectively the linear span) of planar binary trees.

Define the grafting operation/™ on the spacé';,)‘” to be the operation that maps any planar
binary treed, t, into a new planar binary trdeV t,, which takes th&/-shaped treég/ replacing
the left (respectively the right) branch by(respectivelyt,), see the following examples:

V=V, \vv:v, V| :y/, VVV:V’ ‘VVZV'

The number of binary trees of degreés given by the Catalan numbey = % where

the first ones are, 1, 2,5,14,42,132,.... This sequence of numbers is the sequence A000108
in [48].

Let E be a (non-empty) set. The free magM4E) generated by can be described as
the set of planar binary trees with leaves decorated by #raatts o, together with the V"
product described abovéd,(24. Moreover, the linear spa‘ig,bi”’E, generated by the trees of
the magmaM(E) = Tp?i”’E defined above, equipped with the grafting'is a description of the
free magmatic algebra.

1.2.2. Planar and non-planar rooted trees.

Definition 1.3. For any positive integer n, a rooted tree of degree n, or synmptooted tree, is
a finite oriented tree together with n vertices. One of theafied the root, is a distinguished
vertex without any outgoing edge. Any vertex can have atigrmany incoming edges, and
any vertex distinct from the root has exactly one outgoirgeet/ertices with no incoming edges
are called leaves.

Arooted tree is said to be planar, if it is endowed with an etdlo®y in the plane. Otherwise,
its called a (non-planar) rooted tree.

Definition 1.4. Let E be a (non-empty) set. An E-decorated rooted tree is a(hal) of a
rooted tree t together with a map dV(t) — E, which decorates each vertex v of t by an
element a of E, i.e.(®@) = a, where \(t) is the set of all vertices of t.
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Here are the planar (undecorated) rooted trees up to fiveegrt

e e TV T b

From now on, we will consider that all our trees are decoragedept for some cases in
which we will state the property explicitly. Denote H}ﬁ (respectivelyT F) the set of all planar
(respectively non-planar) decorated rooted trees,ﬁjﬁdrespectively(]~ E) the linear space
spanned by the elements'qf, (respectivelyTE). Any rooted treer with branchesr, ..., o
and a roo®, can be written as:

o =By a0 o), (1.1)
whereB, , is the operation which grafts a monomig{ - - - o« of rooted trees on a common
root decorated by an elemeain E, which gives a new rooted tree by connecting the root of
eacho, by an edge, to the new root. The planar rooted érére formula (1.]) depends on the
order of the branch planar trees, whereas this order is not important for the corresponding
(non-planar) tree.

The number of trees iﬂipEI is the same than iﬂilfli”’E, there is a one-to-one bijection between
them (see the Subsectibn 112.3). On the other hand, for ampgeneous componemt' of
(non-planar) undecorated rooted trees of degréefor n > 1, the number of trees " is
given by the sequence; 1 2, 4,9, 20,48, ..., which is sequence A000081 iA4d].

Definition 1.5. The (left) Butcher product%,” of any planar rooted trees andr is defined
by:
o1 = By a(oT1 - TH), (1.2)

wherery, ..., 7« € TplE, such thatr = B, a(71---7k). It maps the pair of treeés, 7) into a new

planar rooted tree induced by grafting the rootwfon the left via a new edge, on the rootrof

The usual productds” in the non-planar case, given by the same formula (1.2)n@an
as the Butcher product. It is non-associative permutatiAR), i.e. it satisfies the following
identity:

So-(S o-t) = Sos(Somt),
for any (non-planar) trees s, t. Indeed, fort = B, 4(t; - - - t), wherety, ..., t in TE, we have:
So»(S'ost) = so5(By a(St - - - 1))
= B..a(sSt - 1)
= B..a(SSt- 1)
= Sos(Bsa(st - 1)

= S o-(Sot).
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1.2.3. Rotation correspondence of Knuth.

D. E. Knuth in his work [B5] described a relation between the planar binary trees and th
planar rooted trees, in the case of non-decorated treesitideluiced a bijectiom : Tp*fi” — Ty
called the rotation correspondeﬁp@cursively defined by:

(D(D = e, and (D(tl \Y tz) = (I)(t]_) o\ (D(tz), Vi, 1 € Tplloin. (13)

Let us compute a few terms:

B0)=0() %0 =1, (/)= 0020 =, o\Y) =¥,
(D(W):%’ @(V/):Y, @(K/)Jv, @(W):%}, @(V):v.

The bijection given in[(113) realizes the free magMéE) as the set of planar rooted trees
with E-decorated vertices, endowed with the left Butcher pradidso, the linear spaﬁ;E,
generated by the planar trees of the madvi{&), forms with the product *.” another descrip-
tion of the free magmatic algebra.

1.3. Lie algebras

In the spirit of Felix Klein’s (1849-1925) "Erlangen Progrg any Lie groupG is a group
of symmetries of some class offiirentiable manifolds. The corresponding infinitesimaisra
formations are given by the Lie algebra®f which is the set of left-invariant vector fields on
G. The problem of classification of groups of transformatibas been considered by S. Lie
(1842-1899) not only for subgroups GiL,,, but also for infinite dimensional grouf34].

The problem of classification of simple finite-dimensiona& lalgebras over the field of
complex numbers was solved at the end of the 19th century biiNhg (1847-1923) and
E. Cartan (1869-1951). The central figure of the origins eftteory of the structure of Lie
algebras is W. Killing, whose paper in four parts laid theagptual foundations of the theory.
In 1884, Killing introduced the concept of a Lie algebra ipdedently of Lie and formulated
the problem of determining all possible structures for,riaite dimensional Lie algebras. The
joint work of Killing and Cartan establishes the foundatiai the theory. Killing’s work con-
tained many gaps which Cartan succeeded in fill2],[[34]. An attempt has been made by
Killing and Cartan as well as others, such as S. Lie and F. Eamgemany others, to provide
the basis for a better historical appreciation of the eaglyetbpment of the theory and some of
its various applications.

In this section, we recall some basics in Lie algebras thateesl in this thesis.

'For more details about the rotation correspondencé3®@pragraph 2.3.2J40 and [24, Paragraph 1.5.3].
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Definition 1.6. A Lie algebra over a field K, of characteristicf@irent from2, is a K-vector
space/, with a K-bilinear mappind-,-] : £x £ — £L,(x,y) — [xy] called a Lie bracket,
satisfying the following properties:

[x,x] =0 (1.4)

[[x¥].2 +1[y.2.X] + [z X].y] =0 (1.5)
for all x,y,z € L. The identity1.9)is called the Jacobi identity.

The identity [1.4) induces the following identity, whichaalled the anti-symmetry identity:

[xy] +Iy,x] =0 (1.6)

Indeed, using[{1]4) and the bilinearity of {], we have: 0= [x+Vy,x+Vy] =[x, X] +[X Y] +
[y, X] +[y,y] = [X VY] + [y, X]. Relations[(1.4) and (1.6) are equivalent because thecteistic
of the base fielK is different from 2. Every associative-algebra# has a natural structure of
Lie algebra with a Lie bracket defined by:

[X Y] = Xy —yx (1.7)

1.3.1. Enveloping algebra of Lie algebras.

One of the important properties possessed by Lie algelsr#éisai we can associate to each
Lie algebraf an associative algebra which has a universal propertydstaténe following
Proposition.

Proposition 1.1. Let £ be a Lie algebra over K. There exists an associative alggl(z)
over K and a Lie algebra homomorphispg : £ — U(L) having the following property: for
any associative algebrat and any Lie algebra homomorphism: £ — A, there is a unique
algebra homomorphism f U(L) — A making the diagram in Figure 1.1 commutative. The
algebra?/(£) is unique up to isomorphism.

L —2 U

7

A
Ficure 1.1. The universal property of the algeld L).

Proor. This algebral/(£) is called the enveloping algebra ¢f The reader can find the
proof of this Proposition detailed i@, Proposition 0.1]. In the following, we shall review the
part of the proof corresponding to the existence of the alyéi{ L), to understand what means
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this type of algebras, i.e. the enveloping algebra: denpf€ b T(£) the tensor algebra of

overK, where:
T(L) = @ Lo,

n>0
The algebral has a natural structure of associative algebra with unifinBé to be the (two-
sided) ideal off generated by the elements on the form:

XQY—-y®X—[xY], foranyx,ye L. (1.8)

SetU(L) =T/l,and letyg : L — U(L) be the compositiory = qoi, wherei is the canonical
inclusion£ — T(£) andq s the canonical quotient map — T/I that is a surjective algebra
homomorphism. The magy is a Lie algebra homomorphism. Indeed, for agy € £, we
have:

eo([x Y1) = a([x y])

=g(x®y-y®x) ,by(d8), andsince Kergl,

= a(x)q(y) - a)a(x)

= [a(x). ay)] , using [L.7),

=[goi(X),qoi(y)]

= [¢o(X), eo(Y)]-
The mapf is defined as follows: the linear mapuniquely extends to an algebra morphism
f:T(L) - A, defined by:

fa®:---®x) = (%) ¢(%),

which factorizes through the idekl O

Here, we give the well known Theorem called the Poincaré&gift-Witt Theorem which
we need it in our next work in this thesis, without giving itopf. We refer the reader to the
references1,[32/ 29| 1ffor more details about this Theorem.

Theorem 1.2. Let £ be a K-Lie algebra, such that the K-vector spafes endowed with a
totally ordered basi$x}ic;. Then the enveloping algebfd(£) of £ is a K-vector space with
basis the set of decreasing produgtgx,) - - - wo(X;.), for iy, ...,in € l,iy > -+ > i,,n > 0,
wherey, : L — U(L) is the natural Lie algebra homomorphism.

Corollary 1.3. Let £ be a K-Lie algebra. Let/(£) be its enveloping algebra ang, : £ —
U(L) be the canonical Lie homomorphism. Theyis injective.

By Corollary{ 1.3, we can consider a Lie algebra as a Lie swimbyof its enveloping algebra

[44).
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1.3.2. Free Lie algebras.

The Lie algebra of Lie polynomials, showed by E. Witt (191991), is actually the free
Lie algebra. The first appearance of Lie polynomials was atttinn of the century in the
work of Campbell, Baker and Hausdbon the exponential mapping in a Lie group, when
the well-known result "Campbell-Baker-Haustfdormula" appeared. For more details about a
historical review of free Lie algebras, we refer the readehe referenceédld] and the references
therein.

Definition 1.7. Let £ be a Lie algebra over a field K and E be a (non-empty) set , and let
i : E —> £ beamap. A free Lie algebra is a paiZ, i), satisfying the following universal
property: for any Lie algebral’ and any mapping f E — £/, there is a unique Lie algebra
homomorphisnf : £ — £’ which makes the following diagram commute:

E—'sy

Nl

Ll

Ficure 1.2. The universal property of the free Lie algebra.

It is unique up to an isomorphism. ffis a K- Lie algebra and EC £, then we say that E freely
generates if (£,1) is free, where i is the canonical injection from E £0

We give here some important properties of the free Lie alyepresented as Theorems
without giving the complete proofs, just some details thatneed in this thesis. We refer the
reader to the referencd4, Theorem 0.4, Theorem 0.5] for more details about these rEhen

Theorem 1.4. For any (non-empty) set E, there exists a free Lie algebrl,ica(E), on E,
which is unique up to isomorphism. Moreover, this free Ligelra is naturally a graded K-
vector space, the mapping i, in Figure1l.2, is injective. e vector subspace generated by
E = i(E) is the component of elementsHfE) of degree 1", and L(E) itself generated, as a
Lie algebra, by E.

Proor. We will review here the part of the proof, that we need, cgponding to the exis-
tence or the construction of this type of Lie algebras. Thailieof this proof exist in44, Theo-
rem 0.4]. LetE be any (non-empty) set, ag be the free (non-commutative, non-associative)
K- algebra. Here, we can consid&f as the free magmatic algebiMde generated linearly by
M(E), the free magma ove. Definel to be the (two-sided) ideal oMg generated by the
elements:

(xy)z+ (y2x + (zXy, andxx for x,y,z e M. (1.9)
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SetL(E) := Mg/l. Obviously, £(E) with the multiplication inherited fromMg forms a Lie
algebra oveK. Moreover,L(E), with the canonical mapping — £L(E), is the free Lie algebra
overE. O

Theorem 1.5. The enveloping algebré/(£) of the free Lie algebra’(E) is a free associative
algebra on E. The Lie algebra homomorphiggt L(E) — U(L) is injective, andpo(L(E)) is
the Lie subalgebra ot/(£) generated by (E), where j:= ¢go .

1.3.3. Grobner bases.

The Grobner bases theory was introduced in 1965 by Brunoligrger for ideals in poly-
nomial rings and an algorithm called Buchberger algoritbmtiieir computation. This theory
contributed, since the end of the seventies, in the devedopof computational techniques for
the symbolic solution of polynomial systems of equationg emthe development offgective
methods in Algebraic Geometry and Commutative Algebra. édwer, this theory has been
generalized to free non-commutative algebra and to vanonscommutative algebras of inter-
est in Diferential Algebra, e.g. Weyl algebras, enveloping algebfase algebras41], and so
on.

The attempt to imitate Grébner basis theory for non-comtivetalgebras works fine up
to the point where the termination of the analogue to the Bagder algorithm can be proved.
Grébner bases and Buchberger algorithm have been extefutetie first time, to ideals in
free non-commutative algebras by G. Bergman in 1978. L&tévlora in 1986 made precise
in which sense Grébner bases can be computed in free non-gtative algebras4l]. The
construction of finite Grobner bases for arbitrary finitegngrated ideals in non-commutative
rings is possible in the class sblvable algebraﬁ. This class comprises many algebras arising
in mathematical physics such as: Weyl algebras, envelagdgepras of finite-dimensional Lie
algebras, and iterated skew polynomial rings. Grobnerdasee studied, in these algebras, for
special cases by Apel and Lassner in 1985, and in full gahebgl Kandri-Rody and Weispfen-
ning in 1990B].

Recently, V. Drensky and R. Holtkamp used Grdbner theorpéirtwork [18] for a non-
associative, non-commutative case (the magmatic casegrééd, L. A. Bokut, Yuqun Chen
and Yu Li, in their work[g], give Grébner-Shirshov basis for a right-symmetric algeglpre-Lie
algebra). The theory of Grébner-Shirshov bases was ingdiyjtd. I. Shirshov for Lie algebras
in 1962 @7.

2For more details about the solvable algebras Bzé\ppendix: Non-Commutative Grébner Bases, pages
526-528].
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We try in our work, in sectioh 312, to describe a monomial asiree version for the free
Lie (respectively pre-Lie) algebras using the procedufé&srobner bases, comparing with the
one (i.e. the monomial basis) obtained for the free pre-lgetzra in sectioh 2]2. We need here
to review some basics for the theory of Grobner bases.

Definition 1.8. Let (M(E), -) be the free magma generated by E. A total ordesn M(E) is
said to be monomial if it satisfies the following property:

forany xy,ze M(E), if x<y, thenx-z<y-zandz x< z-Y, (12.10)

i.e. it is compatible with the product in (&).

This property, in[(1.70), implies that for anyy € M(E) thenx < x-y. An order is called
a well-ordering if every strictly decreasing sequence ohomials is finite, or equivalently if
every non-empty set of monomials has a minimal element.

Let Mg be theK-linear span of the free magnM(E), andl be any magmatic (two-sided)

ideal of Mg. For any element =} A.x (finite sum) inl, defineT(f) to be the maximal term
xeM(E)
of f with respect to a given monomial order definedM(E), namelyT () = Ay, %o, With Xp =

maxx € M(E), A4 # 0}. DenoteT (1) := {T(f) : f € I} the set of all maximal terms of elements
of I. Note that the s€et(l) forms a (two-sided) ideal of the magm&(E) [4]]. Define the set
o(l) := M(E)\T(I). We have that the magmd(E) = T(I) U O(l) is the disjoint union of
T(1), O(l) respectively. As a consequence, we get that:

Me = Spar(T(l)) & Sparx(O(1)). (1.12)
Define a linear mapping from | into Sparx(T(l)), which makes the following diagram
commute:

fww)wmm@a»

Spa(T(1))

Ficure 1.3. Definition ofep.

whereP is the projection map. Then the mappipngs defined by:
o(f) = Z ayx, for f el, (1.12)

xeT(l)

wheref = Y axx+ corrective term irSparn(O(l)), anday € K forall x € T(I). The map
xeT(l)
¢ is obviously injective. Indeed, for anfy € | andg(f) = 0, thenf € Sparx(O(l)), and from



18 1. PRELIMINARIES

Theorenm 3.BSpax(O(1)) N | = {0}. Also, according to Theorem 3.8 and by the definition of
¢ in (L.12), we note thap is surjective. Hencey is an isomorphism of vector spaces. Thus, we
can deduce from the formula(1]111):

Me =1 & Spar (O(1)). (1.13)

In Section[3.2, we will give a tree version of the monomial lvegtiering with a review of
Mora’s work [41], in the case of rooted trees.

