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Abstract 
 

The Nazca/South American subduction zone is one of the most active regions on Earth. Large 

earthquakes and associated tsunamis occur recurrently almost all along its margin. 

Nevertheless, the ~1000 km long (from lat.2ºS to 9ºS) segment in northern Peru and southern 

Ecuador subduction has remained in relative seismic silence for at least the past five centuries. 

Before the work presented in this thesis, no information about the processes accommodating 

the convergence was available for this region and it was impossible to answer whether it 

could host a great Mw>8.5 earthquake in future or not. Nowadays, spatial geodesy, and more 

specifically GPS/GNSS enable us to quantify the surface displacement on the overriding plate 

with a millimeter accuracy. Geodetic measurements together with the use of elastic models 

allow us to determine the amount of interseismic coupling at the plate interface. My thesis 

focuses on the seismic cycle and the continental deformation along the Peruvian subduction 

margin, with particular interest along its northern and central segments. We use GPS 

measurements acquired since 2008 in the frame of an international French-Peruvian-

Ecuadorian project (the Andes Du Nord project, ADN). Our GPS velocity field covers the 

entire Peruvian subduction margin, with measurements in the Andean cordillera and part of 

the sub-Andean region. Modeling of GPS velocity field show the existence of a new tectonic 

microplate that we baptized as the Inca Sliver, which is in southeastward translation a rate of 

4-5 mm/yr with respect to stable South America. The Inca sliver encompasses the entire 

Peruvian subduction margin from southern Ecuador to northern Bolivia including the coastal 

areas and the Western cordillera of Peru. We find that the Inca sliver diverges from the North 

Andean Sliver in Ecuador and Colombia, contributing to the opening of the Gulf of 

Guayaquil. In its southern part, the Inca sliver possibly contributes to the lateral holding of 

the Altiplano plateau. We propose that the primary driving process that induces the motion of 

the slivers observed all along the Andes is partitioning of the oblique Nazca/South America 

convergence. However, our results show that the level of partitioning is partial in Peru 

(~25%). Inland the Inca sliver motion appears to be accommodated by complex fault systems 

and internal deformation within its eastern part. In terms of interseismic coupling (ISC), we 

demonstrate important variations both along-strike and along-dip. We find that the subduction 

segments of northern Peru and southern Ecuador (from lat.2ºS to 9ºS) shows in general a low 

to weak ISC, with possibly shallow partial coupling confined near the trench. Our results 

therefore explain the absence of large earthquakes in this region and correlate with the 

occurrence of moderate magnitude tsunami-earthquakes that occurred in the last decades. 

Contrasting with this behavior, the central Peru segment (lat. 10ºS a 14ºS) shows a high ISC 

that spatially correlates with the rupture area of past large earthquakes (M>8) and in particular 

with the Mw~8.8 1746 devastating earthquake. The present-day interseismic moment deficit 

suggests a recurrence time of 266-347 to reproduce a similar event. In southern Peru, our 

models show two areas with high ISC near Nazca (lat. 15ºS) and near the boundary with 

Chile (lat. 18ºS). We also find evidence for ongoing postseismic deformation in the area of 

the 2001 Mw=8.4 Arequipa earthquake. Finally, we document a Slow Slip Event (SSE) 

synchronous to seismicity swarms that took place in northern Peru in 2009. This sequence 

lasted 7 months and released a total moment equivalent to an earthquake of Mw=6.7. We 

analyze the relationship between seismic and aseismic processes. Finally based on all these 

results, we propose inferences about the anatomy of the plate interface in terms of its 

frictional properties at the scale of the Peruvian subduction. In overall, our results contribute 

to better quantify the hazard posed by subduction and continental earthquakes in Peru. They 

also shed light on the active tectonics and the long-term deformation of the Peruvian Andes. 
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Résumé 

 

La zone de subduction entre les plaques Nazca et Amérique du Sud est une des régions les 

plus actives de notre planète. De grands tremblements de terre et tsunamis associés se 

produisent de façon récurrente presque tout au long de sa marge. Néanmoins, le segment de 

subduction au nord du Pérou (de lat.3ºS à 9ºS) est resté le seul segment sismiquement 

silencieux depuis les premières informations historiques sur les séismes qui remontent au 

XVème siècle. Avant le travaux présentés dans ce manuscrit, aucune information sur les 

processus accommodant la convergence de la plaque Nazca vers le continent Sud-Américain 

n’était disponible le long du segment de 1000km au nord Pérou et sud Equateur. Les 

techniques de géodésie spatiale, en particulier le GPS/GNSS, nous permettent de quantifier 

les mouvements à la surface de la plaque supérieure avec une précision millimétrique. Ces 

mesures, couplées à l'utilisation de modèles élastiques, nous permettent de déterminer le 

niveau du couplage intersismique le long de l'interface entre les plaques. Le but de ma thèse 

est d'étudier le cycle sismique et la déformation continentale le long de la zone de subduction 

du Pérou, avec un intérêt particulier pour son segment nord. Nous utilisons des mesures GPS 

acquises depuis 2008 dans le cadre d'un projet international (le projet Andes Du Nord, ANR-

ADN). Le champ de vitesse GPS obtenu couvre l’ensemble de la marge de subduction 

péruvienne, avec des mesures dans la cordillère et dans une moindre mesure dans la région 

sub-Andine. L'analyse et la modélisation du champ de vitesse GPS ont permis d'obtenir les 

résultats suivants: Premièrement: nous mettons en évidence l'existence d'un nouveau domaine 

continental, que nous avons baptisé comme le sliver Inca et qui est en translation a une vitesse 

de 4-5 mm/an en direction sud-est par rapport au craton Sud Américain. Le sliver Inca s’étend 

tout le long de la marge péruvienne. Le sliver Inca diverge du sliver Nord-Andin en Equateur 

et en Colombie, contribuant ainsi à l'ouverture du golfe de Guayaquil. Dans sa partie sud, le 

sliver Inca contribue probablement à maintenir latéralement l'Altiplano. Nous proposons que 

le processus responsable du mouvement des slivers est le partitionnement de la convergence 

oblique de la plaque Nazca vers le continent Sud-Américain. Cependant, nos résultats 

montrent que ce partitionnement est partiel (~25%). A l’intérieur du continent, le mouvement 

de ces slivers semble être accommodé par des systèmes de failles complexes dans la partie 

orientale des Andes. En terme de couplage intersismique (ISC) le long de l’interface de 

subduction, nous démontrons d’importantes variations latérales et en profondeur. Nos 

résultats indiquent que le segment de subduction du nord du Pérou et du sud de l'Equateur (de 

lat.2ºS à 9ºS, 1000 km long) sont faiblement couplés, avec éventuellement un couplage partiel 

superficiel proche de la fosse. Ces résultats expliquent l'absence de grands séismes dans cette 

région. Au contraire, le segment central du Pérou (lat. 10ºS un 14ºS) montre une fort couplage 

intersismique qui corrèle avec les zones de rupture des grands séismes (M>8.0) dans du siècle 

passé. Le déficit actuel de moment intersismique suggère un temps de récurrence de 266 à 

347 années pour reproduire un séisme similaire à celui de 1746 (~M8.8). Dans le sud du 

Pérou, nos modèles montrent deux zones fortement couplées près de Nazca (lat. 15ºS) et près 

de la frontière avec le Chili (lat. 18ºS). Nous mettons de plus en évidence que le région du 

séisme du 2001 Mw8.4 2001 d’Arequipa subit actuellement une déformation postsismique 

significative. Enfin, nous documentons un épisode de glissement transitoire asismique 

simultané à un essaim de sismicité dans le nord du Pérou en 2009. Cette séquence a duré 7 

mois et libéré un moment total équivalent à un séisme de Mw6.7. Nous analysons la relation 

entre les processus sismiques et asismiques. Enfin sur la base de ces résultats, nous proposons 

des inférences sur l'anatomie de l'interface de subduction et en particulier de ses propriétés 

frictionnelles, à l'échelle de la subduction péruvienne. Nos résultats contribuent à quantifier 

l'aléa associé aux séismes de subduction et continentaux. Ils contribuent aussi à mieux 

comprendre la tectonique active et la déformation long terme de la Cordillère des Andes.  
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Resumen 
 

La zona de subducción de Sudamérica es una de las regiones más activas de la Tierra. A lo largo 

de casi todo este margen ocurren grandes terremotos y tsunamis de manera cíclica. Sin embargo, 

el segmento de la subducción entre el norte de Perú y sur de Ecuador (from lat.2ºS to 9ºS, de 

aprox. ~1000 km de largo), ha permanecido relativamente en silencio sísmico desde hace al 

menos 5 siglos, desde los primeros reportes históricos, sin conocer si en esta región se han 

producido grandes sismos en el pasado. Hasta antes de los resultados presentados en esta tesis, no 

existía información disponible acerca de los procesos que acomodan la convergencia de placas en 

esta región, por lo cual resultaba imposible saber si en el futuro podría ocurrir o no un sismo de 

gran magnitud Mw>8.5 en dicha región. Las técnicas de geodesia espacial, en particular el 

GPS/GNSS, permiten cuantificar con precisión milimétrica la deformación de la placa superior en 

zonas de subducción. Las mediciones geodésicas junto con el uso de modelos de dislocación 

elástica permiten determinar el grado de acoplamiento intersísmico en la interfaz de placas. Mi 

tesis tiene por objetivo central estudiar el ciclo sísmico y la deformación continental el la zona de 

subducción de Perú, con interés particular en la región centro y norte de Perú. Para ello, hago uso 

de mediciones GPS adquiridas desde el año 2008 en el marco de un proyecto internacional (Andes 

del Norte, ANR-ADN). El campo de velocidad GPS obtenido cubre todo el margen de subducción 

de Perú con algunas mediciones en la cordillera de los Andes y parte de la región sub-Andina. El 

modelamiento del campo de velocidad muestra la existencia de una nueva microplaca a la cual 

hemos denominado el sliver Inca, que se encuentra en traslación hacia el Sur-Este a una velocidad 

de 4-5 mm/yr con respecto a la parte estable de Sudamérica. Este sliver abarca todo el margen de 

subducción peruano desde el sur de Ecuador hasta el norte de Bolivia, incluyendo el margen 

costero y la cordillera occidental de Perú. Los resultados muestran que el sliver Inca junto con el 

sliver nor-Andino se encuentran en movimiento divergente, contribuyendo a la apertura del Golfo 

de Guayaquil. En el extremo sur el sliver Inca posiblemente contribuye a sostenimiento lateral del 

Altiplano. Proponemos que el principal proceso que induce el movimiento de los slivers a lo largo 

de toda Sudamérica es el particionamiento de la convergencia oblicua de las placas 

Nazca/Sudamericana. Sin embargo, nuestros resultados muestran que el particionamiento es solo 

parcial en el Perú (25%). En el interior del continente el movimiento del sliver Inca parece ser 

acomodado por complejos sistemas de fallas con deformación activa hacia el Este en la cordillera 

Oriental y zona sub-Andina. En términos de acoplamiento intersísmico (ISC), nuestros resultados 

muestran importantes variaciones tanto de manera lateral como en profundidad a lo largo de toda 

la interfaz. El segmento de subducción del norte de Perú y sur de Ecuador (lat. 2ºS a 9ºS) muestra 

en general un bajo a débil ISC, con posible acoplamiento parcial confinado en la parte superficial 

de la zona de contacto (<30km). Estos resultados permiten explicar la ausencia de grandes 

terremotos en el pasado reciente y se correlacionan con la ocurrencia de eventos tipo tsunami-

earthquakes como los ocurridos en las décadas anteriores (i.e 1960 & 1996). La región central de 

Perú (lat. 10ºS a 14ºS) muestra un alto ISC que se correlaciona espacialmente con las áreas de 

ruptura de grandes terremotos (M≥8.0) ocurrido en el pasado, en particular con el área de ruptura 

del devastador terremoto de 1746 (Mw~8.6-8.8). Los cálculos actuales del déficit de momento 

intersísmico sugieren un tiempo de recurrencia de 266-347 años para reproducir un evento de 

características similares. En el sur del Perú los modelos muestran dos áreas con alto ISC cerca de 

la ciudad de Nazca (lat. 15ºS) y cerca a la frontera con Chile (lat. 18ºS). Estas zonas representan 

son de alto peligro en términos del potencial sísmico. Los resultados también muestran evidencia 

del efecto post-sísmico del sismo de 2001 (Mw 8.4) aún perdura. Finalmente, es esta tesis se 

documenta un sismo lento (Slow Slip Event) sincronizado con una secuencia de sismicidad en el 

año 2009. Esta secuencia duró 7 meses y liberó un momento equivalente a un sismo de Mw=6.7. 

Estudiamos la evolución espacio temporal de la secuencia y analizamos la relación entre los 

procesos sísmicos y asísmicos. Finalmente, en base a todos estos resultados obtenidos en esta tesis 

planteamos inferencias sobre la anatomía de la interfaz de placas en términos de las propiedades 

friccionales a escala de toda la zona de subducción de Perú. Los resultados obtenidos en esta tesis 

contribuyen en general, a cuantificar mejor el riesgo tanto en la zona de subducción como en el 

interior del continente, además que permiten comprender mejor los procesos de la tectónica activa 

así como la deformación de los Andes Peruanos.   
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Chapter 1  

 

 

1. Introduction 

Subduction zones are converging plate boundaries where an oceanic plate 

moves beneath another and sinks into the mantle. The subduction process gives raise 

to the most active and dynamic phenomena on the Earth’s surface, including crustal 

deformation, earthquakes, tsunamis, volcanism, mountain building, among others. My 

thesis focuses on the surface deformations associated with the subduction zone in 

Peru and its relation with the processes leading to continental deformation and the 

occurrence of large subduction earthquakes.  

The largest earthquakes recorded on Earth usually happen at subduction zones. 

Among the 19 largest earthquakes (M>8.5) recorded by seismometers since 1900. 17 

occurred at subduction megathrust (Figure 1.1). Indeed, only during the last decade 6 

great subduction earthquakes occurred and were followed by large tsunamis leading 

to dramatic consequences for human societies. For the two most devastating events, 

the 2004 Sumatra-Andaman Islands (Mw 9.2) and the Tohoku-Oki 2011 Japan (Mw 

9.0), the seismic potential had not been correctly assessed prior to their occurrence, 

because several assumptions were incorrect [Stein et al., 2012]. First, because of a 

correlation found between the age of subducting ocean floor and convergence rate 

with the occurrence of past M>8.5 earthquakes, it was thought that the old oceanic 

subduction in Sumatra and Japan would not be able to generate M~9 earthquakes 

[Ruff and Kanamori, 1980]. Second, seismic hazard assessment in Japan relied on the 

earthquake catalog spanning roughly 4 centuries, which was thought to be all-

inclusive of earthquake types along the Honshu subduction zone. Finally, the large 

amount of slip along the shallowest part of the plate interface that lead to the 

generation of the huge tsunami challenged the view that significant stress could not 

accumulate in the shallowest portion of the subduction interface. 

Currently, several hundreds of million of people live under the direct threat of 

large earthquakes and potentially associated tsunamis all along coastal regions of the 
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circum-Pacific subduction. According to official estimates more than a third of the 

world population will be living in seismically active areas by 2040 [UNAVCO Science 

Report, 1994; United Nations, 2004]. It is therefore essential and urgent to better 

understand the processes and parameters controlling the occurrence of great 

subduction earthquakes to identify which areas are prone to produce them and provide 

reliable assessment of their location and potential size. 

 

 

Figure 1.1: Global distribution of earthquakes for the period 2000–2013 of magnitudes 

M≥5.0 extracted from the NEIC catalog (http://earthquake.usgs.gov/earthquakes). 

Earthquakes are represented by dots and plotted in function of depth according to the color 

bar. Shallow events (<50km) delineate the plate boundaries. During this period up to 17 

events of M>8.0 occurred in various subduction zones. The scaled stars indicate their location 

and magnitude. 

 

In the following paragraphs, I present the main concepts of the earthquake cycle 

in subduction zones, describing the principal phases of the cycle with its associated 

crustal deformation. I briefly present recent discoveries of transient slip events that 

add-up more insights to the complexities of the seismic cycle. Then, I introduce the 

main aspects of the geological and seismotectonic setting of the Peruvian subduction 

zone and present a state of the art of previous geodetic studies carried out in Peru. 

Finally, I state the main questions that this thesis tries to answer and present the 

contents of this manuscript. 
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2. Earthquake cycle 

2.1. The birth of the concept of the earthquake cycle 

Probably the first observations that describes and quantifies the characteristics 

and effects of a great subduction earthquake and tsunami relating them to a cyclic 

behavior were done by Charles Darwin during the Voyage of the Beagle (1831 - 1836). 

During that expedition, in 1835 he was onshore near Valdivia in Chile, when a great 

earthquake occurred near the Concepcion city (~300 km to the north). Darwin’s 

description indicates that the shaking lasted about 2 minutes with a trend motion in an 

eastward direction. He also found that rocks lined with recent marine shells were 

elevated above the tide after the earthquake. Uplifts measurements along the coast 

were of ~1 m with a maximum of ~3 m at the Santa Maria island [Darwin et al., 

1846]. During expedition into the pre-Cordillera he discovered a series of remaining 

marine shells at 2000 m of altitude, proof that the shifting that had uplifted the coast 

during the earthquake may have occurred over and over to bring shells to that altitude. 

The eyewitness testimony of Darwin suggested that the Andes of South America were 

very slowly rising and its growth was linked to the earthquakes occurrence. 

We know today that earthquakes result of a sudden slip at the interface of two 

plates boundary moving relatively one to each other in the long term. In the simplest 

concept of the seismic cycle, a fault remains locked and accumulates stress during the 

interseismic period, which is totally or partially released by seismic slip. In this view, 

the amount of seismic slip equals the cumulated plate convergence of the plates 

during the interseismic period. This concept known as the elastic rebound model was 

introduced by Reid, [1910] after the M7.8 San Francisco 1906 earthquake that 

ruptured a segment of the San Andreas Fault (Figure 2). He hypothesized that the 

Earth’s crust behaves like an elastic solid driven by forces at a constant rate, rupturing 

in earthquakes at periodic intervals. Under this concept, if the date of the last great 

earthquake is known, using the rate of relative motion determined by geodesy, it is 

possible then to make some prediction about the slip deficit to be caught up in the 

next earthquake.  
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Figure 1.2: Left: Schematic representation of the elastic rebound model after Reid, [1910]. 

Right: picture showing a fence that was offset due to the fault slip during 1906 San Francisco 

earthquake. USGS image: (http://earthquake.usgs.gov/regional/nca/1906/18april/reid.php). 

 

Reid went a step further. He also showed that the static displacement observed 

after the San Francisco 1906 earthquake followed the prediction of a rupture 

dislocation in an elastic medium. Since the sum of the interseismic and co-seismic 

slip should be equal to the long-term relative displacement of plates, the interseismic 

strain should reflect the stress accumulation along the fault. During the interseismic 

period, the ground deforms smoothly in a manner that depends on the relative plate 

velocities, the elastic plate rigidity and the thickness of the elastic plate. The size of an 

earthquake on a fault would depend on the length and depth of the locked fault zone, 

and the recurrence time suspected on that fault would depend on how much strain had 

built up since the last one. 

 

2.2. Earthquake cycle in subduction zone 

2.2.1. Phases of the earthquake cycle 

The concept of the earthquake cycle was initially applied for the case of 

continental faults (i.e. strike-slip type), and then adapted to the subduction zone 

context. Fedotov, [1967] introduced the ‘seismic cycle’ expression to describe the 
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cycle of elastic deformation during and between large (Mw>8.0) megathrust 

earthquakes. In this model, the seismic cycle was characterized by two principal 

phases of deformation: A permanent interseismic phase and a transient coseismic 

phase 

 

2.2.1.1 The interseismic phase 

This phase corresponds to the period where seismic asperities on the megathrust 

are locked during decades to hundreds of years. The plate convergence induces a slip 

deficit in the locked fault zone that accumulates stress on the plate interface and 

deforms the overriding plate. The horizontal surface deformation is characterized by 

GPS gradients of the order of mm/yr to cm/yr, which decrease as the distance from 

the trench increases. The vertical deformation pattern is characterized by a subsiding 

area linked to the updip limit of the locked fault zone followed by an uplifted area 

linked to the downdip limit of the locked fault zone (Figure 1.3B). The width of the 

locked fault zone controls the wavelengths and the level of locking controls the 

amplitudes of the displacements. 

 

2.2.1.2. The coseismic phase 

The coseismic phase corresponds to the seismic rupture when sudden slip occur 

on the megathrust interface. The moment deficit accumulated during the interseismic 

phase was supposed in the first models to be totally released during the tens of second 

to minutes of rupture. For large earthquake in 0-50km depths, the surface 

displacements are typically of the order of decimeters to meters. The pattern of 

deformation observed during this phase is opposite in sign of the pattern observed 

during the interseismic period.  

This is only later, that a third major phase of the seismic cycle called the 

postseismic period has been introduced to explain the relaxation processes that follow 

large earthquakes [Brown et al., 1977; Bürgmann et al., 1997; Heki et al., 1997]. Each 

phase of the seismic cycle is well characterized by a specific signature of the Earth 

crust deformation with amplitudes and wavelengths varying in order of magnitude. 
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Figure 1.3 shows a simplified schematic representation of the three main phases of the 

seismic cycle together with the associated predicted horizontal and vertical 

displacements produced with forward elastic dislocation models.  

 

 

Figure 1.3: A: Schematic cross-section of the South American subduction zone. B: Schema 

showing the main phases of the seismic cycle and its associated horizontal (red arrows) and 

vertical patterns of deformation (blue line). We consider a stable South America reference 

frame. 

 

Using an elastic rheology for the earth Lithosphere, we can relate the locking at 

a specific elementary fault with respect to the displacement components at any site on 

the surface. A widely used approach to mimic the inter-seismic behavior of a locked 

fault segment is the back-slip model introduced by Savage, [1983]. In this model, the 

interseismic pattern of deformation is the sum of two terms, the first being a rigid 

plate motion where an oceanic plate subducts beneath the overriding plate at a fixed 

plate velocity, plus a slip in the opposite plate convergence direction (back-slip) in the 
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region supposed to be locked (Figure 1.4). The back-slip rate equals the plate 

convergence rate when it is fully locked but can be a fraction of it for partial locking. 

Using the analytical equations of Okada that link the 3D surface displacements with 

elementary source points embedded in an elastic half-space, we can retrieve the 

characteristics of the source from surface displacement measurements [Okada, 1985, 

1992]. 

 

 

Figure 1.4: Schematic representation of the back-slip model showing the superposition of a 

stable steady state at plate convergence rate and a supplemental solution that is slip normal to 

the plate convergence at the same rate, resulting in locking and strain accumulation at the 

subduction interface during the interseismic period. Gray areas correspond to the tectonic 

plates and colored area to the asthenosphere. Figure modified after Savage, [1983]. 

 

Dislocations solutions, either analytical for a semi-infinite homogeneous elastic 

half-space or numeric for an heterogeneous elastic half-space, can then be used to 

predict the 3-D displacement at GPS sites. An inverse problem, relating the GPS 

displacement to the amount of normal slip at each elementary sub-fault of the 

interface can then be setup to derive a model of the back-slip rate. The ratio of the 

back-slip rate divided by the plate convergence defines the interseismic coupling 

coefficient.  
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2.2.2. Transient phases of the earthquake cycle 

Numerous transient deformations have been observed during the seismic cycle. 

After large earthquakes, a postseismic deformation takes place in the form of rapid 

afterslip at the plate interface that generate aftershocks and visco-elastic relaxation of 

the Lithosphere that can spend decades for the greater Mw9-type earthquakes. 

Similarly, slow slip events lasting from days to several years and releasing energy 

comparable to moderate magnitude earthquakes are reported frequently since the 

beginning of the XXI
th

 century in most subduction zones.  

 

2.2.2.1. Postseismic deformation 

The postseismic deformation refers to the deformation that occurs in the months 

to decades after an earthquake (Figure 1.5), and is attributed to three different 

processes: i) Afterslip, that is the frictional response of the plate interface propagating 

around the rupture area stressed by the coseismic slip; this process is usually thought 

to occur during the first stage of the post-seismic phase (days to years). ii) 

Viscoelastic relaxation, which is the viscous response of the upper mantle and lower 

crust to the rapid stress increment induced by the coseismic rupture; this process can 

last up to more than 50 decades as observed for the 1960 M9.5 Chile earthquake 

[Wang et al., 2012]. iii) Poro-elastic effect, that is deformation induced by fluids flow 

in response to the coseismic stress change [Jonsson et al., 2003]. The slip during this 

period can release as much moment as the earthquake itself [Bürgmann et al., 2001]. 

Permanent measurements of the postseismic deformation help to constraint the 

principal characteristics of the frictional parameters of the plate interface and the 

rheology of the surrounding medium [Perfettini and Avouac, 2004; Perfettini et al., 

2010]. 
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Figure 1.5: Displacement in a N55ºE direction of the GPS station AREQ showing the 

displacement associated with the 2001 Mw=8.4 Arequipa earthquake. The tree main phases of 

the seismic cycle are evidenced here (Figure adapted after [Perfettini et al., 2005]).  

 

2.2.2.2. Slow Slip Events (SSE) 

Slow Slip Events (called also silent or slow earthquakes) are slip episodes that 

occur during the interseismic period and are characterized by long-lasting slips with 

duration typically ranging from days to years (Figure 1.6). Slip occurs without 

radiating detectable seismic energy and induces surface displacements of several 

millimeters to centimeters [Schwartz and Rokosky, 2007]. This type of events has 

started to be detected since the deployment of continuous GPS networks in 

subduction zones, principally in Cascadia and Japan, where they are observed to 

occur in the downdip portion of the seismogenic zone [Dragert et al., 2001; Ozawa et 

al., 2001]. The progressive deployment of GPS together with sensitive seismic 

networks in various subduction zones has evidenced that SSE would be a common 

process including a series of episodic transient. Some slip events are synchronous to 

tremor or low frequency earthquakes emitting low seismic radiation [Ide et al., 2007; 

Peng and Gomberg, 2010]. Recent observations of SSE suggest that these events can 

also occur in the shallow part of the of the seismogenic zone [Walter et al., 2011]. 

The modeled sources are consistent with slip on the plate interface, accommodating 

the relative plate motion and contributing to release the accrued stresses. The geodetic 

moment released by SSEs is equivalent to earthquakes of magnitude from ~6.0 to 7.6 
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Mw, as the observed in Cascadia, Japan, New Zealand, Ecuador and Mexico [Dragert 

et al., 2001; Douglas et al., 2005; Vallée et al., 2013].  

 

 

Figure 1.6: GPS time series showing Slow Slip Events recorded in different subduction zones 

of the world. One of the most classical examples of SSE occur in Cascadia where they use to 

last several weeks and recur with a periodicity of around 14 months, releasing stress 

equivalent to Mw=6.7 earthquakes [Dragert et al., 2001]. In Mexico in 2006 occurred the 

largest SSE recorded so far, it was equivalent to an earthquake Mw=7.6Mw [Radiguet et al., 
2012]. Similarly, SSEs reported in Japan and New Zealand last various months to years and 

as the previous regions they occur in the downdip of the seismogenic zone [Obara, 2002; 

Douglas et al., 2005]. A different type of SSEs occurring in the shallow portion of the 

seismogenic zone are characterized by short durations and associated microseismicity. This 

new type of events have been documented in the Northern Hikurangui [Wallace and Beavan, 

2010], the Boso Peninsula and recently in Ecuador [Vallée et al., 2013]. 
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Another type of transient deformation, termed as Preseismic deformation, has 

also been reported in few particular cases during the weeks to days before large 

earthquakes [Ruegg et al., 2001; Melbourne and Webb, 2002; Ruiz et al., 2014]. This 

deformation is believed to act as an acceleration of the slip in the bounds of the 

locked fault portion. This process is sometimes associated to an increase in the rate of 

seismicity (Figure 1.5). 

All these features add more complexities to the anatomy of the subduction 

interface and the mode of stress accumulation and release that vary in space and time, 

thus a diversity of deformation processes are expected during the earthquake cycle. 

 

2.3. Nature of the subduction interface 

The seismogenic zone is the portion of the plate interface where earthquakes 

nucleate via stick-slip sliding [Brace and Byerlee, 1966]. A current view, is that the 

anatomy of the plate interface is made of an inter-fingering of areas that are locked 

accumulating stress and strain during the interseismic period –named asperities- that 

will rupture during an earthquake. They are surrounded by areas that are partially or 

weakly locked, that either could facilitate post-seismic slip and/or either arrest the 

coseismic rupture, those areas that arrest laterally the rupture are named barriers 

[Schwartz and Rokosky, 2007; Kaneko et al., 2010]. According to the frictional 

properties of the materials the asperities that undergo unstable regime are 

characterized by a velocity weakening behavior, while weakly locked areas and 

barriers that undergo conditionally stable and stable regime are characterized by a 

velocity strengthening behavior [Scholz, 1998] (Figure 1.7). 
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Figure 1.7: Simplified illustration of the subduction interface environment showing the 

heterogeneous distribution of asperities (velocity weakening material) surrounded by areas 

that undergo a conditionally stable regime both embedded in a stable or velocity 

strengthening material. Figure from: Bilek, [2010] and Hasegawa, [2014]. 

 

3. The Subduction zone in Peru 

Along the Colombia-Ecuador-Peru-Chile trench the oceanic Nazca plate 

subducts beneath the South American continent at a rate of 5.3 cm/yr in Colombia (lat. 

6ºN) increasing gradually southward up to 6.3 cm/yr in south central Chile (lat. 30ºS) 

in a N78ºE average direction [Kendrick et al., 2003]. The South America subduction 

zone is one of the most seismically active areas in the world. This rapid convergence 

has generated three among the seven greatest subduction earthquakes (M≥8.8) ever 

recorded (Colombia-Ecuador 1906, Chile 1960 and 2010) and almost its entire length 

has ruptured through several large (M≥8.0) earthquakes [Bilek, 2010]. The Peruvian 

subduction zone, where I focus my study, is located in the central part of the Andean 

subduction (from 3ºS to 19ºS), extending over ~2300 km long that constitutes about a 

third of the total length of the Nazca/South America subduction. In the next 

paragraphs I present a brief description of the geological and seismotectonic context 

of the Peruvian subduction margin.  

 

3.1. Geological context of the Peruvian subduction zone  

The subduction in Peru is believed to have been ongoing since the early Jurassic 

(~200Ma) [Mégard, 1978]. The current tectonic configuration of the Andes is 

attributed to compressional and transpressional episodes during the Cenozoic 
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evolution of the plate boundary. The main tectonic characteristics vary both parallel 

and perpendicular to the strike of the trench (Figure 1.8). 

Among the along-strike variations, there are remarkable bathymetric features on 

the subducting Nazca plate entering the trench that are believed to play a role in the 

segmentation and seismotectonics of the Peruvian subduction margin. From north to 

south these structures are: the Grijalva (GR), Alvarado (AR), and Sarmiento (SR) 

ridges, the Virú (VFZ) and Mendaña fracture zones (MFZ), the Nazca ridge (NR), 

and the Nazca fracture zone (NFZ). At the trench, the age of the oceanic plate 

increases gradually from ~30 Myr (Oligocene-age) in front of the Gulf of Guayaquil, 

to 54 Myr (Eocene-age) offshore the Arica bend. The MFZ, NR and NFZ correlate 

with rapid positive changes in the age of the plate (Figure 1.5).  

The presence of these structures together with the occurrence of large 

earthquakes led authors to divide the Peruvian subduction zone into three segments: 

the north, the central and the south segments, being the MFZ (Lat. 9ºS) and the NR 

(Lat. 14ºS) the structures delimiting the central segment from the north and south 

segments [Kelleher, 1972; Beck and Ruff, 1989; Dorbath et al., 1990]. Moreover, 

seismological studies have evidenced two distinct modes of subduction in Peru. In the 

southern segment (south of 15ºS) the slab is steeply dipping with an angle 20-30º 

diving into the mantle, while in central and northern Peru the slab dips gently with an 

angle of 10º to 20º up to a depth of about 100 km where it becomes flat over an 

extension of about 300 km width and 1500 km along-strike long [Barazangi and 

Isacks, 1976; Cahill and Isacks, 1992]. Active volcanism is only present in southern 

Peru where steeply dipping subduction exits. 

Perpendicular to the strike of the trench the structural style of the Andean 

subduction margin is characterized by five main tectonic regions [Dalmayrac, 1978] 

 

3.1.1 The Trench and Coastal zone 

This zone extends from the trench up to the western boundary of the Andean 

Cordillera. This region is the primary target to study most of the processes related to 

the plate convergence (interplate coupling, deformation of the overriding plate, 

seismic and aseismic slip, etc.). The offshore portion shows lower rates of sediment 
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deposition, and a small or restricted presence of the accretionary prism [von Huene 

and Lallemand, 1990; Krabbenhöft et al., 2004; Heuret et al., 2012]. The onshore 

portion in northern Peru consists of gently folded Mesozoic volcanic and sedimentary 

rocks [Suarez et al., 1983; Megard, 1984], in central and southern Peru the intense 

deformation lead to outcrops of strongly folded crystalline basement and extensional 

and compressional faulting around the Altiplano [Megard, 1984; Machare and 

Ortlieb, 1992; Sempere et al., 2004]. 

 

3.1.2. The Occidental Cordillera 

It is a high mountain range of about 150km width and elevations from 3500 to 

5000 m being bounded by trench-coastal zone and the Altiplano. This region is 

dominated by the coastal batholith consisting in multiple intrusions, although intense 

volcanism since the late Eocene masks part of the central and the southern region. The 

older units show effects of compressive deformation presumably occurred during the 

late Eocene to Miocene [Mégard, 1978; Wipf, 2006].  

 

3.1.3. The Altiplano 

It is a high plateau at a mean elevation of 4000 m and a maximum width of 450 

km that is bounded by the oriental and occidental cordilleras. It is composed of thick 

deposits of Paleozoic and Mesozoic marine and continental sedimentary rocks that 

were compressed and folded during the early Cenozoic [Mégard, 1978]. In Peru, there 

is evidence for quaternary normal and strike-slip faulting over the last 1 Myr but with 

negligible submetric displacements [Suarez et al., 1983]. 

 

3.1.4. The Oriental Cordillera  

It is a mountain range that reaches elevations of ~4000 m and a width that 

increases from north to south from ~100 to 150 km width. It is composed of 

crystalline and plutonic rocks overlain by Paleozoic shallow marine and continental 

deposits [Dalmayrac, 1978]. The main structures in the region include open folds and 

steep thrust faults. Seismic and geologic data indicate that tectonics in the eastern 
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edge is predominantly thrust with components of strike slip and normal faulting 

[Suarez et al., 1983; Barke and Lamb, 2006].  

