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a-GSU: alpha-glycoprotein subunit

3-BHSD: 3-beta hydroxisteroid deshydrogenase

ACTB: ctin B

Al: artificial insemination

AMH: anti mullerian hormone

ANOVA: analyse of variance

APH: aminoglycoside phophotransferase

AR: androgen receptor

ATF3: ctivating transcription factor 3

B2M: beta-2-microglobulin

BCL2AL: B-cell ymphoma 2-related protein Al

BLBC: basal-Like-Breast Cancer

BMP2: bone morphogenetic protein 2

BPES: blepharophimosis ptosis epicanthus inversus syndrome
BSA: bovine serum albumine

CAR: caruncular area

CCL: chemokine (C-C motif) ligand

cDNA: complementary DNA

CH25H: cholesterol 25 hydroxylase

CL: corpus luteum

Coup-TFII: chicken ovalbumin upstream promoter transcription factor Il
COX2: cyclooxygenase2

CRESTAR: Oestrus control in both cyclic & non cyclic cattle (Heifers & cows)
CXCL: chemokine (C-X-C motif) ligand

CYP19: cytochrome P450 aromatase

DMSO: dimethyl sulfoxide

DEG: differentially expressed gene

dGE: deep glandular epithelium

DLXS5: distal-less homeobox 5

DNA: Deoxyribonucleic acid



dpo: days post-oestrus

EZ2: estrogens

ECM: extra-cellular matrix

ED: embryonic disk

EET: extra-embryonic tissues

ERE: estrogen receptor response element

ESR1: estrogen receptor 1

ESR2: estrogen receptor 2

FKH: forkhead domain

FOS: FBJ Murine Osteosarcoma Viral Oncogene Homolog

FOX: forkhead box transcription factors

FOXA1, FOXA2, FOXAS3: forkhead box transcription factor, subfamily A, member 1, 2 and 3
FOXC1, FOXC2: forkhead box transcription factor, subfamily C member 1 and 2
FOXE3: forkhead box transcription factor, subfamily E member 3

FOXF2: forkhead box transcription factor, subfamily F member 2

FOXGL1.: forkhead box transcription factor, subfamily G member 1

FOXI1: forkhead box transcription factor, subfamily | member 1

FOXL2: forkhead box transcription factor, subfamily L member 2

FOXML1: forkhead box transcription factor, subfamily M member 1

FOXNS3: forkhead box transcription factor, subfamily N member 3

FOXO1, FOXO1A, FOX03, FOX03A, FOX04: forkhead box transcription factor, subfamily O
member 1, 1A, 3, 3A and O4

FOXP1, FOXP2, FOXP3: forkhead box transcription factor, subfamily P member 1, 2 and 3
FOXQZ1: forkhead box transcription factor, subfamily Q member 1

FOXSL1: forkhead box transcription factor, subfamily S member 1

FSH: follicle stimulating hormone

FST: follistatin

GC: granulosa cells

GCT: granulosa cell tumour

GE: glandular epithelium

GFP: green fluorescent protein
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GnRH: Gonadotropin Releasing Hormone

HANDZ2: Heart- and neural crest derivatives-expressed protein 2
HCI: Hydrochloric acid

HNF, HNF3a: hepatocyte nuclear factor member 3-alpha

HOX, HOXA10: Homeobox protein member A10

ICAR: intercaruncular area

ICM: inner cell mass

IER3: Radiation-inducible immediate-early gene IEX-1

IFN: interferon

IFNT: interferon-tau

IGFBPL1: Insulin-like growth factor-binding protein 1

IgG: Immunoglobulin G

IHh: Indian hedgehog

IL: interleukine

ISG: interferon stimulated gene

IVF: in vitro fertilization

KGN: steroidogenic human ovarian granulosa-like tumour cell line
LAMINB: lamine B

LATSL1: Large Tumour Suppressor, Homolog 1 Serine/threonine-protein kinase
LE: luminal epithelium

LH: luteinizing hormone

MAPK: Mitogen-activated protein kinases

MHC: major histocompatibility complex

MnSOD: manganese superoxide dismutase

MRNA: messenger ribonucleic acid

MUC1: mucine 1

NaCl: sodium chloride

NOBOX: newborn ovary homeobox protein

NRB5A2: nuclear receptor subfamily 5, group A, member 2

OVX: ovariectomy/ovariectomized animals



OXTR: oxytocin receptor

P4: progesterone

PBS: phosphate buffered saline

PBS-T: phosphate buffered saline tween 20

PCR: polymerase chain reaction

PFOXIC: promoter FOXL2 inverse complementary
PGC: primordial germ cells

PGF2a: prostaglandin F2 alpha

PGH2: prostaglandin H2

PGR-A: progesterone receptor form A

PGR-B: progesterone receptor form B

PGRKO: progesterone receptor knock-out

PIAS1: E3 SUMO-protein ligase

PIS: polled intersex syndrome

PISRT1: polled intersex syndrome regulated transcript 1
POF: premature ovarian failure

PolyAla: poly-alanine

PPARGC1A: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

PRE: progesterone receptor response element
PRL: prolactin

pSG5: eukaryotic expression vector

PTGS2: Prostaglandin-endoperoxide synthase 2
RGS2: Regulator of G-protein signaling 2

RIPA: Radioimmunoprecipitation assay buffer
RNA: ribonucleic acid

rolFNT: recombinant ovine interferon-tau
RPL19: 60S ribosomal protein L19

RSAD2: radical S-adenosyl methionine domain containing 2
RSPO1: R-spondin-1

RT-PCR: real time (quantitative)-polymerase chain reaction
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SCARADS: scavenger receptor class A, member 5
SCNT: somatic-cell nuclear transfer

SDS: Sodium dodecyl sulfate

SEM: standard deviation of the mean

sGE: superficial glandular epithelium

SHH: sonic hedgehog

SIRTL1: Sirtuin 1

SOD2: superoxide dismutase 2

SOX9: SRY (sex determining region Y)-box 9

SP1: specificity protein 1

SRY: sex determining region Y

STATL: signal transducer and activator of transcription 1
StAR: steroidogenic acute regulatory protein
SUMOZ1: Small ubiquitin-related modifier 1

SYBR: asymmetrical cyanin dye

TESCO: core 1.3 kb testis-specific enhancer of Sox9
TGF-B: Transforming growth factor beta

TLR: toll-like receptor

TNFAIP3: Tumour necrosis factor, alpha-induced protein 3
TSH: Thyroid-stimulating hormone

UBC9: SUMO-conjugating enzyme

WNT: wingless-related protein
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In the last fifty years, human fertility is declining due to mutations, disease and mostly to
environmental factors (Casterline 1989; Sadeu et al. 2010). Current estimates state that 10-
15% of couples world-wide remain childless due to infertility, with genetic aetiology making
up a significant proportion (Matzuk and Lamb 2008). This fertility decline is a consequence of
defects of gonad differentiation and function, gametes production and maturation but also
endometrial development and physiology. Due to the progress of Medically-Assisted-
Procreation (MAP) in human reproduction and global species conservation, pituitary and
gonads infertility can be rescued. Nevertheless, endometrial defects cannot be rescued
because beyond the blastocyst stage; endometrium is the only tissue able to drive a
successful pregnancy until parturition (Sandra et al. 2011). Given that an achieved
pregnancy is characterized by the success of numerous checkpoints, implantation appears to
be one of the most critical checkpoints for the outcome of pregnancy (Lee and DeMayo
2004; Bazer et al. 2010). This step is characterized by a tightly regulated communication
between a healthy conceptus (embryonic disk and extra-embryonic tissues) and a receptive
maternal endometrium. Therefore, it is necessary to define precisely the dialogue occurring
during the pre-implantation period between the conceptus and the endometrium and more
specifically to study the mechanisms involved in endometrial physiology during the early

pregnancy in comparison with the menstrual/oestrous cycle in mammals.

A. Female reproductive physiology in mammals: the particular case of
ruminants

1. Uterine structure
The endometrium belongs to the female reproductive tract including myometrium, two
ovaries, two oviducts, cervix, vagina and vulva. This complex and heterogeneous tissue is

one of the key entities crucial to obtain a successful pregnancy (Spencer et al. 2012).

Simplex Short bicornuate
Woman Cow, sheep Rabbit

Figure 1: Anatomy of uteri in mammals. Human and non-human primates have a simplex uterus with one
cervix and one uterine body. Ruminant have a short bicornuate uterus with two uterine horns, one uterine body
and one cervix. Rabbits and rodents have a duplex uterus with two uterine bodies and two cervixes.
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All mammal species exhibit different kind of uterus; for instance human have simplex uterus,
ruminants have bicornuate uterus, rabbit have duplex uterus (Fig. 1) or carnivore and swine
have a long bicornuate uterus. Concerning ruminant, endometrium is not smooth but
separated into two different areas, caruncular area or caruncles (CAR, Fig. 2) surrounded by
intercaruncular area (ICAR, Fig. 2).
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Figure 2: The ruminant female reproductive tract. The bicornuate uterus is composed of myometrium and
endometrium which is separated into caruncles and intercaruncular area in both uterine horns.

a) Histology
In mammals, endometrium is constituted with a luminal epithelium overlaying stromal cells,
as well as immune and endothelial cells. Endometrial epithelial cells are either luminal or
glandular (Cooke et al. 2013). Endometrial glands are localized either close to the lumen
namely superficial glandular epithelium (sGE) or in the depth of the endometrium and close
to the myometrium namely deep glandular epithelium (dGE). dGE are smaller and more
numerous than sGE (Fig. 3). Luminal and glandular epithelia are not a passive barrier to
infection but mediate innate immune response through interaction with endometrial dendritic
cells, B cells and T cells (Oliveira et al. 2012; Turner et al. 2012; Bauersachs and Wolf 2013).

Specifically, ruminant endometrium is separated into CAR and ICAR areas.
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Luminal
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Stromal
cells

Figure 3: Histology of the bovine uterus.  Endometrium is composed by luminal epithelium, stroma, glandular
epithelium, immune cells and endothelial cells (blood vessels).

b)  Caruncular area
The caruncles are endometrial protuberances, composed almost exclusively of stromal cells,
surrounded by a monostratified layer of luminal epithelial cells (Spencer et al. 2012). During
pregnancy, the caruncles are the first place of implantation and later, will take part to the
placentome units composed of embryonic and maternal villi called cotyledon and caruncle
respectively (Nguyen et al. 2012; Touzard et al. 2013). Maternal endothelial and epithelial
cells from caruncles are directly apposed to foetal trophoblasts in a variety of crypt-like,
villous or folded arrangements.

c) Intercaruncular area
Caruncles are surrounded by the intercaruncular area which is composed of stromal cells
(Fig. 3) and a high number of superficial and deep glandular epithelial cells (Spencer et al.
2012). Endometrial glands synthesize and secrete a variety of enzymes, growth factors,
cytokines, hormones, transport protein and others molecules collectively termed histotroph
(Spencer and Bazer 2002). During pregnancy, maternal histotroph influence the conceptus
(embryonic disk and extra-embryonic tissues) development (Bazer et al. 2010).
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2. Sexual cycle
In human and ruminant, sexual cycle is characterized by the spontaneous release of the
oocyte, at regular intervals. The released gamete takes place at the oestrus, happenning
even in the absence of the male (Roelofs et al. 2010). In sheep and goats, exposure of
seasonally anoestrous females to sexually active males results in synchronized oestrus
which is called the “male effect” (Gelez and Fabre-Nys 2004). In mammals, this sexual cycle
is dependent of the menstrual/oestrous cycle, the ovarian oestrous cycle and the hormone

control of the cycle (Bartlewski et al. 2011).

a) Menstrual cycle
The menstrual cycle lasts approximately 28 days in young healthy women characterizing by
an equal duration of follicular and luteal phases (Hawkins and Matzuk 2008; Mihm et al.
2011). Nevertheless, the menstrual cycle length is highly variable between women and
correlated with ageing. The variability is mostly dependant of the follicular phase length. At
the end of the follicular phase, estrogens rise induces the ovulation of a single ovulatory

dominant follicle which is a similar process to cows, mares and women (Ginther et al. 2001).

b) Oestrous cycle
The oestrous cycle is defined by the periodic acceptance of mating just before ovulation
occurs. During the oestrus, ruminants exhibit genital (clear vulval discharge) and behavioural
(acceptation of mating) events around the oestrus stage (Forde et al. 2011). The oestrous
cycle lasts approximately 21 days in cattle and 17 days in sheep (Bartlewski et al. 2011), and
can be defined into four stages: proestrus, oestrus, metoestrus and dioestrus (Forde et al.
2011, Fig. 4).
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Figure 4: Summary of oestrous cycle events occurring in the pituitary, the ovary and the uterus in

ruminants. The pre-ovulatory rise of E2 leads to the LH ovulatory rise then oocytes release. The support ovarian
cells differentiate into luteal cells secreting P4. Without fertilization, pulsatile PGF2a release induces the CL
regression and the beginning of the next oestrous cycle (Spencer et al. 2007; Forde et al. 2011).

Proestrus takes place at the end of the previous cycle and is characterized by the follicular
growth leading to the dominant follicle selection. During the oestrus (from 20 hours to 24
hours in ruminants), the dominant follicle reaches its maximum growth, matures and ovulates
(Forde et al. 2011). Metoestrus lasts 2 to 4 days and corresponds to the end of oestrus
associated with the Corpus Luteum (CL) formation and the rising of circulating progesterone
(P4) levels. Finally, the dioestrus, which is the longest step, is the period of maximum CL
size and function leading to high levels of P4 in circulation. At the end of this step, the CL
begins to regress which corresponds to the luteolysis phase as proestrus step (Arosh et al.
2002; Bartlewski et al. 2011; Forde et al. 2011).

C) Ovarian oestrous cycle

(1) Follicular phase
The follicular phase takes place during the proestrus and oestrus steps (Forde et al. 2011).
This phase is characterized by the follicular growth starting from the primary to the antral
follicle also called Graafian follicle. The follicle growth is a continuous phenomenon
maintained throughout the pregnancy. During a normal oestrous cycle of 21 days in cattle
particularly, three cohorts of follicles begin their follicular growth (Fig. 5, 6 and 7, Ireland et al.

2000). On average, each cohort has an expected lifetime of seven to ten days during which
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several follicles will begin their growth but only the dominant follicle will be ovulated. Once
selected, the dominant follicle will start the synthesis and the secretion of increasing amount

of estrogens (E2). Remaining follicles will come into follicular atresia (Ireland et al. 2000).

First wave Secondwave Ouuiatory wave

. Loss af Loss of
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Figure 5: Follicular growth during the bovine oestr ous cycle (Ireland et al. 2000). During the oestrous cycle
three waves of follicular growth occurred and without fertilization, the third follicular wave leads to the selection of
the mature pre-antral follicle to be ovulated. All the unselected follicles degenerate and come into follicular atresia.
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Figure 6: The ovarian cycle in human.  Follicular growth leads to the maturation and the selection of ovulatory/
de Graaf follicle. Then, ovulation process leads to a differentiation of ovarian supporting cells into luteal cells
secreting P4 during the luteal phase (B. Cummings, © Pearson Education, 2004).

(2) Luteal phase
After the ovulation, granulosa and interna theca cells of the ovulatory follicle differentiate
themselves into large and small steroidogenic luteal cells, respectively. Starting from this
step, luteal cells initiate the synthesis and the secretion of P4 (Fig. 5, 6 and 7;Hawkins and
Matzuk 2008; Forde et al. 2011; Mihm et al. 2011). For the differentiation stage, the CL
doubles its size and weight until reaching its maximal amount during the active luteal phase
(Arosh et al. 2002). Uterus is a major site of prostaglandin synthesis depending on the
activity of cyclooxygenase enzymes responsible for the conversion of arachidonic acid to the
intermediate precursor PGH2 then the primary biologically active prostaglandins including
prostaglandins F2 a (PGF2a, Charpigny et al. 1999). Without fertilization, the CL initiates its

regression due to the luteolytic impact of PGF2a pulses in response to peaks of luteal
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oxytocin (Charpigny et al. 1997). Subsequently, P4 synthesis and secretion decrease

dramatically (Hawkins and Matzuk 2008).
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Figure 7: The ovarian follicular growth (Hawkins an  d Matzuk 2008). Follicular maturation and selection
occurred in mammals from primordial to pre-ovulatory follicles then ovulation and CL formation.

d) Hormone control of the oestrous cycle
The oestrous cycle is characterized by the balanced action of ovarian steroid hormone such
as E2 synthesized during the follicular phase and P4 during the luteal phase (Miller and
Moore 1976; Devroey and Pados 1998; Forde et al. 2011; Mihm et al. 2011). This steroid
hormone balance is tightly regulated along the hypothalamo-pituitary-gonadal axis (Fig. 8).
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Figure 8: The hypothalamo-pituitary-gonadal axis in mammals (adapted from Whirledge and Cidlowski
2013; Whirledge and Cidlowski 2013). GnRH pulsatile secretion then E2 secretion as well as LH and FSH
pulsatile secretions lead to ovarian steroid hormones secretion and ovulation processes. In case of
menstrual/oestrous cycle, OXTR then pulsatile secretion of PGF2a induce CL regression.

(1) The hypothalamo-pituitary action
The hypothalamus has to integrate both external (temperature, light or stress) and internal

(ovarian E2 and P4) stimuli leading to a pulsatile secretion of a gonadoliberine hormone,
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called GnRH, Gonadotropin Releasing Hormone (Fig. 8). Ovarian steroid hormones can
modulate the GnRH secretion and therefore modulate GnRH action on pituitary. The pulsatile
secretion of GnRH induces the pulsatile discharge of Follicle Stimulating Hormone (FSH) and
the Luteinizing Hormone (LH) by the anterior pituitary. Both pituitary hormones are released
at high level leading to the ovulation 24 hours later (Fig. 9; Downey 1980; Ginther et al. 2005;
Forde et al. 2011).
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Figure 9: LH, FSH, E2 and P4 concentration during the  menstrual cycle. The pre-ovulatory rise of E2 leads to
the ovulatory rise of LH then ovulation of the dominant follicle (Ginther et al. 2005).

FSH is responsible for the follicular growth and induces the secretion of E2 by aromatase
gene activation. Indeed, aromatase gene, CYP19, catalyzes the conversion of androgens
into 17B-estradiol hormone (Pannetier et al. 2006; Forde et al. 2011).

LH is involved in follicular maturation, and, ovulation induced by the pre-ovulatory rise of E2.
The ovulatory rise of LH lasts approximately six hours with 50-fold increased level of
secretion compared to another step of the oestrous cycle. LH is, then, involved in the
differentiation of granulosa and interna theca cells into luteal cells leading to synthesis and

secretion of P4 (Messinis et al. 2010).
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(2) Biological action of ovarian steroids

(a)  Estrogens (E2)
During the follicular phase, E2 are synthesized by the granulosa and the interna theca cells
in a short time frame with an important discharge 24 hours before the ovulation. E2 stimulate
the cyclic activities of hypothalamus and pituitary, emphasizing the secretion of FSH and LH
(Downey 1980).

(b)  Progesterone (P4)

P4 is mostly secreted by the CL during the luteal phase even if there is a limited production
by the ovarian stroma. This luteal secretion rises gradually until P4 secretion reaches a
plateau with sufficient concentrations throughout the luteal phase to maintain pregnancy
when occurs. P4 is the major pregnancy hormone and avoids the next oestrous cycle with a
negative impact on hypothalamus and pituitary preventing behavioural oestrus occurring
(Fig. 8; Forde et al. 2011; Whirledge and Cidlowski 2013; Whirledge and Cidlowski 2013). In
addition, P4 level during the luteal phase activates the endometrial gland differentiation and
secretion occurring during uterine receptivity and promoting conceptus implantation when
occurs (Bazer et al. 2010; Forde et al. 2011). In the case of oestrous cycle, oxytocin is
secreted by the anterior pituitary and the CL and binds the oxytocin receptor (OXTR)
inducing the COX2/PTGS2 expression (Kim et al. 2003). Uterine pulsatile synthesis of
PGF2a by the rate-limiting enzyme, PTGS2 (Charpigny et al. 1999), leads to CL lyses and
then, dramatic decrease of P4 secretion because of the disappearance of the luteal

steroidogenic cells (Smith et al. 1994).

(c) Uterine steroid nuclear receptor
Once secreted, E2 and P4 are either transported to the uterus by the ovarian artery or diffuse

out of the granulosa and luteal cells respectively, and act in endometrium using mainly
nuclear receptor. The steroid hormones bind their own nuclear receptor ERa and 3 (ESR 1
and 2, respectively) for E2 and PR A and B for P4 (also called PGR form A and B,
respectively) which are members of the nuclear receptor super-family of transcription factors
capable of activating and repressing transcription of their endometrial target genes (Fig. 10;
Franco et al. 2012; Wetendorf and DeMayo 2012).
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AF-1 AF-2

Figure 10: Structure of E2 and P4 nuclear receptor. A/B: N-terminal domain, highly variable. DBD = DNA
binding domain. LBD = ligand binding domain. AF = activation function. F: highly variable sequence and unknown
function. The steroid hormone receptor abbreviations are ER — estrogen receptor (a, 595 amino acids; 8, 530 aa)
and PR —progesterone receptor (A, 933 aa; B, 770 aa). Adapted from Aranda and Pascual 2001; Griekspoor et al.
2007.

Many rapids and non-classical actions of P4 are mediated by P4 receptor membrane
component 1 and 2 namely PGRMC1 and PGRMC2 (Pru and Clark 2013). Endometrial
expression of PGRMC1 in menstrual cycling mammals is most abundant during the
proliferative phase of the cycle. PGRMC?2 is highly expressed during the secretory phase in
mammals and could be involved in universal non-classical P4 actions in the uterus (Pru and

Clark 2013). However, the biological functions of both PGRMC remain not clear.

PGR Knock-Out mice are completely infertile due to serious defects on pituitary, ovaries and
uterus (Lydon et al. 1995). Mutant mice for both isoforms of PGR have a non-receptive
uterus which did not undergo decidualisation and then implantation whereas ESR1 null mice
exhibit defects of uterine growth and fail to prepare for blastocyst implantation (Ramathal et
al. 2010). Both knock-out mice show uterine receptivity impairment (Fig. 15). ESR and PGR
exhibit a complex expression and localization throughout the oestrous cycle (Clemente et al.
2009; Okumu et al. 2010). Both ESR and PGR expression are decreased from the follicular
to the luteal phase in cattle (Okumu et al. 2010). ESR are localized in the stroma cells and
either in the superficial glandular epithelium (sGE) or the deep glandular epithelium (dGE)
during the follicular phase, specifically during proestrus and oestrus with a maximal level in
metoestrus and show a significant decrease of expression during the luteal phase/dioestrus.
Similarly, PGR localization are increased during oestrus with a maximal level in metestrus
(follicular phase) and exhibit a significant decrease in diestrus (luteal phase) and a moderate

expression in preestrus (Kimmins and MacLaren 2001).

During the luteal phase, P4 and then PGR are responsible of the ESR1 and OXTR silencing
leading to a repression of oxytocin action on the endometrium. Interestingly, prolonged action
of P4 inhibits the expression of PGR leading to oxytocin binding its own receptor and elicits
the pulsatile secretion of PGF2a (Spencer and Bazer 2002; Bazer 2010) leading to the CL

regression.
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(3)  Endometrial evolution through the oestrous cycle

During the oestrous cycle and especially the menstrual cycle (Fig. 11), endometrium
undergoes intense cellular reshaping (Maybin and Critchley 2012). The follicular phase
exhibits intense endometrial proliferation process under the influence of E2. For instance, E2
induces a massive proliferation of human endometrial cells, increasing the endometrial
thickness and angiogenesis prior to the invasive implantation of human embryo when
pregnancy occurs (Figll; Miller and Moore 1976; Devroey and Pados 1998; Mihm et al.
2011). Ruminant endometrium undergoes a moderate proliferative process during the short-
follicular phase (Forde et al. 2011). Mitosis occurred in ruminant endometrium in stromal and
epithelial cells (Forde et al. 2011). During the luteal phase, P4 inhibits the endometrial
proliferation in favor of the endometrial differentiation (Miller and Moore 1976). Human
endometrial cells undergo decidualisation process which is a transformation of the
endometrium into the decidual tissue, involving the differentiation of endometrial cells and
infiltration by large numbers of lymphoid cells (Salamonsen et al. 2003). In ruminant,
decidualisation does not occur but endometrium undergoes also a luminal epithelium
thickening and morphological changes in endometrial glands that will become angled and
curled up associated with a larger diameter (in the ewe; Gray et al. 2001, in the cattle; Bazer
et al. 2009). In addition, P4 secreted during the luteal phase stimulates angiogenesis in
endometrium and inhibits the myometrial contractions by non-genomic mechanisms
(Takamoto et al. 2002; Bazer et al. 2009).

During the luteo-follicular transition, endometrium exhibits a cellular and vascular reshaping
with or without bleeding and vascular phenomenon in human and ruminant species,
respectively (Forde et al. 2011; Mihm et al. 2011; Gargett et al. 2012). Human endometrium
is subjected to cyclical injury and repair throughout a woman'’s reproductive life. The decline
of P4 secretion during the luteo-follicular transition triggers menses leading to the separation
of the functional layer of endometrium from the basal layer (Gargett et al. 2012; Maybin and
Critchley 2012).
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Figure 11: The uterine cycle in human. Human endometrium undergoes intense proliferation then differentiation
and decidualisation until menses without fertilization (B. Cummings, © Pearson Education, 2004)

In ruminant, endometrial reshaping is superficial due to the slight proliferation process

occurring during the follicular phase.

3. The establishment of pregnancy

a) Early embryo development
After fertilization, the embryo is still localized in the oviduct for few days according to the
species and then, come into the uterine cavity (Fig. 12, Thibault © Ellipses, 2001). Early
embryo development is characterized by various cellular divisions (blastomeric divisions) and

the first differentiations events starting from the morula stage (Guillomot 2001).

Shories Enterin uterus Loss _of Zona Implantation Duration of Placentation
(dpo) Pellucida (dpo) (dpo) pregnancy (dpo)
Human 3-4 (morula) 5 6 280 Hemochorial
Mouse 3 (morula) 4 5 20 Hemochorial
Cattle | 4(16-32cells) 9-10 19-20 280 Syneptihelio-chorial
Sheep | 4(16-32cells) 8-9 15-16 145 Syneptihelio-chorial

Figure 12: Comparative aspects of pregnancy in four mammal species. Implantation day is highly variable
according to the species without any correlation with the duration of pregnancy (adapted from Thibault © Ellipses,
2001).

In mammalian development and more specifically in ruminants, the first cell fate decisions
are clearly specified during blastocyst formation, when the trophectoderm (TE) surrounds the
inner cell mass (ICM), forming the cavity named the blastocoel (Fig. 13; Young et al. 1998).
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Figure 13: First embryo cellular division from 2-ce lls stage to blastocyst stage (Young et al. 1998).

The ICM will shape the fate of the embryo and extra-embryonic tissues (EET) that will
become the placenta (Hue et al. 2012; Nagatomo et al. 2013). In uterine cavity, bovine
blastocyst has a central position because of its future wide expansion whereas human
blastocyst has an eccentric position (Wimsatt 1975; Hue et al. 2012). Hatched human and
rodent blastocysts undergo implantation process respectively at 6 and 5 dpo. Ruminant
hatched blastocysts undergo implantation at 19-20 and 15-16 dpo respectively following an
elongation period of the EET (cow: 2 weeks, sheep: 10 days; Bazer et al. 2009) associated

with a continuous cross-talk with the uterus (Fig. 14; Degrelle et al. 2005; Hue et al. 2012).
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Figure 14: Early pregnancy events in ruminant. Schematic representation of the relative changes in
embryo/blastocyst development after fertilization in relation to position in the female reproductive tract from
Spencer et al. 2004. Pictures of growth and differentiation of embryonic and extra-embryonic tissues in bovine
pre-implanting blastocysts. Ovoid (day 12), tubular and early filamentous blastocysts (day 16-17) increased in
size from 150 pm to 130-150 mm (adapted from Degrelle et al. 2005).

During this elongation period, blastocysts have a free-life period that ends up when the
conceptus starts forming loose cellular contacts with the endometrial layer of the uterus
(Guillomot 1995; Hue et al. 2012). The major protein product by ovine conceptuses in culture
was initially referred to as protein X (Godkin et al. 1982). This protein, secreted by the
elongating conceptus trophectoderm, was renamed ovine trophoblast protein-1 then
interferon tau (IFNT; Bazer et al. 1979; Martal et al. 1979; Godkin et al. 1984; Godkin et al.
1984). IFNT is a member of type | interferon, sharing high structural homology with other
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members including IFN alpha, beta, delta and omega but IFNT is unique to ruminant (Bazer
et al. 2010). IFNT which is the major signal of pregnancy maternal recognition is secreted
from day 9 to day 18-20 in sheep and from day 12 to day 25 in cattle (Martal et al. 1979; Beal
et al. 1981; Knickerbocker et al. 1986; Roberts et al. 2008).

b) Hormonal control of pregnancy maternal recognition

The establishment of pregnancy needs the maintenance of a functional CL. The strong
embryonic anti-luteolytic signal, IFNT, abrogates the CL regression and maintains the
production of P4 that is permissive to actions of IFNs, growth factors and cytokines
responsible for uterine receptivity to implantation (Bazer et al. 2010; Bott et al. 2010).
Specifically, IFNT suppresses the expression of estrogen nuclear receptor 1 (ESR1) and
estrogen-regulated genes including oxytocin receptor (OXTR). In uterine luminal and
superficial glandular epithelium, the oxytocin action removal leads to a silencing of the
endometrial luteolytic pulses of PGF2a. The inhibited expression of ESR1 leads also to the
repression of PGR and Mucinel (MUCL1, anti-adhesive gene) expression in endometrial
epithelia which is a prerequisite for uterine receptivity to implantation. MUC1, a
transmembrane mucin glycoprotein expressed at the apical surface of a variety of
reproductive tract epithelia, is a component of the glycocalyx which is an extracellular
polymeric material (Spencer et al. 2004). In both human and ruminant species, MUC1
controls the accessibility of conceptus integrin receptors to their ligands by sterically blocking
cell—cell and cell-extracellular matrix (ECM) adhesion (Spencer et al. 2004). Both repression
of PGR and MUC1 is a prerequisite for contact with TE and initiation of implantation
(Spencer and Bazer 2002; Bazer et al. 2012).

P4 promotes the conceptus semi-allograft in the maternal organism by suppressing the
expression of immune recognition like major histocompatibility complex class | molecules
(MHC) genes, consisting of an alpha chain, and B2-microglobulin (B2M) that regulate
immune rejection responses (Choi et al. 2003; Bazer 2010). More specifically, in sheep,
MHC class | alpha chain and B2M are primarily expressed in LE and sGE from day 10 to 12
of the oestrous cycle and pregnancy but significantly increased in stromal cells and deep
glandular epithelium (dGE) during the pregnancy maternal recognition period (day 14 to 20)
and not in LE and sGE. Similarly, intrauterine infusion of IFNT leads to an increase of MHC
class | and B2M in stromal cells and dGE but not in LE and sGE. Altogether those results
show that the MHC class | and B2M molecules local silencing during pregnancy is a
prerequisite for maternal tolerance of the allograft conceptus and implantation step (Lea and
Sandra 2007; Roberts et al. 2008; Bazer et al. 2010). Immunosuppressive environment is

required during pregnancy; P4 is known to induce the expression of Interferon Stimulated
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Genes (ISGs) in association with IFNT action leading to the repression of immune response
(Bazer et al. 2008). In addition, a combine action of IFNT and P4 induces the expression of
Toll-Like Receptors (TLRs), members of the pattern recognition receptors family essential for
the endometrial innate immune response (Oliveira et al. 2012). Collectively, endometrial
gene expression profile involved in innate immunity exhibits a repression of global immune
response prior to the conceptus semi-allograft (Walker et al. 2010).

Normal P4 production and secretion during the oestrous cycle and maintained production
during the pregnancy are necessary for endometrial gland differentiation (Gray et al. 2002;
Wetendorf and DeMayo 2012). Ovine uterine gland knock-out (UGKO) due to the neonatal
exposure of norgestomet; a P4 analogue; exhibit lack of endometrial glands and a markedly
reduced surface of luminal epithelium. UGKO ewes cannot support a pregnancy until
parturition due to recurrent early pregnancy loss associated with failure of conceptus
elongation and survival between 12 and 14 dpo (Gray et al. 2001; Gray et al. 2002). In
addition, microarray comparison between cyclic and UGKO ewes show different populations
or altered numbers of immune cells in UGKO ewes could be involved in recurrent early
pregnancy loss (Gray et al. 2006).

As described above, well-developed endometrial glands are involved in the communication
with the conceptus during the peri-implantation period, secreting histotroph. Nutrients, growth
factors or enzymes are responsible of the conceptus development; in time and with a normal
size; in response of IFNT embryonic secretion (Gray et al. 2006; Spencer et al. 2007; Bazer
et al. 2012).

C) Steroid nuclear receptor and early pregnancy
Steroid nuclear receptors control uterine receptivity throughout the oestrous cycle as well as
the early pregnancy in association with IFNT action. The biological functions of both
members of nuclear receptor transcription factor family are reflected by the regulation of their
target genes and were assessed using knock-out mice model or antagonist of hormone
receptor (Lubahn et al. 1993; Lydon et al. 1995; Krege et al. 1998; Couse et al. 2000; Cheon
et al. 2002; Fig. 15).
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Figure 15: Comparison of estrogen and progesterone knock-out mice model. Deletion of ER (ESR) and PR
(PGR) genes in mice is strongly linked to infertility as abnormal ovarian function and uterine defects.

The deletion of nuclear hormone receptors in mice lead to infertility and altered endometrial
gene expression profile binding ERE and PRE of target genes, respectively (Griekspoor et al.
2007). ESR genes can affect cellular proliferation and differentiation using ligand-dependent
nuclear transactivation. ESR1-regulated genes are involved in apoptosis, cell cycle, cell
adhesion/extracellular matrix and morphogenesis. Classic target genes include TGFS,
prolactin, VEGF, angiotensin, cathepsin D, c-Myc and cyclin D1 (O'Lone et al. 2004). In
addition, ESR1 is known to regulate various endometrial genes expression such as OXTR
and PGR genes as previously described above which is a prerequisite to the initiation of
uterine receptivity, particularly in ruminants, as previously described above (Bazer et al.
2010).

On the other side, PGR is also capable to regulate various endometrial genes such as Indian
Hedgehog (IHh) which is involved in epithelial cells proliferation and differentiation but also in
angiogenesis in mice (Takamoto et al. 2002). IHh as an effector of PGR is expressed in
luminal and glandular epithelia with an increased expression right before the implantation
then decreased expression immediately after implantation (Franco et al. 2008). IHh is a an
early P4-regulated gene inducing the downstream expression of Patched-1 (Ptc-1),
Hedgehog interacting protein 1 (Hipl) and Chicken Ovalbumin upstream Promoter
transcription factor 1l (CoupTFIl). Bone Morphogenetic protein 2 (Bmp2) which is expressed
in the endometrial stroma in sites of implantation in mice, is also known to be an effector of
Pgr inducing the downstream expression of Wnt4 and Ptgs2 expression (Franco et al. 2008).
The murine transcription factor, Hand2 is involved in the anti-proliferative action of P4
mediated by Pgr which is necessary prior to implantation step (Li et al. 2011). HOXA10 is a
direct target gene of PGR and is involved in embryo development, implantation and

conceptus-maternal communications, particularly in pig (Wu et al. 2013). PGR may play a
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crucial role in endometrial cancer and endometriosis because of the differential expression of

its direct target gene including HOXA10 and IHh genes (Franco et al. 2008).

d) Implantation: the specific case of ruminant

(1) Definition

In mammals, implantation represents a critical checkpoint for the success of pregnancy. This
step corresponds to the establishment of permanent cellular interactions between the
conceptus (embryo and extra-embryonic tissues) and the endometrium (Lee and DeMayo
2004; Bazer et al. 2010). Compared to the invasive nature of implantation in mice and
humans, the process of implantation is superficial in ruminants, leading to a
synepitheliochorial placentation. Implantation starts at 20-21 days post-oestrus (dpo) in cattle
and 15-16 dpo in sheep (Fig. 12 and Fig. 16; Bowen and Burghardt 2000).

‘‘‘‘‘
ey

L g

o LR

Stroma -~

1= Shedding 2 -Pre-contact 3 - Apposition 4 - Adhesion
of ZP and blastocyst
orientation

5 — Endometrial invasion

MNon-invasive implantation of non decidualizing species (ruminants, horses, swine)

Invasive implantation with decidualization of stroma (human, rodents)

Figure 16: Comparative aspects of implantation (ada  pted from Thibault © Ellipses, 2001; Bazer et al.
2009). Shedding of ZP, pre-contact, blastocyst orientation, apposition and adhesion are the four common steps of
implantation in all mammals. Adhesion represents the ultimate phase of implantation in the species showing the
epitheliochorial placental type whereas endometrial invasion lead either to endothelio- or hemochorial
placentation.

This critical step of early pregnancy is dependent on the perfect synchronization between the
conceptus and the endometrium. Apposition, then adhesion occurs during the window of
implantation which is a very short period of time (Fig. 17; Sherwin et al. 2007; Bazer et al.
2009). Prior to implantation, human endometrium undergoes decidual reaction whereas the
ruminant conceptus undergoes an important elongation of its EET, a prerequisite for efficient

materno-foetal interactions (Hue et al. 2012). At the same time, endometrium undergoes
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strong reshaping of stromal and glandular epithelial cells in order to host correctly the
conceptus, with an apposition step followed by an adhesion step.

Figure 17: Interaction between ovine elongating con  ceptus and endometrium at 14 dp o pregnancy
(Courtesy of M. Guillomot). Endometrium is separated in caruncular (CAR) and intercaruncular (ICAR) areas.
The conceptus (embryonic disk and extra-embryonic tissues) is in the endometrial lumen without cellular contact
during the free-life period prior to implantation process.

As described previously above, effective implantation resulted in a tightly regulated
communication between both endometrium and conceptus associated with the combine
action of IFNT and P4 (Spencer et al. 2007).

(2) Endometrial reshaping at implantation
In ruminants, synepitheliochorial implantation is associated with a non-invasion of the
endometrium and cotyledonary placentation whereas in human, hemochorial implantation is

characterized by a deep invasion of the endometrium and discoidal placentation (Fig. 18).
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Figure 18: Comparative aspects of placentation from Guillomot 2001. Mare and swine have a diffuse
epitheliochorial placentation whereas cow and ewe have cotyledonary epitheliochorial placentation. Human
exhibits a discoidal placentation.

The apposition then the adhesion of the conceptus (first, adhesion of embryonic disk (ED)
followed immediately by the adhesion of EET) on the endometrium is the first contact
between trophoblastic cells and uterine luminal epithelial cells (Guillomot 1995). In sheep
and goat, binucleated cells of the trophectoderm which correspond approximately to 20% of
trophectodermic cells will migrate and cross the luminal epithelium leading to the syncitium
and thus, the synepitheliochorial placentation (Guillomot 1995; Patel et al. 2004). In cows,
the situation slightly differs because binucleated cell will not migrate but fuse with one
endometrial epithelial cell (Fig. 19; Wooding 1982).
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Trinucleate cells

Figure 19: Fusion between binucleated cells of the trophectoderm and luminal epithelial cells at
implantation in bovine uterus (C. Eozenou). Hematoxylin/eosin staining of endometrium shows a trinucleate
cell specific of cattle.

In human, the hemochorial placenta is discoidal and is characterized by a deep invasion of
the endometrium. Thus, chorionic villi are bathed in the maternal blood (Fig. 20).
Transplacental exchanges between the conceptus and maternal organism will take place
after fusion and invasion respectively in ruminant and in human: placental hormone release
in maternal circulation, nutrients necessary for the development of conceptus, etc (Fig. 20;
Robbins and Bakardjiev 2012).
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Figure 20: Comparative aspects of placentation betw  een human and sheep (Robbins and Bakardjiev
2012). The hemomonochorial human placenta is a villous structure bathed in maternal blood and anchored deep
in the uterine decidua by extravillous trophoblasts (EVT: extravillous trophoblast). The sheep placenta is
synepitheliochorial, and composed of multiple placentomes throughout the uterus. Each placentome includes a
uterine caruncle partially encapsulating a non-invasive fetal cotyledon.

In ruminant, migration of binucleated cells start at the initiation of implantation and will
continue until parturition (Wooding and Wathes 1980; Wooding 1982). Moreover, the
apposition followed by adhesion step take place on the entire endometrial surface but
syncitia are predominantly made starting from the caruncles leading to the formation of
placental units called cotyledons (Fig. 20). Once established, ovine placenta will secrete P4
in place of the CL throughout the pregnancy (Denamur and Martinet 1955) but also others
molecules like the bovine Placental Lactogen (bPL) or the Pregnancy Associated Proteins,
PAG (Patel et al. 2004; Constant et al. 2011). The bovine placenta only contributes to a
minor extent to the peripheral maternal plasma levels of P4 which are rather constant

throughout bovine gestation due to CL secretion (Hoffmann and Schuler 2002).

(3) Embryonic losses and implantation
A progressive decrease of bovine fertility had been referenced since the 1950’s until 2006,
particularly in dairy cows. As previously described, implantation is a critical step for the
outcome of pregnancy and interestingly, almost 50% of pregnancies abort during the pre-

implantation period mostly due to early embryonic death (Diskin and Morris 2008).
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(@) Fertilization rate in ruminants

Depending on the ambient temperature, the semen quality, the season (in sheep) and many
other environmental factors, the fertilization rate in ruminant is about the average of 90-95%.

Moreover, an asynchronicity of fertilization occurred in a very few number of bovine abortion
(Diskin and Morris 2008).

(b) Early and late embryonic losses

Since fifty years, fertility in cows and in particular in high-producing dairy cows decreases
dramatically due to embryonic losses mostly during the pre-implantation period (up to day
17) but also in post-implantation period (up to day 42, Diskin and Morris 2008). This
decrease has multi-factorials causes, like endometrial or mammary infection, female and
male gamete genetic, first oestrus delay, maternal ages, energy balance or breeding
conditions (Diskin and Morris 2008). The percentage of abortion is more relevant in case of

reproductive biotechnologies such as the In vitro Fertilization (IVF) or the Somatic Cells
Nuclear Transfer (SCNT).
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Figure 21: Evolution of pregnancy profiles in bovine recipients after transfer of cloned embryos (from

Heyman 2005).

Interestingly, the percentage of fertilization does not change significantly between Atrtificial
Insemination (Al), IVF and SCNT, but the percentage of implantation is lower from the IVF
process to the SCNT process (Fig. 21; 70% to 50% of implantation rate; Heyman 2005;
Mansouri-Attia et al. 2009). Altogether, those results prompt the need for accurate

understanding of the molecular mechanisms involved during the peri-implantation period.
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4.  Exploratory approach to ruminant endometrial physiology study

Oestrous cycle and early pregnancy are associated to a tremendous alteration of
endometrial gene expression. In the last decade, new approaches had been developed to
unveil comprehensive genome-wide expression profile throughout the oestrous cycle and the
establishment of pregnancy in mammalian species and in ruminant particularly. Various
analytical approaches have been developed to profile transcriptomes and the most powerful
technologies are microarrays or RNA-sequencing studies (Bauersachs et al. 2008;
Bauersachs and Wolf 2012).

In ruminant, high-throughput studies had been carried out using endometrial samples across

the oestrous cycle and the early pregnancy.
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Figure 22: Compilation of microarray studies based in cyclic ruminant endometrium (adapted from O.
Sandra).

Bovine endometrial transcriptome had been carried out throughout the oestrous cycle (Fig.
22) at different stage namely oestrus (day 0), metoestrus (day 3.5), dioestrus (day 12 and
day 18 as late dioestrus with high circulating level of P4) and proestrus (day 18 associated
with a very low circulating level of P4), in German Fleckvieh breed (Bauersachs et al. 2005)
and Simmental heifers breed (Mitko et al. 2008). Both high-throughput analyses unveiled the
significant differential expression of 133 endometrial genes for Bauersachs et al, and 269
endometrial genes for Mitko et al, during the oestrous cycle in distinct temporal patterns
between all the oestrous stages. Both studies exhibit similar endometrial biological functions
expression profile. At oestrus step, differentially expressed genes (DEG) are mostly involved
in extracellular matrix remodelling, ions and nutrients transport, cell growth and
morphogenesis. Conversely, at dioestrus, DEG are involved in others processes as immune
response, angiogenesis, regulation of invasive growth, cell adhesion or embryo feeding
(Bauersachs et al. 2005; Mitko et al. 2008).
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The impact of the conceptus was also analysed by endometrial transcriptome (Fig. 23).
Microarray studies take place at different pregnancy stage including the early conceptus
elongation phase, the pregnancy maternal recognition period, and implantation providing the
effect of gestational P4, of IFNT, of lactation (Bauersachs et al. 2006; Gray et al. 2006; Klein
et al. 2006; Forde et al. 2009; Bauersachs et al. 2011; Forde et al. 2011; Cerri et al. 2012)
and others conceptus secretion, on ruminant endometrial gene expressions distributed
between CAR and ICAR areas (Mansouri-Attia et al. 2009; Walker et al. 2010).
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Figure 23: Compilation of nine microarray or RNA-se  quencing studies based on bovine endometrium and
one microarray study based on ovine endometrium (ad apted from O. Sandra).

