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Chapter 1

Introduction

For more than 150 years, after the world’s first commercial extraction of rock-oil by
James Miller Williamsin Oil Springs (Ontario, Canada)in 1858, exploration and mining
companies worldwide face the challenge of finding new oil reserves in order to satisfy
an ever-growing energy demand. The oil discovery rate had continued to grow, and
had peaked in the 1960s. Since then, it has declined with each passing decade. The
giant oilfields — a giant oilfield is defined as containing more than 500 million barrels of
ultimately recoverable oil — are less and less discovered and their production is dropping
throughout the years, as skewed in table 1.1. In sharp contrast, the average age of the
world’s 19 largest giant fields is almost 70 years, and 70% of the daily oil supply comes
from oilfields that were discovered prior to 1970 [199].

Today, most of the shallow and easily accessible basins have already been found.
The alternative way to find new deposits is to explore much deeper below the surface
in hostile locations and extreme or challenging environments (such as deepwaters, frigid
zones and hot dusty deserts), where accessing the explored area is often difficult, and
where the complex geologic structures make it harsh to prospect the subsurface and to
extract the hydrocarbon energy stored in the rocks. Therefore, the cost of drilling in
these complex topographies is rising as the number of major new discoveries is decreasing.
As a matter of fact, the cost of drilling an onshore well is about $3.5 to $4.5 million,
that of an offshore well ranges between $23 and $68 million, while the cost of deepwater
drilling, in a complex geology for example, can grow up to $115 million [36].

To face this challenge, Oil and Gas (O&G) firms are turning to modern exploration
technologies that includes sophisticated survey techniques and cutting-edge science in

date of discovery | number of discoveries | average production per field (MMbbls)
pre-1950s 19 557
1950s 17 339
1960s 29 242
1970s 24 236
1980s 15 176
1990s 11 126

TABLE 1.1: Statistics about the discoveries of giant oilfields until the 1990s, in terms
of number and current production in Million Barrels (MMbbls). From [199].



order to glean the location and character of crude oil deposits while reducing the uncer-
tainty of exploration, and thus improving drilling success rates. Indeed, the industry is
developing new seismic acquisition techniques and new imaging technologies that provide
vital information needed before drilling. More importantly, seismic imaging technologies
help to remotely identify oil accumulations trapped tens of kilometers underground and
undersea. The seismic acquisition is the process of sending acoustic waves through the
subsurface and collecting the echoes reflected by the rock layers, and seismic imaging
(or depth imaging) delineates the subsurface geologic structures from the collected data.
Amongst the seismic imaging techniques, Reverse Time Migration (RTM) is by far the
most famous computer based technique used in the industry because of the quality and
integrity of the images it provides. O&G companies trust RI'M with crucial decisions on
drilling investments. However, RTM consumes prodigious amounts of computing power
across extremely large datasets (tens of terabytes of data), which requires large memory
capacities and efficient storage solutions. Throughout the last decades, theses heavy
requirements have somewhat hindered its practical success.

Given the enormous amounts of data that must be processed, analyzed, and vi-
sualized in the least amount of time, O&G organizations are today leveraging High
Performance Computing (HPC) technologies for seismic imaging, to stay ahead. In par-
ticular, organizations are deploying ever more powerful and highly honed computational
workflows on a variety of HPC facilities. With the advances in processor technology over
the past few years, today’s HPC clusters are capable of providing petaflops! of compute
capabilities and are slowly heading to the exascale era?, making them an appropriate
match for the challenges in the O&G industry. Today, it is not unusual for O&G com-
panies to rely on clusters built around the latest multicore CPUs, with petabytes of
storage and with the fastest-available network infrastructures, in order to spread work-
loads across an array of compute nodes [57, 145, 172]. Additionally, O&G exploration
firms are trying to accelerate seismic processing workflows, such as RTM, by optimizing
their increasingly sophisticated algorithms to take advantage of hardware accelerators,
such as graphic processing units (GPUs) [23, 63, 147], field-programmable gate arrays
(FPGAs) [63] and the Intel Xeon Phi processors [84]. GPUs are the most widely de-
ployed, given the massively parallel nature of their architecture and hardware design
which makes them a good fit for RTM (and similar algorithms such as Kirchhoff migra-
tion) workloads.

However, the deployment of seismic workloads on high-end CPU clusters and GPU
based solutions have shown several restrictions in terms of performance, memory capac-
ities and power consumption. The use of GPU technologies also introduces additional
technical challenges to the table. Adapting seismic imaging applications to GPUs re-
quires mastering novel programming models such as CUDA and OpenCL which may
be considered as a difficult task for scientists (especially geophysicists) whose primary
concern is introducing more physics and accuracy to the algorithms. Besides, unlike
mainstream processors, a GPU acts like a co-processor in a system, and is intercon-
nected to the main CPU via a PCI Express bus (gen 2 or gen 3). This implies particular
manipulations, in terms of computations and memory management.

Recently, AMD has proposed the APU technology: a combination of a CPU and an
integrated GPU on the same silicon die, and in a small power envelope. With the APUs,

' A petaflops is 10'® Flop/s, a Flop/s is a measure of computer performance that corresponds to the
number of floating point operations a processor is capable to carry out per second.
*When HPC facilities will be able to achieve a performance at the order of exaflops (10*® Flop/s).
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AMD has introduced a new on-chip interconnect that puts together the CPU and GPU
featuring a unified memory between the CPU and the GPU. Throughout this work,
we therefore assess the relevance of APUs in the seismic workloads arena. By means
of memory, applicative and power efficiency benchmarks as well as a CPU/APU/GPU
comparative study on both the node level and the large scale level, we try to find out
whether the APU technology can deliver a compromise solution, in terms of applica-
tion performance, power efficiency and programming complexity, that is profitable and
valuable in an O&G exploration context.

The first part of the dissertation is dedicated to a state of the art review. We
start in chapter 2, by introducing the different stages of the modern seismic exploration
chain. We emphasize the workflow of the seismic migrations, that of the RTM in par-
ticular. Then we present the mathematical tools and numerical methods that are used
in a seismic exploration context. In chapter 3, we summarize the current advances in
HPC in terms of hardware architectures, programming models and power consumption.
We follow up in chapter 4, by giving an overview of state-of-the-art accelerated im-
plementations of the stencil computations (an important building block of the seismic
applications), as well as state-of-the-art accelerated RTM implementations and similar
workflows.

The chapter 5 is a detailed description of the position of this thesis as well as a
presentation of our contributions.

We follow up with the second part of this thesis, which is dedicated to our con-
tributions. In chapter 6, we start with a thorough evaluation of the APU technology.
The evaluation includes the assessment of the new memory model, a performance study
and comparison between CPU, GPU and APU by means of applicative benchmarks, a
power efficiency evaluation (where we describe our power measurement methodology),
the feasibility of the hybrid utilization (CPU+GPU) of APUs, and a performance study
of directive based implementations of the stencil computations. Then in chapter 7, we
study the performance, power efficiency and the programmability of two seismic appli-
cations at the node level: the seismic modeling, which is considered as the first step of
the seismic migration workflow, and the RTM. We conduct a performance and power
efficiency comparisons between the CPU, GPU and APU to assess the relevance of APUs
in this context. In the chapter 8, we extend our study to the large scale implementa-
tions of the seismic modeling and of the seismic migration (RTM) on a CPU cluster,
on a GPU cluster and on an APU cluster. We try throughout this chapter to find out
whether the RTM implementation on the APU cluster might be a valuable solution
that addresses the limiting factors on the CPU and GPU based solutions. Finally, we
conclude in chapter 9 with a mention to possible perspectives.
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Chapter 2

Geophysics and seismic
applications

Contents

2.1 Introduction to seismic exploration. . .. ... ... ... ..

2.1.1 Seismic acquisition . . . . ... ..o oo 9
2.1.2  Seismic processing . . . . . ... oo 11
2.1.3 Seismic interpretation . . . . . .. ... ... 14
2.2 Seismic migrations and Reverse Time Migration (RTM) . . 14
2.2.1 Description and overview of migration methods . . . . . . . .. 14
2.2.2 Reverse Time Migration . . . . . . .. .. ... ... ... ... 16
2.3 Numerical methods for the wave propagation phenomena . 18
2.3.1 The wave equation . . . . . . . .. ... .. 19
2.3.2  Numerical methods for wave propagation . . . ... ... ... 22
2.3.3 Application to the acoustic wave equation . . . . . .. ... .. 25

Hydrocarbon exploration remains very challenging for the mainstream O&G industry.
Substantial efforts are put to maximize the production of discovered reservoirs and ex-
plore new ones, albeit very rare (see figure 2.1). The industry relies on geophysics and
more specifically on seismic exploration to transform vibrations, induced in the earth
from various sources, into interpretable subsurface pictures and models. The pressing
need for sharper and more informative structural images pushes the industry to perma-
nently innovate and tackle a host of grand challenges in terms of seismic technology: to
identify lithology (rock types), to infer petrophysical properties, to estimate the fluid
content etc.

In this chapter, we present a brief overview of the basic goals and procedures for seismic
exploration. We define the seismic migration operation since it is considered as the main
imaging tool for petroleum deposits mapping, and we emphasize on the Reverse Time
Migration (RTM) which is being increasingly used by the industry at the heart of a wide
range of seismic imaging applications. We also review some fundamental mathematics
associated with the wave propagation phenomenon, being the essential and mandatory
tool to help understand the physics behind the seismic exploration.
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FIGURE 2.1: Oil discoveries and oil production, 1930 to 2050. Extracted from [25].
2.1 Introduction to seismic exploration

The principal goal of seismic exploration, more commonly referred to as exploration
geophysics or also as reflection seismology and often abbreviated as seismic, is to obtain
structural subsurface information from seismic data i.e. data collected by recording
elastic or acoustic wave motion on Earth. Seismic is one of the geophysical methods,
summarized in table 2.1, used in hydrocarbon exploration. The primary environments
for seismic exploration are land (onshore), and marine (offshore). The land environment
covers almost every type of terrain that exists on Earth, each bringing its own logistical
problems. That includes jungle, desert, forest etc. The marine environment consists
essentially of seas and oceans. However, there are also transition zones (TZ), i.e. the
areas where the land meets the sea such as rivers, presenting unique challenges because
the water is too shallow for large seismic vessels but too deep for the use of traditional
methods of exploration on land.

Method Measured parameter Physical property
. Spatial variations in the strength of .
t . D t
Gravity the gravitational field of the Earth ensity
. Spatial variations in the strength of | Magnetic susceptibility
Magnetic .
the geomagnetic field and remanence
. . Electric conductiv-
. Response to electromagnetic radia- | . e
Electromagnetic . ity /resistivity and
tion .
inductance
Seismic Travel times of reflected/refracted | Seismic velocity (and
seismic waves density)

TABLE 2.1: A summary of the geophysical methods used in hydrocarbon exploration.
From the University of Oslo, Department of Geosciences.
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acquisition é processing @ interpretation

FIGURE 2.2: The seismic exploration workflow.