 

3.1.5. The Sub-Andean Fold and Thrust Belt 

This is the region of present day most active deformation occurring in the 

Andes. It is characterized by active thin-skinned thrusting since at least the 

Pleistocene [Mégard, 1978; Suarez et al., 1983]. Focal mechanisms analysis of recent 

shallow crustal earthquakes (< 60 km) in this region are consistent with thrust faults 

steeply dipping (30-60º) to the west becoming shallower toward the south [Suarez et 

al., 1983; Devlin et al., 2012]. Post-Oligocene crustal shortening is probably the 

dominant process for thickening the Andean crust, although shortening has migrated 

Eastward with time from the Altiplano in the Miocene to its present position to the 

East in the Sub-Andean zone [Suarez et al., 1983; Isacks, 1988].  

Geologic shortening rates averaged over the past 10 Ma to present in the Andes 

exceed 10 mm/yr, contrasting with the shortening estimated from GPS 5-10 mm/yr 

[Norabuena et al., 1998; Bevis et al., 2001; Brooks et al., 2011; Chlieh et al., 2011], 

and shortening rates estimated from the seismic energy released by major crustal 

earthquakes range between 2 to 3.8 mm/yr [Suarez et al., 1983; Dorbath et al., 1991]. 

Recent compilations of quaternary faults [Macharé et al., 2003; Veloza et al., 

2011, and http://neotec-opendata.com] evidence reverse active faulting all along the 

sub-andean domain through thrust and folds belts, while within the Andes the 

deformation shows a complex pattern with reverse, normal and strike-slip faults. 
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Figure 1.8: Main elements of the geotectonic context of the Peruvian subduction zone. The 

structures on the Nazca plate subducting into the trench are: the Grijalva Fracture Zone (GFZ), 

the Alvarado (AR) and Sarmiento ridges (SR), the Virú (VFZ) and Mendaña Fracture Zones 

(MFZ), the Nazca Ridge (NR) and the Nazca Fracture Zone (NFZ). The NR and the MFZ 

delimit the central subduction segment from the north and south segments, respectively. 

Dashed lines represent the 2-Ma contours of the age of the oceanic Nazca plate and dotted 

lines represent 50-km iso-surface contours of the subducting slab from the Nazca plate 

[Hayes et al., 2012]. Triangles denote Holocene volcanic centers. Modified from Dalmayrac, 

[1978; and Carlotto et al., [2009]. 

 

3.2. Overall characteristics of large earthquakes along the Peruvian 

subduction zone 

The historical earthquake catalogs for Peru date back to the 16th century, since 

the Spanish conquest, and they are based on reports, narrations and chronicles from 

civil and ecclesiastic authorities [Silgado, 1978]. The compilation of historical large 

earthquakes highlights a drastically different behavior of the earthquake cycle from 
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south to north [Dorbath et al., 1990]. While in the southern and central Peru segments 

large earthquakes (M≥8) occurred with a recurrence interval of ~100 to 250 years, the 

northern segment shows a sparse and rare occurrence of lower to moderate (M≤~7.5) 

magnitude events [Kelleher, 1972; Beck and Ruff, 1989; Dorbath et al., 1990; 

Nishenko, 1991; Bilek, 2010]. According to chronicles the largest events ever known 

in Peru occurred in 1746 in the central segment and in 1604, 1868 in the southern 

segment. These events generated devastating tsunamis, whose magnitude were used 

to infer moment magnitudes of 8.6, 8.7 and 8.8, respectively [Dorbath et al., 1990]. 

For northern Peru, chronicles only report a moderate event that occurred in 1619 near 

Trujillo (estimated in 7.7Mw) and another moderate event occurred in 1912 near 

Piura though their attribution to interplate events remained uncertain [Dorbath et al., 

1990] (Figure 1.9). 

Instrumental records of large subduction earthquakes in Peru started with the 

1913 (7.8M) earthquake in the southern segment (~17ºS, near Nazca). This event was 

preceded by a foreshock of M~7.0 nine days before [Abe and Noguchi, 1983]. Three 

larger earthquakes within this segment occurred in 1942 (~8.0M) and 1996 (7.6Mw) 

near Nazca, and 2001 (8.4Mw) near Arequipa [Swenson and Beck, 1999; Salichon et 

al., 2003; Pritchard et al., 2007; Chlieh et al., 2011], rupturing almost the entire 

segment except by a remaining length of 150–200 km of the southernmost rupture 

area of the 1868 (8.8 Mw) earthquake (Figure 1.9). In the central Peru segment a 

sequence of four large earthquakes occurred in 1940 (8.0Mw) near Huacho, 1966 

(8.0Mw) Casma, 1974 (7.9Mw) Lima, and 2007 (8.0Mw) Pisco [Beck and Ruff, 1989; 

Sladen et al., 2010], rupturing almost the entire central segment, although their 

magnitudes only represent a fraction of the seismic moment released by the 1746  

~8.6Mw) [Beck and Nishenko, 1990; Chlieh et al., 2011]. In the northern Peru 

segment the records of large earthquakes only show moderate magnitude earthquakes, 

confirming the particular behavior seen during the historical period. These events 

occurred near Tumbes in 1953 (7.8Mw) and 1959 (7.5Mw), Piura 1960 (7.6Mw) and 

Chimbote 1996 (7.5Mw) [Pelayo and Wiens, 1990; Ihmle et al., 1998; Bourgeois et 

al., 1999]. The two latter, due to their slow rupture velocity, long source time duration 

and tsunamis significantly greater than expected, were categorized as tsunami-

earthquake type events.  
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3.3. Further research of historical earthquakes in northern and 

central Peru 

It appeared useful to further investigate the earthquake history of Peru, 

especially of its northern segment. I noticed that recent compilations of subduction 

thrust or tsunamigenic earthquakes [Dorbath et al., 1990; Bilek, 2010] do not include 

the 1953 (7.8M) and 1959 (7.5M) events of northern Peru. However we notice that 

tsunami catalogs report local tsunamis for these events with runup > 1 m near Tumbes 

and southern Ecuador (Lat. 3°S - 4°S) [NGDC http://www.ngdc.noaa.gov, n.d.; 

Soloviev and Go, 1975; Lockridge, 1985; Espinoza, 1992]. Tsunami observation 

suggests that these events originated at the plate interface and that they must be 

included in future catalogs. Another particular case is the 1619 event (~7.5M, Lat. 

8ºS), which was not associated with a tsunami in the historical catalogs [Silgado, 

1978; Dorbath et al., 1990], remaining its origin as a doubt. A recent paleotsunami 

study by [Spiske et al., 2013], found evidence of tsunami deposits layers in the coast 

of Casma (Lat. 9°S) with an age of 370 ± 30 yrs, which seems to correlate with the 

1619 earthquake, suggesting that this events can be classified as an interplate event. 

Additional information of historical earthquakes for Peru comes from an 

exhaustive revision of the chronicles and reports of historical earthquakes done by 

Seiner, [2009, 2011]. We found that several historical events documented by Seiner, 

[2009, 2011] were not included in the widely used catalog of Silgado, [1978] on 

which most seismological studies rely. Two significant events are worth to be added 

to the history of subduction large earthquakes in Peru. The first occurred in northern 

Peru in 1759 causing destruction, five casualties and severe damages in the Trujillo 

region. The chronicles compare this event with that occurred in 1619. The second 

occurred in 1806 near Lima, causing destruction and disturbances in the sea in front 

of the Callao port where some vessels were pulled out from the sea, suggesting that a 

tsunami was associated to this event. For these 2 events there is no a magnitude 

assigned but based on the intensity and tsunami characteristics, a magnitude of the 

order of ~7.5Mw or even greater is plausible. Figure 1.9 shows an updated temporal 

and spatial distribution of large (M>7.5) historical and recent earthquakes since 1513 

to date for the entire Peruvian subduction zone. 
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Figure 1.9: Updated compilation of large earthquakes occurred along the Peruvian 

subduction zone. Left: Rupture length as a function of time of large historical and 

instrumental earthquakes with M>7.5 occurred since the XV century. Right: Seismotectonic 

setting of the Peruvian subduction zone, showing the rupture area of large earthquakes 

occurred during the last century, blue polygons are events that were characterized as 

tsumami-earthquakes. Polygons in gray represent the approximate rupture area of the greatest 

1868 (south) and 1746 (central) events. See text for more details. 
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The background seismicity (M<7) in the Peruvian subduction for the last 5 

decades appears to be uniformly spatially distributed all along the margin (Figure 

1.10) (ISC reprocessed catalog (http://www.isc.ac.uk/)). Figure 1.10B shows a 

comparison of the number of events every 0.2º of latitude and their seismic moment 

released for events of magnitude M≥4.5 since 1960 to 2012. We note, however, that 

the earthquakes occurred in the northern segment does not release significant stress as 

large earthquakes do. A cluster of seismicity is distinguished at the entrance of the 

Nazca Ridge. Holtkamp et al., [2011] using a global earthquake catalog identified this 

and a series of swarms along the Nazca South America subduction, and suggested that 

the swarms are related to segments that undergo aseismic slip. 

In general, this panorama shows that the northern Peru subduction segment 

remains as the sole portion of entire South American subduction where no large 

earthquake (M>8) occurred at least since the XVI century. Whether the convergence 

is being accommodated through aseismic processes, that is the plates are practically 

freely sliding one respect to each other, or whether the strain is accumulating over 

several centuries to produce a very large earthquake in the future is one of the 

questions that has remained unknown so far. In this manuscript I address this issue. 
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Figure 1.10: A: Spatial distribution of the shallow (<70 km) seismicity extracted from the 

ISC declustered catalog for the period 1960-2012. Sized circles show the events of magnitude 

M ≥ 4.5. B: Continuous line indicates the number of shallow earthquakes located in the 

seismogenic zone every 0.2º of latitude and red dashed line the seismic moment released by 

such events. 

 

 

4. Previous studies using space geodesy (GPS) in the Peruvian 

Subduction 

Spatial geodetic studies in the South American subduction zone have been 

carried out in almost the entire margin of the subduction zone including Colombia, 

northern Ecuador, central and southern Peru and Chile. These studies have evidenced 

for a generally high level of interseismic coupling. Moreover, these studies evidenced 

a long-term deformation of the continental lithosphere, which is accommodated by 

crustal deformation and mountain building via crustal shortening in the sub-Andean 

region [Norabuena et al., 1998; Bevis et al., 2001; Kendrick et al., 2001; Trenkamp et 
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al., 2002; Brooks et al., 2003; Chlieh et al., 2004; Ruegg et al., 2009; Moreno et al., 

2010; Vigny et al., 2011; Métois et al., 2013].  

The first GPS measurements carried out in Peru, specifically in the central and 

southern regions, initiated in 1994 with the SNAPP project [Norabuena et al., 1998]. 

In that study the authors showed the simultaneous contributions of locking at the plate 

interface and the remaining deformation on the overriding plate contributing to the 

Andean mountain building via crustal shortening. Bevis et al., [1999] analyzed 

previous results and suggested a bias of 50% of the velocity field proposed by 

Norabuena et al., [1998] due to an issue in the definition of the reference frame, that 

then impact the level of locking at the plate interface. In 2005 Gagnon et al., [2005] 

published one of the first studies using sea bottom geodesy in a subduction zone, 

offshore central Peru. They combined sea bottom geodetic measurements with land 

based GPS along a profile and found that the shallow part of the plate interface is 

highly locked from 2 to a depth of 40 km, therefore suggesting that central Peru can 

host large earthquake and tsunami. More recently Chlieh et al., [2011] compiled 

previous studies observations to model the interseismic coupling at the plate interface 

and compute the seismic source of recent large earthquakes in the central Andes 

subduction zone. They found that the plate interface is heterogeneously locked and 

that areas undergoing high interseismic coupling were loci of rupture areas of past 

large earthquakes. They hypothesized that if all the stress accumulated before the 

1868 and 1746 events (M>8.6) had entirely been released with these events, the 

moment deficit accumulated since those great earthquakes is high enough to produce 

similar size events. They further show that the 7 M~8.0 events occurred in central 

(1940, 1966,1974, 2007) and south (1942, 1996, 2001) Peru only released a fraction 

of the slip deficit, still leaving the potential for earthquakes of large magnitude in 

these segments.  
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Figure 1.11: Interseismic GPS velocities and coupling models for the central Andes 

subduction zone. a) Velocities are compared with the prediction of simple uniform model 

produced by elastic loading of the upper plate in response to locking on the plate interface 

[Bevis et al., 2001]. b) Distribution of interseismic coupling on the megathrust derived from 

the inversion of GPS velocities. The model shows that the pattern of interseismic coupling is 

heterogeneous. [Chlieh et al., 2011]. 
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Understanding the problem of partitioning in subduction zones has been 

evidenced to be fundamental. In subduction zones where the plate convergence is 

oblique, as it is the case in Central America, south of Chile or Sumatra, major strike-

slip lateral faults in the back of the forearc are found parallel to the trench axis 

accommodating the lateral motion of large continental slivers [Mccaffrey, 1992; Wang 

et al., 2007]. In the Central Andes the problem of partitioning has been adopted in 

terms of shortening in the Sub-Andean fold and thrust belt [Norabuena et al., 1998; 

Bevis et al., 2001; Chlieh et al., 2011]. Other studies adopt this issue in terms of a 

sliver motion [Métois et al., 2013]. Those approaches are usually adopted for 

subduction segments where a clear volcanic forearc and major faults systems 

accommodating are present.  

The northern and central Peru subduction segment also shows oblique 

convergence, however, it is characterized by the absence of a volcanic forearc. 

Despite obliquity has been suspected to induce significant trench-parallel motion 

[Dewey and Lamb, 1992; Veloza et al., 2011], the partitioning has not been well 

characterized nor demonstrated. In this manuscript I analyze this issue and evaluate 

how partitioning is accommodated in Peru. 

 

5. Main questions addressed in this thesis 

Mega-tsunamigenic earthquakes of the decade 2004-2014 have pointed out the 

importance of correctly assessing the seismic hazard in subduction zones and the need 

to improve our understanding on the processes that lead to the occurrence of giant 

earthquakes. Indeed, the mechanisms whereby stresses are being accumulated and 

released along the plate interface are not well understood. The ANR-ADN (Andes du 

Nord) project financed by the French government between 2008 and 2012 proposed 

an integrated approach involving geodesy, seismology, tectonics, marine geophysics 

and modeling in order to address these issues. My thesis was done in the frame of that 

project considering the Peruvian subduction segment. 

So far, GPS studies have focused in southern and partially in central Peru. The 

northern Peru segment (from 9ºS to -3ºS) remained as the sole portion without being 

studied using this technique. No information about was available before this thesis for 
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this segment, from the north of Lima to the Gulf of Guayaquil. As a consequence, 

even first order information was not available to assess neither the level of 

deformation and stress accumulation nor the associated seismic risk at the beginning 

of this thesis.  

 

 
Figure 1.12: Left: Rupture area for known earthquakes with M>7.6 and GPS campaigns 

measurements since 1990 [Norabuena et al., 1998; Bevis et al., 2001; Kendrick et al., 2001; 

Trenkamp et al., 2002; Chlieh et al., 2004]. Right: GPS derived model of mechanical 

coupling along the subduction interface. Highly coupled zones are shown in red. They show 

similar sizes to ruptures of past large earthquakes. At the beginning of this thesis, no 

information was currently available to constrain the level of stress accumulation along a 

~1200 km long segment between Lima (Peru) and Guayaquil (Ecuador).  

 

The fundamental questions addressed in this thesis are:  

- How the convergence is being accommodated along the Peruvian subduction 

zone, especially in its northern segment? 

 

- What portion of the GPS surface deformation field could be attributed to the 

permanent continental deformation and what portion to the mechanical 

coupling at the megathrust interface? Where are the principal seismic 

asperities? 
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- The atypical seismic silence of the northern Peru segment over the last 5 

centuries is either an indicator that the stress is currently accumulating on the 

plate interface to produce large earthquakes in the future. Alternatively, this 

silence would reflect an interface where plates are sliding aseismically 

explaining the absence of large (M>8.0) earthquakes? 

 

- Where are the weakly locked areas on the plate interface? Can we map those 

areas that arrest the rupture of large earthquakes (barriers)? Do these areas 

correlate with any geomorphological features? 

 

- Tsunami-earthquake type events seem to be characteristic of the northern 

subduction segment. Is it possible to map those coupled areas that generate 

this kind of events?  

 

- Could areas of low interseismic coupling host slow slip events? If yes, what 

role do they play in accommodating the convergence or triggering 

earthquakes? 

 

- What are the physical parameters controlling the earthquake behavior and its 

drastic change from south to north of Peru? 

 

- Could the results of this thesis provide a reliable model of the seismic and 

tsunami hazard? 

In order to answer these questions, I analyze all the GPS data collected in the 

frame of the ADN project (a collaborative project involving Géoazur and the Institute 

of Geophysics of Peru among others, funded by the ANR-France and led by Jean-

Mathieu Nocquet). Since 2008 up to 2013, I have been participating in each step of 

the project: the reconnaissance and installation in Spring 2008, the GPS campaigns in 

2008, 2009, 2010, 2011, 2012, 2013, the maintenance and management of the data 

flow for continuous GPS, the processing and the modeling of GPS data of this project. 

In this thesis, I also did the effort of collecting all the GPS data available in Peru 

concretizing an extensive database at the scale of the country. I also benefited from 

the GPS data from the Instituto Geográfico Nacional (IGN) of Peru network, trough a 

convention with the Institut de Recherche pour le Développement (IRD). This study 
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also benefits from continuous support provided by the IRD to perform GPS 

measurements along three trench perpendicular profiles crossing the Andean 

cordillera from the coast to the sub-Andean region. Finally, this study also benefits 

from GPS data from LISN project [Valladares and Chau, 2012] of the Instituto 

Geofísico del Perú (IGP). 

 

6. Outline of this thesis 

This manuscript consists of 5 chapters including this introductory chapter. 

Chapter 2 presents the large-scale results for continental deformation and 

interseismic interplate coupling from central Peru to southern Colombia. This study 

found that a large segment of the subduction in northern Peru and southern Ecuador is 

accommodating the convergence almost aseismically. We also discovered that the 

diverging motion of two continental slivers dominates the tectonic of the western 

margin of the north Andean subduction zone: the North Andean Sliver and the 

recently evidenced Inca Sliver. These results were published in the Nature 

Geosciences journal in March 2014 in Nocquet et al., [2014]. 

Chapter 3 contains a more detailed study on the Inca Sliver kinematics and its 

impact on the pattern of interseismic coupling along the whole Peruvian subduction 

zone. Thanks to an augmented dataset including new GPS observations from 

collaborative networks and new campaign sites including 3 profiles crossing the 

Andean cordillera, we better constrain the boundary of the Inca sliver and its 

kinematics. We re-evaluate the level of interseismic coupling along the Peruvian 

subduction by taking this new Sliver as a reference. There, I provide possible 

scenarios for future large earthquakes. This chapter is expected to be submitted to the 

Journal of Geophysical Research.  

Chapter 4 contains a detailed study of a sequence of seismicity synchronous to a 

slow slip event (SSE) that occurred in 2009 near Piura in northern Peru. This finding 

is one the first observed SSE in the South American subduction zone and one of the 

first that shows significant seismicity synchronous to the aseismic slip. I analyzed not 

only GPS data but also seismological data to depict the temporal evolution and 

relationships between seismic/aseismic slips, providing new insights about the 
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anatomy of the subduction interface in northern Peru. The results of this chapter are 

under final corrections for publication in peer-reviewed journal.  

Finally, Chapter 5 includes a synthesis and conclusions of the main findings and 

a view of the anatomy of the Peruvian subduction zone. The conclusions and ideas for 

future work are also presented. 
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Chapter 2  

 

 

Motion of continental slivers and creeping subduction in the 

northern Andes 

 

 

In this chapter I present the first results of a large-scale GPS network installed 

in northern Andes from Lima (lat. 12.5ºS) to north Ecuador (lat. 2ºN), to study the 

continental deformation and interplate coupling in the northern Andes. Here, we put 

in evidence the existence of a tectonic sliver in Peru that together with the North 

Andean Sliver diverge in motion from the Gulf of Guayaquil moving southeastward 

and northeastward, respectively. We also found that a large portion of the subduction 

the subduction segment (~1000 km) from northern of Lima sot the Gulf of Guayaquil 

(lat. 9ºS to lat. -2ºS,) shows a weak interseismic coupling compared to the central 

Peru and central-north Ecuador segments where the coupling is high. The results of 

this study have been published in the journal Nature Geosciences and are presented 

here in the published version. 

 

 

Motion of continental slivers and creeping subduction in the northern Andes 

Nature Geosciences 7, 287–291 (2014) doi:10.1038/ngeo2099. 

J-M. Nocquet, J. C. Villegas-Lanza, M. Chlieh, P. A. Mothes, F. Rolandone, P. 

Jarrin, D. Cisneros, A. Alvarado, L. Audin, F. Bondoux, X. Martin, Y. Font, M. 

Régnier, M. Vallée, T. Tran, C. Beauval, J. M. Maguiña, W. Martinez, H. Tavera & H. 

Yepes 
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Motion of continental slivers and creeping
subduction in the northern Andes

J-M. Nocquet1*, J. C. Villegas-Lanza1,2, M. Chlieh1,3, P. A. Mothes4, F. Rolandone5, P. Jarrin4,

D. Cisneros6, A. Alvarado4, L. Audin7, F. Bondoux8, X. Martin1, Y. Font1,4, M. Régnier1, M. Vallée1†,

T. Tran1, C. Beauval7, J. M. Maguiña Mendoza9, W. Martinez10, H. Tavera2 and H. Yepes4,7

Along thewesternmargin of SouthAmerica, plate convergence
is accommodated by slip on the subduction interface and
deformation of the overriding continent1–6. In Chile1–4, Bolivia6,
Ecuador and Colombia5,7, continental deformation occurs
mostly through the motion of discrete domains, hundreds to
thousands of kilometres in scale. These continental slivers
are wedged between the Nazca and stable South American
plates. Here we use geodetic data to identify another large
continental sliver in Peru that is about 300–400km wide and
1,500 km long, which we call the Inca Sliver. We show that
movement of the slivers parallel to the subduction trench is
controlled by the obliquity of plate convergence and is linked
to prominent features of the Andes Mountains. For example,
the Altiplano is located at the boundary of converging slivers
at the concave bend of the central Andes, and the extending
Gulf ofGuayaquil is located at theboundary of diverging slivers
at the convex bend of the northern Andes. Motion of a few
large continental slivers therefore controls the present-day
deformation of nearly the entire Andes mountain range. We
also show that a 1,000-km-long section of the plate interface
in northern Peru and southern Ecuador slips predominantly
aseismically, a behaviour that contrastswith the highly seismic
neighbouring segments. The primary characteristics of this
low-coupled segment are shared by ∼20% of the subduction
zones in the eastern Pacific Rim.

Along the western margin of South America, rapid convergence
(∼60–70mmyr−1) of the oceanic Nazca Plate towards South
America has produced three of the ten largest subduction
earthquakes since 1900. Almost its entire length has been ruptured
by M > 8 megathrust earthquakes since the 1500s (ref. 8).
Contrasting with this observation, north of the 1746 Mw ∼ 8.6

Lima earthquake9 and south of the 1906Mw 8.8 Ecuador–Colombia
event10, no M > 8 megathrust earthquake has occurred at least
since the Spanish conquest of the Inca Empire in 1532 (Fig. 1a). The
only noteworthy historical events occurred in 1619, when the city
of Trujillo was destroyed, and in 1912 in the Piura area, but their
attribution to subduction events remains uncertain9. Among the
four events with magnitude larger than 7 recorded by seismometers
in this region, the 1960 Mw 7.6 and 1996 Mw 7.5 earthquakes

displayed abnormally long source duration, slow rupture velocity,
enhanced long-period source spectrum and both induced relatively
large tsunamis11,12. Both events have been categorized as tsunami
earthquakes, rupturing the shallow, weaker material of the
accretionary prism. In the absence of direct measurements, several
behaviours are plausible to explain the observed seismic gap: a first
endmember view is that the subduction interface is freely slipping,
with no potential to generate great earthquakes. In contrast, a
second possible model is that this interface is significantly locked
and great earthquakes may have recurrence time greater than
500 yr. If the latter hypothesis is true, a total length of 1,200 km and
a convergence rate of ∼60mmyr−1 would imply an overall seismic
moment deficit equivalent to a Mw >9 earthquake, if released in
a single event. Of course, intermediate scenarios are also possible,
but even a single 300-km-long segment being significantly coupled
would still leave the potential for a Mw >8 earthquake to occur
in the future. Quantitatively assessing the seismic potential of this
segment of the subduction is therefore essential not only for Peru
and Ecuador but also for the whole circum-Pacific zone, because
of the associated tsunami hazard. Besides the hazard associated
with the subduction megathrust, significant crustal seismicity
also takes place in the Andean domain. For instance, Ecuador has
experienced at least 28 damaging crustal earthquakes since 1541
(ref. 13). Among them, the 1797 Riobamba event is one of the
largest crustal earthquakes ever documented in the Andes with a
magnitude recently estimated of between 7.5 and 7.9 (ref. 13).

Here, we use global positioning system (GPS) data to quantify
the surface deformation in the northern Andes using a network
of 100 sites, from Lima in central Peru (latitude 12◦ S) to Bogota
in Colombia (Latitude 4.6◦ N; Fig. 1b). With respect to stable
South America, the velocity field shows a diverging pattern, with
velocities directed east to northeastwards in Ecuador andColombia,
and directed southeastwards in northern Peru. Superimposed on
this general pattern, larger velocities whose magnitude decreases
with increasing distance from the trench indicate areas of strong
interseismic coupling in central Peru and northern Ecuador. Amore
detailed analysis reveals that the southern Ecuadorian Andes and
northern Peru moves coherently 5–6mmyr−1 southeastwards, with
negligible internal deformation (Fig. 2a). In central Peru, south
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Figure 1 | Major subduction earthquake ruptures and GPS velocity field along the Ecuador/northern Peru margin. a, Rupture areas of major past

earthquakes. Red ellipses indicate large earthquakes (Mw≥7.7) since 1900 (ref. 8). Hatched ellipses indicate the approximated rupture areas of great

(Mw≥8.5) earthquakes9,10. Blue ellipses indicate tsunami earthquakes8,11,12. b, GPS velocity field with respect to stable South America. Red and orange

arrows denote continuous and campaign sites, respectively. c, Kinematic sketch showing the motion of the NAS and Inca Sliver. SOAM, South America

Plate. Numbers are velocities inmmyr−1.

of latitude 9◦ S, the geodetic velocity field is dominated by the
contribution of high interseismic coupling along the subduction
interface, which masks the smaller signal of the sliver motion.
Nonetheless, sites located far away from the trench and as far
south as Ayacucho (74.2◦ W, 13.2◦ S) and Cuzco (72◦ W, 13.5◦ S)
show <2mmyr−1 residual velocities with respect to northern Peru,
indicating that the sliver also encompasses these southern areas.
Furthermore, subduction event slip vectors show a systematic
anticlockwise rotation with respect to the Nazca/South America
convergence all along the Peruvian subduction (Supplementary
Fig. 1). Independently from the geodetic data, this further suggests
that the trench-parallel motion of the sliver encompasses the whole
Peruvian margin and extends as far south as the Bolivian Andes. As
the possible limit of the sliver roughly matches the extent of the Inca
Empire, we propose the name Inca Sliver for the continental domain
wedged between the Nazca Plate and stable South America in Peru
and southern Ecuador (Figs 1c and 2a).

North of the Gulf of Guayaquil, previous studies have identified
a large sliver (North Andean Sliver, NAS) encompassing the Andes
and its western margin from Ecuador to western Venezuela5,7.
We find that a rigid block motion of 7.5–9.5mmyr−1 towards
the northeast explains the kinematics from central Ecuador to
Colombia. Dense GPS measurements allow us to define the
NAS eastern boundary in Ecuador. The limit includes the Gulf
of Guayaquil, obliquely cuts the Andean Cordillera and then
runs along the eastern front of the Eastern Cordillera (Figs 1c
and 2b). The boundary outlined by GPS results correlates with

previously described active faults14, the location of major historical
earthquakes13 and the style of faulting of recent earthquakes
(Fig. 2b). GPS velocities are also consistent with previously
proposed Holocene slip rates15,16 suggesting that the motion of
the sliver is accommodated by a small number of major faults.
Less information is available for past earthquakes and active
faults that could be associated with the eastern boundary of the
Inca Sliver. Nonetheless, ∼20 shallow thrust and transpressive
crustal earthquakes with magnitude between 5.5 and 7.0 have
occurred along the proposed boundary since 196017,18. Although
internal deformation of both slivers probably exists at some
level, the sliver boundaries delimit strips of localized deformation
accommodating rapid (4– 10mmyr−1) motion and define areas of
high seismic hazards.

Both slivers have a width of 300–400 km and a total length of
>1,500km. Their motions dominate the present-day kinematics
for about half of the length of the Andean Cordillera, from
south of the Caribbean Plate to the central Andes. The separation
between the two slivers occurs across the Gulf of Guayaquil,
located close to the apex of the convex bend of the South
America subduction zone, where the sense of the convergence
obliquity changes as a consequence of the change of orientation
of the trench. The sense of the trench-parallel component of each
sliver motion is consistent with the obliquity of the convergence,
indicating active strain partitioning along this portion of the plate
boundary. Kinematic triangles show ∼6mmyr−1 of left-lateral and
∼4.5mmyr−1 of right-lateral trench-parallelmotion in Ecuador and
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Figure 2 | North Andean Sliver and Inca Sliver boundaries. a, Blue and red arrows are velocities with respect to the North Andean Sliver (NAS) and the

Inca Sliver, respectively. Green arrows are velocities in the sub-Andean domain with respect to stable South America. Error ellipses are 95% confidence

level. Squares indicate GPS with <1mmyr−1 velocities. Black focal mechanisms are from the Global CMT catalogue (http://www.globalcmt.org) and blue

focal mechanisms from refs 17,18. The green rectangle indicates the area shown in b. b, Velocity field along the boundary of the NAS. All velocities are now

with respect to the NAS. Yellow stars show the major historical earthquakes in Ecuador with their dates13.

Peru, respectively, leading to a similar percentage of partitioning
(∼20–25%) for the two domains (Supplementary Fig. 2). Trench-
normal motion also seems to be slightly partitioned and results in a
thrusting component accommodated along the eastern front of the
Andes and to a lesser extent in the sub-Andean domain.

Previous studies have identified sliver motion in the central
and southern Andes, with pure arc-parallel motion for the Chiloé
Forearc Sliver1 in southern Chile and an additional trench-normal
component for the Central Andes Sliver3,4,6. All proposed slivers
in Chile show a northwards, left-lateral trench-parallel component
of motion1–4 consistent with the sense of the plate convergence
obliquity. Our results therefore support a view of strain partitioning
nearly throughout the entire Nazca/South America plate boundary
zone, with a first-order organization controlled by the plate
convergence obliquity. Sliver motion further provides an obvious
link to prominent features of the Andes. The Altiplano in the central
Andes is located at the boundary zone between the Central Andes
Sliver in northern Chile and the Inca Sliver in Peru. Converging
trench-parallel component of sliver motion in the concave bend of
the Central Andes induces crustal thickening and growth of the
Altiplano, whereas diverging sliver motion occurs in the convex
bend of the northern Andes inducing crustal thinning and opening
of the Gulf of Guayaquil. This observation departs from the classical
view of the Andes evolution, usually seen as a two-dimensional
process involving progressive thickening of the crust and widening
of the mountain range. In contrast, our results indicate that

trench-parallel transportation of the continental lithosphere driven
by the convergence obliquity exerts amajor control on the widescale
deformation of the Andes, at least for their recent evolution.

Residual velocities with respect to the two slivers (Fig. 2a)
reflect the interseismic elastic strain induced by coupling along the
subduction interface. Ourmodelling results provide a simple view of
the seismic cycles in Peru and Ecuador. High interseismic coupling
in central Peru and in northern Ecuador correlates with rupture
areas of the great 1746 (ref. 9) and 1906 (ref. 10) earthquakes. In
these regions, elastic strain is released through great earthquakes,
sometimes alternating with sequences of smaller (Mw 7.5–8.2)
events8–10. Conversely, along a ∼1,000-km-long segment from
latitude 10◦ S to 3

◦ S, all models show weak to negligible interplate
coupling. This subduction segment must therefore accommodate
the Nazca/South America convergence predominantly through
aseismic creep along the interface, explaining the lack of great
subduction earthquakes over the past five centuries8,9. As the
coastline is located about 200 km away from the trench south of the
Piura Peninsula (Fig. 1), GPS data are insensitive to coupling in the
upper shallowest portion of the plate interface. As a consequence,
GPS data do not exclude the possibility of significant coupling along
a shallow (<15–20 km depth) 60-km-wide strip close to the trench
(Fig. 3c). Historically, tsunami earthquakes11,12 have occurred in this
weakly coupled segment, possibly releasing stresses accumulated in
the very shallow part of the plate interface. This model also possibly
holds for central Ecuador, where denser measurements along a
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Figure 3 | Spatial distribution of interseismic coupling along the subduction plate interface. a, Model showing no interseismic coupling between 10◦ S

and 3◦ S. Dashed lines are depth contours of the subduction interface every 10 km. Coupling level is indicated by the colour scale. Green arrows are the

model predicted velocities. The misfit (wrms, weighted root mean square) to the observed velocities (grey arrows) for this model is 0.9mmyr−1. b, Model

shown in a, together with the rupture areas of large and great earthquakes8–10. Blue ellipses indicate tsunami earthquakes. c, Same as b for an alternative

model also permitted by GPS data showing interseismic coupling close to the trench. The misfit for this model is wrms= 1.0mmyr−1.

coastline located 50–80 km from the trench enable us to resolve
local, intermediate to high interseismic coupling in the shallowest
20 km of the subduction interface.

