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General information 

 

The current thesis was elaborated in Laboratoire des Matériaux et du Génie Physique 

(LMGP) of Grenoble INP and it was financially supported  by the European Marie Curie 

Training network on Functional Interfaces for Silicon Carbide “NetFISiC” (FP7/2007-

2013).  The main scientific objective of the NetFISiC program is to provide Silicon 

carbide material (of various polytypes) with improved and adequate functional interfaces 

for getting a step forward in electronic devices performance. Research efforts are 

dedicated to solve the problems faced by important devices like MOSFET and Schottky 

diodes. Besides, some fundamental research is performed both on the growth aspect and 

on new and innovating devices. Applications in high temperature, high power and harsh 

environment are targeted. 

NetFISiC consortium is composed of 12 partners, including 3 companies. 13 early 

stage researchers (ESR) and 4 experienced researchers (ER) were recruited and trained 

within this network. The consortium is divided in 3 technical work-packages: 

• WP1 (Material growth and related aspects) is dedicated to the development of less 

mature polytypes than 4H (3C and 15R).  

• WP2 (Characterization of material and functional interfaces) is in charge of studying 

the properties of the materials surface and interfaces.  

• WP3 (Devices and demonstrators) is in charge of the electrical testing and fabrication 

of the targeted devices. 

For each of these young researchers, the individual training at the host institution is 

enriched by specific shared training in other partner's institution and joint training 

activities (2 workshops, 3 training schools, 3 tutorial days and other training events) 

organized by the network. 

The work of the current thesis is performed within WP1. Collaborations were mainly 

achieved with 4 partners of the network. A two-week shared training took place in the 

“Applied Physics department” of “Friedrich-Alexander-Universität Erlangen” in 

Germany. Hall electrical measurements were performed in nitrogen doped SiC crystals 

(the results are presented in Chapter 5). A secondment of one week was performed in 

“Laboratory Charles Coulomb” at the “University of Montpellier 2” in France. Raman 

spectroscopy analysis was carried out in nitrogen doped samples (the results are given in 
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Chapter 5) and a conference proceeding was written. 15R-SiC bulk crystals were 

optically characterized in “Institute of Applied Sciences, Division of Optical Diagnostics” 

of “Vilnius University” in Lithuania.  Three conference proceedings were written, 

including an oral presentation. Structural analysis of polytype interfaces was performed 

using a TEM at the “Department of Physics” of “Aristotle University of Thessaloniki” in 

Greece. Results of the analysis are presented in Chapter 4. Last, a close collaboration 

took place with the second ESR of the network at the “Laboratoire des Matériaux et du 

Génie Physique” of “Grenoble INP” in France. A combined work of experiments and 

numerical simulation was made, for a better understanding of the phenomena related to 

the growth process. Some of the topics that were studied are: development of the process, 

foreign polytype nucleation and nitrogen doping. Numerical simulation results and 

thermodynamic analysis results are given in Chapters 2, 3 and 4. In total, four conference 

proceedings, including two oral presentations and one journal paper were written.  

Besides NetFiSiC network, collaborations were made with the “Nanophysics and 

Semiconductors” departments of “NEEL Institute” of Grenoble, for the 

cathodoluminescence analysis of SiC crystals (results are given in Chapter 3) and the 

“Institut Laue – Langevin” of Grenoble for X-ray analysis of the grown crystals. The 

nitrogen concentration of SiC crystals was determined using SIMS at “Centre de 

Recherche Public-Gabriel Lippmann” at Luxembourg (results given at Chapter 5).  
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Introduction  

Electronics is one of the most attractive and rapidly growing technological field, due 

to the importance in economical, industrial and social life of people. Electronics can be 

separated in different categories based either on their characteristics or the applications 

they serve. Semiconductor electronics exploit the electronic properties of semiconductor 

materials like Silicon, Germanium, Gallium Arsenide and Silicon Carbide (SiC). 

Regardless the semiconductor used, some of the requirements that all electronic 

applications need are high efficiency, low production cost and adaptability to the various 

needs. Silicon is the most widely used semiconductor. That arises from the properties of 

the material itself, the fact that it can be grown in large size crystals and form easily an 

oxide (Silicon dioxide) with exceptional properties that are important for electronic 

devices. However, due to the demands for further improvement in efficiency and energy 

saving, Silicon technology, in power electronics, is reaching its limits. Thus, researchers 

are exploring other semiconductor materials to substitute Silicon. Silicon Carbide is one 

of the most promising competitors and SiC devices have already replaced silicon devices 

in some specific electronic systems.  

A great effort was given by industrial and university researchers in the last decades, 

in order to increase the size and quality of the grown SiC crystals, improve the epilayers 

characteristics, study the interfaces of SiC and SiC oxides and the implantation of various 

dopants, solve the problems faced in MOSFET and Schottky diodes, develop the 

packaging of SiC devices and implement SiC modulus in electronic circuits.  

This thesis will bring some new insight into the field of SiC bulk growth from the 

vapor phase. The topics that were studied are i) development of the process: the aim is 

to propose and evaluate some strategies in order to enlarge SiC crystals of a few 

millimeters in diameter. This requires a thorough study of heat and mass transfers in the 

growth cell, ii) polytype stability: the purpose is to highlight the governing parameters 

for the destabilization of SiC polytypes and study the propagation of foreign polytype 

inclusions. Such polytype instabilities lead to the degradation of the grown material and 

continuously of the produced devices, iii) bulk crystal growth of 15R-SiC. Indeed a 

possible candidate to replace 4H-SiC polytype in MOSFET devices, effort is given to 

find the key parameters for 15R-SiC stabilization, iv) nitrogen incorporation: With 
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nitrogen being the most commonly used n-type dopant in SiC, a better description of the 

dependence of nitrogen concentration in the grown crystals with respect to the various 

growth parameters is needed.  

According to the presented topics, the structure of the present thesis is as following. 

The first chapter is an introduction to SiC technology followed by the presentation of its 

main structural characteristics and properties. An introduction to the growth technique 

that was used in the present work follows. At the end, the main contribution of the current 

thesis in the field is mentioned.  

In the second chapter, we present details of the growth process. The growth apparatus 

that was used is displayed, as well as the effect of the various crucible characteristics in 

the temperature distribution, the growth rate and other important parameters for growth. 

Effort was given towards the development of the process, in order to grow SiC crystals 

of sufficient size and structural quality. Initially, a contactless growth configuration was 

developed and continuously numerous components of the growth crucible were 

modified, to allow the control of crystals’ characteristics.  

In the third chapter, we investigate the nucleation and propagation of foreign 

polytypes during the bulk growth of SiC crystals. This is a combined work of 

experimentally obtained transitions and a thermodynamic analysis coupled with full 

computational simulation of the process. Two specific criteria must be fulfilled for a 

foreign polytype to be nucleated. Once the nucleation point is located, the propagation 

of the foreign polytype in the volume of the grown crystal can be comprehended. That is 

depending on the evolution of crystal’s shape and the competition of the various growth 

mechanisms.  

Once the stabilization or destabilization of the SiC polytypes are better perceived, an 

attempt is made to stabilize the growth of the 15R-SiC polytype. In the fourth chapter, 

the effect of various growth parameters in the stabilization of the specific polytype are 

explored. As a final objective, the growth parameters that could preferentially enhance 

the growth of the 15R-SiC are highlighted. 

The fifth and last chapter is dedicated to the nitrogen incorporation during bulk growth 

by the Physical Vapor Transport method. Indeed as the most commonly used dopant, no 
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full description exist for the incorporation of nitrogen in SiC. We contribute to this effort 

by exploring the nitrogen concentration in the grown crystals as a function of various 

growth parameters. Considering the adsorption/desorption mechanisms at the growing 

surface, effort is given to explain the experimentally obtained trends.  

At the end general conclusions, open issues and propositions for future studies close 

the current study.    
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Chapter 1 
 

Silicon Carbide  

Background, History and Growth 
 

 

 

This chapter is an introduction to Silicon Carbide and its growth techniques. In the first 

part, a brief overview of SiC history and electronic applications is given, followed by the 

analysis of its characteristics, like polytypism, polarity and doping. The second part is 

dedicated to the growth of SiC, focusing on seeded sublimation growth, which is the 

technique used at this work. The contribution of the present thesis to the bulk crystal growth 

of SiC from the vapor phase will close this chapter.  
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1.1 SiC Background  

 

1.1.1 SiC History 

 

The history of Silicon Carbide begins back in 1824 when Jöns Jakob Berzelius (Swedish 

chemist) suggested the idea that a Silicon-Carbon chemical bond could exist. A few decades 

later the American inventor Edward G. Acheson after quitting from Thomas A. Edison’s 

laboratories, began his own experiments on methods for producing artificial diamonds in an 

electric furnace. In 1891, he heated a mixture of clay and powdered coke in an iron bowl, 

with the bowl and an ordinary carbon arc-light serving as the electrodes. He found bright 

green crystals attached to the carbon electrode and thought that he had prepared some new 

compound of carbon and alumina from the clay. He called the new compound Carborundum 

because the natural mineral form of alumina is called corundum. This idea gave birth to the 

commercial Acheson process, named by its founder, for making large quantities of SiC for 

the abrasive industry, since SiC is second in hardness after diamond [1]. SiC can also form 

naturally, however it is an extremely rare mineral that is even older than our solar system. 

Produced as supernova remnants or ejected from carbon rich red giant stars, these pre-solar 

SiC grains are trapped as micron size particles in meteorites. Moissanite is the name given 

to naturally formed SiC, in honor of the French chemist Henri Moissan who first discovered 

moissanite after examining rock samples from a meteor crater located in Canyon Diablo, 

Arizona in 1905 [2]. The world record for natural Moissanite is a crystal found by Shefa 

Yamim, an Israeli exploration and mining company along the Kishon River, near Haifa in 

northern Israel. The length of the crystal is about 4.1 mm [3].  

Almost a century later and in 1907, H.J. Round produced the first Light Emitting Diode 

(LED) by applying 10V to contacts placed on a SiC crystal, observing yellow, green & 

orange luminescence at the cathode [4]. In 1912, H. Baumhauer used the word “polytypie” 

to describe the ability of SiC to crystallize into different forms varying only in their stacking 

sequence in one direction [5] and in 1950 Frank [6] developed the screw dislocation theory. 

Subsequent growth spiral observations on the (0001) face of SiC crystals by Amelinkx [7] 

& Verma [8] seemed to confirm the idea. The possible use of SiC in the semiconductor 
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industry, created the need of high quality crystals. The beginning was made in 1955 by Lely, 

who developed a method of producing SiC crystals from the vapor phase [9]. It took not too 

long for the first SiC conference to be held in Boston, USA in 1959. The growth of high 

quality SiC crystals produced by the Lely method attracted the interest of many researchers 

and many pioneering works were published after that. However a couple of decades later, 

SiC technology started to fade. The way towards industrially available SiC electronics was 

blocked by the small size of the Lely crystals (~10 mm in length). At that critical point, 

Tairov and Tsvetkov in 1978, introduced a modification of the Lely method that opened the 

way towards controlled growth of bulk SiC crystals [10]. The modified Lely method is the 

only process used today in the industry to produce SiC wafers for electronic applications.  

The first wafers were commercialized by Cree research Inc., in 1991. The later year’s efforts 

were mainly focused towards the increase of size and improvement of quality of SiC wafers 

and epilayers. Significant was the contribution of Matsunami et al. in the development and 

establishment of step-controlled epitaxy [11]. Today 6 inch SiC wafers are available, free of 

micropipe defects while further efforts are made to reduce basal plane dislocations density 

in order to improve the characteristics of the produced electronic devices.  

 

1.1.2 SiC Electronic Applications 

 

Our modern society is based on the availability of electrical energy, which is produced by 

various means like nuclear power, oil, water, sun and wind. This energy has to be converted 

and transferred to the consumers either in an AC form through networks or in a DC form 

with batteries. This transfer is achieved by using electrical energy management and 

conversion circuits, consisted of the so-called power electronics. These high frequency and 

high voltage applications require semiconductor materials with high electron velocity and 

high critical field. The transfer of the electrical energy has to be achieved with the lowest 

cost, meaning that the losses of power should be minimized.  

Si is the most widely used semiconductor for power device applications. It is now 

reaching its theoretical limits due to its small band gap and small breakdown field. Having 

as criteria the large band gap, strong chemical bond, thermal stability and high thermal 



 

8 
 

conductivity, Silicon Carbide, gallium nitride (GaN), diamond and Zinc oxide (ZnO) are 

some of the possible candidates for power electronics (see Table 1.1). Although they share 

similar properties SiC has the largest area of interest as it can be seen in Figure 1.1 compared 

to Si and GaN. That fact, combined with its mature technological status, makes SiC the 

preferred candidate for power electronics.   

 

 

 

Figure 1.1. Diagram of the most important physical properties for power electronics for 

Silicon, Gallium Nitride and Silicon Carbide.  

 

 

 Compared to Si, the breakdown field of SiC is an order of magnitude higher, its saturation 

velocity two times higher and its thermal conductivity three times higher. Practically this 

means that ten times higher voltage and frequency applications can be held with SiC devices, 

while the losses can be much smaller and the operational temperature three times higher. 

Based on the properties of SiC the on-state resistance of a SiC Schottky Diode is around 300 

times smaller compared to Si and a MOSFET device operating at 3kV can practically be 10 

times smaller. The ability to create smaller power electronic devices compared to Si gives a 
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big advantage in terms of manufacturing cost, but also heat management. The higher thermal 

conductivity combined with the lower thermal losses of SiC systems, simplify the cooling 

systems and thus the total operational and manufacturing cost. 

 

Table 1.1: Electrical properties of semiconductor materials [12, 13] 

 Si 4H-SiC GaN Diamond (C) 

Band gap at 300 k [eV] 1.11 3.2 3.4 5.4 

Break down field [MVcm-1] 0.3 2.4 3.4 10 

Electron mobility [cm2V-1s-1] 1500 980 1250 2200 

Hole mobility [cm2V-1s-1] 450 120 30 2000 

Thermal conductivity [Wcm-1K-1] 1.5 5 1.3 20 

Tmax [oC] 125 500 650 700 

 

 

 

1.1.3 Polytypism in SiC.  

 

Silicon Carbide (SiC) exists in more than one crystal structures, a phenomenon that is 

called polymorphism. Specifically in the case of SiC, polymorphism appears along one 

crystallographic direction, a phenomenon called polytypism. The different crystallographic 

forms are called polytypes and in the case of SiC more than 200 polytypes can form [14, 

15]. However, only 4 polytypes are mainly studied, with only one of them being an industrial 

product for power devices.  

Two different approaches can be assumed in order to understand polytypism in SiC. In 

the first one, we consider a crystallographic plane with the highest density of atoms (74%) 

that is called close-packing plane which corresponds to the (0001) crystallographic plane 

(Figure 1.2). Atoms added above the initial plane (atoms in position A) could occupy either 

the available positions B or C. The atoms placed in a third plane could occupy the empty 

available positions A, so the cubic Zinc Blende structure is formed, or the position C (or B) 
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and the hexagonal Wurtzite structure is created. In the cubic structure the stacking sequence 

of the atoms along the [0001] direction will be …ABCABC… while in the hexagonal 

structure it will be …ABAB… If the spheres of the presented model are replaced by a 

Silicon-Carbon pair, the 100% cubic polytype and hexagonal polytype of SiC will be formed. 

A longer scale stacking sequence along the c-axis direction can give rise to a vast number of 

different structures.  

 

 

 

Figure 1.2. Closed packed structure plane. Additional atoms can be added above that plane 

(consisted of atoms A) either in position B or C.  

 

Another way to describe the structure of the SiC polytypes is as following. A tetrahedron 

consisting of 4 silicon (carbon) and 1 carbon (silicon) atoms (CSi4 or SiC4), can be 

considered as the basic structural unit of SiC, see Figure 1.3. A 180o rotation of the 

tetrahedron along the c-axis direction will shift the position of the central atom, when the 

structure is observed through the [11-20] direction (Figure 1.4). The atoms at the edges of 

the tetrahedron are shared between neighboring tetrahedrons. The different stacking of A, 

B, C layers as described before can now be simulated from the 180o rotation or not of the 

basic unit tetrahedron. The stacking sequence of the basic SiC polytypes, the cubic 3C-SiC, 

the hexagonal 2H-SiC, 4H-SiC, 6H-SiC and the rhombohedral 15R-SiC are shown in Figure 
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1.5. The number refers to the number of Si-C bilayers or tetrahedron planes necessary to 

form a unit cell and the letters H, C and R to the hexagonal, cubic and rhombohedral 

structure. A larger settlement of tetrahedrons will result in the reproduction of all the SiC 

polytypes.   

 

 

 

 

Figure 1.3. Basic structural tetrahedron unit of SiC. It consists of four atoms and those on 

the apex are shared between neighboring tetrahedrons. 

 

 

 

 

Figure 1.4. SiC tetrahedron as seen along the [11-20] direction. A rotation of 180o will shift 

the position of the central atom.  
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Figure 1.5. Crystallographic structure of the basic SiC polytypes as seen along the [11-20] 

direction.  

 

Based on the surrounding layer stacking sequence hexagonal and cubic sites are formed. 

Sites with hexagonal-structured surrounding are denoted hexagonal sites and those with 

cubic stacking are denoted cubic sites. Hexagonal and cubic sites differ in the location of the 

next-nearest neighbor. Cubic 3C-SiC consists of only cubic sites, while 2H-SiC of only 

hexagonal sites. Hexagonallity is the number of hexagonal sites to the total number of 

hexagonal and cubic sites. The hexagonallity of 3C-SiC is zero while the one of 2H-SiC is 

100%. The hexagonallity of the most important SiC polytypes is given in Table 1.2. The 

electrical properties of SiC polytypes depend on their hexagonallity. The bandgap takes a 
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minimum value of 2.3 eV for 3C-SiC and a maximum of 3.3 eV for the case of 4H-SiC 

(Figure 1.6).   