Seismic exploration allows the O&G industry to map out subsurface deposits of crude
oil, natural gas, and minerals by seismically imaging the earth’s reflectivity distribution.
It is also used by petroleum geologists and geophysicists to interpret potential petroleum
reservoirs, by extracting the seismic attributes out of the obtained images. The seismic
exploration workflow, as described in figure 2.2, consists of three main stages: seismic
acquisition, seismic processing and seismic interpretation'. For general informations
about seismic exploration, the reader is kindly referred to Biondi [41], Coffeen [65],

Sengbush [192] and Robein [181, 182].

2.1.1 Seismic acquisition

Seismic acquisition is the act of gathering data in the field, and making sure that it is of
sufficient quality (this requires pre-processing such as noise attenuation and filtering).
In seismic acquisition, an elastic or acoustic wavefield is emitted by a seismic source
at a certain location at the surface. The reflected wavefield is measured by receivers
located along lines (2D seismics) or on a grid (3D seismics). We refer to this process
as a shot experiment. After each shot the source is moved to another location and the
measurement is repeated. Figure 2.3 distinguishes between the land seismic acquisition
(onshore) and the marine seismic acquisition (offshore). In land surveys, the seismic
source can be a wvibroseis or dynamite, the receivers are called geophones and are towed
by trucks. In marine surveys, the source is often an air gun and the receivers are
designated as hydrophones and are towed by vessels.

In order to collect data, many strategic choices have to be made. They are related
to the physics and the location of the survey area, to the geometry of the acquisition

1This categorization is becoming more and more obsolete as technologies, that repeatedly iterate
through those three stages, are emerging [179)].

(a) Onshore seismic acquisition. (b) Offshore seismic acquisition.

FIGURE 2.3: Seismic acquisition steps at land (a) and at sea (b): 1) the seismic source

emits controlled energy; 2) the seismic energy is transmitted and reflected from the

subsurface layers; 3) the reflected energy is captured by receivers placed on the surface;
4) the acquisition systems record the data and pre-process it. From Sercel [193].
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FIGURE 2.4: Seismic acquisition geometries: from left to right, Narrow Azimuth Towed
Streamers, Multi-Azimuth, Wide Azimuth Towed Streamers. From PGS [174].

and to the accuracy of the targeted geophysical properties. These choices are often
driven by economic considerations, since the cost of a survey may vary from $18.000
to $45.000 per square mile [21]. For example, specific acquisition parameters such as
energy source effort and receiver station intervals, together with the data recording
or listening time, have to be carefully defined. In addition, in the old days 2-D seismic
reflection (see figure 2.5a) was the only tool for exploration because cost effective. Today,
conventional 2-D seismic is only able to identify large structural traps while 3-D seismic
(see figure 2.5b)? is able to pinpoint complex formations. Therefore, 3-D reflection has
entirely replaced 2-D seismology in the O&G industry, albeit expensive. Furthermore,
the acquisition geometry determines the coverage azimuth range and the consistency
level of the illumination of reservoirs. Figure 2.4 represents schematic diagrams of the
common acquisition geometries used in the O&G industry. The reader can find more
detailed descriptions about the most common seismic acquisition geometries in [115].
Further, one can learn about cutting edge technologies in terms of seismic surveys, such
as coil shooting in [101].

The basic principle of the seismic reflection is explained in figure 2.5. We differentiate
between the 2-D seismic acquisition and the 3-D seismic acquisition, but the principle
remains the same in the two cases. We activate a source (5) to send artificially-generated
seismic waves into the subsurface. The waves get reflected off layer boundaries (called
reflectors in the seismic literature). We record the arrival times and amplitudes of the
reflected waves on the surface and detected by the receivers (Ry. ).

The size and scale of seismic surveys has increased alongside the significant concur-
rent increase in compute power during the last years. The collected data, i.e. seismic
traces (see figure 2.6), is often humongous and was stored, in the past, in tapes and was
very hard to process by computers. Each seismic trace corresponds to a seismic signal
detected by one receiver throughout time. A wide variety of seismic data formats were
proposed to digitize the seismic data and standardize its manipulation; the most famous
ones in the industry are SEGY [191], SEP [200], SU [66] and RSF [148], to name a few.
So far, the choices of seismic survey parameters such as the shot position (the position of
the seismic source), the shot interval (the distance between two successive seismic per-
turbations), the receiver interval (the distance that separates two successive receivers
situated in the same streamer), the shooting frequency (the frequency of activating the
seismic source), etc. are of prime importance as they make immediate impact on the

2This is only a simplified illustration of the 3-D seismic reflection. In the industry, more than one
seismic source is required to conduct a 3-D survey.
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FIGURE 2.5: Seismic surveys in 2-D (a) and in 3-D (b). The seismic source is the red

sign. Receivers are the orange triangles. Dotted black lines are basic representations

of the subsurface reflectors. Green lines represent the covered area. Dashed gray lines
illustrate the wave energy paths. The blue lines (in b) are called streamers.

generated seismic traces which are used in the following stages of the seismic exploration
cycle.

2.1.2 Seismic processing

In the seismic processing stage, we want to manipulate the gathered data, after acquisi-
tion, such that we generate an accurate image of the subsurface. A long run separates
the raw data from being transformed into structural pictures. Processing consists of the
application of a chain of computer treatments to the acquired data, guided by the hand

offset (m) offset (m)
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(a) From a land survey. (b) From a marine survey.

FIGURE 2.6: Example of seismic traces. Each wiggle is an illustration of the evolution

of the wave amplitude, as well as the wave travel time, as a function of the “offset” (in

meters) throughout time (in seconds) as measured by a given receiver. The offset is the

distance between each receiver and the seismic source. Source Drijkoningen, TU Delft
[78].
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FIGURE 2.7: Signature deconvolution and stacking. Source CGG.

of processing geophysicists. There is neither a standard classification nor an order to
define theses operations because they depend on the nature of the collected data, in the
one hand, and because processing is a subjective manipulation, in the other hand. We
try, throughout this section, to describe the most relevant processing routines and leave
the opportunity to the reader to dive into the geophysics literature [59, 127, 143, 181],
in order to learn more about seismic processing.

To begin with, the reflected seismic response can be a mixture of the seismic source
pulse, the effect of the Earth upon that pulse, and background noise, all convolved
together. The data is usually cleaned up from those spurious signals that might have
been accumulated during seismic surveys. For instance, the seismic source may introduce
signals, into the Earth, to which the underlying structures remain irresponsive because
they do not depend on the signal put in. Those signals have to be removed. This is
considered as pre-processing or data conditioning, and usually includes signal processing
techniques, such as signal deconvolution and anti-aliasing filtering. Figure 2.7a shows
an example of a seismic trace after applying a signal deconvolution.

Besides, seismic traces are usually sorted and those that share the same geometry
properties are stacked, i.e. the signals are summed, to attenuate the background noise
and thus increase the signal-to-noise ratio. The more seismic traces we can stack together
into one seismic trace, the clearer is the seismic image. Stacking can be done by putting
together traces from the same reflecting point (Common Reflection Point (CRP) stacking
or CRP gather), from the same shot position (Common Shot Gather (CSG)), from the
same midpoint (Common Midpoint (CMP) stacking) or from the same depth point
(Common Depthpoint (CDP) stacking)® etc. [59]. Figure 2.7b emphasizes the noise
attenuation after the CRP stacking of six seismic traces.

Furthermore, before arriving at the receivers the seismic energy may be reflected
a number of times: this is known as the multiple reflections phenomenon (see figure
2.8) as opposed to primary reflections. For example, during offshore surveys, the energy
bouncing back-and-forth within the water produces false reflections and obscures the real
data. Multiple attenuation is needed to remove multiples embedded in the data without
interfering with primary events. This is referred to as Demultiple in the literature, and
many advanced numerical algorithms are proposed to do so, such as Surface-Related
Multiple Elimination (SRME) [144]. Note that some research, such as Guitton [99],
focus on imaging the multiples and integrating them to the primary reflections rather

3In the case where the reflectors are horizontal, CDP is equivalent to CMP stacking.
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FIGURE 2.8: Tllustration of the multiple reflections. Source Ashton C. et al. [35].

than removing them. Another seismic processing is seismic traces interpolation. This
manipulation is used to enhance the energy and highlight the areas close to the subsurface
reflectors. Any missing seismic trace is filled in by signal interpolation.

At this point, the data is ready to more advanced processing operations such as
seismic imaging or inversions [44]. The main goal of seismic imaging is to transform the
pre-processed seismic traces to the most accurate possible graphical representation of the
Earth’s subsurface geologic structure. A key point in imaging is that the reflected wave
is proportional to the amplitude of the incidence wave. The proportionality coefficient
is called the refiection coefficient. Imaging has the objective of computing this reflection
coefficient. Hence, the final image is a representation of the reflection coefficient at each
point of the subsurface. This can be performed by means of seismic migration.

Migration is using the two-way travel time, amongst other attributes provided by
seismic traces, to place (or migrate) the dipping temporal events in their true subsur-
face spatial locations. Processing these reflections produces a synthetic image of the
subsurface geologic structure. We show in figure 2.9 an example of a seismic processing
chain. The traces in 2.9a are subject to a water bottom multiple reflection (arrowed).
In 2.9b, it is removed by demultiple and the image shows the result of suppressing the
water bottom multiple. The seismic traces are, then, enhanced by interpolation in 2.9c¢.
Finally, the image, in 2.9d most closely resembles the true sub-surface geology. It is ob-
tained after seismic migration. More advanced processing techniques, such as Prestack

offset (m) ~offset (m) offset (m) cdp (m

time (s)
time (s)

FIGURE 2.9: The result of a sequence of seismic processing algorithms. (a) represents

the raw traces. From (a) to (b) demultiple is applied. From (b) to (c) interpolation is

performed. From (c) to (d) seismic migration is used to produce the final subsurface
image. Source CGG.
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Depth Migration (PSDM), can significantly improve seismic imaging, especially in areas
of complex geology. Finally, we recall the seismic processings are numerous and require
advanced mathematical algorithms. Those are often applied to 3D seismic data which
require enormous computing resources. Not to mention the massive volumes of data
involved.

2.1.3 Seismic interpretation

The final stage of the seismic exploration cycle is seismic interpretation. The purpose
of interpretation is to interpret the processed seismic images and integrate other geo-
scientific information in order to make assessments of where the O&G reservoirs may
be accumulated and to learn about their characterization. Interpreters or interpretation
geophysicists, are involved at this stage to analyse the seismic data. Relevant information
consist of structures and features which can be related to geological phenomena such as
faults, fractures, anticlines etc. This can deliver valuable insights about the nature of
rocks, about which time they were formed and about their environment.

Computer algorithms are used to help interpret seismic data. For instance, numeri-
cal algorithms are used for the calculation of seismic attributes such as amplitude, phase
and frequency based on the migrated seismic image. In practice, the seismic attributes
(especially the amplitude) are related to the subsurface reflectivity which in turn pro-
vides information about the rock and the pressure-formation. Other seismic attributes
are used in interpretation, namely coherence, dip and azimuth, and gradient correlation
cube. For instance, the coherence is an attribute that measures the continuity between
seismic traces in a specified window, applied on a seismic section. Figure 2.10 shows a
composite of a section of a 3D seismic cube and a section of the corresponding coherence
cube. For other examples of attributes calculation used in the interpretation stage we
refer the reader to Abdelkhalek [22].