The southern Ecuador–northern Peru subduction zone exhibits
a fundamentally different mode of stress accumulation and release
comparedwith its neighbouring segments. Previous geodetic studies
in southern Peru and Chile have led to a view of highly coupled
asperities of variable size, usually separated by narrower zones of low
interseismic coupling3,4,19. Here, the area of predominantly creeping
zone is a continuous ∼1,000-km-long segment, representing
15–20% of the total length of the Nazca/South America subduction
zone. Possible shallow (<20km) interseismic coupling, very weak
to zero coupling at the usual seismogenic depths (20–45 km), a
lack of great earthquakes, the occurrence of moderate size tsunami
earthquakes, and sliver motion are the primary characteristic of this
subduction zone. How frequent such a category of subduction zone
is globally still remains to be evaluated, but the Shumagin Islands20

segment of the Alaska–Aleutian Arc, the Central America21–23,
Hikurangi24, Java25,26 and Ryukyu27 subduction zones share most
or all of the same characteristics. Along the eastern side of the
Pacific Rim, of the ∼13,000km of subduction from Chile to
the central Aleutians almost continuously studied by geodesy,
the predominantly creeping segments in the Shumagin Islands
(∼450km; ref. 20), Central America (∼1,200km; refs 21–23) and
northern Peru/southern Ecuador (∼1,000km) represent as much
as ∼20% of the subduction length. Low-coupled subduction zone
sections might therefore be a common feature. As elastic strain
does not accumulate over a wide seismogenic zone, low-coupled

subduction zones are unlikely to produce greatMW∼9 earthquakes,
for which rupture along the megathrust typically occurs from
depths of 45 to 50 km up to the trench. Moderate to large tsunami
earthquakes can occur in these zones, but they are unlikely to be
sources of trans-Pacific tsunamis.

Methods
GPS. We derived a horizontal velocity field of 130 sites from GPS data, including
65 sites recorded in survey mode since 1994 for Ecuador and since 2008 for Peru
and 35 continuous GPS sites in Peru, Ecuador and Colombia. The velocity field
(Supplementary Table 1) is expressed with respect to a reference frame realized
using 20 GPS sites sampling the stable South America Plate. All velocity
uncertainties account for time-correlated noise (Supplementary Information).

Sliver kinematics and boundaries. We take advantage of segments with low
interseismic coupling along the subduction interface to determine the kinematics
of the slivers, idealized as non-deforming blocks. Twenty-eight GPS sites located
in the southern Ecuadorian Andes and in northern Peru show a consistent
southeastwards motion, which can be modelled by a single block, with negligible
internal deformation (weightedrootmeansquare,wrms=0.8mmyr−1, Euler pole
at −63.8◦ E, 22.5◦ N, angular velocity: 0.092 ◦ Myr−1, Fig. 2a and Supplementary
Table 2). No east–west shortening is detected in the residual velocities that could
indicate an unmodelled small signal induced by weak coupling along the
subduction interface. In southern Ecuador, the easternmost GPS sites, located in
the sub-Andean thrust-and-fold belt region, together with the thrust focal
mechanisms indicating southwest–northeast-directed shortening, suggest a
boundary for this sliver along the eastern front of the subandean domain in
Ecuador (Fig. 2a). In Peru, owing to the difficulty of making measurements in the
eastern Andes and Amazonia, our velocity field provides little constraintson the
eastern boundary of the sliver. We therefore used the distribution of shallow
crustal Mw >5.5 earthquakes17,18 to tentatively propose an eastern boundary for
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the Inca Sliver in Peru (Fig. 2a). Inspection of slip vectors for subduction events
show that, if compared with the Nazca/South America convergence direction,
they are rotated ∼5◦ clockwise in Ecuador, whereas they are rotated anticlockwise
by the same amount in Peru (Supplementary Fig. 1). This observation provides
an independent evidence of trench-parallel motion of the forearc with opposite
sense in Ecuador and Peru and is consistent with an Inca Sliver extending until
southernmost Peru. The NAS kinematics is determined using a subset of 14 sites
located in the coastal plain of Ecuador north of the Gulf of Guayaquil, in the
Andean Cordillera of central Ecuador and southern Colombia. The chosen subset
of sites samples the NAS over a distance of >1,000km with no detectable
internal deformation (Supplementary Table 3, wrms=0.8mmyr−1, Euler pole at
−83.4◦ E, 15.2◦ N, angular velocity: 0.287 ◦ Myr−1). A sharp velocity gradient of
7mmyr−1 accommodated over a distance of ∼50km (Fig. 2b) allows us to define
the eastern boundary of the NAS that matches the active faults system of
Chingual–Cosanga–Pallatanga–Puná14. In northern Ecuador, sites located in the
sub-Andean domain show a residual ∼3mmyr−1 motion with respect to stable
South America (Fig. 1b).

Interseismic coupling modelling. We model the spatial distribution of
interseismic coupling using the virtual back-slip approach in a semi-infinite
homogeneous elastic half-space28. The input data set consists of the horizontal
velocities corrected for the sliver motion previously determined. Sites located
close to the NAS/Inca Sliver boundaries are probably impacted by the elastic
effects of major crustal faults (Fig. 2b) and so were excluded from the inversion.
The subduction interface is divided into 1,024 quasi-equilateral triangular
subfaults with an average edge length of 30 km, following the Slab1.0 (ref. 29)
geometry subduction interface, except in the Lima area, where short-scale
variations have been simplified. We fixed the rake and the convergence velocity to
be consistent with the Nazca Plate motion relative to the slivers. Our inversion
scheme follows a linear Bayesian formulation30, which enables us to explore the
range of possible models, by varying an a priori model (from null to fully coupled
plate interface), damping and smoothing parameters through a model covariance
matrix (Supplementary Information and Supplementary Figs 3 and 4). All models
show high coupling in central Peru ending at latitude 10◦– 11◦ S, very low to null
coupling between 10◦ S and 3◦ S, and shallow and laterally heterogeneous
coupling north of 3◦ S. The main variation among models is the amount of
coupling close to the trench between 7◦ S and 10◦ S where GPS sites are located
more than 200 km away from the trench. Secondary differences are the size of
highly coupled areas and in general the amount of coupling close to the trench.
For the purpose of illustration in the main text, we used a L-curve
(Supplementary Fig. 5) to choose the smoothest model that still correctly explains
the GPS data (Fig. 3a,b). Furthermore, we show an alternative model with
shallow interseismic coupling also permitted by the GPS data (Fig. 3c).
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GPS Data Set 

The data set includes 100 GPS sites in the northern Andes from Peru to 

Colombia analysed together with 30 additional sites in the surrounding regions from 

the global network of the International GNSS Service for Geodynamics 

(http://igscb.jpl.nasa.gov). It includes 13 continuous GPS  (CGPS) stations in Ecuador 

and 3 in Peru installed in the framework of the ADN project as collaboration between 

Geoazur (CNRS-IRD-OCA-University of Nice, France), the Institute of Geophysics, 

National Polytechnic School (IG-EPN) in Quito, Ecuador
31

, and the Institute of 

Geophysics, Lima, Peru. It also includes 5 CGPS stations from the National 

Geographical Institute of Peru (IGN), 3 CGPS sites from the Low Latitude 

Ionospheric Sensor Network (LISN) of IGP (http://lisn.igp.gob.pe/), and 3 CGPS sites 

from the Military Geographical Institute of Ecuador (IGM), and 8 CGPS sites from 

the Instituto Geográfico Agustin Codazzi (Colombia). Aside from the CGPS data, the 

velocity field in Peru is derived from 3 campaigns in 2008, 2010 and 2012, except for 

site CUYC observed each year since 2009 (30 sites). Campaigns in Peru were carried 

out at the same dates (July) to mitigate the possible effect of seasonal signals on the 

velocity estimates. The campaign data in Ecuador are 35 sites from the IGM, 

observed since 1994 and re-measured progressively between 2009 and 2011. In 

Ecuador, our velocity field includes most of the sites published in 
32

, but our new 

estimate now includes at least an additional measurement in 2009-2011. Each site 

selected in the present study benefits from at least 3 campaigns spanning at least 4 

years. All CGPS shown here have a minimum of 2.5 years of measurements to 

mitigate the impact of seasonal variations on the velocity estimates. 

 

GPS Data Analysis  

Campaign and continuous data have been analyzed simultaneously for the 

1994.0-2012.5 period, with the GAMIT/GLOBK software
33

, using a standard strategy 

for Geodynamics. All velocity uncertainties account for time-correlated noise in the 

GPS time series. More specifically, noise parameters (level of white noise, fractional 

integer noise index and level of fractional integer noise) were first estimated from the 

time series for continuous sites, using the Maximum Likelihood Estimator 
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implemented in the CATS software
34

. Then, the noise values are converted to 

“equivalent” Markov noise values so that the Kalman filter implemented in GLOBK 

provides the same uncertainty as the CATS results, following the relation provided in 

35
. The mean equivalent Markov noise derived from CGPS time series is also applied 

to campaign data. This strategy offers the advantage of keeping the strength of a 

cumulated solution (compared to velocities simply estimated from the time series) and 

of providing realistic uncertainties for both continuous and survey GPS sites. We used 

the cumulative up-to-date solution of the IGS as our reference to express our velocity 

field with respect to the ITRF2008
36

, using a 14-parameters transformation. The use 

of the IGS solution rather than the original ITRF2008 solution is justified by the 2010 

Maule earthquake, which largely impacted many reference sites in South America. 

We then estimated a rigid rotation rate vector for the South America plate using a 

subset of 20 sites that behaves rigidly together. The velocities are provided as 

Supplementary Table T2.1. 

 

#site  long.    lat.     Ve        Vn       SVe      SVn  corr_en  obs_span   #obs  wrms_E  wrms_N 
#------------------------------------------------------------------------------------------------- 
AHUA  -77.55   -1.06     3.16    -0.75     0.69     0.37   -0.01     16.4       6     5.8     4.0 
AMAL  -79.42   -4.58     5.18    -2.43     0.52     0.34    0.00     15.2       5     3.5     5.2 
ARCA  -70.75    7.08     0.62    -0.30     0.54     0.54    0.00      2.8     783     1.7     1.7 
AUCA  -76.88   -0.64     1.90    -1.92     0.45     0.46   -0.00      2.9     947     1.5     1.9 
AY01  -74.22  -13.15     4.20    -1.16     0.67     0.43   -0.01      2.7     737     1.1     1.8 
AYAN  -80.75   -1.98    12.94     3.76     1.02     0.75   -0.04     14.7       6     1.6     1.9 
AYRA  -77.71   -9.14     6.33    -0.09     0.62     0.49   -0.03      4.0       7     1.7     0.8 
BALZ  -79.90   -1.36    10.89     2.64     1.20     0.86   -0.03      3.9       7     3.1     1.7 
BAYO  -81.06   -5.79     2.30    -4.03     0.41     0.33    0.00      2.9    1009     1.1     1.4 
BOGT  -74.08    4.64     5.13     5.11     0.29     0.27   -0.01      6.5    1910     2.5     2.0 
BUEN  -77.01    3.88    10.79     3.80     0.37     0.34    0.00      3.8    1274     1.9     1.9 
CABP  -80.42   -0.38    21.66     5.74     0.48     0.62   -0.00      2.7     682     1.5     1.4 
CALI  -76.53    3.37     8.04     3.99     0.36     0.32    0.00      3.7     810     1.6     1.8 
CASM  -78.30   -9.45     7.13    -2.40     0.75     0.57   -0.04      4.0       8     2.1     0.8 
CBLA  -79.30   -6.62     4.11    -3.05     0.64     0.51   -0.02      4.0       9     2.2     0.7 
CCHO  -80.96   -5.16     5.18    -2.73     0.94     0.77    0.00      4.0       9     0.6     0.9 
CHAC  -78.67   -8.55     6.88    -2.21     0.62     0.49   -0.01      4.0       8     0.9     1.0 
CHIS  -80.72   -1.05    16.24     5.56     0.40     0.26    0.00      5.4    1849     1.3     2.6 
CHRI  -76.85  -10.72    12.59     3.52     0.61     0.48   -0.11      4.0       8     0.8     0.7 
CHSQ  -77.57  -10.26    11.26     1.55     0.59     0.46   -0.08      4.0       7     0.8     2.2 
CHUL  -80.15   -5.09     3.40    -3.47     0.56     0.46   -0.01      4.0       7     1.1     1.0 
CJ01  -78.50   -7.14     4.74    -1.02     0.65     0.45   -0.00      2.6     589     1.5     1.9 
CNJO  -76.84    0.23     2.69    -0.23     0.63     0.51    0.03      7.0       8     1.6     5.3 
CUEC  -79.00   -2.88     4.37    -2.75     0.36     0.32    0.00      3.5    1117     1.2     1.5 
CUER  -79.53   -2.35     5.17     1.99     0.78     0.46   -0.04      8.8       5     2.1     4.2 
CULA  -78.69    0.14    12.28     3.62     1.34     1.09   -0.02      9.2       5     1.3     3.6 
CUYC  -78.85   -6.01     4.55    -4.41     0.63     0.52   -0.02      2.9      12     2.1     1.6 
CUZC  -71.95  -13.52     4.69     0.14     0.37     0.30   -0.00      4.6     713     2.5     4.2 
DAUL  -79.99   -1.87     9.66     2.89     0.73     0.38   -0.03      5.9       3     1.4     1.6 
DESV  -79.92   -1.04    11.33     3.13     0.64     0.47   -0.03      6.8       4     2.8     3.4 
ELCH  -77.80   -0.33     4.24     0.47     0.39     0.30    0.03     15.8       4     2.0     0.7 
ESMR  -79.72    0.93    21.68     5.35     0.33     0.27    0.00      5.2    1814     1.4     1.5 
ETEN  -79.85   -6.94     5.67    -3.27     0.55     0.44   -0.03      4.0       9     1.6     0.8 
FLFR  -79.84   -0.35    15.30     1.05     0.43     0.53    0.00      3.2    1113     1.9     1.7 
FLOR  -75.60    1.62     1.71    -1.91     0.57     0.43    0.00      2.7     726     1.7     1.9 
GPH1  -79.91   -2.73     6.45     1.81     0.91     0.75   -0.05      3.6      19     4.5     2.3 
GYEC  -79.89   -2.14     7.59     3.38     0.53     0.44   -0.00      3.9    1037     1.6     1.8 
GYVT  -78.74   -8.05     5.97    -2.93     0.68     0.53   -0.02      4.0       8     0.9     1.7 
HONA  -79.15   -3.47     4.21    -2.11     0.87     0.43    0.01     17.0       9     4.6     1.7 
HSPR  -78.85   -0.35    12.78     0.16     0.53     0.43   -0.00      3.7    1173     1.8     2.3 
HUAC  -77.80   -0.70     3.23    -0.34     0.58     0.59   -0.16     15.7       9     4.5     3.6 
HUAL  -77.57   -9.54     6.51     0.42     0.59     0.47   -0.01      4.0       9     1.2     1.6 
HUAN  -75.32  -12.04     7.02    -1.30     0.52     0.35   -0.00      4.8     626     2.0     3.7 
HUAP  -77.60  -11.15    20.86     2.84     0.60     0.47   -0.03      4.0       8     1.0     2.4 
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HUAR  -78.18  -10.10     9.93     0.14     0.35     0.25   -0.00      4.0    1255     1.1     1.6 
IQTS  -73.27   -3.76     0.10     0.19     0.40     0.28   -0.00      4.7     748     2.2     2.8 
ISPT  -81.07   -1.26    35.82     4.08     0.43     0.34    0.00      3.6    1196     1.4     1.7 
JICA  -76.87  -11.95    20.71     3.35     0.62     0.50   -0.01      3.2     358     1.4     2.2 
JUJA  -79.55   -1.89    10.82     3.21     1.08     0.56   -0.04     13.1       3     1.9     0.6 
LATA  -78.62   -0.81     9.27     1.37     0.24     0.20   -0.00     17.1      43     2.7     4.5 
LCOL  -79.20   -0.24    12.64     1.85     0.28     0.23   -0.01     15.7      13     3.0     4.5 
LGCB  -79.57    0.38    16.78     2.39     0.49     0.34    0.00      3.3     912     1.8     1.7 
LI01  -77.01  -12.10    20.83     3.94     0.35     0.29   -0.00      3.9    1043     1.3     1.5 
LIMO  -76.62   -0.40     0.59    -0.26     1.24     0.93    0.00      9.4       4     2.1     2.9 
LITS  -78.44    0.87    13.51     2.25     0.31     0.26   -0.01     15.7      10     2.4     3.1 
LJEC  -79.19   -3.98     4.33    -2.67     1.50     0.47    0.00      3.5    1150     1.8     3.1 
LORO  -75.98   -1.61    -0.76     1.47     0.62     0.54    0.01      6.3       7     2.7     3.1 
MACH  -79.96   -3.25     5.58    -1.02     0.69     0.37   -0.00     15.2       6     2.6     2.0 
MOCA  -79.50   -1.18    10.33     2.49     0.51     0.39    0.00     15.8       9     2.9     4.5 
MONT  -76.98   -2.06     1.63    -0.35     0.62     0.54    0.01      6.3      11     2.2     2.4 
MORA  -80.02   -5.54     4.85    -3.23     0.88     0.70    0.00      4.0       9     1.0     0.7 
NARI  -79.53   -3.14     3.42    -2.08     0.50     0.34   -0.02     15.2       4     3.9     0.6 
NEVA  -75.29    2.93     7.97     3.92     0.67     0.81    0.00      2.5     728     1.7     1.9 
PAJA  -80.42   -1.55    11.06     1.44     0.98     0.68   -0.03      7.0      10     4.5     5.0 
PAPA  -78.14   -0.38     7.05     2.55     0.46     0.39    0.00      6.7       8     0.8     0.8 
PAST  -77.35   -9.97     8.91     1.25     0.67     0.52   -0.04      4.0       7     0.5     1.2 
PCMY  -79.55   -7.38     4.09    -3.50     0.61     0.49   -0.04      4.0       8     2.3     1.6 
PDNS  -79.99    0.11    18.87     4.54     0.55     0.44    0.00      2.7     958     1.3     1.8 
PLOB  -81.28   -4.45     3.55    -1.02     0.59     0.49   -0.01      4.0       6     1.1     2.3 
PPRT  -80.21   -0.12    20.03     6.14     0.53     0.51   -0.01      3.0     962     1.7     1.6 
PRMG  -77.85  -10.65    15.76     1.88     0.61     0.48   -0.02      4.0       8     1.3     1.9 
PROG  -80.36   -2.41     9.69     2.73     0.45     0.33   -0.01     15.8       6     3.7     5.3 
PSNT  -78.65   -8.99     5.71    -2.35     0.70     0.55    0.02      4.0       8     0.6     1.0 
PSTO  -77.27    1.21     8.13     2.82     0.50     0.42    0.00      3.5    1002     1.7     1.9 
PTGL  -80.03    0.78    24.33     4.73     0.47     0.39    0.00      3.1    1073     1.4     1.5 
PTPO  -79.62   -6.74     5.54    -2.68     0.62     0.49   -0.02      4.0       7     1.2     1.1 
PUEB  -79.53   -1.55    10.34     2.79     1.57     0.91   -0.33      7.0       7     4.5     2.1 
PUMA  -79.46   -7.71     5.47    -3.57     0.64     0.52   -0.01      4.0       7     3.7     5.3 
PUYX  -78.06   -1.50     6.41    -1.43     1.71     0.73    0.01      8.6       6     1.9     1.9 
RIOP  -78.65   -1.65     4.75    -4.28     0.39     0.35    0.00      3.1    1085     1.6     1.6 
RVRD  -79.38    1.06    20.43     4.20     0.43     0.41   -0.00      3.2    1037     1.9     2.0 
SABA  -80.22   -1.84     8.72     2.46     1.16     0.79   -0.09      8.8       3     1.0     1.1 
SALN  -80.99   -2.18    14.45     2.56     0.59     0.43    0.00      2.9    1028     1.5     1.9 
SALY  -78.97   -8.22     6.00    -2.44     0.43     0.22    0.00      3.6     915     1.1     2.1 
SAYA  -77.17  -11.08    17.13     3.50     0.62     0.48   -0.05      4.0      10     1.2     1.3 
SCH1  -80.49   -6.11     3.43    -3.09     0.82     0.68   -0.01      4.0      12     1.3     2.4 
SCH2  -80.57   -5.63     4.07    -4.29     1.04     0.84   -0.01      4.0      12     6.0     3.0 
SNLR  -78.84    1.29    16.20    -0.79     0.42     0.54    0.00      2.7     903     1.8     1.8 
SNTI  -78.01   -3.04     3.04    -2.97     1.15     1.26    0.00     16.5       4     3.0    13.4 
SOZO  -79.79   -4.33     4.10    -2.35     0.84     0.36   -0.16     15.4       5     0.5     2.7 
SRAM  -79.56   -0.60    13.00     1.92     1.96     1.51   -0.11      3.5       4     1.2     2.0 
STCL  -79.07   -7.25     5.28    -2.95     0.60     0.50   -0.04      4.0      11     1.9     1.1 
STIS  -77.98   -9.53     6.97    -0.66     0.59     0.46   -0.03      4.0       8     1.3     0.9 
SUNW  -81.05   -4.69     3.23     1.51     0.88     0.72    0.00      4.0       7     0.6     0.8 
TOTO  -78.67   -2.25     5.33    -2.67     0.29     0.23    0.00     15.2       9     4.6     7.3 
TU01  -80.45   -3.55     6.46    -1.85     0.60     0.73   -0.01      2.6     612     1.6     1.8 
TUCO  -78.74    1.81    19.08     2.64     0.66     0.62   -0.00      2.5     646     1.6     1.8 
TULC  -77.70    0.81     7.02     2.64     0.38     0.33    0.01     10.7      12     0.9     1.8 
ZAMO  -78.93   -4.05     3.61    -1.68     0.31     0.26    0.00     10.8      14     1.5     2.4 
ZHUD  -79.00   -2.46     5.78    -1.93     0.45     0.30   -0.10     15.3       6     2.2     7.3 

Supplementary Table T2.1: GPS velocities with respect to Stable South America and 

related information. Longitude, latitude in decimal degrees. Ve, Vn: east & north 

components of velocity in mm/yr; SVe, SVn: formal error (1-sigma confidence level) of Ve, 

Vn. Corr_en: correlation coefficient between Ve & Vn; Obs_span: observation period in 

decimal year. #obs: number of observation used in velocity estimation; wrms_E, wrms_N: 

long-term repeatability for the east & north components in mm. 

 

Euler Pole Estimation for the Inca Sliver 

ROTATION RATE VECTOR (geocentric cartesian coordinates) 
Wx (rad/yr):  6.5387E-10 +- 4.3423E-11 
Wy (rad/yr): -1.3264E-09 +- 2.0855E-10 
Wz (rad/yr):  6.1159E-10 +- 2.5619E-11 
 
EULER POLE 
longitude (dec. degree)    : -63.76 
latitude  (dec. degree)    :  22.47 
angular velocity (deg/Myr ):  0.092 
 
ASSOCIATED ERROR ELLIPSE (all values in decimal degrees) 
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semi major axis            :  4.02 
semi minor axis            :  0.44 
azimuth of semi major axis : -116.4 
 
angular velocity error     : 0.010 degree per Myr 
 
STATISTICS 
---------- 
Number of sites    =         28 
Chi**2             =      198.9 
Deg. of. freedom   =         53 
Reduced chi-square =        1.9 
 
RESIDUALS 
---------- 
site                      R_ve       R_vn       S_ve       S_vn      RN_ve      RN_vn 
------------------------------------------------------------------------------------- 
AMAL                      0.57       0.12       0.52       0.34       1.10       0.34 
AY01                     -1.70       0.55       0.67       0.43      -2.54       1.28 
CBLA                     -0.81      -0.52       0.64       0.51      -1.27      -1.02 
CCHO                      0.49       0.06       0.94       0.77       0.52       0.08 
CHUL                     -1.29      -0.81       0.56       0.46      -2.30      -1.76 
CJ01                     -0.26       1.38       0.65       0.45      -0.40       3.07 
CUEC                      0.02      -0.27       0.36       0.32       0.05      -0.84 
CUYC                     -0.28      -1.95       0.63       0.52      -0.44      -3.75 
CUZC                     -1.27       1.48       0.37       0.30      -3.44       4.94 
ETEN                      0.71      -0.66       0.55       0.44       1.29      -1.49 
GYVT                      0.84      -0.49       0.68       0.53       1.23      -0.93 
HONA                     -0.24       0.40       0.87       0.43      -0.27       0.93 
LJEC                     -0.18      -0.16       1.50       0.47      -0.12      -0.34 
MORA                      0.09      -0.59       0.88       0.70       0.11      -0.84 
NARI                     -0.97       0.49       0.50       0.34      -1.94       1.44 
PCMY                     -0.93      -0.94       0.61       0.49      -1.53      -1.91 
PSNT                      0.44       0.07       0.70       0.55       0.63       0.13 
PTPO                      0.61      -0.10       0.62       0.49       0.99      -0.21 
PUMA                      0.39      -1.01       0.64       0.52       0.61      -1.95 
RIOP                      0.59      -1.86       0.39       0.35       1.50      -5.31 
SALY                      0.84       0.04       0.43       0.22       1.96       0.16 
SCH1                     -1.41      -0.37       0.82       0.68      -1.72      -0.54 
SCH2                     -0.69      -1.56       1.04       0.84      -0.66      -1.85 
SOZO                     -0.47       0.25       0.84       0.36      -0.56       0.70 
STCL                      0.27      -0.45       0.60       0.50       0.45      -0.91 
TOTO                      1.07      -0.24       0.29       0.23       3.69      -1.06 
ZAMO                     -0.92       0.79       0.31       0.26      -2.97       3.05 
ZHUD                      1.49       0.55       0.45       0.30       3.31       1.85 
------------------------------------------------------------------------------------- 
rms =       0.84 mm/yr    wrms =       0.83 mm/yr 

Supplementary Table T2.2: R_ve, R_vn, S_ve, S_vn, in the table are residuals velocities 

and formal errors for the east and west component, in mm/yr. RN_ve, RN_vn are normalized 

residuals for the east & north components. 

 

Euler Pole Estimation for the North Andean Sliver 

ROTATION RATE VECTOR (geocentric cartesian coordinates) 
Wx (rad/yr):  5.5585E-10 +- 6.7414E-11 
Wy (rad/yr):  -4.801E-09 +- 3.1882E-10 
Wz (rad/yr):  1.3141E-09 +- 1.9304E-11 
ASSOCIATED VARIANCE-COVARIANCE MATRIX (rad/yr)**2 
        Wx          Wy            Wz 
------------------------------------ 
Wx |4.5446E-21 -2.0897E-20 1.0665E-22 
Wy |           1.0165E-19 -5.0274E-22 
Wz |                      3.7264E-22 
------------------------------------ 
 
EULER POLE 
longitude (dec. degree)    : -83.40 
latitude  (dec. degree)    :  15.21 
angular velocity (deg/Myr ):  0.287 
ASSOCIATED ERROR ELLIPSE 
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semi major axis            :  1.03 
semi minor axis            :  0.18 
azimuth of semi major axis :  74.4 
 
angular velocity error     : 0.018 degree per Myr 
 
STATISTICS 
---------- 
Number of sites    =         14 
Chi**2            =      124.0 
Deg. of. Freedom =         27 
Reduced Chi-square =        2.1 
 
RESIDUALS 
---------- 
site                      R_ve       R_vn       S_ve       S_vn      RN_ve      RN_vn 
------------------------------------------------------------------------------------- 
BALZ                      1.78       0.77       1.20       0.86       1.48       0.89 
BOGT                     -0.78       0.12       0.29       0.27      -2.69       0.44 
DAUL                      0.28       1.06       0.73       0.38       0.38       2.78 
JUJA                      1.43       1.14       1.08       0.56       1.32       2.04 
LATA                      0.45      -1.19       0.24       0.20       1.89      -5.95 
MOCA                      1.32       0.40       0.51       0.39       2.59       1.03 
NEVA                      1.15      -0.42       0.67       0.81       1.72      -0.52 
PAJA                      1.85      -0.16       0.98       0.68       1.89      -0.24 
PAPA                     -1.53      -0.27       0.46       0.39      -3.33      -0.70 
PROG                      0.03       1.10       0.45       0.33       0.07       3.32 
PSTO                      0.39      -0.47       0.50       0.42       0.78      -1.11 
PUEB                      1.13       0.72       1.57       0.91       0.72       0.79 
SABA                     -0.64       0.75       1.16       0.79      -0.55       0.95 
TULC                     -0.93      -0.41       0.38       0.33      -2.45      -1.26 
------------------------------------------------------------------------------------- 
rms =       0.95 mm/yr    wrms =       0.85 mm/yr 

Supplementary Table T2.3: R_ve, R_vn, S_ve, S_vn, in the table are residuals velocities 

and formal errors for the east and west component, in mm/yr. RN_ve, RN_vn are normalized 

residuals for the east & north components. 

 

Subduction Earthquake Slip Vectors and Partitioning of oblique 

Nazca/South America Convergence 

Figure S2.1 demonstrates that, on average, subduction earthquake slip vector in 

Colombia-Ecuador are rotated clockwise of ~5° compared to the direction of the 

Nazca/South America convergence
37

, while they are rotated counter-clockwise by the 

same amount in Peru. A rotation of ~10° of the slip vector direction clearly occurs 

across the Gulf of Guayaquil, while the average strike of the trench and the plate 

convergence direction are constant. This result provides an independent evidence for 

the Gulf of Guayaquil being the boundary between the Inca and the North Andean 

slivers. The existence of systematic rotation with respect to the Nazca/South America 

convergence requires a component of trench parallel motion of the sliver, with a right-

lateral strike-slip component for Peru and left-lateral strike-slip component for 

Ecuador-Colombia. The histograms of slip vector direction for Central Peru and 

Southern Peru show the same amount of divergence with respect to the Nazca/South 
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America convergence direction, with perhaps an increasing rotation in southern Peru. 

We therefore conclude that the study of subduction events slip vector supports the 

hypothesis of an Inca sliver extending in southern Peru as far south as to the Arica 

bend. 

 

Supplementary Information Figure S2.1: Focal mechanisms for subduction interface 

events from the CMT catalog (http://www.globalcmt.org) for the 1976-2012 period. Their 

associated slip vector is shown by the green line, together with the direction of the 

Nazca/South America convergence direction37 (white line). Histograms show the angle 

between Nazca/South America convergence direction and subduction events slip vectors, 

expressed as percentages over the total number of earthquakes of a given segment, by bins of 

5 degrees. Aftershocks following the Pisco 2007 (Mw7.9) and the Arequipa 2001 (Mw8.4) 

earthquakes have been removed to avoid bias of the statistics. 

 

The level of partitioning is similar between the two domains (Fig. S2.2): the 

motion of the Inca sliver accommodates about ¼ of the along-trench component of 

the Nazca/South America convergence. In Ecuador-southern Colombia, the Euler pole 

for the NAS predicts a larger trench along-strike component away from the trench, so 
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the amount of partitioning slightly depends on the location where it is calculated, but 

it is around 20±3%. Normal trench convergence is also partitioned with ~ 6% of the 

convergence being transferred to the motion of the Inca sliver, and 12-17% for the 

North Andean Sliver in Ecuador, decreasing to almost 0% in Colombia. 

 

 

Supplementary Information Figure S2.2: Sketch of kinematics triangles and obliquity 

partitioning in Peru (left) and in Ecuador-Colombia (right). Red lines indicate along & normal 

trench components of Nazca/South America (SOAM) convergence vector shown by the black 

arrow. Green arrow is the sliver convergence vector with respect to SOAM. Along & normal 

trench components are also shown in green. Inca/SOAM & NAS/SOAM convergence vectors 

are shown in blue. All numbers are in mm/yr. Calculation is performed at (long. -80°E, lat. 

8°S) for Peru and at (long. -78.5°E, lat. 1.5°N) for Ecuador-Colombia. 

 

Inversion of Interseismic Coupling 

The input data set for the inversion of interseismic coupling along the 

subduction interface consists of the residual velocity field with respect to the sliver 

they belong to. Sites located close to the North Andean Sliver / Inca Sliver boundary, 

are most probably also impacted by elastic effect of major crustal faults, as can be 

seen in Fig. 2B of the main text. Thus the sites TU01, MACH, GPH1, CUER have 

been removed from the inversion, and 60 GPS sites were used in the inversion. We 

use the virtual back-slip approach
28

 to model the inter-seismic coupling. The rake and 

the convergence velocity have been fixed to be consistent with the Nazca plate/Inca 

Sliver motion south of lat. 3.5°S and with the Nazca/North Andean Sliver north of 

3.5°S. The subduction interface has been divided into 1024 quasi-equilateral 

triangular subfaults with an average edge length of 30 km. Our triangular mesh 
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follows the Slab1.0 geometry
29

 for the South America subduction interface, except in 

the Lima area, where short scale variations have been simplified. Our inversion 

strategy follows the linear Bayesian approach proposed by 
30,37

, which minimizes a 

cost function: 

    (1) 

where m is the vector of back-slip amount in each subfault, m0 is an a priori model for 

coupling distribution, d is the vector of observations including the GPS velocity 

components. G is the model matrix including each individual subfault back-slip 

contribution to d. Cd and Cm are the variance-covariance matrices associated with the 

data and the model respectively. Cd is taken as a diagonal matrix including the 

standard deviation derived from the geodetic analysis. Cm is an exponential matrix of 

the form: 

        (2) 

where d(i,j) is the distance between two subfaults i and j, L is the critical distance for 

correlation for slip. The cost function is minimized using a sequential least-squares 

approach, using the constraints that values of m are searched in the interval [0; νplate], 

where νplate is the Nazca plate /Inca Sliver convergence rate (resp. Nazca plate / North 

Andean Sliver) velocity for subfaults located south (resp. north) of lat. 3°S. 

Rather than providing just our "best" model, the chosen inversion formalism 

offers the advantage to explore a range of possible models by varying 3 

parameters only: m0, σm and L (Fig. S2.3). L controls the smoothness of the solution, 

σm the weight given to smoothing and damping with respect to the a priori model m0. 

Within this approach, the slip on subfaults that are not resolved by the data tends to 

follow the a priori model m0. Thus, possible models with maximum (resp. minimum) 

coupling will be obtained for an a priori model taken as a fully coupled (resp. fully 

uncoupled) subduction (m0 = νplate, resp. m0 =0) and a relatively small damping factor 

σm (σm <10mm/yr). The range of acceptable models is fixed to a conventional value of 

chi-square=1050, corresponding to 2.5 times the minimum chi-square (Fig. S2.3), 
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equivalent to a wrms=1.1 mm/yr. Fig. S2.4 shows a selection of 9 models illustrating 

the effects of different values for m0, σm and L. 

 

 

Supplementary Information Figure S2.3: Model misfits obtained as a function of a priori 

constraint σm and smoothing distance L for null, intermediate and a priori coupling (m0=0.0, 

0.5 and 1.0 x convergence rate). Normalized chi-square (chi2) are chi-square divided by the 

chi-square providing the lowest misfit. The range of acceptable models is shown in green (2 

times the minimum chi-square) and yellow (2.5 times the minimum chi-square). 
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Supplementary Information Figure S2.4: Selection of 9 possible models for the spatial 

distribution of interseismic coupling. Models are vertically ordered by increasing values of a 
priori model from null to full coupling and horizontally ordered by increasing smoothness. 

