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Abstract

In this thesis, we study the concept of free pre-Lie algebra generated by a (non-empty) set.

We review the construction by A. Agrachev and R. Gamkrelidze[1] of monomial bases in free

pre-Lie algebras. We describe the matrix of the monomial basis vectors in terms of the rooted

trees basis exhibited by F. Chapoton and M. Livernet in [14]. Also, we show that this matrix

is unipotent and we find an explicit expression for its coefficients, adapting a procedure imple-

mented for the free magmatic algebra by K. Ebrahimi-Fard andD. Manchon. We construct a

pre-Lie structure on the free Lie algebraL(E) generated by a setE, giving an explicit presen-

tation ofL(E) as the quotient of the free pre-Lie algebraT E, generated by the (non-planar)

E-decorated rooted trees, by some idealI . We study the Gröbner bases for free Lie algebras

in tree version. We split the basis ofE- decorated planar rooted trees into two partsO(J) and

T(J), whereJ is the ideal definingL(E) as a quotient of the free magmatic algebra generated

by E. HereT(J) is the set of maximal terms of elements ofJ, and its complementO(J) then

defines a basis ofL(E). We get one of the important results in this thesis (Theorem3.12), on

the description of the setO(J) in terms of trees. We describe monomial bases for the pre-Lie

(respectively free Lie) algebraL(E), using the procedure of Gröbner bases and the monomial

basis for the free pre-Lie algebra obtained in Chapter 2. Finally, we study the so-called classical

and pre-Lie Magnus expansions, discussing how we can find a recursion for the pre-Lie case

which already incorporates the pre-Lie identity. We give a combinatorial vision of a numerical

method proposed by S. Blanes, F. Casas, and J. Ros in [4], on a writing of the classical Magnus

expansion inL(E), using the pre-Lie structure.
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Résumé

Dans cette thèse, nous étudions le concept d’algèbre pré-Lie libre engendrée par un ensem-

ble (non-vide). Nous rappelons la construction par A. Agrachev et R. Gamkrelidze [1] des bases

de monômes dans les algèbres pré-Lie libres. Nous décrivonsla matrice des vecteurs d’une base

de monômes en termes de la base d’arbres enracinés exposée par F. Chapoton et M. Livernet

[14]. Nous montrons que cette matrice est unipotente et trouvons une expression explicite pour

les coefficients de cette matrice, en adaptant une procédure suggéréepar K. Ebrahimi-Fard et

D. Manchon pour l’algèbre magmatique libre. Nous construisons une structure d’algèbre pré-

Lie sur l’algèbre de Lie libreL(E) engendrée par un ensembleE, donnant une présentation

explicite deL(E) comme quotient de l’algèbre pré-Lie libreT E, engendrée par les arbres en-

racinés (non-planaires)E-décorés, par un certain idéalI . Nous étudions les bases de Gröbner

pour les algèbres de Lie libres dans une présentation à l’aide d’arbres. Nous décomposons

la base d’arbres enracinés planairesE-décorés en deux partiesO(J) et T(J), où J est l’idéal

définissantL(E) comme quotient de l’algèbre magmatique libre engendrée par E. Ici, T(J) est

l’ensemble des termes maximaux des éléments deJ, et son complémentO(J) définit alors une

base deL(E). Nous obtenons un des résultats importants de cette thèse (Théorème 3.12) sur la

description de l’ensembleO(J) en termes d’arbres. Nous décrivons des bases de monômes pour

l’algèbre pré-Lie (respectivement l’algèbre de Lie libre)L(E), en utilisant les procédures de

bases de Gröbner et la base de monômes pour l’algèbre pré-Lielibre obtenue dans le Chapitre

2. Enfin, nous étudions les développements de Magnus classique et pré-Lie, discutant comment

nous pouvons trouver une formule de récurrence pour le cas pré-Lie qui intègre déjà l’identité

pré-Lie. Nous donnons une vision combinatoire d’une méthode numérique proposée par S.

Blanes, F. Casas, et J. Ros dans [4], sur une écriture du développement de Magnus classique,

utilisant la structure pré-Lie deL(E).
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ME the linear span ofM(E). 9, 15, 17, 22, 45, 46.
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Tbin
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T bin
pl the linear span ofTbin
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Tbin, E
pl the set of all planar binary trees with leaves

decorated by elements of a setE.

10, 11.

T
bin, E

pl the linear span ofTbin, E
pl . 10.

∨ magmatic product inTbin
pl , Tbin, E

pl respectively. 10, 47.

Tpl the set of all planar rooted trees. 10, 11.

Tpl the linear span ofTpl. 37, 68, 77.

TE
pl the set of all planarE-decorated rooted trees. 11, 24, 27, 29, 31, 39, 48, 49, 51, 52, 54, 77.

T E
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pl . 11, 23, 24, 26, 28, 31, 32, 38, 39, 49, 51, 54,

56, 77, 78.
◦
ց the left Butcher product. 11, 13, 23, 24, 25, 26, 27, 28, 29, 30, 37, 38,

39, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 62,

70, 71, 78.

ց the left grafting. 23, 24, 25, 26, 27, 38, 39, 56, 57.

T the set of all (non-planar) rooted trees. 71.

T the linear span ofT. 19, 36, 37, 38, 70, 71, 73, 77.

TE the set of all (non-planar)E-decorated rooted

trees.

11, 28, 32, 43, 54, 55, 56, 58, 60.

T E the linear span ofTE. 5, 6, 11, 18, 21, 23, 28, 31, 32, 38, 39, 43, 45,

46, 54, 56, 58, 77.

� the usual Butcher product. 6, 11, 23, 37, 38, 39, 54, 55, 56, 57.

B+, a the operator which grafts a monomial

σ1, · · · , σk of rooted trees on a common root

decorated by an elementa.

11, 39, 48, 51, 54.
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B+ the usual operator which grafts a monomial
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68, 70.

"NAP" Non-Associative Permutive. 11, 54.

L K-Lie algebra. 13, 14, 15, 42, 43, 74.

U(L) the enveloping algebra ofL. 13, 14, 15, 16, 33, 34, 36.

ϕ0 the canonical Lie algebra homomorphism

fromL toU(L).

13, 14.

T(V) the tensor algebra of a vector spaceV. 13, 14, 33.

S(V) the symmetric algebra of a vector spaceV. 67.

L(E) the freeK-Lie algebra generated by a setE. 6, 7, 15, 16, 39, 42, 44, 46, 47, 58, 59, 64, 76,

77, 79, 80, 81.

L̂(E) completed free Lie algebra. 79, 80.

T( f ) the maximal term of an elementf with respect

to a monomial order "<".

17, 48, 49, 50, 51, 52, 53, 57, 61.

T(I ) the set of all maximal termsT( f ) of element

of an idealI .

17, 39, 49, 50, 51, 52, 53, 54, 61.

O(I ) the complement set ofT(I ) in a magmaM(E),

i.e. O(I ) = M(E)\T(I ).

17, 39, 49, 51, 52, 55, 58, 59, 61, 79, 80.

SpanK(E) the linear span of a setE over a fieldK. 17, 18, 49, 51, 58.

G Lie group. 12, 18, 74.

PL K-pre-Lie algebra. 18, 19, 20, 21, 22, 65, 70.

P̂L completed pre-Lie algebra. 19, 20, 67, 77, 78, 79.

→ the pre-Lie grafting for (non-planar) rooted

trees.

5, 6, 18, 19, 23, 28, 29, 37, 38, 39, 43, 45, 56,

57, 58, 70, 71, 73, 77, 78, 79.

PL(E) the freeK-pre-Lie algebra generated by a set

E.

22, 23, 33, 34, 46, 67, 77, 79.

Ker f kernel of a mappingf . 22, 44, 47, 58.

m
i=1,...,n

(
ai
,ց) monomial of generators

a1
, · · · ,

an multiplied

each with other byց.

23, 38.

m
i=1,...,n

(
ai
, ◦ց) the lower-energy term ofm

i=1,...,n
(

ai
,ց). 23. 38.
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i=1,...,n

(
ai
,→) monomial of generators

a1
, · · · ,

an multiplied

each with other by→.

23, 38.
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(
ai
,�) the lower-energy term ofm

i=1,...,n
(

ai
,→). 23, 38.

π the natural "forget planarity" projection be-
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pl andT E.
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77, 78, 79.



Introduction en Français

Les structures d’algèbre pré-Lie apparaissent dans des domaines divers des mathématiques :

la géométrie différentielle, la théorie quantique des champs, les équations différentielles. Elles

ont été étudiées intensivement récemment; nous nous référons e.g. aux articles de survol :

[10, 12, 39]. Les algèbres pré-Lie libres avaient déjà été étudiées dès1981 par A. Agrachev et

R. V. Gamkrelidze dans leur travail conjoint "Chronological algebras and nonstationary vector
fields" [1], et aussi par D. Segal dans [46]. En particulier, ces deux articles donnent une con-

struction de bases de monômes, avec des approches différentes. En outre, les arbres enracinés

sont un sujet classique, étroitement lié aux algèbres pré-Lie. Ils apparaissent par exemple dans

l’étudedes champs de vecteurs[13], l’analyse numérique[8], et plus récemment dansla théorie
quantique des champs[16]. Des bases pour les algèbres pré-Lie libres en termes d’arbres en-

racinés ont été introduites par F. Chapoton et M. Livernet dans [14], utlisant le point de vue des

opérades. A. Dzhumadil’Daev et C. Löfwall ont décrit indépendamment deux bases pour des

algèbres pré-Lie libres, une base utilisant le concept d’arbres enracinés, et l’autre obtenue en

considérant une base pour l’algèbre (non-associative) libre modulo la relation pré-Lie [19].

Cette thèse consiste en quatre chapitres principaux. Le Chapitre 1 est un chapitre prélimi-

naire qui contient, à son tour, quatre sections, dans lesquelles nous rappelons certaines notions

importantes dont nous avons besoin dans cette thèse : les algèbres magmatiques libres, les ar-

bres enracinés, les algèbres de Lie, les algèbres pré-Lie, les bases de Gröbner,. . . .

Le Chapitre 2 est une version généralisée de notre travail dans un article publié au Séminaire

Lotharingien de Combinatoire [2]. Le contenu de ce chapitre est détaillé dans son introduction.

Dans ce chapitre, nous décrivons une méthode explicite pourtrouver des bases de monômes

convenables pour les algèbres pré-Lie libres avec plusieurs générateurs, utilisant le travail con-

joint [1] de A. Agrachev et R. Gamkrelidze, l’article [2] s’en tenant au cas d’un seul générateur.

Rappelons que l’éspaceT E engendré par les arbres enracinés (non-planaires) décoréspar

un ensembleE forme avec l’opération de greffe ”→” l’algèbre pré-Lie libre engendrée par

E [14, 19]. Un monôme dans l’algèbre pré-Lie libre engendrée parE est un mot parenthésé

constitué des générateurs{a : a ∈ E} et l’opération de greffe pré-Lie ”→ ”, par exemple, dans

le cas avec un seul générateur :

1



2 INTRODUCTION EN FRANÇAIS

( → )→
(
→ ( → )

)
= →

(
→

)

= →
(
+

)

= + 2 + + + .

Nous sommes intéressés en particulier à des bases de monômesque nous appellerons "bases

arborescentes". A chaque monôme nous pouvons associer un "terme d’énergie minimale" en

remplaçant l’opération de greffe ”→ ” par le produit de Butcher "�". Une base de monômes de

T E sera appelée une "base arborescente" si les termes d’énergie minimale de chaque monôme

redonnent la base d’arbres de Chapoton-Livernet deT E. Nous montrons que les bases ar-

borescentes sont en correspondance biunivoque avec les choix t 7→ S(t) d’ un représentant

planaire pour chaque arbret. Nous donnons une expression explicite pour les coefficients de

ces monômes dans la base d’arbres enracinés, présentant ainsi une matrice carrée [[βS(s, t)]]
s, t∈T E

n

pour chaque degrén > 0, utilisant un travail de K. Ebrahimi-Fard et D. Manchon (non publié)

rappelé dans Section 2.1. Ici nous allons supposer que chaque générateur est de degré 1, sauf

dans les Paragraphes 2.2.1 et 2.2.2.

Le Chapitre 3 contient trois sections principales. Dans ce chapitre, nous considérons à la

fois l’algèbre pré-Lie libre
(
T E,→

)
et l’algèbre de Lie libre

(
L(E), [·, ·]

)
engendrées par un

ensemble :

E = E1 ⊔ E2 ⊔ E3 ⊔ · · · ,

où chaqueE j est un ensemble fini de générateurs de degréj. Il s’avère que l’algèbre de Lie

libreL(E) possède une structure pré-Lie naturelle. Ce résultat semble être nouveau (rappelons

que si n’importe quelle algèbre pré-Lie induit une structure de Lie correspondante par anti-

symétrisation du produit pré-Lie, l’inverse est rarement vrai [10]). Nous donnons une présen-

tation explicite deL(E) comme le quotientT E/I , où I est l’idéal deT E engendré par des

"relations d’anti-symétrie pondérée" :

|s|s→ t + |t|t → s.

Nous rappelons le travail de T. Mora [41] sur les bases de Gröbner, et nous l’adaptons à un con-

texte non-associatif magmatique, en suivant [18]. Dans ce chapitre, nous décrivons des bases de

monômes pour l’algèbre pré-Lie (respectivement de Lie libre)L(E), utilisant les procédures de

bases de Gröbner et notre travail du Chapitre 2, sur la base demonômes pour l’algèbre pré-Lie

libreT E.
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Le Chapitre 4 est détaillé dans son introduction et se compose de quatre sections. Il est con-

sacré au développement de Magnus, un outil important pour résoudre l’équation différentielle

linéaire bien connue :

ẏ(t) :=
d
dt

y(t) = a(t)y(t), y(0) = 1.

De nombreux travaux ont été dédiés à l’écriture du développement de Magnus classique

en terme de structures algèbriques et combinatoires : les algèbres de Rota-Baxter, les algèbres

dendriformes, les algèbres pré-Lie,. . ., voir par exemple [20, 21, 15]. Nous étudions ici une

généralisation de ce dernier appelé le développement de Magnus pré-Lie, et nous donnons une

étude brève sur ce développement dans ce chapitre. Un codagedes termes du développement de

Magnus classique et pré-Lie utilisant les arbres binaires planaires a été proposé par A. Iserles et

S. P. No/ rsett [30]. K. Ebrahimi-Fard et D. Manchon ont proposé un autre codagepar les arbres

enracinés planaires [21]. Certaines tentatives ont été faites pour réduire le nombre de termes

de ce développement : nous discutons cette réduction dans les Sections 4.2, 4.3 en utilisant le

codage de K. Ebrahimi-Fard avec D. Manchon [20], [21], et un travail de F. Chapoton avec F.

Patras [15].

La formule introduite par F. Chapoton et F. Patras dans leur travail [15] sur l’écriture du

développement de Magnus pré-Lie, utilisant l’algèbre de Grossman-Larson, attire notre atten-

tion. Nous étudions cette formule brièvement dans les Sections 4.2, 4.3, et nous comparons ses

termes avec d’autres termes du développement de Magnus pré-Lie obtenu par K. Ebrahimi-Fard

et D. Manchon dans leur travail [21]. Nous observons que cette formule est optimale jusqu’au

degré 5, en ce qui concerne le nombre de termes du développement de Magnus pré-Lie.

Dans la dernière section du Chapitre 4, nous regardons le développement de Magnus pré-

Lie dans l’algèbre de Lie libreL(E). Les relations d’anti-symétrie pondérée conduisent à une

réduction supplémentaire du nombre de termes. Le cas particulier d’un seul générateur dans

chaque degré est étroitement lié au travail de S. Blanes, F. Casas et J. Ros [4]. Nous donnons

une version combinatoire du travail de les trois auteurs, utilisant notre travail du Chapitre 3, sur

la base de monômes d’algèbre de Lie libreL(E).





CHAPTER 0

Introduction

Pre-Lie algebra structures appear in various domains of mathematics:differential geometry,
quantum field theory, differential equations. They have been studied intensively recently; we

refer e.g. to the survey papers: [10, 12, 39]. Free pre-Lie algebras had already been studied as

early as 1981 by A. Agrachev and R. V. Gamkrelidze in their joint work "Chronological alge-
bras and nonstationary vector fields" [1], and also by D. Segal in [46]. In particular, both papers

give a construction of monomial bases, with different approaches. Besides, rooted trees are a

classical topic, closely connected to pre-Lie algebras. They appeared for example in the study

of vector fields[13], numerical analysis[8], and more recently inquantum field theory[16].

Bases for free pre-Lie algebras in terms of rooted trees wereintroduced by F. Chapoton and M.

Livernet in [14], using the point of view of operads. A. Dzhumadil’Daev and C. Löfwall de-

scribed independently two bases for free pre-Lie algebras,one using the concept of rooted trees,

and the other obtained by considering a basis for the free (non-associative) algebra modulo the

pre-Lie relation [19].

This thesis consists in four main chapters. Chapter 1 is a preliminary chapter that contains,

in turn, four sections, in which we recall some important topics that we need in this thesis: free

magmatic algebras, rooted trees, Lie algebras, pre-Lie algebras, Gröbner bases and others.

Chapter 2 is a generalized version of our work in a published paper in Séminaire Lotharingien

de Combinatoire [2]. The contents of this chapter are detailed in its introduction. In this chapter,

we describe an explicit method for finding suitable monomialbases for free pre-Lie algebras

with several generators, using the joint work [1] of A. Agrachev and R. Gamkrelidze, the paper

[2] sticking to the single generator case.

Recall that the spaceT E spanned by (non-planar) rooted trees decorated by a setE forms

with the grafting operation ”→ ” the free pre-Lie algebra generated byE [14, 19]. A monomial

in the free pre-Lie algebra generated byE is a parenthesized word built up from the generators

{
a : a ∈ E} and the pre-Lie grafting operation ”→ ”, for example, in the single generator case:

5
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( → )→
(
→ ( → )

)
= →

(
→

)

= →
(
+

)

= + 2 + + + .

We are interested in particular monomial bases which will becalled "tree-grounded". To

each monomial we can associate a "lower-energy term" by replacing the grafting operation

"→" by the Butcher product "�". A monomial basis ofT E will be called "tree-grounded" if

the lower-energy terms of each monomial give back the Chapoton-Livernet tree basis ofT E.

We show that tree-grounded monomial bases are in one-to-onecorrespondence with choices

t 7→ S(t) of a planar representative for each treet. We give an explicit expression for the

coefficients of these monomials in the basis of rooted trees, thus exhibiting a square matrix

[[βS(s, t)]]
s, t∈T E

n
for each degreen > 0, using the joint work of K. Ebrahimi-Fard and D. Man-

chon (unpublished) reviewed in Section 2.1. Here we will suppose that each generator is of

degree 1, except in Paragraphs 2.2.1 and 2.2.2.

Chapter 3 contains three main sections. In this chapter, we consider both the free pre-Lie

algebra
(
T E,→

)
and the free Lie algebra

(
L(E), [·, ·]

)
generated by a set:

E = E1 ⊔ E2 ⊔ E3 ⊔ · · · ,

where eachE j is a finite set of generators of degreej. It turns out that the free Lie algebra

L(E) possesses a natural pre-Lie structure. This result seems to be new (recall that if any pre-

Lie algebra yields a corresponding Lie structure by antisymmetrizing the pre-Lie product, the

converse is rarely true [10]). We give the explicit presentation ofL(E) as the quotientT E/I ,

whereI is the ideal ofT E generated by "weighted anti-symmetry relations":

|s|s→ t + |t|t → s.

We review the work of T. Mora [41] on Gröbner bases, and adapt it to non-associative,

magmatic context, following [18]. In this chapter, we describe monomial bases for the pre-Lie

(respectively free Lie) algebraL(E), using the procedures of Gröbner bases and our work de-

scribed in Chapter 2, in the monomial basis for the free pre-Lie algebraT E.

Chapter 4 is detailed in its introduction by four sections. It is dedicated to study the so-called

Magnus expansion, an important tool to solve the well-knownlinear differential equation:

ẏ(t) :=
d
dt

y(t) = a(t)y(t), y(0) = 1. (0.1)
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Many works have been raised to write the classical Magnus expansion in terms of algebro-

combinatorial structures: Rota-Baxter algebras, dendriform algebras, pre-Lie algebras and oth-

ers, see for example [20, 21, 15] for more details about these works. Particularly, we studya

generalization of the latter called pre-Lie Magnus expansion, and we give a brief survey about

this expansion in this chapter. An approach has been developed to encode the terms of the

classical and pre-Lie Magnus expansions respectively, by A. Iserles with S. P. No/ rsett using

planar binary trees [30], and by K. Ebrahimi-Fard with D. Manchon using planar rooted trees

[21] respectively. Some attempts have been made to reduce the number of terms of this expan-

sion: we discuss in Sections 4.2, 4.3 this reduction, using the pre-Lie structure corresponding to

the works of K. Ebrahimi-Fard with D. Manchon [20], [21], and F. Chapoton with F. Patras [15].

The formula introduced by F. Chapoton and F. Patras in their work [15] on the writing of

the pre-Lie Magnus expansion, using the so-called Grossman-Larson algebra, attracts our atten-

tion. We study this formula briefly in Sections 4.2, 4.3, and we compare its terms with another

pre-Lie Magnus expansion terms obtained by K. Ebrahimi-Fard and D. Manchon in their work

[21]. We observe that this formula can be considered as optimal up to degree five, with respect

to the number of terms in the pre-Lie Magnus expansion.

In the last section of Chapter 4, we look at the pre-Lie Magnusexpansion in the free Lie

algebraL(E). The weighted anti-symmetry relations lead to a further reduction of the number

of terms. The particular case of one single generator in eachdegree is closely related to the

work of S. Blanes, F. Casas and J. Ros [4]. We give a combinatorial version of this work of the

three authors, using our work described in Chapter 3, in the monomial basis of free Lie algebra

L(E).





CHAPTER 1

Preliminaries

The aim of this preliminary chapter is to review some basics that we need in this thesis.

1.1. Free magmas and free magmatic algebras

Definition 1.1. A magma is a set M together with a binary operation "·", without any property

imposed.

Let E be a set. The free magma overE is the magmaM(E) generated byE. The free magma

M(E) has the following universal property: for any other magmaN with a map f : E → N

there is a unique magmatic extension off from M(E) into N. It can be presented as the set of

well-parenthesized words onE with letters in the alphabetE, endowed with the concatenation

product [7] [44].

Denote byME the linear span (over some base fieldK) of the free magmaM(E). The space

ME forms a free algebra, together with the product "·" of the magma, which is called the free

magmatic algebra.

1.2. Trees

In graph theory, a tree is a undirected connected finite graph, without cycles [22]. A rooted

tree is defined as a tree with one designated vertex called theroot. The other remaining vertices

are partitioned intok ≥ 0 disjoint subsets such that each of them in turn represents arooted

tree, and a subtree of the whole tree. This can be taken as a recursive definition for rooted

trees, widely used in computer algorithms [35]. Rooted trees stand among the most important

structures appearing in many branches of pure and applied mathematics.

In general, a tree structure can be described as a "branching" relationship between vertices,

much like that found in the trees of nature. Many types of trees defined by all sorts of constraints

on properties of vertices appear to be of interest in combinatorics and in related areas such as

formal logic and computer science.