2.2 Seismic migrations and Reverse Time Migration (RTM)

In section 2.1 we have mentioned that seismic migration is classified as a final processing
step in order to generate structural pictures of the subsurfaces. It is in fact the most
important routine of the whole processing flow. In this section, we give a short overview
of seismic migrations in general. We particularly insist on the Reverse Time Migration
(RTM), where we describe the components of its workflow along with its advantages
compared with the conventional migration techniques.

2.2.1 Description and overview of migration methods

The purpose of migration is to reconstruct the reflectivity distribution of the buried
structures on Earth, from the seismic data recorded at the surface. For that to do,
reflections events (especially non zero-offset reflections) are collapsed and moved, i.e.
migrated, to their proper spatial location. Schustler [188] explains how seismic traces
are migrated, and enumerates the challenges that might be related to migration such as
diffraction, out-of-plane reflections and conflicting dips.
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FIGURE 2.10: A seismic section (colored) superposed by its corresponding coherence
attribute section (grayed). The color bar is the amplitude and the gray scale is to
evalute the coherence. Courtesy of Abdelkhalek, Total S.A [22].

Migration relies upon pre-processed input data (seismic traces) and an accurate
velocity model. Synthetic velocity models were proposed (see figure 2.11) by the O&G
community in order to validate migration algorithms and display their potential power
for imaging complex structures. However, in the case of real data, the velocity model
of the subsurface is unknown. As a matter of fact, migration relies on various velocity
estimation procedures, e.g. iterative prestack migration [42], to aid in imaging. In
other words, migration is also a velocity analysis tool. Conceptually, migrations can
be categorized with respect to different parameters. From a dimensionality perspective,
migration is either 2D or 3D. 3D migration requires data to be acquired in 3D and
presents rich azimuth content.

From data stacking standpoint, migration can be prestack or poststack. In poststack

b) The BP 2004 del [190].
(a) The Marmousi model [116]. (b) The model [190]

FI1GURE 2.11: Examples of synthetic velocity models provided by the O&G community.
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migration, the seismic traces are stacked in bins, each of which is reduced to only one
seismic trace. This is much less expensive to process but is also less accurate. In prestack
migration, traces are not stacked and every single trace is processed which require huge
computational effort.

Furthermore, we can categorize migrations upon wether they support or not lateral
velocity variations. Time migration is insensitive to lateral variation of the velocities and
is more appropriate to constant and depth dependent velocities. In the contrary, depth
migration can handle strong variations of the velocities and is thus more appropriate for
complex geological structures.

Mathematically, we can split migrations into two categories. The first one is Ray-based
migrations, such as Kirchhoff migration and Beam migration [105]. The second is Wave-
field extrapolation migrations, such as One-way migration and Two-way migration [159].

Historically, migration was achieved by graphical methods in the 1960’s [194]. This
was followed by diffraction summations. In the 1970’s, several important developments
took place. Based on the pioneering work of Jon Claerbout [59, 60], migration methods
based on wave theory were developed. Claerbout derived migration as a finite-difference
solution of an approximate wave equation. Kirchhoff wave-equation migration (Schnei-
der [186], Gardner [89]), and frequency-wavenumber migrations (Gazdag [90] and Stolt
[202]) appeared shortly thereafter. Those were initially time migration methods, but
due to the pressing need for more accuracy they were changed into depth migrations.
In the early 1980’s, Baysal et al. [37] along with Whitmore [221] and McMechan [151],
proposed the Reverse Time Migration, based on the exact wave equation. The last
twenty years have seen extensions of these methods to three dimensions and to prestack
migration, and enhancements of their efficiency and accuracy. For further reading about
migrations, we refer to [42, 94].

2.2.2 Reverse Time Migration

RTM is a two-way wave equation based pre-stack or post-stack depth migration. RTM is
becoming more and more important as a tool of seismic imaging in the O&G industry. If
the velocity model is complex or is subject to strong velocity gradients, such complexities
will produce turning (or diving) rays and multiples when using conventional migration
techniques (detailed in [188]). The RTM addresses these issues by directly using the
two-way wave equation without any approximations or assumptions. The workflow of
the RTM technique is depicted in the flowchart 2.12. Note that we do not mention in
the figure that RTM also needs a velocity model as an input and that this workflow is
repeated for each shot experiment. First, the source wavefield, i.e the wavefield whose
origin is the seismic source, is propagated forward in time (we refer to this stage as
forward modeling or also seismic modeling). Then, the receiver wavefield, i.e. a wavefield
that is incident from the receivers, is then propagated back in time (this phase is called
backward modeling or retro-propagation). Finally, the imaging condition is applied with
respect to Claerbout’s [58] imaging principle: ”a reflector exists where the source and
the receiver wavefields coincide in time and space”.

As a matter of fact, the source wavefield and the receiver wavefield are cross-correlated
throughout time. We denote I(x,y, z) the reflectivity coefficient of the subsurface, i.e.
the resulting seismic image, at the coordinate (z,y, z). The source wavefield is presented
by a (R3,N) — R function S(z,v,2,t) and the receiver wavefield by a similar function
R(z,y, z,t), each at the coordinate (x,y, z) and at time ¢. We can identify the RTM as
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F1GURE 2.12: The Reverse Time Migration flowchart.

the linear operator described in the equation (2.1).

I(xaya Z) = Zzsshot(xayaz7t> * Rshot(x7y7zvt) (21)

shot t

However, in some cases especially for large impedance contrasts and complex geological
structures, the source and receiver wavefields can not be serrated efficiently. In these
cases, the cross-correlation described in equation (2.1) leads to low frequency artefacts
and illumination effects [123].

In order to eliminate the illumination effects, the image is often divided, after cross-
correlation, by the source illumination (see equation (2.2)), or by the receiver illumina-
tion (see equation (2.3)), or even better by a combination of both source illumination and
receiver illumination (see equation (2.4)). This calculation corresponds to the imaging
condition of the RTM algorithm.

sho : t Rs 0 P t
I(ZIZ,y, Z) — Zshot Zt h t(x Y, Z, )* h t(«T Y, 2, ) (22)
Zshot Zt shot(x Y, Z, t)
sho ’ Rs 0 Y
Ly, z) = Lot St Shor @9, 8) * Rohr (2,9, 2,1) 23
ZShOt Zt shot(‘r y,z,t)
I(:L',y, Z) — Zshot Zt shot(l'ayv Z, t) * Rshot(x, Y, z7t) n

D shot 2t Senot (T Y, 2, 1)
> shot 2t Oshot (T, Y, 2, 1) * Rspot (2, Y, 2, 1)
Dshot 2ot Bopot (2,95 2,1)
In the scope of this work we make use of the imaging condition defined in (2.2). We show

an example of the RTM technique in figure 2.13, where we present the three different
steps along with the resulting seismic image (see the dipping reflector).

(2.4)
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surface location (m)

depth (m)

(a) Snapshot at ¢ = 1.20 s of the source wavefield (left), the receiver wavefield (middle) and the
image progression (right). No reflector is imaged yet.

surface location (m)

—

e ——

depth (m)

(b) Snapshot at ¢ = 0.75 s of the source wavefield (left), the receiver wavefield (middle) and the
image progression (right). The bottom reflector is almost fully imaged.

surface location (m)

(c) Snapshot at ¢ = 0.30 s of the source wavefield (left), the receiver wavefield (middle) and the
image progression (right). All reflectors (the bottom and the shallow) are fully imaged.

F1GURE 2.13: A Reverse Time Migration example: the source and receiver wavefields
are correlated, at three subsequent time-steps, in oder to image two reflectors. Source:
Biondi [41].

2.3 Numerical methods for the wave propagation phenom-
ena

Most differential equations are much too complicated to be solved analytically, thus the
development of accurate numerical approximation schemes is essential to understand the
behavior of their solutions. The wave equation, being a Partial Differential Equation
(PDE), is no exception. This section presents an overview of the state-of-the-art numer-
ical methods used for seismic modeling and seismic imaging. Given that RTM is based
on the wave equation, we present the general equations that govern the propagation
of waves in elastic and acoustic media. These methods were widely studied for seismic
imaging and one can find more details in Virieux et al. [215] and in Carcione et al. [50].
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FIGURE 2.14: Particle motions for P (top) and S (bottom) waves. X is the wavelength
and the simple strain illustrates a unit deformation. From [189].

2.3.1 The wave equation
2.3.1.1 Seismic waves and propagation media

Before introducing the theory that governs the wave propagation phenomenon, we briefly
recall the type of seismic waves and the nature of propagation media. A wave propa-
gation is called elastic when the traversed medium can change in shape as a result of
a deforming force otherwise the propagtion is acoustic. If the medium has constant
density, we call it homogeneous, heterogeneous if it has not. Besides, we call a medium
isotropic if it has the same physical characteristics independently of directions. In the
contrary, the medium is called anisotropic.

The seismic waves are either body waves, that is they travel through the interior of the
Earth, or surface waves if they travel along the Earth’s surface. We distinguish two
types of body waves: Compressional waves, also referred to as Primary (P) waves*, and
Shear waves, also called Secondary (S) waves. Figure 2.14 illustrates the propagation
directions of P and S waves for small elemental volumes (particles). P waves propagate
in parallel with the particle motion whereas S waves propagate perpendicularly to the
particle motion. In homogeneous and isotropic media the velocities of P and S waves

are, respectively, V), = >‘+—p2“ and V; = \/% , where A and p are the Lamé parameters,

and p is the density. Note that shear waves do not propagate in acoustic media (water
for example) because the shear modulus g is null in fluids.

2.3.1.2 The elastic wave equation

The general wave equation is established using the Newton’s second law of motion and
Hook’s law, with some constraints considered: the media is elastic, isotropic and subject
to infinitesimal displacements in order to satisfy the elasticity condition. For the sake of
simplicity the motion of the wave is initially presumed to be one dimensional, the wave
equation will be later derived to the three dimensional case. We denote the particle
displacement 7, the dimension of the wave motion Z, and the particle position is given
by the z coordinate. Newton’s law (2.5), for small elemental volumes, states that the
acceleration () of a particle when multiplied by its mass (m) is equal to the sum of
forces applied on it (f).

f=my (2.5)

Considered that the pressure (p) is the force on an object that is spread over a surface
area and given that the particles are infinitesimal (we consider the unit surface), the

4Note that there are other types of wave, i.e. Love waves and Rayleigh waves, which are surface
waves that we deliberately ignore here.
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force is equivalent to the pressure differential. Similarly, here we consider studying the
wave kinematics in a unit volume thus the mass can be replaced by the density (p). Note
that the variables in the equation are scalar fields since we consider 1D case and that
in the 3D case vector fields should be considered instead. The equation (2.5) is then
equivalent to the formula (2.6).

0Ap 0%n

9. o2
Hook’s law (2.7) states that the strain (deformation) of an elastic object or material is
proportional to the stress applied to it.