 

Table 1.2. Structural characteristics of SiC polytypes 

Polytype Space 
group a (Å)  c (Å)  

Indirect 
Bandgap 

(eV) 

Hexagonality 
(%) 

3C T2
d-F43m 4.36 4.36 2.3 0 

2H C4
6v-P63mc 3.073 5.048 3.3 100 

4H C4
6v-P63mc 3.073 10.05 3.2 50 

6H C4
6v-P63mc 3.073 15.11 3 33.3 

8H C4
6v-P63mc 3.073 20.15 2.86 25 

10H P3m1 3.073 25.18 2.8 20 

15R C5
3v-R3m 3.073 37.7 3 40 

21R C5
3v-R3m 3.073 52.89 2.85 28.5 

24R C5
3v-R3m 3.073 60.49 2.73 25 

27R C5
3v-R3m 3.073 68 2.73 44 

33R C5
3v-R3m   3.01 36 

 
 
 

 

 

Figure 1.6. Indirect bandgap of various SiC polytypes as a function of their hexagonality. 

http://en.wikipedia.org/wiki/Angstrom
http://en.wikipedia.org/wiki/Angstrom
http://en.wikipedia.org/wiki/Bandgap
http://en.wikipedia.org/wiki/Electron_volt
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1.1.4 Polarity of SiC.  

 

Electronegativity of Silicon and Carbon is not the same, thus the bond between Si and C 

is 88% covalent and 12% ionic. A difference in polarity appears along the bond and 

continuously along the c-axis direction. It is energetically favorable to cleave one bond 

between Si and C, rather than three bonds at the bottom of the tetrahedron. As a result, Si 

and C terminated (0001) and (000-1) planes will be formed with the opposite polarity (Figure 

1.7).  Pearson et al. calculated the surface energy of Si and C terminated planes and found it 

to be 2.2 J/m2 and 0.3 J/m2 respectively [16]. 

 

Figure 1.7. Silicon and Carbon terminated planes with opposite polarity formed in SiC.  

 

In more recent studies, the surface energy of the different polytypes was reconsidered 

using ab initio calculations [17]. While small differences in the bulk energy of the different 

polytypes were calculated, the surface energy is found to strongly depend on the hexagonal 

or cubic character of the polytype. The Si-face cubic surface termination has a lower energy 

compared to the hexagonal one, while for the C-face the opposite occurs. Also, the surface 

energy is linearly dependent of the hexagonality of the polytypes, as shown in Figure 1.8. 

The trend is more intense for the case of Si-face, while on C-face no particular evolution is 

obtained. The above findings have a major importance in a number of experimentally 

obtained trends, like the step bunching on the Si-face and the preferable nucleation of 

specific polytypes on silicon and carbon faces.  
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a)        b)  

 

Figure 1.8. a) Cubic and hexagonal surface termination (k and h respectively) for the case 

of 6H-SiC. b) Surface energy relative to the 3C polytype versus surface hexagonality. In the 

inset, the relative surface energy is plotted versus the bulk hexagona llity [17]. 

 

 

1.1.5 Doping of SiC 

 

In order to ensure reproducible and reliable semiconducting properties, SiC crystals or 

epitaxial layers should be doped in a controlled way. For the n or p-type doping of SiC, 

elements of the VA or IIIA group of the periodic table are used respectively. Aluminum and 

Boron are the most commonly used p-type dopants, while for n-type doping Nitrogen and 

Phosphorous are the usual choice. Each dopant will create a different ionization energy state 

depending on the cubic or hexagonal sites (N2k and N2h respectively) that the dopant will 

occupy and also on the dopant concentration in the material [18-20]. The ionization energy 

of the main dopants is given in Table 1.3. The size of the dopants in comparison with the 

ones of the Si and C, will define in which position of the SiC lattice they will be incorporated. 

Si atoms of the SiC lattice will be substituted by Al and P atoms, while C atoms by N. Boron 

is reported to occupy both the Si-site and the C-site, however other reports support that it is 

incorporated only in Si-sites [21].  
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Table 1.3. Ionization energy (in [meV]) of main dopants in SiC polytypes. 

SiC 

polytype 

Dopant  

n-type doping  p-type doping  

N2h N2k P Al B 

4H-SiC 50 90 80 220 330 

6H-SiC 80 140 80 220 330 

3C-SiC 50   270  

 

 

 

Substitution of Si or C atoms by dopants could induce variations in the SiC lattice 

parameters along the a- and c-axis. Both First-Principles Calculations and experimental 

measurements verify the above statement [22-24]. In Figure 1.9 the calculated c/na ratio of 

doped 4H-SiC is plotted as a function of the impurity concentration [23], where a,c and n 

are the a-lattice constant, c-lattice constant and n the number of bilayers constituting the 

elementary stacking sequence, e.g. n=4 for the case of 4H-SiC. The obtained trend is 

opposite for the case of nitrogen and aluminum doping. Above 1020 cm-3 the ratio is 

increasing for the case of Al doping while it decreases when nitrogen is incorporated into 

the SiC lattice. The variations of the a- and c-lattice constants as a function of the 

incorporated nitrogen, boron and aluminum in bulk 6H-SiC crystals were reported by 

Stockmeier et al. [24]. In Figure 1.10 the two lattice constants and the lattice volume of 6H-

SiC are plotted as a function of the doping concentration. Aluminum will increase both the 

a- and c-lattice parameters while boron has the opposite effect. An increase of nitrogen will 

increase the 6H-SiC lattice along the c-axis direction but will decrease the size of it along 

the a-axis. The lattice deformation caused by the presence of dopants can be responsible for 

the appearance of stress during the growth and the formation of defects [25]. The effect is 

more pronounced during the first steps of bulk growth of SiC, due to the presence of residual 

dopants in the source material.  
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Figure 1.9. Change of c/na of nitrogen and aluminum doped 4H-SiC as a function of dopant 

concentration [23].  

 

      

 

Figure 1.10. a and c lattice parameters and unit cell volume measured by XRD in 

dependence of doping concentration for nitrogen, boron and aluminum doped 6H-SiC [24]. 

 

1.2 Growth of SiC 

 

The only condensed phases that occur in the Si and C phase diagram are Si, SiC and 

graphite, Figure 1.11. Unlike most semiconductor materials, growth from the melt cannot be 

applied in the case of SiC. The calculated values show that stoichiometric SiC would melt 

only above 100000 atm and 3200oC [26]. SiC can also dissolve in certain melts e.g. silicon, 

but the solubility of carbon in silicon is very low. Thus, growth from the vapor phase is the 
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mainly used method taking advantage of the sublimation of SiC at 2800oC (P=1atm) and it 

is called sublimation growth. An artificial way to grow SiC from a vapor phase is by bringing 

Si and C-bearing vapors together at high temperatures, through growth by gaseous cracking 

called Chemical Vapor Deposition. Last, the growth from solution can be used with Si or Si 

alloys melts due to their ability to dissolve carbon. 

 

 

Figure 1.11. Phase diagram of Si – C system [27]. 

  

1.2.1 Growth techniques for SiC 

 

Growth from the vapor phase is the preferable technique for growing SiC crystals 

according to its phase diagram. Lely method was the first to grow SiC crystals of different 

polytypes of sufficient quality for electronic applications. The modified Lely method or 

physical vapor transport method (PVT) opened the way to industrialization of SiC and today 

it is the only method producing SiC wafers. The need for further improvement of quality and 

control of growth led to additional improvement of the PVT process or exploring other viable 

options. The principle of gaseous cracking for the supply of Si and C was further developed 

in order to achieve growth rate comparable to the PVT method and produce industrial wafers. 

The technique developed is called high temperature chemical vapor deposition (HT-CVD) 

[28, 29]. Further concepts were presented such as the Halide CVD (H-CVD) [30], Modified 
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PVT (M-PVT) [31] and a combination of HT-CVD and PVT reactor called Continuous Feed 

PVT (CF-PVT) [32]. However the latter techniques are far from producing SiC wafers and 

are currently used at an academic level. In the last years, growth from solution has gained 

interest from many researchers as the potential to grow SiC wafers of large size and of high 

quality has emerged. 

 

1.2.2 Modified Lely method 

 

SiC crystals grown by the Lely method are self-nucleated and their size and shape cannot 

be controlled as they are depending on the local supersaturation close to the growing crystal. 

The main achievement of the PVT technique compared to the Lely method was the control 

of the process in general and the crystallization of SiC in particular. The idea lies in the 

controlled crystallization point on a SiC seed. The resulting geometry for that idea is shown 

in Figure 1.12. A graphite crucible is used for the growth, as in the case of the Lely method, 

because it can withstand the temperature (>2000oC) necessary for the sublimation of SiC. 

The source material consist of a SiC powder, which is placed in the bottom of the crucible. 

At the top of the crucible, a SiC single crystal is placed as seeding material. The crucible is 

surrounded by insulating graphite foam and induction (the most common case) or resistive 

heating are used for operating the necessary high temperature.  

 

 

Figure 1.12. Schematic representation of the seeded sublimation process. The temperature 

profile is shown on the left hand side.  
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The 3 main elementary steps of the growth are: 

1) Dissociative sublimation of the SiC source.  

2) Mass transfer of the gaseous species.  

3) Crystallization or condensation onto the seed SiC crystal. 

 

At temperatures above 1800oC the SiC source material will sublime through the 

decomposition of SiC into Si- and C-containing species, with the more important to be Si, 

Si2C and SiC2. The non-congruent sublimation of SiC leads to a Si-rich vapor phase and 

carbon remains after the SiC is consumed. The species formed from the sublimation of the 

powder are then transferred to the SiC seed crystal. The driving force is a temperature 

gradient applied along the graphite symmetry axis. Typical values of the temperature 

gradient between the source and the seed crystal are 5-15 K/cm. Crystallization takes place 

at the SiC seed, through condensation processes that take place at the growing surface. The 

sublimation and condensation rate depends on the difference in equilibrium partial pressure 

and actual partial pressure of the SiC species near the source and the seed respectively. The 

equilibrium partial pressure is depending on the temperature while the actual pressure of the 

species depends on mass transfer phenomena. The difference among the equilibrium and the 

actual partial pressure is also used to express supersaturation. The higher the difference 

between these two quantities (the higher the supersaturation is) the higher the crystallization 

rate will be.  

 

For a better understanding of the process, the heat and mass transport mechanisms will 

be analyzed. 

 

Heat transfer. The heat transfer mechanisms in the PVT system are i) conduction, ii) 

convection and iii) radiation.  

 

i) Conduction takes place in the solids due to the difference in temperature. In the case of 

PVT process for SiC, the solids are the graphite parts, the solid SiC and the insulation. 
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The energy flux density (W/m2) is proportional to the temperature gradient dT/dx, 

(equation 1.1). 

dx

dT
kAQ /                                                   Eq.1.1 

Q is the energy per unit time [W], A the surface [m2], k the thermal conductivity of the 

material [Wm-1K-1], dT/dx the temperature gradient. 

 

ii) Convection is the transfer of energy between an object and its environment, due to fluid 

motion. As before, flux density Q/A, is proportional to the fluid/solid temperature 

difference, (equation 1.2). 

)(/ 12 TThAQ                                                  Eq.1.2 

h is the convective heat transfer coefficient.   

 

iii) Radiation. Radiative heat transfer is energy transport due to emission of electromagnetic 

waves from a surface. The radiation does not require a heat transfer medium, and can 

occur in vacuum. The heat transfer by radiation is proportional to the fourth power of 

the absolute material temperature, (equation 1.3). 

4/ TAQ                                                    Eq.1.3 

The proportionality constant σ is the Stefan-Boltzmann constant equal to 5.67 x 10-

8 Wm-2K-4 and ε is the surface’s emissivity.  

 

Heat transfer through radiation in open cavities is the most significant heat transfer 

mechanism because of the high temperatures involved in SiC growth. The design of the 

growth crucible is of major importance for the efficiency of heating and proper temperature 

profile for growth, as will be analyzed in chapter 2.  

 

Mass transfer. The mass transfer of silicon and carbon containing vapor species from the 

source to the seed is mainly driven by convection and diffusion. Convection arises from the 

pressure difference due to the chemical reactions and temperature differences and diffusion 
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arises from the concentration or temperature gradients. The total flux of the species Jtotal is 

the contribution of the two phenomena and it can be written,  

CDtota l JJJ                                                      Eq.1.4 

JD is the total diffusion flux and JC the total convection flux. 

Diffusion flux is created due to the contribution of the concentration and temperature 

gradient, thus it can be written,  

Nk
T

T
DnDJ

l

T
klkl

D ,...,1,                                      Eq. 1.5 

where D and DT are the diffusion coefficients and n the molar density. Thermal diffusion is 

a second order phenomenon and it is usually significantly weaker than concentration 

diffusion.  

Convection flux is caused due to Stefan and buoyancy flow. Buoyancy is a temperature 

difference and gravitational induced phenomenon. Stefan flow is a pressure 

gradient transport phenomenon induced by the production or removal of the species at 

an interface. Such processes in the PVT system are the sublimation at the SiC source and the 

condensation at the SiC seed. The lower the pressure of the inert gas (usually argon) is, the 

more important the convection due to the pressure gradient (Stefan flow) will be. If the 

pressure of the inert gas is comparable to the partial pressure of the SiC species the 

interaction of argon species cannot be neglected. The distribution of argon gas inside the 

growth cavity was calculated by Gao et al. [33]. The difference in argon pressure between 

the source and seed areas indicate that a flow of argon opposed to the upward movement of 

species (Figure1.13). Therefore, the interaction between argon and species will reduce the 

growth rate.  

 

http://en.wikipedia.org/wiki/Transport_phenomenon
http://en.wikipedia.org/wiki/Interface_(chemistry)
http://en.wikipedia.org/wiki/Condensation
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Figure 1.13. Pressure distribution of argon inside the growth cavity [33]. 

 

The contribution of each of the transfer mechanisms in the total growth rate is a complex 

problem to study. For that, the full computational modelling of the process is required. 

Various models that include or not the spatial and temporal evolution of the process as well 

as different chemical reactions, boundaries conditions and mass transfer mechanisms have 

been proposed [34]. 
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1.3 Purpose and main contribution of the current thesis.  

 

The present work is focused on the bulk growth of SiC by the top seeded sublimation 

process. The main contribution to the field is in two main topics. The first one include the 

problem of polytype stabilization or destabilization during bulk growth of SiC crystals and 

the second the nitrogen incorporation in the PVT process.  

We will try to answer the following questions: why SiC polytypes destabilize during PVT 

bulk growth? Where and when a foreign polytype inclusion is formed? How a foreign 

polytype will propagate in the crystal’s volume once formed? What is the way to stabilize 

15R-SiC? How can we describe the incorporation of nitrogen during PVT growth of SiC? Is 

the incorporation of nitrogen independent of the polytype of the grown crystal? What are the 

physical laws that describe the incorporation of nitrogen with respect to various growth 

parameters in the PVT process and what are the most contributing incorporation mechanisms 

of nitrogen in SiC?  

In an effort to answer these questions the following “strategy” consisting of four steps 

was followed: i) development of the process: the aim was to propose and evaluate some 

strategies in order to enlarge SiC crystals from a few millimeters to 15-20 mm in diameter. 

This required a thorough study of heat and mass transfers in the growth cell, ii) polytype 

stability: the purpose is to highlight the governing parameters for the destabilization of SiC 

polytypes and study the propagation of foreign polytype inclusions, iii) bulk crystal growth 

of 15R-SiC: various growth conditions were applied in an effort to find the key parameters 

for 15R-SiC stabilization and iv) nitrogen incorporation: nitrogen concentration in the 

grown crystals was determined as a function of various growth parameters.  
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Chapter 2 
 

Process development  
 

 

In the present work, SiC crystals were grown from the vapor phase, using the modified Lely 

or PVT method. The high temperature growth apparatus that was used and the various parts 

of the growth furnace are presented in the first part of this chapter. The development of the 

growth process in order to control the shape and the evolution of the grown SiC crystals is 

analyzed in the second part. All these modifications allowed the growth of reproducible SiC 

single crystals of a few millimeters in thickness and in length.  
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2.1 Experimental apparatus 

Temperatures above 2000 oC are necessary for the growth of SiC crystals from the vapor 

phase. This introduces limitations in the control and/or monitoring of the growth process and 

the materials that can be used for the growth furnace. The different units of the PVT reactor 

(section 2.1.1) and the crucible used for growth (section 2.1.2) are described below.  

 

2.1.1 PVT set-up 

 

The growth apparatus used consists of the following units: the power generator, the 

capacitor box, the electronic controller, the safety sensors, the temperature and pressure 

measurement devices and the reactor itself, as shown in Figure 2.1. 

 

a)   b)  

 

Figure 2.1. (a) Illustration of the different units that consist a PVT growth apparatus. (b) 

Photo of the growth apparatus that was used for the growth of bulk SiC crystals.  

 

 

AC power circuit. The SiC growth reactor is heated by induction. For that, an AC circuit 

consisted of a generator, a capacitor and an inductor is created, as shown in Figure 2.2a. The 

generator provides an AC signal to the circuit. The sinusoidal nature of the voltage and 

current of the AC circuit are in phase and the electrical power that is voltage times current 
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(P= V*I) is maximized when the voltage and current are “lined up” with each other. The use 

of a resistor in an AC circuit will not cause a phase shift and the power consumed is called 

“active” or “real” power and is measured in Watts [W]. It corresponds to the power 

consumed by the system to produce a real work and it is the desired outcome of an electrical 

system.  

The use of a capacitor or an inductor will cause a 90 degree phase shift between voltage 

and current. The resulting power will have a value of zero every time the voltage or current 

has a zero value since the two quantities are multiplied to get power. This is not a desirable 

model because although the source is generating power, no work is being done at the load. 

This type of power is known as “reactive” power because it counteracts the effects of “real” 

power and it is measured in reactive volt-amps [VA]. The inductor will “lead” and the 

capacitor will “lag” the voltage waveform by 90 degrees compared to the current. So it is 

said that the inductor consumes while the capacitor generates “reactive” power. Since we 

need an inductor in our circuit, a capacitor is connected in parallel, in order to provide the 

“reactive” power. 

Due to the use of resistive, capacitive and inductive elements in our system the phase 

angle between voltage and current will vary. The desired outcome is to maximize the “real” 

or “active” power and reduce the reactive one. A power triangle is created (Figure 2.2b), 

showing the interrelation between the different in feature power losses. The power that we 

have to supply in order to obtain the power needed by our system (the real power) is called 

“complex” power and is measured in volt-amps [VA]. It is the vector sum of the “real” and 

“reactive” power, 

 

22 QPS                                            Equation 2.1 

where S is the complex power, P the active power and Q the reactive power.  

