N

N

Pastrel, a restriction factor for picornalike-viruses in
Drosophila melanogaster

Vincent Barbier

» To cite this version:

Vincent Barbier. Pastrel, a restriction factor for picornalike-viruses in Drosophila melanogaster. Vi-
rology. Université de Strasbourg, 2013. English. NNT: 2013STRAJ114 . tel-01249546

HAL Id: tel-01249546
https://theses.hal.science/tel-01249546

Submitted on 4 Jan 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-01249546
https://hal.archives-ouvertes.fr

Wimim Thae o ade
Lo e g

.. UNIVERSITE DE STRASBOURG \5

Ecole Doctorale des Sciences de la Vie et de la Santé de Strasbourg

UPR-9022 Réponse immunitaire et développement chez les insectes

THESE

présentée par :

Vincent BARBIER

soutenue le : 10 décembre 2013

pour obtenir le grade de : Docteur de I'université de Strasbourg
Discipline/ Spécialité : Immunologie

Pastrel, a restriction factor for picorna-
like viruses in Drosophila melanogaster

THESE dirigée par :

M. IMLER Jean-Luc Professeur des universités, université de Strasbourg
RAPPORTEURS :

Mme. SALEH Maria-Carla Docteur, Institut Pasteur, Paris

M. KOHL Alain Docteur, université de Glasgow

AUTRES MEMBRES DU JURY :
Mme. SCHUSTER Catherine Directeur de recherches, université de Strasbourg
M. JIGGINS Francis Professeur des universités, université de Cambridge



Acknowledgements

I would like to express my sincere gratitude to the people who helped me to get this

thesis to this stage.

First of all, I would like to thank Pr. Jean-Marc REICHHART, director of the
UPR9022 (Réponse Immunitaire et Développement chez les insectes), for giving me the
opportunity to work in this laboratory and making the facilities available for carrying out

research in the best conditions.

I would like to acknowledge my PhD supervisor, Pr. Jean-Luc IMLER, for all his
support and his guidance of my work over the last three years. I learned a lot and got the

chance to gain a lot of experience with you. Thanks for the corrections of this manuscript.

To the members of my jury, my reviewers Dr. Maria-Carla SALEH and Dr. Alain
KOHL and my examiner Dr. Catherine SCHUSTER, thank you for engaging in my work and

discussing my project.

I would like to express my deep gratitude to Pr. Francis JIGGINS for his invaluable
help on Pastrel project and for the support received through the collaborative work undertaken

with him and his PhD student, Chuan. Thanks for exchange of results and ideas.

I am thankful to Dr. Dominique FERRANDON and his team, for the collaborative
work on Nora virus project, and to Dr. Sébastien PFEFFER and Ali for their precious help on
small RNA library construction. I am also indebted to Dr. Stéphane NOSELLI for providing
us Pastrel antibodies and UAS-Pst-GFP fly line.

I extend my sincere thanks and gratitude to my present and former laboratory
colleagues for their enormous help during the course of this PhD thesis. I would like to
express my thanks to Akira GOTO who contributed immensely to this work. Thanks for your
inspiring scientific enthusiasm and infinite advice. I really enjoyed our scientific and non-
scientific discussions during lunchtime. I am also very grateful to Laurent, Estelle, Carine,
Simona, Olivier, Karim, Alice and Bill for their support and advice in experiments. Thanks to
former members of the team, Steffi, Stan, Dele, Najate, Melissandre and Evelyne for their
help and for nice time spent inside and outside the laboratory. Thanks to sportsmen Miriam

and Adrien for their support and encouragements. I am also thankful to Francois for critically



reading a part of this manuscript, and to other people from UPR9022 who directly or

indirectly contributed to this thesis.

I would like to grateful all my friends from Paris and elsewhere for their
encouragements and the enjoying weekends spent with them: Divya, Erin, Sébastien, Luc,

Fred and Noémie.

Finally, my acknowledgements would never be complete without the special mention
of my family, especially my father Jean-Frangois, Brigitte and my grand-parents who were

always supportive and have sacrificed a lot for my studies.

All this work would not have been possible without my loving, encouraging and
understanding girlfriend Sarah. You brought me a daily faithful support all the way through
this PhD thesis, even if the distance separated each other during these three years. I thank you
for your valuable suggestions and help to write this manuscript, and also for your cooking
skills that contributed to maintain my good mood during the writing process. You are

wonderful.

I also take this opportunity to express my deepest gratitude to my mother Christiane
who always believed in me and would have been proud to see me get a PhD degree. This

thesis is dedicated to you.



Table of contents

Table of contents

TABLE OF CONTENTS ..cuiiiiiiiiiiiiiiiiieeiiiiieiiieiieesiessiansrasissstassrassssssssstsssssssssssssssssstsssssssssssasssasssnsssnsss 4
LIST OF FIGURES .....cceettttttietireiinnenneenneeemeemmeeemmemmmeemeeemmmemmeesmmmmemesmmemmeemmmmmmmmmmmmmmmmtmmemmemmmmmmmmnn 7
LIST OF TABLES ......ceuiiitiiiiiiieiiiienieiiniiieaiieaitiasieineiesssisisssrssisrssssssssstessssssssssssssssssssassssssssssssssanssnes 10
LIST OF ABBREVIATIONS......ccuiiuiiiiiiiiuitiiiieiieniieiiaiieesioeiiaiisstsestssstassssssssssasssassrassssssasssasssnsssnssanss 11
RESUME DE THESE EN FRANGALS ......cccueeiueirriseeenessesssesssessesssessesssessssssesssssssssssssssssessssssssssesssssssssans 17
PART | : INTRODUCTION ...cuuiieuiiienicienniienisiensiisstisiesssisissssrsssssssssssssssssssssssssssssssssssssssssssssssssanssses 23
CHAPTER 1 - MODELS OF DROSOPHILA VIRAL INFECTIONS ....cccoirieiirmeiimnnniineinneinnasinasssnesssnnessnsens 25
1.1. DROSOPHILA VIRUSES: NATURAL PATHOGENS OF DROSOPHILA.....c.vveerveerireeesiessnreesseessseessssesssseessseesssees 26
1.2. OTHER VIRUSES INFECTING DROSOPHILA ....eeeuveeeeteeeeneeesseessessssesssseessessssesessesssssessssessssessssessssessnsesans 32
CHAPTER 2 - INNATE ANTIVIRAL IMMUNITY IN DROSOPHILA MELANOGASTER ........cccoevruecrncnnnnee 37
2.1. THE RNA INTERFERENCE PATHWAY: A BROAD ANTIVIRAL DEFENSE ...eeevuveerureesreesnireesreesressnseessseeessneesnnes 39
2.2. THE INDUCIBLE RESPONSE: A VIRUS-SPECIFIC ANTIVIRAL DEFENSE ...uvveervveesereesnreeenreeesseeseessnsesessensssessnnes 47
2.2.0. TRE TOI PALAWGY ...ttt s e e s st e e e et e e e s ttea e s sttaaesasteaassssseaenans 48
2.2.0. TNE IMD/TINF-R PALAWGY .......oeeeeeeeteeeeeeeeeeeee e esttee ettt eeteestaeseseaeasaessaessssesasssessssesseen 51
2.2.C. AMIPS ..ttt ettt e e e et et e e e e et aeeeeeeeanaartneeaeeeanee 53
2.2.d. TRE JAK-STAT PALAWGY .....oeeeeeeiieeeeeeeeeceee ettt e stta e ettt e e sttt e e e sttaaessstaeessastsaessssseaesassneanaas 55
D -2 YV (o] o Lo [ | OSSRt 57

2.3. PARALLEL WITH INNATE ANTIVIRAL IMMUNITY IN MAMMALS .....veeiteeeitreenereesreessseeessseesssesssessssesessessnnes 58
2.3.a. Nucleic acid sensors: pattern recognition reCePLOrs ...........cccuueeeeeecvivveereeeeesiiiivveeeeeesissirsens 62
2.3.b. Type | iNterferon PALAWAY ..........cccceeeeeecieeeeeieieeecieeeesceeeestteeesstaeeseaesasassesaessseasassseeaeas 64
CHAPTER 3 - INTRINSIC ANTIVIRAL IMMUNITY ..uuiiiiiiiiiuiiieiieniieciaiieesiesiasiaisssisesiasrssssssssessssssssens 66
3.1. VIRAL RESTRICTION FACTORS IN MAMMALS ...eecuvveeitreesireesreeessseessseessesssesesssessssessssssassssasssessssessnsssenses 68
3.2.0. INRIBDItION Of VIFQI @NTIY ..ottt e ettt eectte e e ettt e e e etae e e s srtaaasssaaaesarsneaeeas 68
3.1.b. Inhibition Of VirQl rePliCAtION .............eveeeeeeeeeeeeee ettt a e e ettt a e e e e e s saaaaaas 71
3.1.c. Inhibition Of Viral tranSIQEiON .........c..eeeeecuveeeeeieiieeeiie ettt estee e ettt esstaa e e sreaessseea s 77
3.1.d. INNIBDItION Of VIFQI FEIEASE ...t ettt e s ee e et a e st e e e s aa e e stseaesasenaeas 80
3.1.e. Multiple step antiviral fUNCEION .............oueveeeeciiieeee et ettt e e e e sttt e e e e e e ssasaaeeas 83
3.1.f. OAS/RNase L: Intrinsic antivirQl PATAWGY ...........ccovecreecveiieiieiieseeeeeeieeesieeiseesssesssesssesseens 84

3.2. VIRAL RESTRICTION FACTORS IN DROSOPHILA ? ...eoeeuveeeieeeteseseeessesssesessesssssesssessnsesensssssssessssessssesennes 87
AIM OF THE STUDY ...uiiiiiiiiiiieiiieiiiiieiiiiiniiieiieesiesiasrssisssiossrasssstssstasstasssssssssssssssssssssssssasssasssasssns 90
PART Il : MATERIAL AND METHODS......ccccituiiitmiirniirmiiinnsiimesimmesimsesisssmsessssssssssssssssssrsessrsssssasssres 91
[1.2. FLY STRAINS AND INFECTION ..vvteiuveeeureeesreeesuueesseeessessssesessssesssessssesssssesssssssssessssesssssssssessssessssesssnseenns 92
[1.2. DECHORIONATION OF EGGS ..uvveevveesureeessreesuseasssesssesassseassssessssssssesassssessssssssessssessssssesssessssessssesessseanns 92
[1.3. CELL LINES AND VIRUS INFECTION ...eeeuveeeureesureessreesssseessseessseessessnsssesssessssessnsessnsssssssesssssssssesessssssssennns 93
[1.4. VIRUS BINDING AND ENTRY ASSAYS ...uvveerureesureessesesseeessessssessssessssseesssessssessssesssssssssessssessssesssssessssessns 94



Table of contents

[1.5. TRANSFECTION, LUCIFERASE ASSAY, SECRETION ASSAY ....ccuveesureesreeessreesereesseesssesessseesssessnsesassesesssessssens 94
[1.6. GENE SILENCING: DSRNA SYNTHESIS AND TREATMENT ..ecuvveeiureeereeestreesreesseesseeessseessesssesensssesssesssenan 94
[1. 7. VIRUS TITRATION .0t eutteesureesureesteesnseeesaseesseesseesnsseesssessssessnssssnssesssessnsessnsesssssessnsessssessnsesesnsesssseesnes 96
[1.8. CLONING BY GATEWAY SYSTEM ...uveeeuveeeureesureessreessesessseesssesssessnsssesssesssssssssessssssessseesssessssessssssesnseenns 96
[1.9. DINA ANALYSIS 1ruueeeeeeettttutuieeeeseeettttueuuaeeeseeesaetsssasaseeeessssssasssesesesessssnsnsssssseessssssnanessseessessssnnsnneeaes 98
11.10.1. DNA @XELOCLION ..ottt ettt e e e ettt e e e e e s assneeeaaeeeeaaans 98
11.10.2. Preparation for pastrel gene SEQUENCING ............ceeecuuuereeeeeeseiiieeeeeeeeesiciissraasseesssissenaaaaens 98
0 Yo 1V [ 1= 4 oI <] Lo USSP 99
11.10.4. PCR GENOLYPING ..ssssssssssssssssasesssesessssssssssssssssssassssssesssssasasarararesararaseees 99
[0 RINA AN ALY SIS . ietteettttitiies e et e eeetttbeee s e e eeeeetaaa e e s eeeeeeesasaa s seeeeeseassasaasseeesestsssansnsseeeeeeessssnnnsneeees 100
T2, 0. RNA @XEFOCTION. ...ttt asaaaassassaaasasasasasesasesasasaseees 100
11.11.2. CDNA SYNTRCSIS oottt ttee e e e e ettt a e e e eee st e e e e e e sssaseaaaeessssssssneaaaanssines 100
11.11.3. QUANEItAtIVE r€AI tiME PCR.....cc..eeeeeeeeeeeeeee ettt eeee ettt s st e e ssste e s saeeesssteasssaseeeeas 101
[1.12. PROTEIN ANALYSIS. . .veeetteesuteesreeesseeassseesseeassssessssasssesasesesssesssssssssessnsssssssesssssssssssessessssesenssessnnes 102
11.12.1. PrOtein @XEIACTION ........eeeeeeeeeeeee ettt et e e e et e e e e e et eeaeeennaaes 102
11.12.2. IMMNOPIECIPIEATLION .........eeasasassastststesessessssssssassssessesssessssssssessnesaneseseees 102
1. 12.3. WESEEIN DIOL ..ottt ettt sttt ettt sttt s e st s e sisa s steesssasesasaenasees 103
1.12.4. IMMUNOSTEQINING ....eeeaasassastatsasastsastaeeeseeseeanesasasssessssssasssssssasasasaseaaseees 103
[1.13. STATISTICAL ANALYSIS ....vteeeuteeeureeeseeesuseeassesassseessseesssesasesessseessssssssssasssssssesassssessssssnsessssesesssessnees 104
PART Il : RESULTS ..eeeeiiieiirnenneineneeneeemeeemeeemeeemeemmmeemmeemmeesmmesmmemmmmememmmmmmmeemmmmmmmesmmesmeemmmmmmmmmmemmmmmmmmmnn 105
CHAPTER 4 - PASTREL: A RESTRICTION FACTOR FOR PICORNA-LIKE VIRUSES IN DROSOPHILA...... 106
4.1. RESEARCH OF THE CAUSE OF SUSCEPTIBILITY OF FLIES TO DCV INFECTION: IDENTIFICATION OF PASTREL GENE.
......................................................................................................................................................... 107
4.1.a. Wide variability in the susceptibility of laboratory control flies to DCV, but not CrPV and
L LV [} =Tt o Lo ) s USSR 107
4.1.b. Wide variability in the susceptibility of two Ore-R stocks to picorna-like viruses DCV and
CrPV, and DNA virus IIV-6 infection, but not FHV, VSV and SINV infection. ...............ccccueeeuunee... 110
4.1.c. No DCV fragments integrated in the genome of laboratory control flies.......................... 114
4.1.d. The susceptibility of flies to DCV infection is genetically transmitted................ccc........... 116
4.1.e. Correlation between the polymorphism in pst gene and DCV susceptibility..................... 119
4.2. KNOCKDOWN OF PST GENE INCREASES THE SUSCEPTIBILITY OF FLIES TO DCV AND CRPV INFECTION............. 123
4.3. POLYMORPHISMS IN PASTREL GENE DO NOT AFFECT PROTEIN STABILITY 1.uvveerureerreesireenireesireesveesnsneesanens 129
4.4, DOES PASTREL OVEREXPRESSION RESTRICT DCV INFECTION IN FLIES ?..eiuveerereesreesnrreesereeseesssessnneeessnens 130
4.5, STUDY OF PASTREL GENE IN VITRO: DROSOPHILA S2 CELLS ..uvveevreesereesiteeetreessseesseesnseesssssessseessassnsees 132
4.5.a. Knockdown of pastrel gene increases DCV and CrPV susceptibility in Drosophila cells.... 132
4.5.b. Overexpression of Pastrel protein restricts DCV and CrPV infection.............ccccccccuveennn... 136
4.5.c. Pst antiviral function acts at early steps of DCV infectious cycle..............cceevvvvvvveeeeeeeaenn. 150
4.5.d. Pst does not affect CrPV IRES transIQtioN.............cccueeeeeiuveeesiieeeeiieeeesiieeeesieeaeesieaaeenes 154
4.5.e. Pst is not involved in protein SECrEtioN .............uuueeeeeeeeeiiieieeeeeecicteeee e e esecccteaaaaeeesssaasaees 155
4.5.f. Study of Pst topology by a Biotin-Streptavidin revelation System .............cccccevvvvveeeeeeeeen. 156
4.5.g. The C-terminal region of Pst is required for its antiviral function ................cccceeecvvveeennen. 159
4.6. STUDY OF PST LOCALIZATION IN CELLS..euuveeeuteeeereessreesseeasesesssesssesssesessssesssesssssensssesssessssesanssessseees 163
4.6.a. Pst co-localizes with lipid droplets in non-infected Cells..............cccovvuvveeeeeeecciiveveneeeeeeiiinns 165
4.6.b. Enrichement of COP-| vesicles staining in the areas where Pastrel and DCV localize........ 166



Table of contents

4.6.c. Pst co-localizes with DCV capsid protein during infection ...............cccocueeeeeeceiveveneeeeessinnns 169
4.6.d. Does DCV colocalize with lipid droplets ?.............ccceeeeeeceeeeesiiieesiiieeeecieeeecieeeeciea e 170
4.6.e. DCV infection was not affected by the knockdown of genes involved in lipid metabolism174

CHAPTER 5 - EFFECT OF NORA VIRUS ON THE SUSCEPTIBILITY OF DROSOPHILA TO PATHOGENS .176
5.1. CORRELATION BETWEEN THE PRESENCE OF NORA VIRUS AND THE SUSCEPTIBILITY OF FLIES TO DCV INFECTION

......................................................................................................................................................... 177
5.2. DOES NORA VIRUS PERSISTENT INFECTION CONTRIBUTE TO THE SUSCEPTIBILITY OF FLIES TO DCV INFECTION ?
......................................................................................................................................................... 178
5.3. DOES PASTREL AFFECT NORA VIRUS PERSISTENT INFECTION ? 1euvveeiuieesuieesreesnreeesnseessessnsesssseesssessnsens 181
CHAPTER 6 - RNAI PATHWAY CONTROLS INFECTION BY A DNA VIRUS IN DROSOPHILA ............... 183
6.1. BROAD RNA INTERFERENCE-MEDIATED ANTIVIRAL IMMUNITY IN DROSOPHILA (KEMP ET AL, 2013)........... 184
PART IV : DISCUSSION .....ccuiiiiuiiiiniiiniiiniiiiaiiisiiisiiissisiemerssiisssisnsssssssssissssssssssssssssssssssnssssnnss 194
IV.1. PASTREL, A NEW GENE RESTRICTING INFECTION BY PICORNA-LIKE VIRUSES IN DROSOPHILA .......eeeevveeeeveans 195
IV.1.a. Polymorphisms in pastrel gene are correlated with the susceptibility to DCV infection . 195
IV.1.b. Pastrel genotyping is required before conducting experiments with DCV....................... 197
IV.1.c. Pastrel gene: duplications and deletions...............cccueeeeeeeeeeeeiiiiiiieeeeesiciiiieeaeeeesciiveeaaaeen 200
IV.1.d. Pastrel gene controls Dicistrovirid@e infection..............cceccvueeecviveeeeciiieesiieeeesiivesessisnennn 200
IV.1.e. Towards the characterization of Pastrel antiviral QCtIVIty ...........ccceeeevvveeecvveveeeiireeeeannnen. 203
IV.2. DOES PASTREL AFFECT NORA VIRUS INFECTION? ...eeutieetieeereesnreesseeessseessseessseesseeessseesssessssessnsesennees 208
IV.3. THE SIRNA PATHWAY CONTROLS V-6 INFECTION ..uveeeiureerireerreesnreeenieeenieeesseessseeessseessesssseesnseeensnes 209
CONCLUDING REMARKS .....cuuiiiuiiinniiieniciinniiiniiiisiiisicisiiismiiensiisiiimisssstasistssssssnstssssssssssnssses 210
(2 11 0 17 241 2 o I N 211



List of Figures and Tables

List of Figures

Figure 1. The genomic organisation of dicistroviriruses shares similarities with picornaviruses and

TFIAVITUSES. ..ottt ettt e b e e st e st e e sttt e bt e e s b e e s be e e be e e eabeesbeeereeen eeeares 27
Figure 2. Representation of the Nora virus EN0OmME. ........c..uuviiiiii it 31
Figure 3. Overview of insect antiviral innate imMMUNItY. ......ccceeeiiieiiiiii e, 38
Figure 4. The siRNA pathway in DroSOPAila. ........c..eeioeueiiieiiiie ettt e 41
Figure 5. The Toll pathway in DroSOPRila. ...........cceiieciiiiieciiie ettt e saee e e 49
Figure 6. The IMD pathway in DroSOPRila. ..........ccuiiieciiiiiiiiie ettt saee e e 52
Figure 7. The Jak-STAT pathway in DroSOPRila. ...........ccccvevcueieieciiiiieiee ettt 56
Figure 8. Inducible antiviral pathways in Drosophila. ...............coccueeieiiiiiiiiciiieicciee e 58
Figure 9. The type | INterferon reSPONSE. ...ccuuii it bee e e eare e e e nes 65
Figure 10. Cell-intrinsic antiviral immunity in Mammals........ccccoeciiieiiiiiie e e 68

Figure 11. Wide variability in the susceptibility to DCV infection, but not to CrPV and FHV infection,
between 1aboratory CONTrol flIES. ... et etae e 109

Figure 12. Wide variability in the susceptibility of two Ore-R stocks to DCV and CrPV infection, but not
o VAT £=Tot i o o VOSSPSR 111

Figure 13. Variability in the susceptibility of two Ore-R flies to IIV-6 infection, but not VSV and SINV
[[a] 7=To 6 To T -SSP UPPPSP 113

Figure 14. TOLL DNA fragments, but no DCV fragments, were detected by southern blot in DD1 cnbw,
OFE-R™ QNG WP FIIES. oottt ettt s e eeen s e eeeeenans 115

Figure 15. The susceptibility of two Ore-R stocks flies to DCV infection is genetically transmitted, and
the resistant allele is autosSOmMal-domMINANT.......ccuiiiiiiiiie e e 117

Figure 16. The susceptibility of flies to DCV infection is genetically transmitted, and the resistant
allele is aULOSOMAl-AOMINANT. ......uiiiieiii e et e e e e e e aba e e e e e e e e narsaees 118

Figure 17. Susceptibility of flies to DCV infection is correlated with polymorphisms in pastrel gene.



List of Figures and Tables

Figure 19. SNPs found exclusively in pastrel gene of Ore-R™ flies may correlate with higher sensitivity
1O DCV and CrPV iNTECHION. ..vviiii e ittt eee e e e e e e e e st bre e e e e eeesatrsaaeeeeeeennnnns 122

Figure 20. Allele specific PCR assay for fast genotyping of the sensitive and resistant alleles of pastrel
L= 0= = T T TRPRRRPPRIN 123

Figure 21. Knockdown of pastrel gene in whole flies increases their susceptibility to DCV and CrPV
(101 7= 6 To 3 VOSSP PR P 125

Figure 22. pastrel gene expression in organs and tissues from adult Canton-S flies. ........cccccceeunnn. 126

Figure 23. Specific knockdown of pastrel gene in the fat body increases the susceptibility of flies to
DCV and CrPV iNfECLION. couiiiiiiee ettt ettt ee et e e e e e e et bbe e e e e e eeeetabaaeeeeeesssnsraaaeeeeeennnnnns 127

Figure 24. Specific knockdown of pastrel gene in the intestinal epithelium of flies does not affect the

resistance t0 DCV INFECLION. .o.vvi ettt e e e et e e bee e s nteeebeeenee s 128
Figure 25. Flies expressing Pst® and Pst® forms show similar levels of Pst protein expression........... 129
Figure 26. Overexpression of Pst-GFP in flies does not increase resistance to DCV infection. .......... 131

Figure 27. DCV replicates in Drosophila S2 cells and pastrel gene expression is increased after

101 {14 o] o T PP PTO VPR UPRPURPURT 132
Figure 28. Knockdown of pastrel gene in S2 cells increases DCV infection. .........ccccceeeeiecciiieeeeeeeees 134
Figure 29. Knockdown of pastrel gene in S2 cells increases DCV infection. .........cccceeeeeiecciiieeeeeeennns 135
Figure 30. Knockdown of pastrel gene in S2 cells increases CrPV infection. ........cccccceeeivcciieeeeeeenns 136

Figure 31. Transient overexpression of Pastrel full lentgh slightly reduces DCV infection in Drosophila

S2 CRIIS. ettt ettt ettt st e e b et e sate e s be e e ba e e nateesbaesbeeenaae e seebeean 137
Figure 32. Pst overexpression decreases DCV RNA level after 16h and 48h of infection................... 139
Figure 33. Pst® and Pst® overexpression restricts DCV infection. .......cccveevecieeiiiiee e 141

Figure 34. Cells overexpressing Pst are better protected from DCV infection compared to cells with
ENAOZENOUS PSt EXPIESSION. ..ciieeiiieeee e e cccitee e e e e e et e e e e s ssrtttre e e e e e s s sabtaeeeeeeesansstaneeeeessnnrennnes 143

Figure 35. Pst® and Pst® overexpression decreases CrPV RNA level after 16h and 48h of infection... 144
Figure 36. Overexpression of Pst® and Pst® decreases the number of cells infected by DCV. ............ 146
Figure 37. Overexpression of Pst® and Pst® decreases the number of cells infected by CrPv. .......... 147
Figure 38. Overexpression of Pst® and Pst® does not affect the number of cells infected by FHV. .... 148
Figure 39. Overexpression of Pst® and Pst® does not affect the number of cells infected by VSV. ... 149
Figure 40. Pst® and Pst® overexpression does not affect binding of DCV on Cells........ooeveueueernennn. 150

Figure 41. Pst® and Pst® overexpression affects entry of DCV in CellS. .....c.ovvveveerereeeeeereeeeeenesenenn. 151



List of Figures and Tables

Figure 42. Pst® and Pst® overexpression affects DCV and CrPV early after infection. ......cccceevvenn.. 153

Figure 43. Pst® and Pst® overexpression does not affect CrPV 5’ IRES and CrPV IGR IRES translation.

..................................................................................................................................................... 154
Figure 44. Pst is not involved in protein SECretioNn. ........cooceeiviieeiiieiiee ettt 155
Figure 45. Prediction of 6 putative TM domains in Pastrel protein. ........cccoccvveeivcieeeiicieeesciiee e, 156
Figure 46. Topology of N and C-ter regions of Toll and Pst.........ccccevivciiiiiiiiiee i 158
Figure 47. Overexpression of Pst deleted in C-ter does not affect DCV RNA level. .......cccceeevveveennneen. 160
Figure 48. Overexpression of Pst deleted in C-ter does not restrict DCV infection.........ccccecvveeeennneen. 162

Figure 49. Endogenous Pst and Pst fusion proteins exhibit a vesicular pattern in the cytoplasm of

[0 X Yo ¢ o Lo T oL=] | ST 163
Figure 50. Deletion of C-terminal region of Pst modifies its intracellular localization. ...................... 164
Figure 51. Pst colocalizes with lipid droplets stained by Nile Red. ........ccccceeiiieiiiiiei e 166
Figure 52. beta-COP staining is enriched in areas of Pst fusion aggregates. .......ccccceeecvvveecciereccnnnenn. 167
Figure 53. Colocalization between DCV capsid and beta-COP. ........ccccuvvveeeiiiiiciiiiieee e 168

Figure 54. Pst colocalizes with DCV capsid staining in Drosophila S2 cells and in the fat body of
[10] =YL 0= I =TS OTPRRRRN 169

Figure 55. Pst colocalizes with CrPV capsid staining in S2 cells and in Drosophila fat body............... 170

Figure 56. DCV capsid staining does not colocalize with the surface of lipid droplets in Drosophila S2

Figure 57. DCV capsid and Pastrel protein colocalize with some dots of Nile Red staining, but not with
large lipid droplets in the fat body of DCV-infected flies. ........ccceccieeicciiee i, 172

Figure 58. DCV infection affects lipid droplets morphology in the fat body of DCV-infected flies..... 173

Figure 59. DCV seems to induce the degradation of large lipid droplets in the fat body of DCV-
(1] =YL =T I 4 =TT 174

Figure 60. Knockdown of genes involved in lipid metabolism has no effect on DCV infection in
DrOSOPRIIA S2 CRIIS.....uvveeeeeee ettt e et e e e e s e b e e e et be e e et re e e e abaeeeentaeeeanreeas 175

Figure 61. Small RNAs matching with Nora Virus genome sequence were detected in yw flies........ 177

Figure 62. Nora Virus RNA genome was detected in Ore-R” samples but not in Ore-R" and Ore-R*
o] [Tl g Y=Y IXSF- T 0 ¥ o] L= PRSP 179

Figure 63. Ore-R™ bleached flies, cured from Nora Virus infection, are still highly sensitive to DCV
infection, comparable to Nora Virus persistently infected Ore-R™ flies.........cocovvevveeriennene 180



List of Figures and Tables

Figure 64. Ore-R" flies, contaminated by Nora Virus, are still resistant to DCV infection, comparable
0 OFE-R™ FlIES. covvuevrieieiee ettt 181

Figure 65. Ore-R™ flies are more sensitive to Nora virus infection compared to Ore-R" flies........... 182

Figure 66. Pastrel is responsible of the sensitivity of imd®™ and Tab2?"® mutant flies to DCV infection.
Figure 67. The transcription factor Dif, operating in the Toll pathway, is involved in the control of DCV

[19) =To1 o] o FREUUTRRT PO 199

Figure 68. Speculative model for the antiviral action of Pst on DCV replication. ........ccccccuveeeeeeecnnins 208

List of tables

Table 1. Overview of viruses naturally infecting Drosophila melanogaster. .............cccccccvveeeccvneennne. 32
Table 2. Overview of viruses experimentally able to infect Drosophila melanogaster. ....................... 36
Table 3. List of primers used for dSRNA SYNThESIS. .......ccoeiiiiiiieiiiie et 96
Table 4. List of primers used for molecular Cloning. .........c..ueeeiiiiiccci e 98
Table 5. List of primers used for PCR ENOtYPING. ..occoeiiiiiiiiee ettt ertrree e e e e e ee e 100
Table 2. List of primers used for qPCR. ...t e e e e s e e e e e e e e eanraaeeeeeen 102
Table 7. The presence of Nora Virus in flies correlates with the susceptibility to DCV infection....... 178

10



List of Abbreviations

List of Abbreviations

(-) ssRNA
(+) ssRNA
A

AA

Ago

AGS
AIM2
AMPs
ANV
AP-1
APOBEC3
Ars2
ATPase
BAP
BCA2
BHK
BMP2

bp

C

CARD
CARDIF
Cct

CD
cDNA
cGAMP
cGAS
CHIKV
Clv
COPI
CrPV
cxVago
CypA
DAI
DaPKC
DAP-PGN
DAV
DBV

negative single-stranded RNA
positive single-stranded RNA
Adenine

Amino acid

Argonaute

Aicardi-Goutieres Syndrome
Absent in melanoma 2
Antimicrobial peptides

American Nodavirus

Activator protein-1

Apolipoprotein B mRNA-editing catalytic polypeptide 3
Arsenic resistance protein 2
Adenosine triphosphatase

Biotin Acceptor Peptide

Breast cancer-associated gene 2
Baby hamster kidney

Bone morphogenetic protein 2

Base pair

Cytosine

Caspase activation and recruitment domain
CARD adapter inducing interferon-3
Cytidylyltransferase

Cluster of differentiation
complementary DNA
cyclic-di-GMP-AMP

cGAMP synthetase

Chikungunya virus

Chilo Iridescent virus

Coat protein I

Cricket Paralysis virus

Culex Vago

Cyclophilin A

DNA-dependent activator of IFN-regulatory factors
Drosophila atypical protein kinase C
Diaminopimelic acid peptidoglycan
Drosophila A virus

Drosophila Birnavirus

11



List of Abbreviations

Der-2
DCV
DDX
DENV
DFV
dPIAS
dGTP
DIF
dMyd88
dN
DNA
dNTPs
DPV
dsRNA
dTak1
DTrV
DTV
DUF283
DVRF
DXV
E.Coli
EBOV
EFP
EIAV
elF
EMCV
ER
ERV-L
ESCRT
FACS
FADD
FHV
FIV
FPPS
Fvl

G

Gag
GNBP1
GPI
GTPases
HA

Dicer-2

Drosophila C virus

DExD/H-box helicases

Dengue virus

Drosophila F virus

Drosophila protein inhibitor of activated STAT
deoxyguanosine triphosphate
Dorsal-related immunity factor
drosophila myeloid differentiation factor 88
deoxynucleoside

Desoxyribonucleic acid
deoxynucleoside triphosphates
Drosophila P virus

double stranded RNA

drosophila TGF-beta activated kinase 1
Drosophila Tetravirus

Drosophila Totivirus

Domain of unknown function 283
Dengue virus restriction factors
Drosophila X virus

Escherichia Coli

Ebola virus

Estrogen-responsive finger protein
Equine Infectious Anemia Virus
eukariotic Initiation Factor
Encephalomyocarditis virus
Endoplasmic reticulum

Endogenous retrovirus-like elements
Endosomal sorting complex required for transport
Fluorescence-Activated Cell Sorting
Fas-associated-death domain

Flock House Virus

Feline immunodeficiency virus
Farnesyl Diphosphate Synthase
Friend-virus susceptibility gene 1
Guanine

Group-specic antigen
Gram-negative binding proteins
Glycosylphosphatidylinositol
Guanosine triphosphatase
Hemagglutinin

12



List of Abbreviations

HBV
HCMV
HCV
HD
Herc5
HFV
HIV-1
Hop
HPV
HRP
HSP
HSV-1
HTLV-1
IAV
IFI16
IFITMs
IFITs
IFN
IGR
I1V-6
IKK

IL
IL-1R
IMD
IPS-1
IRES
IRF-9
ISGs
ISGF-3
IxB
Jak
Jak-STAT
JEV
JNK
kDa
KSHV
LACV
LCMV
LGP2
LGTV
LINE-1

Hepatitis B virus

Human cytomegalovirus

Hepeatitis C Virus

Histidine—aspartic

HECT domain and RCC1-like domain containing protein 5
Human Foamy Virus

Human immunodeficiency virus-1
Hopscotch

Human papillomavirus

HorseRadish Peroxidase

Heat shock protein

Herpes Simplex Virus type 1

Human T-cell leukemia virus type |
Influenza A virus
gamma-interferon-inductible protein 16
Interferon-inducible transmembrane proteins
IFN-induced protein with tetratricopeptide repeats
Interferon

Intergenic region

Invertebrate Iridescent Virus 6

IxB kinase

Interleukin

Interleukin-1 receptor

Immune deficiency

IFN-B promoter stimulator-1

Internal Ribosome Entry Site
[FN-regulatory factor 9
Interferon-stimulated genes
IFN-stimulated gene factor-3

Inhibitor of kB

Janus kinase

Janus kinase -Signal Transducer and Activator of Transcription
Japanese encephalitis virus

c-Jun N-terminal kinase

kilodalton

Kaposi's sarcoma-associated herpesvirus
La Crosse virus

Lymphocytic choriomeningitis virus
Laboratory of genetics and physiology-2
Langat virus

Long interspersed nuclear element-1

13



List of Abbreviations

Logs-PD
LPS
Lvl
MAPKKK
MARV
MAYVS
MDAS
mESCs
MHV
MHV
miRNA
MLV
MOI
mRNA
MV

Mx
NBs
Nef
NF-xB
NLRs
NOD2
NoV
NRAMP
NS1
Nts
OAS
OASL
ONNV
ORF
0SS
PAMPs
PAZ
pDCs
PDE
PFU
PGRPs

PI3K-Akt-TOR

piRNA
PKR
PML
PRR

Loquacious isoform PD

Lipopolysaccharide

Lentivirus susceptibility factor 1
Mitogen-activated protein kinase kinase kinase
Marburg virus

Mitochondrial antiviral-signaling protein
Melanoma differentiation-associated gene 5
mouse embryonic stem cells

Murine GammaHerpes Virus

Mouse hepatitis virus

microRNA

Murine leukemia virus

Multiplicity of infection

Messengers RNA

Measle Virus

Myxovirus resistance

Nuclear bodies

Negative Regulatory Factor

Nuclear factor—«xB

NOD-like receptors

Nucleotide binding oligomerization domain 2
Nodamura virus

Natural Resistance-Associated Macrophage Protein
Non-structural

Nucleotides

2’-5’-Oligoadenylate synthetase

OAS-like gene

O’nyong-nyong virus

Open reading frame

Ovary Somatic Sheet

Pathogen associated molecular patterns (PAMPs)
Piwi/Argonaute/Zwille

plasmacytoid dendritic cells
Phosphodiesterase

Particles Forming Unit

Peptidoglycan receptors proteins
Phosphatidylinositol 3-kinase-Akt-Target of rapamycine
Piwi-associated interfering RNA

Protein kinase R

Promyelocytic leukaemia
Pattern-Recognition Receptors



List of Abbreviations

RdRp
Ref(2)P
REF1
RIG-I
RING
RIP
RISC
RLC
RLR
RNA
RNAi
RNase
RNPs
RpS6
RRE
rRNAs
RRYV
Rsad2
RVFV
S2

SAM
SAM
SAMHD1
SARS-CoV
sfRNA
SFV
SIGMAV
SINV
SIV
SMUGI1
SNP
SREBP
Staf-50
STATI1
STING
SUMO-1
SOCS
TAP1
Tas
TBEV
TBK-1

RNA-dependent RNA polymerase

Refractory for Sigma P virus

Resistance factor 1

Retinoid acid-inducible gene

Really Interesting New Gene

Receptor interacting protein

RNA-induced silencing complex

RISC loading complex

RIG-I-like receptors

Ribonucleic acid

RNA interference

Ribonuclease

Ribonucleoproteins

Ribosomal protein S6

Rev response element

Ribosomal RNAs

Ross River Virus

Radical S-adenosyl methionine domain-containing protein 2
Rift Valley fever virus

Schneider 2

Sterile alpha motif

S-adenosylmethionine

SAM domain HD domain-containing protein 1
Severe Acute Respiratory Syndrome-Coronavirus
subgenomic flavivirus RNA

Semliki Forest virus

Sigma virus

Sindbis Virus

Simian immunodeficiency virus
Single-Strand-Selective Monofunctional Uracil-DNA Glycosylase 1
Single Nucleotide Polymorphism

Sterol Regulatory Element Binding Protein
Stimulated Trans-Acting Factor of 50 kDa

Signal Transducer and Activator of Transcription 1
Stimulator of IFN genes

Small Ubiquitin-like MOdifier

Suppressor of cytokine signaling

Transporter associated with antigen processing 1 gene
Transactivator

Tick-borne encephalitis virus

TANK-binding kinase 1

15



List of Abbreviations

TEP
TIR
TLRs
TMs
TNFR
TotM
TPRs
TRIMS5a
TRIMCyp
U
UbcHS
UBEIL
UBP43
UNG
Upd

upd

VAl

VAP-A or
hVAP-33
VEEV

Vif
Viperin

Vir-1
VISA
VLPs
VPg
v-piRNAs
Vpu
VRNPs
v-siRNA
VSR
VSV
VSV-G
WNV
YFV
ZAP

Thiol-ester protein

Toll-IL-1 receptor

Toll-like receptors

Transmembranes

Tumour-necrosis factor-receptor

Turandot M

Tetratrico peptide repeats

Tripartite motif protein isoform 5 alpha
TRIMSa-Cyclophilin A

Uracil

Ubiquitin-conjugating Enzyme H8

Ubiquitin Activating Enzyme E1 Like Protein
Ubiquitin protease 43

Uracil-N glycosylase

Unpaired

unpaired

Viral associated

Vesicle-associated membrane protein-associated protein subtype A

Venezuelan Equine Encephalitis Virus
Virion infectivity factor

Virus-inhibitory protein, endoplasmic reticulum—associated, IFN-
inducible
Virus-induced RNA-1

Virus-induced signaling adapter
Virus-like particles

Viral Protein genome-linked
Virus-derived piRNAs

Viral protein U

Viral ribonucleoproteins
virus-derived small interfering RNAs
Viral suppressors of RNAi

Vesicular Stomatitis Virus

G glycoprotein of the vesicular stomatitis virus
West Nile virus

Yellow Fever Virus

Zinc-finger antiviral protein

16
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Résume de these en francais

Introduction

Les maladies infectieuses d’origine virale sont responsables d’une mortalité
importante chez toutes les especes. La drosophile est un excellent modéle pour I’étude des
mécanismes moléculaires de I’'immunité innée, y compris les virus. Elle a permis la
caractérisation de mécanismes de défense immunitaire conservés au cours de 1’évolution, tel
que les voies Toll et IMD qui régulent I’expression des peptides antimicrobiens induits en
réponse aux infections fongiques et bactériennes. Un certain nombre de maladies virales ou
parasitaires infectant 1’homme ou le bétail sont en outre transmises par des insectes
hématophages, ce qui représente une motivation supplémentaire pour étudier les mécanismes
de I’immunité innée chez les insectes. L’objectif de ma these est de comprendre les bases de

I’immunité antivirale chez la drosophile.
Problématique

Deux types de réponse sont impliqués dans le contrdle des infections virales chez la
drosophile. Une réponse inductible et I’ARN interférence qui est un mécanisme global de
défense contre les virus @ ARN, dont le virus C de la Drosophile (DCV). Le virus DCV est un
virus modé¢le de la famille des Dicistroviridae, apparenté aux Picornaviridae. Il est
couramment utilisé pour étudier les réponses immunitaires chez la drosophile en particulier
dans notre laboratoire. Nous avons mis en évidence une différence de sensibilité (charge
virale et mortalité accrues) a I’infection par ce virus entre différentes lignées utilisées comme
témoins de fond génétique. Une différence de susceptibilité au DCV a également été observée
entre deux stocks d’une méme lignée sauvage (Oregon-R) maintenus dans deux équipes de
notre unité. Plusieurs lignées sensibles au DCV étaient infectées de fagon persistante par un
virus apparenté aux Picornaviridae, le virus Nora, suggérant qu’il était la cause de la
susceptibilit¢ a DCV. L’ensemble de ces observations m’ont incité a m’intéresser a trois

aspects au cours de ma thése :
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(1) Quelle est la cause de la sensibilité de certaines lignées de Drosophile a 1’infection par le virus
DCV ?

(2) La présence du virus Nora persistant chez la Drosophile influence-t-elle la susceptibilité des
mouches a d’autres infections virales ou bactériennes ?

(3) Quelle est la contribution de I’ARN interférence dans la défense contre un virus 8 ADN ?
Résultats (1)

Les mouches controles présentent une importante variabilité dans la résistance a

Pinfection par le virus DCV.

De facon surprenante, nous avons observé une grande variabilité dans la susceptibilité
a D’infection par le virus DCV entre les mouches controles utilisées au laboratoire. Par
exemple, les mouches yw et w00t présentent une charge virale et une mortalité accrue a
I’infection par le virus DCV comparé aux mouches DD1 cnbw et Canton-S. Cette différence
de sensibilité ne concerne pas tous les virus puisque les mouches yw, w***!, DD1 cnbw et
Canton-S présentent la méme sensibilité¢ au virus FHV. Nous avons également observé une
différence de sensibilité spécifique aux virus DCV et CrPV entre deux stocks d’une méme

lignée de drosophile (Ore-R"" et Ore-R"™").
La susceptibilité a I’infection par le virus DCV est dépendante du fond génétique.

J’ai observé que lorsque 1’on croise un male d’une lignée de drosophile sensible a
I’infection par le virus DCV avec une femelle d’une lignée de drosophile résistante, la
progéniture est résistante a 1’infection par le virus DCV. Cette résistance a 1’infection par le
virus DCV est donc transmise génétiquement de fagon dominante a la descendance. De plus,
le croisement réciproque d’une femelle sensible avec un male résistant 8 DCV n’affecte pas la
résistance de la progéniture au virus DCV. Ceci indique que la résistance au virus DCV n’est
pas portée par le chromosome X. Il était ensuite nécessaire de déterminer quel(s) géne(s) du
chromosome 2, 3 ou 4 peut étre responsable de cette différence de susceptibilité a 1’infection

par le virus DCV.

La susceptibilité a I’infection par le virus DCV est corrélée au polymorphisme
dans le gene pst.
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Parallelement a mes observations, le laboratoire du professeur Francis Jiggins
(Cambridge), a associé une région génomique du chromosome 3, comprenant le géne pastrel
(pst), avec des phénotypes de sensibilité associés a 1’infection par le virus DCV. J’ai donc
séquence le gene pst des différentes lignées contrdles du laboratoire et j’ai trouvé trois
polymorphismes nucléotidiques simples (SNPs) dont un est présent dans 1’exon 6 et induit un
changement d’acide aminé. Ce SNP correle systématiquement avec la sensibilit¢ ou la
résistance au virus DCV. Les deux autres SNPs, présents dans des introns, corrélent avec la
susceptibilité a I’infection par le virus DCV des lignées contrdles a 1’exception de la lignée

Ore-R™. 11 était ensuite nécessaire de valider ce géne candidat.

L’expression du géne pst limite I’infection par les virus picorna-like DCV et

CrPV in vivo et in vitro.

L’atténuation de 1’expression du géne pst par ARN interférence in vivo accroit la
charge virale et la mortalité des mouches infectées par le virus DCV comparé aux mouches
controles. J’ai effectué les mémes observations avec le virus de la paralysie du criquet
(CrPV), qui comme le virus DCV appartient a la famille des Dicistroviridae. De fagon
consistante, 1’atténuation de 1’expression du géne pst in vitro augmente la charge virale dans
les cellules S2 infectées par les virus DCV et CrPV. Afin de tester si une surexpression du
geéne pst limite I’infection par le virus DCV, j’ai établi des lignées stables qui surexpriment
sous contrdle du promoteur actine la forme sensible ou résistante de la protéine Pst, couplée
en N ou C-terminal avec le fluorochrome RFP. La surexepression de la forme sensible ou
résistante de la protéine Pst réduit considérablement la charge virale apres infection par les
virus DCV et CrPV par rapport a la lignée cellulaire controle. De fagon consistante, dans le
cas d’une infection par les virus DCV et CrPV, mais pas FHV et VSV, le nombre de cellules
positives pour le virus est réduit dans les lignées stables surexprimant la forme sensible ou
résistante de la protéine Pst par rapport a la lignée controle. Cette restriction virale apparait
dans les premiéres heures de 1’infection par le virus DCV in vitro, sans affecter la fixation du
virus sur les cellules. La traduction IRES-dépendante, nécessaire a la synthése polyprotéique
des virus DCV et CrPV, n’est pas affectée par la surexpression de la protéine Pst. Des
expériences sont en cours pour tester si la protéine Pst affecte I’entrée ou la réplication du

virus.
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La région C-terminale de la protéine Pst porte I’activité antivirale.

Afin de déterminer si la région portant le polymorphisme identifié in vivo (associé a la
sensibilité ou résistance a I’infection par le virus DCV) confére ’activité antivirale a la
protéine Pst, j’ai établi des lignées stables surexprimant une forme tronquée de la protéine Pst,
depuis le dernier domaine transmembranaire prédit et précédent le polymorphisme. La
surexpression de cette forme tronquée de la protéine Pst n’affecte pas I’infection par le virus
DCV, indiquant que la région C-terminale de la protéine est nécessaire pour son activité
antivirale. L’effet d’autres délétions est en cours d’analyse. De plus, la délétion de la région

C-terminale modifie la localisation de la protéine de fusion.

La protéine Pst colocalise avec les gouttelettes lipidiques révélées par le Rouge de
Nil, ainsi qu’avec les protéines de capside des virus DCV et CrPV au cours de

I’infection.

L’immunomarquage des cellules révele que la protéine Pst est localisée dans des
structures ponctuelles, concentrées dans une zone juxtanucléaire. Le marquage des
gouttelettes lipidiques par le Rouge de Nil colocalise avec le marquage de la protéine Pst
endogene dans les cellules S2 in vitro. Au cours de I’infection, la protéine Pst colocalise avec
les protéines de capside des virus DCV et CrPV in vitro, mais aussi in vivo dans les cellules
du corps gras, un tissu analogue au foie chez les mammiféres. Cette colocalisation est

cohérente avec une activité antivirale de la protéine Pst sur ces virus.

L’extrémité N et C-terminale de la protéine Pst est exposée du coté cytosolique.

Puisque la protéine Pst et les protéines de capside colocalisent dans le cytoplasme, il
est probable que la protéine Pst et les particules virales se rencontrent dans le cytosol,
permettant a la protéine Pst d’exercer son activité antivirale portée par la région C-terminale.
Pour répondre a cette hypothése, j’ai mis au point une nouvelle méthode basée sur la
spécificité d’interaction entre les protéines Biotine et Streptavidine pour déterminer la
topologie des régions N et C-terminale de la protéine Pst. J’ai ajouté des sites de biotinylation
en N ou C-terminal de la protéine Pst et exprimé ces protéines de fusion dans des cellules
exprimant 1’enzyme BirA. Si le site de biotinylation est exposé et accessible dans le cytosol,
ce site est biotinyl¢ par I’enzyme BirA. La biotinylation est ensuite révélée par western blot
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avec la protéine Streptavidine-HRP. La validité de cette technique a été confirmée en utilisant
la protéine Toll, dont la topologie est connue, comme controle. J’ai observé que les extrémités

N et C-terminal de la protéine Pst sont exposées dans le cytosol.