1.4. Pre-Lie algebras

The concept of "Pre-Lie algebras" appeared in many workeumdrious names. E. B.
Vinberg and M. Gerstenhaber in 1963 independently predehteconcept under two ftkerent
names; "right symmetric algebras" and "pre-Lie algebraspectively$9,[26. Other denomi-
nations, e.g. "Vinberg algebras", appeared since thengdit@iogical algebras” is the term used
by A. Agrachev and R. V. Gamkrelidze in their work aonstationary vector fieldd]. The
term "pre-Lie algebras" is now the standard terminologye Lke algebra of a real connected
Lie groupG admits a compatible pre-Lie structure if and onlgifidmits a left-invariantfane
structure(lL0, Proposition 2.31], see also the work of J. L. Kos@6][for more details about the
pre-Lie structure, in a geometrical point of view. We shallwreview some basics and topics
related to pre-Lie algebras.

Definition 1.9. Let®L be a vector space over a field K together with a bilinear operat>".
Then®/ is said to be a left pre-Lie algebra, if the mapsatisfies the following identity:

X>py)y>z-xX>(yr2=(Y>X)>z-y> (X>2),YXY,2€ PL. (1.14)
The identity [1.14) is called the left pre-Lie identity, aihdan be written as:
I—[x,y] = [LX’ Ly], VX, y € PL’ (115)

where for every elementin £L, the linear transformatioh, of the vector spac€/ is defined

by Ly(y) = x> y,YyePL, and K,y] = X > y—y > X is the commutator of the elements
andy in £L. The usual commutatoL], L] = LL, — L L of the linear transformations ¢t
defines a structure of Lie algebra oveon the vector spade(L) of all linear transformations
of PL. For any pre-Lie algebrL, the bracket-| -] satisfies the Jacobi identity, hence induces
a structure of Lie algebra oAL.

As a particular example of pre-Lie algebras, take the lirggaace of the set of all (non-
planar)E-decorated rooted tre6sF which has a structure of pre-Lie algebra together with the

product =" defined as follows:
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Definition 1.10. The grafting product — ” is a bilinear map defined on the vector spacé
such that:
sot= ) sout, (1.16)
veV(t)
for any ste7E where "s—, t" is the (non-planar) decorated rooted tree obtained byftijng
the tree s on the vertex v of the tree t.

Example 1.1. For the case with one generator, we have:

mizlev 1oisisb

In the spacé@™ spanned by the rooted trees, the grafting operatien
identity, since for anys, t,t’e T, we have:

sotot)-(soh)ot=s>() to )= () sout) >t
)

VeV(t ueV(t)

satisfies the pre-Lie

Z S— (toyt) - Z (s—>ut) >t

VeV(t') ueV(t)
Z S _)V, (t — \V t,)
VEV(t') VeV(t”)

= D (s ot [ =t oyt
veV(t') ueV(t)

S—y (t oy 1),
veV(t') veV(t)
Obviously symmetric irs andt. The same thing holds in the vector sp&ce spanned by
E-decorated rooted trees.

1.4.1. Completed pre-Lie algebras.
In this paragraph, we recall some topics that we need in ouk wmoChaptef#, following the

references33,[1,39.

Definition 1.11. Let V be a K-vector space endowed with a ngrnff : V — R*. A sequence
{vn} of elements of V is called Cauchy sequence if given anyerea0, there exists a positive
integer N= N(g) such that:

IV — Vil < &, (1.17)
forallm,n > N. V is said to be complete relative to the ngfmj| if every Cauchy sequence of
elements of V converges.

Let PL := & PL, be a graded pre-Lie algebra, whe®€,, is then-th component of this
neN
algebra. Denote by:

ﬁ:zﬂ?ﬁn:{a:Zan:anePLn, forn > 1},
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the completion of the graded algels?4, where the elements &L are formal series. This
completion possesses a structure of pre- Lle algebra givéretnatural extension of the product

> defined as follows: for ang = Z a,, b= Z by € PL,

n-1

a>b:_i Za.>bn. = nanZ Za>bn_i). (1.18)
i= i=1

n=2
Indeed, the right-hand side ¢f (1]18) is the limit of a Causbguence. The graded pre-Lie
algebraPL is endowed with a compatible decreasing filtratf = PLY > LB > oL 5
-, where:

PLO = @Pﬁn, forallg> 1,

n>q

such thatPL® > PLO c pLPD and N PLY = {0}. Define the valuation mayal : ££ — N
k>1
by:

Val(a) := sufq : a € PLD). (1.19)
Leta, b be elements ifPL, such that € PL,, b € PL, with p < g, then:
(i) Valla+b) = p,
(i) Val(ar> b) > Val(a) + Val(b) = p + q, this property is true for ath, b € PL.

A metric functiond(-, -) : PL x PL — R* can be defined oL, using the map/al defined
above, as follows:

d(a,b) = 27¥@D_ for anya, b e L. (1.20)
The corresponding north- || on L is defined by:
lal| := 27V3@_ for anya e PL. (1.21)

The pre-Lie product is continuous with respect to the metdg, -). Indeed, for given real
numbersey, &, > 0, and for anyay, a,, by, b, € PL, if d(ag, by) < &1 andd(ag, by) < &, then:

d(a; > ap, by > by) < d(ay > by, ay > by) + d(a, > by, @ > by), (by the triangle inequality of the metric),
= 2 Val@wbimaeby) | o-Valee>bima2>b) - (from the definition ofd(-, -) above),

_ o-Val((@-a)>by) | o-Valla > (b b2>), (sincex is a bilinear),

< 27N, (whereN = —logy(s; + £5))

=&E=¢& + &

The spacé’lj H ££Y is a completed pre-Lie algebra, with respect to the npfirdefined
in (L.Z1) above. Any continuous bilinear operation extethéssame way to the completion.
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1.4.2. Free pre-Lie algebras.

Free pre-Lie algebras have been handled in terms of rooted vy F. Chapoton and M.
Livernet [14], who also described the pre-Lie operad explicitly, and bypgahumadil’daev and
C. Lofwall independentlyI9]. For an elementary version of the approach by Chapoton and
Livernet without introducing operads, see el88,[Paragraph 6.2]:

Theorem 1.6.[14,[19 Let E be a (non-empty) set. The free pre-Lie algebra genetayeE is
the vector spac& E of (non-planar) E-decorated rooted trees, endowed witHtang.

The prehistory of those notions can be traced back to A. @apld857 [L3], who intro-
duced rooted trees to study vector fields®h We give below its definition in terms of a
universal property, along the lines df|]

Definition 1.12. Let L be a pre-Lie algebra and E be a (non-empty) set with a mag i—
PL. Afree pre-Lie algebra is a paitPL, i), satisfying the following universal property: for any
pre-Lie algebraB and any map .f: E — 8B there is a unique pre-Lie algebra homomorphism
f . PL — B, which makes the following diagram commute:

EC - pr
f°l //

8B

Ficure 1.4. The universal property of the free pre-Lie algebra.

It is unique up to isomorphism. A pre-Lie algels?® is said to be freely generated by&EPL,
if (PL,i)is free, where i E — PL is the canonical injection.

The free pre-Lie algebra can be obtained as the quotienediéle magmatic algebrad:
with generating sefE by the two-sided ideal generated by elements on the form:

X-(Y-2)-y-(Xx-2-(X-y—-y-x) -z forxy,ze M. (1.22)

From Definition[1.1R, we have that any pre-Lie algeBragenerated by a subskt c B
is isomorphic to a quotient of the free pre-Lie algelft§, generated bye, by some ideal.
Indeed, from the freeness universal propertydf there is a unique homomorphisimwhich
is surjective. The quotient £ by the kernel off is isomorphic toB, as in the following
commutative diagram:
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EC '~ pr Pr/Kerf

Ficure 1.5. The uniqueness property, up to isomorphism, of thefdreed.ie algebra.

whereq is the quotient map.

Denote byPL(E) the free pre-Lie algebra generated by the (non-emptyEséihe mag-
matic algebraMg has a natural grading, where the elements of degree 1 ag [oenbina-
tions of the elements dE. The algebra”£(E) can be defined as the quotient 8tz by the
ideal (1.22). This induces a grading 8L(E), in which the elements of degree 1 are again
the linear combinations of the elementskgfby identifying the seE with its image under the
factorization.



CHAPTER 2

Monomial Bases for Free Pre-Lie Algebras

This chapter is an adaptation of a published paper in Sémeihatharingien de Combina-
toire [2]. It consists in two main sections. Section]2.1 containsespneliminaries on planar
and non-planar rooted trees, Butcher products and graftioducts. In this section, we also
review the joint work of K. Ebrahimi-Fard and D. Manchon (ubpished) who described an
explicit algebra isomorphisn¥ between two structures of free magmatic algebras defined on
the spacé’pE| of all decorated planar rooted trees, by the left Butchedpeb” %" and the left
grafting product ™\, ” respectively. We give the explicit expression of the ff@gentsc(o, 7)
of this isomorphism in the planar rooted tree basis. Usieg thork, and by defining a bijective
linear map‘?s which depends on the choice of a sect®f the "forget planarity” projection
=, we find a formula for the cdcientsBs(s, t) of ¥s in the decorated (non-planar) rooted tree
basis. This can be visualized on the following diagram:

mE ) e75, =7 am@E\)

T=
i=

L..n pl,n pl,n J=1..n
A
Siﬂ ¢n
E a
= m(o, O—>) e TnE ............. > TnE Ialm(o, —))

Ficure 2.1. The description o¥ andWs.

for any homogeneous componeff§, and7,*.

In Sectior 2., we recall some basic topics on free pre-lgelaias. We describe the con-
struction of a monomial basis for each homogeneous subsRg¢cen free pre-Lie algebras
PL(E) generated by a (non-empty) d&tusing a type of algebra isomorphism obtained by A.
Agrachev and R. V. Gamkrelidz&][ Finally, the constructions in Sections 2.1 2.2 can be
related as follows: we show that a tree-grounded monomgikha a free pre-Lie algebra de-
fines a sectio® of the projectionr : 7;IE —s» 7 E and, conversely, that any sectionmoflefines
a tree-grounded monomial basis.

23
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2.1. Butcher and grafting products

2.1.1. On planar rooted trees.

Definition 2.1. The left grafting’ N\, ” is a bilinear operation defined on the vector spﬁg':e
such that for any planar rooted treesand:

oNT= Z oc\wT, (2.1)
vvertex ofr
where 'o- N\, 7" is the tree obtained by grafting the tree on the left, on the vertex v of the tree
7, such that- becomes the leftmost branch, starting from v, of this negu tre

Example 2.1. For the non-decorated case, we have:

I\E:L%H&;.

This type of grafting again provides the spég’éwith a structure of free magmatic algebra:
K. Ebrahimi-Fard and D. Manchon showed that the two strestulefined or‘i;IE, one by the
product "%” and the other by ™\, ", are linearly isomorphic, as follows: define the potential
energyp(o) of a planar rooted tree to be the sum of the heights of its vertices multiplied by
the degree:
p(e) = > Mh(v), (22)
VeV(o)

E.(0)

whereh(v) is the height of the vertexin o. Introduce the decreasing filtraticjfg]E =7y )

T ® o 7F@ 5 ... whereT, > is the vector space spanned by planar rooted wewith

p(o) > k.
Theorem 2.1. There is a unique linear isomorphisghfrom 7. onto7,F, defined as:
P(?) =8, forany ac E, and ¥(o 1™\ 02) = P(01) \, P(0»), forall 01,05 € TpE,. (2.3)

It respects the graduation given by the number of verticed the associated graded map Br
(with respect to the potential energy filtration above) reelsi to the identity. Also, it respects
the graduation defined by the degree of elements of E.

Proor. The linear map¥ is uniquely determined by virtue of the universal propertyhe
free magmatic algebré;f, A.). Obviously, it respects the number of vertices and theakegf
trees (in terms of the degree of element&pf For any planar rooted trees, o, the equality

o1\ 02 = 01 0% + o holds, witho”’ € %E’(p((rf\" 72D Then, fore = o, o», we have:
Y(o)=0+0", (2.4)

with o’ € 7;|E’(p(“)+1), which proves the Theorem. O
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From Theorenh 2]1, one can note that the matrixtofestricted to any homogeneous com-
ponent‘]’pEI . Is upper triangular unipotent. More precised{y, 7) = O if the potential energy
p(o) of o is strictly smaller than the potential energymfandc(o, 7) = &7, if p(c) = p(r). In
the single generator case, we can calculate the sum of theseat this matrix as follows: for
any planar rooted tree € Tp,, let N(o) be the number of trees (with the multiplicities)¥{o).
Leto = 01%0>, Whereo; € Tp,, oo € Tpl, such thap+q=n, for p, q> 1. Sinceo, hasq

vertices, and from the definition of the left grafting protiucy, ”, we get that:

N(c) = N(o1) N(o2) a. (2.5)
Now, define:
N(Tp) = ). N(o), (2.6)

then using[(ZJ5), we obtain that:

N(TR) = >° > N(ow) N(o2) g

+0=n p
PO o peTh

o O’zETgl
= > q[z N(al)] > N(O'z)]
p+q:n O‘leT p O‘zETq
p. 21 o o
= > NTHNTD a
p+g=n
p, =1

Here, we find some terms of the formula_{2.6):
N(Tpl) - N(T I) -
N(T |) = N(T? o) N(Tpl) 1+ N(Tpl) N(T |) 2=3
N(T ) = N(T I) N(Tpl) 1+ N(T I) N(T I) 2+ N(Tpl) N(T I) 3=14
N(T I) = N(T D N(Tpl) 1+ N(T3 I) N(T I) 2+ N(T I) N(T I) 3+ N(Tp,) N(T ) 4 =285

This is sequencA088716 ini8]. The generating serie&(X) := Y. a,X", modulo the shift

n>1
a, = N(Tgrl), verifies the dterential equation:

A(X) = 1+ XAX)? + XCAX)A(X).
Example 2.2. (Undecorated case) We display here the matrices iMthe basis{i, Y}, and

My, in the basig{, Y 2{ \.; ¥ }, of the restrictions o¥ to the homogeneous componeﬁ&
and7 ) respectively:
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111 1 4
1011

- 010
Ms=| ;] Ms=[0 0 10 1
00012
0000 1

Corollary 2.2. (TPEI, \\) is another description of the free magmatic algebra gereztdy E.

Here is the explicit expression & and ¥~ on the following planar undecorated rooted
trees:

o plo) |  W(o) ¥ (o)

°
o
°
°

4 b+i
4 X}+Y+§
3 \If+b+2\}+Y+§

el e eeleees ol eee e
o1
ot
+
G el T e
|

Now, we shall review the (unpublished) joint work of K. EbiaiFard and D. Manchon
on finding a formula for the cdicientc(o, 7) of treeo in ¥(r), for any treesr andr in Tp.
Let o be any planar rooted tree, andv be two vertices in the s&ft(o) of its vertices, define a
partial order <" as follows:v < w if there is a path from the root to throughv. The root is the
minimal element, and leaves are the maximal elements. Dafieinement «" of this order
to be the transitive closure of the relatiBdefined by:vRwif v < w, or bothv andw are linked
to a third vertexu € V(o), such that lies on the right ofw, like this:WV.VA further refinement
"<«" on V(o) is the total order recursively defined as followsx vt/ if and only if v << w
insideV(o 1) or V(o»), orv € V(o) andw € V(o1), whereo = o1, o5. It is the "depth-first
search” ordering, up to an inversion of left and right.
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10 4

Ficure 2.2. A planar rooted tree with its vertices labeled accaydmtotal order<<'.

Now suppose that our trees are decorated by some, sed. for any treer € TpEI we have
amap:V(o) — E. A bijectiony : V(o) — V(1) respects the decorations if the decoration of
¥(Vv) is the same as the decoratiomdbr anyv € V(o).

Theorem 2.3. For any planar decorated rooted treaewe have:

¥(r) = ) co, 7)o, @.7)
oeTy
where ¢o, 7) are non-negative integers. An explicit expression {ot, ¢) is given by the number
of bijectionsy : V(o) — V(1) which respect the decorations, and which are increasingfro
(V(0), <) to (V(1), <), such thaiy ! is increasing from(V(r), <) to (V(o), <).