Depending on the characteristics of the coil, the dimensions of the crucible placed inside 

the coil, the operational frequency, the appropriate capacitance and the power of the 

generator are well defined.  

 



30 

 

a)      b)  

 

Figure 2.2. a) Electronic circuit used in the experimental apparatus. Inductive, resistive and 

capacitance elements are used in the AC system. b) Power triangle formed after the use of 

the mentioned elements. 

 

Electronic controller. It consists of a homemade electronic unit (automation) that controls 

all the peripheral electronic systems: a gas system (pressure controllers, mass flow 

controllers and pneumatic valves), a heating system (capacitor and generator), a CPU unit 

with the necessary software and a screen.  

 

 

The reactor. The chamber is composed of a water cooled quartz jacket, mounted on 

specially designed aluminum flanges at the top and the bottom. The graphite crucible is 

placed inside the quartz tube. The crucible is supported by a cylindrical graphite tube and its 

position on the vertical axis is fixed. Outside the quartz tube, a water cooled copper coil is 

placed, as shown in Figure 2.3. The coil can move in the vertical direction. As a result, the 

relative position of the coil and the crucible can be adjusted. At the top of the reactor, a 

dichromatic optical pyrometer [1] is placed for the measurement of the temperature inside 

the crucible. For that, a quartz window is located in the top aluminum cover. The whole 

system of the PVT reactor is supported on a specially designed aluminum chassis, able to 

sustain the gas panel of the reactor and the wiring necessary for all the controllers and 

sensors. The chamber is perfectly sealed and no leakage can be detected using a secondary 

vacuum He tester.  
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a)          b)  

Figure 2.3. a) Photo and b) schematic representation of the PVT reactor. The graphite 

crucible is placed inside a double water cooled quartz tube. The induction coil is 

surrounding the quartz crucible and is water cooled. On the top, a pyrometer is placed for 

the measurement of the temperature through a quartz window. The crucible is supported by 

a graphite support attached to the bottom aluminum flange of the reactor.   

 

 

 

Figure 2.4. Gas panel of the PVT reactor used. At the input, argon and nitrogen gas supplies 

are connected through a system of mass flow controllers and pneumatic valves. At the output, 

a butterfly valve for pressure control is connected to a rotary pump. All the necessary 

equipment for pressure measurement is connected to the body of the reactor. 
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Gas panel. For the needs of our experiments, the gas panel of the reactor was customized, 

as shown in Figure 2.4. Argon and nitrogen gases are used. For both gases a set of mass flow 

controllers, pneumatic valves and micro-valves ensure a large flexibility of gas injections 

under controlled total pressure. That allows to perform nitrogen marking during growth and 

to have a precise control of the two gases ratio during nitrogen doping. The input of the gases 

is at the bottom part of the reactor. At the top, the pressure measurement, a pressure safety 

valve and a butterfly valve are located. The flow of argon and nitrogen during an experiment 

has an upward direction. A rotary pump able to create a vacuum of 10-3 mbar is used for 

pressure control. 

 

 

2.1.2 Crucible  

 

Due to the need of high temperature processing for SiC growth (above 2000oC), the 

building materials of the growth crucible must have the following characteristics: i) it should 

be a refractory material, in order to withstand the high temperature growth, ii) chemically 

stability with the chemical system of Si-C studied, must be ensured, iii) the cost of the 

material must be reasonable and iv) the material itself should allow easy handling (ex. 

mechanical machining). Graphite is the best solution, fulfilling all the requirements and it is 

used for the fabrication of the crucible in our experiments. A schematic representation of the 

crucible and photos of the main parts used are given in Figure 2.5 and Figure 2.6. Two 

different types of graphite materials are combined, high density graphite parts (called 

crucible) and porous graphite felt with a “fiber like” structure (called insulation). As shown 

in Figure 2.5 the crucible is surrounded totally by insulation.  

 

The crucible can be separated in two parts. First, the inner graphite crucible, where growth 

takes place that consists of the “support of crucible”, the “container of the source material”, 

the “reaction chamber” and the “seed holder” and second, the outer graphite crucible called 

the “susceptor”, as shown in Figure 2.5. 
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Figure 2.5. Schematic representation of the experimental apparatus used for the growth. 

Two different types of graphite materials were used, bulk graphite (crucible) and porous 

graphite felt with a fiber-like structure (insulation). The main parts of the crucible are 

displayed. 

 

 

Figure 2.6. Main parts of the graphite crucible used for the growth of bulk SiC crystals.  
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Indirect heating. Due to the presence of the electromagnetic field (EM), caused by a high-

frequency alternating current AC in the induction coil, the electrically conductive graphite 

susceptor is heated due to Eddy or Foucault currents. The resistance of the graphite material 

will lead to its Joule heating. The intensity of the electromagnetic field inside a conductive 

material is reducing exponentially from its surface. The depth at which the intensity of the 

radiation inside the material falls to 1/e (about 37%) of its original value at the surface is 

called penetration or skin depth h. In the limit where σ >> ωε, h equals to  

][/2 m                                             Eq. 2.2 

where ω is the angular frequency of the electromagnetic wave [s-1], σ the conductivity of the 

material [Sm-1] and μ the magnetic permeability [H·m−1]. The lower the frequency is, the 

higher the penetration depth will be.  

Two different cases can be distinguished based on the frequency of the EM. When high 

frequency (~100 kHz) is applied, a susceptor is used. The susceptor is the only graphite part 

heated due to the EM, because of the small penetration depth. Thus, the inner graphite 

crucible is heated by radiation in open cavities, conduction when there is contact between 

two or more parts and convection. The outer crucible (susceptor) works as a heating furnace. 

Like this, more homogeneous heating can be achieved, and the temperature profile is less 

sensitive to possible fluctuations of the coil’s current and degradation of insulating materials. 

This is called indirect way of heating. In the second case, when a low frequency EM is 

applied (~10-20 kHz), no susceptor is used. The inner crucible will be heated because of the 

EM, due to the higher penetration depth. As a result, precise control of the temperature 

distribution in the crucible and a selective heating of graphite parts can be achieved. This is 

called direct way of heating. In our experiments, indirect heating was applied due to the high 

operational frequency (100 kHz).  

 

Top heat sink. The modified Lely method is based on the sublimation and continuously 

condensation of SiC and this implies that both source and seed have different temperatures. 

The implementation of an axial temperature gradient is thus necessary in the crucible. In 

order to achieve and control that, an open hole is created at the top of the crucible and 
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insulation acting as a heat sink (Figure 2.5). The same hole also allows the temperature 

measurement close to the back side of the crystal. The influence of the heat sink diameter on 

the calculated temperature distribution in the crucible has been examined by many authors 

[2-4]. Two different cases can be mentioned: 

  

i)  A fixed power supply is considered. Results from simulation (Figure 2.7) show that the 

temperature in the different parts of crucible is reduced when increasing the diameter of the 

heat sink, as the radiative heat losses are increased [2]. The temperature drop is higher if 

closer to the heat sink. As a result, the temperature gradient will increase by increasing the 

diameter of the heat sink (Figure 2.7). In another study, it was shown that the radial 

temperature gradient will also be influenced but in a smaller extent compared to the axial 

temperature gradient (Figure 2.8a).  

 

 

 

Figure 2.7. Influence of the diameter of the hole used as a heat sink on the temperature of 

the different part of the reactor along the symmetry axis [2]. Simulation results for a fixed 

input power. 
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a) b)  

 

Figure 2.8. (a) Radial temperature variations across the seed surface (0 is the position of 

the center and 0.016 the edge of the seed), (b) axial temperature variations (0 is the position 

of the top of the powder and at 0.08 the seed crystal) for various top window diameters [3] 

 

a)                                                    b)  

 

Figure 2.9. Difference in the temperature gradient )( T for the case of a  weaker (a) and a  

stronger (b) heat sink (HT), for the same seed temperature. In case (b) higher power is 

needed due to higher loses of heat. As a result the temperature in the source will be 

increased. The temperature gradient will be higher for case (b).   
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ii)  A fixed temperature in the seed is considered and the effect of the heat sink is examined. 

In order to reach a specific temperature more power is needed in the case of a stronger heat 

sink (Figure 2.9b). As a result, the temperature of the powder will be higher, resulting in a 

higher temperature gradient. The trend is similar as before, as an increase of the heat sink 

size will lead to an increased temperature gradient. 

 

Seed holder. The top part of the inner crucible is composed of the “seed holder” that is used 

for the support of the seed and the grown crystal. The geometry of this part locally influences 

the temperature profile in the close to the seed area and the formation of parasitic polycrystal. 

As it was shown in previous works [5-7] by the proper design of the seed holder part, a shift 

in the isothermal lines can be achieved. This has a direct effect on the shape of the crystal, 

that can change from flat or concave to convex. As a consequence, the SiC single crystal can 

expand over the parasitic polycrystal SiC grown at the periphery, on the graphite crucible 

(Figure 2.10). As a consequence, by optimizing the seed holder, the size and the quality of 

the grown crystals can be improved (Figure 2.11).  

 

a)    b)  

 

Figure 2.10. a) Three different graphite lid designs. b)  Crystal grown by using the design 

(c) allowed the enlargement of the SiC crystal over the parasitic polycrystal SiC [7]. 

 



38 

 

 

Figure 2.11. Longitudinal cut of a 6H-SiC crystal showing an increase in diameter from 35 

to 45 mm over the polycrystal SiC grown on the graphite, after using a conical seed holder 

[6]. 

 

Thermal screen. Thermal screens are located in the reaction chamber area, between the SiC 

source and seed, Figure 2.5. These graphite parts serve four basic needs i) guide the SiC 

species of the gas phase, ii) shape the isothermal lines or the temperature profile in the 

reaction chamber and close to the seed area, iii) react with SiC species and iv) work as carbon 

source.  

In order to improve the process yield and to avoid the formation of polycrystal over SiC 

single crystal, graphite parts have to be used in order to guide the SiC gaseous species 

towards the SiC substrate and not the graphite crucible. At the same time these graphite parts 

work as thermal screens [5, 8, 9]. The aim is to create a temperature field in the crucible with 

higher temperature everywhere else compared to the growth interface. As a consequence, 

SiC species will be preferably deposited on the substrate. The experimental and simulation 

results of this idea are presented in (Figure 2.12) [5]. Due to the use of a flat screen the 

parasitic polycrystal nucleation on the graphite lid was suppressed and the contactless 

growth of a single crystal SiC was achieved. From simulation results, it is shown that due to 

the temperature profile created by the flat screen, the carbon flux was increased in the area 

of the substrate, Figure 2.12.  
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Figure 2.12. Deposited carbon flux for two different growth configurations. Direct flux to 

the top of crucible (a) and use of a flat screen at the periphery (b). In case (b) no parasitic 

polycrystalline SiC is observed [5]. 

 

 

Figure 2.13. Effect of thermal screen shape on the temperature distribution inside the 

growth vessel and the  grown crystal shape [9]. 
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Further studies have shown that the geometry of the thermal screens can directly affect 

the shape of the grown crystals [9]. Two different types of thermal screens were used, Figure 

2.13. The conical one allowed the enlargement of the SiC grown crystal, while a crystal with 

constant diameter was grown with a cylindrical guide. Simulation results show the change 

in the isothermal lines from convex in the first case to flat in the second one. 

 

Powder. The SiC source material is located at the bottom of the inner crucible. Due to the 

fact that the SiC growth is non-congruent, carbon remains after the growth, giving rise to a 

graphitization from the edge to the center. The powder can be separated in three areas after 

growth as shown in Figure 2.14. The graphitized area, located usually at the periphery, the 

top part with a needle like structure and the central part with sintered SiC. The area in the 

growth furnace with the higher temperature is called “hot point” and is usually located in the 

area of the powder. The position of the hot point depends on the coil and crucible geometry 

but mainly upon the relative position of the two.  

A higher growth temperature will increase the sublimation rate of the SiC source powder. 

This is shown in Figure 2.15a-b for growth temperature of 2350oC and 2200oC respectively. 

The bigger graphitized area and the growth rate which is 3-4 times higher at 2350oC 

(~1mm/h) compared to 2200oC (250-300 μm/h), is a direct indication of higher powder 

consumption. The change in the growth temperature has no significant effect in the position 

of the hot point which is located in the bottom of the powder for both cases (area in red 

dashed lines). For a given growth temperature (2200 oC), the coil was shifted 1cm higher 

(Figure 2.15c) compared to case in Figure 2.15b. The direction of the diffusion paths of the 

gaseous SiC species (white arrows) changes towards the top and bottom of the crucible, 

according to the temperature destribution. The shift in coil’s position has shifted the position 

of the hot point to the middle of SiC powder’s volume.   

Even if many studies have been made on source powder consumption and the different 

features formed [10, 11] up to the lately 3D depiction of the PVT growth [12], the powder 

consumption is not yet fully described. The main difficulty arises from the fact that the 

system of SiC powder and graphitized areas is evolving during growth. Someone has to 

tackle the problem of continuously moving boundaries between the different areas and the 
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change in density and thermoelectrical properties, Figure 2.16. As a consequence, both the 

heating efficiency and the temperature profile are affected. Continuously, the temperature 

gradient, the growth rate and the Si/C ratio in the gas phase will change. All the above must 

be considered in the case of a long time experiment to ensure growth stability.  

 

 

Figure 2.14. Section of the SiC source powder after 25 hours of growth. The growth 

temperature was 2200 oC, the temperature gradient around 10oC/cm and the pressure 12 

mbar. Three different areas are found, the graphitized area at the periphery (due to the non-

congruent growth of SiC), the sintered SiC area and the top part with a needle like structure. 

 

 

Figure 2.15. Consumption of SiC source powder for (a) Tgrowth 2350oC and (b) Tgrowth 

2200oC. The pressure was 13mbar and the duration of the growth 7 hours. (c) Shift of coil 

compared to case (b) by 1cm, while the growth temperature was kept constant at 2200oC. 

The red dashed lines indicate the hot point area, while the white arrows show the diffusion 

paths of the SiC species. 
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Figure 2.16. Consumption of SiC powder during a 50 hours PVT growth. Series of digital 

X-ray images captured online during PVT crystal growth of SiC for different SiC sources 

and different stages of growth. Source A(B) contained microscopic SiC powder (pieces) 

with a particle size of 10-50 μm (5-20 mm) [11]. 

 

 

2.1.3 Growth procedure 

 

For growth of SiC single crystals, seeds of different polytypes (4H-SiC, 6H-SiC and 15R-

SiC) grown in our laboratory and Lely crystals were used. The orientation of growth was 

on-axis and 3-4o off-axis towards [11-20] direction of both Si and C-face polarities. The 

dimensions of the substrate were in the range of 5 to 17 mm and it varied depending on the 

demands of each experiment. In all cases, the growth surface was polished by chemical 

mechanical polishing (CMP).  

Before growth, a vacuum of 10-3 mbar is obtained. The different stages of growth are 

summarized in Figure 2.17. The crucible is manually heated up to a temperature higher than 

(1000 oC) that is possible to detect by the pyrometer. Above 1100oC the heating rate is 
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automatic and fixed at 8oC/min, up to the growth temperature (time period t1-t2). At the same 

time, the pressure is set at 200 mbar in order to prevent the sublimation of SiC powder. Once 

the crucible is heated at the growth temperature, both temperature and pressure are constant 

for a time period t2-t3. Afterwards, pressure is decreased (t3-t4) down to the growth pressure 

and it is the moment that growth actually starts. Before this step, SiC powder sublimes 

despite the high pressure in the reaction chamber but the growth rate is very low so it can be 

considered that no growth occurs. During growth, all parameters are stable (t4-t5). In order 

to stop the growth the pressure in the reactor is increased at 250 mbar and sublimation of the 

SiC powder is prevented. Next a cooling rate is settled (t5-t6).  

 

 

 

 

Figure 2.17. Experimental procedure followed in all the experiments mentioned in the 

current work. The variations of temperature (red line) and pressure (blue line) at the 

different steps are shown. 
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2.2 Process development  

 

Effort was made to improve the quality and increase the size of the grown crystals. 

Contact between the grown crystal and the graphite crucible or parasitic polycrystalline SiC 

can lead to degradation of crystal quality through the formation of defects, low angle 

boundaries, foreign polytype inclusions and remaining strain during cooling down process 

due to different thermal expansion properties. For that, the geometry of the graphite crucible 

was redesigned in order to enhance a contactless growth of the single SiC crystal. Also, 

improvement was made in controlling the shape of the crystal and its evolution during 

growth, as it is related to the propagation of defects and the occurrence of foreign polytypes 

(see Chapter 3).  

 

 

2.2.1 Contactless growth 

 

During seeded sublimation growth of SiC, the grown crystal can be in contact with the 

walls of the graphite crucible on which parasitic polycrystalline SiC can nucleate. As a 

consequence, defects, low angle boundaries, formation of foreign polytype inclusions and 

remaining strain in the grown crystal due to the different thermal expansion coefficient are 

created [8, 13]. Studies have been made towards the control of the parasitic polycrystal SiC 

formation through the control of supersaturation [14], the use of thermal screens [5] or 

modifications of the graphite crucible [6].  

In order to improve the quality and the size of the grown crystals a geometry that allows 

the contactless growth of crystals was developed. That was achieved mainly by 

modifications in the seed holder. The improvement on the grown crystals is shown in Figure 

2.18. In Figure 2.18a the grown crystal is in direct contact with the parasitic polycrystal and 

its enlargement is blocked. By reducing the thickness of the graphite part in front of the seed 

(Figure 2.19a-b), the diameter and length of the crystal have been increased, see Figure 

2.18b. However SiC polycrystal is still present close to the seed and the grown crystal.  
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Figure 2.18. Improvement of crystal size and quality from a to d of SiC crystals grown by 

the PVT method. a) SiC single crystal in contact with graphite crucible and pa rasitic 

polycrystalline SiC. b) By modifying the graphite crucible (see text) the diameter and length 

of the grown crystal is increased. c) After further improvement of the supersaturation profile 

close to crystallization area, no parasitic polycrystal SiC is formed close to the grown 

crystal. d) A contactless geometry is finally developed where the characteristics of the 

crystal are improved. 