Résultats (2)

L’infection persistante par le virus Nora n’a pas d’effet sur la susceptibilité des
mouches a P’infection par le virus DCV, mais affecte la susceptibilité aux infections

bactériennes.

La présence du virus persistant Nora a été détectée dans certaines lignées de
laboratoire. Le virus Nora appartient a une nouvelle famille des virus de type picorna. J’ai
ainsi vérifié si la persistance de ce virus pouvait contribuer a la susceptibilité au virus DCV.
En effet, ce virus est détecté par PCR dans toutes les lignées sensibles a DCV alors que les
lignées résistantes 8 DCV ne sont pas infectées par le virus Nora (a 1’exception toutefois de la
lignée DD1 cnbw). La déchorionnation des ceufs de la lignée Ore-R™" infectée permet
I’¢élimination du virus Nora, qui n’est pas transmis par la lignée germinale. Cependant, cette
lignée présente toujours une sensibilité¢ a I’infection par le virus DCV identique a celle de la
lignée Ore-R™" non traitée. Par ailleurs, la contamination de la lignée Ore-R™, non infectée
par le virus Nora, avec les excréments des mouches de la lignée Ore-R™" infectée, n’induit pas
de sensibilité accrue a I’infection par le virus DCV. L’ensemble de ces résultats m’ont permis
de conclure que la présence de ce virus persistant n’était pas responsable de la susceptibilité
de certaines lignées de drosophiles a [D’infection par le virus DCV. Cependant, en
collaboration avec 1’équipe de Dominique Ferrandon, nous avons observé que la lignée Ore-
RP" débarrassée du virus Nora est moins sensible a I’infection par P. aeruginosa et S.
marcescens. Par opposition, la lignée Ore-R™™ contaminée par ce virus devient plus sensible a
ces deux infections bactériennes. Le virus Nora affecte la susceptibilité des mouches aux
infections bactériennes. De plus, les mouches infectées subissent un renouvelement important

de I’épithélium intestinal.

Résultats (3)

L’ARN interférence est une voie générale de défense antivirale.
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Nous avons montré que la voie de I’ARN interférence est une voie générale de défense
antivirale, puisqu’elle permet, en plus des virus a ARN, de contrdler I’infection par un virus a
ADN. Les mouches mutantes pour le géne dicer-2 (dcr-2R*%) infectées par le virus 8 ADN
ITV-6 présentent une mortalité et une charge virale accrue par rapport aux mouches controles
yw. J’ai également observé une mortalité plus importante chez les mouches mutantes pour un

second alléle nul de dicer-2 (dcr-2"811fsx

), le phénotype de sensibilité¢ au virus IIV-6 étant
restauré chez ces mutants apres insertion d’un transgéne correspondant a la région génomique
de dicer-2 sauvage. Les mouches mutantes pour les génes R2D2 et AGO2, deux composants
majeurs de cette voie, présentent également une sensibilité accrue au virus IIV-6. J’ai
construit une banque de petits ARNs a partir de mouches et de cellules infectées par le virus
IIV-6 et identifié la présence de petits ARN, majoritairement de 21 nucléotides, s’alignant
avec la séquence du génome viral IIV-6. Ainsi, Dicer-2 produit des ARN interférents contre le
génome viral ITV-6. De facon surprenante, a la différence des virus a ARN, ces petits ARN
interférents sont produits a partir de régions spécifiques du génome viral puisque leur
distribution n’est pas uniforme le long du génome viral. Ces régions correspondent a des

régions ou la transcription s’effectue sur les deux brins, conduisant potentiellement a la

formation d’ARNdb, substrats de Dicer-2.

Conclusion

J’ai mis en évidence que le géne pst est impliqué dans la susceptibilité a 1’infection par
les virus de type picorna DCV et CrPV. Les expériences de perte-de-fonction et gain-de-
fonction indiquent que la protéine Pst est un facteur de restriction antiviral. Son mécanisme
d’action reste a éclaircir. Mon étude de l'effet de la présence du virus Nora sur la
susceptibilité des mouches aux infections a permis de révéler que cette infection persistante
n’affecte pas la sensibilité des mouches a DCV. Cependant, la présence du virus Nora facilite
les infections bactériennes et perturbe le renouvellement des cellules épithéliales de I’intestin.
Enfin, j’ai également démontré que I’ARN interférence, en plus des virus a ARN, permet de
controler I’infection par un virus a ADN. Ces travaux ont été publiés dans le Journal of

Immunology.
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Introduction

Every species have to face multiple pathogens during their life. In particular, viral
infectious diseases are responsible for high lethality in all species. The fruit fly Drosophila
melanogaster is an excellent model to study the molecular mechanisms of innate immunity in
insects (Schneider, 2000). This model allowed the characterization of the evolutionarily
conserved Toll and IMD pathways that regulate the expression of antimicrobial peptides in
response to fungal and bacterial infections (Hoffmann, 2003). This discovery had a major
impact on the understanding of innate immunity in mammals. The necessity to study insect
innate immunity is also reinforced by the emergence of human viral diseases transmitted by

hematophagous insects, including ticks and mosquitoes (Weaver and Reisen, 2010).

The first part of this introduction will review the natural and non-natural Drosophila
viruses used in this study. The second part will address the different innate immune pathways
mounted in response to pathogens, with a particular focus on Drosophila antiviral responses.
After a brief comparison with the innate antiviral response orchestrated in mammals, the
innate intrinsic immunity will be addressed in mammals and Drosophila, with a description of

characterized restriction factors.
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Viruses commonly used in research laboratories to study the mechanisms of antiviral
immunity in Drosophila can be divided in two classes: first, the natural pathogens of
Drosophila, which include Drosophila C virus (Dicistroviridae), Sigma virus
(Rhabdoviridae) and Nora Virus (unclassified); secondly, the non-Drosophila viruses that
were isolated from other hosts but were able to infect Drosophila flies and cells in
experimental conditions. They include Cricket Paralysis virus (Dicistroviridae), Flock House
virus (Nodaviridae), Invertebrate Iridescent virus 6 (Iridoviridae), Sindbis virus (Togaviridae)
and Vesicular Stomatitis virus (Rhabdoviridae). Both classes cover a wide range of virus
families with genomes of different nature and polarity, thus enhancing the robustness of the

Drosophila model to study innate antiviral responses.

1.1. Drosophila viruses: natural pathogens of Drosophila

Drosophila C virus (DCV) was firstly identified in 1972 from the Charolles strain of
Drosophila melanogaster. This laboratory stock exhibited an unusual high mortality rate
(Jousset et al., 1972). DCV is widely spread in Drosophila, infecting about one third of
natural and laboratory populations of Drosophila (Plus et al., 1975a). Viral particles are non-
enveloped, icosahedric, with 30 nm of diameter and share physical and chemical
characteristics with the Picornaviridae family (Jousset et al., 1977). However, the full
sequencing of DCV genome in 1998 revealed clear differences with several Picornaviridae,
imposing the creation of the new Dicistroviridae family to classify this Drosophila picorna-
like virus (Johnson and Christian, 1998). DCV genome is a positive single stranded
ribonucleic acid ((+) ssRNA) of 9,264 nucleotides (nts) length, polyadenylated at the 3’ end.
The small viral protein genome-linked (VPg) is attached at the 5’ extremity of the genome
(King and Moore, 1988). The genome consists of two open reading frames (ORF): the 5’
ORF encodes non-structural proteins (a viral suppressor of RNA interference (RNAi) DCV-
1A, a helicase, a protease, the VPg protein and the viral RNA-dependent RNA polymerase
(RdRp)) and the 3° ORF encodes structural proteins (capsid proteins VP1-4). Each ORF is
preceded by an internal ribosome entry site (IRES) that initiates translation of non-structural
(5 IRES) or structural (Intergenic region (IGR) IRES) polyprotein precursors. Final proteins
are obtained after cleavage of the polyproteins by the viral protease. This contrasts with the
viral genome from Picornaviridae and Iflaviridae family which consists of a single ORF with
capsid proteins encoded at the 5" region of the genome and non-structural proteins (helicase,
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protease and RdRp) encoded at the 3" region (Figure 1). A single IRES is present at the 5’

extremity of the genome and initiates translation.

5 ‘ﬂ_ :
Picornavirus  ( WPg DL vpa | vP2 | VP3  VP1  Hel Pro RARP -~ A,—3

= IRES

Iflavirus i 'ﬂ'!. e L_J VP2 lml vP3 _|‘.I'F1 |Hal Pro HdFIF_—- A—3

5 : _ :
Dicistrovirus  ( WPy ;rﬂ; LJ Hel Pro RdRP -ﬂ.. VP2 | VP4 VP3 | VPl —A,—3
S — —_— — 1“{5.\- — s

Figure 1. The genomic organisation of dicistroviriruses shares similarities with
picornaviruses and iflaviruses. (Leader (L), Helicase (Hel), Protease (Pro), polyA (An)).

DCV is horizontally transmitted, and this transmission is facilitated by females which
may act as viral reservoir in nature (Gomariz-Zilber et al., 1995, 1998). The outcome of the
infection depends on the infection route. Injection of DCV is highly pathogenic, leading to the
death of flies in few days. By contrast, flies infected by oral contamination with DCV appear
healthy. However, depending on the dose, the ingestion of DCV can be fatal within days
(Gomariz-Zilber et al., 1995; Jousset and Plus, 1975). Surprisingly, some studies reported that
DCYV induces some beneficial effects on infected flies: DCV decreases the developmental
time, increases the mean number of ovarian tubes and the weight of adult females (Gomariz-
Zilber and Thomas-Orillard, 1993; Thomas-Orillard, 1984). It also increases the fertility
(Thomas-Orillard, 1988) and the daily egg-production (Thomas-Orillard, 1990).

After its injection in adult flies, DCV replicates and spreads to a large number of
tissues, including the fat body (Cherry and Perrimon, 2003; Dostert et al., 2003, 2005; Lautié-
Harivel and Thomas-Orillard, 1990; Sabatier et al., 2003), the follicular cells (Lautié-Harivel
and Thomas-Orillard, 1990), the thoracic muscle fibers, the tracheal cells, the digestive tract
(Dostert et al., 2003; Lautié-Harivel and Thomas-Orillard, 1990), the cells of the periovarian
sheath (Cherry and Perrimon, 2003; Dostert et al., 2003, 2005; Sabatier et al., 2003), the
oenocytes and the blood cells (Dostert et al., 2003).
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Little is known about the infectious cycle of DCV and Dicistroviruses in general,
except by comparison with Picornaviruses. DCV particles enter in cells through clathrin-
mediated endocytosis (Cherry and Perrimon, 2003), but the receptor required for viral entry
has not been identified yet. DCV protein synthesis, as for poliovirus, is sensitive to levels of
the ribosomal machinery (Cherry et al., 2005). This characteristic seems to be a common
feature for IRES-containing RNA viruses. Indeed, the knockdown of ribosomal protein S6
(RpS6) also affects Hepatitis C Virus (HCV) translation and suppresses its replication in
Huh7.5 cells (Huang et al., 2012). The depletion of ribosomal proteins RpS6 and RpL19
blocks DCV replication but does not affect the cell growth and viability. However, we cannot
rule out that the attenuation of DCV replication is an indirect effect of the depletion of
ribosomal subunits. Indeed, a two-fold reduction in host protein synthesis is observed, which
may have a physiological significance in the cells. DCV replication takes place in vesicles
derived from the Golgi apparatus, and is dependent of coat protein I (COPI), but not COPII
vesicles (Cherry et al., 2006). COPI vesicles are responsible of intra-Golgi transport and
retrograde transport from the Golgi to the endoplasmic reticulum (ER) (Hsu et al., 2009). It is
still unclear whether the vesicles used as viral factories are COPI vesicles since the authors
stained these vesicles with an anti-Golgi antibody, rather than a COPI antibody. At least, they
showed that viral factories derive from the Golgi apparatus. Authors also reported that fatty
acid biosynthesis is required for DCV replication. Flies mutant for the sterol regulatory
element binding protein (SREBP) are resistant to DCV infection. SREBP is a major
transcriptional regulator of fatty acid metabolism, suggesting that DCV may rely on lipid
metabolism for effective replication. Finally, the assembly of DCV particles and their release

from infected cells remain poorly characterized.

Other picorna-like viruses were found in Drosophila melanogaster but they are much
less characterized than DCV (Plus et al., 1976). Drosophila P virus (DPV) was described in
1969 (Plus and Duthoit, 1969). DPV is largely present in laboratory and wild populations of
Drosophila (Plus et al., 1975a). DPV is a 25-30 nm non-enveloped virion with a (+) ssRNA
genome. As for DCV, DPV appears asymptomatic in naturally infected strains. Injection of
DPV in flies reduces their life span and induces female sterility (David and Plus, 1971). The
virus mainly targets ovaries and malpighian tubules, and can be vertically transmitted
(Teninges and Plus, 1972). Drosophila A virus (DAV) is a 25-30 nm non-enveloped virus
with a (+) ssRNA genome. Unexpectedly, the sequence coding for the viral RdRp shares
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characteristics with viruses from Birnaviridae and Tetraviridae families. In addition, the
structure of the virion has unique characteristics (Ambrose et al., 2009). DPV and DAV are

not classified yet. Both viruses can be vertically transmitted (Brun and Plus, 1980).

Drosophila X virus (DXV) was first isolated in 1979 in flies that were highly
sensitive to oxygen starvation (after exposure to CO,). Sigma virus was hitherto the only
reported virus to induce CO, sensitivity in flies. However, flies were free from bullet-shaped
Sigma virus infection, but rather infected by an unknown icosahedric virus, thereby named
DXV (Teninges et al., 1979). DXV is transmitted horizontally and viral particles are found in
many organs, including the gut cells, the trachea cells, the muscle sheath of different organs,
the ovaries and the fat body. DXV is a 70 nm non-enveloped virus. The bipartite double
stranded RNA (dsRNA) genome indicated that this virus belongs to Birnaviridae family
(Chung et al., 1996). The replication cycle of DXV is unknown.

Drosophila F virus (DFV) was identified in laboratory stocks of Drosophila
melanogaster (Plus et al., 1975b). DFV belongs to Reoviridae family (Plus et al., 1981). Viral
particles are non-enveloped, with a diameter of 60-70 nm. The genome is composed of 10
segments of double stranded RNAs (Huszar and Imler, 2008). The replication cycle of DFV

has not been studied.

Sigma virus (SIGMAY) belongs to the family of Rhabdoviridae. Viral particles are
enveloped, with a bullet shape. The genome is a negative single stranded RNA ((-) ssRNA).
SIGMAYV is widespread in Drosophila populations, its transmission mainly occurs vertically
via germ cells (Longdon and Jiggins, 2012). SIGMAV-infected flies are highly sensitive to
CO, exposure. After CO, exposure, SIGMAV replicates rapidly in the nervous tissues,
leading to paralysis and death of infected flies (Hogenhout et al., 2003). SIGMAV spreads in
all tissues except muscles (Tsai et al., 2008). Interestingly, polymorphisms in the refractory
for Sigma P virus (ref(2)P) locus were shown to affect SIGMAV infection in Drosophila

(Carré-Mlouka et al., 2007), as discussed below in section 1.3.2.

Nora Virus is a picorna-like virus recently identified in laboratory and natural
populations of Drosophila (Habayeb et al., 2006). Nora virus establishes a persistent infection
in flies. Its genome is a (+) ssSRNA of 12,333 nts length, ended by a poly(A) tail at the 3’
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extremity. The genome has an unusual sequence and organization (Figure 2, Ekstrom et al.,
2011). Unlike other picorna-like viruses, the genome encodes fours ORFs (ORF1-4) with
unique features: ORF2 encodes a picornavirus-like helicase, a protease (less well conserved)
and an iflavirus-like RdRp. The three other ORFs (ORF1, 3 and 4) are not closely related to
any viral sequences previously described. ORF4 is proposed to encode capsid proteins.
Strikingly, Nora virus titer can vary over 6 orders of magnitude (10* and 10'° viral genomes
per fly in different stocks). Even single flies from a same stock can differ as much as 10° in
viral titer (Habayeb et al., 2009a). Flies with a high-titer infection establish stable persistent
infections, whereas flies with a lower level of infection are able to clear the virus. Nora virus
is mainly found in the intestine of infected flies, and is transmitted horizontally via feces
(Habayeb et al., 2009b). Nora virus does not cause obvious pathological effects, indicating
that the virus is very well adapted to its host. The immune pathway controlling infection is
still unclear. Indeed, Nora virus infection is not affected by mutations in the RNAi, Janus
kinase-Signal transducer and activator of transcription (Jak-STAT) and Toll pathways
(Habayeb et al., 2009a). However, Nora virus small RNAs were detected in infected flies (van
Mierlo et al., 2012) and Drosophila Ovary Somatic Sheet (OSS) cells (Wu et al., 2010),
suggesting that Nora virus is a target of the antiviral RNAi pathway. Furthermore, Nora virus
genome encodes a viral suppressor of RNAi (VP1), which inhibits the catalytic activity of
Argonaute-2 (Ago-2), a key component of the RNAi pathway (van Mierlo et al., 2012). At
present, the role of the RNAi pathway in the control of persistent Nora virus infection is still
unclear. As a full length Nora virus infectious clone is available (Ekstrom et al., 2011), it may
be interesting to investigate if deletions in C-terminal region of VPI1, resulting in loss of
suppressor activity (van Mierlo et al., 2012), could result in better clearance of Nora virus
infected wild-type flies. Only a mild effect on life span was reported, but no effect on eggs
eclosion and fecundity. Nora virus was proposed as a model to study persistent viral
infections. Clearly, the mechanisms controlling the persistence of Nora virus in Drosophila
should be investigated to highlight how viruses establish persistent infection in their host.
Whether the presence of this persistent infection contributes to the pathology caused by other

pathogens has not yet been investigated.
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Figure 2. Representation of the Nora virus genome. (adapted from Ekstrom et al., 2011 and
van Mierlo et al., 2012).

Assembly of virus-small interfering RNAs (v-siRNAs): a strategy to discover new viruses

in invertebrates

In 2009, the team of Dr. Shou-Wei Ding proposed an original approach to discover
new viruses in invertebrates (Wu et al., 2010). Based on the analysis of small RNA libraries,
the authors reassembled viral genomes from v-siRNAs. They discovered four previously
unknown viruses in Drosophila Schneider 2 (S2) cells: the (+) ssRNA viruses American
Nodavirus (ANV) and Drosophila Tetravirus (DTrV) and the dsRNA viruses Drosophila
Birnavirus (DBV) and Drosophila Totivirus (DTV). The pathogenicity and replication cycle
of these viruses are not yet characterized. Viral small RNAs matching with ANV, DBV,
DCV, DTrV, DXV and Nora Virus were found in Drosophila OSS cells. Overall, these results
highlight that Drosophila S2 and OSS cells were probably persistently co-infected by five and

six RNA viruses, respectively. Their molecular characterization awaits more investigations.

Natural Drosophila viruses presented above are summarized in Table 1.

Familly Genome (lentgh) | Diameter | Transmission [Envelope
(nm)

DCV Dicistroviridae (+) ssRNA, 9,264 nts  25-30 Horizontal

DPV Unclassified (+) ssRNA 25-30  Horizontal and No
Vertical

DAV Unclassified (+) ssRNA 25-30  Horizontal and No
Vertical

DXV Birnaviridae dsRNA, 70 Horizontal No

3,360 bp (Seg.A),
3,243 bp (Seq.B)
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DFV Reoviridae dsRNA, 60-70 Horizontal No
10 segments
SIGMAV Rhabdoviridae (-) sSRNA, 10-15kb  45-100 Vertical Yes
Nora  Unclassified (+) ssRNA, 12,333 27-30 Horizontal No
Virus nts

Table 1. Overview of viruses naturally infecting Drosophila melanogaster.

1.2. Other viruses infecting Drosophila

Cricket Paralysis virus (CrPV) was isolated in 1970 from two species of Australian
field crickets, Teleogryllus oceanicus and T. commodus, that rapidly succumbed after
paralysis (Reinganum et al., 1970). CrPV is able to infect a broad range of insect species,
including Drosophila melanogaster flies (Wang et al., 2006) and cell lines (Moore et al.,
1980; Scotti, 1975). CrPV injection into flies is highly pathogenic (Wang et al., 2006). The
CrPV genome is composed of two ORFs encoding non-structural and structural proteins via
IRES mediated translation. Both CrPV IRES were widely used as models to understand cap-
independent mechanisms of translation (Deniz et al., 2009; Landry et al., 2009). The
sequencing of the genome allowed its classification in the Dicistroviridae family, which also
includes DCV (Wilson et al., 2000). CrPV genome is a (+) ssRNA with VPg protein attached
at the 5’ extremity (King and Moore, 1988) and a poly(A) tail at the 3’ extremity. The virus is
transmitted horizontally (Moore and Tinsley, 1982). CrPV infection leads to a shutoff of host
translation in Drosophila cells (Garrey et al., 2010). Intriguingly, the infection is increased at
higher temperature (37°C instead of 25°C) in Drosophila S2 cells (Cevallos and Sarnow,
2010). At higher temperature, CrPV RNA genome and viral proteins production are increased
but unexpectedly, viral infectious particles are not. It was proposed that cellular responses at
high temperature, including selective expression of heat shock proteins (Hsp) at the expense
of other host proteins (Klemenz et al., 1985), may provide a beneficial environment for
viruses. At high temperatures, the host protein synthesis is reduced in mammals, allowing
some IRES-containing RNA viruses to hijack the translation machinery (Kim and Jang,
2002). Furthermore, several mammalian viruses are able to use Hsp for their replication
(Burch and Weller, 2005; Glotzer et al., 2000; Lopez et al., 2006), capsid formation (Chromy
et al., 2003), or uncoating (Chromy et al., 2006). In Drosophila, it was reported that Hsp90
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facilitates the Flock House virus replication (Kampmueller and Miller, 2005). The mechanism
facilitating CrPV replication and protein synthesis at high temperature remains to be

elucidated.

Flock House Virus (FHV) was originally isolated in 1983 from the grass grub
Costelytra zaelandica, near the Flock House Agricultural Research Station in New Zealand
(Scotti et al., 1983). FHV is able to replicate in plants, insects, yeast and mammalian cells,
including different mosquito and Drosophila cell lines (Dasgupta et al., 2003, 2007). FHV is
not a natural pathogen of Drosophila. Intrathoracic injection of FHV in flies is highly
pathogenic and the virus spreads to multiple tissues, infecting the fat body, muscles and
trachea (Galiana-Arnoux et al., 2006). FHV is a small non-enveloped, bipartite (+) ssSRNA
virus that belongs to Nodaviridae family (Venter and Schneemann, 2008). The genome of
FHV consists of two RNAs: RNAT (3.1 kb) encodes the viral RdRp (FHV protein A) and a
subgenomic RNA3 (0.4 kb) containing two overlapping ORFs encoding proteins Bl
(unknown function) and B2, a viral suppressor of RNAi (Li et al., 2002). RNA2 (1.4 kb)
encodes the precursor protein of the viral capsid. Both RNA1 and RNA2 are capped at their
5’ extremity, but are not polyadenylated. FHV replication occurs in viral factories that were
visualized by electron microscopy tomography and reconstructed by three dimensional
analysis (Kopek et al., 2007). The depletion of two enzymes involved in phosphatidylcholine
biosynthesis (cytidylyltransferase (cct) 1 and cct2) affects FHV replication, indicating that
glycerophospholipid metabolism positively regulates FHV replication (Castorena et al.,
2010). FHV induces the formation of spherule-like vesicles between the inner and outer
mitochondrial membranes that support new RNA synthesis by protein A. The two genomic
RNAs are transported to the cytoplasm for translation and encapsidation into provirions is
performed by the single protein a. Mature virions are produced after the autocatalytic
cleavage of protein a into proteins B and y, which confers physicochemical stability to the
viral particle (Venter and Schneemann, 2008). As mentioned previously, the Hsp90 appears to
facilitate FHV replication (Kampmueller and Miller, 2005), by promoting efficient synthesis
of the viral RdRp in Drosophila S2 cells (Castorena et al., 2007). The molecular chaperon
Hsp90 plays a role in the replication of a broad spectrum of viruses and appears to have virus-
specific functions at unique steps in the viral cycle (Geller et al., 2012). This is one example
of the complexity and diversity of the mechanisms employed by viruses to appropriate

cellular pathways for their own purposes. FHV infectious cycle ends by the induction of
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apoptosis through a caspase-dependent pathway in infected DL-1 cells (Settles and Friesen,
2008). Virus-induced apoptosis may favor the release of infectious particles and their
subsequent dissemination to neighboring cells (Best, 2008). The American Nodavirus
(ANYV) is a variant of FHV that was found to persistently infect Drosophila S2 cells (Wu et
al., 2010). The genome of ANV was assembled from v-siRNAs found in S2 cells and shared
89% and 82% of identity with RNA1 and RNA2 molecules of FHV respectively.

Invertebrate Iridescent virus 6 (IIV-6) is an icosahedral double stranded
desoxyribonucleic acid (dsDNA) virus that infects invertebrates, mainly insects and terrestrial
isopods. Its name comes from the opalescent hues observed in heavily infected hosts. The
surface of paracrystalline arrays of virus particles reflects light that interferes with incident
light resulting in diffraction, thus causing the iridescent hues in highly infected hosts. The
iridescence was proposed to be a visual indicator of particles size, but this relationship is still
debated (Williams, 2008). IIV-6, also named Chilo Iridescent virus (CIV), belongs to
Iridoviridae family (Williams et al., 2005). Its dSDNA genome is 212,484 base pair (bp) long
and encodes for 211 putative ORFs (initially 468 ORF were predicted (Jakob et al., 2001) but
a reannotation of the genome was performed by (Eaton et al., 2007). IIV-6 is able to replicate
in flies after intrathoracic injection, and iridescence is visualized in the abdomen of infected
flies (Bronkhorst et al., 2012; Kemp et al., 2013; Teixeira et al., 2008). The infection is not
lethal in wild-type flies, even if the injected dose is high. No DNA viruses that naturally infect
Drosophila melanogaster have been discovered so far, although a dsDNA virus has recently
been identified in wild-caught Drosophila innubila (Unckless, 2011). IIV-6, among others, is
used in our laboratory as a model to study the antiviral immunity against DNA viruses in

Drosophila.

Sindbis virus (SINV) is an arthropod-borne virus (arbovirus) first isolated in 1952
from Culex pipiens and Culex univittatus mosquitoes collected in the Sindbis district, near
Cairo in Egypt (Taylor et al., 1955). SINV belongs to the Togaviridae family, in the
alphavirus genus. Alphaviruses are transmitted by arthropods, typically the mosquitoes, and
replicate in both arthropod and vertebrate hosts worldwide (Jose et al., 2009). SINV is the
most widely distributed among alphaviruses causing arthritis in humans, which include
Chikungunya, o'nyong-nyong, Mayaro and Ross River viruses (Tesh, 1982). However, it is

the least dangerous for public health. The wide tropism of alphaviruses and genome
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manipulation make them a good tool for applications as vaccine or gene therapy (Atkins et al.,
2008). SINV is an enveloped virus containing a (+) ssSRNA genome of 11.7 kb length, capped
at its 5 end and polyadenylated at its 3’ end (Strauss and Strauss, 1994). The genome is
composed of a 5 ORF encoding the non-structural proteins and a 3° ORF encoding the
structural proteins. The virus binds to the natural resistance-associated macrophage protein
(NRAMP) at the host cell surface and enters via clathrin-mediated endocytosis (Rose et al.,
2011). SINV activates the phosphatidylinositol 3-kinase (PI3K)-Akt-target of rapamycine
(TOR) pathway. The PI3K-Akt pathway is reported to be involved in cell survival and
proliferation, and can lead to the activation of the TOR kinase, which phosphorylates elF4E-
BP to facilitate the formation of translation inititiation complexes. Thus, through the
activation of this pathway, SINV infection promotes cap-dependent translation of viral
messenger RNAs (mRNAs) (Patel and Hardy, 2012). SINV is able to replicate in cells and
flies after intrathoracic injection and was found in the fat body and the muscles surrounding
the gut (Galiana-Arnoux et al., 2006; Mudiganti et al., 2010; Saleh et al., 2009). The virus is
weakly pathogenic in wild-type flies.

Vesicular Stomatitis virus (VSV) is an arbovirus that belongs to Rhabdoviridae
family. It is able to infect a wide range of species, like rodents, cattle, swine and horses, and
causes an acute disease (Letchworth et al., 1999; Lichty et al., 2004). Rare cases of human
infection have been reported, but most VSV infections are asymptomatic in humans. The
genome is a (-) sSRNA of 11 kb of length, packaged in a bullet-shaped virion. The genome
encodes 5 proteins: the nucleoprotein (N), the phosphoprotein (P), the matrix protein (M), the
glycoprotein (G) and the large subunit of the RdRp (L) (Ivanov et al., 2011, includes details
of the replication cycle). VSV can replicate in Drosophila cells and animals (Mueller et al.,
2010; Wyers et al., 1980). By contrast to infection in vertebrates, Drosophila cells infected by
VSV do not display a shutoff of host protein synthesis and the virus establishes a non-
cytopathic persistent infection (Dezélée et al., 1987; Wyers et al., 1980).

Other arboviruses have been reported to infect Drosophila cells and/or flies after
injection, such as Chikungunya virus (CHIKV, Togaviridae) (Glaser and Meola, 2010), West
Nile virus (WNV, Flaviviridae) (Chotkowski et al., 2008; Glaser and Meola, 2010), La
Crosse virus (LACV, Bunyaviridae) (Glaser and Meola, 2010), Rift Valley fever virus
(RVFV, Bunyaviridae) (Filone et al., 2010) and Dengue virus (DENV, Flaviviridae)
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(Mukherjee and Hanley, 2010). A summary of viruses experimentally able to infect
Drosophila is presented in Table 2. A genome wide RNAI screen has even been performed in
Drosophila S2 cells to identify DENV host factors (Sessions et al., 2009). Overall, it is clear

that Drosophila remains an extremely useful genetic model to study the interactions between

host and insect viruses, including pathogenic human viruses (Hughes et al., 2012).

Familly Genome (lentgh) Diameter | Envelope
(nm)

CrPV Dicistroviridae (+) ssRNA, 9,185 nts

FHV Nodaviridae (+) ssRNA, bipartite 30 No
RNAL, 3.1 kb
RNA2, 1.4 kb
V-6 Iridoviridae dsDNA, 212,484 kb 185 Yes/No
SINV Togaviridae (+) ssRNA, 11,703 kb 65-70 Yes
VSV Rhabdoviridae (-) ssRNA, 11 kb 70x200 Yes
CHIKV Togaviridae (+) ssRNA, 11.83 kb 65-70 Yes
WNV Flaviviridae (+) ssRNA, 10.9 kb 50 Yes
DENV Flaviviridae (+) ssRNA, 10.7 kb 50 Yes
LACV Bunyaviridae (-) ssRNA, 90-100 Yes

Segment L (6.98 kb)
Segment M (4.52 kb)
Segment S (0.98 kb)
RVFV Bunyaviridae (-) ssRNA, 90-100 Yes
Segment L (6.4 kb)
Segment M (3.88 kb)
Segment S (1.69 kb)

Table 2. Overview of viruses experimentally able to infect Drosophila melanogaster.
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Innate antiviral immunity in
Drosophila melanogaster
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Insects face a wide range of pathogens including bacteria, fungi and viruses. Since the
discovery of the evolutionarily conserved Toll and immune deficiency (IMD) pathways,
involved in anti-fungal and anti-bacterial immune responses (Hoffmann, 2003), the fruit fly
Drosophila melanogaster is used as a model to study the molecular mechanisms of innate
immunity. The Toll pathway is mainly activated by fungi and Gram-positive bacteria,
whereas the IMD pathway is preferentially activated by Gram-negative bacteria. Both Toll
and IMD signaling pathways activate members of the Nuclear Factor—«B (NF-«B) family:
Dorsal-related immunity factor (Dif) and Relish, conducting a humoral systemic response
involving the production of several families of antimicrobial peptides (AMPs). By contrast to
anti-bacterial and anti-fungal immunity, which have been the focus of interest since the
1980s, the mechanisms involved in the defense against viruses in Drosophila only recently
started to be investigated. To defend against viral pathogens, Drosophila relies on two main
strategies: the RNA1 pathway, which plays a broad role in the control of RNA viruses, and the
virus specific inducible responses (Figure 3). Virus inducible responses are composed of the

Toll, IMD, Jak-STAT signaling pathways and autophagy, reported to regulate some viral

infections.
Viral infection e
4
Innate antiviral immunity
RNA interference Inducible responses
siRNA Toll Imd Jak-STAT || Autophagy

DCV FHV V6 DXV CrPV DCcv Vsv
DXV VSV DENV SINV CrPV

CrPV SINV WNV

Broad antiviral response Virus-specific antiviral response

Figure 3. Overview of insect antiviral innate immunity. RNAI is a broad antiviral pathway,
active against many viruses from diverse families whereas inducible responses are virus-
specific.
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2.1. The RNA interference pathway: a broad antiviral defense

Viral sensing

The innate immune sensing relies on the ability of the host to distinguish non-self
molecular patterns, occurring during an infection, from self patterns of the host (Janeway,
1989). Accordingly, dsRNAs are a strong non-self pattern because they are generated during
the viral cycle in the cytoplasm of infected cells, a place where they are not thought to exist
naturally. They are generated either as an intermediate in genome replication by the RNA
polymerase of RNA viruses, either as a by-product of converging bidirectional transcription
for DNA viruses (Jacobs and Langland, 1996; Kumar and Carmichael, 1998). Other sources
of non-self dsRNA signal may be the secondary structures present in the viral RNA genome
or in viral transcripts, but also the genome itself for dSRNA viruses. dSRNAs are detected in
cells infected by (+) ssRNA, dsRNA or DNA viruses, but not in cells infected by (-) ssRNA
viruses (Weber et al., 2006). However, the undetected presence of small amounts of dsSRNAs
produced by (-) ssRNA viruses cannot be excluded. Indeed, VSV-derived small RNAs
produced in Drosophila S2 cells and flies equally map the genome and antigenome RNA,
indicating that they derive from dsRNAs (Mueller et al., 2010). v-siRNAs produced in cells
infected by a trisegmented (-) ssRNA virus, (RVFV), were reported to equally map the
genomic and antigenomic strands from L and M segments, but not S segment (Sabin et al.,
2013). This suggests that the source of v-siRNAs from segments L and M are dsRNAs
replication intermediates. By contrast, v-siRNAs from S segment may be generated from a
putative hairpin. The authors also reported that DCV-derived siRNAs preferentially map the
genomic (+) strand and proposed that they may derive from structured regions and hairpins

within the genome.

RNA interference: the siRNA pathway

Viral dsRNAs trigger an antiviral response mediated by the RNAi pathway in plants,
fungi, nematodes and arthropods, including insects Drosophila melanogaster (Ding and
Voinnet, 2007). RNAI relies on the production of small RNAs that are 21-30 nucleotides in
length and are divided in three main classes: siRNAs, microRNAs (miRNAs), and Piwi-
associated interfering RNAs (piRNAs). The antiviral defense in Drosophila mostly relies on
the class of siRNAs. Their generation and mode of action in antiviral defense is well
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characterized and will be described hereafter (summarized in Figure 4). By contrast, the role
of miRNAs and piRNAs in Drosophila antiviral defense is poorly characterized so both
pathways will be briefly mentioned in this manuscript. (see (Lucas and Raikhel, 2013; Senti

and Brennecke, 2010) for a review on miRNAs and piRNAs).

Viral dsRNAs are processed into siRNAs by the ribonuclease (RNase) Dicer-2 (Dcr-
2), which belongs to RNaselll family (Bernstein et al., 2001). Dicer-2 is composed of a
DExD/H Adenosine triphosphatase (ATPase) domain, a domain of unknown function
(DUF283), a Piwi/Argonaute/Zwille (PAZ) domain, two tandem RNaselll domains, and a
dsRNA-binding domain. The interaction of the PAZ domain with the extremity of the dSRNA
allows its good positioning towards the two RNaselll domains of Dicer-2 (MacRae et al.,
2007). Each RNaselll domain cleaves one strand of the dSRNA molecule, thereby generating
21 nts siRNAs with 2 nts overhang at the 3’ end (Zhang et al., 2004). The characteristic 21 nts
length of siRNAs is determined by the distance between the PAZ domain and the RNaselll
active site (Macrae et al., 2006). The function of other domains is still unclear. Loquacious
isoform PD (Logs-PD) is a cofactor of Dicer-2 facilitating processing activity, and may
enhance the affinity of Dicer-2 to its dSRNA substrate (Marques et al., 2010). Similarly,
Arsenic resistance protein 2 (Ars2) may facilitate Dicer-2-mediated cleavage (Sabin et al.,
2009). Following dsRNA cleavage, the resulting siRNA is bound by Dicer-2 and its dsSRNA-
binding protein partner R2D2, generating the RISC loading complex (RLC). Then, the Dcr-
2/R2D2 heterodimer loads the siRNA duplex into an Ago-2 containing RISC (Liu et al., 2003;
Marques et al., 2010). The 5’-phosphate on the passenger strand of the siRNA duplex
enhances R2D2 binding, thereby facilitating the incorporation of the siRNA into the RLC,
and consequently into the RNA-induced silencing complex (RISC) (Tomari et al., 2004). The
PAZ domain of Ago-2 binds the 3 end of the strand that is retained in the RISC, named the
guide strand (Ma et al., 2004). The endoribonuclease Ago-2 cleaves the phosphodiester bond
between nucleotides 9 and 10 of the strand that will be excluded from the RISC, named the
passenger strand. This cleavage is mediated by the PIWI domain of Ago-2 (Matranga et al.,
2005; Miyoshi et al., 2005). The component 3 promoter of RISC (C3PO), a multimeric
complex of Translin and Trax, is a key RNAIi activator that promotes RISC activity by
removing the passenger strand cleavage product (Liu et al., 2009). After the cleavage of the
passenger strand and its elimination from the RISC, the guide strand is 2’-O-methylated on

the 3’ terminal nucleotide by the S-adenosyl-L-methionine-dependent RNA methyltransferase
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Hen-1 (Horwich et al., 2007). This methylation increases the stability of the small RNA (Ji
and Chen, 2012). The RISC complex is then mature and can bind complementary RNA
sequences through the guide strand. The RNase activity of the PIWI domain of Ago-2 cleaves
the target RNA (Rand et al., 2004). If the complementarity between the guide strand and the
target RNA is not perfect, mismatches may prevent the slicing by Ago-2. In this case, the
RISC may act as a translation repressor by competitively blocking the interaction of
eukaryotic initiation factor (elF)-4E with elF4G (Iwasaki et al., 2009), thereby inhibiting cap-
dependent translation. It is questionable if this mechanism may occur for RNA viruses
without cap and how the RNAIi deals with the genetic diversity of viral populations namely

quasispecies.
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Figure 4. The siRNA pathway in Drosophila. (adapted from Kingsolver et al., 2013)

siRNA pathway: the broad antiviral sword of Drosophila

The RNAi pathway is a major antiviral defense mechanism in insects, including
Drosophila. Flies deficient for the three key components of the RNAi pathway (Dcr-2, R2D2

and Ago-2) are more sensitive than wild-type flies to viral infections. The cofactor of Dicer-2,
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Logs-PD, is dispensable for the antiviral siRNA pathway (Marques et al., 2010). The
increased sensitivity of Dcr-2, R2D2 and Ago-2 null mutants correlates with a higher viral
titer. Drosophila RNAi pathway was shown to control infection by (+) ssSRNA viruses, such
as DCV (Galiana-Arnoux et al., 2006; van Rij et al., 2006; Saleh et al., 2009), CrPV (van Rjj
et al., 2006; Wang et al., 2006), FHV (Aliyari et al., 2008; Galiana-Arnoux et al., 2006; Han
et al., 2011; Wang et al., 2006), SINV (Avadhanula et al., 2009; Galiana-Arnoux et al., 2006;
Saleh et al., 2009), WNV (Chotkowski et al., 2008) and DENV (Mukherjee and Hanley,
2010); the (-) ssRNA virus VSV (Mueller et al., 2010), and the dsRNA virus DXV (Zambon
et al., 2006). Recently, we and others showed that RNAi controls not only RNA virus
infection, but also infection by DNA viruses IIV-6 in Drosophila (Bronkhorst et al., 2012;
Kemp et al.,, 2013) and Baculovirus in moth Helicoverpa (Jayachandran et al., 2012).
Unexpectedly in the case of DXV infection, R2D2 and Ago-2, but not Dcr-2, mutant flies
were highly sensitive to DXV compared to wild-type flies. It is proposed that in the absence
of Dcr-2, the dicing of dSRNA genome may be supported by Dcr-1, originally involved in the
processing of miRNAs precursors, as both enzyme have some overlapping function (Lee et
al., 2004). The high sensitivity of Ago-2 mutants, defective for RISC activity, to viral
infection (DCV, (van Rjj et al., 2006); DXV, (Zambon et al., 2006); VSV, (Mueller et al.,
2010)), whereas Dcr-2 is fully functional, suggests that the dicing of viral dsSRNAs by Dcr-2
is not sufficient to control viral infection. This additional function of Ago-2 is required.
However, it may not be the case for latent infection, as the dicing of dsRNA replication
intermediates itself plays a role in the maintenance of FHV latency (Flynt et al., 2009).
Moreover, the identification of Vago, an antiviral protein controlling DCV infection in the fat
body and whose expression is dependent on Dcr-2, but not R2D2 and Ago-2, also suggests an
additional function of Dcr-2, separated from the antiviral function of the RISC (Deddouche et
al., 2008). Altogether, the relative contribution of antiviral dicing and slicing in the control of

viral infections remains to be elucidated.

Analysis of viral small interfering RNAs (v-siRNAs)

Beside the genetic proof that Dcr-2, R2D2 and Ago-2 are necessary to control viral
infections in insects, the generation of viral small interfering RNAs (v-siRNAs) after infection
demonstrates that Dcr-2 processes viral RNAs (Wu et al., 2010). The analysis of v-siRNAs
profiles reveal that the predominant source of v-siRNAs is viral dsSRNA intermediates of

replication. The deep sequencing of small RNAs in Drosophila S2 cells and OSS cells
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persistently infected by positive sense RNA viruses (DAV, DCV, Nora virus and ANV) or
dsRNA viruses (DTV, DXV and DBV) revealed that v-siRNAs mapped in equal proportion to
both strands of the viral genome. Similarly, the distribution of v-siRNAs derived from
positive and negative sense RNA strands of FHV genome are in equal proportion. It indicates
that viral dsRNAs replication intermediates or viral genomic dsRNAs are the major substrate
of Dcr-2 to trigger an effective antiviral RNAi response. Interestingly, the presence of specific
hotspots of v-siRNAs on the viral genome suggests that some regions of the viral genome are
accessible and processed by Dcr-2. As mentioned before, these regions may be local
secondary structures of the viral genome, as stem-loop structures. In agreement with this
hypothesis, a stem-loop structure predicted in FHV genome is a hotspot of v-siRNAs derived
from the positive sense (van Rij and Berezikov, 2009; Zhong et al., 1992). Although this
source of v-siRNAs is well documented in plants (Molnar et al., 2005), no experimental
validation has been performed in Drosophila. By contrast to plants, the dicing of structural
elements within the viral genome in Drosophila appears to be secondary to dicing of viral
dsRNAs. Overall, the suggested targeting of replication intermediates is counterintuitive with
the observation that RNA viruses replicate in defined membranous structures to protect
themselves from ribonucleases or non-self sensors that trigger innate immune responses. As
discussed in the chapter I, FHV replicates in spherules vesicles derived from the outer
membrane of mitochondria (Kopek et al., 2007) whereas DCV has been proposed to replicate
in compartments derived from the Golgi apparatus (Cherry et al., 2006). How and where Dcr-

2 accesses to viral dsSRNAs are still open questions.

Systemic RNAIi response

In addition to the cell-autonomous silencing mediated by RNAi, viral infections
trigger a systemic RNAi response that may contribute to antiviral defense in Drosophila. It is
proposed that virus-mediated cell death or cell lysis release viral dsSRNAs that are taken up
and processed by neighborhood non-infected cells to protect them from subsequent infection
(Saleh et al., 2009). This model is supported by the hypersensitivity of fly mutants for dSRNA
uptake pathway. This pathway requires scavenger-like receptors for the entry of exogenous
dsRNAs into cells via clathrin-mediated endocytosis (Saleh et al., 2006). A cell-to-cell spread
of v-siRNAs and long dsRNAs was also observed in Semliki Forest virus (SFV)-infected
mosquito cells (Attarzadeh-Yazdi et al., 2009). In plants and worms, efficiency of the
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systemic RNAi response is increased by an amplification mechanism involving the

production of secondary siRNAs.

Antiviral RNAi amplification

In plants and C. elegans, it is reported that antiviral RNAi pathway requires the
amplification of the v-siRNAs by an endogenous RdRp to be effective against viruses
(reviewed in Ding, 2010). At present, the production of secondary v-siRNAs by RdRp has not
been observed in Drosophila. The amplification of antiviral RNAi response may rely on
another mechanism. Indeed, it is reported that viral DNAs are generated by a cellular reverse
transcriptase during infection by RNA viruses such as FHV and DCV, which are not
retroviruses. It is proposed that the transcription of these viral DNAs produce dsRNAs that
will amplify the siRNA-mediated antiviral response (Goic et al., 2013). Curiously, a recent
report showed that a previous exposure to DCV does not protect flies from subsequent
infection (Longdon et al., 2013). It would be interesting to see if viral DNA forms can be

produced after the first viral challenge in this experimental setting.

Viral suppressors of RNAi (VSRs)

To counteract the antiviral siRNA pathway, insect viruses encode VSRs. It allows
them to replicate even in the presence of an effective antiviral RNAi response. For example,
protein B2 of FHV is essential for viral replication in wild-type flies, but not in RNAi-mutant
flies (Galiana-Arnoux et al., 2006; Wang et al., 2006). By contrast to plant viruses, only few
VSRs have been characterized in insect viruses. The B2 protein of FHV was the first VSR
identified in an invertebrate virus (Li et al., 2002). The expression of B2 in plants can also
inhibit RNA silencing, indicating that RNAI is evolutionarily conserved between the plant
and animal kingdoms. Protein B2 interacts with dsRNAs in infected S2 cells, thereby
suppressing dicing (Aliyari et al., 2008; Lu et al., 2005). It also blocks siRNAs incorporation
into the RISC by binding siRNAs (Chao et al., 2005; Lu et al., 2005). The VSR of the
Dicistroviridae DCV, named DCV-1A, also binds dsRNAs, thereby inhibiting the cleavage of
dsRNAs by Dcr-2 (van Rij et al., 2006). DCV-1A does not bind siRNAs, by contrast to B2
protein. CrPV, another member of Dicistroviridae family, has a suppressor of RNAi that
interacts with the endoribonuclease Ago-2 and inhibits its activity (Nayak et al., 2010). It is
surprising that two closely related viruses from the same family encode VSRs using different

mechanisms to suppress RNAi. However, both DCV-1A and CrPV-1A are unrelated in term
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of sequence. SINV does not encode any VSR (mentioned in (van Mierlo et al., 2012).
Interestingly, recombinant SINV expressing CrPV-1A replicates faster and causes higher
mortality than recombinant SINV expressing DCV-1A (Nayak et al., 2010). This suggests
that CrPV-1A is more efficient to suppress RNAi than DCV-1A, and also that VSRs can
determine viral pathogenicity. Although not closely related, the protein VP1 of Nora virus
inhibits slicer activity of Ago-2 as does protein CrPV-1A (van Mierlo et al., 2012). VSRs are
strikingly diverse within and across kingdoms, indicating that they are acquired through fast
convergent evolution. The expression of Nora virus VP1 by SINV increases the viral
pathogenicity in flies via its RNAi suppressive activity. Similarly, Aedes aegypti or Anopheles
gambiae mosquitoes infected by recombinant SINV expressing B2 protein are hypersensitive
to viral infection (Cirimotich et al., 2009; Myles et al., 2008). SFV expressing tombusvirus
protein P19, a plant VSR that binds siRNAs, better spread from cell-to-cell in culture
(Attarzadeh-Yazdi et al., 2009). Overall, these results highlight that VSRs determine viral

pathogenicity in insects.