Coupling coefficient is indicated by the color scale. Parameters values from equation (2) in 

the Supplementary Methods (L in km, σm in mm/yr) are indicated, together with the obtained 

chi-square and wrms (mm/yr). The red frames indicate the models selected for Fig. 3 of the 

main text. 
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All models show (1) high coupling in central Peru ending at latitude 10-11°S (2) 

low to null coupling between 10°S and 3°S (3) shallow and laterally heterogeneous 

coupling north of latitude 3°S. The major variation among models is the amount of 

coupling close to the trench between latitude 7°S and 10°S. Because the coastline in 

Peru is about 200 km away from the trench south of latitude 7°S, GPS data has little 

sensitivity to coupling close to the trench. Inverted coupling therefore tends to follow 

the a priori model. Secondary differences are the size of high coupling areas and in 

general the amount of coupling close to the trench. 

 

 

Supplementary Information Figure S2.5: Normalized chi-square as a function of the 

roughness (1/L) for σm=6mm/yr and m0=0.0. The green star indicates the chosen value 

(L=50km) for the model shown in Fig. 3A of the main text. 

 

For the purpose of illustration in the main text, we used a L-curve
38

 to choose 

the smoother model correctly explaining the GPS data for σm=6mm/yr and m0=0.0. 

The obtained value in L=50 km (Fig. S2.5). 
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Abstract 

 

Over 100 GPS measurements acquired in Peru and southern Ecuador between 2008 

and 2013 provide new insight into the present-day deformation of the Peruvian 

margin. The Inca sliver is defined as the continental domain wedged between the 

subduction trench axis and the inter-cordillera fault systems that delimit the 

discontinuous boundary between the Occidental and the Oriental cordillera. This 

boundary is well localized along the Marañon fault in north of Peru and becomes 

diffuse in central and south Peru. We confirm that the Inca sliver has a southeastward 

motion at a rate of about 4-5 mm/yr, suggesting that its eastern boundary has a 

transpressional mechanism. In the oriental cordillera, the tectonic is dominated by 2-4 

mm.yr
-1

 of crustal shortening along the sub-andean fold and thrust belts. Along the 

coastal areas, the variable interseismic GPS gradients indicate a highly heterogeneous 

pattern of interplate coupling along the Peruvian megathrust interface. Interseismic 

models indicate weak and shallow coupling in northern Peru consistent with past 

moderate tsunami-earthquakes. In central and southern Peru, we found that highly 

coupled patches correlate well with the rupture areas of large megathrust earthquakes 

supporting that seismic asperities might be persistent features of the megathrust. The 

interseismic coupling drops abruptly where oceanic fracture zones and ridges enter in 

subduction, suggesting that these geomorphologic structures play a major role in the 

seismic segmentation of the Peruvian megathrust. In Central of Peru, where the great 

1746 Mw~9.0 Lima-Callao occurred, the current interseismic moment deficit would 

suggest a recurrence time of at least 266-347 yrs to reproduce a similar event. 
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1. Introduction 

Two simultaneous processes take place along ocean-continent subduction zones 

that control the occurrence of large earthquakes. First, mechanical coupling along the 

megathrust interface at shallow depth (<50-60km) results in elastic stress 

accumulation during the interseismic period. The level of interseismic coupling and 

its spatial distribution control the elastic energy available for future mega-earthquakes. 

Second, long-term motion within the overriding continent results in permanent 

deformation of the continental lithosphere accommodated by active faulting in the 

brittle crust. Although crustal earthquakes usually have lower magnitude than the 

large subduction events, their proximity to populated areas and infrastructures makes 

them potentially highly hazardous. Spatial geodetic measurements and more 

specifically the Global Positioning System (GPS) by quantifying the surface 

deformation at the millimeter per year accuracy over distances of thousands of 

kilometers, provides a direct observation of both the motion of the overriding 

continent and the interseismic deformation induced by stress accumulation along the 

plate interface, thus enabling us to assess the seismic potential posed by the 

subduction megathrusts and crustal faults inland. 

The Andean margin where the oceanic Nazca plate converges rapidly (~60-70 

mm/yr, [Kendrick et al., 2003]) toward the South American continent is among the 

subduction zones where both high mechanical coupling at the megathrust and 

permanent continental deformation have been evidenced. Previous GPS studies 

carried out in Chile, Argentina, Bolivia, southern Peru and Ecuador-Colombia 

[Norabuena et al., 1998; Bevis et al., 2001; Trenkamp et al., 2002; Chlieh et al., 2004; 

Ruegg et al., 2009; Moreno et al., 2010; Métois et al., 2012] have demonstrated a 

usually high level of mechanical coupling along the subduction interface, which 

correlates with areas where repeated large megathrust earthquakes (Mw~7.5 to 9.5, 

Figure 1) have occurred during the last centuries [Kelleher, 1972; Dorbath et al., 

1990]. Inland, the deformation of the continental overriding plate occurs 

predominantly through the translation of large continental domains referred as slivers, 

wedged between the subduction trench and the stable part of the South American 

continent [Bevis et al., 2001; Trenkamp et al., 2002; Brooks et al., 2003; Chlieh et al., 
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2007, 2011; Wang et al., 2007; Nocquet et al., 2014]. In contrast to previous geodetic 

results in South America, Nocquet et al., [2014] show that a ~1000km long segment 

in the north of the Andes shows very weak interseismic coupling, indicating that the 

plate convergence is predominantly accommodated by aseismic creep along the 

megathrust. Furthermore, Nocquet et al., [2014] identified a large continental sliver 

(called the Inca sliver) encompassing southern Ecuador and northern Peru, moving 

southeastward at ~5 mm/yr with respect to Stable America. 

Here, we focus on the 2200km long of the Peruvian subduction zone located 

between the two bends of the western South America subduction, namely the Gulf of 

Guayaquil at latitude ~3°S and the Arica bend at latitude ~19°S. We derive a new 

velocity field including 102 GPS sites covering the whole Peruvian Andean margin. 

We use the horizontal velocities to quantify both the elastic interseismic coupling 

along the megathrust and the continental deformation. Our geodetic solution allows us 

to refine the eastern boundary and the kinematics of the Inca sliver as well as the 

interseismic coupling along the Peruvian subduction zone. 
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Figure 3.1: Seismotectonic setting of the South-American subduction zone. Red ellipses 

indicate the approximate rupture areas of large subduction earthquakes (M>7.5) between 

1868 and 2013 [Silgado, 1978; Beck and Ruff, 1989; Dorbath et al., 1990; Beck et al., 1998]. 

Blue ellipses indicate location of moderate tsunami-earthquake [Pelayo and Wiens, 1990; 
Ihmle et al., 1998]. The bathymetry from GEBCO30s highlights the main tectonic structures 

of the subducting Nazca plate which are from north to south: the Carnegie (CR), the Grijalva 

(GR), the Alvarado (AR) and the Sarmiento (SR) ridges, the Virú fracture zone (VFZ), the 

Mendaña fracture zone (MFZ), the Nazca ridge, the Nazca fracture zone (NFZ), the Iquique 

and Juan Fernandez ridges and the Challenger (CFZ) and Mocha fracture zones (MCFZ). 

White arrow indicates the convergence of the Nazca plate relative to the Stable South 

American [Kendrick et al., 2003]. Slab geometry iso-depth contours are reported every 50 km 

(red lines) and 10 km (dashed lines) respectively, from the Slab1.0 model [Hayes et al., 2012]. 

Dashed rectangle is the area shown in Figure 3.2. 
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2. Historical seismicity and Seismotectonic setting 

2.1 Updated historical large megathrust earthquakes in Peru 

The history of seismicity, together with morphological features of the 

subducting Nazca plate have led previous authors to differentiate three segments 

along the Peruvian subduction zone [Silgado, 1978; Dorbath et al., 1990; Nishenko, 

1991; Tavera and Buforn, 1998; Bilek, 2010]: 1) a northern segment from the Gulf of 

Guayaquil at latitude 3°S to latitude 10ºS, 2) a central segment limited by the 

intersections with the trench of the Mendaña fracture zone at ~10°S and the Nazca 

ridge at ~15ºS, and 3) a southern Peru segment that extends south to the Arica bend at 

19ºS (Figure 3.2). The southern and central Peru segments are characterized by 

recurrent great (M>8.5) and large megathrust earthquakes with characteristic 

recurrence times of ~100 to ~300 yr [Kelleher, 1972; Dorbath et al., 1990]. By 

contrast, the northern Peru segment is characterized by a lack of great earthquakes 

and the sparse occurrence of moderate magnitude (Mw<8.0) earthquakes that trigger 

local tsunamis. The largest subduction earthquakes reported so far for northern Peru 

are the 1619 (Mw=7.7), 1953 (Mw=7.8), 1959 (Mw=7.5), 1960 (Mw=7.6) and 1996 

(Mw=7.5) events (Figure 3.2). The two latter events showed slow rupture velocity, 

long source time duration and local tsunamis significantly greater than expected for 

their initial Ms value, sharing all characteristics of tsunami earthquakes [Pelayo and 

Wiens, 1990; Ihmle et al., 1998; Bourgeois et al., 1999]. However, we notice that for 

the 1953 and 1959 events, the tsunami catalogs [NGDC http://www.ngdc.noaa.gov, 

n.d.; Soloviev and Go, 1975; Lockridge, 1985; Espinoza, 1992] report local tsunamis 

with runup heights > 1m near Tumbes and surrounding areas including southern 

Ecuador (lat. 3°S to 4°S), indicating that they most probably also were interface 

events. The latter observations/events were not considered in recent compilations of 

large earthquakes (i.e. [Dorbath et al., 1990; Bilek, 2010]).  

Little information about more ancient events is available. The 1619 event that 

damaged the city of Trujillo [Silgado, 1978; Seiner Lizárraga, 2009] was not 

associated with a tsunami in historical catalogs. However, further south, Spiske et al., 

[2013] recently found tsunami deposits layers in Casma (lat. 9°S) with an estimated 

age of 370 ± 30 yr, therefore possibly induced by the 1619 earthquake. Seiner 

Lizárraga, [2011] performed an exhaustive revision of the historical chronicles and 
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reports of earthquakes in Peru for the last five centuries. He found two significant 

events missing in catalogs of historical earthquakes of the Peruvian subduction zone. 

The first one occurred in 1759 near Trujillo. It produced severe damages in the 

infrastructures and caused 5 casualties in Trujillo. The historical chronicles of the 

epoch compare this event to that of 1619 in terms of the destruction of the city. The 

second event occurred in 1806 in central Peru near Lima causing severe damages in 

this city and presumably a tsunami in Callao (Lima port) where an anchor and some 

vessels were pulled inland within the two hours following the earthquake. For these 

two latter events, there is no magnitude assigned. However based on their intensity 

and tsunami characteristics, a range of magnitudes of 7.0-7.5 or greater is plausible. 

Figure 3.2 shows an updated temporal distribution of historical and recent 

subduction earthquakes (M>7.5), together with their presumed rupture areas along the 

whole Peruvian subduction zone. Although the 1970 Mw=7.8 Ancash earthquake is 

by far the most catastrophic event in Peru so far, this event is not accounted in our 

compilation of subduction thrust events since it was a normal fault type event that 

occurred within the downgoing Nazca plate [Abe, 1972]. Although the northern 

segment exhibits a fundamentally different behavior from the central and southern 

segment, the existence of moderate earthquakes indicates that some stress is 

accumulating along the subduction interface. Nocquet et al., [2014] did not find any 

significant strain in northern Peru. Their modeling indicates that either no coupling 

occurs at the megathrust in northern Peru or that if it exists, it is restricted to the 

shallowest part of the megathrust. We further investigate this aspect using our new 

dataset. 
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Figure 3.2: Temporal and spatial distribution of large subduction earthquakes with Mw>7.5 

since the 16th century occurred in Peru. Left: Approximate rupture extent (in km) of 

historical (gray) and recent (red) megathrust earthquakes along the Peruvian margin as 

function of time (yrs) [Dorbath et al., 1990; Swenson and Beck, 1999; Seiner Lizárraga, 
2009, 2011]. Triangle indicates if a tsunami was associated to the event. The orange bands 

delimit the north, central and south Peru subduction segments. Right: Map view of 

approximate rupture areas of the large subduction earthquakes that occurred in the 20th 

century [Silgado, 1978; Beck and Ruff, 1989; Dorbath et al., 1990; Ihmle et al., 1998; 
Giovanni et al., 2002; Sladen et al., 2010] with their associated gCMT focal mechanisms. In 

the northern of Peru, the earthquakes of Piura 1960 (Mw=7.6) and of Chimbote 1996 

(Mw=7.5) (cyan colored polygons) were identified as tsunami-earthquake events [Pelayo and 
Wiens, 1990; Ihmle et al., 1998; Bilek, 2010]. 
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2.2 Geological structures on the Nazca plate 

The most prominent subducting geomorphological structures well identified on 

Peruvian segment of the oceanic Nazca plate from south to north are: the Nazca 

fracture zone (NFZ), the Nazca ridge (NR), the Mendaña fracture zone (MFZ), the 

Virú fracture zone (VFZ), the Sarmiento (SR), Alvarado (AR) and Grijalva (GR) 

ridges (Figures 3.1 and 3.2). These structures are suspected to play a major role in the 

subduction earthquake segmentation [Sparkes et al., 2010; Wang and Bilek, 2014]. 

The Mendaña fracture zone and Nazca ridge that delimit the central Peru segment 

appear to be strong and persistent barriers to the seismic rupture propagation 

[Perfettini et al., 2010; Chlieh et al., 2011]. Some of these features such as the NFZ 

can stall the rupture propagation as it occurred during the 2001 Arequipa earthquake 

[Robinson et al., 2006] but could also fail like during the great 1604 and 1868 

earthquakes. In the section 7.3 we discuss the correlation of our interseismic coupling 

models and the presence of these structures. 

 

2.3 Active faults inland Peru 

Three compilations of active faults have been proposed for Peru during the last 

years [Macharé et al., 2003; Veloza et al., 2011, and http://neotec-opendata.com]. 

Active reverse faulting is found all along the sub-andean domain, through thrust and 

fold belts. The shortening axis varies from E in northernmost Peru to NNE in southern 

Peru.  Geological and paleomagnetic reconstructions [Baby et al., 1997; Oncken et al., 

2006; Arriagada et al., 2008] suggest that since the mid-Neogene, the sub-andean 

domain is the most deforming part of the Andes. In the central Andes, quaternary 

shortening rates higher than 10 mm/yr are estimated contrasting with geodetic rates of 

4-10 mm/yr [Norabuena et al., 1998; Bevis et al., 2001; Hindle et al., 2002; 

Khazaradze and Klotz, 2003; Brooks et al., 2011; Chlieh et al., 2011]. The seismicity 

distribution shows that most significant crustal earthquakes have occurred in this area, 

but at the junction between the eastern Andean cordillera and the sub-andean domain, 

which was proposed to be the main eastern boundary of the Inca sliver. Within the 

Andes, a complex pattern of deformation is observed, with a combination of reverse, 

normal and strike-slip faults. We note that a segmented active fault zone exists along 

the boundary between the Occidental and the Oriental cordilleras (Figure 3.3), 
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running from northern to southern Peru. This inter-cordillera fault systems is 

composed by the Marañon Fault System (MFS) in the north Peru proposed to be a 

reverse fault, the Chonta Fault System that is the continuation of the MFS in central 

Peru and is proposed to be a thrust fault [Rodriguez Mejia, 2008; Pfiffner and 

Gonzalez, 2013; Scherrenberg et al., 2014], and the Urcos-Ayaviri-Copacabana-

Coniri Fault System (UACCSF) near Cuzco in South Peru described as a left-lateral 

strike-slip fault [Sempere et al., 2004]. No slip rate is available on these faults that 

would contribute to some internal deformation of the Inca sliver. Preliminary values 

of slip rates on those faults will be proposed according to the GPS results.  

 

 

Figure 3.3: Left: Neotectonic setting of the Peruvian margin. Arrows indicate the 

convergence of the Nazca Plate relative to the Stable South America as predicted by the Euler 

pole of Kendrick et al., [2003]. Main quaternary faults are reported from the compilation of 

Macharé et al., [2003] and Veloza et al., [2011]. Note the location of the inter-cordillera fault 

zone that delimits the Occidental Cordillera from the Oriental Cordillera. Focal mechanism 

for M>5 earthquakes are from the gCMT catalog  (black beach-balls) and from local 

seismological studies (red beach-balls, [Suarez et al., 1983; Devlin et al., 2012]. The 

rectangles (blue dashed lines) follow the slab geometry used in the modeling (Table 3.1) 

Right: Normal-Trench sections in Chiclayo, north Peru (A), in Lima, central Peru (B) and in 

Arequipa, south Peru (C) of the bathymetry, topography and the slab geometry (green lines).  
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3. GPS Datasets and processing 

3.1 Datasets and Analysis strategy 

In addition to the data already included in the study of Nocquet et al., [2014], 

we add here 52 new GPS measurements (Table T3.1, Figure S3.1). The GPS data are 

composed by 48 continuous GPS (CGPS) and 54 survey GPS (SGPS) sites located 

from southern Ecuador (Lat. 2.8ºS) to southern Peru (Lat. 18ºS). The new data set 

includes three trench-perpendicular profiles of 12 SGPS sites that cross the Andean 

Cordillera and the sub-andean regions in northern Peru (latitude 6°S) and central Peru 

(latitude 10°S and 12°S, Figure S3.1 of the supplements). The velocity of campaign 

sites is derived from at least 3 surveys that were performed every two years since 

2008. Our final geodetic solution further includes 32 continuous GPS sites from the 

Instituto Geográfico Nacional del Perú (IGN) and 8 CGPS sites from the Low 

Latitude Ionospheric Sensor Network project (LISN - IGP) distributed in central and 

northern Peru and installed progressively since 2007 [Valladares and Chau, 2012]. 

All CGPS velocities benefit from at least 2.5 years of measurements, a minimum 

period required to avoid bias coming from seasonal contributions to the velocity 

estimates [Blewitt and Lavalle, 2002]. Details about the data acquisition are provided 

in the Supplementary Information. 

Both campaign and continuous GPS data have been analyzed simultaneously for 

the period 2007.60–2013.75. The analysis was carried out using the GAMIT/GLOBK 

software 10.50 [Herring et al., 2010] in three steps. In the first step, we produce daily 

loosely constrained solutions, meaning that relative station coordinates are well 

determined, but in an undefined reference frame. In the second step, we express the 

daily solutions in the ITRF2008 reference frame [Altamimi et al., 2012] using a 

seven-parameters Helmert transformation. Position outliers and offsets due to antenna 

changes in the continuous stations are automatically identified and removed. Then 

each time series is visually inspected to remove remaining outliers using the matlab 

toolbox Tsview [Herring and Mcclusky, 2009]. We exclude data between 2009.1 and 

2009.7 near the Bayovar Peninsula in northern Peru because of a transient signal 

[Villegas-Lanza et al., 2012] that is described in a separate paper (Villegas-Lanza et 

al., submitted). The average repeatability of the daily station coordinates for the East, 

North and vertical components are 1.5, 1.5 and 5.0 mm, respectively. The obtained 
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time series are then fitted by a weighted linear regression to a model consisting of a 

linear trend, seasonal variations (for continuous sites), and offsets. Finally, in the third 

step, when all outliers and offsets have properly been identified, daily solutions are 

passed to the Kalman filter implemented in GLOBK in order to estimate a consistent 

set of coordinates and velocities with respect to the ITRF2008 together with their 

associated variance-covariance matrix. All velocity uncertainties account for time-

correlated noise in the GPS time series. More specifically, noise parameters (white 

noise, fractional integer noise index and level of fractional integer noise) are first 

estimated from the cleaned time series for continuous sites, using the CATS software 

[Williams, 2008]. As for most studies on time series [Mao et al., 1999; Williams et al., 

2004], a combination of white and flicker noise (spectral index of -1, or close when 

estimated) best explains the noise characteristics. Then, the flicker noise values were 

converted to Markov noise equivalent values, so that the Kalman filter implemented 

in GLOBK provides the same velocity uncertainty as CATS results [Floyd et al., 

2010; Nocquet, 2012]. The mean equivalent Markov noise derived from CGPS time 

series in Peru was also applied to campaign data. To express the velocity field, we use 

the cumulated up-to-date solution of the IGS with respect to the ITRF2008 

[Rebischung et al., 2011; Altamimi et al., 2012] using a 14-parameter transformation, 

which minimizes the departure of the positions and velocities at the 45 sites from the 

International GNSS Service for [Dow et al., 2009, http://www.igs.org).  

 

3.2 Definition of the Stable South America reference frame 

In order to analyze the crustal deformation, the GPS velocities are expressed 

with respect to a Stable South American (SSA) reference frame. We estimate a rigid 

rotation vector for the South American plate using a subset of 20 sites that behave 

rigidly following the criterions of [Nocquet et al., 2001]. We find that a subset of 12 

sites located on the South American craton defines the optimal stable reference frame 

with a wrms = 0.40 mm/yr. The motion of the South America plate relative to the 

ITRF2008 is defined by an Euler pole located at 18.66ºS, 132.72ºW with an angular 

velocity of 0.118º/Myr (Table S2 and Figure S3.2). These values are very similar with 

the solutions from Altamimi et al., [2012] and Nocquet et al., [2014]. Table S1 shows 

the GPS Velocities with their associated formal errors with respect to the Stable South 
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American reference frame. We analyze and use this velocity field to constraint the 

boundaries of the Inca sliver and to define the interseismic coupling along the 

Peruvian megathrust. 

 

4. Main patterns of the GPS velocity field 

Our GPS velocity field samples the entire Peruvian and southern Ecuador 

Andean margin. The density of sites is ~70km along the coast from latitude 14°S to 

latitude 3°S. Owing to access difficulties, it includes sparser measurements within the 

high Andes and the sub-andean domain, and in southern Peru. Figure 3.4 shows the 

GPS velocity field relative to the Stable South America reference frame. Four main 

trends can be observed:  

(1) In northwestern Peru (north of latitude 9.5ºS) and in southern Ecuador, the 

velocity field shows a fairly constant southeastward motion at ~5-6 mm/yr with 

respect to Stable South America, as previously found by Nocquet et al., [2014]. In 

particular, no clear shortening in the plate convergence direction is observed, 

testifying a very small contribution from the interseismic elastic strain rate induced by 

locking along the megathrust (Figure 3.5A). 

(2) In northeastern Peru, GPS sites located in the Oriental cordillera at the latitude of 

Yurimaguas (Figure 3.4) show an east to northeast direction of motion at velocities 3-

4 mm/yr. This direction agrees with the sense of shortening accommodated across 

northwest-southeast reverse trending faults in the sub-andean domain [Macharé et al., 

2003; Veloza et al., 2011] and direction of shortening indicated by the reverse focal 

mechanisms [Suarez et al., 1983] (Figure 3.3). The transition between the ~5 mm/yr 

southeastward motion seen in the Piura peninsula and this domain occurs between the 

Marañon valley which separates the western and eastern Andean Cordilleras. A 

similar direction of motion, perpendicular to the strike of the Andean cordillera is also 

found throughout the sub-andean domain near Pucallpa and Puerto Maldonado 

(Figure 3.4), but with lower velocities (1-3 mm/yr). 
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Figure 3.4: GPS velocity field expressed with respect to the Stable South America reference 

frame. Red and orange arrows correspond respectively to continuous (CGPS) and survey 

(SGPS) velocities. The GPS velocity field shows a complex pattern of deformation that 

considerably varies from north to south of Peru (see text for a description). Our velocity field 

is less dense in the coast of southern than in central and north Peru. The rose diagram is 

dominated by eastward direction of the GPS vector, being consistent with the plate 

convergence direction. The southeastward motion of sites in northern Peru shows an azimuth 

of 100°-135°. 

 

(3) In central Peru, high velocities in the direction of the plate convergence are 

observed, systematically decreasing inland with increasing distance from the trench. 

Maximum rates of up to 22 mm/yr are found in the area of Lima. There are also 
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significant lateral variations of velocities along the coast, with lower velocity 

magnitude north and south of Lima, reflecting lateral variations of the strength of the 

interseismic coupling. 

(4) In southern costal Peru, high (14-20mm/yr) velocities are also observed, 

decreasing inland, indicating significant coupling. Lateral variation are also seen, with 

smaller velocities in front of the Nazca ridge (8.5 mm/yr), about half of the velocities 

of neighboring GPS sites, suggesting lower mechanical coupling at the megathrust 

there. The obtained velocity field significantly differs from previous studies in the 

same area [Norabuena et al., 1998; Kendrick et al., 2001; Chlieh et al., 2011]. 

Reasons for this discrepancy are discussed in section 6.3.3. 

The velocity field therefore reflects the superimposed effects of both 

contribution coming from spatially heterogeneous coupling along the subduction 

interface and the long-term deformation of the overriding continent. In order to 

discuss and separate the two effects, we perform a careful step-by-step analysis. First, 

we show that the effect of elastic strain induced by locking along the megathrust is 

unable to explain the velocity field. Second, we discuss the continental deformation 

and more precisely propose a new eastern boundary for the Inca sliver. Third, we 

present a joint modeling for the interseismic spatial coupling along the subduction 

interface and motion for the Inca sliver kinematics. Finally, we discuss the 

implications of our results in terms of seismic hazards and the factors controlling the 

large variations of interseismic along the Peru subduction zone. 

 

5. Interseismic models 

We first perform a series of tests in order to verify whether the velocity field 

can be modeled by the single effect of interseismic locking along the subduction 

interface, that is a 2-plates model. Clearly, as stated in [Nocquet et al., 2014], the low-

to-null strain rate in northern Peru together with the nearly constant ~5mm/yr 

southeastward motion requires some translational motion. However, in central Peru 

and southern Peru, the larger interseismic contribution from locking along the 

subduction interface hides the small signal of sliver motion and more generally 
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continental deformation. In these tests, we use the residuals as a guide to define the 

Inca sliver boundaries. 

 

5.1 Finite fault approach 

The response of a slip at a finite-fault observed at a GPS station can be 

approached by summing the contributions of a regular grid of subfaults (i.e., [Hartzell 

and Heaton, 1983; Hartzell et al., 1996] as: 

u = ∑ ∑ dij [G
s
ij cos (λij)+(G

d
ij sin (λij)]   (1) 

where u is the displacement at an arbitrary station, i is the ith
 subfault along strike, and 

j is the jth
 subfault along dip. The terms G

s
ij and G

d
ij are the subfault Green’s functions 

for a unit slip in the strike direction and down-dip direction, respectively. Each 

function is obtained by summing the responses of point sources uniformly distributed 

over it. dij and λij are the average dislocation amplitude or slip and the rake angle, 

respectively. 

We adopt the above finite-fault description to define four rectangular 

dislocations that follow the subduction interface geometry based on the Slab1.0 model 

[Hayes et al., 2012] and modified by Nocquet et al., [2014]. The major difference is 

in the Lima area where the Slab1.0 model predicts short wavelengths undulations that 

are not evidenced from local seismicity catalogue and add unnecessary complexities 

to the model. The sub-faults parameters are listed in Table 3.1. The Green’s functions 

for each sub-faults are embedded in layered elastic half-space following the Crust2.0 

model [Bassin et al., 2000] (Table T3.4 in Supplements). 

 

5.2 Forward uniformly locked fault zone models 

Using a back-slip approach [Savage, 1983], we first produce forward 

interseismic models considering a fully locked fault zone that extends from the trench 

to successively 10, 20, 30, 40, 50 and 60km depths. We fix the back-slip dislocation 

amplitude to equate the plate convergence rate and constraint the rake to the average 

rake proposed by the local focal mechanisms of the gCMT catalogue 
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(http://www.globalcmt.org/CMTsearch.html) for each segment. Figure 3.5 reports the 

predicted horizontal interseismic displacements together with the observed along 

profiles GPS velocities across 6 trench-normal profiles. The location of the profiles is 

shown in Figure 3.4. As a preliminary test, profiles are useful to evaluate the first 

order of coupling and assess the need to invoke additional sliver motion to explain the 

data. 

In the two northernmost profiles (5A, Piura and 5B, Chiclayo), no overall 

shortening is detected and it is impossible to explain simultaneously velocities in the 

far field (>350km from the trench) and velocities along the coast. This result 

demonstrates the need to account for some motion of a sliver and provides an upper 

bound of 20km for an average locking depth in that area. A general pattern of velocity 

decrease with increasing distance from the trench is evidenced from profiles 5C to 5F, 

south of latitude ~10°S, testifying of significant coupling along central and southern 

Peru. Nonetheless, simple 2-plates models again fail to explain simultaneously 

velocities in the far field and along the coast. For profile 5D, the gradient observed 

between the oriental Cordillera and the sub-andean domain, if induced by the locking 

would predict too high velocities along the coast by at least 5mm/yr, therefore 

demonstrating the need for a contribution in addition to the effect of locking along the 

subduction megathrust. Figure 3.5E and 3.5F further support this conclusion although 

with sparser data. We therefore conclude from this simple test that continental motion 

significantly contributes to the observed velocity field all along the Peruvian margin, 

and need to be accounted for any further modeling of the interseismic coupling along 

the megathrust.   
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Figure 3.5: Normal trench sections of the horizontal GPS velocities with respect to the Stable 

South America reference frame. Color lines represent predicted horizontal gradient of forward 

back-slip models considering a fully locked fault zone extending from the trench up to 10, 20, 

30, 40, 50 and 60 km-depth. In northern Peru A) Piura and B) Chiclayo, the low GPS 

gradients indicate a weak and shallow (< 30 km depth) interseismic coupling. In central Peru 

C) Pucallpa and D) Lima, where the highest GPS velocities are measured, we find that 

models with a locked fault zone extending up to 40-60 km depth bound the gradients. In 

southern of Peru E) Cusco and F) Arequipa models with LFZ between 40 and 50-km depth 

explain the GPS gradients. These profiles indicate that there is a significant lateral variation 

of the interseismic coupling along the Peruvian margin. 

 

5.3 Inversion procedure for spatially variable interseismic coupling 

Using the finite-fault approach described above, a full representation of the fault 

response relies on two parameters: dislocation amplitudes and rake angles. We can 

invert these parameters by matching the static displacements to the observations. The 

general forward problem is written as: 

d = G(m)  (2) 

where: G represents the Green functions linking the observables to the model, d is the 

data vector (here, east and north components of the GPS velocities), m the model 
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vector (here, slip amplitude and rake direction). The inversion is performed using a 

simulated annealing algorithm called the heat-bath algorithm [Rothman, 1986]. 

Compared to other simulated annealing algorithms, it offers two advantages. First, it 

speeds up the calculation of the cost function by a factor of 100 or more because 

when the parameters of one subfault are perturbed, the response of the rest of the fault 

can be saved. Second, it is a recommended computational method to solve problems 

with a large number of free parameters [Sen and Stoffa, 1991; Tarantola, 2005]. Two 

types of regularization constraints can be chosen: one that minimizes the difference 

between the slip on adjacent subfaults and a second that minimizes the total moment 

(or moment deficit rate in the case of back-slip) of the model [Hartzell et al., 1996]. 

The corresponding cost function is:  

Cost = wrms
2
 + λ1 Dc

 2
+ λ2 (Mo- Md)

 2
   (3) 

Where Dc represents the differences in back-slip rate between adjacent cells and Mo 

is an a priori moment deficit rate, and Md the final moment deficit rate for each source 

point. λ1 controls the smoothing coefficient through a L1+L2 norm [Sen and Stoffa, 

1991] and λ2 modulates the weight assigned to minimize the final moment deficit rate 

[Ji et al., 2002]. Finally, we impose the backslip rate (Vback) to not overshoot the 

relative plate convergence rate (Vpl). The interseismic coupling (ISC) is defined as 0 ≤ 

Vback/Vpl ≤ 1, resulting in pure creeping when ISC=0 and full locking when ISC=1. 

 

5.4 Evidence for internal deformation within the Inca sliver 

In the previous simple forward model, we saw larger scatter of velocity along 

the coast. The scatter probably reflects along strike variations of interseismic coupling 

that was not accounted for in the uniformly locked subduction segments forward 

models. As an additional test, we perform an inversion of spatially variable 

interseismic coupling using the approach described in the previous paragraph, but we 

impose the rake to not vary more than +/- 10° of the average gCMT rake (See Figure 

S3.4 in the Supplements). We fixed λ1=1 for this test (3. S6). Clearly, this approach is 

not correct, but this test will provide a first order correction of the interseismic strain. 

The misfit to data can then be used to enlighten how the continental deformation takes 

place. Figure 3.6 shows the residuals velocity field. It shows a general pattern of 
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southeastward motion at 4-5mm/yr from southern Ecuador to southern Peru. This 

approach shows that the scatter of velocity sites along the coast noticed in the forward 

uniformly locked segments models can be explained by local variations of 

interseismic coupling at the megathrust. When corrected from this effect, the velocity 

field shows a more uniform southeastward motion at the scale of Peru and southern 

Ecuador. At a first order, it confirms the proposition of Nocquet et al., [2014] that the 

Inca sliver encompasses the whole margin from south of the Gulf of Guayaquil to the 

Arica bend and the Bolivian Altiplano. 

 

 

Figure 3.6: Residuals GPS velocities resulting from the inversion of the GPS velocity field 

with respect to the SSA frame. Southeastward motion along the Occidental cordillera reflects 

the motion of the Inca sliver from the Gulf of Guayaquil to the Arica bend. The inset wind-

rose diagram is another representation of the residuals (inset) and shows a preferential 

southeast direction. Table 3.2 contains the best Euler pole for the Inca Sliver/SSA motion 

obtained from a subset of 34 GPS residuals (red ellipses). 



 68 

 

The GPS velocity field reveals another feature. While the sites located in the 

western Cordillera and west of it show a coherent pattern of constant southeastward 

motion, a systematic counter-clockwise rotation is observed for sites located in the 

eastern cordillera and the sub-andean domain. This rotation is clearly seen along the 

northern profile and occurs across the Marañon fault system. It also can be seen for 

the sites HNCO/HC01 (76.3°W, 9.9°S), along the Lima profile between sites TAPO 

and MRCD (near 75.4°W, 11.2°S) and to a lesser extend at sites AP01 and CUZC 

(near 72.4°W, 13.6°S). We note that this change in direction occurs across or in the 

vicinity previously proposed active faults systems: the Rio Marañon fault in the north, 

the Chonta fault system in central Peru (Figure 3.3). In southern Peru, our velocity 

field provides little constraints because of its sparse coverage. Focal mechanisms are 

predominantly extensional and are widespread distributed in the Andean cordillera, 

perhaps reflecting a more diffuse deformation mode.  