(2.6)

on

Ap=K— 2.
where K is the Bulk modulus. The wave equation is thus derived as follows:
0%n 0?n
0 _ 2 2.8
8.~ Por (28)

Extending the equation to the 3D cartesian coordinate system (X, Y, Z), and using the
indicial notation implies the system of equations (2.9) and (2.10) [24, 38]:

8o—$$($7 Y, z, t)

8Um(x> Y, z, t)
ot N
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R e )
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where vy (x,y, 2,t), vy(z,y, 2,t) and v;(z,y, 2, t), are the components of the particles ve-
locity vector at time ¢; 0y;(z, v, 2, t) with 4, j € (z,v, 2)? are the stress tensor components
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at time ¢ (note that the tensor is symmetric, i.e. 0, = 0.4); p(,y, 2) is the density of
the medium; \(x,y, z) and the shear modulus pu(x,y,z) are the Lamé parameters that
describe the linear-stress relation [196].

2.3.1.3 The acoustic wave equation

The acoustic approximation states that shear effects in the data are negligible and that
the dominant wave type is a compressional wave. Thus the shear modulus u(z,y, 2) is
null. The equations (2.9) and (2.10) are simplified as follows:

aam(l‘ay,'zat) . avx(za%zat) 8”1/(-777%2775) aUz $ y,z t
0oyy(x,y,2,t) 0vy(z,y,2,t)  Oug(z,y,2,t)  Ovy(x y,z t)
TS = A,y 2) o i o T (2.11)
00..(x,y,2,t) ov(x,y,2,t)  Ovg(x,y,2,t)  Ovy(z y,z t)
a @) < o o
Ovg(x,y, 2,t) 1 00z (2,9, 2, t)
ot B ,O(ZU,y,Z) Ox
avy(%% Z7t) — 1 8Uyy(xa ya Z7t) (2 12)
ot p(z,y,2) Ay '
ov.(z,y,2,t) 1 00, (x,y, z,t)
ot -~ plx,y,2) 0z

The equation (2.11) implies that 80”(;;7“’75) = a"yy(gt’yvzﬁt) = 6"“(5274’2"5), which can lead
to the hyperbolic 1t order system:

@Y, 200) _ gy <0vx(x,y,z,t) Loy st 8vz(x,y,z,t)>

ot ox Oy 0z
Ovg(x,y, 2,t) 1 op(x,y, z,t)
ot p(x,y, z) Ox
Ovy(z,y,2,t) 1 op(x,y, z,t) (2.13)
ot plx,y, 2) Ay
ov.(z,y,2,t) 1 op(x,y, z,t)
ot ~ p(z,y, 2) 0z

UIZ( 7y,th)+0yy($:yyzyt)+Uzz( x,Y,%, t)

where p(z,y,2,t) = is the pressure field, and K(x,y, 2)
is the Bulk modulus. To complete the equation we have to add the seismic source term

s(t), positioned at the coordinate (zs,ys,2s). The system of equations (2.13) becomes
the following 2" order equation:

L Ppleyzt) oo 1
K(z,y,2) ot S,y 2)

VP(if,y, 2y t)) = S(t)é(x - xs)(s(y - ys)é(z - Zs)

(2.14)

where V. is the divergence operator, V the gradient operator and 0 the Dirac delta

K

function. We define ¢ = 5 as the compressional particle velocity. The divergence and

the gradient operators are correlated and are replaced by the Laplace operator A. In
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the case where the density p is constant, the equation (2.14) becomes:

1 Pp(x,y,2t)
A(x,y, 2) ot?

- Ap(l',y, Z, t) = S(t>5($ - xs)é(y - ys)(S(Z - Zs)

O*p(x,y,z,t)  O*p(x,y,z,t) +82p(w,y,z,t)
Ox? Oy? 022 '

(2.15)
with : Ap(z,y, z,t) =

Note that the displacement field u(x,y, z,t), which determines the displacement of the
particles during the propagation, is governed by a similar equation as the equation (2.13).
Solving the pressure field p(x,y, z,t) is thus equivalent to solving the displacement field
u(zx,y, z,t):

1 0u(z,y, z,t)
2(x,y, 2) ot?

— Au(z,y,z,t) = s(t)d(x — z5)0(y —ys)d(z — z5).  (2.16)

This is the acoustic wave equation that we tend to solve numerically in the rest of this
section. It is also the equation used to simulate the wave propagation in the seismic
modeling and in the seismic imaging, i.e. in the Reverse Time Migration.

2.3.2 Numerical methods for wave propagation

Numerically, the solutions to the wave equation can be approximated using a wide va-
riety of numerical methods. Depending on the targeted accuracy and on the available
computational resources, one can consider a spectral formulation, a strong formulation
or a weak formulation. One can also adopt a time-domain approach or a frequency-
domain approach. The spectral formulation produces efficient results for simple geo-
logical structures whereas the strong formulation via finite-difference methods can give
a good compromise between the quality of images and the computational costs. On
the other hand, weak formulation via finite-elements, e.g. continuous or discontinuous
Galerkin methods, are more suitable for areas with complex subsurfaces. For a thorough
overview of the most common numerical methods used in resolving the wave equation
we recommend the following two readings [50] and [215]. In this section, we briefly
introduce the methods that we find most relevant to the acoustic wave equation solver.

2.3.2.1 Integral methods

These methods are based on the Huygen’s principle that states that every point in the
wavefield can be considered as a secondary source. For the integral form of the scalar
wave equation in homogeneous media we use the Green’s function G

d(t — |x — xg|/co)

4m|x — Xg|

G(x,xs,t) = (2.17)

p(x,t) = //G(X,Xs,t — ') q(xs,t') dxg dt’ (2.18)

Green’s function are used as a response to a source in the studied media. The source
location is xg. p is the pressure generated by the particles displacement in media, cg is
the wave velocity and ¢ is a mass flow rate per unit volume. These approaches are more
efficient in homogeneous medium.
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2.3.2.2 Asymptotic methods

They are also called ray-tracing methods and are used when the medium is heteroge-
neous. In such media, the Green’s functions cannot be computed simply. An example
of the asymptotic approach is the Kirchhoff approximation widely used in migration
as described in [41]. Kirchhoff approximations are based on the assumption of high
frequencies.

2.3.2.3 Direct methods

Direct methods are based on a discretization of the computational domain. The ap-
proximation of solutions to the PDE that defines the wave equation can be done using
strong formulations such as finite-difference and pseudo-spectral approaches. We can
also rely on weak formulations like finite-element and finite-volume methods. We also
need a time integration in order to approximate the wave equation. Depending on the
formulation chosen for the equation, the space and time derivatives can be either second
or first order. The source term is added to the right hand side of the PDE in order to
consider the inhomogeneous solutions.

2.3.2.3.1 Pseudo-Spectral Methods Pseudo-spectral (PS) methods also known
as the Fourier methods are strong formulations of partial differential equations. Using
these approaches, pressure values p(x) are approximated using basis functions 1); like in
equation (2.19)

N

p(x) = 3 p(xy)i5 (%) (2.19)

Jj=1

In the case of regular grids, one can use Fourier polynomials as basis functions.
On the other hand Chebychev polynomials are used for irregular grids. In [135], we
have a description of the Fourier methods applied to forward modeling with comparison
with finite-difference and finite-element methods. Contrary to finite-difference, pseudo-
spectral methods are global. Modifications when they occur affect the whole computing
grid. When we opt for the pseudo-spectral methods, we reduce the number of unknowns.
We also reduce the number of grid points compared to finite-difference while achieving
the same accuracy.

Pseudo-spectral methods can show some limitations when the topography is com-
plex. Finer grid discretization in order to adapt to the complexity of the surface results
in higher computational cost. This impacts the efficiency of these numerical methods,
restraining them to relatively simple topographies.

2.3.2.3.2 Finite Difference Methods Finite difference methods (FDM) are also
strong formulations of partial differential equations. They are based on the discretization
of the computational grid where we compute values of the wavefield. Usually, Taylor
series expansions are used to compute the derivatives as well as to estimate the errors
due to numerical dispersions. For finite-difference, we have approximations of spatial
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derivatives using for example the equation (2.20) where Az is the spacing between two
values of the field u.

(2.20)

The derivative can be approximated as given in equation (2.21). This is a forward
difference approximation.
du _ u(r+ Az) —u(z)
dz Ax
One can have a backward difference approximation of the derivative like described in
equation (2.22)

(2.21)

du _u(z) —u(r — Ar)

dr Az
Combining the forward (2.21) and backward (2.22) approximations one can have a cen-
tral approximation given by the equation (2.23).

(2.22)

ou  u(z+ Azx) —u(zr — Azx)

or 2 Ax
Thorough reviews on finite difference methods applied to the seismic wave equation in
general can be found in [173] and in [27]. In [158] and [128], studies of the FDM applied
in isotropic and anisotropic media are presented, and aspects ranging from the grids
used to the boundary conditions are discussed.

(2.23)

Major difficulties in FDM are due to the discretization grids. The space steps
are constrained by the minimal value of the velocity in the media. For heterogeneous
medium, the space discretization steps need to be very small which results in a huge
computational demand. FDM can be applied in both frequency and time domains.
Frequency domain may be more efficient than time domain in inversion problemswhen
multiple source locations are used [167, 177, 214]. In the case of forward modeling, time
domain is widely used since it is more adapted to the computation requirements of such
applications [158, 215]. FDM need to satisfy important conditions in order to guarantee
their effectiveness. It consists of stability, convergence and consistency.

o Stability means that the solution is bounded when the analytical solution of the
PDE is bounded.

e (Consistency means that the truncation tends to zero when the spatial grid spacing
and the time spacing tend to zero.

e Convergence is satisfied when the approximated solutions, using finite-difference,
approach the analytical solutions of the partial differential equation.

For finite-difference methods, we can have either an explicit or an implicit scheme.
Explicit schemes use values of the wavefield at the previous time-step in order to update
a given grid point for the current time step. On the other hand, implicit schemes update
the whole grid at the current time-step by means of a linear system solving an inversion
of a matrix [55].

2.3.2.3.3 Finite Element Methods Finite-element methods (FEM) are a weak
formulation of partial differential equations. These methods use predefined functions as
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a starting point to approximate the wavefield. Finite-element approaches are more effi-
cient in complex topography than finite-difference and pseudo-spectral methods. They
allow a neater approximation of the surface. According to the conditions ensured in ap-
proximating the wave motion, the finite-element method can be adopted in the following
different ways.

2.3.2.3.3.1 Continuous Finite Element Continuous finite-element methods
such as spectral-element (SE) suppose that the wavefield is continuous on the boundaries
separating the elements where the values are computed locally from the elements where
the values are explicitly given.

2.3.2.3.3.2 Discontinuous Finite Element Discontinuous Galerkin methods
remedy to the strong affirmation we have in the continuous formulation of the standard
finite-element methods. These new methods introduce the notion of flux exchange in-
stead. Baldassari [36] presents more details about the Galerkin methods and uses them
in a Reverse Time Migration workflow.