Each study exhibit a biological function associated to the DEG identified throughout all
pregnancy conditions as uterine support of peri-implantation conceptus survival, growth and
implantation (Gray et al. 2006; Klein et al. 2006; Mansouri-Attia et al. 2009) associated with
the regulation of immune response and promoting the maternal tolerance (Bauersachs et al.
2006; Klein et al. 2006; Walker et al. 2010; Bauersachs et al. 2011; Cerri et al. 2012) but also
favouring the transport or triglycerides and glucose as the energy source for the developing
embryo (Forde et al. 2009; Forde et al. 2011; Cerri et al. 2012).

Endometrium of ovariectomized cows associated using the physiological supplementation
with the ovarian steroid (E2 or P4) had been subjected to transcriptome analysis (Fig. 23;
Shimizu et al. 2010). This microarray analysis exhibit several biological functions E2-
responsive as cell cycle, morphogenesis and differentiation processes. The profile of P4-
responsive genes is associated to a fertility issue such as luteinization, oocyte maturation,

and catecholamine metabolism (Shimizu et al. 2010).
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These exploratory analyses highlight the expression of numerous gene involved in uterine
receptivity, establishment and maintenance of pregnancy and provide new possibilities in
understanding the regulation of endometrial genes throughout the oestrous cycle and the

early pregnancy.

In particular, compilation and cross-check of all those data exhibit the endometrial differential
expression of members of several families of transcription factors as the SP1 family, the

NOBOX family, the HOX family, the steroid nuclear receptor and the FOX family.

B. Forkhead Box (FOX) Transcription Factor in female reproductive
physiology
Transcription factors have a pivotal role in eukaryotic cells regulating thousands of target
genes. Natural mutation or knock-out of transcription factors often lead to early embryonic
death due to serious defects in cell division or organogenesis. In addition, conditional
deletion of transcription factors induces specific organ defects. In particular, transcription

factor constitutes nodes in cellular networks as a molecular integrator of extracellular signals.

The microarray or RNA sequencing analysis unveil a non-exhaustive list of differential
expressed FOX factors under several conditions of oestrous cycle and early pregnancy in
ruminant endometrium including FOXAL; FOXA2; FOXA3; FOXC1; FOXF2; FOXI1; FOXLZ;
FOXO1A; FOX04; FOXP1; FOXQ1 and FOXS1 (Bauersachs et al. 2006; Gray et al. 2006;
Klein et al. 2006; Mitko et al. 2008; Forde et al. 2009; Shimizu et al. 2010; Walker et al. 2010;
Bauersachs et al. 2011; Forde et al. 2011; Cerri et al. 2012).

1. Background of FOX transcription factor

a) Discovery and nomenclature
Forkhead box proteins are transcription factors that belong to basal transcriptional machinery
organized around RNA polymerases and also specific transcription factors in response to
various biological signhals (Carlsson and Mahlapuu 2002; Hannenhalli and Kaestner 2009;

Benayoun et al. 2011).

First, FOX factors had been discovered at the end of the 1980’s with the genes responsible
of the fork head phenotype in Drosophila Melanogaster. The gene product had a homeotic

activity, notably by promoting the development of terminal segments (Weigel et al. 1989).
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Figure 24: Salivary secretory cells in wild-type and fkh mutant fruit fly embryos from Myat and Andrew
2000. (A, B) Wild-type embryos have elongated salivary secretory tubes, which lie along the anterior-posterior
axis (arrows). At the same stage, two rings of weakly staining (arrows) are observed near the ventral surface of
fkh mutant embryos.

In drosophila, fkh gene prevents apoptosis supporting secretory cells survival as well as the
secretory cell invagination of the salivary glands (Fig. 24; Myat and Andrew 2000).

Later, the cDNA encoding hepatocyte nuclear factor 3a (HNF3a, FOXA1) was cloned in the
rat. Both rat and drosophila genes did not present any similarity with the DNA-binding motifs
of transcription factors that were known at the time. However, new HNF/FOX factors were
cloned whose DNA-binding domains displayed a very high identity with those of D.
Melanogaster (Kaestner et al. 2000; Lehmann et al. 2003). The DNA-binding site also called
Forkhead (FKH) domain is compound of three a-helices, three B-sheets and two “wing”
regions that flank the third B-sheet (Fig. 25).

w2

w1

FOX factors FOXC2

Figure 25: Forkhead domain structure of FOX factors: the example of FOXC2 (adapted from Lehmann et
al. 2003; Obsil and Obsilova 2008). (A) Topology of the Forkhead domain. Helices H4 and H5 are present only
in certain Forkhead domains. (B) For instance, FOXC2 exhibits only three helices (H1, H2 and H3), three B-
sheets (S1, S2 and S3) and two wing-like loops.

Based on the butterfly-like winged structure adopted by the DNA-bound FOX proteins, the
FKH domain has also called the winged-helix domain (Deghan et al. 2009; Hannenhalli and
Kaestner 2009; Benayoun et al. 2011).
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Since fkh cloning in D.melanogaster, hundreds of FOX factors have been discovered in
numerous species. At the beginning of 2000’s, a FOX classification had been done: based
on similarities, FOX proteins were divided into 19 classes from FoxA to FoxS (Hannenhalli
and Kaestner 2009).

b) Evolution

The family of FOX proteins encompasses over 2000 members identified in 108 species of
fungi and animals sharing not the same number of genes in all species. For instance,
Aspergillus Flavus fungus has only one gene and Saccharomyces Cerevisiae has four. In
metazoan, the situation is the same; Caenorhabditis elegans genome contains 16 Forkhead
genes, 18 in D.melanogaster, 49 in the zebra-fish and 50 in humans. The genomic
distribution of FOX factor is not random and organized in clusters that reflect the evolutionary
history of vertebrate genomes. Recently, two phylogenetically distinct groups of FOX genes
have been identified: the first one regrouping the common ancestor of metazoans and Fungi
and the second one emerged as a metazoan specific-class (Degnan et al. 2009; Shimeld et
al. 2010).

Despite the similarity in their DNA-binding domains, various FOX proteins have evolved
distinctly, specifically when duplication events happen (gene duplication can result from
unequal crossing over, retroposition or chromosomal (or genome) duplication, Zhang 2003).

Foxk1 FQK2

FOXH1

FOXJ3
FOXQ1 FOXJ2

FOXJ1 FOXN3
FOXN2
FOXM1

FOXN1

FOXN4

FOXA3 FOXL2
FOXI3 FOXL1
FOXA2 Foxi2l FoxaG1
FOXA1 FOXI1

FOXR1
FOXR2

Figure 26: Phylogenetic tree of all known human FOX f  actors based on similarity of protein sequence
(from Uhlenhaut and Treier 2011).

Indeed, newly created members often evolve and acquire distinct functions (Fig. 26).
However, the functional diversity among FOX proteins is first dependant on the interaction
with partners, i.e. enzymes or co-factors, and secondly dependant on the spatio-temporal

expression of FOX genes (Shimeld et al. 2010; Benayoun et al. 2011).

53



C) Biological functions

Despite the differences between the members of the FOX family, all Forkhead transcription
factors are involved in numerous development processes during fetal life but also in the adult
organism. More generally, FOX factors act as terminal effectors of many major signal
transduction pathways including TGF-f cascade, MAPK pathway, sonic hedgehog (Shh)
pathway or Wnt/Bcatenine pathway. So, FOX factors act as a molecular integrator of
extracellular signals and they might constitute nodes in cellular networks (Hannenhalli and
Kaestner 2009; Nef and Vassalli 2009; Horn et al. 2010; Jackson et al. 2010; Benayoun et al.
2011; Feuerborn et al. 2011; Uhlenhaut and Treier 2011; Katoh et al. 2013; Friedman and
Kaestner 2006).

Specifically, the FOX factor functions are frequently associated with human genetic diseases
(Fig. 27) as mutation of FOXC1, FOXC2, FOXE3 and FOXL2 leading to developmental
abnormalities of the ocular region (Benayoun et al. 2011); FOXP3 and FOXP1 leading to
severe immune defects (Hannenhalli and Kaestner 2009; Katoh et al. 2013); FOXO3a and
FOXL2 leading to premature ovarian failure (Uhlenhaut and Treier 2011); and finally
mutations of FOXG1, FOXP1 and FOXP2 lead to mental retardation, autism and speech
disorders (Horn et al. 2010).

Human gene | Associated mutation-induced phenotype(s) Orthologous gene knockout/in phenotype
in humans in mouse model

FOXC1 Iridogoniodysgenesis type 1 (glaucoma and iris 601090 Perinatal lethality; numerous developmental
hypoplasia); Axenfeld-Rieger syndrome type 3 anomalies, notably in the eye region

FOXc2 Lymphedema-distichiasis syndrome 602402 Pre- and perinatal lethality; skeletal and cardio-
(lymphoedema of the limbs, double rows vascular defects; and numerous developmental
of eyelashes and ptosis) anomalies, notably in the eye region

FOXE1 Bamforth-Lazarus syndrome (hypothyroidism, 602617 Lethality within 48 hours of birth; cleft palate; and
spiky hair, cleft palate and choanal atresia); abnormal development of thyroid gland
cleftlip and palate

FOXE3 Primary congenital aphakia; anterior segment 601094 Viable and fertile; severe cataract and degeneration
mesenchymal dysgenesis (with Peters anomaly) of lens epithelium

FOXG1 Congenital variant of Rett syndrome; mental 164874 Perinatal lethality; severe reduction of the size of
retardation, cerebral malformations and cerebral hemispheres and abnormal telencephalon
microcephaly development

FOXL2 BPES and telecanthus; premature ovarian 605597 High perinatal lethality; craniofacial abnormalities,
failure with eyelid hypoplasia; anomalies in the

development and differentiation of the ovary;
females can be either sub- or infertile; partial to
total ovary to testis transdifferentiation

FOXN1 T-cell immunodeficiency, congenital alopecia 600838 Alopecia and Tcell immunodeficiency,
and nail dystrophy owing to athymia
FOX03A Premature ovarian failure 602681 Viable; minor defects in glucose uptake;

overproliferation of helper T-cells; age-dependent
female infertility owing to premature activation
and depletion of ovarian follicles

FOXP1 Mental retardation, with language impairment 605515 Early lethality; defects in immune and cardiovascular
and autistic features systems and movement; abnormal development
of lungs and oesophagus
FOXP2 Mental retardation, with language impairment 605317 Early lethality; motor problems; absence of ultrasonic
and autistic features vocalizations in the young
FOXP3 Immunodysregulation, polyendacrinopathy 300292 Overproliferation of CD4+CD8- T-cells; infiltrations in
and enteropathy, x-linked (IPEX) various organs; increase in levels of various cytokines

Figure 27: Human genetic diseases associated with m  utations in FOX genes and corresponding
phenotypes of the invalid murine orthologs (Benayou netal. 2011).

More generally, misregulations (mutations or deregulation) of FOX proteins lead to a process
of malignant transformation with stimulation/inhibition of cellular differentiation and
proliferation, and apoptosis in adulthood. For instance, overexpressions of FOXC1 and
FOXC2 detected in metastatic breast cancer confer increased invasive properties and

metastatic potential of tumour cells. Similarly, decreased expression of FOXN3, by gene
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deletion, in mouth, larynx and hepatic carcinoma induce tumour suppressing process
(Jackson et al. 2010; Benayoun et al. 2011; Katoh et al. 2013).

FOX factors are associated with ageing process. Indeed, the misregulation of those
transcription factors leading to the deregulation of apoptosis process then cancer suggesting
the modulation of ageing is tightly balanced by FOX factors. For instance, FoxO factors of
C.elegans and D.melanogaster act as crucial regulators of longevity and stress response.
Similarly in mammalian species, Foxol and Foxo3a are also involved in longevity regulation
(Benayoun et al. 2011; Ghazi 2013). In addition, FOxA was recently shown to have a key role
in lifespan expansion in the nematode (Panowski et al. 2007), and in mammals. FOXM1
deficiencies lead to appearance of early-ageing phenotypes while Foxml overexpression
rescues age-associated degeneration of hepatic tissues in older mice (Katoh et al. 2013).
FOX factors are also associated with specific organ ageing as the decreased expression of
FOX0O3a and FOXL2 in mice ovary leads to ovarian ageing or premature ovarian failure due
to an accelerated depletion of their follicular pool (Benayoun et al. 2011; Uhlenhaut and
Treier 2011).

The involvement of FOX factors in many signalling pathways and in human disease reflects
the complexity and the importance of this family in physiology and pathology. Reproduction
as the most critical biological function undergoes intense selective pressure to prevent any
modifications which could directly affect the organism’s fithess (Lode 2012). Thus, the
involvement of FOX factors in reproductive physiology appears crucial to elucidate. FOX
factors have been examined for years in female reproductive tract, particularly, and appeared

to be strongly linked to fertility issues.

2. FOX factors in female reproduction
Human genetic diseases, natural or conditional mutations in animal model as well as high-
throughput analyses allowed a better understanding of the crucial role of FOX factors in
female reproductive tract (Benayoun et al. 2011). To date, FOX factors have been
investigated mostly in ovary and mammary glands but less in the endometrium. Ovarian
Infertility prevents any pregnancies due to POF or POI then endometrium is not studied.
Nevertheless, ovaries work in concert with endometrium to ensure a healthy pregnancy
suggesting a FOX factor which is involved in ovarian physiology could be involved in

endometrial physiology as well.

Ruminant microarray and RNA sequencing studies unveil a list of differentially expressed
FOX factors in endometrium. Among this list, many factors had been already described in
female reproduction (Bauersachs et al. 2005; Bauersachs et al. 2006; Gray et al. 2006; Klein
et al. 2006; Mitko et al. 2008; Forde et al. 2009; Mansouri-Attia et al. 2009; Shimizu et al.
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2010; Walker et al. 2010; Bauersachs et al. 2011; Forde et al. 2011; Cerri et al. 2012). For
instance, FOXC1, FOXA1 and FOXP1 have been investigated in mammary gland, FOXC1
and FOXOL1 in ovary and FOXAZ2 as well as FOXO1A in endometrium (Fig. 28).

. Mouse Mutant Human fertility
Gahe; \MammEnyaland) Svary | Endemetaom Reproductive Phenotype disorder
FOXA1 ND Breast Cancer
FOXA?2 severly subfgrtlle, dlsrypted ND
blastocyst implantation
FOXC1 5 infertile, no follicular growth ND
’ beyond the early antral stage
FOXL2 ? infertile, POF BPES
FOXO1 ND ND
Suppression of primordial
FOXO3 follicle activationimpaired, ?
POF
FOXP1 ND BLEC
Figure 28: Forkhead family members currently known to play a role in female reproductive tract (from

Mansouri-Attia et al. 2009; Jeong et al. 2010; Panne tier and Pailhoux 2010; Benayoun et al. 2011;
Uhlenhaut and Treier 2011). POF: premature ovarian failure, BPES: Blepharophimosis-Ptsosis-Epicanthus-
Inversus Syndrome, BLBC: basal-like breast cancer.

a) Mammary gland and breast cancer
Forkhead box transcription factors are often linked in breast cancer with ambivalent actions

as oncogene or tumour suppressor (Benayoun et al. 2011).

FOXC1 was originally identified as an important transcription factor that controls
development of structures derived from the neural crest and FOXC1 mutations have long
been recognized as a primary cause of Axenfeld-Rieger syndrome, a rare dominant
autosomal disorder, which encompasses a range of congenital malformations affecting the
anterior segment of the eye (Tumer and Bach-Holm 2009). In addition to its roles in normal
function and development of the eye and meninges, FOXC1 has recently emerged as a
possible master regulator of Basal-Like-Breast Cancer (BLBC, Wang et al. 2012).

FOXA1 was first described for its crucial role in controlling pancreatic and renal function
required for postnatal survival (Katoh et al. 2013). In addition, FOXAL gene is necessary for
the normal mammary gland development promoting morphogenesis of ducts and inhibiting
the final differentiation of alveoli (Bernardo and Keri 2012). Moreover, FOXALl is also
involved in breast cancer development associated with good prognosis, regulating the
expression of estrogen nuclear receptor (ESR) and androgen nuclear receptor (AR), and
could control plasticity between basal and luminal breast cancer repressing basal phenotype
and aggressiveness (Bernardo et al. 2013; Katoh et al. 2013; Friedman and Kaestner 2006).
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FOXP1 has a pleiotropic expression and has been shown to have a role in cardiac, lung and
lymphocyte development. Surprisingly, a loss of FOXP1 expression in breast cancer is
associated with a worse outcome, suggesting FOXP1 may function as a tumour suppressor

in mammary gland (Uhlenhaut and Treier 2011; Katoh et al. 2013).

b) Ovary
In addition to hormones and their receptor as well as signalling molecules, FOX factors as
transcription factors have emerged as powerful regulator of ovarian function (Uhlenhaut and

Treier 2011). The loss of FOX factors is damaging female fertility in ovary particularly.

Foxcl null mice exhibit also an impaired migration of the primordial germ cells (PGC) to the
gonadal anlage (Mattiske et al. 2006). In the absence of Foxcl, the PGCs are trapped in the
hindgut and the developing gonad is smaller and disorganize. In addition, when Foxcl
mutant ovaries were transplanted into wild-type adult mice, the follicles do not develop
beyond the pre-antral stage (Mattiske et al. 2006). In addition to its crucial implication in
Axenfeld-Rieger syndrome, FOXC1 may be required for maturation of follicles beyond the
early antral stage (Uhlenhaut and Treier 2011). Nevertheless, its potential target genes and

regulatory mechanism in ovarian function remained to be investigated.

FOXO factors were first described in C. elegans because of their implication in the
determination of lifespan as well as the regulation of insulin signalling (Hannenhalli and
Kaestner 2009; Hedrick 2009). In addition, FOXOs are also involved in tumour suppression
regulating genes linked to the cell cycle inhibition, stress response and pro-apoptotic genes.
FOXO family is composed of four members namely FOXO1, FOXO3 and FOXO4 which are
ubiquitously expressed whereas FOXOG6 is restricted to the brain (Hannenhalli and Kaestner
2009; Hedrick 2009).

Foxol deletion leads to an early embryonic death in mice which died at day 10.5 of
pregnancy (E10.5) due to severe vascular defects making the study of reproductive
phenotype impossible. However, Foxol is known to be a regulated by LH and FSH in
granulosa cells leading the biosynthesis of lipid and sterol. These data suggest that Foxol
may be involved in follicular steroidogenesis (Hosaka et al. 2004; Uhlenhaut and Treier
2011).

In Foxo3 null mice, primordial follicles are assembled normally but then immediately undergo
global activation, resulting in early depletion of the entire primordial follicle pool. Mice could
have a normal size litter but quickly reach menopause (Castrillon et al. 2003; Uhlenhaut and
Treier 2011). These data suggest FOXO3 is involved in the suppression of follicular growth.

On the other side, constitutive activation of FOXO3 in oocytes induces also an ovarian
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sterility associated with a constant inhibition of follicular growth preventing the ovulation
(Uhlenhaut and Treier 2011).

FOXL2 is a key gene in ovarian differentiation and maintains the ovarian function from foetal
life to adulthood (Pannetier and Pailhoux 2010). This part will be discussed in more detail

later.

C) Endometrium
As previously describes above, FOX factors are strongly linked to the female reproductive
physiology and especially regulates the development and the differentiation of endometrial

cells including glandular epithelial cells (Filant et al. 2012).

FOXAZ2 is a member of the FOXA subfamily such as FOXA1 and FOXA3. This transcription
factor is well-known in mice endometrium because of the uniqueness localization in
endometrial gland. First, the non-conditional knock-out of FoxaZ2 leads to foetal death at E10-
11 due to severe defects in node, notochord, neural tube and gut tube formation. The Foxa2
conditional knout-out in the murine uterus leads to a reduced fertility, disrupting blastocyst
implantation associated with severe decreased of endometrial gland number (Bazer 2010;
Jeong et al. 2010; Filant et al. 2012; Filant et al. 2013). In addition, ovarian steroid treatments
on ovariectomized mice lead to an inhibition of Foxa2 transcript due to the E2 but not P4
supplementation. In the murine uterus, Foxa?2 is involved in endometrial gland development,
crucial step upon the control of ovarian steroids, which is necessary to decidualisation
process. Moreover, an alternative approach was setting up to define the FOXA2 cistrome
using Chromatin Immuno-Precipitation following by sequencing experiment (ChlP-seq)
unveiling more than eight thousands FOXAZ2 target genes in mice endometrial glands (Filant
et al. 2013). In bovine ovariectomized cows supplemented with ovarian steroids (Shimizu et
al. 2010), FOXAZ2 is differentially expressed in the microarray study mostly due to E2
treatment. This result suggests a similar regulation of endometrial FOXA2 expression by
ovarian steroids between murine and bovine species. Collectively, these data provide strong
arguments of the implication of FOXA2 gene in mammalian endometrial development and

physiology (Bazer 2010; Friedman and Kaestner 2006).

FOXO1A is expressed in human and baboon endometrium and up-regulated during the
luteal phase of the menstrual cycle and during the early pregnancy, under P4 control (Buzzio
et al. 2006). In addition, Foxola has been shown to act as a master switch in controlling
apoptosis and appears to be one of the earliest genes induced in decidualisation process
(Buzzio et al. 2006; Takano et al. 2007; Kohan et al. 2010). This induction of Foxola gene
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expression leads to a regulation of numerous downstream genes also involved in
decidualisation. For instance, FOXO1A and others specific transcription factor were shown to
control promoter activities of decidual prolactin (PRL), IGF-binding protein-1 (IGFBP1),
cannabinoid receptor 1 (CNR1), tissue metalloproteinase inhibitor-3 (TIMP3) and decorin
(DNC) in a differentiation-dependent manner leading to the initiation of decidualisation
(Buzzio et al. 2006).

Collectively, knock-out mice models, human studies or microarrays provide strong arguments
that FOX factors are master regulators of female reproductive physiology with a serious lack
of information in endometrium (Kohan et al. 2010). Regarding FOXL2, numerous studies
show the fundamental role of this transcription factors in pituitary and ovarian physiology with
a complete lack of information about its putative implication in endometrial physiology.
Nevertheless, FOXL2 appears also expressed for the first time, in endometrium (Mansouri-
Attia et al. 2009).

3. FOXL2 and female reproductive physiology

a) Discovery
FOXL2 was first cloned in 2001 as a FOX factor involved in Blepharo-phimosis-Ptosis-
Epicanthus inversus (BPES) syndrome. Type | BPES is a rare developmental disorder of the
eyelid and ovary essentially presenting with an autosomal dominant inheritance. Type Il
BPES show only eyelid defects but both types map to the chromosome 3g23. Crisponi and
colleagues provide the evidence that it is involved in this genetic disease with various known

and unknown mutations (Crisponi et al. 2001).

b) Structure

FOXL2 is a single-exon gene of 2.7 kb encoding a highly conserved protein of 376 amino
acids (376 in human, 375 in mice and 377 in cattle). As a member of the FOX factors,
FOXL2 protein has a Forkhead DNA-binding domain of 110 amino acids (Fig. 29). The
sequence and properties of FOXL2 forkhead domain are highly conserved, in eutherian
mammals, which is a general characteristic of Forkhead transcription factors (Carlsson and
Mahlapuu 2002; Cocquet et al. 2003).
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Figure 29: Schematic outline of the human FOXL2 gene and protein. FOXL2 encodes a protein of 376
amino acids (from Verdin and De Baere 2012). The characteristic Forkhead domain and poly-alanine tract are
indicated by arrowheads.

Moreover, its protein sequence is made of a PolyAlanine tract (PolyAla) of 14 residues which
is strictly conserved in human, goat, cow, mouse, rat and rabbit species and absent in
pufferfish, zebrafish and tetraodon species (Fig .29 and Appendix A, Fig. 66). In addition,
PolyAla expansions of FOXL2 are pathogenic and represent 30% of all FOXL2 mutations
leading to type Il BPES inducing a length-dependent loss of response of different target
promoters from 14 to 24 alanine (Moumne et al. 2008). A comparison between mammalian
and non-mammalian species of protein sequences exhibits FOXL2 amino acids sequence
are highly conserved, particularly in C-terminus. Indeed, N-terminus part is less conserved
than C-terminus part between human, cow, goat, mouse, tammar wallaby, rabbit, pufferfish,
zebrafish and tetraodon species suggesting that N-terminus might be responsible for
functional differences among species (Cocquet et al. 2002; Appendix A, Fig. 66).

Figure 30: Three dimensional structure of FOXL2 protein (fr ~ om Benayoun and Veitia 2011). FOXL2 protein
exhibit the same classical protein structure of the Forkhead box transcriptions factors namely: three a-helices,
three B-sheets and two “wing” regions that flank the third 3-sheet.

Foxl2 proteins are more divergent outside of their DNA-binding domain, though a high
degree of conservation is still observed even if the three dimensional structure is not

completely elucidated (Fig. 30; Benayoun and Veitia 2011).

In mice and rat, two FOXL2 transcripts had been discovered that would result in alternative

polyadenylation without any change in amino-acids sequence length (Cocquet et al. 2003).
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C) BPES, Polled Intersex Syndrome and Granulosa Cell
Tumour: a FOXL2 story

As previously described above, type | and Il BPES are part of the same human genetic
disease leading to a cranio-facial malformations in the eyelid (Type | and II, Fig. 31)
associated with a premature ovarian failure (POF, only type Il) uniquely caused by FOXL2
mutations. To date, some genetic defects have been identified including mutations and
deletions in the coding sequence, but also deletions located outside the transcription unit
(Crisponi et al. 2001; Cocquet et al. 2002; Benayoun et al. 2011).

More specifically, BPES is caused mainly by FOXL2 intragenic mutations (71% in type | and
11% in type Il) and microdeletion upstream or downstream of FOXL2 promoter (4% in both
types, Beysen et al. 2008). Moreover, mutations in the N-terminus side of the protein lead to
a truncated protein and a loss of function inducing eyelid malformation and ovarian failure.
Extensions by gene duplication are mostly involved in type Il BPES. Finally, some genetic
rearrangement occurred several kilobases upstream of the gene itself (cis-regulatory
elements, Beysen et al. 2008). Similarly, knock-out of FOXL2 exhibits the same phenotype
namely eyelid malformation (Fig. 31) and POF (Uda et al. 2004).

In goat, a natural mutation leads to FOXL2 invalidation resulting in an absence of horn
(polled phenotype, Fig. 31) associated with intersexuality (Pailhoux et al. 2001). The sex-
reversal affects only XX gonads in a recessive manner whereas the polled phenotype is
dominant in male and female. The heterozygous deletion exhibits the polled phenotype while
the homozygous invalidation leads to an association of polled phenotype and an early sex-
reversal of the XX gonads presenting an “ovo-testis” gonad (Pailhoux et al. 2001).
Altogether, the phenotypes belong to the Polled Intersex Syndrome (PIS) caused by an 11.7
kb DNA deletion involved in tissue-specific regulatory activity. This important deletion leads
to the inactivation of 3 transcripts: PISRT1, PFOXIC and FOXL2 which is the only transcript
encoding for a protein. PISRT1 and FOXL2 shared a common transcriptional regulatory
region called PIS. PFOXIC which is the inverse complementary FOXL2 promoter is located
near FOXL2 in the opposite orientation. PISRT1 and PFOXIC are two non-coding RNA
crucial for FOXL2 expression and regulation (Pailhoux et al. 2001; Pannetier et al. 2005;

Boulanger et al. 2008).
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Figure 31: External phenotype of FOXL2 mutation in hu  man, mice and goat (from Pailhoux et al. 2001;
Uda et al. 2004; Verdin and De Baere 2012). Both human and mice exhibit the same phenotype caused by
FOXL2 mutation/deletion namely POF and eyelid defects whereas goat show a polled phenotype (absence of
horn) associated with the XX sex-reversal.

FOXL2 is also involved in Granulosa Cells Tumour (GCT) which represents 5-to-10% of all
ovarian cancer. Some mutations of FOXL2 lead to a lack of functional protein leading to an
aggressive pattern of progression and may be a factor regulating unregulated granulosa cells

proliferation and the apoptosis process (Benayoun et al. 2011; D'Angelo et al. 2011).

Human and caprine mutations of FOXL2 leads to two different phenotypes: a premature
ovarian failure and a sex-reversal of the XX gonads respectively. Collectively, those results
indicate that FOXL2 is directly involved in ovarian differentiation and maintenance in species

specific manner (Pisarska et al. 2011).

In addition, FOXL2 has been investigated in rainbow trout and tilapia species confirming
FOXL2 is higly conserved in vertebrates regarding its sequence and its expression in ovary
(Baron et al. 2005).
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Figure 32: FOXL2 evolutionary event in the classical phylogeny of vertebrates (Geraldo et al. 2013)

Altogether, FOXL2 appears to be expressed in the gonad of a large range of animal species
(Fig. 32) and in addition of its expression in ovary, has a cell expression restricted to fetal

eyelid and anterior pituitary (Baron et al. 2005; Ellsworth et al. 2006; Uhlenhaut and Treier
2006; Duffin et al. 2009; Geraldo et al. 2013).

d) Fetal eyelid
In all mammals, eyelids start to form as ridges around the margins of the developing eye and
undergo a sequence of development, closure and subsequent reopening with a strong FoxI2
expression throughout that period. Expression is high around the mouse cornea, in the
protruding ridge from which both eyelids are destined to develop leading to the dysplasia of
both eyelids, observed in BPES patients and FOXL2" mice (Fig. 33; Uda et al. 2004).
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Figure 33: Hematoxylin/eosin staining of eyelid def  ects at E13,5 in wild-type and FOXL2 ” (from Uda et al.
2004). On the right picture, eyelid defects are visible and show an overt eyelid hypoplasia in mice.

FoxI2 is also expressed in the perioptic mesenchyme around the developing mouse eye (Fig.
33). Both male and female suffering from BPES syndrome show typical facies with
characteristic eyelid dysplasia, namely small palpebral fissures (blepharophimosis), drooping
eyelids (ptosis) and a tiny skin fold running inward and upward from the lower lid (epicanthus

inversus; Crisponi et al. 2001; De Baere et al. 2003).

e) Anterior pituitary
FoxI2 is expressed during early pituitary development and is one of the earliest markers of
differentiating pituitary cells in mice. Foxl2 is expressed ventrally in the pituitary with
quiescent differentiating cells. Regulating downstream target in pituitary, FoxI2 can modulate
gonadotrope function and reproduction as well as thyrotrope and thyroid function (Ellsworth
et al. 2006). FSH and LH are heterodimeric glycoprotein composed of a-GSU and a unique
B-subunit. Transcription of this B-subunit is the rate-limiting step for production of mature
hormones. Regarding FSH, B-subunit (also called Fshb) transcription is regulated by an
increased level of activin and P4. Recent study show the evidence that FoxI2 is involved in
the cooperative interaction between activin and P4 signaling pathways in pituitary
gonadotrope cells requiring the binding of Foxl2, Smad and Pgr to their respective elements
on the murine Fshb promoter and suggesting physical interaction of these transcription
factors (Ghochani et al. 2012). Thus, FOXL2 may control the regulation of gonadotropin

production essential for mammalian fertility.

f) Ovarian differentiation and maintenance
Early ovarian development is not a passive process due to the absence of SRY gene as a
default pathway because recent data have shown that two pathways are responsible of the
repression of male-specific genes associated with an activation of female-specific genes
cascade (Ottolenghi et al. 2007; Nef and Vassalli 2009). The differentiation of the bipotential
gonad is possible due to FOXL2 pathway and B-catenine/WNT/RSPO1 pathway. In addition

to its expression in fetal eyelid and in anterior pituitary, FOXL2 has appeared as a key factor
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in ovarian differentiation, development and function (Uda et al. 2004; Nef and Vassalli 2009;
Benayoun et al. 2011).

Intragenic and extragenic mutations of FOXL2 human genes lead to BPES disease which
mean eyelid defects as previously described above but especially ovarian defects by
premature ovarian failure (POF). POF is defined by the onset of the menopause before the
age of 40 years. Various mutations imply various phenotypes which are from primary
amenorrhea to irregular menses followed by POF. In addition, mutant ovaries can have
different appearance varying from normal ovary to streak gonads (Crisponi et al. 2001;
Ottolenghi et al. 2005; Duffin et al. 2009).

FoxI2 homozygous mutant mice are born with open eyes and eyelid hypoplasia but above all
with a severe female infertility (Fig. 34).

FOXL2 ** FOXL2 -

Figure 34: Morpholical appearance of wild-type and FOXL2-/- ovaries (from Uda et al. 2004). Knock-out
mice show slower oocyte growth and somatic cells appear disorganized associated with reduced stroma.

FoxI2 is sexually dimorphic at E12,5 in female gonad but not in male gonad (Uda et al.
2004). Indeed, FoxI2 is one of the earliest markers of ovarian differentiation in somatic
granulosa and theca cells at every follicular stage. Homozygous mutations for FoxI2 provide
the evidence that it is required to granulosa cells differentiation and proliferation. In case of
FoxI2 mutation, granulosa cells do not undergo the sguamous-to-cuboidal transition,
preventing the follicular development beyond this point. Granulosa cells are supporting
follicular development. When mature granulosa cells are absent, oocytes will undergo
atresia. The FoxI2 mutations lead to premature depletion of the primordial follicle pool, then
oocytes atresia and finally infertility (Uda et al. 2004; Uhlenhaut and Treier 2006; Pisarska et
al. 2011).

FoxI2 is expressed in less differentiated granulosa cells of small and medium follicles
(Uhlenhaut and Treier 2006) whereas Star gene, Steroidogenic Acute Regulatory which is a
direct target of FoxI2 is expressed in granulosa cells of large pre-ovulatory follicle but not in

small and medium immature follicle (Batista et al. 2007; Rosario et al. 2012). Star is
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responsible of the translocation of cholesterol from the outer to the inner membranes of
mitochondria which the rate-limiting step in steroidogenesis. FoxI2 binds Star promoter and
suppresses its activity suggesting that transcriptional repression by FOXL2 prevents Star
expression in immature follicle. In the same way, FoxI2 suppresses the expression of Cypl19
(P450 Aromatase) gene in immature mouse ovary follicle (Pannetier et al. 2006; Pisarska et
al. 2011). Sex steroids seem to be important for initiating follicle growth. Collectively, those
data suggest that Foxl2 gene may function as a suppressor of ovarian follicle progression in
small and medium follicles by the prevention of premature differentiation and proliferation of

granulosa cells preventing the premature depletion of ovarian follicles.

The bipotential gonad is capable to differentiate into an ovary and into a testis depending on
the absence and the presence of the Y chromosome respectively governing the sexual
phenotype of the organism. The differentiation occurs later with the gender-specific hormone
and signalling molecules. Testes and ovaries are composed of three common cell types with
a similar function. Firstly, testes and ovaries are made up of germ cells; spermatocytes and
oocytes, but also supporting cells; Sertoli cells and granulosa cells and finally steroidogenic
cells; Leydig cells and theca cells, respectively (Fig. 35; Nef and Vassalli 2009; Pannetier
and Pailhoux 2011).

In the presence of Y chromosome, Sry then Sox9 gene are expressed and will activate the
male-specific gene cascades. Conversely, in the absence of Y chromosome, FoxI2 will

suppress the expression of Sox9 (Fig. 35).

Bipotential gonad
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Figure 35: A genetic model for sex differentiation (adapted from Nef and Vassalli 2009). SOX9 or FOXL2
and Wnt/B-catenin pathways will induce testis or ovary differentiation, respectively.
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During the embryonic development, Sox9 pathway inhibition is due to the Wnt/B-catenin
pathway and later, in adulthood, the FoxI2 pathway. Moreover, the invalidation of FoxI2 in
adult mice leads to a de-repression of Sox9 pathway (Uhlenhaut et al. 2009). Subsequently,
granulosa and theca cells trans-differentiate into Sertoli and Leydig cells, respectively, with a
global activation of the male-specific genes and an inhibition of the female-specific genes,
followed by the loss of oocytes and a production of testosterone (Uhlenhaut et al. 2009).
Those results provide the evidence FoxI2 maintains the ovarian function and differentiation in
adulthood, continuously repressing the Sox9 expression activating the expression of Cypl19
to catalyze the production of E2. Both actions of FoxI2 and E2 lead to a repression of Sox9
expression in the ovary (Pannetier and Pailhoux 2011). In addition, FoxI2 synergistically
interacts with the Esrl and 2 to repress directly the gonad specific cis-regulatory element of
Sox9 known as a testis specific enhancer of Sox9, TESCO (Uhlenhaut et al. 2009). Similarly,
the PIS mutation in goat leads to a loss of function of FOXL2 and a female-to-male sex
reversal, because of the de-repression of the male sex determination pathway (Pannetier et
al. 2006).

Collectively, these results show the crucial role of FOXL2 in ovarian physiology, especially
during the ovarian differentiation as well as the maintenance of ovarian function in adult

organism.

Q) Post-translational modifications
Post-translational modifications represent an important mechanism to regulated protein

functions. FOXL2 undergoes several post-translational modifications that have been reported
to modulate its activity, its sub-cellular localization and its binding partners (Pisarska et al.
2011).

Foxl2 is known to be sumoylated leading to regulation of its protein stability and intracellular
localization. SUMO as Small Ubiquitin-related Modifier is made up of covalent binding of
ubiquitin on protein at lysine-residue in a three step conjugation pathway similar to that
involved in ubiquitination. FoxI2 is sumoylated by Sumol mediated by Ubiquitin Conjugating
Enzyme9 (Ubc9) enhancing FoxI2 activity in repressing Star expression (Kuo et al. 2009;
Marongiu et al. 2010; Georges et al. 2011).

FoxI2 is also phosphorylated by the serine/threonine kinase large tumour suppressor 1
(Lats1) enhancing FoxI2 activity. In addition, the deletion of Lastl in the mouse induces a
premature ovarian failure similar to the phenotype obtained by FoxI2 deletion repressing its

phosphorylation then its activity (Georges et al. 2013).
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Oxidative stress and heat shock stimulate Foxl2 protein expression associated with a
hyperacetylation. Oxidative stress induces an increase of target promoter recruitment as
Manganese super-oxide dismutase gene (Sod2). Sod2 has been demonstrated to be a direct
target of the acetylated FoxI2 protein. Moreover, Foxl2 expression is decreased by the NAD-
dependent deacetylase sirtuin 1 (Sirtl) and FoxI2 itself induces Sirtl transcription
demonstrating the importance of acetylation as a regulator of FoxI2 activity and the existence
of a feedback loop controlling FoxI2 activity in these cells (Benayoun et al. 2011; Pisarska et
al. 2011; Georges et al. 2013).

h) FOXL2 target genes in the ovary
Considering the critical function played by FoxI2 in ovarian differentiation, target genes have
been investigated using high-throughput analyses in human and murine models (Fig. 36). In
the ovarian context, FOXL2 is known to be involved in the regulation of cholesterol and
steroid hormone metabolism genes with Star and Aromatase genes (to regulate the
aromatization of androgens into estrogens), but also, ovarian determination with Sox9 and
Amh genes; ovulation with Cox2/Ptgs2 gene; stress response, ageing or apoptosis with Sirt1,
Sod2, Tnfaip3 and Fos genes. The regulation of the aromatase gene induces the production
of E2 that act locally in the ovary and act on the hypothalamus regulating the GnRH
secretion. Then, FoxI2 regulates the transcription of the a-Gsu gene in the pituitary, which
encodes the common subunit of all pituitary glycoprotein hormones, namely the Thyroid
Stimulating Hormone (TSH), and the gonadotropins LH and FSH, both hormone involved in

the ovulation process (Batista et al. 2007; Uhlenhaut et al. 2009).

Depending on the available binding partners, FoxI2 likely had differential effects on a number
of genes imperative for ovarian function and female fertility, as the differential regulation of
Ptgs2 ovarian expression (Batista et al. 2007; Moumne et al. 2008; Uhlenhaut et al. 2009;
Benayoun et al. 2011). FOXL2 was shown either to stimulate the expression of PTGS2 in
KGN cell line (Batista et al. 2007) or to repress PTGS2 expression (Kim et al. 2009) in 293FT
cells (ERa negative human embryonic kidney) and MDA-MB-231 cells (ERa negative human

breast cancer) as a consequence of the availability of its co-factors and binding partners.

68



GnRH Y
L 3
- “
GnRHR .
Gonadofropifi secretionrregulation -
& N | |
TSH  FsT LH FSH

= E:2

(&
Y
- n
 J
L
Oxidative Stress m .
FOXL2 R
\ Aromatase m m| ®
SIRT1 & NR5A2
MnSOD PPARGC1A
BCL2A1 CCL CH25H
IER3 CXCL
TNFAIP3 IL Ovarian
ATF3 PTGS2 defermination Cholesterol and
CH25H Ovudation/ Steroid hormones
. taboli
Inflammation melabolism

Stress response
Ageing regulation (7)

Figure 36: FOXL2 target genes in hypothalamo-pituita

ry-gonadal axis (from Benayoun and Veitia 2011).

Red color represents the stimulation of target genes by FOXL2 whereas green color represents the inhibition.

FOXL2 functions have to be maintained from foetal life to adulthood to stabilize somatic cells

fate in both granulosa and theca cells, to maintain “femaleness” and to provide a normal
ovarian physiology (Uhlenhaut et al. 2009; Georges et al. 2013). FOXL2 gene is considered

as the gatekeeper of ovarian identity.
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V. Objectives
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In the last fifty years, human fertility is declining due to mutations, disease and mostly due to
environmental factors (Casterline 1989; Sadeu et al. 2010). This fertility decline is due to
defects of gonad differentiation and function, gametes production and maturation but also
endometrial development and physiology. Due to the progress of MAP in human
reproduction and global species conservation, pituitary and gonads infertility can be rescued
whereas endometrial defects cannot be rescued except in case of gestational surrogacy.
Given that endometrium is the only tissue able to drive a successful preghancy until
parturition, the study of endometrial physiology appears mandatory (Sandra et al. 2011).
Considering an achieved pregnancy is characterized by the success of numerous
checkpoints, implantation appears to be one of the most critical checkpoints for the outcome
of pregnancy (Bazer et al. 2010). This step is characterized by a tightly regulated
communication between a healthy conceptus (embryonic disk and extra-embryonic tissues)
and a receptive maternal endometrium. Therefore, it is necessary to dissect precisely the
reciprocal interaction occurring during the pre-implantation period between the conceptus

and the endometrium.

For ethical reason, human cannot be considered as a model for studying implantation
mechanisms and mice represent a difficult model due to the speediness of implantation
process. Nevertheless, ruminant species provide a perfect animal model to study
implantation. Indeed, cattle and sheep exhibit a long elongation phase of the conceptus prior
to the apposition on the endometrium at 20-21 dpo and 15-16 dpo, respectively (Bazer et al.
2009; Sandra et al. 2011). The slow process of implantation in ruminant allows an accurate
analyse of conceptus and endometrial molecular mechanisms occurring during this period
until the apposition, the common step in all mammals, regardless of the placentation type.
Moreover, unlike human and rodents, ruminant implantation is superficial leading to a
synepitheliochorial placentation which easily permits to distinguish the maternal to the

conceptus tissue (Lee and DeMayo 2004).

In all mammals, the uterine receptivity is ensured by the ovarian secretion of E2 and P4, the
major pregnancy hormones (Miller and Moore 1976; Devroey and Pados 1998). E2 is
secreted during the follicular phase of the menstrual/oestrous cycle by the developing follicle
prior to the ovulation, to enhance the endometrial cells proliferation. P4 is secreted during the
luteal phase by the CL, regulating numerous of endometrial genes expression and
decidualisation when occurs. Without fertilization, CL regresses, the secretion of P4 stops
and the next cycle begins (Forde et al. 2011; Mihm et al. 2011). With fertilization, developing
conceptus secretes an embryonic signal which maintains the CL and the P4 secretion. In
ruminants, the extra-embryonic tissues of the conceptus secrete interferon-tau (IFNT), which
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is the major pregnancy maternal recognition signal in ruminant (Roberts et al. 2008). IFNT is
a strong anti-luteolytic signal preventing the regression of CL. Like for the P4, IFNT regulates
the endometrial genes expression in order to host correctly the pre-implantatory conceptus
(Forde et al. 2011; Bazer et al. 2012).

In the last decade, high-throughput analyses had been developed in mammals and in
ruminant particularly to unveil systematically the regulation of endometrial genes expression
due to oestrous cycle, early pregnancy as well as the impact of E2, P4 and IFNT
(Bauersachs et al. 2005; Bauersachs et al. 2006; Gray et al. 2006; Klein et al. 2006; Mitko et
al. 2008; Forde et al. 2009; Mansouri-Attia et al. 2009; Shimizu et al. 2010; Walker et al.
2010; Bauersachs et al. 2011; Forde et al. 2011; Cerri et al. 2012). Recently, a transcriptomic
analyse had been done in my team using bovine endometrial samples at 20 dpo of oestrous
cycle (late luteal/early follicular phase) compared to pregnancy (implantation) revealing
several hundred DEG in CAR and ICAR areas (Mansouri-Attia et al. 2009). Several members
of the winged-helix/forkhead domain (FOX) transcription factors family had been differentially
expressed in this study including FOXL2, FOXO1A and FOXA2. The FOX family represents
more than 40 transcription factors whose biological functions are essentially related to organ
development, aging, metabolic and immunoregulatory processes, cell cycling, and cancer.
While FOXO1lA and Foxa2 are already known to be involved in endometrial gland
development, decidualisation and implantation in human and mice respectively (Buzzio et al.
2006; Jeong et al. 2010), microarray study highlights the endometrial expression of FOXL2, a
key FOX factor for ovarian differentiation and the maintenance of ovarian function (Pannetier
and Pailhoux 2011) but unknown in endometrial physiology. Its expression was originally
restricted to three cell types: foetal eyelid, anterior pituitary cells and granulosa cells
(Pisarska et al. 2011). This ectopic expression of this ovarian master regulator in bovine

endometrium questions the implication of FOXL2 gene in endometrial physiology.