RNAI is important in another insect model: mosquitoes, vectors of human viral diseases

RNAI1 controls infection by arboviruses in mosquitoes (Blair, 2011). The knockdown
of Dcr-2 and Ago-2 expression in Aedes aegypti mosquitoes increases DENV and SINV
infection (Campbell et al., 2008; Sanchez-Vargas et al., 2009). Likewise, the viral titre of
O’nyong-nyong virus (ONNV) is increased after the knockdown of Ago-2 in Anopheles
gambiae mosquitoes (Keene et al., 2004). Similarly to Drosophila, dsSRNA replication
intermediates are the major substrate of Dcr-2. For example, the sequencing of v-siRNAs
from SINV-infected Aedes aegypti or WNV-infected Culex pipiens quinquefasciatus
mosquitoes reveals an asymmetric distribution of v-siRNAs along the viral genome
(Brackney et al., 2009; Myles et al., 2008). Some regions of the viral genome are highly
targeted, suggesting that the dicing of structural elements may also contribute to the
production of v-siRNAs, as proposed for Drosophila viruses. Surprisingly, no VSR has been
identified so far in arboviruses, despite VSRs seem to be a common feature in non-arboviral
insect viruses (Attarzadeh-Yazdi et al., 2009; Blakqori et al., 2007). Arboviruses cycle
between insect vectors and mammalian hosts. To be efficiently transmitted to mammalian
hosts, arboviruses have to stay nonpathogenic for insect vectors because killing the vector
would be an endpoint for the virus. Transgenic viruses expressing a VSR are highly

pathogenic for insects, probably because the RNAi does not control the virus anymore.
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Accordingly, it is hypothesized that expressing a VSR could be deleterious for the virus,
reducing the chance to be transmitted to mammalian hosts. Recently, Schnettler and
colleagues showed that WNV proteins do not have any RNAi suppressor activity but rather
found that the subgenomic flavivirus RNA (sfRNA) does (Schnettler et al., 2012). This non-
coding RNA was already reported to result from incomplete genome degradation by cellular
exoribonuclease Xrnl and to enhance viral pathogenicity in mice (Pijlman et al., 2008),
possibly by counteracting the antiviral response mediated by type I interferon (Schuessler et
al., 2012). It remains to be determined how sfRNA, by contrast to recombinant arboviruses

expressing VSRs, equilibrates the balance between viral replication and vector survival.

A role of miRNAs and piRNAs pathways in antiviral defense ?

In Drosophila, five Ago-like proteins have been identified, which raises the question
of a functional diversification of antiviral RISCs (Tolia and Joshua-Tor, 2007). We may
hypothesize that not only one, but several RISC-like complexes with redundancy and
specialization contribute to antiviral defense. The antiviral function of Drosophila miRNAs
and piRNAs-directed Ago-like proteins is poorly understood. One study reported that Piwi
and Aubergine, two slicers involved in the piRNA pathway, control DXV infection in
Drosophila S2 cells (Zambon et al., 2006). However, the relevance of this finding is
questionable because both proteins are normally expressed in germline cells. Moreover, in
addition to v-siRNAs, abundant viral piRNAs derived from DCV and ANV genome were
identified in persistently infected OSS cells (Wu et al., 2010). Virus-derived piRNAs (v-
piRNAs) were also identified for other viruses infecting these cells, but they were much less
abundant. Additionally, v-piRNAs were identified in Aedes albopictus cells infected by
DENV-2 (Scott et al., 2010), SINV-GFP and LACV (Vodovar et al., 2012), but also in Aedes
aegypti cells infected by SINV-GFP (Vodovar et al., 2012). In vivo, it is reported that Aedes
aegypti and Aedes albopictus mosquitoes infected with CHIKV produce v-piRNAs
(Morazzani et al., 2012). The authors showed that C6/36 cells are Dicer-2 null mutant cells,
harboring a defective siRNA pathway. Interestingly, C6/36 cells infected with a recombinant
CHIKYV expressing the VSR B2 display a decreased production of v-piRNAs and a strong
cytopathic effect, suggesting that B2 increases viral pathogenicity by suppressing the
production of v-piRNAs. Additionally, the silencing of components of the piRNA pathway in
Aedes aegypti cells reduces the production of v-piRNAs and facilitates Semliki Forest virus

replication, suggesting that the piRNA pathway contributes to the antiviral defense (Schnettler
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et al., 2013). To date, no host miRNAs have been reported to be involved in Drosophila
antiviral defense and no virus-encoded miRNAs have been identified in Drosophila. One
study revealed the upregulation of miR-92 and downregulation of miR-989 in WNV-infected
Aedes albopictus cell line and Culex quinquefasciatus mosquitoes (Skalsky et al., 2010).
However, the targets of these miRNAs are uncharacterized and their role during WNV
infection remains to be elucidated. Recently, an in silico screen identified Drosophila
miRNAs that may target components of innate immune pathways (Fullaondo and Lee, 2012)
but the function of these miRNAs in Drosophila immune response remains to be clarified
experimentally. Overall, the siRNA pathway is a key arm of the antiviral defense mounted by
insects, including Drosophila and mosquitoes. In addition to siRNA pathway, piRNA

pathway may also contribute to antiviral defense.

2.2. The inducible response: a virus-specific antiviral defense

Beside RNAi which is a broad antiviral defense mechanism in insects, including
Drosophila and mosquitoes, other immune signaling pathways also contribute to viral
defense. The hallmark of Drosophila immune response against bacteria and fungi is the
inducible humoral response (De Gregorio et al., 2001, 2002; Irving et al., 2001). Similarly,
several microarrays performed after viral infections reveal the upregulation of hundreds of
genes, suggesting that inducible pathways may be important for the control of viruses. For
example, some immune-related genes are upregulated in Drosophila S2 cells infected by
SINV, such as thiol-ester protein II (TEP II) and Gram-negative binding proteins (GNBP1)
(Mudiganti et al., 2010). SIGMAYV infection upregulates the expression of pattern-recognition
receptors (PRRs), such as peptidoglycan receptors proteins (PGRPs) and antimicrobial
peptides (AMPs) (Tsai et al., 2008). The microarray analysis of Nora virus infected flies
revealed the upregulation of 46 genes (including vago) and the downregulation of 12 genes in
response to the infection (Cordes et al., 2013). A recent study also reported the upregulation
of 275 genes and the downregulation of 442 genes in early DCV infected S2 cells (Zhu et al.,
2013). Some of these genes are PRRs (e.g. PGRPs), AMPs (attacin, cecropin), or components
of immune signaling pathways, particularly IMD and Jak-STAT pathways. The function of

most of these genes in antiviral defense remains to be addressed.
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2.2.a. The Toll pathway

Characterisation of the Toll signaling pathway in the context of bacterial and fungal

infections

The Toll pathway is well characterized as the major immune response mounted to
defend against fungi and Gram-positive bacteria (Hoffmann, 2003). Pathogen associated
molecular patterns (PAMPs) from Gram-positive bacteria, particularly lysine-type
peptidoglycan, bind PGRP (-SA, -SD) and GNBP1 (Bischoff et al., 2004; Leulier et al., 2003;
Michel et al., 2001). GNBP3 recognizes -glucans from fungi (Gottar et al., 2006; Mishima et
al., 2009). This binding triggers a serine protease cascade that cleaves the extracellular
cytokine-like protein Spitzle from pro-protein to functional form. The mature form of Spitzle
is the ligand of the transmembrane receptor Toll (Weber et al., 2003), indicating that Toll
does not itself function as a recognition receptor of non-self patterns, by contrast to
mammalian Toll-like receptors (TLRs). The intracytoplasmic TIR (Toll-IL-1 receptor)
domain of Toll interacts with an adaptor complex composed of death-domain proteins
dMyd88 (drosophila myeloid differentiation factor 88), Tube and Pelle (Sun et al., 2004). The
binding of Spétzle to Toll receptor initiates Toll signaling cascade with phosphorylation and
degradation of Cactus protein. Cactus is an inhibitor of kB (IkB)-like protein that inhibits the
NF-kB-like transcription factors Dorsal and Dif (Lemaitre et al., 1996). The release and
degradation of Cactus allows the translocation of Dorsal and Dif in the nucleus where they
bind to kB-like sequence motifs to mediate the transcription of AMPs genes (Ip et al., 1993;
Rutschmann et al., 2000). A representation of the Drosophila Toll pathway is presented in

Figure 5.

48



Chapter 2 - Innate antiviral immunity in Drosophila

Toll Fmgl G ram-pas.ltnra bacteria

Pemsaphone GNBP-3 PGRP-SA GHNBP-1

\\N ":.‘, PGEP ED/

Protechyhc cascade
Spdztie (P .
= L"“ -
Toll
diyD88
Tube
Pelle

4

Cactus
Eﬁ .

Ny
-r:':.l'lﬂplasm

nuche

Figure 5. The Toll pathway in Drosophila. (adapted from Kingsolver et al., 2013)

Toll pathway and viral infections

Beside the well-characterized role of the Toll pathway in anti-bacterial and anti-fungal
immune response, its involvement in the defense against insect viruses is poorly understood.
At present, only one article suggests that the Drosophila Toll pathway plays a role in the
defense against DXV infection (Zambon et al., 2005). One characteristic of this virus is to
induce anoxia sensitivity (Teninges et al., 1979). Based on this viral specificity, the authors
performed a screen to identify Drosophila mutants with altered sensitivity to DXV infection,
using anoxia-induced death as readout. Dif mutants have higher DXV titer and succumb more

rapidly than wild-type flies to DXV infection. Both DXV and Escherichia Coli (E.coli)
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(Gram-negative bacteria) induce similar expression levels of the Toll and IMD pathway target
genes. Since the expression of AMPs is a hallmark of the activation of Toll and IMD
pathways, the authors proposed that both pathways are activated in response to DXV
infection. However, a null-mutant for Relish displayed similar resistance and viral titre than
wild-type flies to DXV infection, suggesting that only the Toll pathway contributes to the
defense against DXV infection. A mutant in whom the Toll pathway is constitutively
activated (Tllob mutant) displays a decreased viral titer compared to wild-type flies. As the
expression of single AMPs does not have a direct antiviral activity on DXV infection, they
propose that the sensitivity of Toll pathway mutants may result of a defect in the Toll-
dependent cellular response mediated by hemocytes. However, TI'® mutant flies were as
sensitive as Dif mutants to CO, exposure. This suggests that DXV titer may not affect the
outcome of the infection. In addition, the Toll pathway is also involved in the control of
DENYV infection in Aedes aegypti mosquitoes (Xi et al., 2008), indicating a potently antiviral

role in insects.

Drosophila Toll receptors

In contrast to mammals, only one out of 9 Toll receptors identified in Drosophila
melanogaster was shown to play an important role in innate immunity (Bilak et al., 2003).
Whereas each TLR in mammals is specialized to recognize a specific non-self pattern, this
one Drosophila Toll is able to respond to broad signals from bacteria, fungi and viral
infections. Toll-mutant flies are more susceptible to DXV infection (Zambon et al., 2005). In
addition, a recent study showed the involvement of Drosophila Toll-7, but not other Toll
proteins, in the recognition and restriction of VSV infection in vitro and in vivo (Nakamoto et
al., 2012). Surprisingly, Toll-7 activation by VSV does not seem to signal via the canonical
Toll pathway, even if Drosomycin is 2-fold induced by VSV infection in cells, as mutations in
Myd88 and Dif do not affect VSV replication in vivo. The authors showed that Toll-7
recognizes VSV virions at the plasma membrane and induces autophagy, a pathway reported
to be involved in antiviral defense against VSV infection (Shelly et al., 2009). More recently,
Toll-8 was shown to negatively regulate the expression of AMPs by antagonizing the IMD
pathway in the respiratory epithelium of Drosophila (Akhouayri et al., 2011). It remains to be
determined whether additional Toll receptors are involved in antiviral response. Four
Drosophila Toll receptors, including Toll and Toll-7, are transcriptionaly induced upon viral
infection (Xu et al., 2012).
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2.2.b. The IMD/TNF-R pathway

Characterisation of the IMD signaling pathway in the context of bacterial infection

Another immune signaling pathway, distinct of the Toll pathway, was reported to
control Drosophila host defense (Lemaitre et al., 1995). The IMD pathway is activated by the
diaminopimelic acid peptidoglycan (DAP-PGN) present at the surface of Gram-negative
bacteria. DAP-PGN is sensed by the pattern recognition protein PGRP-LE, a secreted PGRP,
and the transmembrane receptor PGRP-LC (Choe et al., 2002; Gottar et al., 2002; Hoffmann,
2003; Kaneko et al., 2004; Leulier et al., 2003; Rémet et al., 2002). In addition to PGRP-SA
sensor for Toll pathway, PGRP-LC and PGRP-LE, both activating IMD pathway, are the
three PGRPs out of thirteen identified in Drosophila (Werner et al., 2000), that are involved
in the immune response. The binding of DAP-PGN to PGRP-LCs triggers the recruitment of
IMD, a death domain adaptor protein similar to mammalian receptor interacting protein (RIP).
Then, IMD associates with drosophila Fas-associated-death domain (dFADD) protein
(Georgel et al., 2001; Naitza et al., 2002) which in turn interacts with the caspase Dredd
(Leulier et al., 2000). Dredd subsequently binds and cleaves the phosphorylated form of
Relish, a NF-«xB-like transcription factor, thereby allowing its translocation in the nucleus to
induce the expression of AMP genes (Ertiirk-Hasdemir et al., 2009; Stoven et al., 2000;
Stoven et al., 2003). Relish is phosphorylated by the Drosophila IkB kinase complex (Kenny
and IrdS5), which is activated by the mitogen-activated protein kinase kinase kinase
(MAPKKK) drosophila TGF-beta activated kinase 1 (dTakl) (Lu et al., 2001; Vidal et al.,
2001). A representation of the IMD signaling pathway is presented in Figure 6. Null-mutant
flies for most of the components of the IMD pathway are hypersensitive to Gram-negative
bacterial infections. This immune deficiency phenotype is the result of an inability to induce
the expression of AMP genes, and thereby to control bacterial infections (Ferrandon et al.,
2007; Lemaitre and Hoffmann, 2007). Interestingly, the IMD pathway can induce the
expression of cytosqueletal proteins through activation of the c-Jun N-terminal kinase (JNK)
signaling pathway, suggesting that both antimicrobial defenses and tissue repair processes

may act in concert to recover from a pathogen infection (Boutros et al., 2002).
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Figure 6. The IMD pathway in Drosophila. (adapted from Kingsolver et al., 2013)

IMD pathway and viral infections

An antiviral role for the IMD pathway is suggested for CrPV infection (Costa et al.,
2009). Fly mutants for the core components of the IMD pathway, except Imd-deficient flies,
are more sensitive to CrPV infection and display higher CrPV RNA levels. To explain the
discrepancy observed with Imd-mutants, it is proposed that Imd gene itself is dispensable for
the defense against CrPV infection. CrPV infection does not induce the expression of Toll or
IMD-mediated AMPs genes, suggesting that AMPs do not play a role in the IMD-mediated
antiviral response. Other groups including ours reported that null-mutant flies for the IMD-
mediated NF-«B transcription factor Relish are resistant to DCV, SINV and DXV infections
(data not shown, Deddouche et al., 2008; Zambon et al., 2005). It contrasts with results from
Costa and colleagues that show the importance of IMD pathway to control this infection.

However, all flies from their study were infected by Wolbachia that is known to affect the
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susceptibility of flies to CrPV infection (Hedges et al., 2008). Therefore, we cannot rule out
that the presence of Wolbachia could have affected the results presented in this study.

Overall, it is clear that there is a gap between our knowledge of the role of IMD and
Toll pathways in anti-bacterial and anti-fungal defense, and their role in antiviral immune
response. Moreover, viral activators and antiviral effectors of these pathways need to be

characterized.

2.2.c. AMPs

Characterization of AMPs

AMPs are a key component of the innate defenses in vertebrates and invertebrates
(Hancock and Scott, 2000). Insects fight against pathogens by synthesizing a broad spectrum
of AMPs targeting bacteria and fungi (Hoffmann et al., 1996). They are mostly synthesized
by the fat body, an analogue of the mammalian liver, and secreted into the hemolymph to kill
invading microorganisms. Around one hundred AMPs have been characterized in insects, and
at least seven types of AMPs, plus isoforms, have been identified in Drosophila (Hoffmann
and Reichhart, 1997; Hoffmann et al., 1996). They are divided in two classes: the cyclic
peptides and the linear peptides. The cyclic AMPs include insect Defensins (anti-Gram-
positive bacteria; (Dimarcq et al., 1994)) and Drosomycin (anti-fungi; (Fehlbaum et al.,
1994). The second class of linear AMPs is divided into three families: the Cecropins, the
proline-rich peptides and the glycine-rich polypeptides. Cecropins lyse predominantly Gram-
negative bacteria by perforing membrane cell wall, but they also have anti-fungal activity
(Ekengren and Hultmark, 1999). The proline-rich peptides include Drosocin, an anti-Gram-
negative bacteria peptide (Charlet et al., 1996), and Metchikowin that is active against Gram-
positive bacteria and fungi (Levashina et al., 1995). The glycine-rich family is composed

mostly of anti-Gram negative AMPs such as Attacin and Diptericin (Hedengren et al., 2000).

Toll and IMD-dependent AMPs expression

Immune-inducible peptides are expressed early after immune challenge, in a range of

15 to 30 min, and persist for one to several days (Gross et al., 1996; Hoffmann et al., 1996).
Their expression depends on Drosophila NF-«kB transcription factors activated by Toll
signaling pathway (Dif and Dorsal) and IMD signaling pathway (Relish). Both Dorsal and Dif
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can induce the expression of diptericin and cecropin genes (Ip et al., 1993; Petersen et al.,
1995). Without the presence of Dorsal, Dif still mediates the induction of drosomycin and
defensin (Meng et al., 1999). However, both Dorsal and Dif may have redundant functions for

the induction of AMPs (Manfruelli et al., 1999).

Importance of AMPs in bacterial versus viral defense

Fly mutants for the IMD or Toll pathway, which do not express AMP genes, are
highly sensitive to bacterial or fungal infections, supporting a key role of AMPs to face
pathogens (Hedengren et al., 1999; Lemaitre et al., 1996). To address their functional
relevance in the immune response of Drosophila, AMP genes were expressed under the
control of the UAS-Gal4 system in immune deficient flies (Tzou et al., 2002). The
constitutive expression of a single AMP such as Drosomycin or Defensin is sufficient to
rescue the sensitivity of flies deficient for both the IMD and Toll pathways to some microbial
infections. Tzou and colleagues were the first to clearly demonstrate in vivo the role of each
AMP in host defense. However, the diversity of AMP-encoding genes suggests that they may
act in cooperation to clear infections. This hypothesis has not been addressed experimentally.
In 2005, another group reproduced this experiment in the context of a viral infection (DXYV,
(Zambon et al., 2005). However, none of the seven Drosophila AMPs tested was alone
sufficient to confer resistance to DXV infection. Finally, even if the Toll and IMD pathways
were shown to be activated after DXV infection, AMPs may not be antiviral effectors in
Drosophila or, as suggested before, may act in cooperation together. By contrast to DXV
infection, SIGMAYV and DCYV infection significantly but only weakly induced the expression
of AMPs genes (Dostert et al., 2005; Tsai et al., 2008). Moreover, no AMPs were detected in
the hemolymph of DCV-infected flies (Sabatier et al., 2003), nor in CrPV-infected flies
(Costa et al., 2009). It suggests that flies may not use AMPs to counter Dicistroviruses

infection.

Transcriptional profiles were performed in Drosophila after infection by DCV (oral
infection, (Roxstrom-Lindquist et al., 2004); intrathoracic injection (Dostert et al., 2005) and
DXV infection (Zambon et al., 2005). As can be expected, the fly immune response to DCV
infection differs depending on the infection route. For example, virus-induced RNA-1 (vir-1)
is highly induced after intrathoracic injection of DCV but not in the case of an oral infection.

A comparison of the profile of immune response genes in SIGMAYV, DCV and DXV infected
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flies has been reported (table 3, (Tsai et al., 2008)). However, it does not bring a clear view of
immune genes required for viral defense. Only Attacin-A was clearly upregulated by the three
viruses. Upregulation of other AMPs seemed virus-specific, as defensin for DXV. The role of

other genes induced after viral infections remains to be characterized.

2.2.d. The Jak-STAT pathway

The Jak-STAT pathway is important for Drosophila development (Hou et al., 2002).
The unpaired (upd) family of secreted factors comprises three members (updl, upd2 and
upd3) that are able to activate the receptor Domeless (Agaisse et al., 2003; Harrison et al.,
1998; Hombria et al., 2005), which controls the activation of the kinase Hopscotch (Brown et
al., 2001; Chen et al., 2002). The kinase Hopscotch (Hop) recruits and phosphorylates STATSs
proteins that are translocated in the nucleus to induce the transcription of STAT-responsive
genes. The activation of the Jak-STAT pathway is negatively regulated by proteins such as
suppressor of cytokine signaling (SOCS) and Drosophila protein inhibitor of activated STAT
(dPIAS) (Betz et al., 2001; Callus and Mathey-Prevot, 2002). The Drosophila Jak-STAT
signaling pathway is represented in Figure 7. Its role in the defense against bacterial
infections in insects has been reported. The expression of Jak-STAT-induced genes is
observed after microbial challenges in Drosophila, as Turandot M (TotM) and CG11501
(Boutros et al., 2002). Septic injury also induces the expression of the cytokine-like Upd3 by
hemocytes to activate the Jak-STAT pathway in the fat body (Agaisse et al., 2003). The thiol-
esther protein 1 (Tepl), a complement-like protein in Drosophila, is upregulated through the
activation of the Jak-STAT and Toll pathway after bacterial infection (Lagueux et al., 2000).
Anopheles mosquitoes may also activate the Jak-STAT pathway in response to microbial
infection (Barillas-Mury et al., 1999). For viruses, it is the transcriptional profile of DCV
infected flies that allowed the identification of this third innate antiviral pathway in
Drosophila (Dostert et al., 2005). Around 90 genes were upregulated during DCV infection,
but not microbial infection, such as vir-1 gene. Interestingly, the expression of vir-1 was also
induced in FHV-infected flies, but was unaffected during stress responses (Ekengren et al.,
2001), indicating that this induction is a signature of viral infection. The expression of vir-1 is
dependent on the Jak-STAT pathway, as its promoter contains an active STAT-binding site.
Accordingly, Jak-STAT-deficient flies are more sensitive to viral infection and display higher

viral titre. However, loss and gain-of-function experiments indicate that vir-1 is not an

55



Chapter 2 - Innate antiviral immunity in Drosophila

antiviral effector because the knockdown or overexpression of vir-1 does not affect viral
infection (data not shown, Dostert et al., 2005). This result was consistent with the absence of
vir-1 promoter induction in the tissues infected by DCV, as the fat body, but rather in the
neighboring tissues (ventral epidermis). The antiviral effectors mediating the antiviral activity
of the Jak-STAT pathway remain to be elucidated. By comparison to Drosophila, the Jak-
STAT pathway is also important to control DENV infection in Aedes aegypti mosquitoes
(Souza-Neto et al., 2009). Moreover, two putative Jak-STAT-induced Dengue virus
restriction factors (DVRF1 and DVRF2) were reported to control DENV infection.

saptic injury Jak-Stat
gram-negative bactaria

cytoplasm
nucleus

“.IZ tep1, totA, raf

Figure 7. The Jak-STAT pathway in Drosophila. (adapted from Kingsolver et al., 2013)
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2.2.e. Autophagy

Autophagy is an evolutionarily conserved pathway by which damaged organelles are
recycled in a lysosomal-dependent process. Recent studies have involved this mechanism as a
component of the antiviral innate immunity, allowing the elimination of multiple pathogens,
including bacteria, parasites and viruses (Richetta and Faure, 2013). The hallmark of
autophagy is the presence of the double-membrane autophagosome but its turnover is rapid so
that it can be difficult to observe (Deretic and Levine, 2009). This autophagic organelle rises
with the envelopment of cytoplasmic material by an isolation membrane, also named
phagophore. Its maturation into autolysosome is driven by fusion with lysosome, thereby
allowing degradation of the engulfed content by lysosomal enzymes. Autophagy genes and
regulators are conserved from mammals to insects, including Drosophila (Moy and Cherry,
2013; Zirin and Perrimon, 2010). The bacteria Listeria monocytogenes is recognized by the
pattern recognition receptor PGRP-LE that activates autophagy to control bacteria growth in a
Toll and IMD-independent manner (Yano et al., 2008). Similarly, activation of autophagy (by
starvation or rapamycin treatment) also controls Wolbachia infection in Aedes albopictus
mosquito cells and Drosophila cells and flies (Voronin et al., 2012). In Drosophila,
autophagy was recently reported to be essential for antiviral defense against VSV (Shelly et
al., 2009). The knockdown of core autophagy genes increased viral infection in Drosophila
S2 cells and flies and also the mortality in flies. The PI3K/Akt signaling pathway, which
normally regulates autophagy depending on nutrients availability, also controls this antiviral
response. Unexpectedly, the glycoprotein G of VSV was sufficient to activate the antiviral
autophagy process. This unusual PAMP is recognized by the PRR Toll-7 to initiate autophagy
(Nakamoto et al., 2012). The signaling pathway linking this PRR to the activation of

autophagy remains to be elucidated.

An overall picture of the inducible antiviral pathways in Drosophila is showed in

Figure 8.
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Figure 8. Inducible antiviral pathways in Drosophila. (adapted from Xu and Cherry, 2014).

2.3. Parallel with innate antiviral immunity in mammals

Toll in Drosophila / IL-1R-TLR in mammals

There are remarkable differences between immune responses in Drosophila and
mammals. First, Toll does not directly sense invading pathogens in insects by contrast to
TLRs in mammals. Indeed, the cytokine spitzle binds the Toll receptor to activate the Toll
pathway whereas mammalian TLRs are activated directly by the pathogen. Secondly, two
distinct signaling pathways are required in Drosophila to defend against Gram-positive and
Gram-negative bacteria whereas a single TLR-dependent pathway is sufficient in mammals.
In both insects and mammals, immune signaling pathways lead to the activation of NF-kB
family members that induce the expression of immune-response genes. However, NF-xB
activation in Drosophila is either Toll dependent (Dif and Dorsal) or IMD dependent (Relish),

depending on the nature of the bacteria. Interestingly, the cytokine IL-1 binds and activates
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interleukin-1 receptor (IL-1R) in mammals, leading to the activation of NF-kB and promoting
inflammatory responses involved in antiviral defense. This strategy can be compared to the
situation in Drosophila, where the cytokine Spatzle activates the Toll pathway (Hoffmann,
2003). Overall, the Toll signaling pathway shares some features with the mammalian

signaling cascades downstream of [L-1R and the TLRs.

IMD in Drosophila / TNFR in mammals

The IMD pathway is similar to the tumour-necrosis factor-receptor (TNFR) pathway
in mammals. They also display some differences. The first one is the activation of the
pathway. PGRPs activate Drosophila IMD pathway and they are conserved from insects to
mammals. At present, four PGRPs have been identified in different tissues in humans (Liu et
al., 2001), and 12 PGRPs in Drosophila. Interestingly, one PGRP from the moth Trichoplusia
ni is conserved in humans and binds peptidoglycans (Kang et al., 1998). However, its role in
human innate immunity is still unexplored. In insects, PGRPs circulate in the hemolymph,
recognize peptidoglycans present on the bacterial cell wall and activate the IMD and Toll
pathways. A mouse PGRP was reported to be expressed in neutrophils and inhibit the growth
of Gram-positive bacteria, but also some functions of neutrophils and macrophages
(phagocytosis, cytokine induction). By contrast to the role of PGRPs in Drosophila, it is
proposed that mammalian PGRP may function as an antibacterial intracellular protein present
in neutrophils (Liu et al., 2000). Secondly, as mentioned above, the Drosophila IkB kinase
(IKK) complex acts on Relish in the IMD pathway but not on Dif-Dorsal in the Toll pathway.

By contrast, the mammalian IKK complex is required for most NF-«xB activations.

Overall, the activation of NF-kB in Drosophila after pathogen infection relies on two
distinct pathways (Toll and IMD) that are composed of molecules that are homologous or
related to ones of TLR and TNFR mammalian signaling pathways activated during innate

immune response.

RNAI in Drosophila versus interferon in mammals

Even if some immune signaling pathways have homologies with their mammalian
counterparts, one of the most important vertebrate innate antiviral pathways, the type I
interferon (IFN-I) system, is clearly unique to vertebrates. The RNAi1 pathway is the major

antiviral arm in insects to defend against a broad panel of RNA and DNA viruses. RNAI
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pathway is functional in mammalian cells (Elbashir et al., 2001) but it has long been assumed
to have little or no role in vertebrate innate immunity (Cullen, 2006). Whereas v-siRNAs are
easily detected in infected plants and invertebrates, no viral siRNAs were identified after
cloning and sequencing of small RNAs from viral infected mammalian cells, but several viral
miRNAs have been identified after DNA virus infection (Pfeffer et al., 2005). By contrast, a
single viral siRNA was identified in human immunodeficiency virus-1 (HIV-1)-infected cells
and its sequence targets the Rev response element (RRE) of viral mRNAs, involved in their
nuclear export (Bennasser et al., 2005). However, this finding was strongly criticized as in
vitro experiments were performed with a too much perfect artificial substrate for Dicer,
compared to the natural HIV-1 RRE RNA substrate. More recently, small RNAs with some
features of v-siRNAs were identified in mammalian cells infected by diverse viruses but their
abundance was remarkably lower compared to invertebrates (Parameswaran et al., 2010).
Whether these small RNAs mediate an antiviral response in mammalian cells remained to be
determined. Some studies reported that RNA1 controls retrotransposition of long interspersed
nuclear element-1 (LINE-1) in human cells (Soifer et al., 2005; Yang and Kazazian, 2006).
Moreover, the transfection of siRNAs protects mammalian cells against viral infections,
suggesting that RNA silencing can be an antiviral mechanism in mammalian cells (Gitlin et
al., 2002). Artificially induced RNAIi responses in mammals can confer protection against
pathogenic viruses (McCaffrey et al., 2002), but it has long been debated whether mammalian
cells can mount a protective RNAi response naturally. Two recent studies now provide a
support for an antiviral role of RNAi1 in mammals (Li et al., 2013c; Maillard et al., 2013).
Maillard and colleagues identified v-siRNAs in mouse embryonic stem cells (mESCs)
infected with encephalomyocarditis virus (EMCV). The depletion of Dicer inhibits the
production of v-siRNAs but surprisingly, it does not increase viral replication. The production
of v-siRNAs is decreased after differentiation of mESCs cells. The higher ability of
undifferentiated mESCs cells to produce v-siRNAs compared to somatic cells remains
unclear. Nodamura virus (NoV) deficient for B2 VSR, but not wild-type virus, triggered the
production of v-siRNAs in mESCs cells (Maillard et al., 2013) and baby hamster kidney
(BHK) fibroblasts cells, plus in newborn mice (Li et al., 2013c¢), leading to the control of the
infection. Indeed, the replication of B2-deficient NoV was rescued by expression of B2, but
also of VSR from Ebola virus (VP35). This suggests that VSRs mask the effective role of
RNAIi in antiviral response, which may explain that previous studies did not reveal the

antiviral role of RNAi in mammalian somatic cells. The presence of VSRs in mammalian
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viruses or the generation of viral RNAs with an RNAi suppressor activity suggests an
antiviral function of RNAi in mammals. Indeed, the sSfRNA of WNV and DENV suppresses
the RNAi pathway in both insects and mammals (Schnettler et al., 2012). Some mammalian
viruses encode protein with a VSR activity: the non-structural NS1 protein of human
Influenza A Virus (IAV) binds siRNAs and suppresses RNA silencing in plants and insects
Drosophila (Bucher et al., 2004; Li et al., 2004). However, even if the authors hypothesize
that NS1 may inhibit RNAi during influenza infection in mammalian cells, there is no
experimental evidence. Moreover, proteins that randomly bind dsRNAs such as E. Coli
RNase III can also suppress RNAI in plants (Lichner et al., 2003). This is surely not their
primary aim, as NS1 only requires the dsSRNA binding domain for its VSR activity (Li et al.,
2004). This raises the question whether the VSR activity from NS1 comes from a non-specific
mechanism. It is even more intriguing that the binding of dsSRNAs is a common characteristic
of all VSRs proteins identified in mammalian viruses. Moreover, Influenza A mutants lacking
NS1 protein replicate better in IFN-deficient cells or mice, but not when IFN response is
effective in wild-type conditions (Garcia-Sastre et al., 1998). This suggests that the main
function of NSI1 is to antagonize the IFN response and that the VSR activity of NSI is
dispensable for viral pathogenicity. The same criticism can be applied in regard to VSR
activity of the dsRNA binding protein E3L of Vaccinia virus (Li et al., 2004). Adenovirus
viral associated (VA1) RNA, highly expressed during infection, acts as a competitive
inhibitor of Dicer (Andersson et al., 2005). Overall, the contribution of the RNAi pathway in
mammals in regard to the strong antiviral response mediated by IFN-I remains to be
elucidated. At present, it is proposed that RNAi may be complementary to IFN in
undifferentiated ESCs cells, which are deficient for IFN inducibility and sensitivity (Burke et
al., 1978). It seems that RNAi does not play a major role in antiviral defense in mammals
compared to plants and invertebrates. Despite this contrast between insect and mammal
immune systems, both RNAi and IFN response are triggered by the same non-self pattern, the

cytoplasmic viral dsSRNAs.

Toll and autophagy

Several mammalian TLRs can trigger autophagy in macrophages (Delgado et al.,
2008; Shi and Kehrl, 2008). For example, TLR4 activation by its ligand Lipopolysaccharide
(LPS) induces autophagy in murine and human macrophages (Xu et al., 2007). TLRS

activates autophagy in a vitamine-D-dependent manner to inhibit HIV infection in
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macrophages (Campbell and Spector, 2012). In mammals, viral infections can trigger
autophagy after induction by several PRRs such as TLR binding, dsSRNA binding on protein
kinase R (PKR), viral ssRNA binding on nucleotide oligomerization domain 2 (NOD2), and
maybe DNA sensors (Richetta and Faure, 2013). However, the contribution of autophagy in
antiviral defense remains to be eclucidated in mammals. In Drosophila, Toll-7 activation
triggers autophagy that protects against VSV infection (Nakamoto et al., 2012; Shelly et al.,
2009). In plasmacytoid dendritic cells (pDCs), VSV RNAs are recognized by TLR7 upon
autophagosome formation (Lee et al., 2007). There is no genetic evidence that autophagy
restricts viral replication in mammals but the connection between TLRs activation and
autophagy is conserved in Drosophila and mammals. The signaling pathway from PRR

recognition to autophagy activation is currently unknown in both Drosophila and mammals.

2.3.a. Nucleic acid sensors: pattern recognition receptors

An arsenal of sensor proteins is present at the plasma membrane, in endosomes or in
the cytosol to recognize viruses invading host cells (Shayakhmetov et al., 2010). In
mammalian cells, three classes of sensors are involved in virus recognition: TLRs, retinoid
acid-inducible gene (RIG)-I-like receptors (RLRs), NOD-like receptors (NLRs) and cytosolic
DNA sensors. The host immune recognition system is based on a feature that is shared among
all viruses: a genome composed of nucleic acids. The binding of viral nucleic acids with these
sensors activate the major innate antiviral defense system in mammals: the IFN-I pathway

(Figure 9).

Toll-like receptors comprise a family of at least 11 members (Takeda and Akira,
2005). TLR2, TLR3, TLR4, TLR7 and TLRY are involved in the recognition of different
types of viral components, and together they provide enough coverage to detect most types of
viruses. TLRs are expressed on key sentinel cells of the innate immune system: macrophages
and dendritic cells. TLR2 and TLR4 are present on the plasma membrane and can recognize
viral envelope protein on the cell surface. TLR3, TLR7 and TLRY are located in endosomes
and recognize viral dsSRNA, ssRNA and unmethylated CpG DNA respectively. Activation of
all TLRs converge towards induction of IFN-I, through a signaling cascade involving IFN
regulatory factors, and the synthesis of pro-inflammatory cytokines such as IL-1p via NF-xB

activation (Shayakhmetov et al., 2010).
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(RIG)-I-like receptors family comprises the cytoplasmic viral RNA sensors RIG-I,
melanoma differentiation-associated gene 5 (MDAS5) and laboratory of genetics and
physiology-2 (LGP2) (Kang et al., 2002; Rothenfusser et al., 2005; Yoneyama et al., 2004).
This class of sensors is expressed ubiquitously and is localized in the cytosol where it detects
viral nucleic acids upon infection. They are strongly induced by IFNs upon viral infection.
The DExD/H box RNA helicase domain of RLRs is highly similar to the one of mammalian
Dicer. RIG-I binds short dsSRNAs and 5’triphosphate-ssRNAs whereas MDAS binds long
dsRNAs (review on RLRs in (Goubau et al., 2013; Shayakhmetov et al., 2010; Takeuchi and
Akira, 2009)). RIG-I and MDAS5 detect distinct spectrum of viruses (Kato et al., 2006;
Yoneyama et al., 2008). Mice deficient for RIG-I and MDAS are highly susceptible to viral
infections, underlying the importance of these molecules for host antiviral response (Kato et
al., 2006). Both RIG-I and MDAS rely on the adaptor protein IFN-B promoter stimulator-1
(IPS-1), that triggers a signaling cascade leading to the activation of type I IFN. IPS-1 is also
known by the names virus-induced signaling adapter (VISA), mitochondrial antiviral-
signaling protein (MAVS) and CARD adapter inducing interferon-3 (CARDIF). The role of
LGP2 in cytosolic RNA sensing remains unclear. By contrast to RIG-I1 and MDAS, LGP2
does not have the caspase activation and recruitment domain (CARD) in N-terminal, normally
required to couple downstream signaling adaptors. LGP2 has no signaling capacity. It is
proposed that LGP2 is a negative regulator of RIG-I and MDAS signaling by competing with
these molecules for the engagement with viral RNAs. Others DExD/H-box helicases have
been involved in DNA sensing such as DDX41 (Zhang et al., 2011), DHX9 and DHX36 (Kim
et al., 2010).

NOD-like receptors family comprises a large number of cytosolic proteins. NLR
activation leads to MAPK and NF-kB activation, and also to inflammasome formation that
can activate the IL-1R signaling pathway. NOD-like receptor family protein 3 (NLRP3) can
sense viral DNA in macrophages. DNA-dependent activator of IFN-regulatory factors (DAI)
senses viral dsDNA to activate type I IFN. (reviewed in Shayakhmetov et al., 2010)

DNA sensors also initiate the IFN-I system because the presence of DNA in aberrant
location such as the cytoplasm and endosomes is recognized as a non-self or danger signal

and triggers immune activation (Paludan and Bowie, 2013). In addition to TLRY9 on
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endosomes, many other DNA sensors are present in the cytosol such as DAI, [FI16 (gamma-
interferon-inductible protein 16) (Unterholzner et al., 2010) and AIM2 (Absent in melanoma
2). Loss- and gain-of-function experiments revealed that DAI is a dsDNA sensor that
activates innate immune responses, including IFN-I (Takaoka et al., 2007). The intracellular
signaling triggered by cytosolic DNA sensing depends on the central adaptator STING
(stimulator of IFN genes) to activate IFN-I (Burdette and Vance, 2013; Ishikawa and Barber,
2008). STING-deficient mice are hypersensitive to HSV-1 infection (Ishikawa and Barber,
2008). Recently, the group of Z. Chen observed that DNA sensing was coupled with the
synthesis of cyclic-di-GMP-AMP (cGAMP) by the enzyme cGAMP synthetase (cGAS),
leading to the induction of IFN in a STING-dependent manner (Sun et al., 2013b; Wu et al.,
2013). They suggest that the key DNA sensor is the cytosolic cyclase cGAS that generates the
second messenger cGAMP that binds and activates STING to induce IFN-I and other
cytokines. They further demonstrated that cGAS is essential to trigger innate antiviral
responses against retroviruses such as HIV, simian immunodeficiency virus (SIV) and murine
leukemia virus (MLV) (Gao et al., 2013). Interestingly, it was reported that cGAMP can be
transferred from producing cells to naive neighboring cells through gap junctions to trigger

STING activation and promote antiviral immunity in these cells (Ablasser et al., 2013).

2.3.b. Type I interferon pathway

The viral nucleic acid sensors RLRs and TLRs trigger an intracellular signaling
cascade, leading to the secretion of IFN-I and also of pro-inflammatory cytokines and
chemokines. IFN-I are produced by all cells in the organism: innate immune cells (dendritic
cells (strong producer), macrophages) and non immune cells as fibroblasts. Pro-inflammatory
cytokines and chemokines lead to inflammation and recruitment of cells involved in adaptive
immunity such as lymphocytes. IFN-I response attracts and activates natural killer cells ant
cytotoxic T cells, both major effector cell populations that eliminate infected cells (Stetson
and Medzhitov, 2006). Thereby, IFN-I is among the first line of defense during viral
infections. The secretion of IFNs amplifies and spreads the response to surrounding
uninfected cells (Figure 9). The binding of IFN-I on their receptor activates the Jak-STAT
signaling pathway. The dimerization of IFN receptor at the plasma membrane initiates a
tyrosine phosphorylation cascade involving the Janus kinase (Jak) family, resulting in the

dimerisation of the phosphorylated STAT1 and STAT2. Then, activated STATSs interact with
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IFN-regulatory factor 9 (IRF-9) to form the IFN-stimulated gene factor-3 (ISGF-3) complexe
that translocates in the nucleus to activate the transcription of hundreds of genes, named
Interferon-stimulated genes (ISGs). They have pleiotropic functions and include antiviral
effectors such as PKR and the 2’5’-oligoadenylate synthetase (Der et al., 1998). Many of
these genes encode proteins that have a direct antiviral activity and participate to intrinsic

innate antiviral immunity.
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Figure 9. The type I interferon response.
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Intrinsic antiviral immunity relies on the action of proteins that recognize specific viral
components and block viral infection immediately and directly. These proteins are named
restriction factors or intrinsic antiviral factors. More generally, the term restriction factor
could be attributed to any protein whose the major biological function is to inhibit the
infectious cycle of a virus. The cell-intrinsic antiviral defense creates an antiviral state prior to
infection, and so before the onset of the IFN response in vertebrates. Indeed, restriction
factors display a constitutive basal level of expression in most types of cells and tissues as
observed by microarray analysis for Apolipoprotein B mRNA-editing catalytic polypeptide 3
(APOBEC3) genes (Refsland et al., 2010) or Tetherin (Erikson et al., 2011). Additionally,
they can be induced by viral infection through IFN signaling to amplify their antiviral activity
and further establish the cell-intrinsic antiviral immunity (Yan and Chen, 2012). Many of the
restriction factors that have been characterized in mammals are induced by IFN, which is
somehow expected as their major activity is to fight viruses. It is probably necessary for the
host that some restriction factors are upregulated and active only upon infection, such as PKR
and RNase L that display a broad and strong antiviral restriction against a large spectrum of
viruses, but also a detrimental effect for the host. The antiviral activity of restriction factors is
demonstrated by loss- and gain-of-function experiments: the knockdown or overexpression of
a restriction factor respectively increases or decreases viral infectivity. In vertebrates, a large
panel of restriction factors has been characterized, covering inhibition of all steps of viral
infection (Figure 10). Most characterized viral restriction factors were classified depending

on the step of the viral life cycle that they target and will be described hereafter.
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Figure 10. Cell-intrinsic antiviral immunity in mammals.

3.1. Viral restriction factors in mammals

3.1.a. Inhibition of viral entry
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Interferon-inducible transmembrane proteins (IFITMs)

IFITMs are IFN inducible genes encoding intrinsic plasma membrane proteins that
restrict viral entry (reviewed in (Diamond and Farzan, 2013; Perreira et al., 2013). IFITMs
possess two Transmembranes (TMs) domains. The IFITMs are small proteins (around 130
amino acids) composed of two TMs domains separated by a highly conserved intra-cellular
loop. The first TM domain and the intracellular loop define the cluster of differentiation (CD)
225 domain that is important for antiviral activity (John et al., 2013). The human IFITM locus
is composed of four functional genes (IFITM1, IFITM2, IFITM3 and IFITM5) and a
pseudogene (IFITM4p). IFITMs display a basal expression level in cells. IFITM1, IFITM2
and IFITM3 were first identified in a siRNA genomic screen for IAV-dependency factors
(Brass et al., 2009). They inhibit the early steps of IAV, but also of flaviviruses DENV and
WNV replication, but not MLV replication (Brass et al., 2009). The depletion or
overexpression of IFITM3 respectively increases and inhibits IAV replication. Hemagglutinin
(HA)-pseudotyped retroviruses are inhibited by IFITMs whereas wild-type retrovirus are not,
indicating that IFITMs target the IAV entry. The entry processes of Marburg virus (MARYV),
Ebola virus (EBOV) and severe acute respiratory syndrome-coronavirus (SARS-CoV) are
restricted by IFITMs (Huang et al., 2011). Infection by MLV is not affected by IFITMs but
MLV-pseudotyped with the entry proteins of EBOV, MARV, IAV is antagonized by IFITMs.
Furthermore, viral fusion assays indicated that HA and VSV-G pseudoparticles are unable to
release their content in the cytosol of cells overexpressing IFITM3 (Feeley et al., 2011).
These results were the first to indicate that IFITMs prevent viral-host membrane fusion. The
depletion and overexpression of IFITM2 and IFITM3, but not IFITM1, respectively enhances
and restricts RVFV infection (Mudhasani et al., 2013). IFITMs also restrict other members of
Bunyaviridae family, including LACV. In the case of RVFV infection, IFITM2 and IFITM3
do not affect the viral binding and entry into cells but a step before the replication, suggesting
an inhibition of viral membrane fusion and release of ribonucleoproteins (RNPs) into the
cytoplasm. Accordingly, another recent study claimed that IFITMs restrict viral membrane
fusion (Li et al., 2013a). The authors used the properties of diverse viral fusion proteins to
look at the effect of IFITM overexpression on the formation of syncytia and cell-cell fusion
process. IFITM3 antiviral activity is negatively regulated by monomethylation on Lysine 88,
directed by the lysine methyltransferase SET7 (Shan et al., 2013). Interestingly, this
methylation is promoted by VSV and IAV infection, probably as a counteracting strategy.
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Friend-virus susceptibility gene 1 (Fvl)

The murine Fvl gene was shown to confer resistance to MLVs (Wolf and Goft, 2008).
MLVs were classified depending of their ability to cause disease in different strains of mice:
N-tropic MLVs are able to infect NIH mice but not BALB/C mice, whereas B-tropic MLV
infect BALB/C mice but not NIH mice. Thus, two major alleles of Fvl were described: Fv1"
that restricts B-tropic MLV but not N-tropic MLV and Fv1° allele that restricts N-tropic MLV
but not B-tropic MLV. Fv1™ heterozygote mice are resistant to both N and B-tropic viruses.
Surprisingly, this gene has similarities with the Gag (Group-specic antigen) protein of a
member of the endogenous retrovirus-like elements (ERV-L) family (Best et al., 1996). Fvl
gene encodes a capsid-like protein. The restriction of MLV replication by Fvl may require its
interaction with the viral capsid protein (Bishop et al., 2001; Bock et al., 2000). To date, there
is no direct evidence for binding of Fvl to capsid, except genetic studies that determined
amino acids (AAs) positions required for tropism-specific Fv1 restriction. The Fv1 tropism is

determined by the nature of the AA at position 110 in the viral capsid of retroviruses (Kozak

and Chakraborti, 1996).

Tripartite motif protein isoform S alpha (TRIMS5a)

An Fvl-like restriction to N-tropic virus infection was observed in some non-murine
cells, including human cells (Towers et al., 2000). Similarly to the situation in mice, a virus
mutated at the position 110 in the viral capsid is able to bypass this Fvl-like restriction in
non-murine cells, indicating that the restriction is determined by sequences within the capsid
protein. This unknown restriction factor was first named Resistance factor 1 (REF1) in
humans and Lentivirus susceptibility factor 1 (Lvl) in monkeys and then identified as the
gene TRIMSa in a screen for factors mediating HIV-1 resistance (Keckesova et al., 2004;
Stremlau et al., 2004). TRIM5a has no sequence homology to the Fvl gene but binds to the
same region of the capsid, around position 110. TRIMSa is a member of tripartite motif
family (TRIM). This motif is present at the N-terminus and contains a Really Interesting New
Gene (RING) domain, a B-box domain and a coiled-coil domain (Nisole et al., 2005). The C-
terminus of the protein contains the B30.2 domain that binds the viral capsid of HIV-1 to
restrict viral infection (Stremlau et al., 2004; Yap et al., 2005). Its sequence determines the
specificity of TRIMS5a for retroviruses. The variation of TRIMSa sequences between species,
specifically in the B30.2 domain, leads to differences in the ability to restrict different

retroviruses (Hatziioannou et al., 2004). TRIMSa restricts retrovirus infection early, prior to

70



Chapter 3 - Intrinsic antiviral immunity

reverse transcription, probably during the process of uncoating (Stremlau et al., 2004; Yan
and Chen, 2012). The presence of an E3 ubiquitin ligase domain in TRIM5a (the RING
domain) suggested that this protein mediates the proteasomal degradation of viral proteins,
but mutations in this domain or the inhibition of proteasome activity do not abolish TRIM5a-
mediated restriction (Javanbakht et al., 2005; Stremlau et al., 2006; Wu et al., 2006). It was
proposed that TRIM5a binds the HIV-1 capsid and accelerates the uncoating of the viral
capsid, which may affect viral infectivity (Stremlau et al., 2006). TRIMS5a is also proposed to
be a sensor of HIV-1 capsid that promotes innate immune signaling leading to Activator
protein-1 (AP-1) and NF-xB activation (Pertel et al., 2011). The mechanism of TRIMS5a-
mediated restriction remains to be fully elucidated, even if all the mechanisms described here
may contribute to this restriction. Even if it is clearly admitted that TRIMSa binds the capsid
protein, this has not been demonstrated experimentally due to technical limitations. This
binding seems important according to the discovery of TRIMSa-Cyclophilin A (CypA)
(TRIMCyp) fusion protein in old world monkeys to resist HIV-1 infection (Sayah et al.,
2004). Indeed, CypA has been reported to interact with the HIV-1 capsid and to facilitate HIV
infection (Luban et al., 1993). TRIMCyp uses the ability of CypA to bind the capsid, thereby
replacing the B30.2 domain, and inhibits HIV-1 replication. Interestingly, this fusion protein
seems to have appeared twice independently among old world monkeys (Virgen et al., 2008;

Wilson et al., 2008).