2.3.3 Application to the acoustic wave equation

In this section we approximate the solutions of the acoustic wave equation (2.16) by
means of the Finite Difference Method. This choice is motivated by our desire to explic-
itly approximate the solutions of the wave equation and by the good tradeoff between
numerical accuracy and computational demand that FDM offer. We consider that the
medium is isotropic and that the density is constant. We consider that the propagation
space is a regular grid governed by a cartesian coordinate system. As a matter of fact,
this is the wave equation solver that will be used to evaluate the heterogeneous archi-
tectures considered in this work. However, we point out that the techniques detailed in
this section apply for more complex formulations of the wave equation, i.e. for variable
density media and elastic propagation.

2.3.3.1 Numerical approximation
For time discretization, a 2"¢ order explicit centered scheme is used, where we rely on
the Taylor series expansion to approximate the 27¢ order derivatives of u(zx,y, z,t), with
respect to time, between time ¢ and time t + At as follows:

82u(x, Y, Z7t) ~ U(ZE, Y, Z7t + At) — 2U(£L’,y7 Zat) + u($7y7 Zat — At)
ot2 - At2

. (2.24)

This scheme is also known as the leap frog scheme. For the sake of simplicity, we denote
U™(z,y,z) the approximation of the displacement field at time ¢t = nAt.

For space discretization, we consider the grid spacings Az, Ay, and Az along the X, Y
and Z axis respectively. Let U"; ; the value of the wavefield u at time ¢ = nAt at the
grid point (z = iAxz, y = jAy, z = kAz) (see figure 2.15). A centered p'* order finite
difference scheme is used to approximate the 27¢ order derivatives with respect to x, y
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FIGURE 2.15: Space discretization of a 3D volume.
and z as follows: p
82 s Ys <y < n
N D
l=—p/2
82 ) 9 b p/2 n
u(ﬂ;ny at) A1y2 lg};ﬂ AUy (2.25)
82 ) ) b 1 p/2 n
U('ZZyQ z t) ~ Az2 l:_zp/2 alUi7j7k+l
The finite difference coefficients, (a;) —r<i<ps with a_; = a; VI € [0, £], are obtained by

Taylor series expansion. The table 2.2 summarizes the finite
schemes with an order ranging from 2 to 8. In our case we

difference coefficients for
chose p = 8. The choice

of the coefficients plays a primary role in terms of numerical dispersion of the finite

Scheme order | ag ar as ag a4

2 -2 1
=5 7 —

4 2 3 T

6 193 =3 T
i 2 20 90

3 —205 8§ I 8 T
72 5 5 315 560

TABLE 2.2: Taylor coefficients for centered finite difference

numerical schemes.
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difference scheme. Other coefficients and dispersion relations are also used to optimize
the numerical scheme [140].

Based on the discretization schemes (2.24) and (2.25), the acoustic wave equation
(2.16) is transformed into the following difference equation:

ugrtt —oun., + Oy
1 Ul = 20 + Ui — AU = 8"0(x — 25)0(y — ys)d(2 — 25),  (2.26)

2 2 i.J,
Ciik At

where c k8 the indicial notation of the velocity squared c (x Y, z) at each grid point,

AU = 5z it o2 WU T a2 ZfKZ—p/Z aUp+ 5z s p/2 Ui o4y i the
indicial notation of the Laplace operator, and s™ is the simplified notation of the source
term s(t) at time ¢ = nAt. We conclude that the numerical solution of the acoustic
wave equation at time (n+ 1)At is determined as a function of the solution at time nAt
and (n — 1)At as follows:

UZ"H =20\ — Ulnj_k1 + c?yjykAﬂAU T c kAtz(s"(S(x —25)0(y — ys)d(z — 25)).
(2.27)
We changed the hyperbolic partial differential equation (PDE) (2.16) into a discrete
problem (2.27), which can be solved in a finite sequence of arithmetic operations, im-
plementable on a computer. In the rest of the document we make use of the equation
(2.27) with p = 8, i.e. the 8" order centered finite difference scheme, as the numerical

solver of the acoustic wave equation.

2.3.3.2 Stability analysis and CFL

We presented a numerical method, i.e. a centered finite difference scheme, to discretize
the acoustic wave equation. Finite difference discretization, as well as all the numerical
methods used to solve PDEs, are subject to numerical errors. An error is a difference
between the analytical solution of the PDE and the solution of the discrete problem. In
numerical analysis, a numerical scheme is proved convergent if and only if it is proved
consistent and stable (the Lax Equivalence Theorem [122]). To learn more about the
consistency, convergence and stability of the numerical methods we refer the reader to
[77]. In practice, consistency essentially requires that the discrete equations defining the
approximate solution are at least approximately satisfied by the true solution. For the
finite difference method, this is an evident requirement (Taylor’s theorem). Thus in order
to prove the convergence of our finite difference scheme we should define a quantitative
measure of its stability. We consider the CFL condition named after Richard Courant,
Kurt Friedrichs and Hans Lewy who described it in their paper [70]. It consists of the

following inequality:
At

where At and h are the discretization steps in time and space respectively, ¢ is the maxi-
mum velocity and « is a constant that depends on the numerical scheme considered. By
von Neumann stability analysis, we extend the CFL condition to the 3D finite difference
wave equation solver as follows:

At\? At 2 At 2
ad = =) < )
(ch) + <CAy> + <0A2> < a, (2.29)
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where o = 4 (Zl_ /2 \aﬂ). Or in a more generalized formulation, presented in [141],

where the discretization step is assumed to be the same in all the directions, i.e. Azx =
Ay = Az = h, and the number of dimension is Ny;,:

/2 1/2

At Zl__p/g |al|
— | < . .
(c . > <2 Ny (2.30)

2.3.3.3 Boundary conditions

By solving the acoustic wave equation (2.16) we would like to simulate the wave propa-
gation in a half space, i.e the earth (land or sea) surface plus the underlying subsurface
structures. However, the numerical equation (2.27) is defined in a finite discrete do-
main. In order to simulate the half space constraint in the numerical equation, we need
to capture the reflected waves on the artificial domain sides and bottom of the numer-
ical grid. This can be done by adding absorbing layers to the computational domain
faces to progressively damp the energy coming from the incident waves. Berenger [39]
introduced in 1994 the Perfectly Matched Layers (PML) as an absorbing boundary con-
dition to simulate the propagation of the 2D electromagnetic waves. PML were then
extended to 3D wave propagations in general. Finite difference method is often used
in conjunction with PML in different variants. Convolution PML (CPML) can be used
to improve the behavior of the discrete PML which is completely independent of the
host medium. Thus, no modifications are necessary when applying it to inhomogeneous,
lossy, anisotropic, dispersive or non-linear media [183]. More recently a formulation of
the unspotted CPML that can easily be extended to higher-order time schemes, called
the auxiliary differential equation PML (ADE-PML), has been introduced in [134] for
the seismic wave equation. An improved sponge layer, called the split Multi-axial PML
(M-PML), has been suggested in [154].

Mathematically, the acoustic wave equation (2.16) is altered in order to add an
absorbing term (regular PML) [136]:

1 Pu(z,y,zt) Qu(z,y.2t)
A(z,y,2) ot? ot (2.31)
7(567 Y, Z)QU(.’E, Y, =z, t) = S(t)é(x - $S>5(y - Z/s)5<2 - Zs)a

- AU(iB, Y, z, t) + 2’7(%‘7 Y, Z)

where v(x,y, z) represents the damping coefficients. Numerically, when neglecting the
y(x, 7, z)? term, the propagation in the absorbing layers is thus governed by the following
equation:
2 2
ntl _ LU.”, _Lige—1 n—1 MAU”-
1,5,k Fi,j,k +1 4,5,k Fi,j,k’ +1 i,9,k Fi,j,k +1 .,k (232)
+cij,kAt2(s"5(:c —x5)0(y — ys)o(z — z5)),

where I'; ; ;; is the indicial notation of y(z,y, ). Finally, we recall that the wave propa-
gation in the rest of the computational domain is governed by the equation (2.27).
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The Top500 list [9], a LINPACK-based supercomputer ranking list that is updated ev-
ery six months, of November 2014 indicates that the computing landscape looks more
and more diversified. With the advent of powerful hardware accelerators, the HPC
facilities are turning heterogeneous, where commodity processors are usually used in
conjunction with auxiliary chips such as the Graphics Processing Unit (GPU) or the
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FIGURE 3.1: A classification of the hardware accelerators that feature the Top500
supercomputers, based on the ranking list of November 2014.
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Field-Programmable Gate Array (FPGA) to enhance the performance of scientific ap-
plications. A quick glance at the chart presented in figure 3.1, which is a summary
of the most used accelerators in the latest Topb00 supercomputers list, gives a better
idea about the recent trends in HPC facilities. Besides, leveraging the compute power
of such hybrid architectures can be challenging since various programming models are
to be considered. For example, the emergence of GPUs led scientific programmers to
introduce new programming models such as CUDA [4] and OpenCL [19]. Furthermore,
today we are about to reach a new milestone in the history of computing as the power
consumption seems to be a serious concern. Green500 [6], another list that provides
since 2007 a ranking of the most energy-efficient supercomputers in the world, is gaining
more and more interest inside the HPC community.

In this chapter, we give in section 3.1 a succinct overview of the most used processors
and hybrid architectures in the scientific community. We follow up with a summary of
the programming models used to leverage these architectures, in section 3.2. Then, we
finish the chapter in section 3.3 where we explain how does the power consumption
interfere with HPC.

3.1 Overview of HPC hardware architectures

In this section, we describe the recent advances of processors architecture with a special
emphasis on the GPU in a general purpose computation context (GPGPU), and on more
recent technologies such as the Accelerated Processing Unit (APU) proposed by AMD.
First, we quickly survey the latest developments in CPU architectures. Then, we give
an overview of the GPGPU ecosystem mainly dominated by the two vendors AMD and
NVIDIA. Finally, we introduce the APU technology in a nutshell and give details about
its underlying architecture.

3.1.1 Central Processing Unit: more and more cores

For decades, CPU manufacturers tended in their constant search for performance and
compute power to increase the CPU clock rates and we have seen through the history of
CPUs frequencies growing up to reach 4.4 GHz (with the turbo mode) at most. Moore’s
law, named after Gordon Moore who predicted in 1975 that the number of transistors
will be doubled every two years, has driven the CPU evolution for 40 years, where the
CPU sockets were getting more and more dense, in terms of transistors, thanks to the
transistor shrinkage.

However, during the last decade CPU sockets capacitance has started to stall due to
a physical constraint which is the power consumption. Indeed the power budget is be-
coming a leading design constraint when populating a piece of silicon with functional
circuits. Vendors started to realize that they could not keep raising the frequency any-
more without risking that circuits would be subject of overheating. Alternatively, they
dawned the multi-core age by reducing the frequency and by duplicating CPU cores, i.e.
independent processing units each having their own ALUs, FPUs and caches, on chip.
In figure 3.2 one can see that the direct result of power constraint is a stall in the CPU
frequency. The figure also shows the transition from mono-core CPUs to multi-core
CPUs that started during the last decade.