 

Further improvement of the crucible followed, in order to prevent the formation of 

polycrystal SiC. The graphite seed holder was modified from the design shown in Figure 

2.19a, to one of Figure 2.19b. An area of lower temperature compared to the one of the 

crystallization area was created at the top of the crucible. As a result, supersaturation 

distribution close to the seed area changed and a flux of SiC gaseous species towards the top 

part of the crucible (flux Jp) was created. That particular flux of species contributes to the 

formation of polycrystal SiC at the lower temperature area. The Jp flux is the sum of i) the 

flux of SiC species coming directly from the SiC source material (JSC) and ii) the flux of SiC 

species resublimed from the SiC crystal (JRS). Using such a configuration, the formation of 

polycrystal SiC close to the single crystal and a contact of the grown single crystal with the 

graphite guide cone is avoided. The crystal grown in this crucible configuration is shown in 
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Figure 2.18c. The single SiC crystal is free of parasitic polycrystal. The surface of the crystal 

is free of cracks, macrodefects and low angle boundaries, which is a direct indication of the 

low strain in the crystal due to contactless growth.  Last, increase of crystal’s length was 

considered. Longer growth experiments were performed and the design of the thermal screen 

was considered in order to allow the growth of crystals a few millimeters in thickness and 

length, without any contact with the graphite crucible. The grown crystal is shown in Figure 

2.18d and Figure 2.20a-b. 

 

 

Figure 2.19. (a) Graphite seed holder that leads to the formation of parasitic polycrystal 

SiC close to the seed area. (b) Modified geometry that prevents the formation of polycrystal 

SiC close to the single crystal by changing the supersaturation (dotter line) close to the seed 

area. (c) Schematic representation of the main fluxes of SiC species in the growth crucible. 

JS is the flux due to sublimation of SiC source powder, J D the deposition flux (JD=JS-JRS), JP 

the total flux for the formation of polycrystal SiC, J RS the flux of resublimed SiC species from 

the SiC grown crystal and JSC the flux of species coming from the powder at the top part of 

the guide cone and   JP =   JRS +   JSC. 
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Even if the presence of the Jp flux is of major importance for contactless growth, caution 

should be given in order not to reduce the process yield. Jp flux is directly related to the flux 

of sublimed species from the SiC source powder (Js) and the deposition flux at the growth 

surface (JD). If Jp is high enough, compared to the Js and JD, the process yield will be low. 

Thus, Jp should be as low as possible (in order keep the yield of the growth high) down to 

the point that the formation of polycrystal SiC and the contact of the grown crystal with the 

graphite crucible is prevented. The optimization of the process is not a topic of this thesis, 

mainly because seeds of different size were used for the needs of our studies. For that, 

continous adjustments on the graphite parts and the crucible were made.  

 

 

                                a)                                                                              b) 

Figure 2.20. SiC single crystal of smaller (a) and bigger (b) diameter as grown in the 

graphite crucible. By proper design of the graphite part that supports the crystal nucleation. 

 

2.2.2 Crystal shape  

 

The shape of the crystal and its evolution during growth is related to the presence of stress 

during growth especially in large scale growth [15], propagation of threading dislocations 

[16] and occurrence of foreign polytypes, as will be analyzed in chapter 3. The shape is a 

result of mass transport, i.e. the growth rate variation along the growth interface radius. This 

radial variation is mainly depending on three factors:  
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i) The temperature profile in the crucible and mainly close to the growth front, 

considering the absolute value of the temperature but also the radial and axial temperature 

gradients.  

ii) The design of the graphite crucible and more specific, the graphite part that supports 

the crystal. Either in a direct way since the grown crystal can follow the shape of the graphite 

part, or indirectly by modifying the temperature profile.  

iii) The pressure of growth, as a lower growth pressure can lead to a convex crystal 

shape and vice versa [17].  

 

In this chapter the first two factors were mainly examined.  

 

Temperature profile. The temperature profile in a PVT crucible can be settled by a number 

of parameters like the top heat sink, the relative position of the coil and crucible, the 

insulation thickness and the design of the crucible. In order to differentiate and distinguish 

the contribution of these parameters, it was chosen to change one parameter and keep the 

others stable. Periodic nitrogen marking was used during growth to mark the growth 

interface for different periods of growth.  

Modifications were made in the graphite holder design (close to the seed area) while 

keeping all the other growth parameters constant. The geometry shown in Figure 2.19b, will 

result in a flat crystal for the first 4 mm of growth that progressively changes to convex. The 

convex crystal shape is also enhanced by the higher crystal etching at the periphery due to 

an increase of the resublimation of the SiC crystal (flux JRS, as mentioned in Figure 2.19). 

The geometry of the graphite holder was modified close to the seed area and the temperature 

profile is shown (Figure 2.22a). The temperature is lower at the periphery compared to the 

center of the growth front. This will result in a concave crystal shape for the first 3-4 mm of 

growth, as shown in Figure 2.21. However, progressively the curvature of the crystal is 

changing during growth, leading in a flat crystal.  

In the last case, an open cavity in the graphite part at the back of the seed was formed, 

Figure 2.22b. The schematic representation of the temperature profile is shown. The 
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temperature is lower at the center of the growth front compared to the edge. As a result the 

grown crystal exhibits a convex shape, since the beginning of growth, Figure 2.21.   

 

 

 

Figure 2.21. Control of crystal shape by modification of the graphite crucible. The dark and 

bright stripes correspond to nitrogen doped and undoped areas respectively. As it is seen by 

the nitrogen stripes the shape can change from concave to convex from the first sta ges of 

growth. 
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Figure 2.22. Schematic representation of the temperature profile for two different designs 

of the seed holder. The temperature in the middle is higher (lower) case a (b) in the middle 

compared to the periphery. This will lead to a  concave crystal shape, while geometry (b) to 

a convex (Figure 2.21). The red mark indicates the point where the growth temperature is 

experimentally measured.  

 

Numerical simulation was implemented in order to calculate the temperature distribution 

in the growth cavity for the case of the “Standard geometry” given in Figure 2.19b and the 

case where a cavity is formed on the back of the seed (geometry of Figure 2.22b). The shape 

of the grown crystal is flat in the first case and convex in the second one (Figure 2.21). The 

calculations of electromagnetic and the coupled heat and mass transfer problems were 

performed by Finite Element Method (FEM) in a two dimensional axisymmetric geometry.  

The temperature distribution inside the growth chamber is given in Figure 2.23a, the 

temperature profile along the z symmetry axis and along the growth front in Figure 2.23b,c 

respectively. Due to the cavity formed on the back of the seed crystal, the growth temperature 

is measured (experimentally) closer to the seed crystal compared to the standard geometry 

(red mark in Figure 2.22a,b). Simulation results show that the difference in temperature of 

the seed crystal is around 35oC between the two geometries (Figure2.23b). The axial 

temperature gradient, defined by the temperature difference and the distance between the 

seed and the powder is similar between the two geometries, 10oC/cm and 11oC/cm for the 

case of the standard and the modified geometry respectively. More important is the change 

in the temperature profile along the seed radius (Figure 2.23c). The minimum temperature 
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of the growth front is located at the periphery (0.075 m) in the case of the standard geometry, 

while it shifts to the center of the growth front (zero position in the r-coordinate scale) when 

a cavity on the back side of the seed is used.  

 

a) 

b) c)  

Figure 2.23. a) Simulation image of the temperature in the growth cavity for the case of the 

“standard geometry” and the case where a cavity is formed at the back of the seed. b) 

Temperature profile along the z symmetry axis. The positions of the powder and the seed 

crystal are indicated. c) Temperature profile along the growth front. Zero value corresponds 

to the center and 0.075m to the edge of the seed crystal.  
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Even if the presence of a cavity at the back side of the seed crystal does not introduce a 

significant difference in the axial temperature gradient, compared to the standard case, it 

affects the absolute temperature value of the seed crystal and the source powder (Figure 

2.23b). The Si/C ratio along the crystal radius was computed for the two different geometries 

and the result is shown in Figure 2.24. It is shown that the Si/C ratio in the gas phase is 

increased when a strong heat sink is used. Thus, the main contribution of the growth cavity 

formed is i) the change in crystal shape and ii) increase the Si/C ratio in the gas phase.  

 

 

Figure 2.24. Si/C ratio distribution along the crystal radius for the case of the standard 

geometry and the case where a cavity at the back of the seed is formed. The positions of the 

center and periphery at the seed crystal are indicated.  

 

The axial growth rate along the [000-1] direction at the center and the periphery of the 

convex and concave crystals demonstrated at Figure 2.21 was measured (Figure 2.25). For 

the case of a convex crystal, the growth rate at the center is higher compared to the edge 

during growth. The value of the growth rate is reducing exponentially, as reported by many 

authors [18, 19] and is attributed to a number of parameters like the increase of the 

temperature of the growth front as the length of the crystal is increasing or the decrease of 

Si/C ratio due to the consumption of the SiC powder. In the case of a concave crystal, the 

growth rate is higher at the periphery in the beginning of growth compared to the center. 
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However during growth (after 10 hours), the growth rate at the center is increasing and 

decreasing at the periphery. As a result the curvature of the crystal is changing progressively 

from concave to flat, Figure 2.21.  

 

  

(a) (b) 

Figure 2.25. Growth rate along the [000-1] growth direction for the case of a convex (a) and 

concave (b) crystal shape. The growth temperature and pressure are the same in both cases.  

 

Additionally, the growth rate on the basal plane (lateral growth) was calculated for the case 

of a convex crystal. At the lateral growth area, the distance between two N2 stripes was 

measured. Once the growth time between two stripes is known, the growth rate was 

determined. The lateral growth rate on the basal plane is found to be an order of magnitude 

higher than the axial one, as shown in Figure 2.26a. Also the lateral growth rate on the (0001) 

facet is higher compared to the lateral growth area. As shown by Herro et al. [6], the step 

density is changing when comparing the central (0001) facet and the lateral areas, due to the 

curvature of the crystal (Figure 2.27). This has a direct effect on the velocity of the steps, as 

it is shown in Figure 2.26a.  



54 

 

 

(a) 

 

 

(b) (c) 

Figure 2.26. (a) Growth rate on the basal plane at the (0001) facet and the lateral growth 

area during growth. (b) Photo and (c) cross section as observed under a cross polarized 

optical microscope of a 15R-SiC grown crystal. The (0001) facet is separated from the 

lateral growth area by red dashed lines. Periodic nitrogen marking (lines in cross section 

image) was used in order to mark the evolution of the crystal.  
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(a) (b) 

Figure 2.27. AFM performed on a 6H-SiC crystal surface at the (a) (0001) facet and (b) 

lateral convex grown area. In case (b) nano-scale steps are observed in contradiction to 

(a). The grey scale on the top left shows the variation of depth.  

 

Design of crucible. The second parameter that was studied is the direct effect of crucible 

design on crystal shape. In this case, the concept of the necking technique was considered. 

The formation of neck is used in crystal growth from the melt, in order to reduce the density 

of defects and increase the crystal quality [20]. The basic principle is to increase the diameter 

of the crystal, starting from a small growth area. The area of the enlarged crystal will be free 

of threading structural defects and the quality of the crystal will be improved. In growth from 

the vapor phase, it was proposed by Galben-Sandulache et al. [21] using the continuous feed 

PVT (CF-PVT) method, as a possible technique for bulk 3C-SiC growth Figure2.28. Effort 

was given to study and improve the proposed idea in the PVT system for the growth of 15R-

SiC bulk crystals. Due to the lack of 15R-SiC substrates of good quality and size of a few 

centimeters it is necessary to grow from small substrates of 15R-SiC. However, at this point, 

only the development of necking technique and the effect of the crucible design on crystal 

shape will be analyzed.  
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(a) (b) 

Figure 2.28. The necking technique used in the CF-PVT system for the growth of 3C-SiC. 

(a) Schematic representation of the graphite holder and (b) as grown 3C-SiC crystal [21].  

 

The graphite holder was designed as shown in Figure 2.29. A cavity was created in front of 

the SiC substrate that allows the growth of a conical crystal. A hole whose diameter is 

smaller than the diameter of the seed is found at the end of the cone. Then, the crystal is free 

to grow in the growth cavity.  

A 4H-SiC crystal grown by using this geometry is shown in Figure 2.30. The crystal 

follows the shape given by the graphite crucible. In the top part, polycrystal SiC is formed, 

however, as shown in Figure 2.30a the single crystal is free of parasitic polycrystal and no 

attachment with the graphite crucible exist. Typical growth conditions were used giving a 

growth rate of around 250 μm/h. The growth temperature was 2200oC and the pressure 15 

mbar. 

 

 

Figure 2.29. Schematic representation of the graphite lid that was used. A conical geometry 

was created in order to decrease the diameter of the grown crystal and subsequently allow 

its free expansion. 
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(a) (b) 

Figure 2.30. (a) SiC crystal grown by the necking technique in the PVT system. (b) SiC 

crystal as grown in the graphite crucible. The crystal follows the shape of the graphite 

holder. No strong attachment was observed between the crystal and the graphite or the 

polycrystal SiC.  

  

Crystals grown by the necking technique were cut in cross section and examined under a 

cross polarized optical microscope. In Figure 2.31a the cross section of the crystal shown in 

Figure 2.30 is given. A 15R-SiC C-face 3o off-axis substrate was used and the grown crystal 

is a mixture of 15R-SiC and 4H-SiC as found by Raman spectroscopy. The poor quality of 

the 15R-SiC substrate is obvious by the presence of macrodefects that in most of the cases 

expand in the grown crystal. Threading defects expand along the c-direction and the 

propagation of those located at the periphery is terminated in the graphite sidewalls due to 

the conical shape of the growth cavity. In the specific example, due to polytypic transition 

from 15R-SiC to 4H-SiC, defects are generated at the boundary between the two polytypes 

that propagate along the c-direction. As a result, it is not possible to evaluate the defect 

density and the possible contribution of the necking technique in the improvement of crystal 

quality. 

Substrates of C-face 4H-SiC polytype were also used, to ensure polytype stability during 

growth. Representative examples are given in Figure 2.31b-c. In all cases, the crystals are 

able to follow the shape of the graphite part in the conical or necking area. Macrodefects are 

usually present in the area after the neck. After a few millimeters of growth the propagation 

of the macrodefects is stopped and the quality of the crystal is improved.  
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(a) 

 

(b) (c) 

Figure 2.31. Cross section of SiC crystals grown with the necking technique observed 

under a cross polarized microscope. (a) A 15R-SiC C-face 4o off-axis substrate was used. 

The grown crystal is a mixture of 15R (yellow color) and 4H (blue color crystal). 

Micropipes at the periphery terminate at the graphite walls. Additional defects are created 

in the boundaries between the two polytypes. (b,c) 4H-SiC C-face 4o off-axis crystal 

homoepitaxially grown. Low growth rate ~190 μm/h (b) leads to a better control of growth 

in the beginning avoiding the nucleation of 3C-SiC compared to a higher one ~390 μm/h 

(c).  
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2.3 Conclusions of Chapter 2. 

In this chapter we have proposed and evaluated some strategies in order to enlarge SiC 

crystals from a few millimeters to 15-20 mm in diameter. This required a thorough study of 

heat and mass transfers in the growth cell.  

The first part of this chapter was an introduction to the experimental apparatus. The proper 

coupling of the frequency of the generator, the characteristics of the capacitor and the coil 

geometry have to be achieved in order to heat efficiently the growth furnace. Besides that, 

the design of the growth furnace on its own is of major importance for SiC growth. A direct 

or indirect way of heating can be selected, depending on the frequency of the EM field 

applied. The top heat sink, the design of seed holder and that of thermal screens, the relative 

coil – crucible position and the insulating capability of the system affect the temperature 

distribution in the growth cavity. The temperature distribution is directly related to the 

growth rate, the consumption of the SiC source material and the shape of the grown crystal. 

It is a matter of choice of each grower to select and define those parameters, based on the 

needs of the growth experiments.   

In our case, a crucible geometry that allows a contactless growth of the SiC crystals was 

developed. Through the proper design of the top part of the crucible, a colder area compared 

to the crystallization area is created. As a result, an additional flux of SiC species was formed 

with a direction towards the colder area. That configuration allows the growth of SiC single 

crystals free of contact with the graphite crucible and free of parasitic polycrystalline SiC.  

The shape of the crystal was controlled by two different ways. First, through the thermal 

field close to the seed area by modifying the design of the graphite lid. Under the presence 

of a cavity at the back of the seed crystal, a convex crystal shape is enhanced. With the 

proper design of the graphite part of the seed holder, the temperature at the periphery of the 

growth front is lowered compared to the center. In the latest case, the shape of the crystal is 

concave. Second, the control of crystal shape was achieved, using the necking technique. It 

was shown that the grown crystal can follow the shape of the graphite part, while no 

attachment between the grown crystal and the graphite crucible was observed. However, 

further studies are needed in order to achieve a better control of growth and to eliminate the 
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formation of macodefects inside the necking zone. After the necking zone, the crystal is 

enlarged and its quality is improved.   
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Chapter 3  
 

Nucleation and propagation  
of foreign polytypes. 

 
 
 
 
 

In the present chapter, the nucleation and propagation of foreign polytypes during 

seeded sublimation growth of SiC is addressed on a macroscopic footing, using a coupled 

approach based on experiments and numerical simulations. We will demonstrate that the 

occurrence of a foreign polytype is linked to the combined effect of i) the presence of the 

natural {0001} facets and ii) the minimization of 2D nucleation energy. Areas with 

higher probability for a foreign polytype to nucleate, can thus be predicted. Once formed, 

the progress or vanishing of foreign inclusions is directly related to their interaction with 

the macroscopic growth interface of the crystal.  