3.1.b. Inhibition of viral replication

Apolipoprotein B mRNA-editing catalytic polypeptide 3 (APOBEC3) family

The APOBEC3 family of cytidine deaminases (cytidine to uridine conversion)
contains 7 members in primates (APOBEC3A, B, C, D/E, F, G and H). Surprisingly, only one
gene is homolog to this family in mouse (mApobec3), indicating that the APOBEC3 locus has
been under strong positive selection during evolution of primates (Sawyer et al., 2004). The
discovery of this factor resulted from the observation that some cells were either permissive,
either non permissive to an HIV mutant strain defective for the virion infectivity factor (Vif)
(Gabuzda et al., 1992). The fusion of permissive and non permissive cells resulted in a non-
permissive phenotype, suggesting that a cellular factor only expressed in non permissive cells
was able to restrict infection by Vif-deficient HIV but not wild-type HIV (Madani and Kabat,
1998). This factor named CEM15 (and then renamed APOBEC3G) was one of the first
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intrinsic antiviral factor identified for HIV-1 (Sheehy et al., 2002). The expression of this
factor in permissive cells confers resistance to Vif-deficient HIV infection. Vif counteracts
this restriction factor by preventing its incorporation into progeny virions and promoting its
ubiquitination, leading to the degradation of APOBEC3G by the proteasome in infected cells
(Mehle et al., 2004; Sheehy et al., 2003). Vif may also inhibit the packaging of APOBEC3G
into HIV-1 virions (Kao et al., 2003; Mariani et al., 2003). APOBEC3G deaminates cytosine
to uracil (C to U) during reverse transcription in the nascent retroviral DNA, generating a high
level of Guanine to Adenine (G to A) mutations in the newly synthesized HIV genome,
deleterious for the fitness of the virus (Mangeat et al., 2003; Zhang et al., 2003). In addition,
the presence of U in the viral complementary DNA (cDNA) may be recognized and excised
by Uracil-DNA glycosylase generating an abasic site that may be targeted by endonucleases
(Harris et al., 2003). However, other studies have challenged this hypothesis as the antiviral
effect of APOBEC3G on HIV-1 infectivity is not affected in cell lines deficient for the Uracil-
DNA glycosylases UNG (Uracil-N glycosylase) and SMUGI (Single-Strand-Selective
Monofunctional Uracil-DNA Glycosylase 1) (Kaiser and Emerman, 2006; Langlois and
Neuberger, 2008). Furthermore, there is mounting evidence that hypermutations may be
dispensable for APOBEC-mediated antiviral activity (Holmes et al., 2007a). Indeed,
APOBEC proteins mutated in their cytidine deaminase domains are still able to prevent the
accumulation of reverse transcripts (Bishop et al., 2006; Holmes et al., 2007b). However, the
relevance of this viral restriction mediated by deaminase-defective APOBEC3G is a matter of
discussion in vivo, in physiological conditions, as the restriction mediated by the mutants is
lower than ones of the full length APOBEC3G (Miyagi et al., 2007). APOBEC3G may also
have other antiviral function than deamination, as inhibiting the provirus integration (Mbisa et
al., 2007) or viral DNA synthesis (Bishop et al., 2008). APOBEC3G interacts with the
nucleocapsid domain of the HIV-1 Gag polyprotein, triggering its incorporation into the HIV-
1 particle (Alce and Popik, 2004; Cen et al., 2004). APOBEC3G is also able to restrict
Hepatitis B virus (HBV) replication (Turelli et al., 2004). This restriction seems completely
independent of the cytidine deaminase activity of APOBEC3G as deaminase-defective
APOBEC3G conserve a wild-type level of antiviral activity against HBV and the HBV
genome is no edited. The restriction may rather affect the packaging of the viral pregenomic
RNA. However, other teams made contradictory observations, revealing that APOBEC3B,
3C, 3F and 3G can edit HBV genome and thereby may affect its replication (Suspéne et al.,
2005). Overall, the mechanism underlying HIV-1 and HBV restriction by APOBECs proteins
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is still under debate. For a review on APOBECs, see (Vieira and Soares, 2013). Additionally,
Human Papillomavirus (HPV) and Herpesvirus genomes are edited by APOBEC3 enzymes
(Suspéne et al., 2011; Vartanian et al., 2008).

SAM domain HD domain-containing protein 1 (SAMHD1)

SAMHDI was identified as responsible of the non-permissiveness of dendritic cells
and macrophages to HIV-1 infection (Hrecka et al., 2011; Laguette et al., 2011). Accordingly,
permissive cell lines such as Jurkat do not express SAMHD1 whereas dendritic and other
myeloid cells highly express SAMHDI1. The lentiviral accessory protein Vpx binds and
antagonizes SAMHDI-mediated restriction by inducing its ubiquitination by E3 ligases
(DCAF1 and DDB-CUL4) and subsequent proteasomal degradation (Hrecka et al., 2011;
Laguette et al., 2011). The depletion of SAMHDI enhances HIV-1 replication whereas its
overexpression restricts the infection (Hrecka et al., 2011; Laguette et al., 2011). SAMHDI
comprises a sterile alpha motif (SAM) and a histidine—aspartic (HD) domain. It is proposed
that the HD domain displays a deoxyguanosine triphosphate (dGTP)-stimulated
triphosphohydrolase activity that converts deoxynucleoside triphosphates (dNTPs) to
deoxynucleoside (dN) and inorganic triphosphate. Thus, the depletion of ANTPs pool may
restrict HIV-1 infection by inhibiting reverse transcription and viral cDNA synthesis
(Goldstone et al., 2011). The expression of the sole HD domain of SAMHDI1 is sufficient to
restrict HIV-1 infection (White et al., 2013). By contrast, the SAM domain of SAMHDI is
dispensable for its antiviral activity. SAMHD1 has a broad anti-retroviral activity in myeloid
cells (macrophages and dendritic cells) (Gramberg et al., 2013). Loss- and gain-of-function
experiments indicate that SAMHDI restricts Herpes Simplex Virus type 1 (HSV-1)
replication and this restriction is partially reversed with supply of exogenous
deoxynucleosides (Kim et al., 2013). Phosphorylation of SAMHDI1 negatively regulates its
antiviral function, at least for HIV-1 (Welbourn et al., 2013). Indeed, HSV-1 restriction is not
affected by SAMHDI1 phosphorylation, by contrast to HIV-1 restriction. Mutations in the
SAMHDL1 gene are associated with Aicardi-Goutiéres Syndrome (AGS), an immune disorder
characterized by an increased production of IFNs (Rice et al., 2009). Thus, a role of

SAMHDI1 as negative regulator of the innate immune response has been proposed.

Myxovirus resistance (Mx) protein
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The IFN-inducible Mx proteins are large Guanosine triphosphatases (GTPases) that
have protective effects against a large variety of viruses. Humans have two Mx genes, MxA
and MxB (Mx1 and Mx2 in mice) (Aebi et al., 1989). The MxA protein is only cytoplasmic
and the MxB protein exhibits different cellular localization depending on the cell type (Haller
and Kochs, 2011). The antiviral mechanism of MxA protein remains to be elucidated. At
present, it is proposed that MxA protein oligomerizes to form rings around the
ribonucleocapsids of different viruses in order to block viral replication (Gao et al., 2011; von
der Malsburg et al., 2011). A recent study reported that MxA prevents the transport of viral
RNPs (VRNPs) to the nucleus, and thereby blocks IAV replication, which normally occurs in
the nucleus (Xiao et al., 2013). However, if the depletion of MxA prevented the retention of
vRNPs in the cytoplasm, gain-of-function experiments were not very convincing. It seems
that MxA overexpression is not sufficient to retain vRNPs in the cytoplasm in absence of IFN
pre-treatment, but rather only if cells are pre-treated with IFN. This may indicate that another
ISG is required for this antiviral function of MxA. This strategy of trapping viral components
in a place where they become unavailable for the viral infectious cycle seems common to
other viruses. MxA blocks the transport of virus nuclecapsids from Thogoto virus into the
nucleus, thereby preventing viral transcription (Kochs and Haller, 1999). Similarly, MxA
binds the nucleocapsid protein of LACV that is redistributed in perinuclear areas (Kochs et
al., 2002). MxA inhibits HBV replication by interacting with hepatitis B core antigen protein
that is redistributed in perinuclear compartments (Li et al., 2012). The overexpression of
human MxA protein confers resistance to VSV and IAV in a mouse cell line and Measle
Virus (MV) and VSV in a human cell line (Schnorr et al., 1993). The inhibitory effect of
MxA on VSV infection is directed at the level of viral transcription but the inhibition of MV
is post-transcriptional, indicating a virus-specific effect of MxA protein. Mx1-loss-of function
and Mx1-gain-of-function experiments in mice indicate that Mx1 plays a role in resistance to
an Influenza-like virus (the Dhori virus) (Thimme et al., 1995). Surprisingly, mice and cells
overexpressing the human MxA protein are protected from Thogoto virus, but not Dhori
virus, infection (Frese et al., 1995; Thimme et al., 1995). The explanation for the difference in
MxA, but not Mx1, sensitivity between two tick-borne orthomyxoviruses remains unclear.
The overexpression of human MxA protein in Vero cells confers protection against members
of Bunyaviridae family (Bunyaviruses, Phleboviruses, and Hantaviruses), blocking an early
step of the viral cycle, probably viral RNA synthesis (Frese et al., 1996). Mx proteins are also
able to inhibit dSRNA viruses and some DNA viruses (Mundt, 2007; Netherton et al., 2009).
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According to the model proposed, it is still unclear how such diversity of viruses with
divergent RNPs in sequence can all be antagonized by MxA. Interestingly, adaptive mutations
in the nucleoproteins were found in pandemic strains of IAV and are correlated with an
escape of MxA-mediated restriction (Ménz et al., 2013). Recently, an antiviral function was
also reported for the MxB protein. MxB, but not MxA, inhibits HIV-1 replication and
integration of HIV-1 DNA (Liu et al., 2013). Accordingly, the knockdown of MxB attenuates
the antiviral effect of IFN on HIV-1 infection. Mutations in HIV-1 capsid allow the virus to
escape MxB restriction and CypA-MxA fusion protein restricts HIV-1 infection, indicating
that Mx proteins target the viral capsid to exert their antiviral activity. Intriguingly, the
authors did not detect an interaction between MxB protein and Gag protein nor the mature
capsid by co-immunoprecipitation. Concomitantly, another team confirmed that MxB
suppresses HIV-1 infection by inhibiting the nuclear accumulation and integration of HIV-1
provirus and that viral capsid is a target of MxB (Goujon et al., 2013). The spectrum of MxB
restriction seems to extend only to primate lentiviruses (HIV-1 and SIVs) and does not affect
non-primate lentiviruses (MLV, Equine Infectious Anemia Virus (EIAV) and Feline
immunodeficiency virus (FIV) or IAV. This contrasts with MxA, which represses IAV but
not HIV-1 infection. Both Mx proteins have different viral specificity. This species-specific
antiviral activity is determined by the loop L4 of MxA protein (Mitchell et al., 2012). Mx
proteins are atypical restriction factors because they have a broad antiviral activity against
RNA and DNA viruses whereas their antiviral activity seems to require the specific
recognition of viral proteins from diverse family of viruses. This ambiguity remains to be
elucidated. Complementary informations on MxA antiviral activity can be found in Mitchell

etal., 2013.

TRIM19 or promyelocytic leukaemia (PML)

Another member of the TRIM family, named TRIM19 or PML, interferes with the
infectious cycle of many DNA and RNA viruses (Nisole et al., 2005). PML localizes both in
the nucleoplasm and in nuclear bodies (NBs), the latter localization is dependent of post-
translational modifications by Small Ubiquitin-like MOdifier (SUMO-1) (Miiller et al., 1998).
PML is induced by IFN-I (Lavau et al., 1995). The overexpression of PML in CHO cells
confers resistance to VSV and IAV, but not EMCV, infection (Chelbi-Alix et al., 1998). After
Lassa virus and LCMV infection, PML has been shown to relocalize in the cytoplasm where

it interacts with the Z protein of these viruses (Borden et al., 1998). Surprisingly, the
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overexpression of PML in Hela cells does not affect Lassa virus and lymphocytic
choriomeningitis virus (LCMYV) replication whereas PML-deficient MEF cells or knockout
mice display increased LCMV replication (Asper et al., 2004; Djavani et al., 2001). The
authors propose that the basal expression of PML is sufficient to restrict infection by these
two viruses, explaining why its overexpression does not affect infection whereas the depletion
of basal expression impairs the antiviral response mediated by PML. The authors suggest that
PML acts as a mediator of antiviral pathways rather than as a direct antiviral effector. This is
supported by other groups reporting that PML knockout has positive effects on rabies virus
and HSV replication but PML overexpression has no negative effects (Blondel et al., 2002;
Chee et al., 2003; Lopez et al., 2002). PML also restricts retrovirus replication. HIV infection
induces a cytoplasmic redistribution of PML that colocalizes with the incoming HIV-1
preintegration complex and thereby may inhibit HIV-1 replication (Turelli et al., 2001). This
evidence is indirect, as it consists in arsenic treatment of cells, which sequesters PML in the
nucleus and correlates with an increased HIV transduction efficiency. In contradiction with
this observation, other groups did not observe changes in PML bodies after HIV-1 infection,
nor any PML effect on HIV-1 infectivity (Berthoux et al., 2003). The overexpression of PML
was shown to inhibit Human Foamy Virus (HFV) replication, and also transcription by
interacting with the transcriptional transactivator (Tas) protein of HFV (Regad et al., 2001).
Moreover, IFN treatment failed to inhibit HFV replication in PML-deficient MEF cells,
suggesting that PML mediates the IFN-induced antiviral response against HFV. As mentioned
above for HIV-1, the effect of PML on HFV is still debated (Meiering and Linial, 2003).
Some viruses have developed strategies to counteract PML. Arenaviruses encode the Z
protein that interacts with PML and induces its relocation from NBs to the cytoplasm (Borden
et al., 1998). Both PML and Z protein are able to bind e¢IF4E to inhibit host translation
(Kentsis et al., 2001).

Other members of the TRIM family restrict viral infection. For example, TRIM1
restricts N-tropic MLV (Yap et al., 2005). TRIM22 (also named Staf-50 for Stimulated
Trans-Acting Factor of 50 kilodalton (kDa)) is an IFN-inducible factor that restricts HIV-1 by
down regulating transcription mediated by the LTR promoter of HIV-1 (Tissot and Mechti,
1995). TRIM22 interacts and ubiquitinates the viral nucleoprotein of IAV, leading to its
degradation by the proteasome and thereby inhibiting IAV replication (Di Pietro et al., 2013).
TRIM22 confers protection against EMCV by interacting with 3C protease and inducing its
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degradation (Eldin et al., 2009). Viral restriction by TRIM22 was recently reviewed in
(Hattlmann et al., 2012). TRIM79a is an IFN-inducible gene that restricts Langat virus
(LGTV) and tick-borne encephalitis virus (TBEV) replication by binding the NS5 protein and
promoting its degradation (Taylor et al., 2011). It does not bind nor affect the replication of
WNV, a member of the same Flaviviridae family, indicating that its action is virus-specific. A
recent study reported that most members of E3 ligase TRIM family positively regulate

signaling pathways triggering innate antiviral responses (Versteeg et al., 2013).

IFN-inducible IFI16 protein

The human IFI16 protein, initially reported as a viral DNA sensor (Unterholzner et al.,
2010), is also a restriction factor for human cytomegalovirus (HCMV) (Gariano et al., 2012).
The depletion of IFI16 increases HCMV replication whereas the overexpression of IFI16
strongly inhibits HCMV replication by affecting viral DNA synthesis.

3.1.c. Inhibition of viral translation

IFN-induced protein with tetratricopeptide repeats (IFITs)

The IFIT family comprises four members in humans: IFIT1 (ISG56), IFIT2 (ISG54),
IFIT3 (ISG60) and IFITS (ISG58). Their particular tetratrico peptide repeats (TPRs) may be
involved in protein-protein interactions and complex assembly (Yan and Chen, 2012). IFIT1
and IFIT2 interact with a subunit of the mammalian translation initiation factor elF-3, thereby
inhibiting overall cellular protein synthesis (Guo et al., 2000; Terenzi et al., 2006). This may
contribute to the antiviral response triggered by IFN. The binding of IFIT1 on elF3 inhibits
HCV IRES translation (Wang et al., 2003). Both IFN-induced proteins PKR and IFITI
participate in the blocking of initiation of viral RNA translation, by targeting elF2 and elF3,
respectively. IFIT1 and IFIT2 expression is induced in the central nervous system after
LCMV or WNV infection (Wacher et al., 2007). However, their antiviral function against
these two viruses has not been directly addressed. IFIT1 binds to the viral protein E1 of HPV
and inhibits its replication (Terenzi et al., 2008). The depletion of IFIT1 abrogates the
restriction mediated by IFN on HPV DNA replication. Accordingly, the overexpression of
IFIT1 inhibits HPV DNA replication. Another role of IFIT proteins is to recognize viral
RNAs with 5’PPP at their extremity or that lack 2°-O-methyl (Daffis et al., 2010; Pichlmair et

77



Chapter 3 - Intrinsic antiviral immunity

al., 2011). Cellular mRNAs or self-RNAs usually contain a 5’-guanosine cap and are 2’-O-
methylated whereas viral RNAs or non-self RNAs are not capped or methylated. In this sense,
many RNA viruses encode a methyltransferase to methylate their viral RNA at the 2’-O
position to mimic host mRNAs (Ziist et al., 2011). WNV, poxvirus and coronavirus mutants
lacking 2’-O-methyl transferase activity are more sensitive to the antiviral response mediated
by IFN, and specifically by IFITs proteins (IFIT1 and IFIT2). The 2’-O-methylation of viral
RNA is a strategy to escape IFIT-mediated antiviral activity (Daffis et al., 2010). Loss of IFIT
family members in HeLa cells by RNAi increases VSV and RVFV viral titer, but does not
affect EMCV titer. Among these three viruses, only EMCV does not generate 5’PPP-RNA
during replication, suggesting that IFIT family contributes to the antiviral response to viruses
generating 5’-PPP-RNAs (Pichlmair et al., 2011). Accordingly in vivo, IFIT1-deficient mice
are hypersensitive to VSV, but not EMCYV, infection. A recent study showed that IFIT1
preferentially binds 5° capped viral mRNAs without 2°-O methylation and inhibits their
translation, thereby restricting infection by Japanese encephalitis virus (JEV) mutant in 2°-O
methyltransferase (Kimura et al., 2013). Overall, in addition to RIG-I that senses 5’-PPP-
RNA and induces the production of IFN-I, the induction of IFIT family expression by IFN
creates a feedback mechanism for the sensing of 5’-PPP viral RNAs. By contrast, IFIT1 also
interacts with the adaptor STING and prevents its interaction with IPS-1 or TANK-binding
kinase 1 (TBK-1), thereby inhibiting the signaling cascade triggered by viral sensing (Li et al.,
2009). It is proposed that IFIT1 plays the role of negative regulator of the viral-induced IFN-I
response. Overall, the exact mechanism by which IFIT proteins restrict viral infection remains
to be elucidated. Viral restriction by IFITs was recently reviewed in (Diamond and Farzan,

2013; Zhou et al., 2013).

Zinc-finger antiviral protein (ZAP)

ZAP was identified in a screen for mammalian cDNAs able to inhibit MLV infection
(Gao et al., 2002). This protein displays a cluster of four CCCH-type zinc fingers, found in
some RNA-binding proteins (Lai et al., 2000). The expression of ZAP is induced by IFN
(Zhang et al., 2007) and was first shown to reduce viral RNA level in the cytoplasm (Gao et
al., 2002). Further studies demonstrated that ZAP interacts via its zinc finger motifs with the
3’-LTR of MLV RNAs or SINV mRNAs and that this interaction is necessary for its antiviral
function against both viruses (Guo et al., 2004). ZAP-antiviral activity is not restricted to

retroviruses. The overexpression of ZAP affects members of the alphavirus genus, including
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SINV, SFV, Ross River Virus (RRV) infection and Venezuelan Equine Encephalitis Virus
(VEEV) replicon, but not HSV, Yellow Fever Virus (YFV), VSV, and Poliovirus replicon
(Bick et al., 2003). The expression of ZAP does not affect SINV binding onto the cell surface
but inhibits SINV replication and the translation of a SINV-luciferase reporter defective for
replication. ZAP is also reported to inhibit filoviruses replication (EBOV and MARV) by
decreasing the level of viral mRNAs (Miiller et al., 2007). These studies suggest that ZAP
targets viral RNA for degradation. This hypothesis is supported by the demonstration that
ZAP interacts with components of the exosome (Rrp40p and Rrp46p), an RNA processing
complex containing multiple 3’-5" exoribonucleases (Guo et al., 2007; Mitchell et al., 1997).
The depletion of Rrp40p and Rrp46p by RNAi reduced the antiviral activity of ZAP against
MLV, suggesting that the exosome is required for ZAP-mediated antiviral activity (Guo et al.,
2007). Only recently, it was shown that ZAP localizes in RNA granules where it recruits
MLV transcripts and the exosome component EXOSCS5 to induce the degradation of MLV
transcripts (Lee et al., 2013).The authors show that ZAP antiviral activity is independent of
RLRs in MEF cells, whereas a previous study showed that ZAP is a positive regulator of
RIG-I signaling in human cells (Hayakawa et al., 2011). The DEXH box RNA helicase
DHX30 is a cellular factor required for ZAP antiviral activity (Ye et al., 2010). The crystal
structure of Rat ZAP has been resolved and showed that ZAP forms a dimer to bind one RNA
molecule (Chen et al., 2012). However, the motifs or structures on viral transcripts that are

recognized by ZAP are still unknown.

Protein kinase R (PKR)

Another well characterized IFN-induced antiviral effector, the protein kinase PKR, is
activated by viral dsRNAs and phosphorylates the initiation factor elF2a, resulting in a rapid
inhibition of translation of viral and host mRNAs (Meurs et al., 1990; Pindel and Sadler,
2011). The overexpression of PKR limits EMCV, but not VSV, replication in cells (Meurs et
al., 1992). In addition, PKR-deficient cells are more sensitive to EMCYV infection compared to
control cells, and display an impaired induction of IFNs after EMCYV infection (Der and Lau,
1995). NS1-deficient Influenza virus can replicate in PKR-deficient mice, but not in wild-type
mice, indicating that PKR controls Influenza virus infection and its antiviral activity is
counteracted by the NSI protein (Bergmann et al., 2000). PKR also contributes to the
protection against WNV infection (Samuel et al., 2006), Human T-cell leukemia virus type I

(HTLV-1) and HTLV-2 infection (Cachat et al., 2013).
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3.1.d. Inhibition of viral release

Tetherin (or BST-2 or CD317)

Viral protein U (Vpu) is required for efficient HIV-1 particle release in HeLa cells but
not in COS-7 cells. Heterokaryons resulting from the fusion of both cell lines exhibit similar
restriction of viral particles release than Hela cells, suggesting that Hela cells, but not COS-7
cells, express a dominant acting intrinsic antiviral factor (Varthakavi et al., 2003). This
restriction factor is effective only against Vpu-defective HIV-1, and does not affect wild-type
HIV-1 replication. The overexpression of Vpu in Hela cells or heterokaryon reverses the
restriction. Tetherin is an IFN-inducible protein that was identified by microarray analysis of
permissive and non-permissive cells as a factor that restricts HIV-1 budding from infected
cells (Van Damme et al., 2008; Neil et al., 2008). The accessory protein Vpu counteracts its
antiviral function. Tetherin is constitutively expressed but is also induced by IFN (Neil et al.,
2008). The protein is localized at the plasma membrane, in endosomes and in vesicles of the
trans-Golgi network (Habermann et al., 2010), and co-localize with budding virions. It is
proposed that the wunique topology of Tetherin with one TM domain and a
glycosylphosphatidylinositol (GPI) anchor could tether cellular and viral membranes through
their cholesterol-enriched lipid rafts (Evans et al., 2010; Kupzig et al., 2003). Accordingly,
many envelope viruses including HIV-1, IAV or EBOV bud from lipid rafts (Nguyen and
Hildreth, 2000; Panchal et al., 2003; Scheiffele et al., 1999). This hypothesis is challenged by
a recent study on HIV-1 where the depletion of cellular cholesterol does not affect the
antiviral activity of Tetherin (Grover et al., 2013). In addition, HIV-1 Gag protein does not
colocalize with lipid raft markers, suggesting that lipid rafts are not involved, at least for HIV-
1, in Tetherin-mediated inhibition of viral release. The unusual topology of Tetherin and its
ability to dimerize suggest two possibilities of action : Tetherin could hold virions at the cell
surface either by inserting a GPI anchor into the virion envelope or by dimerization, with one
Tetherin molecule anchored in the cell membrane and the other one in the virion envelope
(Evans et al., 2010). Retained virions are either internalized by endocytosis and the
association of Tetherin with the E3 ubiquitin ligase BCA2 (Breast cancer-associated gene 2)
directs tethered virions to lysosomes for degradation, or they remain at the cell surface
(Miyakawa et al., 2009; Neil et al., 2006). These models of restriction suggest that Tetherin
has a broad antiviral activity against enveloped viruses. Indeed, it was reported to restrict
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retroviruses, filoviruses, arenaviruses and herpesviruses (Evans et al., 2010). The team of
Bieniasz originally demonstrated by designing an artificial Tetherin lacking sequence
homology but with the same structural features than native Tetherin that the protein displays
autonomously and directly its antiviral activity (Perez-Caballero et al., 2009). The
overexpression of Tetherin decreases DENV release from Huh-7 cells (Pan et al., 2012).
CHIKYV virus-like particles (VLPs) are retained by Tetherin at the cell surface and both
CHIKV E1 glycoprotein and nsP1 protein colocalize and interact with Tetherin (Jones et al.,
2013). They also show that nsP1 antagonizes Tetherin restriction by reducing the expression
of Tetherin. Tetherin-mediated restriction is antagonized by the K5 protein of Kaposi's
sarcoma-associated herpesvirus (KSHV), which ubiquitinates Tetherin to induce its
degradation by the proteasome. The glycoprotein of EBOV also inhibits its antiviral function.
The mechanism by which Vpu antagonizes Tetherin is unknown. One group observed by flow
cytometry a down-regulation of Tetherin from the cell surface in cells expressing HIV-1 Vpu
(Van Damme et al., 2008). A recent paper also suggests that Vpu expression directs
internalized Tetherin preferentially to lysosomal degradation rather than recycling at the cell
surface (Rollason et al., 2013). Independently of this mechanism, Vpu also interacts directly
with Tetherin to displace it from sites of virion assembly (McNatt et al., 2013). Recent studies
have highlighted that Tetherin can also act as a viral sensor that induces proinflammatory
response through activation of NF-«B (Galao et al., 2012; Hotter et al., 2013; Tokarev et al.,
2013). Viral restriction by Tetherin was recently reviewed in (Neil, 2013; Swiecki et al.,

2013).

IFN-stimulated gene 15 (ISG15)

ISG15 protein is a 15 kDa ubiquitin-like protein (Narasimhan et al., 2005). Like
ubiquitin, ISG15 conjugates with proteins via its C-terminal motif (LRLRGG). This
conjugation is called ISGylation. ISG15 conjugation cascade is catalyzed by a serie of
enzymes: E1 (Ubiquitin Activating Enzyme E1 Like Protein (UBEIL)), E2 (Ubiquitin-
conjugating Enzyme H8 (UbcHS)) and two E3 ligases (estrogen-responsive finger protein
(EFP) and HECT domain and RCC1-like domain containing protein 5 (Herc5)) as well as a
deconjugating enzyme (Ubiquitin protease 43 (UBP43)) (Lenschow et al., 2007). It is unclear
if ISG15 conjugation, like ubiquitin, results in the degradation of the targeted proteins. These
ISGylated proteins were identified by mass spectrometry and cover a large spectrum of

biological processes such as translation or stress response (Giannakopoulos et al., 2005).
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Interestingly, IFN-induced antiviral effectors (MxA, PKR, RNase L) and components of
immune signaling pathways (RIG-I, Jakl, STAT1) are also suggested to be ISGylated
(Malakhov et al., 2003; Zhao et al., 2005). The treatment of cells with proteasome inhibitor
does not accumulate ISGylated proteins in the cells, indicating that conjugation of ISG15 onto
proteins does not lead to proteasomal-degradation. ISG15 has an antiviral activity, but its
mechanism of action is unclear. ISG15-deficient mice are highly sensitive to both RNA and
DNA virus infections, including Influenza A and B virus, HSV-1, SINV (Lenschow et al.,
2007). In addition, this susceptibility is rescued after infection by recombinant SINV
expressing wild-type ISG15, but not an ISG15 mutant for conjugation. Mice deficient for the
E1 ligase UBE1L, necessary for ISG15 conjugation to targeted proteins, are hypersensitive to
Influenza B virus suggesting that ISG15 conjugation is important for its antiviral activity (Lai
et al., 2009). In agreement with this hypothesis, ISG15 is conjugated on NS1 protein of [AV
and inhibits its function (Tang et al., 2010; Zhao et al., 2010). Similarly, the HPV capsid
protein is ISGylated and incorporated in the released virus that is less infectious, perhaps
because ISGylation destabilizes the viral particle (Durfee et al., 2010). It is not clear if
ISGylation of host proteins, viral proteins (NS1, IAV) or both contribute to antiviral activity.
Interestingly, the overexpression of ISG15 in cells blocks the release of HIV-1 retrovirus and
EBOV from cells by either ISGylating components of the Endosomal sorting complex
required for transport (ESCRT) pathway, or inhibiting the ubiquitination of HIV-1 Gag or
Ebola VP40 proteins, which are both processes required for virus-budding (Seo and Leis,
2012). Thus, the current model is that ISG15 inhibits virus release by affecting the virus-
budding events but the exact mechanism of its antiviral activity remains to be clarified. A
recent study revealed that ISGylation of PKR by ISGI1S5 activates PKR in gain-of-function
experiments (Okumura et al., 2013), but the physiological relevance of this finding remains to
be determined. ISG15-deficient mice, but not UBE1L-deficient mice, are highly sensitive to
CHIKYV (Werneke et al., 2011). This sensitivity is not associated with an increased viral titer
(indicating that ISG15 does not control viral replication) but rather correlated with a high
level of proinflammatory cytokines and chemokines. By contrast with previous studies, this
finding suggests that the antiviral activity of ISG15 is independent from conjugation, but may
rather play the role of an immunomodulatory cytokine. Indeed, it has been reported that
ISG15 can be secreted and function like a cytokine (D’Cunha et al., 1996a, 1996b). Viral

restriction by ISG15 was recently reviewed in Morales and Lenschow, 2013.
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3.1.e. Multiple step antiviral function

Virus-inhibitory protein, endoplasmic reticulum-associated, IFN-inducible (Viperin)

Viperin is composed of three domains: an amphipathic o-helix domain at its N-
terminus, involved in the targeting of Viperin to the cytosolic face of the ER and lipid
droplets; a conserved central domain containing a CxxxCxxC motif, and related to domain
present in S-adenosylmethionine (SAM) enzymes; and a conserved C-terminal domain (Seo et
al., 2011a). Viperin is an IFN-inducible protein that localizes in the ER where it interacts with
Farnesyl Diphosphate Synthase (FPPS) to inhibit isoprenoid-derived lipids biosynthesis. This
inhibition leads to changes in membrane fluidity and lipid raft microdomains, thus affecting
the budding of Influenza virus, but not VSV, particles from infected cells (Wang et al., 2007).
The overexpression of FPPS reverses the inhibition of IAV release and restores normal
membrane fluidity whereas its knockdown inhibits Influenza replication and release.
Accordingly, VSV does not bud from lipid rafts and therefore its replication is not affected by
Viperin expression. Viperin restricts WNV pathogenesis as Viperin-deficient mice display an
increased lethality and the viral replication is enhanced in central nervous system tissues
(Szretter et al., 2011). The overexpression of Viperin in cells restricts CHIKV infection and
the antiviral activity is conferred by the N-terminal amphipathic a-helical domain (Teng et al.,
2012). Accordingly, mice deficient for Rsad2 (Radical S-adenosyl methionine domain-
containing protein 2), the gene encoding Viperin, display an increased viremia and joint
inflammation. If the colocalization between Viperin and ER marker is clear, the colocalization
with the virus is not obvious and remains to be reevaluated. Loss- and gain-of-function
experiments indicate that Viperin confers protection against DENV-2 infection, and its C-
terminal region display its antiviral activity (Helbig et al., 2013). DENV-2 infection induces
Viperin that colocalizes with lipid droplets and also the viral capsid and NS3 protein. Viperin
inhibits DENV-2 replication and interacts with viral RNAs, but also the viral capsid and NS3
protein. HIV-1 induces Viperin expression in macrophages and its depletion increases HIV-1
replication (Nasr et al., 2012). The overexpression of full-length Viperin, but not Viperin
mutants in SAM domain, decreases HIV-1 production and release from HEK293T cells. HIV-
1 infection redistributes Viperin from ER into foci which colocalize with two markers of
HIV-1 replication and assembly, p24 antigen and CD81. SAM mutants do not colocalize with
HIV-1 anymore. As for IAV, farnesol treatment reverses Viperin-mediated restriction of HIV-

1, indicating that Viperin may inhibit FPPS, thereby disrupting lipid raft and virus budding.
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Another study showed that the expression of Viperin does not seem to restrict lentiviruses,
except the LAI strain of HIV-1 and more significantly HIV-1 Negative Regulatory Factor
(Nef) mutant. This indicates that the HIV-1 Nef protein abrogates this restriction, but Viperin
depletion does not affect HIV-1 LAI infection (Lim et al., 2012). The N-terminal amphipathic
alpha-helix of Viperin and HCV NSS5A protein directs their localization to lipid droplets and
this region is sufficient to direct dsRed to lipid droplets (Hinson and Cresswell, 2009a). This
region of Viperin is also important for its localization to ER and Viperin-mediated inhibition
of protein secretion, suggesting that it may interfere with the transport of viral proteins
(Hinson and Cresswell, 2009b). Viperin depletion increases HCV replication in IFN-
stimulated Huh-7 cells and its overexpression decreases HCV replication (Helbig et al.,
2011). Viperin interacts with HCV core and NS5A proteins on the surface of lipid droplets.
The N-terminal region of Viperin is important for its localization to lipid droplets and the C-
terminal region confers its antiviral activity. Viperin interacts with VAP-A (vesicle-associated
membrane protein-associated protein subtype A also named hVAP-33), a cellular cofactor that
normally interacts with NS5SA and NS5B to facilitate the formation of replication complexes
(Gao et al., 2004). This suggests that Viperin may affect HCV RNA replication. A recent
study confirmed that Viperin affects HCV RNA replication by using HCV replicon system
and that Viperin binds hVAP-33 via its C-terminal region, probably by competition with
NS5A (Wang et al., 2012b). Intriguingly, Viperin enhances HCMV infectivity (Seo et al.,
2011b). A recent study reported that lipogenesis induced during HCMV infection is
dependent on Viperin expression on mitochondria and required for the formation of HCMV
envelope and the production of infectious particles (Seo and Cresswell, 2013). Viperin is also
reported to be involved in the signaling between TLR7 and TLR9 activation and production
of type I IFN (Saitoh et al., 2011). Loss- and gain-of-function experiments indicate that
Viperin does not affect flavivirus JEV infection but the treatment of infected cells with
proteasome inhibitor restores high level of Viperin expression and reveals its antiviral effect
on JEV (Chan et al., 2008). JEV counteracts the antiviral function of Viperin through its
degradation. To summarize, Viperin targets two steps of virus life cycle. It disrupts lipid rafts
to block virus budding and release, and also interferes with replication of some viruses. Viral

restriction by Viperin was recently reviewed (Mattijssen and Pruijn, 2012; Seo et al., 2011a).

3.1.f. OAS/RNase L: Intrinsic antiviral pathway
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2’-5’-0ligoadenylate synthetase (OAS) / RNase L system

The IFN-inducible protein OAS is activated by viral dsRNAs and produces 2’-5’
oligoadenylates that bind to the inactive monomeric form of the endoribonuclease RNase L.
This binding induces RNase L dimerization and activation, leading to the degradation of viral
RNAs and also host ribosomal RNAs (rRNAs) to stop viral replication (Carroll et al., 1996;
Dong and Silverman, 1995). Humans encode three OAS genes (OAS1, OAS2 and OAS3),
and one OAS-like gene (OASL). In mice, OAS family is composed of seven OASI1-type
genes, OAS2, OAS3 and 2 OASL-type genes (Kakuta et al., 2002). The OAS/RNase L
system has a broad antiviral activity. The overexpression of OAS protein confers resistance to
a Picornavirus (Mengo virus), but not VSV, infection in a hamster cell line (Chebath et al.,
1987). Similarly, a human cell line overexpressing OAS protein is resistant to EMCV
infection, and displays a reduced cell proliferation rate (Rysiecki et al., 1989). In addition,
loss-of-function experiments by overexpression of a dominant negative RNase L mutant in
cells increases the susceptibility to EMCYV, but not VSV, infection and the antiproliferative
effect is counterbalanced (Hassel et al., 1993). RNase L has specific antiviral activity and may
also be involved in the regulation of cell growth. The overexpression of OAS and RNase L
proteins blocks Vaccinia Virus replication (Diaz-Guerra et al., 1997). RNase L-deficient mice
are more susceptible to EMCV and WNV infection (Samuel et al., 2006; Zhou et al., 1997).
The susceptibility of mice to WNV infection is correlated with a nonsense mutation in the
gene encoding the isoform L1 of 2'-5'-oligoadenylate synthetases, suggesting that this enzyme
restricts WNV infection (Mashimo et al., 2002; Perelygin et al., 2002). The OAS/RNase L
system contributes to the antiviral defense in many ways, in addition to its RNAs degradation
activity (Chakrabarti et al., 2011). For example, it can induce apoptosis in virus-infected cells
(Castelli et al., 1997; Zhou et al., 1997). Moreover, the small RNA products resulting from
the cleavage by RNase L can be used as substrates by the RIG-I sensor to amplify the
production of IFNs (Malathi et al., 2007, 2010). The OAS/RNase L pathway is negatively
regulated by a 2’-phosphodiesterase (2’-PDE) which degrades 2’-5” oligoadenylates (Kubota
et al., 2004). The depletion of 2’-PDE reduces Vaccinia Virus replication. Interestingly, this
strategy is also used by viruses to counteract the activation of RNase L. The NS2 protein of
mouse hepatitis virus (MHV) (coronavirus) and VP3 protein of rotavirus display PDE
activity, which cleaves and inhibits the accumulation of 2°-5’ oligoadenylates, preventing the

activation of RNase L (Zhang et al., 2013; Zhao et al., 2012).
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Overall, restriction factors can have a broad or virus-specific antiviral activity. For
example, TRIM5a seems to be only active against retroviruses, because its antiviral activity
relies on the specific interaction with the capsid of retroviruses. By contrast, the unique
feature of Tetherin, which creates a bridge between the envelope of virus particles and the
plasma membrane, can prevent viral release of enveloped viruses independently of their
family of origin. It is possible that not a single but several viral restriction factors act in
concert to face viral infections in cells (Jiang et al., 2010). Indeed, four ISGs that target
different steps of the virus cycle (IFITM2, IFITM3, Viperin and ISG20) were shown to inhibit
both WNV and DENYV infections. Some restriction factors may have other cellular functions
than viral restriction, such as TRIM5a that may have a role in intracellular signaling (Pertel et
al., 2011). Most viruses have evolved to counteract restriction factors activity. For example,
the accessory genes of retroviruses are required only for effective replication in cells
expressing a restriction factor (Malim and Emerman, 2008). One strategy used by Vpx and
Vif accessory proteins of lentiviruses is to direct the proteasomal degradation of the
restriction factor, SAMHD1 and APOBEC3G, respectively (Laguette et al., 2011; Yu et al.,
2003). Vpu protein uses another strategy to antagonize Tetherin by altering its normal
localization from the plasma membrane to endosomes (Kueck and Neil, 2012). Viruses can
also escape viral restriction by mutations in the protein targeted by the restriction factor, as
exemplified by mutations in the capsid of lentivirus, which allow evasion from TRIMS5a
restriction (Hatziioannou et al., 2006). Another strategy used by Poxvirus is to express the
K3L protein, a mimic of elF2a that compete with normal elF2a for the binding to PKR (Dar
and Sicheri, 2002). K3L prevents the phosphorylation of elF2a and the host translation
shutoff. The genes encoding restriction factors evolve under positive selection, displaying an
excess of non-synonymous mutations compared with synonymous mutations (reviewed in
Duggal and Emerman, 2012). The duplication and diversification of genes encoding
restriction factors allow to adapt to many viruses, as observed for the primate APOBEC

family (Sawyer et al., 2004) and IFITM family (Siegrist et al., 2011).

Identification of novel viral restriction factors

Two studies aimed to uncover new viral restriction factors by performing a screen to
examine the antiviral activity of hundreds of ISGs after infection by several viruses including
HCV, YFV, WNV, CHIKV, VEEV, HIV-1 (Schoggins et al., 2011) and VSV and Murine
GammaHerpes Virus (MHV) (Liu et al., 2012). These studies revealed new ISGs with
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hitherto unknown antiviral properties such as C6orf150 that inhibits alphaviruses CHIKV and
VEEV, and TAP1 (Transporter associated with antigen processing 1 gene), BMP2 (Bone
morphogenetic protein 2) that inhibit MHV. Cell-based screening strategies were recently
reviewed in (Panda and Cherry, 2012). Recently, the group of Dr. Tenoever used an original
approach to identify new viral restriction factors in vivo (Varble et al., 2013). They infected
mice with a library of engineered RNA viruses (SINV) expressing siRNAs to screen for host
genes restricting viral infection. After 48h of infection, the analysis of small RNAs from the
spleen of infected animals reveals which siRNA allowed viruses to take precedence over the
others, suggesting a role for the targeted gene in antiviral response. They identified and

characterized Mga and Zfx, two novel genes involved in antiviral signaling.

3.2. Viral restriction factors in Drosophila ?

Refractory for Sigma P virus (Ref(2)P)

The control of SIGMAV infection was reported to involve 5 loci on different
chromosomes (Gay, 1978). Among the identified loci, Ref(2)p is the best characterized.
Initially, two alleles were described: a permissive allele (ref(2)Po) and a restrictive allele
(ref(2)Pp) (Contamine et al., 1989). Flies carrying a ref(2)Po allele are infected by SIGMAV
whereas flies with ref(2)Pp allele are refractory to SIGMAV infection. Transgenic flies
carrying the genomic sequence of Ref(2)P restrictive allele are resistant to SIGMAYV infection
(mentioned in Carré-Mlouka et al.,2007). These results suggest that Ref(2)P is a viral
restriction factor for SIGMAV in Drosophila. The analysis of restrictive and permissive
alleles of Ref(2)P allowed to determine that polymorphisms in the PB1 domain are associated
with the control of SIGMAYV infection (Carré-Mlouka et al., 2007; Wayne et al., 1996).
Surprisingly, flies with permissive alleles are more susceptible to SIGMAYV infection than
flies with null alleles (Carré-Mlouka et al., 2007), which is counterintuitive with the role of
Ref(2)P as a restriction factor, except if permissive alleles have a dominant negative effect on
SIGMAV infection. The Ref(2)P protein interacts with N and P proteins of SIGMAV by co-
immunoprecipitation (Wyers et al., 1993). The antiviral mechanism is not known. Ref(2)P is
the Drosophila homolog of mammalian P62 and localizes to protein aggregates in autophagy-
deficient flies and in models of human neurodegenerative diseases (Nezis et al., 2008). Given

the homology of Ref(2)P with autophagic protein, it would be interesting to test if autophagy
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is involved in Ref(2)P-mediated restriction of SIGMAYV infection. Additionally, Ref(2)P was
shown to form a complex with the Drosophila atypical protein kinase C (DaPKC) that
positively regulates the Toll-signaling pathway and induces Drosomycin expression (Avila et
al., 2002; Goto et al., 2003). This raises the hypothesis that Ref(2)P may restrict SIGMAV
infection through the activation of the Toll pathway.

Vago

The expression of Vago is dependent of Dicer-2, but not Ago-2, suggesting that Dicer-
2 may have additional antiviral functions than the generation of RISC in the canonical RNAi
pathway (Deddouche et al., 2008). Vago is specifically upregulated in the fat body after viral
infection (DCV and SINV), but not infection by FHV or a bacterial mixture. Vago-mutant
flies accumulate more DCV RNA in the fat body, consistent with a role of Vago in antiviral
defense. An antiviral function of a mosquito ortholog of Drosophila Vago, named Culex
Vago (CxVago), has been reported in Culex mosquito cells (Paradkar et al., 2012). WNV
infection induces the expression of CxVago but the depletion of Dcr-2 (and not R2D2) by
RNAI reduces its up-regulation, indicating that CxVago is up-regulated in a Dcr-2 dependent
manner. The overexpression of CxVago reduces WNV replication and viral particles
secretion. Loss- and gain-of-function experiments indicate that Vago has antiviral activity in
mosquito cells. Furthermore, this restriction is mediated by the secretion of CxVago. The
treatment of cells with the supernatant of CxVago-overexpressing cells protects from WNV
infection in mosquito cells but not African green monkey kidney cells (Vero). This result
suggests that secreted CxVago does not directly target WNV but may activate an insect-
specific signaling pathway to mediate its antiviral activity. Interestingly, the upregulation of
the Jak-STAT marker vir-1, but not the NF-xB marker defensin-A, was observed after
treatment of mosquito cells with the supernatant of CxVago-overexpressing cells, indicating
that secreted CxVago activates the Jak-STAT pathway. These observations do not fit with
their counterparts in Drosophila because vir-1 expression was still induced in Vago-mutant
flies, suggesting that either vir-1 expression can be induced by another protein than Vago, or
that the function of Vago as a circulating cytokine in mosquitoes is not conserved in
Drosophila. Furthermore, the depletion of CxSTAT2 and CxJak by RNAi abolishes the
upregulation of vir-1 and increases the viral titer. However, the CxVago-mediated activation
of the Jak-STAT pathway is independent of the Culex ortholog of Drosophila Domeless, the
receptor activating the Jak-STAT pathway after binding of the ligand Unpaired (Upd). This
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activation by an unknown receptor may induce an antiviral response to WNV. It is tempting
to assimilate the role of Vago in insects to IFNs in mammals, both activating the Jak-STAT

pathway to initiate an antiviral response.

Vir-1

In Drosophila S2 cells, the expression of the gene vir-1 is under the control of the Jak-
STAT pathway in response to DCV infection. The first evidence is the presence of STAT-
binding sites in the promoter of vir-1 gene and the second evidence is that flies deficient for
the Jak kinase Hopscotch display a reduced expression of vir-1 (Dostert et al., 2005).
However, the knockdown or overexpression of vir-1 did not affect DCV infection.
Accordingly, the overexpression of CxVir-1 in mosquito cells does not affect the WNV titer

(Paradkar et al., 2012).

Overall, the intrinsic antiviral immunity in Drosophila clearly remains to be
elucidated. Although many transcriptional profiles obtained after viral infection reveal the
upregulation of genes specifically after viral infection, their role in the antiviral response has
not been addressed. Drosophila Vago and vir-1 were thought to be good candidate for the
identification of viral effectors in Drosophila but do not appear to have a direct antiviral
function. Viral restriction factors in Drosophila, and also in other insects, remains to be

discovered and characterized.
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Aim of the study

Two types of responses are involved in the control of viral infections in Drosophila. An
inducible response and RNAI that is a broad antiviral defense against RNA viruses, including the
picorna-like DCV. This virus is broadly used to study antiviral responses in Drosophila,
particularly in our laboratory. We observed a difference of susceptibility between laboratory
control flies, characterized by an increased viral titer and lethality after challenge with this virus.
A difference of susceptibility to DCV infection was also observed between two stocks from the
same wild-type strain (Oregon-R), maintained independently in two teams from our laboratory.
The major aim of my PhD thesis was to study the cause of the sensitivity of some Drosophila
strains to DCV infection. This work is presented in Chapter 4. Additionaly, we noticed that some
strains maintained in the laboratory were persistently infected by Nora virus, another related
picorna-like virus. Surprisingly, many of these strains were sensitive to DCV, suggesting that
Nora virus may be the cause of this susceptibility. We decided to investigate if the presence of
Nora virus affects the susceptibility of flies to other pathogens. This part of my work is discussed
in Chapter 5. During my thesis, I also participated to the characterization of the role of the siRNA
pathway in the defense against a DNA virus (IIV-6). This work led to a publication in Journal of

Immunology and is summarized in Chapter 6.