Proor. This Theorem is proved using the induction on the degreétrees. The proof is
trivial for n = 1,2. Given any planar rooted treesr € Tpfn, such thatr can be written in a
unique way as = 7;4\.1,, we have:

(o, T1NT2) = Z (o, r1)c(oy, T2), (2.8)
veV(o)
whereo is the leftmost branch ef starting fromv, ando, is the corresponding trunk, i.e. what
remains when the branel is removed. This is immediate from the following computatio

(1) = P(r1A\12)
=Y(r1) \ ¥(72)
= Z c(o’,m)c(o”, ) o’ N\, 0.

a'fa"’GTAEl

Denote byb(co, ) the number of bijections fronW (o) onto V(7) respecting the decorations
and satisfying the growing conditions of Theorem| 2.3. {die an increasing bijection from
(V(0), <) to (V(7), <) compatible with the decorations. The decompositient, A, 7, defines
a partition ofV (o) into two partsV; = ¢~1(V(t)), i = 1,2 such thaw/, < V;, which means that
for anyv € V; andw € V,, eitherw < v or they are incomparable. Such partitions are nothing
but left admissible cut#B]. Putoy, andoy, to be the corresponding pruning and the trunk
respectively.

As the inversey~! moreover respects the ordetr™, there is a unique minimal element in
Vv, for "<", namelyy(v1) wherev; is the root ofr;. This means that the left cut considered
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here is also elementary, i.e. the prunimg is a tree. It is then clear that the restrictign

of ¥ to o, is a bijection fromV(o,) onto V(r;) which respects both the decorations and the
growing conditions of the Theorem, for= 1,2. Conversely, any vertex of o defines an
elementary left cut by taking the leftmost branchstarting fromv and the corresponding trunk
oy, and ify’ : V(o’) — V(r) andy” : V(o’) — V(r,) are two bijections compatible
with the decorations and satisfying the growing conditiohthe Theorem, then the bijection
Y V(o) — V() obtained fromy’ andy”’ also satisfies these conditions. Thus, we arrive at:

b(o, 11%r2) = D" b(0, )b, 72), (2.9)

veV(o)
hence, the cd&cientsc(-, -) andb(-, -) satisfy the same recursive relations. This ends the proof
of Theoren 2.3. O

Example 2.3.For E = {¢}, we have (:\}, ') = 2 according to the table above. Let us name the

vertices as follows:
v 4
V3 Vo Wy, w2
Vi ’ .\K

Takey: V(X}) — V(%) be a bijective map.We have W vz, V; < Vo, < Vg, Vo < V3, @S
well as W < W, << W3 << W,;. The growing conditions of Theorédm 2.3 impose:

@(V1) = Wi, @(V2) << ¢(Va).

Hence we have:

e(v1) =wy @(v1) =Wy
¢(V2) = W; P(v2) =W,
@(V3) =Wz or ¢(vs) = W,
@(Va) = Wy @(Va) = W3

The inverse of both bijections obviously respect the otder”. Hence we find two bijections
verifying the growing conditions of Theoréml2.3, thus recmg b(%}, T) = c(\}, T) =2

2.1.2. From planar to non-planar rooted trees.

Corresponding to the céiecientsc(o, 1), with their explicit expressions, in the matrix of the
restriction of the linear maf¥ to any homogeneous componégfn, we try to find a similar
expression in the non-planar case: in other words, we bpildnd explicitly describe the map
Ys in FigureZ1.

Recall that the spacg® endowed with the grafting-%", is a pre-Lie algebra. Recall that
the symmetry factor of any (non-planar) decorated rooted gris the numbersyn(s) of all
automorphism® : V(s) — V(s) which are increasing from\(s), <) onto (/(s), <) and which
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respect the decorations. This definition is equivalent éoréitursive definition ird].

Let ¥ = 7 o ¥ be the linear map fron‘i;,E onto 75, wherer is the "forget planarity”
projection.

FiGure 2.3.

Obviously,¥ is a morphism of algebras fror ], %) into (75, —). One of the important
results we obtained is the following:

Theorem 2.4.Lett be any planar decorated rooted tree, we have:
¥(r) = ) o(s)s (2.10)
scTE
where a(s, 7) are nonnegative integers. The gi@entsa(s,r) coincide with the numbers
b(s,7) = b(s, 7)/syn(s), where syrs) is the symmetry factor of s described above bfsir)
is the number of bijectiong : V(s) — V(r) which respect the decorations and which are in-
creasing from(V(s), <) into (V(7), <), such thaty~! is increasing fron{V(r), <) into (V(9), <).

Proor. Note that the restriction &F to any homogeneous compon@gﬁ1 reduces the square
matrix of the coéicientsc(o, 7) to a rectangular matrixd(s, ) s-4¢ rre, . For any planar
decorated rooted tree we have:

a(s, 1) = Z c(o, 1), (2.11)

E
0'61;j|
r(o)=s

wheresis a (non-planar) decorated rooted tree. We prove Thebrdmsng the induction on

the degree of trees. The proof is trivial in the casesl, 2. Lett € Tp'fn, with v = 71X\.15, then:

a(s, 11NT) = Z c(o’, t1)c(oy, 12), (2.12)

o'eT'lE
n(o)=s,veV(o)

which is immediate fron(2.11), whete' is the leftmost branch af starting fromv, ando, is
the corresponding trunk.

Now, lets be any (non-planar) decorated rooted tre&finandy : V(s) — V(z) be a bijec-
tion which respects the decorations and satisfies the ggoanditions given in Theorem 2.4.
Then we can define from these conditions a structure of pastteosel/(s) of vertices ofs,
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as follows: forv,w € V(s), vRwif and only if v < w or there isu € V(s) such that each of and
w are related withu by an edge, ang(v) << ¢(w). We denote by, the transitive closure of
the relationR.

This structure determines a planar decorated rootedotreach thatr(o) = s, with the
associated partial ordet on the seV (o) of vertices ofr, together with a decoration-preserving
poset isomorphisnt : (V(o), <) — (V(9), <), which in turn defines a decoration-preserving
bijection¢' := p o ¥ : V(o) — V(r), which is increasing from\((c), <) into (V(1), ),
such that,o!_1 is increasing fromV(7), <) into (V(o), <). The planar decorated rooted tieés
unchanged if we replacg by ¢ o ¥ with € Aut(s). Moreover, for any decoration-preserving
o, ¥ V(s) — V(7) satisfying the growing conditions of TheorémI2.4, we have:

0 =y ©p=yory, forye Aul(s). (2.13)

Indeed, ife' = ', theny := ¢yt o ¢ : V(S) — V() is a decoration-preserving bijection which
respects the partial order< ”, hence an element dkut(s), such thatp = y o y. The inverse
implication is obvious.

Let B(s, 7) (respectivelyB(c, 7)) be the set of decoration-preserving bijectignsV(s) —
V(1) (respectivelyy : V(o) — V(7)) verifying the growing conditions of Theordm 2.4 (respec-
tively TheoreniZ1B), and supposér) = s. Denote byb(s, 7) (respectivelyb(c, 7)) the cardinal
number ofB(s, 7) (respectivelyB(c,, 7)). Now, define :

b(s.7) = ) b 7). (2.14)

0'61;)%, (o)=s

Then, according td (2.13), we have:
b(s 7) = b(s, 7)/syns).

We also have for = 71X\ 75:

(s TiAr2) = ) blo¥, 1a)b(ov. 72). (2.15)

o'eT'lE
n(o)=s,veV(o)

The codiicientsc(-, ) andb(:, -) coincide by Theorei 2.3. So, from (2112) ahd (2.15), the
codficientsa(-, -) andb(-, -) satisfy the same recursive relations, which proves thefére. O

Example 2.4.1n the case E= {s}, we havex (%, %) = 1 in the formula of ¥(%). Name the

vertices as follows:
V2 V3 W3, W2
Vo
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Lety: V(YY) — V() be a bijective map. We have ¥ v,, v; < vz, aswell as w << W, <«
ws. The growing conditions of TheorémR.4 impgge;) = w;. Hence we have:
Y(vi) = wy Y(vi) =wy
(Vo) =Wy or (V) =ws
Y(vs) = W3 Y(vs) = W,

The inverse of these bijections obviously respect the drdef. Hence we find two bijections
verifying the growing conditions of Theorém12.4, ths’, %) = 2, but synfY) = 2, then we
obtainb(*, %) = 1.

We want to describe a family of linear isomorphistis: 76 — 7€ which make the
following diagram commute:

b4

TE 7F;|E
AN
T L7 T
TE ..... o TE

b4

Ficure 2.4. Description of?.

For any (non-planar) decorated rooted tteehooses = S(s) to be a planar decorated
rooted tree withr(c) = s. This defines a sectio8 : 7F — 7;,5 of the projectionr, i.e.
m oS = ldse. One can note that the m&pis not unique, for example, if = 4, we have in the
single generator case:

T, = {iY 2{ Tl andTp‘l‘ = {iY %{ X} T}, then we can defin8 as:
S(i) = i S(Y) = \{ S(%) = %, and one can choose fSI(b) betweenb and \JI

Let S be a section of. Define‘?’s = ¥ o S to be the linear map froii E into 77 which
makes the following diagram commute:

v

TE 7F~;IE

rE]~E e (]‘E

Ys

Ficure 2.5. Description off's.
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Corollary 2.5. For any (non-planar) decorated rooted tree t, we have:
Fs(t) = ) Bs(st)s (2.16)
scTE
wheregs(s, t) are nonnegative integers. The gi@entsps(s, t), which depend on the section

map Scan be expressed by the numbie(s 7) = b(s, 7)/syn(s) described in Theorem 2.4, with
T = S(t).

Proor. Note that the restriction offs to any homogeneous componéRE reduces the
matrix of the coéicientsa(s, 7) to a upper triangular unipotent matrig{(s, t)] s re. Lett be
any (non-planar) decorated rooted tree, and let us choesgettiion mafs such thaiS(t) = r
is a planar decorated rooted tree, then:

Ps(t) = P(1) = > a(s7)s

s«TE

which means that the cficientsps(s, t) anda(s, ) are the same. Hence, it can be expressed
by the numbem(s, 7) in the same way than the déieientse(s, 7). From Theoreni 214, we
found that the restriction of to any homogeneous componégfn reduces the matrix of the
codficientsc(o, 7) to a rectangular matrix. Now, the restriction ®§ to any homogeneous
component-F can be represented by the restrictiortobn the componers(7,F) (this repre-
sentation depends on the section n®pwhich means that the matrix g&(s, t)’s is a upper
triangular unipotent matrix, because we have:

Ys(t) = t + terms of higher energy
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2.2. Tree-grounded monomial bases

2.2.1. The approach by A. Agrachev and R. Gamkrelidze.

A. Agrachev and R. V. Gamkrelidze, in their worhronological algebras and nonstation-
ary vector fields[1], described a pre-Lie algebra isomorphism between thepfred.ie algebra
generated by a (non-empty) set and the tensor product ofrtiversal enveloping algebra of
the underlying Lie algebra with the linear span of the getirggaset. This pre-Lie algebra iso-
morphism will be the focus of our attention in this sectiorsing this isomorphism, we shall
review the construction by A. Agrachev and R. Gamkrelidzemohomial bases in free pre-Lie
algebras.

Denote by PL(E)] the underlying Lie algebra of the free pre-LL(E), and U[E] its
universal enveloping algebra. The structure of algebranddfon/[E] is endowed with the
grading deduced from the grading®f(E).

The representation of the Lie algebf/](E)] by the linear transformationx(— Ly, for
x € PL(E)) of PL(E) is uniquely extended to a representation by the linearstoamations
(u — Ly, for u € U[E]) of the enveloping algebrd{[E] of the Lie algebraPL(E)], which
makes the following diagram commute:

PL(E)C T(PL(E)) U[E]
EndPL(E)) — EndPL(E))
FiGure 2.6.

whereT(PL(E)) is the tensor algebra ¢d®?£(E), andL’ is the linear extension df that is
induced by the universal property of the tensor algebra.

Lemma 2.6. The linear span of the set

Ly E = (Lua : ue U[E], ac E} c PL(E) (2.17)
coincides with the entire algebr@L(E).
Proor. Seelll, Lemma 1.1]. O

DefineBe = U[E]QE to be the tensor product of the vector sp&fé] with the linear span
E of the seE. The spacee has a structure of algebra owémwith the following multiplication:

(Up ® a7)(Uz ® @) = ((Ly,@1) 0 Up) ® @y, YUy, Up € U[E], &y, @, € E, (2.18)
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where '0" is the bilinear associative product [ E].

Suppose first that any generatoe E is given degree 1. The grading of the algefsfgE]
uniquely determines a grading &, by setting the degree of the elemeng a equal to the

degree oli plus 1. One can verify that the multiplication defined[in_&).&atisfies the pre-Lie
identity, which means tha#g is a graded pre-Lie algebra.

Theorem 2.7.The graded pre-Lie algebr8g is isomorphic to the free pre-Lie algebf®L(E), ).

Proor. Let f, : E — B¢ be a map defined by, (a) = 1® a, Ya € E, where 1 is the unit
element of{[E]. Using the freeness property of the pre-Lie algeBHE), there is a unique
homomorphisnt : PL(E) — Bg, such that:

f(a)=f.(a) =1®a,VYac E c PLE).

From Lemma&2J6, we have that for any elemeint PL(E) there existsl € U[E] anda € E,
such thatx = L,a. Now, definef as:

f(Lya) =u®a,Vx =L,ae PL(E). (2.19)

Then the mag with (Z.19) is bijective (se€ll, Theorem 1.1]), hence it is an isomorphism,
which proves the Theorem. O

Remark 2.8. The fact thatBe = U[E] ® E is isomorphic, as a module, f£(E) can also be
seen using the Grossman-Larson descriptiofl4E] ﬁ: it consists to identify a tensora a,
where t is a rooted tree with undecorated root and &, to the tree obtained by decorating the
root of t by a.

Choose a total order on the elementstof Then as a corollary of Theorelm 2.7 and the
Poincaré-Birkhé-Witt Theorem, we obtain that:

PLEB, = Uy 1 ®E, VN >1, (2.20)

where, for anyn > 2, a basis ofi{,,_; is given by:

{xﬁlo.--o><ﬁr :Zr:jk:n—l,andgilz---z@}. (2.21)
k=1

Here we use a monomial basd§ ... X of the subspacg/L;j, foranyj =1,...,n-1, given
by the induction hypothesis. We endow this basis with thal tderx’ < ... < >ﬁ.d", which in
turn defines a total order on the basisRf; @ ... ® PL,_1, obtained by the disjoint union, by
asking thai; > X, if j > j'.

LFor further details about Grossman-Larson algebra segramiaZ.3.11.
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Hence, using formulda (2.20) and the isomorphisaescribed in[(2.19) , we get the follow-
ing monomial basis for the homogeneous compo@it

{xﬁl>(xje:>( > (X > a)- ij_n L x>z % anda,eE} (2.22)
Here is a description of these monomial bases up to degree 5:

Pﬁlgﬂ()@E
<l1l®a:leKackE >,

>PLi=<La=a:aceE>=E.
PLo,=U QPLy
=<q®a . a,ackE >,
:>P£2:<Lalazzall>az Ca, e E >
PLz=U,PLy

=<x®a (Xox?)oa :e=1...,d, e,=1,...,d e >6,aa cE>,
= A monomial basis of/L; is then given by:

{(aa>a)>ag: a,ap, a3 Elu{ai>(ax>ag): aj,ap, a3 € E, ap > ay}.