We conclude from this test that the Inca sliver geometry proposed by Nocquet et 

al., [2014] needs to be refined and split into two subdomains: (1) a western sliver 

encompassing the western Cordillera and its western margin and (2) an eastern sliver 

encompassing the eastern Cordillera possibly encompassing partly the sub-andean 

domain, as evidenced from GPS data along the northern profile. On the contrary, in 

central Peru, sites located east of the eastern Cordillera in the sub-andean domain are 

negligible with respect to SSA, indicating that the major boundary rather runs along 

the eastern slope of the eastern Cordillera, a hypothesis also supported by the 

distribution of seismicity and the focal mechanisms (Figure 3.3). Finally, splitting the 

Inca sliver also provides an explanation of a major kinematics discrepancy. Nocquet 

et al., [2014] Euler pole for the Inca sliver predicts a significant left-lateral strike-slip 

component of motion along the eastern Andes. However, Figure 3.3 shows that focal 

mechanisms are in average with a strike parallel to the Andes with a shortening 

direction in average perpendicular to the Andes, that is NE-SW. This direction is also 

in agreement with the shortening axis of the major sub-andean faults, therefore 

providing an additional evidence for the new sliver definition proposed here. A 

comparison of the Euler poles for the Inca sliver computed either directly from the 

data or from misfit residuals and that from Nocquet et al., [2014] is provided in the 

Supplements (Table T3.3, T3.4, Figure S3.3).  
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6. Inversion of the interseismic coupling 

Our previous analysis showed that long-term deformation within the overriding 

plate affects significantly the observed velocity field and needs to be accounted for in 

detailed modeling of the effect of mechanical coupling at the megathrust. In order to 

mitigate this effect, we chose the following strategy: Because a model of motion is 

uncertain for the eastern Inca sliver, we remove the sites located in the eastern Inca 

sliver or close to its boundary to invert the interseismic coupling. Second, we 

determine the best Euler pole for the western Inca sliver by choosing only sites 

showing no internal deformation (Table 3.2). Finally, in order to account for possible 

trade-off between the motion of the western Inca sliver and the interseismic coupling 

along the subduction interface, we vary the angular velocities of the western Inca/SSA 

Euler pole by steps of 0.02°/Myr, equivalent to 0.1 mm/yr over the studied area. For 

each model, we adjust adequately the backslip rate (Vback) of the Nazca/western Inca 

Sliver relative convergence rate.  

 

6.1 Inversion Results 

Assuming that a wrms threshold of 2 mm/yr or lower satisfies the GPS 

measurements, we find that the best models work for an Inca Sliver Euler pole having 

an angular velocity of 0.104 ± 0.02°/Myr (Table 3.3). All the models in that range can 

be taken as models acceptable given the data uncertainties. Figure 3.7A shows our 

preferred interseismic coupling model (model 3-Plate-C in Table 3.3) that best fits the 

GPS data (See also inset in Figure 3.7A) and Figure 3.7B presents the predicted rigid 

motion of the western Inca sliver for an Euler pole with an angular velocity of 

0.104°/Myr.  
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Figure 3.7: Best GPS-fitting 3-plate model composed by the rigid motion of the Inca sliver 

(right) and an interseismic coupling model that results from the inversion of the GPS data in 

the Inca sliver reference frame (left). Left - Best interseismic coupling (ISC) model for Peru. 

Observed and predicted interseismic GPS displacements are shown as black and green vectors 

respectively. The wind-rose diagram of the GPS residuals (inset) shows azimuthally random 

distribution of residues lower than 2mm/yr. Right - Rigid motion predicted from the Inca 

Sliver/SSA Euler pole location found from the analysis of the 2-plate model GPS residuals 

(Table 3.2) and an angular velocity of 0.104º/Myr.  

 

To fully account for the model uncertainties due to the limited spatial resolution 

of our geodetic data, we further run a final series of model where we force the final 

rate of moment deficit to vary from Md=1.0E10
20

 Nm/yr (Mw~7.3) to 7.0E10
20

 

Nm/yr (Mw~7.9) (Table 3.4). We found that ISC models with a rate of moment 

deficit ranging from 2.4E10
20

 Nm/yr (Mw~7.6) to 4.0E10
20

 Nm/yr (Mw~7.7) fit 

relatively well the GPS data within their uncertainties (Figure S3.7 in Supplements). 

Figure 3.8 shows the family of acceptable interseismic coupling distribution if we 

consider a wrms lower than 2mm/yr. When the moment deficit rate is increased, the 

asperities widen and the coupling increases significantly near the trench where GPS 

data provide no constraints. Spatial resolution checkerboard tests indicate that the 

along-strike spatial resolution is relatively high everywhere along the Peruvian 

margin. The along-dip resolution is also high in the Piura Peninsula but lowers 

significantly south of it, especially near the trench axis. Interpretation of shallow 
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locking should be done with more caution there (See Figure S3.5 and details in 

Supplements). 

 

 

Figure 3.8: Best GPS-fitting interseismic models with rate of moment deficit ranging from 

2.4E1020 Nm/yr (Mw~7.6) to 4.0E1020 Nm/yr (Mw~7.7). Blue arrows show the GPS 

residuals. Increasing the rate of moment deficit extends the updip limit of the coupling near 

the trench where the slip resolution is low and where uncertainties are the highest. Note that 

where the Nazca ridge and fractures zones subduct, the ISC remains very low. 

 

As a whole, the ISC appears heterogeneous at the scale of Peru, with weak 

coupling found along the northern segment from latitude 10°S to the Gulf of 

Guayaquil, a large area of high coupling, 550km long in the central segment and two 

~100-200km long highly coupled asperities in the south. South of 10°S, areas of high 

coupling are separated by ~100-200km long corridors of weak coupling. 
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6.2. Along-strike variations of the rate of moment deficit 

To quantify the along strike variation of the interseismic coupling, we define the 

rate of moment deficit dMo(t)/dt as : 

 (4) 

where, d(vo-v)(t)/dt is the mean convergence rate (or back-slip offset) across a surface 

S embedded in a medium with an average rigidity µ. Using this definition, we 

compute the along-strike variations of the rate of moment deficit for previously 

discussed inversion models. The moment deficit is computed at each node taking into 

account its local back-slip rate and rigidity. Then, we sum up the moment deficit of all 

the nodes within 20 km strip normal to the trench. Figure 3.9 shows the variation of 

the rate of moment deficit along the 2200-km long Peruvian subduction zone.  

Although the final coupling models indicate differences, we can notice that the 

global rate of moment deficit remains in a limited range of Md=2.4-4.0E10
20

 Nm/yr 

corresponding to energy accumulation equivalent to a Mw~7.6-7.7 yearly earthquake 

(Figure 3.9, Table 3.4) at the scale of the whole Peruvian subduction zone. The 

uncertainties vary along strike and mainly reflect the distance of the GPS sites from 

the trench. 

 

dMo(t)

dt
= µS

d(vo " v)(t)

dt
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Figure 3.9: Along-trench variations of the rate of moment deficit (left) for the minimum 

(center) and maximum (right) interseismic models. Even though, the interseismic pattern 

might vary significantly between models, note that the location of the peaks and valleys in the 

rate of moment deficit are quite persistent characteristics that highlight the locations of 

principal asperities (peaks) and creeping barriers (valleys). Dashed contours of center map 

show the approximate rupture area of large earthquakes as described in Fig. 2. 
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7. Discussion 

7.1. Continental deformation: motion and deformation of the Inca sliver 

As for most subduction zones accommodating oblique convergence, 

partitioning of the convergence takes place in the Peruvian margin through the motion 

of the Inca sliver at 4-5 mm/yr (Figure 3.7) [Nocquet et al., 2014] and sub-andean 

domains accommodating the crustal shortening at about 2-3 mm.yr. The velocity 

agreement for sites located in southern Peru (Puno (71.2ºW, 15.5ºS), Cuzco (71.9ºW, 

13.5ºS) and Ayacucho (74.2ºW, 13.2ºS)) with our proposed Inca sliver Euler pole 

supports that the Inca Sliver encompasses most of the 2200km of the Peruvian margin 

from south of the Gulf of Guayaquil to the Arica bend and the Bolivian Altiplano. 

Thus, together with the already identified North Andean Sliver encompassing western 

Venezuela, Colombia and Ecuador [Pennington, 1981; Trenkamp et al., 2002; White 

et al., 2003], the central Andes Sliver [Brooks et al., 2003; Métois et al., 2013] and 

the Chiloe sliver [Wang et al., 2007] in central-southern Chile, it confirms that the 

motion of continental slivers control the present-day kinematics of the Andes 

Cordillera all along the Nazca / South America plate boundary. Because the sense of 

trench parallel motion of the slivers documented agrees with the along trench 

component of the Nazca/South America convergence vector, it suggests that the 

oblique convergence and stress along the subduction interface controls the motion of 

the slivers. 

For the Inca sliver, our Euler pole predicts southeastward motion at ~4 mm/yr in 

northern Peru, slowly rotating counterclockwise with decreasing latitudes, so that the 

velocity becomes eastward directed in southern Peru and with slightly larger 

magnitude (~5 mm/yr). This Euler pole indicates that both trench-parallel and trench-

normal partitioning coexist. The Inca sliver motion trench-parallel component 

remains fairly constant all along Peru (~4 mm/yr, Figure 3.10) indicating a level of 

partitioning decreasing southward from 35% in northern Peru to 16% in southern Peru 

near the Arica bend. Trench-normal component partitioning is small of the order of 

5% all along Peru. 
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While the motion of the Inca sliver dominates the velocity field, we now find 

that a single block does not correctly explain the GPS data in the eastern Andes, 

suggesting that the Inca sliver accommodates a significant internal deformation. 

According to the GPS data a counterclockwise rotation of the velocity field occurs in 

the eastern Andes. As a consequence of the rotation, the relative motion between the 

eastern Andes and the Stable South America is not a left-lateral dominant strike-slip 

system as would predict the Inca sliver/South America pole, but an almost pure 

reverse shortening boundary, with a shortening direction usually perpendicular to the 

main strike of the Andes. This direction agrees with the reverse focal mechanisms 

(Fig. 3) and the shortening direction indicated by the active folds and faults in the 

sub-andean domain. 

We find that the onset of this counterclockwise rotation usually occurs between 

the western and eastern Cordillera. In northern Peru, we find that main velocity 

direction change occurs across the Marañon fault. Although the Marañon fault has 

been proposed to be a reverse fault [Megard, 1984; Carlotto et al., 2009], a direct 

measurement of relative motion for GPS sites located either side of the fault 

(CUYC/AM02 ) indicate a predominant left-lateral motion at 1.2-2.5 mm/yr. No clear 

fault-perpendicular motion can be reliably determined from our GPS data, but it is 

certainly smaller than 1mm/yr. The GPS sites located east of the Marañon fault show 

little internal deformation and move coherently at 2-3 mm/yr eastwards, indicating 

active shortening at these rates between the sub-andean domain and the stable South 

America craton.  

In central Peru, a short-scale gradient is seen in the velocity field between the 

western and eastern Cordillera crossing the Chonta Fault System. However, the 

estimates of the relative motion to be accommodated there are dependent on the 

models of the interseismic coupling along the subduction. For instance, the velocities 

between sites LRYA and TAPO located on each side of the RVQ fault system show 

1.2±1.5 mm/yr of right-lateral motion and 2.6±1.3 mm/yr of relative shortening. 

When corrected for the interseismic contribution of the subduction, using our best 

model, we find now that 2.5±1.7 mm/yr of right-lateral motion and 1.0 ±1.3 mm/yr of 

shortening. Furthermore, if we use the sites in Huancayo (HUAN and JU01), we even 

find extensional strain regime at 1-2 mm/yr. Therefore, the GPS network is not dense 
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enough to provide reliable constraints on the eastern Inca sliver boundary in south 

central Peru. 

In general, the direction of shortening (NE-SW) in the sub-andean domain 

requires either counter-clockwise rotation of small blocks in the eastern Andes with 

respect to the Inca sliver or some extensional strain rate on the NE-SW direction. 

Extension is further evidenced in southern Peru by the widespread distribution of 

normal faulting earthquakes within the Altiplano. Along the eastern Andes, our Euler 

pole for the Inca sliver would predict 4.5 mm/yr of motion in a 95°N direction with 

respect to stable South America. Extensional strain therefore should contribute to a 

change of counterclockwise ~30° of the velocity field in order to be compatible with 

the sense of shortening in the sub-andean domain. This requires ~4 mm/yr of 

extension to be accommodated within the Altiplano. Alternatively, a left-lateral 

constant shear rate of 15 nstrain/yr, accommodated over 150km across the eastern 

Cordillera and sub-andean domain would also explain the rotation of the velocity field. 

Therefore, a combination of NE-SW extension and left-lateral faulting is expected in 

the Cordillera. In the sub-andean zones, reverse faulting is evidenced by thrust focal 

mechanisms that limit the easternmost flank of the Oriental cordillera and 

accommodate crustal shortening. 
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Figure 3.10: Schematic description of the principal continental slivers that contribute to the 

deformation partitioning of the Peruvian margin: the North Andean Sliver (NAS; yellow) the 

western Inca Sliver (in red) and eastern Inca Sliver (in green), the later are separated by the 

limit between the occidental and oriental cordillera, respectively. All the motions are referred 

to a Stable South America (SSA) reference frame and are expressed in mm/yr. The inset 

shows kinematics triangles and obliquity partitioning vectors for Ecuador (Latitude 1°N), the 

Guayaquil bend (Latitude 5°S) and Arica Bend (Latitude 18°S). The lines with triangle 

symbols indicate the local trench axis. Green and purple lines are respectively the along and 

normal trench components of Nazca/SSA convergence vector. The blue arrows indicate the 

Nazca/NAS and Nazca/IS convergence vectors and the red arrows are the NAS/SSA and 

IS/SSA convergence vectors.  
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7.2 Interseismic Coupling along the Peruvian subduction zone 

In the following paragraphs, we describe the main pattern of the interseismic 

coupling along the three segments of the Peruvian subduction zone and discuss the 

implication for their seismic behavior. 

7.2.1 Weak coupling in northern Peru 

In northern Peru, the interseismic coupling appears to be confined within the 

shallowest 30km and is found to be weak (<40%). High locking confined close to the 

trench is not excluded by the data south of the Piura peninsula and possibly in the 

Gulf of Guayaquil. However, a very weak coupling is found along the Piura peninsula 

where the coastline located at about ~100km from the trench enables a better 

resolution. Our models further suggest that interseismic coupling consists of local 

asperities with typical sizes less than 100km long along strike and 70km along dip. In 

overall, we find that the rate of moment deficit could vary from Md=0.1E10
20

 Nm/yr  

(Mw~6.8) to Md=0.8E10
20

 Nm/yr (Table 3.4, Figure S3.8). This range of values is 

equivalent to M0=4E10
21

-3.2E10
22

 Nm over 400 yrs. According to our updated 

catalogue for historical earthquakes (see section 2.1), the total moment released 

through the earthquakes has been M0=2E10
21

 Nm, that is 50% of the geodetic lower 

bound value. Furthermore, it is likely that the earthquake catalogue is not complete 

for the XVI and XVII
th

 centuries. Over last two centuries, the geodetic moment rate 

deficit would agree with 20% with the moment released through earthquakes.  We 

further note that the location of highly coupled patches correlates within their 

uncertainties with proposed rupture areas for the XX
th

 century earthquakes in this area. 

The 1960 and 1996 events share all the characteristics of tsunami earthquakes. Our 

model results, with locking patches located close to the trench is agreement with the 

view that these earthquakes ruptured the shallowest, less rigid part of the megathrust. 

This mode of stress release would therefore be the dominant seismic behavior for the 

northern Peru segment. 

 

7.2.2 High coupling in the central Peru segment 

In contrast with northern Peru, the central Peru segment indicates a high and 

homogeneous level of coupling along a 550km long segment. Although the level of 
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coupling close to the trench is not well constrained by the GPS data, all our models 

indicate that high coupling is required at depths between 20 and 50 km. These 

numbers are similar or even larger than the locked zones documented in the Tohoku 

[Loveless and Meade, 2010] and Maule [Vigny et al., 2011] areas before the 

occurrence of these two earthquakes and the area certainly has the potential for 

generating Mw 9+ earthquakes. 

Our models indicate that the moment rate deficit for this segment is 

Md=1.1E10
20

-1.5E10
20

 Nm/yr, equivalent to a Mw~7.3-7.4 every year. If we consider 

that the 1746 earthquake ruptured the whole central Peru segment and released all 

previously accumulated stress, the actual rate of moment deficit would then lead to an 

estimate of M0=2.7E10
22

-4.0E10
22

 Nm accumulated since 1746. The XX
th

 century 

sequence with 4 Mw~8 released only M0~5E10
21 

Nm, that is between 10 to 20% of 

the accumulated stress, leaving the space for a Mw 8.8 to 9.0 earthquake to occur 

presently (Figure S3.10). 

Of course, these simple calculations cannot be used as a direct guide for a future 

great earthquake. They however show that Lima and its region have the highest 

hazard in Peru and possibly along the Nazca/South America subduction zone, with a 

potential for a great earthquake to happen in the next years or decades.  

 

7.2.3 Highly heterogeneous coupling and evidence for ongoing post-seismic 

deformation along the southern Peru segment 

In southern of Peru, interseismic coupling appears to be localized within two 

100-150km large asperities at latitude 16°S and 18°S spatially correlating with the 

presumed rupture areas of the 1913 and 1868 earthquakes, respectively. While the 

existence of the two asperities were also found in previous modeling of the area 

[Chlieh et al., 2011], they are found to be of smaller size in our modeling. In order to 

understand the differences, we first compare our velocity field with the one derived 

from the SNAPP project in the 1990’s and used by Norabuena et al., [1998], 

Kendrick et al., [2001] and finally Chlieh et al., [2011] to derive interseismic models 

for this segment. We find that there are many differences in sites located near Lima 
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city (e.g. sali = 27.6 mm/yr at N89.7ºE and HCHO = 20.9 mm/yr at N81.4ºE; also for 

the sites quil = 25.9 mm/yr at N83.8ºE and CAZL = 17.5 mm/yr at N76.9ºE) reaching 

8.5 mm/yr and systematic differences in orientation further inland (Figure S3.9). The 

SNAPP velocity field has been derived from only two campaigns spanning 1994 – 

1996, a period that is now known to be too short to derive reliable velocity estimates 

even for continuous GPS stations [Blewitt and Lavalle, 2002]. Further problems as 

lower orbit quality and the sparse network of reference stations around South America 

at that time might also have degraded their results. 

However, the large difference noticed at the IGS station AREQ between 

previous and our solution still remains intriguing. This area has been affected by the 

2001 Mw=8.4 Arequipa earthquake, which has been shown to have a large 

postseismic displacement in the years following the earthquake [Perfettini and 

Avouac, 2004]. In order to evaluate the potential impact of post-seismic processes to 

our velocity field, we determine the full time series for this site since 1998, using our 

own solution from the second reprocessing campaign of the IGS 

(http://acc.igs.org/reprocess2.html). Figure 3.11 shows the resulting time series. It 

clearly shows that the post-seismic phase has not ended yet. The velocity with respect 

to the stable south America is of 6.6mm/yr estimated for the 2007-2013 period in our 

solution is about half the interseismic velocity before the earthquake (13.6 mm/yr) in 

magnitude and is rotated clockwise by 30°. This results indicates that the southern 

segment of the subduction zone in Peru is still experiencing significant post-seismic 

deformation. The low coupling found in the rupture area of the 2001 Mw 8.4 

earthquake might be explained by this on-going deformation.  
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Figure 3.11: Full time series for the east, north and vertical components of the AREQ GPS 

station since 1998. We use our own solution from the second reprocessing campaign of the 

IGS (http://acc.igs.org/reprocess2.html). Green line indicates the date of occurrence of the 

Mw=8.4 Arequipa 2001 earthquake, whose epicenter is about 230km from the station. 
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7.3 Factors controlling the interseismic coupling 

The existence of a segment of 1000 km long predominantly creeping raises the 

questions about the factors controlling the interseismic coupling variations along the 

subduction interface. Our new observation offers an opportunity to test previously 

empirical or physical laws proposed to control seismic coupling along subduction 

zones. 

 

7.3.1. Thermal Modeling  

A first category of models relates the coupling to the thermal state of the 

subduction interface, which mainly depends on the age of the subducting plate, the 

convergence rate, the interface dip profile and the sediment thickness at the trench 

[Oleskevich et al., 1999]. Convergence rate and interface dip profile (at shallow 

<60km depth) remains fairly constant along Ecuador and Peru and more generally 

along the Nazca/South America subduction zone. A recent compilation of sediment 

thickness at the trench [Heuret et al., 2012] shows low values (≤0.5km) from Ecuador 

to southern Peru, with higher thickness (1.0-1.5km) between latitude 5.5°S and 9°S. 

Variation of trench sediment thickness therefore does not correlate with change in 

coupling. Here we explore the link between temperature and interseismic coupling 

through modeling the steady-state thermal structure of the Peruvian megathrust 

interface from analytical expressions describing the dissipative heating in the 

lithosphere [Royden, 1993]. We adopt the approach developed by Royden, [1993], in 

which the heat transfer equation is solved in 2D: 

  (5) 

where,  describe the term of conduction,  is the advection, SH the shear 

heating and R the crustal radiogenic production. We assume the case where the 

radiogenic production is small, about 1.3μW/m
3
. The shear heating (fixed to 

45mW/m
2
) is calculated for a uniform shear stress of 40MPa and a friction coefficient 

of 0.1 in highly locked zones. In weakly coupled zones (like found in north of Peru), 

the shear heating might be lower due to a lower coupling coefficient or shear stress.  
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We fixed the temperature at the base of the oceanic lithosphere at 1250°C. For an 

instantaneous heating or cooling of a semi-infinite half-space, the thickness H of the 

subducting plate is proportional to the thermal diffusion distance (κ*A)
0.5

:  

H=2.32 * (κ*A)
0.5

  (6) 

where κ  is the thermal diffusivity (fixed to 1mm
2
/s), A is the age of the subducting 

plate [Turcotte and Schubert, 2002]. Following this relation the thickness of the 

megathrust increases from about 70km in the north of Peru where the age of 

subducting oceanic plate is about 30Ma old, to 80km in central Peru and 85-90km in 

southern Peru where is the oceanic seafloor age reach about 45Ma old (see Table T3.6 

in Supplements). As a consequence of the change in the strike of the trench axis, the 

normal convergence rate decreases southward from about 58mm/yr at the latitude of 

Chiclayo to 55mm/yr at the latitude of Lima and 46mm/yr at the latitude of Arequipa. 

In map view, Figure 3.12 shows that the isotherms 100°C-300°C bracket 

relatively well the location of highly locked fault patches especially in central and 

southern Peru. In north of Peru (profile A), if we use the same coefficient of friction 

than used for the profiles in central and south Peru (B, C, D), we found that the 

isotherm 300°C crosses the slab at about 20 km deeper than the downdip limit of the 

locked fault zone found between latitudes 7°S and 8°S. The low coupling found in 

north Peru may suggests that the friction coefficient might be much lower than in 

central and southern Peru. If we test that hypothesis, we found that for a shear heating 

of 20mW/m2 or lower, the distances between the isotherms 100°C and 300°C is 

squeezed and more consistent with the lower width of the locked fault patches found 

there (Profile A). Overall, these thermal models indicate that the updip and downdip 

limits of the locked areas could be controlled by the thermal structure of the slab 

interface. However these models fail to explain the along-strike segmentation 

observed in the interseismic coupling models suggesting that other parameters may be 

involved in the control of the seismogenesis at subduction zones. 
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Figure 3.12: Steady-state thermal structure of the Peruvian megathrust Left: Age of the 

oceanic floor [Müller et al., 2008], which increases southward. It is about 20 Myr north of the 

Gulf of Guayaquil and reaches 55 Myr in southern Peru. Three major discontinuities appear 

in the ages of the oceanic seafloor at the Grijalva Fracture Zone (GFZ) where the ages are 

shifted from 20 Myr to 30 Myr, at the Mendaña Fracture Zone (MFZ) with a jump from 29 

Myr to 40 Myr, and at the Nazca Fracture Zone (NFZ) with a jump from 46 Myr to 51 Myr. 

Solid lines A, B, C and D, indicate the location of the three sections showed on the right. 

Right: Normal-trench Sections for A (Chiclayo), B (Lima), C (Nazca) and D (Moquegua) 

showing the bathymetry and topography from GEBCO30s model. For each section, the 

steady-state thermal model is computed using the Hayes slab geometry, the local normal 

convergence rate and age of the subducting Nazca Plate. 

 

7.3.2. Forearc structure 

A second category of empirical laws relates the forearc structure [Wells et al., 

2003] and negative free-air gravity anomalies along the trench to the distribution of 

highly coupled segments [Song and Simons, 2003]. Positive free-air anomalies were 

used to predict low elastic stress accumulation from latitudes 1°N to 3°S, increasing 

from 4°S to 8°S [Song and Simons, 2003]. Both predictions are in contradiction with 
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recent results, which show significantly high coupling between 1°N and 1°S [Nocquet 

et al., 2014], and low coupling between 4°S and 8°S. 

 

7.3.3 Seismic segmentation controlled by oceanic structures 

Another key parameter suspected to control the lateral variation of the coupling 

is the subduction of topographic high or fracture zones that reduce locally the 

interplate coupling and play the role of mechanical barriers. In the regions where 

major geomorphologic features as fracture zones and ridges intersecting the trench 

axis, we notice that the interseismic coupling is always low, even in maximum 

coupling models (Figures 3.9, 3.11). These low-coupled regions correlate relatively 

well with the rupture extremities of large megathrust earthquakes suggesting that the 

subduction of prominent geomorphologic structures play a key role in the 

segmentation and control of large subduction ruptures. In central Peru the subducting 

seafloor is smooth and the Nazca ridge and Mendaña FZ bounding this segment can 

be interpreted as strong barriers since no historical large earthquakes ruptured through 

them. In south of Peru, the Nazca fracture zone appears to act as a weak barrier that 

can sometimes slow down or stop large rupture like in 2001 [Robinson et al., 2006] 

and sometimes fail with the neighboring asperities like during the 1868 Mw=8.8 

event. In northern Peru the subduction zone is more segmented than the central and 

south segments, due to the entrance of five structures (the Mendaña FZ, the Virú FZ, 

the Sarmiento and Alvarado ridges, and the Grijalva FZ) separated by 100-250 km 

over a distance of 900km along trench. The lateral persistence of these structures may 

inhibit stress accumulation at the plate interface. 

 

8. Conclusions  

This study presents a detailed description of both the deformation partitioning 

and the pattern of interseismic coupling along the Peruvian subduction margin. Our 

results allow us to conclude that: 

(1) The GPS velocity field expressed with respect to the stable South America shows 

distinct patterns of deformation along strike. In central and southern Peru we observe 

high velocities in the direction of the convergence (from 8 to 23 mm/yr) decreasing as 
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going inland, suggesting significant interseismic coupling on the plate interface. 

Contrasting with these observations, in northwestern Peru we observe a consistent 

southeastward motion of 5-6 mm/yr, without a clear gradient of deformation that 

would suggest significant coupling on the plate interface, thus confirming the 

hypothesis of a sliver motion stated by Nocquet et al., [2014]. New GPS velocities in 

northeastern Peru rotate differently in an east–northeast direction, this new data allow 

to constraint the kinematic and boundary of the Inca sliver. 

(2) We found evidence that allow us to discriminate that the former Inca sliver 

proposed by Nocquet et al., [2014] can be split into sub-domains: a western sliver 

encompassing the oceanic wedge and the occidental cordillera and sub-andean 

domains including the oriental cordillera. This evidence comes from the differences in 

the pattern of deformation between the sites located on each side of both cordilleras. 

The boundary between the Inca sliver and sub-andean domains would be limited by 

fault systems aligned along the boundary between the cordilleras; these are: the 

Marañon in the north, the Chonta in central, and the Urcos-Ayaviri-Coniri Fault 

Systems in the south of Peru. The newly defined Inca sliver is in southeastward 

translation at a rate of 4-5 mm/yr, and is wedged by the subduction trench and the 

inter-cordillera fault systems encompassing all the 2200 km of the Peruvian 

subduction margin from south of the Gulf of Guayaquil to the Arica bend. Sub-

andean domains show an east to northeast direction of motion consistent at a rate of 2-

4 mm/yr with shortening along the northwest-southeast reverse trending faults in the 

sub-andean domain and thrust focal mechanism [Suarez et al., 1983; Devlin et al., 

2012]. 

(3) The oblique convergence appears as the principal driving mechanism for the 

motion of the Inca sliver. At the scale of the entire Nazca/South American subduction 

zone, various slivers have been reported there where the convergence is oblique 

[Trenkamp et al., 2002; Brooks et al., 2003; Métois et al., 2013; Nocquet et al., 2014]. 

In northern Andes the divergent motion of the North Andean sliver towards the 

northeast and of the Inca sliver towards the southeast explains the opening of the Gulf 

of Guayaquil. In central Andes at the Arica bend the convergent motion of the Inca 

sliver and a northward moving sliver in northern Chile [Métois et al., 2013] play a 

role in the development of the Altiplano plateau holding it laterally. 
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(4) The interseismic coupling determined in this study appears highly heterogeneous 

at the scale of the Peruvian subduction margin. The northern segment extending from 

the Gulf of Guayaquil to the Mendaña Fracture Zone is characterized by weak to 

moderate coupling confined to the first 20-30km depths. Three localized patches of 

~100km long correlate with the rupture area of moderate megathrust earthquake and 

tsunami-earthquakes (~7.5) occurred in 1953, 1960 and 1996. The central Peru 

segment bounded by the Mendaña Fracture Zone and the Nazca ridge is characterized 

by a high interseismic coupling that vary laterally along 550 km long and also in 

depth up to 50 km. The coupling in this segment correlates with the rupture area of 

the great 1746 (~M9.0) earthquake that encompasses the cumulative rupture extents 

of large earthquakes M~8.0 occurred in 1940, 1966, 1974 and 2007. In the southern 

Peru segment, besides the scarce density of coastal GPS sites, our model shows two 

~100-150km long highly coupled asperities in front of Nazca (16ºS) and Tacna (18ºS) 

that correlate with the location of the 1913 (M~8.2) and the remaining rupture 

segment of the 1868 (M8.8) earthquake, respectively. Moreover, we found evidence 

for ongoing postseismic deformation taking place in the rupture area of the M8.4 

2001 Arequipa earthquake; future studies in this region must take into account and 

correct this effect. We cannot discard high ISC in the shallow portion of the 

seismogenic zone; our maximum coupling models allow more coupling in the updip 

seismogenic zone there where the trench-coast distance is more than ~150 km. Our 

model also shows that the areas of high coupling are usually separated by ~100 km 

long corridors of weak coupling that coincide with geomorphic structures entering to 

the trench. We find evidence of low to weak coupling where the crest of the Nazca 

ridge intersect the trench from 14.5ºS to 15.5ºS, similarly at the entrance of the 

Mendaña fracture zone the coupling descend drastically. Further north the ISC in 

general is low and the presence of ridges (SR, AR) and fracture zones (GRFZ, VFZ) 

may correlate with the aseismic behavior acting as permanent barriers that impede the 

stress accumulation and arrest the propagation of the seismic rupture.  

(5) While the factors controlling the along strike variation of interseismic coupling 

still remain to be understood, the southern Ecuador and northern Peru subduction 

zone highlight a fundamentally different mode of stress accumulation and release 

compared to its neighboring segments. Our results differ from most studied 

subduction zones, where geodetic measurements of interseismic strain have led to the 
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view of coupled asperities of variable size usually separated by narrower zones of low 

interseismic coupling. Although a few subduction segments had proven to accumulate 

very low stress [Fournier and Freymueller, 2007; Correa-Mora et al., 2009], the 

length of low interseismic coupling segments was not exceeding ~500km, a small 

percentage of the total length of the subduction. Here, the area predominantly 

creeping is a continuous segment representing ~20% of the total length of NSASZ. 

Shallow (<20-30km) interseismic coupling, very weak to null coupling at usual 

seismogenic depths (20-45km), lack of great (Mw>8) earthquakes, and occurrence of 

tsunamigenic earthquakes are the primary characteristic of this subduction zone 

segment.  

Finally, we present novel results that show high variability in the pattern of 

interseismic coupling along the 2200 km of the Peruvian subduction zone and 

continental deformation at the scale of the Peruvian Andes. Our results have great 

implications both from the point of view of the seismic hazard and in the impact on 

the active tectonics and long-term deformation of the Andes. In the near future it will 

be important and necessary to densify with new GPS measurements the coastal areas 

in order to map with better detail the distribution of the interseisimc coupling on the 

plate interface. Continuous GPS and seismological monitoring with near-real time 

processing in the areas that undergo high interseismic coupling, such as central 

(Lima) and southern Peru, would be of benefit for tsunami and earthquake early 

warning. Pre-seismic signals as the recently observed in Iquique - Chile (2014) and 

Arequipa (2001) seem to be characteristic feature of this subduction zone. Similarly, 

more measurements in the frontiers of the Inca sliver, both between the cordilleras 

(occidental and oriental) and in the sub-Andean region will help to refine precisely the 

boundaries and to better assess the seismic hazard inland. 
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Table 3.1: Fault geometry of the rectangular dislocations used in this study to describe the 

megathrust interface. 

Segment 

 

Geographical 

Location  

Southwestern corner 

Long., Lat. 

Length 

(km) 

Strike 

(º) 

Dip 

(º) 

1 Southern Peru 71.2ºW 19.6ºS 780 312 20 

2 Central Peru 76.7ºW 14.9ºS 620 324 15 

3 North Peru 80.0ºW 10.4ºS 460 334 12 

4 Piura Peninsula 81.9ºW 6.5ºS 460 5 12 

 

Table 3.2: Characteristics of the poles of rotation for the Inca Sliver and the Amazonas 

micro-block relatively to Stable South America (SSA). Column 2 and 3 indicates the method 

and number of GPS sites used to define the pole. Columns 4, 5, 6 are the pole location and 

angular velocity. 

Pole Name Method 
# GPS 

sites 

Long. 

(º) 

Lat.  

(º) 

Ang. Vel. 

(º/Myr) 
wrms Reference 

Inca/SSA GPS data 28 63.76ºW 22.47ºN 0.092 0.83 Nocquet etal14 

Inca/SSA GPS data 35 73.66ºW 4.26ºN 0.215 0.66 This Study 

Inca/SSA Residuals 34 67.23ºW 8.36ºN 0.095 0.55 This Study 

Amazonas/SSA GPS data 6 72.79ºW 17.21ºS 0.122 0.72 This Study 

 

Table 3.3: Characteristics of the 2-plate and 3-plate models. Column 2 shows the angular 

velocity of the Inca sliver in °/Myrs. Column 3 the misfit of the GPS data. Columns 4 shows 

how vary the moment deficit rate Md of the model in 1020 N.m/yr. In bold are the best-

family models. 
Model 

Name 

Inca Sliver Ang. 