 

 



64 

 

3.1 Introduction 

 

While one of the most fascinating properties of SiC is its polytypism, it remains one 

of the most difficult issues to study while trying to get a single polytype, single crystalline 

SiC ingot [1]. During bulk growth by PVT, foreign polytype inclusions are quite 

commonly obtained and are usually accompanied by a host of defects (ex. threading 

dislocations) generated at the boundaries between the different polytypes [2-5]. Hofmann 

et al. attributes the generation of micropipes at the boundaries of foreign polytypes, to 

the stress resulting from the incoherent boundaries (Figure 3.1) [2]. A breakthrough in 

the understanding and the stabilization of a single SiC polytype was the development of 

the so-called “step controlled epitaxy” [6]. Basically, such a technique prevented the 

occurrence of foreign polytype by decreasing the two dimensional (2D) nucleation 

probability. The idea lay in the application of a misorientation to the growth surface, 

giving rise to a step density high enough to replicate the polytype of the substrate by a  

classical step flow mechanism [6].  This approach has been systematically used during 

epilayer growth by chemical vapor deposition and was also attempted for PVT growth 

of bulk crystals [7]. However, in this latter case, the off-cut angle only help stabilizing 

the polytype during the initial stage. As the growth proceeds, the macroscopic growth 

interface of the crystal drastically evolves and the step flow cannot be maintained under 

a stationary state. 

 

 

 

Figure 3.1. Cross section microspcopy image of a 4H-SiC crystal. During growth 15R-

SiC (light color polytype) is formed. Micropipes (thin dark lines) are generated at the 

interface of the two polytypes [2]. 
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PVT is intrinsically a non-stationary growth process and most of the growth 

parameters evolve during this process [8, 9]. Physical parameters, such as Si/C ratio, 

temperature distribution and supersaturation vary both spatially and temporally. The 

impact of the system’s evolution on the occurrence and propagation of foreign polytype 

inclusions has scarcely been mentioned. At the industrial level, the growth of 6 inch 

diameter single polytype 4H-SiC ingots is achieved but the mechanisms related to 

polytype shift and propagation of inclusions remains unclear.  An interesting approach 

towards the clarification of this problem arose by including the classical nucleation 

theory in SiC growth, proposed by Fissel et al. [10] into the full PVT process simulation 

[11].  

By combining process simulation and experiments, we aim in this chapter to bring 

new insight about these issues, especially on the effect of growth system evolution on 

the occurrence of foreign polytype inclusions. It will be demonstrated that the occurrence 

of a foreign polytype is linked to the combined effects of i) the presence of the natural 

{0001} facets and ii) the minimization of 2D nucleation energy. As a consequence, areas 

with high probability for a foreign polytype to nucleate can be predicted. Once formed, 

their progress or disappearance is directly related the interaction of the polytype inclusion 

with the macroscopic growth interface of the crystal.  

 

 

3.2 Experimental details and theoretical calculations  

 

Experimental details. Top seeded sublimation growth has been implemented in a fully 

automated homemade furnace, as presented in section 2.1. Pressure (P), temperature (T) 

and nitrogen partial pressure (PN2) are controlled during the process. Growth temperature 

is constant over the whole study, set at 2200 °C and the growth pressure was varied in 

the 6-12 mbar range. Growth was carried out in argon ambient, using periodic nitrogen 

marking to track the evolution of the growth interface shape. For the present study, 

crystals of about 5 mm in length and 15 mm in diameter were produced. Different 

substrates were used, varying the polytype (4H-SiC and 15R-SiC), the misorientation 

(on-axis or 4° off-axis) and the surface polarity (silicon face or carbon face). To modify 

the growth interface shape, i.e. to have a slightly concave or convex growth front, small 
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modifications in the crucible design were introduced very close to the crystallization area, 

as described in section 2.2.2. Such small geometrical modifications have a very local 

impact and do not affect the overall temperature distribution in the crucible. 

Consequently, growth rate was kept within the same range of 0.2 mm/hr.  Grown crystals 

were then cut in sections parallel to the growth direction and observed with a cross-

polarized optical microscope after double side polishing. The identification of polytypes 

was carried out using Raman spectroscopy in a backscattering geometry and 

cathodoluminescence (CL). A Jobin-Yvon/Horiba LabRam Raman spectrometer 

equipped with a N2-cooled CCD detector was used. It employs a He-Ne laser with a 

wavelength そ= 632.8 nm with a total power of 11mW as well as an Ar-Ion laser with そ= 

514.5 nm with a total power of 3.2 mW. All measurements were conducted at room 

temperature conditions. The light has been focused to a 1 たm2 spot using a x50 long 

working distance objective. The  Cathodoluminescence -based techniques are built 

around a scanning electron microscope (SEM) (FEI Quanta 200) equipped with a liquid 

helium cryogenic stage (Gatan) to cool down the sample from room temperature to 5K. 

The light generated in the sample materials by the SEM e-beam is collected by a 

parabolic mirror and focused on the entrance slit of a spectrometer (Jobin Yvon HR460). 

A nitrogen cooled silicon CCD (Jobin Yvon Spectrum One) and a single channel detector 

(Hamamatsu multi-alkali PMT R928) are placed at the exits of the spectrometer. They 

are used for the acquisition of the CL spectra and mappings (panchromatic or 

monochromatic), respectively. TEM experiments have been carried out in a JEOL 2010 

electron microscope with a 0.19 nm point resolution.  

We have used the crucible geometry for contactless growth which has been presented 

in section 2.2.1. The aim is to eliminate the formation of parasitic SiC polycrystal around 

the single crystal and to reduce the contact with the crucible as both phenomena can be 

the origin of polytype inclusions [12, 13]. The trends to be presented, are extracted from 

a set of almost 20 experiments conducted under the various experimental conditions 

mentioned above, see Table 3.1. The most representative results were selected to be 

illustrated in this chapter.     
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Theoretical calculations. In parallel with the experiments, numerical simulation of the 

process was carried out using a Finite Element Method (FEM) code. Classical nucleation 

theory was included to assess the probability of occurrence of different polytypes at the 

growth front. The simulation results were compared to the experimental results. First, the 

global modeling for the sublimation growth process of SiC including induction heating, 

heat transfer, fluid flow, and mass transport was performed in a two dimensional 

axisymmetric geometry [14]. The temperature and the partial pressure of the Si2C and 

SiC2 vapor species were computed along the radius of the growth front. Fissel et al. [10] 

introduced a way to calculate Gibbs free energy for 2D nucleation in SiC and this 

approach and database were used.  Kakimoto et al. [15], introduced the idea presented 

by Fissel et al. into the PVT system. Based on Kakimoto’s approach, the supersaturation 

(Equation 3.1) and the corresponding chemical potential difference (Δµ, Equation 3.2) 

were calculated from the partial pressure of the vapor species and the temperature along 

the growth front. Finally, the free energy of 2D nucleation was calculated from Equation 

3.3. A refined calculation of surface energy was used, compared to Fissel et al. for the 

surface energy of the various polytypes [16].  
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Where p and po are the partial and equilibrium partial pressures respectively, ΔG2 is the 

free energy for 2D nucleation, b is the first neighbor distance corresponding to the in-

plane lattice constant, Δμ is the difference in the chemical potential between the gas and 

solid phase and σl, σi, σs are the surface energy of the epitaxial layer, the epitaxial 

layer/substrate interface and the substrate, respectively. 

 



68 

 

Table 3.1. List of all the experiments, where polytype destabilizations were observed. 

Experiment 
Seed Grown crystal Growth parameters 

Polytype Orientation Polarity Polytype Interface 
Temperature 

[oC] 
Pressure 
[mbar] 

B165 15R-SiC 4o off-axis C-face 4H-SiC 15R/4H 2200 15 

B176 15R-SiC On-axis Si-face 15R-SiC 15R/6H 2200 20 

B194 4H-SiC 4o off-axis C-face 4H-S-C 15R/4H 2200 12 

B198 15R-SiC 4o off-axis Si-face 15R-SiC 15R/6H 2200 12 

B214 15R-SiC 4o off-axis C-face 4H-SiC 15R/4H 2200 15 

B245 4H-SiC 4o off-axis C-face 4H-SiC 4H/15R 2200 10 

B251 15R-SiC - C-face 15R+4H 15R/4H 2200 5 

B254 4H-SiC 4o off-axis C-face 4H-SiC 4H/6H,4H/15R 2200 10 

B256 4H-SiC 4o off-axis C-face 4H-SiC 4H/6H,4H/15R 2200 12 

B257 15R-SiC 4o off-axis C-face 4H-SiC 15R/4H 2200 15 

B258 15R-SiC on-axis Si-face 15R+6H 15R/6H 2200 6 

B262 15R-SiC On-axis Si-face 4H+6H 15R/6H, 6H/4H 2200 8 

B264 15R-SiC on-axis Si-face 15R 15R/6H 2200 10 

B265 4H-SiC 4o off-axis Si-face 4H-SiC 4H/15R/6H 2200 10 

B266 4H-SiC 4o off-axis Si-face 4H-SiC 4H/15R/6H 2200 10 

B267 4H-SiC 4o off-axis C-face 4H-SiC 4H/15R 2200 10 

B268 4H-SiC 4o off-axis C-face 4H-SiC 4H/15R 2200 10 

B272 15R-SiC On-axis Si-face 15R+6H 15R/6H 2200 13 

B276 4H-SiC 4o off-axis C-face 4H-SiC 4H/15R 2200 13 

B284 15R-SiC On-axis Si-face 6H-SiC 15R/6H 2200 13 

B285 15R-SiC On-axis Si-face 6H-SiC 15R/6H 2150 10 



69 

 

3.3 Observation of foreign polytype formation and propagation 

 

A cross section of a crystal grown on a C-face 4° off-axis 4H-SiC seed observed under  

a cross polarized microscope is presented in Figure 3.2a (crystal B256). To help 

visualizing, the (000-1) growth sector is outlined by the orange dashed lines. This area 

corresponds to the trajectory of the (000-1) facet during growth. This growth sector 

appears a little darker within the doped stripes, which is attributed to a higher 

incorporation of nitrogen on the C-polar facet than elsewhere [17, 18], this point will be 

analyzed in Chapter 5. In this cross section, three different polytype inclusions were seen. 

Their starting points, indicated by the red circles, are all located in the (000-1) growth 

sector. The first one (circle Nb#1 in Figure 3.2a) is a permanent polytype change from 

4H-SiC to 6H-SiC. The other two (circles Nb#2, 3 in Figure 3.2a) are thin 15R-SiC 

lamellae, i.e. they do not expand axially along the [000-1] direction. Once formed on the 

facet, inclusions expand laterally following the steps propagation towards the [11-20] 

direction and spread all along the crystal diameter. A higher magnification picture of 

inclusion #2 is shown in Figure 3.2b.  

a)  

b)  

Figure 3.2. a) Cross section of a SiC crystal (crystal B256), observed under cross-

polarized microscope. The seed used is a  C-face 4° off-axis 4H-SiC, indicated by the 

black dashed line. The dark and bright stripes correspond to nitrogen doped and 

undoped areas, respectively. The (000-1) growth sector is delineated by the orange 

dashed lines. Red circles numbered 1, 2, 3 indicate the nucleation areas of one 6H-SiC 

(#1) and two 15R-SiC (#2-3) inclusions, respectively. b) Observation of inclusion #2 at 

higher magnification. The doped (undoped) stripe correspond to 3hours (1.5 hour) of 

growth.  



70 

 

In Figure 3.3, a cross section of another crystal grown on a C-face 4° off-axis 4H-SiC 

seed is presented (crystal B254). In this case, slight modifications of the growth cavity 

design have induced a more pronounced concave crystal interface, especially at the 

beginning of growth. The consequence, is the occurrence of two (000-1) facets at both 

sides of the section. On the right-hand side facet, three 6H-SiC thin lamellae nucleate –

pointed with circles Nb#1, 2 and 3 (Figure 3.3a)- and expand towards the [11-20] 

direction. A higher magnification image of inclusions #1,2,3 at the area of the facet and 

the middle of the crystal, is shown in Figure 3.3b-c. On the left hand side facet, a thick 

15R-SiC inclusion nucleates (left side of Figure 3.3). In contrast to the previous case 

(Figure 3.2), the foreign polytypes do not cross all the crystal length. Instead, their 

expansion on the basal plane is blocked. 

 

a)  

b)   c)  

Figure 3.3. a) Cross section of a SiC crystal (crystal B254), observed with cross-

polarized microscopy. The seed used is a C-face 4° off-axis 4H-SiC separated from the 

crystal by the black dashed line. The dark and bright stripes correspond to nitrogen 

doped and undoped areas, respectively. Two (000-1) growth sectors are delineated by 

the orange dashed lines on both sides of the crystal. Red circles indicate the nucleation 

point of 6H-SiC lamellae (# 1, 2, 3) and thick 15R-SiC inclusion (#4). b-c) Observation 

of inclusions #1, #2 and #3 at higher magnification. Each doped and undoped stripe 

corresponds to 3hours growth. 
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Cathodoluminescence (CL) technique was used for polytype identification and 

observation of the different polytypes, for crystal B254, additionally to Raman 

measurement. That was mainly done due to the higher spatial resolution of CL which is 

in the nanometer scale compared to the 3-5 μm of Raman and also for the possibility to 

perform polytype mapping. Observations were conducted in room (300K) and low (5K) 

temperature conditions. Due to the wide band gap of SiC the luminescence 

signal/background noise ratio is low at room temperature and thus no clear indication of 

the polytypes, neither polytype mapping could be made. In order to increase the 

signal/background ratio, low temperature (LTCL) measurements were performed.   

 

Low temperature cathodoluminescence (LTCL) observation (5K). The luminescence 

signal was collected from inclusions #Nb2, #Nb4 and the main crystal. In parallel, a 4H-

SiC commercial wafer and a 6H-SiC and 15R-SiC Lely crystals were measured as 

reference samples. All the spectra are compared to the ones reported in the literature.  

Polytype identification. The spectra collected from the inclusions #Nb2, #Nb4 and 

the main crystal are given in Figure 3.4a-b and the ones of the reference samples at Figure 

3.4c-d.   

o Inclusion #Nb2: A peak is found at 414 nm and a broad peak at 470 nm (Figure 

3.4a-b). The same peaks are obvious for the case of the 6H-SiC Lely crystal 

(Figure3.4c-d). The peak of 414 nm is characteristic of the 6H-SiC [19]. 

o Inclusion #Nb4: A broad peak at 470 nm and a smaller side peak at 445 nm are 

obvious, Figure 3.4a. The same peaks are observed for the 15R-SiC Lely crystal, 

Figure 3.4b. An additional peak at 418 nm (Figure 3.4d), characteristic of the 15R-

SiC [19] exist only for the 15R-SiC Lely crystal.  

o 4H-SiC commercial wafer:  The non-phonon line at ~382 nm and the one-phonon 

and two-phonon peaks at ~390nm and 408nm are obvious, Figure 3.4c-d. The peak 

at 382nm appears in higher intensity due to the high nitrogen concentration 

(>1017cm-3, according to supplier specifications) [20]. The broad peak at ~550nm, 

Figure 3.4c at green luminescence (GL) can be attributed to boron involved 

recombination centers [20]. 
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o Main crystal: A broad peak at ~420 nm and a side peak at 405 nm are obvious. 

The broad peak at 420 nm is reported in the case of 4H-SiC and is attributed to N-

Al donor-acceptors pairs [21].  

 

a) b)  

c) d)  

 

Figure 3.4. a,b) LTCL signal from inclusions #Nb. 2 and 4 and the main crystal B254. 

c,d) LTCL signal from 6H-SiC, 15R-SiC Lely crystals and 4H-SiC commercial wafer. 

The crystals were used as reference samples. 

 

Based on the collected spectra, the identification of the various polytypes is difficult 

to be validated with certainty. That is mainly due to the shift and width broadening of 

some characteristics peaks, due to the presence of dopants. Thus, for polytype 

identification Raman spectroscopy is a preferable method, despite the higher spatial 

resolution of CL.  

 

Polytype mapping. Monochromatic LTCL images for emission at 470  2 nm (higher 

LTCL intensity of inclusion #Nb.2) and 385  2 nm (higher LTCL intensity of the main 
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crystal) were obtained (Figure 3.5a and b, respectively). The starting position of inclusion 

#Nb.2 and a clear separation with the main crystal can be made. This verifies that indeed 

the foreign polytype #Nb2 forms a thin inclusion in crystal volume.    

 

 

                      a)                                            b)                                            c) 

Figure 3.5. Monochromatic LTCL images for emission at a) 470  2 nm and b) 385 2 

nm and c) SEM image of inclusion #Nb.2 of crystal B254.  

 

To resolve the geometrical evolution of the crystal, we quantified both normal (along 

the [000-1] direction) and lateral (along the [11-20] direction) growth rates. Also, the 

lateral propagation of the polytype inclusions (A1-A3 and B1-B3 for #1-3 inclusions of 

crystal B256 and B254, respectively) was systematically evaluated. In particular, the 

lateral growth rate was calculated once the length of the inclusions was measured along 

[11-20] direction within each doped and undoped stripe. For the same positions, the 

thickness of each doped and undoped stripe was measured along [000-1] direction, thus 

the normal growth rate was determined. The measurements obtained from nitrogen 

marking are gathered in Figure 3.6. The ratio between growth rates along the [000-1] 

direction taken at the center (symmetry axis) and at the edge (facet location) is plotted as 

a function of growth time in Figure 3.6a. For crystal B256, the ratio is always slightly 

higher than one, except at the very beginning.  The crystal surface is thus slightly convex. 

For crystal B254, the growth rate ratio is close to 0.5 at the beginning and progressively 

increases to reach 1.4 after 15 hours. The growth interface is thus concave at the 

beginning, then progressively flattens and turns to slightly convex at the very end of the 

growth. The lateral growth rate along the [11-20] direction is around one order of 

magnitude higher than the axial growth rate in the [000-1] direction (Figure 3.6b). Also, 

the lateral growth rate shows much larger variations than the axial one. The growth rate 
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along [11-20] increases at the center of the growth front and minimizes at the periphery, 

while no significant difference is observed for different polytypes. The fact that the 

maximum is not exactly at the center of the growth front is due to the 4° miscut angle. 

To complete this set of measurements, we plotted the same growth rate ratio as a function 

of the angle between the tangent of the crystal surface and the basal plane (Figure 3.6c). 

As the normal growth rate (along the [000-1] direction) shows only small variations, it is 

mainly the lateral growth rate (along the [11-20] direction) that significantly varies. This 

lateral growth rate exhibits an exponential-like decay versus the angle between the local 

crystal surface and the basal plane.     