Furthermore, another factor that has also strongly influenced the design of modern CPUs
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FIGURE 3.2: The evolution of CPUs since 1970 in terms of power consumption, tran-
sistor density, frequency and number of cores. Source [106].

architecture is the mismatch between the CPU frequency and memory speeds (see figure
3.3). This clock rate gap forced the vendors to dedicate the major part of the silicon of
a CPU to hierarchical levels of caches. For instance, the size of the second-level cache
grew rapidly, reaching 2 MB in some instances [26]. In addition, multiplying the cores
within the socket is translated to more demand for data, and some vendors (such as
Intel) thus introduced a third-level cache. The figure 3.4 depicts the latency of the dif-
ferent levels of the state-of-the-art CPU memory hierarchy from registers to hard disks.
It also gives an idea about the average capacity of each memory level. The memory
latency is still much greater than the processor clock step (around 300 times greater or
more). The memory throughput is improving at a better rate than its latency, but it’s
still lagging behind the processor speed. Today, high performance CPUs (CPUs that are
used in HPC facilities) are often composed of one or multiple sockets, each of which has
multiple cores that range from two to twenty. They are featured by two or three levels
of caches. We sketch an abstract view of the architecture of modern CPUs in figure 3.5.
Most of the state-of-the-art CPU architectures fall in this example. Note that the L3
cache is optional since not all the CPUs are equipped with a third level cache.
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Time

F1GURE 3.3: The performance gap between the CPU clock rate and the DRAM clock
rate throughout the years, from [5].



Chapter 3. High performance computing 32

L1 L2 L3
G G C i Memory
a a a bus .
10 bu
h h h
e -] 8 Disk
mamaol
Ragiskor Level1  Levelz  Level3 Memory S
reference Cache Cache Cache rafarence
reference  reference  reference
Size: 1000 bytes 64 KB 256 KB 2-4 MB 4—16GB 416 TB
Spoed: 300ps 1ns 3-10ns 10-20 ns 50—100 n= 5—10ms

FIGURE 3.4: The average sizes and latencies of state-of-the-art memory hierarchy

elements. The time units change by a factor of 10® from the latency of disks to that of

registers, and the size units change by a factor of 10'° from the capacity of registers to
that of disks. From [110].

Intel launched successive families of high-end multi-core CPUs. Sandy Bridge was re-
leased in 2011, with up to 8 cores per CPU socket, 20MB of L3 cache and 150 Watts of
maximum TDP (Thermal Design Power). The Ivy Bridge family was the successor in
2013 and demonstrated between 3% and 6% of performance enhancement compared to
Sandy Bridge (clock to clock comparison). The number of cores per die was increased
(up to 18 cores) and the L3 cache sizes were increased up to 38MB while the power en-
velop was almost kept the same as the previous generations. Most recently the cutting
edge Intel CPU family, code named Haswell, was released. It features up to 18 cores per
CPU socket to deliver 8% more performance than that of Ivy Bridge.

Albeit not dominant in the HPC CPU market, AMD also lined up high-end CPUs for
HPC. The Bulldozer micro-architecture was released in 2011, it featured up to 4 cores
with a maximum TDP of 140 Watts. Bulldozer CPUs had up to 8MB of L3 cache. The
Piledriver family was released in 2012. Piledriver processors had up to 16 cores per die.
The Streamroller micro-architecture was released in 2014 to build the Warsaw Server
CPU product line. They were also featured by 12 to 16 CPU cores per socket, and

System memory

FIGURE 3.5: An abstract view of the architecture of a multi-core CPU. N is the

overall number of CPU cores. L1, L2 and L3 refer respectively to the first cache level,

the second cache level and the third cache level. s is the maximum number of cores

that share one L3 cache (usually in one socket). WC' are Write Combining buffers and
are often used for cache non-coherent memory accesses.
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Architecture AMD 10h
Model Phenom
Clock rate (GHz) 2.8
CPU #cores 6
Main memory (MB) 8096
Peak bandwidth (GB/s) 50
Single precision peak flops (GFlop/s) 134

TABLE 3.1: The technical specifications of the AMD CPU that is surveyed in the scope
of this work.

were reported to consume only 100 Watts of TDP. AMD plan to release the Zen micro-
architecture in 2016 which promises 40% of performance improvement over the previous
generations. Table 3.1 summarizes the technical specifications of the AMD Phenom TM
IT 26 1055t Processor that is used in this study.

These architectures are slightly different but they all are subject to parallel pro-
cessing which can be exposed at multiple level. First, the Instruction Level Parallelism
(ILP) enables the processor to execute more than one instruction from the same thread
in parallel using one or multiple pipelines at the core level. Second, comes the Data
Level Parallelism (DLP) where the same instruction is executed on different data en-
tries (vector processing) using SIMD (Single Instruction Multiple Data) registers. The
third level of parallelism is the Thread Level Parallelism (TLP) which corresponds to
the capability of executing multiple threads on the same core, i.e. SMT (Simultaneous
Multi-Threading), to the parallel execution of multiple threads on different CPU cores
(in shared memory systems) or even to the parallel execution of multiple processes on
different compute nodes of a distributed machine (CPU clusters).

3.1.2 Hardware accelerators: the other chips for computing

It’s no secret that applicative workloads are becoming larger and more complex than
ever. In some cases, the traditional CPUs hardware cannot meet high computational
demands. As a matter of fact, high-performance computing applications are now de-
manding more than traditional CPUs can deliver, creating a technology gap between
demand and performance. This limits users from extracting the performance out of this
hardware. Application demands have outpaced the conventional processor’s ability to
deliver performance. An alternative solution is hardware acceleration that augments
mainstream processors with specialized coprocessors.

During the last decade, many vendors have proposed hardware accelerators based so-
lutions for general purpose computing. The Graphic Processing Units (GPUs) are the
most famous ones. NVIDIA and AMD are largely dominating the market by introduc-
ing successive GPU architectures for more than two decades now. In addition to GPUs,
high performance facilities are sometimes populated with other accelerators, such as
FPGAs and Intel Xeon Phi. Intel Xeon Phi processors are based on the MIC (Many
Integrated Core) architecture, which combines near 60 x86 cores on the same die. The
MIC products are not stand-alone processors yet, and they are used as an external PCI
Express card for computing. However, it is reported that the first stand-alone ones will
be launched in 2016. Moreover, other technologies that rely on founding a high number
of cores on the same chip start to emerge. The MPPA, a SOC (System On Chip) that
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FIGURE 3.6: An abstract view of the architecture of a modern GPU.

contains 256 cores and proposed by Kalray [8], is one of them.
Five out of the fastest ten supercomputers (based on the Top500 list of November 2014)
in the world are built upon hardware accelerators (mainly GPUs or Intel Xeon Phi).

In this section, we particularly focus on the architectures of GPUs. A GPU is a
processor optimized for graphics workloads. The GPU has recently evolved towards a
more simplifed architecture, typically it is composed of several massively parallel multi-
processors, also referred to as streaming multi-processors or compute units in the litera-
ture (we denote them as CU), each of which has a large number of processing elements
(we refer to them as PEs in this document) that all run the same instructions on differ-
ent data (SIMD). These compute units contain, in addition to the arithmetic and logic
units, branch units, memory fetch units and additional hardware that is not relevant
to general purpose computations. The GPU needs thread schedulers and some control
units to dispatch the work amongst the PEs. We give a simplified view of a common
architecture of modern GPUs in figure 3.6. Note that we describe only the relevant
hardware components and that the architecture may slightly differ from a vendor to
another. The GPU main memory, referred to as GPU global memory, is accessible by
all the threads on the GPU and has a high latency (at the order of 600 ns). Often the
local memory, i.e. a scratchpad memory that is local to each compute unit and thus is
accessible only by the threads that are allocated in the corresponding CU, is used as a
manually managed cache by first moving data from the global memory to the local mem-
ory and using that memory in any further calculations. This mitigates the impact of the
GPU main memory latency. For the same purpose, recently GPUs have been equipped
with a hierarchy of caches (L1 and L2). The registers (Register file) are private to each
thread and are used to store intermediate data and variables during computation.

The execution model of GPUs requires the deployment of a tremendous number
of threads (tens of millions) and keeping them active simultaneously on the hardware
without changing contexts. The schedulers are responsible for filling the stalls caused
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by memory accesses for instance by deploying more threads that are ready to use the
GPU cycles. This execution model gives rise to a natural parallelism, that can be
categorized as TLP, as the wraps or wavefronts (a collection of threads that are executed
simultaneously on a CU) execution are interleaved to hide latencies. On a lower level,
ILP can be exploited which implies using more registers per thread. Unlike CPUs, where
a large number of the transistors is dedicated to supporting non-computational tasks
like branch prediction and caching, GPUs use additional transistors for computation
achieving greater compute power with the same transistor count.

GPUs do not operate on the computer main memory. Often a GPU is connected to its
own off-chip memory (the GPU global memory) which is used to store data. The size
of this graphics memory varies but it is currently about 3 to 12 Gigabytes for high-end
GPUs. Before the GPU can start to work on a given data, that data first needs to be
moved to the GPU main memory. The speed of that operation depends on the connection
between the main memory and the graphics board via the PCI Express bus. Therefore
it varies heavily to a maximum of 6 GB/s (PCI Express gen 2, 16x) or 12 GB/s (PCI
Express gen 3). When used in HPC, GPUs can have over an order of magnitude higher
memory bandwidth and higher computation power (in terms of GFflop/s) than CPUs.
For example a high-end Intel Ivy Bridge EX processor with 15 cores hits a theoretical
single precision performance of 672 GFlop/s and 25 GB/s of memory bandwidth, while
an NVIDIA K40m GPU offers 4029 GFlop/s of theoretical single precision performance
and near 320 GB/s of theoretical bandwidth.

During the last five years, NVIDIA has launched successively three GPU architec-
tures on top of which the company has released a brand (Tesla) that features double
precision, ECC memory etc. and that targets general purpose computing. Those GPUs
were extensively used by high performance facilities. The Fermi micro-architecture was
introduced in 2010 where each streaming multi-processor (SM) was composed of 32
PEs, also introduced by the vendor as CUDA cores. Each SM has 64 K B of scratch-
pad memory that can be partitioned by the users into level 1 cache and local memory
(depending on the GPU model). The single precision peak performance of Fermi GPUs
is 1.5 TFlop/s. Depending on the model, the GPU memory capacity was about 6 GB
and could deliver up to 192 GB/s of peak bandwidth. The following architecture was
Kepler, where NVIDIA had introduced a new generation of streaming multi-processors,
called SMX, each holding 192 CUDA cores. NVIDIA reported a 3x speedup in terms
of performance per watt. With Kepler architecture, NVIDIA has also introduced the
dynamic parallelism, which allows GPU threads to spawn new threads on their own and
launch kernels without the help of the CPU. In addition to the Hyper-@ technology,
which allows multiple CPU processes (can be MPI processes) to simultaneously utilize a
single GPU. Kepler GPUs peak at 4.5 T flop/s in terms of single precision performance
and 320 GB/s in terms of bandwidth (depending on the model). More recently, the
Maxwell GPU architecture has been introduced. This GPU generation focuses more on
power efficiency. The second level cache size is increased up to 2 M B.