1.2.1. Planar binary trees.

Definition 1.2. A planar binary tree is a finite oriented tree embedded in the plane, such that

each internal vertex has exactly two incoming edges and one outgoing edge. One of the internal

vertices, called the root, is a distinguished vertex with two incoming edges and one edge, like a

tail at the bottom, not ending at a vertex.

9
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The incoming edges in this type of trees are internal (connecting two internal vertices), or

external (with one free end). The external incoming edges are called the leaves. We give here

some examples of planar binary trees:

. . . ,

where the single edge "" is the unique planar binary tree without internal vertices. The degree

of any planar binary tree is the number of its leaves. Denote by Tbin
pl (respectivelyT bin

pl ) the set

(respectively the linear span) of planar binary trees.

Define the grafting operation "∨" on the spaceT bin
pl to be the operation that maps any planar

binary treest1, t2 into a new planar binary treet1∨ t2, which takes theY-shaped tree replacing

the left (respectively the right) branch byt1 (respectivelyt2), see the following examples:

∨ = , ∨ = , ∨ = , ∨ = , ∨ = .

The number of binary trees of degreen is given by the Catalan numbercn =
(2n)!

(n+1)!n! , where

the first ones are 1, 1, 2, 5, 14, 42, 132, . . .. This sequence of numbers is the sequence A000108

in [48].

Let E be a (non-empty) set. The free magmaM(E) generated byE can be described as

the set of planar binary trees with leaves decorated by the elements ofE, together with the "∨"

product described above [35, 24]. Moreover, the linear spanT bin,E
pl , generated by the trees of

the magmaM(E) = Tbin,E
pl defined above, equipped with the grafting "∨" is a description of the

free magmatic algebra.

1.2.2. Planar and non-planar rooted trees.

Definition 1.3. For any positive integer n, a rooted tree of degree n, or simply n-rooted tree, is

a finite oriented tree together with n vertices. One of them, called the root, is a distinguished

vertex without any outgoing edge. Any vertex can have arbitrarily many incoming edges, and

any vertex distinct from the root has exactly one outgoing edge. Vertices with no incoming edges

are called leaves.

A rooted tree is said to be planar, if it is endowed with an embedding in the plane. Otherwise,

its called a (non-planar) rooted tree.

Definition 1.4. Let E be a (non-empty) set. An E-decorated rooted tree is a pair (t, d) of a

rooted tree t together with a map d: V(t) → E, which decorates each vertex v of t by an

element a of E, i.e. d(v) = a, where V(t) is the set of all vertices of t.
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Here are the planar (undecorated) rooted trees up to five vertices:

· · ·

From now on, we will consider that all our trees are decorated, except for some cases in

which we will state the property explicitly. Denote byTE
pl (respectivelyTE) the set of all planar

(respectively non-planar) decorated rooted trees, andT E
pl (respectivelyT E) the linear space

spanned by the elements ofTE
pl (respectivelyTE). Any rooted treeσ with branchesσ1, . . . , σk

and a roota, can be written as:

σ = B+,a(σ1 · · ·σk), (1.1)

whereB+, a is the operation which grafts a monomialσ1 · · · σk of rooted trees on a common

root decorated by an elementa in E, which gives a new rooted tree by connecting the root of

eachσi, by an edge, to the new root. The planar rooted treeσ in formula (1.1) depends on the

order of the branch planar treesσ j, whereas this order is not important for the corresponding

(non-planar) tree.

The number of trees inTE
pl is the same than inTbin,E

pl , there is a one-to-one bijection between

them (see the Subsection 1.2.3). On the other hand, for any homogeneous componentTn of

(non-planar) undecorated rooted trees of degree "n", for n ≥ 1, the number of trees inTn is

given by the sequence: 1, 1, 2, 4, 9, 20, 48, . . . , which is sequence A000081 in [48].

Definition 1.5. The (left) Butcher product” ◦ց” of any planar rooted treesσ andτ is defined

by:

σ◦ցτ := B+,a(στ1 · · · τk), (1.2)

whereτ1, . . . , τk ∈ TE
pl, such thatτ = B+,a(τ1 · · · τk). It maps the pair of trees(σ, τ) into a new

planar rooted tree induced by grafting the root ofσ, on the left via a new edge, on the root ofτ.

The usual product ”�” in the non-planar case, given by the same formula (1.2), is known

as the Butcher product. It is non-associative permutative (NAP), i.e. it satisfies the following

identity:

s�(s′�t) = s′�(s�t),

for any (non-planar) treess, s′, t. Indeed, fort = B+,a(t1 · · · tk), wheret1, ..., tk in TE, we have:

s�(s′�t) = s�(B+,a(s
′t1 · · · tk))

= B+, a(ss′t1 · · · tk)

= B+, a(s
′s t1 · · · tk)

= s′�(B+, a(s t1 · · · tk))

= s′�(s�t).
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1.2.3. Rotation correspondence of Knuth.

D. E. Knuth in his work [35] described a relation between the planar binary trees and the

planar rooted trees, in the case of non-decorated trees. He introduced a bijectionΦ : Tbin
pl −→ Tpl

called the rotation correspondence1, recursively defined by:

Φ( ) = , andΦ(t1 ∨ t2) = Φ(t1) ◦ցΦ(t2),∀t1, t2 ∈ Tbin
pl . (1.3)

Let us compute a few terms:

Φ( ) = Φ( ) ◦ցΦ( ) = , Φ( ) = Φ( ) ◦ցΦ( ) = , Φ( ) = ,

Φ( ) = , Φ( ) = , Φ( ) = , Φ( ) = , Φ( ) = .

The bijection given in (1.3) realizes the free magmaM(E) as the set of planar rooted trees

with E-decorated vertices, endowed with the left Butcher product. Also, the linear spanT E
pl ,

generated by the planar trees of the magmaM(E), forms with the product ”◦ց” another descrip-

tion of the free magmatic algebra.

1.3. Lie algebras

In the spirit of Felix Klein’s (1849-1925) "Erlangen Program", any Lie groupG is a group

of symmetries of some class of differentiable manifolds. The corresponding infinitesimal trans-

formations are given by the Lie algebra ofG, which is the set of left-invariant vector fields on

G. The problem of classification of groups of transformationshas been considered by S. Lie

(1842-1899) not only for subgroups ofGLn, but also for infinite dimensional groups [34].

The problem of classification of simple finite-dimensional Lie algebras over the field of

complex numbers was solved at the end of the 19th century by W.Killing (1847-1923) and

E. Cartan (1869-1951). The central figure of the origins of the theory of the structure of Lie

algebras is W. Killing, whose paper in four parts laid the conceptual foundations of the theory.

In 1884, Killing introduced the concept of a Lie algebra independently of Lie and formulated

the problem of determining all possible structures for real, finite dimensional Lie algebras. The

joint work of Killing and Cartan establishes the foundations of the theory. Killing’s work con-

tained many gaps which Cartan succeeded in filling [28], [34]. An attempt has been made by

Killing and Cartan as well as others, such as S. Lie and F. Engel and many others, to provide

the basis for a better historical appreciation of the early development of the theory and some of

its various applications.

In this section, we recall some basics in Lie algebras that weneed in this thesis.

1For more details about the rotation correspondence see [35, Paragraph 2.3.2], [40] and [24, Paragraph 1.5.3].
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Definition 1.6. A Lie algebra over a field K, of characteristic different from2, is a K-vector

spaceL , with a K-bilinear mapping[· , ·] : L × L → L, (x, y) 7−→ [x, y] called a Lie bracket,

satisfying the following properties:

[x, x] = 0 (1.4)

[[ x, y], z] + [[y, z], x] + [[z, x], y] = 0 (1.5)

for all x, y, z ∈ L. The identity(1.5) is called the Jacobi identity.

The identity (1.4) induces the following identity, which iscalled the anti-symmetry identity:

[x, y] + [y, x] = 0 (1.6)

Indeed, using (1.4) and the bilinearity of [· , ·], we have: 0= [x + y, x + y] = [x, x] + [x, y] +

[y, x] + [y, y] = [x, y] + [y, x]. Relations (1.4) and (1.6) are equivalent because the characteristic

of the base fieldK is different from 2. Every associativeK-algebraA has a natural structure of

Lie algebra with a Lie bracket defined by:

[x, y] = xy− yx. (1.7)

1.3.1. Enveloping algebra of Lie algebras.

One of the important properties possessed by Lie algebras, is that we can associate to each

Lie algebraL an associative algebra which has a universal property stated in the following

Proposition.

Proposition 1.1. Let L be a Lie algebra over K. There exists an associative algebraU(L)

over K and a Lie algebra homomorphismϕ0 : L → U(L) having the following property: for

any associative algebraA and any Lie algebra homomorphismϕ : L → A, there is a unique

algebra homomorphism f: U(L) → A making the diagram in Figure 1.1 commutative. The

algebraU(L) is unique up to isomorphism.

L
ϕ0 //

ϕ

��

U(L)

f||yyy
yyyyy

A

Figure 1.1. The universal property of the algebraU(L).

Proof. This algebraU(L) is called the enveloping algebra ofL. The reader can find the

proof of this Proposition detailed in [44, Proposition 0.1]. In the following, we shall review the

part of the proof corresponding to the existence of the algebraU(L), to understand what means
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this type of algebras, i.e. the enveloping algebra: denote by T = T(L) the tensor algebra ofL

overK, where:

T(L) =
⊕

n≥0

L⊗n.

The algebraT has a natural structure of associative algebra with unit. Define I to be the (two-

sided) ideal ofT generated by the elements on the form:

x⊗ y− y⊗ x− [x, y], for anyx, y ∈ L. (1.8)

SetU(L) = T/I , and letϕ0 : L → U(L) be the compositionϕ0 = q◦ i, wherei is the canonical

inclusionL → T(L) andq is the canonical quotient mapT → T/I that is a surjective algebra

homomorphism. The mapϕ0 is a Lie algebra homomorphism. Indeed, for anyx, y ∈ L, we

have:

ϕ0([x, y]) = q([x, y])

= q(x⊗ y− y⊗ x) , by (1.8), and since Ker q=I,

= q(x)q(y) − q(y)q(x)

= [q(x), q(y)] , using (1.7),

= [q ◦ i(x), q ◦ i(y)]

= [ϕ0(x), ϕ0(y)].

The mapf is defined as follows: the linear mapϕ uniquely extends to an algebra morphism

f̃ : T(L)→ A, defined by:

f̃ (x1 ⊗ · · · ⊗ xn) := ϕ(x1) · · ·ϕ(xn),

which factorizes through the idealI . �

Here, we give the well known Theorem called the Poincaré-Birkhoff-Witt Theorem which

we need it in our next work in this thesis, without giving its proof. We refer the reader to the

references [11, 32, 29, 17] for more details about this Theorem.

Theorem 1.2. LetL be a K-Lie algebra, such that the K-vector spaceL is endowed with a

totally ordered basis{xi}i∈I . Then the enveloping algebraU(L) of L is a K-vector space with

basis the set of decreasing productsϕ0(xi1) · · ·ϕ0(xin), for i1, . . . , in ∈ I , i1 ≥ · · · ≥ in, n ≥ 0,

whereϕ0 : L → U(L) is the natural Lie algebra homomorphism.

Corollary 1.3. LetL be a K-Lie algebra. LetU(L) be its enveloping algebra andϕ0 : L →

U(L) be the canonical Lie homomorphism. Thenϕ0 is injective.

By Corollary 1.3, we can consider a Lie algebra as a Lie subalgebra of its enveloping algebra

[44].
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1.3.2. Free Lie algebras.

The Lie algebra of Lie polynomials, showed by E. Witt (1911-1991), is actually the free

Lie algebra. The first appearance of Lie polynomials was at the turn of the century in the

work of Campbell, Baker and Hausdorff on the exponential mapping in a Lie group, when

the well-known result "Campbell-Baker-Hausdorff formula" appeared. For more details about a

historical review of free Lie algebras, we refer the reader to the reference [44] and the references

therein.

Definition 1.7. Let L be a Lie algebra over a field K and E be a (non-empty) set , and let

i : E → L be a map. A free Lie algebra is a pair
(
L, i

)
, satisfying the following universal

property: for any Lie algebraL′ and any mapping f: E → L′, there is a unique Lie algebra

homomorphism̃f : L → L′ which makes the following diagram commute:

E
i //

f ��@
@@

@@
@@

@
L

f̃
��
L′

Figure 1.2. The universal property of the free Lie algebra.

It is unique up to an isomorphism. IfL is a K- Lie algebra and E⊆ L, then we say that E freely

generatesL if
(
L, i

)
is free, where i is the canonical injection from E toL.

We give here some important properties of the free Lie algebra, presented as Theorems

without giving the complete proofs, just some details that we need in this thesis. We refer the

reader to the reference [44, Theorem 0.4, Theorem 0.5] for more details about these Theorems.

Theorem 1.4. For any (non-empty) set E, there exists a free Lie algebra, call it L(E), on E,

which is unique up to isomorphism. Moreover, this free Lie algebra is naturally a graded K-

vector space, the mapping i, in Figure 1.2, is injective. Thefree vector subspace generated by

E = i(E) is the component of elements ofL(E) of degree "1", andL(E) itself generated, as a

Lie algebra, by E.

Proof. We will review here the part of the proof, that we need, corresponding to the exis-

tence or the construction of this type of Lie algebras. The details of this proof exist in [44, Theo-

rem 0.4]. LetE be any (non-empty) set, andAE be the free (non-commutative, non-associative)

K- algebra. Here, we can considerAE as the free magmatic algebraME generated linearly by

M(E), the free magma overE. Define I to be the (two-sided) ideal ofME generated by the

elements:

(xy)z+ (yz)x+ (zx)y, andxx, for x, y, z ∈ ME. (1.9)
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SetL(E) := ME/I . Obviously,L(E) with the multiplication inherited fromME forms a Lie

algebra overK. Moreover,L(E), with the canonical mappingE→ L(E), is the free Lie algebra

overE. �

Theorem 1.5. The enveloping algebraU(L) of the free Lie algebraL(E) is a free associative

algebra on E. The Lie algebra homomorphismϕ0 : L(E)→ U(L) is injective, andϕ0(L(E)) is

the Lie subalgebra ofU(L) generated by j(E), where j:= ϕ0 ◦ i.

1.3.3. Gröbner bases.

The Gröbner bases theory was introduced in 1965 by Bruno Buchberger for ideals in poly-

nomial rings and an algorithm called Buchberger algorithm for their computation. This theory

contributed, since the end of the seventies, in the development of computational techniques for

the symbolic solution of polynomial systems of equations and in the development of effective

methods in Algebraic Geometry and Commutative Algebra. Moreover, this theory has been

generalized to free non-commutative algebra and to variousnon-commutative algebras of inter-

est in Differential Algebra, e.g. Weyl algebras, enveloping algebrasof Lie algebras [41], and so

on.

The attempt to imitate Gröbner basis theory for non-commutative algebras works fine up

to the point where the termination of the analogue to the Buchberger algorithm can be proved.

Gröbner bases and Buchberger algorithm have been extended,for the first time, to ideals in

free non-commutative algebras by G. Bergman in 1978. Later,F. Mora in 1986 made precise

in which sense Gröbner bases can be computed in free non-commutative algebras [41]. The

construction of finite Gröbner bases for arbitrary finitely generated ideals in non-commutative

rings is possible in the class ofsolvable algebras2. This class comprises many algebras arising

in mathematical physics such as: Weyl algebras, envelopingalgebras of finite-dimensional Lie

algebras, and iterated skew polynomial rings. Gröbner bases were studied, in these algebras, for

special cases by Apel and Lassner in 1985, and in full generality by Kandri-Rody and Weispfen-

ning in 1990 [3].

Recently, V. Drensky and R. Holtkamp used Gröbner theory in their work [18] for a non-

associative, non-commutative case (the magmatic case). Whereas, L. A. Bokut, Yuqun Chen

and Yu Li, in their work [6], give Gröbner-Shirshov basis for a right-symmetric algebra (pre-Lie

algebra). The theory of Gröbner-Shirshov bases was invented by A. I. Shirshov for Lie algebras

in 1962 [47].

2For more details about the solvable algebras see [3, Appendix: Non-Commutative Gröbner Bases, pages

526-528].
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We try in our work, in section 3.2, to describe a monomial basis in tree version for the free

Lie (respectively pre-Lie) algebras using the procedures of Gröbner bases, comparing with the

one (i.e. the monomial basis) obtained for the free pre-Lie algebra in section 2.2. We need here

to review some basics for the theory of Gröbner bases.

Definition 1.8. Let
(
M(E), ·

)
be the free magma generated by E. A total order< on M(E) is

said to be monomial if it satisfies the following property:

for any x, y, z ∈ M(E), if x < y, then x· z< y · z and z· x < z · y, (1.10)

i.e. it is compatible with the product in M(E).

This property, in (1.10), implies that for anyx, y ∈ M(E) thenx < x · y. An order is called

a well-ordering if every strictly decreasing sequence of monomials is finite, or equivalently if

every non-empty set of monomials has a minimal element.

LetME be theK-linear span of the free magmaM(E), andI be any magmatic (two-sided)

ideal ofME. For any elementf =
∑

x∈M(E)
λxx (finite sum) inI , defineT( f ) to be the maximal term

of f with respect to a given monomial order defined onM(E), namelyT( f ) = λx0 x0, with x0 =

max{x ∈ M(E), λx , 0}. DenoteT(I ) := {T( f ) : f ∈ I } the set of all maximal terms of elements

of I . Note that the setT(I ) forms a (two-sided) ideal of the magmaM(E) [41]. Define the set

O(I ) := M(E)\T(I ). We have that the magmaM(E) = T(I ) ∪ O(I ) is the disjoint union of

T(I ),O(I ) respectively. As a consequence, we get that:

ME = SpanK(T(I )) ⊕ SpanK(O(I )). (1.11)

Define a linear mappingϕ from I into SpanK(T(I )), which makes the following diagram

commute:

I �
� i //

ϕ

++VVVVVVVVVVVVVVVVVVVVVVVV ME
=̃ // SpanK(T(I )) ⊕ SpanK(O(I ))

P����
SpanK(T(I ))

Figure 1.3. Definition ofϕ.

whereP is the projection map. Then the mappingϕ is defined by:

ϕ( f ) =
∑

x∈T(I)

αxx, for f ∈ I , (1.12)

where f =
∑

x∈T(I)
αxx + corrective term inSpanK(O(I )), andαx ∈ K for all x ∈ T(I ). The map

ϕ is obviously injective. Indeed, for anyf ∈ I andϕ( f ) = 0, then f ∈ SpanK(O(I )), and from
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Theorem 3.8,SpanK(O(I ))
⋂

I = {0}. Also, according to Theorem 3.8 and by the definition of

ϕ in (1.12), we note thatϕ is surjective. Hence,ϕ is an isomorphism of vector spaces. Thus, we

can deduce from the formula (1.11):

ME = I ⊕ SpanK(O(I )). (1.13)

In Section 3.2, we will give a tree version of the monomial well-ordering with a review of

Mora’s work [41], in the case of rooted trees.

1.4. Pre-Lie algebras

The concept of "Pre-Lie algebras" appeared in many works under various names. E. B.

Vinberg and M. Gerstenhaber in 1963 independently presented the concept under two different

names; "right symmetric algebras" and "pre-Lie algebras" respectively [49, 26]. Other denomi-

nations, e.g. "Vinberg algebras", appeared since then. "Chronological algebras" is the term used

by A. Agrachev and R. V. Gamkrelidze in their work onnonstationary vector fields[1]. The

term "pre-Lie algebras" is now the standard terminology. The Lie algebra of a real connected

Lie groupG admits a compatible pre-Lie structure if and only ifG admits a left-invariant affine

structure [10, Proposition 2.31], see also the work of J. L. Koszul [36] for more details about the

pre-Lie structure, in a geometrical point of view. We shall now review some basics and topics

related to pre-Lie algebras.

Definition 1.9. LetPL be a vector space over a field K together with a bilinear operation ”⊲”.

ThenPL is said to be a left pre-Lie algebra, if the map⊲ satisfies the following identity:

(x ⊲ y) ⊲ z− x ⊲ (y ⊲ z) = (y ⊲ x) ⊲ z− y ⊲ (x ⊲ z),∀x, y, z ∈ PL. (1.14)

The identity (1.14) is called the left pre-Lie identity, andit can be written as:

L[x,y] = [Lx, Ly],∀x, y ∈ PL, (1.15)

where for every elementx in PL, the linear transformationLx of the vector spacePL is defined

by Lx(y) = x ⊲ y,∀y ∈ PL, and [x, y] = x ⊲ y − y ⊲ x is the commutator of the elementsx

andy in PL. The usual commutator [Lx, Ly] = LxLy − LyLx of the linear transformations ofPL

defines a structure of Lie algebra overK on the vector spaceL(PL) of all linear transformations

of PL. For any pre-Lie algebraPL, the bracket [·, ·] satisfies the Jacobi identity, hence induces

a structure of Lie algebra onPL.

As a particular example of pre-Lie algebras, take the linearspace of the set of all (non-

planar)E-decorated rooted treesT E which has a structure of pre-Lie algebra together with the

product "→" defined as follows:
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Definition 1.10. The grafting product” → ” is a bilinear map defined on the vector spaceT E

such that:

s→ t =
∑

v∈V(t)

s→v t, (1.16)

for any s, t∈T E, where "s→v t" is the (non-planar) decorated rooted tree obtained by grafting

the tree s on the vertex v of the tree t.

Example 1.1.For the case with one generator, we have:

→ = + , → = + .

In the spaceT spanned by the rooted trees, the grafting operation ”→ ” satisfies the pre-Lie

identity, since for anys, t, t′∈ T, we have:

s→ (t → t′) − (s→ t)→ t′ = s→ (
∑

v∈V(t′)

t →v t′) − (
∑

u∈V(t)

s→u t)→ t′

=
∑

v∈V(t′)

s→ (t →v t′) −
∑

u∈V(t)

(s→u t)→ t′

=
∑

v∈V(t′)

∑

v′∈V(t′′)

s→v′ (t →v t′)

−
∑

v∈V(t′)

∑

u∈V(t)

(s→u t)→v t′, [t′′ = t →v t′]

=
∑

v∈V(t′)

∑

v′∈V(t′)

s→v′ (t →v t′),

Obviously symmetric ins andt. The same thing holds in the vector spaceT E spanned by

E-decorated rooted trees.

1.4.1. Completed pre-Lie algebras.
In this paragraph, we recall some topics that we need in our work in Chapter 4, following the

references [33, 1, 39].

Definition 1.11. Let V be a K-vector space endowed with a norm|| · || : V → R+. A sequence

{vn} of elements of V is called Cauchy sequence if given any realε > 0, there exists a positive

integer N= N(ε) such that:

||vm − vn|| < ε, (1.17)

for all m, n ≥ N. V is said to be complete relative to the norm|| · || if every Cauchy sequence of

elements of V converges.