P.£4E(L{3®P.£1
=<x®a( ox)ed,(FoxFox)®a’ e=1...,0,€ =1,...,0,

el’eZ7e3’e4 = 1"",dl,e2 > e3 > e4,a.,a/,a”€ E >,
= A monomial basis oL, is then given by:

{((a1>a2)>a3)>a4: a; € E, for | :1,2,3,4}|_|{(a11>(a21>a3))>a4: ajeE, forj=1234, alzaz}
|_|{(a11>a2)1>(a31>a4): a; € E, forj:1,2,3,4}|_|{a1>(a2>(a3>a4)): ajeE, forj=1,234,

a; > ay > 3.3}.
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PLs =Us @ PLy
=< x§®a,(X§ox‘jl)®a’,(x?ox?,)®a”,(x§2”oxi?ox?)®a’”,(x‘j40xj’5ox‘jGoxT)®a”” :
e=1...,d,€=1,...,03,€6,€6,€6" =1,...,d, 6 =1,...,d,¥Vi=1,...,7,€ > €&,6 > e,
&41>62>626,aa,a,a",a"eE >,
= A monomial basis 0fLs is then given by:
{((a1>a2)>a3)>a4)>a5: a; € E, forj:1,...,5}|_|{(a11>(a21>a3))>a4)>a5: a; € E, for j =
1,...,5,alza2}u{((a1|>a2)|>(a3|>a4))>a5: a; € E, forj:1,...,5}u{(a1>(a2>(a3>a4)))|>a5:
aj € E, forj:1,...,5,a12a22a3}u{((a1>a2)>a3)>(a4>a5): a; € E, forj:l,...,S}u
{(a1>(a2>a3))|>(a4|>a5) s a;€E, forj:1,...,5,a1zaz}u{(a1>a2)>((a3>a4)>a5): a; € E,
forj:1,...,5,a11>a2za31>a4}|_|{(a11>a2)l>(a31>(a41>a5)): aj € E, forj:1,...,5,a32a4}

u{a1>(a2>(a3>(a4>a5))) ca;€E, forj:1,...,5,a12a22a32a4}.

etc

This adapts to the case when the generators are of variovsedegupposE = | | Ejis a
ieN
disjoint union of subsetk;, whereE; is the subset of generators of degre@hen the grading

of the algebraBg is determined by the grading G#[E], by setting the degree of the element
u® a equal to the degree ofplus the degree of the generatoin E. The Theorerh 2]7 remains
true. The formula in[(2.20) will be changed as:

n
PLE By = (P U 9, forall1<e<n, (2.23)
=1

whereE, is the subspace of all elementsbf degree’. For any 1< ¢ < n—1, a basis of/,_,
is given by:

{Xjelloo)(]er’ : ij:n—f, andXJellZZXﬁ’} (224)
k=1
Hence, byl(Z2.23) and@ (4.21), the monomial basis for the h@megus componefiL,, becomes:

U{)S?D()S?D(--»()ﬁ?|>aj)---)) ; ij:n—ﬁ, X! -2 %" anda; € E;}.  (2.25)
1 k=1

(=
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2.2.2. Base change to the rooted tree basis.

We relate now any Agrachev-Gamkrelidze type monomial basssfree pre-Lie algebra,
obtained from the formul&(2.20), with the presentatiorheffree pre-Lie algebra as the linear
spany of the (non-planar) rooted trees with one genergthrendowed with the grafting = .

In the following, we give the tree expansions of the first fieenogeneous components of such
a monomial basis, in the case of one single generator:

Ti1=<e =9 >

Tr=<e—e> =< =] >

Tz=<(e—>e) >e 0e—(e—0e > = <61:£,62:£+\./' >,

T4:< ((o—)o)—>o)—)o,(o—)(o—)o))—)o,(o—)o)—>(o—>o),o—>(o—)(o—>o)) >

:<e1:§,e2:i+\{,e3:§+b,e4:i+\{+3b+\l’>-

Ts=<(((e—>0) >e) —0) se((6e—(e6—0) e e ((6—0e) —(6—0)) >0 (e—(e—
(e —0)) — o (((e >0 0 >(e—0) ((6—>(e—0) —(e—0) (e—0) —((e—0) —o),

(o—)o) —)(o—)(o—)o)),o—)(o—)(o—)(o—)o))) >

SO OIS O T 0 5 O 4
€ L¥+£/+XQ,e7:LLf+v,eszI+Lf+2i1+v+%?,
egzL\{+3Lf+\f+4iz+4‘{z+31}+6ly+v>.

Now, for any homogeneous componéht each vector in the monomial basis described
above is defined as a monomra(e, —) of the tree with one vertexs" multiplied (by itself)
using the pre-Lie grafting — ” with the parentheses. This monomial in turn determines two
monomials in the algebragf, %) and (7", o») respectively. One of these monomials is ob-
tained by replacing the grafting= " by the left Butcher product %", which induces a planar
rooted treer. The other monomial is deduced by replacing the produet ™ by the usual
Butcher product, which in turn defines a (non-planar) rodtedt. This adapts straightfor-
wardly to several generators of various degrees.

Definition 2.2. A monomial basis for a free pre-Lie algebra is said to be aéigrounded”
monomial basis if we obtain the Chapoton-Livernet tree dagien we replace the pre-Lie
product in each monomial in this basis by the Butcher produet. For any positive integer n,
a monomial basis of F will also be called tree-grounded if this property holds7if.



38 2. MONOMIAL BASES FOR FREE PRE-LIE ALGEBRAS

Example 2.5. In the space of all (non-planar) undecorated rooted trégeshe homogeneous
component, has four types of monomial bases, which are:

Bi= (6= =) oo (s Dale 9 (e e (s (29

={el=i,ez=§+Y,es=i+b,e4:§+'¥+3b+\r}.

Br={((s>9) 5 sols(s—0) soem (50 oo (s (s> )]

={e1:i,ez:§+Y,e3:§+\{+b,e4:§+Y+3(z+\zf}.

Bi={((s>9) 5 so(s—9) = (s o (550 2o (s (e > 9))

:{elzi,ez:i+b,e3:§+Y+Lz,e4:§+Y+3b+\y}.

B4:{(O—>(o—)o))—>o,(o—>o)—) (o—)o),o—) ((o—)o)—)o),o—)(o—)(o—)o))}

={e1:§+Y,e2:§+b,e3:§+Y+Lz,e4:§+Y+3b+«y}.

We find that the monomial bas®s and B, are tree-grounded monomial bases/af because
replacing the pre-Lie grafting — ” by the Butcher producto-" gives back the tree basis

{3, Y LJ *r'}. But one can note that the basB8g and 8, are not tree-grounded.

Lemma 2.9. A monomial basis for the free pre-Lie algebra generated by tee-grounded if
and only if it comes from a section map S according to the hmm‘?s.

Proor. Let x :izlmn(i‘, —), a monomial of generatofé. . ., " multiplied each with other by
the pre-Lie grafting =" with the parentheses, be an element of some tree-groundadmal
basis. Sef(t) :izlmn(a‘, A.), wheret :izlmn(i“, o) is the lower-energy term of. By Definition[2.2,

these lower-energy terms form a basisfdf, henceS is uniquely defined that way, and it is a
section ofr, as in the following diagram:

mE)eTE - TEam@EN)

S ]

t=m@Eo)eTE _» TEax=

8
1,...n ‘PS m(.a _))

1,...n
FiGure 2.7.

On the other hand, any monomial basis induced by a sectionSnapbviously a tree-
grounded monomial basis. |

Lemma 2.10. The Agrachev-Gamkrelidze monomial bases are tree-gralinde
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Proor. From the construction of Agrachev-Gamkrelidze monomesdds, and using the
presentation of the free pre-Lie algebra in terms of roateest (see Theorem 1.6), we have:

7:1E£ %[n_l ®E, Vn Z l

such that for a homogeneous comporigfht the monomial basis i (2.22) becomes:
r
{x]ell — ()(]ez2 - (> (X]er‘ — %)) ij: n-1, X]el1 =2 -(?, forae E}. (2.26)
k=1

The monomial basis for;F, namely{? : a € E}, is obviously tree-grounded in the sense
of Definition[Z.2. Suppose, by the induction hypothesist tha monomial basigx™, . ..,x?}
is a tree-grounded basis ’ﬁ]f for j =1,...,n— 1. Consider the corresponding lower-energy
termst‘l?l, ...t obtained by replacing the graftings" by the Butcher productd.” in each
monomial. The lower-energy term of the monomial

X]fell_>(xl¢22_>(..._>(>{r_>%)...)) (2.27)

is given by :
tﬁlo—>(tje;o—>(- . o»(tf’o»g) )

— €1 &
=B, (t2...12).

Hence we recover the tree basis7gf by taking the lower-energy term of each monomial
(2.27), thus proving Lemnia 2.10. O

Remark 2.11. The Agrachev-Gamkrelidze monomial baBijsdescribed in[2.28) determines
a section S, this section is defined as follows: let »((ﬁ1 — (xﬁ2 - (- 0&? - 9-)
be a basis element iff, and t= t o»(t”o-(- - - o»(t 0-%) - - 1)) be its lower-energy term, we can
associate with t:

S(t) = 7 = 7 N A AT AN ),
such thatr(r") = t7, ¥(«)) = X*, foralli = 1,...,r, and then¥(S(t)) = () = x.

Lemmd2.1D remains true in the case of several generatdisvaiitous degrees. As a par-
ticular case of our general construction, an Agrachev-Gahadze monomial basis, by means
of the isomorphisni(2.19), gives rise to some particulatise&S. Conversely, any sectidd of
n defines a tree-grounded monomial basis for the free pretgebsa (" F, —). For any integer
n > 1, the matrix of the ca@cients of the tree-grounded monomialGf associated with the
sectionS is exactly the matrix@s(s,t)]ls’teTnE described in Corollarly 215. See appendix A for
an explicit expression for those matrices in some particzdaes in one generator.
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Remark 2.12. We have seen that the m&frespects both graduations: the one given by the
number of vertices, and the one given by the sum of the defjtiee wertices. The restriction of
¥ to homogeneous components for the second graduation isipfser-triangular unipotent.



CHAPTER 3

Monomial Bases and pre-Lie structures for free Lie algebras

This chapter contains three main sections. In Se€fidn T omstruct a structure of pre-Lie
algebra on the free Lie algeb#dE) generated by a sé&, and we give the explicit presentation
of £(E) as the quotient of the free pre-Lie algeira by some ideal.

Recall that7[')|E is the linear span of the s@ﬁ of all planarE-decorated rooted trees, which
forms together with the left Butcher produét.”, and the left grafting " respectively two
magmatic algebras. In Sectibn13.2, we give a tree versiomudr@omial well-order oﬁ'pE,. We
adapt the work of T. Morad1] on Grobner bases to a non-associative, magmatic conterg u
the descriptions of the free magmatic algel:(@§, ) and((][')IE, \\ ) respectively, following
[18]. We split the basis oE- decorated planar rooted trees into two p&({d’) and T(J),
whereJ’ is the ideal of7;)|E generated by the pre-Lie identity and by "weighted anti+satry
relations™:

lolo AT + [Tt O

HereT(J) is the set of maximal terms of elementslofand its complemer®(J’) then defines
a basis of£(E). We get one of the important results in this thesis (Thedgelg), on the de-
scription of the se©(J') in terms of trees.

In Section(3.B, we give a non-planar tree version of the maabwell-order above. We
describe monomial bases for the pre-Lie (respectivelylffepalgebral(E), using the proce-
dures of Grobner bases and our work described in Chaptett2 imonomial basis for the free
pre-Lie algebra E.

3.1. A pre-Lie structure on free Lie algebras

Let L(E) be the free Lie algebra generated by a (non-emptyiEset | E;, a disjoint union
ieN

of subset<E;, whereE; is the subset of elemenﬁé, .. a{j of degred, and #; = d,. The free
Lie algebral(E) can be graded, using the gradingkof

L) =P £, (3.1)

ieN

where/; is the subspace of all elementsHfE) of degred. In particularg; c ;.

41
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Define an operation=" on £(E) by:

Xy M[X’ yl, (3.2)

for x,y € L(E).

Proposition 3.1. The operatior > " defined by{3.2) is a bilinear product which satisfies the
pre-Lie identity.

Proor. Forx,y,ze L(E), we have:

X>y)>z-x>(yr2 = |%l[x,y] z—|—1|x>[y,z]

|x|(|x|+IY|)[[ 9.2 - | || |[ x [y, 2]

|X|(|X|+|y|)[[ 9.2 - WM([[X,V] Z - [y, [z A]), since

[X[y,Z] + [z [xV]] +[y.[z X]] =0 (the Jacobi identity)

_ (L) (W= (X +1yD 1

WMHM”]]MﬁHJ]

=y XxX)>z-y> (X 2.
Then L(E) together with "> " forms a graded pre-Lie algebra generatedshy O
This construction of pre-Lie algebra on the Lie algebra camaplied to any-graded Lie

algebrarz, such that£, = {0}. Another construction of pre-Lie algebra proposed/by T.
Schedlerlﬂlﬁl given by the following pre-Lie product:

i
IX| + 1yl

>y= [X,y], foranyx,y e L. (3.3)

These two constructions are isomorphic, via the linear map:

a{wnﬂwm,

X — |X|X.

1For more details about this construction of pre-Lie algete®f5, Proposition 3.3.3] an@®@§].
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Indeed is a bijection, and for any, y € £ we have:

IVl
X+ 1yl

_ M
= e

__ M
IX| + |yl
= |yI[x, Y]

- Dy

X
= (IXly)x >y, (by the definition of &” in (8.2)),
= [XIx > Iyly

= a(X) > a(y).

a(x» y) = a [x,y]), (by the definition of ¥ in (B:3)),

(X + VD% Y], (by the definition ofx above),

Denote by {,-]. the underlying Lie bracket induced by the pre-Lie produet, “which
defined by:

[X, V] = Xx>y—-y>X forxye L. (3.4)

Then the two Lie structures defined dhby the Lie brackets-[], [-,]. respectively, are also
isomorphic viax. Indeed, by substituting the pre-Lie produst’;' described in[(3]2), by the Lie
bracket [, -] in the definition of the Lie bracket,[-]. in (3.4), we get:

[X’ y]l> = |—;L(|[X, y] - i[y, X] — X + ¥l

= x,y], foranyx,y € L, 3.5
i Xyl <] ey (3:5)

but,

a([x YD) = X VI [ ¥ = (X + IYDIx. Y]

= [XIVI[X, y]» (by (3.3))
= [IXIX, Iyly].
= [a(X), a(Y)]- (by 3.2)).

For any (non-planar) rooted tréewe can decorate the verticestdby elements ok, by
means of a map : V(t) — E, whereV(t) is the set of vertices df Denote byTF the set of
all (non-planar) rooted trees decorated by the elemerits défine the degrelg of a decorated
treet in TE by:

th:= )" ld) (3.6)
veV(t)

The linear span of E, call it 7§ together with the grafting product ” is the free pre-Lie

algebra generated by the $&t a € E} [14], which is graded by the degree of trees defined in
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(3.8). In particular, there is a unique pre-Lie homomorphi from (75, —) onto (£L(E), >),
such that:

®(%) = aforanyace E. (3.7)
Ifwetaket=t; - (t, > (--- = (tc = 9)---)) € TS then:
Ot) = x> (> (> (X%>a):-)), (3.8)

with x, = ®(t;), and|tj| = |x]|,Vi = 1,...,k. Let| be the two-sided ideal 6f E generated by all
elements on the form:

IS(s = t) +|t|(t = 9), for st e TF. (3.9)
The ideall satisfies the following properties:

Proposition 3.2. The quotient’(E) := 7 &/I has structures of pre-Lie algebra and Lie algebra,
respectively.

Proor. Using the pre-Lie grafting->" defined on7 E, we can define the following opera-
tions onL'(E):

S¥ti=S—>t:i=s—>t, (3.10)

[St]:=[st]:=|9s—t, (3.11)
for anys t € 7, where the bar stands for the class modul@he product in[(3.10) is pre-Lie
by definition. The bracket defined in{3]11) is well-defined aatisfies the following identities:

(i) The anti-symmetry identity: for ang,t € 7F, we have
[S1] = —[t, 9], since,s(s—t) +]ti(t = 9) € I.
(i) The Jacobi identity: for ang t,t' € 7E, then
SRV +[STLU=1slti(s— t— 1)
+Is(s + ) (s~ ) = 1))
(using the anti-symmetry identity}— =[St/ ((s— (t - 1)) - (t = (s> 1))

(using the pre-Lie identity}— = ||t (s> 1) = ") = ((t = 5) — 1))

=gt (s—>t-t—=9 - t)

(using the anti-symmetry identity}— = |g|t|/((s— t + Es =1 —>t)

It
SR EED-D)

=18+t ((s—> 1) > t)
=[[s1.1].

= |sllt]
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Proposition 3.3. | = Ker @.

Let (M(E), -) be the free magma generatedbyand letMg be the free magmatic algebra
generated b¥, i.e. the linear span of the magnw(E). Define a new magmatic product™
on M(E) by:

X#y = [XX-Yy (3.12)

for anyx,y € M(E), and extend bilinearly. We need, to prove Proposifioh & #troduce the
following lemmas.

Lemma 3.4. The two magmatic algebrd@ g, -) and (Mg, =) are isomorphic.