The first goal of my PhD was to evaluate precisely the endometrial expression of FOXL2
throughout the oestrous cycle and early pregnancy in cattle. The impacts of IFNT as well as
altered P4 circulating level were investigated also on the endometrial expression of FOXL2
using in vivo and in vitro bovine experimental models.

Then, the impact of ovarian steroid hormones namely E2 and P4 was investigated using
ovine and bovine experimental models in order to refine the first analyse.

Finally, the biological functions of FOXL2 were examined in bovine endometrium. As a
transcription factor, its biological functions are associated with its target genes. To date,
FOXL2 target genes were examined using microarray analysis in human immortalized
granulosa cells over-expressing FOXL2 (KGN cell line, Batista et al. 2007) and in case of
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conditional deletion of Foxl2 in adult ovary (Uhlenhaut et al. 2009). In silico analyses
comparing genes expression of KGN cell line over-expressing FOXL2 with bovine
endometrium (comparison between Batista et al. 2007 and Mansouri-Attia et al. 2009), we
identified 38 putative endometrial FOXL2 target genes. Based on candidate gene approach,
transient transfection of FOXL2 gene was carried out on bovine primary endometrial stromal
and glandular epithelial cells. This strategy gave us first insights about the biological
functions of FOXL2 in endometrium. Systematically comparison between target genes from
ovary and endometrium had been done to evaluate the FOXL2 biological functions in a
tissue-specific manner. The evaluation of endometrial FOXL2 expression will provide us new

insights about its biological relevance in female reproduction.
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V. Part I: FOXL2 is regulated during the bovine
oestrous cycle and its expression in the
endometrium is independent of conceptus-
derived interferon tau
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A. Introduction
A successful implantation requires a tightly regulated communication between the
endometrium and the conceptus. Asynchronous developments of the conceptus lead to
implantation failures due to early embryonic death as well as endometrial defects preventing
the implantation of a healthy conceptus. On the other hand, only endometrium can drive
successfully a pregnancy. But, external events (as infection, nutrition, endocrine disruptors or
stress) and intrinsic maternal features altering the biological functions of maternal organs

may affect endometrial physiology.

In the last decade, endometrial genes expression had been investigated using high-
throughput analysis to evaluate the impact of oestrous cycle, presence and quality of the
conceptus (Al, IVF and SCNT) and ovarian steroid hormones. These data have
demonstrated the sensor/driver properties of the endometrium as a dynamic and reactive

entity.

In particular, these microarrays and RNA-sequencing studies have revealed the expression
of several members of the Forkhead box transcription factors family including FOXAZ2,
FOXL2 and FOXO1A. Transcription factors and FOX factors particularly, act as a molecular
integrator of extracellular signals and they might constitute nodes in cellular networks. FOX
factors are widely expressed in various tissues and are involved in many developmental
processes, organ ageing, then cancers. In human, rodent and ruminant endometrium,
FOXA2 and FOXO1A are known to be both master regulators of endometrial gland
development, decidualisation when occurs and implantation. FOXL2 was shown to be
expressed in three cell types: fetal eyelid, anterior pituitary cells and granulosa cells. Indeed,

FOXL2 gene was described originally, as one of the key genes for ovarian differentiation.

To date, FOXL2 was never studied in the endometrial context but our recent microarray data
have revealed the differential expression of this transcription factor between 20 dpo of

pregnancy and oestrous cycle in bovine endometrium.

The first part of my PhD was focused on the evaluation of FOXL2 gene expression during the
oestrous cycle and early pregnancy. Using bovine physiological model, we examined the
expression of FOXL2 (mRNA and protein) during the active luteal phase (16 dpo) and the
late luteal/follicular phase (20 dpo) of the oestrous cycle compared to the maternal
pregnancy recognition period (16 dpo) and the initiation of implantation (20 dpo) during early

pregnancy.
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IFNT which is the major signal of pregnancy maternal recognition, regulate strongly
endometrial genes expression during the early pregnancy. Then, we investigated also the
action of IFNT on FOXL2 endometrial expression using an experimental model. Two groups
of cows received an intrauterine infusion of control saline buffer and recombinant ovine IFNT
(rolENT) for 2h at 14 dpo of the oestrous cycle (active luteal phase). This experimental model

was designed to study the rapid action of IFNT on endometrial genes expression.

During the luteal phase and the maternal pregnancy recognition period, endometrium
undergoes important changes in genes expression mostly due to P4 action. The major
hormone of pregnancy is responsible of the uterine receptivity occurring during these
periods. We examined the impact of altered P4 circulating level on FOXL2 endometrial
expression using an experimental model derived from collaboration with the team of Patrick
Lonergan, Ireland. FOXL2 expression was studied at 5 dpo (follicular/early luteal phase) and
16 dpo (active luteal phase) during the oestrous cycle and early pregnancy after 2 days-P4

supplementation and 13 days-P4 supplementation respectively.

Finally, cellular and sub-cellular localization of FOXL2 was investigated during the active
luteal phase, the late luteal/follicular phase and at implantation namely 14 and 20 dpo of the

oestrous cycle and 20 dpo of pregnancy respectively.

B. Conclusions
This publication showed for the first time an accurate characterization of FOXL2 endometrial

expression in one mammal species.

FOXL2 gene is expressed and regulated during the oestrous cycle and early pregnancy in
bovine endometrium. The bovine oestrous cycle is compounded by a short follicular phase
and a long luteal phase. In this study, we have demonstrated that FOXL2 is highly expressed
only during the early luteal phase or the follicular phase i.e. 5 and 20 dpo of the oestrous
cycle, respectively. In addition, we also showed that FOXL2 expression is significantly higher
during the early pregnancy, at 5 dpo exhibits similar P4 circulating level between the
oestrous cycle and early pregnancy. Conversely, FOXL2 expression is significantly
decreased during the luteal phase, the pregnancy maternal recognition period and at
implantation i.e. 16 dpo of the oestrous cycle and 16 dpo and 20 dpo of pregnancy,
respectively. Moreover, FOXL2 expression is always significantly lower in the ICAR area

compared to the CAR area.

The endometrial expression of FOXL2 is clearly different between oestrous cycle and early

pregnancy at 20 dpo. During the oestrous cycle, 20 dpo is characterized by an absence of

76



P4 circulating level and a potential rise of E2 while the implantation day is characterized by a
maintained high-P4 circulating level associated with a high IFNT secretion by the conceptus

and a very low E2 circulating level.

We first examined the action of IFNT on FOXL2 endometrial expression using in vivo and in
vitro model. FOXL2 expression was shown to be not impacted by a short (2 hours) and long
term (24 hours) treatment of IFNT in both endometrial areas. Our data suggest that FOXL2 is

not an early and late target gene of IFNT in bovine endometrium.

Next, we focused on the P4 action on FOXL2 expression. Cyclic and pregnant cows were
supplemented with exogenous P4 from day 3 to day 5, 2-days-P4 supplementation and to
day 16, 13-days-P4 supplementation. FOXL2 expression is significantly decreased at 5 dpo
after the P4 treatment whereas at 16 dpo, P4 supplementation has no impact on FOXL2

expression. FOXL2 expression is negatively correlated with P4 circulating level.

Finally, we investigated the endometrial cellular and sub-cellular localization of FOXL2 during
the oestrous cycle and at implantation in cattle. In every conditions, FOXL2 is completely
absent of the luminal epithelial cells. During the luteal phase (14 dpo), FOXL2 is localized in
the nuclei of stromal cells and in both nuclei and cytoplasm of the glandular epithelial cells.
During the follicular phase (20 dpo), FOXL2 is localized in the nuclei of stromal and glandular
epithelial cells whereas at implantation (20 dpo) FOXL2 is only localized in the cytoplasm of
stromal and glandular epithelial cells. FOXL2 nuclear localization is also negatively
correlated with the P4 circulating level. Recent work in murine ovary and COS-7 cell line has
demonstrated FOXL2 interacts with PIAS1, a protein of the sumoylation machinery leading to
its sumoylation by SUMO1 and UBC9 proteins (Marongiu et al., 2010). This post-translational
process induces a change of sub-cellular localization of FOXL2. We wonder if FOXL2 could
be sumoylated in bovine endometrium inducing changes in sub-cellular localization observed
between follicular and luteal phase as well as at implantation step. Interestingly, the
SUMOplot™ Analysis Program software showed seven sumoylation motifs on the bovine
protein sequence of FOXL2, close to the human and murine motifs including four motifs with

a very high probability all localized in the N-terminus side (Fig. 37).
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SUMOplot™ Analysis Program
Protein ID: qil72534786|refINP_001026920.1
Defintion: forkhead

Length: 377
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No. Pos. Group Score No. Pos. Group Score
LNECF IKVP REGGG .84 k TAP EKPD PAQKP
RRRRR MKRP FRPPP 0.69 5 K3 PPPSP GKGG GGGTG
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ETGRA AKEP EAPPF 0.69
Figure 37: Sumoylation sites prediction. Bovine sequence of FOXL2 protein showed seven motif of

sumoylation in the N-terminus side which is similar to four motifs existing in murine and human sequences
(Marongiu et al. 2010).

These in silico analyse prompt the need for further investigation about the impact of post-

translational modifications on FOXL2 endometrial protein in mammal and especially in cattle.

This publication highlights the first evidence that FOXL2 is expressed and localized in bovine
endometrium and negatively correlated with P4 circulating level. We demonstrated that
FOXL2 expression is not impacted by 2h- or 24h-treatment of IFNT. Nevertheless, the sub-
cellular localization of FOXL2 exhibits differences between the luteal phase and implantation
day whereas its expression (transcript and total protein) was similar in both phases. Indeed,
during the luteal phase, FOXL2 protein was at least detected in the nucleus of the stromal
cells whereas at implantation, FOXL2 is absent of the nucleus of glandular epithelial and
stromal cells. We hypothesized that the apposition or IFNT independent secretion of the

conceptus could induce a cytoplasmic translocation of FOXL2 protein.

In this study, an elevated concentration of P4 leads to a significant decrease of FOXL2
expression in bovine endometrium. P4 acts on the endometrial genes expression using its
nuclear receptor; PGR form A and B. P4 binds their receptors, which are translocated to the
nucleus regulating genes expression. Therefore, we hypothesized that FOXL2 could be a
direct target of P4 and the regulation of its expression could be due to the binding of
activated PGR on FOXL2 promoter.
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Figure 38: PGR expression during the oestrous cycle and the early pregnancy in bovine endometrium.
Caruncular (CAR) and intercaruncular (ICAR) endometrial areas were collected from cyclic (n=5 at day 16, n=6 at
day 20) and pregnant (preg, n=4 at day 16, n=5 at day 20) cross-bred beef heifers. Quantification of PGR mRNA
by RT-gPCR. Expression of PGR was normalized to RPL19. Quantitative data are presented as mean +/- SEM
and significant difference is noted, ***: P < 0.001.

PGR transcript exhibits a similar expression pattern compared to FOXL2 expression with a
repression during the luteal phase compared to the follicular phase (Fig. 38). As previously
published, during the luteal phase, P4 secretion rises and reaches a plateau leading to the
inhibition of its own receptors expression prior to the implantation when occurs (Bazer et al.,
2010). This result and the literature prompt the need to better define the regulation between
P4 circulating level and FOXL2 endometrial expression. In addition, the potential action of E2
was not investigated in this publication and further analyses will be necessary to dissect the

regulation mechanisms of both ovarian steroid hormones on FOXL2 endometrial expression.
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ABSTRACT

FOXL2, a winged-helix/forkhead domain transcription factor,
is a key gene involved in the differentiation and biological
functions of the ovary. In a recent transcriptomic analysis, we
found that FOXL2 expression in bovine caruncular endometrium
was different from that in intercaruncular endometrium. In
order lo gain new insights into FOXL2 in this lissue, we
determined the expression of this transcription factor during
the estrous cycle and the establishment of pregnancy in cattle.
The endometrial expression of FOXL2 did nol vary during
maternal recognilion of pregnancy (Days 16-20). Using an in
vivo bovine model and primary cell cultures, we showed that
FOXL2 was not an interieron-lau largel gene. Both FOXL2
transcript and protein were expressed from Day 5 to Day 20 of
the estrous cycle, and their levels showed a significanl increase
during the luteolylic phase. A 2-day progesterone supplementa-
tion in heifers led to a clear down-regulation of FOXL2 protein
levels, suggesling the negalive impacl of progeslerone on FOXL2
expression. Immunohistochemistry data revealed the localiza-
tion of FOXL2 in endometrial stromal and glandular cells. FOXL2
subcellular distribution was shown to be nuclear in endometrial
samples collected during the luteolytic period, while it was not
detected in nuclei during the luteal phase and at implantation.
Collectively, our findings provide the first evidence that FOXL2
is involved in the regulation of endometrial tissue physiology.

bovine, endometrium, estrous cyde, FOXL2, pregnancy

INTRODUCTION

In mammals, implantation represents a critical checkpoint
for the success of pregnancy [1]. This step corresponds to the
establishment of permanent cellular interactions between the
conceptus (embryonic disk and extraembryonic tissues) and the
endometrium [2]. Compared to the invasive nature of
implantation in mice and humans, the process of implantation
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is superficial in ruminants, leading to a synepitheliochorial
placentation [3]. In these domestic species, progesterone (P4)
and interferon-tau (IFNT) represent two major factors regulat-
ing endometrial physiology during the establishment of
pregnancy [4]. In sheep and cattle, P4 is indispensable for
supporting pregnancy. and alterations in circulating P4
concentration have been reported to significantly affect
conceptus elongation as well as endomefrial gene expression
patterns [5-9]. In these species, IFNT has been shown to be the
major signal for maternal recognition of pregnancy [10]. The
spatiotemporal secretion of IFNT is restricted to the trophec-
toderm during the elongation phase of the conceptus [11].
Experimental models and cell lines have been used to show
that IFNT inhibits hrteolytic mechanisms and induces expres-
sion of IFNT-stimulated genes in the endometrium [7, 12-14].
circulating immune cells [15], and, more recently, in the corpus
luteum during the peri-implantation period [16].

Recent high-throughput data have highlighted the major
impact of the conceptus on ovine and bovine endometrial
physiology during the peri-implantation period of pregnancy
[1. 14]. The endometrial response in small aglandular areas
of endometrium (caruncles [CAR]) has also been shown to
differ from that in large glandular intercanmcular (ICAR)
areas [13, 17, 18]. These transcription profiles have revealed
the expression of several families of transcription factors
including the forkhead box containing transcription factors
(FOX) family [13, 17, 18]. The FOX family represents more
than 40 transcription factors whose biological functions are
essentially related to organ development, aging, metabolic
and Immunoregulatory processes, cell cycling, and cancer
[19-21]. In the context of the endometrium, murine Foval
and human FOX(OJA have been shown to be involved in
gland development and differentiation of stroma cells and in
decidualization [22-24]. In addition to these two FOX tactors
[13, 18], several other FOX factors including FOXCI,
FOXL2, and FOXQ 1 have been identified in high-throughput
analyses of bovine endometrium. Very interestingly, FOOXL2
expression in CAR is different from that in ICAR tissue on
Day 20 day of the estrous cycle [13]. Originally, FOXL2
expression had been restricted to three cell types, namely
granulosa cells in the fetal and adult ovary, anterior pituitary
cells, and fetal evelid cells [25, 26]. FOXL2 was first cloned
10 years ago in humans [27], and it was subsequently
isolated in a large variety of animal species mnging from
invertebrates (e.g., sea urchins and oysters [28, 29]) to fish,
chickens, mice, and goats [30-32]. In vertebrates, including
livestock, FOXL2 has been reported to be a key gene for
ovarian differentiation [26, 32-36]. In addition, FOXL2 has
been shown to control GnRH receptor expression [37],

Article 32

‘610" p0Idal|0Iq MMM LLO 1} PAPEOJUMO(]

80



EOZENOU ET AL.

regulate gonadotropin hormone secretion (follicle-stimulating
and luteinizing hormones) in the anterior pituitary [25, 38].
and control ovarian function by acting on ovarian differen-
tiation, steroid secretion, ovulation, stress response, and
hormone metabolism [34, 38—40]. The present study was
conducted fo evaluate the expression and regulation of
FOXL?2 during the estrous cycle and early pregnancy and the
effect of P4 and IFNT on FOXL2 gene expression and cell
localization in bovine endometrium.

MATERIALS AND METHODS
Animals and Cell Cultures

All experiments were conducted in accordance with the International
Guiding Principles for Biomedical Research Involving Animals, as promul-
gated by the Society for the Study of Reproduction.

Experiment 1: FOXL2 expression during the period of pregnancy
recognition. Cyclic mnd pregnant cross-bred beef heifers were synchmonized
andd artificially inseminated as previously described [12]. The day of estrus was
considered Day 0. Heifers were slaughtered at Day 16 (cyelic: n =35: pregnant:
n=4) and &t Day 20 (cyclic: n= 6; pregnant: n =35} Uteri were collected,
flushed, and, when present, recovered concepti were observed by microscopy
o confirm the stage of development [41]. From pregnant and cyclic animals,
endometial CAR and ICAR areas were dissectsd from the uwledne homs
ipsilateral to the corpus luteum as previously described [13],

Cyelic and earlly pregnant Charolais cows were produced using the
CRESTAR method and artificial insemination, as previously published [42].
The day of estrus was considered Day 0, and females were slaughtered at Day
20 (eyclic: n = 3; pregnant: n = 5), Uteri were collected and dissected as
described above. In addition, ovaries with the corpus lureum were collected.
Some follicles and the compus luteum were dissected,

Experiment 2: impact of in vitro and in vivo IFNT infusion on FOXL2
endometrial expression. The estrous cycles of cyclic cows (Charolais breed)
were synchmnized as described above. The utering lumen was infused with
recombinant ovine IFNT (rolFNT; 200 pgfml: 25 milhom} o contiol solution
(saline buffer) ot Day 14 postestrus as we previously described [12]. The
endometia of 6 females infused with IFNT and 5 control anirmals were
collected and dissected os described in experiment 1.

Culturing of bovine endometrial cells (fibroblasts or glandular epithelial
cells) was earried out s we previously reported [12, 13], and samples were
wented for 2 h or 24 h with 100 ng/ml rol FNT [12. 13].

Experiment 3: impact of P4 supplementation on FOXL2 expression.
Cyelic heifers and those confirmed to be pregnant (by artificial insemination)
received o Pdrelessing intravaginal device containing 1.55 g of progesterone
(Ceva Animal Health Ltd.) on Day 3 of the eswous cycle or pregnancy 1o
increase circulating concentrations of P4 as previously published [6. 43]. Strips
of endometrium (CAR and ICAR) were sampled after 2 days and 13 davs of P4
supplementation (Days 5 and 16, respectively) in cyclic and pregnant females
displaying normal and high concentrations of P4,

Tissue Collection, Preparation for Immunohistochemistry,
and RNA Extraction

Endometrial samples were immediately snap frozen in liquid nitrogen and
stored at —R0°PC prior to analysis [13]. At the same time, sections of the
ipsilateral utering horm were fixed in 4% parafermaldehyvde in phosphate buffer
and then washed in 1< PBS, followed by u 12-h dehvdration reatment in a
Shandon Citadel 1000 tissue processor (Thermo-electron Corp.) using
increasing concenirations of ethanol. Tissues were embedded in paraffin
(Paraplast plus, McCormick Scientific, VWR) and subsequently stored at 4°C,
Whaole uterus cross-sections were cut (7 pmj} with a rotary micmoiome (Leica
model RM2245) and stored of room emperature until processed. Toml RNA
from frozen tissue was isolated by homogenization using TRIzol reagent
(Invitmgen) as published previously [13]. All RNA sumples were purified
using Qiagen columns integrating a DNase step (RMNeasy mini-kit: (iagen).
Quality and integrity of rotal exvacted and purified RNA were detemmined
using an Agilent 2100 bicanalyzer, Upon addition of RMase inhibitor
(RMusire: Promega) total RNA was stored at —80°C,

Real-Time RT-PCR
Purified toml RNA samples were used for quantitative RT-PCR (RT-

gqPCR). One microgram of otal RNA was reverse wanscribed into cDNA with
Superscript 11 enzyme (Invitogen) in o 20-pl volume. RT-PCR reactions were

camied out with Master Mix SYBR Green and Step One Plus system (Appliad
Biosysterns ). Primers (Eurogentec) were designed (Primer Express version 2.0
software: Applied Biosystems) w specifically amplified bovine FOXI2
(forward: CCGGCATCTACCAGTACATTATAGC: and reverse:
GCACTOCGTTGAGGCTGAGGT [NCBI sequence reference,
NM_001031750.1]) and RPLIY (Fforward: CCCCAATGAGACCAAT-
GAAATC; and reverse: CAGOCCATCTTTGATCAGCTT) [13]. Amplified
FOXL2 and RPLI9 PCR fragments were sequenced 10 assess amplification of
the correct fragment. According to the relative stndord cuve method [44],
quantification of the amount of FOXL2 mRNA relative o that of the RPLIY
normalizer gene was calculated.

Western Blot Analysis

Frozen tissues (bovine ovary and endometrium) were gmund in liquid
nitmygen and then resuspended with radioimmunopreci pitation assay (RIPA)
buffer (50 mM Tris HCI [pH B], 150 mM NaCl, 1% Monidet P-40, 0.5%
sodium deoxycholate, anti-protease [Roche]: 200 pl of RIPA buffer per 100 g
of tissue) in a Dounce homogenizer on ice. Samples were centrifuged at 20 000
# g for 5 min a1 4°C, and then the supernatant corresponding to the total protein
extract was collected and stored at —80°C. Protein quantification was carried
out using the Bradford method with bovine serum albumin (BSA) as the
standard (Sigma-Aldrich).

‘Westemn blot immunoassays were processed with 25 pg of total protein
extract lysed in SDS buffer und separated using 4%—12% NuPage bis-Tris gel
electrophoresis (Novex; Invitrogen). Protein molecular mass markers (Novex
Sharp protein standard, 3.5-260 kDa: lnvitrogen) were run simultaneously as
molecular mass standards. Electrophoretically separated polypeptides were
transferred onto a Hybond-P polyvinylidene fluoride membrane (Amersham),
Membranes were blocked in 1:1000 Tween 20-PBS (PBS-T. Euromedex)
containing 4% (wiv) non-far dried milk, Membranes were probed with a
rihbit ant-FOXL2 purified antibody generated against » peptide correspond-
ing to the C-terminal conserved region of mammalian FOXL2
(WDHDSKTGALHSRLDL: dilured 1:5300; Caslo Laboratory) in FBS-T
solution containing 4% non-fat dry milk. Then, membranes were incubated
with a poat peroxidase-conjugated anti-rabbit immunoglobulin G (12G)
antibody (diluted 1:5000: Santa Cruz Biotechnelogy). Actin B (ACTB) was
assessed as a loading control, using a mouse monoclonal anti-ACTE antibody
(diluted 1:2000: Sigmu-Aldrich) and goat peroxidase-conjugated anti-mouse
IgG antibody (diluted 1:5000; Santa Cruz Biotechnology). Inmmunoreaction
signals were revealed with ECL Plus Western blotwing detection magents
{Amersham) and analyzed using an image analysis system (Advanced Image
Datn Analyzer software; LAS 1000 camern; Fujifilm).

Immunohistochemistry

Sections were rehydrated in xylene (Prolabo: VWR), followed by ethanol
baths of decreasing concentmtion. Sections were incubated in citrate buffer
(sodium citrate, 0.01M. pH 6.0} al room temperature for 5 min, followed by
incubation at 80°C for an sdditional 10 min to unmask sections. Endogenous
peroxidase activity was quenched by treatment with 0.1% hydrogen peroxide
for 30 min. Sections were then incubated with a rabbit anti-FOXL2 purified
antibody (diluted 1:100; Caslo Laboratory) or a goat polyclonal anti-lamin B
(Lamin B} antibody (diluted 1:200; Santa Cruz Biotechnology) in phosphate
buffer (0.1 M. pH 7.4, with 2% BSA and 1% normal donkey serum) at 4°C
overnight. As a negative control. the peptide used to generate the antibody
was co-incubated with the mbbit anti-FOXL2 purified antibody at 37°C for 1
h before incubation on sections, After severnl washes in phosplate buffer
with 2% BSA, anti-rabbit biotinylated antibody (diluted 1:300; Jackson
ImmunoResearch) and anti-goat biotinylated antibody (dilwed 1:200:; Santa
Cruz Biotechnology) were applied o slides for 1 h at room femperature.
After three washes in phosphate buffer, sections were incubsted for 1 h with
the ABC Wector Elite kit (Vectastain Elite ABC kit: Vector Labs) in Tris-
buffer (Tris 50 mM, NaCl (.15 M, pH 7.5). Slides were washed three times
and incubated with diaminobenziding substrate and uwrea (Fast 3.3; Sigma) in
Tris-buffer for 2-100 min, until brown staining was detectable, After one
wash i water, slides were dehydrated by immersion in increasing
concentrations of ethanol baths and then mounted with Eukit mounting
medium (Sigma). A section for each physiological condition was stained
with hemaroxylin-eosin solution to highlight tissue morphology. Images were
obmmined using a NanoZoomer digital pathology svstem and then anal yzed
using NanoZoomer digital pathology virmal slide viewer (NDPView
software; Hamamatsu), Esch experiment was repeated with four differemt
uterine cross-sections for each animal (three females per biological
condition). Quantification of immunohistochemistry staining was processed
using Imagel version 1.45 software (National Institutes of Health, Bethesdn,
MIx, hup: ffsbweb.nih. gov/ijf.
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Statistical Analyses

Statistical analyses were carded out osing GraphPad Prism 4 software
(GraphPad Software), Quantitafive data were subjected o a two-way ANOWVA
follo wed by Bonferroni test. For female tissues collected on Days 5, 16, and 20,
data were analyzed for the effects of day, pregnancy status (cyclic or pre gnant),
endometrial ureas (CAR and ICAR), and their interactions (day versus status or
stams wversus endomefrial areas). Linesr regression analysis was used io
correlate circulating P4 concentrations with FOXL2 proein expression,

RESULTS
FOXL2 Is Regulated During the Estrous Cycle in Bovine
Endometrium

In cattle, the estrous cycle lasts 20—22 days and is associated
with an increase in progesterone secretion (Day 3-4) that

reaches a plateau before decreasing (Day I8) in association
with corpus luteum regression. FOXL2 transcript expression
was significantly higher in cyclic heifers on Day 20 when this
expression was compared to pregnant heifers on Day 20 and
cyclic and pregnant heifers on Day 16 (2.7- to 3.3-fold in CAR
area and 2.2- to 3.2-fold in ICAR area; Fig. 1A, P << 0.01).
However, in CAR and ICAR areas, endometnal expression of
FOXL2 mRNA did not significantly differ between Day 16 and
Day 20 in pregnant heifers. At the protein level, a similar
pattern of FOXL2 regulation was reported in CAR and ICAR
endometrial areas, with significantly higher FOXL2 expression
in cyclic females on Day 20 (1.5- to 2.2-fold higher) than other
conditions (P < 0.05) (Fig. 1B). Similar results were obtained
with Charolais cows analyzed on Day 20 of the estrous cycle
and pregnancy (Supplemental Fig. S1; all Supplemental Data
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are available online at www.biolreprod.org). In the ovary
(Supplemental Fig. S1B) as well as endometrial CAR and
ICAR areas (Fig. 1B), the apparent molecular mass of FOXL2
(~—30 kDa) was similar to and consistent with those reported in
other animal species [3 1. 32, 45]. Expression of FOOXL2 mRNA
and protein levels were significantly lower in ICAR areas than
in CAR aras ( P << 0.05) (Fig. 1: also see Supplemental Fig.
S1).

FOXL2 endometrial expression appeared to be down-
regulated during the implantation period. In order to analyze
the impact of IENT (the major signal of maternal recognition of
pregnancy in cattle) on FOXL2 expression, an experimental
bovine model was derived using an intrauterine infusion of
rolFNT in cyclic cows on Day 14 of the estrous cycle (luteal
phase). The amount of endometrial FOXL2 transcript differed
significantly between CAR and ICAR areas. but the short-term
IFNT weatment (2 h) did not significantly affect FOXL2
transcript or protein levels (Fig. 2, A and B).

Bovine endometrial cell cultures (fibroblasts and glandular
epithelial cells) were treated with rolFNT in order to
investigate the differences between shon-term (2-h) and long-
term (24-h) treatment with IFNT. Glandular epithelial cells
displayed a lower expression of FOXL2 mRNA than fibroblasts
(2 h, 3-fold; 24 h, 54old; P < (0.05). The short-term (2-h) and
long-term treatment (24-h) of IFNT did not significantly alter
FOXL2 expression level (Fig. 2C).

Increased Concentration of Progesterone Affects
Endometrial FOXL2 Expression In Vivo

Considering the variation in FOXL2 gene expression
according to the stage of estrous cycle, we addressed the
question of FOXL2 regulation in an experimental bovine model
with increased concentrations of circulating P4 induced by
exogenous supplementation.

In heifers supplemented with P4 for 48 h (Day 3-5)
compared with control animals, a significant 2.55-fold decrease
in endometrial FOXL2 expression was detected in cyclic
heifers (P < 0.05) (Fig. 3A). The lack of significance in
pregnant animals was a consequence of the limited number of
samples (n = 2). No significant impact of P4 treatment was
detected in pregnant or cyclic heifers sampled on Day 16
following 13-day steroid hormone supplementation (Fig. 3A).
Nevertheless, a lower FOXL2 expression was observed in
endometrial tissue samples collected from cyclic and pregnant
heifers on Day 16 compared with those collected on Day 5 (P
< 0.05) (Fig 3A). Interestingly, when circulating concentra-
tions of P4 were plotted against FOXL2 endometrial
expression, the amount of FOXL2 protein was shown to be
inversely correlated with blood concentrations of P4 (P =
0.0201) (Fg. 3B).

Cellular localization of FOXL2 Varies in Bovine
Endometrium Collected at Two Different Stages of the
Estrous Cycle and at Implantation

The specificity of FOXL2 antibody was confirmed using
bovine ovaran tissue and blocking peptide (Supplemental Fig.
52, A and B). In keeping with published data in other
vertebrates [46], FOXL2 was clearly localized in nuclei of
granulosa cells surrounding the antral follicle (Supplemental
Fig. S2A). In the endometrium, FOXL2 cell localization was
investigated in cyclic cows on Day 14 (luteal phase) and Day
20 (follicular phase) as well as in pregnant cows at the time of
initiation of implantation (Fig. 4. Day 20). The intracellular
position of nuclei in the various endometrial cell populations
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FIG. 2. Regulation of FOXL2 gene expression by IFNT. A and B) CAR and
ICAR endometrial areas were collected from Charolais cows infused with
control solution (n = 5) or rolFNT (200 pg/ml; n = 6) for 2 h. A)
Quantification of FOXL2 mRNA by RT-qPCR. Expression of FOXLZ
transcript was normalized to that of RPLI9. Bl Quantification of FOXL2
pratein by Western blotting. FOXL2 expression was normalized to that of
ACTE protein level. C) Regulation of FOXL2 expression by IFNT in bovine
endometrial primary cell cultures (stroma and glandular epithelium cell
culture) was investigated using RT-gPCR. Expression of FOXL2 was
normalized to that of RPLT9. Quantitative data are means = SEM.

was determined using hematoxylin-sosin staining (Fg. 41) or
anti-Lamin B antibody (Supplemental Fig. 52, C and D). On
Days 14 and 20 of the estous cycle, FOXL2 was clearly
detected in stroma cells, superficial and deep glandular
epithelium, and endothelial cells of blood vessels (Fig. 4, A,
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FIG. 3. FOXL2 endometrial expression in cyclic and pregnant heifers
supplemented with P4 for 2 or 13 days. A) Quantification of FOXL2
pratein by Western blotting (normal level of P4 in cyclic heifers, n=4, and
in pregnant heifers, n=4, at Day 5; normal level of P4 in cyclic heifers, n
=3, and pregrant heifers, n =4, at Day 16; high level of P4 in oyclic plus
P4 heifers, n=4, and pregnant plus P4 heifers, n= 2, at Day 5; and high
level of P4 in cyclic plus P4 heifers, n= 3, and pregnant plus P4 heifers, n
=3, at Day 16). FOXL2 expression was normalized to that of ACTB. B)
Correlation between FOXL2 expression and circulating progesterone
concentrations (P = 0.0201). *Not significant due to a fimited number of
available samples. Quantitative data are means = SEM, and bars with
different lowercase letters differ significantly (P < 0.05).

B, D. and E). Nevertheless, intracellular FOXL2 localization
differed between the two stages of the estrous cycle as FOXL2
nuclear staining was restricted to stroma cells on Day 14 (Fig.
4D) but was visible in stroma and glandular epithelial cells on
Day 20 (Fig. 4E). Intrauterine infusion of IFNT did not atfect
FOXL2 cell localization compared with endometrium collected
on Day 14 (Fig. 4G). In pregnant cows at Day 20, endometrial
FOXL2 was observed in stroma, glandular, and endothelial
cells, but none of these cells displayed a detectable nuclear
localization (Fig. 4, C and F). Regardless of physiological
condition, staining of luminal epithelium appeared negative for

FOXL2. Quantification of immunochistochemistry staining
confirmed that FOXL2 expression displayed significant
differences among physiological stages in glandular and stroma
cells (Fig. 4]). On Day 20 in cyclic endometrium, FOXL2
staining was significantly higher in stroma and glandular cells
than on Day 14 cyclic and Day 20 pregnant tissue. However, at
20 days of pregnancy, stromal FOXL2 expression was
significantly lower than in both cyclic stages. Quantification
of the FOXL2 intensity signal was in keeping with quantifi-
cation of the FOXL2 expression on Days 16 and 20 in cyclic
and pregnant endometrium (Fig. 1B).

DISCUSSION

FOXL?2 has been recognized as a key factor involved in
ovarian development and biological functions from fetal life to
adulthood [47, 48]. Recently, FOXL2 was listed as a gene
whose expression in CAR endometrium differed from that in
ICAR endometrium sampled from cyclic females on Day 20
[13]. In the current study, we demonsirated that FOXL2 is
expressed in the endometrium and regulated during the estrous
cycle and the period of maternal recognition of pregnancy.

Compared with the early preimplantation phase (Day 5), a
clear decrease in FOXL2 transcript and protein expression
levels was detected dunng the penod of maternal recognition
of pregnancy and implantation (Days 16-20). FOXL2 gene
expression was not influenced by the conceptus, and short-term
infusion of IFNT (the major pregnancy recognition signal in
ruminants [10, 14]) affected neither FOXL2 expression nor its
cell localization. Similarly, treatment of endometrial cells with
IENT for 2 h or 24 h did not affect FOXL2 mRNA expression.
Collectively, our data do not support the hypothesis that the
conceptus contributes to the regulation of FOXL2 expression in
bovine endometrium. This situation differs from that in humans
in which a negative impact of trophoblast tissue on FOXL2
expression has been reported in endometrial stromal cells using
a 24-h coculture cell system and gene expression profiling [49].
The down-regulation of FOXL2 expression has also been
reported in human endometrial stromal cells co-incubated for
12 h with trophoblast-conditioned medium compared to control
conditioned medium [50]. Therefore, experimental data using
in vitro human models support the negative effect of
trophoblast secretions on FOXL2 expression regardless of P4
action [49, 50]. Type of implantation as well as embryo signals
differ between cattle and humans [2], and additional studies
across animal species will be necessary to understand the
relationships among conceptus secretions, type of implantation.
and endometrial regulation of FOXL? gene expression.

Progesterone is a major hormone of pregnancy, whose
biological actions are crucial for the establishment and
maintenance of pregnancy in ruminants and in mammals
generally [51]. During the estrous cycle, the endometnal
expression of FOXL2 decreases between Day 5 and Day 16
(early luteal and late luteal phases, respectively), following
which it increases from Day 16 to Day 20 (follicular phase).
The endometrial pattern of FOXL2 expression appears to be
inversely related to the circulating P4 concentrations deter-
mined at similar stages [43, 52]. Furthermore, a two-day P4
supplementation (Days 3-5) led to a significant reduction in
FOXL2 expression in both cyclic and pregnant heifers at Day
5. Very interestingly, microarray experiments carried out with
human endometrium have also indicated a variable expression
of endometrial FOXLZ mRNA across the menstrual cycle in
women [53]. During the proliferative phase, FOXL2 expression
was high, whereas it dropped during the secretory phase, a
period associated with high luteal P4 secretion and a lower
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whereas H shows tissues co-incubated with the anti-FOXL2 antibody and blocking peptide as a negative control. Samples in 1 were incubated in
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production of estradiol [53]. Therefore, FOXL2 appears to be
expressed in human endometrium and regulated by ovarian
steroid balance. Collectively, these data and our resulis
strongly suggest that FOXL2 gene expression is negatively
regulated by P4 in mammals. and they suggest the need for a
detailed regulation of this transcription factor by steroids.

In our study. changes in FOXL2 expression level were
associated with distinct patterns of cell and subcellular
localization throughout the estrous cycle and at the initiation
of implantation. In endometrium sampled from cyclic cows
during the luteal (Day 14) and follicular (Day 20) phases,
FOXL2 was always detectable in the nuclei of stroma cells,
whereas nuclear localization in glandular cells was restrcted to
Day 20. In pregnant endometrium collected when implantation
was initiated (Day 20), FOXL2 was undetectable in the nuclei
of stroma and glandular epithelium cells. Interestingly, FOXL2
has been reported to be the target for post-translational
modifications, including sumoylation, acetylation, or phos-
phorylation, which are associated with changes in FOXL2
subcellular localization [54, 55]. In transfected cell lines,
protein inhibitor of activated STAT-1 (PLASI1) has been shown
to interact with FOX12, leading to the sumoylation of FOXL2
by SUMOI and UBCY, two proteins of sumoylation machinery
[45, 56]. Using several mutated FOXL2 proteins, Marongiu et
al. [45] also demonstrated that sumoylation site-mutated
FOXL2 exhibited neither nuclear localization nor transcrip-
tional activity. In the context of endometrium, sumoylation of
proteins has been reported [57] and may represent a key
process for the regulation of FOXL2 intracellular localization
along the estrous cycle. Additional analyses of sumoylation
machinery regulation (SUMO and PIAS pmteins) will be
required in order to validate this assumption, as well as to
identity FOXL2 binding partners in mammalian endometrium,

In the context of ovarian development and physiology.
microamray analyses and various experimental models have
been used to identify FOXL2-regulated genes. Smdies using
human granulosa cell line (KGN) overexpressing FOXL2 [39]
and Fexi2 knock-out mouse strains [26, 58] led to the
identification of potential FOXL2 target genes including
MNSODISOD2, RGS2. and COX2/PTGS2, which are known
to be involved in apoptosis, stress response, gonadotropin
responsiveness in granulosa cells, and ovulation [38, 39, 60].
Interestingly, these three FOXL2-regulated genes have also
been unveiled in transcriptome analyses carried out with
bovine endometrium collected from pregnant and nonpregnant
females [13, 18]. PT(S2 has been well characterized in
ruminant endometrium [61, 62], and its expression is induced
by pregnancy-associated factors such as IFNT. In ovine and
baboon endometrium [63, 64], SOD2 expression and regulation
suggest that stimulation of SOD2 gene expression may
improve pregnancy establishment by enhancing antioxidant
defenses [65]. RGS2 expression has been shown to be restricted
to implantation sites in the murine pregnant uterus [60]. In a
FOXL2-overexpressing KGN cell line, PTGS2, S0D2, and
RGS2 transcript expression was shown to be up-regulated [39].
whereas the ovarian expression of these three genes was down-
regulated in Foxi2 knock-out mouse strain [58]. On the other
hand, in the endometrium, the high expression level reported
for PTGS2, SOD2, and RGS2 1s associated with a low level of
FOXL2 during the establishment of pregnancy. The discrep-
ancy between the regulation of these genes and FOXL2 levels
according to the ovarian and endometrial context deserves to be
further investigated in order to clanfy the interplay between
FOXL2Z and its target genes as well as the contribution of this
transcription factor in regulating the physiology of the
endometrium, a key tissue for pregnancy outcome [66].

Forkhead box genes have evolved to acquire specialized
functions in various key biological processes [19], and several
members of this family such as FOXAI, FOXAZ, and FOXO1!
have been investigated in the human and murine uterus [19,
671. A recent high-throughput study by Shimizu et al. [68]
reported the expression of FOXA transcription factors in bovine
endometrium, but, overall, the expression, regulation, and
biological actions of FOX transcription factors have been
poorly analyzed in the endometrium of ruminants. Using
bovine endometrium collected during the estrous cycle and
early pregnancy, the present study has demonstrated the
expression, regulation, and cell localization of FOXL2, a gene
first reported as an essential factor for ovarian differentiation
[31, 36, 38]. In keeping with preliminary elements available
from human endometrial gene profiles [49, 50], our data
provide strong arguments for the involvement of FOXL2 in
regulating endometrial physiology and support this franscrip-
tion factor as a key gene in female reproduction.
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Supplemental Figure S1. FOXL2 expression in cyclic and pregnant endometrium collected from cows
(Charolais breed) at Day 20. Caruncular (CAR) and intercaruncular (ICAR) endometrial areas were
collected from cyclic (cyc, n = 5) and pregnant (preg, n = 5) Charolais cows at Day 20. A)
Quantification of FOXL2 mRNA by RT-qPCR. Expression of FOXL2 was normalized to RPL19. B)
Quantification of FOXL2 protein by Western blotting. FOXL2 expression was normalized to ACTB
protein level. Ovary was used as a control tissue. Quantitative data are presented as mean + SEM.
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Supplemental Figure S2. FOXL2 localization in bovine ovary and LAMINB localization in bovine cyclic
endometrium at Day 20. Immunohistochemistry was performed using sections cut from Charolais
ovary (A and B) and endometrium (C and D). Section A was incubated with the anti-FOXL2 antibody.
Section B was co-incubated with the anti-FOXL2 antibody and the blocking peptide as a negative
control. Sections C and D were incubated with the anti-LAMINB antibody, with section D representing
a higher magnification of LAMINB localization reported in section C. Fol, follicle; GC, granulosa cells;
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VI. Part Il: FOXL2 expression is regulated by
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A. Introduction
In our first publication, the endometrial gene expression of FOXL2 was precisely evaluated
during the oestrous cycle and early pregnancy in cattle. We concluded that FOXL2 gene

expression was not regulated by IFNT but was negatively correlated with P4 blood level.

The uterine receptivity results from the combine action of E2 and P4 during the oestrous
cycle. In particular, E2 induces proliferation of endometrial cells whereas P4 regulate
maturation and secretory activities of endometrial gland, the expression of various
endometrial genes and balance the immune response prior to the apposition of the
conceptus on endometrium (and decidualisation when occurs). In this chapter, we aimed to

dissect precisely the involvement of ovarian steroids on FOXL2 endometrial expression.

We used ovine and bovine experimental models as relevant approaches to dissect the
steroid hormones regulation of FOXL2 endometrial expression. Sheep and cattle are closely
related ruminant species with similar features in term of oestrous cycle and pregnancy. In
sheep, the oestrous cycle lasts 15-16 days with a short follicular phase (2-3 days) and a long
luteal phase (14-16 days). During early pregnancy, the ovine conceptus undergoes an
elongation phase associated with an IFNT secretion indispensible for maternal recognition of

pregnancy prior to implantation at day 15-16.

First, we examined the ovine endometrial expression of FOXL2 during oestrous cycle and at
implantation when occurs. This physiological model provides us a kinetic of FOXL2
expression during early luteal phase (4 dpo), active luteal phase (8 and 12 dpo) and follicular

phase (15 dpo) of the oestrous cycle compared to the implantation day (15 dpo).

Then, we investigated the impact of altered P4 circulating level on FOXL2 expression in
ovine endometrium. Pregnant ewes were daily treated for 11 days with trilostane, an inhibitor
of the 3-BHSD activity, preventing therefore the conversion of pregnenolone into P4. This
ovine experimental model shows that the lower concentration of P4 did not affect conceptus
morphology nor pregnancy rates as determined at 16 dpo but led to changes in endometrial

genes expression including FOXL2 mRNA level.

In the third experiment, we investigated the action of ovarian steroids alone or in combination
on FOXL2 endometrial gene expression. Ovariectomized ewes were supplemented with E2,
P4 or both for 12 days at physiological rates in order to mimic the ovarian oestrous cycle and
its effect on endometrium. Two control groups were used namely ovariectomized ewes
(OVX) and cyclic ewes at 12 dpo. In cattle, a recent high through-put study reported

endometrium collected from ovariectomized cows supplemented with E2 and/or P4 (Shimizu
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et al. 2010). Among the differentially expressed genes, several FOX factors were listed
including FOXAZ2, a major transcription factor involved in uterine gland development (Filant et
al., 2013; Shimizu et al. 2010). We established collaboration with Drs Akio Miyamoto and
Stefan Bauersachs and we analysed FOXL2 transcript expression in this bovine model in
order to add some comparative aspects between both species of ruminant. Ovariectomized
animals brought new insights about the specific action of each steroid on FOXL2 expression

regardless the impact of ovary secretion.