Let PL :=
⊕
n∈N
PLn be a graded pre-Lie algebra, wherePLn is then-th component of this

algebra. Denote by:

P̂L :=
∞∏

n=1

PLn =
{
a =

∞∑

n=1

an : an ∈ PLn, for n ≥ 1
}
,
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the completion of the graded algebraPL, where the elements of̂PL are formal series. This

completion possesses a structure of pre-Lie algebra given by the natural extension of the product

⊲ defined as follows: for anya =
∞∑

n=1
an, b =

∞∑
n=1

bn ∈ P̂L,

a⊲ b :=
∞∑

n=2

( n−1∑

i=1

ai ⊲ bn−i

)
:= lim

N→∞

N∑

n=2

( n−1∑

i=1

ai ⊲ bn−i

)
. (1.18)

Indeed, the right-hand side of (1.18) is the limit of a Cauchysequence. The graded pre-Lie

algebraPL is endowed with a compatible decreasing filtrationPL = PL(1) ⊃ PL(2) ⊃ PL(3) ⊃

· · · , where:

PL(q) :=
⊕

n≥q

PLn, for all q ≥ 1,

such thatPL(p)
⊲ PL(q) ⊂ PL(p+q), and

⋂
k≥1
PL(k)

= {0}. Define the valuation mapVal : PL → N

by:

Val(a) := sup
{
q : a ∈ PL(q)}. (1.19)

Let a, b be elements inPL, such thata ∈ PLp, b ∈ PLq with p < q, then:

(i) Val(a+ b) = p,

(ii) Val(a⊲ b) ≥ Val(a) + Val(b) = p+ q, this property is true for alla, b ∈ PL.

A metric functiond(·, ·) : PL × PL → R+ can be defined onPL, using the mapVal defined

above, as follows:

d(a, b) = 2−Val(a−b), for anya, b ∈ PL. (1.20)

The corresponding norm|| · || onPL is defined by:

||a|| := 2−Val(a), for anya ∈ PL. (1.21)

The pre-Lie product⊲ is continuous with respect to the metricd(·, ·). Indeed, for given real

numbersε1, ε2 > 0, and for anya1, a2, b1, b2 ∈ PL, if d(a1, b1) < ε1 andd(a2, b2) < ε2, then:

d(a1 ⊲ a2, b1 ⊲ b2) ≤ d(a1 ⊲ b1, a2 ⊲ b1) + d(a2 ⊲ b1, a2 ⊲ b2), (by the triangle inequality of the metric),

= 2−Val(a1⊲b1− a2⊲b1) + 2−Val(a2 ⊲ b1−a2 ⊲b2), (from the definition ofd(·, ·) above),

= 2−Val
(
(a1−a2)⊲b1

)
+ 2−Val

(
a2⊲ (b1−b2)

)
, (since⊲ is a bilinear),

≤ 2−N, (whereN = −log2(ε1 + ε2))

= ε = ε1 + ε2.

The spacêPL =
∞∏

k=1
PL(k) is a completed pre-Lie algebra, with respect to the norm||·|| defined

in (1.21) above. Any continuous bilinear operation extendsthe same way to the completion.
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1.4.2. Free pre-Lie algebras.

Free pre-Lie algebras have been handled in terms of rooted trees by F. Chapoton and M.

Livernet [14], who also described the pre-Lie operad explicitly, and by A. Dzhumadil’daev and

C. Löfwall independently [19]. For an elementary version of the approach by Chapoton and

Livernet without introducing operads, see e.g. [39, Paragraph 6.2]:

Theorem 1.6. [14, 19] Let E be a (non-empty) set. The free pre-Lie algebra generated by E is

the vector spaceT E of (non-planar) E-decorated rooted trees, endowed with grafting.

The prehistory of those notions can be traced back to A. Cayley in 1857 [13], who intro-

duced rooted trees to study vector fields onRn. We give below its definition in terms of a

universal property, along the lines of [1].

Definition 1.12. LetPL be a pre-Lie algebra and E be a (non-empty) set with a map i: E →

PL. A free pre-Lie algebra is a pair
(
PL, i

)
, satisfying the following universal property: for any

pre-Lie algebraB and any map f◦ : E −→ B there is a unique pre-Lie algebra homomorphism

f : PL −→ B, which makes the following diagram commute:

E �
� i //

f◦
��

PL

f}
}}

~~}}
}

B

Figure 1.4. The universal property of the free pre-Lie algebra.

It is unique up to isomorphism. A pre-Lie algebraPL is said to be freely generated by E⊆ PL,

if
(
PL, i

)
is free, where i: E ֒→ PL is the canonical injection.

The free pre-Lie algebra can be obtained as the quotient of the free magmatic algebraME

with generating setE by the two-sided ideal generated by elements on the form:

x · (y · z) − y · (x · z) − (x · y− y · x) · z, f or x, y, z ∈ ME. (1.22)

From Definition 1.12, we have that any pre-Lie algebraB generated by a subsetE ⊂ B

is isomorphic to a quotient of the free pre-Lie algebraPL, generated byE, by some ideal.

Indeed, from the freeness universal property ofPL, there is a unique homomorphismf , which

is surjective. The quotient ofPL by the kernel off is isomorphic toB, as in the following

commutative diagram:
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E �
� i //
p�

j
AA

AA

  A
AA

A

PL
q
// //

f
����

PL/Ker f

=̃
tt

tt

zzttttt

B

Figure 1.5. The uniqueness property, up to isomorphism, of the freepre-Lie algebra.

whereq is the quotient map.

Denote byPL(E) the free pre-Lie algebra generated by the (non-empty) setE. The mag-

matic algebraME has a natural grading, where the elements of degree 1 are linear combina-

tions of the elements ofE. The algebraPL(E) can be defined as the quotient ofME by the

ideal (1.22). This induces a grading onPL(E), in which the elements of degree 1 are again

the linear combinations of the elements ofE, by identifying the setE with its image under the

factorization.



CHAPTER 2

Monomial Bases for Free Pre-Lie Algebras

This chapter is an adaptation of a published paper in Séminaire Lotharingien de Combina-

toire [2]. It consists in two main sections. Section 2.1 contains some preliminaries on planar

and non-planar rooted trees, Butcher products and graftingproducts. In this section, we also

review the joint work of K. Ebrahimi-Fard and D. Manchon (unpublished) who described an

explicit algebra isomorphismΨ between two structures of free magmatic algebras defined on

the spaceT E
pl of all decorated planar rooted trees, by the left Butcher product ”◦ց” and the left

grafting product ”ց ” respectively. We give the explicit expression of the coefficientsc(σ, τ)

of this isomorphism in the planar rooted tree basis. Using their work, and by defining a bijective

linear mapΨ̃S which depends on the choice of a sectionS of the "forget planarity" projection

π, we find a formula for the coefficientsβS(s, t) of Ψ̃S in the decorated (non-planar) rooted tree

basis. This can be visualized on the following diagram:

τ = m
i=1,...,n

(
ai
, ◦ց) ∈ T E

pl, n
Ψ //

π
����

T E
pl, n ∋ m

i=1,...,n
(

ai
,ց)

π
����

t = m
i=1,...,n

(
ai
,�) ∈ T E

n
Ψ̃S

//

S

OO

T E
n ∋ m

i=1,...,n
(

ai
,→)

Figure 2.1. The description ofΨ andΨ̃S.

for any homogeneous componentsT E
pl, n andT E

n .

In Section 2.2, we recall some basic topics on free pre-Lie algebras. We describe the con-

struction of a monomial basis for each homogeneous subspacePLn in free pre-Lie algebras

PL(E) generated by a (non-empty) setE, using a type of algebra isomorphism obtained by A.

Agrachev and R. V. Gamkrelidze [1]. Finally, the constructions in Sections 2.1 and 2.2 can be

related as follows: we show that a tree-grounded monomial basis in a free pre-Lie algebra de-

fines a sectionS of the projectionπ : T E
pl −→−→ T

E and, conversely, that any section ofπ defines

a tree-grounded monomial basis.

23
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2.1. Butcher and grafting products

2.1.1. On planar rooted trees.

Definition 2.1. The left grafting” ց ” is a bilinear operation defined on the vector spaceT E
pl ,

such that for any planar rooted treesσ andτ:

σց τ =
∑

v vertex o fτ

σցv τ, (2.1)

where "σցv τ" is the tree obtained by grafting the treeσ, on the left, on the vertex v of the tree

τ, such thatσ becomes the leftmost branch, starting from v, of this new tree.

Example 2.1.For the non-decorated case, we have:

ց = + + .

This type of grafting again provides the spaceT E
pl with a structure of free magmatic algebra:

K. Ebrahimi-Fard and D. Manchon showed that the two structures defined onT E
pl , one by the

product ”◦ց” and the other by ”ց ”, are linearly isomorphic, as follows: define the potential

energyp(σ) of a planar rooted treeσ to be the sum of the heights of its vertices multiplied by

the degree:

p(σ) =
∑

v∈V(σ)

|v|h(v), (2.2)

whereh(v) is the height of the vertexv in σ. Introduce the decreasing filtrationT E
pl = T

E, (0)
pl ⊃

T
E, (1)

pl ⊃ T
E, (2)

pl ⊃ · · · , whereT E, (k)
pl is the vector space spanned by planar rooted treesσ with

p(σ) ≥ k.

Theorem 2.1.There is a unique linear isomorphismΨ fromT E
pl ontoT E

pl , defined as:

Ψ(a ) = a
, for any a∈ E, andΨ(σ1

◦
ցσ2) = Ψ(σ1)ց Ψ(σ2), for all σ1, σ2 ∈ TE

pl . (2.3)

It respects the graduation given by the number of vertices, and the associated graded map GrΨ

(with respect to the potential energy filtration above) reduces to the identity. Also, it respects

the graduation defined by the degree of elements of E.

Proof. The linear mapΨ is uniquely determined by virtue of the universal property of the

free magmatic algebra (T E
pl ,
◦
ց). Obviously, it respects the number of vertices and the degree of

trees (in terms of the degree of elements ofE). For any planar rooted treesσ1, σ2, the equality

σ1ց σ2 = σ1
◦
ցσ2 + σ

′ holds, withσ′ ∈ T E, (p(σ1
◦
ցσ2)+1)

pl . Then, forσ = σ1
◦
ցσ2, we have:

Ψ(σ) = σ + σ′′, (2.4)

with σ′′ ∈ T E, (p(σ)+1)
pl , which proves the Theorem. �
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From Theorem 2.1, one can note that the matrix ofΨ restricted to any homogeneous com-

ponentT E
pl, n is upper triangular unipotent. More precisely,c(σ, τ) = 0 if the potential energy

p(σ) of σ is strictly smaller than the potential energy ofτ, andc(σ, τ) = δτσ if p(σ) = p(τ). In

the single generator case, we can calculate the sum of the entries of this matrix as follows: for

any planar rooted treeσ ∈ Tn
pl, let N(σ) be the number of trees (with the multiplicities) inΨ(σ).

Let σ = σ1
◦
ցσ2, whereσ1 ∈ T p

pl, σ2 ∈ Tq
pl, such thatp+ q = n, for p, q ≥ 1. Sinceσ2 hasq

vertices, and from the definition of the left grafting product ” ց ”, we get that:

N(σ) = N(σ1) N(σ2) q. (2.5)

Now, define:

N(Tn
pl) =

∑

σ∈Tn
pl

N(σ), (2.6)

then using (2.5), we obtain that:

N(Tn
pl) =

∑

p+q=n
p, q≥1

∑

σ1∈T
p
pl

σ2∈T
q
pl

N(σ1) N(σ2) q

=
∑

p+q=n
p, q≥1

q


∑

σ1∈T
p
pl

N(σ1)




∑

σ2∈T
q
pl

N(σ2)



=
∑

p+q=n
p, q≥1

N(T p
pl) N(Tq

pl) q.

Here, we find some terms of the formula (2.6):

N(T1
pl) = N(T2

pl) = 1

N(T3
pl) = N(T2

pl) N(T1
pl) 1+ N(T1

pl) N(T2
pl) 2 = 3

N(T4
pl) = N(T3

pl) N(T1
pl) 1+ N(T2

pl) N(T2
pl) 2+ N(T1

pl) N(T3
pl) 3 = 14

N(T5
pl) = N(T4

pl) N(T1
pl) 1+ N(T3

pl) N(T2
pl) 2+ N(T2

pl) N(T3
pl) 3+ N(T1

pl) N(T4
pl) 4 = 85.

This is sequenceA088716 in [48]. The generating seriesA(x) :=
∑
n≥1

anxn, modulo the shift

an := N(Tn+1
pl ), verifies the differential equation:

A(x) = 1+ xA(x)2 + x2A(x)A′(x).

Example 2.2. (Undecorated case) We display here the matrices M3, in the basis{ , }, and

M4, in the basis{ , , , , }, of the restrictions ofΨ to the homogeneous componentsT 3
pl

andT 4
pl respectively:
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M3 =


1 1

0 1

 , M4 =



1 1 1 1 1

0 1 0 1 1

0 0 1 0 1

0 0 0 1 2

0 0 0 0 1



.

Corollary 2.2. (T E
pl ,ց) is another description of the free magmatic algebra generated by E.

Here is the explicit expression ofΨ andΨ−1 on the following planar undecorated rooted

trees:

Ψ(σ) Ψ−1(σ)p(σ)σ

0

1

3

2 + −

6

5 + −

4 + −

4 + + −

3 + + 2 + + − − 2 + +

Now, we shall review the (unpublished) joint work of K. Ebrahimi-Fard and D. Manchon

on finding a formula for the coefficient c(σ, τ) of treeσ in Ψ(τ), for any treesσ andτ in Tpl.

Letσ be any planar rooted tree, andv,w be two vertices in the setV(σ) of its vertices, define a

partial order "<" as follows:v < w if there is a path from the root tow throughv. The root is the

minimal element, and leaves are the maximal elements. Definea refinement "≪" of this order

to be the transitive closure of the relationRdefined by:vRwif v < w, or bothv andw are linked

to a third vertexu ∈ V(σ), such thatv lies on the right ofw, like this:
u

w v

. A further refinement

"≪" on V(σ) is the total order recursively defined as follows:v≪ w if and only if v≪ w

insideV(σ1) or V(σ2), or v ∈ V(σ2) andw ∈ V(σ1), whereσ = σ1
◦
ցσ2. It is the ”depth-first

search” ordering, up to an inversion of left and right.
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1

27

9 58 36

410

Figure 2.2. A planar rooted tree with its vertices labeled according to total order "≪".

Now suppose that our trees are decorated by some setE, i.e. for any treeσ ∈ TE
pl we have

a map:V(σ) → E. A bijectionψ : V(σ) → V(τ) respects the decorations if the decoration of

ψ(v) is the same as the decoration ofv for anyv ∈ V(σ).

Theorem 2.3.For any planar decorated rooted treeτ we have:

Ψ(τ) =
∑

σ∈TE
pl

c(σ, τ)σ, (2.7)

where c(σ, τ) are non-negative integers. An explicit expression for c(σ, τ) is given by the number

of bijectionsψ : V(σ) −→ V(τ) which respect the decorations, and which are increasing from

(V(σ),≪) to (V(τ),≪), such thatψ−1 is increasing from(V(τ), <) to (V(σ), <).

Proof. This Theorem is proved using the induction on the degreen of trees. The proof is

trivial for n = 1, 2. Given any planar rooted treesσ, τ ∈ TE
pl, n, such thatτ can be written in a

unique way asτ = τ1
◦
ցτ2, we have:

c(σ, τ1
◦
ցτ2) =

∑

v∈V(σ)

c(σv, τ1)c(σv, τ2), (2.8)

whereσv is the leftmost branch ofσ starting fromv, andσv is the corresponding trunk, i.e. what

remains when the branchσv is removed. This is immediate from the following computation:

Ψ(τ) = Ψ(τ1
◦
ցτ2)

= Ψ(τ1)ց Ψ(τ2)

=
∑

σ′, σ′′∈TE
pl

c(σ′, τ1)c(σ′′, τ2)σ
′ ց σ′′.

Denote byb(σ, τ) the number of bijections fromV(σ) onto V(τ) respecting the decorations

and satisfying the growing conditions of Theorem 2.3. Letψ be an increasing bijection from

(V(σ),≪) to (V(τ),≪) compatible with the decorations. The decompositionτ = τ1
◦
ցτ2 defines

a partition ofV(σ) into two partsVi = ψ
−1(V(τi)), i = 1, 2 such thatV2≪V1, which means that

for anyv ∈ V1 andw ∈ V2, eitherw≪ v or they are incomparable. Such partitions are nothing

but left admissible cuts [43]. PutσV1 andσV2 to be the corresponding pruning and the trunk

respectively.

As the inverseψ−1 moreover respects the order "<", there is a unique minimal element in

V1 for "<", namelyψ−1(v1) wherev1 is the root ofτ1. This means that the left cut considered
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here is also elementary, i.e. the pruningσV1 is a tree. It is then clear that the restrictionψi

of ψ to σVi is a bijection fromV(σVi) onto V(τi) which respects both the decorations and the

growing conditions of the Theorem, fori = 1, 2. Conversely, any vertexv of σ defines an

elementary left cut by taking the leftmost branchσv starting fromv and the corresponding trunk

σv, and if ψ′ : V(σ′) −→ V(τ1) andψ′′ : V(σ′′) −→ V(τ2) are two bijections compatible

with the decorations and satisfying the growing conditionsof the Theorem, then the bijection

ψ : V(σ) −→ V(τ) obtained fromψ′ andψ′′ also satisfies these conditions. Thus, we arrive at:

b(σ, τ1
◦
ցτ2) =

∑

v∈V(σ)

b(σv, τ1)b(σv, τ2), (2.9)

hence, the coefficientsc(·, ·) andb(·, ·) satisfy the same recursive relations. This ends the proof

of Theorem 2.3. �

Example 2.3.For E = { }, we have c( , ) = 2 according to the table above. Let us name the

vertices as follows:

v1

v3 v2

v4

,
w1

w4
w3

w2

.

Takeϕ : V( ) → V( ) be a bijective map.We have v1 ≪ v3, v1 ≪ v2 ≪ v4, v2 ≪ v3, as

well as w1≪ w2≪ w3≪ w4. The growing conditions of Theorem 2.3 impose:

ϕ(v1) = w1, ϕ(v2)≪ ϕ(v3).

Hence we have:

ϕ(v1) = w1 ϕ(v1) = w1

ϕ(v2) = w2 ϕ(v2) = w2

ϕ(v3) = w3 or ϕ(v3) = w4

ϕ(v4) = w4 ϕ(v4) = w3

The inverse of both bijections obviously respect the order” < ” . Hence we find two bijections

verifying the growing conditions of Theorem 2.3, thus recovering b( , ) = c( , ) = 2.

2.1.2. From planar to non-planar rooted trees.

Corresponding to the coefficientsc(σ, τ), with their explicit expressions, in the matrix of the

restriction of the linear mapΨ to any homogeneous componentT E
pl,n, we try to find a similar

expression in the non-planar case: in other words, we build up and explicitly describe the map

Ψ̃S in Figure 2.1.

Recall that the spaceT E endowed with the grafting "→", is a pre-Lie algebra. Recall that

the symmetry factor of any (non-planar) decorated rooted tree s is the numbersym(s) of all

automorphismsΘ : V(s)−→V(s) which are increasing from (V(s), <) onto (V(s), <) and which
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respect the decorations. This definition is equivalent to the recursive definition in [9].

Let Ψ = π ◦ Ψ be the linear map fromT E
pl onto T E, whereπ is the "forget planarity"

projection.

T E
pl

Ψ //

Ψ

AA
A

  A
AA

A

T E
pl

π
����

T E

Figure 2.3.

Obviously,Ψ is a morphism of algebras from (T E
pl ,
◦
ց) into (T E,→). One of the important

results we obtained is the following:

Theorem 2.4.Let τ be any planar decorated rooted tree, we have:

Ψ(τ) =
∑

s∈TE

α(s, τ)s, (2.10)

whereα(s, τ) are nonnegative integers. The coefficientsα(s, τ) coincide with the numbers

b(s, τ) = b̃(s, τ)/sym(s), where sym(s) is the symmetry factor of s described above andb̃(s, τ)

is the number of bijectionsϕ : V(s) −→ V(τ) which respect the decorations and which are in-

creasing from(V(s), <) into (V(τ),≪), such thatϕ−1 is increasing from(V(τ), <) into (V(s), <).

Proof. Note that the restriction ofΨ to any homogeneous componentT E
pl, n reduces the square

matrix of the coefficientsc(σ, τ) to a rectangular matrix [[α(s, τ)]] s∈TE
n , τ∈TE

pl,n
. For any planar

decorated rooted treeτ, we have:

α(s, τ) =
∑

σ∈TE
pl

π(σ)=s

c(σ, τ), (2.11)

wheres is a (non-planar) decorated rooted tree. We prove Theorem 2.4 using the induction on

the degree of trees. The proof is trivial in the casesn = 1, 2. Letτ ∈ TE
pl, n, with τ = τ1

◦
ցτ2, then:

α(s, τ1
◦
ցτ2) =

∑

σ∈TE
pl

π(σ)=s, v∈V(σ)

c(σv, τ1)c(σv, τ2), (2.12)

which is immediate from (2.11), whereσv is the leftmost branch ofσ starting fromv, andσv is

the corresponding trunk.

Now, let s be any (non-planar) decorated rooted tree inTE
n andϕ : V(s) → V(τ) be a bijec-

tion which respects the decorations and satisfies the growing conditions given in Theorem 2.4.

Then we can define from these conditions a structure of poset on the setV(s) of vertices ofs ,
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as follows: forv,w ∈ V(s), vRwif and only if v < w or there isu ∈ V(s) such that each ofv and

w are related withu by an edge, andϕ(v)≪ ϕ(w). We denote by≪ϕ the transitive closure of

the relationR.

This structure determines a planar decorated rooted treeσ such thatπ(σ) = s, with the

associated partial order≪ on the setV(σ) of vertices ofσ, together with a decoration-preserving

poset isomorphismϑ : (V(σ),≪) → (V(s),≪ϕ), which in turn defines a decoration-preserving

bijection ϕ! := ϕ ◦ ϑ : V(σ) → V(τ), which is increasing from (V(σ),≪) into (V(τ),≪),

such thatϕ!−1 is increasing from (V(τ), <) into (V(σ), <). The planar decorated rooted treeσ is

unchanged if we replaceϕ by ϕ ◦ ϑ′ with ϑ′∈Aut(s). Moreover, for any decoration-preserving

ϕ, ψ : V(s)→ V(τ) satisfying the growing conditions of Theorem 2.4, we have:

ϕ! = ψ! ⇔ ϕ = ψ ◦ γ, for γ ∈ Aut(s). (2.13)

Indeed, ifϕ! = ψ!, thenγ := ψ−1 ◦ ϕ : V(s) → V(s) is a decoration-preserving bijection which

respects the partial order ”< ”, hence an element ofAut(s), such thatϕ = ψ ◦ γ. The inverse

implication is obvious.

Let B̃(s, τ) (respectivelyB(σ, τ)) be the set of decoration-preserving bijectionsϕ : V(s) →

V(τ) (respectivelyψ : V(σ)→ V(τ)) verifying the growing conditions of Theorem 2.4 (respec-

tively Theorem 2.3), and supposeπ(σ) = s. Denote bỹb(s, τ) (respectivelyb(σ, τ)) the cardinal

number of̃B(s, τ) (respectivelyB(σ, τ)). Now, define :

b(s, τ) :=
∑

σ∈TE
pl , π(σ)=s

b(σ, τ). (2.14)

Then, according to (2.13), we have:

b(s, τ) = b̃(s, τ)/sym(s).