AMD GPUs are evolving along generations and the way they are structured varies
with the device family. Fach GPU family is based on a GPU micro-architecture. In
the Evergreen family, processing elements are arranged as five-way very long instruction
word (VLIW) processors. Consequently, five scalar operations can be co-issued in a
VLIW instruction. Then, the Northern Islands GPU family has come up with a new
design, in which the processing elements of one multi-processor are arranged as four-way
VLIW processors. Northern Islands GPUs have two wavefronts schedulers. We generally
refer to the hardware design of Evergreen and Northern Islands GPUs as vector design.
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Architecture Cayman Tahiti
Model HD6970 HD7970
GPU family name Northern Islands | Southern Islands
Clock rate (GHz) 0.88 0.925
Compute units 24 32
Off-chip memory (MB) 2048 3072
Local memory (KB) 32 64

Peak bandwidth (GB/s) 176 256
Single precision peak flops (GFlop/s) 2700 3700

TABLE 3.2: The list of the AMD GPUs that are surveyed in the scope of this work.

As a matter of fact, Evergreen and Northern Islands are based on a vectorized micro-
architecture called TeraScale graphics that defines a relaxed memory model without
caches.

Recently, AMD has released a new micro-architecture name Graphics Core Next (GCN).
The first GCN based GPU family is introduced in 2012 and is called Southern Islands.
The processing elements are not VLIW processors anymore, and are arranged as four
separate lanes of scalar processing elements. The wavefronts schedulers are doubled (four
schedulers). The Southern Islands architecture is sometimes referred to as the scalar
design (in reality it is a dual scalar/vector hardware design) in the literature. For most
AMD GPUs, the processing elements are arranged in four SIMD arrays consisting of 16
processing elements each. Each of the SIMD arrays executes a single instruction across
a block of 16 work-items. That instruction is repeated over four cycles to process the
64-element wavefront. In the Southern Islands family, the four SIMD arrays can execute
code from different wavefronts. AMD continued to release GCN based GPUs with the
Sea Islands and Volcanic Islands families in 2013 and 2014. Table 3.2 summarizes the
technical specifications of the AMD GPUs surveyed in the scope of this work. Note that
the main difference between the AMD GPUs and NVIDIA GPUs consists in the size of
the SIMD arrays and in the number of the thread schedulers.

3.1.3 Towards the fusion of CPUs and accelerators: the emergence of
the Accelerated Processing Unit

Hardware accelerators are becoming a customary component on mainstream HPC facili-
ties. Thanks to their huge compute power and to their high internal memory bandwidth,
GPUs are considered as a compelling platform for computationally demanding tasks.
However, a GPU is not a stand-alone processor and require a commodity CPU, to which
it is connected via the PCI Express bus, to operate. In 2011 AMD has released a new
technology that promises to improve the GPU architecture: the Accelerated Processing
Unit (APU). An APU is a new kind of processor that combines the advantages of a
CPU and a GPU. The AMD APU has a multi-core CPU and a GPU, all fused in the
same silicon die, which eliminates the need to use the PCI Express bus as the CPU
and the integrated GPU can both have access to the system main memory. In order to
distinguish between the traditional GPUs, referred to as discrete GPUs in the rest of
the document, from those merged within APUs, we call the latter integrated GPUs.

The figure 3.7 shows a minimal description of the architecture of the AMD APU. In
this figure, we represent an APU with a quad-core CPU, but in general AMD APUs
are released in many variants (two CPU cores or four CPU cores). The integrated GPU
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F1GURE 3.7: A high level illustration of the architecture of the early generations of

AMD APUs. In this example the APU has four CPU cores. The integrated GPU has

access to the main system memory, through the UNB (Unified North Bridge), using

either the Onion memory bus or the Garlic bus. The integrated GPU does not have
caches, the TEX L1 are the texture caches.

does not have an off-chip memory, instead it has access to the system memory by means
of two new memory buses introduced by AMD: the Onion bus and the Garlic bus.
Memory accesses through Onion are coherent with the CPU cores caches, whereas those
performed through the Garlic bus are not. The theoretical peak bandwidth of the mem-
ory buses depends on the clock rate of the DRAM installed in the system. For example,
with a system memory clocked at 1833 M Hz, the theoretical memory bandwidth of
Onion is 8 GB/s. Garlic, being a wider bus, peaks at 25,6 GB/s. The main APU
feature that AMD advanced, at the beginning of the project roadmap, is to allow CPU
cores and GPU CUs to share a unified memory space. However, merging two different
memory addressing systems is a challenging task at both hardware and software stacks.
At an early stage of the project, the system main memory is partitioned. We represent,
in the figure 3.8, the different memory partitions of an APU. The CPU cores, in a sim-
ilar manner to regular multi-core CPUs, have access to the system memory, commonly
named host memory. The integrated GPU has a dedicated subset of the main memory
that is referred to as “GPU memory” and often called device memory. This memory is
accessible by the integrated GPU multi-processors at full bandwidth of the Garlic bus.
Furthermore, in order to allow the integrated GPU to access the host memory without
explicitly copying data in the GPU memory, the device-visible host memory partition
can be used. Similarly, the CPU can map the host-visible device memory (also known
as GPU persistent memory) into its virtual memory space in order to share data with
the integrated GPU without explicit copies. The memory buffers that are created in
either the host-visible device memory or the device-visible host memory are called “zero-
copy” buffers. Note that in the early generations of APUs, the host-visible memory and

System memory GPU memory
kdevice-visible host memory \host-visible device memory

F1GURE 3.8: An illustration of the different memory partitions of an APU. The sys-

tem memory and the host-visible device memory are visible to the CPU cores. The

GPU memory (being a sub-partition of the system memory) and the device-visible host
memory are visible to the integrated GPU compute units.
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F1cURE 3.9: A high level illustration of the architecture of GCN based APUs. The
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device-visible memory have a limited size (between 512 M B and 1 GB).

APUs are evolving with respect to the AMD CPU roadmap along with that of the dis-
crete GPUs with one generation above. Put another way, the latest integrated GPU
is usually one generation older than the latest discrete GPU. The first generation was
code-named Llano and released in late 2011. Llano was a first shot with an integrated
GPU based on the Evergreen architecture and had five GPU CUs. The second gener-
ation was Trinity (released in late 2012) with an integrated GPU that belongs to the
Northern Islands family and had six GPU CUs. The Trinity and Llano APUs are both
based on the vectorized micro-architecture family (TeraScale graphics) and both have
the same memory subsystem (described in figure 3.7).

In 2014, AMD announced an important upgrade in the APU roadmap and launched
an APU code-named Kaveri, a combination of four Streamroller CPU cores and eight
Sea Islands GPU CUs. With the Kaveri APU, AMD made the move from TeraScale
graphics to the newer GCN (specifically the GCN 1.1). Kaveri shares the same GPU
micro-architecture as that of the latest discrete GPU lineup. After Kaveri, AMD is
synchronizing the architecture of their APUs and discrete GPUs, thus optimizations
made for their discrete GPUs will immediately feed back into their APUs. The dif-
ference between the Kaveri implementation of GCN and the discrete GPUs one, aside
from the association with the CPU in silicon, is the addition of the coherent shared
unified memory. As a matter of fact, thanks to GCN, caches are added to the integrated
GPUs and the memory subsystem has changed. We illustrate in figure 3.9 the new
APU architecture. Memory accesses through the Onion bus require sweeping over the
GPU L2 caches as well as the CPU caches. Given that GPU L2 caches and CPU caches
are not synchronized, the Onion memory bus does not ensure coherency anymore. A
third memory path Onion+ is added and has the same bandwidth as Onion. Onion+
memory accesses bypass the GPU L2 caches which allows coherency since only the CPU
caches are checked before memory accesses. The memory accessed through Onion+ is
referred to as “host coherent memory” in the literature [29]. Furthermore, the sustained
bandwidth of the Onion bus is enhanced and peaks at 60% of the maximum sustained
bandwidth of the Garlic bus. Besides, within the Kaveri APU the entire system memory
is pageable and is addressable by both the CPU cores and the GPU compute units.
Today, the APU project still has an active roadmap. AMD unveiled in 2015 another
generation of APUs code-named “Carrizo” [1]. The memory subsystem of the Carrizo
APU is updated. The memory buses Onion, Onion+ and Garlic are replaced by a unique
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F1cUrRE 3.10: The architecture of the upcoming APUs. All memory accesses are
performed through a unified memory bus Onion 3.

memory bus labeled Onion 3. All the memory accesses are managed by the same mem-
ory controller and are coherent with both CPU and GPU caches. The figure 3.10 is a
representation of this the new APU design. Furthermore, AMD plans to launch a high
performance APU with a similar memory subsystem as that of Carrizo but populated
with a big number of GPU multi-processors and equiped with stacked memory (also
known as High Bandwidth Memory (HBM)). The new chip is labeled “Zen APU”. We
summarize the different APU generations released from 2013 and the upcoming gen-
erations scheduled for 2016 in the figure 3.11. In the scope of this work, we only
investigate the first three APU generations, i.e. Llano, Trinity and Kaveri. The table
3.3 summarizes the technical specifications of each one of them.
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F1GURE 3.11: An illustration to summarize the APU roadmap from 2013 to 2016 and
the different features.
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Architecture Llano Trinity Kaveri
Model A8-3850 A10-5700 A10-7850K
CPU architecture AMD 10h Piledriver Streamroller
CPU #cores 4 4 4
CPU clock rate (GHz) 3.0 3.8 3.8
Integrated GPU architecture Evergreen | Northern Islands | Sea Islands
GPU clock rate (GHz) 0.600 0.711 0.720
Compute units 5 6 8
Integrated GPU memory (MB) 512 512 2048
Local memory per CU (KB) 32 32 64
Peak bandwidth (GB/s) 25.6 25.6 25.6
GPU single precision peak flops (GFlop/s) 480 546 734

TABLE 3.3: The list of the AMD APUs that are surveyed in the scope of this work.
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FIGURE 3.12: AMD’s Kaveri die with two Streamroller CPU cores and a Sea Islands

GPU, from [2].

e e 188 BE e |

Shared L3 Cache** 'g
| EE: BB EE: EH B8 =

w48 Memory Controlier /0

System
Agent,
Display
Engine &
Memory
Controller

FIGURE 3.13: Intel’s Haswell GT2 die with a HD Graphics 4200 GPU, from [2].
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Finally, other vendors considered integrating CPUs and GPUs in the same silicon die
in a design similar to that of the APU. The Intel Sandy Bridge, Ivy Bridge and Haswell
processors are actullay a combination of CPU cores and integrated GPUs. Although
the integrated GPUs of Sandy Bridge and Ivy Bridge were not often used for general
purpose computations, the hardware design of the Haswell processor (see figure 3.13)
may gain interest within the scientific community [7]. We can see from the die shot
presented in the figure 3.12 that AMD has dedicated a proportionally larger amount of
the chip to graphics than Intel has. Besides, AMD has put more GPU cores on the die
than Intel has done. However, Intel has integrated more CPU cores, albeit generally
slower in terms of frequency than the AMD CPU cores of the APU, on the silicon die.
It is also to be noted that the Haswell memory system is different from that of the
Kaveri APU as Intel has introduced a level 4 cache (for Iris Pro models only) that can
be shared between the CPU and the GPU. Furthermore, NVIDIA has started to put
serious efforts to rethink the interaction between GPUs and CPUs. On the one hand,
NVIDIA has started pairing CPU cores and GPU cores on the same die. For instance
the Tegra X1 is a combination of a Maxwell GPU and two to four ARM CPU cores
designed by NVIDIA and code-named Denver-CPU. On the other hand, NVIDIA has
released a high speed interconnect, labeled NVLink, that replaces the PCI Express bus
and expect to ensure data sharing between a discrete GPU and a CPU at rates five to
twelve times faster than the PCI Express Gen 3 interconnect.