Eventually, we analysed FOXL2 mRNA expression in endometrial explants incubated with
P4 or E2 for 48 hours. This experiment provides us additional results about the steroid
regulation of FOXL2 expression because explants are biopsies of the entire organ preventing

the autocrine and paracrine actions of this complex tissue.

B. Conclusion
This second part of my work has brought new insights on the regulation of FOXL2 gene

expression by the ovarian steroid hormones in ruminants.

FOXL2 gene is expressed during the oestrous cycle and at implantation in sheep
endometrium. In keeping with our data in the bovine endometrium, FOXL2 gene expression
is higher during the early luteal phase (4 dpo) of the oestrous cycle and the follicular phase
(15 dpo) compared to the lowered expression during the luteal phase of the oestrous cycle (8
and 12 dpo) and at implantation (15 dpo). Our data exhibit a similar expression pattern of
FOXL2 between ovine and bovine endometrium. Moreover, ovine and bovine FOXL2

expression is always significantly lower in the ICAR area compared to the CAR area.

In order to compare our results in bovine endometrium, immunohistochemistry was
performed on ovine endometrium slide using the same FOXL2 antibody described in the first
publication (Fig. 39).
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Figure 39: FOXL2 localization in ovary and endometri  um of both cattle and sheep during the follicular

phase. Foll: follicle; GC: granulosa cells; LE: luminal epithelium; GE: glandular epithelium; Str: stroma and BV:
blodd vessel. Bovine ovary exhibits a clear nuclear staining of FOXL2 in granulosa cells (black arrowheads),
around the follicle whereas ovine ovary does not show FOXL2 localization in the granulosa cells (black
arrowheads). Similarly, FOXL2 is detected in the nucleus of glandular epithelium and stroma in bovine
endometrium whereas FOXL2 staining appears to be non-specific in ovine endometrium. Black scale bar: 100um.

Immunohistochemistry was performed on endometrial samples collected during the follicular
phase when FOXL2 expression is higher. FOXL2 protein was not detected in sheep ovary
that was used as a positive control tissue. This result is quite amazing and disappointing
since ovine and bovine FOXL2 primary sequence on the C-terminus side are 100% identical.
A 16 amino acids peptide was injected in rabbits to generate the antibody. We can suppose
that the three dimensional structure of FOXL2 protein is slightly different in sheep compared
to cattle and our antibody cannot stick to the same epitope than in cow. The identification of
intracellular localization of FOXL2 in ovine endometrium is essential to understand the
biological action of this transcription factor. Nuclear localization of FOXL2 is associated to a
functional protein whereas cytoplasmic localization means this transcription factor cannot
bind its response element that drives the expression of its target genes. Others antibodies
will be tested in order to define the change of FOLX2 cell localization during the oestrous

cycle, early pregnancy and upon ovarian steroid hormones in ovine endometrium.

During early pregnancy, the reduced production of P4 consecutive to the trilostane treatment

(Fig. 40A) did affect neither pregnancy rate nor the development of the conceptus up to
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implantation (16 dpo) and led to the increase of FOXL2 mRNA expression in the
endometrium. Our data show an increased expression of FOXL2 transcript associated with a
lower P4-circulating level.
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Figure 40: Monitoring of plasmatic concentration of P4 following long and short term treatment of

Trilostane (Camous et al., submitted). (A) Trilostane treatment lasts 11 days from 5 dpo to 16 dpo of pregnancy
and significantly prevents the rise of P4 circulating level compared to the control group (p < 0.001, DMSO). (B)
Trilostane treatment lasts 5 days from 11 dpo to 16 dpo of pregnancy and significantly reduces P4 circulating
level (p < 0.001). (A) and (B) uteri were collected at 16 dpo of pregnancy.

A short term treatment of trilostane was carried out with 5 days of treatment from 11 dpo to
16 dpo of preghancy (Fig. 40B and Fig. 41). This second experiment aimed to decrease P4
production during the luteal phase whereas the first experiment aimed to prevent the P4 rise
during the early luteal phase. The short-term treatment did not prevent also the development

of the conceptus up to the implantation day (16 dpo).
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Figure 41: Regulation of FOXL2 gene expression under the influence of altered P4 circulating level in
ovine endometrium. Caruncular (CAR) and intercaruncular (ICAR) endometrial areas were collected from
pregnant Pré-alpes du sud ewes treated with DMSO as a control solution (n=7) or trilostane (15 mg/ewe in 1 ml
DMSO) for 5 days. Quantification of FOXL2 mRNA by RT-qPCR. Expression of FOXL2 was normalized to
RPL19. Quantitative data are presented as mean +/- SEM.
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The short-term treatment of trilostane does not impact the endometrial expression of FOXL2
at 16 dpo of pregnancy (Fig. 40). However, the differential expression of FOXL2 is still
significant between CAR and ICAR areas (p < 0.01).

OVX ewes exhibited a significant increased expression of endometrial FOXL2 compared to
cyclic ewes. E2 supplementation did not impact FOXL2 gene expression compared to the
OVX ewes except in ICAR area where FOXL2 protein expression is significantly higher
suggesting an important E2-responsive function of FOXL2 in glandular epithelium enriched
area. However, P4 treatment inhibits clearly FOXL2 gene expression compared to the [OVX]
and [OVX + EZ2] groups of ewes. The combine action of E2 and P4 led to an intermediate-
level of FOXL2 gene expression. Similarly, OVX cows exhibited a significant lower

expression of endometrial FOXL2 following [P4] treatment compared to [E2] treatment.

Ex vivo endometrial explants cultivated for 48 hours with control media, E2 or P4 reveal a

decreased expression of FOXL2 transcript under the P4 supplementation.

The regulation of FOXL2 endometrial expression by E2 remains unclear. In the [OVX+EZ2]
ewes, FOXL2 expression was similar to the one reported in that OVX ewes suggesting only
P4 can alter its expression. P4 has clearly a major impact on FOXL2 expression but this
does not mean E2 has not. We hypothesized the regulation under the E2 treatment could be
obscured or compensated by autocrine or paracrine regulation. Further in vitro analyses will
be necessary to describe precisely the complex mechanisms of the steroid regulation on

FOXL2 endometrial expression.

Collectively, FOXL2 gene expression in ovine uterus is similar to the one reported in that
bovine uterus. In addition, in vivo and ex vivo data have demonstrated a strong down-

regulation of the FOXL2 expression by P4 in both species of ruminant.

Our first hypothesis was FOXL2 could be a direct target of P4 meaning that FOXL2 could be
a direct target of PGR form A and B genes. In the endometrial explants cultivated with E2, P4

or control media for 48 hours, PGR transcript expression was also investigates (Fig. 42).
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Figure 42: PGR expression in endometrial explants cultivated with control media (C), E2 or P4 for 48
hours. Intercaruncular areas were collected from cyclic cows at estrus stage, supplemented with a control
solution (OVX, n=2), P4 solution (OVX + P4, n=2) or E2 solution (OVX + E2, n=2). Quantification of PGR mRNA
by RT-gPCR. Expression of PGR was normalized to RPL19. Quantitative data are presented as mean +/- SEM
and significant differences were noted using * : P < 0.05.

PGR transcript expression is significantly higher in the E2 treated explants compared to the
P4 treated group (Fig. 42). This result supports former results that E2 stimulates and P4
inhibits the expression of PGR in the bovine endometrium (Spencer and Bazer 2002). P4
induces a down-regulation of its own nuclear receptor expression and at the same time,
FOXL2 expression. PGR protein was shown to be localized in the nuclei of stromal and
either luminal or glandular epithelial cells during follicular phase (Fig. 43; Okumu et al. 2010).
The active luteal phase induces changed in cell distribution of this transcription factor. PGR
protein disappeared during the luteal phase in luminal and glandular epithelia associated with
a weak localization in the nuclei of stromal cells (Okumu et al. 2010). Our previous work
showed that FOXL2 protein is detected in the nuclei of stromal and glandular epithelial cells
during follicular phase and disappeared from the nuclei of glandular epithelial cells during the
luteal phase (Eozenou et al. 2012). In addition, FOXL2 is localized in the cytoplasm of
stromal and glandular epithelial cells at implantation meaning the presence of the conceptus

induces a change in sub-cellular localisation of FOXL2 in stromal cells (Eozenou et al. 2012).
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Figure 43: Schematic representation of FOXL2 and PGR p roteins distribution in bovine endometrium.
FOXL2 and PGR proteins are respectively in pink and blue colors. FOXL2 protein is not detected in the luminal
epithelium (LE) whereas the glandular epithelium (GE) and stroma exhibit a nuclear staining (dark pink) during the
follicular phase. The luteal phase leads to a nuclear localization of FOXL2 in stroma and cytoplasmic (pale pink)
localization in GE. Implantation leads to a cytoplasmic localization of FOXL2 either in stroma or GE (Eozenou et
al. 2012). PGR localization is nuclear (dark blue) in LE, GE and stroma during the follicular phase. The luteal
phase leads to a cytoplasmic (pale blue) PGR localization in GE and a weak nuclear localization in stroma
(Okumu et al. 2010).

In conclusion, PGR and FOXL2 proteins were shown to display the same intracellular
localization in stromal and glandular epithelial cells in bovine endometrium. In addition,
FOXL2 promoter sequence from cattle, goat and mouse species exhibited a consensus
sequence for Progesterone Response Element (PRE, Appendix C, Fig. 71). Altogether, our
data showed strong arguments that P4 could regulate directly FOXL2 transcriptional activity

using its nuclear receptor. In order to confirm or overturn our theory, we designed an in vitro
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experiment based on transient transfection of FOXL2 promoter and PGR form A and B

(courtesy of P. Chambon) genes treated with control media or P4 (Fig. 44).

Early luteal phase Active luteal phase

P4 ?
400bp oCFOXLZtranscription 400

FOXL2 promoter FOXL2 promoter
PRE : Progesterone receptor Response Element,
Present in human, bovine and caprine FOXL2 promoter
COS7 cells
transfection treatment
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-+ P4
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Figure 44: Hypothesis and experimental design of PGR action on FOXL2 promoter in COS7 cell line. COS-
7 cell line will be transfected using expressing vector of PGR form A and B associated with FOXL2 caprine
promoter coupled to the luciferase gene treated with control media or P4.

Presently, experiments are still in progress.

Collectively, our results in bovine and ovine endometrium provide the evidence that FOXL2 is
strongly down-regulated by progesterone circulating level throughout the oestrous cycle and
early pregnancy. We suggest that PGR activated by P4 could act directly on FOXL2
promoter to inhibit its expression during the luteal phase and the early pregnancy. Further
investigation about the direct action of P4 on FOXL2 transcriptional activity will provide us

strong argument about the tightly regulation of FOXL2 endometrial expression in ruminant.
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ABSTRACT

FOXL2 -a member of the FOXL sub-class and a key transcription factor for ovarian
differentiation- is regulated during early pregnancy in bovine endometrium. Interferon-Tau did
not regulate FOXL2 gene expression but the impact of ovarian steroids was not investigated.
In the present study, we analysed the contribution of steroids hormones in the regulation of
FOXL2 gene expression in ruminants using physiological and experimental models derived
from cattle and sheep. In sheep, we confirmed that FOXL2 mRNA and protein are expressed
in the ovine endometrium across the oestrous cycle (day 4 to day 15 post-oestrus (dpo)). In
keeping with our former report in bovine endometrium, ovine FOXL2 endometrial expression
was low during the luteal phase of oestrous cycle (day 4 to 12 post-oestrus) and at
implantation (15 dpo) while mRNA and protein expression significantly increased during the
luteolytic phase (day 15 post-oestrus in cycle). In pregnant ewes, inhibition of progesterone
production (P4) by trilostane (an inhibitor of 3B-hydroxysteroid dehydrogenase activity)
during the 5-16 dpo period prevented P4 rise and led to a significant increase of FOXL2
transcript expression in caruncles compared to the control group (1.4-fold, P < 0.05).
Ovariectomized ewes or cows supplemented with exogenous P4 for 12 days or 6 days
respectively exhibited a significant inhibition of endometrial FOXL2 gene expression
compared to control ovariectomized females (sheep, mMRNA, 1.8-fold; protein, 2.4-fold; cattle;
MRNA, 2.2-fold; P < 0.05). Exogenous 173-estradiol (E2) treatment for 12 days in sheep or 2
days in cattle did not affect FOXL2 endometrial expression compared to control
ovariectomized females. Moreover, bovine endometrial explants cultivated for 48 hours with
exogenous P4 were shown to decrease FOXL2 expression. In contrast with data reported in
mammalian ovary, FOXL2 gene expression does not appear to be E2-dependant in the
endometrium. In ruminants, FOXL2 expression during the luteal phase of the oestrous cycle
and early pregnancy are associated to a low level of P4. Our current findings highlight P4 as

a negative regulator of FOXL2.
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INTRODUCTION

In mammals, successful pregnancy is characterized by an efficient cross-talk between the
endometrium and the conceptus (embryonic disk and extra-embryonic tissues) that takes
place during the peri-implantation period (Lee and DeMayo 2004; Bazer et al. 2010). By
affecting the endometrial function during this period, environmental factors including
infections, stress, nutrition or endocrine disruptors can alter these interactions leading to
early pregnancy failures or altered progression of pregnancy to term (Sandra et al. 2011). In
cattle and more specifically in dairy cows, half of pregnancies abort very prematurely as a
consequence of early embryonic death (Diskin and Morris 2008). Therefore, the peri-
implantation period is a critical checkpoint for the progression as well as the issue of
pregnancy (Bazer et al. 2010; Sandra et al. 2011) and prompts the need for accurately

defining the molecular mechanisms involved during this period.

In mammalian oestrous and menstrual cycles, endometrium has to be receptive to host the
pre-implantatory conceptus. The receptive status of the endometrium requires the combine
action of gonadal steroid hormones, estrogens (E2) and progesterone (P4, Miller and Moore
1976; Devroey and Pados 1998; Al-Gubory et al. 2008; Ozturk and Demir 2010). Estrogens
are secreted during the follicular phase that cover a short period of time in ruminants 4 to 5
days (Forde et al. 2011) compared to the long follicular phase described in humans (14 days,
Hawkins and Matzuk 2008; Mihm et al. 2011). In ruminants, the short-time secretion of E2 is
associated to the absence of endometrial growth (Forde et al. 2011) whereas these steroids
regulate the proliferation and the growth of the endometrial cells during the follicular phase to
allow the deep invasion of human conceptus when pregnancy occurs (Hawkins and Matzuk
2008; Mihm et al. 2011). The uterine receptivity requires the pleiotropic actions of
progesterone, produced by the corpus luteum and required in mammals for the maternal
support of conceptus survival and elongation (Spencer et al. 2008; Bazer et al. 2012). Unlike

human and rodents species, decidualisation does not occur in ruminant (Lee and DeMayo
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2004) leading to a synepitheliochorial implantation associated to a superficial invasion of the

conceptus (Lee and DeMayo 2004).

However, P4 controls the endometrial gland differentiation and secretion (histotroph;
Lonergan 2011) as well as endometrial angiogenesis (Bazer et al. 2009). P4 has been
shown to be permissive to interferon-tau (IFNT) actions, prior to the conceptus implantation
(Spencer et al. 2004). IFNT is produced by the trophectoderm of elongated conceptus and
this factor is the major signal of pregnancy maternal recognition in ruminants (Martal et al.
1979; Roberts et al. 2008; Spencer et al. 2008). IFNT acts on the endometrium to prevent
development of the luteolytic mechanism and to establish the pregnancy in ruminants (Bott et
al., 2010; Bazer et al. 2012). The combine biological action of P4 and IFNT are mandatory
for the pregnancy outcome and prompt the need for deciphering their complete actions on

endometrial physiology.

In the last decade, microarrays and RNA-sequencing analyses in ruminant endometrium
have allowed a genome-wide understanding of endometrial genes involved in endometrial
physiology during oestrous cycle and early pregnancy up to implantation (Bauersachs et al.
2008; Satterfield et al. 2009; Bauersachs and Wolf 2012; Ulbrich et al. 2012). Using bovine
endometrium at 20 days of oestrous cycle (that corresponds to the follicular phase) and
pregnancy (initiation of implantation), the expression of various families of transcription
factors was unveiled including several members of the winged-helix/forkhead domain (FOX)
transcription factors family (Mansouri-Attia et al. 2009). Based on this analysis, we further
characterized the endometrial expression and regulation of FOXL2 (Eozenou et al. 2012), a
key gene involved in ovarian differentiation and maintenance of ovarian function from foetal
life to adulthood (Pannetier and Pailhoux 2011; Georges et al. 2013). In our previous study,
we demonstrated that IFNT had no effect on FOXL2 expression whereas high P4 circulating
level observed during the luteal phase was negatively correlated with FOXL2 endometrial

expression (Eozenou et al. 2012). The present study aims to evaluate the role of ovarian
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steroid hormone balance on FOXL2 expression in the endometrium of ruminants using

physiological situation as well as experimental models.

MATERIALS AND METHODS

Animal and cell cultures

All experiments were conducted in accordance with the International Guiding Principles for
Biomedical Research Involving Animals, as promulgated by the Society for the Study of
Reproduction and approved by the French Ministry of Agriculture according to French

regulations for animal experimentation (authorization no. 78-34).

Experiment 1: FOXL2 expression during the oestrous cycle and at implantation in ovine

endometrium.

Cyclic and pregnant ewes of the Préalpes-du-Sud breed are involved in this study and were
synchronized and treated as previously published (Al-Gubory et al. 2006, society for
endocrinology). Firstly, twelve ewes were randomly separated to three groups (n = 4 ewes
per group): day 4, day 8 and day 12 of the oestrous cycle corresponding respectively to the
early, mid and active luteal phase. Secondly, eight ewes were randomly separated to two
groups (n = 4 ewes per group): day 15 of the oestrous cycle and pregnancy corresponding
respectively to the late luteal phaseffollicular phase and implantation step. Uteri were
collected, flushed and, when present, recovered concepti were observed by microscopy to
confirm the stage of development (Degrelle et al. 2005). Endometrial caruncular (CAR) and
intercaruncular (ICAR) areas were dissected from the uterine horns ipsilateral to the corpus

luteum as previously described (Mansouri-Attia et al. 2009).

Experiment 2: Impact of steady progesterone concentration at low level during early

pregnancy on ovine FOXL2 endometrial expression.

The aim of this experiment was to evaluate the effect of a progesterone concentrations
reduction during the pre-implantation period on endometrial gene expression at day 16 which
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is the initiation of implantation in ewes. Seventeen ewes received either subcutaneous
injections of DMSO (n = 7) or Trilostane (n = 10) as previously described (Camous et al.
2013; submitted). Trilostane (15 mg/ewe in 1 ml DMSO) or DMSO were injected every 12 h
(08:00 AM and PM) to the ewes from day 6 to day 16 (only at 08:00 AM). Endometrial tissues

and concepti were collected as previously described above.

Experiment 3: Impact of steroidal hormone on ruminant FOXL2 endometrial expression.

Ovine ovariectomy

Sixteen ewes of the Préalpes-du-Sud breed were ovariectomized (OVX) as previously
described (Al-Gubory et al. 2008). At forty-two days after ovariectomy, all ewes were
randomly separated to four groups (n = 4 ewes per group): control ewes (OVX), E2-treated
(OVX + E2), P4-treated (OVX + P4), and E2/P4-treated (OVX + E2 + P4) ewes as published
(Al-Gubory et al. 2008). This steroid hormone administration protocol has been shown to
produce physiological blood concentrations of E2 and P4 (Beard et al. 1994) corresponding
to those during the follicular and luteal phases in intact cyclic ewes (Pant et al. 1977). All
steroid hormones treatment was administrated in 1 ml of 90% corn oil: 10% ethyl alcohol at
intervals of 8 h by intramuscular injection as previously published (Al-Gubory et al. 2008).
Blood (monitoring steroid hormone level) and endometrial tissue (CAR and ICAR areas)
were collected as described (Al-Gubory et al. 2008).

Bovine ovariectomy

Twelve Holstein cows (3-7 year of age) were ovariectomized (OVX) and after forty-to-fifty
days randomly divided into four groups as previously published (Shimizu et al. 2010), the
OVX group (n=3, saline solution), OVX + E2 group (n=3, estrogens treatment), OVX + P4
group (n=3, progesterone treatment) and OVX + E2+P4 group (n=3, combination of
estrogens and progesterone treatment). Blood (monitoring steroid hormone level) and

endometrial tissue (ICAR area) were collected after steroid treatment as described previously

105



(Shimizu et al. 2010). Endometrial genes expression were analysed in OVX cows treated
with estradiol and/or progesterone using microarray analysis (Shimizu et al. 2010).

Bovine endometrial explants

Endometrial explants were dissected in the ICAR area from two cows in the late oestrus
stage using a sterile 8-mm punch biopsy and cultured ex vivo with control media, E2 media
(3pg/ml) and P4 media (5ng/ml) for 48 hours. Explants were then stored at -80°C in TRIZOL

reagent prior to RNA extraction.

Tissue and Cell Collection, Preparation for Immunoh istochemistry and RNA

Extraction

Endometrial samples were immediately snap frozen in liquid nitrogen and stored at -80°C
prior to analysis (Eozenou et al. 2012). Cells lamellas were fixed in frozen methanol for 5
min, then washed in PBS 1X and stored at 4°C. At the same time, sections of uterine horn
were fixed in 4% paraformaldehyde in phosphate buffer, then washed in PBS 1X and
embedded in paraffin as published (Al-Gubory et al. 2008) and subsequently stored at 4°C.
Whole uterine cross sections were cut (7 pm) with a rotary microtome Leica RM2245 and
stored at room temperature until processed. Total RNA from frozen tissue was isolated by
homogenization using Trizol Reagent (Invitrogen, Cergy-Pontoise, France) and purified as
published (Eozenou et al. 2012). Total RNA from endometrial cells was extracted with the

phenol-based method (Chomczynski and Sacchi 1987).

Real-time RT-PCR
Total RNA samples were used for the quantitative RT-PCR (RT-gPCR). One ug (for the

tissue sample) and five hundred ng (for the cell sample) of the total RNA was reverse
transcribed into cDNA as previously described (Eozenou et al. 2012). Primers (Eurogentec,
Liéges, Belgium) were designed (Primer Express Software v2.0, Applied Biosystems) to
specifically amplified bovine and ovine FOXL2 (F — CCGGCATCTACCAGTACATTATAGC; R

— GCACTCGTTGAGGCTGAGGT; NCBI sequence reference: NM_001031750.1) and RPL19
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(F — CCCCAATGAGACCAATGAAATC; R — CAGCCCATCTTTGATCAGCTT, Mansouri-Attia
et al. 2009). Amplified FOXL2 and RPL19 PCR fragments were sequenced to assess the
amplification of the correct fragment. According to the relative standard curve method
(Larionov et al. 2005), the relative quantification of mMRNA amount of FOXL2 against the

normalizer gene RPL19 was calculated.

Western Blot Analysis

Total proteins were extracted from frozen tissue as previously published (Eozenou et al.

2012).

Western blot immunoassays were processed with 15 pg of total protein extract as previously
described (Eozenou et al. 2012), using a rabbit anti-FOXL2 purified antibody generated
against a peptide corresponding to the C-terminal conserved region of mammalian FOXL2
(WDHDSKTGALHSRLDL, CASLO Laboratory, Denmark; diluted 1:500) in PBS-T solution
containing 4% nonfat dry milk and then, a goat peroxidase-conjugated anti-rabbit IgG
antibody (SantaCruz Biotechnology; Heidelberg, Germany; diluted 1:5 000). Actin B (ACTB)
was assessed as a loading control, using a mouse monoclonal anti-ACTB antibody (Sigma-
Aldrich, France; diluted 1:2 000) and goat peroxidase-conjugated anti-mouse IgG antibody
(SantaCruz Biotechnology; Heidelberg, Germany; diluted 1:5 000). Immunoreaction signals
were revealed with Luminata Classico HRP Substrates (Millipore, Guyancourt, France) and
analysed using an image analysis system (Advanced Image Data Analyser Software, LAS

1000 camera; Fujifilm, FVST, Courbevoie, France).

Statistical analyses

Statistical analyses were carried out using GraphPad Prism 4 software (GraphPad Software,
USA). Quantitative data were subjected to a two-way-ANOVA followed by Bonferroni test.
Data were analysed for effects of day, pregnancy status (cyclic or pregnant), treatments

(DMSO and Trilostane; E2, P4 and E2+P4) endometrial areas (CAR and ICAR) and their
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interactions (day versus status or status versus endometrial areas). Linear regression

analysis was used to correlate circulating P4 concentrations with FOXL2 protein expression.

RESULTS

FOXL2 gene is expressed in the ovine endometrium

In ruminants including sheep and cattle, the oestrous cycle is characterized by a short
follicular phase followed by a long luteal phase and associated to the progressive increase of
P4 secretion. In the ewe, the oestrous cycle lasts 16-17 days with 2-3 days of follicular phase
and 14-16 days of luteal phase. During the active luteal phase, P4 secretion covers day 7 to
12 post-oestrous. Without fertilization, the corpus luteum regresses in association with a
dramatic decrease of P4 secretion corresponding to the luteolytic phase and the beginning of
the next oestrus.

In the ovine endometrium, FOXL2 transcript and protein were expressed in endometrial
caruncular (CAR) and intercaruncular (ICAR) areas during the oestrous cycle and at the
initiation of implantation (Fig. 1). Endometrial FOXL2 gene expression was significantly
higher in the CAR areas than in the ICAR areas (Fig.1 A and B, 3-fold; P < 0.001). FOXL2
expression was significantly higher during the early luteal phase (day 4, 1.5-fold) and the
follicular phase (day 15, 2-fold) of the oestrous cycle compared to the mid and active luteal
phase of the oestrous cycle and the implantation step especially in the CAR area (P < 0.05).
In western blot analysis, FOXL2 protein was detectable at 50 kDa as we previously reported

in the bovine specie (Eozenou et al. 2012).

Since endometrial FOXL2 gene expression and P4 circulating level were inversely
correlated, two ovine experimental models were derived to further analyse the impact of P4

on FOXL2 endometrial expression.

Alteration of P4 blood level affects FOXL2 gene expression in the ovine endometrium
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Firstly, two groups of pregnant ewes were treated with either a DMSO solution (control
group) or a solution of trilostane. Trilostane is an inhibitor of the 3B-hydroxysteroid-
deshydrogenase that catalyzes the conversion of pregnenolone into progesterone. Trilostane
treatment was applied from day 6 to day 16 of pregnancy that prevented the P4 rise during
the early luteal phase and maintained P4 circulating level at a steady level during early
pregnancy (Fig. 2; Camous et al., submitted). Compared to the control group, FOXL2 mRNA
in the trilostane treated ewes was significantly higher in CAR area at 16 dpo in pregnancy
(Fig. 2A; 1.4-fold, P < 0.05). At the protein level, a trend toward an increase FOXL2

expression was observed in the CAR areas due to the trilostane injection (Fig. 2B, P = 0.14).

In order to mimic the ovarian oestrous cycle, ovariectomized ewes were supplemented for 12
days with control solution (control group) or ovarian steroid solutions: P4, E2 and a
combination of both. A group of cyclic ewes at 12 dpo was added to the experimental design
in order to determine the effect of the ovariectomy on endometrial genes expression (Al-
Gubory et al. 2006). FOXL2 gene was expressed in every experimental condition with a
significant decrease in the ICAR area compared to the CAR areas (Fig. 3; transcript and
protein, P < 0.05). The absence of the ovary led to a significant higher FOXL2 expression in
the OVX ewes compared to the cyclic group. E2 supplementation did not significantly alter
FOXL2 mRNA expression compared to the OVX group (Fig. 3A), but stimulated FOXL2
protein expression in the ICAR area (Fig. 3B; 2.5-fold, P < 0.05). P4 supplementation
significantly down-regulated FOXL2 gene expression (transcript: CAR and ICAR area; and
protein: CAR only; p < 0.05). On OVX supplemented with [P4 + E2], FOXL2 gene expression

did not significantly differ from the OVX, [E2], [P4] and cyclic groups.

P4 inhibits endometrial FOXL2 gene expression in cattle

Ovariectomized cows were supplemented with E2, P4 or both ovarian steroids as published
(Shimizu et al. 2010). As in the ovine OVX model, a significant decrease of FOXL2

endometrial MRNA level was detected in [P4] and [P4+EZ2] supplemented cows compared to
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the OVX group (Fig. 4A, 2-fold, P < 0.05). E2 supplementation has no significant impact on

endometrial FOXL2 transcript compared to OVX cows.

In bovine endometrial explants incubated with [E2], [P4] and control media for 48 hours a
significant decrease of FOXL2 mMRNA level expression was observed following P4
supplementation compared to the control treatment whereas E2 treatment had no effect (Fig.

4B, 2-fold, P < 0.05).

DISCUSSION

Since its cloning and isolation in 2001, FOXL2 has been recognized to be a key factor in
ovarian differentiation and the maintenance of ovarian function from foetal life to adulthood
(Crisponi et al. 2001; Uhlenhaut et al. 2009; Pannetier and Pailhoux 2011; Uhlenhaut and
Treier 2011). We recently demonstrated that FOXL2 was expressed and regulated
throughout oestrous cycle and early pregnancy in bovine endometrium, independently of the
production of the conceptus-derived IFNT, the major signal of pregnancy maternal
recognition in ruminants (Eozenou et al. 2012). In this present study, we have demonstrated
that (i) FOXL2 gene expression is regulated throughout oestrous cycle and at implantation in
ovine endometrium and (i) P4 affects endometrial expression of FOXL2 in cattle and in

sheep.

In bovine and ovine endometrium, high and low P4 circulating levels led to a significant
decrease and increase of FOXL2 gene expression, respectively. In addition, ovariectomized
animals exhibited a clear drop of FOXL2 expression under the supplementation of P4 as well
as in endometrial explants incubated for 48 hours with [P4] medium. Ovariectomized animals
and bovine endometrial explants provide us an accurate demonstration of P4 action on
FOXL2 endometrial expression regardless of the secretion of ovaries as well as the autocrine
and paracrine regulations occurring in the endometrium preventing the putative

compensatory effects of both ovaries and endometrium. Our results have demonstrated P4
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counteracts systematically E2 effect on FOXL2 endometrial gene expression in ruminants.
Collectively, our data suggest strongly that P4 is a master regulator of FOXL2 endometrial
expression. Nevertheless, the data do not still pending the question about P4 direct action on
FOXL2 gene expression. P4 primarily acts through their nuclear receptors (PGR, form A and
B) that are involved in uterine receptivity and embryo implantation (Lydon et al. 1995; Franco
et al. 2008). Analysis of ovine and bovine FOXL2 promoter sequence exhibited the presence
of Progesterone Receptor response Element (PRE, data not shown) suggesting P4 could
regulate FOXL2 gene expression using its nuclear receptor. PGR are localized in luminal and
glandular epithelia as well as stroma in bovine endometrium (Okumu et al. 2010). Its sub-
cellular localization is clearly nuclear during follicular/early luteal phase of the oestrous cycle
and early pregnancy (5 dpo) and staining intensity of nuclear PGR decreased throughout
luteal phase then was completely absent from luminal and glandular epithelia during the
active luteal phase (16 dpo; Okumu et al. 2010). FOXL2 protein which is localized in the
nuclei of endometrial stroma and glandular epithelium during the follicular phase (20 dpo)
was shown to disappear from the nuclei of glandular epithelium during the active luteal phase
as well (14 dpo; Eozenou et al. 2012). Therefore, the literature and our published data
reported in bovine endometrium suggest FOXL2 and PGR proteins displayed the same
pattern of cell distribution throughout oestrous cycle. Thus, we hypothesized PGR could
stimulate FOXL2 gene expression in endometrial stroma and glandular epithelium binding its
PRE on FOXL2 promoter. In addition, we suggested also P4 repressed FOXL2 gene
expression as a consequence of PGR gene repression. Moreover, many rapid and non-
classical action of P4 is mediated by its Progesterone Receptor Membrane component 1 and
2 (PGRMC1 and 2, Pru and Clark 2013). Further in vitro investigations will enable us to
identify the mechanism of P4 direct action using its receptor on FOXL2 endometrial gene

expression.

In mammals, uterine receptivity is mandatory for the progression of pregnancy and

characterized by intensive endometrial cell proliferation mediated by E2 during the follicular
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phase and endometrial gland maturation, changes in endometrial genes expression and
decidualisation when this step occurs; mediated by P4 during the luteal phase (Miller and
Moore 1976; Devroey and Pados 1998; Ozturk and Demir 2010; Spencer and Bazer 2002;
Al-Gubory et al. 2008; Spencer et al. 2012). In ruminants, oestrous cycle is characterized by
a short follicular phase and a long luteal phase (Forde et al. 2011) where FOXL2 gene
expression was shown to be, respectively, increased and decreased, in both sheep and
cattle (Eozenou et al. 2012). Interestingly, in women, where the menstrual cycle is
characterized by a long follicular and luteal phase (Hawkins and Matzuk 2008; Mihm et al.
2011), FOXL2 transcript expression appears to be similar to its expression in bovine and
ovine endometrium with a significant higher expression during the follicular phase (Talbi et al.
2005). Our data and the literature suggest that FOXL2 gene which is expressed during the
follicular phase of three mammal species could be a key regulator of the proliferative process
of the uterine receptivity. In the ovarian context, FOXL2 is known to be a master gene in
apoptosis regulation (Batista et al. 2007; Caburet et al. 2012). Indeed, the wild-type FOXL2
gene is considered as a tumour suppressor gene (Benayoun et al. 2011). Conversely, the
FOXL2 (C402G) mutation is involved in adult and juvenile granulosa cell tumours with a poor
survival and disease-free survival rate (D'Angelo et al. 2011). Nevertheless, FOXL2 is
involved in the pro-apoptotic process regulating the expression of BCL2A1 and ATF3 genes
but also the anti-apoptotic process regulating the expression of TNFAIP3, NR5A2 and FOS
genes in granulosa cells (Batista et al. 2007; Moumne et al. 2008). We can hypothesize that
FOXL2 could play a critical role in the pro- and anti-apoptotic balance during the follicular
phase inducing or repressing the proliferation of endometrial cells depending on the species.
Further analyses will be necessary to evaluate the expression of pro- and anti-apoptotic
genes in ruminant endometrium to confirm the implication of FOXL2 in the proliferative
process of mammal follicular phase in the endometrium. In addition, in case of BPES
syndrome, women are infertile caused by premature ovarian failure (Crisponi et al. 2001,

Verdin and De Baere 2012). Those women could have access to medically-assisted
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procreation to rescue ovarian infertility but in the endometrial context, are they able to be
pregnant and able to maintain this pregnancy until parturition? Further analyses will be
necessary to better understand the implication of FOXL2 in mammal endometrial physiology

including in BPES syndrome.

Gonadal steroid hormones act as the critical trophic factors necessary for the normal
development of many biological systems (Nugent et al. 2012). E2 plays an essential role in
female sex determination in non-mammalian vertebrates regardless of the sex determining
mechanism (Pask et al. 2010). In mammalian vertebrates, E2 has also a highly conserved
role but it is not required for initial ovarian development in mice (Pask 2012). Indeed, alpha
and beta estrogen receptors (Esrl and 2) knock-out and Cypl9/Aromatase knockout mice
have normal early ovarian differentiation (Lubahn et al. 1993; Krege et al. 1998; Britt et al.
2001; Britt and Findlay 2003). However, shortly after birth, granulosa cell fate cannot be
maintained and initiate the transdifferentiation to the sertoli cell fate (Lubahn et al. 1993;
Krege et al. 1998; Britt et al. 2001; Britt and Findlay 2003). E2 is one of the key modulator of
the maintenance of ovarian differentiation throughout the adulthood. In the context of a
functional ovary, E2 binds its nuclear receptor, leading to activated Esr and act with FoxI2 to
suppress Sox9 transcription by directly binding to the Sox9 enhancer, TESCO element
(Uhlenhaut et al. 2009). In the other hand, FOXL2 is also known to stimulate the CYP19
gene expression, leading to an increase of E2 production (Pannetier et al. 2006). To
conclude, E2 and FOXL2 are essential for the ovarian biological functions including the
ovulation process. Progesterone is the pregnancy hormone in all mammals allowing more
particularly, the conceptus implantation (Bazer et al. 2010). In the case of the ovariectomized
ewes and cows; and the bovine endometrial explants, only P4 action induces a clear down-
regulation of FOXL2 expression. Conversely, FOXL2 is up-regulated when P4 production
and secretion remains almost constant at a low circulating level. Our data suggest that P4 is

one of the most important regulators of FOXL2 gene in the endometrial context. The
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literature and our results exhibit the fact that FOXL2 is expressed in mammalian ovary and

endometrium and is regulated by E2 and P4 respectively in a tissue-specific-manner.

Similarly to the situation we reported in bovine endometrium (Eozenou et al. 2012), FOXL2
expression in ovine endometrium was inhibited throughout luteal phase (from day 8 to day
12) but increased during the follicular phase (4 dpo and 15 dpo) of the oestrous cycle.
Ruminant endometrium is separated in two morphologically distinct areas, the CAR and
ICAR areas and exhibits a significant decrease of FOXL2 expression in the ICAR area. As
previously published (Eozenou et al. 2012) and described above, FOXL2 protein is mostly
localized in the nuclei of endometrial stroma and glandular epithelium during the follicular
phase and completely absent in the luminal epithelial cells. These data suggest that FOXL2
gene expression has to be lowered in the ICAR area which is the glandular area, if not, we
hypothesized that FOXL2 would have deleterious effects on endometrial gland differentiation
and histotroph secretion which are mandatory processes prior to the establishment of
pregnancy and later, implantation (Bazer et al. 2010). Moreover, when the P4 circulating
level exceeds a certain threshold, FOXL2 has also to be lowered in CAR area also, which is
the aglandular area. In conclusion, during the luteal phase or the pregnancy maternal
recognition period in ruminant endometrium, FOXL2 expression is low in both endometrial
areas suggesting the repression occurring during the luteal phase and the early pregnancy is
a prerequisite for uterine receptivity then implantation processes. Nevertheless, the biological
functions of endometrial FOXL2 gene remain unknown. Additional analyses will be
necessary to identify the target genes of this transcription factor providing us a better
understanding about the implication of FOXL2 in endometrial physiology. Finally, in
mammalian and non-mammalian vertebrates, FOXL2 appears to be a master gene of the

reproductive physiology.
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FIGURE LEGENDS

Figure 1. FOXL2 expression in cyclic and pregnhant ovine endometriu m

Caruncular (CAR) and intercaruncular (ICAR) endometrial areas were collected from cyclic
(n=4 at day 4, n=4 at day 8, n=4 at day 12) and pregnant (preg, n=4 at day 15) Pré-alpes du
sud ewes. (A) Quantification of FOXL2 mRNA by RT-gPCR. Expression of FOXL2 was
normalized to RPL19. (B) Quantification of FOXL2 protein by western blotting normalized to
ACTB protein level. Quantitative data are presented as mean +/- SEM and significant

differences were noted using * : P < 0.05.

Figure 2. Regulation of FOXL2 gene expression under the influence of altered P4
circulating level

Caruncular (CAR) and intercaruncular (ICAR) endometrial areas were collected from
pregnant Pré-alpes du sud ewes treated with DMSO as a control solution (n=7) or trilostane
(15 mg/ewe in 1 ml DMSO) for 11 days. (A) Quantification of FOXL2 mRNA by RT-qgPCR.
Expression of FOXL2 was normalized to RPL19. (B) Quantification of FOXL2 protein by
western blotting. FOXL2 expression was normalized to ACTB protein level. Quantitative data

are presented as mean +/- SEM significant differences were noted using * : P < 0.05.

Figure 3. FOXL2 endometrial expression under the influence of ovarian steroid
hormones balance in ovariectomized ewes

Caruncular (CAR) and intercaruncular (ICAR) endometrial areas were collected from
ovariectomized Pré-alpes du sud ewes supplemented with a control solution (OVX, n=4),
[P4] solution (OVX + P4, n=4), [E2] solution (OVX + E2, n=4) or [P4+EZ2] solution (OVX + E2
+ P4, n=4) for 12 days and also from cyclic ewes at 12 days (n=4). (A) Quantification of
FOXL2 mRNA by RT-gPCR. Expression of FOXL2 was normalized to RPL19. (B)

Quantification of FOXL2 protein by western blotting. FOXL2 expression was normalized to
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ACTB protein level. Quantitative data are presented as mean +/- SEM and significant

differences were noted using * : P < 0.05.

Figure 4. FOXL2 endometrial expression under the influence of ovar ian steroid
hormones balance in ovariectomized cows and bovine explants

(A) Strips of both endometrial areas were collected from ovariectomized cows supplemented
with a control solution (OVX, n=3), [P4] solution (OVX + P4, n=3), [E2] solution (OVX + E2,
n=3) or [P4+E2] solution (OVX + E2 + P4, n=3). (B) Intercaruncular areas were collected
from cyclic cows at oestrus stage, supplemented with a control solution (OVX, n=2), P4
solution (OVX + P4, n=2) or E2 solution (OVX + E2, n=2). (A) and (B) Quantification of
FOXL2 mRNA by RT-gPCR. Expression of FOXL2 was normalized to RPL19. Quantitative
data are presented as mean +/- SEM and, bars with different superscripts significantly differ

(P < 0.05) and significant differences were noted using * : P < 0.05.
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VII.  Part lll: First insight about the biological
functions of FOXL2 in bovine endometrium

Publication in progress
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A. Introduction
The first two parts of my PhD thesis showed an accurate evaluation of FOXL2 gene
expression, confirming the differential expression observed between 20 dpo of pregnancy
and oestrous cycle in the microarray study made in our team (Mansouri-Attia et al. 2009). My
work has also revealed a higher FOXL2 gene expression during the follicular phase and
early luteal phase compared to the active luteal phase and early pregnancy in endometrium.
P4 is a critical regulator of endometrial physiology and regulates endometrial FOXL2

expression in cattle and in sheep.

Transcription factors constitute nodes in cellular gene networks because of their ability to
regulate transcriptional activity of numerous target genes (involved in various biological
functions in a tissue-specific manner). The third part of my PhD aims to identify FOXL2
regulated genes in the endometrium using FOXL2 transfected cells and candidate genes

approach.

FOXL2 has been shown to regulate the expression of several hundred target genes as
previously described in the ovarian context (1248 DEG, Batista et al. 2007; Moumne et al.
2008; 922 DEG, Uhlenhaut et al. 2009). FOXL2 is especially involved in the control of
ovarian differentiation suppressing permanently testis differentiation but it is also involved in
ovulation process, ovarian ageing and cellular stress response. Interestingly, transcript
profiles of bovine endometrium at 20 dpo (pregnancy compared to oestrous cycle) have
highlighted the differential expression of FOXL2 gene but also some genes regulated by
FOXL2 in an ovarian context (Fig. 45). An In silico analyse between bovine endometrium and
human ovarian granulosa-like tumour cell line (KGN) over-expressing FOXL2 gene, allows
the identification of common orthologs listing 38 genes regulated by FOXL2 in KGN cell line

and expressed in bovine endometrium.
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Cattle Human

Trompe

Microarray analyse Microarray analyse

Endometrium at 20 dpo of
pregnancy and estrous cycle

Mansouri-Attia ef al., 2009

Overexpression of
FOXL2 in KGN cell line

Bastistaetal.. 2007

In silico comparison

1617 1248

Endometrium KGN cell line

!

FOXL2, ATF3, FOS, PTGS2,
RGS2,SCARAS, SOD2, TNFAIPS, ...

Figure 45: In silico comparison of orthologs between bovine endometrium and human ovary based on
microarray studies (complete list of common genes i n Appendix B, Fig. 67).

Microarray study of FoxI2 conditional knock-out in adult mice had been add to the previous
comparison (Uhlenhaut et al. 2009) showing only one common gene between the three high-
through-put analyses, Scara5, formerly called Tesr, a member of the scavenger receptor
involved in the innate immunity (Sarraj et al. 2005; Jiang et al. 2006). Originally, Scara5 was
discovered as gene specifically expressed in epithelial cells and in particular, expressed in
the testis (Sarraj et al. 2005; Jiang et al. 2006). Conditional deletion of FoxI2 in the murine
ovary has been reported to induce sex-reversal in adult female, with a transdifferentiation of
theca and granulosa cells into leydig-like and sertoli-like cells, respectively (Uhlenhaut et al.
2009). Scara5 was one of the most up-regulated genes (Uhlenhaut et al. 2009) whereas the
over-expression of FOXL2 in KGN cell line was shown to inhibit the expression of SCARA5
(Batista et al. 2007; Uhlenhaut et al. 2009). In bovine endometrium, a clear up-regulation of
SCARAS transcript was reported in our RNA profiles established at 20 dpo of pregnancy
compared to the oestrous cycle (Mansouri-Attia et al. 2009). A murine model reported also
the stimulation of Scara5 during the decidualisation process (Duncan et al. 2011). Altogether
these data suggest FOXL2 could repress the expression of SCARAS. In addition to SCARAS5,
six other genes were selected: ATF3, FOS, PTGS2, RGS2, SOD2 and TNFAIP3. ATF3, FOS
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and TNFAIP3 were chosen considering their implication in the apoptotic process especially
involved in ovarian ageing (Batista et al. 2007). PTGS2 was also selected because of its
essential role during the processes of ovulation in the ovary and uterine receptivity in the
endometrium (Charpigny et al. 1999; Georges et al. 2013). In the ovarian context, PTGS2
formerly called COX2 is an enzyme involved in ovulation and inflammation processes
(Batista et al. 2007). Indeed, PTGS2 expression is strongly induced in granulosa cells
following the gonadotropin rise prior to the ovulation process and appears to be stimulated by
FOXL2 overexpression (Batista et al. 2007; Benayoun et al. 2011). In endometrium, PTGS2
is the enzyme responsible for the luteolytic surge of PGF2a (Charpigny et al. 1999).
Regarding RGS2, this gene was chosen for its role of follicular marker of oocytes
developmental competence mediated by FOXL2 in the ovary (Hamel et al. 2010) as well as
for its implication in uterine receptivity process (Huang et al. 2003). Finally, Sod2/SOD2 was
selected for its crucial role in stress response in both ovary (mediated by FoxI2) and
endometrium (Batista et al. 2007; Al-Gubory et al. 2008).