We also have forτ = τ1
◦
ցτ2:

b(s, τ1
◦
ցτ2) =

∑

σ∈TE
pl

π(σ)=s, v∈V(σ)

b(σv, τ1)b(σv, τ2). (2.15)

The coefficientsc(·, ·) andb(·, ·) coincide by Theorem 2.3. So, from (2.12) and (2.15), the

coefficientsα(·, ·) andb(·, ·) satisfy the same recursive relations, which proves the Theorem. �

Example 2.4. In the case E= { }, we haveα( , ) = 1 in the formula ofΨ( ). Name the

vertices as follows:

v1

v2 v3

,
w1

w3 w2

.
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Letψ :V( )→ V( ) be a bijective map. We have v1 < v2, v1 < v3, as well as w1≪ w2≪

w3. The growing conditions of Theorem 2.4 imposeψ(v1) = w1. Hence we have:

ψ(v1) = w1 ψ(v1) = w1

ψ(v2) = w2 or ψ(v2) = w3

ψ(v3) = w3 ψ(v3) = w2

The inverse of these bijections obviously respect the order” < ” . Hence we find two bijections

verifying the growing conditions of Theorem 2.4, thusb̃( , ) = 2, but sym( ) = 2, then we

obtainb( , ) = 1.

We want to describe a family of linear isomorphismsΨ̃ : T E −→ T E, which make the

following diagram commute:

T E
pl

Ψ //

Ψ

AA
A

  A
AA

Aπ
����

T E
pl

π
����

T E

Ψ̃

// T E

Figure 2.4. Description of̃Ψ.

For any (non-planar) decorated rooted treet, chooseσ = S(s) to be a planar decorated

rooted tree withπ(σ) = s. This defines a sectionS : T E −→ T E
pl of the projectionπ, i.e.

π ◦ S = IdT E . One can note that the mapS is not unique, for example, ifn = 4, we have in the

single generator case:

T4 = { , , , } andT4
pl = { , , , , }, then we can defineS as:

S( ) = , S( ) = , S( ) = , and one can choose forS( ) between and .

Let S be a section ofπ. DefineΨ̃S := Ψ ◦ S to be the linear map fromT E into T E, which

makes the following diagram commute:

T E
pl

Ψ //

Ψ

AA
A

  A
AA

Aπ
����

T E
pl

π
����

T E

Ψ̃S

//

S

OO

T E

Figure 2.5. Description of̃ΨS.
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Corollary 2.5. For any (non-planar) decorated rooted tree t, we have:

Ψ̃S(t) =
∑

s∈TE

βS(s, t)s, (2.16)

whereβS(s, t) are nonnegative integers. The coefficientsβS(s, t), which depend on the section

map S, can be expressed by the numbersb(s, τ) = b̃(s, τ)/sym(s) described in Theorem 2.4, with

τ = S(t).

Proof. Note that the restriction of̃ΨS to any homogeneous componentT E
n reduces the

matrix of the coefficientsα(s, τ) to a upper triangular unipotent matrix [[βS(s, t)]] s, t∈TE
n

. Let t be

any (non-planar) decorated rooted tree, and let us choose the section mapS such thatS(t) = τ

is a planar decorated rooted tree, then:

Ψ̃S(t) = Ψ(τ) =
∑

s∈TE

α(s, τ)s,

which means that the coefficientsβS(s, t) andα(s, τ) are the same. Hence, it can be expressed

by the numberb(s, τ) in the same way than the coefficientsα(s, τ). From Theorem 2.4, we

found that the restriction ofΨ to any homogeneous componentT E
pl, n reduces the matrix of the

coefficientsc(σ, τ) to a rectangular matrix. Now, the restriction ofΨ̃S to any homogeneous

componentT E
n can be represented by the restriction ofΨ on the componentS(T E

n ) (this repre-

sentation depends on the section mapS), which means that the matrix ofβS(s, t)’s is a upper

triangular unipotent matrix, because we have:

Ψ̃S(t) = t + terms of higher energy.

�
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2.2. Tree-grounded monomial bases

2.2.1. The approach by A. Agrachev and R. Gamkrelidze.

A. Agrachev and R. V. Gamkrelidze, in their work "Chronological algebras and nonstation-
ary vector fields" [1], described a pre-Lie algebra isomorphism between the freepre-Lie algebra

generated by a (non-empty) set and the tensor product of the universal enveloping algebra of

the underlying Lie algebra with the linear span of the generating set. This pre-Lie algebra iso-

morphism will be the focus of our attention in this section. Using this isomorphism, we shall

review the construction by A. Agrachev and R. Gamkrelidze ofmonomial bases in free pre-Lie

algebras.

Denote by [PL(E)] the underlying Lie algebra of the free pre-LiePL(E), andU[E] its

universal enveloping algebra. The structure of algebra defined onU[E] is endowed with the

grading deduced from the grading ofPL(E).

The representation of the Lie algebra [PL(E)] by the linear transformations (x 7→ Lx, for

x ∈ PL(E)) of PL(E) is uniquely extended to a representation by the linear transformations

(u 7→ Lu, for u ∈ U[E]) of the enveloping algebraU[E] of the Lie algebra [PL(E)], which

makes the following diagram commute:

PL(E) �
� i //

L &&NNNNNNNNNN
T(PL(E))

q
// //

L′wwooooooooooo
U[E]

L ,xxqqqqqqqqqq

End(PL(E))
=̃ // End(PL(E))

Figure 2.6.

whereT(PL(E)) is the tensor algebra ofPL(E), and L′ is the linear extension ofL that is

induced by the universal property of the tensor algebra.

Lemma 2.6. The linear span of the set

LU[E]E = {Lua : u ∈ U[E], a ∈ E} ⊂ PL(E) (2.17)

coincides with the entire algebraPL(E).

Proof. See [1, Lemma 1.1]. �

DefineBE = U[E]⊗E to be the tensor product of the vector spaceU[E] with the linear span

E of the setE. The spaceBE has a structure of algebra overK with the following multiplication:

(u1 ⊗ a1)(u2 ⊗ a2) = ((Lu1a1) ◦ u2) ⊗ a2, ∀u1, u2 ∈ U[E], a1, a2 ∈ E, (2.18)
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where "◦" is the bilinear associative product inU[E].

Suppose first that any generatora ∈ E is given degree 1. The grading of the algebraU[E]

uniquely determines a grading ofBE, by setting the degree of the elementu ⊗ a equal to the

degree ofu plus 1. One can verify that the multiplication defined in (2.18) satisfies the pre-Lie

identity, which means thatBE is a graded pre-Lie algebra.

Theorem 2.7.The graded pre-Lie algebraBE is isomorphic to the free pre-Lie algebra(PL(E),⊲).

Proof. Let f◦ : E −→ BE be a map defined byf◦(a) = 1 ⊗ a ,∀a ∈ E, where 1 is the unit

element ofU[E]. Using the freeness property of the pre-Lie algebraPL(E), there is a unique

homomorphismf : PL(E) −→ BE, such that:

f (a) = f◦(a) = 1⊗ a,∀a ∈ E ⊂ PL(E).

From Lemma 2.6, we have that for any elementx inPL(E) there existsu ∈ U[E] anda ∈ E,

such thatx = Lua. Now, definef as:

f (Lua) = u⊗ a,∀x = Lua ∈ PL(E). (2.19)

Then the mapf with (2.19) is bijective (see [1, Theorem 1.1]), hence it is an isomorphism,

which proves the Theorem. �

Remark 2.8. The fact thatBE = U[E] ⊗ E is isomorphic, as a module, toPL(E) can also be

seen using the Grossman-Larson description ofU[E] 1: it consists to identify a tensor t⊗ a,

where t is a rooted tree with undecorated root and a∈ E, to the tree obtained by decorating the

root of t by a.

Choose a total order on the elements ofE. Then as a corollary of Theorem 2.7 and the

Poincaré-Birkhoff-Witt Theorem, we obtain that:

PLn=̃Bn = Un−1 ⊗ E,∀n ≥1, (2.20)

where, for anyn ≥ 2, a basis ofUn−1 is given by:
xe1

j1
◦ · · · ◦ xer

jr
:

r∑

k=1

jk = n− 1, andxe1
j1
≥ · · · ≥ xer

jr

 . (2.21)

Here we use a monomial basisx1
j , . . . , x

dj

j of the subspacePL j, for any j = 1, . . . , n− 1, given

by the induction hypothesis. We endow this basis with the total orderx1
j < . . . < x

dj

j , which in

turn defines a total order on the basis ofPL1 ⊕ . . . ⊕ PLn−1, obtained by the disjoint union, by

asking thatxr
j > xr ′

j′ if j > j′.

1For further details about Grossman-Larson algebra see Paragraph 4.3.1.
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Hence, using formula (2.20) and the isomorphismf described in (2.19) , we get the follow-

ing monomial basis for the homogeneous componentPLn:

xe1
j1
⊲

(
xe2

j2
⊲ (· · · ⊲ (xer

jr
⊲ a j) · · · )

)
:

r∑

k=1

jk = n− 1, xe1
j1
≥ · · · ≥ xer

jr
anda j ∈ E

 . (2.22)

Here is a description of these monomial bases up to degree 5:

PL1 =̃U0 ⊗ E

= ≺ 1⊗ a : 1 ∈ K, a ∈ E ≻,

⇒ PL1 = ≺ L1a = a : a ∈ E ≻= E.

PL2 =̃U1 ⊗ PL1

= ≺ a1 ⊗ a2 : a1, a2 ∈ E ≻,

⇒ PL2 = ≺ La1a2 = a1 ⊲ a2 : a1, a2 ∈ E ≻.

PL3 =̃U2 ⊗ PL1

= ≺ xe
2 ⊗ a, (xe1

1 ◦ xe2
1 ) ⊗ a′ : e= 1, . . . , d2, e1, e2 = 1, . . . , d, e1 ≥ e2, a, a

′ ∈ E ≻,

⇒ A monomial basis ofPL3 is then given by:

{(a1 ⊲ a2) ⊲ a3 : a1, a2, a3 ∈ E} ⊔ {a1 ⊲ (a2 ⊲ a3) : a1, a2, a3 ∈ E, a1 ≥ a2} .

PL4 =̃U3 ⊗ PL1

=≺ xe
3 ⊗ a, (xe′

2 ◦ xe1
1 ) ⊗ a′, (xe2

1 ◦ xe3
1 ◦ xe4

1 ) ⊗ a′′ : e= 1, . . . , d3, e
′ = 1, . . . , d2,

e1, e2, e3, e4 = 1, . . . , d1, e2 ≥ e3 ≥ e4, a, a
′, a′′∈ E ≻,

⇒ A monomial basis ofPL4 is then given by:
{
((a1 ⊲ a2) ⊲ a3) ⊲ a4 : a j ∈ E, for j = 1, 2, 3, 4

}
⊔

{
(a1 ⊲ (a2 ⊲ a3)) ⊲ a4 : a j ∈ E, for j = 1, 2, 3, 4, a1 ≥ a2

}

⊔
{
(a1 ⊲ a2) ⊲ (a3 ⊲ a4) : a j ∈ E, for j = 1, 2, 3, 4

}
⊔

{
a1 ⊲ (a2 ⊲ (a3 ⊲ a4)) : a j ∈ E, for j = 1, 2, 3, 4,

a1 ≥ a2 ≥ a3

}
.
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PL5 =̃U4 ⊗ PL1

=≺ xe
4 ⊗ a, (xe′

3 ◦ xe1
1 ) ⊗ a′, (x

e′2
2 ◦ x

e′′2
2 ) ⊗ a′′, (x

e′′′2
2 ◦ xe2

1 ◦ xe3
1 ) ⊗ a′′′, (xe4

1 ◦ xe5
1 ◦ xe6

1 ◦ xe7
1 ) ⊗ a′′′′ :

e= 1, . . . , d4, e
′ = 1, . . . , d3, e

′
2, e
′′
2 , e

′′′
2 = 1, . . . , d2, ei = 1, . . . , d1,∀i = 1, . . . , 7, e′2 ≥ e′′2 , e2 ≥ e3,

e4 ≥ e5 ≥ e6 ≥ e7, a, a
′, a′′, a′′′, a′′′′∈ E ≻,

⇒ A monomial basis ofPL5 is then given by:
{
((a1 ⊲ a2) ⊲ a3) ⊲ a4) ⊲ a5 : a j ∈ E, for j = 1, . . . , 5

}
⊔

{
(a1 ⊲ (a2 ⊲ a3)) ⊲ a4) ⊲ a5 : a j ∈ E, for j =

1, . . . , 5, a1 ≥ a2

}
⊔

{
((a1 ⊲ a2) ⊲ (a3 ⊲ a4)) ⊲ a5 : a j ∈ E, for j = 1, . . . , 5

}
⊔

{
(a1 ⊲ (a2 ⊲ (a3 ⊲ a4))) ⊲ a5 :

a j ∈ E, for j = 1, . . . , 5, a1 ≥ a2 ≥ a3

}
⊔

{
((a1 ⊲ a2) ⊲ a3) ⊲ (a4 ⊲ a5) : a j ∈ E, for j = 1, . . . , 5

}
⊔

{
(a1 ⊲ (a2 ⊲ a3)) ⊲ (a4 ⊲ a5) : a j ∈ E, for j = 1, . . . , 5, a1 ≥ a2

}
⊔

{
(a1 ⊲ a2) ⊲ ((a3 ⊲ a4) ⊲ a5) : a j ∈ E,

for j = 1, . . . , 5, a1 ⊲ a2 ≥ a3 ⊲ a4

}
⊔

{
(a1 ⊲ a2) ⊲ (a3 ⊲ (a4 ⊲ a5)) : a j ∈ E, for j = 1, . . . , 5, a3 ≥ a4

}

⊔
{
a1 ⊲ (a2 ⊲ (a3 ⊲ (a4 ⊲ a5))) : a j ∈ E, for j = 1, . . . , 5, a1 ≥ a2 ≥ a3 ≥ a4

}
.

...

etc.

This adapts to the case when the generators are of various degrees: supposeE =
⊔
i∈N

Ei is a

disjoint union of subsetsEi, whereEi is the subset of generators of degreei. Then the grading

of the algebraBE is determined by the grading ofU[E], by setting the degree of the element

u⊗ a equal to the degree ofu plus the degree of the generatora in E. The Theorem 2.7 remains

true. The formula in (2.20) will be changed as:

PLn=̃Bn =

n⊕

ℓ=1

Un−ℓ ⊗ E
ℓ
, for all 1 ≤ ℓ ≤ n, (2.23)

whereE
ℓ
is the subspace of all elements ofE of degreeℓ. For any 1< ℓ ≤ n−1, a basis ofUn−ℓ

is given by:

xe1
j1
◦ · · · ◦ xer

jr
:

r∑

k=1

jk = n− ℓ, andxe1
j1
≥ · · · ≥ xer

jr

 . (2.24)

Hence, by (2.23) and (4.21), the monomial basis for the homogeneous componentPLn becomes:

n⋃

ℓ=1

{
xe1

j1
⊲

(
xe2

j2
⊲ (· · · ⊲ (xer

jr
⊲ a j) · · · )

)
:

r∑

k=1

jk = n− ℓ, xe1
j1
≥ · · · ≥ xer

jr
anda j ∈ Eℓ

}
. (2.25)
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2.2.2. Base change to the rooted tree basis.

We relate now any Agrachev-Gamkrelidze type monomial basisin a free pre-Lie algebra,

obtained from the formula (2.20), with the presentation of the free pre-Lie algebra as the linear

spanT of the (non-planar) rooted trees with one generator{ }, endowed with the grafting ”→ ”.

In the following, we give the tree expansions of the first five homogeneous components of such

a monomial basis, in the case of one single generator:

T1 =≺ e1 = ≻.

T2 =≺ → ≻ = ≺ e1 = ≻.

T3 =≺ ( → )→ , → ( → ) ≻ = ≺ e1 = , e2 = + ≻.

T4 =≺ (( → )→ )→ , ( → ( → ))→ , ( → )→ ( → ), → ( → ( → )) ≻

=≺ e1 = , e2 = + , e3 = + , e4 = + + 3 + ≻.

T5 =≺ ((( → )→ )→ )→ , (( → ( → )) → )→ , (( → )→ ( → ))→ , ( → ( →

( → )))→ , ((( → )→ )→ ( → ), (( → ( → ))→ ( → ), ( → )→ (( → )→ ),

( → )→ ( → ( → )), → ( → ( → ( → ))) ≻

=≺ e1 = , e2 = + , e3 = + , e4 = + + 3 + , e5 = + ,

e6 = + + + , e7 = + + , e8 = + + 2 + + ,

e9 = + + 3 + + 4 + 4 + 3 + 6 + ≻.

Now, for any homogeneous componentTn, each vector in the monomial basis described

above is defined as a monomialm( ,→) of the tree with one vertex "" multiplied (by itself)

using the pre-Lie grafting ”→ ” with the parentheses. This monomial in turn determines two

monomials in the algebras (Tpl,
◦
ց) and (T ,�) respectively. One of these monomials is ob-

tained by replacing the grafting ”→ ” by the left Butcher product ”◦ց”, which induces a planar

rooted treeτ. The other monomial is deduced by replacing the product ”→ ” by the usual

Butcher product, which in turn defines a (non-planar) rootedtree t. This adapts straightfor-

wardly to several generators of various degrees.

Definition 2.2. A monomial basis for a free pre-Lie algebra is said to be a "tree-grounded"

monomial basis if we obtain the Chapoton-Livernet tree basis when we replace the pre-Lie

product in each monomial in this basis by the Butcher product”�” . For any positive integer n,

a monomial basis ofT E
n will also be called tree-grounded if this property holds inT E

n .
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Example 2.5. In the space of all (non-planar) undecorated rooted treesT , the homogeneous

componentT4 has four types of monomial bases, which are:

B1 =
{
(( → )→ )→ , ( → ( → ))→ , ( → )→ ( → ), → ( → ( → ))

}

=
{
e1 = , e2 = + , e3 = + , e4 = + + 3 +

}
.

B2 =
{
(( → )→ )→ , ( → ( → ))→ , → (( → )→ ), → ( → ( → ))

}

=
{
e1 = , e2 = + , e3 = + + , e4 = + + 3 +

}
.

B3 =
{
(( → )→ )→ , ( → )→ ( → ), → (( → )→ ), → ( → ( → ))

}

=
{
e1 = , e2 = + , e3 = + + , e4 = + + 3 +

}
.

B4 =
{
( → ( → ))→ , ( → )→ ( → ), → (( → )→ ), → ( → ( → ))

}

=
{
e1 = + , e2 = + , e3 = + + , e4 = + + 3 +

}
.

We find that the monomial basesB1 andB2 are tree-grounded monomial bases ofT4, because

replacing the pre-Lie grafting” → ” by the Butcher product”�” gives back the tree basis

{
, , ,

}
. But one can note that the basesB3 andB4 are not tree-grounded.

Lemma 2.9. A monomial basis for the free pre-Lie algebra generated by E is tree-grounded if

and only if it comes from a section map S according to the linear mapΨ̃S.

Proof. Let x = m
i=1,...,n

(
ai
,→), a monomial of generators

a1
, . . . ,

an multiplied each with other by

the pre-Lie grafting "→" with the parentheses, be an element of some tree-grounded monomial

basis. SetS(t) = m
i=1,...,n

(
ai
, ◦ց), wheret = m

i=1,...,n
(

ai
,�) is the lower-energy term ofx. By Definition 2.2,

these lower-energy terms form a basis ofT E, henceS is uniquely defined that way, and it is a

section ofπ, as in the following diagram:

m
i=1,...,n

(
ai
, ◦ց) ∈ T E

pl
Ψ //

π
����

T E
pl ∋ m

i=1,...,n
(

ai
,ց)

π
����

t = m
i=1,...,n

(
ai
,�) ∈ T E

Ψ̃S

//

S

OO

T E ∋ x = m
i=1,...,n

(
ai
,→)

Figure 2.7.

On the other hand, any monomial basis induced by a section mapS is obviously a tree-

grounded monomial basis. �

Lemma 2.10.The Agrachev-Gamkrelidze monomial bases are tree-grounded.
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Proof. From the construction of Agrachev-Gamkrelidze monomial bases, and using the

presentation of the free pre-Lie algebra in terms of rooted trees (see Theorem 1.6), we have:

T E
n =̃Un−1 ⊗ E, ∀n ≥ 1

such that for a homogeneous componentT E
n , the monomial basis in (2.22) becomes:

xe1
j1
→

(
xe2

j2
→ (· · · → (xer

jr
→

a) · · · )
)

:
r∑

k=1

jk = n− 1, xe1
j1
≥ · · · ≥ xer

jr
, for a ∈ E

 . (2.26)

The monomial basis forT E
1 , namely{a : a ∈ E}, is obviously tree-grounded in the sense

of Definition 2.2. Suppose, by the induction hypothesis, that the monomial basis{xe1
j , . . . , x

ej

j }

is a tree-grounded basis ofT E
j , for j = 1, . . . , n− 1. Consider the corresponding lower-energy

termste1
j , . . . , t

ej

j obtained by replacing the grafting "→" by the Butcher product ”�” in each

monomial. The lower-energy term of the monomial

xe1
j1
→

(
xe2

j2
→ (· · · → (xer

jr
→

a) · · · )
)

(2.27)

is given by :

te1
j1
�

(
te2
j2
�(· · ·�(ter

jr
�

a) · · · )
)

= B
+,a(t

e1
j1
. . . ter

jr
).

Hence we recover the tree basis ofT E
n by taking the lower-energy term of each monomial

(2.27), thus proving Lemma 2.10. �

Remark 2.11. The Agrachev-Gamkrelidze monomial basisB, described in(2.26), determines

a section S , this section is defined as follows: let x= xe1
j1
→

(
xe2

j2
→ (· · · → (xer

jr
→

a) · · · )
)

be a basis element inB, and t= te1
j1
�

(
te2
j2
�(· · ·�(ter

jr
�

a) · · · )
)

be its lower-energy term, we can

associate with t:

S(t) = τ = τe1
j1
◦
ց
(
τ

e2
j2
◦
ց(· · · ◦ց(τer

jr
◦
ց

a) · · · )
)
,

such thatπ(τei
ji
) = tei

ji
, Ψ(τei

ji
) = xei

ji
, for all i = 1, . . . , r, and thenΨ(S(t)) = Ψ̃S(t) = x.

Lemma 2.10 remains true in the case of several generators with various degrees. As a par-

ticular case of our general construction, an Agrachev-Gamkrelidze monomial basis, by means

of the isomorphism (2.19), gives rise to some particular section S. Conversely, any sectionS of

π defines a tree-grounded monomial basis for the free pre-Lie algebra (T E,→). For any integer

n ≥ 1, the matrix of the coefficients of the tree-grounded monomial ofT E
n associated with the

sectionS is exactly the matrix [[βS(s, t)]]
s, t ∈TE

n
described in Corollary 2.5. See appendix A for

an explicit expression for those matrices in some particular cases in one generator.
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Remark 2.12. We have seen that the mapΨ respects both graduations: the one given by the

number of vertices, and the one given by the sum of the degree of the vertices. The restriction of

Ψ to homogeneous components for the second graduation is alsoupper-triangular unipotent.



CHAPTER 3

Monomial Bases and pre-Lie structures for free Lie algebras

This chapter contains three main sections. In Section 3.1, we construct a structure of pre-Lie

algebra on the free Lie algebraL(E) generated by a setE, and we give the explicit presentation

of L(E) as the quotient of the free pre-Lie algebraT E by some ideal.