 

(a) (b)  

 

(c)  

 

Figure 3.6. (a) Ratio between the growth rate along [000-1] direction taken at the center 

of the crystal and at the edge (facet), with respect to growth time, for the crystals shown 

in Figure 3.2 and 3.3. Ratio of the growth rate along [11-20] and [000-1] as a function 

of (b) the normalized diameter (D/Do) and (c) the angle between the tangent at the crystal 

interface and the basal plane of crystals B256 and B254. 
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To induce other kind of polytype inclusions and/or transitions, we have also used 

different seeds. Figure 3.7 shows a cross-section of a crystal grown on a 15R-SiC on-

axis Si-face seed (crystal B258).  By Raman spectroscopy, it is found that the grown 

crystal is a mixture of 15R-SiC and 6H-SiC. The poor quality of the 15R-SiC seed used 

is reflected in the grown crystal, as micropipes are present both in the seed and the crystal. 

Also, many micropipes and macrodefects are formed at the boundaries between the 

foreign polytypes. In this specific case, we significantly increased the crystal surface 

curvature, which rapidly shifted from concave to highly convex crystal surface during 

the first few hours of growth. At the beginning of the run, the growth interface is slightly 

concave. Similar to the case of crystal B254, two (0001) facets form at both sides of the 

crystal. Precisely at the location of the facets, a transition from 15R-SiC to 6H-SiC occurs 

giving rise to the two lateral 6H-SiC inclusions. While turning to convex, the growth 

interface develops another (0001) facet at the center of the crystal. After a few millimeter 

in thickness, a 6H-SiC inclusion appears at the center of the crystal and expand laterally.  

 

 

 

 

Figure 3.7. Cross section of a SiC crystal (crystal B258), observed under cross-polarized 

optical microscope. The seed used is Si-face on axis 15R-SiC indicated by the yellow 

dotted line. Periodic nitrogen marking was used in order to observe the evolution of the 

crystal shape. The crystal is a mixture of 15R-SiC and 6H-SiC, with the 6H-SiC areas 

being indicated by the red shaded regions.  
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3.4 Nucleation mechanism of a foreign polytype 

 

The Gibbs free energy for the formation of a 2D nuclei was calculated for 4H-SiC, 

6H-SiC and 15R-SiC on a Si-face 15R-SiC seed as a function of the crystal radius, for 

two different crystal thicknesses for crystal B258 (Figure 3.8). In all the conditions used, 

the Gibbs free energy of 6H-SiC nucleation is lower compared to the other polytypes, 

15R and 4H being rather close to each other. Most interesting is the location of the 

minima of 2D nucleation energy along the crystal radius. At the beginning of growth, the 

minimum of 2D nucleation energy is located at the periphery of the growth front (Figure 

3.8a). After a few mm of growth (here 3 mm), the situation becomes totally different and 

the minimum of 2D nucleation energy occurs on the symmetry axis of the crucible, i.e. 

at the center of the crystal (Figure 3.8b).  

 

a) b)  

 

Figure 3.8. (a) 2D nucleation energy of 4H, 6H and 15R on 15R Si-face substrate at the 

beginning of growth of B258. The minimum is located close to the periphery of the growth 

front. (b) 2D nucleation energy of 4H, 6H and 15R on 15R Si-face substrate after 3 mm 

of growth of B258. The minimum is located at the center of the growth front. 

 

Similar calculation was performed for crystal B254. The 2D nucleation of 4H-SiC, 

6H-SiC and 15R-SiC on a 4H-SiC C-face substrate is computed as a function of crystal 

radius in the beginning and after 3mm of growth. Despite the larger growth area, 

compared to crystal B258, the minimization of 2D nucleation energy follows the same 

behavior as previously. It shifts from the periphery to the center of the growth front 

during growth (Figure 3.9).  
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Figure 3.9. Gibbs free energy for 2D nucleation along the crystal radius, calculated for 

crystal B254. The calculation was performed for the beginning and after 3mm of growth. 

The plots are identical for all the polytypes.  

 

 

3.5 Discussion 

 

3.5.1 Discussion on nucleation of foreign polytypes. 

 

The 2D Gibbs free energy of nucleation is a rough approach of the polytype transition 

problem. In the analysis undertaken, only carbon-containing species are used in the 

calculation of Gibbs free energy [11] and the effect of dopants on surface energy of 

different polytypes [22] is not considered. Such approximations are made in order to 

compensate for example the lack of data related to the surface energy of different 

polytypes [16]. Consequently, the prognosis of the preferable polytype to be nucleated 

cannot be taken for granted. However, we speculate that the location of the nucleation 

energy minima is correctly described, since it is process-dependent and not polytype 

dependent. Such assumption is reasonable, because we are able to compute accurately 

the crystal shape, meaning that the supersaturation distribution – which is the driving 

force for nucleation- is well described. Then, a minimum in the Gibbs free energy of 

nucleation does not necessarily imply a polytype transition but should be understood to 

signal a higher probability to form a foreign polytype nucleus.  
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Experimentally, we have exclusively observed the origin of foreign polytype 

inclusions in the growth sector corresponding to the Si-polar or C-polar {0001} facets. 

Terraces - covered by spirals - are found systematically at the {0001} facets (Figure 

3.10a-b). It is worth noting that such observations are also an indirect proof that polytype 

transitions occur on the growing surface through a 2D heterogeneous nucleation 

mechanism, as proposed by Harada et al. during SiC solution growth [23]. The 

occurrence of facets is related to the crystal structure and the process itself. For on axis 

substrates, a convex surface will develop a facet at the center of the crystal, whereas a 

concave surface will exhibit an additional facet at the periphery of the crystal. For off-

axis substrates, the trends are similar but an asymmetry in the crystal shape appears, 

corresponding to the miscut angle.   

 

      

 

Figure 3.10. Silicon (0001) facet of a 6H-SiC crystal with nitrogen concentration of 

approximately 5x1018cm-3, observed in a Nomarski microscope. Terraces formed are 

covered by spirals. Crystals were grown at 2200 oC. 

 

Calculations of the Gibbs free energy of nucleation along the crystal radius have 

shown that minima, corresponding to a higher 2D nucleation probability could be 

observed, Figures 3.8-3.9. Such minima can be precisely located, their location being 

dependent on the growth interface shape and on the growth time. For example, we have 

shown that at the beginning of growth, a slightly concave interface creates a minimum 

of the nucleation energy curve at the edge of the crystal. After a few millimeters of 

growth, the minimum is located at the center of the crystal once the interface shape has 

turned to slightly convex.  
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By combining both experimental observations and numerical calculations it is 

possible to draw a macroscopic model for foreign polytype occurrence. The different 

conditions are gathered in Figure 3.11.  

 If the {0001} facet and the minimization of 2D nucleation energy are located at 

the same point, then the probability to form a foreign polytype is highest on the 

facet. 

 If the {0001} facet and the minimization of 2D nucleation energy are not located 

at the same point, then the probability to nucleate a foreign polytype on the facet 

is much lower.  

 Out of the facet, 2D nucleation probability is extremely low as the kinks density 

for adatoms incorporation is high enough, meaning that the replication of the 

substrate polytype is favorable. 

 

 

 

Figure 3.11. Schematic representation of the interelation between the crystal shape, the 

formation of facets and the position of minimum of 2D nucleation energy. The red dashed 

lines describe approximately the evolution of the facets during growth. The vertical blue 

dashed lines indicate the position of the minimal 2D nucleation energy on the crystals. 

 

In other words, the presence of a facet is a prerequisite for the occurrence of a foreign 

polytype but is not sufficient. The Gibbs free energy of nucleation must also minimize at 

the same location as the facet. For a convex crystal shape, the higher growth rate in the 

center implies a higher supersaturation and this will lead to a lower value of the 2D 
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nucleation energy. For a concave crystal surface, the minimum of 2D nucleation energy 

will appear at the periphery.  

 

 

3.5.2 Discussion on propagation of foreign polytypes 

 

Once formed, it becomes important to consider the expansion or not of a foreign 

polytype inclusion. To address this question, we have considered successively the lateral 

(on the basal plane) and the axial (perpendicular to the basal plane, along the c direction) 

expansions.  

 

A. Expansion on the basal plane. Expansion along the basal plane will be separated in 

the {0001} facet and the step flow area. 

 

A1. Expansion on the {0001} facet. If the formation of a 2D nuclei can change the 

polytype of the spirals found in the {0001} facet, a model based mainly on geometrical 

characteristics, can be proposed. In Figure 3.12, a schematic representation of the main 

growth center of the {0001} facet is illustrated, with blue color. In red color, growth 

centers (spirals) of a different polytype are shown, in two positions on the terrace widths 

of the main spiral (#A-B). The propagation of each of the foreign polytype spirals will 

be considered in the basal plane.  

o Spiral A: It is located at a terrace formed at the main growth center of the facet. 

The spiral can expand in all crystallographic directions in the basal plane. 

Nevertheless, the propagation in the direction that will meet the advanced 

propagating edge of the facet’s main spiral will be blocked, Figure 3.12b,d.  

o Spiral B: The expansion of this spiral is not blocked by any competing adjacent 

spiral and a free expansion towards all directions is expected.  

 

It must be mentioned that this is a simplified idea and it refers to an ideal case. Usually 

in the terraces more than one growth centers are found as seen in Figure 3.10. The 

expansion of a given growth center in the basal plane can be blocked in additional 

directions due to smaller advancing growth centers, compared to the main spiral.  
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Figure 3.12. Representation of the growth centers at a {0001} facet from top view (a,b) 

and side view (c,d). In blue color the main growth center of the facet and in red color 

foreign polytype centers are illustrated. Two positions for a foreign polytype growth 

center to appear are indicated A,B.  

 

Experimentally obtained foreign polytype inclusions seems to verify the above idea. 

Inclusions that are similar to: 

 Growth center A. 

1. #Nb.2-3 of crystal B256 and #Nb.1 of crystal B254 in Figure 3.2 and Figure 3.3 

respectively, can be attributed to a growth center similar to #A. They nucleate on the 

facet, they do not cross all the length of it and expand towards [11-20] and [10-10] 

direction (for [10-10] direction it is not shown here, but it was found from cross-

section samples prepared parallel to the one in Figure 3.2 and Figure 3.3). A similar 

example is shown in Figure 3.13 for the case of a 15R-SiC inclusion, in a 4H-SiC C-

face 4o off-axis crystal B267. In this case the thickness of the inclusion is bigger 

compared to the previous cases (~ 130 μm). 

2. Inclusions #Nb.2-3 of crystal B254, nucleate on the facet, they do not cross all the 

length of it and they expand along the [11-20] direction but not [10-10] direction. 

Inclusions #Nb.2-3 are not obvious in cross section samples parallel to the one in 

Figure 3.3 towards [10-10] but only to the opposite of that direction, Figure 3.14. 
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This implies that growth centers like #A (Figure 3.12) can be attributed to these two 

inclusions.  

3. In Figure 3.15 a 15R-SiC inclusion nucleates on the facet and expands towards the 

opposite of the miscut direction. No trace of this polytype were found in second half 

of the facet towards [11-20] direction.  

 Growth center B. For that case a total transition of the polytype in the grown crystal 

is expected, as there are no other blocking growth centers. That is the case of 

transition #Nb. 1 in crystal B256 (Figure 3.2) and inclusion #Nb.4 in crystal B254 

(Figure 3.3). In the second case the expansion of the 15R-SiC inclusion is finally 

blocked but that was due to the change in crystal shape as will be analyzed later on 

in that chapter.  

 

Figure 3.13. Cross-section image of a 4H-SiC C-face 4o off-axis crystal B267. A 15R-

SiC inclusion nucleated at the (000-1) facet and expand towards the [11-20] direction. 

15R-SiC inclusion can be attributed to a growth center similar to #A of Figure 3.12. 

 

 

Figure 3.14. Cross section sample parallel towards [10-10] direction to cross section of 

crystal B254 shown in Figure 3.3. Inclusion #Nb.1 is obvious in the two cross-section 

samples while inclusions #Nb.2-3 do not expand towards [10-10] direction. (000-1) facet 

is separated from the step flow by the yellow dashed line.  
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Figure 3.15. Cross section image of crystal B256. A 15R-SiC inclusion nucleates on the 

(000-1) facet (red dotted circle) and expands towards the opposite of the miscut angle 

direction (red arrow). The 15R-SiC inclusion can be attributed to a growth center similar 

to #A as shown in Figure 3.12. 

 

A Transmission Electron Microscope (TEM) sample of transition #Nb.1 of crystal 

B256 (Figure 3.2) was prepared using a Focus Ion Beam (FIB) instrument. Sample was 

studied in a 200 KeV TEM and both high resolution images and diffraction pattern of the 

transition area #Nb.1 were obtained. Successive diffraction patterns along the transition 

area reveal the presence of the 4H-SiC (a) and 6H-SiC (e) polytype (Figure 3.16), as 

spots of the two polytypes are found (Figure 3.16 b-d). High resolution images show that 

in the transition area from 4H-SiC to 6H-SiC altering bands of the two polytypes exist 

(Figure 3.17). A direct shift of the stacking sequence from 4H-SiC to 6H-SiC (and vice 

versa) takes place at each of the interfaces between two polytypes. The stacking sequence 

is (22)(42) and (42)(22) in the case of a transition from 4H-SiC to 6H-SiC and opposite, 

according to Zhdanov notation. The altering bands of 4H-SiC and 6H-SiC in the 

transition area contain from 3 up to almost 30 unit cells of either the 4H-SiC or 6H-SiC 

polytypes. It is reasonable to assume that such a polytype interface can arise from the 

overlapping of different growth centers.  However, further TEM images from exactly the 

transition area at the {0001} facet of various samples must be studied and compared to 

validate or not the proposed idea.    
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Figure 3.16. TEM diffraction patterns along transition #Nb.1 in crystal B256 from (a) 

to (e). 4H-SiC spots indicated by white arrows progressively disappear along the 

transition area. At the same time 6H-SiC spots (yellow arrows) start to appear until they 

remain as the main diffraction spots.  

 

 

Figure 3.17. High resolution image of the transition area #Nb.1 in crystal B256. Altering 

bands of 4H-SiC and 6H-SiC exist between the initial 4H-SiC and final 6H-SiC polytype 

areas. The stacking sequence of each polytype transition interface indicate a direct 

polytype shift.  
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A2. Expansion at the step flow area.  Once a foreign polytype nucleates at the {0001} 

facet, it can expand laterally on the basal plane beyond the so called facet area. The lateral 

expansion from the {0001} facet, which actually corresponds to the propagation of steps, 

is related to the interface curvature. Figure 3.6c demonstrates that the lateral velocity of 

the polytype inclusion expansion is at its maximum when the angle between the tangent 

to the interface and the basal plane is close to zero. As the angle increases, the lateral 

velocity drastically decreases. Then, convex or concave interfaces give rise to two 

different scenarios. A convex interface promotes the expansion of an inclusion up to the 

edge of the crystal, as both the interface and the inclusion have the same propagation 

direction. It is observed for inclusions #Nb1-3 of crystal B256 in Figure 3.2. All the 

inclusions initiated on one side of the crystal having a convex interface propagate over 

the full crystal diameter. A concave interface implies that two opposite surfaces move to 

meet one another. This is a blocking situation for an inclusion, as its lateral expansion 

will be stopped by an interface propagating from the opposite direction. This is the case 

for the inclusion #Nb.1-4 of crystal B254 presented in Figure 3.3.  

 

B. Expansion in the c-axis direction. Concerning the expansion along the c-axis 

direction, phenomena are a little bit more complex as we do not have any direct 

observation to explain why some inclusions have an axial component and some have not, 

staying as thin lamellae. As a reasonable explanation, the following mechanism is 

proposed. The growth on a facet is usually characterized by the presence of a spiral as 

described by the standard Burton Cabrera Frank (BCF) theory of crystal growth (Figure 

3.10). We can thus classify the different growth centers according to their “strength” or 

“efficiency”. For instance, a micropipe providing a much higher step density than a single 

screw dislocation will be considered as a stronger growth center. Then the question is, 

does the newly nucleated polytype inclusion contain its own growth center and if yes, 

what is the strength of this growth center compared to the surrounding ones? Mechanisms 

related to the creation of a spiral of another polytype has been recently reported in the 

literature during solution growth [23]. If the polytype inclusion has no growth center, or 

if its growth center is weak such as a single screw dislocation, then the axial component 

is too small to compete with the surrounding and will be rapidly overlapped. Once the 

growth center is overlapped, it is “deactivated” and the axial component of the inclusion 
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drops down to zero. In such case, the inclusion forms a thin lamella (inclusions # 2, 3 in 

Figure 3.2 and #1, 2, 3 in Figure 3.3). The schematic representation of that mechanism 

is shown in Figure 3.18a-b. If the inclusion contains a stronger growth center than the 

surrounding, then its axial component dominates and the inclusion can develop along the 

c direction (inclusion #1 in Figure 3.2 and #4 in Figure 3.3). In the opposite case, the 

expansion along the c-direction is blocked and thin inclusions are formed, Figure 3.18c-

b.  

 

 

 

Figure 3.18. Schematic representation of the growth centers at a {0001} facet. In blue 

color the main growth center of the facet and in red color foreign polytype centers are 

illustrated.  

 

Once the expansion of foreign polytypes in the basal plane and c-axis direction were 

presented, the competition of foreign polytypes with respect to the shape of the crystal 

will be analyzed. Initially, for the case that a change in crystal shape takes place and 

continuously when the shape of the crystal is unchangeable.  

 

Polytype overlapping due to a change in crystal shape. One example for off-axis and 

one for on-axis growth will be demonstrated.   
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o Case of off-axis growth. A magnified picture of inclusion Nb#4 of crystal B254 

is presented in Figure 3.19. 

 

 

 

Figure 3.19. Magnified image of the 15R-SiC nucleation and propagation area of the 

crystal B254 shown in Figure 3.3. The orange dashed line corresponds to the boundaries 

of the (000-1) facet, while the black (and orange) arrows indicate the propagating 

direction of the 15R-SiC (and 4H-SiC) steps. The boundary between the different 

polytypes is indicated by the AD line.   