In order to identify FOXL2 regulated genes in the endometrium, primary cultures of bovine
endometrial cells were transiently transfected with FOXL2 cDNA. Based on the list of 38
genes (Fig. 45), expressions of ATF3, FOS, PTGS2, RGS2, SCARA5, SOD2 and TNFAIP3
were investigated. In addition, DLX5, HOXA10, PGR and RSAD2 mRNA expression were
analysed. DLX5 belongs to the homeobox transcription factor family also called Distal-less
homeobox member 5 (Robledo et al. 2002). This transcription factor is involved in bone
development and fracture healing (Robledo et al. 2002). More specifically, DLX5 and 6 are
involved in craniofacial development with an expression in the distal regions of extending
appendages, in differentiating osteoblasts and in Leydig cells (Robledo et al. 2002; Bouhali
et al. 2011). Recently, the team of Dr Levi have highlighted the reciprocal regulation
occurring between Foxl2 and DIx5 genes in mice (Bouhali et al. 2011). In this species FoxI2
is strongly expressed in primordial and primary follicles but its expression decreases during
the follicle maturation. FoxI2 ovarian expression activates the transcription of DIx5 in
granulosa cells. Then, DIxX5 expression represses FoxI2 expression in the secondary follicle
until mature antral follicle (Bouhali et al. 2011). Nevertheless, DIx5 implication has never
been reported in the endometrial physiology and prompts the need to clarify it. HOXA10 and
PGR gene were selected because these are early P4 target genes in the endometrium and
could be related to FOXL2 expression (Bazer 2010; Zanatta et al. 2010; Mansouri-Attia et al.
2012). Finally, RSAD2 (Radical S-adenosyl methionine domain containing 2, formerly called
viperin) has been shown to be regulated by pregnancy, and to be an IFNT induced genes in

ruminant endometrium and a cytoplasmic antiviral protein induced by Type | IFNs (Song et
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al. 2007; Mansouri-Attia et al. 2009; Forde et al. 2011). Its expression increased during the
maternal pregnancy recognition and implantation periods. In the ovarian context, this gene
has not been described yet and is not reported as a FOXL2 target genes. Nevertheless,
RSAD2 was part of the top list of the up-regulated genes in the endometrium of pregnant
ewes or cows (Song et al. 2007; Mansouri-Attia et al. 2009) whereas FOXL2 is down-
regulated at the same time. RSAD2 were chosen as a negative control gene because it is an
IFNT induced gene in ruminant endometrium and should not be regulated by FOXL2 (Song
et al. 2007; Mansouri-Attia et al. 2009; Forde et al. 2011).

B. Experimental procedure

1. Animals
The aim of this experiment was to stimulate actively the expression of FOXL2 in stromal and
glandular epithelial cells in order to regulate the expression of FOXL2 target genes. In order
to over-express significantly FOXL2 expression, we have sorted animals by physiological
stage. Three cows were selected, at the dioestrus stage during the active luteal phase based
on CL morphology and weight (Arosh et al. 2002). CL weight and morphology was slightly
different between the cows. Here, CL of the second cow (3.5 g equivalent to the days 7-10 of
the oestrous cycle) was lighter than the first and the third one (respectively 8.5 g and 6.9 g
equivalent to the days 13-15 and 10-12 of the oestrous cycle; Arosh et al. 2002). In addition,
the three reproductive tracts were dissected at the slaughterhouse without information about

the physiological situation of each cow.

The luteal phase exhibits the lowest level of FOXL2 expression and represents the ideal
stage to transfect FOXL2 cDNA, and to evaluate changes of FOXL2 regulated genes

expression.

Uteri were dissected, stromal and glandular epithelial cells were separated then cultivated for
5 days. Both cellular types were transfected using either a pSG5 plasmid including caprine
FOXL2 gene or an empty pSG5 plasmid as a control of transfection. The success of
transfections has been checked using an immunodetection of FOXL2 protein then analyses
of transcript expression were performed to the eleven candidate genes and when it was

possible co-immunofluorescence was performed between FOXL2 and one target gene.
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2.  Primary culture of bovine endometrial cells
Filtered digestion buffer was prepared in PBS (Sigma). Considering 100ml of digestion buffer
per horn, we used 350 IU/ml of collagenase type IV (SIGMA), 350 IU/ml of hyaluronidase
(SIGMA), BSA 2% (SIGMA) and penicillin/streptomycin (10X, SIGMA, PS, P-4333).

The endometrium was carefully dissected from myometrium and cut into strips. Strips were
rinsed in Calcium and Magnesium-free PBS for 5min. Strips were chopped in Petri dish.
Caruncular tissue has to be chopped very finely in order to go through the cannula. Then
minced endometrium was placed in the digestion buffer for 1 to 2 hours at 39°C in water
bath. During digestion, minced tissue were aspirated through a cannula (1.6mm of diameter)
several times in order to disintegrate the tissue and to facilitate digestion. Subsequently,
digested tissue was centrifugated, rinsed in PBS and filtered twice. First filtration used sterile
gauze in order to separate cells and cellular aggregates. Using a 31um cellular nylon sieve
filtration (Dutscher, 074013), stromal cells were separated from aggregate of glandular

epithelial cells.

Each type of cells was seeded in complete culture DMEM/F12 media containing
"Dulbecco's modified Eagles's Medium: F12" (SIGMA, D6434, 500ml); 10% fetal bovine
serum (FBS); 1.25% stabilized glutamine (Glutabio); 0.5% insulin-transferrin-selenium (ITS,
SIGMA: 13146); 1% penicillin-streptomycin (PS, SIGMA: P-4333); 0.1% Nystatin (SIGMA: N-
3503); 0.1% gentamycin (SIGMA: G1272). The media was sterile-filtered 22pum.

Stromal fraction was incubated for 2 h in 20% CO2. At the end of this pre-culture step,
floating cells were carefully eliminated by washes using PBS and complete culture media.
Adherent stromal cells were further cultivated in 5% CO2 at 39°C (with 2.3x10"cells/ 90mm
dishes).

Glandular epithelial cell suspensions were seeded into dishes in 5% CO2 at 39°C (with
8x10°cells/ 90mm dishes).

3.  Transient transfection on primary culture of bovine endometrial cells

a) Plasmids preparation

Three plasmids were used for cell transfection: GFPmax, expressing the green fluorescent
protein as a transfection control (Lonza Amaxa Nucleofector Kit), the pSG5 vector as a
negative control and pSG5-FOXL2 expressing the caprine FOXL2 protein (these two vectors
were kindly provided by M. Pannetier, BDR, INRA). Bovine and caprine FOXL2 proteins
share 99% sequence identity (sequences and alignments are reported in Appendix C, Fig.
70).
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b) Transfection kits
Two different transfection protocols were tested: Lonza Amaxa™ kit and Turbofect kit. Due to
the lowest efficiency of Turbofect protocol (based on the use of the transfection reagent,
Turbofect), Amaxa™ protocol was chosen (the transfection method using Turbofect reagent
is described in appendix C). Lonza Amaxa™ protocol is based on the electroporation

method.

The Lonza Amaxa™ Basic Nucleofector kits have been applied to primary stromal cells

(optimization guidelines for__stromal cells) and primary mammalian epithelial cells

(optimization quideline for epithelial cells). First, various Nucleofector™ programs of

transfection were tested using stromal and glandular epithelial cells according to the
manufacturer recommendations. The program for each cell type was selected using cell
viability and transfection rate but the duration and the intensity of electroporation could not be
control and was not noticed in the optimization guideline. Transfection rate for primary
stromal cells was higher than transfection rate for primary glandular epithelial cells. We
selected the program U-023 for stromal cells which was advised by the manufacturer leading

to an average of 40% of transfection rate (Fig. 46).

Basic stromal kit
Program Cells_observe_itlon i Cell GFP >0 % survival % transfection
different fileds
U-023 448 184 77,31 41,10
Control 579 0 100,00 0
Figure 46: Evaluation of transfection efficiency on transfected stromal cells based on the rate of GFP

positive cells. Stromal cells were transfected using Basic stromal kit and its dedicated program (U-023) with an
average of 41.1% of transfection rate (from 16% to 68%).

Glandular epithelial cells had undergone the lowest transfection rate due to the numerous
tight junctions between cells. Then, seven programs were assessed including the program U-
023 dedicated to stromal cells (Fig. 47).
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- Program C;':;;t:i;?}:i‘;::n Cell GFP >0 | % survival |% transfection
Basicitininal U-023 561 54 65,85 9,63
kit Control 852 0 100 0
S-005 901 36 96,6 4
T-013 274 20 29,4 7,3
T-020 360 15 38,6 4,17
Easle ‘:githe“"'l W-001 861 26 92,3 3,02
U-017 429 13 46 3,03
Y-001 570 69 64,99 12,11
Control 933 0 100 0

Figure 47: Evaluation of transfection efficiency on transfected glandular epithelial cells based on the rate
of GFP positive cells. Glandular epithelial cells were transfected using Basic stromal kit and its dedicated
program (U-023) with 9.63% of transfection rate. The Basic epithelial kit was used with six advised program for
primary epithelial cells and the program Y-001 was selected with 12.11% of transfection rate.

The program Y-001 was selected for epithelial cells. Transfection rate was always better in

the stromal cells compared to glandular epithelial cells.

) Optimized protocol of bovine primary endometrial cells

transfection

For each experiment, four groups were considered: ‘Control’ (untransfected cells), ‘GFP’
(positive control of transfection), basic pSG5 (‘F-/, transfection using an empty pSG5 vector)
and pSG5-FOXL2 (‘F+', transient transfection of FOXL2 gene). Transfections were not

carried out at the same moment for the three cows.

RNA and protein analyses did need a high density of glandular epithelial cells and even more
with the stromal cells. The first group of transfected cells were seeded into two 22mm dishes
and did not contain enough endometrial cells for further analyses. For ‘control’, ‘F-* and ‘F+’
groups, transfected cells were seeded into 60mm dishes (3 per conditions) for RNA
analyses, 35mm dishes for protein analyses (3 per conditions) and 12mm dishes (4 per
conditions on sterile cover slides) for immunofluorescence experiments representing 8x10°

cells/groups (total of 2.4x107cells).

For ‘GFP’ group, transfected cells were seeded into 2 x 22mm dishes for GFP observation

24 hours then 48 hours after transfection representing 8x10° cells.

Primary endometrial cells were cultured for 5 days then passaged using trypsinization prior to
transient transfection. Culture medium was discarded and endometrial cells monolayers were

gently rinsed in Calcium and Magnesium-free PBS then incubated 2 min and 10 min in
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Trypsin (Tryplexpress, Gibco ref 12605) for stromal and glandular epithelial cells
respectively. Cell suspension was recovered in classic PBS then centrifugated at 1000
revolutions per minute (rpm) during 5 min. The cell pellet was resuspended in an appropriate

volume of culture media.

Transient transfections were made in special certified ‘cuvettes’. Four cuvettes were used
per condition representing eight cuvettes for ‘F-’ and ‘F+’ transfection and one cuvette for the

GFP transfection.

One Nucleofection™ sample contains:
« Upto 2 x 10°cells for ‘F-’ and ‘F+ transfections or 8x10° cells for ‘GFP’ condition
e 3ug of plasmids (pSG5, pSG5-FOXL2 or GFPpmax)

e 82uL + 18uL of Basic Nucleofector™ Solution for primary Mammalian

stromal/epithelial cells and supplement buffer respectively (final volume 100uL).

Control group of cells were also passaged and seeded into the appropriate dishes for 48
hours (60mm, 35mm and 12mm dishes). Stromal and glandular epithelial cells were
electroporated using U-023 and Y-001 programs respectively. Endometrial cells were
recovered and pooled for each condition, in an appropriate volume of culture media then
immediately seeded in 12mm, 22mm, 35mm or 60mm dishes for 48 hours. After 24 hours,

culture medium was discarded and replaced with fresh media for the next 24 hours.

Transient transfections were also carried out for 72 hours but the transfection rate was lower

compared to transient transfection for 48 hours.

In the ‘GFP’ cells group, fluorescence was observed daily after transfection using an inverted
microscope to evaluate the transfection rate. All the cells were fixed or harvested for further

analyses 48 hours after transfection.

d) RT-gPCR and Western Blot
For protein analysis, cells cultured in 35mm dishes were scratched and recovered in PBS
then centrifugated at 10 000 rpm (10 600 g) at 4°C for 10 min. The supernatants were
discarded and the dry pellets were stored at -80°C until protein extraction. For RNA analysis,
cells cultured in 60mm dishes were directly lysed using a denaturation buffer (Chomczynski
and Sacchi 1987; 4M of guanidium thiocyanate, 25mM sodium citrate pH 7, 0.5% sarcosyl,
0.1M 2-mercaptoethanol). Cell lysates were recovered and stored at -80°C until RNA

extraction.
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RNA and protein extraction were performed then as previously published (Part |, Eozenou et
al. 2012; the sequence of the primers are have been listed in Appendix C, Fig. 72).
Nevertheless, RNA has not been purified due to the little rate of total RNA recovery.
Considering  protein  extraction, cell membranes were broken using cell

disruptor/homogenizer in RIPA buffer.

e) Immunocyto/histochemistry and immunofluorescence

Transfected endometrial cells dishes were cultured on sterile cover slides placed in 12 or 22
mm dishes for 48 hours, fixed 5 min in 100% methanol at -20°C, washed three times in PBS
then stored at 4°C in PBS. For immunocytochemistry experiment, cells were permeabilized
with 0.5% TritonX-100 for 30 min at room temperature. Cover slides were incubated in citrate
buffer (sodium citrate 0.01M, pH 6.0) for 5 min at room temperature followed by incubation at
80°C for a further 10 min to unmask cell monolayer. The endogenous peroxidase activity was
guenched by a 0.1% hydrogen peroxide treatment for 30 min. Cells were then incubated with
a rabbit anti-FOXL2 purified antibody (see dilution in Fig. 48) in phosphate buffer (0.1 M pH
7.4 with 2% BSA and 1% NDS, Normal Donkey Serum) overnight at 4°C. After several
washes in phosphate buffer with 2% BSA, anti-rabbit biotinylated antibody (see dilution in
Fig. 48) was applied on slides for 1 h at room temperature. After three washes in phosphate
buffer, sections were incubated for 1 h with the ABC Vector Elite kit (Vectastain Elite ABC
Kit; Vector Labs, Peterborough, U.K.) in Tris-buffer (Tris 50 mM, NaCl 0.15 M, pH 7.5).
Slides were washed three times and were then incubated with diaminobenzidine substrate
and urea (Sigma FAST 3.3, SIGMA, France) in Tris-buffer for 90 secondes, until brown
staining was detectable. After one wash in water, slides mounted with 40% glycerol mounting
medium. Images were collected using a NanoZoomer Digital Pathology System then they
were analysed using the NDPView (NanoZoomer Digital Pathology Virtual Slide Viewer,
Software, HAMAMATSU, Japan). Experiments were run using primary endometrial cultures

derived from three different animals.

Immunohistochemistry experiments were carried out on bovine endometrial slides as
previously described (Part |, Eozenou et al. 2012) using a rabbit anti-DLX5 antibody (see
dilution in Fig. 48) overnight at 4°C.

For immunofluorescence experiment, non specific binding sites were blocked with 1x PBS
containing 2% BSA for 1 hour at room temperature. The incubations (see dilution in Fig. 48)
with the rabbit anti-FOXL2 primary antibody, the mouse anti-PTGS2 primary antibody, the
mouse monoclonal anti-Vimentin primary antibody and the mouse monoclonal anti-18-

Cytokeratin (CK18) primary antibody were performed overnight at 4°C as well as incubation
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of rhodamine-labeled phalloidin (a high-affinity F-actin probe conjugated to the red-orange
fluorescent dye, tetramethylrhodamine; TRITC) for 1 hour in darkto visualize
microfilamentous F-actin. The donkey AffiniPure Anti-Rabbit Cy5-conjugated 1gG and the
anti-mouse Cy3-conjugated IgG were incubated for 1 hour (See dilution in Fig. 44). DNA was
counterstained with DAPI (10 ng/ml; D1306, Invitrogen, France). Preparations were mounted
using the fluorescence protector. Labeled endometrial cells were examined using a Zeiss
LSM 510 confocal microscope (MIMA2 platform, INRA, Jouy-en-Josas) and analysed with
the AxioVision Microscopy Software (Zeiss, Le Pecq, France). Experiments were run using

primary endometrial cultures derived from three different animals.

Name Supplier Reference Dilution Host Application
Caslo Cocquet etal., 3 5 WB. IHC,
FOXL2 Laboratory 2002 1:1000 rabbit ICC. IF
DLX5 Mo NBP1-19547 | 1:200 rabbit IHC
Biologicals
PTGS2 C. Creminon Chalrp;g'g e 1:200 mouse IF
Primary antibody ali
Vimentin Millipore Mabsd 10, 1:100 mouse IF
clone V9
CK-18 Cliniscience KS18-174 1:50 mouse IF
Rhodamine labeled . .
Phalloidin Invitrogen 1:200 IF
Ariti b Abcam AbB720 1:200 Goat IHC
biotinylated
anti-rabbit HRP Abcam Ab6721 1:5000 Goat WB
Secondary antibod i- i s
ry Yy Antl_Rabblt Cy5 Jackson 715-175-152 1:200 Disrikiy IF
conjugatedlgG [Immunoresearch
ARt snauss Sy wrEkson 715-165-152 | 1:200 Donkey IF
conjugatedlgG Immunoresearch
Figure 48: Antibodies general information (supplier , dilution, host and application).  WB: Western Blot; IHC:

Immunohistochemistry; ICC: immunocytochemistry; IF: immunofluorescence.

f) Statistical analyses
Transfection results were presented without statistical analyses due to the low number of
animals (n=3 for stromal cells and n=2 for glandular epithelial cells). However, classical
statistical analyses were carried out using GraphPad Prism 4 software (GraphPad Software,
USA) for target genes expression. Quantitative data were subjected to a two-way-ANOVA
followed by Bonferroni test. Data were analysed for effects of day, preghancy status (cyclic
or pregnant), treatments (saline buffer or IFNT buffer), endometrial areas (CAR and ICAR)

and their interactions (day versus status or status versus endometrial areas).
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C. Results

1. Characterization of bovine primary endometrial cell cultures
Stromal and epithelial cells were observed using light microscopy. Stromal cells appeared
elongated and striated whereas glandular epithelial cells grew in insular distribution and
showed a cuboid morphology (Fig. 49). Cells confluence reached 80% 6 days after seeding.

Stromal cells Glandular epithelial cells

LYo

3 days

6 days

Figure 49: Observation of primary cell cultures usi ng light microscopy; cell cultures here monitored, 1
day, 3 days and 6 days after seeding. Stromal cells are elongated and striated whereas glandular epithelial
cells grew in insular distribution and showed a cuboid morphology. White scale bar: 50um.

Cell purity of either stromal or glandular epithelial cells was checked using immunodetection

of vimentine, cytokeratine and phalloidin (Fig. 50).
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Stromal cells Glandular epithelial cells

Vimentin e 3 =

Cytokeratin

o -

Figure 50: Vimentin, cytokeratin and phalloidin expr ession by endometrial cells (P. Reinaud).  Stromal cells
are characterized by the vimentin expression whereas the cytokeratin expression is typical of glandular epithelial
cells. Phalloidin allows the identification of microfilamentous F-actin in each cell type. White scale bar 50um.

Expressions of vimentin, cytokeratin and phalloidin proteins were investigated in endometrial
cells for three animals. The presences of cytokeratin proved the epithelial nature of the cells
whereas the expression of vimentin confirms the stromal origin of cells and give information
on the purity of each cell populations. Phalloidin expression exhibits the mapping of cellular
junctions. Analysis of FOXL2 gene expression was carried out in bovine CAR and ICAR
areas as well as in the untransfected primary cells after 5 days of culture in order to evaluate

the basal expression of FOXL2 in those cells prior to the transient transfection (Fig. 51).

2.09 **
o 1.54
3
Q
% 1.0
5
L 0.54
0.0
CAR ICAR Stromal EG
Tissue Primary culture
Figure 51: FOXL2 mRNA level in bovine endometrial CAR and ICAR area s as well as in the stromal and
glandular epithelial cells from the selected cows p rior to the transient transfection. Caruncular (CAR,
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stroma enriched area, green color) and intercaruncular (ICAR, glandular epithelium enriched area) endometrial
areas were collected from bovine cyclic luteal uteri (n=3). Stromal and glandular epithelial (GE) cells were
collected from the same bovine cyclic luteal uteri and cultured for 5 days. Quantification of FOXL2 mRNA by RT-
gPCR was normalized to RPL19. Quantitative data are presented as mean +/- SEM. Significant difference is
noted, * : P < 0.05; **: P < 0.01.

FOXL2 mRNA level was significantly higher in CAR area compared to the ICAR area (Fig.
51; 2-fold, P < 0.05). Surprisingly, FOXL2 transcript expression was shown to be strongly
increased in stromal cells (6-fold, P < 0.01) whereas its basal expression in GE cells
remained lower. Three cows were selected, at the dioestrus stage during the active luteal
phase where P4 circulating level reached its maximal amount. We hypothesized that the cell
culture increased mMRNA level of endometrial FOXL2 in stromal cells only. Indeed, the P4
input should be higher in the cyclic luteal uteri than in cell culture leading to a de-repression
of FOXL2 expression. Interestingly, protein analysis has demonstrated that FOXL2 protein
expression is barely detectable in untransfected cells (Fig. 53). Our data suggest cell culture
quickly increased the expression of FOXL2 transcript only associated with increased

degradation of the transcripts.

2. Validation of transient transfection of primary cul tures of bovine
endometrial cells

Transient transfections were carried out with primary endometrial cells of three cows. For
each animal, transient transfection efficiency was validated using GFP observations (Fig.
52), FOXL2 western blot immunoassays (Fig. 53) and immunocytochemistry analyses (Fig.
54).

Stromal cells Glandular epithelial cells

Figure 52: GFP fluorescence observation 48 hours aft  er the transient transfection of GFPmax vector.
Nuclei of stromal and glandular epithelial cells are stained in blue using DAPI reagent, and GFP positive cells in
green. White scale bar 50um.

GFP fluorescence was checked daily for 48 hours. The GFP signal intensity was not optimal
24 hours after the transfection. Transfection was strongly more effective in stromal cells
compared to glandular epithelial cells respectively with an average of 40% and 10% of

transfection rate.
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FOXL2 transient transfection was also validated using protein detection.

Endoe S GE control F- F+

e v w= FOXL2
43kDa \
- e ssesms ACTB
Figure 53: Immunodetection of FOXL2 and ACTB protein in bovine endometrial tissue and cells. Endo:

endometrial tissue (CAR area); S: stromal cells; GE: glandular epithelial cells; control: untransfected stromal cells;
F-: stromal cells transfected using pSG5 vector; F+: stromal cells transfected using pSG5-FOXL2 vector. FOXL2
is detected at 50kDa and ACTB at 43 kDa.

FOXL2 was strongly detected only in caruncular endometrium and in pSG5-FOXL2
transfected cells (Fig. 53). FOXL2 protein was weakly detectable in ‘'S’, ‘control’ and ‘F-* cells;
and barely detectable in GE cells. Nevertheless, the transient transfection led to the over-

expression of FOXL2 protein in ‘F+’ condition.

Stromal cells Glandular epithelial cells
‘F-’ condition
(pSG5 transfection)
I \ ’ - -
: g .
L) - -
‘F+’ condition - .
& . - "
(pSG5-FOXL2 . v X
transfection) - !
1 L Y L4 .
e -
e 2 —— !
Figure 54: FOXL2 sub-cellular localization in stroma | and glandular epithelial cells in mock transfecti on

(pSG5) and FOXL2 transfection (pSG5-FOXL2). Immunecytochemistry was performed on stromal and
glandular epithelial cells in ‘F-* and ‘F+' conditions. FOXL2 protein is barely detectable in stromal and glandular
epithelial cells from mock transfection (F- transfection; pSG5). However, FOXL2 is detected in the nuclei of
stromal and glandular epithelial cells from FOXL2 transfection (F+; pSG5-FOXL2). Black scale bar: 200pum.
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In keeping with the faint signal detected by western blot, FOXL2 localization was barely
detectable in stromal and glandular epithelial cells in ‘F-" condition considered as a mock
transfection (Fig. 54). A similar FOXL2 intensity signal is observed in the nuclei and the
cytoplasm of those cells. FOXL2 was strongly localized in the nuclei of stromal and glandular
epithelial cells after ‘F+’ transfection even if the transfection rate is better in stromal cells than
in glandular epithelial cells. During the luteal phase, FOXL2 protein was shown to be
detected only in the nuclei of stromal cells in bovine endometrial tissue (Part I; Eozenou et al.
2012) whereas stromal cells of ‘F-* condition did not show any specific nuclear detection of
FOXL2. In addition, FOXL2 protein is clearly detected in caruncular endometrium but almost
not detected in stromal and glandular epithelial cells (Fig. 53). These data suggest that the
switch from the in vivo to the in vitro status led to an increase and a decrease of FOXL2

MRNA level and FOXL2 protein expression, respectively.

Altogether, our data show that our protocol allows the effective transfection of primary
cultures of bovine endometrial cells. The transfection rate was higher for stromal cells than
for the glandular epithelial cells. Nevertheless, in both types of cells, the overexpression of
FOXL2 was associated with the nuclear accumulation of the transcription factor a pre-

requisite for its biological activities.

3.  Analyses of putative target genes
Transcript analyzes had been done using RT-gPCR experiment on stromal cells from three

animals (Cow n°1, n°2 and n°3) and on glandular epithelial cells from two animals (Cow n°2
and n°3). Epithelial cells from cow n°1 were too much contaminated by fibroblast population

and pure epithelial cell culture was not recovered as in Cow n°2 and 3.
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Figure 55: Transcript expression of putative FOXL2 r  egulated genes in stromal and glandular epithelial
cells. Transcript expressions were presented using a ratio of target gene expression in ‘F+’ condition on ‘F-*
condition to prevent the impact of only electroporation on stromal and glandular epithelial cells. In stromal cells,
DLX5, RSAD2 and SCARAS expressions are stimulated at least in cow n°1 and 3. In glandular epithelial cells,
DLX5 and PTSG2 expression are inhibited whereas RSAD2 and SCARADS expressions were still stimulated.

The transcript analyse show differential regulation between the cows for each candidate
gene (Fig. 55). The cows exhibit a complex heterogeneous response to the FOXL2 over-
expression. In stromal cells, the cow n°2 is completely different from the two others in target
genes response. For instance, ATF3, DLX5, PGR, PTGS2, RGS2, RSAD2 and SOD2
expressions were completely inverted from cow n°2 to cow n°1 and 3. Nevertheless, analyse
of FOXL2 transfection has revealed the differential expression of some putative target genes

despite the heterogeneity of animals.

In stromal cells, FOXL2 over-expression induced the stimulation of DLX5 expression (from 2-
fold to 4-fold), RSAD2 expression (from 2-fold to 10-fold) and SCARA5 (5-fold) and the
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inhibition of PTGS2 expression (from 0.5-fold to 0.9-fold), PGR expression (from 0.2-fold to
0.5 fold) and SOD2 expression (0.2-fold for cows n°1 and 3 and 4-fold for cow n°2).

In glandular epithelial cells, FOXL2 over-expression led to a stimulation of RSAD2 (from 5-
fold to 13-fold) and SCARA5 (4-fold) expressions and an inhibition of DLX5 (0.1-fold),
HOXA10 (0.2-fold), PGR (0.7-fold), PTGS2 (0.1-fold), SOD2 (0.05-fold) and TNFAIP3 (0.2-

fold) expressions.

RSAD2 and SCARA5 expression were shown to be the two most regulated transcripts
among the eleven candidate genes because of their relevant stimulation either in the stromal
or the glandular epithelial cells. DLX5 expression is differentially regulated from the stromal

cells to the glandular epithelial cells.

PTGS2 expression is always inhibited due to the over-expression of FOXL2 except in the

cow n°2 where there was no change of transcript expression.

FOXL2/DAPI PTGS2/DAPI MERGE/DAPI
- s -
- B -

Figure 56: Localization of FOXL2 and PTGS2 proteins in glandular epithelial cells between F- and F+
conditions. FOXL2 protein is stained in red (and pink when co-localization with DAPI occurred), PTGS2 protein
is stained in green and nuclei are stained in blue using DAPI staining. White scale bar: 50 pm.

In ‘F-* condition, FOXL2 is barely detected in the glandular epithelial cells and is not
detectable in the nuclei (Fig. 56). However, PTGS2 staining is present in the cytoplasm of
glandular epithelial cells of ‘F-* condition. In ‘F+’ condition, FOXL2 is clearly detected in the
nuclei of glandular epithelial cells whereas PTGS2 is completely absent of these cells.
Altogether, our data highlight that FOXL2 over-expression is associated with the down-

regulation of PTGS2 protein expression at the cellular level.
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4.  Firstinsight about the FOXL2 regulated genes inth e endometrium
For the first time, transient transfection of a transcription factor was setting up in bovine
primary endometrial stromal and glandular epithelial cells. The over-expression of FOXL2
was validated and the candidate genes approach allows the identification of three FOXL2
regulated genes: DLX5, RSAD2 and SCARAS5 (Fig. 57).
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Figure 57: DLX5, RSAD2 and SCARAS transcript expressions in bovine endometrium durin g the oestrous
cycle, early pregnancy and under the influence of I FNT. Transcript expression of DLX5, RSAD2 and SCARAS
were investigated during the oestrous cycle and early pregnancy (respectively A, C and E) and under the
influence of IFNT (respectively B, D and F) in bovine endometrium. (A), (C) and (E) Caruncular (CAR) and
intercaruncular (ICAR) endometrial areas were collected from cyclic (n=5 at day 16, n=6 at day 20) and pregnant
(n=4 at day 16, n=5 at day 20) cross-bred beef heifers. Expressions of transcripts were normalized to RPL19. (B),
(D) and (F) CAR and ICAR endometrial areas were collected from cyclic (14 dpo) Charolais cows infused with
control solution (n=5) or recombinant ovine IFNT (200 ug/ml, n=6) for 2 hours. Expressions of transcripts were
normalized to RPL19. (D) RSAD2 expression graph is adapted from Forde et al.,, 2011. Quantitative data are
presented as mean +/- SEM and bars with different superscripts significantly differ (in (A), (C), (D) and (E), P <
0.01).

DLX5 mRNA was expressed in both endometrial areas during the oestrous cycle and early
pregnancy, was significantly higher in ICAR area (3-fold, p < 0.01; Fig. 57A). The oestrous
cycle is characterized by a higher DLX5 expression during the luteal phase (16 dpo; 2-fold, p
< 0.05) compared to the follicular phase (20 dpo) in both endometrial areas whereas in

pregnancy, its expression is lower during the maternal recognition period (16 dpo; 2-fold, p <
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0.05) compared to the first day of implantation (20 dpo). At 14 dpo of the oestrous cycle
corresponding to the luteal phase, DLX5 expression is also significantly increased in ICAR
area (5-fold, p < 0.001) after IFNT infusion but not impacted by the short-term treatment (Fig.
57B).

RSAD2 mRNA was expressed during the early pregnancy and significantly higher at
implantation (20 dpo; 5.3-fold, p < 0.001 in CAR area and 2.3-fold, p < 0.01) compared to the
maternal recognition period (16 dpo, Fig. 57C). Its expression was almost absent during the
oestrous cycle except during the luteal phase (16 dpo) in ICAR area. RSAD2 as an IFN-
induced gene was strongly stimulated by the infusion of IFNT during the luteal phase (Fig.
57D, 14 dpo; 16-fold, p < 0.0001 in CAR area and 30-fold, p < 0.0001 in ICAR area). These

data were adapted from Forde et al., 2011.

SCARA5 mRNA was strongly expressed during the luteal phase of the oestrous cycle, as
well as the early pregnancy and its expression was shown to be significantly lower during the
follicular phase in both endometrial areas (Fig. 57E, from 43-fold to 58-fold, p < 0.0001 in
CAR area; from 16-fold to 26-fold, p < 0.0001 in ICAR area). In particular, SCARA5
expression was significantly higher during both oestrous cycle and early pregnancy at 16 dpo
compared to the implantation day (20 dpo, 1.6-fold, p < 0.05). The short-term treatment of
IFNT had no impact on SCARAGS transcript expression in both endometrial areas (Fig. 57F).
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Figure 58: Correlation between the endometrial expr  ession of putative FOXL2 target genes and FOXL2
during the oestrous cycle and the early pregnancy. Correlation was established between FOXL2 expression

and (A) DLX5 (CAR: black dot, p < 0.01; ICAR: pink circled black dot, p = 0.14; CAR and ICAR: p < 0.05), (B)
RSAD2 and (C) SCARAGS expressions during the oestrous cycle and the early pregnancy in cattle.

DLX5 and SCARAS expressions were negatively correlated with FOXL2 expression in bovine
endometrium (Fig. 58). DLX5 and FOXL2 expressions were negatively correlated (Fig. 58A,
p < 0.05) and two negative slopes were shown corresponding to the inverted expression
observed in CAR (black dot, p < 0.01) and ICAR (pink circled black dot, p = 0.14) areas for
each gene. The negative correlation occurring between FOXL2 and SCARA5 expressions
was highly significant (Fig. 58C; p < 0.0001) and separated in two groups: the follicular phase
where FOXL2 is highly expressed and the three remaining group where FOXL2 expression is
lower and steady. The correlation between FOXL2 and RSAD2 expressions was hot

significant (Fig. 58B; p = 0.08) but also appeared negative.
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Figure 59: Cell localization of FOXL2 and DLX5 protei ns as well as RSAD2 and SCARAS transcripts in
bovine endometrium. FOXL2 and DLX5 proteins were detected using immunohistochemistry (C. Eozenou)
whereas RSAD2 and SCARAS5 transcripts were detected using in situ hybridization (from Mansouri-Attia et al.
2009). Immunohistochemistry and in situ hybridization were performed using sections cut from Charolais
endometrium. Females were sampled at day 20 of the oestrous cycle as well as day 20 of pregnancy. GE:
glandular epithelium; Str: stroma and LE: luminal epithelium. Black scale bar: 50 um.

DLX5 protein which is restricted to the nuclei is localized in either luminal or glandular
epithelium during the oestrous cycle and show a higher staining intensity during early
pregnancy in both types of epithelia (Fig. 59). Interestingly, FOXL2 protein was inversely
detected with a higher staining intensity during the oestrous cycle and a strong decrease
during early pregnancy, especially in the nuclei of stromal and GE cells. Altogether, our
results show that DLX5 gene is strongly expressed in ICAR area, poorly in CAR area and
reversed compared to FOXL2 gene expression. The expression of DLX5 transcript and
protein varied slightly regarding the complex regulation of FOXL2 gene expression during the
oestrous cycle and early pregnancy.

RSAD?2 transcript is localized in the GE and stromal cells as well as in the luminal epithelial
cells (Fig. 59). This mRNA is almost absent of the cyclic endometrium compared to the
intense staining observed in pregnant endometrium. This localization is completely inverted
compared to the localization of FOXL2 protein. FOXL2 is almost absent of the nuclei of
endometrial cells during pregnancy whereas during oestrous cycle (20 dpo), FOXL2 protein
is strongly detected in the nuclei of stromal and GE cells.
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SCARAS transcript was shown to be localized in the stroma and the glandular epithelium

without significant change of intensity between oestrous cycle and early pregnancy (Fig. 59).

D. Conclusions
The aim of this part of my work was to provide first insights on FOXL2 target genes in the
bovine endometrium, using functional genomics and various physiological and experimental

in vivo and in vitro models.

In transiently transfected endometrial cells, FOXL2 over-expression led to the alteration of a
selection of genes that was selected based on a literature approach. Given the results that
were obtained from these preliminary experiments, transfection efficiency and

heterogeneous biological response of the transfected cells have to be discussed.

A noticeable problem was the heterogeneity of biological responses in term of FOXL2-
regulated genes analysed with the primary endometrial cells that were derived from three
different cows. The uteri were taken from a local slaughterhouse and the morphological
aspect of the genital tracts and ovaries were recorded. No sign of infection could be seen for
either genital tract. For each cow, one single corpus luteum was identified and its
physiological status was evaluated according to published criteria (Arosh et al. 2002). The
morphology, size and weight allowed the classification of each corpus luteum into three
distinct time points of the luteal phase: the first cow was in the active luteal phase (days 13-
15 of the oestrous cycle), the second in the early luteal phase and the third one was situated
between cow n°1 and 2, in the mid luteal phase. This variability between the three females
could account for the heterogeneity of the biological response reported in the primary
cultures of endometrial cells before and after transfection. Consequently, further
investigations will require deriving primary cultures of endometrial cells from females
sampled at an equivalent stage of the luteal phase. If this issue cannot be achieved using
biological material collected in local abattoirs, synchronization of experimental females will be
necessary that will allow us to recover endometrial cells at a defined day of the oestrous
cycle. The cows were sorted in order to over-express FOXL2 gene expression in endometrial
cells. The first part of my PhD revealed that the lowest FOXL2 expression was situated
during the active luteal phase (16 dpo) in bovine endometrium. These preliminary data
prompt the need to synchronize female and to recover reproductive tract at 16 dpo.
Considering the relevant expression of FOXL2 during the follicular phase of the oestrous

cycle namely 20 dpo, it could be interesting to inhibit FOXL2 expression using RNA
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interference method on stromal and glandular epithelial cells to complete the identification of

FOXL2 regulated genes.

For the gene delivery of FOXL2 into primary cultures of bovine endometrial cells, we used a
method based on the electroporation of non-adherent cells. This method appeared to be the
best compromise that yielded a high transfection rate of the stromal cells (on the average of
41%) while preserving their viability (77% of recovered and viable cells upon transfection).
Nevertheless, in the case of GE cells, the transfection rate remained low (4-12 %) and could
not be improved despite our efforts (change of culture media, FBS, Amaxa™ transfection kit
and programs). Since primary cells were used in order to keep the physiological status of the
endometrial cells as close as possible to the in vivo situation, it seems unrealistic to eliminate
the non transfected cells using a selection process based on the use of Aph gene combined
with a restrictive culture media containing G418 substance (Dutta et al. 2012). Indeed, this
process requires several weeks, a time period incompatible with short term cultures of
primary cells. Similarly, the stable transfection will not be an option due to the length of cell
culture to have a stable transfected culture. Currently one option appears the most relevant
to increase the number of transfected GE cells namely the use of cell sorting based on GFP

expression. A cell-sorter should be available in the vicinity of the laboratory in a near future.

PTGS2 is an enzyme responsible for the conversion of arachidonic acid into PGH2, prior to
the production of PGF2a leading to the CL regression (Smith et al. 1996). This enzyme has
been shown to be expressed in bovine and ovine endometrium during the oestrous cycle and
early pregnancy (Charpigny et al. 1999; Arosh et al. 2002). FOXL2 over-expression led to the
inhibition of PTGS2 gene expression in primary cultures of stromal (in cow n°1 and 3) or GE
cells (only in cow n°3). Very interestingly, PTSG2 and FOXL2 proteins were not co-
expressed as underlined by the absence of co-localization in individual cells. In other words,
when FOXL2 was present in the nuclei of endometrial cells, PTSG2 was not detected
whereas in untransfected cells, PTGS2 was detected in the cytoplasm when FOXL2 could
never been seen in the nucleus nor the cytoplasm of these cells. Collectively, our data show
that FOXL2 inhibits the expression of PTGS2 gene (transcript and protein) in endometrial
cells. Immunolocalization of PTGS2 revealed that endometrial luminal and superficial
glandular epithelia are the PTGS2-producing cell types in ovine endometrium whereas in
bovine endometrium PTGS2 is mostly localized in luminal epithelium and slightly localized in
the glandular epithelium and in stroma (Charpigny et al. 1997; Arosh et al. 2004). FOXL2
could not be detected in luminal epithelium and superficial glandular epithelium whereas it

was present in the stromal and outer glandular epithelium (Eozenou et al. 2012). FOXL2 and
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PTGS2 were shown to be up-regulated during the follicular phase but are localized in
different endometrial cell types. Endometrial cell localization of FOXL2 and PTGS2 is
therefore consistent with our in vitro results and strongly suggests that FOXL2 is involved in
the control of uterine receptivity through the regulation of PTGS2 synthesis. FOXL2 was
shown either to stimulate the expression of PTGS2 in KGN cell line (Batista et al. 2007) or to
repress PTGS2 expression (Kim et al. 2009) in 293FT cells (ERa negative human embryonic
kidney) and MDA-MB-231 cells (ERa negative human breast cancer) suggesting FOXL2
could differentially regulate its target genes and in the latter extent, PTGS2, in different
cellular context due to the availability of its co-factors and binding partners. Future
experiments will examine the binding of FOXL2 on PTGS2 promoter in order to confirm this

gene as a direct FOXL2 target gene in the endometrium.

RSAD?2 is a class | IFNs induced gene whose expression is strongly increased during early
pregnancy in bovine endometrium (Song et al. 2007; Mansouri-Attia et al. 2009; Forde et al.
2011). RSAD2 has not been described yet in the ovarian context and was not reported to be
regulated by FOXL2. Nevertheless, RSAD2 was selected for its essential endometrial role at
the maternal/conceptus interface prior to implantation. FOXL2 is not an IFNT-induced gene
in vivo, then we hypothesized that FOXL2 could not regulate the expression of RSAD2
representing a negative control of gene expression. Interestingly, in our bovine primary
endometrial cells, RSAD2 was the most up-regulated transcript by the over-expression of
FOXL2. The previous investigations about RSAD2 biological functions show the evidence its
expression could modulate uterine receptivity by induction of antiviral state and modulation of
immune cell functions in the pregnant ruminant endometrium (Mansouri-Attia et al. 2009;
Forde et al. 2011). FOXL2 protein and RSAD?2 transcript were shown to be localized in the
same endometrial cell types, GE and stromal cells. During the normal oestrous cycle,
RSAD2 mRNA is expressed at a low level in the endometrium whereas FOXL2 transfection
stimulates its expression in bovine endometrial cells from cyclic uteri. We could hypothesized
the earlier expression of RSAD2 during oestrous cycle due to FOXL2 expression could be
deleterious for uterine receptivity and in the latter extent, implantation step. Further
investigations will be necessary to evaluate precisely the expression of RSAD2 during the
follicular phase where FOXL2 is widely expressed but also to determine if RSAD2 is a direct

target gene of FOXL2 in endometrium.

Scarab, formerly called Tesr (Sarraj et al. 2005) appeared as one of the most up-regulated
genes resulting from FoxI2 conditional deletion in the adult murine ovary (Uhlenhaut et al.

2009). This class A scavenger receptor has been shown to be involved in innate immunity
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and decidualisation but it was described also as a ferritin receptor mediating iron delivery (Li
et al. 2009; Mansouri-Attia et al. 2009; Duncan et al. 2011). SCARA5 was identified as a
differentially expressed gene in endometrial tissues of pregnant cows compared to cyclic
females at 20 dpo (Mansouri-Attia et al. 2009). The present work has demonstrated that
SCARAS is not an IFNT-induced gene in vivo in keeping with former data based on primary
cultures of IFNT-treated endometrial cells (Mansouri-Attia et al. 2009). Moreover, SCARA5
transcript and FOXL2 protein were shown to be localized in the same endometrial cell types
namely GE and stromal cells. Then, SCARA5 and FOXL2 endometrial expression were
negatively correlated during the oestrous cycle and early pregnancy suggesting FOXL2 could
repress SCARA5 expression in bovine endometrium. Interestingly, SCARA5 mRNA
expression was up-regulated in FOXL2 transfected stromal and GE cell cultures. These data
suggest SCARADS is regulated by FOXL2 in the endometrial context but the in vitro situation
differs from the in vivo situation. Then, we hypothesized that FOXL2 regulate SCARAS5
expression depending on the cellular context and probably mediated by co-factors or binding
partners as the regulation of PTGS2 expression described above. Complementary analyses
are needed to identify SCARAS as direct target gene of FOXL2 as well as binding partners or

co-factors of FOXL2 protein in the endometrium.