90



Part 11

MATERIAL AND METHODS

91



MATERIAL AND METHODS

I1.1. Fly strains and infection

Wild-type flies (Oregon-R, Canton-S) and mutant flies carrying phenotypically visible
genetic markers (yw, wHE WA pp1 cnbw) were used in this study. These flies are
generally used as control in experiments performed in the laboratory. For RNAi experiments,
we used flies with Actin-Gal4;Tubulin-Gal80, Cg-Gal4, and Np-Gal4 driver, the Pst-RNAi
line purchased from the Vienna Drosophila RNAi Center collection (ID107243) and a UAS-
GFP-RNAI line constructed in the laboratory. Dr. Stéphane Noselli provided UAS-Pst-GFP
fly line. All flies used were Wolbachia-free. Flies were fed on standard cornmeal-agar
medium at 25°C. Crossings were performed at 25°C, except ones with Actin-Gal4;Tubulin-

Gal80 driver that were done at 18°C, and then the progeny was transferred for 4 days at 29°C.

For viral infections, viral stocks were prepared in 10 mM Tris-HCI, pH 7.5 with the
exception of VSV, which was used directly from Vero R cells culture supernatant. Infections
were performed with 4-8 days old adult flies by intrathoracic injection (Nanoject II apparatus,
Drummond Scientific) with viral particles indicated in the figure legends. Injection of the
same volume of 10 mM Tris-HCI, pH 7.5, was used as a control. Infected flies were then
incubated at 22°C or 25°C and monitored each day for survival, or frozen for RNA isolation

and virus titration at indicated time points.

Contamination of flies with Nora virus was performed by putting 200 males naturally
infected by Nora virus, in a big vial for 5 days at 25°C. Flies were then removed and replaced
by 50 males and 50 females of non infected flies. After 5 days, the tube was emptied and flies
were monitored for Nora virus titer (sample “parents’). Once the progeny emerged, 0-4 days
old flies were transferred to a fresh tube for 4 days and then monitored for virus titer or used

for experiments (sample “F17).

I1.2. Dechorionation of eggs

The dechorionation of eggs to cure flies from Nora Virus was performed as follows:
Nora virus infected flies were put in a cage on apple juice agar plate with a yeast paste on the
middle, for them to lay eggs. The cages were transferred overnight at 25°C. Eggs were

collected, washed with water, and dechorionated with a solution of 50% bleach for 3 min with
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constant flowing by pipetting the solution up and down. Then, eggs were abundantly rinsed
with water, aligned under the microscope on a piece of agar medium and transferred by
capillarity on a coverslip. One drop of mineral oil was applied to cover the eggs and the
coverslip was deposited on a petri dish with normal Drosophila food. After 2-3 days, larvae

were transferred to normal food vial. Once flies emerged, they were tested for Nora Virus.

I1.3. Cell lines and virus infection

Drosophila S2 cells and Kc167 cells were grown in Schneider’s medium (Biowest)
supplemented with 10% fetal calf serum, 1x Glutamax (100x, 200 mM, Invitrogen), 1x
Penicillin/Streptomycin (100x mix, 10 mg/ml/ 10000 U, Invitrogen).

Stable cell lines were established as follows: Day 1: plasmid expressing RFP fusion
(1ng), plasmid expressing puromycin (0.2pg), salmon sperm (4ug) and CaCl, (2M) were
mixed together and added on a solution of 2x HEPES-buffered saline (HEBS). After 30 min
incubation at room temperature, the mixture was deposited drop by drop on Drosophila S2
cells in a 6-cm petri dish. Day 2: cells were washed once with PBS and complete media was
added. Day 3: Cells were counted, resuspended in complete medium supplemented with
puromycin antibiotic, and distributed in three 96-well plates at different concentrations (1000
cells/well, 10000 cells/well, 20000 cells/well). Then, fresh medium with puromycin was
added every two days to maintain selection. Wells where clones appeared were selected and
clones were then transferred to 24-well plate. Clones were screened by FACS analysis thanks
to RFP (FACS ARIA 1II) and the ones harboring an homogenous expression of the fusion

protein were amplified in cell culture for viral experiments, and backed up in liquid nitrogen.

Viral infections were performed as follows. The volume of viral suspension was
calculated depending on the multiplicity of infection (MOI) desired (indicated in the figure
legends) and then added to cells for 2 hours. Cells were then washed twice with Schneider
media and complete medium was added. Incubation times depended on the experiment (see

figure legends).
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I1.4. Virus binding and entry assays

Cells were infected at a MOI of 20 for DCV or 0.5 for CrPV at 4°C for 2 h to allow
virus binding at the cell surface but not the internalization of viral particles. At 4°C,
endocytosis mechanism is blocked. Next, cells were washed twice with PBS and proceed for
RNA analysis (binding assay) or transferred to 25°C for entry assay. Cells were incubated at
different time points, as indicated in the figure legends. Then, cells were washed twice with

PBS and proceed for RNA analysis.

I1.5. Transfection, Luciferase assay, secretion assay

Transfection
Drosophila S2 cells were transfected with plasmid DNAs either by the CaPO4
precipitation method, or by Effecten transfection reagent (Qiagen). This is indicated in the

figure legends.

Luciferase assay

Drosophila S2 cells treated with dsRNAs or stable cell lines were transfected by
Effecten with plasmid reporters to monitor the activity of the two CrPV IRES. The day after,
reporter expression was induced by addition of CuSO4 (500 uM). After 48 hours, cells were
lysed and luciferase activity was measured by luminometer with Dual-Luciferase® Reporter

Assay System (Promega).

Secretion assay

Cells were transfected with vector expressing secretion signal (ss) fused to
Horseradish peroxidase (ss-HRP), under the control of methallothionein promoter (). Thus,
cells were treated with 500 uM CuSO; for 16h. Then, 10ul of supernatant were transferred
into a 96-wells black plate containing 50ul of ECL reagent per well. The luminescence was

measured by luminometer.

I1.6. Gene silencing: dsRNA synthesis and treatment
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Template DNAs were generated from Drosophila ¢cDNAs by PCR with primers

carrying the T7 polymerase sequence (Table 3). Their size was verified on agarose gel and

they were purified with NucleoSpin® Gel and PCR Clean-up (Macherey-Nagel). Then, in

vitro transcription by T7 polymerase from T7 megascript kit (Ambion™) allowed to generate

dsRNAs targeting our genes of interest. For precipitation, RNAs were mixed with sodium

acetate/ ethanol and incubated for 15 min at -20°C. After centrifugation for 20 min at 14000

rpm and 4°C, RNAs were washed with ethanol 70%, centrifuged 5 min at 14000 rpm and 4°C

and then, the pellet was dried and RNAs were reconstituted in nuclease free water. dSRNAs

were verified on agarose gel and quantified. dSRNAs (3ug/well) were mixed with S2 cells

without serum in 96-well plate. After 2 hours incubation, complete medium was added and

cells were incubated for 5 days at 25°C. After this treatment, cells were challenged with

viruses.

Pst A Fwd
Pst A Rev
Pst B Fwd
Pst B Rev
Syntaxin 5 Fwd
Syntaxin 5 Rev
beta-cop Fwd
beta-cop Rev
Bmm A Fwd
Bmm A Rev
Bmm B Fwd
Bmm B Rev
Mdy A Fwd
Mdy A Rev
Mdy B Fwd
Mdy B Rev

5'-taatacgactcactatagggGATACTCATTCGCACCCGAT-3'
5’-taatacgactcactataggge AGTTGCACGTCCTCGAAGTT-3’
5’-taatacgactcactatagggGGCAGTAGTGGCACCAGCAGC-3’

S'-taatacgactcactatagggCACCTCGCGTCCAGCATTTGTG-3'

S'-taatacgactcactatagggAAAAAGAAGAGCTTATTTGATGA-3'
5'-taatacgactcactatagggCTCAACGATGGTAGATTCTATAT-3'
5'-taatacgactcactataggg TTTCGGAGTGCGTCAAAAC-3'

S'-taatacgactcactatagggCTCTTTAACCAGAGACATGTTG-3'

5'- taatacgactcactatagggCTGCGGATTCCTGGGCAT -3'

5'- taatacgactcactatagggGCAAATCGCAGAGGAGACAG -3'
5'- taatacgactcactatagggAAGCGGGTGAATGGACGACTG -3'
5'- taatacgactcactatagggCGCACGAAGCGATTGATGTTCT -3'

5'-taatacgactcactataggg AACCGCAAGTCAACACAAAA-3'
S'-taatacgactcactatagggCAAACGCAGACCTCCAATG-3'

5'-taatacgactcactatagggGGAGTTTTGAATGGAGGTGAA-3'
S'-taatacgactcactatagggGCTCAGTGGCTAAGGCCAC-3'
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Lsd-1 A Fwd 5'-taatacgactcactatagggCGGCAGTGGACTCCATCT-3'
Lsd-1 A Rev 5'-taatacgactcactatagggCGGCAGATAGACCAGTGGTA-3'
Lsd-2 A Fwd 5'-taatacgactcactataggg AAATCGTGTCTTCGAATGGG-3'
Lsd-2 A Rev 5'-taatacgactcactataggg TCTTCCTCGACATCCGACTC-3'
Lsd-2 B Fwd 5'-taatacgactcactatagggGGCATTATCGATAGGGAACTC-3'
Lsd-2 B Rev 5'-taatacgactcactatagggCATGTGGCAAGGCAACAACG-3'

Table 3. List of primers used for dsRNA synthesis.

I1.7. Virus titration

The supernatant of DCV infected cells was titrated on Kc167 cells. Cells were seeded in
96-well plates (Falcon). The supernatant was serially 10-fold diluted with full Schneider
media. The media was removed from the seeded cells and 50 pl of the serially diluted virus
inoculum was added (each dilution in quadruplicate). After 2 days of incubation at 25°C, free
virus was removed. Next, cells were fixed in 4% paraformaldehyde (PFA) for 20 min at room
temperature. Afterwards, cells were washed twice with PBT solution. Then blocking solution
(1x PBT, 10% fetal calf serum (PerBio)) was added and incubated for 30 min at room
temperature. The primary antibody was added for 2 h at room temperature (Rabbit anti-DCV
F3 1:500). Cells were then washed twice as described above, before the secondary antibody
(goat-anti-rabbit-Alexa488) was added for 1 h at room temperature. Cells were again washed
twice with 1x PBT and dried. Positive and negative stained wells were identified using a
fluorescent microscope. Then, the titer was determined by the Reed—Muench method to
calculate 50% tissue culture—infective dose and converted to PFU with a conversion factor of

0.7.

I1.8. Cloning by Gateway system

Pastrel cDNAs were amplified from DD1 cnbw flies by standard PCR with primers
containing AttB sites (Table 4). PCR products were cut on electrophoresis gel and purified
with NucleoSpin® Gel and PCR Clean-up kit (Machery-Nagel). PCR products flanked by
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AttB sites were then inserted in an entry vector (pDONR-221, Invitrogen) containing AttP
sites by recombination with Gateway®™ BP Clonase® II enzyme (Invitrogen). DH5-a bacteria
were transformed and selected on LB agar mixed with kanamycine (50 pg/ml). Minipreps
were verified by restriction enzymes and selected minipreps were sequenced. The sequencing
revealed that it is the sequence of the isoform Pst-PE that was cloned for overexpression
experiments. It seems to be the predominant isoform of Pst because most entry vectors that
we sequenced corresponded to this isoform. The entry vector containing the insert of interest
was recombined with a destination vector (pARW or pAWR, from Drosophila Gateway
Vector Collection) by using Gateway” LR Clonase® II enzyme (Invitrogen). These
destination vectors contain actin promoter, a cassette containing the ccdB gene flanked by
AttR sites and the RFP tag in N-terminal (pARW) or C-terminal (pAWR). DHS5-a bacteria
were transformed and selected on LB agar mixed with antibiotics. The vectors expressing
Pastrel sensitive version (3L:7350895 T (Thr)) were constructed by site directed mutagenesis
using the QuickChange®™ Site-Directed Mutagenesis Kit (Stratagen). Vectors used for Pastrel
topology were constructed by amplifying cassettes HA-Pst or Pst-HA (FLAG-Toll for
control) with primers containing AttB sites (Table 4) and proceeded for gateway cloning with
destination vectors containing the Biotin Acceptor Peptide (BAP, GLNDIFEAQKIEWHE) in
N-terminal (pHF6 vector) or C-terminal (pHF7 vector) of insert cassette. Cassettes containing
HA-Pst-BAP, BAP-Pst-HA, BAP-FLAG-Toll and FLAG-Toll-BAP were then cloned in
pAc5.1/V5-His A vector (Invitrogen).

Pst N-ter fusion Fwd 5'-GGGGacaagtttgtacaaaaaagcaggct TCGCGAATAGATTAGGAAACC-3'

Pst N-ter fusion Rev 5’-GGG GaccactttgtacaagaaagcetgggtCTTATCACTATTACAAGGGACAAACGCTGAAG-3’

Pst C-ter fusion Fwd 5’-GGGGacaagtttgtacaaaaaagcaggctGCCACCATGGCGAATAGATTAGGAAACCATGA-3’

Pst C-ter fusion Rev 5'-GGGGaccactttgtacaagaaagctgggt CCAAGGGACAAACGCTGAAGTGG-3'
Flag-Toll N-ter fusion Fwd 5'-GGGGacaagtttgtacaaaaaagcaggctTCTCTGCACTTCTGATCCTAGCTCTTGTTG-3'

Flag-Toll N-ter fusion Rev 5'-GGGGaccactttgtacaagaaagctgggtCTTATCACTATACGTCGCTCTGTTTGGCATTCGTG-3'
Flag-Toll C-ter fusion Fwd  5'-GGGGacaagtttgtacaaaaaagcaggct GCCACCATGTCTGCACTTCTGATCCTAGCTCTTGTTG-3'
Flag-Toll C-ter fusion Rev 5'-GGGGaccactttgtacaagaaagctgggtCTACGTCGCTCTGTTTGGCATTCGTG-3'

Pst-HA N-ter fusion Rev 5'-GGGGaccactttgtacaagaaagetgggt CTTATCACTACGTGGACCGGTGTCCGCCATGAGCA-3'
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HA-Pst C-ter fusion Fwd 5'-GGGGacaagtttgtacaaaaaagcaggct GCCACCATGGATCTCCACCGCGGTGGAGGCCGCATC-3'

Pst,c.ter N-ter fusion Rev 5'-GGGGaccactttgtacaagaaagctgggtCTTATCACTAGATTTTTCCGTATTTCTCCAGTACG-3'

Pst T521 mutagenesis Fwd 5'-catataatgctattgaccagaaccttcatggacaccatge-3'

Pst T521 mutagenesis Rev S'-gcatggtgtccatgaaggttctggtcaatageattatatg-3'
2bases+Kpnl+pHF6/7 Fwd 5'-GGGGTACCGCATCTGTTCGAATTTAAAGC-3'
10bases+Notl+PHF7 Rev 5-TTTTCCTTTTGCGGCCGCTTATCACTATTCGTGCCATTC-3'
10bases+Notl+PHF6 Rev 5“TTTTCCTTTTGCGGCCGCTTATCACTACGTGGACCGGTG-3'

Table 4. List of primers used for molecular cloning.

I1.9. DNA analysis

11.10.1. DNA extraction

Flies were crushed in a solution of Spermidine/Spermine/Sarkosyl. The homogenate
was filtered and centrifuged for 7 min at 7000 rpm, at 4°C. The liquid was removed and the
pellet washed with homogenization solution. Then, the pellet was resuspended in 1.8 ml of
homogenization solution, 200 pl of Sarkosyl and 10 ul of Proteinase K and incubated
overnight at 55°C. Genomic DNAs were then extracted with classic phenol-chloroform
procedure and precipitated with ethanol. DNAs were resuspended in TE buffer and quantified

with the Nanodrop spectrophotometer.

11.10.2. Preparation for pastrel gene sequencing

For the sequencing of pastrel gene, PCR amplification was performed with Phusion®
High-Fidelity DNA polymerase (NEB). 10 pl of 5x Phusion Buffer HF, 5 ul of dNTPs
(2mM), 1 pl of forward and 1 pl of reverse primers, 30.5 ul of water and 0.5 pl of Phusion
DNA polymerase were added to 2 pl of genomic DNA (100 ng/ul). The following program
was performed on a thermocycler T3000 (Biometra): step 1: 2 min at 98°C, step 2: 10 sec at
98°C, step 3: 30 sec at 62°C, step 4: 2 min at 72°C, go to step 2 and repeat 35 times, step 5:
10 min at 72°C, step 6: pause at 16°C. PCR products were quantified with Nanodrop
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spectrophotometer and control quality was performed on 1% agarose gel. Samples were then

sent for sequencing with GATC Company.

11.10.3. Southern blot

Genomic DNAs and plasmid control were digested with restriction enzymes Pvull,
EcoRl, Sall and Pstl (Invitrogen) for 4 h at 37°C, and treated with RNase. After migration on
agarose gel for 24h at 25 volts, DNAs were transferred to nylon membrane overnight in 10x
SSC solution. The membrane was prehybrided 1 h at 60°C under rotation. To generate DCV
probes, DCV RNAs were extracted with QIAmp Viral RNA Mini Kit (Qiagen) from viral
stock, reverse transcribed with Brilliant II kit (Stratagen) and amplified with Phusion High-
Fidelity DNA Polymerase (NEB). 4 probes were generated to cover the entire genome
sequence and radiolabelled with RediPrime II DNA labelling system (Amersham). After
prehybridation, radiolabelled probe was incubated with the membrane for 1 h at 60°C. Next,
the membrane washed twice with 2x SSC 0.1% SDS solution for 15 min at 60°C and again
twice with 0,1% SSC 0,1% SDS solution. Revelation was performed on Biolmager FLA-5000
SERIES.

11.10.4. PCR genotyping

Single flies were crushed in 50 pl of “Squishing buffer” (10 mM of Tris-HCI, pH 8.2,
ImM of EDTA, 25mM of NaCl and 200 pg/mL of Proteinase K). The homogenate was
incubated 30 min at 37°C and the Proteinase K was then inactivated at 95°C for 5 min. Then
PCR was performed to genotype sensitive or resistant alleles of pastrel. The primers were
designed with the Web-based Allele-Specific PCR assay (WASP) designing tool
(Wangkumhang et al., 2007). Two sets of primers were designed: one set to amplify the
sensitive allele of pastrel (T in position 521 on the gene) and one set to amplify the resistant
allele (C in position 521 on the gene) (Table 5). For PCR control, we amplified the gene
encoding the ribosomal protein RpL32. Fragments were amplified by Taq DNA polymerase
(Invitrogen) with the following PCR program: Step 1: 94°C for 2 min, step 2: 94°C for 10 sec,
step 3: 58°C for 15 sec, step 4: 72°C for 20 sec, go to step 2 and repeat 30 times, step 5: 72°C
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for 2 min, step 6: 16°C pause. PCR products were migrated on 2% agarose gel. The expected
bands are 116 bp for pastrel fragment and 500 bp for RpL32 fragment.

RpL32 Fwd (IMU85) 5-GTGTATTCCGACCACGTTACA-3'
RpL32 Rev (IMU86) 5-ATACAGGCCCAAGATCGTGA-3'

Pst (521T) Fwd 5’-CAGCATGGTGTCCATGAAGTT-3’
Pst (521C) Rev 5'-CAGCATGGTGTCCATGAAGTC-3'
Pst Rev 5-ACGTGATCAATGCTGAAAGT-3'

Table 5. List of primers used for PCR genotyping.

I1.11. RNA analysis

I1.11.1. RNA extraction

Total RNA were isolated from samples of 6 flies with a mixture 1:20 of TRI Reagent™
RT (MRC) and phase separation reagent bromoanisole (MRC). Flies were crushed, tubes
were vortexed for 30 sec and incubated at room temperature for 5 min. Tubes were next
centrifuged for 15 min at 12500 rpm, at 4°C. The aqueous phase was transferred into a new
tube containing 300 pl of Isopropanol. Tubes were vortexed, incubated for 10 min at room
temperature and next centrifuged for 10 min at 12500 rpm at 4°C. Supernatants were removed
and the pellet washed with 70% of ethanol. After 5 min of centrifugation at 7500 rpm at 4°C,
supernatants were removed and pellet were dried 10 min at 65°C. RNAs were resuspended in

RNase-free water and quantified with the Nanodrop spectrophotometer.

I1.11.2. cDNA synthesis

cDNAs were synthesized from total RNAs with the iScript™ ¢cDNA Synthesis kit
(Biorad). 1 pg of total RNAs was mixed with 4 pl of 5x Reaction mix, 1 pl of reverse
transcriptase and nuclease-free water in a total reaction volume of 20 pl. The following

program was performed on a thermocycler T3000 (Biometra): step 1: 5 min at 65°C, step 2: 5
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min at 4°C, step 3: 25 min at 42°C, step 4: 15 min at 70°C, step 5: pause at 16°C. cDNAs
were then diluted 20 times for qRT-PCR analysis.

I1.11.3. Quantitative real time PCR

Viral RNA levels in flies were measured by qPCR from samples with 6 individuals (3
males and 3 females), using the iQTM Custom SYBR Green Supermix kit (Biorad). 2.4 pl of
Supermix, 0.3 pl of forward and 0.3 pl of reverse primers, 5 pl of water were added to 20
times diluted ¢cDNA in a total volume of 10 pl. The gPCR was performed on a CFX384
Touch™ Real-Time PCR platform (Bio-Rad), with the following program: step 1: 3 min at
95°C, step 2: 10 sec at 95°C, step 3: 30 sec at 55°C. Go to step 2 and repeat 39 times.

Viral RNA levels in cells were measured by qRT-PCR using Power SYBR Green
Cell-to-CT kit (Ambion™), according to the manufacturer’s instructions, on a CFX384
Touch™ Real-Time PCR platform (Bio-Rad). This kit combines all tools for RNA extraction,
cDNA synthesis and qPCR.

Sequences of primers used for qPCR are indicated in Table 6. In all cases, gene

expression was normalized to the expression of the ribosomal protein-coding gene RpL32.

RpL32 Fwd 5-GACGCTTCAAGGGACAGTATCTG-3'

RpL32 Rev 5’-AAACGCGGTTCTGCATGAG-3’
DCV Fwd 5’-TCATCGGTATGCACATTGCT-3’
DCV Rev 5'-CGCATAACCATGCTCTTCTG-3'
CrPV Fwd 5'-GCTGAAACGTTCAACGCATA-3'
CrPV Rev 5'-CCACTTGCTCCATTTGGTTT-3'
FHV Fwd S"TTTAGAGCACATGCGTCCAG-3'
FHV Rev 5-CGCTCACTTTCTTCGGGTTA-3'
VSV Fwd 5'-CATGATCCTGCTCTTCGTCA-3'
VSV Rev 5'-TGCAAGCCCGGTATCTTATC-3'
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SINV Fwd 5'-CAAATGTGCCACAGATACCG-3'
SINV Rev 5S-ATACCCTGCCCTTTCAACAA-3'
V-6 Fwd 5-TTGTTAGGAATTGGAACTGGAA-3'
lIV-6 Rev 5'-GCCCTAGATGCTGCTTGTTC-3'

Nora Virus Fwd 5'-AACCTCGTAGCAATCCTCTCAAG-3'
Nora Virus Rev S-TTCTTGTCCGGTGTATCCTGTATC-3'
Table 2. List of primers used for qPCR.

I1.12. Protein analysis

11.12.1. Protein extraction

Cells were homogenized in Cell Extraction Buffer (CEB, Invitrogen) mixed with 1
dose of protease inhibitor (PI) cocktail complete mini (Roche). After 30 min incubation on ice
(vortexing every 10 min), cell lysate was centrifuged for 10 min at 14000 rpm and the
supernatant was collected in a new tube (cell lysate, « input »). Proteins were quantified by
Bradford Protein assay (Biorad). Samples were mixed with 5x Laemmli loading buffer (400
mM Tris Base, 8% LiDS, 30% Glycerol, 408 mM MAC, 0.1% bromophenol blue, final pH
6.8), incubated for 5 min at 95°C and applied to 12% SDS-PAGE gel.

I1.12.2. Immnoprecipitation

50 pl of Anti-FLAG beads (Clontech) or anti-HA beads (Sigma) were mixed with 200
ul of Ab binding buffer (from Dynabeads® Protein G Immunoprecipitation Kit, invitrogen).
Beads were resuspended in 200 pL Ab binding buffer and incubated for 20 min at room
temperature under rotation. Then, beads were resuspended in 250 pL of CEB+PI and mixed
with 250 pl of cell lysate 1h30 at 4°C for anti-FLAG beads or overnight at 4°C for anti-HA
beads. After incubation, beads were washed three times with Washing buffer (from
Dynabeads® Protein G Immunoprecipitation Kit, invitrogen) and resuspended in 40 pl of 5x
Laemmli loading buffer. After vortexing, beads were incubated at 95°C for 3 min, centrifuged

3 min at 2000 rpm and the supernatant was collected in a new tube (« IP »).
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11.12.3. Western blot

Migration of samples was performed in 1x TCG buffer (Tris/Glycine/SDS Buffer,
Biorad) for 1h30 at 130 volts. Proteins were transferred to nitrocellulose membrane for 2 h at
25 volts with wet transfer system (Invitrogen). Then, the membrane was saturated for 1 h at
room temperature in 3% milk (Biorad) diluted in TBST Ix (10x TBST pH 7.6 containing
TrisHCI pH 7.2 100mM, NaCl 90 g/LL and 0.5% Tween-20). The primary antibody was
incubated overnight at 4°C in TBST 1x 0.3% milk. The membrane was washed three times
for 10 min with TBST 1x and the secondary antibody was added in TBST 1x for 1 h at room
temperature. After incubation, the membrane was washed three times with TBST 1x and

incubated with ECL™ (Prime) Western Blotting Detection Reagent (Amersham' ™).

Polyclonal rabbit antiserums directed against DCV (anti-DCV-F3) and Pastrel, and the
anti-actin monoclonal antibody (Millipore) were used in a dilution of 1:5000. A mouse
antiserum directed against DCV (anti-DCV-1) was also used, mentioned in the figure legend.
Rabbit anti-FLAG (Abcam) and mouse anti-HA (Sigma) antibodies were used in a dilution of
1:2000 and 1:2500 respectively. Secondary antibodies against mouse or rabbit (Fisher
Scientific) conjugated to horseradish peroxidase were used at the dilutions of 1:5000 and

1:1000 respectively.

For biotinylation procedure, the membrane was saturated overnight at 4°C in 10%
milk (Biorad) diluted in TBST 1x. After incubation, the membrane was washed three times
with TBST Ix for 10 min at room temperature and 5 ml of Streptavidine-POD (ROCHE)
1:5000 diluted in TBST 1x - 2% BSA was added onto the membrane at 4°C. After 5 min of
incubation, the membrane was washed three times with TBST 1x for 10 min and next two
times with PBS for 10 min at room temperature. Then, the revelation was performed as

described above.

11.12.4. Immunostaining

Cells were fixed for 10 min in 4% solution of paraformaldehyde (PFA). After two
washes with PBS 1x — 0.1% Triton-x-100 (PBT) solution, blocking was performed by
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incubation of the fixed cells with PBT supplemented with 10% Fetal Calf Serum for 30 min.
Cells were then incubated for 2h at room temperature with primary antibodies. Cells were
washed twice with PBT and then incubated with a secondary antibody for 1h at room
temperature. For immunofluorescence assays, images were acquired using confocal LSM700
and analyzed with ImageJ. For flow cytometry analysis, cells were passed on FACS ARIA II

and data were analyzed with FlowJo software.

Drosophila fat body were dissected in PBS and transferred in 4% paraformaldehyde
for 30 min. Fat bodies were washed three times for 5 min with PBS-Tween 0.2% and next
incubated for 1h in a solution of PBS-Tween 1%-BSA 2%. Primary antibodies were diluted in
PBS-Tween 0.2%-BSA 2% and added to the tube. After overnight incubation at 4°C, fat
bodies were washed three times for 5 min with PBS-Tween 0.2% and incubated with
secondary antibodies diluted in PBS-Tween 0.2% for 2h at room temperature. Fat bodies were
washed three times, incubated with Nile Red solution at a concentration of 1uM for 5 min at

room temperature and then mounted into Vectashield containing DAPI.

Primary antibodies used for immunostaining were a mouse antiserum directed against
DCV (anti-DCV-1) or CrPV (anti-CrPV-4), produced in the laboratory; a rabbit anti-serum
directed against Pastrel (provided by Dr. Stéphane Noselli), a mouse anti-FHV antiserum
(from Dr. Annette Schneeman), a goat anti-VSV-G-FITC antibody and an anti-beta-cop
antibody (Abcam). We used secondary antibodies coupled with Alexa Fluor 488, 568 or 647

(Invitrogen).

To induce the formation of lipid droplets in Drosophila S2 cells and thereby facilitate
observations, complete medium was supplemented with 400 uM Sodium Oleate (Sigma) /

BSA 0.5%.

I1.13. Statistical analysis

An unpaired two-tailed Student t test was used for statistical analysis of data with
GraphPad Prism (GraphPad Software). The p values lower than 0.05 were considered
statistically significant. Survival curves were plotted and analyzed by log-rank analysis

(Kaplan—Meier method) using GraphPad Prism (GraphPad Software).
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Powerful genetic tools available in Drosophila combined with a large panel of model
viruses able to infect fruit fly, provides a good model to identify and characterize new genes
involved in antiviral defense. Viral restriction factors are pooly identified and characterized in
Drosophila, as discussed in the Chapter 3 of the Introduction. This contrasts with the

characterization of a larger number of genes restricting viral infection in mammals.

4.1. Research of the cause of susceptibility of flies to DCV

infection: Identification of pastrel gene.

Differences of susceptibility of flies to DCV infection in vivo were suspected from
previous studies performed in the laboratory. Strikingly, this variability in the susceptibility to
DCYV infection concerned not only fly lines used as control in the laboratory, but also different
stocks of the same control line. In the course of the experiments carried in the laboratory to
characterize the impact of mutations on resistance to DCV infection, we noticed differences in
the susceptibility to infection of the lines used as wild-type controls. These correspond to
different wild-type strains (Ore-R, Canton-S), or mutant flies carrying useful phenotypically
visible genetic markers frequently used in our experiments (e.g., white (W'), cinnabar (cn),

brown (bw)). We therefore decided to verify this variability, and identify its cause.

4.1.a. Wide variability in the susceptibility of laboratory control
flies to DCV, but not CrPV and FHV, infection.

We first confirmed that laboratory control flies showed differences in term of
susceptibility to DCV infection. We collected control flies available in the laboratory and
infected them by intra-thoracic injection of DCV (500 PFU). We monitored survival daily at
22°C and measured virus load after 1, 2, 3 and 4 days post-infection (Figure 11A and 11B).
yw and W% flies were more susceptible to DCV infection compared to Canton-S and DD1
cnbw flies (Figure 11A). Canton-S and DD1 cnbw flies died 4 days later than yw and w***™*
flies. This difference of susceptibility to DCV infection was correlated with the DCV RNA
level (Figure 11B). yw and w**°* flies have higher DCV RNA levels during the course of the
infection (days 2, 3 and 4) compared to Canton-S and DD1 cnbw flies (Figure 11B). Then we
wondered whether differences in susceptibility between laboratory control flies also
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concerned viruses other than DCV. We observed that susceptibility to Cricket Paralysis Virus
(CrPV), a virus whose genome is closely related to DCV genome, and Flock House Virus
(FHV) infection was similar among control flies, except for DD1 cnbw flies which displayed
a small increase in sensitivity to CrPV infection, but not reflected on the virus titre (Figure
11C and 11E). All flies died in 14 days after CrPV infection (5 PFU) and 12 days after FHV
infection (500 PFU). The similar pattern of susceptibility between yw, w*%! Canton-S and
DD1 cnbw flies to CrPV and FHYV infection is correlated with similar viral RNA levels during
the course of the infection (Figure 11D for CrPV and 11F for FHV). No statistical difference
was observed for CrPV RNA level at 1, 2 and 3 days post infection and FHV RNA level at 2,
4, 6 and 8 days post infection between yw, W% flies (sensitive to DCV infection) and
Canton-S, DD1 cnbw flies (resistant to DCV infection).
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Figure 11. Wide variability in the susceptibility to DCV infection, but not to CrPV and
FHYV infection, between laboratory control flies. A. Flies (4-8 days) were infected with
DCYV (500 PFU) and survival was monitored daily at 22°C. Bar graphs represent the average
standard deviation of 3 independent experiments. B. DCV RNA level was measured by qPCR
after 1, 2, 3 and 4 days of infection. Bar graphs represent the average standard deviation of 3
independent experiments. C. Flies (4-8 days) were infected with CrPV (5 PFU) and survival
was monitored daily at 22°C. Bar graphs represent the average standard deviation of 5
independent experiments. D. CrPV RNA level was measured by qPCR after 1, 2, and 3 days
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of infection. Bar graphs represent the average standard deviation of 2 independent
experiments. E. Flies (4-8 days) were infected with FHV (500 PFU) and survival was
monitored daily at 22°C. Bar graphs represent the average standard deviation of 2
independent experiments. F. FHV RNA level was measured by qPCR after 2, 4, 6 and 8 days
of infection. Bar graphs represent the average standard deviation of 2 independent
experiments. For panels B., D. and F., qPCR values were normalized to the housekeeping
gene RpL32. Canton-S flies were used as reference for statistical analysis.

Altogether, we observed that yw and W% flies were higher sensitive to DCV
infection, but not CrPV and FHV infection than Canton-S and DD1 cnbw flies. We also
showed that w'*® flies had comparable susceptibility to DCV, CrPV and FHV infection than
yw and W flieg (data not shown).

4.1.b. Wide variability in the susceptibility of two Ore-R stocks to
picorna-like viruses DCV and CrPV, and DNA virus IIV-6 infection,
but not FHV, VSV and SINV infection.

Our data indicate that flies routinely used as controls in our experiments vary widely
in their sensitivity to DCV infection, for unknown reasons. While these experiments were
ongoing, one post-doctoral fellow in the laboratory noticed that the wild-type Ore-R strain she
was using in her infections was highly susceptible to DCV infection (Dr. Stefanie Mueller,
personnal communication). These Ore-R flies had been maintained in the laboratory of Dr.
Dominique Ferrandon, and will thereafter be referred to as Ore-R°". We compared their
resistance to DCV infection to that of an independent stock which had been maintained in our
group (Ore-R™). We observed a wide difference in the susceptibility of flies to DCV
infection between two stocks of Oregon flies (Ore-R°" and Ore-R™ Figure 12A). Ore-R’'
flies died 3 days later than Ore-R"F flies after intrathoracic injection of DCV (500 PFU) at
22°C (Figure 12A). The higher resistance of Ore-R™™ flies to DCV infection was correlated
with a lower DCV RNA level (6.35-fold) at 3 days post infection (Figure 12A). We observed
that Ore-R™ flies were also more resistant to CrPV infection (5 PFU) compared to Ore-RPF
flies and showed higher CrPV RNA levels after 3 days of infection (Figure 12B). Even if it is
not significative in the format of our experiments, we observed a decreased CrPV RNA level

RDF

in Ore-R™' flies compared to Ore-R°" flies. In summary, Ore-R’' flies are more resistant than

Ore-R"F flies to infection by Dicistroviridae DCV and CrPV.
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Figure 12. Wide variability in the susceptibility of two Ore-R stocks to DCV and CrPV
infection, but not FHV infection. A. Flies (4-8 days) were infected with DCV (500 PFU)
and survival was monitored daily at 22°C. Bar graphs represent the average standard
deviation of 17 independent experiments. B. DCV RNA level was measured by qPCR after 3
days of infection. Bar graphs represent the average standard deviation of 5 independent
experiments. C. Flies (4-8 days) were infected with CrPV (5 PFU) and survival was
monitored daily at 22°C. Bar graphs represent the average standard deviation of 4
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independent experiments. D. CrPV RNA level was measured by qPCR after 3 days of
infection. Bar graphs represent the average standard deviation of 4 independent experiments.
E. Flies (4-8 days) were infected with FHV (500 PFU) and survival was monitored daily at
22°C. Bar graphs represent the average standard deviation of 3 independent experiments. F.
FHV RNA level was measured by qPCR after 3 days of infection. Bar graphs represent the
average standard deviation of 3 independent experiments. For panels B., D. and F., qPCR
values were normalized to the housekeeping gene RpL32.

We next tested if a difference of susceptibility was observed with other families of
RNA viruses: FHV (Nodaviridae), VSV (Rhabdoviridae), SINV (Togaviridae) and a DNA
virus: IIV-6 (Iridoviridae). No statistical difference was observed between survival and virus
load of Ore-R™ and Ore-R" flies challenged by FHV infection (500 PFU, Figure 12C). We
observed a difference of susceptibility of Ore-R™ and Ore-RPF flies to VSV infection (5000
PFU) after 20 days of infection (Figure 13B). However, we believe that this difference is due
to injury after injection, not to VSV infection. Indeed, we also observed a difference in
survival between the two Ore-R stocks injected with TRIS buffer (Figure 13A). This is also
consistent with VSV RNA level after 5 days of infection, which is similar between Ore-R™
and Ore-RP" flies (Figure 13C). We did not observe variability in the susceptibility of Ore-
R’ and Ore-R"F flies to SINV infection (2500 PFU, figure 13D). Survival curves of SINV-
infected Ore-R™ and Ore-R°F flies overlap each other whereas a difference of susceptibility
is observed with TRIS injections, suggesting that Ore-R°" flies may be more resistant to
SINV infection. Contradictorily, SINV RNA level was significantly higher in Ore-R°" flies
after 5 days of infection (Figure 13E). Ore-R°F flies infected by the DNA virus IIV-6 showed
higher sensitivity than Ore-R™ flies (Figure 13F), and a higher IIV-6 DNA level at 20 days
post infection (Figure 13G). In summary, only IIV-6 shows differences between the two Ore-

R stocks.
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Figure 13. Variability in the susceptibility of two Ore-R flies to IIV-6 infection, but not
VSV and SINV infections. A. Flies (4-8 days) were injected by TRIS buffer as non-infected
control. B. Flies (4-8 days) were infected with VSV (5000 PFU) and survival was monitored
daily at 22°C. Bar graphs represent the average standard deviation of 3 independent
experiments. C. VSV RNA level was measured by qPCR after 5 days of infection. Bar graphs
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represent the average standard deviation of 3 independent experiments. D. Flies (4-8 days)
were infected with SINV (2500 PFU) and survival was monitored daily at 22°C. Bar graphs
represent the average standard deviation of 3 independent experiments. E. SINV RNA level
was measured by qPCR after 5 days of infection. Bar graphs represent the average standard
deviation of 3 independent experiments. F. Flies (4-8 days) were infected with IIV-6 (5000
PFU) and survival was monitored daily at 22°C. Bar graphs represent the average standard
deviation of 3 independent experiments. G. IIV-6 DNA level was measured by qPCR after 20
days of infection. For panels C., E. and G., qPCR values were normalized to the
housekeeping gene RpL32.

We next started to investigate the cause of the variability of susceptibility between
laboratory control flies. For this, we decided to focus on the viruses for which we observed

the strongest effects, namely the picorna-like viruses DCV and CrPV.

4.1.c. No DCV fragments integrated in the genome of laboratory
control flies.

Recently, the group of Dr. Carla Saleh revealed the presence of viral DNA forms in
Drosophila cells infected by the RNA viruses FHV and DCV, which would play a role in the
establishment of resistance to infection. The authors hypothesized that DNA forms may serve
as initiators of antiviral response through the RNA interference pathway (Goic et al., 2013).
We sought to verify if such DNA forms from DCV may be present in laboratory control flies
and trigger antiviral resistance to DCV infection. We constructed four probes against the
DCV genome and performed Southern blots to detect the eventual presence of DCV genome
fragments integrated in the genome of DD1 cnbw, Ore-R™ and W% flies. As a control, we
designed a probe against the Toll gene (Figure 14A). Toll fragments were detected in DD1
cnbw, Ore-R™ and w** flies. Similarly, we hybridized DCV probes (A, B, C and D) with
the membrane but no DCV fragment was detected in the genome of the three Drosophila
strains (Figure 14C, representative of DCV probe A hybridization). As a positive control, a
plasmid containing a DCV fragment was digested by the same restriction enzymes and
hybridized with DCV probe A (Figure 14B). It revealed DCV fragments, indicating that

method is working.
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Figure 14. TOLL DNA fragments, but no DCV fragments, were detected by southern
blot in DD1 cnbw, Ore-R™" and w*** flies. A. Southern blot hybridized with probe against
TOLL gene. B. Plasmid with DCV fragment hybridized with probe against DCV genome. C.
Southern blot hybridized with probe against DCV genome. For all panels, genomes of DD1
cnbw, Ore-R™ and w*** flies were digested by EcoRl, Pstl, Pvull and Sall.
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In summary, we cannot attribute the difference of susceptibility of flies to DCV
infection to the presence of DCV DNA forms in the genome. However, it seemed that
sensitivity or resistance to DCV infection was strain specific and not caused by a pathogen
transmitted via feces (discussed after in chapter 5). At this point, we suspected that genetic

determinants may confer resistance or sensitivity to DCV infection.

4.1.d. The susceptibility of flies to DCV infection is genetically
transmitted

In order to identify if the cause of susceptibility of flies to DCV infection is genetic,
we crossed together DCV resistant flies and DCV sensitive flies. We next infected the F1
progeny by DCV (500 PFU) to identify if these flies were sensitive or resistant to DCV
infection (Figures 15 and 16).

The progeny resulting of the cross between Ore-R’™' males and Ore-R°" females was
as resistant to DCV infection as the parental Ore-R™ flies (Figure 15A and 15B). These
results indicate that the susceptibility to DCV infection is genetically transmitted. The
progeny resulting from the reciprocal cross (Ore-R™ females and Ore-R°" males) showed
similar resistance to DCV infection. This indicates that the allele conferring resistance to
DCYV infection is autosomal-dominant. The F1 progeny recovered a lower DCV RNA level

than Ore-R°" flies, similar to Ore-R™' flies after 3 days of infection (Figure 15C).
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Figure 15. The susceptibility of two Ore-R stocks flies to DCV infection is genetically
transmitted, and the resistant allele is autosomal-dominant. A. Representation of the cross
between Ore-R™ and Ore-R"" flies. B. Ore-R™ flies were crossed with Ore-R°" flies at
25°C. Parent flies and F1 progeny were injected by TRIS (control, empty symbols) and DCV
(500 PFU, filled symbols). Survivals were monitored daily at 22°C. Bar graphs represent the
average standard deviation of 3 independent experiments. C. DCV RNA level was measured
by qPCR after 3 days of infection. Bar graphs represent the average standard deviation of 1
experiment. PCR values were normalized to the housekeeping gene RpL32.
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We also crossed resistant Canton-S and DD1 cnbw flies with sensitive w**** and yw

flies respectively. We observed that the progeny resulting of these crosses, and also reciprocal

crosses, was resistant to DCV infection, as the resistant parental flies (Figure 16A and 16B).
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Figure 16. The susceptibility of flies to DCV infection is genetically transmitted, and the
resistant allele is autosomal-dominant. A. Representation of the cross between DD1 cnbw
and yw flies. B. DD1 cnbw and yw flies were crossed at 25°C. Parent flies and F1 progeny
were injected by TRIS (control, empty symbols) and DCV (500 PFU, filled symbols).
Survivals were monitored daily at 22°C. Bar graphs represent the average standard deviation
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of 3 independent experiments. C. Representation of the cross between Canton-S and w**%*
flies. D. Canton-S and w***" flies were crossed at 25°C. Parent flies and F1 progeny were
injected by TRIS (control, empty symbols) and DCV (500 PFU, filled symbols). Survivals
were monitored daily at 22°C. Bar graphs represent the average standard deviation of 3
independent experiments. For all panels, sensitive flies are indicated in red and resistant flies
are indicated in blue.

Altogether, these results indicate that the susceptibility to DCV infection between two
stocks of Ore-R flies or between different laboratory control flies is caused by genetic
determinants on the second and/or third chromosome. Interestingly, it was reported in the
literature that differences of susceptibility to DCV infection between Charolles and Nagasaki
wild-type flies may be caused by genetic determinants on the third chromosome (Thomas-
Orillard et al, 1995). At that time, we heard from Prof. Francis Jiggins in Cambridge that a
gene on the third chromosome, named pastrel, was determining the susceptibility of flies to
DCV infection (personal communication with Prof. Jean-Luc Imler). We then looked for
polymorphisms in the pastrel gene which could correlate with the sensitivity or resistance of

our Drosophila strains to DCV infection.

4.1.e. Correlation between the polymorphism in pst gene and
DCV susceptibility

The complete sequencing of the pastrel gene from our resistant (Canton-S and DD1
cnbw) and sensitive (yw and w**°™") flies allowed the identification of three single nucleotides
polymorphisms (SNPs) correlating with their degree of susceptibility to DCV infection
(Figure 17A and 17B). Two of them are present in introns 1 and 5 (3L:7352966 T/G and
3L:7351494 C/T respectively). The last SNP is present in exon 6 of pastrel gene and induces
an amino acid substitution (3L:7350895 C/T (Ala/Thr)).
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Figure 17. Susceptibility of flies to DCV infection is correlated with polymorphisms in
pastrel gene. A. Representation of pastrel gene with exons indicated in red squares. Three
SNPs identified as correlated with DCV susceptibility are indicated in bold. Two SNPs are
present in introns. The third SNP is present in exon 6 and induces an amino acid substitution.
B. Fly strains sensitive or resistant to DCV infection display sensitive or resistant alleles of
pastrel, respectively.

In addition to SNPs, we also noticed after amplification of the pastrel gene from flies
for sequencing, that duplications with deleted version of pastrel gene were present in some of
our fly stocks and Drosophila cell lines. The amplification of the pastrel gene from laboratory
control flies with primers designed at each of its extremity produced a single band of 2,989
kb, the expected length of pastrel gene (Figure 18A). Unexpectidely, additional bands of
pastrel were amplified from a deficiency line, a mutant for the transcription factor Dif, and
some Drosophila cell lines (S2, S2R+ and KC167 cell lines) (Figure 18B). We also amplified
the pastrel gene from two lines used in genome wide association study (GWAS) by Prof.
Jiggins (lines 45 and 101). Flies from line 45 are resistant to DCV infection whereas flies
from line 101 are sensitive (data not shown). Unexpectidely, we amplified additional bands
of pastrel from the line 101, but a single band from line 45, with the expected size of pastrel
gene (Figure 18C). The sequencing of the lower band revealed that a pastrel truncated
version of 1755 kb length was present in the genome of these flies and cells (Figure 18D).
The deletion is extended from position 1072 in exon 6 to position 2306 in exon 2, with two

adenosines at the junction. The other bands were characterized by the group of Prof Jiggins.
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They further analysed whether the presence of these duplications is associated with the

susceptibility of flies to DCV infection but they did not find a significative association

(personnal communication, Prof. Jiggins).
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Figure 18. Identification of a deleted version of pastrel gene present in the genome of

some flies and cells. A. to C. PCR amplification on genomic DNA from flies or cells with
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specific primers for each extremity of pastrel gene, followed by gel electophoresis. D.

Representation of the truncated version of pastrel, sequenced from S2 cells and fly line 101.

Surprisingly, the sequencing of pastrel gene from Ore-R™ and Ore-RP" flies revealed
new polymorphisms not found in the other laboratory control flies (Figure 19). Interestingly,
the T521C SNP in exon 6 of pastrel gene was also correlated with the susceptibility of flies to

DCV infection. Moreover, we observed previously that Ore-RP"

flies die in 5 days and yw
and W% flies die in 7 days. Ore-R°" flies die also earlier after CrPV infection than other
control flies. The high sensitivity of Ore-R"" flies to DCV and CrPV infection may correlate
with the new polymorphisms found in this strain. We also observed that wild-type Charolles
flies were highly sensitive to DCV infection, comparable to Ore-R°" (data not shown). The
polymorphisms in the pastrel gene of Charolles flies remain to be characterized, to verify
whether unusual polymorphisms of Ore-RP" flies are present in Charolles flies, and thereby
may correlate with the high sensitivity of both strains to DCV infection. At least, we
confirmed that they display the SNP 3L:7350895 Thr (T at position 521 in the gene (T521)),
present in all DCV sensitive flies. Additionaly, the susceptibility of Charolles flies to CrPV

infection remains to be investigated.
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Figure 19. SNPs found exclusively in pastrel gene of Ore-R°" flies may correlate with
higher sensitivity to DCV and CrPV infection. SNPs were found in pst gene of Ore-R° but
not in Ore-R™ w**® DD1 cnbw or Canton-S. SNPs found only by comparing pst gene of
Ore-R® and Ore-R™ are indicated in bold. SNPs resulting in amino acid substitution are
underlined. T521 (in red) is the SNP determined as sensitive allele.
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The group of Pr. Jiggins classified the SNP in exon 6 (3L:7350895 Ala/Thr) as mainly
responsible of differences of susceptibility to DCV infection, even if they do not exclude the
participation of other SNPs in the phenotype (Magwire et al., 2012). On our side, we also
observed that this SNP always correlated with sensitivity or resistance to DCV infection. We
therefore used this SNP to diagnose the presence of sensitive or resistant alleles of pastrel. In
this way, we developed allele specific PCR assay for fast genotyping of the fly strains used in
the laboratory (Figure 20).

yw : Sensitive strain cnbw : Resistant strain
Primer to detect T(521)
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Figure 20. Allele specific PCR assay for fast genotyping of the sensitive and resistant
alleles of pastrel gene. Primers to detect SNP 3L:7350895 Ala/Thr (or C521T) were designed
using Web-based Allele-Specific PCR assay designing tool (Wangkumhang et al., 2007).
PCR was performed with temperature gradient from 54°C to 64°C.