Velocity (°/Myrs) 

wrms 

(mm.yr) 

Md Total 10
20

 

N.m/yr 

2-plate 0 3.79 3.82 

3-plate-A 0.044 2.50 3.42 

3-plate-B 0.084 1.77 3.00 

3-plate-C 0.104 1.63 2.74 

3-plate-D 0.124 1.75 2.51 

3-plate-E 0.177 3.08 1.91 

3-plate-F 0.199 3.92 1.65 

 

Table 3.4: Variation of the final moment deficit rate (Md). Units of the moment Md in 1020 

N.m/yr (Here in the WRMS column I have this values because I divided the chi2 resulting 

from the inversion by the number of subfaults). In bold are the best GPS-fitting familly of 

acceptable models. 

Model 

Name  

A priori 
 

wrms 
South Central 

North-

Chiclayo 
North-Piura 

Md Mw  Md Mw Md Mw Md Mw Md Mw 

Mo1.0 9.88 7.3 3.99 0.2 6.8 0.78 7.2 0 - 0 5.3 

Mo1.5 1.48 7.4 2.85 0.55 7.1 0.91 7.3 0 - 0.02 6.2 

Mo2.0 1.97 7.5 2.12 0.89 7.2 1.03 7.3 0.02 6.1 0.04 6.4 

Mo2.5 2.44 7.6 1.85 1.12 7.3 1.15 7.3 0.1 6.6 0.08 6.6 

Mo3.0 2.80 7.6 1.74 1.23 7.4 1.2 7.4 0.23 6.9 0.11 6.7 

Mo3.5 3.15 7.6 1.70 1.36 7.4 1.32 7.4 0.34 7 0.13 6.7 

Mo4.0 3.60 7.7 1.71 1.56 7.4 1.43 7.4 0.45 7.1 0.16 6.8 

Mo4.5 4.05 7.7 1.80 1.75 7.5 1.5 7.4 0.61 7.2 0.19 6.8 
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Mo5.0 4.95 7.8 2.01 2.19 7.5 1.69 7.5 0.81 7.2 0.26 6.9 

Mo6.0 6.30 7.8 2.94 2.81 7.6 2.09 7.5 1.03 7.3 0.38 7.0 

Mo7.0 7.19 7.9 4.57 3.24 7.6 2.42 7.6 1.09 7.3 0.45 7.1 
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Introduction 

The material provided in this supplement contains descriptions, tables and 

figures that support and help to illustrate this study. We also present here the tables 

containing the GPS velocity field and the poles used to constraint the stable reference 

frame and the definition of the Inca Sliver kinematics. 

 

1. GPS Dataset 

We use data from 102 continuous and survey GPS sites located in Peru and 

southern Ecuador, covering the coastal rages and crossing the Andean cordillera up to 

the Sub-Andean region. GPS data was acquired since 2008 in the frame of the ADN 

project, a collaborative research initiative between research institutes from France 

(Geoazur, IRD, IsTerre), Peru (Instituto Geofísico del Perú, IGP) and Ecuador 

(Instituto Geofisico –EPN-Quito) (Figure S3.1). In this study we extend and densify 
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the dataset used in Nocquet et al., [2014] with 52 new GPS velocities. New 

measurements from continuous and campaign GPS sites collected in the frame of the 

ADN project are here included. This study is also benefited with a set of continuous 

GPS data of more than three years of time span provided by local Peruvian networks. 

With these new data we not only extend our study area further south covering the 

whole Peruvian territory, but we extend our measurements up to eastern side of the 

Andes through 3 trench-perpendicular profiles crossing the Andean cordillera up to 

the sub-andean region. All the sites are showed in Figure S3.1.  

The ADN network is composed by 6 continuous (CGPS) and 42 campaign 

(SGPS) GPS sites progressively installed since mid-2008. CGPS sites are equipped 

with Trimble NetRS GPS receivers recording at intervals rates of 30s (and 0.2s) and 

Trimble Zephyr Geodetic antennas that are anchored in bedrock according 

international monumentation standards for geodetic studies 

(http://facility.unavco.org). Data is stored on site without being transmitted, so we 

collected the data on a yearly basis. The SGPS-ADN network was installed and 

measured in July 2008 with a set of 31 sites, distributed from Lima (Lat -13ºS) to 

Tumbes (Lat -3ºS), covering approximately the first ~150 km between the coastline 

and the occidental cordillera of the Andes. Markers were generally fixed in bedrock. 

In 2010 and 2012 we re-measured the ensemble of sites, always during the month of 

July thus mitigating possible effects of seasonal signals in the time series and in the 

velocity estimation. Campaign measurements were performed in general using 

Trimble NetRS, NetR9 and occasionally TopCon TPS GB-1000 receivers recording at 

interval rates of 30 seconds during least 2 complete UTC daily sessions of 24 h, using 

in most of the cases Trimble Zephyr Geodetic antennas and eventually Topcon 

TPSPG_A1 antennas. Additional measurements for some campaign sites (SCH1, 

SCH2 and PSAL) were performed in February 2009 and September 2011 in 

northwestern Peru right after a sequence of seismicity near the Bayovar Peninsula. It 

is worth to mention for the future that there are a couple of sites (CHAC and PJNA) 

near the city of Cajamarca that were not re-measured after its first measurement in 

2008, so they need to be reoccupied in a next campaign. 

Additionally, 3 trench perpendicular GPS profiles were installed and measured 

since 2009, as part of the ADN project, consisting of 11 sites crossing the Andean 
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Cordillera from the coast to the sub-andean region near the cities of Yurimaguas 

(CUYC, LMAS, MOYB, YRMG), Pucallpa (HNCO, SALJ, PUCP) and Satipo 

(SNDM, LRYA, MRCD, TAPO, SATI) in the sub-Andean ranges. We reoccupied 

these profiles in mid-2011 and 2013. The campaign GPS site CUYC constitutes the 

common measured site between campaigns of the coastal and profile sites, since it 

was measured on a yearly basis since 2009. With all these new sites our ADN 

network sum a total of 43 SGPS and 6 CGPS covering a time span from 3.4 to 5.2 

years. 

In addition to our network we benefit from a dataset consisting in 32 CGPS sites 

from the Instituto Geográfico Nacional del Perú (IGN) distributed along the Peruvian 

territory and spanning a time period of minimum 3 years of data since 2009. We also 

include 8 CGPS sites from the Low Latitude Ionospheric Sensor Network (LISN - 

IGP) [Valladares and Chau, 2012] distributed in Peru and covering a time span of 2.6 

to 6.6 years since 2007. It is worth to mention that despite the LISN network was not 

intended to study crustal deformation but ionospheric studies its utility for tectonic 

deformation studies was examined in Villegas-Lanza, [2009]. We also include to our 

dataset 14 GPS (two are continuous) located in southern Ecuador that belong to the 

Instituto Geográfico Militar de Ecuador (IGM) that were already used in Nocquet et 

al., [2014]. In order to provide more constraints and calibrate our regional 

observations we use 30 sites from the global IGS network (International GNSS 

Service, http://igscb.jpl.nasa.gov) located on the Nazca and South American plates, 

from which 2 (CALL and AREQ) are located in our study area, thus we use them in 

our analysis (Table T3.1). 

The global dataset used in this study comprises a total of 102 geodetic sites that 

include 48 permanent stations and 54 campaign sites distributed from southern Peru 

(Lat. 18ºS) to northern Peru (Lat 3ºS) and extending from the coast up to the sub-

Andean ranges (Figure S3.1). The continuous observations have a time span ranging 

between 3.0 to 6.6 years of daily measurements, and the campaign sites with at least 

three measurements every two years a time span superior to ~3.5 years. This dataset 

covers for the first time an extraordinary spatial and temporal extent that allow us to 

study not only the crustal deformation associated to the subduction process and 

estimate the interseismic plate coupling along the interface, but also with much more 
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data further inland provide more constraints on the kinematics of the Inca sliver and 

estimate rates of crustal shortening in the sub-Andean region. 

 

 

Figure S3.1: Location of the GPS stations used in this study. Colored triangles indicate that 

the stations correspond to a specific network. Red triangles are continuous GPS stations 

(CGPS) and yellow are survey SGPS stations both from the ADN (“Andes du Nord”) project. 

Our survey sites include three profiles perpendicular to the trench (triangles with dot inside) 

crossing the Andean cordillera from the coast up to the sub-andean region. The first profile is 

extending from Lima to Satipo, the second from Barranca to Pucallpa and the third one from 

Chiclayo to Yurimaguas. Networks corresponding data is indicated by the colored triangles in 

the legend. 
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Table T3.1: GPS interseismic velocities expressed with respect to the stable South American 

reference frame and related information are enlisted. From left to right: site name, longitude, 

latitude in decimal degrees, Ve east and Vn north components of velocity in mm/yr, SVe and 

SVn are the formal error (1-sigma confidence level) of Ve, Vn, Corr_en is the correlation 

coefficient between Ve and Vn, #days is the number of observation days used in the velocity 

estimation, and the last column indicates the span of the observation period in decimal years. 
________________________________________________________________________ 

site longitude  latitude    Ve     Vn    Sve    Svn    corr  #days  span 
ADN CGPS 

BAYO  -81.0659   -5.7989   2.98  -3.17   0.36   0.28  -0.00   1649   5.2 
CAZL  -76.4734  -13.0201  16.99   3.96   0.32   0.30  -0.00   1137   3.3 
HUAR  -78.1808  -10.1027  10.28   0.76   0.32   0.23  -0.00   1541   4.6 
IGPL  -76.9442  -12.0551  20.36   4.17   0.31   0.27  -0.00    872   5.2 
SALY  -78.9782   -8.2274   4.92  -2.17   0.37   0.19   0.00   1376   4.8 
SLRZ  -77.2114  -12.0814  22.77   4.74   0.57   0.31   0.00   1184   3.3 

 
ADN SGPS 

APU1  -79.7244   -6.2634   4.06  -1.57   0.90   0.75  -0.01      7   2.0 
AYRA  -77.7103   -9.1464  10.18  -0.51   0.69   0.54  -0.02      8   4.0 
CASM  -78.3068   -9.4540   7.15  -1.69   0.73   0.57  -0.02      9   4.0 
CBLA  -79.3050   -6.6246   3.84  -2.87   0.59   0.48  -0.02     10   4.0 
CCHO  -80.9618   -5.1665   5.19  -2.08   0.94   0.77   0.00      9   4.0 
CHAC  -78.6778   -8.5568   6.82  -1.62   0.61   0.48  -0.01      9   4.0 
CHRI  -76.8535  -10.7278  13.02   4.02   0.61   0.48  -0.11     10   4.0 
CHSQ  -77.5797  -10.2654  10.65   1.67   0.49   0.39   0.63      9   4.0 
CHUL  -80.1583   -5.0919   3.26  -2.62   0.87   0.70  -0.01      7   4.0 
ETEN  -79.8583   -6.9474   5.88  -2.69   0.54   0.44  -0.03     13   4.0 
GYVT  -78.7489   -8.0551   5.75  -2.74   0.54   0.23   0.58      9   4.0 
HCHO  -77.6026  -11.1520  20.67   3.14   0.68   0.52  -0.04      9   4.0 
HUAL  -77.5741   -9.5454   6.64   0.89   0.62   0.49  -0.01      9   4.0 
LORC  -80.5940   -4.7612   1.90  -0.96   1.18   0.98   0.03      4   4.0 
MOR1  -79.9876   -6.5223   5.04  -0.75   1.16   0.97  -0.03      6   2.0 
MORA  -80.0220   -5.5444   4.45  -2.82   0.93   0.75  -0.00      9   4.0 
OYON  -76.6881  -10.6471  11.89   4.03   0.85   0.68  -0.05      7   2.0 
PAST  -77.3503   -9.9715   9.09   1.69   0.67   0.52  -0.04      7   4.0 
PCMY  -79.5524   -7.3826   4.17  -2.96   0.60   0.49  -0.04      9   4.0 
PLOB  -81.2888   -4.4527   3.62  -0.49   0.59   0.48  -0.01      7   4.0 
PRMG  -77.8519  -10.6512  15.86   2.36   0.61   0.49  -0.02      8   4.0 
PSAL  -80.9623   -3.9577   9.72  -0.33   0.60   0.50  -0.01      9   3.4 
PSNT  -78.6537   -8.9904   5.65  -1.77   0.72   0.56   0.02      9   4.0 
PTPO  -79.6281   -6.7402   6.03  -2.08   0.59   0.48  -0.01      8   4.0 
PUMA  -79.4644   -7.7125   5.53  -3.01   0.64   0.52  -0.01      8   4.0 
SAYA  -77.1710  -11.0891  17.59   4.01   0.61   0.48  -0.05     11   4.0 
SCH1  -80.4911   -6.1119   3.44  -2.45   0.81   0.66  -0.01     12   4.0 
SCH2  -80.5746   -5.6346   4.02  -3.52   1.04   0.85  -0.01     13   4.0 
STCL  -79.0793   -7.2547   5.54  -2.34   0.59   0.49  -0.04     12   4.0 
STIS  -77.9886   -9.5323   6.96  -0.06   0.59   0.47  -0.03      9   4.0 
SUNW  -81.0554   -4.6934   2.33  -0.33   0.19   0.40   0.44      7   4.0 

 
ADN SGPS Tras-Andean Profile 

CUYC  -78.8550   -6.0122   3.88  -2.96   0.55   0.45  -0.04     18   4.1 
HNCO  -76.3225   -9.9188   6.38   2.20   1.19   0.99  -0.00     15   3.6 
LMAS  -76.4986   -6.4379   3.35   1.58   0.65   0.49  -0.02     10   4.1 
LRYA  -75.9156  -11.5355  13.01   3.09   1.15   0.90  -0.04     12   3.8 
MOYB  -77.0020   -6.0683   3.01  -0.01   0.66   0.51  -0.10     12   4.1 
MRCD  -75.3216  -11.0749   9.25   1.65   0.63   0.53   0.02     16   3.8 
SALJ  -75.2132   -8.8346   2.17   1.35   0.68   0.54  -0.01     13   3.6 
SATI  -74.6422  -11.2583   8.33   1.50   0.63   0.51  -0.02     16   3.8 
SNDM  -76.5303  -11.9283  20.15   3.35   1.24   0.93  -0.07     12   3.8 
TAPO  -75.5488  -11.4216  12.63   0.25   1.04   0.81   0.04     14   3.8 
YRMG  -76.1302   -5.8966   2.91   0.97   1.17   0.92  -0.03      8   4.1 

 
LISN CGPS 

ANCN  -77.1500  -11.7766  20.95   3.68   0.30   0.23  -0.00   1441   5.2 
CUZC  -71.9593  -13.5204   5.26   1.00   0.27   0.23  -0.00    935   5.8 
HUAN  -75.3214  -12.0424   9.17   0.26   0.81   0.54  -0.01   1894   6.2 
IQTS  -73.2747   -3.7673   0.04   0.58   0.35   0.26  -0.00   1014   6.6 
JICA  -76.8757  -11.9524  20.86   3.95   0.58   0.47  -0.02    886   3.7 
PUCL  -74.5738   -8.3839   1.06   0.08   0.71   0.56  -0.01    675   2.6 
PUER  -69.1870  -12.5860   1.32   2.30   0.93   0.62  -0.00   1081   5.6 

 
IGN CGPS 
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AM01  -77.8728   -6.2351   3.28  -0.65   1.85   1.08  -0.00    946   3.2 
AN01  -77.5271   -9.5312   5.81   1.62   0.95   0.97  -0.00   1161   3.4 
AN02  -78.5298   -9.1284   5.93  -2.07   0.46   0.39  -0.00    632   3.7 
AP01  -72.8782  -13.6384   7.05   1.71   0.51   0.43  -0.01    755   3.1 
AQ02  -72.0157  -17.0296  16.85  -0.51   0.33   0.26  -0.00    860   3.8 
AQ03  -72.4922  -16.0762   8.92  -0.35   0.19   0.14  -0.01    439   2.5 
AY01  -74.2266  -13.1593   5.45  -0.31   0.56   0.36  -0.01   1156   3.8 
AY02  -73.7813  -15.0171  15.43   4.60   0.51   0.43  -0.01    250   3.1 
CJ01  -78.5094   -7.1469   4.75  -1.04   0.54   0.37  -0.00   1018   3.7 
CZ02  -72.0811  -14.4495   5.48   0.28   0.58   0.49  -0.00    530   2.5 
CZ03  -73.8294  -12.5197   3.66   0.51   0.49   0.35  -0.01    789   3.2 
HC01  -76.2352   -9.9323   7.96   3.13   0.53   0.44  -0.05    781   3.3 
HV01  -74.9677  -12.7865   7.04  -2.20   0.52   0.44  -0.01    505   3.0 
IC01  -75.7349  -14.0753   8.44  -1.31   0.14   0.10   0.18   1006   3.8 
IC02  -76.2004  -13.7086  18.05   3.24   0.66   0.55  -0.01    573   3.6 
IC03  -74.9374  -14.8266  13.13   5.24   0.54   0.45  -0.01    745   3.2 
JU01  -75.2113  -12.0618   9.57  -0.60   0.92   0.72  -0.02    492   1.6 
LI01  -77.0169  -12.1030  21.05   4.31   0.31   0.25  -0.00   1534   5.0 
LI02  -77.1724  -11.7700  20.25   3.71   0.48   0.41  -0.00    578   3.4 
LI03  -76.7625  -11.9736  18.93   3.65   0.56   0.47  -0.01    654   2.7 
LI04  -76.7974  -12.4818  20.80   4.55   0.39   0.41  -0.00   1032   3.6 
LI05  -77.7804  -10.6963  16.27   2.51   0.59   0.50  -0.00    720   2.3 
LL01  -79.0394   -8.0983   3.25  -2.58   0.62   0.52   0.01    979   3.1 
MQ01  -70.9223  -17.1906  12.46   2.51   0.50   0.42  -0.00    719   3.7 
MQ02  -71.3421  -17.6345  20.86   2.04   0.49   0.41  -0.00    923   3.3 
PA01  -76.2521  -10.6655   9.67   1.72   0.21   0.15  -0.04    745   3.1 
PI01  -80.6278   -5.1799   4.35  -2.02   0.64   0.43  -0.00    991   3.6 
PI03  -81.2692   -4.5871   2.85  -1.28   0.53   0.45  -0.00    534   3.0 
PU02  -70.1794  -15.5144   6.95  -0.80   0.57   0.44  -0.01    967   3.3 
TC01  -70.2568  -18.0045  15.68   3.93   0.52   0.44  -0.00    925   2.9 
TU01  -80.4524   -3.5572   6.79  -1.63   0.46   0.58  -0.00   1131   3.9 
UC01  -74.5312   -8.3839   1.43   0.44   0.76   0.60  -0.03    444   3.0 

 
IGS Global Network 

AREQ  -71.4928  -16.4655   6.59  -0.80   0.26   0.16  -0.00   6387  19.8 
CALL  -77.1493  -12.0629  21.55   3.41   0.37   0.26  -0.03   1410   5.8 

 
ECUADOR-IGM CGPS 

CUEC  -79.0025   -2.8833   5.29  -2.29   0.31   0.27   0.00   1429   4.4 
LJEC  -79.1985   -3.9883   3.40  -1.81   1.29   0.40  -0.00   1477   4.5 

 
ECUADOR-IGM SGPS 

ALAM  -80.0252   -4.0198   1.87  -4.37   3.84   1.99   0.07      2   4.0 
AMAL  -79.4266   -4.5812   4.54  -2.50   0.52   0.34   0.00      8  16.0 
AREN  -80.0685   -3.5591   4.73  -1.23   1.03   0.65   0.03      5  13.7 
CAJA  -79.2370   -2.7531   3.72  -3.05   4.47   2.29  -0.34      7  15.3 
CLPI  -79.3200   -3.2549   4.22  -3.69   1.65   1.32  -0.01      2   4.2 
GONZ  -79.4307   -4.2264   3.03  -2.08   0.46   0.33   0.03      7  15.3 
HONA  -79.1599   -3.4766   3.91  -2.21   0.87   0.43   0.01     10  17.0 
MACH  -79.9685   -3.2565   4.80  -0.81   0.75   0.41  -0.05      7  15.2 
NARI  -79.5365   -3.1414   2.55  -2.20   0.51   0.34  -0.02      8  15.2 
SNTI  -78.0102   -3.0495   2.92  -2.80   1.15   1.26   0.00      5  16.5 
SOZO  -79.7924   -4.3338   3.40  -2.40   0.84   0.37  -0.16      7  15.4 
ZAMO  -78.9320   -4.0548   3.03  -1.73   0.31   0.26   0.00     56  17.1 

 

 

 

2. Definition of the Stable South America reference frame 

To express our GPS velocity field we establish a local/regional reference frame. 

For that we estimate a rigid rotation vector for the South American (SOAM) plate 

using a subset of 20 sites that behave rigidly together following the strategy described 

in Nocquet et al., [2001]. 12 sites located on the South American craton defines the 

best stable reference frame showing a wrms = 0.40 mm/yr with the best fitting 

angular velocity (Euler pole) for the motion of the SOAM plate relative to the 
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ITRF2008 located at 18.66ºS, 132.72ºW with an angular velocity of 0.118º Myr-1 

(Figure S3.2, Table T3.2). These values are very similar with the solutions from 

Altamimi et al., [2012] and Nocquet et al., [2014]. 

 

 

Figure S3.2: Large scale GPS network showing the 12 sites (labeled with its corresponding 

horizontal velocities) used to establish our stable South American reference frame. 

 

 

Table T3.2: Euler Pole and residual velocities that define the stable South America reference 

frame (See Figure S3.2). 
ROTATION RATE VECTOR 
Wx (rad/yr): -1.3217E-09 +- 1.9155E-11 
Wy (rad/yr): -1.4311E-09 +- 2.2832E-11 
Wz (rad/yr): -6.5783E-10 +- 1.3291E-11 
ASSOCIATED VARIANCE-COVARIANCE MATRIX (rad/yr)**2 
        Wx          Wy            Wz 
------------------------------------ 
Wx |3.6691E-22 -3.7239E-22 -1.6099E-22 
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Wy |           5.2131E-22 1.9921E-22 
Wz |                      1.7665E-22 
------------------------------------ 
 
EULER POLE 
longitude (dec. degree)    : -132.72 
latitude  (dec. degree)    : -18.66 
angular velocity (deg/Myr ):  0.118 
ASSOCIATED ERROR ELLIPSE 
semi major axis            :  0.82 
semi minor axis            :  0.26 
azimuth of semi major axis : -63.6 
std(angular velocity)      : 0.001 
 
STATISTICS 
---------- 
Number of sites     =         12 
Chi**2              =      113.7 
Deg. of. freedom    =         21 
A post. var. factor =        2.3 
 
RESIDUALS 
---------- 
site                      R_ve       R_vn       S_ve       S_vn      RN_ve      RN_vn 
------------------------------------------------------------------------------------- 
ASC1                     -0.12      -1.11       0.40       0.34      -0.31      -3.26 
BRAZ                     -0.04       0.03       0.14       0.12      -0.28       0.24 
CHPI                      0.59       0.01       0.20       0.18       2.93       0.06 
FORT                     -0.12       0.35       0.21       0.18      -0.58       1.95 
IQTS                      0.03       0.58       0.35       0.26       0.10       2.23 
KOUR                     -0.23       0.37       0.16       0.13      -1.46       2.83 
LPGS                     -0.10      -0.48       0.10       0.09      -1.00      -5.30 
PARA                     -0.38       0.00       0.23       0.18      -1.65       0.02 
POVE                      1.01       1.19       0.28       0.34       3.62       3.51 
RECF                      0.84       1.69       0.62       0.48       1.35       3.52 
SALU                      0.13       0.51       0.43       0.42       0.30       1.21 
SAVO                      0.01       0.48       0.40       0.34       0.02       1.42 
------------------------------------------------------------------------------------- 
rms =       0.62 mm/yr    wrms =       0.40 mm/yr 

 

3. Inca Sliver pole determination directly from GPS observations  

We determined the sliver motion of the Inca Sliver following the same approach 

as in Nocquet et al., [2014]. Our GPs velocity field with respect to the stable south 

American shows that sites located in northwestern Peru and southern Ecuador do not 

show a gradient of deformation, contrarily they show a constant southeastward pattern 

of deformation. We selected a subset of 35 GPS sites showing a persistent average 

magnitude and a consistent southeastward direction and invert them to evaluate if an 

Euler rotation pole explain this pattern. We found that an Euler pole located at long. -

73.66ºW, latitude 4.26ºN with an angular velocity of 0.215 deg/Myr fit with a wrms = 

0.66 the trend motion of the 35 sites (Table T3.3). Compared to the solution of 

Nocquet et al., [2014] (63.76ºW/22.47ºE/0.092 deg/Myr), we found that our Euler 

pole change of location moving southwestward and increasing its rate more than 

twice the previous angular velocity. This change is probably due to the fact that here 

we use more sites to constraint the Inca sliver pole. 
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Table T3.3: Euler Pole and residual velocities that define the Inca Sliver derived directly 

from GPS observations. 
ROTATION RATE VECTOR 
Wx (rad/yr):  1.0536E-09 +- 4.8244E-11 
Wy (rad/yr): -3.5948E-09 +- 2.4076E-10 
Wz (rad/yr):  2.7897E-10 +- 3.3585E-11 
ASSOCIATED VARIANCE-COVARIANCE MATRIX (rad/yr)**2 
        Wx          Wy            Wz 
------------------------------------ 
Wx |2.3275E-21 -1.1329E-20 -1.4134E-21 
Wy |           5.7967E-20 7.1857E-21 
Wz |                      1.1279E-21 
------------------------------------ 
 
EULER POLE 
longitude (dec. degree)    : -73.66 
latitude  (dec. degree)    :   4.26 
angular velocity (deg/Myr ):  0.215 
ASSOCIATED ERROR ELLIPSE 
semi major axis            :  0.84 
semi minor axis            :  0.18 
azimuth of semi major axis : -96.3 
std(angular velocity)      : 0.014 
 
STATISTICS 
---------- 
Number of sites     =         35 
Chi**2              =      151.0 
Deg. of. freedom    =         67 
A post. var. factor =        1.5 
 
RESIDUALS 
---------- 
site                      R_ve       R_vn       S_ve       S_vn      RN_ve      RN_vn 
------------------------------------------------------------------------------------- 
AMAL                      0.88      -0.10       0.52       0.34       1.70      -0.30 
AN02                      0.42      -0.04       0.46       0.39       0.91      -0.10 
AP01                     -0.28       1.38       0.51       0.43      -0.55       3.21 
APU1                     -0.28       0.95       0.90       0.75      -0.32       1.27 
AY01                     -1.69      -0.08       0.56       0.36      -3.02      -0.22 
BAYO                     -1.17      -0.09       0.36       0.28      -3.24      -0.31 
CASM                      1.51       0.24       0.73       0.57       2.07       0.42 
CBLA                     -0.65      -0.52       0.59       0.48      -1.11      -1.08 
CCHO                      1.30       0.96       0.94       0.77       1.38       1.24 
CHAC                      1.54       0.47       0.61       0.48       2.53       0.98 
CHUL                     -0.60       0.09       0.87       0.70      -0.69       0.12 
CJ01                      0.05       0.98       0.54       0.37       0.09       2.65 
CLPI                      1.10      -1.34       1.65       1.32       0.67      -1.02 
CUYC                     -0.36      -0.80       0.55       0.45      -0.66      -1.79 
ETEN                      1.26      -0.12       0.54       0.44       2.34      -0.27 
GONZ                     -0.48       0.32       0.46       0.33      -1.05       0.97 
GYVT                      0.67      -0.62       0.54       0.23       1.25      -2.73 
HONA                      0.71       0.08       0.87       0.43       0.81       0.19 
HV01                      0.06      -1.65       0.52       0.44       0.11      -3.76 
LJEC                     -0.01       0.49       1.29       0.40      -0.01       1.23 
LL01                     -1.84      -0.34       0.62       0.52      -2.96      -0.66 
MOR1                      0.59       1.88       1.16       0.97       0.51       1.94 
MORA                      0.40      -0.18       0.93       0.75       0.43      -0.24 
NARI                     -0.52       0.25       0.51       0.34      -1.01       0.73 
PCMY                     -0.63      -0.51       0.60       0.49      -1.05      -1.05 
PI01                      0.45       0.87       0.64       0.43       0.71       2.03 
PSNT                      0.20       0.31       0.72       0.56       0.28       0.55 
PTPO                      1.49       0.40       0.59       0.48       2.52       0.83 
PUMA                      0.59      -0.59       0.64       0.52       0.93      -1.14 
SALY                     -0.23       0.04       0.37       0.19      -0.61       0.23 
SCH1                     -0.84       0.39       0.81       0.66      -1.04       0.59 
SCH2                     -0.06      -0.65       1.04       0.85      -0.06      -0.76 
SOZO                     -0.16       0.15       0.84       0.37      -0.19       0.40 
STCL                      0.79      -0.08       0.59       0.49       1.34      -0.17 
ZAMO                     -0.42       0.47       0.31       0.26      -1.34       1.80 
------------------------------------------------------------------------------------- 
rms =       0.78 mm/yr    wrms =       0.66 mm/yr 
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4. Inca Sliver pole determined from the misfits between the data and modeled 

displacements (former 2-plates inversion) 

Following the same approach we invert the residual velocities derived from the 

former inversion. We made a selection 34 of sites that show a similar pattern of 

velocity and direction to search for an Euler pole. The location of this pole (Table 

T3.4) is relatively close to the location of the Euler pole found indirectly from the 

residuals suggesting that the two approaches provide quite consistent results in the 

spatial location of the pole. However, we can notice that the angular velocity this 

Euler pole is about 50% slower than the Euler pole found directly form the data (see 

Table 3.2 of the main text). Both Euler poles have a consistent spatial location but 

with quite different angular velocities. To discriminate the trade-off between the 

sliver motion and inteseismic coupling, we propose now to modulate the angular 

velocity of both Euler poles found from direct and indirect approaches. 

 

Table T3.4: Euler Pole and residual velocities that define the Inca Sliver derived from 

residuals of the former inversion. 
ROTATION RATE VECTOR 
Wx (rad/yr):  6.3402E-10 +- 3.8335E-11 
Wy (rad/yr): -1.5104E-09 +- 1.6919E-10 
Wz (rad/yr):  2.4061E-10 +- 3.0395E-11 
ASSOCIATED VARIANCE-COVARIANCE MATRIX (rad/yr)**2 
        Wx          Wy            Wz 
------------------------------------ 
Wx |1.4696E-21 -6.2594E-21 -1.0016E-21 
Wy |           2.8625E-20 4.5494E-21 
Wz |                      9.2384E-22 
------------------------------------ 
 
EULER POLE 
longitude (dec. degree)    : -67.23 
latitude  (dec. degree)    :   8.36 
angular velocity (deg/Myr ):  0.095 
ASSOCIATED ERROR ELLIPSE 
semi major axis            :  2.13 
semi minor axis            :  0.39 
azimuth of semi major axis : -122.2 
std(angular velocity)      : 0.009 
 
STATISTICS 
---------- 
Number of sites     =         34 
Chi**2              =      127.5 
Deg. of. freedom    =         65 
A post. var. factor =        1.4 
 
RESIDUALS 
---------- 
site                      R_ve       R_vn       S_ve       S_vn      RN_ve      RN_vn 
------------------------------------------------------------------------------------- 
AN02                      0.70       0.34       0.46       0.39       1.52       0.86 
AP01                      0.08       0.74       0.51       0.43       0.16       1.72 
APU1                     -0.04       0.15       0.90       0.75      -0.05       0.20 
AY02                      0.14       0.07       0.51       0.43       0.27       0.17 
CASM                      0.55      -0.73       0.73       0.57       0.76      -1.29 
CBLA                     -0.33      -1.07       0.59       0.48      -0.55      -2.24 
CHRI                     -1.20       0.68       0.61       0.48      -1.97       1.41 
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CHUL                     -0.12      -0.27       0.87       0.70      -0.13      -0.39 
CJ01                      0.86       0.80       0.54       0.37       1.59       2.17 
CUYC                      0.49      -1.06       0.55       0.45       0.89      -2.37 
CUZC                     -1.05       0.32       0.27       0.23      -3.89       1.40 
GONZ                      0.08       0.12       0.46       0.33       0.18       0.36 
GYVT                      1.17      -0.64       0.54       0.23       2.16      -2.80 
HUAL                     -0.97      -0.16       0.62       0.49      -1.56      -0.33 
HUAN                      0.17       0.26       0.81       0.54       0.22       0.48 
JU01                      0.95      -0.54       0.92       0.72       1.03      -0.75 
LJEC                      0.58       0.32       1.29       0.40       0.45       0.79 
MOR1                     -0.20       0.51       1.16       0.97      -0.18       0.52 
MORA                      1.00      -0.67       0.93       0.75       1.08      -0.89 
NARI                     -0.17      -0.08       0.51       0.34      -0.33      -0.24 
OYON                     -0.36       1.43       0.85       0.68      -0.42       2.10 
PA01                     -0.23       0.31       0.21       0.15      -1.07       2.06 
PAST                     -1.11      -0.53       0.67       0.52      -1.66      -1.03 
PI01                      0.10       0.44       0.64       0.43       0.16       1.03 
PSNT                      0.46       0.94       0.72       0.56       0.64       1.68 
PTPO                      1.15      -0.50       0.59       0.48       1.94      -1.03 
SALY                     -0.18       0.09       0.37       0.19      -0.49       0.46 
SCH1                     -0.95      -1.02       0.81       0.66      -1.17      -1.55 
SCH2                      0.02      -1.07       1.04       0.85       0.02      -1.26 
SNDM                      0.73       0.94       1.24       0.93       0.59       1.01 
SOZO                      0.25      -0.07       0.84       0.37       0.30      -0.18 
STCL                      1.01      -0.45       0.59       0.49       1.72      -0.93 
STIS                     -0.75      -0.74       0.59       0.47      -1.27      -1.57 
ZAMO                      0.27       0.33       0.31       0.26       0.87       1.27 
------------------------------------------------------------------------------------- 
rms =       0.66 mm/yr    wrms =       0.55 mm/yr 

 

5. Earth Structure Model   

We use a layered elastic half-space model, the Crust2.0 model [Bassin et al., 

2000] (Table T3.5), in which we establish the Green’s functions of each elementary 

sub-fault. The characteristics of this layered elastic half-space are reported in Table 

T3.4. The distribution of this model predicts an average rigidity of ~39Gpa. 