DLX5 and DLX6 transcription factors have been shown to be involved in the control of
steroidogenesis in granulosa cells (Bouhali et al. 2011). A reciprocal regulation between the
expression of DIx5 and FoxI2 has been described in the murine ovary (Bouhali et al. 2011).
In this species FOXL2 is strongly expressed in primordial and primary follicles but its
expression decreases during the follicle maturation. FoxI2 ovarian expression activates the
transcription of DIx5 in granulosa cells. Then, DIx5 expression represses FoxI2 expression in
the secondary follicle until mature antral follicle (Bouhali et al. 2011). In our cell transfection
experiments, FOXL2 over-expression is associated to a cell-specific regulation of DLX5
expression. Indeed, the low level of DLX5 mRNA expression in stromal cells is up-regulated
in FOXL2-transfected stromal cell cultures whereas FOXL2 over-expression led to the
repression of DLX5 transcript expression in epithelial cell cultures whose basal level of DLX5
MRNA was high. Collectively, our results evidence that regulation of DLX5 gene expression
by FOXL2 differs with the type of endometrial cells. The differential expression of DLX5 gene
between CAR and ICAR areas could also explain the differential regulation of this gene
following FOXL2 over-expression. Indeed, the over-expression of FOXL2 induces a
stimulation of DLX5 transcript expression in stromal cells whereas its basal expression in
CAR area is very low in association with a poor staining intensity of DLX5 protein in this

stroma enriched area. Inversely, DLX5 expression is down-regulated in epithelial cells after
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FOXL2 over-expression whereas its expression is very high in ICAR area associated with a
high staining intensity of DLX5 in this endometrial gland area. These data suggest a complex
regulation of DLX5 expression by FOXL2 dependant on the expression level of DLX5.

Finally, DLX5 and FOXL2 expressions were shown to be negatively correlated throughout
the oestrous cycle and early pregnancy. Our data suggest that the reciprocal regulation
between DLX5 and FOXL2 originally found in the ovary does exist in the endometrium
associated with a cell-specific regulation of DLX5. Further experiments will be necessary to

decipher the biological meaning of this reciprocal regulation in the context of the endometrial

physiology.

Collectively, our results provide the first insights on the regulation of endometrial genes by
FOXL2. In our primary cultures of endometrial stromal and GE cells, FOXL2 over-expression
led to (i) the inhibition of PTGS2 and the stimulation of SCARA5 and RSAD2 transcript
expression in both cell types (ii) the up-regulation and the down-regulation of DLX5 mRNA
level in stromal and GE cells respectively. In cattle, FOXL2 then appears to participate to the
regulation of endometrial physiology through the regulation of the prostaglandins metabolism
and innate immune function prior to conceptus implantation. Beyond the candidate gene
approach we initiated, a large-scale analysis of FOXL2-regulated genes based on the use of
transient transfected endometrial cells associated to RNA-sequencing would be relevant in

order to determine the contribution of this transcription factor to the regulation of endometrial

physiology.
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VIll. General discussion

152



FOXL2 was, originally, described as a key gene for ovarian differentiation, maintenance of
ovarian function from foetal life to adulthood with mutations leading to premature ovarian
failure, granulosa cell tumour and more generally for ovarian fertility (Crisponi et al. 2001,
Pailhoux et al. 2001; Uda et al. 2004; D'Angelo et al. 2011; Verdin and De Baere 2012).
Premature ovarian insufficiencies or failures consecutive to FOXL2 mutations could be
partially replaced using the progress of medically assisted procreation (MAP; Devroey and
Pados 1998). The question about the impact of those pathologies on endometrial physiology
is still pending. Indeed, beyond the blastocyst stage, a successful pregnancy has to be
conducted by the uterus and MAP cannot rescue endometrial defects. To date, FOXL2 was
never studied in the endometrium. But now, FOXL2 transcript has been found differentially
expressed in bovine endometrium at 20 dpo between pregnancy and oestrous cycle
(Mansouri-Attia et al. 2009). In ruminants and in high-producing dairy cows specifically, half
of pregnancies abort during the peri-implantation period as a consequence of early
embryonic death and endometrial defects (Diskin and Morris 2008). Therefore, peri-
implantation period appears to be a critical checkpoint for the progression and the issue of

pregnancy. My work focused on the implication of FOXL2 gene in ruminant endometrial

physiology.

In order to understand the implication of FOXL2 in endometrial physiology, physiological and
experimental models were derived from ruminant. First, FOXL2 gene was shown to be
expressed during the oestrous cycle and the early pregnancy in both cattle and sheep
endometrium. Its endometrial expression is under the control of ovarian steroid hormones
with a minor positive effect of E2 and a strong inhibition consecutive to P4 biological action.
Each model exhibits a decreased expression of FOXL2 in ICAR area compared to CAR area.
Finally, the over-expression of FOXL2 leads to the regulation of DLX5, PTGS2, RSAD2 and
SCARA5 expressions in bovine endometrial stromal and glandular epithelial cells. The
ectopic expression of FOXL2 in endometrial cells from luteal uteri exhibits the altered
regulation of genes involved in uterine receptivity suggesting the inhibition of FOXL2
expression during the luteal phase and the pre-implantation period is a prerequisite for

conceptus implantation (Fig. 63, 64 and 65).

The differential expression of FOXL2 between 20 dpo of pregnancy and oestrous cycle in
bovine endometrium was first considered as an IFNT induced regulation. Using in vivo and in
vitro bovine models, we have demonstrated that either short- (2 hours) or long-term (24
hours) treatment of IFNT had no significant impact on FOXL2 endometrial expression (Fig.

64). This situation differs from that in human since human trophoblast secretions lead to the
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down-regulation of FOXL2 transcript expression as observed in endometrial gene expression
profiling (Fig. 60; Hess et al. 2006; Popovici et al. 2006).
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Figure 60: FOXL2 transcript expression in decidual s  tromal cell response to trophoblast conditioned
medium (GEOProfile n°GDS2414 from Hess et al. 2006).

Nevertheless, in cattle, FOXL2 protein localization appears to be regulated by the conceptus
apposition. Indeed, during the luteal phase, FOXL2 was localized in the nuclei of stromal
cells and in the cytoplasm of glandular epithelial cells whereas at implantation, FOXL2 was
detected in the cytoplasm of both stromal and glandular epithelial cells. At implantation, P4
circulating level is similar to the maximal secretion obtained during the luteal phase. But its
sub-cellular localization differs between both phases. We hypothesized that conceptus may
affect intracellular localization of FOXL2 in stromal cells. The combine action of P4 and
conceptus lead to an inhibition of FOXL2 expression (MRNA levels and cytoplasmic
localization). Bovine conceptus secretion could be investigated using a secretome gene
expression profile to identify others embryonic signals regulating endometrial gene
expression in association with the IFNT action. Interestingly, change of intracellular
localization was reported for FOXL2 in the ovarian context (Marongiu et al. 2010; L'Hote et
al. 2012). FOXL2 binding partners can either stabilize or destabilize FOXL2 protein. SIRT1,
PIAS1, SUMO and SMAD proteins were shown to be binding partners of FOXL2 and could
induce an intracellular translocation of FOXL2 (Marongiu et al. 2010; Georges et al. 2011).
Our data and the literature suggest the cytoplasmic localization of FOXL2 occurring at
implantation in bovine endometrium could be due to the presence or the absence of specific
binding partners. Method of Yeast-Two-Hybrid could be considered in endometrial cells in
order to identify specific binding partners of endometrial FOXL2 protein followed by the

analysis of FOXL2 activity (localization and transactivation).
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FOXL2 expression is clearly regulated by E2 and P4 circulating levels in endometrium of
both cattle and sheep (Fig. 64 and 65). More specifically, FOXL2 gene expression is inhibited
by P4 circulating level during the luteal phase and the establishment of pregnancy in sheep
and cattle. Similar to this situation, FOXL2 transcript is higher in human endometrial biopsies
collected during the follicular phase (proliferative phase) compared to the luteal phase

(secretory phase; Fig. 61; Talbi et al. 2005).
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Figure 61: FOXL2 transcript expression in human endometrium through out the menstrual cycle
(GEOProfile n°GDS2052 from Talbi et al. 2005).

Interestingly, human proliferative phase controlled by E2 exhibits a higher expression of
FOXL2 transcript than during the human secretory phase controlled by P4 (Talbi et al. 2005).
Collectively, our results in cow and sheep as well as in human show FOXL2 endometrial
expression is repressed consecutive to P4 biological action. A pending question is to
determine if the action of P4 on FOXL2 endometrial expression is direct. In the endometrium,
nuclear receptors of P4 are responsible of the major direct biological action of P4 (Lydon et
al. 1995; Franco et al. 2008; Franco et al. 2012; Wetendorf and DeMayo 2012). During
oestrous cycle and early preghancy, PGR gene exhibits the same gene expression profile of
FOXL2 with a high expression during the follicular phase and low expression during the
luteal phase and pre-implantation period as well as the same intracellular localization in
bovine endometrium (Fig. 43; Okumu et al. 2010; Eozenou et al. 2012). In human
endometrium, this situation is the same with a high expression of PGR during the
proliferative phase and reduced expression during the secretory phase of the menstrual
cycle (Talbi et al. 2005).
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Figure 62: PGR transcript expression in human endometrium through out the menstrual cycle (GEOPTrofile

n°GDS2052 from Talbi et al. 2005).

In addition, PGR expression was up-regulated in endometrial explants incubated for 48 hours
with E2 compared to P4 treatment. During uterine receptivity and pre-implantation periods,
PGR protein is lost in both luminal and glandular epithelium which is a prerequisite for
conceptus implantation (Spencer and Bazer 2002). PGR play a critical role in endometrial
epithelial cells through its regulation of epithelial target genes (namely HOXA10 and IHh
genes) and inhibition of E2-induced epithelial proliferation (Franco et al. 2012). Our results
and the literature bring evidence about the correlation between PGR and FOXL2 genes
expression. In order to identify if FOXL2 gene is a direct target of P4, PGR (form A and B)
transient transfection of COS7 cells is carrying out in association with transfection of FOXL2
promoter reporter plasmid, treated with P4. In addition, experiments of Chromatin-Immuno-
Precipitation (ChIP) could be used to decipher the complex regulation occurring between
FOXL2 and PGR genes in stromal and glandular epithelial cells. Given that published PGR
ChIP-sequencing work have revealed direct target genes of PGR in the murine uterus (Rubel
et al. 2012), it could be interesting to evaluate FOXL2 in those samples to identify if this FOX
factor is a direct target gene of PGR. In keeping with PGR gene regulation during uterine
receptivity, our results suggest the loss of FOXL2 expression is also a prerequisite for
conceptus implantation. As described above, FOXL2 protein is not detected in GE
suggesting that FOXL2 could be involved in the uterine secretion necessary for conceptus
elongation and we could hypothesized that an ectopic expression of FOXL2 during these
periods could be deleterious for conceptus health, elongation and implantation. Given that
some types of endometrial cancers and endometriosis are consecutive to a resistance of P4
biological action (Kim and Chapman-Davis 2010; Al-Sabbagh et al. 2012), the implication of

endometrial FOXL2 gene in those pathologies would deserve further investigations in order
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to examine if FOXL2 endometrial expression could be over-expressed as our data would
suggest it.
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Figure 63: FOXL2 gene expression and localization in ruminant endometrium during the oestrous cycle.
FOXL2 was shown to be strongly expressed during the follicular phase under the influence of E2 and to exhibit a
clear nuclear localization in ruminant endometrium. During the luteal phase, it has been demonstrated that P4
circulating level inhibited the expression of FOXL2 associated with cytoplasmic localization in the GE cells.
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Figure 64: FOXL2 expression and localization in rumi  nant endometrium between the luteal phase and the
early pregnancy. The implantation is a crucial step of the early pregnancy characterized by an elevated P4
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circulating level and IFNT conceptus secretion. Only P4 can suppress the expression of FOXL2. However, the
presence of the conceptus led to the cytoplasmic localization of FOXL2 of both stromal and GE cells.

Given that uterine receptivity is characterized by intense endometrial cell proliferation during
the follicular phase (Miller and Moore 1976; Devroey and Pados 1998; Spencer et al. 2012)
and FOXL2 gene is highly expressed during this phase, we can hypothesized that FOXL2
could be involved in the regulation of cell proliferation in the endometrium. Interestingly, In
the ovary, FOXL2 gene balances the proliferative process regulating specific pro- (ATF3,
IER3) and anti-apoptotic (TNFAIP3, IER3, BCL2A1) target genes expression (Batista et al.
2007). Its mutations are linked to a worse overall survival and disease free-survival for
women suffering from Granulosa Cell Tumour, in association with a higher FOXL2 protein
expression (D'Angelo et al. 2011; Verdin and De Baere 2012). In the endometrial context,
ruminant and human species displayed similar pattern of FOXL2 gene expression during the
follicular phase. In ruminant, follicular phase is quite short and associated with a limited
proliferation of the endometrial cells whereas human endometrium undergoes a massive
proliferation process during the long luteal phase (14 days; Hawkins and Matzuk 2008; Mihm
et al. 2011). In addition, ruminant and human concepti exhibit respectively superficial and
invasive implantation (Lee and DeMayo 2004). Therefore, we can hypothesize that the length
of follicular phase is positively correlated with the proliferation status and the endometrium
thickness. In this way, independently of the follicular phase length, FOXL2 could be a
regulator gene of the endometrial proliferation prior to decidualisation (human, mouse) when
occurs and mostly prior to implantation stage (human, mouse, cattle and sheep). Regarding
BPES syndrome, female patient exhibits eyelid defects and ovarian dysgenesis responsible
for a primary amenorrhea due to FOXL2 mutation (Baron et al. 2005; Verdin and De Baere
2012). Families suffering from BPES syndrome had been studied in order to identify and
sequence the differential gene mutations leading to the same phenotype (De Baere et al.
2003). Some women were clinically analysed and exhibited normal ovaries, uterus and
regular menses due to exogenous hormonal treatment. Since FOXL2 gene expression is
strongly regulated during both phase of oestrous cycle, the question remains to define the
ability of the endometrium to become receptive then to undergo decidualisation but also to
drive implantation of conceptus and mostly a successful pregnancy due to an absence of
functional FOXL2 protein. A conditional knock-out of endometrial FOXL2 could be used to

answer this question. The Cre/LoxP method would be considered using floxed FOXL2 alleles

2LoxP/LoxP Cre

mice (Foxl ) crossed with Pgr-™ mouse model to invalidate FOXL2 gene in

endometrial epithelial cells (luminal and glandular) and/or crossed with Amhr2©*

mouse
model to delete FOXL2 gene in mesenchymal tissue as endometrial stroma or myometrium

but also in gonads (Franco et al. 2008). Given that the complex regulation of FOXL2 in
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endometrium, we hypothesized the conditional deletion of endometrial FoxI2 in mice may
affect uterine receptivity, unbalancing proliferation process leading to endometrial hypo- or
hyperplasia associated with infertility. Conversely, additive transgenesis using mice and
small ruminant model would be considered in order to induce over-expression of FOXL2
gene during the luteal phase to evaluate endometrial thickness and fertility. In addition,
further analyses will be necessary to provide some comparative aspects about the length of
follicular phase, the endometrial thickness and FOXL2 expression in others mammal species
including mare, sow or female rat to test our hypothesize. Altogether, our data and the
literature suggest the critical role of FOXL2 endometrial gene expression in the control of cell

proliferation during uterine receptivity process.

FOXL2 is a key gene for ovarian differentiation regulating its target genes in the ovary but
also in the pituitary and the hypothalamus (Ellsworth et al. 2006; Batista et al. 2007; Moumne
et al. 2008; Uhlenhaut et al. 2009; Benayoun et al. 2011; Benayoun and Veitia 2011).
Regarding FOXL2 expression and regulation in the endometrium, we investigated FOXL2
endometrial target genes using a candidate gene approach based on the comparison of
ovarian and endometrial microarrays data. Seven ovarian FOXL2 target genes expressed in
the endometrium were selected and three genes involved in the regulation of endometrial
physiology were added to the study. Using bovine primary endometrial stromal and glandular
epithelial cells, transient transfection of FOXL2 cDNA had distinct various impacts on the
expression of the eleven candidate genes (Fig. 65). Transcript levels of RSAD2 and
SCARA5 genes and PTGS2 gene were up-regulated and down-regulated respectively
whereas DLX5 mRNA level was shown to be up-regulated and down-regulated in stromal
and glandular epithelial cells respectively. ATF3, FOS, PGR, RGS2, SOD2 and TNFAIP3
MRNA expression did not significantly vary. Considering the distinct regulation of FOXL2
expression in stromal and glandular epithelial cells, investigating FOXL2 target genes in
these two types of endometrial cells appears mandatory. In order to obtain more FOXL2
transfected glandular epithelial cells, transfection yield will have to be improved in these cell
population using alternative methods of transfection associated or not with cell sorting.
Nevertheless, in stroma cells, a large scale/exploratory approach of FOXL2 target genes can
be envisaged using RNA-sequencing or microarrays analyses of FOXL2-transfected cells
compared to control cells. Our laboratory recently validated a protocol for ChIP using frozen
endometrial tissue. This method could be applied to FOXL2 in order to identify FOXL2
regulated factors in vivo (at 20 dpo of oestrous cycle). Altogether, the complementary in vivo
and in vitro methods will bring new insights on the factors/genes which expression is affected

by FOXL2 in bovine endometrium.
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Figure 65: Summary of the biological function of FOXL 2 in female reproduction adapted from Benayoun
and Veitia 2011. Red arrowheads represent the stimulation of target genes and green arrowheads, the inhibition
of target genes by FOXL2.

Reproduction is a critical biological function undergoing intense selective pressure to prevent
any madifications which could directly affect the organism’s fitness (Lode 2012).
Environmental conditions may favor anatomical and physiological adaptations of the mother
and embryos for viviparity (Lode 2012). In the last decade, FOXL2 gene had been
considered as the gatekeeper of ovarian identity, controlling reproductive biology of
numerous species due to its highly conserved protein sequence including non-vertebrate and
vertebrate species (Geraldo et al., 2013). The differences between the species expressing
FOXL2 gene is a consequence of the evolution and the apparition of new tissues. Viviparity
has been associated with fertilization and embryogenesis occurring in the female genital tract
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including the apparition of placenta of different clades and the apparition of mammary gland
in mammals (Lode 2012). GEOprofile and NextProt-Beta software had exhibited the
expression of FOXL2 gene in bovine mammary epithelial cells (GEOProfile n°GDS4081,
GDS4009, GDS4437) as well as in murine and human placenta (NextProt:
http://www.nextprot.org/db/entry/NX P58012/expression and GEOProfile n°GDS2990,
GDS4037). FOXL2 gene appears to be listed in microarrays data but has not been described

yet in these tissues. The question will deserve to be answered in order to identify FOXL2
biological function in every reproduction-related tissue: central nervous system, ovary,

uterus, oviduct (using NextProt website), placenta and mammary gland.

My PhD thesis provides first and new insights about FOXL2 biological relevance in the
endometrium of mammalian species questioning about its biological functions in female
reproductive physiology. With the evolution and the apparition of new tissues, FOXL2 gene
appears to be conserved in female reproductive tract of mammalian species. Further
investigations will be required to investigate if FOXL2 is the gatekeeper of female

reproduction in the vertebrate species.
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A. Appendix: Introduction
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Figure 66: Alignment of FOXL2 protein sequence of te  n species (from Cocquet et al., 2003). Forhead
domain and poly-alanine tract are indicated in bold. M : mus musculus (mouse), R: Rattus norvegicus (rat), B: Bos
taurus (cow), C: Capra hircus (goat), S: Sus scrofa (pig), H: Homo sapiens (human), O: Oryctolagus Cuniculus
(rabbit), F: Fugu rubripes (pufferfish), T: Tetraodon nigroviridis (tetraodon), D: Danio rerio (zebrafish), FoxL2
partial protein of the Macropus eugenii (Ma, tammar wallaby).
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B. Appendix: List of putative FOXL2 target genes in endometrium

GENE GENE INFORMATION
ABLIM2 Actin Binding LIM Protein Family, Member 2
ALS2CL ALS2 C-Terminal Like
ANKRD12 ahkyrin repeat domain 12
AsSB2 Ankyrin Repeat And SOCS Box Containing 2
ATF3 activating transcription factor 3
C1orf78 C1orf78
CCND2 Cyclin D2
CHRM2 Cholinergic Receptor, Muscarinic 2
CLDN4 Claudin 4
CXCL10 Chemokine (C-X-C Motif) Ligand 10
CXCL12 Chemokine (C-X-C Motif) Ligand 12
DLX1 Distal-Less Homeobox 1
ENPP1 Ectonucleotide Pyrophosphatase/Phosphodiesterase 1
FOS FBJ Murine Osteosarcoma Viral Oncogene Homolog
FZD3 Frizzled Family Receptor 3
GDFé& Growth Differentiation Factor 6
GDF8 Growth Differentiation Factor 8
GPRC5B G Protein-Coupled Receptor, Family C, Group 5,
Member B
HES1 Hairy And Enhancer Of Split 1
ILER Interleukin 6 Receptor
JUP Junction Plakoglobin
KCNE3 Potassium Voltage-Gated Channel, Isk-Related Family,
Member 3
KLF5 Kruppel-Like Factor 5
LOC387763 Chromosome 11 Open Reading Frame 96
LOC441698 Ras-related protein Rap-2c-like (Homo Sapiens)
MGP Matrix Gla Protein
Phosphatidylinositol-3,4,5-Trisphosphate-Dependent
PREX1
Rac Exchange Factor 1
PTGS? Prostaglandin-Endoperoxide Synthase 2 (Prostaglandin
G/H Synthase And Cyclooxygenase)
RGS2 Regulator Of G-Protein Signaling 2
RRAD Ras-Related Associated With Diabetes
SCARAS Scavenger Receptor Class A, Member 5
SELL Selectin L
SESN2 Sestrin 2
SMPX Small Muscle Protein, X-Linked
SOoD2 Superoxide Dismutase 2
TGFB2 Transforming Growth Factor, Beta 2
TNFAIP3 Tumor necrosis factor, alpha-induced protein 3
TMEMS88 Transmembrane Protein 88

Figure 67: Putative FOXL2 target genes in the endomet  rium. Gene orthologs were compared between genes
profiles in the endometrium (Mansouri-Attia et al. 2009) and genes profiles determined in FOXL2 over-expressing
KGN cell line (human, Batista et al. 2007).
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C. Appendix: Transient transfection

The pSG5 Vector

rP SV40/5V40 ori

1 ori+

beta-globin intron

1 pSG5 " o
| 4.1 kb — — BamH |
“—Bglll

~SV40 pA

ampicillin

v LpUC ori

Figure 68: Schematic map of the pSG5 plasmid.  Caprine FOXL2 gene was inserted using BamHL1 restriction
sites (See Fig. 69).
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- primers for the amplification of FOXL2 Open Reading Frame from FOXL2-Puc18, for pSG5
cloning

- BamHI site for pSG5 cloning
DBD: DNA binding domain

AAGAGCGCAGAAAAGAAAACCCACCGAGGOGGEGGACT GGCCT GREOGERGAGEEG0GECGGAGCT GGA
GOCCCTCTCTGI TGEROGGACT CCOCAT GGOCAGAGGCT AAGCT CCACT COCGOCGGBCOGCTCCCTTG
GGGAAGGGAAAGAAGAGGAGAGAGGAGCGAGAGGECOGCCAGCAAGAGOGOGGECGERECAT CCGCGAGTC
TGCAGAAGT TTGAGACT CGBCOGT GAACGGACT TGT GOGCCCGGAT TCTTTGOGGOGOCAGOGGAAAA
GAGCAGGGACT GC0CEEC0BCEECEEE00ERET TT GT CAT GAT GGCCAGCTACCCCGAGCCOGAGEAC
GOCT CBGGGG0CCT GCT GROCCOGGAGACCGECOG0GCAGCCAAGGAGCCOGAGREOGCOGE0GRCOGCE
CAGCCOGGECAAGGECGEE0GE0GG0GGT GCGEGEECAGCCCOGGAGAAGCOGGACCOGGOGCAGAAGE
COCCATACTCTTATGT GEOGCT CATCGOCAT GGOGAT COBCGAGAGCGCCGAGAAGAGGCT CACGCTG
TCOGGCATCTACCAGTACATTATAGCCAAGT TCOCGT TCTACGAGAAGAACAAGAAGGGCT GBCAGAA
TAGCATCOGCCACAACCT CAGCCT CAACGAGT GCTTCAT CAAGGT GCOGCGCGAGGGCGRCGRCGAGE
GCAAGGGCAACT ACT GGACGCT GGACCOGGOCT GCGAGGACAT GT TCGAGAAGGGCAACTACCGRCGE
CGOCGOCGCAT GAAGCGE0CCT TCOBGECCACCGOCCGCGCACT TCCAGCCOGGCAAGGRRCTCTTTGG
GGCAGGAGGCGCT GCGGGT GRCT GOGGOGT GROGGGAGCAGGGEGCAGACGECTACGECTACCT GGCGE
COCCCAAGT ACCT GCAGT COGGCT TCCT CAACAACT CGT GEOCGCTACCGCAGOCGOCT TCGOCCATG
COCTACGOCT CCT GCCAGAT GROGGCCGCCGCOGCERCEECT GCGECGE00G0GGECAGOCGOGERCAC
GGGCAGCCCT GECGCGGCOGCAGT GET CAAGGGGECT GROGGEGOCCGACCGOCT OGTACGEGECCGTACT
CGOGOGT GCAAAGCAT GBOGCT GCCTCOCGGCGT AGT GAACT CGTACAACGGT CTGBGAGGCCCTCCC
GOCGOGCCT COBCOGCOG0CT CACCCCCACT CACACCCGCACGCACACCAT CTGCACGOGGCCGOCGE
TCOCCOG00GE0CCCT COGCACCACGRGECOGCOGRCECCEC00COGEGOCAGCT CAGCCCAGTCAGTC
CGGCCACT GCOGCECCOCOGE0GCCCG0GCOCACCAACGCACCCGRCCT GCAGT TCRCCTGOGCOCGG
CAGOCCGAGCT CGOCATGAT GCATTGCTCT TACT GGGACCACGACAGCAAGACCGGEOGCGCTGCACTC
GOGOCT CGAT CTCT GAGAGT GCAGCGCAT GAAGGCT GOGAGGAT GCAGEEATIBE GCGACGCCCGCCT T
GGOCGCAGCAGCCGGEOCAGACOBEEEE000GEETEEEEEEECCT GAGCCAGOGOCCACCGCOCCOCTCTGE
GOCTCCTCGCACT CCTCGGCTCCTCTTGCTCCTCT TTGT CTCOGCTTCTCCOCGT GTTCRCCTCCCTG
COCTCTTTGCCCT TTCGCT CCTCTGRCCT GCAGBCOGCCT CTCCACGOGT TTTCOGCAGGCCTAGCCT
TCTCOGGRCACCT CAGOGT CGBGGCTAGACACCOGT CGOCAAAAT TCACGBCGGAGAGGAAGT GOCCG
GGGOCGAGGT GCAGCOGGGCT TCBGCT GOGCAGACCT CCTGGOCT TTTCTCACAGGT CGGT GCACTCG
CACTCGGCOCT CCGCOGGGECT GCOGOGOCAT CCTTGGCT AGAAGCGCOGGCAT GGEOCGRCAACAAGA
COCGOGOCGOCOGAGAAAGGGACAAACGGAT GTTTGCT COBCGTACCCT TTTGGAGCTATTCAGAAGC
COCTTCCT GEGGECOCACT GRRCAGGRCGRGGAT TGGGRCT GGAT CAGGGAGCCGGGT CTGOCTCGCTCG
GOGGOCT GTACCCGGGT TTACAAT AGCAT COCGGRCT CGGAGAGAGACT GOGT TTCCTCOGCTCTCCAT
COCGGOGCT TGEGGEC0CCT TCAGGCACGGEGOGGCT GACT CATGT TTTGCTAAAAAGAT CACGAGGGCT
ATTTTAGATAATATAAAAAAAAAT ATTTTTTAAAGGAAAAAAAT TCACCGGAAAACCGGCGAAGTATT
GTGGOCT TGGAGT TTGCTAAAGCAAAACAT GAAAAT CTTTTGCAGGAGAT TTGAAGAATTCCTGTCGG
GOCTTCAGAAAGCTATGT TCAGAGAGGT AGGAGTATAT GOCCAGTATCAGAT GGT TTCCTTTACAAAT
TAGAGCATTTCACCCCTCAACCTATCTTTTTTTTAAAAGT CGAAAACAAATTTCCCOCTATCTTCCGA
TGOCAGOCCT GAGCGGGGAGAT CACT GT CT GOCT GRCOGAAGCT GCAGGGT CGT CTCAT TCOCTCCCT
GATTTTTGTTTTTCAAACGT CTTGCTTCTCOCACT TTGGACAAGAGAAAT GT GAAACCCGGCAGCAGT
CGGACCAGGOGRGCT TGT GACT COGAGCCT ACCGGOCCACGACT CTAGACCTGGTTGT TTTGTAGTGT
GTCGTTCGGAGGACCAAAT TTTTCTAGAAAGAACTAGAGCACTTTTGTTCTTTTGTTGTTTGITTGTT
GTTGTTGTTTTGTCTTGTCAATTCTCGAATAAA

Figure 69: Caprine FOXL2 sequence (M. Pannetier).
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tein sequence, both species share 99% sequence

Figure 70: alignment of bovine and caprine FOXL2 pro

identity.
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(A)

2101 2110 2120 2130 2140 2150 2160
I

2170 2180 2130

2200

Cattle GGARCTCCGCGGAGCCCATACGRATCI
Goat GGARCTCGGCGGAGCCCATACGAATC

ICAGAGCGAGGCTCCTGGCGCTCTGGARRCTCCAGGAGGCAGCTCCGCCAGAGACGCGGGTCGTGTCTCGG
ICAGAGCGAGGCTCCTGGCGCTCTGGARACTCCAGGAGGCAGCTCCGCCAGAGACGCGGGTCGTGTCTCGG

House GGARCTCTGCGGAGCCCATACGAATC ILGGAGCGAGGCTCCTGGCGCACTAGGGACTCCAGGAGGCGGCTGCGCCAGAGACGCGGGTCGCGCCTCGG
PRE iCA
Consensus ggaactc,gcggagcccatacgaate!llllagagegaggctectggegoctotggaaactccagpaggcagctcegecagagacgeggetogtptoctopg
(B) _2.5kb -1.6kb 0
r Bovine FOXL2 mRNA
TSS

-2.5kb -0.4kb

-2.5kb -1.2kb

S O

Murine FOXL2 mRNA

PRE: Progesterone Response Element
Consensus sequence : AGAACA

Figure 71: Promoter sequences of
Response Element (PRE).

sketch.

FOXL2 gene in cattle, goat and mouse containing a Progest
(A) Multalin software (Corpet 1988) was used in order to align promoter sequences of
FOXL2 gene from cattle, goat and mouse species with a consensus site of PRE (namely AGAACA) identified
using Transfac Software. (B) Schematic representation of promoter sequences of bovine, caprine and murine
FOXL2 gene. By convention, Transcription Start Site (TSS) were put at the ATG site namely at 0 kb on the

TSS
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Transient transfection using turbofect kit protocol

Thermo Scientific, TurboFect Transfection Reagent
Quantities and volumes should be scaled-up according to the number of cells/wells to be transfected.

1. In each well, seed ~5x104 adherent cells or ~5x105 suspension cells in 1 ml of growth medium 24 hours prior
to transfection. Note: The recommended confluency for adherent cells on the day of transfection is 70-90% and
suspension cells should be in logarithmic growth phase at the time of transfection.

2. Dilute 1 pg of DNA in 100 pl of serum-free DMEM or other serum-free growth medium.

3. Briefly vortex TurboFect reagent and add 2 pl of it to the diluted DNA. Mix immediately by pipetting or vortexing.
4. Incubate 15-20 min at room temperature. Note: Prepare immediately prior to transfection.We recommend
starting with 1 pug of DNA and 2 ul of TurboFect per well in a 24-well plate and subsequent optimization may

further increase transfection efficiency depending on the cell line and transgene used.

5. Add 100 pl of the TurboFect/DNA mixture dropwise to each well. Do not remove the growth medium from the
cells.

6. Gently rock the plate to achieve even distribution of the complexes.
7. Incubate at 37°C in a CO2 incubator.

8. Analyse transgene expression 24-48 hours later. For stable transfection, cells should be grown in selective
medium for 10-15 days.

Gene primer (5'to 3') Amplified base pair lenght
F TECGGGCCCTCTATTGC
ATF3 . —— 65
R GCTGGACTCGTGTTTCTGCTT
F CTCTCCTACCTCGGCTTCCTATG
DLX5 - = 99
R GTAAGCTTITGGCGGGATAGCT
S5k F TETGGGCCTCAAGGACTTG 66
R TCTCCAGAAGAGGTAAGGACTTGAGT
F CCGGCATCTACCAGTACATTATAGC
FOXL2 p—— ———— 76
R GUACTCGTTGAGGCTGAGGT
F TOGAGUTGGAGAAGGAGTT
HOXA10 R ; Nn
R TIGTCTGTCCGTGAGGTG
F CACCATCCCTGCCAATATCTTG
PGR 227
R CAAGATATTGGCAGGOATGGTG
F TCCACCAACTTATAATGTGCAC
PTGS2 . 81
R GGCAGTCATCAGGCACAGGA
F CTTEAATTCAGCCTGGGTGTTC
RG52 _ = 110
R CTGCCCCAGTACCAGCTICT
F ACTGGACCTGGCTTTTCTGTGA
RSAD2 - 100
R ACGTTGCCCTAGATTACATCCTTATT
F CAAGGGTGATGAAGGGAAGC
SCARAS - - 121
R GCCACTGGCATCCACTGTTC
F TCTGTTGGTGTCCAAGGCTC .
soD2 T = 350
R ACTACAACAGAGCAGUGTAC
F GOATGTCACCAGGACGTITAATG
TNFAIP3 20
R GAGCCACTGOAGCTGAGGTT

Figure 72: Sequences of primers used in Chapter 3 fo  r transient transfection analyse on endometrial
stromal and glandular epithelial cells.
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D. Appendix: Communication

1. Oral presentation

3 COST Action FA0702; GEMINI General Conference; Mat ernal Interactions with
Gametes and Embryos; 1%-2"! October 2010; Soustons, France

Characterization of the Forkhead box transcription factor FOXL2 in the bovine endometrium

during early pregnancy

Eozenou C.*, Carvalho A", Gall L.}, Forde N.?, Giraud-Delville C.*, Pannetier M.*, Auguste
A.l, Tarrade A.', Charpigny G.%, Roche JF.?, Richard C.?, Sandra O.

(1) INRA, UMR 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas,

France
(2) University College Dublin, Veterinary Sciences Center, Belfield, Dublin 4, Ireland.

(3) INRA, UE 1298 Unité Commune dExpérimentation Animale de Bressonvilliers,

Leudeville, France

In mammals, implantation is critical for the outcome of pregnancy and involves a tightly
regulated communication between the endometrium and the embryo. Our recent
transcriptome analyses using bovine endometrium have revealed the expression of several
families of transcription factors, including several Forkhead box (FOX) transcription factors
during early pregnancy. Among them, the expression of a member of the FOXL sub-class -
FOXL2- has been detected. FOXL2 is one of the most crucial genes involved in ovarian
differentiation and until now its expression has appeared to be restricted to pituitary, ovary
and foetal eyelid. To determine how FOXL2 contributes to endometrial physiology, we
characterized the expression, regulation and cellular localisation of FOXL2 using real-time
PCR, western blot and immunohistochemistry analyses under a number of physiological and
experimental parameters. The expression of FOXL2 was confirmed at both transcriptional
and protein levels in the cyclic and pregnant bovine endometrium. FOXL2 transcript was
expressed from day 5 to day 20 post-oestrus and the expression level was independent of
systemic progesterone concentrations during the pre-implantation period. Implantation (20
days post oestrus) was associated with a significant decrease of FOXL2 transcript and
protein expression in the pregnant endometrium. Interferon-tau, the major signal of
pregnancy recognition in ruminants, partially accounted for the reduction in FOXL2
expression. At the cellular level, FOXL2 was found to be localised in the luminal epithelium,
the stroma and the glandular cells of the bovine endometrium. Altogether, our results
suggest FOXL2 as a major factor associated with the female reproductive axis in mammals.
The uterine expression of FOXL2 deserves further investigation to better understand the
biological functions of this transcription factor during pregnancy.
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Society for Reproduction and Fertility (SRF) confer  ence 2012
9-11 July 2012, Edinburgh

FOXL2 endometrial expression is impacted by P4 and not IFNT in cattle

Caroline Eozenou®, Anais Vitorino Carvalho®, Niamh Forde?, Maélle Pannetier*, Christophe

Richard®, Takashi Shimizu®, Stefan Bauersachs®, Corinne Giraud-Delville*, Akio Miyamoto®,

Gilles Charpigny®, Patrick Lonergan?, Eric Pailhoux® and Olivier Sandra®

'INRA, Jouy-en-Josas, France

2UCD, Dublin, Ireland

INRA, Leudeville, France

*Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
*LMU, Munich, Germany

In mammals, implantation is critical for the outcome of pregnancy and involves a tightly
regulated communication between the endometrium and the embryo. Using bovine
endometrium, our recent transcriptome analyses listed several families of transcription
factors, including several Forkhead box (FOX) transcription factors at day 20 post-oestrus.
Among them, a member of the FOXL sub-class -FOXL2- appeared as differentially regulated
between the caruncles and the intercaruncular areas. FOXL2 is a key gene for ovarian
differentiation and until now its expression was thought to be restricted to pituitary, ovary and
foetal eyelid. In order to gain new insights into FOXL2 biological functions in the
endometrium, we characterized the expression and the regulation of this factor during the
estrous cycle and establishment of pregnancy in cattle. Both FOXL2 transcript and protein
were expressed from day 5 to day 20 of the estrous cycle, and their levels showed a
significant increase (3-fold, P < 0.01) during the luteolytic phase The endometrial expression
of FOXL2 mRNA did not vary during maternal recognition of pregnancy (16 to 20 days post-
estrus) and FOXL2 did not appear to be an interferon-tau target gene. A two-day
progesterone supplementation in heifers led to a clear down-regulation of FOXL2 protein
levels (2.5-fold, P < 0.05). In addition, ovariectomized cows treated with progesterone exhibit
a significant inhibition of FOXL2 expression compared to control ovariectomized cows (2.4-
fold, P < 0.05). Altogether our results indicate that FOXL2 expression is negatively regulated
by progesterone in the endometrium. At the cellular level, FOXL2 was detected in
endometrial stromal and glandular cells and its sub-cellular localization was shown to be
nuclear in endometrial samples collected during the luteolytic phase while it was not detected
in the nuclei during the luteal phase and at implantation. Our findings provide the first
evidence that FOXL2 is part of the physiology of endometrial tissue in mammals.
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2. Poster
Society for Study of Reproduction’s (SSR) 46th Annu  al Meeting

Reproductive Health: Nano to Global
FOXL2 is inhibited by progesterone in ruminant endometrium

Caroline Eozenou', Vincent Mauffre’, Pierrette Reinaud', Sylvaine Camous®, Philipe

Bolifraud®, Jean-Pierre Albert', Takashi Shimizu?, Akyo Miyamoto?, Maélle Pannetier’,

Fabienne Constant’, Kais H. Al-Gubory?, Olivier Sandra*

'INRA, Jouy-en-Josas, France
2 Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan

In mammals, implantation is critical for the outcome of pregnancy and involves tightly
regulated and coordinated interactions between the endometrium and the conceptus
(embryo and associated extra-embryonic membranes). The mutual actions of estrogen and
progesterone on their uterine receptors are essential for the endometrium receptivity and
conceptus implantation. Using bovine endometrium at 20 days post-oestrus (dpo), our
microarrays analyses have listed the expression of families of transcription factors, including
several members of the winged-helix/forkhead domain (FOX) transcription factors family. We
recently demonstrated that FOXL2 -a member of the FOXL sub-class considered as a key
gene for ovarian differentiation- was regulated during early pregnancy in bovine
endometrium, independently of the presence of interferon-tau. In the present study, we have
aimed to investigate the contribution of steroids hormones in the regulation of FOXL2 gene
expression in ruminants using physiological and experimental models derived in cattle and
sheep. First, we have confirmed that FOXL2 is expressed in the ovine endometrium across
the estrous cycle, starting from day 4 to day 15 post-oestrus (dpo) and in pregnancy, at day
15 post-oestrus (day of implantation in ewe). In keeping with our data in the bovine
endometrium, FOXL2 endometrial expression in sheep is low and similar during the luteal
phase of estrous cycle (day 4 to 12 post-oestrus) while its expression (RNA and protein)
significantly increases during the luteolytic phase (day 15 post-oestrus in cycle). In pregnant
ewes, inhibition of progesterone production (P4) by trilostane (an inhibitor of 3f-
hydroxysteroid dehydrogenase activity) during the 5-16 dpo period prevents the P4 rise and
leads to a significant increase of FOXL2 transcript expression compared to the control group
(1.4-fold in the caruncular area, P < 0.05). Ovariectomized ewes or cows treated with
exogenous P4 for 12 days or 6 days respectively have exhibited a significant inhibition of
FOXL2 gene expression compared to control ovariectomized females (in sheep, transcript:
1.8-fold, P < 0.05; protein: 2.4-fold, P < 0.05; in cattle, transcript: 2.2-fold, P < 0.05).
Nevertheless, exogenous 17B-estradiol (E2) treatment for 12 days in sheep or 2 days in
cattle did not affect FOXL2 endometrial expression compared to control ovariectomized
females. In vitro experiments based on the transient transfection of bovine FOXL2 promoter
are underway in order to confirm the direct impact of P4 and/or E2 treatments on the activity
of FOXL2 promoter. Collectively, our results demonstrate that FOXL2 gene expression is
down-regulated by progesterone in ruminant endometrium. Determining the biological
actions of FOXL2 will be necessary to define the contribution of this transcription factor in the
sensor and driver properties of the endometrium.

Research supported by INRA-Phase Department and ANR-08-GENM-037.
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Abstract

STAT proteins are a family of transcription factors critical for the regulation of numerous biological
processes. In cattle, microarray analyses have identified STAT1 as a differentially expressed gene in
the endometrium during the peri-implantation period. To gain new insights about STAT1 during the
oestrous cycle and early pregnancy, we investigated STAT1 transcript and protein expression, as well
as its biological activity in bovine tissue and cells of endometrial origin. The expression of STAT1
during the oestrous cycle was not affected by progesterone. Pregnancy increased STAT1 expression
on day 16, and protein and phosphorylation levels on day 20. In cyclic and pregnant females, STAT1
was located in endometrial cells but not in the luminal epithelium at day 20 of pregnancy. Interferon-
tau (IFNT) stimulated STATI mRNA expression, protein tyrosine phosphorylation, and nuclear
translocation, in vivo and in vitro. Using chromatin immunoprecipitation in IFNT-stimulated
endometrial cells, we demonstrated an increase of STAT1 binding on IRF1, CISH, SOCS1 and SOCS3
gene promoters consistent with the induction of their transcripts. Our data provide novel molecular
insights into the biological functions of STAT1 in the endometrium in mammals. Future experiments
will be necessary to identify factors affecting STAT1 activity as well STAT1 responsive genes in order
to better understand the biological functions regulated by this transcription factor in the various cells
composing the endometrium during pregnancy maternal recognition and implantation.
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Introduction

In mammals, implantation represents a crucial step of pregnancy the success of which relies on the
tightly regulated interactions between the growing embryo and the receptive endometrium (Lee &
DeMayo 2004). Through its biosensoring and biodriving properties, the endometrium plays a critical
role in the progression of implantation in various species including ruminants (Spencer et al. 2007,
Sandra et al. 2011). In cattle, large-scale changes in endometrial gene expression at various stages of
the oestrus cycle and early pregnancy (before implantation that occurs around 20 day post-oestrous)
have been investigated using microarrays and RNA-sequencing analyses (Klein et al. 2006,
Bauersachs et al. 2009, Mansouri-Attia et al. 2009a, Mansouri-Attia et al. 2009b, Walker et al. 2010,
Forde et al. 2011a, Forde et al. 2011b, Bauersachs et al. 2012, Forde et al. 2012, Mamo et al. 2012).
The expression of numerous genes has been shown to be altered by the presence of the conceptus
as early as day 15 post-oestrus (Forde et al. 2011b, Bauersachs et al. 2012) but also by interferon-tau
(IFNT), a cytokine secreted by trophectoderm cells and considered as the major signal of maternal
recognition of the pregnancy in ruminants (Ealy & Yang 2009). Based on transcriptome profiles,
various families of transcription factors have been shown to be expressed in the endometrium,
including several members of the winged-helix/forkhead domain (e. g. FOXL2; (Eozenou et al. 2012)
and the Signal Transducer and Activators of Transcription (STAT) genes (Klein et al. 2006, Bauersachs
et al. 2009, Mansouri-Attia et al. 2009a, Mansouri-Attia et al. 2009b, Walker et al. 2010, Forde et al.
20114, Forde et al. 2011b, Bauersachs et al. 2012, Forde et al. 2012, Mamo et al. 2012).