In order to clarify if polymorphisms present in the pastrel gene could impact on the
susceptibility of flies to DCV infection, we decided to check whether the pastrel gene is

required to resist to DCV infection.

4.2. Knockdown of pst gene increases the susceptibility of

flies to DCV and CrPV infection

We obtained flies mutants for pastrel gene (Pst' flies) from Dubnau et al, 2003.
Unfortunately, we did not find any p element inserted in the pastrel gene of these flies (data
not shown). Moreover, normal pst RNA expression was detected by qPCR (data not shown).
Even if we observed a high sensitivity of Pst' flies to DCV infection (data not shown), we

cannot attribute it to the absence of pastrel gene expression but rather to sensitive pst allele
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(pst genotyping). Without any pastrel mutant fly available, we therefore investigated the
effect of knocking down pastrel gene expression by RNA interference on DCV infection in
flies. We used flies from the VDRC collection, which express inverted repeats under the
control of the yeast UAS-Gal4 promoter. Before starting the crosses, we genotyped pastrel
allele of flies to be in the same genetic background for pastrel gene. All flies had pastrel

sensitive allele (data not shown).

We first knocked down pastrel gene with the strong driver Actin-Gal4 but we were not
able to obtain flies with the right genotype. This suggests that pastrel gene expression may be
involved in fly development, in addition to its putative antiviral function. To resolve this
problem, we used an Actin-Gal4-Tubulin-Gal80® system in which Gal4 expression is
repressed by Gal80 at the restrictive temperature of 18°C. After the emergence of progeny, we
transferred flies 0-4 days old at 29°C during 4 days to inactivate Gal80 and allow pastrel gene
knockdown. Flies injected by TRIS buffer were perfectly fine (Figure 21A). We infected 4-8
days old flies with DCV (500 PFU) and transferred them to 22°C. We observed a higher DCV
sensitivity for pastrel-silenced flies compared to control flies (Figure 21B). Death occurred at
a median of 3.5 days for pastrel knocked down flies and 5.5 days for control flies. The DCV
RNA level was also increased in pastrel-depleted flies compared to control flies during the

course of the infection.

As previously mentionned, Canton-S, DD1 cnbw, yw and w**®" flies did not show a
wide variability in their susceptibility to CrPV infection, indicating that polymorphisms in
pastrel gene did not affect CrPV susceptibility (Figure 11). However, there was a difference
of 3 days in the susceptibility to CrPV infection between Ore-R° and Ore-R™ flies (Figure
12) and Ore-R°F showed unique polymorphisms (Figure 19). Thus, we also verified if pastrel
controls CrPV infection. Interestingly, we observed that pastrel-silenced flies died faster than
control flies after CrPV infection (Figure 21C). This higher susceptibility was also correlated
to a higher CrPV RNA level at 2, 3 and 4 days post infection.
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Figure 21. Knockdown of pastrel gene in whole flies increases their susceptibility to DCV
and CrPV infection. A. Flies were injected by TRIS buffer as control (empty symbols). B.
Flies were infected with DCV (500 PFU). DCV RNA level was measured by qPCR after 1, 2
and 3 days of infection. Bar graphs represent the average standard deviation of 2 independent
experiments. C. Flies were infected with CrPV (5 PFU). CrPV RNA level was measured by
qPCR after 1, 2, 3, and 4 days of infection. Bar graphs represent the average standard
deviation of 2 independent experiments. For all panels, flies were crossed at 18°C and
progeny (0-4 days) was collected at 29°C for 4 days. Flies (4-8 days) were infected with DCV
or CrPV and survivals were monitored at 22°C.
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To conclude, these results indicate that pastrel restricts infection by DCV and CrPV in

Vivo.

We looked at microarrays data from FlyAtlas to know which tissues harbor a high
level of pastrel expression. Interestingly, we found that pastrel gene is highly expressed in the
fat body (Figure 22).
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Figure 22. pastrel gene expression in organs and tissues from adult Canton-S flies. These
data were adapted from FlyAtlas Anatomy Microarray.

The fat body is a major tissue targeted by DCV for replication (discussed in Chapter
1). We observed that silencing of pastrel in this tissue also increases viral titer and
susceptibility to infection (Figure 23B and 23C). As a control, flies were insensitive to TRIS
buffer injection (Figure 23A). The silencing of pastrel also affects the resistance of flies to
CrPV infection (Figure 23D). This higher susceptibility to CrPV infection is correlated with a
higher viral titer (Figure 23E).
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Figure 23. Specific knockdown of pastrel gene in the fat body increases the susceptibility
of flies to DCV and CrPV infection. A. Flies were injected by TRIS buffer as control (empty
symbols). B. Flies were infected with DCV (500 PFU). C. DCV RNA level was measured by
gPCR after 1 and 2 days of infection. Bar graphs represent the average standard deviation of 3
independent experiments. D. Flies were infected with CrPV (5 PFU). E. CrPV RNA level was
measured by qPCR after 1, 2 and 3 days of infection. Bar graphs represent the average
standard deviation of 1 experiment. For panels A, B, C, and D. Flies were crossed at 25°C, fly
progeny (4-8 days) was infected and survivals or virus load were monitored at 22°C (except
panel E., 25°C). For panels A, B, and D, bar graphs represent the average standard deviation
of at least 2 independent experiments.
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By contrast, silencing pastrel expression in midgut epithelial cells, where we did not
detect DCV infection, had no effect on fly susceptibility (Figure 24A and 24B), nor on viral
titer (Figure 24C).
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Figure 24. Specific knockdown of pastrel gene in the intestinal epithelium of flies does
not affect the resistance to DCV infection. A. Flies were injected by TRIS buffer as control
(empty symbols). B. Flies were infected with DCV (500 PFU). C. DCV RNA level was
measured by qPCR after 1, 2 and 3 days of infection. For all panels, flies were crossed at
25°C, the progeny (4-8 days) was infected and survivals or virus load were monitored at
22°C. Bar graphs represent the average standard deviation of at least 2 independent
experiments.
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Altogether, these data confirm that pastrel controls the susceptibility of flies to DCV
and CrPV infection. Interestingly, the control of both DCV and CrPV viral infections relies on
the expression of pastrel in the fat body. Additionaly, our data indicate that pastrel gene
expression in the epithelial midgut does not contribute to the control of DCV infection. Our
group further investigated the localization of DCV in the gut. We were able to find DCV
particles in the smooth muscles around the gut but not in the epithelial midgut (data not
shown). This may explain the absence of increased susceptibility to DCV infection after

pastrel knockdown in the epithelial midgut.

4.3. Polymorphisms in pastrel gene do not affect protein

stability

We showed that knockdown of pastrel gene expression increases sensitivity of flies to
DCV and CrPV infection. We wondered if sensitivity to DCV infection correlated with the
expression level of Pastrel protein. This may explain the differences of susceptibility of flies
to DCV infection. To address this point, we monitored Pastrel protein expression by western
blot in yw, W% (DCV sensitive flies) and Canton-S, DD1 cnbw (DCV resistant flies), using
an antibody raised against the Pastrel protein in the group of Dr. Stéphane Noselli (Figure
25). The Pastrel protein level was similar between DCV sensitive and resistant flies. This
result indicates that the polymorphisms in the pastrel gene have no effect on expression or

stability of the Pastrel protein.

Psts PstR
$ »9‘? o‘§
$ Q\? o"S QQN

Figure 25. Flies expressing Pst® and Pst® forms show similar levels of Pst protein
expression. Pst protein level from Pst sensitive flies (yw and WASOOl) and Pst resistant flies
(Canton-S and DD1 cnbw) was revealed by western blot with an antibody against Pst.
Antibody against Actin protein was used as loading control.
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4.4. Does Pastrel overexpression restrict DCV infection in

flies ?

Loss of function experiments showed that pastrel gene expression is necessary to
control DCV infection. We wondered if overexpression of Pastrel protein in flies may control
DCV infection. To address this question, we constructed vectors expressing, under the control
of HSP-promoter, sensitive and resistant versions of Pastrel, tagged by the FLAG epitope in
N-terminal. Plasmid constructions were sent to Pr. Jiggins for making transgenic flies and

testing effect of Pastrel overexpression on DCV infection. This work is in progress.

In parallel, we obtained from Dr. Stéphane Noselli transgenic flies expressing a Pst-
GFP fusion protein under the control of the UAS promoter. We crossed UAS-Pst-GFP flies
with yw;Actin-Gal4 flies at 25°C to obtain flies expressing Pst-GFP under actin promoter.
Pastrel allele of these flies was genotyped: all flies had the pastrel sensitive allele, but the
pastrel transgene was the resistant allele. So we overexpressed the resistant version of the
pastrel gene in flies with sensitive background for pastrel. We checked that these flies
expressed Pst-GFP by looking for GFP under fluorescence microscope (Figure 26A). Then,
flies were challenged with DCV and FHV (500 PFU) and survival was monitored at 22°C.
Overexpression of Pst-GFP in whole flies did not increase their resistance to DCV infection,
nor to FHV infection (Figure 26B and 26C respectively). These results indicate that
overexpression of Pastrel is not sufficient to restore better survival of flies challenged by

DCV. We are now investigating if Pastrel overexpression reduces DCV titer in flies.
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Figure 26. Overexpression of Pst-GFP in flies does not increase resistance to DCV
infection. A. GFP fluorescence was observed in flies overexpressing Pst-GFP (3) and not in
genetic controls (1 and 2). B. and C. Flies were crossed at 25°C and progeny (4-8 days) was
injected by TRIS buffer as control (empty symbols), DCV (500 PFU, panel B) and FHV (500
PFU, panel C). Survivals were monitored at 22°C. Bar graphs represent the average standard
deviation of 3 independent experiments.
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4.5. Study of pastrel gene in vitro: Drosophila S2 cells

In order to further characterize the function of Pastrel, we decided to switch to an ex
vivo system of infection, which is more amenable to experimental manipulation. We have
shown in vivo that pastrel plays a role in the sensitivity or resistance of flies to DCV and
CrPV infection. Then, we decided to further characterize the effect of pastrel gene expression
on the DCV and CrPV infectious cycle by using Drosophila S2 cells. We had first to confirm
that S2 cells system is suitable to study the effect of pastrel on DCV infection.

4.5.a. Knockdown of pastrel gene increases DCV susceptibility in
Drosophila cells

We infected S2 cells with DCV (MOI 1) and followed the viral RNA level at different
times after infection (Figure 27A). We observed that DCV replicates in S2 cells. We also
noticed that pastrel gene expression is constantly increased by 25% during the course of the
infection, compared to non infected S2 cells (except after 24h of infection). The induction of

pastrel gene expression is virus-dependant, but not time-dependant (Figure 27B).
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Figure 27. DCYV replicates in Drosophila S2 cells and pastrel gene expression is increased
after infection. A. and B. S2 cells were infected, or not, by DCV (MOI 1). DCV and Pst
RNA levels were measured by qPCR after 16h, 24h, 48h and 72h of infection (panels A. and
B. respectively). qPCR values were normalized to the housekeeping gene RpL32. Bar graphs
represent the average standard deviation of 1 experiment (12 wells per condition).
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We first confirmed that the increased DCV RNA level observed in vivo after pastrel
gene knockdown is also observed ex vivo in Drosophila S2 cells. Drosophila S2 cells were
treated for 5 days with two sets of double stranded RNAs (dsRNAs, Figure 28A), recognizing
different regions of the pastrel gene in order to rule out off-target effects. Cells were then
infected with DCV (MOI 1) for 16h. Drosophila S2 cells treated with dsSRNAs against pastrel
gene for 5 days showed a 50% reduction of pastrel gene expression (Figure 28B). This
knockdown of pastrel gene expression led to a 2-fold increase in DCV RNA level after 16h of
infection (Figure 28C).

We also observed by western blot that knockdown of pastrel gene expression
increases DCV capsid protein level in cells and in the supernatant after 48h of infection
(Figure 28D). We titered DCV infectious particles liberated in the supernatant after 16h of
infection. The treatment of Drosophila S2 cells with dsSRNAs against pastrel gene increased

by almost 1 log DCV particles liberated in the supernatant (Figure 28E).
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Figure 28. Knockdown of pastrel gene in S2 cells increases DCV infection. A.
Representation of pastrel RNA with dsRNAs designed against two different regions of pastrel
(region A and B). B. Pst RNA level was measured by qPCR after 16h of infection by DCV
(MOI 1) in S2 cells treated during 5 days by dsRNAs against GFP and Pst (region A and B).
C. DCV RNA level was measured by qPCR after 16h of infection in S2 cells treated during 5
days by dsRNAs against GFP and Pst (region A and B). D. DCV protein level from S2 cell
lysate and supernatant, revealed by western blot. Cells were treated for 5 days by dsRNA
against GFP and Pst (region A and B), and infected during 48h by DCV (MOI 1). E. DCV
titration after 16h of infection in S2 cells treated by dsRNAs against GFP or Pst (region A and
B). For panels B, C, and E, qPCR values were normalized to the housekeeping gene RpL32.
Bar graphs represent the average standard deviation of 4 independent experiments for panels
B and C, and 3 independent experiments for panel E. Western blot from panel D is
representative of 3 independent experiments.
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We achieved a greater knocked down of pastrel gene expression in Drosophila S2
cells by performing two dsRNAs treatments (2 x 5days) instead of one as in Figure 28B.
These two successives treatments of S2 cells with dsRNAs against pastrel gene (region A and
B) reduced of 3.2-fold the expression of pastrel gene, consequently increasing of 5-fold DCV
RNA level (Figure 29A and 29B). Compared to single dsRNAs treatment (Figure 28B), we
observed higher DCV RNA level in cells treated twice with dsSRNAs against pastrel, probably
because Pst RNA level was lower after two dsRNAs treatments than one. This suggests that

pastrel may control DCV infection in a dose-dependent manner.
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Figure 29. Knockdown of pastrel gene in S2 cells increases DCV infection. A. Pst RNA
level was measured by qPCR after 16h of infection by DCV (MOI 1) in S2 cells treated twice
during 10 days by dsRNAs against GFP and Pst (region A and B). B. DCV RNA level was
measured by qPCR after 16h of infection in S2 cells treated twice during 10 days by dsRNAs
against GFP and Pst (region A and B). For both panels, qPCR values were normalized to the
housekeeping gene RpL32. Bar graphs represent the average standard deviation of 1
experiment.

We have confirmed that knockdown of pastrel gene expression, as in flies, increases
DCV infection in Drosophila S2 cells. We next checked if CrPV infection in Drosophila S2
cells was affected after knockdown of pastrel gene. CrPV RNA level was increased after 10
days of treatment by dsRNAs against pastrel gene followed by 16h of infection in Drosophila
S2 cells (Figure 30). Pastrel gene expression was 4.5-fold decreased after dSRNA treatment
(Figure 30A) and CrPV RNA level was 4.9-fold increased (Figure 30B).
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Figure 30. Knockdown of pastrel gene in S2 cells increases CrPV infection. A. Pst RNA
level was measured by qPCR. B. CrPV RNA level was measured by qPCR. Drosophila S2
cells were treated for 10 days by dsRNAs against GFP and Pst (region A and B). Cells were
then infected with CrPV (MOI 0,01) for 16h. Bar graphs represent the average standard
deviation of 2 (out of 4) independent experiments (n=2x6 wells). qPCR values were
normalized to the housekeeping gene RpL32.

To conclude, the knockdown of pastrel gene in Drosophila S2 cells increases DCV
and CrPV infection. Finally, pastrel gene expression controls DCV and CrPV infections in
vivo and in vitro. We wondered if the overexpression of pastrel gene in Drosophila S2 cells

may control DCV and CrPV infections.

4.5.b. Overexpression of Pastrel protein restricts DCV and CrPV
infection

We constructed plasmids to express the sensitive and resistant versions of Pastrel
protein in Drosophila S2 cells under the control of an actin promoter. We added a Red
Fluorescent Protein (RFP) tag in N or C-terminal of Pastrel protein for further intracellular
localization studies (discussed in section 4.6). As a control, we used the empty vector
expressing RFP only. We overexpressed these constructions in Drosophila S2 cells by
transient transfection (Figure 31A), and then we infected these cells with DCV. The DCV
RNA level was significantly reduced in Drosophila S2 cells overexpressing Pastrel protein

fusions (Figure 31B). However, the effect was smaller than expected.
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Figure 31. Transient overexpression of Pastrel full lentgh slightly reduces DCV infection
in Drosophila S2 cells. A. Pst RNA level was measured by qPCR. B. DCV RNA level was
measured by qPCR. Drosophila S2 cells were transfected by vectors expressing full-length
sensitive and resistant versions of Pastrel. Cells were then infected with DCV (MOI 1) for
16h. Bar graphs represent the average standard deviation of 1 experiment (n=12 wells). gPCR
values were normalized to the housekeeping gene RpL32. Control cells expressing RFP were
used as reference for statistical analysis.

Then, we wanted to check, thanks to RFP tag added on Pastrel protein, if the
overexpression was homogeneous in the population of cells transfected by the vectors. Only
few cells showed a high level of Pastrel expression. Interestingly, we noticed by
immunofluorescence assay that cells overexpressing the sensitive or resistant versions of
Pastrel were never infected by DCV (data not shown). We also noticed that DCV does not
infect each S2 cells in cell culture, even if the multiplicity of infection (MOI) is equal or
greater than one. We hypothesized that the moderate effect of Pastrel expression on DCV may
result from the low transfection efficiency of Pastrel fusion proteins, coupled to the low
efficiency of infection, reducing the probability of DCV to meet a cell overexpressing Pastrel
protein. This could mask the effect of Pastrel overexpression on DCV infection. Thus, it
appeared necessary to establish stable cell lines overexpressing Pastrel protein fusions to by-
pass this problem. Stable cell lines overexpressing sensitive and resistant versions of Pastrel
tagged in N or C-terminal by RFP were screened by Fluorescence-Activated Cell Sorting
(FACS) analysis (Figure 32A). The clones that had a cell population with an homogenous
expression of Pastrel fusions, or RFP only, were selected and infected with DCV (MOI 1).
The overexpression of Pastrel constructs was also confirmed by qPCR (Figure 32B and 32C).
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Stable cell lines overexpressing Pastrel fusions showed a remarkable decrease of DCV RNA
level after 16h and 48h of infection, compared to cells stably expressing RFP as a control
(Figure 32B and 32C). We used two independent clones for each Pastrel constructions to
avoid positional effect after random integration of our constructs in the genome of Drosophila
S2 cells. Independent clones showed similar restriction of DCV infection after 16h and 48h of
infection. Surprisingly, both sensitive and resistant Pastrel constructs were able to restrict
DCV infection. We did not observe a higher resistance to DCV infection in clones
overexpressing the resistant version of Pastrel protein compared to clones overexpressing the
sensitive version of Pastrel protein. Thus, the high level of expression of the tagged Pastrel

protein appears to abolish the difference between the two versions of the Pastrel protein.
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Figure 32. Pst overexpression decreases DCV RNA level after 16h and 48h of infection.
A. Stable cell lines were established to overexpress RFP (control) or Pst sensitive and
resistant forms tagged by RFP in N or C-terminal. B. and C. DCV and Pst RNA levels were
measured by qPCR after 16h (B.) or 48h (C.) of infection in cells overexpressing RFP and Pst
fusions. Bar graphs represent the average standard deviation of 3 independent experiments for
panel B and 2 independent experiments for panel C. qPCR values were normalized to the
housekeeping gene RpL32. Clones identifications are indicated in brackets.
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We have observed a decrecase in DCV RNA levels in Drosophila S2 cells
overexpressing Pastrel fusions. We further analyzed the effect of Pastrel overexpression by
looking at the DCV capsid protein level. By FACS, we were able to discriminate cells
infected by DCV from cells non infected by using an antibody against DCV capsid protein. A
large subset of cells overexpressing RFP was stained by DCV capsid antibody after 48h of
infection (Figure 33A). By contrast, cells overexpressing Pastrel protein fused with RFP were
mostly not stained by DCV capsid antibody after 48h of infection (Figure 33B to 33E). The
DCYV capsid staining was even comparable to the non infected condition, which is antibody
background staining. Overexpresion of sensitive and resistant versions of Pastrel showed
comparable levels of restriction of DCV infection (Figure 33, panels B, D and C, E
respectively). We noticed a better restriction of DCV infection in clones overexpressing
Pastrel with RFP tag in N-terminal (panels B and C) compared to ones with RFP tag in C-
terminal (panels D and E). A small population of DCV infected cells is detected in clones
overexpressing Pastrel-RFP fusions, as if RFP tag in C-terminal of Pastrel would destabilize
its antiviral function. This may indicate that the C-terminal region of Pastrel participates in

the restriction of DCV infection.
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Figure 33. Pst® and Pst® overexpression restricts DCV infection. Stable cell lines
expressing RFP only (control, panel A), Pst sensitive and resistant versions tagged by RFP in
N-terminal (panels B and C) or C-terminal (panels D and E), were infected, or not, by DCV
(MOI 1) for 48h. Cells were stained with an antibody against DCV capsid and analyzed by
FACS ARIA II. Panels are representative of 3 independent experiments. These data were
confirmed by 3 other independent experiments with independent clones.
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The overexpression of sensitive and resistant versions of Pastrel in Drosophila S2 cells
restricts DCV infection. We wondered if the better resistance to DCV infection acquired by
S2 cells overexpressing Pastrel could be transmitted to Drosophila S2 cells which express
endogenous sensitive version of Pastrel (determined by pastrel genotyping). To answer this
question, Drosophila S2 cells and cells overexpressing Pastrel (sensitive and resistant
versions) or RFP (control) were mixed together with a ratio of 1:1. Mixed population of cells
were infected with DCV (MOI 1) for 48h, stained by DCV capsid antibody and analyzed by
FACS (Figure 34). As a control, both mixed populations of Drosophila S2 cells and cells
overexpressing RFP were infected by DCV at 48h post infection (Figure 34A). By contrast,
only Drosophila S2 cells were infected by DCV after 48h of infection when mixed with cells
overexpressing sensitive or resistant versions of Pastrel (Figure 34B and 34C respectively). A
lower amount of Drosophila S2 cells was infected by DCV after mixing with cells
overexpressing Pastrel, compared to S2 cells mixed with cells overexpressing RFP. This can
be explained by a lower quantity of viral particles liberated in the supernatant when S2 cells
are mixed with cells overexpressing pastrel, as the total number of DCV infected cells is
lower compared to the control. We conclude that the restriction of DCV infection by Pastrel is
cell-autonomous. Cells overexpressing sensitive and resistant versions of Pastrel are better
protected from DCV infection than normal S2 cells, and do not transmit this higher protection

to Drosophila S2 cells.
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Figure 34. Cells overexpressing Pst are better protected from DCV infection compared
to cells with endogenous Pst expression. A. Drosophila S2 cells were mixed with stable cell
lines overexpressing RFP. B. Drosophila S2 cells were mixed with stable cell lines
overexpressing sensitive and resistant versions of Pastrel tagged by RFP in N-terminal. S2
cells and stable cell lines were mixed in a 1:1 ratio and infected with DCV (MOI 1) for 48h.
Cells were then stained with antibody against DCV capsid and analysed by FACS ARIA 1L
Panels are representative of 1 experiment. These data were confirmed by 1 experiment with
independent clones.

We investigated if overexpression of Pastrel, which restricts DCV infection, also
protects cells from CrPV infection. We selected clones overexpressing sensitive and resistant
version of Pastrel which showed highest protection to DCV infection and measured CrPV

RNA level after 16h and 48h of infection. Cells overexpressing Pastrel (Figure 35A and 35C)
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showed reduced CrPV RNA level at 16h and 48h post infection compared to cells
overexpressing RFP (Figure 35B and 35D respectively).
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Figure 35. Pst® and Pst® overexpression decreases CrPV RNA level after 16h and 48h of
infection. A. and C. Pst RNA level was measured by qPCR after 16h (A.) and 48h (C.) of
infection (MOI 0.1). B. and D. CrPV RNA level was measured by qPCR after 16h (B.) and
48h (D.) of infection (MOI 0.1). For all panels, bar graphs represent the average standard
deviation of 2 independent experiments. qPCR values were normalized to the housekeeping
gene RpL32. Clones identifications are indicated in brackets.
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The overexpression of Pastrel in Drosophila S2 cells restricts both DCV and CrPV
infection. For further confirmation, immunofluorescence assays were performed with
antibodies against DCV and CrPV capsid. After 48h of infection, stable cell lines
overexpressing sensitive (Figure 36A, panel B) and resistant (Figure 36A, panel C) versions
of Pastrel fusions showed reduced number of cells infected by DCV, compared to stable cell
lines overexpressing RFP (Figures 36A, panel A). For statistical analysis, we counted the
number of cells overexpressing sensitive and resistant versions of Pastrel, or RFP, that were
infected by DCV (Figure 36B). Around 30% of cells overexpressing RFP were infected by
DCV. By contrast, only 1.8% of cells overexpressing sensitive or resistant versions of Pastrel
were infected by DCV. Western blot analysis with DCV capsid antibody revealed that the
level of DCV particles was almost not detectable in cells overexpressing Pastrel protein,

compared to cells overexpressing RFP (Figure 36C).
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Figure 36. Overexpression of Pst® and Pst® decreases the number of cells infected by
DCYV. A. Stable cell lines overexpressing RFP only (control, panels A and A’), Pst sensitive
(panels B and B’) and resistant (panels C and C’) versions tagged by RFP in N-terminal, were
infected with DCV (MOI 1) for 48h. Cells were stained with an antibody against DCV capsid
(anti-DCV-1, panels A, B and C). DAPI staining is represented in panels A’, B’ and C’.
Pictures were taken by confocal LSM700. B. DCV infected cells were quantified using
Imagel. Bar graphs represent the average standard deviation of 9 pictures. Panels are
representative of 2 independent experiments. C. Stable cell lines overexpressing RFP and Pst
resistant version tagged by RFP in N-terminal were infected with DCV (MOI 1) for 24h.
DCYV protein level was revealed by western blot with antibody against DCV (@DCV-1).
Antibody against Actin protein was used as loading control. Clones identifications are
indicated in brackets.
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Similarly, cells overexpressing sensitive (Figure 37A, panel B) and resistant (Figure
37A, panel C) versions of Pastrel were less infected by CrPV than cells overexpressing RFP
(Figure 37A, panel A). 9% of cells overexpressing RFP were stained with antibody against
CrPV capsid. Strikingly, only 0.5% of cells overexpressing sensitive and resistant versions of

Pastrel were stained by CrPV antibody after 24h of infection (Figure 37B).
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Figure 37. Overexpression of Pst® and Pst® decreases the number of cells infected by
CrPV. A. Stable cell lines overexpressing RFP only (control, panels A and A’), Pst sensitive
(panels B and B’) and resistant (panels C and C’) versions tagged by RFP in N-terminal, were
infected with CrPV (MOI 0.01) for 24h. Cells were stained with an antibody against CrPV
capsid (anti-CrPV-4, panels A, B and C). DAPI staining is represented in panels A’, B’ and
C’. Pictures were taken by confocal LSM700. B. CrPV infected cells were quantified using
ImagelJ. Bar graphs represent the average standard deviation of 9 pictures. Panels are
representative of 1 experiment. Clones identifications are indicated in brackets.
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By contrast, the overexpression of sensitive (Figure 38, panel B) and resistant (Figure
38, panel C) versions of Pastrel did not protect cells from FHV infection (Figure 38). No
statistical difference was observed between the number of cells overexpressing sensitive and
resistant versions of Pastrel, plus RFP, and stained by antibody against FHV capsid (Figure
38B).
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Figure 38. Overexpression of Pst® and Pst® does not affect the number of cells infected
by FHV. A. Stable cell lines overexpressing RFP only (control, panels A and A’), Pst
sensitive (panels B and B’) and resistant (panels C and C’) versions tagged by RFP in N-
terminal were infected with FHV (MOI 1) for 24h. Cells were stained with an antibody
against FHV capsid (anti-FHV-5588, panels A, B and C). DAPI staining is represented in
panels A’, B’ and C’. Pictures were taken by confocal LSM700. B. FHV infected cells were
quantified using ImagelJ. Bar graphs represent the average standard deviation of 4 pictures.
Panels are representative of 1 experiment. Clones identifications are indicated in brackets.
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Overexpression of sensitive (Figure 39, panel B) and resistant (Figure 39, panel C)
versions of Pastrel did not affect the number of cells stained by VSV antibody after 48h of
infection, compared to cells overexpressing RFP (Figure 39, panel A). The number of cells
infected by VSV was similar between clones overexpressing RFP, sensitive and resistant
versions of Pastrel (Figure 39B).
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Figure 39. Overexpression of Pst® and Pst® does not affect the number of cells infected
by VSV. A. Stable cell lines overexpressing RFP only (control, panels A and A’), Pst
sensitive (panels B and B’) and resistant (panels C and C’) versions tagged by RFP in N-
terminal were infected with VSV (MOI 25) for 48h. Cells were stained with an antibody
against glycoprotein (G) of VSV (anti-VSV-G-FITC, panels A, B and C). DAPI staining is
represented in panels A’, B’ and C’. Pictures were taken by confocal LSM700. B. VSV
infected cells were quantified using ImageJ. Bar graphs represent the average standard
deviation of 9 pictures. Panels are representative of 1 experiment. Clones identifications are
indicated in brackets.
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Altogether, these results indicate that Pastrel restricts infection by Dicistroviridae
DCV and CrPV in Drosophila S2 cells. However, from our immunofluorescence assay,
Pastrel does not affect the infection by Nodaviridae FHV and Rhabdoviridae VSV. This is in
agreement with similar susceptibility to FHV and VSV infection of flies expressing sensitive
or resistant versions of Pastrel (see sections 4.1.a and 4.1.b). We then looked for the step of

Dicistroviridae infectious cycle which may be impaired by the antiviral function of Pastrel.

4.5.c. Pst antiviral function acts at early steps of DCV infectious
cycle

We first investigated if the overexpression of Pastrel affects the binding of DCV
particles on the surface of Drosophila S2 cells. We performed binding assay by infecting cells
with DCV (MOI 20) and incubating them at 4°C for 2h. At this temperature, endocytosis is
blocked. So the virus can bind his receptor but cannot enter in the cells. After washing cells,
DCV RNA level was measured by qPCR and no statistical difference was observed between
cells overexpressing sensitive and resistant versions of Pastrel and RFP (Figure 40). As a
control, cells were infected for 2h at 25°C. In this condition, we began to see a difference of
DCV RNA level between cells overexpressing sensitive and resistant versions of Pastrel and
cells overexpressing RFP only. Even if this difference was not significative, it may indicate a

early antiviral effect of Pastrel on DCV infectious cycle.

Binding assay

Figure 40. Pst® and Pst® overexpression
does not affect binding of DCV on cells.
Stable cell lines overexpressing RFP only
(control), sensitive and resistant versions of
Pst tagged by RFP in N-terminal, were
infected with DCV (MOI 20) for 2h at 4°c
to allow DCV binding or 25°C to allow
DCV binding and entry. DCV RNA level
was measured by qPCR and normalized to
RpL32. The average standard deviations are
representative of 1 out of 5 independent
experiments. Clones identifications are
indicated in brackets.

DCV relative
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Pastrel does not affect the binding of DCV particles on Drosophila S2 cells. We
wondered if the following step, the entry of the virus, is impaired by the antiviral action of
Pastrel. To answer this question, we performed a viral entry assay. Cells were infected with
DCV (MOI 20), incubated for 2h at 4°C, washed with PBS and switched to 25°C for 3h to
allow virus entry. Pastrel overexpression in cells was confirmed by qPCR (Figure 41A). By
gPCR, we observed a significant decrease of DCV RNA level in cells overexpressing either

the sensitive or resistant version of Pastrel compared to cells overexpressing RFP, after 3h of

infection (Figure 41B).
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Figure 41. Pst® and Pst® overexpression affects entry of DCV in cells. Stable cell lines
overexpressing RFP only (control), sensitive and resistant versions of Pst tagged by RFP in
N-terminal, were infected with DCV (MOI 20) for 2h at 4°c to allow DCV binding and
switched at 25°C for 3h to allow DCV entry. A. Pst RNA level was measured by qPCR. B.
DCV RNA level was measured by qPCR. qPCR values were normalized to the housekeeping
gene RpL32 and control RFP only was used as reference for analysis. Bar graphs represent the
average standard deviation of 4 independent experiments. Clones identifications are indicated

in brackets.

To summary, Pastrel impairs DCV infection after 3h of infection, without affecting
DCYV binding. To precisely decipher when does Pastrel begin to exerss its antiviral function,
DCV RNA level was measured in cells overexpressing sensitive and resistant versions of

Pastrel, cells overexpressing RFP as control, after 2h incubation at 4°C followed by 0, 1, 2, 3,
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24h incubation at 25°C (Figure 42). DCV RNA level started to be strongly reduced from 1h
after DCV entry in cells overexpressing sensitive and resistant versions of Pastrel, compared
to cells overexpressing RFP (Figure 42A). Interestingly, this experiment revealed a
progression of DCV infection in cells overexpressing Pastrel. However, this progression of
DCV infection was remarkably lower compared to cells overexpressing RFP. DCV RNA
level moderately increased between early time points (1, 2 and 3h of infection) and later time
point (24h of infection) in cells overexpressing Pastrel, compared to cells overexpressing
RFP. The same experiment was performed with CrPV. Surprisingly, the kinetic of CrPV
infection at early time points was different to the one of DCV (Figure 42B). A peak of CrPV
infection was observed in cells overexpressing RFP but not in cells overexpressing sensitive
and resistant versions of Pastrel at 1h after CrPV infection. A second peak of CrPV
replication probably appeared after 3h of infection because the CrPV RNA level in S2 cells
and cells overexpressing RFP was strikingly increased at 24h post infection. CrPV RNA level
was also increased in cells overexpressing sensitive and resistant versions of Pastrel after 24h
of infection compared to early time points (1, 2, 3h of infection) but lower than in control

cells (Figure 42B).

152



Chapter 4 - Pastrel: a restriction factor for picorna-like viruses in Drosophila

DCV MOI 20 B. CrPV MOI1 0,5
60 2001
2 40- £ 1501
© s
e o -
S £ 100
a 201 s
50-
0+ . \ e 0+ ¥ ¥
0 1 2 3 24 0 1 2 3 24
Hours Hours
Zoom
0.061
2 >
© ®
[ o
> >
8 5
0.00 T T |
0 1 2 3
Hours
—o- S2cells -+ RFP-Pst® (B13)

—— RFP only (A21) —+ RFP-Pst® (C15)

Figure 42. Pst® and Pst® overexpression affects DCV and CrPV early after infection.
Drosophila S2 cells and stable cell lines overexpressing RFP only (control), sensitive and
resistant versions of Pst tagged by RFP in N-terminal, were infected with DCV (MOI 20) or
CrPV (MOI 0.5) for 2h at 4°c to allow virus binding on cell surface and then transfered at
25°C for 0, 1, 2, 3 and 24h. A. DCV RNA level was measured by qPCR. B. CrPV RNA level
was measured by qPCR. qPCR values were normalized to the housekeeping gene RpL32 and
control RFP only was used as reference for analysis. Bar graphs represent the average
standard deviation of 1 experiment. Clones identifications are indicated in brackets.
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4.5.d. Pst does not affect CrPV IRES translation

Unlike the other viruses not affected by Pastrel, Dicistroviridae rely on Internal
Ribosome Entry Site (IRES) for the translation of structural and non structural proteins. To
test if the overexpression of Pastrel affects the IRES driven translation in Drosophila cells, we
co-transfected vectors expressing Renilla luciferase under CrPV 5° IRES translation and
Firefly luciferase under cap-dependant translation. Dual luciferase assay was performed 48h
after transfection. Cells overexpressing Pastrel (sensitive and resistant versions) and RFP
showed similar levels of Renilla luciférase, indicating that overexpression of Pastrel does not
affect CrPV 5’ IRES translation (Figure 43A). We also showed that intergenic region (IGR)
IRES of CrPV (CrPV IGR IRES) mediated translation was not affected by the overexpression
of Pastrel (Figure 43B). Surprisingly, a statistically significant increase of CrPV IGR IRES
translation was observed after overexpression of the resistant version of Pastrel. However, this

effect was minor and the significance of this observation is not clear at present.
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Figure 43. Pst® and Pst® overexpression does not affect CrPV 5’ IRES and CrPV IGR
IRES translation. A. Cells were co-transfected by vectors expressing Renilla luciferase
under CrPV-5’-IRES translation and Firefly luciferase under cap-dependant translation. B.
Cells were transfected by a vector expressing Firefly luciferase under CrPV-IGR-IRES
translation and Renilla luciferase under cap-dependant translation. For both panels, 500 uM
CuSO4 were added the day after transfection and luminescence was read 72h after
transfection. Bar graphs represent the average standard deviation of 3 independent
experiments for panel A and 2 independent experiments for panel B. Clones identifications
are indicated in brackets.
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4.5.e. Pstis not involved in protein secretion

In 2006, the team of Pr. Malhotra performed a screen to identify genes involved in
protein secretion in Drosophila S2 cells (Bard et al., 2006). Pastrel was found to play a role in
protein secretion. This function may affect DCV infectious cycle if Pastrel perturbated
secretion of DCV proteins during the infectious cycle. We first confirmed the role of Pastrel
in protein secretion. The vector expressing horseradish peroxidase (HRP) fused with secretion
signal peptide (ss-HRP) was kindly sent by Pr. Malhotra. After induction of ss-HRP
production by copper, peroxydase activity was measured from an aliquot of medium by
chemiluminescence. Luminescence was comparable between cells treated with dsRNAs
against pastrel gene (region A + B) and GFP (negative control), but significantly reduced for
cells treated with dsRNAs against beta-COP and Syntaxin5 (Figure 44A). These two proteins
are known to be involved in protein secretion and were used as positive controls. The

knockdown of pastrel gene did not affect protein secretion.

The vector expressing ss-HRP was also transfected in cells overexpressing sensitive
and resistant versions of Pastrel and cells overexpressing RFP, as a control. The luminescence
measured from medium of cells overexpressing Pastrel and RFP was comparable, but higher
than one from normal Drosophila S2 cells (Figure 44B), suggesting that either transfection or

overexpression of exogenous protein stimulates the secretory pathway.
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Figure 44. Pst is not involved in protein secretion. A. S2 cells were treated by dsRNA
against GFP, Pst (region A + B), beta-COP and Syntaxin5 during 5 days. Cells were next
transfected with vector expressing ss-HRP under methallothionein promoter (pMT-ss-HRP).
The day after, ss-HRP expression was stimulated by addition of 500 uM CuSO4 and cells
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were incubated for 16h. Then, luminescence was read by luminometer after addition of ECL
reagent to supernatant. B. S2 cells and stable cell lines were transfected by pMT-ss-HRP
vector, treated by 500 uM CuSO4 for 16h, and luminescence was read by luminometer to
quantify secretion. Bar graphs represent the average standard deviation of 2 independent
experiments.

Overall, the knockdown and overexpression of Pastrel does not affect protein secretion

and the effect reported by Malhotra and colleagues may have reflected an off-target effect.

4.5.f. Study of Pst topology by a Biotin-Streptavidin revelation
system

Transmembrane (TM) prediction softwares were used to determine putative TM
domains of Pastrel protein. However, we noticed that different softwares predict a different
number of TM domains for Pastrel protein. This was particularly disturbing for our analysis
because some programs predicted an odd or even number of TM domains, which completely
changes the topology of the protein. We computed the analysis from different programs to

define a consensus of 6 putative TM domains predicted for Pastrel protein (Figure 45).
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Figure 45. Prediction of 6 putative TM domains in Pastrel protein. Programs for TM

prediction were used to identify the number of putative TM domains in Pastrel protein.
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Prediction software gave also an ambigous answer whether the N- and C-terminal
extremities of Pastrel protein face the cytosol or the lumen (data not shown). The SNP
3L:7350895 Ala/Thr, associated with the sensitivity or resistance of flies to DCV infection, is
present in the C-terminal region. We wondered whether this region faces the cytosol or the
lumen. Thus, we developed a new technique based on in situ biotinylation to determine if the
N and C-terminal regions of Pastrel protein face the cytosol. A peptide of 15 amino acids,
called Biotin Acceptor Peptide (BAP), was fused to Pastrel protein in N or C-terminal. As a
control, BAP was fused to N and C-terminal extremities of the single-pass type I
transmembrane receptor TOLL. These constructs were transfected in cells expressing the
bacterial biotin-protein ligase BirA in the cytosol. BirA specifically recognizes and attaches a
biotin to the single lysine residue of the BAP sequence. Therefore, if the BAP sequence is
exposed in the cytosol, accessible to BirA, it will be biotinylated (Figure 46A). It was then
easy and fast to reveal biotinylation after immunoprecipitation of the constructs and western
blot using streptavidine-HRP. The C-terminal extremity of TOLL faces the cytosol and was
biotinylated whereas the N-terminal extremity of TOLL, which faces the lumen of the
secretory apparatus and then the exterior of the cell, was not (Figure 46B). Using the same
procedure, we observed that both Pastrel constructs with BAP in N or C-terminal were
biotinylated (Figure 46C). This indicates that N and C-terminal regions of Pastrel are
exposed in the cytosol. This observation suggests that the C-terminal region of Pastrel, where
the polymorphism is located, is potentially exposed to viral proteins or particles present in the

cytosol.
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Figure 46. Topology of N and C-ter regions of Toll and Pst. A. Principle of the method: A
15 amino acid long Biotin Acceptor Peptide (BAP) was fused to Pst and TOLL proteins in N
or C terminal. These constructs were then transfected in cells expressing the bacterial biotin-
protein ligase BirA, which specifically recognizes and attaches a biotin to the single lysine
residue of the BAP sequence. If the BAP sequence is exposed in the cytosol, accessible to
BirA, this sequence is biotinylated. B. and C. Transfection of Pst or TOLL constructs in cells
expressing BirA protein for 72h. Cells were then lysed, immunoprecipitated with anti-FLAG
(B.) or anti-HA (C.) beads overnight at 4°C and biotinylation was revealed by addition of
Streptavidin-HRP for 5 min at 4°C.
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4.5.g. The C-terminal region of Pst is required for its antiviral
function

We showed that Pastrel restricts DCV and CrPV infection in Drosophila. To decipher
which region of Pastrel protein confers its antiviral function, successive deletions were
performed in full length Pastrel protein (1-682) from the end of the last predicted
transmembrane domain. Indeed, the SNP (3L:7350895 Ala/Thr), responsible of the sensitivity
or resistance of flies to DCV infection, is present in the C-terminal region of Pastrel. Then, we
hypothesized that the C-terminal region of Pastrel carries antiviral activity. Stable cell lines
overexpressing a truncated version of Pastrel (1-562), tagged by RFP in N-terminal, were
firstly established (Figure 47A). The overexpression of the full length Pastrel protein and
Pastrel truncated in C-terminal (1-562) was confirmed by qPCR. The overexpression of
Pastrel (1-562) did not restrict DCV infection after 48h, by contrast to overexpression of
Pastrel full length (Figure 47B). DCV RNA level in cells overexpressing Pastrel (1-562)

(clone E9) was similar to control cells, or even greater (clone E12).
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Figure 47. Overexpression of Pst deleted in C-ter does not affect DCV RNA level. A.
Schema of Pst full lentgh and C-ter deleted version tagged in N-ter by RFP. Representation of
6 putative transmembrane domains (TM) predicted by different softwares. B. S2 cells, stable
cell lines overexpressing RFP only (control), sensitive and resistant versions of Pst full length
and truncated tagged by RFP in N-terminal, were infected with DCV (MOI 1) for 48h. Pst
RNA level (left panel) and DCV RNA level (right panel) were measured by qPCR. qPCR
values were normalized to the housekeeping gene RpL32. Bar graphs represent the average
standard deviation of 1 experiment. Clones identifications are indicated in brackets.

For further confirmation, immunofluorescence assays were performed with antibodies

against DCV capsid after 48h of infection. The number of cells overexpressing sensitive and
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resistant versions of Pastrel which were stained by DCV antibody after 48h of infection
(Figure 48, panels C and D) was dramatically decrased compared to cells overexpressing
RFP (Figure 48, panels A and B) and cells overexpressing Pastrel truncated in C-terminal
(Figure 48, panels E and F). DAPI staining is showed as control (Figure 48, panels A’ to F’).
The antiviral effect of Pastrel overexpression was significative compared to cells
overexpressing RFP and Pastrel truncated in C-terminal (clone E9) (Figure 48B). Another
clone expressing Pastrel truncated in C-terminal (clone E12) did not display resistance to

DCYV infection, but rather an increased number of DCV infected cells.

Overall, these results uncover the role of the C-terminal region of Pastrel protein in

antiviral function.
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Figure 48. Overexpression of Pst deleted in C-ter does not restrict DCV infection. A.
Stable cell lines overexpressing RFP only (control, panel A, A’ and B, B’), Pst sensitive
(panel C and C’) and resistant (panel D and D’) versions of Pst full length or truncated in C-
terminal (panels E, E” and F, F’) tagged by RFP in N-terminal, were infected with DCV (MOI
1) for 48h. Cells were stained with an antibody against DCV capsid (anti-DCV-1, panels A,
B, C, D, E and F). DAPI staining is represented in panels A’, B’, C’, D’, E’ and F’. Pictures
were taken by confocal LSM700. B. DCV infected cells were quantified using ImagelJ. Bar
graphs represent the average standard deviation of 9 pictures. Panels are representative of 1
experiment. Clones identifications are indicated in brackets.
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4.6. Study of Pst localization in cells

We carried out immunofluorescence assays to decipher the localization of endogenous
Pastrel protein in Drosophila S2 cells and in stable cell lines overexpressing sensitive and
resistant versions of Pastrel fused with RFP. The endogenous Pastrel protein (Figure 49A)
and RFP-Pst fusion protein (Figure 49B) form cytoplasmic aggregates with a dot-like

structure.

Drosophila 52 cells RFP-Pst®(C15)

Figure 49. Endogenous Pst and Pst fusion proteins exhibit a vesicular pattern in the
cytoplasm of Drosophila cells. A. Drosophila S2 cells were stained with antibody against Pst
and DAPI. B. Cell expressing RFP-Pst fusion. Pictures were taken by confocal LSM700.

We showed above that overexpression of Pastrel truncated in C-terminal does not
restrict DCV infection. We then assessed if this loss of antiviral function may be related to a
change in cellular protein localization. Pastrel protein truncated in C-terminal did not form
cytoplasmic aggregates (Figure 50, panels E and F), as overexpression of single RFP (Figure
50, panels A and B). This contrasts with overexpression of sensitive and resistant full length
versions of Pastrel protein which form cytoplasmic aggregates (Figure 50, panels C and D).
The truncated Pst form is diffused in the cells, comparable to the overexpression of RFP only

(Figure 50, panels A and B).
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Figure 50. Deletion of C-terminal region of Pst modifies its intracellular localization.
Stable cell lines overexpressing RFP only (control, panel A and B), Pst sensitive (panel C)
and resistant (panel D) versions of Pst full length or truncated in C-terminal (panels E and F)
tagged by RFP in N-terminal were stained with DAPI and observed for RFP by confocal
LSM700. Panels are representative of 1 experiment. Clones identifications are indicated in
brackets.

In addition to its antiviral function, these results uncover a role of the C-terminal
region of Pastrel protein in protein localization. These data suggest that the localization of
Pastrel in the cells may also be important for its antiviral function. Then, we investigated the

localization of Pastrel protein in the cells.
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4.6.a. Pst co-localizes with lipid droplets in non-infected cells

We used a large number of markers for cellular compartments (e.g. ER, Golgi,
mitochondria, early endosomes) to decipher the localization of Pastrel in Drosophila S2 cells.
None of these markers colocalized with either endogenous Pastrel protein or RFP-Pastrel

fusions (data not shown).

The team of Dr. Kuhnlein performed a proteomic analysis of lipid droplets from
Drosophila larvae fat body. They found that Pastrel is associated with lipid droplets
specifically in adp®® mutants which are flies genetically predisposed for obesity (Beller et al.,
2006). Therefore, we carried out co-staining of Drosophila S2 cells with antibody against
Pastrel and Nile Red, a marker of lipid droplets (Greenspan et al., 1985). We observed that

some aggregates of Pastrel protein colocalize with lipid droplets (Figure 51).
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Drosophila S2 cells

Figure 51. Pst colocalizes with lipid droplets stained by Nile Red. Drosophila S2 cells
were stained with antibody against Pst (panel A) and DAPI (panel B). Cells were next
incubated for 5 min with Nile Red 1uM to stain lipid droplets (panel C). Merge picture is
represented in panel D. Pictures were taken by confocal LSM700. Panels are representative of
2 independent experiments.