Proor. By universal property of the free magmatic algebra, thera unique morphism
v (Mg, ) = (Mg, =) such thaty(a) = a, for anya € E. For anyx,y € Mg, we have:

y(X-y) = v(X) = y(y) =y y(X) - ¥(y). (3.13)

Hence one can see, by induction on the degree of elemente aidgmaV(E), that we have
for anyz € M(E):

Y@ =12z (3.14)

wheref : M(E) — N is recursively given byf(a) = 1, for anya € E, andf(x-y) = X f(X)f(y)
for x,y € M(E) (for more details about this mapping see Exaniplé 3.1 belévencey is an
isomorphism. m]

Now, let J be the two-sided ideal generated by the the anti-symmethttas Jacobi iden-
tities on(Mg, =), and letd’ be the two-sided ideal Mg, -) generated by the pre-Lie identity
and the elements on the form:

XIX-y+Yly- X forx,y € M(E). (3.15)

Lemma 3.5.J = 7.
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Proor. Let J; be the ideal generated by the elemehis (3.15). Equivaleljtiy generated
by the elements «y + y X, for x,y € M(E). We have:

X-W-@-%X-W'Z—Y-W~3+%y-@-2=—1—X*W*Z) (xxy)*z

1
Xyl R CEY))

—iy*(X*Z) (Y*X) =2z

L1
Xyl IVI(IXI + Iyl)

1
:m((bq +IY)X o (Y * 2) — IVI(X x Y) 2
= (X +IyDy * (x+ 2) + [X(y * X) * 2)
1
_W(—y*(x*z)+(y* X) % Z+ X (Y * 2))
1

XI(X + Iyl

1
_W(X*(y* 2) +y = (z*X) +z* (x=Yy))modulo J,

(Y X+ X5 y) % Z

hencex-(y-2 - (X-y)-z—-y-(X-2 +(y-X)-ze J. Thismeans)’ c J.

Conversely,
(X (Y% 2) + Y (2% X) + 2% (XxY)) = [XIIVI(X- (Y- 2) = (X-y)-Z—Y-(X-2)+ (¥- X)-2) modulo J, (3.16)
hence the left-hand side df (3116) belongdtowhich proves the inverse inclusion. |

PROOF OF ProposiTioN[3.3. The free pre-Lie algebra generated Bbys given by 7 E [14],
[19). Hence, the quotien’(E) = (Mg, -)/J = 7E/l is a pre-Lie (respectively Lie) algebra.
The Lie algebral(E) = (Mg, *)/J carries a pre-Lie algebra structure induced by the product
defined in [[3:2), such that the free pre-Lie algeB¥E) := Me/J, = TF, wherel, is the
two-sided ideal generated by the pre-Lie identity (g, -), is homomorphic taL(E) by @
described inl(3]7) and (3.8), as pre-lie algebras, as indlf@fing commutative diagram:

EC' > (Me,")

NN

(ME’ *) TE

Ficure 3.1.
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whereq, g’ are quotient maps. From Figure 3.1 above and Lenima§ 3]4y8.§et that:
Ker(®oq)=J =J=Kerq, and therKer® =q'(J)=q(J) = I.
Therefore Proposition 3.3 is proved. O

Note that the Lie product ofi(E) is the image of #" by ® o ¢f. The pre-Lie product®" is
the image of " by ® o . Hence, we recover PropositibnB.1 this way.

Example 3.1. The free magma KE) can also be identified with the set of all planar binary
rooted trees, with leaves decorated by the elements of Ethegwith the productV" defined
in Sectio ZI1. For instance,

a bcd e

a b a b c ab c
a-b= \/(a-b)-c:Y/a-(b-c):\>,/ and z= x-y=((a-b)-c)-(d-e) :W(B.N)

with x:=(a-b)-c,andy:=d-e. Then:
f@) = f(x-y)

=X E(Y)
= [X(la- bif(a- b)f(c)) (|dif(d)f(e))

= [XI((lal + Ibi) (|dI(lal f (a) f (b) f (c) f (d) f (€))))
= [al|d| (|al + [b]) (|a] + [bl + [c]) ~ ('since, (&) f(b)f(c)f(d)f(e) = 1).

There is another description of f, detailed as follows: inlanar binary tree, there are two
types of edges, going on the left (from bottom to top) or goimthe right. Consequently, except
the root, there are two types of vertices, the left ones (tkeming edge on the left) and the
right ones. Lett be a planar binary tree, with leaves deceddiy elements of E, theit¥is the
product over all left vertices v of the sums of the degree®titcorations of the leaves | with a
path from v to I.

Consequently, from Propositions, 3.1,13.2] 3.3, we getdheviing result.

Corollary 3.6. There is a unique pre-Lie (respectively Lie) isomorphistwbken/’(E) and
L(E), such thatb(amodJ’) = amodJ, for any ac E.

3.2. A monomial well-order on the planar rooted trees, and aplications

Let E be a disjoint uniork := | | E, of finite subsets, = {a],...,a] }, whereE, is the
n=1 "
subset of all elements & of degreen. Let us order the elements Bfby:

aj<--<ay <A <--<ag<oc<a<oo<ay <o (3.18)

Some particular sets of generators can be considered:
() E = || E,, where#; =0 or 1. A particular situation is:

n>1

(@) takeE = {a,,...,as}, with g € E;, and|g| =1, fori=1,...,s
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(i) E =E,, where £, = d; = d, as a special case:
(@) taked; =d = 2.
The setTE, forms the free magma generated by the{setfor a € E}, under the left Butcher
product ",

Define a total order < ” on TE as follows:

foranyo, T € TE, theno < 7 if and only if (3.19)

() |o| < ||, or:
(i) |o| = |r] andb(o) < b(7), or:
(ii) |o| = |7l,b(o) = b(r) and @1,...,0k) =< (11,...,7) lexicographically, wherer =
Bir(o1...0k), T=Bip(r1...7%) , OF:
(V) |o| = |7, b(o) = b(7), (01, ...,0%) = (r1,...,7k) and the root of o is strictly smaller
than the root’ of 7.

wherek = b(o) is the number of branches of starting from the root. This order depends on

an ordering of the generators, here we order them by:

1 al i al,
§1<...<.d1<...<§l<...<.d'<... (320)

like in (3.I8). The first terms i E, whenE = {a', a?}, are ordered by % ” as follows:

pl’
1 1 1 2 1 2 2
1 2 2
<l<l< £1<1V1< ! < £1< £2< £1<1V1<1V2<2V1< £Z< £1< £2<1V2<2V1<
1 1 2 2 1 1 2 1 1 2 2 1 2 2

2 1

o

<3<

~@—er

2

2v2< £Z<2v2< .
2

1 2

where® is a shorthand notation f6r
Proposition 3.7. The order "<” defined in(3.19)is a monomial well-order.

Proor. Let o, 0’ € TE, such thatr < ¢’. For anyr € TE,, we have:|[t%\o| < [0,
if |o] < |o’|, and they are equal when the degreesraddnd o’ are equal. Ifb(oc) < b(o),
thenb(r%\.0) < b(rX\.c¢”). But, if b(c) = b(c’) = k, thenb(r® o) = b(z*¢o’) = k + 1.
Lexicographically, t,o1,...,0%) 2 (r,0,...,0) when @4, ...,0%) < (07, ...,0}). The root
of r% o is the root ofo, the same thing for“ ¢’ holds. Thenr® o < t%.0’. By the same
way, one can verify thar v < o@*,r. Hence, the order” is a monomial. Obviously, this

order is a well-order. O

The linear span OTE, call itTj, forms together with the productl” the freeK-magmatic
algebra generated B¢ ; a € E}. In following, we review the work of T. Mora41] on the
Grobner bases for the free Lie algebras in tree version. mpekementf e TPE, defineT (f)

to be the maximal term of with respect to the ordex" defined in [3.IP), and ldc(f) be the
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codficient of T(f) in f, for example:

if f= }#yﬂr 2% thenT(f) =" %" andic(f) = 2.
Let | be any (two-sidedl) ideal of ;. Define:
T() :={T(f)eTH: fel}, O@):=TH\T() (3.21)
to be subsets of the magr?ﬁﬁ, whereT (I) forms a (two-sided) ideal oTr'f,.

Theorem 3.8.1f | is a (two-sided) ideal of j, then:
(i) TPEI = | @ Spa(O(1)).
(i) TPEI’* = TS/I is isomorphic, as a K-vector space, to Sp&D(1)).
(i) Foreach fe Tj there is a unique g= Can(f, |) € Sparx(O(l)), such that f-ge I.
Moreover:
(@) Can(f,1) = Can(g,l) ifand only if f—ge I.
(b) Can(f,l) =0ifand onlyif fe I.
The symbol Ca&(f, I), which satisfies the identities above, is called the carariarm of f in
Span (O(1)).
Proor. The proof of this Theorem is detailed 41, Theorem 1.1]. The procedure followed
in the proof of [(j) is by using the following algorithm:
fo:="f,¢0:=0,hg:=0,i :=0
while f; # 0 do
If T(f)¢T(l)then
Giv1 = @i, hiwa 1=y + 1c(F) T (i), fivr := fi — Ic(F)T(F)
else % () e T(1)%
choosay; € |, such thafl (g;) = T(f;),lc(g) =1
pic1 = ¢i +lc(f)g, hipr = hy, i o= fi = lc(f)g
i=i+1
¢ = ¢i,h = hi.
The correctness of this algorithm is based on the followibgeovations:Vi : ¢; € I,h €

Sparx(O(1)), fi + ¢; + h = f. Termination is guaranteed by the easy observation thigt#f O
thenT(f,) < T(f,_1) and by the fact that is a well-ordering. O

Let J’ be the two-sided ideal cﬁ“j generated by the pre-Lie identity and all elements on
the form:
oo\ + |[t]tX0o, for any (non-empty) trees, 7 € TS. (3.22)
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1

Example 3.2.In this example we calculate Céin J'), where f= I+1+ I + Vand Jis the
ideal defined by{3.22) using the algorithm described in the proof of Theo-l fem 3 &vab

2

f0:§+;+;+1y,2¢020,h0:0

T(fo) = e T(J), choose g = 3£1+1\?/'ze J, le(go) = 1

¢1:3£1+1\{fh1:o,f1:I+I+I—3£1
El , 1 £ E 14 3 .

T(f) = $ € T(3). choose g= 5({ +2 ) = E(I+21)°\.eJ, Ic(gy) = 1
1 1 2 3£2 El P 352

$2=3 E Y—§1—31, h2=0,f2=§+1+;+§

1

T(f,) = £2¢ T(J), then:

[

T(f) = § € T(I). chooseg= 2(3+3) e I
sy 2o,
T() = §¢ T(). then:
ey ghahe

T(fs) = { € T(J), choose g = %(I +28) el

1

1 3 32 21 2
pedoneShn-2iad

21

EH 23£z E 13 3 13 3 3} 2, . 13
d6=30+¥=50-3e+ gl e glrl ho=50v 3l fo=—31
T(fe) = & ¢ T(J), then:

EU 23} E 13 3 1% 3 _3} 2, 1%,
¢r =30+ Y= 58-88 Sl deSle b m=5dv Sl k=0,



3.2. AMONOMIAL WELL-ORDER ON THE PLANAR ROOTED TREES, AND APLICATIONS 51

1

~@—er

then we obtain that Cdi, J') = g£2+ 23 -1

One can note that choosingfifirent g’s at each step in the procedures above while changing
the intermediate computations would not change the finailtes

Theoreni 3.B does not describe the contents of eadi{ldfandO(l). We try here to get a
description of them, using the magma of planar rooted tT%pwith its K-linear sparﬂﬁ. Let
J be the (two-sided) ideal drpﬁ generated by the pre-Lie identity with respect to the magmat
product '2,". By Theoreni3.B, we have:

7o = J @ Span (O(J)). (3.23)

Proposition 3.9. 0(J) = {o € TE . forany v e V(o) the branches starting from v are dis-
played in non decreasing order from left to right

We introduce the following lemma, which helps us to provepg@sition3.9.

Lemma 3.10.For any treeo in TE, which does not verify the condition of Proposition 3.9nthe
oisin T(J).

Proor. Leto = B, ((o1---0) be atree inTE,, with k branches fok > 2 starting from the

root, such thatri_; > o, forsomei = 1,..., k- 1. We find that:

i1 T
U';‘L' 'Ui'_lo'i' ) 'U'k uwk u’;\ba’k U';‘L' 'O'i Oi'_'1' 'U'k
F N7 ; NV (3.24)
r r r r

is an element inJ such thatT(f) = o. If the branches start from a vertexdifferent from
the root, the subtree,, obtained by taking as a root, is a factor of the tree It is easily
seen thatr is the leading term of the elemehte J obtained by replacing the factot, by the
corresponding factor given by (3]24). O

As a consequence of Lemima3.10, we get the following natasailt.
Corollary 3.11. O(J) is contained in the sdtr € TE : o has non decreasing branchgs

Proor oF ProposiTion[3.9. Using the graduation dTE,, with respect to the degree of trees
therein, there is a one-to-one bijection between the Sl{leEﬂ'E : o has non decreasing branchgs
and the the homogeneous comporiEpbf all E-decorated (non-planar) rooted trees of degree
n,i.e.:

#{o € T] : o has non decreasing branchgs: #T, foralln > 1.

But, O(J),=TF, for all n > 1, have the same cardinality, hence coincide according tolCo
lary[311:
0 ={o e TEI : o has non decreasing branches (3.25)

This proves the Propositidn 3.9. O
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In the next Theorem, we try to describe the®€&Y’) for the ideald’ defined above by (3.22).

Theorem 3.12.The set @J') is a set of ladders, or equivalently, the magmatic ide@)’T
contains all the trees which are not ladders.

Proor. We use here the induction on the numbet 6f vertices. Leto be a tree inTE,
which is not a ladder, witk branches (starting from the root) andrertices. Sincer is not a
ladder, them must be greater than or equal to 3nlf 3, andk = 1 theno is a ladder. Hence,
for k = 2, we have that:

y
o :XV%S an element of (J'), since there if = |x|x.\./.i(|y| +r]) ri in J’, such thafl (f) = o,
for anryx, y,r € E. Also, for anyr € TE, the elemenfﬁo\r andro\xp are inT(J') (sinceT(J)
is an ideal).

Suppose that any (no-ladder) tree‘l‘lﬁl with g vertices, wherg < n, is an element i (J'),
leto e T with "n" vertices and K" branches, which is not a ladder, then:

(i) If k = 1, the treer is written o2\, whereo is not a ladder. Thenr € T(J’) by the
induction hypothesis, hencee T(J’) becausd (J') is an ideal.

(ii) The casek = 2. This corresponds to the case= o\l , wherel,, is a ladder inTE,
with mvertices foom > 2. If o is an element of (J’) then so isr. If not, o is a ladder
by the induction hypothesis. See the discussion below.

(ii) The casek > 3. These are trees = (c*\,7) wherer € TE,, with k— 1 branches, is not
a ladder. We have then € T(J’) by induction hypothesis.
Let us discuss the cadel (ii) whenis a ladder and the laddéy does not belong td (J).

Letlq, |, be ladders irTE, with ny, n, vertices respectively, wherg, n, < n, and let:

Iy Iy I2 I1
F= V=1200,00), o = V= L2 (1,00, (3.26)

By the pre-Lie identity, with respect to the left Butcher guat "", we find the following

element:
'Il .|2

Vi 1'1 lll_lz\/ll (3.27)

r r r
in J', such thatr, o’ are bigger trees, with respect to the orgatefined in[[3.19), than the two
other trees infy. Let|l;| = p;, wherep; > 0, fori = 1, 2. We have the following cases for.

(i) Either p; = p2, then in this case we take the elements:
.ll .I

1 I
1 el1
1
-9 o Y @],
- - , (3.28)
r ry

I2 I r
g=p2v+(p1+|r|)l|2,f1:\r/— r
1 1 1

I
in J’, wherel, = I17°,¢ Then we get the element:

f=pfo+g-(pr+Irfied, (3.29)
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such thafl (f) = o, since:
Ih

@
rlr< l\r/, for the order "< .

(i) Or, p» < p1, theno = T(fy), where f; is the element described ih (3127), hence
oeT().

(iii) Or, p1 < p2, here we have that < ¢’ and the elemenf, described in[(3.27) is an
element inJ’ such thatT (fy) = o/, hences’ € T(J). Now, for o we can get an
element inJ’ such thatr becomes the leading term of this element, as follows: we
replace the tree’ = 1,%,(1,%.*) in fy by the tree:

olq
o = (LB = t, (3.30)
using the elemerg described in[(3.28). This new tree’ is also greater thasr with
respect to the ordex". By the pre-Lie identity, we can get the elemdndescribed

in (3.29) such that:

.l
it
2 pr

o ando = |(21)o\((|lo\r.)o\r.1) = V are the two biggest trees appearing in this element.
1
We verify whetherp, = [l > I$V] = p, —Ir4l, i.e. o < &, or not. If so, then
o € T(J). If not, we replacer] in f by the tree:

Ih
r

o = (LB HAUD = lfﬁn. (3.31)
If n, = 1, the treer] is a ladder. Ifn, > 2, theno is not a ladder and is greater

thana. Then we need to apply the pre-Lie identity once again tortret; in (3.31),
and replace it by:

Iy
o 1= 1P (110H) DA = Wherel(z)o\rz_ 15V,
Let p@ = I9], wherel, = (--- (199 )O\r' 1)..)d fori > 1. After a finite
numbers of steps applying the pre-Lie identity in the expression:
I I1
I 19 L

rs. 1G] I
o= (- (1)) - )AETHR (192 F) = kv'mmema \( (3.32)

S

which can be formulated as: )

I e I1
L Sk
r Fs-1 ;

I( ) I(S) 1 fs1
1\/eJ' (3.33)

fs_

rs rs
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we can find an elemerit € J’, such thatc and o, become bigger trees df with
P < py, i.e. o, < &. Henceg described in(3.26) is iff (J'). Then, Theorerfi3.12
is proved.