To sum up, fusing CPUs and GPUs in the same die is a step in the right direction for
efficient computations without data transfers overheads. However, the APU project is
still a work in progress, the APUs are an order of magnitude less compute powerful than
discrete GPUs and their memory bandwidth does not match that of the discrete GPUs.

3.2 Programming models in HPC

The trend towards heterogeneous computing has implied an increasing need for a spe-
cialized software infrastructure, such as parallel programming languages, compilers and
APIs (Application Program Interfaces) to leverage massively parallel hardware. In this
section we provide an overview of the common programming models that are used to
target heterogeneous platforms in a scientific computation context. First we present the
programming languages and APIs that are dedicated to develop applications on hard-
ware accelerators. We particularly emphasize the abstractions provided by the Open
Computing Language (OpenCL). Then we briefly present high level approaches such as
directive based compilers.

3.2.1 Dedicated programming languages for HPC
3.2.1.1 Overview

Many existing scientific applications have been adapted to make effective useof multi-
core CPU platforms using a wide variety of programming models. OpenMP [11] is the
de-facto standard for writing shared-memory thread-parallel programs. By means of
a language extension based on high-level constructs and directives, OpenMP makes it
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easier to parallelize loops and application hotspots amongst the CPU cores. OpenMP is
usually used jointly with the Message Passing Interface (MPI) library in CPU clusters
in order to exploit both the intra-node parallelism and the inter-node parallelism.

As an alternative to the OpenMP+MPI model, programming concepts that are based
on the PGAS (Partionned Global Address Space) have arisen. PGAS is a program-
ming model that assumes a global memory address space that is logically partitioned
amongst a set of threads each of which has a local view of that space. For example,
Coarray Fortran (CAF) [3], which is now integrated into the Fortran 2008 standard
proposal, extends the Fortran language syntax with a construct called coarrays, which
are essentially data structures that are shared between different images (processes) of
a program. Accesses to these coarrays result in remote memory accesses. Similarly,
UPC [10] is an extension to the C language offering benefits of the PGAS model to pro-
grams written primarily in C. In UPC, program instances are called threads and data
is divided up between shared and private spaces. In addition, language qualifiers are
provided which describe whether data is shared and how arrays should be distributed
among the available threads. The number of threads can be specified at both compile
and runtime. PGAS based approaches are attractive in terms of programmability but
still suffer from portability issues.

When it comes to hardware accelerators, programming a parallel chip that is not a

CPU can be challenging and requires unusual approaches. This can apply rather to any
kind of accelerator, such as GPUs or FPGAs. While many of the technologies in general
purpose GPU programming (GPGPU) are new, GPUs do have a relatively long history
dating back to at least 1987 [47]. However, it was not until the beginning of the 2000’s
that the OpenGL [129] API and DX11 DirectCompute [157] added programmable shad-
ing to their capabilities, exposing GPU programming to the mass market. Until CUDA
(Compute Unified Device Architecture) [4] and CTM (Close To Metal) [28]! emerged
in 2006, programmable shaders were practically the only way to program the graphics
cards in mainstream computers. Shaders were not designed for general purpose com-
puting and so put limitations on what could be done. While NVIDIA has improved the
CUDA platform, AMD has evolved CTM to CAL (Compute Abstraction Layer) as part
of the Stream SDK in December 2007 [28]. In June 2008, Apple and AMD along with
various industry players in GPU as well as in other accelerator technologies formed the
OpenCL (Open Computing Language) working group [19] under the Khronos Group.
Khronos is responsible for other well known industry open specifications and made a
choice to drive the OpenCL specification.
OpenCL and CUDA have since then become increasingly popular in the high perfor-
mance computing community. They are extensions to high level languages (C, C++)
which simplifies their learning curves. Theses technologies allow users to adapt complex
scientific applications to GPU architectures by rewriting codes in an SPMD fashion.
But, GPUs are architecturally different: GPUs from NVIDIA and AMD have different
architectures and furthermore even GPUs from the same vendor are different. Hence,
the user may need to optimize the same OpenCL or CUDA code for each individual
architecture in order to get the best performance. CUDA and OpenCL have few dif-
ferences in terminology, but otherwise CUDA and OpenCL written programs roughly
operate similarly. The most important difference, and also the main reason to choose
OpenCL, is that CUDA only targets NVIDIA GPUs while OpenCL is heterogeneous
and can be ran on various GPUs, CPUs and other processors.

LCTM was introduced by ATT. AMD announced the acquisition of ATT Technologies on July 2007.
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In the following we briefly describe the CUDA programming model and then give
more details, in a separate section, about the execution and memory models of OpenCL.
According to the NVIDIA literature [18], each multi-processor within a GPU contains
multiple streaming processors or CUDA cores, that share the instruction stream, each of
which has a pipelined arithmetic logic unit (ALU) and a floating point unit (FPU). The
code that gets executed on the GPU is also called a kernel. This kernel is launched on a
grid of thread blocks. The threads operate in warps, i.e. a collection of 32 threads that
execute simultaneously the same instructions. The warps inside the same block can be
synchronized, but no synchronization is possible between blocks. The different blocks
are placed on the different multi-processors by a scheduler that deactivates stalled warps
waiting for input to or output from memory and launches thread warps that are ready
for execution to hide latency. The same physical multi-processor can execute several
blocks, and the order in which blocks are assigned to multi-processors is undefined. The
memory available on the graphics card is shared between threads and thread blocks.
Each thread has its own registers, whose access is instantaneous (0 cycle) but whose
total number is limited. Each thread block can use a small amount of low-latency on-
chip shared memory, which can be read from and written to by all the threads of the
same block. This is an efficient way for threads within one block to exchange data.
Read/write accesses to it are always very fast (4 cycles), however the cost of some access
patterns is higher than others.

3.2.1.2 The OpenCL programming model

OpenCL is an industry standard used for task-parallel and data-parallel heterogeneous
computing on a variety of modern platforms such as multi-core CPUs, GPUs, FPGAs,
the Cell processor and other processor designs. OpenCL provides a software abstraction
in the form of a compute model and a memory model that aim at characterizing the
most common architectures of mainstream HPC platforms. Besides, OpenCL defines a
set of core functionalities that is supported by all devices, as well as optional function-
alities that may be implemented using an extension mechanism that allows vendors to
expose unique hardware features and experimental programming interfaces. In practice,
OpenCL offers a broad set of programming APIs and compilers to leverage heteroge-
neous compute facilities by exposing their underlying architectures to the programmers.
Although OpenCL cannot mask significant differences in hardware architectures, it does
guarantee portability. This makes it much easier for developers to begin with a correctly
functioning OpenCL program tuned for one architecture, and adapt it to other architec-
tures. It is to be noted that although OpenCL ensures the code portability, it does not
guarantee the portability of the applications performance due to the rapid evolution of
HPC architectures.

The figure 3.14 illustrates the OpenCL compute and memory models in details. The
OpenCL programming model abstracts CPUs, GPUs, and other accelerators as dewvice.
OpenCL devices are usually driven by a commodity CPU refered to as a host. Each
device comprises general compute units (CUs), each of which has multiple processing
elements (PEs). The processing elements of the same CU use SIMD execution of scalar
or vector instructions. Every instance of an OpenCL kernel (a function that executes on
OpenCL devices), called work-item, executes on a PE, simultaneously with other work-
items on the other PEs of the same device, and operates on an independent dataset.
Work-items are further grouped into workgroups. Each workgroup executes on the
same compute unit by groups of work-items. On AMD hardware, those groups are
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FIGURE 3.14: Illustration of the OpenCL compute and memory models.

called wavefronts and each has 64 work-items. Those in NVIDIA GPUs are the warps
as defined by the CUDA programming model.

OpenCL defines four types of memory that devices may incorporate: a large high-latency
global memory, a small low-latency read-only constant memory, a shared local memory
accessible from multiple work-items within the same workgroup, and a private memory
which is usually the register file accessible within each work-item. Local memory may be
implemented using either high-latency global memory, or may be implemented with fast
on-chip memory. Applications can query device attributes to determine the properties
of the available compute units and memory systems, using them accordingly.

Before an application can compile OpenCL programs, allocate device memory, or
launch kernels, it must first load an OpenCL platform (vendor dependant) and then
create a context associated with one or more devices. The devices are picked by the
programmer with respect to the application needs. Memory allocations are associated
with a context rather than a specific device. Once a context is created, OpenCL programs
can be compiled at runtime by passing the source code to OpenCL compilation functions
as arrays of strings. After an OpenCL program is compiled, kernel objects can be
extracted from the program. The kernel objects can then be launched on devices within
the OpenCL context by enqueuing them into OpenCL command queues associated with
the target device. OpenCL host-device memory transfers operations are also submitted
to the device through the command queues. To illustrate the difference between a serial
code and an OpenCL code, we present in figure 3.15 two implementations (in serial and
in OpenCL) of the SAXPY algorithm. Note that the loop in the serial code is replaced
by an SPMD code in OpenCL. For more information about OpenCL we refer the reader
to [19] and to [29]. Note that for hardware accelerators, on accelerator clusters the
mentioned programming models are usually used in conjunction with MPI in order to
implement large scale accelerated applications.
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void saxpy(int n, float a, float *x, float *y){
for (int 1 = 0; i < n; ++i){
y[i]l = axx[i] + yl[il;

}

__kernel void saxpy(float a, __global float *x, __global float *y){
int i = get_global_id(0);
y[i]l = axx[i] + yl[il;

FIGURE 3.15: A code snippet of the SAXPY algorithm implemented in serial (up) and
in OpenCL (down). Only the OpenCL kernel is considered and the host code is not
presented.

3.2.2 Directive-based compilers and language extensions

GPUs based systems have emerged as promising alternatives for high performance com-
puting thanks to the high compute capability and high internal memory bandwidth
of GPUs. However, their programming complexity poses significant challenges for de-
velopers. Several directive-based GPU programming models have been proposed such
as OpenMPC [138], hiCUDA [108], PGI Accelerator [97], HMPP [83], OpenACC [13]
and OpenMP 4.0 [14]. to provide a better productivity than existing ones. General
directive-based programming systems usually consist of directives, library routines, and
designated compilers. A set of directives are used to augment information available to
the compilers, such as on mapping loops onto GPU and data sharing rules. Those di-
rectives are to be inserted into a piece of C, C++ or Fortran source code in order to
automatically generate corresponding host and device codes (CUDA, OpenCL, assembly
code ...).

Directive-based models provide different levels of abstraction, and require much less
programming efforts. The most important advantage of using directive-based GPU pro-
gramming models is that they provide very high-level abstraction on GPU programming,
since the compiler hides most of the complex details specific to the underlying GPU ar-
chitectures which helps programmers focus on the productivi