4.6.b. Enrichement of COP-I vesicles staining in the areas where
Pastrel and DCV localize

It is reported that COP-I vesicles are required for DCV replication (Cherry et al.,
2006). The knockdown of COP-I components dramatically reduces DCV replication in
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Drosophila cells. We wondered if Pastrel overexpression may affect the number and
distribution of COP-I vesicles. We stained cells overexpressing Pastrel fused with RFP with
an antibody against beta-COP, a component of COP-I vesicles. We observed an enrichment of
COP-I vesicles in the areas where Pastrel aggregates localize in the Drosophila cells (Figure
52). Interestingly, the laboratory of Dr. Kuhnlein showed that COP-I complexes regulate lipid
homeostasis, modifying protein composition at the surface of lipid droplets (Beller et al.,

2008). This may link Pastrel with COP-I vesicles and lipid droplets.

Figure 52. beta-COP staining is enriched in areas of Pst fusion aggregates. Stable cell line
overexpressing resistant version of Pst was stained with antibody against beta-COP (panel A)
and DAPI (panel B). Pst was observed thanks to RFP tag in N-terminal (panel C). Merge
picture is represented in panel D. Pictures were taken by confocal LSM700. Panels are
representative of 1 experiment.
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Furthermore, Drosophila S2 cells were infected with DCV (MOI 1) for 48h and co-
stained with antibodies against DCV capsid and beta-COP. The localization of beta-COP in
Drosophila S2 cells was enriched in the areas where DCV staining was strong (Figure 53,

panel D). Unfortunately, it was not possible to triple label cells with antibodies against DCV,

Pastrel endogenous and beta-COP.

Drosophila S2 cells

Figure 53. Colocalization between DCYV capsid and beta-COP. Drosophila S2 cells were
infected with DCV (MOI 1) for 48h. Cells were then stained with antibody against beta-COP
(panel A), DAPI (panel B) and DCV capsid (anti-DCV-1, panel C). Merge picture is
represented in panel D. Pictures were taken by confocal LSM700. Panels are representative of
1 experiment.
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4.6.c. Pst co-localizes with DCV and CrPV capsid proteins during
infection

Drosophila S2 cells were infected with DCV (MOI 1) for 48h and co-stained with
Pastrel and DCV capsid antibodies (Figure 54, panel A and B). Pastrel aggregates were
colocalized with DCV capsid staining (Figure 54, panel C). The colocalization of Pastrel
protein with DCV capsid was also observed in vivo in the fat body of infected flies (Figure
54, panel F).

MERGE

Drosophila 52 cells (DCV MOL 1, 48h p.i)
I vitro

MERGE

Fat body from Canton-5 flies (DCV (500 PFU), 3 days p.i.)

AR WD

Figure 54. Pst colocalizes with DCV capsid staining in Drosophila S2 cells and in the fat
body of infected flies. Drosophila S2 cells were infected with DCV (MOI 1) for 48h.
Canton-S flies were infected with DCV (500 PFU) for 3 days at 25°C and the fat body was
dissected for immunostaining. Drosophila cells and fat body were stained with antibody
against Pastrel (panel A and D) and DCV capsid (anti-DCV-1, panel B and E). Nuclei were
stained with DAPI solution. Merge picture is represented in panel C and F. Pictures were
taken by confocal LSM700. Panels are representative of 2 independent experiments.
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Similarly, CrPV capsid staining colocalized with Pastrel aggregates after 24h of
infection by CrPV (MOI 0.01) in Drosophila S2 cells (Figure 55, panel C) and also in the fat
body of infected flies (Figure 55, panel F).

MERGE
-,

I witre

Fat bady from flies infected with CrPy (5 PEU), 3 days p.i.) b il
Figure 55. Pst colocalizes with CrPV capsid staining in S2 cells and in Drosophila fat
body. Drosophila S2 cells were infected with CrPV (MOI 0.01) for 24h. Flies were infected
with CrPV (5 PFU) for 3 days at 25°C and the fat body was dissected for imunostaining.
Drosophila cells and fat body were stained with antibody against Pst (panels A and D) and
CrPV capsid (anti-CrPV-4, panels B and E). Nuclei were stained with DAPI. Merge picture is
represented in panel C and F. Pictures were taken by confocal LSM700. Panels are
representative of 1 experiment.

4.6.d. Does DCV colocalize with lipid droplets ?
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It is known that Flavivirus Hepatitis C Virus (HCV) requires lipid droplets for its
infectious cycle in human hepatocytes. To determine if DCV capsid protein is present at the
surface of lipid droplets, Drosophila S2 cells were treated with oleic acid (400 uM) and
infected with DCV (MOI 1) for 48h. The oleic acid treatment allows to induce the formation
of lipid droplets in cells (Beller et al., 2008). Indeed, we noticed that lipid droplets are small
and not detected in every cell in normal conditions (see Figure 51, panel D), probably
because Drosophila S2 cells are hemocyte-like cells and thereby not specialized for lipid
storage like hepatocyte cells in Humans. Cells were then co-stained with antibody against
DCYV capsid protein (Figure 56, panel A) and Nile Red (Figure 56, panel B). No staining of
DCYV capsid was observed at the surface of lipid droplets (Figure 56, panel C).

MERGE

Figure 56. DCV capsid staining does not colocalize with the surface of lipid droplets in
Drosophila S2 cells. Drosophila S2 cells were treated by oleic acid (400 uM) and infected
with DCV (MOI 1) for 48h. Cells were next stained with antibody against DCV capsid (anti-
DCV-F3, panel A) and then incubated 5 min with Nile Red (1 uM, panel B). Nuclei were
stained with DAPI. Merge picture is represented in panel C. Pictures were taken by confocal
LSM700. Panels are representative of 1 experiment.

We showed above that DCV infects the fat body of flies which is thought to be
homologous to the human liver. The fat body is a lipid storage organ, thus it is more relevant
to see whether DCV, and also Pastrel protein, colocalize with lipid droplets than in
Drosophila S2 cells. We performed a triple labeling of Pastrel protein (Figure 57, panel A),
DCYV capsid (Figure 57, panel B) and lipid droplets (Figure 57, panel C). In the fat body, we
observed that DCV capsid and Pastrel protein colocalize each other and also with small dots

of Nile Red staining, but not with large lipid droplets.
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Drosophila fat body

Figure 57. DCV capsid and Pastrel protein colocalize with some dots of Nile Red
staining, but not with large lipid droplets in the fat body of DCV-infected flies. w***"*
flies were infected with DCV (500 PFU) for 3 days at 25°C. The fat body from W% flies
was next stained with antibody against Pastrel protein (anti-Pst, panel A), DCV capsid (anti-
DCV-1, panel B), DAPI and then incubated 5 min with Nile Red (1 uM, panel C). Merge
picture is represented in panel D. Pictures were taken by confocal LSM700. Panels are
representative of 1 experiment.

We also observed that DCV infection affects the number and the size of lipid droplets
in the regions of the fat body which are highly infected by the virus (Figure 58, panel D). The
lipid droplets are smaller in size compared to regions of the fat body that are not stained with
DCYV antibody. Unexpectidely, it also seems that Pastrel staining is weaker in regions highly
infected with DCV.
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Figure 58. DCV infection affects lipid droplets morphology in the fat body of DCV-
infected flies. w*°" flies were infected with DCV (500 PFU) for 3 days at 25°C. The fat
body from W% flies was next stained with antibody against Pastrel protein (anti-Pst, panel
A), DCV capsid (anti-DCV-1, panel B), DAPI and then incubated 5 min with Nile Red (1
uM, panel C). Merge picture is represented in panel D. Pictures were taken by confocal
LSM700. Panels are representative of 1 experiment.

It may be possible that DCV infection uses lipids stored in lipid droplets, thereby
degrading lipid droplets as illustrated by Figure 59. Whether DCV infection induces lipolysis

remains to be determined.
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Figure 59. DCV seems to induce the degradation of large lipid droplets in the fat body of
DCV-infected flies. w**" flies were infected with DCV (500 PFU) for 3 days at 25°C. The
fat body from W™ flies was next stained with antibody against Pastrel protein (anti-Pst,
panel A), DCV capsid (anti-DCV-1, panel B), DAPI and then incubated 5 min with Nile Red
(1 uM, panel C). Merge picture is represented in panel D. Pictures were taken by confocal
LSM700. Panels are representative of 1 experiment.

4.6.e. DCV infection was not affected by the knockdown of genes
involved in lipid metabolism

Studies conducted on human hepatocytes implicated genes involved in lipid
metabolism as important for the life cycle of HCV. For example, Diacylglycerol
acyltransferase-1 (Dgatl), which generates triglycerides, was reported to direct HCV core
protein and NSS5A to lipid droplets (Camus et al., 2013a; Herker et al., 2010). The tail
interacting protein of 47 kDa (TIP47) was shown to interact with NS5A and facilitate HCV
replication (Ploen et al., 2013; Vogt et al., 2013). TIP47 is a member of the PAT (Perilipin,
ADRP and TIP47) protein family that coat lipid droplets and regulate their biogenesis (Bickel
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et al., 2009; Bulankina et al., 2009). Both Dgatl and Tip47 are conserved in Drosophila.
Thus, we wanted to verify if genes involved in lipid metabolism and identified to be important
for HCV infection in Human, could affect DCV infection in Drosophila S2 cells. The
Drosophila lipase Brummer (Bmm, homolog of Atgl in mammals) and the triglyceride
synthase Midway (mdy, homolog of Dgatl in mammals) are involved in lipolysis and
lipogenesis, respectively (Beller et al., 2008). The knockown of these genes did not affect
DCV RNA level after 16h of infection in Drosophila S2 cells (Figure 60). The knockdown of
Lsd-1 and Lsd-2 (homologs of PAT-domain proteins Adrp and Tip47 respectively) also did
not change DCV RNA level compared to cells treated with dsRNAs against GFP (negative
control) (Figure 60). We observed a significative increase of DCV RNA level when both
Lsd-1 and Lsd-2 were silenced, but the effect was minor compared to the depletion of pastrel.
As mentioned above, this negative result may be related to the fact that S2 cells are

hemocytes, and do not store large quantities of lipids.
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Figure 60. Knockdown of genes involved in lipid metabolism has no effect on DCV
infection in Drosophila S2 cells. Drosophila S2 cells were treated by dsRNAs for 5 days and
next infected with DCV (MOI 1) for 16h. DCV RNA level was measured by qPCR and
normalized to the housekeeping gene RpL32. Bar graphs represent the average standard
deviation of 1 experiment.
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5.1. Correlation between the presence of Nora Virus and the

susceptibility of flies to DCV infection

The analysis of small RNA libraries previously conducted in the laboratory allowed to

identify the presence of Nora Virus in our stocks of yw flies (Figure 61).
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Figure 61. Small RNAs matching with Nora Virus genome sequence were detected in yw
flies. The profile of Nora Virus small RNAs with a peak at 21 nucleotides indicates that
siRNAs are produced in yw flies against Nora Virus genome. Blue and red bars indicate reads
against Nora Virus genome respectively with 2 and 0 mismatches.

Therefore, we wondered whether this virus was widely spread in flies of our
laboratory. We decided to diagnose the presence of Nora virus in our control flies (Table 7).
Interestingly, we noticed that flies with higher sensitivity to DCV infection (Ore-R°", yw,
W% and w''®) were persistently infected by Nora Virus. By contrast, we did not detect
Nora Virus in the Ore-R™" and Canton-S flies which are resistant to DCV infection. The only
exception was DD1 cnbw which was positive for Nora virus even though it is resistant to
DCV infection. We therefore hypothesized that the presence of Nora Virus in flies could

increase their sensitivity to DCV infection.
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SHETE Phenotype with Nora virus detection
DCV (by qPCR)

Ore-RPF Sensitive Yes
Ore-R"! Resistant No
yw Sensitive Yes
w 1118 Sensitive Yes
w A5001 Sensitive Yes
Canton-S Resistant No
DD1cnbw Resistant Yes

Table 7. The presence of Nora Virus in flies correlates with the susceptibility to DCV
infection (except for DD1 cnbw flies (in red) which are resistant to DCV infection but
persistently infected by Nora Virus). Nora Virus RNA level was detected by qPCR from
whole flies.

5.2. Does Nora Virus persistent infection contribute to the

susceptibility of flies to DCV infection ?

To test this hypothesis, we cured Ore-R°" flies from Nora Virus infection. Eggs from

Nora Virus infected Ore-RP™

flies were dechorionated with bleaching solution as previously
described (Habayeb et al., 2009b). As a control, Nora Virus RNA genome was measured in
whole flies, gut and rest of the body of emerged flies (Figure 62). Nora Virus was described
as an enteric virus, which is highly present in the gut (Habayeb et al., 2009b). We expected
that gPCR from gut samples would be more sensitive. Nora Virus RNA level was detected in
Ore-RPF flies, but not Ore-R°F bleached flies and Ore-R™ flies (Figure 62). Nora Virus RNA
level was enriched in gut samples from Ore-R°" flies, but not detected in gut samples from

Ore-RP" bleached flies.
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Figure 62. Nora Virus RNA genome was detected in Ore-R°F samples but not in Ore-R™!
and Ore-RP" bleached samples. Nora Virus RNA genome was detected by qPCR from
whole flies, gut and rest of the bodies from Ore-RJL', Ore-R°F and Ore-R°F bleached flies.
qPCR values were normalized to the housekeeping gene RpL32. Bar graphs represent the
average standard deviation of 1 experiment with duplicates of 10 flies.

Since we showed that bleaching was efficiently clearing Nora Virus infection from
Ore-R" flies, these flies were challenged by DCV infection (500 PFU) to test if absence of
Nora Virus persistent infection impacted their susceptibility to DCV infection (Figure 63).
Ore-R"F bleached flies, cured from Nora Virus infection, showed comparable susceptibility to
DCV infection than Ore-R°" flies, persistently infected by Nora Virus (Figure 63A and 63B).
Susceptibility to DCV infection did not change in next generations after eggs bleaching (data
not shown). To be sure that bleaching of eggs itself did not increase sensitivity of flies to
DCV infection, eggs from Ore-R’™ flies were bleached and emerging flies were also
challenged by DCV. Ore-R*' bleached flies did not show an increased sensitivity to DCV
infection (Figure 63A). Besides, DCV RNA level was measured in flies by qPCR after 3 days
of infection. Ore-R™' flies and Ore-R™' bleached flies had comparable levels of DCV RNA
genome, and it was also the case between Ore-R°" flies and Ore-RP" bleached flies (Figure
63C). DCV RNA level was increased in Ore-R°" flies and Ore-R°" bleached flies compared
to Ore-R™ flies and Ore-R”™ bleached flies. Finally, DCV RNA level in flies correlates with
their susceptibility to DCV infection.
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Figure 63. Ore-R°" bleached flies, cured from Nora Virus infection, are still highly
sensitive to DCV infection, comparable to Nora Virus persistently infected Ore-R"F flies.
A. Ore-R°F, Ore-R™ and respective bleached flies were injected by TRIS (control, empty
symbols) and DCV (500 PFU, filled symbols). Survivals were monitored daily at 22°C. Bar
graphs represent the average standard deviation of at least 3 independent experiments. B.
Nora Virus RNA level was measured by qPCR after 3 days of infection by DCV (500 PFU).
C. DCV RNA level was measured by qPCR after 3 days of infection. For panels B and C,
gPCR values were normalized to the housekeeping gene RpL32. Bar graphs represent the
average standard deviation of 2 independent experiments.

As a further confirmation, reciprocal experiment was performed. Ore-R™ flies, not
infected by Nora Virus, were contaminated with feces from Nora Virus infected Ore-RP™
flies. Ore-R™ flies contaminated by Nora Virus did not present an increased sensitivity to

DCV infection, unlike Nora Virus infected Ore-R°" flies (Figure 64). Nora-contaminated

180



Chapter 5 - Effect of Nora virus on the susceptibility of Drosophila to pathogens

Ore-R™ flies were even slightly more resistant to DCV infection than naive Ore-R™™' flies.
This may be explained by a Drosophila antiviral defense triggered by Nora Virus, which may

impact susceptibility to DCV.
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Figure 64. Ore-R™' flies, contaminated by Nora Virus, are still resistant to DCV
infection, comparable to Ore-R°" flies. Ore-R°", Ore-R™' and Ore-R’™' contaminated flies
were injected by TRIS (control, empty symbols) and DCV (500 PFU, filled symbols).
Survivals were monitored daily at 22°C. Bar graphs represent the average standard deviation
of at least 3 independent experiments.

5.3. Does pastrel affect Nora Virus persistent infection ?

Surprisingly, it seemed difficult to maintain a stable Nora Virus persistent infection in
next generations of Ore-R™™' flies after Nora Virus contamination. It appeared that the first
generation of Ore-R™ flies was infected by Nora virus, although high variation in virus titer
was observed between samples, as described by (Habayeb et al., 2009b), but then Nora Virus
infection tended to be cleared in the next generations (data not shown). Thus, we decided to
decipher if Ore-RP" flies, which carry sensitive alleles of pastrel, may allow a better
proliferation of Nora Virus than Ore-R™' flies, which carry a resistant allele of pastrel. We
therefore contaminated Ore-RP" bleached flies and Ore-R™ flies with Nora Virus and we
compared the level of Nora Virus in both contaminated-Ore-R flies (named parents) and in
the first generation after contamination (F1). Interestingly, we observed that Nora Virus RNA

level in Ore-R™ flies was lower than in Ore-R"" flies after one generation (Figure 65). In
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addition to DCV and CrPV, Ore-R°" flies appear more sensitive to Nora Virus infection

compared to Ore-R™' flies.
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Figure 65. Ore-R"" flies are more sensitive to Nora virus infection compared to Ore-R’"'
flies. Ore-R°F bleached flies and Ore-R™' flies were contaminated with feces from Ore-RP™
flies at 25°C for 5 days. Then, Nora virus RNA level was measured by qPCR in these flies
and also in 4-8days flies from the first generation. Bar graphs represent the average standard
deviation of 1 experiment.

Overall, our data indicate that Nora Virus is not responsible for the differences of
susceptibility to DCV infection between Drosophila strains. However, we uncovered that
Ore-R°F flies, which carry sensitive alleles of pastrel, are more sensitive to Nora Virus

infection, suggesting that pastrel may also control Nora Virus infection.

The group of Dr. Dominique Ferrandon got interested in this work as they study the
effect of intestinal pathogens on the gut. As we hypothesized for DCV infection, we started a
collaboration to test if the presence of Nora Virus may impact intestinal infections by
pathogenic gram-negative bacteria. Interestingly, it came out that Nora Virus increases the
sensitivity of flies to Pseudomonas aeruginosa (PA14) and Serratia marcescens. They also
observed an increased renewal of intestinal epithelium in Nora Virus persistently infected

flies.
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6.1. Broad RNA interference-mediated antiviral immunity in

Drosophila (Kemp et al, 2013)

In the beginning of my thesis, the siRNA pathway was reported by many groups
including ours to be involved in the control of infections by RNA viruses. However, it was
unknown whether the siRNA pathway can control a DNA virus infection. This question had
been adressed by a post-doctoral fellow in the laboratory and I contributed to this project
during my PhD thesis. I observed that Dcr-2 mutant flies (Dcr-271% infected with the DNA
virus IIV-6 display an increased susceptibility and a higher viral titer compared to control
flies. Accordingly, flies mutant for another null allele of Der-2 (Der-2"8%) were highly
sensitive to IIV-6 infection and the sensitivity was rescued in mutants carrying a transgene of
the genomic region of wild-type Dcr-2. Flies mutants for other components of the siRNA
pathway, R2D2 and AGO2, displayed an increased sensitivity to IIV-6 infection. In
collaboration with the group of Dr. Sébastien Pfeffer, I constructed a small RNA library from
flies and cells infected with IIV-6, allowing the identification of IIV-6-derived siRNAs. V-
siRNAs were predominantly of 21 nts, indicating that they are generated by Dcr-2. Indeed,
they were not detected in Dcr-2 mutant flies. Surprisingly, we noticed that v-siRNAs were not
uniformly distributed along the viral genome, but rather hot spots of v-siRNAs were observed
along the viral genome. Dr. Simona Paro showed that these hot spots are correlated with
convergent transcription occuring in these regions. Overall, these data indicate that the siRNA
pathway is a broad antiviral defense mechanism, controlling infections by RNA viruses, but
also a DNA virus. These results were recently published in the paper hereafter, in the Journal

of Immunology.
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The Journal of Immunology

Broad RNA Interference-Mediated Antiviral Immunity and
Virus-Specific Inducible Responses in Drosophila

Cordula Kemp,*’1 Stefanie Mueller,*’l’2 AKkira Goto,* Vincent Barbier,* Simona Paro,*
Francois Bonnay,* Catherine Dostert,* Laurent Troxler,* Charles Hetru,* Carine Meignin,*
Sébastien Pfeffer,” Jules A. Hoffmann,* and Jean-Luc Imler**

The fruit fly Drosophila melanogaster is a good model to unravel the molecular mechanisms of innate immunity and has led to
some important discoveries about the sensing and signaling of microbial infections. The response of Drosophila to virus infections
remains poorly characterized and appears to involve two facets. On the one hand, RNA interference involves the recognition and
processing of dsRNA into small interfering RNAs by the host RNase Dicer-2 (Dcr-2), whereas, on the other hand, an inducible
response controlled by the evolutionarily conserved JAK-STAT pathway contributes to the antiviral host defense. To clarify the
contribution of the small interfering RNA and JAK-STAT pathways to the control of viral infections, we have compared the
resistance of flies wild-type and mutant for Dcr-2 or the JAK kinase Hopscotch to infections by seven RNA or DNA viruses
belonging to different families. Our results reveal a unique susceptibility of 7op mutant flies to infection by Drosophila C virus and
cricket paralysis virus, two members of the Dicistroviridae family, which contrasts with the susceptibility of Dcr-2 mutant flies to
many viruses, including the DNA virus invertebrate iridescent virus 6. Genome-wide microarray analysis confirmed that different
sets of genes were induced following infection by Drosophila C virus or by two unrelated RNA viruses, Flock House virus and
Sindbis virus. Overall, our data reveal that RNA interference is an efficient antiviral mechanism, operating against a large
range of viruses, including a DNA virus. By contrast, the antiviral contribution of the JAK-STAT pathway appears to be virus

specific. The Journal of Immunology, 2013, 190: 650-658.

iruses represent an important class of pathogens, causing
serious concern for human health, as well as important
economic losses in crops and animals. Because they
replicate inside cells, and rely for the most part on host cell mo-
lecular machineries for their replication, viruses pose specific
challenges to the immune system. Two major strategies of antiviral
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resistance have been described. In mammals, viral infection is first
detected by pattern recognition receptors of the Toll- and RIG-1-
like families that sense the viral nucleic acid and trigger the in-
duction of IFNs and other cytokines (1). These factors activate
the production of antiviral molecules, such as protein kinase R
or oligo-2', 5’-adenylate synthetase, that contain the infection and
contribute to the activation of the adaptive immune response (2).
In plants, viral nucleic acids are recognized by enzymes of the
Dicer family, which produce small interfering RNAs (siRNAs) of
21-24 nucleotides. These siRNAs are then loaded onto molecules
of the Argonaute (AGO) family and will guide them toward RNAs
with complementary sequences; targeted RNAs are then either
sliced by AGO, or their translation is inhibited. This RNA in-
terference (RNAi) mechanism provides efficient and sequence-
specific protection against viral infections (3).

RNAI also plays an important role in the control of viral in-
fections in insects, as shown by the production of virus-derived
siRNAs in infected flies, and the increased susceptibility to viral
infection of Drosophila mutants for the genes Dcr-2 and AGO2
(3-6). In addition, several reports indicate that an inducible re-
sponse also contributes to the control of viral infections (7-15).
We previously showed that infection with Drosophila C virus
(DCV), a member of the Dicistroviridae family, leads to induction
of some 130 genes (11). Analysis of the regulation of one of these
genes, vir-1, revealed the presence of functionally important
binding sites for the transcription factor STAT in its promoter. The
induction of vir-1, as well as several other DCV-induced genes,
was found to be dependent on the gene hopscotch (hop), which
encodes the only JAK kinase in Drosophila. Furthermore, hop
mutant flies succumb more rapidly than do wild-type controls,
with a higher viral load, to DCV infection (11). The Toll and
immune deficiency (Imd) pathways, initially characterized for
their role in the control of bacterial and fungal infections, were
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also thought to play a part in the control of viral infections.
Whereas the Toll pathway was associated with resistance to the
Drosophila X virus (DXV) (15), the Imd pathway was implicated
in the control of Sindbis virus (SINV) (7) and cricket paralysis
virus (CrPV) (9).

Altogether, the data in the present literature point to the in-
volvement of both RNAi and an inducible expression of effector
molecules to counter viral infections in insects (5, 16). However,
whereas RNAi was shown to contribute to resistance to several
RNA viruses (with either single-stranded genomes of both polar-
ities or double-stranded genomes), most studies on the inducible
response have so far focused on a single virus. As a result, the
global significance of the inducible response for the control of
viral infections remains poorly understood. In particular, it is
unclear at present if the JAK-STAT pathway is involved in a
general antiviral response, providing broad antiviral immunity, or
if it acts specifically on a critical step in the replication cycle of a
specific virus or virus family. To address this important question,
we have compared the resistance of a mutant for the JAK-STAT
pathway to infection by seven RNA or DNA viruses. We find that
hop mutant flies are more susceptible than wild-type controls to
infections by the Dicistroviridae DCV and CrPV, but exhibit either
no or a weak phenotype for other viruses, suggesting that the
JAK-STAT pathway—dependent inducible response is virus spe-
cific. Genome-wide transcript profiling shows that infection by
two other RNA viruses, Flock House virus (FHV; Nodaviridae)
and SINV (Alphaviridae), leads to upregulation of =400 genes,
which only partially overlap with those induced by DCV. Overall,
our data indicate that the siRNA pathway exerts broad antiviral
activity and affects both RNA and DNA viruses, with virus-
specific inducible responses contributing to the control of viral
infections in Drosophila.

Materials and Methods
Fly strain culture and infection

Oregon-R (OR) and yw were used as wild-type control flies. The hop™¥"!,

Der-2M15X and Der-2"*1%% mutant flies were previously described (17—
19). A genomic rescue of the Dcr-2 gene was established with the Fosmid
FlyFos017074 (transgeneome.mpi-cbg.de) inserted at the landing site
attP40 (2L), and the transgenic chromosome was recombined with the
deficiency Df(2R)BSC45, which uncovers the Dcr-2 locus. For the rescue
experiments, Dcr-2 mutants were crossed with the deficiency Df(2R)
BSC45 or the Df(2R)BSC45-Dcr-2 rescue line. Flies were fed on standard
cornmeal-agar medium at 25°C. All fly lines were tested for Wolbachia
infection and cured whenever necessary. Viral stocks were prepared in 10
mM Tris-HCI, pH 7.5, with the exception of vesicular stomatitis virus
(VSV), which was used directly from Vero cell culture supernatant [VSV
4 X 10° PFU/ml; DCV 5 X 10'° PFU/ml; CrPV 1 X 10° PFU/ml; FHV
5.5 X 10° PFU/ml; DXV 4.4 X 107 PFU/ml, invertebrate iridescent virus
type 6 (IIV-6) 4.4 X 10'" PFU/ml; and SINV 5 X 10® PFU/ml]. Infections
were performed with 4- to 6-d-old adult flies by intrathoracic injection
(Nanoject II apparatus; Drummond Scientific) with viral particles, indi-
cated in the figure legends. Injection of the same volume (4.6 nL) of 10
mM Tris-HCI, pH 7.5, was used as a control. For bacterial infection, flies
were pricked with a thin needle previously dipped in a concentrated
overnight culture of Escherichia coli and Micrococcus luteus in Luria—
Bertani medium. Infected flies were then incubated at room temperature,
or at 29°C in the case of hop™ """ and the corresponding control flies,
and monitored daily for survival, or frozen for RNA isolation and virus
titration at the indicated time points.

Cell culture and virus titration

Vero R cells were grown in DMEM (Invitrogen) supplemented with 10%
FCS (Biowest), penicillin/streptomycin (Invitrogen), nonessential amino
acid mix (Invitrogen), 10 mM pyruvate (Life Technologies), and 200 mM L-
glutamine (Invitrogen). Kc167 and S2 cells were grown in Schneider’s
medium (Biowest) supplemented with 10% FCS, GlutaMAX (Invitrogen),
and penicillin/streptomycin (100X mix, 10 mg/ml/10,000 U; Invitrogen).
VSV and SINV were titrated from infected flies by plaque assay on Vero R
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cells. DCV, CrPV, FHV, and IIV-6 were titrated on Kc167 (DCV, CrPV,
and FHV) or S2 (IIV-6) cells by the Reed-Muench method to calculate
50% tissue culture—infective dose and converted to PFU with a conversion
factor of 0.7.

RNA analysis

Total RNA from infected flies was isolated using TRI Reagent RT bro-
moanisole solution (MRC), according to the manufacturer’s instructions.
Total RNA, 1 g, was reverse transcribed using iScript cDNA Synthesis
Kit (Bio-Rad). The reverse transcription was run in the T3000 Thermo-
cycler (Biometra), with the following PCR program: step 1: 65°C for 5
min, step 2: 4°C for 5 min, step 3: 25°C for 10 min, step 4: 42°C for 60
min, and step 5: 70°C for 15 min. A total of 100 ng cDNA was used for
quantitative real-time PCR, using the iQ Custom SYBR Green Supermix
Kit (Bio-Rad). The PCR was performed using the CFX384 Real-Time
System (Bio-Rad) with the following program: step 1: 95°C for 3 min,
step 2: 95°C for 10 s, step 3: 55°C for 30 s, repeated 39 times from step 2.
Primers used for qPCR were as follows: RpL32 (forward 5'-GACGCTTC-
AAGGGACAGTATCTG-3'; reverse 5'-AAACGCGGTTCTGCATGAG-3'),
vir-1 (forward 5'-GATCCCAATTTTCCCATCAA-3'; reverse 5'-GATTAC-
AGCTGGGTGCACAA-3"), drosomycin (forward 5'-CGTGAGAACCTT-
TTCCAATATGATG-3'; reverse 5'-TCCCAGGACCACCAGCAT-3"), and
diptericin (forward 5'-GCTGCGCAATCGCTTCTACT-3'; reverse 5'-
TGGTGGAGTGGGCTTCATG-3"). Turandot M (TotM), upd, upd2, and
upd3 expression levels were quantified using the Brilliant II QRT-PCR
Core Reagent Kit, 1-step (Stratagene). The reaction took place in a total
volume of 20 pl, using the Tagman Gene Expression Assay [TotM
(Dm02362087 s1), upd (os) (Dm01843792_g1), upd2 (Dm01844134 gl),
upd3 (custom-designed upd3exon2-ANY), and RpL32 (Dm02151827 gl),
all from Applied Biosystems]. We used the 7500 Fast Real-Time PCR
System (Applied Biosystems) with following PCR program: step 1: 45°C for
30 min, step 2: 95°C for 10 min, step 3: 95°C for 15 s, step 4: 60°C for
1 min, repeated 39 times from step 3. In all cases, gene expression was
normalized to the ribosomal protein gene RpL32.

For IIV-6, the expression of the annotated genes 206R, 224L, 244L, and
261R was assessed by strand-specific RT-PCR. We used SuperScript III
Reverse Transcriptase specifically adapted for gene-specific priming and
followed the manufacturer’s protocol (Invitrogen). Briefly, primer pairs
were designed to amplify regions of the IIV-6 genome exhibiting or not
exhibiting a high density of small RNA reads. Total RNA,1 g, extracted
from infected S2 cells was reverse transcribed with 2 pmol of either for-
ward (F) or reverse (R) primer and 200 U of SuperScript III Reverse
Transcriptase. The reaction was then incubated for 1 h at 55°C. Then 1 pl
of the resulting cDNA was used to perform 25 cycles of PCR, using Taq
DNA polymerase (Invitrogen) and both F and R primers. The primer pairs
were as follows: 206R (forward: 5'-AAGGAAAGTGGCGAGTACGA-3',
reverse 5'-AACAAACCCGTTTTCTTCCA-3'); 224L (forward: 5'-CCACC-
ATCACATTGACCTTG-3', reverse: 5'-ATAAGCGAACCCGAAATCA-3');
244L (forward: 5'-TGGAAAAGAGTGGTCCCATTT-3', reverse: 5'-TGT-
ACCTCCCGGAAGATTT-3'); 261R (forward: 5'-CAGCCCCATCCGAAT-
TACTA-3', reverse: 5'-CTGCAACTGCAGAAATTTGA-3"). The PCR bands
were sequenced to verify their viral origin.

Statistical analysis

An unpaired two-tailed Student ¢ test was used for statistical analysis of
data with GraphPad Prism (GraphPad Software). The p values < 0.05 were
considered statistically significant. Survival curves were plotted and ana-
lyzed by log-rank analysis (Kaplan-Meier method) using GraphPad Prism
(GraphPad Software).

DNA microarray analysis

For each sample, Tris-injected, DCV-infected (11), and FHV- and SINV-
infected, three biologically independent samples comprising 45 male
Oregon-R flies were used. RNA extraction, biotinylation, and hybridization
to Affymetrix Drosophila GeneChip microarrays (Affymetrix) were per-
formed as described (20). The Affymetrix Microarray Suite 5.0 (Affy-
metrix) or Excel (Microsoft) with a combination of built-in functions and
custom formulae was used for data analysis. Raw data were sorted with the
“absent-marginal-present flags” generated by the Microarray Suite func-
tions. Although an absent flag might indicate that no mRNA of a particular
type was present in a sample, marginal flags and absent flags may indicate
problems with the hybridization; therefore, only data points marked as
present in at least one replicate were retained. The remaining data mass
for each microarray was then normalized to itself, making 1 the median
of all the measurements. A gene was considered induced if present in at
least one replicate, with a virus/Tris ratio higher than 2 for at least one of
the time points. Classification of gene functions was analyzed by David
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Bioinformatics Resources 6.7 (21). The data set for FHV and SINV was which is characteristic of the accumulation of iridescent viral

SII’bmi,t}tfd “/) thi G?'Le prress%?" Om“ill:us gggg?;iz(hnp:” www.nebi.  particles, than in wild-type controls (Fig. 1A). Der-2~~ flies were
nim.nih.gov/geo/) with the accession number ) significantly more susceptible to IIV-6 infection than were the
Assembly, sequencing, and analysis of small RNA libraries corresponding wild-type (Fig. 1B). A fraction of Der-2~"" flies

The small RNA library of S2 cells and whole flies was constructed as injected with buffer also died in the course of the experiment,

described (22) and sequenced by the Illumina 2G Analyzer. Reads were confirming the increased sensitivity to stress associated with
then aligned to a reference consisting of the IIV-6 genome from the Na- mutations of the siRNA pathway (31). The decreased survival
tional Center for Biotechnology Information (accession code NC_003038) time correlated with a 20-fold increased viral load in Dcr-2 mutant

using the Bowtie program with standard parameters in genome assembly. flies at 10 d postinfection (dpi) (Fig. 1C). Similar results were
Reads aligning to the IIV-6 genome with a maximum of one mismatch were ) PO (dpi) (Fig. )- co

retained and analyzed using in-house Perl scripts and Excel. Sequences were obtained Whefl .a_ different null allele of Dcr-2 Was'used’ and the
submitted to the National Center for Biotechnology Information Small Read IIV-6 susceptibility phenotype was rescued by a wild-type geno-
Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?) under the acces- mic Dcr-2 transgene (Fig. 1D). The r2d2~"" and AGO2™"" null
sion number GSE41007. mutant flies also exhibited increased sensitivity to IIV-6 (Fig.
Result: 1E). AGO2™'~ flies contained more viral DNA than did wild-type

esp S . = L . controls, confirming that this gene participates in the control of
RNAi provides broad antiviral protection in Drosophila infection (Fig. 1F).

Several independent studies, including our own, have established We next sequenced small RNA libraries prepared from IIV-6—
that RNAI, and more precisely the siRNA pathway, serves as an infected S2 cells or adult flies. We observed several hundreds of
efficient host defense against RNA viruses. These include viruses thousands of reads matching the IIV-6 genome in both infected S2

with a single-stranded genome of both (+) and (—) polarity and cells and wild-type flies, but not in control noninfected S2 cells
dsRNA viruses (23-30), and we confirmed that flies mutant for (Supplemental Table I). The large majority of these reads had a
Dcr-2 died more rapidly than wild-type controls when they were size of 21 nucleotides, which is characteristic for processing by
infected with DCV, CrPV, FHYV, SINV, VSV (Rhabdoviridae), and the RNase Dicer-2 (Dcr-2). This peak was absent from the library
DXV (Birnaviridae) (data not shown). Next, we addressed the prepared from infected Der-277" mutant flies (Fig. 2A). These
question whether the siRNA pathway also participated in the data indicate that Dcr-2 generates 21-nucleotide ITV-6—derived

control of a DNA virus infection, and infected wild-type and RNAi siRNAs in infected flies, and raise the question of the nature of the
mutant flies with IIV-6 (Iridoviridae). Infection of Dcr-2 mutant substrate used by Dcr-2 in the context of this infection. As pre-
flies led to a more rapid and intense appearance of blue color, viously reported for RNA viruses, the number of reads matching
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FIGURE 1. Dcr-2 is involved in host defense against the DNA virus IIV-6. (A) Upon injection of IIV-6 (5000 PFU) in wild-type (yw) and Der-27/%%
mutant flies, typical blue paracrystalline structures appeared earlier in the abdomen (arrowhead) of the mutant flies. Representative individuals 10 dpi are
shown. (B) Groups of 20 wild-type (yw) or Der-28% mutant flies were injected with ITV-6 or Tris, and survival was monitored daily. The difference
between the wild-type and Der-2 mutant flies is statistically significant. (C) Viral titer in groups of five wild-type (yw) or Der-22% mutant flies was
monitored 10 dpi. (D) Rescue of the hemizygous Dcr-25""F% for the 11V-6 susceptibility phenotype by a transposon expressing a wild-type Dcr-2
transgene. Der-255115% hemizygous flies (Der-25517X/Df) are significantly more susceptible than Der-25""%% hemizygous flies complemented by a wild-
type Dcr-2 transgene (Der-28115XDf rescue). Df is Df(2R)BSC45, a deficiency that fully uncovers the Dcr-2 locus. All control and genomic rescued flies
are in CantonS background. (E) Survival rate of wild-type (yw), R2D2’, and AGO2*'* mutant flies upon IIV-6 or Tris injection. (F) IIV-6 DNA load was
determined by quantitative PCR in four groups of six flies of the indicated genotype at 10 dpi. For all panels, the data represent the mean and SD of at least
three independent experiments, and the difference between controls and mutant flies is statistically significant. *p < 0.05, **¥p < 0.001. All experiments
are performed at 22°C (A, C, F) or 25°C (B, D, E).
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FIGURE 2. Virus-derived siRNAs in S2 cells and Drosophila adult flies infected by the DNA virus IIV-6. RNA was extracted 5 dpi from S2 cells infected
by IIV-6 (MOI 0.01) and adult wild-type (yw) or mutant (Der-2R19%) flies injected with IIV-6 (5000 PFU per fly). (A) Size distribution of the small RNAs
matching the viral genome in S2 cells and adult flies of the indicated genotype. (B and C) Distribution of the 21-nucleotide siRNAs from the S2 cell (B) and
yw adult fly (C) libraries along the ITV-6 genome. Each IIV-6—derived small RNA is represented by the position of its first nucleotide. The IIV-6—derived
small RNAs matching the upper and lower strand of the DNA genome are respectively shown above (positive reads number) and below (negative reads
number) the horizontal axis, which represents the 212482bp genome. In (B), the number of reads for four peaks going off-scale is indicated next to them, in
italics. (D) Strand-specific RT-PCR with primers corresponding to the annotated viral genes 206R, 224L, 244L, and 261R. The experiment was performed in
the presence (+) or absence (—) of RT. NI, Noninfected; F and R, forward and reverse strand primer used for reverse transcription.

each strand of the viral genome was very similar (Supplemental
Table I). However, unlike RNA viruses, the virus-derived siRNAs
were not uniformly distributed along the viral genome. Rather,
several hotspots were observed, revealing that specific regions of
the viral genome generate the siRNAs (Fig. 2B, 2C). These peaks
do not correlate with the intensity of transcription of the viral
genome, and some highly transcribed regions are located in areas
not generating significant levels of siRNAs (32). The strong
symmetry of the peaks observed in S2 cells and wild-type flies
suggests that these regions are transcribed on both strands and
generate dsRNA. Indeed, we could detect bidirectional transcrip-
tion in the areas of the viral genome covered by the peaks (Fig.
2D). By contrast, transcription of only one strand of the DNA
genome was detected for the locus 261R, which is located in
a region that does not produce significant amounts of siRNAs.
Overall, these results indicate that the siRNA pathway in Dro-
sophila can also protect against a DNA virus infection.

The JAK kinase Hopscotch does not confer broad antiviral
immunity

To test the contribution of the JAK-STAT pathway in antiviral
immunity in Drosophila, we injected loss-of-function mutants of
the JAK kinase Hopscotch (hop™*®™"") with different ssRNA,
dsRNA, and DNA viruses. As previously described, hop™3&/msvi

mutant flies die more rapidly than do wild-type controls following
DCV infection, and contain ~10-fold more virus (Fig. 3A). By
contrast, we did not observe significant differences in survival
between wild-type and hop™?*"*! mutant flies upon infection
with the alphavirus SINV (Fig. 4A), and the viral titers 2 dpi were
not significantly different in wild-type and hop™ ¥’ mutant
flies (data not shown), indicating that the JAK-STAT pathway does
not contribute to resistance to this virus. The hop™**"™"" mutant
flies, as well as wild-type flies, also resisted infections by the
rhabdovirus VSV and by the nodavirus FHV (Fig. 4B, 4C). A
slight reduction in survival was observed in the case of the dSRNA
virus DXV (Birnaviridae) and the DNA virus IIV-6 (Fig. 4D, 4E).
However, the difference between wild-type and hop™**™*! mutant
flies was only statistically significant in the case of DXV infection.
Furthermore, we did not observe statistically significant differences
in the DXV and IIV-6 viral titers in wild-type and hop™?% ™"/
mutant flies in the format of our assays (data not shown).
Opverall, our data indicate that the JAK-STAT pathway is critical for
host defense against DCV, but plays a minor role for DXV and IIV-6
and is essentially dispensable in the case of FHV, SINV, and VSV. We
therefore tested CrPV, another member of the Dicistroviridae family
known to infect Drosophila. We observed a decrease in survival
and a significant increase in viral titers in CrPV-infected hop™*%ms"/
mutant flies compared with wild-type flies (Fig. 3B). In conclusion,
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FIGURE 3. The JAK kinase Hopscotch is involved in host defense against DCV and CrPV. (A and B) Groups of 20 wild-type (OR) or hopscotch (hop™"™>!)
mutant flies were injected with DCV (500 PFU) (A) or CrPV (5 PFU) (B), and survival was monitored daily. The experiment was repeated three times, and
data represent the mean and SD. In the right panels, viral titer was determined in groups of five flies 2 dpi for DCV (A) and 1 dpi for CrPV (B). The data
represent the mean and SD of three independent experiments, and the difference between wild-type and hop mutant flies is statistically significant. *p <
0.05, **p < 0.01, ***p < 0.001. (C) DCV and CrPV infection triggers induction of the genes upd2 and upd3, which encode cytokines activating the
JAK/STAT pathway. Flies were infected with DCV or CrPV, and expression of upd, upd2, and upd3 was monitored in groups of 10 flies at the indicated

time points by Tagman quantitative PCR. The results of at least two independent experiments are shown.

our data indicate that the JAK-STAT pathway in Drosophila confers
protection against some viruses—in particular, the Dicistroviridae—
but does not provide broad antiviral immunity.

Inducible gene expression in FHV- and SINV-infected flies

The above results raised the question of whether an inducible
response contributes to host defense against viruses other than
DCV and CrPV. We therefore conducted a genome-wide micro-
array analysis using Affymetrix DNA microarrays to monitor gene

expression in flies infected by FHV (2 and 3 dpi) or SINV (4 and 8
dpi), and compared the data with those obtained for DCV infection
(1 and 2 dpi). The time points for this analysis were chosen to take
into account the different kinetics of replication and colonization
of Drosophila by the different viruses (11, 24). For each virus, we
observed a large overlap between the genes induced at the first and
second time points. We then pursued our analysis, focusing on the
genes induced either at the first or at the second time point. The
microarray data revealed that 487 and 201 genes were induced or
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FIGURE 4. Susceptibility of flies mutant for the JAK kinase Hopscotch to infection by SINV, VSV, FHV, DXV, and IIV-6. Groups of 20 wild-type
(OR) or hop mutant flies were injected with SINV (A), VSV (B), FHV (C), DXV (D), or ITIV-6 (E), and survival was monitored. For VSV and SINV, the Tris
buffer control injection is also shown, because hop mutant flies exhibited decreased survival at 29°C after day 16 upon both buffer and virus injection.
Kaplan—Meier analysis of the results of at least two independent experiments reveal a statistically significant difference in survival between wild-type and
hop mutant flies only in the case of DXV. *p < 0.05.
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FIGURE 5. Microarray analysis of gene induction following infection by DCV, FHYV, or SINV. (A) Venn diagram showing the number of upregulated
genes (by a factor of at least 2) following infection by the three viruses. The total number of genes regulated by each virus is indicated in parentheses. (B)
FHV and SINV induce members of the same gene families, but FHV triggers a stronger response. The numbers of genes belonging to seven gene ontology
functional categories induced by both FHV and SINV or by FHV only are shown. (C) Expression of vir-1 and TotM by quantitative PCR normalized for the
expression of the housekeeping gene RpL32. Groups of 10 wild-type (OR) flies were injected with Tris buffer or the viruses DCV, CrPV, FHV, SINV, VSV,
DXYV, or IIV-6 or pricked with a needle dipped in a concentrated pellet of the Gram-positive bacterium M. luteus and the Gram-negative bacterium E. coli.
RNA was extracted at 6 h, 1 d, 2 d, 3 d, and 4 d after challenge. The data represent the mean and SEs of at least two independent experiments. The p values
were calculated for each time point individually versus the Tris-injected control. *p < 0.05, **p < 0.01, ***p < 0.001.

upregulated by a factor of at least 2 upon infection by FHV and
SINV, respectively. When analyzed with the same criteria, 166
genes were induced by DCV (Fig. 5A, Supplemental Table II).

The data of this transcriptomic analysis call for two comments.
First, we note that 42 genes were induced by all three viruses
(Fig. 5A). We compared this set of genes with microarray studies
performed on flies infected by fungi and bacteria (both extra- and
intracellular) to identify a potential signature specific for viral
infections (Supplemental Table III). We observed that a number of
genes, such as Frost, are upregulated similarly by all types of
infections, suggesting that they are induced by the stress of the
infection, rather than by recognition of specific characteristics
of the infecting microorganism. Of interest, other genes, such as
Vago, Obp99b, Mal-Bl, Nmdal, CG8147, CG1572, 1(2)gdl,
CG14906, CG10911, and Tsp42EI, appear to be induced only in
response to viral infections, and may represent the core of an
inducible antiviral gene expression program. The case of Obp99b
is particularly striking, as this gene is strongly upregulated by
FHYV, SINV, and DCV, but inhibited following other types of in-
fection. Clearly, the regulation and function of this molecule
deserves further investigation. The genes CG4680, Eip75B, Sp7,
and CG10916 are induced both by the viruses and by the intra-
cellular bacterium Listeria (33), suggesting that they may partic-
ipate in the defense against intracellular intruders (Supplemental
Table III).

A second comment is that the majority of upregulated genes are
induced by only one or two of the viruses, revealing virus-specific
responses. Of interest, 84% of the genes upregulated by SINV
are also induced by FHYV, pointing to a strong similarity between
the responses to the two viruses. FHV induced a higher number of
genes than did Sindbis virus, and only 34% of the genes induced by

FHV are also induced by SINV (Fig. 5A). It is intriguing, though,
that many of the genes induced solely by FHYV, but not by SINV,
are members of the same gene families as the genes coinduced by
both FHV and SINV. This peculiarity underlines the basic simi-
larities between the transcriptional response to the two viruses. In
addition, several genes associated with cell death are induced by
FHV, but not SINV, which may reflect the higher virulence of
FHV (Fig. 5B, Supplemental Tables II, III). Only 22% and 16% of
the genes induced by SINV and FHV, respectively, are also in-
duced by DCV, indicating that DCV, on one hand, and FHV and
SINV, on the other hand, trigger different inducible responses
(Fig. 5A). We did not detect in our microarrays expression of the
genes encoding the unpaired (Upd) cytokines, which activate the
JAK-STAT pathway in Drosophila. However, quantitative RT-PCR
analysis revealed that upd2 and upd3, but not upd, are induced or
upregulated following DCV and CrPV infection (Fig. 3C).