Recall thatT E
pl is the linear span of the setTE

pl of all planarE-decorated rooted trees, which

forms together with the left Butcher product "◦ց", and the left grafting "ց" respectively two

magmatic algebras. In Section 3.2, we give a tree version of amonomial well-order onTE
pl . We

adapt the work of T. Mora [41] on Gröbner bases to a non-associative, magmatic context, using

the descriptions of the free magmatic algebras
(
T E

pl ,
◦
ց
)

and
(
T E

pl ,ց
)

respectively, following

[18]. We split the basis ofE- decorated planar rooted trees into two partsO(J′) andT(J′),

whereJ′ is the ideal ofT E
pl generated by the pre-Lie identity and by "weighted anti-symmetry

relations":

|σ|σ◦ցτ + |τ|τ◦ցσ.

HereT(J′) is the set of maximal terms of elements ofJ′, and its complementO(J′) then defines

a basis ofL(E). We get one of the important results in this thesis (Theorem3.12), on the de-

scription of the setO(J′) in terms of trees.

In Section 3.3, we give a non-planar tree version of the monomial well-order above. We

describe monomial bases for the pre-Lie (respectively freeLie) algebraL(E), using the proce-

dures of Gröbner bases and our work described in Chapter 2, inthe monomial basis for the free

pre-Lie algebraT E.

3.1. A pre-Lie structure on free Lie algebras

LetL(E) be the free Lie algebra generated by a (non-empty) setE =
⊔
i∈N

Ei, a disjoint union

of subsetsEi, whereEi is the subset of elementsai
1, . . . , a

i
di

of degreei, and #Ei = di. The free

Lie algebraL(E) can be graded, using the grading ofE:

L(E) =
⊕

i∈N

Li, (3.1)

whereLi is the subspace of all elements ofL(E) of degreei. In particularEi ⊂ Li.

41
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Define an operation "⊲" onL(E) by:

x⊲ y :=
1
|x|

[x, y], (3.2)

for x, y ∈ L(E).

Proposition 3.1. The operation” ⊲ ” defined by(3.2) is a bilinear product which satisfies the

pre-Lie identity.

Proof. For x, y, z ∈ L(E), we have:

(x⊲ y) ⊲ z− x⊲ (y⊲ z) =
1
|x|

[x, y] ⊲ z−
1
|y|

x⊲ [y, z]

=
1

|x|
(
|x| + |y|

) [[ x, y], z] −
1
|x||y|

[x, [y, z]]

=
1

|x|
(
|x| + |y|

) [[ x, y], z] −
1
|x||y|

(
[[ x, y], z] − [y, [z, x]]

)
, since

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (the Jacobi identity)

=

(
1
|x|

) (
|y| −

(
|x| + |y|

)

|y|
(
|x| + |y|

)
)
[[ x, y], z] +

1
|x||y|

[y, [z, x]]

=
1

|y|
(
|x| + |y|

) [[y, x], z] −
1
|x||y|

[y, [x, z]]

= (y⊲ x) ⊲ z− y⊲ (x⊲ z).

ThenL(E) together with ”⊲ ” forms a graded pre-Lie algebra generated byE. �

This construction of pre-Lie algebra on the Lie algebra can be applied to anyN-graded Lie

algebraL, such thatL0 = {0}. Another construction of pre-Lie algebra proposed onL by T.

Schedler [45] 1, given by the following pre-Lie product:

x ◮ y =
|y|
|x| + |y|

[x, y], for anyx, y ∈ L. (3.3)

These two constructions are isomorphic, via the linear map:

α :



(
L,◮

)
−→

(
L,⊲

)
,

x 7−→ |x|x.

1For more details about this construction of pre-Lie algebrasee [45, Proposition 3.3.3] and [25].
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Indeed,α is a bijection, and for anyx, y ∈ L we have:

α(x ◮ y) = α(
|y|
|x| + |y|

[x, y]), (by the definition of ”◮” in (3.3)),

=
|y|
|x| + |y|

α([x, y])

=
|y|
|x| + |y|

(|x| + |y|)[x, y], (by the definition ofα above),

= |y|[x, y]

=
|x||y|
|x|

[x, y]

= (|x||y|)x⊲ y, (by the definition of ”⊲” in (3.2)),

= |x|x⊲ |y|y

= α(x) ⊲ α(y).

Denote by [·, ·]⊲ the underlying Lie bracket induced by the pre-Lie product "⊲", which

defined by:

[x, y]⊲ = x⊲ y− y⊲ x, for x, y ∈ L. (3.4)

Then the two Lie structures defined onL by the Lie brackets [·, ·], [ ·, ·]⊲ respectively, are also

isomorphic viaα. Indeed, by substituting the pre-Lie product "⊲", described in (3.2), by the Lie

bracket [·, ·] in the definition of the Lie bracket [·, ·]⊲ in (3.4), we get:

[x, y]⊲ =
1
|x|

[x, y] −
1
|y|

[y, x] =
|x| + |y|
|x| |y|

[x, y], for anyx, y ∈ L, (3.5)

but,

α
(
[x, y]

)
= |[x, y]| [x, y] =

(
|x| + |y|

)
[x, y]

= |x||y|[x, y]⊲ (by (3.5))

= [|x|x, |y|y]⊲

= [α(x), α(y)]⊲ (by (3.1)).

For any (non-planar) rooted treet, we can decorate the vertices oft by elements ofE, by

means of a mapd : V(t) → E, whereV(t) is the set of vertices oft. Denote byTE the set of

all (non-planar) rooted trees decorated by the elements ofE, define the degree|t| of a decorated

treet in TE by:

|t| :=
∑

v∈V(t)

|d(v)| (3.6)

The linear span ofTE, call it T E, together with the grafting product ”→ ” is the free pre-Lie

algebra generated by the set
{a ; a ∈ E

}
[14], which is graded by the degree of trees defined in
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(3.6). In particular, there is a unique pre-Lie homomorphismΦ from
(
T E,→

)
onto

(
L(E),⊲

)
,

such that:

Φ(a) = a for anya ∈ E. (3.7)

If we taket = t1→ (t2→ (· · · → (tk→
a) · · · )) ∈ T E, then:

Φ(t) = x1 ⊲ (x2 ⊲ (· · · ⊲ (xk ⊲ a) · · · )), (3.8)

with xi = Φ(ti), and|ti | = |xi |,∀i = 1, . . . , k. Let I be the two-sided ideal ofT E generated by all

elements on the form:

|s|
(
s→ t

)
+ |t|

(
t → s

)
, for s, t ∈ T E. (3.9)

The idealI satisfies the following properties:

Proposition 3.2.The quotientL′(E) := T E/I has structures of pre-Lie algebra and Lie algebra,

respectively.

Proof. Using the pre-Lie grafting "→" defined onT E, we can define the following opera-

tions onL′(E):

s⊲∗ t := s→ t := s→ t, (3.10)

[s, t] := [s, t] := |s|s→ t, (3.11)

for any s, t ∈ T E, where the bar stands for the class moduloI . The product in (3.10) is pre-Lie

by definition. The bracket defined in (3.11) is well-defined and satisfies the following identities:

(i) The anti-symmetry identity: for anys, t ∈ T E, we have

[s, t] = −[t, s], since,|s|(s→ t) + |t|(t → s) ∈ I .

(ii) The Jacobi identity: for anys, t, t′ ∈ T E, then

[s, [t, t′]] + [[ s, t′], t] = |s||t|
(
s→ (t → t′)

)

+ |s|(|s| + |t′|)
(
(s→ t′)→ t)

)

(using the anti-symmetry identity)−→ = |s||t|
(
(s→ (t → t′)) − (t → (s→ t′))

)

(using the pre-Lie identity)−→ = |s||t|
((

(s→ t)→ t′
)
−

(
(t → s)→ t′

))

= |s||t|
(
(s→ t − t → s)→ t′

)

(using the anti-symmetry identity)−→ = |s||t|
(
(s→ t +

|s|
|t|

s→ t)→ t′
)

= |s||t|
|s| + |t|
|t|

(
(s→ t)→ t′

)

= |s|(|s| + |t|)
(
(s→ t)→ t′

)

= [[ s, t], t′].

�
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Proposition 3.3. I = KerΦ.

Let
(
M(E), ·

)
be the free magma generated byE, and letME be the free magmatic algebra

generated byE, i.e. the linear span of the magmaM(E). Define a new magmatic product "∗"

on M(E) by:

x ∗ y := |x|x · y (3.12)

for any x, y ∈ M(E), and extend bilinearly. We need, to prove Proposition 3.3,to introduce the

following lemmas.

Lemma 3.4. The two magmatic algebras
(
ME, ·

)
and

(
ME, ∗

)
are isomorphic.

Proof. By universal property of the free magmatic algebra, there is a unique morphism

γ :
(
ME, ·

)
→

(
ME, ∗

)
such thatγ(a) = a, for anya ∈ E. For anyx, y ∈ ME, we have:

γ(x · y) = γ(x) ∗ γ(y) = |γ(x)| γ(x) · γ(y). (3.13)

Hence one can see, by induction on the degree of elements of the magmaM(E), that we have

for anyz ∈ M(E):

γ(z) = f (z) z, (3.14)

where f : M(E)→ N is recursively given by:f (a) = 1, for anya ∈ E, and f (x ·y) = |x| f (x) f (y)

for x, y ∈ M(E) (for more details about this mapping see Example 3.1 below). Henceγ is an

isomorphism. �

Now, let J be the two-sided ideal generated by the the anti-symmetry and the Jacobi iden-

tities on
(
ME, ∗

)
, and letJ′ be the two-sided ideal of

(
ME, ·

)
generated by the pre-Lie identity

and the elements on the form:

|x|x · y+ |y|y · x, for x, y ∈ M(E). (3.15)

Lemma 3.5. J = J′.
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Proof. Let J′1 be the ideal generated by the elements (3.15). Equivalently, J′1 is generated

by the elementsx ∗ y+ y ∗ x, for x, y ∈ M(E). We have:

x · (y · z) − (x · y) · z− y · (x · z) + (y · x) · z=
1
|x||y|

x ∗ (y ∗ z) −
1

|x|(|x| + |y|)
(x ∗ y) ∗ z

−
1
|x||y|

y ∗ (x ∗ z) +
1

|y|(|x| + |y|)
(y ∗ x) ∗ z

=
1

|x||y|(|x| + |y|)
(
(|x| + |y|)x ∗ (y ∗ z) − |y|(x ∗ y) ∗ z

− (|x| + |y|)y ∗ (x ∗ z) + |x|(y ∗ x) ∗ z
)

=
1
|x||y|

(
− y ∗ (x ∗ z) + (y ∗ x) ∗ z+ x ∗ (y ∗ z)

)

−
1

|x|(|x| + |y|)
(y ∗ x+ x ∗ y) ∗ z

=
1
|x||y|

(
x ∗ (y ∗ z) + y ∗ (z∗ x) + z∗ (x ∗ y)

)
modulo J′1,

hencex · (y · z) − (x · y) · z− y · (x · z) + (y · x) · z ∈ J. This meansJ′ ⊂ J.

Conversely,
(
x∗ (y∗z)+y∗ (z∗ x)+z∗ (x∗y)

)
= |x||y|

(
x· (y·z)−(x·y) ·z−y· (x·z)+(y· x) ·z

)
modulo J′1, (3.16)

hence the left-hand side of (3.16) belongs toJ′, which proves the inverse inclusion. �

proof of Proposition 3.3. The free pre-Lie algebra generated byE is given byT E [14],

[19]. Hence, the quotientL′(E) =
(
ME, ·

)
/J′ = T E/I is a pre-Lie (respectively Lie) algebra.

The Lie algebraL(E) =
(
ME, ∗

)
/J carries a pre-Lie algebra structure induced by the product

defined in (3.2), such that the free pre-Lie algebraPL(E) := ME/J′2 = T
E, whereJ′2 is the

two-sided ideal generated by the pre-Lie identity on
(
ME, ·

)
, is homomorphic toL(E) by Φ

described in (3.7) and (3.8), as pre-lie algebras, as in the following commutative diagram:

E �
� i //
q�

j ""E
EEE

EE
EEE

(
ME, ·

)
q′

$$ $$I
IIIIIIII

Id
���
�

�

(
ME, ∗

)
q

$$ $$I
IIIIIIII
T E

Φ
����

L(E)

Figure 3.1.
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whereq, q′ are quotient maps. From Figure 3.1 above and Lemmas 3.4, 3.5,we get that:

Ker
(
Φ ◦ q′

)
= J′ = J = Kerq, and thenKerΦ = q′(J′) = q′(J) = I .

Therefore Proposition 3.3 is proved. �

Note that the Lie product onL(E) is the image of "∗" by Φ ◦ q′. The pre-Lie product "⊲" is

the image of "·" by Φ ◦ q′. Hence, we recover Proposition 3.1 this way.

Example 3.1. The free magma M(E) can also be identified with the set of all planar binary

rooted trees, with leaves decorated by the elements of E, together with the product "∨" defined

in Section 2.1. For instance,

a · b =

a b

, (a · b) · c =

a b c

, a · (b · c) =

a b c

, and z= x · y =
(
(a · b) · c

)
· (d · e) =

a b c d e

x
y
, (3.17)

with x := (a · b) · c, and y:= d · e. Then:

f (z) = f (x · y)

= |x| f (x) f (y)

= |x|
(
|a · b| f (a · b) f (c)

) (
|d| f (d) f (e)

)

= |x|
(
(|a| + |b|)

(
|d|

(
|a| f (a) f (b) f (c) f (d) f (e)

)))

= |a| |d| (|a| + |b|) (|a| + |b| + |c|)
(

since, f(a) f (b) f (c) f (d) f (e) = 1
)
.

There is another description of f , detailed as follows: in a planar binary tree, there are two

types of edges, going on the left (from bottom to top) or goingon the right. Consequently, except

the root, there are two types of vertices, the left ones (the incoming edge on the left) and the

right ones. Let t be a planar binary tree, with leaves decorated by elements of E, then f(t) is the

product over all left vertices v of the sums of the degree of the decorations of the leaves l with a

path from v to l.

Consequently, from Propositions , 3.1, 3.2, 3.3, we get the following result.

Corollary 3.6. There is a unique pre-Lie (respectively Lie) isomorphism betweenL′(E) and

L(E), such thatΦ(a mod.J′) = a mod.J, for any a∈ E.

3.2. A monomial well-order on the planar rooted trees, and applications

Let E be a disjoint unionE :=
⊔
n≥1

En of finite subsetsEn = {an
1, . . . , a

n
dn
}, whereEn is the

subset of all elements ofE of degreen. Let us order the elements ofE by:

a1
1 < · · · < a1

d1
< a2

1 < · · · < a2
d2
< · · · < ai

1 < · · · < ai
di
< · · · (3.18)

Some particular setsE of generators can be considered:

(i) E =
⊔
n≥1

En, where #Ei = 0 or 1. A particular situation is:

(a) takeE = {a1, . . . , as}, with ai ∈ Ei , and|ai | = i, for i = 1, . . . , s.
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(ii) E = E1, where #E1 = d1 = d, as a special case:

(a) taked1 = d = 2.

The setTE
pl forms the free magma generated by the set{

a : for a ∈ E}, under the left Butcher

product ”◦ց”.

Define a total order ”� ” on TE
pl as follows:

for anyσ, τ ∈ TE
pl, thenσ � τ if and only if (3.19)

(i) |σ| < |τ|, or :

(ii) |σ| = |τ| andb(σ) < b(τ), or:

(iii) |σ| = |τ|, b(σ) = b(τ) and (σ1, . . . , σk) � (τ1, . . . , τk) lexicographically, whereσ =

B+,r(σ1 . . . σk), τ = B+,r ′(τ1 . . . τk) , or:

(iv) |σ| = |τ|, b(σ) = b(τ), (σ1, . . . , σk) = (τ1, . . . , τk) and the rootr of σ is strictly smaller

than the rootr ′ of τ.

wherek = b(σ) is the number of branches ofσ starting from the root. This order depends on

an ordering of the generators, here we order them by:
a1

1
≺ · · · ≺

a1
d1
≺ · · · ≺

ai
1
≺ · · · ≺

ai
di
≺ · · · (3.20)

like in (3.18). The first terms inTE
pl, whenE = {a1, a2}, are ordered by ”≺ ” as follows:

1
≺

2
≺

1

1

≺
2

1

≺
1

2

≺
1

1

1

≺
1

1 1

≺
2

2

≺
2

1

1

≺
1

2

1

≺
1

1

2

≺
2

1 1

≺
1

1 2

≺
1

2 1

≺
2

2

1

≺
2

1

2

≺
1

2

2

≺
2

1 2

≺
2

2 1

≺

1

2 2

≺
2

2

2

≺
2

2 2

≺ · · · ,

wherei is a shorthand notation forai
.

Proposition 3.7. The order ”�” defined in(3.19)is a monomial well-order.

Proof. Let σ, σ′ ∈ TE
pl, such thatσ � σ′. For anyτ ∈ TE

pl, we have: |τ◦ցσ| < |τ◦ցσ′|,

if |σ| < |σ′|, and they are equal when the degrees ofσ andσ′ are equal. Ifb(σ) < b(σ′),

then b(τ◦ցσ) < b(τ◦ցσ′). But, if b(σ) = b(σ′) = k, then b(τ◦ցσ) = b(τ◦ցσ′) = k + 1.

Lexicographically, (τ, σ1, . . . , σk) � (τ, σ′1, . . . , σ
′
k) when (σ1, . . . , σk) � (σ′1, . . . , σ

′
k). The root

of τ◦ցσ is the root ofσ, the same thing forτ◦ցσ′ holds. Thenτ◦ցσ � τ◦ցσ′. By the same

way, one can verify thatσ◦ցτ � σ′◦ցτ. Hence, the order ”�” is a monomial. Obviously, this

order is a well-order. �

The linear span ofTE
pl, call itT E

pl, forms together with the product ”◦ց” the freeK-magmatic

algebra generated by
{a ; a ∈ E

}
. In following, we review the work of T. Mora [41] on the

Gröbner bases for the free Lie algebras in tree version. For any elementf ∈ T E
pl, defineT( f )

to be the maximal term off with respect to the order "�" defined in (3.19), and letlc( f ) be the
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coefficient ofT( f ) in f , for example:

if f =
1

1

1

+
2

1 1

+ 2
1

1 2

, thenT( f ) =
1

1 2

, andlc( f ) = 2.

Let I be any (two-sided) ideal ofT E
pl. Define:

T(I ) :=
{
T( f ) ∈ TE

pl : f ∈ I
}
, O(I ) := TE

pl\T(I ) (3.21)

to be subsets of the magmaTE
pl, whereT(I ) forms a (two-sided) ideal ofTE

pl.

Theorem 3.8. If I is a (two-sided) ideal ofT E
pl, then:

(i) T E
pl = I ⊕ SpanK(O(I )).

(ii) T E, ∗
pl := T E

pl/I is isomorphic, as a K-vector space, to SpanK(O(I )).

(iii) For each f∈ T E
pl there is a unique g:= Can( f , I ) ∈ SpanK(O(I )), such that f− g ∈ I.

Moreover:

(a) Can( f , I ) = Can(g, I ) if and only if f − g ∈ I.

(b) Can( f , I ) = 0 if and only if f ∈ I.

The symbol Can( f , I ), which satisfies the identities above, is called the canonical form of f in

SpanK(O(I )).

Proof. The proof of this Theorem is detailed in [41, Theorem 1.1]. The procedure followed

in the proof of (i) is by using the following algorithm:

f0 := f , φ0 := 0, h0 := 0, i := 0

while fi , 0 do

If T( fi) /∈T(I ) then

φi+1 := φi, hi+1 := hi + lc( fi)T( fi), fi+1 := fi − lc( fi)T( fi)

else %T( fi) ∈ T(I )%

choosegi ∈ I , such thatT(gi) = T( fi), lc(gi) = 1

φi+1 := φi + lc( fi)gi , hi+1 := hi , fi+1 := fi − lc( fi)gi

i := i + 1

φ := φi , h := hi.

The correctness of this algorithm is based on the following observations:∀i : φi ∈ I , hi ∈

SpanK(O(I )), fi + φi + hi = f . Termination is guaranteed by the easy observation that iffn , 0

thenT( fn) < T( fn−1) and by the fact that< is a well-ordering. �

Let J′ be the two-sided ideal ofT E
pl generated by the pre-Lie identity and all elements on

the form:

|σ|σ◦ցτ + |τ|τ◦ցσ, for any (non-empty) treesσ, τ ∈ TE
pl. (3.22)
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Example 3.2. In this example we calculate Can( f , J′), where f=
3

1

+
1

3

+
1

2

+
1

1 2

and J′ is the

ideal defined by(3.22), using the algorithm described in the proof of Theorem 3.8 above:

f0 =
3

1

+
1

3

+
1

2

+
1

1 2

, φ0 = 0, h0 = 0

T( f0) =
1

1 2

∈ T(J′), choose g0 = 3
1

1

2

+
1

1 2

∈ J′, lc(g0) = 1

φ1 = 3
1

1

2

+
1

1 2

, h1 = 0, f1 =
3

1

+
1

3

+
1

2

− 3
1

1

2

T( f1) =
1

1

2

∈ T(J′), choose g1 =
1
2
(

1

2

1

+ 2
1

1

2

)
=

1
2
(

2

1

+ 2
1

2 )◦
ց

a1
∈ J′, lc(g1) = 1

φ2 = 3
1

1

2

+
1

1 2

−
3
2 1

2

1

− 3
1

1

2

, h2 = 0, f2 =
3

1

+
1

3

+
1

2

+
3
2 1

2

1

T( f2) =
1

2

1

/∈ T(J′), then:

φ3 = 3
1

1

2

+
1

1 2

−
3
2 1

2

1

− 3
1

1

2

, h3 =
3
2 1

2

1

, f3 =
3

1

+
1

3

+
1

2

T( f3) =
1

3

∈ T(J′), choose g3 =
1
3

(
3

1

+ 3
1

3

) ∈ J′

φ4 = 3
1

1

2

+
1

1 2

−
3
2 1

2

1

− 3
1

1

2

+
1
3 3

1

+
1

3

, h4 =
3
2 1

2

1

, f4 =
2
3 3

1

+
1

2

T( f4) =
3

1

/∈ T(J′), then:

φ5 = 3
1

1

2

+
1

1 2

−
3
2 1

2

1

− 3
1

1

2

+
1
3 3

1

+
1

3

, h5 =
3
2 1

2

1

+
2
3 3

1

, f5 =
1

2

T( f5) =
1

2

∈ T(J′), choose g5 =
1
2

(
2

1

+ 2
1

2

) ∈ J′

φ6 = 3
1

1

2

+
1

1 2

−
3
2 1

2

1

− 3
1

1

2

+
1
3 3

1

+
1

3

+
1
2 2

1

+
1

2

, h6 =
3
2 1

2

1

+
2
3 3

1

, f6 = −
1
2 2

1

T( f6) =
2

1

/∈ T(J′), then:

φ7 = 3
1

1

2

+
1

1 2

−
3
2 1

2

1

− 3
1

1

2

+
1
3 3

1

+
1

3

+
1
2 2

1

+
1

2

, h7 =
3
2 1

2

1

+
2
3 3

1

−
1
2 2

1

, f7 = 0,
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then we obtain that Can( f , J′) = 3
2

1

2

1

+ 2
3

3

1

− 1
2

2

1

.