The STAT proteins represent a family of transcription factors known to be essential for cell
proliferation, differentiation and apoptosis (Levy & Darnell 2002, lvashkiv & Hu 2004). In mammalian
cells, the STAT family is composed of seven members transcribed from different genes: Statl1, -2, -3, -
4, -5A, -5B and -6. Upon phosphorylation by the Janus kinases (JAK), STAT proteins dimerize,
translocate to the nucleus where they bind specific motifs of DNA in order to regulate the
transcription of their target genes (Stark et al. 1998). A wealth of STAT target genes have been
identified in various cell models and species, including the Suppressor of Cytokine signalling (SOCS)
proteins that are involved in the negative regulation of the JAK-STAT pathway (Rico-Bautista et al.
2006, Yoshimura et al. 2007).

In the endometrium of humans and mice, Stat3 and Stat5 genes have been shown to have significant
biological functions during early pregnancy (Maj & Chelmonska-Soyta 2007). Murine Stat3 has been
described in the luminal epithelial cells at implantation (4-5 days post-coitum) and in the decidual
cells from 7 to 9 days post-coitum (Teng et al. 2004). Phosphorylation of murine STAT3 is induced by
embryo implantation (Teng et al. 2004) and the inhibition of STAT3 activity is associated to
implantation failure due to the absence of stromal cell decidualization (Catalano et al. 2005,
Nakamura et al. 2006). In humans, the level of phosphorylated STAT3 appears to be abnormally low
in the endometrium of some patients with unexplained infertility (Dimitriadis et al. 2007). In the case
of Stat5, several studies have highlighted the involvement of prolactin (PRL)-activated STATS5 in the
regulation of glandular epithelium development and uterine secretions in humans and mice (Mak et
al. 2002, Nagashima et al. 2008, Bednorz et al. 2011, Ji et al. 2011). Taken together, these data
demonstrate that STAT3 and STATS5 take part in the regulation of uterine physiology in species
displaying an invasive implantation.

In ruminants, reports have described a highly specific mechanism involving IFNT and the STAT1
signalling pathways during gestation until implantation. In vitro analyses of cultured ovine or bovine
epithelial endometrial cells and human STAT1-deficient fibrosarcoma cells have shown that STAT1
phosphorylation represents a major step of the interferon-tau (IFNT) intracellular signalling pathway
(Binelli et al. 2001, Stewart et al. 2001, Stewart et al. 2002, Kim et al. 2003, Forde et al. 2011a). A
model has been proposed, describing that STAT1 tyrosine phosphorylation elicited by IFNT leads to
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the formation of STAT1 homodimers as well as STAT1-STAT2-Interferon Responsive Factor 9 (IRF9)
heterotrimer (known as IFN-stimulated gene factor 3 complex; ISGF3) that translocates to the
nucleus and drive the expression of classical IFN-stimulated genes (e. g. IRF1 and OAS1) upon their
binding to DNA responsive elements. In the sheep, the expression of STATI1 gene, that is restricted to
the endometrial stromal cells, is up-regulated around implantation (Choi et al. 2001). In cattle, the
only data available on STAT1 expression is its identification as a endometrial genes differentially
regulated during the maternal recognition period and at implantation (lvashkiv & Hu 2004, Spencer
et al. 2007, Sandra et al. 2011, Eozenou et al. 2012) in caruncular (CAR) and intercaruncular (ICAR)
areas (Mansouri-Attia et al. 2009a, Walker et al. 2010). Thus, no independent investigation has been
published on STAT1 regulation, localization and involvement in the bovine endometrium during the
pre-implantation period.

The present study aimed to gain new insights into the contribution of STAT1 to the regulation of
endometrial physiology in ruminants. Using in vivo and in vitro experimental models, the impact of
progesterone (P4), IFNT and pregnancy on the expression and the regulation of STAT1 transcript and
protein as well as its phosphorylation status was analyzed in the bovine endometrium and
endometrial cells. In addition, the regulation of SOCS genes by STAT1 was investigated at the
transcriptional level using chromatin-immunoprecipitation and primary cultures of stromal cells
derived from the bovine endometrium.

Material and Methods
Animals and cell cultures

All the experiments were performed in agreement with European Community Directive 86/609/EC,
the Animal Research Ethics Committee of University College Dublin and the French Ministry of
Agriculture (authorization B91332). Protocols were registered by the Department of Health and
Children (Ireland) or by the Regional Ethical Committee of Animal Experimentation of INRA and
AgroParisTech (France, protocol 12-124).

Experiment 1: STAT1 expression during the maternal pregnancy recognition period

As previously described (Forde et al. 2011b, Eozenou et al. 2012), synchronized cross-bred beef
heifers were artificially inseminated or not inseminated (cyclic cows). Animals were slaughtered at
day 16 (cyclic: n=5, pregnant: n=4) or at day 20 post-oestrus (cyclic: n=6, pregnant: n=5). Conceptuses
were collected by uterine flushing and their correct stage of development was confirmed by
microscopy (Degrelle et al. 2005). Endometrial CAR and ICAR tissues were collected separately from
the ipsilateral horn to the corpus luteum as previously described (Mansouri-Attia et al. 2009b). Tissue
samples were immediately frozen in liquid nitrogen and stored at -80°C or fixed in paraformaldehyde
4% (Electron Microscopy Science, Hatfield, USA) in phosphate-buffered saline (PBS, Euromedex,
Souffelweyersheim, France) for further analyses.

Experiment 2: Endometrial STAT1 gene expression at implantation

Charolais cows were synchronized by the Crestar method (Mansouri-Attia et al. 2009a) and were
artificially inseminated (pregnant n=6; cyclic n=5). On day 20, animals were slaughtered and
conceptuses were collected by uterine flushing. Development stage of conceptuses was determined
as described in Experiment 1. Endometrium was collected as described in Experiment 1.

Experiment 3: Regulation of endometrial STAT1 expression by a short-term interferon-tau
treatment
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As previously described (Forde et al. 2011b, Eozenou et al. 2012), synchronized cyclic Charolais cows
were infused into the uterine lumen with recombinant ovine interferon-tau (rolFNT; 200 pg/ml in
saline buffer, 25 ml/horn, 2 h) or a control saline solution at day 14 post-oestrus. Endometrium from
5 IFNT-infused and 5 control cows was collected as described in Experiment 1.

Experiment 4: Impact of P4 supplementation on STAT1 expression

Synchronized cyclic and pregnant cross bred beef heifers received a P4-releasing intravaginal device
containing 1.55 g of P4 (Ceva Animal Health, Libourne, France) on day 3 post-oestrus, as previously
published (Carter et al. 2008, Forde et al. 2011a, Eozenou et al. 2012). Females were slaughtered
after 2 days (day 5 post-oestrus, normal P4 in cyclic heifers, n=4 and in pregnant heifers, n=4; high P4
in cyclic heifers, n=3, and in pregnant heifers, n=2) and 13 days (day 16 post-oestrus, normal P4 in
cyclic heifers, n=3 and in pregnant heifers, n=4; high P4 in cyclic heifers, n=3, and in pregnant heifers,
n=5) of P4 supplementation. Endometrium was collected and snap-frozen before being stored at -
80°C.

Cell cultures

In order to analyze the regulation of STAT1, IRF1 and SOCS genes in vitro, epithelial and stromal cell
cultures were derived from bovine endometrial tissues sampled during the luteal phase according to
ovarian morphology. Primary endometrial epithelial and stromal cells were cultured as previously
described (Mansouri-Attia et al. 2009a, Cronin et al. 2012) and treated with 100 ng/ml or 1000 ng/ml
of ovine recombinant IFNT solution for 0.5, 2 and 24 h. Each experiment was performed using
stromal and epithelial cells isolated from four independent animals.

RNA extraction

Total RNA was extracted from frozen tissue, using Trizol Reagent (Invitrogen, Cergy-Pontoise, France)
according to the manufacturer’s recommendations and as previously described (Mansouri-Attia et al.
2009b, Eozenou et al. 2012). DNAse treatment followed by RNA purification was carried out using
Qiagen columns according to the manufacturer’s protocol (RNeasy Mini Kit, Qiagen, France).
Cultured primary cells were washed with 1 ml of PBS, and total RNA was extracted using the RNeasy
Mini Kit and the automated system Qiacube (Qiagen, Crawley, UK; (Cronin et al. 2012). Quality and
integrity of total extracted and purified RNA were determined using an Agilent 2100 bioanalyzer. One
pl of RNase inhibitor (RNAsin, Promega, France) was added to each sample before storing at -80 °C.

Real time PCR (qPCR)

As previously described (Mansouri-Attia et al. 2009b, Eozenou et al. 2012), 1 ug of total RNA was
reverse transcribed into cDNA using OligodT and SuperScript Il in a 20 pl reaction volume
(Invitrogen). gPCR assays were performed using SYBR Green Master Mix (Applied Biosystems, Saint
Aubin, France) and the Step One Plus system (Applied Biosystems). Primers were designed with
Primer-BLAST (NCBI, http://www.ncbi.nlm.nih.gov/tools/primer-
blast/index.cgi?LINK LOC=BlastHome) or Primer Express Software (Applied Biosystems) and
synthesized by Eurogentec (Angers, France). Primers are listed in Table 1. To assess the specific
amplification of the expected cDNA fragments, we checked that the sequence of each amplicon was
the expected one. Expression of each gene of interest was normalized to that of the most stable
reference gene as determined by qBaseplus software (Biogazelle, Gent, Belgium) among six
housekeeping genes. Care was taken to consider Ct value within the linear amplification zone. Gene
expression was considered as significant when Ct values were lower than 34, and when one single
DNA fragment with the expected size and sequence was amplified.

Western Blotting
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Frozen tissues were ground in liquid nitrogen and then resuspended (200 pl/100 pg of tissue) in
radioimmonuprecipitation assay (RIPA) solution (50 mM Tris HCI [pH 8], 150 mM NaCl, 1% Nonidet P-
40, 0.5% sodium desoxycholate, containing extemporaneously added protease inhibitor cocktail
[Roche, Boulogne-Billancourt, France]). Samples were centrifuged at 20,000 X g for 5 min at 4 °C. The
supernatant corresponding to the total protein extract was collected. All samples were stored at -80
°C. Protein quantification was performed using the Bradford method with bovine serum albumin
(BSA) as a standard (Sigma-Aldrich, Saint-Quentin Fallavier, France).

Western blot immunoassays were processed as previously reported (Eozenou et al. 2012).
Membranes were incubated with primary antibody overnight at 4 °C, then incubated with the
appropriate peroxidase-conjugated secondary antibody (goat anti-rabbit or goat anti-mouse; dilution
1:5000; Santa Cruz Biotechnology, Heidelberg, Germany) for 1 h at room temperature. The
optomised primary antibodies were used as follows: rabbit anti-phospho-STAT1 (Tyr701) antibody,
(diluted 1:200; #9171, Cell Signaling, Ozyme, Saint Quentin en Yvelines, France) in PBS-Tween 20
(PBS-T, 1:1000) solution containing 5% BSA; rabbit anti-STAT1 antibody (diluted 1:200; sc-346, Santa
Cruz Biotechnology) in PBS-T solution containing 4% non-fat dry milk. To control for even loading,
blots were hybridized with a mouse anti-actin B (ACTB) antibody (diluted 1:2000; Sigma-Aldrich) in
PBS-T solution containing 4% non-fat dry milk. Immunoreactive proteins were detected with
Luminata Western HRP chemiluminescent subtrates (Millipore, Molsheim, France) and analyzed
using an image analysis system (Advanced Image Data Analyzer software; LAS 1000 camera; Fujifilm,
Bois d’Arcy, France).

Immunohistochemistry

Sections of endometrium from the ipsilateral horn to the corpus luteum were fixed in 4%
paraformaldehyde in PBS overnight at 4 °C. After three washes with PBS, samples were dehydrated
with increasing concentrations of ethanol treatment (30%, 50%, 70%, 90%, 100%) in a Shandon
Citadel 1000 tissue processor (Thermo Scientific, Courtaboeuf, France) for 12 h. Then, tissues were
embedded in paraffin and stored at 4 °C until processing.

Sections (7 um) were cut with a microtome Leica RM2245 (Leica, Nanterre, France) then
immunohistochemistry was performed essentially as described (Eozenou et al. 2012). Slides were
incubated with the rabbit anti-STAT1 primary antibody (dilution 1:500; sc-346, Santa Cruz
Biotechnology) overnight at 4 °C. As a negative control, the primary antibody was incubated for 1 h
with gentle rotation at room temperature with the blocking peptide (dilution 1:50; sc-346P, Santa
Cruz Biotechnology). The anti-rabbit biotinylated secondary antibody (dilution 1/500; Jackson
ImmunoResearch, Suffolk, United Kingdom) was incubated for 1 h at room temperature. Staining was
revealed with diaminobenzidine substraste and urea (SIGMAFAST 3,3'-Diaminobenzidine tablets,
D4293, Sigma) in Tris-buffer for 1.5 min. Slides were dehydrated then mounted in a Eutkitt mounting
medium (Sigma). Images were acquired with a NanoZoomer Digital Pathology System then they were
analyzed with the NanoZoomer Digital Virtual Slide Viewer software (Hamamatsu, Japan). Each
experiment was repeated for four females per biological condition.

Immunofluorescence

Sub-confluent cultures of bovine stromal cells were incubated with rolFNT solution (recombinant
ovine interferon-tau, 100 ng/ml) for 0, 15, 30, 60 and 120 min at 37 °C. Cells were cultured on sterile
cover slides and fixed with 90% v/v methanol for 5 min at -20 °C then were permeabilized with 0.5%
TritonX-100 for 30 min at room temperature. Non specific binding sites were blocked with 1x PBS
containing 2% BSA for 1 h at room temperature. The incubation with the rabbit anti-STAT1 primary
antibody (dilution 1:20, 610585, BD Technologies, France) was performed over night at 4 °C. As a
negative control, slides were incubated without primary antibody overnight at 4 °C. The donkey
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AffiniPure Anti-Mouse Cy5-conjugated IgG (dilution 1:200; 715-175-151, Jackson Immunoresearch)
was incubated for 45 min. DNA was counterstained with DAPI (10 ng/ml; D1306, Invitrogen).
Endometrial labeled cells were examined using a Zeiss ApoTome structured illumination system
(Axioplan Imaging, Zeiss, Le Pecq, France; MIMA2 platform, INRA, Jouy-en-Josas) and analyzed with
the AxioVision Microscopy Software (Zeiss, Le Pecq, France). Experiments were run using primary
endometrial cultures derived from three different animals.

Chromatin Immunoprecipitation

Monolayer cultures of endometrial stromal (fibroblasts) cells (3 x 10%) were treated with rolFNT (100
ng/ml) for 30 min. An equal amount of cells were left untreated. Cells were harvested using a silicon
scraper, snap-frozen in liquid nitrogen and stored at -80 °C until the chromatin immunoprecipitation
(ChIP) was processed.

Cells were cross-linked in 1x PBS containing 1% formaldehyde (VWR-Prolabo, Fontenay sous Bois,
France) for 10 min at room temperature then quenched with 125 mM glycine (VWR-Prolabo,
Fontenay sous Bois, France) for 5 min at room temperature. After centrifugation, cells were washed
twice in cold 1x PBS. In order to prepare nuclear-enriched extracts, cells were re-suspended in
hypotonic buffer (20 mM Hepes pH 7.9, 10 mM KCl, 1 mM EDTA pH 8, 10% glycerol, 1 mM DTT, 0.5
mM PMSF, 0.1 mM sodium orthovanadate and 1x Protease inhibitor cocktail; Roche, Boulogne-
Billancourt France) for 15 min and homogenized with a dounce (Dounce B, Dominique Dutscher,
Brumath, France; 30 stokes) on ice. The nuclei were collected by centrifugation at 20,000 X g for 3
min at 4 °C. Nuclear pellets were incubated in nuclear lysis buffer (10 mM Tris-HCI pH 8, 200 mM
NaCl, 1 mM EDTA pH 8, 0.5 mM EGTA pH 8, 1x Protease inhibitor cocktail) at 4 °C and vortexed every
2 min for 10 min. After two washes, nuclei were re-suspended in shearing buffer (1% SDS, 10 mM
EDTA, 50 mM Tris pH 8.0, 1x Protease inhibitor cocktail). DNA was shorn using a Covaris S2 device
(duty cycle : 20%, intensity : 8, cycles per burst : 200, bath temperature : 4 °C) for 30 min.
Supernatant was recovered by centrifugation at 20,000 X g for 3 min at 4 °C then soluble DNA was
diluted at least 10 times in dilution buffer (0.01% SDS, 1.1% triton X-100, 1.2 mM EDTA, 16.7 mM
Tris-HCI, 167 mM NaCl). Immunoclearing was performed for 1 h at 4 °C with protein A-agarose beads
coated with salmon sperm DNA (50% of slurry, Millipore, Molsheim, France). 0.1% of pre-cleared
DNA was kept as a control sample of DNA fragmentation named input sample. Immunoprecipitation
was performed with a rabbit anti-STAT1 antibody (5.6 pg for 50 pg DNA; sc-346, Santa Cruz
Biotechnology) or anti-chicken IgG (C2288-1ML, Sigma) overnight at 4 °C before adding Dynabeads
Protein A (10002D, Invitrogen) for 2 h at 4 °C. Immunoprecipated beads were washed once in
washing buffer 1 (0.1%SDS, 1% Triton X100, 2 mM EDTA, 20 mM Tris-HCI, 150 mM NacCl), once in
washing buffer 2 (0.1% SDS, 1% Triton X100, 2 mM EDTA, 20 mM Tris-HCIl, 500 mM NaCl), once in
washing buffer 3 (0.25 M LiCl, 1% sodium deoxycolate, 1 mM EDTA, 10 mM Tris-HCI, 10% Igepal) then
twice in TE 1X, pH 8.0. Washed beads were incubated in elution buffer (100 mM NaHCO3, 1% SDS)
for 30 min under agitation. The DNA-containing supernatant was obtained using DynaMag magnet
(Invitrogen) and incubated overnight at 65 °C to reverse the formaldehyde cross-link. DNA was
purified by phenol:chloroform : isoamyl alcohol extraction and precipitation with ethanol. To analyze
ChIP experiments, STAT1 binding elements were defined for IRF1 and each SOCS promoter using
Genomatix Matlnspector Software (Genomatix Software GmbH, Munich, Germany) and primers
surrounding these STAT1 binding sites were designed (Primer Express Software; Applied Biosystems).
The percentage of immunoprecipitation was calculated as immunoprecipitated DNA/Input sample
DNA ratio. ChlIP experiments were repeated twice for each promoter.

Statistical analyses

All statistical analyses were performed with the GraphPad Prism 6 software (GraphPad, La Jolla,
USA). STAT1 gene expression (transcript or protein) in tissues was first subjected to a two-way

193



ANOVA followed by post-hoc Bonferroni tests to analyze effects of day, pregnancy status (cyclic or
pregnant), endometrial areas (CAR and ICAR), IFNT and P4 impact and their interactions. IFNT impact
on primary cultures of bovine endometrial cells was subjected to a one-way ANOVA analysis followed
by Dunett’s multiple comparison tests.

Results
Endometrial STAT1 expression during the oestrous cycle and pre-implantation period

In order to characterize the regulation of STAT1 in the bovine endometrium, transcript and protein
expression as well as phosphorylation level were analyzed in the CAR and ICAR endometrial areas on
day 16 and day 20 of the oestrous cycle and pregnancy.

No significant variation of STAT1 expression (transcript or protein) was observed during the oestrous
cycle in CAR or ICAR endometrial areas (P > 0.05 on days 5, 16, 20; Fig. 1A, 1B). In the pregnant CAR
and ICAR areas compared to their cyclic counterparts, STAT1 transcript level significantly increased at
day 16 (P < 0.05; Fig. 1A) and day 20 (P < 0.001; Fig. 1A). On the other hand, STAT1 protein and
phosphorylation were affected by the conceptus in CAR and ICAR endometrial areas only on day 20
of pregnancy (P < 0.001, Fig 1B, 1C; supplementary data 1A). In both experiments, no significant
difference of STAT1 gene expression was observed between CAR and ICAR endometrial areas.

On days 16 and 20 of the oestrous cycle (Fig. 2A-C, 2D-F), no significant variation of STAT1 staining
was observed: STAT1 protein was visible in the luminal epithelium, glandular epithelium, stromal
cells as well as in the endothelial cells of blood vessels. The staining appears to be both cytoplasmic
and nuclear. An impact of the conceptus on STAT1 staining was observed on day 20 of pregnancy
(Fig. 2J-L) where it increased in the cytoplasm of the stromal, glandular and vascular cells. Moreover,
STAT1 nuclear localization was barely detectable in the luminal epithelium at day 20 of pregnancy
compared to any other condition (Fig 2K).

Regulation of endometrial STAT1 expression by two factors involved in bovine pregnancy
maintenance

Two major factors have been shown to be necessary for maintaining bovine pregnancy: P4 and IFNT.
The first is a steroid hormone secreted by the corpus luteum whereas the second is secreted by the
trophectoderm of elongated conceptus, during the early pregnancy. In order to investigate the effect
of these factors on endometrial STAT1 expression in vivo, two experimental bovine models were
developed.

In the endometrium of cyclic or pregnant cross-bred beef heifers, no variation of STAT1 gene level
(transcript and protein) was observed between day 5 and day 16 post-oestrus (Fig. 3). In cyclic and
pregnant females, the 2-day treatment of exogenous P4 did not affect STAT1 transcript level but the
13-day treatment led to a significant increase of STAT1 transcript level (P < 0.05; Fig. 3B) in pregnant
heifers.

On the second experimental model, the IFNT treatment of cyclic bovine endometrium during a short
time (2 h) induced the significant increase of STATI mRNA in CAR and ICAR endometrial areas (P <
0.05; Fig. 4A). In accordance, STAT1 mRNA level increased with a 2h and 24h treatment of IFNT in
primary cultures of stromal cells while its only increased in epithelial cells with a 24h treatment (Fig.
5). Whereas no significant variation of STAT1 protein level was detected (Fig. 4C), STAT1
phosphorylation status significantly increased in CAR and ICAR areas in cyclic bovine endometrium
treated with IFNT (P < 0.05; Fig. 4D). Moreover, IFNT treatment induced the translocation of STAT1 to
the nuclei in the epithelial, stromal and glandular cells in vivo (Fig 4Ev) as well as in primary cultured
fibroblastic cells (supplementary data 1B; 15 and 30 min of treatment).
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Regulation of IRF1 and SOCS genes by IFNT in primary cultures of bovine endometrial cells

We investigated the regulation of /RF1 (a transcription factor known to be involved in cytokine
signalling pathway) and SOCS (a family of negative regulator of cytokine signalling pathway) gene
expression in primary cultures of endometrial epithelial and stromal cells treated by rolFNT (100
ng/ml; 0.5, 2 and 24 h; Fig. 5). No significant difference was observed between treatments with 100
or 1000 ng/ml of IFNT (data not shown). No variation of SOCS4-7 mRNA levels was observed in
epithelial and stromal cells. In IFNT-treated epithelial cells, no significant induction of CISH mRNA was
apparent, whereas SOCS3 mRNA expression slightly increased at 0.5 and 2 h (P < 0.001). Up-
regulation of IRF1, SOCS1 and SOCS2 mRNA expression was restricted to the 2 h time point (P < 0.05).
In stromal cells, IRF1, SOCS1, SOCS3, and to a lesser extent CISH mRNA induction started as early as
0.5 h after IFNT addition (P < 0.05). For these 4 genes, RNA expression peaked at 2 h of IFNT
treatment (P < 0.01) before declining to a non-significant threshold at 24 h. SOCS2 expression was
increased with a 2 and 24 h IFNT treatment (P < 0.05). Thus, stromal cells appeared more sensitive
than epithelial cells to IFNT treatment.

STAT1 binding induced by IFNT on IRF1 and SOCS gene promoters.

In order to analyze the putative regulation of /IRF1/SOCS genes by STAT1, the presence and the
position of STAT binding site were investigated in a 1000 bp genomic region upstream of the TSS (Fig.
6) based on literature and Matlnspector analysis. IRF1, CISH, SOCS1, SOCS2, SOCS3 and SOCS7 gene
upstream regions presented at least one STAT binding site (Fig. 6) whereas SOCS4, SOCS5 and SOCS6
did not. Based on the regulation of IFNT early target genes (Fig. 5) and the presence of STAT1 in the
nucleus of stromal cells (supplementary data 1B), the binding of STAT1 was analyzed by ChIP on
stromal cells with a very short IFNT treatment (30 min, 100 ng/ml; Fig. 7). IFNT induced the increase
of STAT1 binding on IRF1 (4.7-fold), CISH (6.3-fold), SOCS1 (2.3-fold) and SOCS3 (2.4-fold) promoters.
A decrease was observed for SOCS2 promoter (0.3-fold) and no significant change was observed for
SOCS7 promoter. Thus, a correlation was observed between the recruitment of STAT1 and the
transcriptional induction of IFNT early target genes by IFNT.

Discussion

As suspected from pioneer analyses that investigated STATI gene expression and regulation in the
ovine endometrium (Choi et al. 2001), high-throughput analyses have listed STAT1 as a differentially
expressed gene in the bovine pregnant endometrium compared to the cyclic tissue collected from
day 15 to day 20 of the oestrous cycle (Bauersachs et al. 2006, Klein et al. 2006, Mansouri-Attia et al.
2009b, Walker et al. 2010, Forde et al. 2011b, Bauersachs et al. 2012). Based on the use of bovine or
ovine cell lines, in vitro analyses have also highlighted the transcription factor STAT1 as a major
component of the IFNT transduction pathway (Binelli et al. 2001, Stewart et al. 2001, Kim et al.
2003). Collectively, these data prompt the need for characterizing STAT1 in the bovine endometrium.
The present study clarifies the spatio-temporal expression pattern of STAT1 in the bovine
endometrium during the oestrous cycle and early pregnancy, including its regulation by P4 and IFNT
in vivo. Moreover, our analyses provide the first insights into the direct interaction of STAT1 with the
promoters of various members of the SOCS gene family in primary cultures of bovine endometrial
stromal cells using ChlIP.

In the bovine endometrium, our data have shown a sustained STATI transcript level throughout the
oestrous cycle (day 5 to day 20) in keeping with the detectable and stable level of STAT1 protein
determined in luteal (day 16) and follicular (day 20) stages. This situation resembles that reported for
the human uterus whose endometrial glandular and stromal cells expressed STAT1 throughout the
menstrual cycle despite a reduced expression at the protein and mRNA level in the active secretory
phase (Jabbour et al. 1998, Talbi et al. 2006). However, our results clearly differ from those on STAT1
gene regulation reported in the ewe and the sow. In these species, STATI mRNA expression was
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shown to decline during the transition from the luteal to the follicular phase (Choi et al. 2001, Joyce
et al. 2007). Moreover, from day 14 to day 20 of the oestrous cycle, the cell distribution investigated
in the present study indicated the presence of STAT1 in the endometrial glands, stromal cells as well
as the luminal epithelium although in this latter cell population the staining was fainter but still
visible at day 20. Again, the sustained expression of STAT1 in the various cell populations of the
bovine endometrium contrasts with the barely detectable or undetectable STAT1 protein expression
described in the cyclic ovine and porcine endometrium respectively (Choi et al. 2001, Joyce et al.
2007). Although the biological meaning of this discrepancy between cattle and these two other
livestock species is unclear, the regulation of STAT1 expression by P4 appears consistent between
cattle and sheep. Indeed, in the present work, P4 supplemented cyclic heifers did not exhibit any
significant impact of the short (2 days) or long-term (13 days) P4 treatment on STAT1 RNA or protein
level. Moreover, STAT1 gene expression was not correlated with circulating P4 levels (unpublished
data). Similarly, in ovariectomized ewes supplemented with physiological level of P4, the injection of
a P4 antagonist did not affect the expression of STATI mRNA (Gray et al. 2006). Collectively, the
results strongly argue for no impact of P4 on the global regulation of STAT1 gene expression in the
endometrium of ruminants.

In the pregnant CAR and ICAR endometrial areas compared to the cyclic tissues, the increase in
STATI1 transcript level initiated during the period of maternal recognition of pregnancy (day 16) and
was amplified at implantation (day 20). The time-course of endometrial STATI mRNA expression was
consistent with the identification of STAT1 as a differentially expressed gene in the bovine pregnant
endometrium compared to the cyclic endometrium from day 15 of pregnancy onwards (Mansouri-
Attia et al. 2009b, Walker et al. 2010, Forde et al. 2011b, Bauersachs et al. 2012) and the increase of
endometrial STAT1 transcript level in pregnant ewes and sows (Choi et al. 2001, Joyce et al. 2007). At
day 20 of pregnancy within the present study, the quantification of STAT1 protein revealed a
significant increase that could be associated with Tyr701 phosphorylation, a landmark for STAT1
dimerisation, translocation to the nucleus and activation of gene transcription (Levy & Darnell 2002,
Mohr et al. 2012). This increase in tyrosine phosphorylation was already detectable at day 18 of
pregnancy in Holstein heifers (Vitorino Carvalho et al. unpublished data) whereas it was barely
detectable during the oestrous cycle (present study and unpublished data). Therefore, conceptus
secretions and the process of implantation not only stimulate STAT1 gene expression but they are
also associated with STAT1 biological activation in the bovine endometrium.

Among the conceptus secretions that have been studied, IFNT has been identified as the maternal
recognition of pregnancy signal in ruminants (Roberts 2007, Ealy & Yang 2009). This type | IFN affects
endometrial physiology, as determined by gene expression profiles (Spencer et al. 2008, Bauersachs
& Wolf 2012). In cyclic ewes, intra-uterine injections of IFNT for 4 days increased endometrial STAT1
MRNA expression (Choi et al. 2001). A similar increase in STAT1 transcription was reported by
Bauersachs et al. (2012) using a 2-day intra-uterine release of recombinant IFNA2, another type |
interferon. Based on primary cultures of endometrial stromal cells, our in vitro analysis showed an
acute IFNT effect (15 to 30 min) on the induction of STAT1 nuclear translocation, as previously
described in immortalized ovine and bovine endometrial epithelial cells (Binelli et al. 2001, Stewart et
al. 2001). In our primary cultures of endometrial cells, we also determined that the 2 h and 24 h IFNT
treatments stimulated bovine STAT1 gene expression. Investigating the impact of an in vivo short-
term infusion of IFNT into bovine uteri, we showed a stimulation of STAT1 transcriptional expression
as well as a trigger of tyrosine phosphorylation and nuclear accumulation of STAT1 in endometrial
stromal cells, glandular cells and luminal epithelium cells. According to the definition used for IFN-
stimulated genes (ISG) in our previous work carried out with bovine endometrium (Mansouri-Attia et
al. 2009a), the present study highlights STAT1 as an IFNT-induced gene whose phosphorylation and
nucleocytoplasmic shuttling are IFNT-regulated.
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Although IFNT is recognized as a regulator of STAT1 expression and biological activities, several
elements indicate that other IFNs are involved in the modulation of endometrial STAT1 expression
and function. In humans, STAT1I mRNA level was increased in decidual cells co-cultured with
trophoblast cells (Popovici et al. 2006) or incubated with trophoblast secretions (Hess et al. 2007). In
the porcine endometrium, STAT1 transcript expression was stimulated by the conceptus from day 12
of pregnancy onwards (Joyce et al. 2007). The IFNT gene has not been identified in human and pig
genomes, therefore the stimulating actions of the conceptus secretions on endometrial STAT1 gene
expression are thought to be elicited by alternative trophectoderm-produced IFNs including IFNG
and IFND or IFNA and IFND in pigs and humans, respectively (Joyce et al. 2007, Roberts et al. 2008).
Consequently, although conceptus signals differ between species, regulation of STAT1 gene
expression and protein activation during early pregnancy appears to be a conserved feature in the
mammalian endometrium.

It is worth noting that uterine STAT1 is not exclusively regulated by type | and Il IFNs during the
establishment of pregnancy. Indeed estrogen produced by conceptuses was shown to stimulate
STAT1 gene expression in the luminal epithelium of the porcine endometrium (Joyce et al. 2007).
Interestingly, our findings indicated that STATI transcript level peaked at day 20 of pregnancy and
remained highly expressed until day 32-34 of pregnancy (Oliveira et al. 2010). At day 20 of pregnancy
the high level of endometrial STATI mRNA coincides with the sustained protein expression and
phosphorylation of STAT1. This high endometrial STAT1 expression questions the nature of the
factors that could regulate STAT1 during the peri-implantation period. Ovine placental lactogen, a
member of the prolactin/growth hormone (PRL/GH) family has been reported to prolong STAT1
phosphorylation through the heterodimerization of PRL and GH receptors, both expressed in the
ruminant endometrium (Postel-Vinay & Kelly 1996, Biener et al. 2003). Bovine placental lactogen (PL
or CSH) is secreted by the binucleate trophoblast cells from day 18 of pregnancy onwards (Kessler et
al. 1991, Wooding et al. 1992) but, to our knowledge, actions of placental lactogens on the uterine
JAK-STAT pathway have not been reported. Consequently, the regulation of endometrial STAT1 by
bovine CSH merits investigation.

In sheep and pigs, the up-regulation of STATI gene expression by IFNT, IFNG and/or IFND takes place
in the endometrial stromal cells and deep glandular epithelium but not in the luminal epithelium
(Choi et al. 2001, Joyce et al. 2007). In the present work, immunoreactive STAT1 was visible in the
cytoplasm and the nucleus of the main populations of endometrial cells including luminal epithelium
at day 16 of pregnancy whereas the staining was almost undetectable in the luminal epithelium of
day 20 pregnant endometrium. This latter result is consistent with the absence of detectable STAT1
protein in the ovine endometrial luminal epithelium at day 15 of pregnancy (Choi et al. 2001).
Although the expression of IRF2 has not been investigated in cattle, the inhibition of STAT1
expression in the bovine endometrial luminal epithelium may result from the action of IRF2, known
to repress the expression of ISG at the genomic level in the ovine endometrial luminal epithelium
(Choi et al. 2001).

In keeping with the nuclear localization of the activated phosphorylated STAT1 in IFNT-stimulated
endometrial cells (stroma and glandular epithelium) determined in vivo, we identified IRF1 as well as
several members of the SOCS family (SOCS1, -3 and to a lesser extent CISH and SOCS2) as IFNT
induced genes in primary cultures of endometrial epithelial and stromal cells. Whereas the up-
regulation of IRF1, SOCS1, and CISH gene expression was not significant in epithelial cells earlier than
2 h after IFNT treatment, the time course of IRF1, SOCS1, SOCS3 and CISH gene stimulation started in
stromal cells at 30 min then increased at 2 h before dropping at 24 h. When compared to epithelial
cells, the reason for the prompter biological response of stromal cells to IFNT is currently unclear but
likely reflects a rapid mobilization of STAT1 to the target sites of IFNT target genes. In order to
demonstrate that /RF1, CISH, SOCS1 and SOCS3 gene up-regulation was STAT1-dependant, chromatin
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immunoprecipitation was performed and it established for the first time the association of STAT1 on
identified binding sites of bovine IRF1, SOCS1 and SOCS3 promoters following a short term IFNT
treatment. For these genes as for SOCS7, the detection or the absence of STAT1 binding on their
promoters was consistent with the regulation of mRNA expression. SOCS1 and to a lesser extent
SOCS3 gene expression patterns have been reported to fit with the profile of IFNT secretion in the
ovine endometrium (Sandra et al. 2005). Altogether our findings have identified SOCS1 and SOCS3 as
two immediate early STAT1 target genes in the endometrium of ruminants. In the study by Song and
Shuai (Song & Shuai 1998), SOCS2 did not block STAT1 activity whereas SOCS1 was a much stronger
inhibitor of STAT1 activation than SOCS3. In IFNT-treated endometrial cells, our data strongly suggest
a similar hierarchy in the control of thpe STAT1 signalling pathway.

Collectively our data have demonstrated that STAT1 expression detected in the cyclic endometrium
is up-regulated by early pregnancy at the transcript and protein levels including an impact on the
phosphorylation level. The present study has identified (i) IFNT as a major regulator of bovine STAT1
expression and biological activities in vivo, (ii) phosphorylated STAT1 as a mediator of the rapid effect
of IFNT on the transcriptional regulation of ISG in endometrial glandular and stromal cells. We have
shown IFNT-induced SOCS1 and SOCS3 to be immediate STAT1 target genes that may contribute to
the downregulation of STAT1-dependant IFNT signalling pathway in the bovine endometrium. Based
on the spatio-temporal regulation of STAT1 in the endometrium, future experiments will be
necessary to identify factors affecting STAT1 activity as well as to characterize STAT1 responsive
genes in order to better understand the biological functions regulated by this transcription factor in
the various cells composing the endometrium, particularly during pregnancy maternal recognition
and the implantation process.
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Figure legends

Fig. 1. Quantification of STAT1 gene expression in cyclic and pregnant bovine endometrium on day 16
and 20 of the oestrous cycle. Caruncular (CAR) and intercaruncular (ICAR) areas were collected from
cyclic (day 16: n=5; day 20, n=6) and pregnant (day 16, n=4; day 20, n=5) cross-bred heifers as well as
from cyclic (n=6) and pregnant (n=5) Charolais cows at day 20 of the oestrous cycle. (A)
Quantification of STATI mRNA by RT-gPCR in cyclic and pregnant cross-bred beef heifers. Expression
of STAT1 was normalized to that of RPL19 and SCL30A6 using gBasePlus. Bars with different
lowercase letters differ significantly (P < 0.05). (B) Quantification of STAT1 protein by Western
blotting, normalized to ACTB protein level. Bars with different lowercase letters differ significantly (P
< 0.05). (C) The level of STAT1 mRNA (normalized to RPL19 and SCL30A6) as well as the amount of
STAT1 (normalized to ACTB) and STAT1 phosphorylation level were analyzed by RT-gPCR and
Western blotting respectively. Asterisks denote significant effects (***P < 0.001).

Fig. 2. Cellular localization of STAT1 expression in cyclic or pregnant bovine endometrium.
Immunohistochemistry was performed using sections cut from cross-bred beef heifers sampled at
day 16 (16Cy; A, B, C) and day 20 of the oestrous cycle (20Cy; D, E, F) as well as day 16 (16Pr: G, H, I)
and day 20 (20Cy; J, K, L) of pregnancy. A-L sections were incubated with anti-STAT1 primary
antibody. Tissue samples in O were co-incubated with the anti-STAT1 antibody and blocking peptide
as a negative control. Tissue samples in M and N were stained with hematoxylin-eosin solution. BV,
blood vessel; GE, glandular epithelium; LE, luminal epithelium; STR, stroma. Bars= 100 um.

Fig. 3. STAT1 endometrial expression in cyclic and pregnant cross-bred beef heifers supplemented
with progesterone (P4) for 2 days (day 3 to day 5) or 13 days (day 3 to day 16). STATI mRNA (A) and
protein (B) levels was quantified by RT-gPCR and by western blotting respectively (cyclic heifers with
normal level of P4, n=4, cyclic heifers supplemented with P4, n=3, pregnant heifers with normal level
of P4, n=4, pregnant heifers supplemented with P4, n=2 at day 5; cyclic heifers with normal level of
P4, n=3; cyclic heifers supplemented with P4, n=3, pregnant heifers with normal level of P4, n=4,
pregnant heifers supplemented with P4, n=5 at day 16). mRNA and protein levels were normalized to
ACTB and RPL19 using gBasePlus and to ACTB, respectively. Bars (mean + s.e.m) represent the
different conditions.

Fig. 4. In vivo regulation of endometrial STAT1 expression by interferon-tau (IFNT). CAR and ICAR
endometrial areas were collected from Charolais cows infused with control solution (n=5) or
recombinant ovine IFNT (rolFNT, 200 pg/ml; n=6) for 2 h. (A) STAT1 mRNA level was quantified by RT-
gPCR and normalized to C20RF29, SLC30A6 and SUZ12 using qBasePlus. (B) Analysis of STAT1 protein
amount and STAT1 phosphorylation by Western blotting. (C) Quantification of STAT1 protein
amount. (D) Quantification of STAT1 phosphorylation (PSTAT1) level. STAT1 and PSTAT1 expression
were normalized to that of ACTB and STAT1 protein level, respectively. Data are the mean + S.E.M.
*P < 0.05, **P < 0.01. (E) STAT1 localization in bovine endometrium at day 14 of the oestrous cycle
infused (14Cy+IFNT: ii, v, viii) or not with IFNT (14Cy; i, iv, vii). Tissue samples were incubated with
STAT1 primary antibody. In ix, tissue section was co-incubated with anti-STAT1 antibody and the
blocking peptide as a negative control. Tissue samples in iii, vi and ix were stained with hematoxylin-
eosin solution. BV, blood vessel; GE, glandular epithelium; LE, luminal epithelium; STR, stroma. Bars=
100 pm.

Fig. 5. Regulation of gene expression by interferon-tau (IFNT) in primary cultures of bovine
endometrial cells. Stromal (solid line) and epithelial cells (dashed line) isolated from bovine
endometrium were treated with recombinant ovine IFNT (rolFNT; 100ng/ml) for 0.5, 2, or 24 hours.
STAT1, IRF1, CISH and SOCS 1-7 mRNA levels were quantified by RT-gPCR. For each gene, mRNA
expression was normalized to that of RPL19 and ACTB using qBasePlus. Fold increase was calculated
as [IFNT-treated cells/untreated cells] ratio at 0.5, 2, or 24 h. The experiment was repeated with four
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independent animals. Significance was evaluated by comparing stimulated versus non stimulated
cells. Data are means + s.e.m; ¥*P < 0.05, **P < 0.01, ***P < 0.001.

Fig. 6. Schematic representation of bovine IRF1, CISH and SOCS1, -2, -3, and -7 upstream region (1000
pb) before the Transcription Start Site (TSS). Transcription factor Binding Sites (TFBS) positions for
STAT1 were determined using MatInspector (Genomatix) and are indicated with a white circle. No
STAT1 TFBS was identified in SOCS4, -5 and -6 bovine promoters.

Fig. 7. IFNT-induced recruitment of STAT1 binding to bovine IRF1, CISH, SOCS1, -2, -3 and -7
promoters in primary cultures of bovine endometrial stromal cells. Cells were treated with rolFNT
(100ng/ml) for 30 min, harvested then fixed with formaldehyde and sonicated to reduce the DNA
length between 500 and 1000 bp. The sonicated chromatin was immunoprecipitated with anti-STAT1
antiserum or IgG (as a control for non-specific immunoprecipitation). After deproteination and
reversal of cross-links, the amount of DNA sequence for each promoter was assessed in the
immunoprecipitates by real-time PCR. Input indicates samples before immunoprecipitation. Results
are presented as the percentage of DNA immunoprecipitated for each gene promoter relatively to
input DNA. ND: Not determined.

Supplementary Data

(A) Analysis of STAT1 protein amount by Western blotting. Caruncular (CAR) and intercaruncular
(ICAR) endometrial areas were dissected from cyclic and pregnant cross-bred beef heifers collected
at day 16 or day 20 of the oestrous cycle. STAT1 was detected using a rabbit anti-STAT1 antibody.
Beta actin (ACTB) was used as a control protein to account for variation in loading.

(B) Immunofluorescence analyses of STAT1 protein in primary cultures of bovine endometrial stromal
cells. Cells isolated from bovine endometrium were treated with rolFNT (100ng/ml) for 0, 15, 30, 60
or 120 min. Immunoreactive protein was detected using rabbit anti-STAT1 antibody and DNA was
conterstained with DAPI. In insert, stomal cells were incubated without primary antibody as a
negative control. Results shown are representative of four fields per treatment over three
independent experiments. Bars: 20 um.
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Tables

Table 1. Description of the oligonucleotide primers used for bovine gene quantification by real time

RT-PCR.
Gene Forward Reverse Amplicon size (pb) Accession number
STAT1 |GCATAGTCAGGGCCCAAATTGTTACAG|GCCCAGATACAGGACAGCTTTGCAC 140 BC151378
IRF1 GCTGGGACATCAACAAGGAT CTTTCCTCTGGCTCTTGGTG 232 XM_003584726
CISH AGTCATCCTGGTGCCCGTGA AGCCTTGTTCCTGCACCG 69 NM_001046586.1
SOCS1 | CTCGTACCTCCTACCTCTTCATGTT [ACAGCAGAAAAATAAAGCCAGAGA 92 XM_864316.2
SOCS2 TGCAAGGATAAGCGGACAGG AGATGCTGCAGAGGTGGTGCT 101 NM_177523.2
SOCS3 GCCACTCTCCAACATCTCTGT TCCAGGACCTCCCGAATGG 97 NM_174466.2
SOCS4 | GCTTTGTTAACCTATGTCATTGGCA [ ACAACACACACAGCTTTACCGAAG 100 NM_001076218.2
SOCS5 TACATCCCAGTGGCTGTCGC GCACAGCAAGCAGAAACATACATT 100 NM_001046182.1
SOCS6 | AGAAGGTCAAAAAATGTCACAGGAA | CAATGGTTAGCCTTTTGGCAT 113 NW_003104566.1
SOCS7 CTCCCACTGCCTAAGCCTCTG GAAATGAGCTGCGCTTCCTT 102 NM_001206013.1
ACTB CCTGGCACCCAGCACAA AGCGAGGCCAGGATGGA 90 Y141970
C20RF29 GCTTTACCACCACAGCCGAG GGGTCCTTTTCCAACTCTCC 64 XM_002691150.1
GAPDH CCTTCAAGAGCCCCCTGT TCATAAGTCCCTCCACGATGC 432 NM_001034034.2
RPL19 CCCCAATGAGACCAATGAAATC CAGCCCATCTTTGATCAGCTT 72 NM_001040516.1
SLC30A6] TGATGAGGAAACCTAGCCCTGCC TCGGGCTGCTCCAAAAAGCGT 142 NM_001075766.1
Suyz12 CGTTGTGAGCAGTTTTGCCCTGT || ACCACAGTGCTTGGAGTTGGACT 139 NM_001205587.1
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Table 2. Description of the oligonucleotide primers used for quantifying immunoprecipitated bovine
gene promoters by real time PCR.