 

The 15R-SiC inclusion nucleates on the (000-1) facet and expands laterally towards 

the center of the crystal, following the movement of the growth front (black arrows). The 

angle between the basal plane and the tangent at the crystal surface is less than 10o. If we 

refer to Figure 3.6c, such a value of angle promotes a fast lateral step velocity of the 15R-

SiC inclusion towards the center of the crystal. However, due to the concave crystal 

shape, another interface is moving in the opposite direction from the other side of the 

crystal (orange arrows). The angle between this latter interface and the basal plane is also 

less than 10o, which ensures a high lateral velocity as well. The merging point of the two 

moving interfaces of competing steps, creates the hetero-polytype boundary AB. At the 

same time, the (000-1) 15R-SiC facet is expanding towards the center of the crystal with 

time, as can be seen by the orange dashed line that corresponds to the trajectory of facet’s 

edge. At point B the (000-1) 15R-SiC facet meets the AB boundary and the competing 

growth modes change from step-step, to step-facet competition. At that point, 4H-SiC 
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starts to overlap 15R-SiC, line CD and the interface of the two polytypes change. 

Additionally, the growth rate along the c-direction keeps decreasing at the periphery 

(Figure 3.6a) and so the rate of generating new steps. Thus, the rate at which the 15R-

SiC is overlapped by the 4H-SiC is increasing, line BC and CD. Finally a bulk 15R-SiC 

inclusion is formed once the overlapping is complete.  

To help visualizing the polytype overlapping of the previous example, a photo was 

taken on a crystal where the same polytype overlapping mechanism appears (Figure 

3.20). At the top of the image, the (000-1) facet formed because of the miscut angle of 

growth is indicated. In the step flow area, repeated smaller facets of the 4H-SiC and 15R-

SiC polytype are located, as found by Raman. Similar to the mechanism described before 

steps propagating along the [11-20] direction overlap the facet they meet along this 

direction. The moment captured at the surface of the crystal corresponds to the BD line 

mentioned in the previous example.  

 

 

Figure 3.20. Photo of an as grown 4H-SiC C-face 4o off-axis crystal. 15R-SiC inclusions 

are present. The overlapping of the different (000-1) facets formed from the propagating 

steps is indicated.  

 

o Case of on-axis growth. For crystal B258, a change of the shape of the crystal 

takes place but for on-axis growth. At the beginning of growth the 15R-SiC grows at the 

center and 6H-SiC nucleated at the periphery of the growth front. The growth front of 

the 6H-SiC is more advanced compared to the 15R-SiC due to concave crystal shape 

(seen by nitrogen marking, Figure 3.7). After 1-2mm of growth, the shape of the crystal 
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is changing from concave to convex, similar to crystal B254. Due to the higher growth 

rate at the center of the crystal compared to the periphery, the 15R-SiC growth front is 

enhanced compared to the 6H-SiC. The axial and lateral expansion of the 15R-SiC is 

faster compared to the 6H-SiC and thus, that allows the 15R-SiC to progressively overlap 

the 6H-SiC at the periphery (Figure 3.21).   

 

 

                                           (a)                                                                    (b) 

Figure 3.21. (a) Higher magnification of 15R-SiC / 6H-SiC transition area of crystal 

B258, shown in Figure3.7. (b) Schematic illustration of the polytype transitions in (a). 

The continuous red lines correspond to the growth interface at different time periods (t1-

t5), the black dashed line to the heteropolytype boundary and the arrows indicate the 

propagation of the 15R-SiC.  

 

 

 

Polytype overlapping under a constant crystal shape.  

 

o Case of convex crystal shape: In the second transition of crystal B258 

(Figure3.7), the 6H-SiC nucleated at the center overlaps progressively the 15R-SiC. In 

this case, no change in the shape of the crystal takes place in the area of the transition, as 

the crystal is constantly convex. The axial and lateral growth rate of the 6H-SiC (Rg6H 

and Lg6H) and that of the 15R-SiC (Rg15R and Lg15R) at the periphery will be considered, 

Figure 3.22. 
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The growth rate normal to a crystallographic plane, (in this case the axial growth rate 

Rg15R and Rg6H) depends on the velocity of the steps υ and the density of the steps ρ [24]: 

 

R=υρ                                                             Eq. 3.4 

 

where ρ=h/Λ, with h being the height of the propagating steps and Λ the step spacing. 

The growth rate V normal to the slope formed by the propagating steps is given by 

 

V=Rcosθ                                                          Eq. 3.5 

 

The schematic representation is given in Figure 3.23. The advance of a step is determined 

by the net flux of atoms on the surface jnet: 

 

υ=α2jnetΛ                                                         Eq. 3.6 

 

where α2 is the area of the kink sites at the step edge [24].  

 

The flux of atoms or the supersaturation conditions at the (0001) facet, is similar for 

both 6H-SiC and 15R-SiC. Thus the advancement of the 6H-SiC occurs from the 

difference in the crystal structure between the two polytypes. The step height of 6H-SiC 

growth spirals is one unit cell (6 bilayers of Si-C) compared to the step height of 5 Si-C 

bilayers (1/3 of the unit cell) of the 15R-SiC [25]. A higher step density ρ exists for 6H-

SiC and thus a higher growth rate (Equation 3.4). Once an advanced 6H-SiC growth front 

is formed, a lateral expansion in the basal plane takes place. Similar to the previous 

example, a competition between step flow growth and spiral growth takes place, with the 

6H-SiC steps overlapping the 15R-SiC facet (Figure 3.22). That is defined by the lateral 

growth rate Lg6H, which is depending on the flux of the atoms and the spacing or width 

of the formed steps Λ (Equation 3.6).  

 During the first steps of growth of crystal B258, the overlapping of the 6H-SiC comes 

as a result of the change in crystal shape and the advanced growth front of the 15R-SiC. 

At the second transition, it is the difference in step density between the two polytypes 

that allows the advancement of the 6H-SiC.  
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Figure 3.22: Higher magnification and schematic representation of the polytype 

transition in crystal B258, of Figure 3.7. The 15R-SiC and 6H-SiC areas are indicated. 

Rg and Lg corresponds to the growth rate along the [0001] and [1-100] direction.  

 

 

Figure 3.23. Schematic illustration of the growth rate normal to a  crystallographic plane 

R and to the slope formed by the propagating steps V [24]. 

 

o Case of concave crystal shape: In Figure 3.24 the cross-section of crystal B257 

is shown. A 15R-SiC C-face 3o off-axis seed was used and the grown crystal is a mixture 

of 15R-SiC (light green color) and 4H-SiC (blue color). The contrast differences in the 

4H-SiC are due to variations in doping and will be analyzed in the Chapter 5. The same 

crucible geometry and growth temperature to crystal B258 (Figure 3.7) were applied. 

However growth pressure was increased, leading to an enhanced concave crystal shape 

at the first steps of growth (as seen by nitrogen marking). The effect of pressure in the 

axial growth rate between the two crystals is shown in Figure 3.25. Especially in the first 

steps of growth the axial growth rate at the center at B258 is two times higher. 4H-SiC 

nucleates at the periphery of the growth front and 15R-SiC at the center. Due to the 

concave crystal shape the propagation of the growth front is enhanced towards the center 

of the crystal (schematic representation in Figure 3.24c). Along the [11-20] direction the 
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expansion of the 4H-SiC leans on the (000-1) plane over the 15R-SiC, forming a sharp 

interface (Figure 3.24b). Due to the continuous concave crystal shape at the area of the 

transition, the 4H-SiC growth front is advanced over the one of 15R-SiC. The expansion 

of 4H-SiC towards the opposite of the miscut direction is opposed to the propagation of 

15R-SiC steps propagation from the center of the growth front. A step-like morphology 

is formed (Figure 3.24 b-c). In contradiction to the case of inclusion Nb#4 of B254, no 

change in the crystal shape takes place at the area of the transition and the foreign 

polytype (the 4H-SiC in case of B257) will overlap the main polytype. Also it should be 

noted that in crystal B257 the interface between the 15R-SiC and 4H-SiC is sharp and 

has a step-like shape. That is different from the “progressive or smooth” interface formed 

in inclusion Nb#4 of B254 (boundary BD, Figure 3.19). This is believed to be due to the 

competing growth modes between 4H-SiC and 15R-SiC. However, further analysis is 

needed to understand the shape of the interface between two polytypes, based on the 

competing growth mechanisms.  

 

(a) 

 

                                       (b)                                                                           (c) 

Figure 3.24. (a) Cross section image of a  4H-SiC crystal as observed by a cross-

polarized optical microscope. The seed (separated by red dashed line) is a  15R-SiC C-

face 3o off-axis and the crystal is a mixture of 15R-SiC (light green color) and 4H-SiC 
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(blue color area). The variation of contrast in the 4H-siC is due to different incorporation 

of nitrogen. (b) Transition area at the left side of (a) in higher magnification. (c) 

Schematic representation of transition area in (b). The red dashed lines represent the 

growth interface at three different time periods (t1-t3). 

 

 

 

 

Figure 3.25. Growth rate along the c-axis (growth) direction for crystal B258 and crystal 

B257. Same crucible design and growth temperature (2200 oC) but different growth 

pressure 6 mbar and 15mbar for crystal B258 and B257 respectively, were applied.  

 

 

 

3.6 Conclusions of chapter 3. 

 

The occurrence and propagation of foreign polytype inclusions were systematically 

studied and compared with growth front topology. The nucleation of foreign polytypes 

has the highest probability when the presence of a {0001} facet and the minimization of 

2D nucleation energy occur at the same place and at the same time. Based on the 

orientation of the growth (on-axis or off-axis) and the shape of the crystal (convex or 

concave) areas with higher probability of a foreign polytype to nucleate appear. While 

the position where a foreign polytype is likely to nucleate can be spotted (through the 
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description of supersaturation), further improvement in the thermodynamic analysis is 

needed towards the “prediction” of the right polytype to nucleate.  

The propagation of foreign inclusions were considered at the (0001) basal plane and 

the c-axis direction. In both cases, the growth center is free to expand in all the 

crystallographic directions, but not towards the ones where a more advanced growth 

center is located. Thus, the propagation can be blocked either along the c-axis, so a thin 

inclusion is formed, or either along the basal plane, so the inclusion do not cross all the 

area of the facet. Out of the facet area, the foreign polytypes propagate along the step 

flow direction. The expansion rate drastically increases for small angles between the local 

crystal surface and the basal plane. The foreign polytype expansion will be blocked if the 

direction of its propagation is opposed to the movement of the growth front (case of 

convex crystal shape).  

Last, the overlapping of polytypes was considered with respect to the evolution of the 

crystal shape. Foreign polytypes nucleated at the periphery (due to the initial concave 

crystal shape) can either form a foreign polytype inclusion (inclusion #Nb4 of crystal 

B254) or overlap over the main polytype (4H-SiC at crystal B267). In the first case, it is 

the change in crystal’s shape from concave to convex that will act as the driving force  

for the overlapping to occur. While in the second case, the advancement of the growth 

front from the periphery to the center (due to the constant concave shape at the area of 

the transition), will promote the propagation of the foreign polytype. A foreign polytype 

will nucleate at the center of the growth front due to a convex crystal shape for on-axis 

growth. The higher flux of atoms on the surface at the center of the growth front and the 

relative growth rate of the foreign and the main polytype growth spirals will rule the 

competition of the two polytypes (case of crystal B258). In all the cases, the shape of the 

interface between two polytypes will be defined by the competing growth mechanisms.  
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Chapter 4 
 

 

Towards the bulk crystal growth  
of 15R-SiC. 

 
 

 

  
 

In this chapter, the growth of 15R-SiC bulk crystals by seeded sublimation method is 

studied. Possible parameters that can stabilize/destabilize 15R-SiC were examined, like: 

growth temperature and pressure, design of the graphite crucible, gaseous ambient of growth, 

shape of the crystal (convex or concave), as well as the orientation and the polarity of growth. 

The effect of i) surface polarity of the seed crystal, ii) the presence of nitrogen and iii) the 

Si/C ratio in the gas phase on the growth of bulk 15R-SiC crystals was examined.  
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4.1 Introduction 

The 15R-SiC polytype is usually considered as a parasitic inclusion during the growth of 

4H-SiC ingots by the seeded sublimation method. Though most of the works are related to 

its elimination, a few promising attempts to grow 15R-SiC bulk crystals have been reported 

[1-3]. These studies were mainly driven by the interest of using 15R-SiC in SiC MOSFET 

devices, because of the larger channel mobility compared to 4H-SiC and 6H-SiC [4, 5]. The 

stabilization of 15R-SiC was treated experimentally, in all the reported works. The influence 

of different growth parameters, such as the growth temperature, Si/C ratio in the gas phase, 

seed polytype and polarity on the stabilization of 15R-SiC during PVT have been examined.  

Homoepitaxial growth of 15R-SiC is preferable to grow bulk 15R-SiC crystals, compared 

to growth on 4H-SiC and 6H-SiC seeds (Figure 4.1a). 15R-SiC can grow on both silicon and 

carbon face of a 15R-SiC seed, though more stable growth appears along the [11-20] 

direction. This is attributed to the fact that the stacking sequence of the 15R-SiC appears in 

the growth front, so it is easier to duplicate the polytype of the seed crystal [1, 2, 4]. In the 

case of heteroepitaxial growth, 15R-SiC can stabilize on C-face 4H-SiC and Si-face 6H-SiC 

seeds, but for a lower temperature and pressure range compared to homoepitaxial growth [1, 

2]. The use of 15R-SiC Lely crystals as a seed is the preferable choice, but the small size 

and availability of the specific crystals hold back the progress in the bulk growth of 15R-

SiC.  

Growth temperatures in the range of 1800 to 2100 oC are reported for 15R-SiC bulk 

growth. These values are lower compared to the growth temperature of 4H-SiC and 6H-SiC 

bulk crystals (2200oC-2500oC). Growth temperature depends on the polytype of the seed and 

orientation of growth. Nishiguchi et al. showed that the stabilization of 15R-SiC will occur 

in a different growth temperature range while growing on a Si- or C-face 15R-SiC seeds 

(Figure 4.1b) [4]. The establishment of a low growth rate (0.1-0.5 mm/h) is essential for 

15R-SiC stabilization. A low axial temperature gradient is usually applied (~5K/cm) in order 

to ensure a low growth rate [1, 3, 4, 6].  
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a)  

 

b)  

 

Figure 4.1. a) 15R-SiC growth versus the polytype and surface polarity of the substrate. The 

circle indicates a stable 15R-SiC growth, while the X and unstable 15R-SiC growth. [2]. b) 

Relationship between the substrate and the grown polytytpe. The upper  line corresponds to 

growth on the C-face of 15R-SiC substrate, while the lower on the Si-face. Each point 

represents the polytype(s) that grew at the corresponding substrate temperature [4]. 

 

The presence of extra Si in the source material, in order to compensate the loss of silicon 

during growth was examined by Schulze et al [3]. By placing two 15R-SiC seeds of both Si- 

and C-face in the growth crucible, it was shown that 15R-SiC will preferentially grow on the 

(0001)Si-face 15R-SiC plane when no extra Si is added in the source SiC material (Figure 

4.2). The authors attributed this behavior to the vapor composition in the crucible 

(determined by the Si content in the source material) and the hexagonality of the grown 

crystal.  
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Figure 4.2. Cross section image of two crystals grown under identical growth conditions on 

a Si-face and C-face 15R-SiC Lely platelet a) by adding 10% Si powder b) without adding 

any Si in the source SiC material [3] .   

 

 

Despite the effort made, no optimized conditions for the growth of 15R-SiC bulk crystals 

were reported, nor 15R-SiC crystals of sufficient size and quality – to be used in the industry- 

were demonstrated. We will attempt to bring more insight into the stabilization of 15R-SiC 

bulk growth. Crystals were homoepitaxially grown on both 15R-SiC silicon and carbon face, 

while the orientation of growth was along the c-axis or 3-4o off axis.  The effect of i) polarity 

of growth, ii) presence of nitrogen and iii) the Si/C ratio in the gas phase on the growth of 

bulk 15R-SiC crystals was examined. 
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4.2 Experimental details 

 

Experiments were carried out in the top seeded sublimation growth graphite furnace, 

presented in the second chapter. 15R-SiC Lely platelets and 15R-SiC crystals extracted from 

parasitic inclusions formed in previous experiments were used as seeds. The growth 

direction was either along the c-axis or 3-4o off-axis, on both silicon and carbon faces. The 

graphite support of the seed was slightly modified between experiments either to adjust the 

size of the different seeds or to change the shape of the grown crystal. Such modifications 

have a very local effect in the temperature distribution close to the seed area. Argon and 

nitrogen gasses were used, while periodic nitrogen injections were used in some experiments 

to mark the evolution of crystals interface. The growth temperature and pressure were 

varying in the different experiments. In most experiments, the growth rate was in the range 

of 0.1-0.5 mm/h. A list of all the 15R-SiC growth experiments is given in Table 4.1. Grown 

crystals were cut either in cross section or perpendicular to the growth direction. Samples 

were optically polished and structural defects were observed in an optical cross polarized 

microscope. Raman spectroscopy was employed for the identification of the polytypes and 

determinations of free carrier concentration. A Jobin-Yvon/Horiba LabRam Raman 

spectrometer equipped with a N2-cooled CCD detector was used. It employs a He-Ne laser 

with a wavelength そ= 632.8 nm with a total power of 11mW as well as an Ar-Ion laser with 

そ= 514.5 nm with a total power of 3.2 mW. All measurements were conducted at room 

temperature, in back-scattering geometry. 
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Table 4.1. List of the 15R-SiC growth experiments.  