 

Table T3.5: Earth Structure Model from the Crust2.0 Model for the first Km of the 

lithosphere. Vp and Vs are the corresponding velocity of the P and S seismic waves in this 

layered model.  
Thickness 

(km) 

Vp  

(km/s) 

Vs  

(km/s) 

Density 

(kg/m
3
) 

Rigidity 

(GPa) 

0.5 2.5 1.2 2.1 3.02 

0.5 4.0 2.1 2.4 10.58 

21 6.0 3.5 2.7 33.07 

24 6.4 3.7 2.85 39.01 

64 7.1 3.9 3.1 47.15 

 

6. Determination of the best Euler pole for the eastern Inca sliver 

In subduction zones the wavelength of the interseismic deformation can be of 

many hundred of kilometers and recover the sliver motion, which result on trade-off 
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between the rigid sliver motion and the interseismic deformation. Many approaches 

have been proposed to quantify from the GPS measurements the portion of the 

convergence that is taken up by the sliver motion and the portion that is 

accommodated by interplate locking. One method consists of selecting a sub-set of 

GPS data not affected by the interseismic coupling and search for an Euler pole able 

to fit these observations. Another method consists to analyze the GPS residuals 

resulting from an interseismic model and search an Euler pole explaining these 

residuals. Both methods have limitations. In the first one, a fraction of the real 

interseismic coupling could be interpreted as rigid motion, resulting in an over-

estimated sliver motion. In the second method, we may under-estimate the sliver 

motion. In both cases, a modulation of the angular velocity of the Euler pole is 

necessary to find the best GPS-fitting partitioning model. In Nocquet et al., [2014] 

and in the previous section, the first approach has been applied. To confirm the Euler 

pole characteristics that we use in this study (Pole obtained from the GPS residuals 

from a former inversion, see Section 6 of the main text), we propose to follow the 

second approach. So, we modulate the angular velocity of the western Inca/SSA Euler 

pole (Table 3.2 of the main text) by steps of 0.02°/Myr, equivalent to 0.1 mm/yr over 

the studied area. For each model, we adjust adequately the backslip rate (Vback) of the 

Nazca/western Inca Sliver relative convergence rate. We found that the best 

partitioning models work for a Inca Sliver Euler pole having an angular velocity of 

0.104 ± 0.02°/Myr  (Table T3.5).  

 

Table T3.6: Characteristics of the modulation of the angular velocity of the Inca sliver Euler 

pole. Column 2 shows the angular velocity of the Inca sliver in °/106y. Column 3 and 4 the 

wrms and chi2 indicates the misfit of the GPS data. Columns 4, 5, 6, 7, 8, show how vary the 

moment deficit of the whole Peruvian margin (4), for the southern segment (5), central 

segment (6), northern segments (7, 8). 

Model 

Name 

Inca 

Sliver 

Ang. Vel. 

(°/Myrs) 

wrms 
Md Total 

10e20 N.m 

Md 

(south) 

Areq 

Md 

(central) 

Lima 

Md  

(north) 

Chiclayo 

Md  

(north) 

Piura 

2-plates 0 3.60 3.82 1.71 1.52 0.390 0.208 

3-plates-B 0.044 2.51 3.42 1.56 1.39 0.299 0.169 

3-plates-C 0.066 2.05 3.20 1.44 1.32 0.289 0.153 

3-plates-F 0.084 1.77 3.00 1.33 1.27 0.272 0.132 

3-plates-G 0.104 1.63 2.74 1.23 1.19 0.217 0.106 

3-plates-H 0.124 1.75 2.51 1.14 1.13 0.178 0.059 

3-plates-J 0.133 1.86 2.41 1.09 1.10 0.162 0.055 

3-plates-L 0.177 3.08 1.91 0.85 0.96 0.074 0.021 

3-plates-M 0.199 3.92 1.65 0.68 0.89 0.051 0.020 

3-plates-N 0.221 4.85 1.43 0.58 0.83 0.023 0.010 
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7. Comparison of the location and prediction of the Euler Poles 

A comparison of the location and prediction of the Euler Poles obtained in this 

study and in Nocquet et al., [2014] is shown in Figure S3.3. In northern Peru we 

observe a quite similar prediction of the poles both in magnitude and direction. In 

south Peru the pole computed by Nocquet et al., [2014] (blue arrows) and the 

obtained from the residuals (red arrows) show a consistent direction, but the first 

predicts a velocity that doubles its magnitude in the southernmost sites. In contrast the 

pole obtained directly from the observations (green arrows) predicts not only 

velocities that are greater than the two previous but an anticlockwise rotation of 6-10 

degrees for the sites in southern Peru. 
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Figure S3.3: Predicted motions at each GPS site of our network from the Euler poles 

proposed in our studies. Blue predictions are based on the pole determined by Nocquet et al., 

[2014]. Green predictions (G) on the pole derived from GPS observations and red (R) on the 

pole computed from the residual of the former inversion. The Euler poles proposed in this 

study predict consistent directions with the proposed in Nocquet et al., [2014] but with 

velocities for (R) slower by about 4 mm/yr and for (R) by about 2mm/yr in central-south Peru 

at Lat. ~15ºS. The inset maps shows the geographical location of the poles. 

 

8. Subduction earthquake Slip vectors and partitioning of the Nazca - South 

America convergence  

The Peruvian segment of the Nazca/South America subduction zone is 

characterized by the oblique convergence of the Nazca plate towards South America. 

While the convergence direction of the Nazca plate toward South America remains 

constant within a few degrees at (~80°E) all along the Peruvian margin, there is a 
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large change of strike of the trench from 0°N in front of the Piura peninsula to 50°W 

in southernmost Peru. As a result, obliquity increases from -10° in the northern Piura 

peninsula to 40° immediately north of the Arica bend. Analysis of the slip vectors of 

crustal subduction earthquakes shows a systematic clockwise rotation of the slip 

vector angle from north to south (Figure S3.4). The existence of this systematic 

rotation responds to a component of trench parallel motion, which is induced by the 

partitioning of the convergence. Inland, the slip vectors are consistent with the 

northwest-southeast strike of active thrust faults in the sub-andean region. 
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Figure S3.4: Shallow depth (<60km) focal mechanism for subduction (red) and sub-andean 

(green) thrust events with their associated slip vector denoted by the bars (data from gCMT 

and Devlin et al., [2012]). Histograms show the average of the slip vector angle for given 

subsets of events along-strike. We use these values as constraints in our modeling. 
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9. Spatial resolution of the formal inversion  

To test the spatial resolution of our GPS network, we define a checkerboard 

with alternating fully locked and purely creeping patches of 120 km x 60 km. The 

predicted displacements of this checkerboard are computed at each GPS sites of the 

network. A formal inversion of the predicted displacements is performed to see what 

are the patches that spatially are well resolved by our dataset. In this inversion, we 

impose the final moment deficit rate to be the same as the initial checkerboard model 

(conservation of moment). We found that the spatial resolution is higher along-strike 

than along-dip (Figure S3.5). Indeed, the along-strike pattern of coupling of the initial 

checkerboard is relatively well preserved. All the patches near the subduction trench 

axis are not resolved, except near the Piura and the Paracas Peninsulas where the 

distance trench-coast is the shortest (~80km) where the resolution is better. Indeed, 

the trench-coast distance varies significantly along the Peruvian margin from about 

100km in southern Peru to 175km in Lima and nearly 200km near Trujillo imposing a 

natural limitation of the spatial resolution of the shallowest patches of the subduction 

megathrust interface. The spatial resolution is improved for intermediate depth (20-40 

km) patches and deep (40-60 km) patches.  
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Figure S3.5: Checkerboard resolution tests for the GPS dataset used in this study. Theoretical 

displacements using 120 km x 60 km patches fully locked and fully creeping (black and white 

checkerboard) are computed at each point of the GPS network (triangles). Inter-site distance 

of our network is of the order of ~80km. Left: we leave the seismic moment to be free. Right: 

we impose the seismic moment to be the same as the forward model. 
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10. Misfit of the GPS data as function of the smoothing factor used in our 

inversion 

We performed several inversions of spatially variable interseismic coupling 

using the approach described in the main text (section 5.3). For that we impose the 

rake to not vary more than +/- 10° of the average gCMT rake (Fig. S3) and leave the 

smoothing factor to vary from 0.01 to 10. We found that model with for λ=1 or 

closely lower explain relatively well the data (Figure S3.5). We fix this value for all 

of our inversions. 

 

 

Figure S3.6: Misfit (wrms) of the GPS data as function of the smoothing factor. We found 

that a smoothing factor of 1 or lower explain relatively well the GPS data. 

 

11. Trade-off between the Inca Sliver kinematic and the interseismic coupling  

Figure S3.7 shows how vary the rate of moment deficit rate along the 2200-km 

long Peruvian subduction zone together with our best 3-plate model for all the models 

of Table T3.4. The highest curve corresponds to the 2-plate model and is reduced by 

about 35-40% than our preferred 3-plate model (red-dashed curve). This indicates the 

importance of well taking into account the sliver motion to not bias our estimation of 

the rate of moment deficit. In all models, we observe minimums of moment deficit 

rate where oceanic geomorphic structures (as fractures zones and ridges) enter in 

subduction. The maximums indicate the location of seismic asperities. 
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Figure S3.7: Left: Along-trench variations of the rate of moment deficit for all models listed 

in Table 3. These curves are constructed from the summation in the downdip direction of the 

rate of moment deficit computed at each node and integrated along strip band of 20km side. 

The dashed-red line corresponds to the model on the right. Right: Best interseismic coupling 

(ISC) model for Peru of Figure 3.7 compared with rupture areas of large subduction 

earthquakes of Figure 3.2. Blue arrows show the GPS residuals of that model. Dashed 

polygons represent the rupture areas of large earthquakes. 

 

12.  Misfit of data as a function of the final moment deficit rate 

To fully account for the model uncertainties due to the limited spatial resolution 

of our geodetic data, we decide to run a final series of models where we force the 
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final rate of moment deficit to vary from Md=1.0×10
20

 Nm/yr (Mw~7.3) to 7.0×10
20

 

Nm/yr (Mw~7.9). From this test we found that best fit of the data is for a series of 

models with a moment deficit ranging between 2.44E27 N m/yr and 4.05E27 N m/yr 

(Figure S3.8). The ISC contribution of these models is shown in Figure 3.9 of main 

text  

 

 
 

Figure S3.8: GPS misfit (normalized wrms) as a function of the final moment deficit rate of 

the model. We choose the model marked by circle. 

 

13. Large differences with previous geodetic solutions in central Andes 

We compared our velocity field with the published by the SNAPP project for 

central and southern Peru [Norabuena et al., 1998; Kendrick et al., 2001]. Figure S3.9 

shows the differences of both solutions either in the rate as in the direction. Velocities 

differ for common located sites, for example the CUZC =5.4 and cuso = 9.4 mm/yr 

with an offset of 30º in azimuth, the same for HCHO= 21.0 and sali = 27.6 and 8º in 

azimuth. We discuss these differences in the main text. 

Indeed, we found evidence of ongoing postseismic deformation in the region of 

the Mw=8.4 Arequipa 2001 earthquake. Current interseismic velocity for the AREQ 

site is 6.6 mm/yr. The velocity for this site from the SNAPP dataset is 13.6 mm/yr. 

For this particular site postseismic deformation would explain such differences. 

Difference for the other sites are discussed in section 6.3.3 of the main text. 
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Figure S3.9: Comparison of our 2008-2013 GPS velocity field with previously published 

velocity fields acquired in southern Peru between 1994-1996 during the SNAPP project. 

 

14.  Thermal model parameters 

We model the steady-state thermal structure of the Peruvian megathrust 

interface following the approach developed by Royden, [1993] (see section 7.2.1 of 

the main text). For that we establish various trench-perpendicular sections in which 

we compute the thermal structure. The parameters used for this purpose are presented 

in Table T3.6. The thermal model is shown in Figure 3.13 of the main text. 

 

Table T3.7: Parameters used to compute the thermal structure along the Peruvian subduction 

zone. The coordinates are the origin of the sections where normal and parallel trench 

velocities, ocean floor age and slab thickness are estimated. 

 
E 

Origin 

 

N 

Origin 

 

Trench 

Normal 

Velocity 

Trench 

Parallel 

Velocity 

Ocean 

Floor 

Age (Ma) 

Slab 

Thickness 

(Km) 

-81.51 -2.06 53.5 19.4 18.0 55.3 

-81.49 -3.73 54.8 19.8 30.0 71.4 

-81.99 -5.05 57.9 6.6 29.2 70.4 

-81.53 -7.79 58.3 11.7 28.5 69.6 
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-80.79 -9.50 56.1 21.6 28.7 69.8 

-80.37 -10.22 55.6 23.5 29.0 70.2 

-79.53 -11.74 54.9 26.3 36.8 79.1 

-78.42 -13.34 53.7 29.8 37.2 79.5 

-77.72 -14.30 49.4 36.9 37.7 80.0 

-76.80 -15.28 49.9 36.7 38.5 80.9 

-75.43 -16.58 45.7 42.3 42.5 85.0 

-74.22 -17.45 46.3 42.0 43.3 85.8 

-73.06 -18.35 57.0 26.2 43.5 86.0 

-72.00 -19.41 57.3 25.8 47.5 89.8 

 

 

15. Simple forward models 

The observed GPS velocity field results from the contribution of several 

processes that are: (1) the elastic strain induced by coupling along the subduction 

interface, (2) motion of the Inca Sliver and its potential internal deformation, and (3) 

the motion and internal deformation of the sub-andean domain (see section 4 with the 

description of the GPS velocity field in the main text). In order to evaluate the pattern 

associated with each process and guide us for further detailed modeling, we perform 

several simple forward models at the scale of the whole Peruvian subduction zone. 

The Peruvian segment of the Nazca/South America subduction zone is characterized 

by the oblique convergence of the Nazca plate towards South America. While the 

convergence direction of the Nazca plate toward South America remains constant 

within a few degrees at (~80°E) all along the Peruvian margin, there is a large change 

of strike of the trench from 0°N in front of the Piura peninsula to 50°W in 

southernmost Peru. As a result, obliquity increases from -10° in the northern Piura 

peninsula to 40° immediately north of the Arica bend. In the case of oblique 

subduction, two end-members kinematics models are possible [Mccaffrey, 2002]. A 

first model in that all the plate relative motion is taken up along the subduction 

interface, that is that there is no partitioning. Figure S3.10.A shows the surface 

velocity field predicted for this model in the case of a subduction interface idealized 

as a single dislocation extending from the surface to a depth of 50km and a dip of 15°. 

The calculation uses the backslip approach [Savage, 1983] with a slip of 60mm/yr and 

a rake of -117°, consistent with a 80°E convergence direction. As described in Bevis 

et al., [2001], the velocity field predicted by the oblique convergence shows (1) a 



 119 

pattern rotation (counter-clockwise in the case of Peru), being largely oblique close to 

the trench and almost trench-normal in the far field, (2) decreasing magnitude of 

velocities with increasing distances from the trench. This pattern is not observed in 

the velocity field (Figure 3.4). On the contrary, the velocity field usually shows a 

clockwise rotation with increasing distance from the trench. Furthermore, the null 

partitioning scenario would involve that the interface earthquakes slip vectors be 

directed 80°E, while they are rotated 5° counter-clockwise from this direction (See 

Figure S3.3 or Supplement material in Nocquet et al., [2014]). 

Figure S3.10.B shows the opposite end-member alternative model where all the 

trench-parallel component of the relative Nazca/South America motion is 

accommodated by a pure trench parallel motion of a sliver wedged between the trench 

and the stable South America. This model corresponds to 100% partitioning, a setting 

similar to Sumatra [Sieh and Natawidjaja, 2000] or Costa Rica [Feng et al., 2012]. In 

this case, the slip at the interface is now 55mm/yr, normal to the trench. Full 

partitioning would involve ~27mm/yr of right-lateral trench-parallel motion to be 

accommodated. Such a model now predicts a clockwise rotation of the velocity field 

with increasing distances from the trench. However, velocities in the far field are 

larger by an order of magnitude to the observed velocities. These two simple models 

clearly show that slip partitioning in the Peru subduction zone is between these two 

models. Figure S3.10.C-D shows that 25% of partitioning provides the best 

qualitative agreement with the observed velocity field, providing a first order estimate 

of the slip partitioning. 

Models shown in S10.A-D all implicitly assume that the motion of the sliver is 

accommodated by left-lateral strike-slip faulting. However, there are neither clear 

evidence of predominant strike-slip earthquakes nor large strike-slip faults like in 

Sumatra. The largest earthquakes occurred east of the eastern Cordillera are 

predominantly thrust events, some of them also having a usually small strike-slip 

component (Figure 3.2 and S3.4).  In general, they show slip vectors roughly 

perpendicular to the strike of the Andean Cordillera. Furthermore, the sites located in 

the Piura peninsula also show a trench perpendicular component of the order of 

3.5mm/yr.  
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Figure S3.10.E is the same as figure S3.10.D but adding 5% of trench-normal 

partitioning corresponding to ~3mm/yr trench normal motion. The new velocity field 

qualitatively fits the main pattern in the Piura peninsula. It further predicts a 

transpressive regime east of the Andean Cordillera. Nonetheless, it still fails to 

correctly predict the east-northeastward motion found in the eastern Cordillera. While 

the existence of additional microblocks could be invoked, we perform a simple test of 

adding a constant left-lateral shear rate parallel to the trench. This attempt is further 

supported by the recent map of active faults (Veloza et al., [2011] and references 

therein) showing that large trench parallel left lateral strike-slip faults are found in the 

Andean Cordillera from latitudes 9°S to 14°S. Figure S3.10.F now shows the 

additional constant strain rate equivalent to 20 nstrain/yr (2 mm/yr over 100km) of 

dextral shear over the entire continental Peru. Adding this parameter now enables to 

reproduce the east-to-northeastward directed velocity in the eastern Cordillera.   

 

 

Figure S3.10: Simple forward models exemplifying at the first order the main patterns of the 

observed GPS velocity field. Different approaches, from model considering 0% of 

partitioning to partial partitioning plus a component of shear stress are considered (see text for 

a description). 
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16. Cumulative deficit of moment and seismic moment released due to major 

subduction earthquakes 

In figure S3.11 we plot Cumulative deficit of moment and seismic moment 

released due to major subduction earthquakes since the 1746 earthquake in central 

Peru subduction segment. For that we assume that all the deficit of slip capable of 

being stored at the plate interface was released by the 1746 event. The cumulative 

deficit of moment is predicted from the rates for the maximum, mean and minimum 

models presented in Table 3.4 and Figure 3.8. 

 

 

Figure S3.11: The cumulative deficit of moment is predicted from the rates for the maximum, 

mean and minimum models presented in the main text (Table 3.4 and Figure 3.8). Although 

this models could be simplistic it reflects at the first order the elastic strain available to drive 

future earthquakes in the central Peru segment. 

 

17. Correlation of the age of the Nazca oceanic lithosphere and the ISC in Peru 
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Figure S3.12: A. Map showing our best ISC model together with the age of the Nazca 

oceanic lithosphere. The age and level of coupling are indicated by the their respective color 

scales. E. Age of the Nazca lithosphere along the Nazca/South America subduction zone 

[Müller et al., 2008]. The ellipses indicate the rupture area of large subduction earthquakes 

(M>7.5) since 1850 as showed in Figs. 1 and 2. 
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Chapter 4  

 

 

Anatomy of a seismic swarm synchronous to slow aseismic 

slip: the northern Peru 2009 sequence 

 

In the two previous chapters we put in evidence that the plate interface in the 

northern Peru subduction segment shows a weak to low interseismic coupling, 

suggesting that convergence is mostly accommodated aseismically. This subduction 

segments is characterized by the occurrence of low to moderate magnitude seismicity 

(M<6.5) and unusual ~M7.5 tsunami-earthquake events. No information about 

aseismic processes either swarms or slow slip events were documented before for this 

region. In this chapter, I present novel observations of a slow slip event associated 

with synchronous seismicity swarms that took place in 2009 near the Bayovar 

Peninsula in northern Peru. We perform a detailed analysis of the spatial and temporal 

evolution of the seismicity swarms and its relationship with the aseismic slip process. 

We then provide inferences about the anatomy of the plate interface in terms of the 

frictional properties of the subduction plate interface. The observations that we 

present here depart from usually observed SSE in other subduction zones. The results 

obtained in this study are under final edition to be submitted to the journal Nature 

Geosciences.  
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Slow Slip Events (SSE) geodetically documented along subduction megathrusts 

worldwide fall into two categories. Deep (30-50km) events, located at the downdip 

limit of highly coupled segments tend to show duration of weeks to months and are 

often accompanied by tremors. Shallow (<25km) events on the contrary last days to 

weeks and are synchronous to intense micro-seismicity, accounting for less than a few 

percent of the total moment release. Here, we document a sequence mixing seismic 

and transient aseismic processes that departs from these two categories. The SSE 

occurred at shallow (<25km) depth of the northern Peru subduction zone, lasted ~7 

months and its equivalent moment release was Mw 6.7. Significant seismicity 

occurred during that period, accounting for ~30% of the total moment, with 3 plate 

interface events of Mw 5.8-6.0. The sequence initiated with a foreshocks-mainshock-

aftershocks sequence occurring at ~12km depth. It was followed 6 days later by a 

similar but deeper (~25km) sequence that triggered slow aseismic slip. The rate of 

aseismic slip eventually suddenly accelerated 39 days later, after a shallow (depth 

~8km) Mw 5.8 earthquake, which shows an abnormally long source time function, 

and no aftershocks. We interpret the entire sequence as stress interactions between 

isolated velocity-weakening and conditionally stable patches in an overall velocity-

strengthening plate interface. In particular, we show that the transient slip can be 

modeled as the response of a velocity-strengthening interface to small stress changes 

during the sequence. In overall, the sequence reveals the spatially variable frictional 
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properties of a weakly coupled plate interface and how area with different friction 

laws interact in time and space to release stress. 

During the past decade, episodic slow slip events (SSE) detected by 

continuously recording GPS networks in various subduction zones led us to a refined 

view of the frictional anatomy of the subduction interface and a change of our 

conceptual model of the earthquake cycle. Modeling of the first SSE [Dragert et al., 

2001; Ozawa et al., 2001] revealed that slip events lasting from weeks to months 

occur at depth of ~40 km, down-dip of the area of high locking, assumed to 

correspond to the rupture area of large megathrust earthquakes. Although little regular 

seismicity usually occurred during this type of SSE, non-volcanic tremors were often 

found during them [Rogers and Dragert, 2003]. More recently, SSE detected in 

shallowly (<20km) coupled subduction zones show duration of days to weeks [Ozawa 

et al., 2003; Douglas et al., 2005; Wallace and Beavan, 2010]. Shallow SSE are 

usually associated with intense microseismicity burst taking place inside or close to 

the slip area [Ozawa et al., 2007; Delahaye et al., 2009; Wallace et al., 2012; Vallée 

et al., 2013], although non-volcanic tremors may also coexist [Walter et al., 2011]. In 

all cases documented so far, seismicity associated with shallow SSE accounts for at 

most 1-3% of the total moment released. 

Here, we use geodetic and seismological observations (Fig. 4.1 and 4.2) to 

document a sequence where aseismic and seismic slips interact through time and 

space and contribute to the final slip at a similar level. The sequence took place 

offshore the Bayovar peninsula in northern Peru where the oceanic Nazca plate 

subducts beneath the Inca continental sliver at 59 mm/yr [Nocquet et al., 2014]. GPS 

interseismic velocities reveal that the northern Peru subduction zone is a weakly 

coupled subduction segment [Nocquet et al., 2014], explaining the lack of great 

subduction earthquakes for the last five centuries in that area. Nonetheless, among the 

few significant earthquakes recorded, the 1960 Mw 7.6 earthquake shares all the 

characteristics of tsunami earthquakes with abnormally long source duration, 

enhanced long-period source spectrum and it induced a relatively large tsunami, with 

run-up exceeding 9m [Pelayo and Wiens, 1990]. 

The 2009 sequence developed north of the assumed rupture of the 1960 tsunami 

earthquake, possibly overlapping with it. A transient trenchward displacement is seen 
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at the continuous GPS site BAYO, lasting 7 months from February to September 

2009 with a cumulative displacement of 14 mm (Fig. 4.1). Inversion of the slip 

distribution from 9 geodetic displacements indicates that the main area of slip took 

place at shallow depth (<25 km), involving a patch of 100 km of diameter (Fig. 4.2f). 

The maximum slip reached 45-50 mm and the slip distribution is equivalent to a 

moment release of Mw 6.7. Between February and September 2009, the seismicity 

recorded by both the National Seismic Network of Peru and a temporary broad band 

seismometers network showed a sharp increase with 118 events of local magnitude 

ranging from 2.7 to 6.0, all located inside or close to the slip area. The moment 

released through earthquakes was equivalent to Mw 6.3, indicating that the process 

was ~70% aseismic. 

The time series at BAYO (Fig. 4.1) further shows that the slip evolved through 

time with phases of acceleration, which correlate with the occurrence of the major 

earthquakes, before a final phase of deceleration that lasted five months (Fig. 4.1). 

The recorded seismicity also shows a spatial and temporal organization related to the 

occurrence of the major events, followed by a five months period of relative 

quiescence (Fig. 4.2). In the following, we describe the different phases of the 

sequence and discuss their implications on the frictional anatomy of the plate 

interface. 

Prior to the sequence, interseismic GPS velocities indicate that the plate 

interface is predominantly creeping [Nocquet et al., 2014], therefore implying a 

dominant velocity-strengthening friction regime. The Bayovar area shows regular 

moderate seismicity, with ~20 interface events in the magnitude range of Mw 5.1-6.0 

recorded since 1976 [Ekström et al., 2012]. The occurrence of moderate interface 

earthquakes indicates the existence of patches of velocity-weakening with typical size 

of 0.1 to 10 km, but still too small to induce significant strain rate detectable by GPS 

during the interseismic period.  

The sequence studied here started at a depth of ~12 km, ~30 km from the trench. 

On February 8 2009, a series of five foreshocks (Mw 3.2 to 5.0) preceded 20 hours to 

30 min, a Mw 5.9 thrust interface event that occurred on February 9. 14 aftershocks 

(Mw 3.5 to 4.2), clustered within 15km of the epicenter, were detected in the four 

days following the mainshock (Fig. 4.2a). Because the seismic sub-sequence took 
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place about ~100km from the Peruvian coast, we could not observe whether it was 

associated with a slow aseismic slip or not. 

The seismic and possible aseismic slip seem to have increased the stress 

~100km northeast to promote the second seismic sub-sequence at the deeper (~20-

25km depth) part of the subduction interface. The main thrust event Mw 6.0 occurred 

on February 15. It was preceded by 8 foreshocks (Mw 3.2 to 4.7) within 30 hours to 

10 min before the mainshock. 48 aftershocks with Mw 3.0-4.3 occurred during the 

following five weeks (Fig. 4.2b). Both the February 9 and 15 events showed 

aftershocks location within a ~15 km radius around the epicenter and in agreement 

with the rupture size for Mw~5.9-6.0 earthquakes. For both sequences, no clear 

aseismic slip is seen in the GPS time series prior to the mainshock, indicating that if it 

existed, it was small. By contrast, the GPS time series at BAYO shows a sudden 

velocity increase following a 2mm coseismic displacement with a trenchward motion 

of ~4 mm during the next 39 days (Fig. 4.1). 

The next event (March 26, Mw 5.8) occurred at shallow (~8 km) depth, close to 

the trench. Its characteristics depart from the two previous events, with neither 

foreshocks nor clear sequence of spatially and timely clustered aftershocks. The 

seismicity in the next 5 months occurred over a wide area, at a rate not significantly 

different from the background seismicity prior to the sequence (Fig. 4.2c, d). 

Furthermore, the March 26 event significantly accelerated the rate of aseismic slip as 

seen in the BAYO GPS time series (Fig. 4.1). The transient displacement following 

the March 26 earthquake represents about 70% of the cumulated displacement 

observed at site BAYO, despite a magnitude about twice smaller than the February 15 

event and it remote location. We further find that the March 26 earthquake had a 

duration of 11-12s for a moment magnitude of Mw 5.8, to be compared with the 10s 

duration for the Mw 6.0 February 15 event (Fig. 4.3). Fig. 4.3 shows that several 

abnormally long source duration earthquakes have occurred in northern Peru during 

the last two decades. Among them, the 2002 event exactly occurred in the area of the 

2009 sequence and the 1996 event that occurred further source generated a tsunami 

with run-ups ranging from 1 to 5 m [Ihmlé et al., 1998, Bourgois et al., 1997]. If 

scaled by its magnitude, the March 26 event is similar to abnormal long source 

duration earthquakes previously highlighted in northern Peru from a larger seismicity 

catalogue analysis [Bilek and Lay, 2002]. 
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We interpret the differences between this earthquake and the two February 

events by the spatially variable frictional properties of the plate interface. Both 

February events broke small velocity-weakening patches and share scaling laws of 

regular earthquakes for rupture duration, aftershocks decay and rupture area. The 

March 26 event occurred in the weak, low rigidity material within the accretionary 

prism, which promotes slow rupture and long duration of the source. This event 

occurred within the conditionally stable zone where slip is generally stable, but can be 

abrupt if it experiences significant rapid loading [Bilek and Lay, 2002]. 

The logarithmic-like displacement observed in the GPS time series after the 

February 15 and March 26 earthquakes is similar to the post-seismic deformation 

observed after many earthquakes (e.g., Perfettini et al., [2010]). Within the rate-and-

state friction law framework [Dieterich, 1979], a sudden stress increment associated 

with a co-seismic slip leads to an instantaneous increase of the sliding velocity in the 

nearby velocity-strengthening areas, then decreasing through time at a logarithmic 

decay. In Fig. 4.1, we show that the transient displacement observed at BAYO time 

series can be fitted by the prediction of a simple spring-slider model with a velocity-

strengthening law. Because the stress increment induced by the co-seismic slip scales 

with the logarithm of the velocity increment, we find that the March 26 earthquake 

should have generated a Coulomb stress increment at least 5 times larger than that of 

the February 15 earthquake, despite a 2 times smaller moment. This further suggests 

that the March 26 earthquake had an abnormal large slip given its magnitude 

estimated from the seismic waves, as proposed by tsunami earthquakes. 

Finally, a crustal Mw 5.3 event on August 27 marks the end of the sequence 

(Fig. 4.1 and 4.2e). Its normal focal mechanism indicates that the stress previously 

released was large enough to reach an extensional regime in the upper plate and to 

reactivate a normal fault. 

In overall, the 2009 northern Peru sequence shows how the frictional properties 

control the response of the subduction interface to stress changes. The plate interface 

in northern Peru can be seen as a predominantly velocity-strengthening medium, 

comprising small localized patches of velocity weakening and conditionally stable 

local patches in the shallowest part of the interface close to the trench (Fig. 4.4). 

Small pulses of aseismic slips can lead to the destabilization of ~10km large velocity 
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weakening patches leading them to seismic ruptures. Although small, the stress 

increment is large enough to destabilize areas as remote as ~100km, the typical 

distance observed here between the three sub-sequences. In turn, the co-seismic stress 

increment trigger pulses of aseismic slip, similar to the afterslip following large 

earthquakes. Finally, the aseismic slip was strong and rapid enough to lead to the 

rupture of a small patch in the shallow conditionally stable zone. This latter 

earthquake shares most characteristics of tsunami earthquakes with a long rupture 

duration, large slip given its magnitude and a lack of aftershocks. As previously 

suggested, transients may serve as a mechanism of stress communication between 

distant seismicity clusters in shallow subduction zones [Liu and Rice, 2007], and 

therefore might be precursory signal to forthcoming seismic ruptures. The conditions 

in terms of size, amount of slip and possibly slip velocity of aseismic slip required to 

destabilize large patches of velocity-weakening have yet to be determined. 

 

Figures 

 

 

Figure 4.1. Geodetic time series and seismicity rate from 2008.5 to 2010.65. Blue dots 

indicate the east displacement recorded by the CGPS BAYO expressed with respect to the 

overriding plate.  Histogram bars show the number of seismic events in 10 days intervals and 

the colors correspond to the time periods of the seismic sub-sequences shown in Figure 4.2. 
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The white stars show the date of the four main earthquakes. The cumulated seismic moment 

released is shown in black dashed line. The red curve overprinting the GPS time series is the 

prediction from a simple spring-slider model with a velocity-strengthening friction law. 

 

 

Figure 4.2. Seismicity maps and cumulated slip during the sequence. 2a-2e: Snapshots of the 

spatio-temporal distribution of the seismicity. Circles scaled to magnitude show the location 

of the earthquakes. Focal mechanism and magnitude for the four largest events are displayed. 

White stars represent foreshocks. Colors of the seismicity are the same as in Fig. 1. Light gray 

dash lines are iso-depths of the subduction interface. 2f: Slip distribution of the total 

cumulative displacement. Colors represent the slip amplitude with numbers along the 

concentric lines indicating isovalues of slip in mm. Yellow and red arrows are observed and 

modeled GPS displacements respectively.  
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Figure 4.3. Source Time Function (STF) comparison for shallow interface earthquakes in 

northern Peru. Abnormally long STF are shown filled colors between the curve and the x-axis. 

The 2002 abnormally long earthquake occurred in the same area as the 2009 sequence.  

 

 

 

Figure 4.4. Cartoon illustrating the spatially variable frictional properties of the subduction 

interface in the Bayovar area. The plate interface is predominantly velocity-strengthening 

with small localized patches of velocity weakening and a conditionally stable friction region 

in the shallowest part of the interface close to the trench. 
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GPS analysis and aseismic slip inversion 

The data set includes 1 continuous GPS (CGPS) station BAYO installed in July 

2008 in the framework of the ADN project as collaboration between Geoazur (CNRS-

IRD-OCA-University of Nice, France) and the Institute of Geophysics, Lima, Peru. It 

also includes 1 CGPS station PIUR from the Low Latitude Ionospheric Sensor 

Network (LISN). 7 campaign sites were measured in July 2008, 2010 and 2012 with 

some additional measurements in early 2009 and mid 2011 for PSAL, SCH1 and 

SCH2 sites. Data have been analyzed with the GAMIT/GLOBK software, using a 

standard strategy for Geodynamics as detailed in Nocquet et al., [2014]. No elastic 

effect of interplate coupling along the subduction interface is detected along the 

Bayovar Peninsula, however a sliver motion was highlighted [Nocquet et al., 2014]. 