One can note that choosing different g’s at each step in the procedures above while changing

the intermediate computations would not change the final result.

Theorem 3.8 does not describe the contents of each ofT(I ) andO(I ). We try here to get a

description of them, using the magma of planar rooted treesTE
pl with its K-linear spanT E

pl . Let

J be the (two-sided) ideal ofT E
pl generated by the pre-Lie identity with respect to the magmatic

product "◦ց". By Theorem 3.8, we have:

T E
pl = J ⊕ SpanK(O(J)). (3.23)

Proposition 3.9. O(J) =
{
σ ∈ TE

pl : for any v ∈ V(σ) the branches starting from v are dis-

played in non decreasing order from left to right
}
.

We introduce the following lemma, which helps us to prove Proposition 3.9.

Lemma 3.10.For any treeσ in TE
pl, which does not verify the condition of Proposition 3.9, then

σ is in T(J).

Proof. Letσ = B+,,r(σ1 · · ·σk) be a tree inTE
pl, with k branches fork ≥ 2 starting from the

root, such thatσi−1 ≻ σi , for somei = 1, . . . , k− 1. We find that:

f =
r

σ1 σi−1σi. . . . . .
σk

−
r

σ1 σi

σi−1

. . . . . .
σk

+
r

σ1 σi−1

σi

. . . . . .
σk

−
r

σ1 σi σi−1. . . . . .
σk

, (3.24)

is an element inJ such thatT( f ) = σ. If the branches start from a vertexv different from

the root, the subtreeσv, obtained by takingv as a root, is a factor of the treeσ. It is easily

seen thatσ is the leading term of the elementf ∈ J obtained by replacing the factorσv by the

corresponding factor given by (3.24). �

As a consequence of Lemma 3.10, we get the following natural result.

Corollary 3.11. O(J) is contained in the set
{
σ ∈ TE

pl : σ has non decreasing branches
}
.

Proof of Proposition 3.9. Using the graduation ofTE
pl, with respect to the degree of trees

therein, there is a one-to-one bijection between the subset
{
σ ∈ TE

pl : σ has non decreasing branches
}
n

and the the homogeneous componentTE
n of all E-decorated (non-planar) rooted trees of degree

n, i.e.:

#
{
σ ∈ TE

pl : σ has non decreasing branches
}
n = #TE

n , for all n ≥ 1.

But, O(J)n=̃TE
n , for all n ≥ 1, have the same cardinality, hence coincide according to Corol-

lary 3.11:

O(J) =
{
σ ∈ TE

pl : σ has non decreasing branches
}
. (3.25)

This proves the Proposition 3.9. �
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In the next Theorem, we try to describe the setO(J′) for the idealJ′ defined above by (3.22).

Theorem 3.12.The set O(J′) is a set of ladders, or equivalently, the magmatic ideal T(J′)

contains all the trees which are not ladders.

Proof. We use here the induction on the number "n" of vertices. Letσ be a tree inTE
pl,

which is not a ladder, withk branches (starting from the root) andn vertices. Sinceσ is not a

ladder, thenn must be greater than or equal to 3. Ifn = 3, andk = 1 thenσ is a ladder. Hence,

for k = 2, we have that:

σ =
r

x y

is an element ofT(J′), since there isf = |x|
r

x y

+
(
|y|+ |r |

)
x

r

y

in J′, such thatT( f ) = σ,

for anyx, y, r ∈ E. Also, for anyτ ∈ TE
pl, the elementsσ◦ցτ andτ◦ցσ are inT(J′) (sinceT(J′)

is an ideal).

Suppose that any (no-ladder) tree inTE
pl with q vertices, whereq < n, is an element inT(J′),

let σ̃ ∈ TE
pl with "n" vertices and "k" branches, which is not a ladder, then:

(i) If k = 1, the treẽσ is writtenσ◦ցr , whereσ is not a ladder. Thenσ ∈ T(J′) by the

induction hypothesis, hencẽσ ∈ T(J′) becauseT(J′) is an ideal.

(ii) The casek = 2. This corresponds to the caseσ̃ = σ◦ցlm , wherelm is a ladder inTE
pl,

with mvertices form≥ 2. If σ is an element ofT(J′) then so is̃σ. If not,σ is a ladder

by the induction hypothesis. See the discussion below.

(iii) The casek ≥ 3. These are trees̃σ =
(
σ◦ցτ

)
whereτ ∈ TE

pl, with k− 1 branches, is not

a ladder. We have theñσ ∈ T(J′) by induction hypothesis.

Let us discuss the case (ii) whenσ is a ladder and the ladderlm does not belong toT(J′).

Let l1, l2 be ladders inTE
pl with n1, n2 vertices respectively, wheren1, n2 < n, and let:

σ̃ =
r

l1 l2

= l1◦ց(l2◦ց
r ), σ′ =

r

l2 l1

= l2◦ց(l1◦ց
r ). (3.26)

By the pre-Lie identity, with respect to the left Butcher product "◦ց", we find the following

element:

f0 =
r

l1 l2

−
r

l1

l2

+
r

l2

l1

−
r

l2 l1

(3.27)

in J′, such that̃σ, σ′ are bigger trees, with respect to the order� defined in (3.19), than the two

other trees inf0. Let |l i | = pi , wherepi > 0, for i = 1, 2. We have the following cases forpi:

(i) Either p1 = p2, then in this case we take the elements:

g = p2
r

l2 l1

+ (p1 + |r |) l2

l1

r

, f1 =
r1

l(1)
2

l1

r

−
r1

l(1)
2

l1

r

+
r1

l1l(1)
2

r

−
r1

r

l1
l(1)
2

, (3.28)

in J′, wherel2 = l(1)
2
◦
ց

r1. Then we get the element:

f = p2 f0 + g− (p1 + |r |) f1 ∈ J′, (3.29)
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such thatT( f ) = σ̃, since:

r1

r

l1
l(1)
2

≺
r

l1 l2

, for the order ”� ” .

(ii) Or, p2 < p1, then σ̃ = T( f0), where f0 is the element described in (3.27), hence

σ̃ ∈ T(J′).

(iii) Or, p1 < p2, here we have that̃σ ≺ σ′ and the elementf0 described in (3.27) is an

element inJ′ such thatT( f0) = σ′, henceσ′ ∈ T(J′). Now, for σ̃ we can get an

element inJ′ such that̃σ becomes the leading term of this element, as follows: we

replace the treeσ′ = l2◦ց(l1◦ց
r ) in f0 by the tree:

σ′′ :=
(
l1◦ց

r )◦
ցl2 = l2

l1

r

, (3.30)

using the elementg described in (3.28). This new treeσ′′ is also greater thañσ with

respect to the order "�". By the pre-Lie identity, we can get the elementf described

in (3.29) such that:

σ̃ andσ′1 := l(1)
2
◦
ց
((

l1◦ց
r )◦
ց

r1)
=

r1

r

l1
l(1)
2

are the two biggest trees appearing in this element.

We verify whetherp1 = |l1| > |l
(1)
2 | = p2 − |r1|, i.e. σ′1 � σ̃, or not. If so, then

σ̃ ∈ T(J′). If not, we replaceσ′1 in f by the tree:

σ′′1 :=
((

l1◦ց
r )◦
ց

r1)◦
ցl(1)

2 = l(1)
2

r1

l1

r

. (3.31)

If n2 = 1, the treeσ′′1 is a ladder. Ifn2 ≥ 2, thenσ′′1 is not a ladder and is greater

thanσ̃. Then we need to apply the pre-Lie identity once again to the treeσ′′1 in (3.31),

and replace it by:

σ′2 := l(2)
2
◦
ց
(((

l1◦ց
r )◦
ց

r1)◦
ց

r2)
=

r2

r1

r

l1

l(2)
2

, wherel(2)
2
◦
ց

r2
= l(1)

2 .

Let p(i)
2 = |l

(i)
2 |, wherel2 = (· · · ((l(i)2

◦
ց

ri )◦ց
ri−1 ) · · · )◦ց

r1
, for i ≥ 1. After a finite

numbers of steps applying the pre-Lie identity in the expression:

σ′′s :=
((
· · ·

(
(l1◦ց

r )◦ց
r1)
· · ·

)◦
ց

rs−1)◦
ց
(
l(s)2
◦
ց

rs)
=

rs

l(s)2

r

l1

rs−1

, whereσ′s = rs

rs−1

r

l1

l(s)2

(3.32)

which can be formulated as:

fs =
rs

l(s)2

r

l1

rs−1

−
rs

l(s)2

rs−1

r

l1

+
rs

rs−1

r

l1
l(s)2

−
rs

rs−1

r

l1

l(s)2

∈ J′, (3.33)
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we can find an elementf ∈ J′, such that̃σ andσ′s become bigger trees off with

p(s)
2 < p1, i.e. σ′s ≺ σ̃. Hence,̃σ described in (3.26) is inT(J′). Then, Theorem 3.12

is proved.

�

3.3. A monomial basis for the free Lie algebra

The setTE forms the free Non-Associative Permutive (NAP) magma generated by the set

{
a : for a ∈ E}, under the usual Butcher product�. Corresponding to the total order defined in

(3.19), we can define a non-planar version� of this order, as follows:

for anys, t ∈ TE, thens� t if and only if (3.34)

(i) |s| < |t|, or :

(ii) |s| = |t| andb(s) < b(t), or:

(iii) |s| = |t|, b(s) = b(t) = k ands= B+,r(s1 . . . sk), t = B+,r ′(t1 . . . tk) such that∃ j ≤ k, with

si = ti, for i < j, sj � t j wheres1 � · · · � sk, t1 � · · · � tk are the branches ofs, t

respectively, or:

(iv) |s| = |t|, b(s) = b(t) = k, sl = tl, for all l = 1, . . . , k andr ≤ r ′, wherer (respectivelyr′)

is the root ofs (respectivelyt).

By the same way as in Proposition 3.7, we observe that the order "�" defined in (3.34) is

a monomial well order. The spaceT E forms with the Butcher product the free NAP algebra

generated byE [37]. We introduced, in our preceding work in Section 2.1.2, a section S from

the NAP algebra (T E,�) into the magmatic algebra (T E
pl ,
◦
ց):

(T E
pl ,
◦
ց) π // // (T E,�).

S
oo

Here, we chooseS(t) = Smin(t) := Min�
{
τ ∈ TE

pl : π(τ) = t
}
, for anyt ∈ TE, whereMin�{−}

means that we choose the minimal elementτ in TE
pl with respect to the order ”�” with π(τ) = t.

Proposition 3.13.The section map Smin defined above is an increasing map.

Proof. Take two treess and t in TE with s � t. The sectionSmin, obviously, respects the

degree and the number of branches of the trees. Hence, we can suppose|s| = |t| andb(s) =

b(t) = l. We have then:

s= B+,r(s1, . . . , sl), t = B+,r ′(t1, . . . , tl), with s1 � · · · � sl , t1 � · · · � tl. (3.35)

Condition (iii) of the definition, in (3.34), of the order� exactly means that thel-tuple of

branches ofSmin(s) is lexicographically smaller than thel-tuple of branches ofSmin(t). If sandt

have the same branches ands� t, we also haveSmin(s) � Smin(t), as one can see by comparing

the roots. This proves Proposition 3.13. �
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Proposition 3.14. The section map Smin on TE is a bijection onto O(J), where J is the (two-

sided) ideal generated by the pre-Lie identity in
(
T E

pl ,
◦
ց
)
.

Proof. Clear from Proposition 3.9. �

Define a relationR on TE as follows:

sRs′ if and only if there aret, t′ ∈ TE andv,w ∈ V(t′) such thats= t →v t′, s′ = t →w t′

(3.36)

for s, s′ ∈ TE, andw is related withv by an edge
v

w

with w abovev. Let R© be the transitive

closure of the relationR defined in (3.36), i.e. fors, s′ ∈ TE, we say thatsR©s′ if and only if

there iss1, . . . , sl ∈ TE such thatsRs1R. . .RslRs′.

Lemma 3.15.Let s, s′, t ∈ TE, if s′ � s then s′ →v t � s→v t, for v ∈ V(t).

Proof. Immediate from the definition (3.34) of the order "�". �

Lemma 3.16.Let s, s′ ∈ TE, if sR©s′ then s′ ≺ s.

Proof. For s, s′ ∈ TE, if sRs′, then by definition of the relationR in (3.36), there aret, t′ ∈

TE andv,w ∈ V(t) such thats = t →v t′, s′ = t →w t′, and an edge
v

w

in t′. Obviously, the tree

obtained by graftingt on the treet′ at v is greater, with respect to the order ”�”, than the tree

deduced by graftingt on t′ at w, i.e s′ ≺ s. The passage fromR to R© is obvious. �

Proposition 3.17. The Butcher product "�" is compatible with the relation R, i.e. for s, s′, t ∈

TE, if sRs′ then(s�t)R(s′�t) and(t�s)R(t�s′). Also, if sRs′ and tRt′ then(s�t)R©(s′�t′), for t′ ∈

TE.

Proof. For anys, s′, t, t′ ∈ TE, if sRs′ andtRt′, then by definition ofR we have:

s= s1→v s2, s
′ = s1→w s2, for v,w ∈ V(s2), with

v

w

in s2, andt = t1→u t2, t
′ = t1→w′ t2,

for u,w′ ∈ V(t2), with
u

w′

in t2.

Let: s�t = (s1→v s2)�(t1→u t2) = s1→v s′′, for v ∈ V(s′′), wheres′′ = s2�t, and

s′�t = (s1→w s2)�(t1→u t2) = s1→w s′′, for
v

w

in s′′, then:

s�t = (s1→v s′′)R(s1→w s′′) = s′�t. (3.37)

Also, for s′�t′ = (s1 →w s2)�(t1 →w′ t2) = t1 →w′ s′′′, wheres′′′ = s′�t2, with w′ ∈ V(t2) ⊂

V(s′′′), ands′�t = (s1→w s2)�(t1→u t2) = t1→u s′′′, for u ∈ V(s′′′). Then we have:

s′�tRs′�t′. (3.38)
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One can verify thats�tRs�t′ by following the same steps as above. So, from (3.37) and (3.38),

we obtain thats�t R©s′�t′. �

For anyt ∈ TE, define a class oft with respect toR© by:

[t]
R©

:= {s ∈ TE : t R©s}. (3.39)

This class has the following properties:

(i) t is maximal among the representative elements in the class [t]
R©

, i.e. for anys ∈ [t]
R©

thens� t. This property is deduced from Lemma 3.15.

(ii) For anys ∈ [t]
R©

, then [s]
R©
⊂ [t]

R©
.

Lemma 3.18.For any t∈ TE, then:

Ψ̃Smin
(t) =

∑

s∈[t]
R©

βSmin
(s, t)s, (3.40)

(T E
pl ,
◦
ց) Ψ //

π
����

(T E
pl ,ց)

π
����

(T E,�)
Ψ̃Smin

//

Smin

OO

(T E,→)

Figure 3.2.

where the map̃ΨSmin
and the coefficientsβSmin

(s, t) are described in Corollary 2.5.

Proof. We prove this Lemma by the induction on the number of vertices of the tree. Suppose

that (3.40) is realized for any tree inTE with a number of vertices less than or equal ton. Take

t ∈ TE be a tree, such that #V(t) = n+ 1 andt = t1�t2, wheret1 is the minimal branch oft with
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respect to the order "�". Then we have:

Ψ̃S
min
(t) = Ψ̃S

min
(t1�t2)

= Ψ ◦ S
min
(t1�t2)

= Ψ
(
S
min
(t1)◦ցS

min
(t2)

)

= π
(
Ψ ◦ S

min
(t1)ց Ψ ◦ S

min
(t2)

)

= Ψ̃S
min
(t1)→ Ψ̃S

min
(t2)

=



∑

s′∈[t1]
R©

βS
min
(s′, t1)s

′


→



∑

s′′∈[t2]
R©

βS
min
(s′′, t2)s

′′



=
∑

s′∈[t1]
R©

s′′∈[t2]
R©

βS
min
(s′, t1) βS

min
(s′′, t2) s′ → s′′ .

From Proposition 3.17, we have that:

t = t1�t2 R© s := s′�s′′ R© s′ →v s′′, for v ∈ V(s′′). (3.41)

Let sv be the smallest branch of the trees, defined above in (3.41), starting fromv, andsv

be the corresponding trunk (what remains when the branchsv is removed). Then we have:

βS
min
(s, t) =

∑

v∈V(s)

βS
min
(sv, t1) βS

min
(sv, t2). (3.42)

The formula (3.42) above is induced by the formula (2.8) and the definition of the coefficients

βSmin
(s, t) described in Corollary 2.5. Hence, we get:

Ψ̃Smin
(t) =

∑

s∈[t]
R©

βSmin
(s, t)s.

�

Corollary 3.19. Let t ∈ TE, then the maximal term T
(
Ψ̃Smin

(t)
)
, with respect to the order defined

in (3.34), of Ψ̃Smin
(t) is the tree t itself.

From our preceding work in Chapter 2, we have that the setB =
{
Ψ̃Smin

(t) : t ∈ TE
}

forms a

monomial basis for the free pre-Lie algebra
(
T E,→

)
. Let I be the (two-sided) ideal generated

by the elements on the form described in (3.9), then we have the following commutative dia-

gram:
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(
T E,→

) q
// //

Φ
����

(
L′(E),⊲∗

)

=̃
qq

qq
q

xxqqq
qq

(
L(E),⊲

)

Figure 3.3.

whereL′(E) = T E/I , and the product⊲∗ is the pre-Lie product defined in (3.10).L(E) is

the free Lie algebra generated byE which carries the pre-Lie algebra structure by the product

⊲ defined in (3.2). The restriction ofΦ to SpanK(O(I )) is an injective map. Indeed, for any

h1, h2, ∈ SpanK(O(I )),

Φ(h1) = Φ(h2)

⇒ Φ(h1 − h2) = 0

⇒ (h1 − h2) ∈ KerΦ = I

⇒ (h1 − h2) ∈ SpanK(O(I )) ∩ I =
{
0
}

⇒ h1 − h2 = 0

⇒ h1 = h2.

Also, sinceΦ : T E −→ L(E) is a surjective map, then we have:

L(E) = Φ
(
T E)

= Φ
(
I ⊕ SpanK(O(I ))

)
( by Theorem 3.8 )

= Φ
(
SpanK(O(I ))

)
, sinceKerΦ = I andΦ

(
I
)
=

{
0
}
.

Hence,Φ : SpanK(O(I )) −→ L(E) is a surjective and an injective map. Then it is an

isomorphism of vector spaces.

Theorem 3.20.For any t∈ O(I ), we have:

Ψ̃Smin
(t) = Can

(
Ψ̃Smin

(t), I
)
= t. (3.43)

Moreover, the set̃B := {Φ(t) : t ∈ O(I )} is a monomial basis for the pre-Lie algebra
(
L(E),⊲

)
.

Proof. The property (3.43) is induced from Theorem 3.12 and the definition of Ψ̃Smin
. We ob-

viously have that the setB′ = O(I ) is a basis forSpanK(O(I )). Therefore, asΦ : SpanK(O(I )) −→

L(E) is an isomorphism of vector spaces,B̃ := Φ(B′) forms a basis for the pre-Lie algebra(
L(E),⊲

)
. This basis is monomial thanks to (3.43), such that:

Φ(t) = Φ
(
Ψ̃Smin

(t)
)
, for all t ∈ O(I ).

This proves Theorem 3.20. �
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Consequently, we get the following immediate result.

Corollary 3.21. The setB̃ := {Φ(t) : t ∈ O(I )} is a monomial basis for the free Lie algebra(
L(E), [·, ·]

)
.

Examples 3.22.Here,we calculate few first bases̃Bn for homogeneous componentsLn of the

free Lie algebraL(E) up to n= 4, using Corollary 3.21, as follows:

(i) As a particular case, take E= {ai : i ∈ N}, such that|ai | = i, for all i ∈ N, with an

ordering "<" on the generators a1 < a2 < · · · < as < · · · . From our preceding work

in Chapter 2, we have:

B
(
T E

1

)
= {

a1 : a1 ∈ E} .

B
(
T E

2

)
= {

a2 : a2 ∈ E} ⊔
{

a1

a1

: a1 ∈ E
}
.

B
(
T E

3

)
= {

a3 : a3 ∈ E} ⊔
{

a2

a1

,
a1

a2

: a1, a2 ∈ E
}
⊔

 a1

a1

a1

,
a1

a1 a1

+
a1

a1

a1

: a1 ∈ E


.

B
(
T E

4

)
= {

a4 : a4 ∈ E} ⊔
{

a3

a1

,
a1

a3

,
a2

a2

: a1, a2, a3 ∈ E
}
⊔

 a2

a1

a1

,
a1

a2

a1

,
a1

a1

a2

,
a2

a1 a1

+
a2

a1

a1

,
a1

a1 a2

+
a1

a2

a1

: a1, a2 ∈ E


⊔


a1

a1

a1

a1

,
a1

a1 a1

a1

+
a1

a1

a1

a1

,
a1

a1 a1

a1

+
a1

a1 a1

a1

+
a1

a1

a1

a1

,
a1

a1 a1a1

+ 3
a1

a1 a1

a1

+
a1

a1 a1

a1

+
a1

a1

a1

a1

: a1 ∈ E



.

Then, we get the following monomial basesB̃n for Ln , up to n= 4:
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B̃1 = {a1} .

B̃2 = {a2} .

B̃3 =
{
a3, [a1, a2]

}
.

B̃4 = {a4, [a1, a3],
[
[a1, a2], a1

]}
.

(ii) Let us take E= {x, y} ordered by x< y, such that|x| = |y| = 1. Denote " " by the

vertex decorated by x, and "" the vertex decorated by y, such that< . Using the

order defined in(3.34), we arrange the first terms of TE as follows:

1 < < < < < < < < < < < < < < < < < <

< < < · · · .

Also, we calculate here the monomial bases for the homogeneous componentsT E
n up

to n= 4:

B
(
T E

1

)
=

{
,

}
.

B
(
T E

2

)
=

{
, , ,

}
.

B
(
T E

3

)
=

{
, , , , , , , , + , + , + , + , + , +

}
.
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B
(
T E

4

)
=

{
, , . . . , ,︸                  ︷︷                  ︸

16 terms

, + , + , . . . , + , +︸                                                 ︷︷                                                 ︸
12 terms

,

+ + , + + , . . . , + + , + +︸                                                                                   ︷︷                                                                                   ︸
16 terms

,

+ 3 + + , . . . , + 3 + +︸                                                             ︷︷                                                             ︸
8 terms

}
.

Hence, we have:

B̃1 = E .

B̃2 =
{
[x, y] : x, y ∈ E

}
.

B̃3 =
{[

[x, y], x
]
,
[
[x, y], y

]
: x, y ∈ E

}
.

B̃4 =
{[

[[ x, y], x], x
]
,
[
[[ x, y], x], y

]
,
[
[[ x, y], y], y

]
: x, y ∈ E

}
.