Virus-specific pattern of gene induction

To further characterize the transcriptional response triggered by
different viruses, wild-type flies were injected with DCV, CrPV,
FHV, SINV, VSV, DXV, and IIV-6, and gene induction was
measured at 6 h postinfection and 1, 2, 3, and 4 dpi. Gene ex-
pression was monitored by quantitative RT-PCR, which provides
a more accurate quantification of gene expression than does hy-
bridization to short oligonucleotide probes on microarrays (34). We
monitored expression of the DCV-induced gene vir-1 (11) and of
TotM, which, according to the microarrays, is induced by FHV and
SINV infection. We confirmed the induction of vir-I by DCV and
FHV (11) and detected a milder but significant induction of this
gene by CrPV infection. By contrast, no induction of vir-1 by
SINV, VSV, DXV, and IIV-6 was observed (Fig. 5C). For TotM,
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we confirmed the induction by FHV at different time points. In
addition, we observed that TorM expression was significantly in-
duced by DCV at late time points of infection (4 dpi). We note that
induction of TorM by SINV, VSV, and DXV was 10-20 times
stronger than the induction by FHV (Fig. 5C). The DNA virus IIV-
6 did not induce TotM at any measured time point. Interestingly,
we observed different profiles for vir-1 and TotM induction after
viral challenge. Overall, the viruses that kill wild-type flies rapidly
(within 10 d), such as DCV, CrPV, and FHV, were potent inducers
of vir-1, whereas less pathogenic viruses, such as SINV, VSV, and
DXV, did not induce vir-1. The opposite trend was observed for
TotM, which was most potently induced by SINV, VSV, and DXV.
The different pattern of induction of vir-1 and TotM suggests that
the two genes may be regulated differently, even though both were
previously shown to be regulated by the JAK-STAT pathway (11,
17). Indeed, the MAP3K MEK kinase 1 (MEKKI1) and the Imd
pathways are also known to contribute to the induction of TotM
induction in some contexts (17, 35).

Some antimicrobial peptide genes were also upregulated ac-
cording to the microarrays, suggesting an overlap between antiviral
immunity and antibacterial-antifungal defenses. We observed an
enrichment for genes regulated by the Toll pathway [e.g., the
cytokine Spaetzle (Spz) and the antifungal peptides Drosomycine
(Drs) and Metchnikowine (Mtk)] in the DCV-specific set of genes
(Supplemental Table IT). We also noted an enrichment of Imd
pathway-regulated genes, such as the antibacterial peptides Attacin-
A and -C, Diptericin-B, and the transcription factor Relish, in
the genes upregulated by both DCV and FHV. However, when ex-
pression of diptericin and drosomycin—two markers of activation
of the Imd and Toll pathways, respectively—was monitored by
quantitative RT-PCR, none of the viruses triggered an induction
comparable to that of bacterial and fungal infections, although the
wounding associated with the injection procedure clearly led to
some expression of the genes (Supplemental Fig. 1).

Discussion

We have investigated the involvement of RNAi and the evolu-
tionarily conserved JAK-STAT signaling pathway in the resistance
to a panel of seven viruses representing several important families,
including the arboviruses SINV and VSV. Our data provide a
contrasting picture: on the one hand, a broad antiviral immunity
based on RNAI contributing to the defense against both RNA and
DNA viruses, and on the other hand, a virus-specific transcriptional
response involving the JAK-STAT pathway but playing a critical
role only in the case of Dicistroviridae infection.

RNAi protects against a DNA virus infection

The present study extends work from several groups, including our
own, showing that flies mutant for the siRNA pathway are more
sensitive than wild-type flies to a large panel of RNA viruses, and
reveals that Der-2 is also required for the control of the DNA virus
IIV-6. We note, however, that the increase of viral titer in siRNA
pathway—mutant flies is not as strong as in the case of some RNA
viruses [e.g., VSV (25)]. This finding could reflect either the ex-
pression of a viral suppressor of RNAi by IIV-6 or the fact that
only a portion of the viral genome is targeted by siRNAs. Indeed,
this virus encodes an RNaselll enzyme, which could cleave
siRNA duplexes, as previously reported in plants infected by the
sweet potato chlorotic stunt virus (36). The involvement of Dcr-
mediated immune responses against DNA virus infections was
previously noted in plants, in which secondary structures in the
transcribed viral RNAs, or dsRNAs formed from overlapping bi-
directional transcripts, can be processed into siRNAs (37, 38).
Production of dsRNA from DNA viruses also occurs in animal
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cells, as demonstrated by the critical role played by the dsSRNA
receptor TLR3 in the sensing of herpesvirus infection in mammals
(39, 40). Our data are consistent with a model whereby dsRNA
generated from convergent transcription of the ITV-6 genome is
processed by Dcr-2 and triggers RNAi. Thus, we conclude that
RNAI provides an efficient and highly specific RNA-based de-
fense against many types of viruses in Drosophila and probably
other insects. This conclusion parallels the situation described
in plants. The vertebrates, which largely rely on the induction of
IFNs to counter viral infections, appear to be the exception among
multicellular organisms (1). Of interest, however, the DExD/H
box helicase domains found in Dcr enzymes and RIG-I-like
receptors, which sense the presence of viral RNAs in cells infected
by RNA and DNA viruses, are phylogenetically related (10). This
finding suggests that an essential domain of a core molecule from
the ancestral antiviral response, RNA silencing, was at some point
recruited to sense viral RNAs in vertebrates and to subsequently
activate a signaling pathway leading to production of IFNs.

Virus-specific induced gene expression in Drosophila

Microarrays are powerful tools to monitor the global transcriptome
of infected cells and compare the response to different infections.
Despite its limitations for accurate measurements of the magnitude
of expression changes, this technology provides useful information
on changes in gene expression (34). In this article, using whole-
genome Affymetrix microarrays to analyze the transcriptome of
flies infected by DCV, FHYV, or SINV, we report the existence of virus-
specific responses to infection. These results are in keeping with
a previous study pointing to autophagy as an antiviral defense
mechanism against VSV, but not DCV, infection (14). The three
viruses we used belong to different families and present different
characteristics that make them valuable for the current study. For
example, 1) DCV and FHV replicate rapidly and kill Drosophila
upon injection, whereas SINV does not at the dose used (11, 24); 2)
DCV is a natural pathogen of Drosophila, whereas FHV and SINV
have not been found in wild Drosophila populations (41); 3) FHV
and DCV possess, respectively, a strong and moderate viral sup-
pressor of RNAi, whereas SINV presumably does not (28, 42, 43).
The three viruses also have different tissue tropism and may be
associated with tissue-specific modifications in the physiology of
the infected host. For example, FHV was recently shown to be a
cardiotropic virus, affected by potassium channels regulating heart
function (44), whereas DCV infection causes intestinal obstruction
(S. Chtarbanova and J.-L. Imler, manuscript in preparation).
Comparison of the transcriptomes of the flies infected by the
three viruses revealed more similarities between FHV and SINV
than between each of these and DCV. This may reflect the co-
evolution of DCV with its host, and the fact that this virus may have
learned to ward off the antiviral arsenal of its host. Indeed, DCV
induces fewer genes than does FHYV, even though the two viruses
replicate with similar kinetics and lead to the rapid death of the
flies. The genes induced by FHV and SINV encode chaperonins
(Tcp or Hsp), glutathione transferases, cytochrome P450s, stress
markers (Tot family), thioester-containing proteins, and cyto-
skeletal regulators, suggesting an involvement of oxidative stress
and phagocytosis in the response to these viruses. The two viruses
also upregulate the gene egghead (egh), which encodes a molecule
involved in the uptake of dsSRNA and antiviral immunity (27).
Despite the large overlap between the genes upregulated by FHV
and SINV, the former induce a more intense transcriptional re-
sponse than the latter. This observation may reflect the more ag-
gressive replication of FHV in Drosophila. Indeed, the genes
specifically induced by FHV include not only additional members
of the families mentioned above (Hsp, Tcp, Gst, cytP450, thioester-
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containing proteins), supporting the idea of a more intense response,
but also genes associated with cell death. In addition, FHV upre-
gulates several molecules previously connected to innate immunity
in Drosophila, such as Hel89B (45), POSH (46), or MEKKI1 (35),
or molecules that may downmodulate the strong response to virus
infection (e.g., the genes CG9311 and Pez, encoding tyrosine
phosphatases). Finally, we note that FHV induced eight genes
encoding factors with RNA binding domains, including four
DEXD/H box helicases, which may participate in the sensing and
neutralization of viral nucleic acids. This specificity may reflect
aresponse of the host to counter the effect of the strong suppressor
of RNAi B2, a dsRNA-binding protein (47).

An intriguing aspect of the transcriptome of virus-infected flies
is the upregulation of genes regulated by the Toll and Imd pathways.
‘We observed an enrichment of Toll pathway target genes induced
in flies infected by DCV, but not FHV or SINV, suggesting that
DCYV infection triggers this pathway. Among the genes induced by
DCYV, but not by the two other viruses, we also note the presence of
Ect4, which encodes a TIR domain cytoplasmic molecule. The
mammalian ortholog of this gene, SARM, was proposed to par-
ticipate as a negative regulator of TLR signaling in some antiviral
defenses (48). Two other genes regulated by DCV and possibly
establishing a connection between RNA silencing and the inducible
response are worth mentioning: headcase was identified in a screen
as a regulator of the siRNA pathway (49), whereas CG9925 en-
codes a protein with a Tudor domain, a characteristic of several
components of the Piwi-interacting RNA pathway (50).

Unlike the Toll-regulated genes, several genes regulated by Imd
were induced in flies infected by DCV or FHV, although not by
SINV. The Toll and Imd pathways play a well-characterized role
in the regulation of bacterial and fungal infections, through the
regulation of genes encoding antimicrobial peptides. These genes
are also upregulated by viral infection, although not significantly,
compared with buffer injection. This low level of induction most
likely explains our inability to detect antimicrobial peptides in
the hemolymph of DCV-infected flies (51). Although not formally
establishing that the Toll and Imd pathways participate in the
antiviral response, these results certainly do not rule out such a
role (7, 9, 15). Alternatively, induction of the antimicrobial genes
may involve the transcription factor FOXO, a known regulator of
stress resistance, and may occur independently of the Toll and Imd
pathways (52). Whatever the mechanism of induction, the bio-
logical significance of this weak induction of molecules normally
active in the micromolar range is unclear. One possibility is that
the Drosophila antimicrobial peptides carry additional functions
that do not require high-level expression. For example, some
mammalian B-defensins play a dual role in innate immunity and,
in addition to their antibacterial properties, interact with chemo-
kine receptors with affinities in the nanomolar range, thus medi-
ating chemoattraction of phagocytic cells (53).

Dicistroviridae-specific contribution of the JAK-STAT pathway
to antiviral immunity

An unexpected finding reported in this article is that hop mutant
flies have a clear phenotype for DCV and CrPV, but not for the
other viruses tested. This observation indicates that the JAK-STAT
pathway, in addition to RNAI, participates in host defense against
members of the Dicistroviridae family. DCV infection leads to
induction of the genes encoding the cytokines Upd2 and Upd3,
which may subsequently activate the JAK-STAT pathway in non-
infected cells, triggering an antiviral program of gene expression.
Altogether, our results highlight that the contribution of the in-
ducible response to the control of DCV is similar to that of RNAi,
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as flies mutant for either RNAi or the inducible JAK-STAT
pathway succumb to infection 2-3 d before the controls, with an
~10-fold increase in viral titer.

Interestingly, even though hop mutant flies appear to be spe-
cifically sensitive to Dicistroviridae, other viruses activate the
JAK-STAT pathway. Indeed, we observed a slight increase in the
lethality of hop mutant flies postinfection with DXV and ITV-6.
In Aedes mosquitoes, the JAK/STAT pathway was also shown to
activate a defense against Dengue, a member of the Flaviviridae
family (54). We also note that the JAK-STAT pathway-regulated
gene vir-1 (11) is induced by DCV and CrPV, but also FHV, even
though hop mutant flies resist FHV infection much as do wild-type
flies. One hypothesis to explain this apparent paradox is that some
genes may be induced in a JAK-STAT—-independent manner in the
context of viral infections. For example, the gene TorM, which is
induced by several viruses normally resisted by hop mutant flies,
can be induced by the MEKKI1 pathway, in addition to the JAK-
STAT pathway (35). Indeed, we observed that TotM remains fully
induced by FHV and SINV in hop mutant flies (C. Dostert and
J.-L. Imler, unpublished observations). However, this hypothesis
cannot account for the induction of vir-1 by FHYV, because it is
strongly reduced in hop mutant flies (C. Dostert and J.-L. Imler,
unpublished observations). This finding suggests that some aspects
of the JAK-STAT-induced response may be redundant of other
defenses for FHV, but not for DCV. The fact that FHV triggers
a stronger transcriptional response than does DCV (Fig. 5) is
consistent with this hypothesis.

A key question pertains to the nature of the receptor detecting
Dicistroviridae infection and triggering the JAK-STAT—-dependent
inducible response. Our data point to the induction of a specific
subset of genes, including the JAK-STAT-regulated gene vir-/
(11), by fast-killing viruses such as DCV and CrPV, but also FHV,
which replicate rapidly to high titers upon injection in flies. Of
note, vir-/ induction is not affected in flies expressing the dsRNA-
binding protein B2, or in Dcr-2 mutant flies, indicating that this
gene is not induced following sensing of dsSRNA (10). This finding
suggests that sensing tissue damage and/or cell death could con-
tribute to this inducible response, a hypothesis corroborated by the
association of the JAK-STAT pathway with the cellular response
to a variety of stresses (17, 55-57).

In conclusion, our data confirm that, beyond RNAI, an inducible
response contributes to the control of some viral infections in
Drosophila. However, this response is complex, and great care
should be exercised before generalizing the results obtained with
one single virus species. This unexpected complexity probably
reflects the intricate association of viruses with their host cells in
different tissues, their different strategies of replication or protein
expression, or their acquisition of suppressors of host defense.
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IV.1. Pastrel, a new gene restricting infection by picorna-like

viruses in Drosophila

IV.1.a. Polymorphisms in pastrel gene are correlated with the
susceptibility to DCV infection

It was striking to observe such a wide variability in the susceptibility of flies used as
control in the laboratory to DCV infection. In 1995, Thomas-Orillard and colleagues already
reported a difference of susceptibility of wild-type flies to DCV infection (Thomas-Orillard et
al., 1995). They compared the susceptibility of 15 strains of Drosophila melanogaster isolated
from different geographic areas to DCV infection. Whereas 14 strains displayed 100%
lethality after 3 to 6 days post-infection, around 50% of flies from Nagasaki strain were still
alive 10 days after infection with the same dose of virus. Interestingly, the lethality of strains
was not correlated with their geographic origin. They observed that the progeny resulting of
the direct and reciprocal cross between a sensitive strain (Charolles) and a resistant strain
(Nagasaki) is resistant to DCV infection, comparable to the Nagasaki strain. It indicates that
the phenotype of DCV resistance is dominant and independent of sex chromosomes. They
performed crosses between a stock with chromosomes balancers and the Nagasaki flies,
revealing that the resistant phenotype is associated with the third chromosome. Accordingly,
our data indicate that the susceptibility of laboratory control flies to DCV infection is
genetically transmitted in an autosomal-dominant manner. Indeed, the direct and reciprocal
cross between a sensitive line and a resistant line result in a progeny that is resistant to DCV
infection.It is important to mention that all flies used in our study are free of Wolbachia
infection. Wolbachia are Gram-negative bacteria widely spread in laboratory stocks of
Drosophila (Clark et al., 2005). It was recently reported that Wolbachia mediates protection
against RNA viruses (Hedges et al., 2008; Teixeira et al., 2008). Whether the presence of
Wolbachia was not diagnosed in their study, Thomas-Orillard and colleagues did not observe
any maternal effect, which allows us to exclude a role of Wolbachia in the resistance of
Nagasaki flies to DCV infection. However, other studies observed variations in the
susceptibility of flies to DCV infection, but associated with a maternal effect (Plus and

Golubovsky, 1980), pointing out a possible contribution of Wolbachia in the resistance to
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DCV infection. This highlights the importance to test the presence of Wolbachia in flies
aimed at being used for experiments with viruses. Our investigation of the gene involved in
the susceptibility of flies to DCV infection jumped forward with the genome wide association
study (GWAS) performed by Pr. Francis Jiggins, and recently published (Magwire et al.,
2012). They identified 6 SNPs in the pastrel gene, present on the third chromosome, that are
associated with the resistance to DCV infection. Interestingly, as Thomas-Orillard and
colleagues observed that the resistance to DCV infection is conferred by the third
chromosome, it remains to be determined whether polymorphisms in pastrel gene may be
involved in the resistance of Nagasaki flies to DCV infection. Our sequencing analyses of the
pastrel gene in our laboratory control flies allowed us to identify 3 SNPs that were correlated
with the sensitivity or resistance to DCV infection. Accordingly, these 3 SNPs were also
identified by Pr. Jiggins: SNPs 31.:7352966 T/G and 3L.:7351494 C/T present in introns 1 and
5 respectively; SNP 3L:7350895 Ala/Thr present in exon 6. The three other SNPs identified
by Pr. Jiggins (SNPs 3L:7350452 T/G and 3L:7350453 A/G present in the 3’UTR region and
SNP 3L:7352880 Glu/Gly present in exon 2 were either not found, or not systematically
correlated with the susceptibility to DCV infection in our sample of laboratory control flies.
We used prediction software to test if the two SNPs present in intron may affect the splicing
of pastrel gene but splicing was predicted to be similar between sensitive and resistant
versions of pastrel gene. Surprisingly, most of the flies from our laboratory that were
genotyped for pastrel gene by allele specific PCR displayed a sensitive allele of pastrel. In
agreement with our observations, the study of Thomas-Orillard and colleagues highlights that
the sensitive phenotype is more abundant in wild-type strains of Drosophila melanogaster
than the resistant phenotype (14 sensitive strains out of 15 strains tested). Accordingly, a
previous study by Jousset and colleagues revealed that 39 strains of Drosophila melanogaster
captured in the wild from different geographic areas were all sensitive to DCV infection
((Jousset, 1976), mentioned in Thomas-Orillard et al., 1995). They did not find resistant flies.
We can speculate that the sensitive allele of pastrel may confer an advantage for the host
compared to the resistant allele. Surprisingly, we found an increased number of SNPs in the
pastrel gene of Ore-RP" flies compared to other flies sequenced forpastrelgene (Ore-R™
w*®! DD1 cnbw or Canton-S). These polymorphisms may correlate with the highest
sensitivity of Ore-R"" flies to DCV infection and also CrPV infection. Whereas yw, w"*%,
DD1 Cnbw, Canton-S and Ore-R™ flies display 100% lethality after 12 days of CrPV

infection, Ore-RP" flies are remarkably more sensitive to CrPV infection, displaying 100%
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lethality after 8 days of infection. This discrepancy may be correlated with the polymorphisms

RPF strain (discussed below). It would also suggest

of pastrel gene that are exclusive to Ore-
that polymorphisms other than the ones identified for DCV may affect CrPV susceptibility.
All fly lines tested in our study displayed a similar susceptibility and equivalent viral titre
after FHV infection. This observation is in agreement with the GWAS from Prof. Jiggins,
which did not find a significant association between the polymorphisms in pastrel gene and
the susceptibility to FHV infection (Magwire et al., 2012). In our study, we went further in the
analysis of the susceptibility of flies to viral infections by using two arboviruses (VSV and
SINV) and I1V-6, a DNA virus. Whereas we did not observe a relevant difference in the
susceptibility of Ore-R°" and Ore-R™ flies to VSV and SINV infections, Ore-R°" flies
displayed an increased sensitivity to IIV-6 infection and a higher viral titre after 20 days of
infection, compared to Ore-R’™' flies. Further experiments will be required to decipher if
pastrel controls IIV-6 infection. Importantly, we excluded that DCV integrated DNA forms
may contribute to the resistance of our flies to DCV infection by southern blot with DCV
DNA probes, revealing the absence of such DCV fragments in the genome of w*****, DD1
Cnbw and Ore-R™ flies. It is reported that mutations can affect the stability of proteins
(Tokuriki and Tawfik, 2009). To rule out that polymorphisms may affect the stability of
Pastrel protein and therefore be responsible of the difference of susceptibility of flies to DCV

infection, we showed that sensitive and resistant flies display similar levels of Pastrel protein.

IV.1.b. Pastrel genotyping is required before conducting
experiments with DCV

The wide difference in the susceptibility of laboratory control flies to DCV infection
was a major concern because these control flies are used as reference in experiments aimed at
testing the effect of a Drosophila mutant on viral infection. For example, flies mutant for
components of the IMD pathway, imd®™ and Tab29'", were highly sensitive to DCV infection
but the sensitivity was restored after crossing with lines carrying deficiencies in the
chromosomal regions containing these genes, similar to control flies (Figure 66A and 66B,
data from Dr. Akira Goto). My study of Pastrel allowed to highlight that the sensitivity of
both IMD mutant lines was conferred by sensitive alleles of pastrel. Of note, most deficiency
lines tested from Bloomington harbored the resistant allele of pastrel, enabling

complementation of the sensitive allele.
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Figure 66. Pastrel is responsible of the sensitivity of imd*™ and Tab2%"® mutant flies to
DCYV infection. A. and B. Flies were crossed at 25°C and experiments were performed at
22°C. Pastrel alleles were genotyped by PCR. Bar graphs represent the average standard
deviation of 3 independent experiments (data from Dr. Akira Goto).

Mutant flies for the transcription factor Dif (Dif'), operating in the Toll pathway, are
highly sensitive to fungus Beauveriabassiana (Figure 67A). Additionally, we also observed
that Dif' mutant flies display an increased sensitivity to DCV infection and a higher viral titer

(Figure 67A and 67B). The sensitivity of Dif' mutant flies, containing sensitive alleles of
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pastrel, was partially restored after crossing with deficiency lines harboring resistant alleles of
pastrel. This indicates that beside the effect of pastrel, mutations in Dif affect the resistance
of flies to DCV infection. Our observations suggest that Toll pathway may be involved in the

control of DCV infection.
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Figure 67. The transcription factor Dif, operating in the Toll pathway, is involved in the
control of DCV infection. A. Flies were infected with Beauveria bassiana by contact with an
overnight culture of spores. B. Flies were infected with DCV (500 PFU) and survivals were
monitored at 22°C. C. DCV RNA levels were measured by qPCR after 2 and 3 days of
infection at 22°C. Bar graphs represent the average standard deviation of 2 independent
experiments.

Furthermore, we also noticed a strong variability in the susceptibility to DCV and
CrPV infection between two Ore-R stocks. In an experiment with these viruses, this could be

a big issue for the interpretation of the results, which would depend on the Ore-R line picked
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up. Therefore, it is primordial to genotype the allele of pastrel before conducting experiments

with DCV to avoid misinterpretations of DCV phenotypes.

IV.1.c. Pastrel gene: duplications and deletions

The amplification of the pastrel gene from laboratory control flies with primers for
both extremities resulted in a PCR product of 2989 kb, the expected length of pastrel gene.
However, additional bands of pastrel were amplified from Drosophila cell lines, Dif mutant
flies and a deficiencyline, but also from one line sent by Prof. Jiggins and used in GWAS
study. We sequenced the lower band and characterized a pastrel truncated version of 1755 kb
length. The deletion is extended from position 1072 in exon 6 to position 2306 in exon 2. The
upper band was further characterized by Chuan Cao, a PhD student in the group of Prof.
Jiggins. They found two other alleles: one with a duplication of full length pastrel gene
flanked at one extremity by parts of Sec63 and CTCF genes; one with a duplication of pastrel
gene flanked by a truncated copy of pastrel gene. They did not find a significant association
between these duplications and the resistance to DCV. However, it is intriguing that such
duplications occurred for pastrel gene in Drosophila. Interestingly, many immune related
genes are under positive selection driven by the interactions between hosts and pathogens, and
particularly molecules that directly face pathogens such as PRRs (Jiggins and Kim, 2006;
Sackton et al., 2007). For example, Drosophila has 12 PGRPs genes (Werner et al., 2000), 4
TEPs genes (Lagueux et al., 2000). Gene duplication creates genetic diversity and innovation,
leading to specialization of the immune genes. The APOBEC3 family of viral restriction
factors is one archetype of an antiviral gene locus that evolved by duplication and
specialization to face viruses (Miink et al., 2012). Whether the duplications of pastrel gene

may result of adaptive evolution in response to viruses remains to be investigated.

IV.1.d. Pastrel gene controls Dicistroviridae infection

Loss-of-function experiments

The knockdown of pastrel gene in whole flies carrying sensitive alleles increases their
sensitivity to DCV and CrPV infection and these flies display a higher viral load compared to

control flies. These observations were reproduced in cell culture, where the depletion of
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pastrel facilitates DCV and CrPV infection. These data clearly indicate that pastrel gene
expression controls the infection by picorna-like viruses DCV and CrPV, and that the
sensitive allele retains some antiviral activity. Our findings validate the observations of Prof.
Jiggins (Magwire et al., 2012) and extend the analysis to another member of Dicistroviridae
family, CrPV. We pushed further the analysis by knocking down pastrel gene expression in
aspecific tissue targeted by DCV, the fat body, by using Cg-Gal4 driver. We observed an
increased sensitivity of flies to DCV and CrPV infection, correlated with a higher viral titre.
These data reveal that the expression of pastrel in the fat body controls DCV and CrPV
infection. This organ is a key player in the humoral immune response against bacterial and
fungal infections, by secreting AMPs into the hemolymph (Lemaitre and Hoffmann, 2007).
Moreover, Dcr-2 was reported to drive an inducible antiviral response in the fat body with the
expression of Vago that may control DCV infection (Deddouche et al., 2008). However, at
present, we cannot rule out that this control of DCV and CrPV infection also relies on
hemocytes because Cg-Gal4 driver also affects gene expression in these macrophage-like
cells. Accordingly, it has been proposed that hemocytes play a role in the defense against
CrPV infection (Costa et al., 2009). Moreover, we have reported in the paper attached to this
manuscript that the Jak-STAT pathway specifically contributes to the defense against
Dicistroviridae (Kemp et al., 2013). We have demonstrated that DCV and CrPV infection
triggers the expression of Upd-3, an hemocyte-released cytokine that binds the fat body
Domeless receptor to activate the Jak-STAT pathway (Agaisse et al., 2003). Unpaired-3
ligand establishes a connection between hemocytes and the fat body in the antiviral response
against Dicistroviridae. Additionally, our loss-of-function experiments in Drosophila S2
cells, which are hemocyte-derived cells, indicate that the expression of pastrel controls the
infection by DCV and CrPV. To address this hypothesis, we may perform RNAi experiments
with hemolectin-Gal4 driver to assess if the expression of pastrel in hemocytes contributes to
the defense against Dicistroviridae in vivo. The depletion of pastrel in the epithelium midgut,
a tissue not targeted by DCV, does not affect the susceptibility of flies to DCV infection. This
suggests that the restriction is mediated in the cells where DCV can replicate, like the fat
body, suggesting a mechanism of cell-autonomous restriction. In agreement with this
hypothesis, the presence of cells overexpressing Pastrel mixed with normal S2 cells was not
sufficient to protect these cells from DCV infection. Accordingly, prediction software did not
find a peptide signal in Pastrel protein and the protein is not detected in the supernatant of

Drosophila S2 cells (data not shown).
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Gain-of-function experiments

Our data reveal that the overexpression of Pastrel fused with RFP in Drosophila S2
cells confers protection against DCV and CrPV infection, but not FHV and VSV infection.
These findings are in agreement with loss-of-function experiments, and clearly demonstrate
that Pastrel protein restricts infection by two picorna-like viruses. Surprisingly, we did not
observe differences in the restriction of DCV infection between sensitive and resistant
versions of Pastrel protein. This discrepancy with the difference of susceptibility to DCV
infection observed in vivo between flies expressing sensitive and resistant versions of Pastrel
may have different explanations: the overexpression of Pastrel fusions are under the control of
Actin promoter, a strong promoter that may mask the difference of antiviral activity between
both alleles. Another hypothesis is that the single SNP 31.:7350895Ala/Thr is not sufficient to
confer sensitivity or resistance to DCV infection, but one or others SNPs may interfere. In
agreement with this hypothesis, the statistical analysis performed to measure the significance
of the SNP 3L.:7350895 Ala/Thr in the resistance to DCV infection indicates that this SNP is
responsible of 47% of the heritability (Magwire et al., 2012). This suggests that other
parameters may play a role in the phenotype and remain to be determined. The overexpression
of Pst-GFP in flies does not affect their susceptibility to DCV, indicating that the
overexpression of Pastrel is not sufficient to reduce DCV-induced fly death. The
quantification of viral particles after overexpression of Pastrel remains to be determined but
we expect to observe a decrease of the viral titre, as we showed in vitro. Indeed, we have
preliminary data, not illustrated in this manuscript, revealing that the overexpression of
Pastrel in the highly infected pericardial cells restricts DCV infection in these cells. As
pericardial cells play a role in the filtration of hemolymph (Das et al., 2008), it remains
possible that DCV particles circulating in the hemolymph accumulate rather than replicate in
pericardial cells. For this reason, we are now verifying that the overexpression of Pastrel in
these cells does not affect their function of filtration. Additionally, we have established, in
collaboration with Pr. Jiggins, transgenic flies expressing sensitive and resistant alleles of
pastrel under the control of HSP promoter. We are now comparing their susceptibility to

DCYV and CrPV infection.

Loss- and gain-of-function experiments clearly demonstrate that Pastrel restricts

infection by picorna-like viruses DCV and CrPV, which reflects the exact feature of a viral
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restriction factor. Whereas most viral restriction factors are upregulated after viral infection
by interferon in mammals, pastrel seems constitutively expressed, therefore establishing an
antiviral state prior infection.Indeed, our data indicate that the expression of pastrel is around

1.25 fold upregulated in DCV-infected cells.

IV.1.e. Towards the characterization of Pastrel antiviral activity

Which step of the virus cell cycle is affected by Pastrel?

Our data reveal that the overexpression of Pastrel decreases DCV RNA level in
Drosophila S2 cells, which subsequently decreases the quantity of viral particles produced
and liberated in the supernatant, thereby affecting the progression of the infection. We have
dissected steps prior or concomitant to viral replication. We show that Pastrel does not affect
IRES-mediated translation, suggesting that DCV replication is not affected by depletion
through ineffective translation of viral proteins involved in replication. However, we cannot
exclude that Pastrel targets viral proteins for degradation, which is a strategy widely used by
viral restriction factors in mammals (see chapter 3 of introduction). Binding assays indicate
that Pastrel does not affect the fixation of viral particles onto the surface of Drosophila S2
cells, but we observe that Pastrel display an antiviral effect after 2 hours of infection. Our
concern is now to decipher if Pastrel affects a step after viral binding but prior replication,
such as viral entry and uncoating. A critical point is to know if Pastrel has an antiviral effect
prior viral replication or not. To address this question, we measured the apparition of the anti-
genome by strand-specific PCR and showed that this hallmark of virus replication appears 2
hours after infection (data from Dr. Laurent Daeffler). Thus, the apparition of the anti-genome
correlates with the occurrence of Pastrel-mediated restriction, suggesting that Pastrel may
affect viral replication. Further investigations remain to be done to clearly demonstrate that
Pastrel affects viral replication, but not viral entry. A key experiment would be to use DCV
infectious clone or DCV replicon system to bypass the entry process and investigate the effect
of Pastrel on virus replication. A co-staining of Pastrel protein and dsRNAs or
immunoelectron microscopy with anti-Pastrel antibody staining in DCV-infected cells may be

also informative, to know if Pastrel is present in viral factories.

The antiviral activity of Pastrel is conferred by its C-ter region, exposed in the cytosol
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Our data demonstrate that the overexpression of Pastrel truncated in C-terminal (1-
562) does not restrict DCV infection, by contrast to the overexpression of the full length
protein. In agreement with this observation, the SNP 3L:7350895Ala/Thr, responsible of the
sensitivity or resistance of flies to DCV infection, is present in this region (amino acid 598).
Our data reveal that the region from amino acid 563 to 682 displays the antiviral activity of
Pastrel. We are now investigating if this region 563-682 of Pastrel is sufficient to confer its
antiviral activity. Additionally, we want to further dissect this region by looking if other
truncated versions of Pastrel (1-595; 1-601; 1-625; 1-652) restrict DCV infection.
Additionally, we have developed a new approach to study the topology of a protein and we
uncover that the N- and C-terminal extremities of Pastrel protein are exposed in the cytosol,
suggesting that the antiviral domain of Pastrel may be accessible to viral particles in the

cytoplasm.

Localization of Pastrel protein

Unexpectedly, we observe that Pastrel loses its localization in cytoplasmic aggregates
when the region 563-682 is deleted. This region may direct its localization in cells, in addition
to confer its antiviral function, suggesting that localization of Pastrel may be also important to
exert its antiviral activity. We have observed that some cytoplasmic aggregates of Pastrel
colocalize with lipid droplets stained by Nile Red. Accordingly, Pastrel was reported to be
present in lipid droplets from Drosophila larvae fat body of mutant flies with obesity
phenotype (Beller et al., 2006). However, some discrepancies exist: another lipid droplet
marker, BODYPI**”* does not colocalize with Pastrel aggregates, but colocalizes with lipid
droplets stained by Nile Red. Moreover, we do not observe a clear colocalization of DCV
capsid with the surface of lipid droplets whereas DCV clearly colocalizes with Pastrel. It
remains possible that Pastrel aggregates that colocalize with lipid droplets are different from
the ones that colocalize with DCV. We also observe an enrichment of COP-I vesicles in the
areas where Pastrel aggregates, but also DCV capsids, localize. This may be interesting
because COP-I complexes are required for the generation of viral factories and thereby DCV
replication (Cherry et al., 2006). Unfortunately, we do not have the tools to perform a triple
labeling on S2 cells because both anti-beta-COP and anti-Pastrel antibodies where produced
in rabbit but we plan to stain cells overexpressing RFP-Pst fusion. We have observed that
Pastrel protein clearly colocalizes with capsids from DCV and CrPV, in vitro in Drosophila

S2 cells and in vivo in Drosophila fat body. Interestingly, we noticed a marked decrease in
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size of lipid droplets in highly DCV-infected portions of the fat body, as if lipid droplets were
used during DCV infection. Overall, our staining experiments establish a connection between
Pastrel protein, COP-I vesicles, lipid droplets and DCV infection but the interplay between

these four actors remains to be characterized.

Connection between COP-I and viruses

COP-I complexes are required for DCV replication (Cherry et al., 2006). Additionally,
many reports indicate that the GBF1-Arf1-COPI pathway is involved in the replication of
poliovirus, coxsackievirus B3, enterovirus 71 (Picornaviridae) (Belov et al., 2008; Lanke et
al., 2009; Wang et al., 2012a), mouse hepatitis coronavirus (Coronaviridae) (Verheije et al.,
2008), VSV (Rhabdoviridae) (Cureton et al., 2012), and HCV (Goueslain et al., 2010; Tai et
al., 2009). COP-I vesicles are also important for IAV infection (Sun et al., 2013a).

Connection between COP-I and lipid droplets

COP-I complexes regulate lipid homeostasis by modifying the protein composition at
the surface of lipid droplets (Beller et al., 2008). COP-I promotes the targeting of adipose
triglyceride lipase (ATGL) onto lipid droplets in Drosophila S2 cells (Beller et al., 2008) and
Hela cells (Soni et al., 2009). This enzyme is involved in the first step of triacylglycerols
lipolysis. A recent study suggests in an artificial system model that proteins delivery to lipid
droplets is mediated by the direct interaction of COP-I with lipid droplets (Thiam et al.,
2013).

Connection between lipid droplets metabolism and viruses

Many viruses require lipid synthesis for their efficient replication (reviewed in
Chukkapalli et al., 2012). The usurpation of lipid metabolism probably influences the
composition of membranes, changing their fluidity and curvatures to allow the formation of
replication complexes or viral factories. It is reported that some viruses use lipid droplets for
their replication (reviewed in (Camus et al., 2013b; Herker and Ott, 2012)). Dengue virus
capsid is targeted onto lipid droplet and allows efficient viral particle formation and Dengue
virus infection increases the number of lipid droplets per cell (Samsa et al., 2009). The
inhibition of lipid droplet formation with C75, an inhibitor of the fatty acid synthase (FASN),
inhibits DENV replication. Another study reveals a depletion of lipid droplets by autophagy
process in DENV infected cells, releasing fatty acids used to produce ATP by B-oxydation,
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promoting DENV replication (Heaton and Randall, 2010). Lipid droplets are also involved in
viroplasms formation and replication of rotaviruses (Cheung et al., 2010), and assembly of
infectious HCV particles (Miyanari et al., 2007). Interestingly, a recent paper connects a
component of the innate immune response, IKK-a, to the accumulation of lipids and HCV
assembly (L1 et al., 2013b). The helicase DDX3X recognizes the 3’'UTR region of HCV and
activates the inhibitor of nuclear factor-kB kinase a (IKK-a) which is translocated in the
nucleus and through CBP/p300 factor, induces the transcription of SREBP. This non-
canonical pathway is independent of NF-kB. SREBP is a transcriptional factor that
upregulates lipogenic genes expression (Horton et al., 2002), thereby enhancing lipid droplet
formation and facilitating HCV assembly. The depletion of IKK-a increases lipid storage and
inhibits HCV assembly whereas its overexpression increases the number of lipid droplets and
HCV infection. (For review, (Camus and Ott, 2013; Felmlee and Baumert, 2013)).
Interestingly, the viral restriction factor Viperin localizes on lipid droplets (Hinson and
Cresswell, 2009a) and affects the replication of HCV (Wang et al., 2012b). Viperin is also
proposed to regulate lipid metabolism during HCMV infection (Seo and Cresswell, 2013). In
Drosophila, it is reported that the knockdown of HLH106, the ortholog of mammalian
SREBP, leads to a 38.2-fold decrease of DCV replication (Cherry et al., 2006). Accordingly,
the knockdown of CG3523, the ortholog of mammalian FASN, decreases DCV replication of
a factor of 10.6-fold, indicating that fatty acid synthesis is required for DCV replication.

Overall, it is tempting to speculate that some viruses may require COP-I for their
replication because of its function in lipid droplets metabolism. COP-I-mediated lipolysis may
provide a source of lipids for the formation of viral factories. Whether Pastrel may affect
COP-I-mediated lipolysis by its presence on lipid droplets in Drosophila S2 cells or wheter
Pastrel could inhibit COP-I activity is one of our hypothesis for its antiviral function (Figure

68).

The analysis of Pastrel protein (CG8588) is not informative to find its antiviral function

The gene CG8588 was reported to be involved in memory (Dubnau et al., 2003) and it
was named Pastrel in reference to Pavlov’s dogs. Pavlov performed behavioral experiments
with dogs to understand learning and memory processes. We obtained flies mutant for pastrel
gene used by Dubnau and colleagues but we did not confirm that pastrel gene was

inactivated. Thus, the involvement of pastrel in memory remains questionable. Pastrel was
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reported to be involved in protein secretion but we did not reproduce these observations (Bard
et al., 2006). Whereas the antiviral activity of many viral restriction factors was guessed by
looking at their domain homology with other proteins, the alignment of pastrel gene with
sequences databases is not informative. Pastrel protein sequence has homologies with proteins
CG7730 and CG32243 but their function is unknown. Pastrel has orthologs in insects like
other Drosophila species, and with less homology, in mosquitoes (Anopheles species,
Aedesaegypti and Culex quinquefasciatus), in a pea aphid. A related gene seems present in
nematode C. elegans but pastrel is not conserved in vertebrates. Pastrel protein has no
conserved domains or motifs. A unique protein, CG8368, was found to interact with Pastrel in
a yeast two-hybrid system (Giot et al., 2003). CG8368 also interacts with Arf79F, the
ortholog of mammalian Arfl, involved in the formation of COP-I vesicles (Spang, 2002).
CG8368 protein displays a motif of 3’-5’ exonuclease activity and a nucleic acid binding
motif. Interestingly, the preliminary analysis of small RNA libraries from DCV-infected flies
reveals that many v-siRNAs are not 21-nts length, indicating that they do not result from
Dicer-2 processing (communication from Dr. Simona PARO). Whether Pastrel may recruit
CG8368 to degrade DCV RNAs is another hypothesis that we want to address (Figure 68).
The small RNA profiling of sensitive and resistant flies infected by DCV is under progress. If
our hypothesis is correct, we expect that sensitive flies display less degradation of DCV
RNAs than resistant flies. Nora virus small RNAs of other size classes than 21-nts were
observed by Van Mierlo and colleagues and they predominantly derive from the genome (van
Mierlo et al., 2012). Their origin remains unclear and they propose that they result from non-
specific degradation. To fit with our hypothesis, Pastrel should therefore affect Nora virus

infection.
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Figure 68. Speculative model for the antiviral action of Pst on DCV replication.
Hypothesis 1: Our data indicate that DCV affects the size of lipid droplets in the fat body,
suggesting that lipolysis is activated during infection. Additionnaly, COP-I was shown to
modulate lipolysis and may be required for the formation of viral factories for DCV
replication. As we found that Pst colocalized with Nile Red staining in Drosophila S2 cells
and was also enriched in regions stained with anti-beta-COP antibody, we hypothesize that
Pastrel may target and inhibit COP-I-mediated lipolysis. Hypothesis 2: Pst was shown to
interact with a putative 3’-5’-exonuclease (CG8368) by yeast-two-hybrid, and may recruit this
enzyme to direct the degradation of viral RNAs.

IV.2. Does Pastrel affect Nora virus infection?

We have observed a correlation between the sensitivity of flies to DCV infection and
the presence of persistent Nora virus (except for DD1 Cnbwflies). Our results clearly
demonstrate that Nora virus does not contribute to the increased sensitivity of flies to DCV
infection. Indeed, Ore-R°" flies cured from Nora virus infection remain highly sensitive to
DCV infection whereas Ore-R’™ flies contaminated by Nora virus are still resistant to DCV
infection. By contrast, we got promising data for an effect of Nora virus on the pathogenicity

of bacterial infections in collaboration with the team of Dr. Dominique Ferrandon. Once we
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observed that pastrel alleles mainly account for the susceptibility of flies to DCV infection,
we wondered if pastrel may affect Nora virus persistent infection. The mechanisms
controlling a persistent virus infection are a topic of high investigations. It is still unclear how
Drosophila controls Nora virus persistent infection. The group of Dr. Hultmak claimed that
RNALI, Toll and Jak-Stat pathways do not control Nora virus infection (Habayeb et al., 2009a)
whereas the group of Dr. Van Rij observed Nora virus siRNAs and defined VP1 as a VSR
(van Mierlo et al., 2012). Our data reveal that Ore-R™' flies display lower Nora virus RNA
level than Ore-RP" flies after contamination by feces, indicating that flies with sensitive allele
of pastrel are easier infected by Nora virus. In addition to DCV and CrPV, our observations
strongly suggest that Pastrel may control the infection by another picorna-like virus, Nora
virus. At present, working with Nora virus presents some limitations because the infection is
asymptomatic, highly variable between individuals and we do not have a cell culture model in
vitro. For example, the commonly used Drosophila S2 cells are restrictive to Nora virus
infection. However, the identification of Nora virus-derived siRNAs in OSS cells suggests
that these cells can be infected by Nora virus (Wu et al., 2010). In agreement with our
hypothesis, the expression of pastrel is 5.9-fold lower in OSS cells than S2 cells (data from
modENCODE project). We plan to investigate if these cells could replicate Nora virus. We

aim to test if the overexpression of pastrel controls Nora virus infection.

IV.3. The siRNA pathway controls IIV-6 infection

Our data demonstrate that the RNAi pathway is a broad antiviral defense against RNA
viruses but also a DNA virus. Dicer-2 null mutant flies display an increased sensitivity to IIV-
6 infection compared to control flies and the susceptibility is restored with a Dicer-2 genomic
rescue. Accordingly, R2D2 and Ago-2 mutant flies are more sensitive to IIV-6 infection. The
deep sequencing of small RNAs from Drosophila S2 cells and flies infected by ITV-6 revealed
the presence of v-siRNAs matching with the sequence of IIV-6 genome. V-siRNAs are
predominantly 21-nts length, indicating that they result from Dicer-2 processing.
Interestingly, v-siRNAs are not uniformly distributed along the viral genome, as observed for
RNA viruses (Mueller et al., 2010), but they are produced from specific regions of the viral
genome. These regions match with regions of convergent transcription which may lead to the
formation of dsRNAs, substrates of Dicer-2. In agreement with our findings, the group of Dr.

Van Rij made similar observations (Bronkhorst et al., 2012).
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Concluding remarks

This work identified and characterized new aspects of the antiviral immunity in
Drosophila. The role of the siRNA pathway in the defense against RNA viruses was extended
to a DNA virus, emphasizing its broad contribution to the antiviral defense of Drosophila
(Kemp et al., 2013). Additionally, the work presented in this thesis reveals the role of a new
antiviral protein, Pastrel, as an important actor for the control of picorna-like viruses in
Drosophila. We have also promising expectations for a role of Pastrel in the control of
persistent Nora virus infection. Loss- and gain-of-function experiments support the
classification of Pastrel protein as a viral restriction factor, establishing an antiviral state in
prevention of viral infection. This new viral restriction factor identified in Drosophila may
shed light towards the understanding of intrinsic antiviral immunity in insects.We believe that
new viral restriction factors will be identified in insects. Our demonstration of the importance
to genotype the allele of pastrel before conducting in vivo experiments will surely impact past
and future studies with DCV. The mechanism of Pastrel-mediated restriction is under
investigation in our laboratory. As DCV and CrPV share similarities with Picornaviridae, we
plan to investigate if the expression of Pastrel in mammalian cells may affect picornaviruses
infection. To address this question, we have already constructed vectors expressing sensitive

and resistant versions of Pastrel under the control of CMV promoter.
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viruses in Drosophila melanogaster

Résumeé

La drosophile est un excellent modele pour I’étude des mécanismes moléculaires de I'immunité innée, y
compris les virus. Elle a permis la caractérisation de mécanismes de défense immunitaire conservés au cours de
I’évolution, tel que les voies Toll et IMD qui régulent 1’expression des peptides antimicrobiens induits en
réponse aux infections fongiques et bactériennes. Deux types de réponse sont impliqués dans le controle des
infections virales chez la drosophile : une réponse inductible et ’ARN interférence. Nous avons montré que
I’ARN interférence est un mécanisme global de défense antivirale puisqu’il contrdle I’infection par un virus a
ADN, en plus des virus a ARN tel que le virus C de la drosophile (DCV). Le virus DCV, apparenté aux
Picornaviridae, est un pathogéne naturel de la drosophile. Nous avons également observé que la résistance de
mouches contrdles a I’infection par le virus DCV est dépendante du fond génétique. Elle est d’ailleurs corrélée
a des polymorphismes présents dans un geéne porté par le chromosome III : le géne pastrel. Nos expériences de
perte et gain de fonction indiquent que ce geéne code pour un facteur de restriction viral, bloquant I’infection
par le virus DCV mais aussi par le virus de la paralysie du cricket (CrPV). Cette restriction apparait dans les
premicres heures aprés infection. La région C-terminale de la protéine Pastrel est nécessaire a son activité
antivirale ainsi qu’a sa localisation dans les cellules. La protéine Pastrel co-localise avec le Rouge de Nil, un
marqueur des gouttelettes lipidiques. Ainsi, nos résultats suggérent un lien entre le métabolisme lipidique et le
blocage d’une infection virale chez la drosophile.

Mots-clés : Drosophila melanogaster, défense antivirale, immunité innée, immunité intrinséque, facteur de
restriction, virus C de la drosophile, virus de la paralysie du cricket, virus Nora.

Abstract

Since the discovery of the evolutionarily conserved TOLL and IMD pathways, involved in antifungal and anti-
bacterial immune responses, the fruit fly Drosophila melanogaster is used as a model to study the molecular
mechanisms of innate immunity. To defend against viral pathogens, Drosophila relies on two main facets: the
RNA interference (RNAi) pathway and virus specific inducible responses. We show that the RNAi pathway
plays a role in the control of a DNA virus, in addition to RNA viruses. We also observe that the fly genetic
background can modulate the resistance to infection by Drosophila C virus (DCV), a natural pathogen of
Drosophila. This resistance to DCV infection is correlated with polymorphisms in a gene named pastrel,
localized on the left arm of the third chromosome. Our loss- and gain-of-function experiments indicate that
pastrel encodes a molecule opposing infection by picorna-like viruses DCV and also Cricket Paralysis virus
(CrPV), raising the question of the mechanism involved. This restriction appears early after infection. The C-
terminal region of Pastrel protein is important for its antiviral activity and its localization in vesicular structures
co-localizing with Nile Red staining, a marker for lipid droplets. Altogether, our data suggest a connection
between lipid droplets and restriction of viral infection in Drosophila, as already described in mammals
between the restriction factor Viperin, present on lipid droplets, and the replication of the human pathogen
Hepatitis C Virus.

Keywords: Drosophila melanogaster, antiviral defense, innate immunity, intrinsic immunity, restriction
factor, Drosophila C virus, Cricket Paralysis virus, Nora virus.