3.3. A monomial basis for the free Lie algebra

The sefTE forms the free Non-Associative Permutive (NAP) magma geteer by the set
{3: for a € E}, under the usual Butcher product Corresponding to the total order defined in
(B19), we can define a non-planar versioof this order, as follows:

for anys,t € TE, thens < t if and only if (3.34)
(i) I8 < t], or:
(i) |9 = |t andb(s) < b(t), or:
(iii) |9 =1t|,b(s) = b(t) = kands= B, (s;...%),t = B, (t1...t) such thal j < k, with
s =t,fori < j, s <tjwheres; <--- <5, <--- <t are the branches «f t
respectively, or:
(iv) |sl = [tl,b(s) = b(t) =k, § =, foralll = 1,...,kandr < r’, where® (respectivelys)
is the root ofs (respectivelyt).
By the same way as in Propositibn13.7, we observe that the drdedefined in [3.34) is
a monomial well order. The spa@e® forms with the Butcher product the free NAP algebra
generated b¥ [37]. We introduced, in our preceding work in Sectlon 2.1.2, etise S from
the NAP algebraf ®, o-) into the magmatic algebra (j, ®\):

(TpEP o\) — (TE, O—>)
S
Here, we choos8(t) = Spin(t) := MinL{r € Tr'f, : n(r) = t}, for anyt € TE, whereMin.{-}
means that we choose the minimal elemeint TE with respect to the ordex” with =(7) = t.

Proposition 3.13. The section map 5, defined above is an increasing map.

Proor. Take two treess andt in TE with s < t. The sectiorS,,,, obviously, respects the
degree and the number of branches of the trees. Hence, waippasgls = |t| andb(s) =
b(t) = I. We have then:

S= B+,r(51,---,5), t= B+,I”(tl""’tl)7 Wlth S <:-= S, tlﬁ e ﬁtl (335)

Condition [ili) of the definition, in[(3.34), of the ordet exactly means that thetuple of
branches 08,,i,(9) is lexicographically smaller than theuple of branches di,(t). If sandt
have the same branches and t, we also havé&,,in(S) < Smin(t), as one can see by comparing
the roots. This proves Proposition 3.13. O
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Proposition 3.14. The section map §. on TE is a bijection onto @J), where J is the (two-
sided) ideal generated by the pre-Lie identitj‘TrbEl, ).

Proor. Clear from Proposition 3.9. O
Define a relatioRon TE as follows:

sR¢if and only if there ard,t’ € TE andv,w e V(t') suchthas =t —, t', s =t —, t’

) (3.36)
for s s € TE, andw is related withv by an edge’/' with w abovev. Let ® be the transitive
closure of the relatiomR defined in[[3.36), i.e. fos, s € TE, we say thasBs if and only if
there iss,, ..., s € TE such thasRsR...RsSRS.

Lemma3.15.Letss,te TE ifs < sthen §—,t < s—,t, forve V(t).
Proor. Immediate from the definitiofi (3.84) of the ordes™" O
Lemma 3.16.Let s S € TE, if SRS then $ < s.

Proor. Fors, s € TE, if sR$, then by definition of the relatioR in (3.38), there arg t' €
TE andv,w e V(t) suchthas=t —, t’, s =t —,, t’, and an edgg’ in t’. Obviously, the tree
obtained by grafting on the tred’ atv is greater, with respect to the ordet™ than the tree
deduced by graftingont’ atw, i.e s’ < s. The passage frofRto ® is obvious. O

Proposition 3.17. The Butcher products" is compatible with the relation R, i.e. for s, t €
TE, if sSR$then(so-t)R(S'o-t) and (to-S)R(to-S). Also, if SRsand tRt then(so-t)R(S o-t), fort’ €
TE.

Proor. For anys, s,t,t" € TE, if sR$andtRt, then by definition oR we have:

S=85 >y $, 5 =5 -y S, forv,we V(s,), with ./'in S, andt =t -, th,t' =t >y 1o,
for u,w € V(t,), with J in t,.
Let: sost = (S1 =y S)oo(ty =y ) = 5 —y &7, forve V(s”), wheres” = s,o-t, and

Sost = (S1 =w S)o-(t1 =utr)) =51 —w S, forvfin s, then:

Soot = (51 =y S)R(S1 —w ') = Foot. (3.37)

Also, for So-t” = (s =y S2)o-(ty =w t2) =t = 7, wheres” = Sosty, withw € V(tp) C
V(S”), andSost = (S; = S)o-(tp =y tp) =ty — 57, foru e V(s”). Then we have:

SoutREot’, (3.38)
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One can verify thaso-tRs>-t’ by following the same steps as above. So, from (3.37)[an&)3.3
we obtain thato-t®S o-t'. O

For anyt € TE, define a class dfwith respect taR by:
[t]®:: {se TE: tBs). (3.39)

This class has the following properties:

() tis maximal among the representative elements in the dlassi.e. for anys e [t](B
thens < t. This property is deduced from Lemina 3.15.

i) Foranyse [t] _, then c[t] _.

(ii) yse[ ]® B]B []®

Lemma 3.18. For any te TE, then:

)= > Bes Vs (3.40)
set] ®

(T5.%) —= (T5.\)

(TE, O_)) @ ...... - (TE, _>)
Smin

Ficure 3.2.

where the maﬁ’Smin and the cofficientsg{s, t) are described in Corollarly 2]5.

Proor. We prove this Lemma by the induction on the number of vestafeéhe tree. Suppose
that [3.40) is realized for any tree TF with a number of vertices less than or equahidake
t € TE be a tree, such thamt) = n+ 1 andt = t;o-t,, wheret; is the minimal branch ofwith
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respect to the ordex". Then we have:
Y = Fftio-tr)
=¥ o S(tio-t2)
= W(Smgtl)‘”\smgz))
= (‘¥ o S(t1) \, ¥ o S(t2))
= ¥{1) - ¥(t)

DTCRA TS B I TCRA LY
selt] ® s’€ltz] ®
2, PSS S~ 8

geltq]

s”e[t2]®
From Proposition 3.17, we have that:
t=tiootb®s:= S»S"RS —, g, forve V(s"). (3.41)

Let s’ be the smallest branch of the trgedefined above i (3.41), starting fromands,
be the corresponding trunk (what remains when the brahishremoved). Then we have:
BsH = ) B(S 1B to) (3.42)
veV(s)
The formulal(3.4R) above is induced by the formlila](2.8) dreddefinition of the co@icients
B4s t) described in Corollary 2/5. Hence, we get:

LICEIDIWICHE
se[t] ®

O

Corollary 3.19. Let t € TE, then the maximal term (@gm) with respect to the order defined
in (332) of ¥ (1) is the tree t itself.

From our preceding work in Chapter 2, we have that theBset {‘?’3(9 te TE} forms a
monomial basis for the free pre-Lie algelt7a®, — ). Let| be the (two-sided) ideal generated
by the elements on the form described[in{3.9), then we havéadllowing commutative dia-
gram:
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E 4 ’ *
(75, -) —=(L(E).>)

(£L(E).>)

Ficure 3.3.

where £'(E) = 7E/1, and the product* is the pre-Lie product defined ii_(3]10)L(E) is
the free Lie algebra generated Bywhich carries the pre-Lie algebra structure by the product
> defined in [(3.2). The restriction @b to Sparx(O(l)) is an injective map. Indeed, for any
hla h2’ € Spark(o(l ))’
O(hy) = ©(hy)

= (I)(hl - h2) =0

= (hy—hy) e Ker® = |

= (hy - hy) € Spar(O(1)) NI = {0}

= hl - h2 =0

= hl = hz.

Also, sinced : 75 — £(E) is a surjective map, then we have:

L(E) = (T)
= ®(l ® Sparx(O(1))) (by Theoreni 318)
= O(Sparx(0O(1))) , sinceKer® = | and®(l) = {0}.

Hence,® : Spa(O(l)) — L(E) is a surjective and an injective map. Then it is an
isomorphism of vector spaces.

Theorem 3.20.For any te O(l), we have:
P (1) = Can(¥Pyt). 1) = t. (3.43)
Moreover, the seB := {O(t) : t € O(1)} is a monomial basis for the pre-Lie algebt4(E), >).

Proor. The propertyl(3.43) is induced from Theorem 3.12 and theiefin of‘f’smin. We ob-
viously have that the s@& = O(l) is a basis foSparx(O(l)). Therefore, a® : Sparx(O(l)) —
L(E) is an isomorphism of vector spac@,:: @ (') forms a basis for the pre-Lie algebra
(L(E), >). This basis is monomial thanks fo (3/43), such that:

D(t) = O(PL)), forallt e O().

This proves Theorein 3.20. O
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Consequently, we get the following immediate result.

Corollary 3.21. The setB := {®d(t) : t € O(I)} is a monomial basis for the free Lie algebra

Examples 3.22.Here,we calculate few first bas@, for homogeneous componenfs of the

free Lie algebraZ(E) up to n= 4, using Corollarny3.211, as follows:

(i) As a particular case, take E {g : i € N}, such thafa;| = i, for all i € N, with an
ordering "<" on the generatorsa< a, < --- < ag < ---. From our preceding work

in Chapter 2, we have:

BTE)={ :a€E}.

BTE) = (¥:a,cE}L {I aleE}

B(T3E):{‘33:ageE}u{I,I :al,azeE}l_l El 1 iil:aleE )

az ay 1 a;

a a3 @

B(T4E):{a-4:a4€E}u{I, II ‘ay,a, a3 € E}u

a  a  a
a a a a a

b %ﬂmi% mi el

a a ap

a aj
a a a a a a
a
a a a
a a a g 1 o N a a a
+ 3 + + o -
a ap a

Then, we get the following monomial ba@sfor Ly, upton=4:
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B = (&}

B, = {ay} .

Bs = (ag, [ar, ]}

By = {au, [a1. &g, [[ar, @], aq]} .

(i) Let us take E= {x,y} ordered by x< y, such thatx| = |y| = 1. Denote ">" by the
vertex decorated by x, and"the vertex decorated by y, such that< . Using the
order defined in(3.34) we arrange the first terms offTas follows:

1<o<o<I <i <I <I <§<%<I<E<£<%<£<I<v<v<v<v
<NV

Also, we calculate here the monomial bases for the homoger@mmponents,E up
ton=4:

B(TT) = { o, 0}.

B(TzE):{I ,i ,I ,I }

PR SR IS SR I8 U8 S8 SR EVIE SVIS KV EVIE XIS KV
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wn-t oty v bovidvd

16 terms 12 terms

Y R TR SR TR ST

16 terms

W+3I\f+c\{+ %,...,\I/'+3I»f+Y+ 1 I

8 terms

Hence, we have:

B, =E.
B, ={[xy] : xyeE}.
By = {[[% Y1 ], [x Y]] :xyeE}.

Ba = {[Ix 1. 1. X [[[xY1. 94.Y1. [[[x ] 1.Y] 2 xy € E}.

Remark 3.23. In the monomial basi§4 for L4, calculated in() above, we observe the fol-
lowing:

the tree 1 is not in (1), since there is an element % - i that belongs to | such that

T(f) = ie T(l). Indeed, from the pre-Lie identity, and the so-called wegdranti-symmetry
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identity described irf3.9), we have, drawing non-planar trees explicitly:

=P o) e— T ) Ne+ OO\(TO\-)):@(% —EX—YA}),

fzzﬁ((oo\i +2T°\o)o\.):@(Y+2%), and g:@(oo\i +3§O\o):?(3}+31)

are elements in I, henca & f, + f, — f3 :@(3% —3% —I\f) el. But, f = @(I\f) el,

hence f= f,+ f5 = 3 1 -3 1 € |. Then, we have:
O(f) =3((X>y) > Xx)>y-3((x>y) >y) > X=(X>Y) > (Y>X)
= [[[X,y],X],y] - [[[X,y],y],X] + [[[X’y]’[x’y]]
=0,

and then,
[[[% ¥1. X1, y] = [[[% Y. Y] X].



CHAPTER 4

Pre-Lie Magnus expansion

Wilhelm Magnus (1907-1990) is a topologist, an algebraast,authority on dterential
equations and on special functions, a mathematical plsysikie worked in a wide variety of
fields in mathematics and mathematical physics. One of Inig-lasting constructions is the
so-called Magnus expansion, it is a tool to solve the clas$itear diferential equations for
linear operators3g]. This expansion has found applications in numerous anmeg@gyrticular in
guantum chemistry and theoretical physics.

Many attempts have been made to derive the expansion ircéxphm. We refer the reader
to the recent works, e.g3(0], [31], [15], and the references therein, for more details about this
expansion and some of its applications.

The aim of this chapter is to discuss how we can find a recuffeiothe pre-Lie Magnus
expansion which already incorporates the pre-Lie identigr this purpose, we study some
methods for writing Magnus expansion, in classical andlpeeversions. Here, we skip the
analytical and numerical aspects of this expansion, areldakalgebro-combinatorial perspec-
tive. A numerical method has been studied by three authdBé&aBes, F. Casas, and J. Ros, in
their joint work [4], of writing the classical Magnus expansion. We give, intieed4.4 of this
chapter, a combinatorial vision of this numerical method.

This chapter contains four sections: we give, in sediioh @ ghort survey of the classical
Magnus expansion. In sectibn #4.2, we recall some basicseprétLie Magnus expansion,
and show how the classical Magnus expansion is a particake of it. Also, we review in
this section a part of the joint world ] of F. Chapoton and F. Patras, where they introduced a
concrete formula for the pre-Lie Magnus expansion. We stimdsectiori 4.B, some encodings
of Magnus expansion terms using planar binary rooted tfgeposed by A. Iserles and S. P.
Ndrsett in their work [BQ] for the classical version, and an encoding using planatetbtrees
which has been studied by K. Ebrahimi-Fard and D. ManchortHerpre-Lie version2]].
Also, in this section, we give a formula with the minimal nuenlof terms up to order seven,
and we compare it with the pre-Lie Magnus formula propose#.lfyhapoton and F. Patras in
[15], using Grossman-Larson algebra. The question, raised. lbkahimi-Fard, of writing an
optimal (i.e. with a minimal number of terms) pre-Lie Magraxg@ansion at any order remains
open. In section 414, we review a part of the joint work of Sariés, F. Casas, and J. Rdk [n

63
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which they proposed a numerical strategy to reproduce #ssicdal Magnus expansion terms.
The free Lie algebra (E) with one single generator in each degree naturally appedafss
context. We introduce, in this section, a combinatoriatipieeversion of the work of S. Blanes,
F. Casas, and J. Ros, using the pre-Lie structur£ (&) and the monomial basis described in
chaptef B of this thesis.

4.1. Classical Magnus expansion

W. Magnus provides an exponential representation of thaisal of the well-known clas-
sical initial value problem:

Y(t) = dgtY(t) = A(t)Y(t), with initial conditionY(0) = 1, (4.1)

where Y(t), A(t) are linear operators depending on a real variaplend "1” is the identity
operator. Magnus considers the problém]I(4.1) in a non-caamiie context. The problem,
according to Magnus’ point of view, is to define an oper&it), depending o, with Q(0) = 0
such that :

t
. Q)"
Y(t) = exy f Q(9)ds) = Z QO (4.2)
n!
0 n>0
He obtains a dierential equation leading to the recursively defined expansamed after him:
t t t B
Q(t) = f Q(s)ds= f A(s)ds+ f Z —ad?  [A(9)]ds (4.3)
J J J 0 n: OfQ(u)du
whereB, are the Bernoulli numbers defined by:
— B z 1 1 1
Smam _ R - S S
Zim” T el 27T TT720" T

andad, is a shorthand for an iterated commutator:
adA = A adiA=[Q,A] = QA - AQ, adiA = [Q,[Q, A]],

and, in generald]**A = [Q, adJA] [38]. Taking into account the numerical values of the first
few Bernoulli numbers, the formula ih_(4.3) can be written:

0() = AQ) - 510, AW + Z[[Q. ADL ] + 10,10, A + -+

whereQ(t) := Q/(t) = 2Q(t). Also, we can write the expansion [ (4.3) as:

Q) = > Qn0), (4.4)

n>1
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t
whereQ,(t) = fA(s)ds, and in general:
0

n-1 B .
Qn(t) = Z —" foP(s) ds forn>2, (4.5)

=1

whereS{ = [Qn1,A], S = a 1(A), and:
. n_j .
S = Z [Qm SV M), for2<j<n-1
m=1

The formula[[4.b) can be found i8], [5].