Therefore the GPS velocities are expressed with respect to this Inca Sliver (Euler pole 

at long. -63.8°E, lat. 22.5°N, angular velocity: 0.092 deg/Myr) [Nocquet et al., 2014], 

relevant to monitor the displacement induced by the SSE. 

The input data set for the inversion includes transient trenchward displacements 

estimated at 7 SGPS between February and September 2009 together with the 



 136 

cumulated displacement at CGPS sites BAYO and PIUR estimated from the time 

series for the same period. We invert the slip distribution therefore corresponding to 

the total displacement over the whole SSE.  The modeled fault surface is discretized 

in 354 rectangular subfaults of 10x10 km, covering about 250 km along strike of the 

trench and ending at 60 km depth. We calculate the transfer function G relating the 

unit slip of each individual subfaults to the displacement components at each 

individual GPS site, using the dislocation formulation of Okada [1992] for an 

homogeneous semi-infinite elastic half-space, and using a rake fixed to 90°. Our 

inversion scheme follows the approach recently described in Radiguet et al., [2011], 

following Tarantola [2005], where we minimize the cost function S(m) defined as: 

 

   (1) 

 

where m is the unknown parameter model including the slip for each subfault, m0 is 

an a priori model for slip distribution taken here as 0, d is the vector of observation 

including the GPS velocity components, and Cd and Cm are the variance-covariance 

matrices associated with the data and the model respectively. Cd is taken as a diagonal 

matrix including the standard deviation derived from the geodetic analysis. Cm is an 

exponential matrix of the form: 
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where d(i,j) is the distance between two subfaults i and j, l is the critical distance for 

correlation for slip, and l0 a scaling factor fixed at 10 km. We show the results 

obtained for l=50 km, which is found to be a good trade-off value between the 

roughness of the model and the misfit to the observed GPS velocity. 

The model finds that a single nearly circular patch with a diameter of 100 km, 
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WRMS=0.5 mm. 45-50 mm of maximum slip is found. In order to assess the 

resolution of our inversion, we perform a simple test by modeling the slip distribution 

as a 2-D Gaussian function in the form  
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and search for the possible range of values of maximum slip Smax, location of the 

maximum slip (l, f). We find that the latitude and along-strike extension of the slip 

area is well defined (latitude 5.7°S and 45 < Df < 50 km). The along-strike extension 

of slip distribution is constrained by the southwards component of displacement 

observed for the sites north of Bayovar and northwards component at SCH1. On the 

contrary, there are some trade-offs between the longitude location of the maximum 

slip, the extent of slip in longitude (that is with depth) and to a less extent the 

maximum slip. Extreme range of possible values are (-81.7°E, 105 km, 46 mm) and (-

81.3°E, 55 km, 44 mm). In other words, because GPS sites are located only east of the 

slip area, we only have good constraints on the downdip limit of the slip distribution 

and relatively poor constraints on the up-dip limit. Our inversion and the simple 

sensitivity test however demonstrate that the main area of slip occurred at shallow 

depth (<20 km) with no significant amount of slip deeper than 25 km. Whether some 

significant slip occurred at very shallow depth close to the trench cannot be 

constrained by the GPS data. The along strike distribution of the slip is well 

constrained with no significant slip occurring north of 4.6°S. The southern limit is 

found to be ~6.5°S, but again a southern extension of the slip close to the trench 

cannot be ruled out. The amount of maximum slip is well defined [45-50 mm] as well 

as the geodetic moment Mw=6.7. 

 

Supplementary Table T4.1. SSE GPS displacements. Latitude and longitude in decimal 

degrees. Dn, De: north & east components of displacement in mm; sn, se: formal error (1-

sigma confidence level), Corr_ne: correlation coefficient between Dn & De. 

GPS site Lat Long Dn De σn σe Corr_ne 

CCHO -80.962 -5.166 -1.44 -6.68 0.81 1.00 -0.01 
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CHUL -80.158 -5.092 -2.10 -1.28 0.79 1.01 -0.02 

MORA -80.022 -5.544 1.62 -3.42 0.88 1.19 -0.02 

PIU0 -80.639 -5.171 -2.14 -4.32 0.60 0.79 -0.02 

PLOB -81.289 -4.453 0.18 0.12 0.74 0.91 -0.02 

SCH1 -80.491 -6.112 0.94 -2.56 0.99 1.27 -0.03 

SCH2 -80.575 -5.635 -1.88 -7.58 0.89 1.15 -0.03 

SUNW -81.055 -4.693 0.82 -0.42 0.85 1.08 -0.07 

BAYO -81.066 -5.799 -0.75 -14.02 0.39 0.50 -0.05 

 

 

Relocation of the seismicity 

We use the earthquake catalog from the Geophysical Institute of Peru (IGP) for 

the period 2008 to 2011. We analyze the seismogram records from five seismic 

stations of the National Seismic Network of IGP located at a distance ranging from 70 

to 160 km from the Bayovar Peninsula. For the larger events, seismogram recorded at 

broadband seismic stations located at greater distances up to 500 km were also used. 

In order to better characterize the seismicity variations in the area of the SSE (Lat. -

5.2 to 7.0, Long. -82.0 to 80.6) we manually re-measure the P and S-wave arrival 

times and the duration of the events. We use a modified version of the Hypoinverse 

algorithm [Klein, 1978] and a velocity model from Tavera et al., [2006]. We retain 

each event with a minimum of 4 P and S-wave arrival times. The average rms residual 

time in the inversion are ~0.5s, and formal errors of 5 and 8 km for the horizontal and 

depth, respectively. The magnitude for each event has been computed with the record 

duration of the earthquakes, using the relation proposed by Ccallo et al., [2002] that 

correlates the duration of the seismic signal records and the distance epicenter-station 

for all the short-period stations of the IGP seismic network. Then in a second step, we 

use the Velest algorithm [Kisling, 1995] to simultaneously derive an improved 1-D 

velocity model and obtain new hypocentral locations. The obtained new model 

introduces a new shallow layer and reduces slightly the velocity of the deeper layers, 

compared to the initial model. The new average rms is ~0.2s, and formal error 

locations are ~3km and ~5km, for the horizontal location and depth respectively. The 

relocated seismicity in the area of the SSE has magnitude ranging between 2.9 and 

6.0Mw.  
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Supplementary Table T4.2. Relocated earthquake catalog of the seismicity swarms 

sequence. The events are illustrated in Figures 4.1, 4.2 and 4.4. The catalog parameters are 

date, time, longitude, latitude and depth with their corresponding errors and moment 

magnitude. 

date  time  longitude  err_lo  latitude  err_la  depth  err_z  Mw 

 2009/02/08  18:23:57  -81.3174  ±04  -6.5221  ±03  19  ±05  4.1 
 2009/02/08  21:23:06  -81.3623  ±04  -6.4765  ±03  11  ±04  4.9 
 2009/02/09  07:30:35  -81.0941  ±03  -5.4412  ±01  23  ±08  3.2 
 2009/02/09  13:39:37  -81.4558  ±01  -6.4307  ±01  15  ±01  4.0 
 2009/02/09  13:46:05  -81.5874  ±04  -6.4707  ±04  12  ±05  3.9 
 2009/02/09  14:08:57  -81.5208  ±02  -6.5817  ±02  12  ±03  5.9 
 2009/02/09  14:47:54  -81.2905  ±03  -6.3384  ±02  26  ±03  3.8 
 2009/02/09  15:34:40  -81.2428  ±04  -6.5868  ±04   8  ±07  3.1 
 2009/02/09  17:04:08  -81.4895  ±04  -6.5825  ±03   8  ±04  4.2 
 2009/02/09  19:57:02  -81.4827  ±04  -6.4207  ±03  13  ±03  3.8 
 2009/02/10  06:48:21  -81.5445  ±04  -6.5235  ±04  14  ±07  4.2 
 2009/02/11  01:38:04  -81.4337  ±03  -6.6411  ±03  15  ±06  4.0 
 2009/02/11  03:15:41  -81.4258  ±03  -6.6666  ±02  12  ±05  4.2 
 2009/02/11  03:25:20  -81.3568  ±03  -6.6481  ±02   7  ±04  4.2 
 2009/02/14  05:24:56  -80.8415  ±02  -5.7670  ±02  26  ±03  4.6 
 2009/02/14  05:30:48  -80.9097  ±04  -5.8482  ±04  30  ±07  3.2 
 2009/02/14  06:37:50  -80.7623  ±01  -5.8715  ±03  28  ±01  3.6 
 2009/02/15  04:41:57  -80.8662  ±03  -5.7324  ±02  22  ±04  4.0 
 2009/02/15  06:09:09  -80.8426  ±03  -5.8499  ±03  23  ±04  3.7 
 2009/02/15  09:13:50  -80.9905  ±04  -5.7576  ±02  20  ±03  3.5 
 2009/02/15  09:18:03  -81.0893  ±03  -5.7544  ±02  21  ±01  3.7 
 2009/02/15  10:03:04  -80.9649  ±04  -5.7316  ±03  25  ±04  3.2 
 2009/02/15  10:04:47  -80.9890  ±04  -5.8083  ±02  24  ±02  6.0 
 2009/02/15  10:09:53  -80.8510  ±01  -5.6907  ±01   9  ±02  3.7 
 2009/02/15  10:11:23  -80.8673  ±03  -5.7246  ±03  15  ±05  4.2 
 2009/02/15  10:16:31  -80.7753  ±02  -5.7881  ±01  23  ±04  4.0 
 2009/02/15  10:19:24  -81.0060  ±03  -5.7781  ±02  21  ±02  3.7 
 2009/02/15  10:26:55  -80.9891  ±04  -5.7156  ±04  21  ±04  3.9 
 2009/02/15  10:36:05  -81.0160  ±02  -5.7705  ±01  23  ±01  3.6 
 2009/02/15  10:37:53  -81.0126  ±01  -5.6936  ±00  23  ±00  3.8 
 2009/02/15  10:48:19  -81.0096  ±02  -5.8263  ±02  22  ±01  3.7 
 2009/02/15  11:07:21  -80.9777  ±04  -5.7368  ±04  23  ±03  3.7 
 2009/02/15  11:27:25  -81.0951  ±02  -5.7779  ±03  21  ±01  3.7 
 2009/02/15  11:36:40  -81.0531  ±02  -5.7977  ±03  23  ±01  3.7 
 2009/02/15  12:06:38  -80.9400  ±00  -5.6828  ±00  22  ±00  3.5 
 2009/02/15  12:37:54  -80.9429  ±03  -5.7314  ±02  26  ±06  3.5 
 2009/02/15  13:02:45  -80.9593  ±02  -5.6894  ±02  24  ±01  3.5 
 2009/02/15  13:47:53  -81.1435  ±03  -5.8263  ±02  21  ±02  3.9 
 2009/02/15  15:51:32  -80.9952  ±03  -5.7474  ±02  23  ±02  3.8 
 2009/02/15  16:45:20  -81.0441  ±04  -5.7193  ±02  21  ±02  3.8 
 2009/02/15  16:48:18  -80.9671  ±04  -5.7353  ±02  27  ±03  3.6 
 2009/02/15  18:09:39  -80.9710  ±02  -5.7614  ±01  20  ±02  4.0 
 2009/02/15  19:07:52  -80.8460  ±01  -5.7216  ±01   9  ±02  3.6 
 2009/02/15  20:09:32  -80.9165  ±02  -5.7156  ±01  24  ±02  3.7 
 2009/02/15  22:11:52  -80.7718  ±04  -5.6051  ±04  15  ±00  3.6 
 2009/02/15  23:44:54  -80.9104  ±01  -5.6771  ±01  27  ±02  3.5 
 2009/02/16  00:41:14  -81.0778  ±04  -5.7159  ±02  22  ±02  3.9 
 2009/02/16  01:04:38  -81.3029  ±02  -5.9146  ±01  18  ±01  3.3 
 2009/02/16  05:15:12  -80.9958  ±03  -5.8683  ±01  24  ±02  4.0 
 2009/02/16  10:06:17  -80.9252  ±01  -5.7740  ±01  24  ±02  4.1 
 2009/02/17  16:45:50  -81.0340  ±04  -5.7207  ±04  23  ±03  3.8 
 2009/02/18  06:05:19  -81.0447  ±02  -5.9661  ±03  16  ±02  3.3 
 2009/02/18  06:43:26  -81.3282  ±04  -6.4992  ±04   9  ±05  3.9 
 2009/02/19  09:27:26  -80.9312  ±00  -5.6911  ±00  26  ±00  3.4 
 2009/02/19  12:36:43  -81.0296  ±04  -5.7290  ±02  24  ±02  3.5 
 2009/02/22  01:01:25  -81.2243  ±03  -6.0732  ±02  21  ±03  3.7 
 2009/02/24  11:57:54  -81.0633  ±04  -5.7645  ±03  23  ±02  3.6 
 2009/03/02  08:33:29  -80.6946  ±01  -5.5181  ±01  24  ±06  2.9 
 2009/03/09  19:18:19  -80.9577  ±01  -5.7804  ±01  25  ±00  3.9 
 2009/03/15  03:41:07  -80.9474  ±02  -5.7135  ±02  22  ±07  3.8 
 2009/03/22  22:09:17  -81.2332  ±04  -6.6976  ±04  15  ±02  3.7 
 2009/03/23  13:38:36  -80.6692  ±00  -5.5562  ±00  30  ±00  3.2 
 2009/03/24  06:02:31  -81.1444  ±03  -5.8345  ±03  15  ±03  3.7 
 2009/03/26  17:35:09  -81.7065  ±03  -5.6628  ±03   8  ±05  5.8 
 2009/03/26  18:50:18  -81.4651  ±03  -6.0388  ±03   6  ±05  4.0 
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 2009/03/26  21:12:14  -81.5957  ±03  -5.8821  ±03   9  ±05  3.6 
 2009/03/27  21:34:57  -81.2518  ±03  -5.9604  ±03  17  ±05  3.9 
 2009/03/28  06:21:24  -81.3009  ±03  -5.7943  ±03  16  ±05  4.1 
 2009/03/28  14:40:01  -80.8543  ±03  -5.2342  ±03  19  ±05  3.8 
 2009/03/30  06:30:28  -81.5231  ±03  -5.7414  ±03  10  ±05  3.9 
 2009/03/31  09:11:56  -81.5321  ±03  -5.7848  ±03  11  ±05  3.9 
 2009/04/05  09:56:53  -80.7978  ±03  -6.0611  ±03  28  ±05  3.5 
 2009/04/05  10:30:43  -81.0223  ±03  -5.7442  ±03  16  ±01  3.7 
 2009/04/07  07:21:40  -80.9345  ±02  -5.7633  ±02  29  ±02  3.7 
 2009/04/07  19:14:43  -81.0368  ±03  -5.4943  ±01  22  ±02  3.9 
 2009/04/16  03:06:06  -80.7713  ±01  -5.8974  ±02  26  ±02  3.3 
 2009/04/25  06:40:51  -80.6614  ±01  -5.4046  ±01  32  ±05  3.7 
 2009/04/27  02:58:17  -81.7602  ±04  -6.3577  ±04   8  ±06  3.7 
 2009/05/19  18:42:53  -80.6635  ±01  -6.0404  ±02  34  ±22  3.5 
 2009/05/22  11:59:24  -81.3968  ±03  -5.9404  ±04  17  ±03  3.9 
 2009/05/30  10:00:07  -81.2537  ±03  -5.6178  ±02  21  ±00  3.5 
 2009/05/31  00:58:51  -81.7093  ±01  -6.0763  ±04   9  ±01  3.9 
 2009/06/02  05:26:12  -81.1102  ±04  -5.7805  ±03  24  ±02  3.3 
 2009/06/04  07:37:14  -81.0713  ±04  -5.8657  ±03  21  ±03  3.5 
 2009/06/12  23:05:27  -80.8014  ±03  -5.5770  ±03  32  ±05  3.5 
 2009/06/15  00:13:48  -80.8046  ±03  -5.4308  ±03  28  ±05  3.2 
 2009/06/15  10:18:07  -81.1337  ±03  -5.5326  ±03  26  ±05  3.4 
 2009/06/15  10:30:08  -81.0723  ±03  -5.3585  ±03  23  ±05  4.1 
 2009/08/06  20:09:19  -81.1599  ±03  -6.1359  ±03  17  ±05  3.9 
 2009/08/15  02:05:50  -81.6753  ±03  -6.1758  ±03  16  ±05  3.9 
 2009/08/21  19:26:47  -81.0597  ±03  -6.3931  ±03  23  ±05  3.3 
 2009/08/24  06:41:40  -80.9495  ±03  -5.7739  ±01  18  ±04  3.6 
 2009/08/24  08:53:28  -81.5189  ±04  -6.6160  ±03  14  ±06  3.9 
 2009/08/27  14:56:36  -81.4504  ±04  -5.4695  ±02  11  ±02  5.3 
 2009/08/27  15:31:38  -81.3338  ±04  -5.4834  ±01  12  ±01  3.8 
 2009/08/27  15:33:58  -81.3136  ±04  -5.5218  ±01  19  ±02  4.0 
 2009/08/27  15:52:18  -81.4317  ±03  -5.4792  ±01  13  ±01  3.9 
 2009/08/28  01:43:06  -81.4285  ±01  -5.4549  ±00  11  ±01  3.9 
 2009/08/30  08:01:04  -81.3511  ±04  -5.5132  ±02  26  ±03  3.8 
 2009/08/30  11:29:37  -81.5802  ±04  -5.4592  ±03  11  ±03  4.0 
 2009/08/30  16:24:42  -81.4029  ±04  -5.5025  ±02  18  ±03  4.0 
 2009/09/18  06:56:56  -81.5845  ±02  -5.4659  ±01  13  ±01  4.0 

 

Source time function  

We selected shallow thrust events (depth < 30km) in northern Peru and southern 

Ecuador. The source time functions were obtained using the methodology described 

in [Vallée et al., 2011], which uses a deconvolution approach. Only events with a 

good signal-to-noise ratio were kept. 

 

Rate and state model 

We test the hypothesis that the time series of GPS site BAYO can be modeled 

using the rate-and-state formalism and a simplified model. For an area of velocity-

strengthening submitted to a sudden stress increment induced by a co-seismic slip, the 

time evolution of slip u(t) for a spring-slider with velocity-strengthening law is given 

by [Perfettini and Avouac, 2004] : 
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u(t)=V0 tr log[1+d(exp(t/tr)-1)]      (4) 

 

where t is the time after the earthquake, V0 is the sliding velocity prior to the 

earthquake, tr is the relaxation time and d is the ratio of the velocity immediately after 

the earthquake. This equation shows that for t>>tr , u(t) returns to the pre-earthquake 

sliding velocity  V0 t . The transient slip is therefore: 

u(t)=V0 tr log[1+d(exp(t/tr)-1)]- V0 t      (5) 

 

For two earthquakes occurring at t1 & t2, equation (5) becomes: 

u(t)= u1δEQ1+u2δEQ2+δEQ1V0 tr log[1+d1(exp((t-t1)/tr)-1)+ δEQ2d2(exp((t-t2)/tr)-1)]- V0 t (6) 

 

where δEQi is 0 when t<ti and 1 for t>ti, u1 and u2 are the co-seismic displacements 

induced by the earthquakes, d1 and d2  are the velocity ratio increment after the first 

and second earthquakes. Because the second earthquake occurred about 80km from 

the BAYO CGPS station, the co-seismic displacement at BAYO is certainly below 

the precision of the GPS time series. Therefore u2 was not estimated and set to 0. 

Figure 4.1 shows the fit of equation (6) to the BAYO time series. We find a best fit 

for the following parameters: 

d1=1.92 ± 0.01  

d2=26.12 ± 0.12 

tr =0.09 ± 0.5 yr  

u1=-2.2 ± 0.1 mm 

All errors are at the 1σ confidence level.  

The parameter d is related to the Coulomb stress increment by  

log(d)= DCFF / aσ        (7) 
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As a consequence, the ratio of the Coulomb stress increment between the two 

earthquakes is 

DCFF2 / DCFF1 = log(d2) / log(d1)      (8) 

 

which provides, using the estimated values for d1 and d2, DCFF2 / DCFF1 ≈ 5, telling 

that the Coulomb stress increment for the March 26 earthquake was significantly 

larger than the Coulomb stress increment for the February 15 earthquake.  

Assuming that DCFF1 of the order 10
-2

 MPa in the slip area, we find using 

equation (4) that aσ ≈ 2-3.10
-2

 MPa for the two events. This result is an order of 

magnitude lower than values derived from laboratory experiments, but is similar to 

the value found by Perfettini et al. [2010] to explain the afterslip following the Mw 

8.0 2007 Pisco earthquake in southern Peru. Such small values may explain the large 

slip triggered by moderate size earthquakes. 
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Chapter 5: Conclusions and Perspectives 
 

 

Previous to this thesis, no GPS data was available along the subduction margin 

extending from the north of Lima to the Gulf of Guayaquil. The seismic behavior of 

that subduction segment is characterized by the occurrence of a regular M~5.0 – 6.0 

background seismicity, moderate tsunami-earthquakes and the absence of large 

megathrust earthquake since at least the 16
th

 century. Inland, active faults have been 

identified but neither slip rates had been proposed nor a relationship with a regional 

kinematics model. As a consequence, even first order questions about the earthquake 

cycle and continental deformation were poorly understood. The primary question was 

to know whether stress is currently accumulating at the plate interface with the 

potential of a future great megathrust great earthquake (M≥8.8, like in Sumatra 2004, 

Chile 2010 or Japan 2011) or whether creeping processes accommodates the plate 

convergence. The second question was to know whether significant long-term 

deformation of the overriding continent occurs in the Peruvian Andes and its margin. 

Finally, since episodic slow slip events have been documented in other subduction 

zones, we did not know whether they could also be found in Peru. 

To address these questions, I benefit from new GPS data acquired in the frame 

of an international collaboration project (the ADN project funded by the ANR-France, 

P.I. Jean-Mathieu Nocquet). My contribution to the ADN project includes all the steps 

carried out for the Peruvian side of the project. Since 2008, I have participated in the 

reconnaissance and installation of both campaign and permanent GPS sites. I took 

part of the measurements campaign in 2008, 2009, 2010, 2011, 2012, and 

maintenance of the permanent GPS network. I have processed the GPS data and 

develop the modeling of both the pattern of interseismic coupling along the 

subduction interface and the continental deformation. I correlated the results with 

seismological information, and compiled information about large past historical 

earthquakes in Peru. Finally, I worked on the relocation of a seismicity sequence 

synchronous to a slow slip event that took place in the Piura Peninsula (north Peru, lat 

5.5ºS) at the beginning of the project. 
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The results obtained in this thesis provide novel insights into the anatomy of the 

earthquake cycle and the continental deformation along the Peruvian margin. They 

successfully answered most of the initial questions stated in Chapter 1 and raise as 

much new questions for the future. Finally, they have implications on the 

geodynamics of the Andean orogeny and the assessment of earthquakes and tsunamis 

hazard, with consequences for the whole circumpacific coast. In the following, I 

summarize the main results obtained in the frame of this thesis, the limitations of 

some of our results and draw possible future research perspectives. 

 

1. Continental deformation: The Inca Sliver and the oblique 

convergence partitioning 

In subduction zones where the plate convergence is oblique the strain 

partitioning is taken-up by the lateral motion of a sliver on the overriding plate 

[Jarrard, 1986; Mccaffrey, 1992; Chemenda et al., 2000; Bevis and Martel, 2001]. 

For example, in the Sumatra or Central America subduction zones the oblique 

convergence induces a slip partitioning accommodated by continental strike-slip 

faults parallel to the trench axis [Mccaffrey et al., 2000; DeMets, 2001]. In Peru, the 

average strike of the trench is 330°E, with a Nazca/South America convergence 

direction of N78°E, leading to 18° obliquity of the convergence. While this obliquity 

had been suspected by Dewey and Lamb, [1992] or Veloza et al., [2011] to induce 

significant trench-parallel motion in Peru, it had not been demonstrated. 

In this thesis I provide evidence for a ~2200km long continental sliver in Peru, 

that was unknown previous to this study. The analysis of the GPS velocity field in 

northern Peru and southern Ecuador shows a rigid southeastward translation (with 

respect to stable South America) at a rate of 4-5 mm/yr. The area moving rigidly 

encompasses the whole Peruvian margin from south of the Gulf of Guayaquil to the 

Arica bend, including the western Andean Cordillera and the margin west of it. 

However, our analysis shows that Peru departs from the simple kinematics scheme of 

partitioning of oblique subduction where all the trench-parallel component of the 

obliquity is accommodated by a continental sliver. First, the motion of the Inca Sliver 

takes up only ~25% of the trench-parallel component. Second, this motion is not 
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accommodated by a single pure strike-slip fault system. Finally, there is a significant 

trench-perpendicular partitioning that also take place in the sub-Andean fold and 

thrusts belt in the form of crustal shortening. This pattern is clearly evidenced in 

northern Peru where the rio Marañon fault system (MFS) marks the transition 

between two rigid behaviors and the eastern boundary of the Inca Sliver there. In 

central Peru the prolongation of the MFS is the Chonta Fault system and our 

observations agree with this possible limit. In southern Peru the deformation becomes 

more diffuse with probably the existence of an additional Altiplano block. Our sparse 

data set and currently on-going postseismic effects prevent any clear conclusions. 

More measurements are needed in the future to constraint the pattern of deformation 

in the eastern side of the sliver in order to better define the structures accommodating 

the partitioning and in order to evaluate if it is dominated by shear stress or other 

mechanisms. For the sub-Andean ranges in central and north Peru we propose crustal 

shortening rates at ~2.5mm/yr, however, a densification of GPS measurements there 

would help to quantify more precisely the crustal faults interaction and its associated 

seismic hazard. 

Compared to others oblique subduction zones, we note that northern and central 

Peru do not have a volcanic arc. Volcanic arc may define a strip of crustal and 

lithospheric weakness with locally thinned crust and hot material. This weakness strip 

might foster the development of large strike-slip fault systems and thus favoring high 

partitioning. In the absence of a volcanic arc over ¾ of the length of the Peru segment, 

partitioning remains relatively low. Furthermore, the average elevation of the Andes 

is significantly larger than for mountain ranges where high partitioning is found. 

Possible gravitational potential energy contrast between the Andes and the Amazon 

basin could also add another contribution to the stress field and would contribute to 

the shortening perpendicular to the Andean cordillera observed in the sub-andean 

domain.    

At the larger scale of the Andean subduction, various slivers have been reported 

in Chile, Ecuador and Colombia [Trenkamp et al., 2002; Brooks et al., 2003; Chlieh et 

al., 2011; Métois et al., 2013]. For all these slivers, the sense of the trench-parallel 

component is consistent with the sense of the Nazca/South America obliquity. We 

therefore conclude that obliquity is the driving process for the lateral motion of the 

slivers in the South America subduction zone. Sliver motions and active crustal 
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shortening in the sub-Andean region appear as the main dominant processes for the 

present day deformation of the Andes. Finally, the diverging motion northeastward of 

the North Andean sliver and southeastward of the Inca sliver explains the opening of 

the Gulf of Guayaquil in the northern Andes, and the converging motion 

southeastward of the Inca sliver and northwestward of the northern Chile Sliver seem 

to play a role in the development of the Altiplano plateau holding it laterally.  

 

2. Interseismic Coupling (ISC) along the megathrust of Peru 

Modeling of the GPS surface velocities show that the ISC along the subduction 

plate interface in Peru and Ecuador is heterogeneous at various scales. At the largest 

scale, we identify a ~1000-km-long segment in northern Peru and southern Ecuador 

(from lat. 9ºS to 2ºS) in which the ISC is weak to low, and thus where convergence is 

accommodated predominantly by aseismic slip. This area is among the largest 

aseismic subduction segment in the world, similar in length to central America 

[Correa-Mora et al., 2009; LaFemina et al., 2009; Franco et al., 2012]. The very 

weak coupling therefore provides an explanation to the quiescence evidenced in 

historical earthquake catalogs during the past five centuries. Nonetheless, our 

modeling also indicates that some significant coupling at a scale of ~100km can be 

confined to the shallowest portion of the seismogenic zone. While the very low 

coupling makes unlikely any occurrence of great earthquakes (M≥8.5 as the observed 

in Japan, Sumatra or Chile in last decade) in northern Peru, the shallowest portion of 

the subduction interface can still host moderate size (M~7.5) tsunami-earthquake type 

events as in 1960 (7.5Mw) and 1996 (7.6Mw).  

In central Peru our models evidence a high ISC with asperities that correlate 

with the rupture areas of past earthquakes. These asperities can either rupture 

independently trough large earthquakes (M8.0 type) as in 1940, 1966, and 1974, or in 

a single event producing a great earthquake and tsunami (M8.6-8.8 type) as it 

occurred in 1746. In southern Peru our models show two asperities that are highly 

coupled and that correlate with the rupture areas of the near Nazca 1913 (M~8.0) 

event and the extreme south rupture area of the 1868 earthquake (that was partially 

filled with the M8.4 23/06/2001 event). We also found that the AREQ (Arequipa) 

GPS sites (lat. ~16.4ºS) is presently showing the ongoing postseismic effect of the 
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Mw=8.4 2001 earthquake (lat. ~16.3ºS at ~200 km to the east), suggesting that either 

afterslip or viscoelastic deformation, or both processes are still taking place there. 

Ortega, [2013] showed that GPS coastal sites are already showing a strong 

interseismic loading, however the postseismic signal is still contaminating the GPS 

velocities over a large area as the AREQ time series shows. Our dataset for this region 

is not dense enough to characterize the impact and extent of the postseismic 

deformation, however we highlight this effect for future studies. Currently new and 

denser measurements are being acquired in this region by the Caltech and ISTerre 

teams. Future estimations of the interseismic coupling in this region will have to take 

the post-seismic deformation into account.  

The seismic cycle behavior of southern and central Peru segments appears to be 

similar in the time interval between large and great earthquakes. In these zones the 

current rates of surface deformation are high. The Central Peru segment is currently 

undergoing a pre-seismic phase since mature asperities are continuously accumulating 

stress, and the sequence of M~8 earthquakes during the 20
th

 century only released a 

small fraction of the stress accumulated since the 1746 great earthquake. In terms of 

seismic potential the central Peru segment represents one of the most hazardous areas 

along South America. A third of the Peru’s population is living there and our results 

warn for a preparation of a big earthquake and tsunami.  

Aside from the implication for seismic hazard, we find a correlation between 

the lateral variations of the ISC and geomorphic structures on the subducting plate. 

The Nazca Ridge and the Mendaña Fracture Zone correlate with a considerable 

decreasing of the ISC. Our results therefore provide a key for future studies on the 

factors controlling the interseismic coupling, indicating the areas where changes in 

any controlling parameter(s) should be sought.  

Despite the regional coverage of our geodetic network (~70 km of inter-sites 

distance) we are able to constrain the area of highly coupled areas. These areas could 

correspond to one or more neighboring local asperities. A densification of more GPS 

sites in the coastal ranges with an inter-site distance of ~20-30 km would enhance the 

mapping of such single asperities and improve the current apparent coupling. 

Similarly, such a densification in the sub-Andean region and around crustal faults will 

help to quantify the seismic hazard in the nearby cities. 
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3. Peculiar Slow Slip Events and Seismic Swarm in a weakly coupled 

subduction zone 

Finally, we document novel observations of a Slow Slip Event (SSE) and 

synchronous  seismicity that occurred in the northern Peru subduction zone. The SSE 

lasted 7 months and induced surface trenchward displacements of 14 mm at the 

Bayovar continuous GPS site (lat. 6°S). During this period a sequence of localized 

seismicity swarms occurred in the same area, with four significant earthquakes of 

moment magnitude ranging from 5.3 to 6.0, where the two first were characterized by 

a sequence of foreshocks/mainshock/aftershocks while the third is characterized with 

long source time function.  

This observation is novel in several ways: it is probably the first observation of 

a correlation between rupture characteristics with aseismic slip occurring in a 

subduction zone. Our observation suggest that the mixed process of seismic and 

aseismic slip contribute with the same order of magnitude to the slip on the plate 

interface. A small pulse of creep could have triggered the sequence of foreshocks 

before the two first main events, bringing small asperities to the seismic rupture, 

followed by an aftershocks sequence. Our observation demonstrates that earthquakes 

rupture changed the state of stress on the plate interface, causing either afterslip or 

simply favoring the acceleration of the pre-existing aseismic slip. Denser continuous 

GPS and seismic monitoring in this segment will enable to detect this and other 

events and signals (i.e. tremors, vlf, etc.) and evaluate their contribution to the budget 

balancing the convergence. In chapter 4, we propose a model in which the anatomy of 

the subduction interface is made of small to moderate-size isolated patches of 

velocity weakening material embedded in a much larger velocity strengthening 

area which promotes aseismic slip or large postseismic slip once the small asperities 

rupture. This appears to be the behavior of the northern Peru subduction segment. 

Further observations in others subduction zones should tell us whether the proposed 

model for the Piura peninsula also holds for others weakly coupled subduction zones. 
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4. Anatomy of the subduction plate interface 

The results obtained in this thesis finally allow me to provide inferences about 

the anatomy of the plate interface in terms its frictional properties at the scale of the 

Peru segment. I propose that the southern and central Peru segments are areas where 

the plate interface is composed of a background velocity strengthening material area 

in which there are embedded large areas of velocity weakening material that are the 

responsible of accumulating stress to produce large earthquakes. The typical size of 

velocity-weakening asperities is > 100km, as observed from the rupture of the Pisco 

Mw 8.0 2007 and Arequipa 2001 Mw 8.4 earthquakes. If these areas are close enough 

one to each other they will rupture together in a single event, but if a wide barrier 

such as the Nazca Ridge separates them they will rupture independently. Asperities 

there appear to be surrounded by velocity-strengthening areas, where afterslip and 

aftershocks propagate after the earthquake rupture, as it was documented for the Pisco 

2007 earthquake [Perfettini et al., 2010]. The northern Peru segment contrasts with 

this usually proposed anatomy. Our observations suggest that the subduction interface 

is mostly dominated by velocity strengthening material that facilitates steady creep, in 

which small- to moderate-size isolated patches of velocity weakening material 

accumulate stress leading to earthquakes of magnitude lower than ~7.5. The asperities 

in this environment seem to be surrounded by conditionally stable areas that may fail 

in tsunami-like earthquakes.  

To summarize, the difference of the seismic cycle behavior reflects the response 

of drastically plate interfaces anatomy to the same forcing (the convergence rate does 

not differ by more than 10% between northern and southern Peru). The northern 

segment is characterized by occurrence of tsunami-earthquakes in the shallow portion 

of the plate interface and slow earthquakes eventually associated with seismicity 

swarms. The southern and central segments are characterized by the occurrence of 

regular large to great earthquakes. Whether slow slip events and tremors can be 

observed there remain as open questions. 
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