Remark 3.23. In the monomial basis̃B4 for L4, calculated in(ii) above, we observe the fol-

lowing:

the tree is not in O(I ), since there is an element f= − that belongs to I such that

T( f ) = ∈ T(I ). Indeed, from the pre-Lie identity, and the so-called weighted anti-symmetry
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identity described in(3.9), we have, drawing non-planar trees explicitly:

f1 = Ψ
(( ◦

ց
)◦
ց − ◦

ց −
( ◦
ց

)◦
ց + ◦

ց
( ◦

ց
))
= Ψ

(
− − +

)
,

f2 = Ψ
(( ◦

ց + 2 ◦
ց

)◦
ց

)
= Ψ

(
+ 2

)
, and f3 = Ψ

(
◦
ց + 3 ◦

ց

)
= Ψ

(
+ 3

)

are elements in I, hence f4 = f1 + f2 − f3 = Ψ
(
3 − 3 −

)
∈ I. But, f5 = Ψ

( )
∈ I,

hence f= f4 + f5 = 3 − 3 ∈ I . Then, we have:

Φ( f ) = 3
(
(x⊲ y) ⊲ x

)
⊲ y− 3

(
(x⊲ y) ⊲ y

)
⊲ x− (x⊲ y) ⊲ (y⊲ x)

=
[
[[ x, y], x], y

]
−

[
[[ x, y], y], x

]
+

[
[[ x, y], [x, y]

]

= 0 ,

and then, [
[[ x, y], x], y

]
=

[
[[ x, y], y], x

]
.



CHAPTER 4

Pre-Lie Magnus expansion

Wilhelm Magnus (1907-1990) is a topologist, an algebraist,an authority on differential

equations and on special functions, a mathematical physicist. He worked in a wide variety of

fields in mathematics and mathematical physics. One of his long-lasting constructions is the

so-called Magnus expansion, it is a tool to solve the classical linear differential equations for

linear operators [38]. This expansion has found applications in numerous areas,in particular in

quantum chemistry and theoretical physics.

Many attempts have been made to derive the expansion in explicit form. We refer the reader

to the recent works, e.g. [30], [31], [15], and the references therein, for more details about this

expansion and some of its applications.

The aim of this chapter is to discuss how we can find a recursionfor the pre-Lie Magnus

expansion which already incorporates the pre-Lie identity. For this purpose, we study some

methods for writing Magnus expansion, in classical and pre-Lie versions. Here, we skip the

analytical and numerical aspects of this expansion, and take an algebro-combinatorial perspec-

tive. A numerical method has been studied by three authors S.Blanes, F. Casas, and J. Ros, in

their joint work [4], of writing the classical Magnus expansion. We give, in section 4.4 of this

chapter, a combinatorial vision of this numerical method.

This chapter contains four sections: we give, in section 4.1, a short survey of the classical

Magnus expansion. In section 4.2, we recall some basics on the pre-Lie Magnus expansion,

and show how the classical Magnus expansion is a particular case of it. Also, we review in

this section a part of the joint work [15] of F. Chapoton and F. Patras, where they introduced a

concrete formula for the pre-Lie Magnus expansion. We study, in section 4.3, some encodings

of Magnus expansion terms using planar binary rooted trees,proposed by A. Iserles and S. P.

No/ rsett in their work [30] for the classical version, and an encoding using planar rooted trees

which has been studied by K. Ebrahimi-Fard and D. Manchon forthe pre-Lie version [21].

Also, in this section, we give a formula with the minimal number of terms up to order seven,

and we compare it with the pre-Lie Magnus formula proposed byF. Chapoton and F. Patras in

[15], using Grossman-Larson algebra. The question, raised by K. Ebrahimi-Fard, of writing an

optimal (i.e. with a minimal number of terms) pre-Lie Magnusexpansion at any order remains

open. In section 4.4, we review a part of the joint work of S. Blanes, F. Casas, and J. Ros [4], in

63
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which they proposed a numerical strategy to reproduce the classical Magnus expansion terms.

The free Lie algebraL(E) with one single generator in each degree naturally appearsin this

context. We introduce, in this section, a combinatorial pre-Lie version of the work of S. Blanes,

F. Casas, and J. Ros, using the pre-Lie structure onL(E) and the monomial basis described in

chapter 3 of this thesis.

4.1. Classical Magnus expansion

W. Magnus provides an exponential representation of the solution of the well-known clas-

sical initial value problem:

Ẏ(t) :=
d
dt

Y(t) = A(t)Y(t), with initial conditionY(0) = 1, (4.1)

whereY(t), A(t) are linear operators depending on a real variablet, and ”1” is the identity

operator. Magnus considers the problem (4.1) in a non-commutative context. The problem,

according to Magnus’ point of view, is to define an operatorΩ(t), depending onA, withΩ(0) = 0

such that :

Y(t) = exp
(

t∫

0

Ω̇(s)ds
)
=

∑

n≥0

Ω(t)n

n!
. (4.2)

He obtains a differential equation leading to the recursively defined expansion named after him:

Ω(t) =

t∫

0

Ω̇(s)ds=

t∫

0

A(s)ds+

t∫

0

∑

n>0

Bn

n!
ad(n)

s∫

0
Ω̇(u)du

[A(s)]ds, (4.3)

whereBn are the Bernoulli numbers defined by:

∞∑

m=0

Bm

m!
zm =

z
ez − 1

= 1−
1
2

z+
1
12

z2 −
1

720
z4 + · · · ,

andadΩ is a shorthand for an iterated commutator:

ad0
ΩA = A, ad1

ΩA = [Ω,A] = ΩA− AΩ, ad2
ΩA = [Ω, [Ω,A]] ,

and, in general,adm+1
Ω

A = [Ω, adm
Ω

A] [38]. Taking into account the numerical values of the first

few Bernoulli numbers, the formula in (4.3) can be written:

Ω̇(t) = A(t) −
1
2

[Ω,A(t)] +
1
4
[
[Ω,A(t)],Ω

]
+

1
12

[
Ω, [Ω,A(t)]

]
+ · · · ,

whereΩ̇(t) := Ω′(t) = d
dtΩ(t). Also, we can write the expansion in (4.3) as:

Ω(t) =
∑

n>1

Ωn(t), (4.4)
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whereΩ1(t) =
t∫

0

A(s) ds, and in general:

Ωn(t) =
n−1∑

j=1

B j

j!

t∫

0

S( j)
n (s) ds, for n ≥ 2, (4.5)

whereS(1)
n = [Ωn−1,A], S(n−1)

n = adn−1
Ω1

(
A
)
, and:

S( j)
n =

n− j∑

m=1

[
Ωm,S

( j−1)
n−m

]
, for 2 ≤ j ≤ n− 1.

The formula (4.5) can be found in [38], [5].

4.2. Pre-Lie Magnus expansion

In this section, we study an important generalization of theMagnus expansion in the pre-Lie

setting: let (PL,⊲) be a pre-Lie algebra defined over a fieldK. The linear transformationsLA,

for A ∈ PL, described in Section 1.4, can be detailed asLA : PL → PL, such thatLA(B) :=

A⊲B, for all B ∈ PL. DefineΩ̇ := Ω̇(λA), for A ∈ PL, to be a formal power series inλPL[[λ]].

Now, the classical Magnus expansion, described in (4.3), can be rewritten as:

Ω̇(λA)(x) =
L⊲[Ω̇]

exp(L⊲[Ω̇]) − 1
(λA)(x) =

∑

m≥0

Bm

m!
L⊲[Ω̇]m(λA)(x), (4.6)

whereL⊲[Ω̇]
(
λA

)
(x) =

(
Ω̇⊲λA

)
(x) = [

x∫

0

Ω̇(s)ds, λA(x)], Bm are Bernoulli numbers, this formula

is called pre-Lie Magnus expansion [1], [20].

Lemma 4.1. Let A, B be linear operators depending on a real variable x, then theproduct:

(A⊲ B)(x) :=
[ x∫

0

A(s)ds, B(x)
]
, (4.7)

verifies the pre-Lie identity, where[A(x), B(x)] = (A · B− B · A)(x).

Proof. Let A, B,C be linear operators depending on a real variablex. Set I (A)(x) :=
x∫

0

A(s)ds, then we have:

I (A) · I (B) = I
(
I (A) · B+ A · I (B)

)
, (4.8)

In other words,I is a weight zero Rota-Baxter operator1. Hence,

1For more details about Rota-Baxter operator, Rota-Baxter algebras see [20, Paragraph 5.2] and the references

therein.
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((
A⊲ B

)
⊲C

)
(x) −

(
A⊲

(
B⊲C

))
(x) =

[
I
(
[I (A), B]

)
(x),C(x)

]
−

[
[I (A)(x), [I (B)(x),C(x)]

]

=
[
I
(
[I (A), B]

)
(x),C(x)

]
−

([
[I (A)(x), I (B)(x)],C(x)

]

+
[
I (B)(x), [I (A)(x),C(x)]

])
, (by the Jacobi identity),

=
[
I
(
I (A) · B− B · I (A)

)
(x),C(x)

]
−

[(
I (A) · I (B) − I (B) · I (A)

)
(x),C(x)

]

−
[
I (B)(x), [I (A)(x),C(x)]

]

=
[
I
(
I (A) · B

)
(x) −

(
I (A) · I (B)

)
(x) +

(
I (B) · I (A)

)
(x) − I

(
B · I (A)

)
(x),C(x)

]

−
[
I (B)(x), [I (A)(x),C(x)]

]

=
[
I
(
I (B) · A− A · I (B)

)
(x),C(x)

]
−

[
I (B)(x), [I (A)(x),C(x)]

]
, (by (4.8)),

=
[
I
(
[I (B),A]

)
(x),C(x)

]
−

[
[I (B)(x), [I (A)(x),C(x)]

]

=
((

B⊲ A
)
⊲C

)
(x) −

(
B⊲

(
A⊲C

))
(x).

This proves the Lemma. �

Also, the formula (4.6) can be represented as:

Ω̇(λA) =
∑

n>0

Ω̇n(λA), (4.9)

whereΩ̇1(λA) = λA, and in general:

Ω̇n(λA) =
n−1∑

j=1

B j

j!

∑

k1+···+kj= n−1

k1≥1, ..., kj≥1

L⊲[Ω̇k1]
(
L⊲[Ω̇k2]

(
· · · (L⊲[Ω̇kj ](λA)) · · · )

)
, for n ≥ 2. (4.10)

Here, we give few first terms of the pre-Lie Magnus expansion described above:

Ω̇(λA) = λA− λ21
2

(A⊲ A) + λ3(1
4

(A⊲ A) ⊲ A+
1
12

A⊲ (A⊲ A)
)

(4.11)

−λ4

(
1
8

((A⊲ A) ⊲ A) ⊲ A+
1
24

(A⊲ (A⊲ A)) ⊲ A+
1
24

(
A⊲ ((A⊲ A) ⊲ A) + (A⊲ A) ⊲ (A⊲ A)

))
+ O(λ5)

There are many ways of writing the Magnus expansion, for pre-Lie and classical formulas,

in various settings using Baker-Campbell-Hausdorff series, dendriform algebras, Rota-Baxter

algebras, Solomon Idempotents and others, for more detailsabout these works see [1], [20],

[15] and the references therein.

Using the pre-Lie identity, the pre- Lie Magnus expansion terms can be reduced: for the

terms at third order,̇Ω3(λA), no further reduction of terms is possible. At fourth order, two
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terms can be reduced as follows:

Ω̇4(λA) = λ4

(
1
8

((A⊲ A) ⊲ A) ⊲ A+
1
24

(
(A⊲ (A⊲ A)) ⊲ A+ A⊲ ((A⊲ A) ⊲ A) + (A⊲ A) ⊲ (A⊲ A)

))

(4.12)

and, by pre-Lie identity, we have:

(A⊲ A) ⊲ (A⊲ A) = ((A⊲ A) ⊲ A) ⊲ A− (A⊲ (A⊲ A)) ⊲ A+ A⊲ ((A⊲ A) ⊲ A),

then (4.12) equals:

λ4
(1
6

((A⊲ A) ⊲ A) ⊲ A+
1
12

x⊲ ((A⊲ A) ⊲ A)
)
.

At fifth order, Ω̇5(λA), three terms out of ten can be removed [20]. For more details about this

reduction of pre-Lie Magnus expansion terms, see the next sections.

A beautiful way of writing the pre-Lie Magnus expansion is proposed by F. Chapoton and

F. Patras in their joint work [15]. We review here a part of their work corresponding to pre-

Lie Magnus element, as follows: let
(
PL(a),⊲

)
be the free pre-Lie algebra with one generator

"a", andP̂L(a) be its completion2. The Magnus element in̂PL(a) is the (necessarily unique)

solutionΩ̇ to the equation:

Ω̇ =
( Ω̇

exp(Ω̇) − 1

)
⊲ a. (4.13)

The exponential seriesexp(a) :=
∑
n≥0

an

n! belongs toŜ
(
PL

)
, the completion of the symmetric

algebra overPL(a), endowed with its usual commutative algebra structure. Wegive in following

an important result obtained by F. Chapoton and F. Patras in [15].

Theorem 4.2.The Magnus elemenṫΩ(a) in P̂L(a) can be written:

Ω̇(a) = log∗
(
exp(a)

)
, (4.14)

where∗ is the Grossman-Larson product3. The notation log∗ means that the logarithm is

computed with respect to the product∗.

Proof. See [15, Theorem 4]. �

4.3. An approach for Magnus expansion terms using rooted trees

A. Iserles and S. P. No/ rsett have developed an alternative approach, using planarbinary

rooted trees to encode the classical Magnus expansion terms[30]. K. Ebrahimi-Fard and D.

Manchon, in their joint work [21], used planar rooted trees to represent the pre-Lie Magnus

expansion. This encoding of expansion terms, using planar binary rooted trees, is defined as:

x , x⊲ x .

2For further details about the completed pre-Lie algebra seeParagraph 1.4.1.
3 Grossman-Larson algebra is defined in the next section, Paragraph 4.3.1.
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Hence, the pre-Lie Magnus expansion, described in (4.11), can be denoted in the shorthand

as:

Ω̇( ) = −
1
2

+
1
4

+
1
12

−

(
1
8

+
1
24

(
+ +

))
+ · · · (4.15)

and the reduction in expansion terms at the fourth order can be described as:

Ω̇4( ) = −
1
6

−
1
12

,

thanks to the pre-Lie identity:

− = − .

The approach proposed by K. Ebrahimi-Fard and D. Manchon is more in the line of non-

commutative Butcher series4. In following, we shall review the joint work of K. Ebrahimi-Fard

and D. Manchon, published in [21], on finding an explicit formula, in planar rooted tree version,

for pre-Lie Magnus expansion. Letσ = B+(σ1 · · ·σk) be any (undecorated) planar rooted tree,

denotef (v), for v ∈ V(σ), by the number of outgoing edges, i.e. the fertility of the vertexv of

σ. The degree|σ| of a tree here is given by the number of its vertices. Define thelinear map

γ : Tpl → K as:

γ(σ) :=
Bk

k!

k∏

i=1

γ(σi) =
∏

v∈V(σ)

Bf (v)

f (v)!
, (4.16)

whereBk are Bernoulli numbers.

Lemma 4.3.For any planar rooted treeτ, such that there exists v∈ V(τ) of fertility 2n+1, n > 0,

we haveγ(τ) = 0.

Proof. It is immediate from the definition ofγ in (4.16), and the fact thatB2n+1 = 0, for all

n > 0. �

Define a subspaceT e1
pl of all planar rooted trees excluding trees with at least one vertex of

fertility 2n+ 1, with n > 0. The tree functionalF is defined recursively by:

F[ ](x) = x, andF[τ](x) := r (k+1)
⊲

(
F[τ1](x), . . . , F[τk](x), x

)
, (4.17)

whereτ = B+(τ1 · · · τk), and

r (k+1)
⊲

(
F[τ1](x), . . . , F[τk](x), x

)
:= F[τ1](x) ⊲ (F[τ2](x) ⊲ (· · · ⊲ (F[τk](x) ⊲ x) · · · )).

Theorem 4.4.The pre-Lie Magnus expansion can be written:

Ω̇(x) =
∑

τ∈Te1
pl

γ(τ)F[τ](x). (4.18)

Proof. See [21, Theorem 20]. �

4For more details about Butcher series see [8, section 4.1].
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Forn ≥ 1, the numbers of trees inTe1, n
pl , the subset of all planar rooted trees with "1 or even fertility "

of degreen, is given by the sequence "A049130" in [48]. Here, we give few of first terms of

this sequence: 1, 1, 2, 4, 10, 26, 73, 211, 630, . . ..

We give here some examples of the formula of pre-Lie Magnus expansion described in

(4.18), as follows:

Ω̇(x) = γ( )F[ ](x) + γ( )F[ ](x) + γ( )F[ ](x) + γ( )F[ ](x) + O(4)

= x−
1
2

r (2)
⊲

(
F[ ](x), x

)
+

1
4

r (2)
⊲

(
F[ ](x), x

)
+

1
12

r (3)
⊲

(
F[ ](x), F[ ](x), x

)
+ O(4).

At order four, we have:

Ω̇4(x) = γ( )F[ ](x) + γ( )F[ ](x) + γ( )F[ ](x) + γ( )F[ ](x)

= −

(
1
8

r (2)
⊲

(
F[ ](x), x

)
+

1
24

r (2)
⊲

(
F[ ](x), x

)
+

1
24

(
r (3)
⊲

(
F[ ](x), F[ ](x), x

)
+ r (3)
⊲

(
F[ ](x), F[ ](x), x

)))
,

but, thanks to pre-Lie identity, we have:

r (2)
⊲

(
F[ ](x), x

)
− r (3)
⊲

(
F[ ](x), F[ ](x), x

)
= r (2)
⊲

(
F[ ](x), x

)
− r (3)
⊲

(
F[ ](x), F[ ](x), x

))
,

then the formulȧΩ4(x) can be reduced into two terms, as follows:

Ω̇4(x) = −
1
6

r (2)
⊲

(
F[ ](x), x

)
−

1
12

r (3)
⊲

(
F[ ](x), F[ ](x), x

)
(4.19)

= −
1
6

F[ ](x) −
1
12

F[ ](x).

Eight trees from ten appear in the pre-Lie Magnus expansion at order five, due to the recur-

sive nature of this expansion, which are:

, , , , , , , .

Hence,

Ω̇5(x) =γ( )F[ ](x) + γ( )F[ ](x) + γ( )F[ ](x) + γ( )F[ ](x) + γ( )F[ ](x)

+ γ( )F[ ](x) + γ( )F[ ](x) + γ( )F[ ](x).

Using the pre-Lie identity as:

F[ ](x) − F[ ](x) = F[ ](x) − F[ ](x),
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we obtain a reduced formula of pre-Lie Magnus expansion at order five, with seven terms de-

scribed as:

Ω̇5(x) =
5
48

F[ ](x) +
1
48

F[ ](x) +
1
24

F[ ](x) +
1
48

F[ ](x) (4.20)

+
1

144

(
F[ ](x) + F[ ](x)

)
−

1
120

F[ ](x).

The reduced formulas at orders four and five, described in (4.19), (4.20) respectively, are

considered as best (or optimal) formulas for the pre-Lie Magnus expansion at these orders.

4.3.1. Some calculations in pre-Lie Magnus expansion.
Let us consider the free pre-Lie algebraPL = T with one generator "", together with the

pre-Lie grafting "→". Then, we can represent pre-Lie Magnus expansion in terms of rooted

trees as in the following. We need first to introduce the following result.

Lemma 4.5. For any planar rooted treeτ, we have:

F[τ]( ) = Ψ(τ),

where F is the function described in(4.17), andΨ is defined in Subsection 2.1.2,[2, Subsection

2.2].

Proof. Let τ be any planar rooted tree withk branches, then it can be written in a unique

way asτ = B+(τ1 . . . τk). Using the induction hypothesis on the numberk of branches, we have:

F[ ]( ) = Ψ( ) = .

Suppose that the hypothesis of this Lemma is true for all planar rooted treesτ′ with n − 1

branches, for alln ≤ k, i.e. F[τ′]( ) = Ψ(τ′), hence:

F[τ]( ) = r (k+1)
→

(
F[τ1]( ), . . . , F[τk]( ),

)
, (from definition ofF in (4.17)),

= F[τ1]( )→
(
F[τ2]( )→

(
· · · →

(
F[τk]( )→

)
· · ·

))

= Ψ(τ1)→
(
Ψ(τ2)→

(
· · · →

(
Ψ(τk)→

)
· · ·

))
, (by the hypothesis above),

= Ψ
(
τ1
◦
ց(τ2
◦
ց(· · · ◦ց(τk

◦
ց ) · · · ))

)
, (from definition ofΨ),

= Ψ(τ) , (sinceτ = B+(τ1 . . . τk) = τ1
◦
ց(τ2
◦
ց(· · · ◦ց(τk

◦
ց ) · · · )) ) .

This proves the Lemma. �



4.3. AN APPROACH FOR MAGNUS EXPANSION TERMS USING ROOTED TREES 71

Proposition 4.6. The pre-Lie Magnus expansion can be written as:

Ω̇( ) =
∑

τ∈Te1
pl

s∈T

γ(τ)α(s, τ)s, (4.21)

whereα(s, τ) are the coefficients described in[2, Theorem 4], andγ is the map defined above

in (4.16).

Proof. Immediate from Theorem 4.4 and Lemma 4.5, and using the formula:

Ψ(τ) =
∑

s∈T

α(s, τ)s,

that is introduced by [2, Theorem 4]. �

Now for anyτ ∈ Te1
pl , let eτ := Ψ(τ). The planar rooted treeτ is uniquely written as a

monomial expressionm( , ◦ց) involving the root and the left Butcher product. ThenΨ(τ) is

m( ,→), i.e. the same monomial expression where the left Butcher product is replaced by the

pre-Lie grafting of (non-planar) rooted trees. Here, we display optimal (with respect to the

number of terms) formulas of pre-Lie Magnus expansion up to order seven:

Ω̇1( ) =

Ω̇2( ) = B1 e

Ω̇3( ) = B2
1 e +

B2

2!
e

Ω̇4( ) =
B1

3
e + B1B2 e

Ω̇5( ) = −B1
B2

2!
5
2

e − B1
B2

2!
1
2

e + B2
1B2 e + B2

1

B2

2!
e +

B2
2

2!2!
(e + e ) +

B4

4!
e

Ω̇6( ) = −
11
144

e −
5

288
e −

1
288

(e + e ) + B1
B4

4!
e −

1
36

e −
1

144
(e + e ) −

1
48

e

−
1

288
(e + e ) + B1

B4

4!
(e + e + e + e )
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Ω̇7( ) =
31
576

e +
1

576
e +

1
576

(e + e ) + B2
1

B4

4!
e +

7
576

e +
1

288
(e + e ) +

1
288

e

+
1

576
(e + e ) + B2

1

B4

4!
(e + e + e + e ) +

5
288

e +
1

576
(e + e ) +

1
288

(e + e )

+
1

576
(e + e ) +

1
1728

(e + e + e + e ) +
B2

2!
B4

4!
(e + e ) +

1
72

e +
1

288
(e + e )

+
1

192
e +

1
576

( e + e ) +
1

1728
e +

B4

4!
B2

1 ( e + e + e + e )

+
B2

2!
B4

4!
(e + e + e + e ) + B2

1

B4

4!
(e + e + e + e + e + e )

+
B6

6!
e .

Due to the recursive nature of the pre-Lie Magnus expansion at the orders calculated above,

and thanks to the pre-Lie identity, we observe that many termseτ are omitted in this expansion,

for example:

(i) At order four, two termseτ out of 4 can be removed iṅΩ4( ), namelye , e .