4.2. Pre-Lie Magnus expansion

In this section, we study an important generalization olMlagnus expansion in the pre-Lie
setting: let £, >) be a pre-Lie algebra defined over a fiégdd The linear transformationsa,
for A € PL, described in Sectidn 1.4, can be detailed.gs PL — PL, such that_,(B) :=
A B, for all B € L. DefineQ := Q(1A), for A € PL, to be a formal power series APL[[ A]].
Now, the classical Magnus expansion, describedid (4.8)bearewritten as:

L.[Q] (AA)(X) = Z B_|_ [Q]m(/lA)(X) (4.6)

SN = ey -1 4

WhereLD[Q](/lA)(x) = (Q>/1A)(x) = [fQ(s)ds AA(X)], Bryare Bernoulli numbers, this formula
0
is called pre-Lie Magnus expansiat[[20].

Lemma 4.1. Let A B be linear operators depending on a real variable x, thengioeluct:

X

(A>B)(x) = f A(s)ds B(¥)|, (4.7)

0
verifies the pre-Lie identity, whe[&(x), B(x)] = (A- B - B - A)(X).

Proor. Let A, B,C be linear operators depending on a real variableSet 1(A)(X) :=
X
[A(s)ds then we have:
0

I(A) - 1(B) = I(I(A) - B+ A- [(B)), (4.8)
In other words] is a weight zero Rota-Baxter operaﬁoﬂ-lence,

1For more details about Rota-Baxter operator, Rota-Bagebsas se€l0, Paragraph 5.2] and the references
therein.
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(A>B)>C)(¥) - (Ax (B> C))(¥) = [I([1(A). BD(X). CX] - [[1(AX). [1 (B)(¥). C(X]]
= [1([1(A), BD(®). COIT = ([[HA)X). 1 (B)(X)]. C()]
+ [1(B)(X), [1 (A)(X), C(x)]]) , (by the Jacobi identity),
=[1(1(A) - B= B 1(A)(¥).C(¥)] - [(1(A) - 1(B) - 1(B) - (A))(X). C(x)]
— [1(B)(). [1 (A)(X). C(]]
= [1(1(A) - B)(¥) = (1(A) - 1(B)() + (1(B) - 1{(A)(X) = 1(B- 1(A)(X), C(¥)]
— [1(B)(). [1 (A)(x). C(]]
[1(1(B) - A= A~ 1(B))(X). C(¥)] - [1(B)(X). [I(A)(X).C(X]] . (by @B)),
[1[1(B). AD(X¥). C)] = [[1 (B)(X). [1(A)(X). C(¥]]
(B>A)>C)(x) - (B> (A> C))(x).

This proves the Lemma. O
Also, the formula[(4.6) can be represented as:

Q(1A) = Z Q. (AA), (4.9)

n>0

Wherele(/lA) = AA, and in general:

On(1A) = Z B Z Lo [ (Lo [Q6](- - (La[Q](AA)) - ), forn > 2. (4.10)

=1 J K1+ ---+kj=n—l
ky> l,...,kal

Here, we give few first terms of the pre-Lie Magnus expansistdbed above:
QA) = 1A-2 E(A> A) + 2 (Z(A|> A>A+ 1—2A|> (A A)) (4.11)

—/14(%((A> A>A>A+ 2—14(AI>(A>A))I>A+ 2—14(Al>((A>A)>A)+(AI>A)I>(AI>A)))+O(/15)

There are many ways of writing the Magnus expansion, forlpeeand classical formulas,
in various settings using Baker-Campbell-Hausidseries, dendriform algebras, Rota-Baxter
algebras, Solomon Idempotents and others, for more detadat these works sed][ [20],
[15] and the references therein.

Using the pre-Lie identity, the pre- Lie Magnus expansiamtecan be reduced: for the
terms at third orderQ3(1A), no further reduction of terms is possible. At fourth ord&ro
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terms can be reduced as follows:

Q4(1A) = /14(:—;((A>A) >A) > A+ 2—14((A|> A>A))>A+A> (A>A>A) + (A A > (A>A)
(4.12)
and, by pre-Lie identity, we have:
A>A) > (A>A =((AA>A>A-(A> (A A)>A+A> (A>A) > A),
then [4.12) equals:
A“(é((A >A)>A) > A+ 1i2x > (A A) > A)).

At fifth order, Qs(1A), three terms out of ten can be removd][ For more details about this
reduction of pre-Lie Magnus expansion terms, see the nexpss.

A beautiful way of writing the pre-Lie Magnus expansion igposed by F. Chapoton and
F. Patras in their joint work15]. We review here a part of their work corresponding to pre-
Lie Magnus element, as follows: |6PL(a),>) be the free pre-Lie algebra with one generator
"a, andﬁ(a) be its completiOtH. The Magnus element iﬁZ(a) is the (necessarily unique)
solution® to the equation:

Q

The exponential serieexga) := 3, ;‘—T belongs toS(P\L), the completion of the symmetric
‘

n=
algebra ovefL(a), endowed with its usual commutative algebra structureghein following
an important result obtained by F. Chapoton and F. Patrdsn [

Theorem 4.2. The Magnus elemegi(a) in ?”Z(a) can be written:

Q(a) = log*(exp(a)), (4.14)
where x is the Grossman-Larson prodL&t The notation log means that the logarithm is
computed with respect to the product

Proor. Seel(ll5, Theorem 4]. O

4.3. An approach for Magnus expansion terms using rooted tres

A. Iserles and S. P. Nsett have developed an alternative approach, using planary
rooted trees to encode the classical Magnus expansion {86jhsK. Ebrahimi-Fard and D.
Manchon, in their joint workZ1], used planar rooted trees to represent the pre-Lie Magnus
expansion. This encoding of expansion terms, using planaryprooted trees, is defined as:

, x1>x~v>\/.

2For further details about the completed pre-Lie algebraPseagraph .41 1.
3 Grossman-Larson algebra is defined in the next sectiongPesd 4311

X >
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Hence, the pre-Lie Magnus expansion, described in4.ah)be denoted in the shorthand
as:

- 1 1 1 1 1
AN AE N AT A A B
and the reduction in expansion terms at the fourth order eatelcribed as:
1 1

94(‘):_6 T ;

The approach proposed by K. Ebrahimi-Fard and D. Manchoroierim the line of non-
commutative Butcher seri@sln following, we shall review the joint work of K. Ebrahintard
and D. Manchon, published i&1], on finding an explicit formula, in planar rooted tree versi
for pre-Lie Magnus expansion. Let= B, (o - - - o) be any (undecorated) planar rooted tree,
denotef (v), for v € V(o), by the number of outgoing edges, i.e. the fertility of tlegtexv of
o. The degredo| of a tree here is given by the number of its vertices. Defindittgar map
vy Ta — Kas:

thanks to the pre-Lie identity:

k
Bk Btw)
y(o) == | v(oi) = , (4.16)
o L= 11 o
whereBy are Bernoulli numbers.

Lemma 4.3. For any planar rooted tree, such that there existse/V(7) of fertility 2n+1,n > 0,
we havey(r) = 0.

Proor. It is immediate from the definition of in (4.18), and the fact th&,,,, = 0, for all
n> 0. O

Define a subspacg‘lal of all planar rooted trees excluding trees with at least aréex of
fertility 2n+ 1, withn > 0. The tree functiondF is defined recursively by:

FleJ(¥) = x, andF[7](X) := r“ D (F[r1](X), . . ., F[7d(¥), X), (4.17)
wherer = B, (71 - - - 7¢), and
O FI, - FIod(0, %) 1= Frl(0) > (FIr100 & (- > (F[ad (0 > %) - --).
Theorem 4.4. The pre-Lie Magnus expansion can be written:

Q() = > y@F[(X. (4.18)

TETp?l
Proor. See(R1, Theorem 20]. O

4For more details about Butcher series $esfction 4.1].
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Forn > 1, the numbers of trees ifrf',l’”, the subset of all planar rooted trees with "1 or even feytili
of degreen, is given by the sequence "A049130" #8]. Here, we give few of first terms of
this sequence:,1,2,4,10,26,73,211,630Q....

We give here some examples of the formula of pre-Lie Magnym®esion described in

4.18), as follows:

Q%) = Y(IFL00 + y(BFLLI) + y(DFLEI) + V(V)F[V](X) +0(4)
H”(F[-](x) X) + = r@(F[:](x) X) + — r(?”(F[-](x) FLe](X), X) + O(4).

At order four, we have:

Q) = y(i)F[il(x) + y(Y)F[ka) (ORI + v CHFNI
( (O[30, %) + 5z r@(F[w(x) X)+ o (rS’(F[:](x), FLJ(X), X) + rE(F(X), F131(X), X)),
but, thanks to pre-Lie |dent|ty, we have:

f(f)(F[E](X), X) = rE(FL310), FL109, %) = rP(F[(%), ¥) = r(FLe](¥), FI31(X), X)),

then the formulam(x) can be reduced into two terms, as follows:

(9 =~ grP(FLEI0. 0 — rOFL00. FLI. 9 (4.19)

1 1
- _éF[i](x) - 1—2F[\;](X)-

Eight trees from ten appear in the pre-Lie Magnus expangiorder five, due to the recur-
sive nature of this expansion, which are:

L e

Hence,

5(%) :y(LF[L(x) ¥ y(?)F[?}(x) ¥ y(i/)F[iz](x) ¥ 7(J)F[J](X) Fy(WFIVI09
yCOFLRI0 + y(ADFL) + y()F =19
Using the pre-Lie identity as:

I:[\g](x) - F[\}](X) = F[L(X) - F[i/](x),
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we obtain a reduced formula of pre-Lie Magnus expansiona@grdive, with seven terms de-
scribed as:

25 :438F[L(x) : }SF[?M ! 2—14F[J](x) + 2FINI0 (4.20)

1 1
+ 2 (FU9100 + FLV09) - S5FLw10.

The reduced formulas at orders four and five, described I8j4({4.20) respectively, are
considered as best (or optimal) formulas for the pre-Lie Mesgexpansion at these orders.

4.3.1. Some calculations in pre-Lie Magnus expansion.

Let us consider the free pre-Lie algel#?& = 7~ with one generators®, together with the
pre-Lie grafting *>". Then, we can represent pre-Lie Magnus expansion in tefmsoted
trees as in the following. We need first to introduce the feitag result.

Lemma 4.5. For any planar rooted tree, we have:
Fl7](s) = ¥(2),

where F is the function described @.I17) and¥ is defined in Subsecti@n Z.L[2, Subsection
2.2].

Proor. Let 7 be any planar rooted tree withbranches, then it can be written in a unique
way asr = B, (71 ...7k). Using the induction hypothesis on the numkeif branches, we have:

FLe)(s) = F(s) = .

Suppose that the hypothesis of this Lemma is true for allgslaooted trees” with n — 1
branches, for alh < k, i.e. F[7'](¢) = ¥(7’), hence:

F71(e) = r“D(F[r](e),...,F[rd(e),®) . (from definition ofF in (Z.17)),
= F[1)(¢) = (Flzal(s) = (--- = (F[rd(9) > o) --+))
=¥(ry) - (@(72) > (> (P(r) > 0 -)) , (by the hypothesis above),
= P(r AN (NG NN - 4)) , (from definition of¥),
=W(r) , (sincer = B, (r1...7) = 1 A(12(- - AT - ++)) ) -

This proves the Lemma. O
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Proposition 4.6. The pre-Lie Magnus expansion can be written as:

Q) = > y(@a(s7)s (4.21)

el
‘re'l;jl
seT

wherea(s, 1) are the cogicients described ifi2, Theorem 4]andy is the map defined above

in (4.186)

Proor. Immediate from Theorem 4.4 and Lemmal 4.5, and using theufiarm

¥(r) = Z a(s,1)s,

seT

that is introduced byd, Theorem 4]. O

Now for anyr € T;,l, let e, := ¥(r). The planar rooted tree is uniquely written as a
monomial expressiom(s, &) involving the root and the left Butcher product. Th#ir) is
m(e, —), i.e. the same monomial expression where the left Butchwdyzt is replaced by the
pre-Lie grafting of (non-planar) rooted trees. Here, wepldig optimal (with respect to the
number of terms) formulas of pre-Lie Magnus expansion ugdeioseven:

Qo) = o
Qz(‘) =B el
Qs(6) = B? e£ + ':I e,

- B
Qq0) = gl ei + 51523}
B, 5

- B,1
Qs() = -Bi5; 5 @ J Blz‘z\gﬂsfsz e, + B2L2

J 191 U 2|2| 'ﬁ Q/

11 5 1

. 1 1
Q) = ~122 el B 288:1 288 \({ \?/) * Bl 3_6j B m(f& +§} )= Eafj
ey B G 0,




72 4. PRE-LIE MAGNUS EXPANSION

7 1

5761 " 576 576\({ Y/ 14| " 576 288(\6{, ?“2_88@
1

576%{8 e{?/)+814|(e&f. 'Lf' + )+@j+%(eﬁ+\§})+@(i1+\;)

Q) =

1

1e+ (e
72d 288\6}

+ e,)

TR P R ;

192& 576(@ iy+1728\@f 4182((1? i# ﬂi

B, Ba

T I G T D

B
+—e

6! P

Due to the recursive nature of the pre-Lie Magnus expangitireaorders calculated above,
and thanks to the pre-Lie identity, we observe that manygeyrare omitted in this expansion,
for example:

(i) At order four, two term, out of 4 can be removed i4(s), namelye,

(i) At order five, three terms, out of 10 can be removed iﬁ5(o), the trees of these

omitted terms are:

(iii) At order six, the terms of 11 out of 26 trees can be rentbveQg(s), these trees are:

LYYRLuL ahy

(iv) At order seven, the terms of 23 out of 73 trees can be remav;(s).
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Remark 4.7. This reduction of pre-Lie Magnus expansion terms is notumidor example, at
order five, we can write the formulds(e) with another seven reduced terms, as follows:

ge\{ + BfBzgeLf + BiBzei{ + Bizf U 2'2' XQ Q’

Now, from the joint works of F. Patras with F. Chapotdr] and with K. Ebrahimi-Fard
[23], recall that: a (non-planar) foreft = t;---t, is a commutative product of (non-planar)
rooted trees;. Denotew(F) by the number of trees iR, which is called the weight of a forest
F, for examplew(t; ---t,) = n. Let ¥ be the linear span of the set of (non-planar) forests,
it forms together with the concatenation an associativeroatative algebra. Define another
product %" on ¥ by:

(ti---tn) = (tp---t5) == Z Fo(F1— t1)--- (Fn — ty), (4.22)
f

Q5(’) = BB,

where the sum is over all functiohfrom {1,...,m} to {0, ...,n}, andF; ;= [] t’ The space
jef- l(I)
¥ forms an associative non-commutative algebra togethértivé product " defined above.

This algebra can be provided with a unit element, sometitisstihe empty tree. This unital
algebra is called the Grossman-Larson algebra and dengt&l.bh= #. This algebra acts
naturally on7” by the extending pre-Lie products". This action can be defined recursively

by:
(F+F)ot:=F - (Fot), (4.23)
foranyF, F’ € GL andt is a (non-planar) rooted tree.
Example 4.1. For any t t;, t; (non-planar) rooted trees, we have:
(tltz) ->t= t2 — (tl — t) — (tz - tl) — t.

The Grossman-Larson algehi@L, =) is isomorphic to the enveloping algebra of the un-
derlying Lie algebra of7",— ). This construction also works for the enveloping algebra of
any pre-Lie algebré?7]. We refer the reader to the referend@g][ [15], [23], for more details
about this type of algebras and some of its applicationscelgihe formula of pre-Lie Magnus
expansion described i (4]14) can be rewritten:

Q) =log'(e*) = )| (1 )n —1)"t o, (4.24)

n>0

wheree® = exgs) 1= Y, =, 2, for F = «"is a forest of one-vertex trees with weightF) = n,
n>0

and %" is the Grossman-Larson product.
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In fact, we study here the undecorated case, with respduot tiotests and trees, of the joint
works of F. Patras with F. Chapoton, and with K. EbrahimieFaaspectively. The decorated
version has been studied b9, [23].