Promoter| Forward Reverse Amplicon size (pb) Accession number
IRF1 CTTAGCCGCTAGCTCTACAACAG | CGCGGAGAATCTAAACACTTAGC 138 NW_003104019.1
CISH CTAATTGGCCCTCCCTGACC CCTAATCTTTTGTCCTCTGTGTCCC 250 NW_003104544.1

SOCS1 GGCCCCACCCGGTTTCCAAG CCCTAGTCCCGGCGCCTCTA 181 NW_003104571.1
SOCS2 GCAACTGCGCCGGAGTCTCT GCGCGCGATTTCCCAGACGTA 175 NW_003103917.1
SOCS3 CGCAGCCCCGAAGCCAAAGA ACCCGAGAAGCCGAAAG 226 NW_003104499.1
SOCS7 GACTAAAGGCCAGGCGAGAA CACCGAGCACCACCCC 154 NW_003104495.1
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ABSTRACT

Suppressor of Cytokine signalling (SOCS) factors control signalling pathways of a wealth of factors
whose many contribute to the regulation of uterine physiology in mammals. In order to gain new
insight about SOCS biological functions in the endometrium, CISH and SOCS1 to SOCS7 gene
expression was determined during estrous cycle and early pregnancy in cattle. Regulation by
interferon-tau (IFNT), progesterone (P4) and concepti displaying distinct potentials of term
development (artificial insemination or somatic cell nuclear transfer; SCNT) was also analysed.
S0CS4, SOCS5 and SOCS7 mRNA levels were globally not affected by pregnancy and appeared to be
P4-dependent, in keeping with the decline observed during luteolysis. SOCS1, SOCS2 and SOCS3
MRNA levels presented the highest expression at implantation (Day 20 of pregnancy) suggesting a
regulation by factors such as bovine placental lactogen. Experimental bovine models demonstrated
that CISH, SOCS1, -2 and -3 but not SOCS6 were IFNT-induced genes. Similar SOCS6 and SOCSS1
expression profiles in pregnant endometrium suggest the contribution of SOCS6 in the modulation of
SOCS1 expression. SOCS3 and SOCS6 cell localisation were also determined. The intense SOCS3
staining in the glandular epithelium of pregnant endometrium could reflect a control of signalling
pathways required for histotroph secretions. Eventually SOCS3 expression was shown to be affected
in SCNT pregnancies in keeping with the altered immune function previously reported in this model
of compromised implantation. Collectively, our data suggest that spatio-temporal expression of SOCS
genes is required to fine-tune endometrial physiology during the acquisition of receptivity, maternal
recognition of pregnancy and implantation.
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BACKGROUND

The birth of a healthy progeny involves a succession of complex biological steps that have to be
passed successfully. Among these steps, a major checkpoint is represented by the implantation
process that leads to the apposition (syn- or epitheliochorial implantation) of the embryo or the
conceptus (embryonic disk and extra-embryonic tissues) then its anchorage (hemochorial
implantation) into the endometrium (Bazer et al. 2010). The progression of implantation relies on the
coordinated interactions between a developmentally competent embryo and the endometrium,
whose receptivity status is controlled by progesterone (P4) in mammals (Wang & Dey 2006, Spencer
et al. 2007). In the context of early pregnancy, biological functions of the endometrium can be
subdivided into abilities (i) to differently respond to embryos displaying various potentials of term
development (ii) to affect the development trajectory of the embryo at the epigenetic level, making
this tissue an active and dynamic interface combining biosensor and biodriver properties (Sandra et
al. 2011). Considering the key functions played by this tissue in the control of embryo implantation
and pregnancy issue, deciphering the molecular and cellular mechanisms that govern the quality of
the endometrium appears therefore mandatory.

In cattle, implantation takes place from 19-20 days post-oestrus onwards (Guillomot 1995). In bovine
as well as in other ruminant species the extra-embryonic tissues first elongate before implanting.
This elongation process is associated with the secretion of interferon-tau (IFNT), exclusively produced
by trophectodermic cells during the peri-attachment period (Roberts 2007, Ealy & Yang 2009, Bazer
et al. 2010). IFNT has been considered as the major pregnancy recognition signal in ruminants and its
biological actions on the endometrium have been abundantly investigated (Roberts 2007, Spencer et
al. 2007, Spencer et al. 2008). Major roles for IFNT have appeared to be related to the inhibition of
uterine prostaglandin F2 alpha, therefore preventing luteolysis, and to the modification of the innate
immune response (Hansen 2011). Based on experimental models (such as IFNT intrauterine
infusions) as well as cultures of endometrial cells incubated with IFNT, target genes for this
conceptus cytokine have been identified that cover a wide range of biological processes (Choi et al.
2001, Kim et al. 2003, Gray et al. 2006, Forde et al. 2011b, Eozenou et al. 2012, Forde et al. 2012,
Mansouri-Attia et al. 2012, Oliveira et al. 2012) although the expression of genes strongly affected
during early pregnancy has been shown to be IFN-independent (Mansouri-Attia et al. 2009a, Eozenou
et al. 2012). At implantation, endometrial gene expression patterns reflect a combination of several
biological processes including the actions of P4, the impact of the embryo-secreted factors and the
cellular interactions between the trophectoderm and the Iluminal endometrial epithelium.
Consequently, unravelling the regulation of endometrial genes implies to evaluate the respective
contribution of these distinct events, taking the morphological and functional heterogeneity of the
bovine endometrium (small aglandular caruncles interspaced among large glandular intercaruncular
areas) into account (Mansouri-Attia et al. 2009a, Walker et al. 2010).

Among the signalling cascades taking part to the regulation of the endometrial physiology, analyses
have identified the Janus Kinase - Signal Transducer and Activator of Transcription (JAK/STAT)
transduction pathway (Choi et al. 2001, Catalano et al. 2005, Joyce et al. 2007, Maj & Chelmonska-
Soyta 2007, Spencer et al. 2007). To be efficient, the amplitude and the duration of the JAK/STAT
signalling cascade require to be tightly controlled by regulatory factors including the Suppressor of
Cytokine Signaling (SOCS) proteins (Rico-Bautista et al. 2006, Yoshimura et al. 2007). The SOCS family
includes eight proteins namely the cytokine-inducible SH2-domain containing protein (CIS) and
SOCS1-7 that share a central Src Homology 2 (SH2) domain, flanked by a variable N-terminal domain
and a C-terminal SOCS box (Yoshimura et al. 1995, Endo et al. 1997, Naka et al. 1997, Starr et al.
1997, Hilton et al. 1998, Bullock et al. 2007). Members of the SOCS family have been identified in
numerous vertebrate and some invertebrate species (Delgado-Ortega et al. 2013) and they are
involved in the control of many biological processes and physiological functions including pregnancy
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(Yoshimura et al. 2007, Fitzgerald et al. 2009). The SOCS proteins have been shown to inhibit the JAK
tyrosine kinases activity, by competing with STAT transcription factors for phosphorylated tyrosine
residues on cytokine receptors or by targeting bound signalling proteins for proteasomal degradation
(Kile et al. 2002). The most studied members have been CIS, SOCS1 and SOCS3 that are expressed at
low levels in unstimulated cells and are rapidly and transiently induced by numerous local acting
factors and hormones through the JAK/STAT pathway (Fujimoto & Naka 2003). Regarding the
endometrium, very few data exist and they have mainly focused on SOCS1 and SOCS3 (Fitzgerald et
al. 2009). These two SOCS factors have been shown to contribute to the decidualization process and
the uterine receptivity (Dimitriadis et al. 2006, Aghajanova et al. 2009). In the ovine endometrium,
the expression of SOCS1 and SOCS3 as well as SOCS2 and CISH transcripts has been shown to be
affected by the presence of the conceptus (Sandra et al. 2005). Given the critical functions played by
the SOCS factors in cell physiology, the current study aims to gain new insights on the involvement of
the SOCS genes family in the endometrium physiology. Until now, this aspect has been poorly
addressed prompting the need for a comprehensive analysis that we carried out in the bovine
endometrium. We investigated (i) the expression of steady state levels of the SOCS transcripts in
cyclic and pregnant endometrial tissues as well as the cell localization of SOCS3 and SOCS6 (ii) the
regulation of SOCS genes levels by P4 and IFNT using in vivo experimental models (iii) the regulation
of the SOCS transcripts in an experimental model of compromised implantation based on the
inappropriate biological response of the endometrium facing somatic cell nuclear transfer (SCNT)
bovine concepti (Mansouri-Attia et al. 2009b).

MATERIAL AND METHODS
Animals

Animal cares and procedures were completed in accordance with European Community Directive
86/609/EC, the Animal Research Ethics Committee of University College Dublin and the French
Ministry of Agriculture (authorization B91332). Protocols were registered by the Department of
Health and Children (Ireland) or by the Regional Ethical Committee of Animal Experimentation of
INRA and AgroParisTech (France, protocol 12-124). In vitro embryo production and embryo transfer
protocols were registered by French Veterinary Services (N°FRPB780 and FRTB910)

Experiment 1: Regulation of SOCS expression during maternal pregnancy recognition period

As previously described (Forde et al. 2011b, Eozenou et al. 2012), synchronised cross-bred beef
heifers were artificially inseminated or not (cyclic females) then slaughtered at day 16 (cyclic n=5,
pregnant n=4) and at day 20 (cyclic n=6, pregnant n=5). Concepti were recovered by uterine flushing
and the correct stage of development was confirmed by microscopy (Degrelle et al. 2005).
Endometrial caruncular (CAR) and intercaruncular areas (ICAR) were dissected separately from the
uterine horn ipsilateral to the corpus luteum (Mansouri-Attia et al. 2009a). Samples were
immediately frozen in liquid nitrogen and stored at -80°C for further analyses.

Experiment 2: Endometrial STAT1 expression at implantation

Charolais cows were synchronized by the Crestar method (Mansouri-Attia et al. 2009b) and were
artificially inseminated (pregnant n =6; cyclic n=5). Concepti were collected by uterine flushing and
their development stage was determined as described in the experiment 1. Endometrium was
collected as described in the experiment 1. Tissue samples were immediately frozen in liquid
nitrogen and stored at -80°C or fixed in paraformaldehyde 4% (Electron Microscopy Science, Hatfield,
USA) in phosphate buffer saline (PBS, Euromedex, Souffelweyersheim, France) for further analyses.

Experiment 3: Impact of short-term IFNT uterine infusion of endometrial SOCS expression
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Cyclic Charolaise cows were synchronised using the CRESTAR method (Mansouri-Attia et al. 2009a).
At day 14 post-oestrus, ovine recombinant IFNT (200 pg/ml, 25 ml/horn) or control solution (saline
buffer) was infused into the uterine lumen, as formerly reported (Forde et al. 2011b, Eozenou et al.
2012, Forde et al. 2012). Cows were slaughtered 2 h after the intra-uterine infusion then the
endometrium of 5 IFNT-infused and 5 control cows was collected, dissected and stored as described
in experiments 1 and 2.

Experiment 4: Impact of in vivo P4 supplementation on the endometrial expression of SOCS
transcripts in cyclic heifers

As previously described (Carter et al. 2008, Forde et al. 2011a, Eozenou et al. 2012), cyclic cross
breed heifers received a P4-releasing intravaginal device containing 1.55 g of P4 (Ceva Animal Health
Ltd.) on Day 3 post-estrus. Females were slaughtered after 2 days (5 days post-estrus, normal P4
level in cyclic heifers, n=5 and high P4 level in cyclic heifers, n=5) and 13 days (16 days post-estrus,
normal P4 level in cyclic heifers, n=4 and high P4 level in cyclic heifers, n=5) of P4 supplementation.
Strips of endometrium (containing CAR and ICAR areas) were collected, snap-frozen in liquid nitrogen
then stored at -80°C for further analyses.

Experiment 5: Impact of bovine SCNT concepti on the endometrial SOCS expression

As previously described (Mansouri-Attia et al. 2009b), cyclic Holstein heifers were synchronised using
the CRESTAR method. Four females were artificially inseminated whereas 4 other females were
transferred with two SCNT embryos produced with adult fibroblast cells line from Holstein heifers
(named 5538) (Degrelle et al. 2012). Upon slaughtering of the pregnant heifers, the endometrium
was collected, dissected and stored as described for experiment 1.

Primary cultures of endometrial cells

Epithelial and stromal (fibroblasts) cells were isolated from cyclic bovine endometrial tissues sampled
at day 11-17 of the estrous cycle, based on the ovarian morphology (Cronin et al. 2012). Epithelial
and stromal endometrial cells were treated with a control solution or with 100 ng/ml or 1000 ng/ml
of recombinant ovine IFNT for 2 h (Mansouri-Attia et al. 2009a). Each experiment was performed
using isolated cells from four independent animals.

Immunohistochemistry

Endomerial samples from the ipsilateral horn to the corpus luteum were fixed in paraformaldehyde 4
% in phosphate buffer saline (PBS), as previously described (Eozenou et al. 2012). After three washes
with PBS, samples were dehydrated with increasing concentrations of ethanol treatment (30%, 50%,
70%, 90%, 100%) in Shandon Citadel 1000 tissue processor (Thermo Scientific, Courtaboeuf, France)
for 12 hours. Then, tissues were embedded in paraffin and stored at 4°C until being processed.

Sections (7um) were cut with a microtome Leica RM2245 (Leica, Nanterre, France) then
immunohistochemistry was performed as previously described (Eozenou et al. 2012). Slides were
incubated with primary antibodies, anti-SOCS3 (dilution 1:200, sc9323, Santa Cruz Biotechnology,
Heidelberg, Germany) and anti-SOCS6 (dilution 1:200, ab53181, Paris, France), in phosphate buffer
(0.1 M, pH 7.4, with 2% BSA and 1% normal donkey serum) at 4°C overnight. As negative control,
sections were incubated with phosphate buffer without primary antibody. The anti-rabbit secondary
antibody (dilution 1:400; sc-346, Santa Cruz Biotechnology, Heidelberg, Germany) was incubated
with the slides for 1 h at room temperature. Staining was reveals thanks to one hour incubation at
room temperature of ABC Vector Elite Kit and a treatment of 8 min and 6 min for anti-SOCS3 and
anti-SOCS6 respectively, with diaminobenzidine substrate and urea (SIGMAFAST 3,3'-
Diaminobenzidine tablets, D4293, Sigma, France).

220



Total RNA extraction

Total RNA was extracted from frozen tissue by homogenisation using Trizol Reagent (Invitrogen,
Cerdy-Pontoise, France) according to the manufacturer’'s recommendations and as previously
published (Mansouri-Attia et al. 2009a, Eozenou et al. 2012). Total RNA samples were purified on
Qiagen columns according to manufacturer’s protocol (RNeasy Mini Kit, Qiagen, Courtaboeuf,
France). The cultured primary cells were washed with 1 ml of PBS, then total RNA was extracted
using the RNeasy Mini Kit and the automated system Qiacube (Qiagen, Crawley, UK; Cronin et al.
2012). Quality and integrity of total extracted and purified RNA were determined using an Agilent
2100 bioanalyzer. One pl of RNase inhibitor (RNAsin, Promega, France) was added to each sample
before storing at -80°C.

Quantative real time PCR (qPCR)

As previously described (Mansouri-Attia et al. 2009a, Eozenou et al. 2012), 1 ug of total RNA was
retro-transcribed into cDNA using OligodT and SuperScript Il (Invitrogen, Cerdy-Pontoise, France).
Quantitative real-time PCR (qPCR) was carried out using Master Mix SYBR Green (Applied Biosystems,
Saint Aubin, France) and Step One Plus system (Applied Biosystems, Saint Aubin, France). Primers
were designed using  Primer-BLAST  (NCBI, http://www.ncbi.nlm.nih.gov/tools/primer-
blast/index.cgi?LINK LOC=BlastHome) or Primer Express Software (Applied Biosystems) then
syntheiszed by Eurogentec (Angers, France). The oligonucleotide primers used for gene
guantification are listed in table 1. To assess the amplification of the correct cDNA fragments, every
amplicon was sequenced and blasted on NCBI RNA bovine collection. For each gene of interest,
relative expression was normalized to the expression of the most stable reference genes as
determined by gBaseplus software from the quantification of six housekeeping genes (Biogazelle,
Gent, Belgium).

Statistical analyses

All statistical analyses were performed with GraphPad Prism 6 software (La Jolla, CA, USA). SOCS
genes expression in tissues was first subjected to a two-way ANOVA followed by t-test tests to
analyze effects of day, pregnancy status (cyclic or pregnant), endometrial areas (CAR and ICAR), and
their interactions (day versus status or status versus endometrial areas). SOCS expression in primary
cell cultures treated by IFNT was subjected to a two-way ANOVA analysis followed by t-test tests to
study the potential differential SOCS expression relative to cell lines and to IFNT treatment.

RESULTS
Endometrial SOCS expression during estrous cycle and pre-implantation period

Using bovine endometrium collected from cross bred beef heifers, SOCS mRNA levels were analyzed
in the CAR and ICAR endometrial areas at Day 16 and Day 20 of the estrous cycle and pregnancy. The
threshold for statistical significance was fixed at P < 0.05.

In the cyclic endometrium (Fig. 1), no significant difference of CISH, SOCS4 and SOCS7 mRNA levels
was observed between day 16 and day 20 whereas SOCS1 and SOCS2 gene expression increased in
ICAR areas only (1.7-fold and 2.2-fold respectively). At Day 20 of estrous cycle, SOCS3 mRNA level
increased (1.8-fold in CAR and 2.9-fold in ICAR) whereas SOCS5 and SOCS6 gene expression
decreased in CAR (0.3-fold and 0.4-fold respectively) and ICAR endometrial areas (0.4-fold and 0.3-
fold respectively).

Compared to the estrous cycle no significant impact of the conceptus on CISH, SOCS2, SOCS5 mRNA
level was noticed whereas a significant regulation of transcript expression was observed for (i) SOCS1
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in the ICAR areas at Day 16 and Day 20 of pregnancy (1.4-fold and 1.2-fold respectively) (ii) SOCS3
and SOCS4 in the CAR areas at Day 20 (2.2-fold and 1.3-fold respectively) (iii) SOCS6 in the CAR and
ICAR areas at Day 16 (1.3-fold and 1.3-fold respectively) that was amplified in each endometrial area
at Day 20 (CAR: 3.4-fold and ICAR 2.8-fold). Between the stage of maternal pregnancy recognition
(Day 16) and implantation (Day 20), no significant variation of CISH, SOCS2, SOCS5 and SOCS7 mRNA
expression was seen in either endometrial area whereas a significant increase was detected for
S0OCS1, SOCS3, SOCS4 and SOCS6 transcripts in CAR areas (1.6-fold, 2.8-fold, 1.3-fold and 1.6-fold
respectively) and for SOCS1, SOCS3 and SOCS6 transcripts in the ICAR areas (1.3-fold, 2.3-fold and
1.4-fold respectively).

Regulation of endometrial SOCS expression by IFNT

In order to determine the short-term impact of IFNT on SOCS genes expression, an in vivo
experimental model (Charolais cows at Day 14 of the estrous cycle infused with rolFN for 2 h) and
primary cultures of epithelial and stromal cells (incubated with IFNT for 2 h) were used (Fig. 2). No
effect of IFNT on SOCS4, -5, -6 and -7 transcript levels was seen in vitro or in vivo (supplementary
data 1). Expression of SOCS1 (4.4-fold, P < 0.05 in CAR; 6.8-fold, P < 0.05 in ICAR), -2 (1.8-fold, P <
0.05 in CAR; 2.8-fold, P < 0.05 in ICAR), -3 (4-fold, P < 0.05 in CAR) and to a lesser extent C/ISH mRNA
(2.2-fold in CAR and 1.7-fold in ICAR, P < 0.05) was up-regulated by IFNT treatment in CAR and ICAR
endometrial areas (Fig 2. in vivo). No significant difference of transcript expression was observed
between CAR and ICAR areas.

In primary cultures of epithelial cells (Fig. 2, in vitro), SOCS1 and SOCS3 mRNA levels were
significantly induced by a 2h treatment of IFNT (10-fold, P < 0.01 and 2.3-fold, P < 0.0001
respectively). In primary cultures of stromal cells, CISH and SOCS1 mRNA levels were significantly up-
regulated by IFNT (3-fold, P < 0.05 and 8.3-fold, P < 0.05 respectively) whereas a trend towards an
increase of SOCS3 gene expression was observed. The variability between the four animals used for
the in vivo experiment was responsible for the lack of statistical significance. No significant regulation
of SOCS2 transcript expression by IFNT could be seen in either type of primary cultured cells.
Interestingly a differential expression of CISH, SOCS1, SOCS2 (Fig 2) and SOCS4 (supplementary data
1) mRNA was observed between the primary cultures of stromal cells compared to the epithelial cells
(0.8-fold, P < 0.001, 4.6-fold, P < 0.05, 75-fold, P < 0.001 and 0.6-fold, P < 0.001 respectively).

Regulation of endometrial SOCS expression by exogenous progesterone (P4)

In order to investigate the impact of P4 on SOCS mRNA expression, cross-bred beef heifers were
supplemented with P4 from Day 3 of the estrous cycle onwards then endometrium was sampled at
Day 5 or Day 16 (Fig. 3). Only SOCS5 gene expression was significantly altered by the 13-days P4
treatment (2.8-fold, P > 0.01). When the group of P4-supplemented heifers (Day 5 and Day 16) was
compared to the group of control heifers, a significant increase could be seen for SOSC6 and SOCS7
MRNA levels in the P4-treated group (P < 0.05, P < 0.01, respectively). Moreover, a trend toward a
significant increase could be observed for SOCS3 expression in the P4-treated group (P < 0.1). No
significant impact of P4 was observed for CISH, SOCS1 and SOCS2 transcripts. Interestingly, for CISH
only, a significant difference in endometrial mMRNA expression was noted between Day 5 and Day 16
of the estrous cycle (Fig. 3; P < 0.05). Eventually, no significant correlation between P4 blood
concentration and any of the SOCS transcript expression was observed in the endometrium (data not
shown).

Immunolocalization of SOCS3 and SOCS6 in bovine endometrium

SOCS3 and SOCS6 were localized in endometrial tissues sampled from Charolais cows (Fig. 4). During
the estrous cycle, SOCS3 and SOCS6 were expressed in luminal and glandular cells as well as stromal
cells. Whereas SOCS3 staining was present in the nucleus and cytoplasm of endometrial cells, SOCS6
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staining appeared to be more specific to the nucleus at day 14 of cycle. The comparison of day 14
and day 20 of estrous showed that SOCS3 staining was not impacted whereas nuclear SOCS6 staining
decreased between the mid-luteal phase and late luteal phase.

In this breed, regulation of SOCS gene expression between Day 20 of the estrous cycle and pregnancy
was similar to the regulation reported in cross-bred beef heifers (data not shown). In the luminal
epithelium, stoma and glandular epithelium at day 20 in cycle (Fig. 4), the staining appeared to be
specific to the nucleus. At day 20, SOCS3 and SOCS6 staining increased in the cytoplasm of the
luminal epithelium and epithelial stroma. Moreover, their staining was more important in the
nucleus of the luminal epithelium, the stroma and the glandular epithelium at day 20 of pregnancy.

Regulation of endometrial SOCS genes by SCNT concepti

The endometrium has been shown to distinguish concepti displaying distinct abilities of development
to term pregnancy (Mansouri-Attia et al. 2009b). Compared to control pregnancies, we investigated
the expression of endometrial SOCS genes in heifers carrying conceptus produced by SCNT. SOCS3
MRNA level was perturbed in the endometrium facing SCNT concepti at day 20 of pregnancy (Fig., 5;
P < 0.05) whereas the other SOCS genes did not present any significant variation in mRNA level
(supplementary data 2).

DISCUSSION

The family of the SOCS proteins has been shown to play essential functions in the negative regulation
of cell signalling pathways activated by cytokine and hormone receptors, most of them being
expressed at the embryo-maternal interface in mammals (Krebs & Hilton 2001, Fitzgerald et al.
2009). The endometrium and its physiological status are critical for supporting implantation
depending on the development potency of the embryo and its quality (Salamonsen et al. 2009,
Sandra et al. 2011, Weimar et al. 2012). Whereas the contribution of various endometrial factors
(ligands, receptors and effectors) to implantation control has been unveiled based on descriptive and
functional studies, scarce publications have focused on the regulation of SOCS genes and their
biological functions in the uterus(Sandra et al. 2005, Oliveira et al. 2012). In order to provide new
insights on the involvement of SOCS in the endometrial physiology, expression of the known SOCS
(CISH, SOCS1 to -7) genes has been investigated in bovine endometrium in order to (i) establish
expression patterns as well as SOCS3 and SOCS6 cell localization during estrous cycle and early
pregnancy (ii) define the contribution of interferon-tau and of progesterone (P4) to SOCS genes
regulation (iii) determine if SOCS mRNA levels are altered in a model of compromised pregnancy
using bovine SCNT concepti.

In the bovine endometrium, our data have shown that every SOCS gene was expressed in the bovine
endometrium along the estrous cycle (Day 5 to Day 20). When compared to endometrium in luteal
phase (Day 16 of the estrous cycle), analyses of expression patterns unveiled an increase for SOCS1,
SOCS2 and SOCS3 but a decrease for SOCS5 and SOCS6 gene expression associated to luteolysis (Day
20 of the estrous cycle). A noteworthy rise of CISH gene transcription could also be seen between the
early and late stages of the luteal phase (Day 5 versus Day 16 of the estrous cycle) that was not
followed by a decline at the luteolytic stage (Day 20). During the estrous cycle in the ovine
endometrium, results failed to report a significant alteration in CISH, SOCS1,-2 and -3 mRNA levels
analysed by dot-blotting (Sandra et al. 2005). This robust quantification method is less sensible that
the real-time PCR analyses undertaken in the present work and likely accounts for the discrepancy of
results. Interestingly, searching for SOCS expression patterns in a microarray analysis of the human
endometrium (Talbi et al. 2006) revealed variations in CISH, SOCS1, SOCS2, SOCS3 and SOCS6 gene
levels in the secretory phase compared to the proliferative phase. Altogether these findings obtained
in human and cattle indicate a an impact of the ovarian steroids on the expression of SOCS1, -2, -3
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and -6 genes in the endometrium. Modulation of SOCS gene expression by estrogen or progesterone
has already been documented in other tissues and cultured cells (Leong et al. 2004, Matthews et al.
2005, Steyn et al. 2008). Progesterone-regulated SOCS factors could be involved in the cross
regulation of signalling pathways implicated with endometrium remodelling that takes place at the
end of the estrous cycle.

Using an in-vivo experimental model of P4-supplemented heifers, we showed that P4 treatment (i)
led to the significant up-regulation of SOCS5, SOCS6 and SOCS7 transcript expression consistent with
the decline observed at Day 20 of the estrous cycle when P4 blood level drops (ii) did not affect CISH,
SOCS1, SOCS2 and SOCS3 transcript expression whereas their mRNA levels rose at Day 20 of the
estrous cycle compared to Day 16. Consequently, when regression of the corpus luteum occurs, the
increase of endometrial SOCS1, -2 and -3 transcript levels implies the participation of regulating
factors others than P4. In the endometrium, during luteolysis, various parameters could account for
the increased expression of those SOCS genes including modifications of the cytokines/hormones
balance (Rahman et al. 2004) and variations of type and/or number of immune cell populations such
as macrophages and dendritic cells that take place in the endometrium (Cobb & Watson 1995,
Mansouri-Attia et al. 2012, Oliveira et al. 2012). In conclusion, whereas increase in CISH expression
appears to be related to the acquisition of endometrial receptivity, changes in the expression of
other SOCS genes during the estrous cycle coincide with luteolysis and reflect a direct or an indirect
consequence of declining P4 blood level, the identity of intermediary factors remaining to be
uncovered.

In the pregnant CAR or ICAR endometrial areas compared to the cyclic tissues, distinct patterns of
SOCS transcripts regulation were observed. Indeed, for SOCS6, mRNA level first rose during the
maternal phase of pregnancy recognition (Day 16 of pregnancy) and was amplified at implantation
(Day 20 of pregnancy) whereas the highest level of SOCS1, SOCS2 and SOCS3 transcripts coincided
with implantation. Regulation of endometrial SOCS mRNA expression by the conceptus is consistent
with microarray studies that listed several SOCS genes as differentially expressed genes in the bovine
pregnant endometrium compared to the cyclic tissue at Day 17 (SOCS1, Walker et al. 2010), Day 18
(50CS1, SOCS3, SOCS4, SOCS6; Baeursachs et al. 2011) and Day 20 (SOCS6; Mansouri-Attia et al.
2009a) post-estrus. Interestingly, the expression patterns of CISH, SOCS1, -2 and -3 mRNA reported in
the present study differ from the changes we observed in the ovine endometrium (Sandra et al.
2005). Compared to day 12 of estrous cycle (luteal phase), CISH, SOCS1, -2 and -3 mRNA levels did
not vary in ovine CAR endometrial areas during the period of maternal recognition (Day 12 of
pregnancy) but clearly increased at Day 16 of pregnancy when implantation initiates. In the bovine
CAR areas at Day 16 of pregnancy (maternal pregnancy recognition) compared to Day 16 of the
estrous cycle (luteal phase), CISH, SOCS1, -2 and -3 mRNA levels were not up-regulated but they were
significantly increased when the apposition of the extra-embryonic tissues on the endometrium
initiates. Altogether, the global transcriptional profiles of endometrial CISH, SOCS1, -2 and -3 genes
do not suggest critical functions for these factors during the maternal period of pregnancy
recognition but they provide first arguments that essential biological roles are played by these SOCS
genes for driving a successful implantation in the endometrium of ruminants.

In the bovine species, the present study has shown that SOCS4, SOCS5, SOCS6 and SOCS7 genes
expression was not induced by IFNT. In keeping with our in vivo analyses in the ovine endometrium
(Sandra et al. 2005), SOCS1, SOCS3 and to lesser extent CISH and SOCS2 were identified as IFNT-
induced genes whose expression is stimulated by a 2h treatment of IFNT in vivo and in vitro.
Interestingly, whereas SOCS1 mRNA expression was coordinated with the peak of IFNT secretion in
the ovine endometrium (Sandra et al. 2005), overlapping was not seen in the bovine endometrium.
The peak of IFNT secretion occurs at Day 15-17 of pregnancy in cattle, concomitant with the phase of
pregnancy maternal recognition (Robinson et al. 2006). At Day 16 of pregnancy compared to estrous
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cycle, SOCS1 transcript levels did not significantly vary in the CAR areas and slightly increased in the
ICAR areas. On the other hand the increase of SOCSI mRNA expression from Day 16 to Day 20 of
pregnancy coincides with the raise in STAT protein level recently reported in the bovine
endometrium (Vitorino Carvalho et al. submitted). These two studies demonstrate that SOCS1 is an
IFNT-induced gene and an immediate early STAT1 target gene, consistent with the ability of this
protein to control STAT1-dependant IFN signal duration in various cell models (Alexander & Hilton
2004). Altogether our findings strongly support SOCS1 as a major down-regulator of STAT1 signalling
pathway during the establishment of pregnancy in the endometrium of ruminants.

Although the regulation of several SOCS genes depends upon IFNT at Day 16 and 20 of pregnancy,
MRNA expression profiles as well cell localization indicate that other factors participate to the
regulation of SOCS genes in the endometrium. SOCS3 protein was detected in the cytoplasm and the
nucleus of major cell populations that compose the endometrium including luminal epithelium,
stroma and glandular epithelium. At implantation, whereas IFNT declines, the nuclear staining for
SOCS3 was more intense in the glandular cells, a localisation previously reported when SOCS3 is
expressed at a high level in cells (Lee et al. 2008). Glandular cells secrete histotroph whose
production is essential for the development and growth of the conceptus (Gray et al. 2001). In
ruminants, regulation of endometrial glands activities involves P4, IFNT as well as various peptidic
hormones and factors including placental lactogens and the growth hormone/insulin growth factor
(GH/IGF) family (Wathes et al. 1998, Spencer et al. 2004). During the pre-implantation period, IGF-1
and -2 levels have been shown to increase in ovine and bovine endometrium (Geisert et al. 1991,
Kirby et al. 1996, Keller et al. 1998, McCarthy et al. 2012) and IGF components are principally
expressed in luminal and glandular epithelia of the bovine endometrium (McCarthy et al. 2012).
SOCS proteins have been shown to modulate the JAK-STAT pathway activated by IGF and GH (Krebs
& Hilton 2001, Fujimoto & Naka 2003). Bovine placental lactogen, a member of the prolactin/growth
hormone (PRL/GH) family Bovine placental lactogen (bPL) is secreted by the binucleate trophoblast
cells from Day 18 of pregnancy onwards (Kessler et al. 1991, Wooding et al. 1992) and, as for ovine
PL, its biological actions require PRL and GH receptors whose biological actions are mediated by JAK-
STAT-SOCS pathway (Biener et al. 2003, Spencer et al. 2004). Thus from Day 20 of pregnancy
onwards, SOCS3 increase in the endometrial glands could reflect the contribution of this SOCS factor
in the negative control of signalling pathways stimulated by bPL and IGF ligands.

A major finding of this study deals with the first report of SOCS6 expression in the endometrium that
undergoes a clear regulation during the maternal recognition phase and implantation. Our data
demonstrate that SOCS6 is not an IFNT-induced nor regulated gene in vivo, confirmed by the inability
of IFNT to affect SOCS6 mRNA expression at 2 h (this study) or 24 h in vitro (Vitorino Carvalho et al,
unpublished observations). Interestingly, as for SOCS3, SOCS6 protein was detected in the cytoplasm
and the nucleus of luminal epithelium, stroma and glandular epithelium of the endometrium. The
nuclear staining of SOCS6 is consistent with the publication reporting that high level of SOCS
expression leads to its nuclear localization in cells (Hwang et al. 2007). SOCS6 regulators and
biological functions have been less investigated than for other SOCS, therefore the meaning of SOCS6
presence in the endometrium is currently unknown. Nevertheless, two relevant hints are provided by
reports showing that SOCS6 can (i) potentiate signaling of IFN type | receptor by targeting SOCS1 to
proteosomal turn-over (Piessevaux et al. 2006) (ii) downregulate STAT3 protein levels in HEK293T
cells (Hwang et al. 2007). STAT3 is expressed in the endometrium of ruminants (Song et al. 2009) and
SOCS6 gene expression is similar to SOCS1 mRNA profile in pregnant females suggesting the
contribution of SOCS6 in the regulation of STAT3 transcription factor and SOCS1 availability in the
bovine endometrium. Additional studies based on alteration of SOCS gene expression in primary
cultures of endometrial cells could definitely help in deciphering SOCS6 biological roles in the
endometrium.
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Biosensoring of the embryo quality is an endometrial property that has been established in cattle
first (Mansouri-Attia et al. 2009b) then in human (Teklenburg et al. 2010). As previously reported by
microarrays analyses (Mansouri-Attia et al. 2009b), SCNT conceptus elicit an endometrial response
that, in turn, affects the progress of implantation associated to pregnancy failures. The present study
indicates an increased expression of SOCS3 mRNA levels in the endometrium of SCNT concepti
carrying heifers. In transgenic mice, SOCS3 overexpression leads to an embryonic lethality (as a
consequence of anemia) and to increased Th2 responses (reviewed in Fitzgerald et al. 2009). This
later phenotype is very interesting and suggests a link between SOCS3 and the deregulated immune
function we reported in the endometrium of SCNT pregnancies (Mansouri-Attia et al. 2009b). This
increase in SOCS3 we have reported in the endometrium likely reflects an alteration in the quality or
the type of embryonic signals emanating from SCNT concepti. Using day 18 SCNT concepti derived
with the 5538 somatic cell line (the same as the one used in our work), the recent transcriptomic
analysis has not focused on ligands or secreted factors that differ with Al or in vitro produced (IVP)
concepti (Degrelle et al. 2012). Nevertheless IFNT as well as bPL gene expression are identical
between Al concepti and SCNT concepti derived from the 5538 cell line (Degrelle et al. 2012;
Mansouri-Attia et al. 2009b; Vitorino Carvalho A, unpublished observations). Based on recent data
reporting the biological functions of embryo signals other than IFNT, glucocorticoids and
prostaglandins (PG) produced by the trophectoderm and the endometrium are part of the orchestra
that regulates the expression of endometrial genes during implantation in ruminants (Dorniak et al.
2011, Majewska et al. 2012, Ulbrich et al. 2012). Compared to pregnancies obtained with IVP
embryos, uterine flushings from bovine SCNT pregnancies were reported to contain lower levels of
PGI2 and PGE2, consecutively to a reduced amount of embryo- and/or endometrium produced PG
(reviewed by Ulbrich et al. 2012). In rat corpus luteum and hypothalamus, PG have been shown to
regulate SOCS1 and SOCS3 expression (Curlewis et al. 2002, Bonafede et al. 2011). Altogether these
data suggest that the higher level of endometrial SOCS3 in SCNT pregnancy could reflect an altered
production and/or metabolism of PG. In this model of compromised implantation with long-term
effects, the better understanding of the events taking place in the endometrium facing cloned
embryos will require a thorough characterization of the extra-cellular signals that differ between
cloned and control embryos.

Given the fact that SOCS act in a negative feedback loop to inhibit signal transduction but are also
cross-talking factors regulating other signaling pathways, disentangling the contribution of the SOCS
in the regulation of the endometrial function represents an actual challenge. Nevertheless rapid
modifications in SOCS3 and SOCS6 as well as SOCS1 and CISH gene levels have been shown by our
data in the endometrium in various physiological and experimental situations. Consequently,
appropriate spatio-temporal expression of SOCS genes is likely necessary to fine-tune endometrial
physiology during the acquisition of receptivity, maternal recognition of pregnancy and implantation.
Alterations of SOCS expression may be detrimental for the progression of any of these steps
therefore affecting global reproductive capacity of the female. Intensive efforts are currently
produced to identify biomarkers of the endometrial quality as well as targets for therapeutic
approaches aiming to restore an altered endometrial ability to support term pregnancy or to prevent
embryo implantation (contraception). In this context, expression of SOCS genes would deserve to be
investigated in the mammalian endometrium presenting a suboptimal or a compromised functional
capacity as a consequence of environmental insults such as nutrition, stress or infections.
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Figure legends

Figure 1: . Quantification of SOCS genes expression in cyclic and pregnant bovine endometrium on
Day 16 and 20 of the estrous cycle. Caruncular (CAR) and intercaruncular (ICAR) areas were collected
from cyclic (Day 16: n=5; Day 20, n=6) and pregnant (Day 16, n=4; Day 20, n=5) cross-bred heifers.
Expression of SOCS was normalized to that of RPL19 and SCL30A6 using gBasePlus. Bars with
different lowercase letters differ significantly (P < 0.05).

Figure 2: Regulation of endometrial CISH, SOCS1-3 expression by interferon-tau (IFNT) in vivo and in
vitro. In vivo, CAR and ICAR endometrial areas were collected from Charolais cows infused with
control solution (n = 5) or recombinant ovine IFNT (rolFNT, 200 pug/ml; n = 5) for 2 h at Day 14 of
estrous cycle. SOCS mRNA level was quantified by RT-qgPCR and normalized to C20RF29, SLC30A6 and
SUZ12 using qBasePlus. In vitro, cells isolated from bovine endometrium were treated with
recombinant ovine IFNT (rolFNT; 100ng/ml) for 0, 0.5, 2, or 24 h. For each gene, mRNA expression
was normalized to that of RPL19 and ACTB using gBasePlus. Data are the mean + S.E.M. a, b and c
letters indicate a significant difference between means (p<0.05) whereas x and y letters indicate
significant difference between control and IFNT samples (p<0.05).

Figure 3: SOCS endometrial expression in cyclic and pregnant cross-bred beef heifers supplemented
with progesterone (P4) for 2 days (Day3 to Day 5) or 13 days. Females were slaughtered after 2 days
(5 days post-estrus, normal P4 level in cyclic heifers, n=5 and high P4 level in cyclic heifers, n=5) and
13 days (16 days post-estrus, normal P4 level in cyclic heifers, n=4 and high P4 level in cyclic heifers,
n=5) of P4 supplementation. SOCS mRNA level was quantified by RT-qPCR and normalized to ACTB
and RPL19 using gBasePlus. Bars (mean * s.e.m) represent the different conditions. Data are the
mean + S.E.M. *P < 0.05, **P < 0.01. x and y letters indicate significant difference between Day 5 and
Day 16 samples (p<0.05)

Figure 4: Cellular localization of SOCS3 and SOCS6 expression in cyclic or pregnant bovine
endometrium. Immunohistochemistry was performed using sections cut from Charolais cows
sampled at Day 15 (14Cy: A, D, G, J, M, P) and Day 20 of the estrous cycle (20Cy; B, E, H, K, N, Q) as
well as Day 20 (20Pr; C, F, I, L, O, R) of pregnancy. A-l and J-R sections were respectively incubated
with anti-SOCS3 and anti-SOCS6 primary antibody. Tissue samples in S were incubated without
primary antibody as a negative control. Tissue samples in T-U were stained with hematoxylin-eosin
solution. BV, blood vessel; GE, glandular epithelium; LE, luminal epithelium; STR, stroma. Bars= 100
pum.

Figure 5: SOCS3 endometrial expression in Holstein cows carrying embryos produced by artificial
insemination (n=4) or with transfer of SCNT produced embryos (n=4) at day 20 of pregnancy. SOCS
mRNA levels were quantified by RT-gPCR and normalized thanks to qBasePlus on C20ORF29, RPL19
and SLC30A6. Bars are representative of the mean value £ S.E.M. x and y letters indicate significant
difference between control and SCNT pregnancy (p<0.05).

Supp Data 1: Regulation of endometrial SOCS4-7 expression by interferon-tau (IFNT) in vivo and in
vitro. In vivo, CAR and ICAR endometrial areas were collected from Charolais cows infused with
control solution (n = 5) or recombinant ovine IFNT (rolFNT, 200 pug/ml; n = 5) for 2 h at Day 14 of
estrous cycle. SOCS mRNA level was quantified by RT-qPCR and normalized to C20RF29, SLC30A6 and
SUZ12 using qBasePlus. In vitro, cells isolated from bovine endometrium were treated with
recombinant ovine IFNT (rolFNT; 100ng/ml) for 0, 0.5, 2, or 24 h. For each gene, mRNA expression
was normalized to that of RPL19 and ACTB using gBasePlus. Data are the mean + S.E.M. a, b and c
letters indicate a significant difference between means (p<0.05).
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Supp Data 2: SOCS (except SOCS3) endometrial expression in Holstein cows carrying embryos
produced by artificial insemination (n=4) or with transfer of SCNT produced embryos (n=4) at day 20
of pregnancy. SOCS mRNA levels were quantified by RT-qPCR and normalized thanks to qBasePlus on
C20RF29, RPL19 and SLC30A6. Bars are representative of the mean value + S.E.M.
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Table

Table 1: Description of the oligonucleotide primers used for gene quantification by real time RT-PCR.

Gene Forward Reverse A ms?lzgonAcc on numbey|
CIH AGTCATCCTGGTGCCCGTGA AGCCTTGTTCCTGCACCG 69 |NM_001046586.1]
SOCS] |CTCGTACCTCCTACCTCTTCATGTT|ACAGCAGAAAAATAAAGCCAGAGA| 92 XM_864316.2
SOCS? | TGCAAGGATAAGCGGACAGG AGATGCTGCAGAGGTGGTGCT 101 NM_177523.2
SOCS3 | GCCACTCTCCAACATCTCTGT TCCAGGACCTCCCGAATGG 97 NM_174466.2
SOCS4 [GCTTTGTTAACCTATGTCATTGGCA| ACAACACACACAGCTTTACCGAAG| 100 |NM_001076218.2
PCSH TACATCCCAGTGGCTGTCGC GCACAGCAAGCAGAAACATACATT 100 |NM_001046182.1
SOCSH | AGAAGGTCAAAAAATGTCACAGGAA CAATGGTTTAGCCTTTTGGCAT 113 |NW_003104566.1
0CS? CTCCCACTGCCTAAGCCTCTG GAAATGAGCTGCGCTTCCTT 102 |NM_001206013.1
SJZ12 | CGTTGTGAGCAGTTTTGCCCTGT | ACCACAGTGCTTGGAGTTGGACT 139 |NM_001205587.1]
C2ORF29 GCTTTACCACCACAGCCGAG GGGTCCTTTTCCAACTCTCC 64 |XM_002691150.1]
S _C30A6| TGATGAGGAAACCTAGCCCTGCC | TCGGGCTGCTCCAAAAAGCGT 142 |NM_001075766.1]
RPL19 | CCCCAATGAGACCAATGAAATC | CAGCCCATCTTTGATCAGCTT 72 |NM_001040516.1]
GAPDH CCTTCAAGAGCCCCCTGT TCATAAGTCCCTCCACGATGC 432 |NM_001034034.2
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