(ii) At order five, three termseτ out of 10 can be removed iṅΩ5( ), the trees of these

omitted terms are:

, , .

(iii) At order six, the terms of 11 out of 26 trees can be removed in Ω̇6( ), these trees are:

, , , , , , , , , , .

(iv) At order seven, the terms of 23 out of 73 trees can be removed inΩ̇7( ).
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Remark 4.7. This reduction of pre-Lie Magnus expansion terms is not unique, for example, at

order five, we can write the formulȧΩ5( ) with another seven reduced terms, as follows:

Ω̇5( ) = B2
1B2

3
2

e + B2
1B2

3
2

e + B2
1B2 e + B2

1

B2

2!
e +

B2
2

2!2!
(e + e ) +

B4

4!
e .

Now, from the joint works of F. Patras with F. Chapoton [15], and with K. Ebrahimi-Fard

[23], recall that: a (non-planar) forestF = t1 · · · tn is a commutative product of (non-planar)

rooted treesti. Denotew(F) by the number of trees inF, which is called the weight of a forest

F, for examplew(t1 · · · tn) = n. Let F be the linear span of the set of (non-planar) forests,

it forms together with the concatenation an associative commutative algebra. Define another

product "∗" onF by:

(t1 · · · tn) ∗ (t′1 · · · t
′
m) :=

∑

f

F0(F1 → t1) · · · (Fn→ tn), (4.22)

where the sum is over all functionf from {1, . . . ,m} to {0, . . . , n}, andFi :=
∏

j ∈ f −1(i)
t′j. The space

F forms an associative non-commutative algebra together with the product "∗" defined above.

This algebra can be provided with a unit element, sometimes it is the empty tree. This unital

algebra is called the Grossman-Larson algebra and denoted by GL := F . This algebra acts

naturally onT by the extending pre-Lie product "→". This action can be defined recursively

by:

(
F ∗ F′

)
→ t := F′ →

(
F → t

)
, (4.23)

for anyF, F′ ∈ GL andt is a (non-planar) rooted tree.

Example 4.1.For any t, t1, t2 (non-planar) rooted trees, we have:

(t1t2)→ t = t2→ (t1→ t) − (t2→ t1)→ t.

The Grossman-Larson algebra
(
GL, ∗

)
is isomorphic to the enveloping algebra of the un-

derlying Lie algebra of
(
T ,→

)
. This construction also works for the enveloping algebra of

any pre-Lie algebra [27]. We refer the reader to the references [27], [15], [23], for more details

about this type of algebras and some of its applications. Hence, the formula of pre-Lie Magnus

expansion described in (4.14) can be rewritten:

Ω̇( ) = log∗(e ) =
∑

n>0

(−1)n−1

n
(e − 1)∗n−1→ , (4.24)

wheree = exp( ) :=
∑
n≥0

n

n! , for F = n is a forest of one-vertex trees with weightw(F) = n,

and "∗" is the Grossman-Larson product.
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In fact, we study here the undecorated case, with respect to the forests and trees, of the joint

works of F. Patras with F. Chapoton, and with K. Ebrahimi-Fard respectively. The decorated

version has been studied in [15], [23].

Here, we calculate the few first pre-Lie Magnus elementsΩ̇n( ), up ton = 5, according to

the formula (4.24) above:

Ω̇1( ) = .

Ω̇2( ) = −
1
2
= B1 e .

Ω̇3( ) =
1
3
+

1
12

= B2
1 e +

B2

2!
e .

Ω̇4( ) = −
1
4
−

1
12

−
1
12

=
B1

3
e + B1B2 e .

Ω̇5( ) =
1
5
+

3
40

+
1
10

+
1

180
+

1
60

+
1
20

+
1

120
−

1
120

−
1

720

= −B1
B2

2!
5
2

e − B1
B2

2!
1
2

e + B2
1B2 e + B2

1

B2

2!
e +

B2
2

2!2!
(e + e ) +

B4

4!
e .

Remark 4.8. We observe that the formula(4.24) reduces the number of terms in the pre-Lie

Magnus expansion the same way as the reduction induced by thepre-Lie identity in formula

(4.21). In other words, formula(4.24) can be considered as a best formula for the reduced

pre-Lie Magnus expansion. It would be interesting to have anexplanation of this striking fact.

4.4. A combinatorial approach for Magnus expansion using a monomial basis for free
Lie algebra

A. Iserles and S. P. No/ rsett, in their joint work [30], studied the differential equation:

ẏ = a(t)y, t ≥ 0, y(0) = y0 ∈ G, (4.25)

whereG is a Lie group,a ∈ Lip[R+ → L], the set of all Lipschitz functions5 from R+ into

L, the Lie algebra ofG. By considering the Magnus expansion, they have demonstrated, us-

ing a numerical method, how to write the Magnus expansion in terms of nested commutators

[a(t1), [a(t2), [. . . , [a(tk−1), a(tk)] . . .]]] of a(ti) at different nodesti ∈ [t0, t0 + h], whereh is the

time step size. They observed that this numerical method requires the evaluation of a large

5 A real-valued functionf is said to be a Lipschitz function if and only if it satisfies:| f (x) − f (y)| ≤ c|x− y|,

for all x andy , wherec is a constant independent ofx andy.
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number of these commutators, which can be accomplished in tractable manner by exploiting

the structure of the Lie algebra.

Different strategies have been developed to reduce the total number of commutators, e.g.

the use of so-called time symmetry property6 and the concept of a graded free Lie algebra [42].

In their joint work [4], the three authors S. Blanes, F. Casas, and J. Ros proposed to apply di-

rectly the recurrence of Magnus expansion, described in (4.3), in numerical version to a Taylor

series expansion of the matrixA(t). They reproduced the Magnus expansion terms with a linear

combination of nested commutators involvingA.

These authors pursued this strategy with a careful analysisof the different terms of the Mag-

nus expansion by considering its behaviour with respect to the time-symmetry. In the following,

we review the part of their work corresponding to their strategy of rewriting Magnus expansion

terms, as follows: by taking advantage of the time-symmetryproperty, they considered a Taylor

expansion ofA(t) aroundt 1
2
= t0 + h

2 as:

A(t) =
∑

i ≥0

ai(t − t 1
2
)i, whereai =

1
i!

diA(t)
dti

∣∣∣∣
t= t 1

2

, (4.26)

and computed the corresponding terms of the componentΩk(t0+h, t0) in the Magnus expansion,

where:

Ωk = hk
∑

1≤i1,...,ik≤N

βi1...ik[A(ti1), [A(ti2), [. . . , [A(tik−1),A(tik)] . . .]]] + O(h2n+1), for tik∈ [t0, t0 + h],

by taking into account the linear relations between different nested commutators due to the

Jacobi identity. We give here the calculation for the componentsΩk, up tok = 6, obtained by

their code [4, Section 3]:

6For more details about this property see [4].
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Ω1 = q1 +
1
12

q3 +
1
80

q5 +
1

448
q7 .

Ω2 =
−1
12

[q1, q2] +
(−1
80

[q1, q4] +
1

240
[q2, q3]

)
+

( −1
448

[q1, q6] +
1

2240
[q2, q5] −

1
1344

[q3, q4]
)
.

Ω3 =
( 1
360

[q1, [q1, q3]] −
1

240
[q2, [q1, q2]]

)
+

( 1
1680

[q1, [q1, q5]] −
1

2240
[q1, [q2, q4]] +

1
6720

[q2, [q2, q3]]+

1
6048

[q3, [q1, q3]] −
1

840
[q4, [q1, q2]]

)
.

Ω4 =
1

720
[q1, [q1, [q1, q2]]] +

( 1
6720

[q1, [q1, [q1, q4]]] −
1

7560
[q1, [q1, [q2, q3]]] +

1
4032

[q1, [q3, [q1, q2]]]+

11
60480

[q2, [q1, [q1, q3]]] −
1

6720
[q2, [q2, [q1, q2]]]

)
.

Ω5 =
−1

15120
[q1, [q1, [q1, [q1, q3]]]] −

1
30240

[q1, [q1, [q2, [q1, q2]]]] +
1

7560
[q2, [q1, [q1, [q1, q2]]]] .

Ω6 =
−1

30240
[q1, [q1, [q1, [q1, [q1, q2]]]]] ,

whereqi = ai−1hi, for i ≥ 1, are matrices.

The setE := {qi : i ∈ N} can be considered as a generating set of a graded free Lie algebra,

with |qi | = i [42]. In their computations, S. Blanes, F. Casas, and J. Ros computed the dimen-

sions of the graded free Lie algebraL(E) generated by the setE, according to Munthe-Kaas

and Owren’s work [42]. Also, they computed the number of elements of the Lie algebraL(E)

appearing in the Magnus expansion, when a Taylor series ofA(t) aroundt = t0 andt = t 1
2

re-

spectively.

Here, we review some of their computations as follows: at theorder s = 4, we have

dim
≤ 4L = 7, with basis elementsq1, q2, q3, q4, [q1, q2], [q1, q3], [q1, [q1, q2]], such that six of

these elements appear in Magnus expansion aroundt = t0, that are:q1, q2, q3, q4, [q1, q2], [q1, q3],

with two commutators. Whereas, three elements,q1, q3, [q1, q2], only appear in Magnus expan-

sion aroundt = t 1
2
, with one commutator, as it is shown above. For more details about these

results see [4, section 3, pages 439-441].
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Now, we try to introduce a combinatorial vision of the work above, using the notion of

the monomial basis for free Lie algebraL(E), that we obtained in Chapter 3. LetPL( ) (re-

spectivelyPL(E)) be the free pre-Lie algebra with one generator "" (respectively generated by

the set
{ai : ai ∈ E

}
), together with the grafting "→". DenoteP̂L( ) (respectivelyP̂L(E)) by

the completion ofPL( ) (respectivelyPL(E)) with respect to the filtration given by the degree,

which are pre-Lie algebras together with the pre-Lie grafting. Leta =
∑
e∈E

λe
e be an element in

P̂L(E), that is an infinite linear combination of the generatorse
, e∈ E.

Define the mapGa : PL( ) → P̂L(E) to be the unique pre-Lie homomorphism that is

induced by the universal property of the freeness ofPL( ):

{ }
�
� i //

f ""E
EE

EE
EE

E
PL( )

Ga
��

P̂L(E)

Figure 4.1.

such thatGa( ) = a.

Lemma 4.9. For any (undecorated) planar rooted treeτ, we have:

Ga
(
Ψ(τ)

)
=

∑

δ:V(τ)→E

( ∏

v∈V(τ)

λδ(v)

)
Ψ(τδ), (4.27)

whereΨ : T E
pl → T

E, in the right hand side, is defined in Subsection 2.1.2 (we usethe same

letter for the undecorated version fromTpl ontoT ), and whereτδ ∈ TE
pl is the treeτ decorated

according to the mapδ.

Proof. Let τ be any (undecorated) planar rooted tree, we have thatΨ(τ) = m( ,→) is a

monomial, inPL( ), of the one-vertex tree "" multiplied (by itself) using the pre-Lie product

"→". From the definition ofGa above, we get:

Ga
(
Ψ(τ)

)
= Ga

(
m( ,→)

)
= m(a,→), (4.28)

wherem(a,→) is the monomial of "a", in P̂L(E), induced from the monomialm( ,→) by send-

ing the one-vertex tree into its imageGa( ) = a.

We proceed by induction on the numbern of vertices, the casen = 1 being obvious. Suppose

that the formula (4.27) is true up ton− 1 vertices. Letτ ∈ Tn
pl, we have thatτ can be written in
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a unique way asτ = τ1
◦
ցτ2, hence:

Ga
(
Ψ(τ)

)
= Ga

(
Ψ(τ1
◦
ցτ2)

)

= Ga
(
Ψ(τ1)→ Ψ(τ2)

)

= Ga
(
Ψ(τ1)

)
→ Ga

(
Ψ(τ2)

)

=
∑

δ1:V(τ1)→E
δ2:V(τ2)→E

( ∏

v∈V(τ1)

λδ1(v)

∏

v′∈V(τ2)

λδ2(v′)

)
Ψ(τ1, δ1

)→ Ψ(τ2, δ2
)

=
∑

δ:V(τ)→E

( ∏

v∈V(τ)

λδ(v)

)
Ψ(τδ), (by settingτδ = τ1, δ1

◦
ցτ2, δ2

).

�

Lemma 4.10.The pre-Lie Magnus elementΩ̇(a) in P̂L(E) can be rewritten as:

Ω̇(a) =
∑

τ∈Te1
pl

γ(τ) Ga
(
Ψ(τ)

)
, (4.29)

where a=
∑
e∈E

λe
e
∈ P̂L(E).

Proof. From Theorem 4.4 and lemma 4.5, we have that:

Ω̇( ) =
∑

τ∈Te1
pl

γ(τ) Ψ(τ). (4.30)

We have thaṫΩ( ) is an element in̂PL( ), and the mapGa can be extended linearly from̂PL( )

into P̂L(E), such that:

Ω̇(a) := Ga

(
Ω̇( )

)
=

∑

τ∈Te1
pl

γ(τ) Ga
(
Ψ(τ)

)
.

This proves the Lemma. �

In Lemma 4.9 above, let us denoteλ(τδ) :=
∏

v∈V(τ)
λδ(v). Hence, we can simplify the formula

(4.27) as:

Ga
(
Ψ(τ)

)
=

∑

δ:V(τ)→E

λ(τδ) Ψ(τδ). (4.31)

Consequently, we can get the following result.

Proposition 4.11.The pre-Lie Magnus expansion can be rewritten:

Ω̇(a) =
∑

σ ∈TE,e1
pl

γ(σ) λ(σ)Ψ(σ), (4.32)

for anyσ ∈ TE, e1
pl . Hereγ : T E

pl → K defined as in(4.16), forgetting the decoration.
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Proof. From Lemma 4.10, and by substitutingGa
(
Ψ(τ)

)
obtained in (4.31), we get:

Ω̇(a) =
∑

τ ∈Te1
pl

δ:V(τ)→E

γ(τ) λ(τδ)Ψ(τδ) =
∑

σ ∈TE,e1
pl

γ(σ) λ(σ)Ψ(σ).

This proves the Proposition. �

Remark 4.12. The formula for the pre-Lie Magnus expansion in(4.32)can be considered as a

generalization of the formula(4.18). In other words, it is a decorated version of(4.18), taking

into account the relation between the maps F andΨ described in Lemma 4.5.

The pre-Lie homomorphismΦ :
(
PL(E),→

)
−→

(
L(E),⊲

)
, described in (3.7) and (3.8),

respects the degree, it is then continuous for the topologies defined by the corresponding de-

creasing filtrations7. We denote by the same letterΦ the pre-Lie homomorphism from the

completed pre-Lie algebrâPL(E) ontoL̂(E):

PL(E) �
� i //

Φ
����

P̂L(E)

Φ����

L(E) �
� i // L̂(E)

Figure 4.2.

We can get another representation of pre-Lie Magnus expansion, as in the following result.

Corollary 4.13. The pre-Lie Magnus expansion in̂L(E) can be rewritten as:

Ω̇(x) =
∑

σ ∈TE,e1
pl

γ(σ) λ(σ)Φ
(
Ψ(σ)

)
, (4.33)

where x= Φ(a) =
∑
e∈E

λee ∈ L̂(E), for e= Φ(e) ∈ E.

As a particular case, let us takeE =
⊔
i∈N

Ei, with #Ei = 1, for all i ∈ N, i.e. E = {ai : i ∈ N},

such that|ai | = i, and the generators are ordered by:

a1 < a2 < · · · < as < · · · .

For anyσ ∈ TE, e1
pl , Φ

(
Ψ(σ)

)
is an element inL(E). But, from Theorem 3.20 and its

Corollary 3.21, we have that the set̃B =
{
Φ(t) : t ∈ O(I )

}
forms a monomial basis for the

pre-Lie algebra
(
L(E),⊲

)
(respectively for the free Lie algebra

(
L(E), [·, ·]

)
), where the pre-Lie

product "⊲" is defined in (3.2), hence:

7These topologies are induced by metrics defined on pre-Lie algebra using compatible decreasing filtrations

described in Paragraph 1.4.1.
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Φ
(
Ψ(σ)

)
= α1Φ(t1) + α2Φ(t2) + · · · + αkΦ(tk),

is a linear combination of basis elementsΦ(ti), ti ∈O(I ), multiplied by coefficientsαi ∈K, for

all i = 1, . . . , k, whereI is the (two-sided) ideal defined by (3.9). Thus, the pre-Lie Magnus

expansion in (4.33) can be expressed using the monomial basis elementsΦ(t), for t ∈ O(I ).

Here, we calculate the few first reduced pre-Lie Magnus elements Ω̇n(x) in L̂(E), up to

n = 5:

Ω̇1(x) = λ1a1.

Ω̇2(x) = λ2a2.

Ω̇3(x) = λ3a3 − B2
1λ1λ2 a1 ⊲ a2.

Ω̇4(x) = λ4a4 + B1
2
3
λ1λ3 a1 ⊲ a3 + B2

1

1
2
λ2

1λ2 (a1 ⊲ a2) ⊲ a1.

Ω̇5(x) = λ5a5 + B1
(3
4
λ1λ4 a1 ⊲ a4 +

1
3
λ2λ3 a2 ⊲ a3

)
+ B1

5
9
λ2

1λ3 (a1 ⊲ a3) ⊲ a1 + B2
1

11
12
λ3

1λ2
(
(a1 ⊲ a2) ⊲ a1

)
⊲ a1,

and usingai ⊲ a j =
1
|ai |

[ai , a j], for all i, j, we get:

Ω̇1(x) = λ1a1.

Ω̇2(x) = λ2a2.

Ω̇3(x) = λ3a3 − B2
1λ1λ2 [a1, a2].

Ω̇4(x) = λ4a4 + B1
2
3
λ1λ3 [a1, a3] + B2

1

1
6
λ2

1λ2 [[a1, a2], a1].

Ω̇5(x) = λ5a5 + B1
(3
4
λ1λ4 [a1, a4] +

1
6
λ2λ3 [a2, a3]

)
+ B1

5
36
λ2

1λ3 [[a1, a3], a1] + B2
1

11
144

λ3
1λ2

[
[[a1, a2], a1], a1

]
.

Here, we link between our work in Chapter 3, on the pre-Lie construction of the Lie alge-

bras, and the work of S. Blanes, F. Casas and J. Ros [4], on the writing of Magnus expansion.

Firstly, we shall consider the generators{qi : i ≥ 1}, of the Lie algebraL(E) in their work, as

matrix-valued functions inh. Define a pre-Lie product on the set of formal power serieshR[[h]]

by:

( f ⊲ g)(h) := [

h∫

0

f (s)
s

ds, g(h)], for any f , g ∈ hR[[h]] . (4.34)

This pre-Lie product described in (4.34) can be visualized as in the following diagram:
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hR[[h]] ⊗ hR[[h]]
⊲ //

1
h⊗

1
h
��

hR[[h]]
OO

h

R[[h]] ⊗ R[[h]]
⊲̃ // R[[h]]

Figure 4.3. The description of⊲.

where f ⊲̃g(h) = [
h∫

0

f (s)ds, g(h)]. Hence, forqi(h) = ai−1hi , q j(h) = a j−1h j any two generators

of L(E), we can apply the pre-Lie product defined above in (4.34) as follows:

(qi ⊲ q j)(h) = [

h∫

0

qi(s)
s

ds, q j(h)]

= [ai−1

h∫

0

si−1ds, q j(h)]

= [
1
i
ai−1h

i, q j(h)]

=
1
i
[qi , q j](h),

where|qi | = i, for i ≥ 1. Simply, we shall writeqi ⊲ q j =
1
|qi |

[qi , q j], for all i, j ≥ 1. In following,

we rewrite the calculations of the three authors for the componentsΩk up tok = 6, using the

pre-Lie product defined above:
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Ω1 = q1 +
1
12

q3 +
1
80

q5 +
1

448
q7 .

Ω2 =
−1
12

(q1 ⊲ q2) +
(−1
80

(q1 ⊲ q4) +
1

120
(q2 ⊲ q3)

)
+

( −1
448

(q1 ⊲ q6) +
1

1120
(q2 ⊲ q5) −

1
448

(q3 ⊲ q4)
)
.

Ω3 =
( 1
360

(q1 ⊲ (q1 ⊲ q3)) −
1

120
(q2 ⊲ (q1 ⊲ q2))

)
+

( 1
1680

(q1 ⊲ (q1 ⊲ q5)) −
1

1120
(q1 ⊲ (q2 ⊲ q4))+

1
1680

(q2 ⊲ (q2 ⊲ q3)) +
1

2016
(q3 ⊲ (q1 ⊲ q3)) −

1
210

(q4 ⊲ (q1 ⊲ q2))
)
.

Ω4 =
1

720
(q1 ⊲ (q1 ⊲ (q1 ⊲ q2))) +

( 1
6720

(q1 ⊲ (q1 ⊲ (q1 ⊲ q4))) −
1

3780
(q1 ⊲ (q1 ⊲ (q2 ⊲ q3))) +

1
1344

(q1 ⊲ (q3 ⊲ (q1 ⊲ q2))) +
11

30240
(q2 ⊲ (q1 ⊲ (q1 ⊲ q3))) −

1
1680

(q2 ⊲ (q2 ⊲ (q1 ⊲ q2)))
)
.

Ω5 =
−1

15120
(q1 ⊲ (q1 ⊲ (q1 ⊲ (q1, q3)))) −

1
15120

(q1 ⊲ (q1 ⊲ (q2 ⊲ (q1 ⊲ q2)))) +
1

3780
(q2 ⊲ (q1 ⊲ (q1 ⊲ (q1 ⊲ q2)))) .

Ω6 =
−1

30240
(q1 ⊲ (q1 ⊲ (q1 ⊲ (q1 ⊲ (q1 ⊲ q2))))).



APPENDIX A

Here, we calculate the matricesM5,M6, described below, of the restriction of̃ΨS to the

homogeneous componentT5 andT6 respectively, in the case of undecorated rooted trees corre-

sponding to our work in this thesis in Chapter 2, Subsection 2.2.2:

(i) The matrixM5, in the tree basis
{
, , , , , , , ,

}
, is:

M5 =



1 1 1 1 1 1 1 1 1

0 1 0 1 0 0 1 0 1

0 0 1 3 1 0 0 1 3

0 0 0 1 0 0 0 0 1

0 0 0 0 1 0 0 1 3

0 0 0 0 0 1 1 2 4

0 0 0 0 0 0 1 0 4

0 0 0 0 0 0 0 1 6

0 0 0 0 0 0 0 0 1



.

(ii) The matrixM6, in the tree basis

{
, , , , , , , , , , , , , , , , , , ,

}
,

is showed by:

83
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M6 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1

0 0 1 3 1 0 0 1 3 0 0 0 0 1 3 1 0 0 1 3

0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 1 0 0 1 3 0 0 0 0 0 0 1 0 0 1 3

0 0 0 0 0 1 1 2 4 1 1 0 0 0 0 0 1 1 2 4

0 0 0 0 0 0 1 0 4 0 1 0 0 0 0 0 0 1 0 4

0 0 0 0 0 0 0 1 6 0 0 0 0 0 0 0 0 0 1 6

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 1 1 4 10

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 10

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 2 2 3 5

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 2 0 5

0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0 0 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 3 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



.
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