Here, we calculate the few first pre-Lie Magnus elemém(s), up ton = 5, according to
the formulal(4.24) above:

Qi(e) = o.

: 1

Qo(e) = _EI =B, €.

: 1 1 B
Qg(.) = §£ + 1—2V: Bi ei + 2—|2 e.\./..

: 1 1 1 B
Q4(‘):__§__ __2b:_1€ + BB e

2° " 12° 1 3% 3
- 11 3\{ 1Lf 1 1 1i{ 1 1 1
Oc(e) = =1 + — Sl — Sl Sl Sl PR .
() =54+ 20* * 10 +180Y+60U+20 +120\Q 120% 720 ¥

B,5 B,1

EET‘&EE? 3

Remark 4.8. We observe that the formu(@.24) reduces the number of terms in the pre-Lie
Magnus expansion the same way as the reduction induced hyré¢Hee identity in formula
(@.21) In other words, formulg4.24) can be considered as a best formula for the reduced
pre-Lie Magnus expansion. It would be interesting to havexgianation of this striking fact.

B
2 D2

=-B; + B?B, +ig(e +e )+%e .
1 ;} 221, YT 4

4.4. A combinatorial approach for Magnus expansion using a rmnomial basis for free
Lie algebra

A. Iserles and S. P. Nsett, in their joint work[BQ], studied the dierential equation:
y=a(t)y,t > 0,y(0) = yo € G, (4.25)

whereG is a Lie group,a € Lip[R" — [], the set of all Lipschitz functior@from R* into
L, the Lie algebra of5. By considering the Magnus expansion, they have demoasdiras-
ing a numerical method, how to write the Magnus expansioeiims of nested commutators
[a(ty), [a(to), [. .., [a(tk-1), a(t)] .. .]]] of a(t) at diferent nodes; € [to,to + h], whereh is the
time step size. They observed that this numerical methodinesjthe evaluation of a large

5 A real-valued functiorf is said to be a Lipschitz function if and only if it satisfig$(x) — f(y)| < c/x - VI,
for all xandy, wherec is a constant independentxandy.
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number of these commutators, which can be accomplishe@dtatsle manner by exploiting
the structure of the Lie algebra.

Different strategies have been developed to reduce the totddemwhcommutators, e.g.
the use of so-called time symmetry prop@@nd the concept of a graded free Lie alged].|
In their joint work [4], the three authors S. Blanes, F. Casas, and J. Ros propoaegly di-
rectly the recurrence of Magnus expansion, described 8),(# numerical version to a Taylor
series expansion of the matiXt). They reproduced the Magnus expansion terms with a linear
combination of nested commutators involviAg

These authors pursued this strategy with a careful anaythe diferent terms of the Mag-
nus expansion by considering its behaviour with respettddime-symmetry. In the following,
we review the part of their work corresponding to their stggtof rewriting Magnus expansion
terms, as follows: by taking advantage of the time-symmgtoperty, they considered a Taylor
expansion ofA(t) aroundt% =1+ *—2‘ as:

. 1 d'A(t)
— . — 11 | = — — .
At) = ; a(t-1y), wherea = o= - (4.26)

and computed the corresponding terms of the compdRghi+ h, tp) in the Magnus expansion,
where:

Q= h' Z[J’il...ik[A(til), [A(t,), [ - [AG ), AT - TI +O(*™), for tie [to, to + h,

1<i1,...,ik<N

by taking into account the linear relations betweefiedent nested commutators due to the
Jacobi identity. We give here the calculation for the congrisQ),, up tok = 6, obtained by
their code#, Section 3]:

8For more details about this property sék [
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Q — + i + i i
1=+ 70+ go% * 2297

Qp = 1—;[%, 0] + (g—é[%, O] + [Q2, Q3]) ( TaaAd Q4])

216k 6] + 2240[0'2’ Gs] - 1344

240 448

Q3 = (360[‘11, (O, )] — 240[Q2, [Q, Q2]]) (1618O[q1’ (a1, Os]] — ﬁo[ql, [, Qu]] + 6%0[%’ [0, Ga]] +

el 00, 6l — ol [, ]

840

Q= 2 [0 [0, oIl + (G%O[ql, s 02, Qlll ~ {1 . Il + g [0 [0, Il +

601 418 O, [0, [, Galll — ﬁ 0. [G2. [, @111 ).

Qs = 2o 0, [0, [0 [, Gl ~ 5557, [0 [ T, Rl + s [0, Lo [, ol

Qe = 30240[(11, (91, [0, [9, [0, a]111]

whereq; = a,_;h', fori > 1, are matrices.

The sett := {q : | € N} can be considered as a generating set of a graded free Lizralge
with |g)| = i [42]. In their computations, S. Blanes, F. Casas, and J. Ros utmuphe dimen-
sions of the graded free Lie algehf{E) generated by the s&, according to Munthe-Kaas
and Owren’s work/42]. Also, they computed the number of elements of the Lie algdl{E)
appearing in the Magnus expansion, when a Taylor seriégtpfairoundt = t; andt = ty re-
spectively.

Here, we review some of their computations as follows: atdbders = 4, we have
dim_,£ = 7, with basis elementgy, 0z, 0z, G, [0l1, 2], [T1, O3], [0h, [O1, G2]], such that six of
these elements appear in Magnus expansion arogrigl that are.qy, 9z, ds, A4, [q1, 2], [0z, O3],
with two commutators. Whereas, three elemeqisys, [0:, 2], only appear in Magnus expan-
sion around = ts, with one commutator, as it is shown above. For more dethitsiathese
results seeq, section 3, pages 439-441].
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Now, we try to introduce a combinatorial vision of the workoab, using the notion of
the monomial basis for free Lie algehfdE), that we obtained in Chaptel 3. L€Y () (re-
spectivelyPL(E)) be the free pre-Lie algebra with one generawi(fespectively generated by
the set{e : a e E}), together with the grafting-5". Denotef’Z(o) (respectivelﬁ(E)) by
the completion ofPL(e) (respectivelyPL(E)) with respect to the filtration given by the degree,
which are pre-Lie algebras together with the pre-Lie gngftiLeta = ZE Aes be an element in

ec

ﬁ(E), that is an infinite linear combination of the generatarse E.

Define the mapG, : PL(s) — PL(E) to be the unique pre-Lie homomorphism that is
induced by the universal property of the freenesg.(e):

(o} PL(s)

DN

PL(E)

Ficure 4.1.

such thaG,(e) = a.

Lemma 4.9. For any (undecorated) planar rooted treewe have:

G¥@) = > (]] aw) ¥ (4.27)

oV(r)—»E veV(r)
where? : 7,0 — T, in the right hand side, is defined in Subsecfion 2.1.2 (wethissame

letter for the undecorated version frof onto7"), and wherer; € Tp|E is the treer decorated
according to the map.

Proor. Let T be any (undecorated) planar rooted tree, we have®igt = m(s, —) is a
monomial, inL(e), of the one-vertex trees™ multiplied (by itself) using the pre-Lie product
"—". From the definition o5, above, we get:

Ga(¥(7)) = Ga(Mm(e, —)) = M(a, ), (4.28)

wherem(a, —) is the monomial of&", in ﬁ(E), induced from the monomian(e, —) by send-
ing the one-vertex tree into its ima@g(e) = a.

We proceed by induction on the numimasf vertices, the case= 1 being obvious. Suppose

that the formulal(4.27) is true up to- 1 vertices. Letr € Tj, we have that can be written in
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a unique way as = 71,1, hence:
Ga(¥(7)) = Ga(¥(r1%\72))
= G4(¥(r1) — ¥(12))
= Ga(¥(11)) — Ga(¥(12))

= Z ( 1—[ As,(v) 1—[ /152(V')) @(Tl’él)ﬁ@(ﬂrmz)

61:V(r1)-E  veV(r1) VeV(rg)
69:V(rp)—E

(] 2ow) ®@). (by settingr, = 7, 2.7,.,).

sV(r)—E veV(r)

O

Lemma 4.10. The pre-Lie Magnus elemeﬁ(a) in ﬁ(E) can be rewritten as:
O@) = > ¥(1) Gu(F()), (4.29)

TET;ll
where a= 3 1.$ € PL(E).
ecE
Proor. From Theorerii 414 and lemrhal4.5, we have that:

Q) = ) ¥(@) V(). (4.30)

el
TETpl

We have thaf)(s) is an element iri/’Z(-), and the mais, can be extended linearly froﬁﬁZ(-)
into ﬁ(E), such that:

Q@) = Ga(Q(9) = > ¥(7) Ga(F(1)).

TeTpel1
This proves the Lemma. O
In Lemma& 4.9 above, let us denotér;) := [] Asy. Hence, we can simplify the formula
veV(r)
4.27) as:
Ga(¥() = > A(xs) ¥r). (4.31)
V(1) —E

Consequently, we can get the following result.

Proposition 4.11. The pre-Lie Magnus expansion can be rewritten:

Q@) = ) 7o) Ao)F(o), (4.32)

E.el
oeT ol

foranyo e T Herey : 7.F — K defined as ir{.16) forgetting the decoration.
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Proor. From Lemm&Z.70, and by substitutiGg(‘¥(r)) obtained in[(4.31), we get:
Q@) = > y(0) Ar) F@) = Y ¥(o) ) ¥(o).

orel E.el
i o eTpI

§:V(r)—»E

This proves the Proposition. O

Remark 4.12. The formula for the pre-Lie Magnus expansior{da32)can be considered as a
generalization of the formul@.18) In other words, it is a decorated version @.18) taking
into account the relation between the maps F &hdescribed in Lemma4.5.

The pre-Lie homomorphismd : (PL(E), —» ) — (L(E),>), described in[(3]7) and (3.8),
respects the degree, it is then continuous for the topadadgéined by the corresponding de-
creasing filtrationgl. We denote by the same lettér the pre-Lie homomorphism from the
completed pre-Lie algeblsé\[j(E) ontoZ(E):

PL(E) ——~ PL(E)

)

LE)—— F(E)

FiGure 4.2.

We can get another representation of pre-Lie Magnus expayas in the following result.

Corollary 4.13. The pre-Lie Magnus expansion £(E) can be rewritten as:

Q(x) = Z (@) A(0) O(¥(e)). (4.33)

E.el
o eTpI

where x= ®(a) = 3 Ae € L(E), fore= o(%) € E.
ecE

As a particular case, let us take= | | E;, with #E; = 1, foralli e N, i.e. E = {a : | € N},
ieN
such thata;| = i, and the generators are ordered by:

P <A< <A<

For anyos e T3, d)(@(a)) is an element inL(E). But, from Theoreni3.20 and its
Corollary[3.21, we have that the sBt = {@(t) : t € O(l)} forms a monomial basis for the
pre-Lie algebrd L(E), >) (respectively for the free Lie algeb(£(E), [+, ])), where the pre-Lie
product '&" is defined in[(3.R), hence:

"These topologies are induced by metrics defined on pre-biebah using compatible decreasing filtrations
described in Paragraph 1.4.1.
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@(@(0’)) = a’]_(D(tl) + Cl’z(D(tz) + e+ a’k(D(tk),

is a linear combination of basis elemedi;), tjc O(l), multiplied by codicientsa; eK, for
alli = 1,...,k, wherel is the (two-sided) ideal defined by (8.9). Thus, the pre-Liaghus
expansion in[(4.33) can be expressed using the monomia é@snentw(t), fort € O(1).

Here, we calculate the few first reduced pre-Lie Magnus ermasrxén(x) in Z(E), up to
n=>5:

Ql(X) = A1a.
Qz(X) = Aray.
Qg(X) = Azaz — Bi/ll/lz a; > ap.

. 2 1
Q4(X) = sy + Bl:—)’/ll/lg a;>ag+ Bfé/lf/lz (a > ay) > .

- 3 1 5 11
.Q.5(X) = Asas + 81(2/11/14 a; >ag + :—)’/12/13 a > a3) + Blg/l%/lg (a]_ > 3.3) >a; + Bil—z/l:i/lz ((a]_ > az) > a]_) > a,

and usingy, > a; = El_l[ai,aj], foralli, j, we get:

Qi(X) = .
Qz(X) = Ara.
Q3(X) = 1383 — B2 1145 [ay, &),

. 2 1
.Q.4(X) = Asa4 + Bl:—)’/ll/lg [a]_, a3] + B%é/l%/lz [[a]_, az], a]_].

. 3 1 5 11
.Q.5(X) = /1535 + Bl(Z/ll/u [a]_, a4] + 6/12/13 [az, a3]) + 813—6/1%/13 [[ ai, 3.3], a]_] + Bim/li/lz [[[ ai, az], a]_], a]_].

Here, we link between our work in Chapfér 3, on the pre-Liestattion of the Lie alge-
bras, and the work of S. Blanes, F. Casas and J. Blost the writing of Magnus expansion.
Firstly, we shall consider the generatggs : i > 1}, of the Lie algebral(E) in their work, as
matrix-valued functions ih. Define a pre-Lie product on the set of formal power senig§h]]

by:
‘ f
(f = g)(h) := [fgds g(h)], forany f, g € hR[[h]]. (4.34)
0

This pre-Lie product described in{4134) can be visualizethahe following diagram:
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hR[[N]] ® hR[[h]] —— hR[[h]

l Th

R[[]] @ R[[A]] — — RI[H]

Ficure 4.3. The description of.

h

where fg(h) = [f f(s)ds g(h)]. Hence, forgi(h) = a_;h', gj(h) = a;_1h’ any two generators
0

of £(E), we can apply the pre-Lie product defined abové in (4.34pbevs:

h
@5 o)) = [ 4 ds g0
0

h
~[a f §1ds g;(h)]
0

= [Ta2h, ()]

- 2. a)(n).

wherelqg;| = i, fori > 1. Simply, we shall write}; > q; = Iq%[qi,qj], foralli, j > 1. In following,
we rewrite the calculations of the three authors for the comeptsQ, up tok = 6, using the
pre-Lie product defined above:
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Q. - 1 1 1
1=01 + 1—ZQ3+%Q5+4—48Q7-
1 1 1 1 1 1
Q, = E(ql > ) + (%(Ch > Q) + m(% > CI3)) + (m(% > Q) + —1120(QZ > 0s) — m(% > q4)) .

m:«£w>w»wr—£m>w>@»%i;w>w>wr—memwmm

360 120 1680 1120
(G (@ 00) + (0 > (> ) — 51 (0 > (0 > ).

Q= (0> (& (0> D) + (0 > (0> (0> ) — (& (@ (G5 ) + 3
(@ (0 > (G ) + 5 (o> (@ (0> 6) ~ a0 > (G & (@ > ).

-1 1 1
Qs = m(ch > (g1 > (01 > (01, 0s)))) — m(ch > (0o > (02 > (01 > Op)))) + 3780

(> (01> (> (01> 02)))) -

L e @ @ @ @ B).

2 = 35240



APPENDIX A

Here, we calculate the matricdds, Mg, described below, of the restriction gfg to the
homogeneous componentand7gs respectively, in the case of undecorated rooted trees-corre
sponding to our work in this thesis in Chapifér 2, Subsedfigii?2

(i) The matrixMs, in the tree basiJ , \{ , Lf , Y , U , i{ , K( , %I{ , ), is:

=
I
O OO O OO o O
eleolololololNoll
el eololololNoll ol
el ololoRoll SO S
el eololeoll el =l )
O OO FrLr OO O O
OO kFr,r kP O OO Rk
O L ONPEFPFOPFL OB

(i) The matrix Mg, in the tree basis

{l,T,Y,Y,?,Q,L,‘W,%,%,M},i;» NG N Y e,

is showed by:
83
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1
0
5
0
0
5
0

1

1111111111111 111111
0101001010101 010010044
0013100130000131001
0001000010O0OO0OO0OO010O0O0OO0NRQ 1
000010013 000O0O0O01O0O01
0000011241 100000112
00000010401 00000O0O1O0
0O00O0O0OO0OO0OO16 00O0OO0OO0OO0OO0O0O01FP
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0Ooo000OO0O0O0OOOOO1I1I111223
0O00O0O0O0O0OO0O0OOODOOOO1O01O0O0°20O0
0O00O0O0OO0OO0OO0OOOOOOOO1I300O00O0
0O00O0O0OO0OO0OO0OOOOOOOOO1O0O0OO0ODO
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0O00O0O0O0O0OO0OO0OOOOOOOOOOOOT1S3
0O00O0O0O0O0OO0OO0OOOOOOOOOOOOOTI1
0O00O0O0OO0OO0OOOOOOOOOOOOOODO
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