Experiment 

Seed Grown parameters Grown crystal  

Polytype Polarity Orientation 
Temperature 

[oC] 
Pressure 
[mbar] 

pN2 Polytype 
Growth 

rate 
[μm/h] 

Free carrier 
concentration 

[cm-3]  
B165 15R  C-face 3o off-axis 2200 15 0 4H 117 3-4x1017 

B176 15R Si-face On-axis 2200 20 0 6H+15R 222 - 

B198 15R Si-face 4o off-axis 2200 12 0 15R+6H 160 - 

B214 15R C-face 4o off-axis 2200 15 0 4H 420 - 

B251 15R C-face - 2000 5 0 15R+4H 100 - 

B253 15R Si-face On-axis 2100 10 0 15R+6H - - 

B255 15R Si-face On-axis 2200 15 0 15R+6H 237 - 

B257 15R C-face 4o off-axis 2200 15 0.05 4H 180 2-3 x1019 

B258 15R Si-face On-axis 2200 6 0 15R+6H 210 - 

B262 15R Lely C-face On-axis 2200 8 0 4H - - 

B264 15R Si-face On-axis 2200 10 0 15R 215 - 

B270 15R Lely C-face On-axis 2200 13 0.05 4H - 2-3 x1019 

B272 15R Lely Si-face On-axis 2200 13 0.024 15R+6H - 1-2 x 1018 

B274 15R Si-face 3o off-axis 2200 13 0.024 6H 115 ~ 1 x 1018 

B277 15R Lely Si-face On-axis 2200 13 0.05 6H 400 - 

B284 15R Lely Si-face On-axis 2200 13  6H 130 - 

B285 15R Lely Si-face On-axis 2150 10 0.15 6H-SiC 80 - 
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4.3 15R-SiC crystals  

 

The results are categorized depending on i) the polarity of the growth surface, ii) the 

intentional addition of nitrogen in the growth ambient and iii) the axial temperature gradient 

during growth.  

 

4.3.1 Effect of polarity 

 

Despite the variations of the growth parameters (temperature, pressure and partial 

pressure of nitrogen), the use of different orientation for growth (see Table 4.1) and the use 

of different crucible geometry, a clear trend was observed. 4H-SiC systematically forms on 

the (000-1) C-face and 6H-SiC on the (0001) Si-face of the 15R-SiC seed. In Figure 4.3 the 

occurrence of 4H-SiC and 6H-SiC as a function of the surface polarity of the seed crystal is 

shown for all the experimental results of Table 4.1. In most of the cases the grown crystals 

were a mixture of 15R-SiC with one of the two hexagonal polytypes. The simultaneous 

nucleation of 4H-SiC and 6H-SiC in the same crystal was never observed and in a few 

exceptions, stable 15R-SiC growth has been obtained. 

 

 

 

Figure 4.3. Occurrence of 6H-SiC, 15R-SiC and 4H-SiC during the growth of 15R-SiC bulk 

crystals based on the surface polarity of the 15R-SiC seed crystal.  
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Four experiments were selected to be analyzed. The first two experiments to discuss are 

B270 and B277. For both experiments the same growth parameters were applied, 2200oC 

for the growth temperature, 13mbar for the pressure and the partial pressure of nitrogen was 

at 0.05. Also the geometry of the growth crucible and the size of the seeds are identical in 

both cases, as 15R-SiC platelets were used. However, the surface polarity of the seed crystal 

is not the same for the two experiments. Crystal B270 is 4H-SiC and crystal B277 is 6H-

SiC, while no 15R-SiC inclusions were found. Photos of the grown crystals are shown in 

Figure 4.4. Crystal B270 was cut perpendicular to the growth direction, however the 

interface with the 15R-SiC could not be located. In the case of B277, the presence of 

macrodefects - obvious on the surface of the crystal (Figure 4.4b) did not allow further 

structural analysis. 

 

a)  

b)  

Figure 4.4. Photos of crystal a) B270, 4H-SiC, C-face growth and b) B277, 6H-SiC, Si-face 

growth. Crystals were grown under the same growth conditions on 15R-SiC seeds, Table 

4.1.  



105 
 

In order to locate the point where the transition from 15R-SiC to one of the hexagonal 

polytypes takes place, cross section samples of the grown crystals were prepared. The cross 

section of crystal B214 is shown in Figure 4.5. By Raman it was found that the crystal is a 

mixture of 15R-SiC (green/brown color) and 4H-SiC (blue color). Due to the 3o off-axis 

growth, a (000-1) facet is formed and it is separated by orange dashed lines in Figure 4.5b. 

The starting point of 4H-SiC is on the (000-1) facet and later during growth a sharp 

overlapping of the 4H-SiC over the 15R-SiC takes place.      

 

 

a)  

b)  

b)  

 

Figure 4.5. a) Cross section image of a SiC crystal B214 grown at 2000oC and 15 mbar of 

pressure. The seed is a 15R-SiC 3o off-axis C-face and the grown crystal is a mixture of 4H-

SiC (blue color) and 15R-SiC (green color). b) Higher magnification image of the area 

where the transition takes place. The limits of the (000-1) facet are indicated by orange 

dashed lines.  
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The last sample to analyze is crystal B198. A photo of the grown crystal is shown in 

Figure 4.6. By Raman it was found that the crystal is a 15R-SiC, while on the (0001) facet a 

6H-SiC growth center is located. The growth conditions were similar to B214, as seen in 

Table 4.1, but the design of the graphite support of the seed is different, due to the difference 

in the size of the seeds that were used (~6mm for B214 and ~15mm for B218). Despite the 

differences in the temperature profile close to the seed area introduced by the different 

geometry – as analyzed in the second chapter – the occurrence of the hexagonal polytypes 

are related to the presence of a {0001} facet.    

 

 

 

Figure 4.6. Crystal B198 grown on a 15R-SiC 3o off-axis Si-face seed. The crystal is of the 

15R-SiC polytype and a 6H-SiC growth center is located on the (0001) facet.  

 

Areas of 20μm x 20 μm at the surface of the (0001) facet of B198, were scanned using an 

atomic force microscpe (AFM). The step height of spirals found in the 6H-SiC growth center 

were of approximately 1.55 nm which corresponds to the height of 6 Si-C bilayer or the unit 

cell of 6H-SiC (Figure 4.7b). In the rest of the (0001) facet, spirals with step height of 5 

bilayers of Si-C (~1.3 nm) were found. This height corresponds to 1/3 of the unit cell of 

15R-SiC. The axial growth rate depends on the step density and the step height of the growth 

spirals, as shown in Equation 3.4 and 3.6 (Chapter 3). The bigger step height of the 6H-SiC 

spirals contribute to the advanced growth front of the 6H-SiC growth center over the 15R-

SiC, taking into account that on the (0001) facet 15R-SiC and 6H-SiC spirals grow under 

similar supersaturation conditions. 
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Figure 4.7. a) Nomarski image of crystal B198. Spirals at different areas were scanned by 

AFM. The step height of b) 5 Si-C bilayers and c) 6 Si-C bilayers correspond to 1/3 of the 

step height of 15R-SiC and the unit cell of 6H-SiC.  

 

The problem of facet occurrence and the probability to nucleate a foreign polytype was 

already analyzed in chapter 3. The position of the transitions, the orientation of growth and 

the macroscopic shape of the crystals are in agreement with the model that was proposed in 

chapter 3. This observation implies that the occurrence of 4H-SiC or 6H-SiC during the bulk 

growth of 15R-SiC arise due to the formation of a 2D nuclei on the 15R-SiC spirals. An 

additional argument to that statement is that the occurrence of the hexagonal polytype 

depends on the growth polarity. It was systematically observed that 6H-SiC nucleates at the 

Si-face 15R-SiC (0001) facet, while 4H-SiC at C-face 15R-SiC (000-1) facet. Similar trends 

for Si-face 15R-SiC was reported by Schulze et al., however on C-face both 6H-SiC and 

4H-SiC were obtained [6]. Nishiguchi et al. did not obtain any “polarity preferential” 

polytype occurrence, as grown crystals were a mixture of all the three polytypes (Figure 

4.1b) [4]. The importance of polarity in the nucleation of a foreign polytype is already 
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described for 4H-SiC and 6H-SiC. The growth of 6H-SiC on the Si-face and 4H-SiC on the 

C-face of the 4H-SiC polytype is attributed to the difference in surface energy of the two 

polar planes [7].  

 

 

4.3.2 Effect of nitrogen 

 

The experiments are separated based on the surface polarity of the 15R-SiC seed used for 

the growth.  

 

Growth on (000-1) C-face. A 15R-SiC C-face 3-4o off-axis substrate was used for both 

experiments B165 and B257. The growth temperature was set at 2200oC and the pressure at 

15 mbar. For B165 no nitrogen gas was intentionally added in the growth ambient and any 

dopant incorporated in the crystal, is due to unintentional doping coming from the SiC source 

material. In contrast, nitrogen was added in the argon gas in the case of B257 growth, with 

the partial pressure of nitrogen being 0.05. The free carrier concentration at the surface of 

the crystals was estimated, using the LO and TA Raman mode [8], at 3-4x1017cm-3 and 2-

3x1019 cm-3 for B165 and B257 respectively. 

The cross sections of crystals B165 and B287, observed under a cross polarized 

microscope are shown in Figure 4.8. The crystals are a mixture of 15R-SiC and 4H-SiC. In 

both cases, 4H-SiC nucleates on the (000-1) plane at the beginning of growth at the periphery 

of the growth front. Due to the concave crystal shape, 4H-SiC overlaps the 15R-SiC at the 

center (as described in Chapter 3). Macrodefects generate at the boundaries of the two 

polytypes, expand along the growth direction and terminate at the surface of the grown 

crystal.  
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a)  

b)  

 

Figure 4.8. Cross-section images of 4H-SiC crystals a) B165 and b) B257 grown without 

and with the presence of nitrogen. The 3o off-axis 15R-SiC seed used in both cases is 

separated by red dashed line. Crystals are a mixture of 15R-SiC (green color polytype) and 

4H-SiC (blue color polytype).  

 

 

Even if the 15R/6H transition is well described, it is not the case for the 15R-SiC to 4H-

SiC transition. The transition of 15R-SiC to 6H-SiC is attributed to different mechanisms 

[9-11]. Harada et al. proposed that during solution growth of SiC, a 15R-SiC to 6H-SiC can 

occur due to the formation of a 2D nuclei on the grown spirals, Figure 4.9 [9]. A Shockley 

type stacking fault (SF) could result in the formation of a 15R-SiC inclusion. If a spiral can 

replicate 6H-SiC type SFs then a transition from 15R-SiC to 6H-SiC will take place. 

However, the proposed model cannot explained the transition from 15R-SiC to 4H-SiC.  
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Figure 4.9. Schematic illustration of two possible configurations a and b for 2D nucleation 

on a 15R-SiC spiral. Frank and Shockley type SFs can lead to the formation of 6H-SiC 

inclusion [9].  

 

A TEM sample was prepared from crystal B165, close to the area where the 15R-SiC to 

4H-SiC transition takes place. Due to the non-availability of FIB it was not possible to locate 

the exact position of the transition area in the TEM sample. In the TEM image  of Figure 

4.10,  a 15R/4H interface was spotted and no further 15R-SiC inclusions or transition were 

found in the 4H-SiC area. Basal plane defects exist in the 15R-SiC as seen by the 

conventional TEM image (left) and the high resolution TEM (HR-TEM) image revealed that 

these defects are mainly multiple twins. The 15R-SiC stacking changes from (23) to a 

twinned (32) sequence, according to Zhdanov notation.  Close to the transition area, the 

stacking sequence of 15R-SiC (32) shifts to (22) of the 4H-SiC polytype. The schematic 

illustration of the transition is shown in Figure 4.11b. Despite the multiple twins in the 15R-

SiC, the transition to the 4H-SiC polytype is direct, according to the HR-TEM image. The 

following two scenarios can be made in order to explain the obtained result: 

1) When growth spirals of different polytypes overlap, the interface can be “sharp”, which 

is the case in crystal B256 (see Chapter 3). The atomically direct transition seen by the 

HR-TEM image corresponds to an area where different polytype growth spirals overlap 

and not to the area where the 4H-SiC nucleated. 

2) The formation of a 2D nuclei of one Si-C bilayer height is not able to explain the 15R/4H 

transition as described in Figure 4.9 for 6H-SiC. However that corresponds to an ideal 

case, as usually a disturbed stacking zone is obtained between two different polytypes. 
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The formation of a 3D nuclei or the combined effect of multiple nucleus on the terrace 

of a spiral can be considered. 

 

 

 

Figure 4.10. TEM image of a 15R/4H polytype transition. Planar defects are obvious in the 

low magnification TEM image (left side). High resolution image of the transition area 

reveals twins in the 15R-SiC before the 15R/4H interface. 

 

  

                                  (a)                                    (b)                                    (c)  

 

Figure 4.11. Schematic illustration using Zhdanov notation of the stacking sequence of a) 

the perfect (32) sequence of 15R-SiC, b) the (32)/(22) of the 15R/4H transition and c) a 

(32)/(23) twin in the 15R-SiC is shown.  
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The cross section sample of B165 was etched in molten KOH at 550oC for 5 minutes in 

order to reveal the structural defects. Two cross polarized images of the step-like 15R/4H 

interface are shown in Figure 4.12. Inside the 15R-SiC area basal plane defects are 

evidenced, in correspondence to the defects found from the TEM images. While the 4H-SiC 

is free of such kind of defects. The planar defects shown in the TEM image all located in the 

area of the TEM sample, but exist in all the volume of the 15R-SiC crystal and close to the 

interface with the 4H-SiC as well. A growth spiral of 15R-SiC consists of steps with height 

of 5 Si-C bilayers. Therefore 3 spiral turns are necessary to complete a 15R-SiC unit cell. If 

we assume that the stacking of the 5 bilayers is ABCBA, a forbidden stacking sequence 

would occur after one turn (ABCBA ABCBA). This is not possible and as a consequence a 

stacking fault must be formed in order to fix the stacking sequence [12]. Due to that, a high 

density of basal plane defects is expected.  

 

 

Figure 4.12. Basal plane defects in the 15R-SiC are of crystal B165, observed in a cross 

polarized optical microscope. Sample was etched in molten KOH at 550oC for 5 minutes. 

 

Growth on (0001) Si-face. A 15R-SiC Si-face on-axis was used as a seed for the growth 

in both B258 and B272 experiments. The growth temperature was 2200oC and the pressure 

13mbar. During growth, nitrogen gas was added in the reactor only for the case of B272 

growth. The ratio of the nitrogen flow towards the total flow of gasses was 0.024. The free-

carrier concentration using the Raman modes is estimated at 1-2x1017cm-3 1-2x1018 cm-3 for 

B258 and B272. Crystal B272 was cut perpendicular to the growth direction. Slices were 
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optically polished and observed under a cross polarized optical microscope. Four slices were 

made as shown in Figure 4.13a. During growth, 6H-SiC nucleated on the (0001) facet of the 

15R-SiC crystal (slice #Nb.2) and expand due to the convex crystal shape (Figure 4.13a). In 

the volume of the 15R-SiC crystal, the 6H-SiC forms a conical shape inclusion, as shown in 

the schematic representation of Figure 4.13a.  

 

a)  

b)  

 

Figure 4.13. a) Schematic illustration and slices cut perpendicular to the growth direction 

of crystal B272. No1 corresponds to the beginning and No4 to the end of growth. b) Cross 

section image of crystal B258, under a cross polarized optical mixroscope.  

 

The nucleation and expansion mechanism of the 6H-SiC inclusion are similar to the 

polytype transitions observed in B258. Crystal B258 is already presented in chapter 3, but 

the cross section of the crystal is given again in Figure 4.13b, for better comparison. The top 
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polytype transition in crystal B258 from 15R-SiC to 6H-SiC, occurs on the (0001) facet at 

the center of the growth front after 2-3 mm of growth. In both crystals the 15R/6H transition 

occur in similar spatial position, beside the presence or not of nitrogen. 

Nitrogen has proved to affect the stabilization of the 4H-SiC polytype during bulk crystal 

growth and that was attributed to the reduced step bunching in the {0001} facet [13]. Another 

effect of nitrogen, is the deformation caused in the unit cell. The smaller size of the 

substitutional nitrogen donor atoms – in the position of carbon atoms – can change the c/na 

ratio of the unit cell, where c and a are the lattice constants in the c-axis and a-axis and n the 

number of Si-C bilayers in the unit cell. The presence of nitrogen is found to decrease the 

c/na ratio [14]. At the same time, the stabilization of a polytype is reported to be related to 

the c/na ratio, as a decreased ratio will favor the growth of a smaller in hexagonality SiC 

polytypes, like 15R-SiC and 6H-SiC (40% and 33% hexagonality respectively) [15]. 

However, according to the experimental examples presented, it can be concluded that 

nitrogen doesn’t have a primitive or highly contributing role in the stabilization of 15R-SiC, 

at least in the range of doping that was investigated ( ~1018 cm-3 for Si-face and ~1019 cm-3 

for C-face). 

 

 

4.3.3 Effect of Si/C ratio in the gas phase.   

 

The growth temperature of crystals B264 and B274 was set at 2200oC, the growth 

pressure at 13mbar and a 15R-SiC Si-face on-axis seed was placed in the growth cavity. A 

cavity at the back of the seed was created for both experiments, by modifying the geometry 

of the graphite holder. As discussed in the second chapter, such a modification will increase 

the Si/C ratio in the gas phase and will change the shape of the grown crystal compared to 

the “standard geometry” Figure 2.23. 

The grown crystal B264 and a cross section of it are shown in Figure 4.14. The presence 

of a cavity at the back of the seed has a direct effect on the shape of the crystal. The 

temperature at the center of the growth front was lowered and as a result the growth rate is 

higher compared to the periphery, as seen by the nitrogen marking. No hexagonal polytype 
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inclusions were found in the volume of the grown crystal but only 15R-SiC polytype. After 

4mm of growth 6H-SiC nucleated at the (0001) facet on the surface of the crystal as found 

by Raman, Figure 4.14a-b. 

a) b)  

c)  

 

Figure 4.14. a) Photo of a 15R-SiC crystal B264 grown on a 15R-SiC on-axis Si-face seed. 

At the surface of the crystal a 6H-SiC spiral was found. b) Nomarski image of crystal B264. 

c) cross section image of a cross polarized microscope (seed separated by red dashed line). 

 

For B274 crystal, similar growth conditions to B264 were applied. However nitrogen was 

added in the gaseous ambient in order to ensure stable doping conditions and avoid the 

variation of doping during growth (color variations seen in crystal B264, Figure 4.14c). The 

free carrier concentration using the LO Raman mode was estimated at around 1x1018 cm-3. 

The grown crystal is of the 6H-SiC polytype and no 15R-SiC inclusions were found. Despite 

the fact that the same crucible geometry and growth conditions with crystal B264 were 

applied in the case of crystal B274, no stable 15R-SiC growth was obtained. 
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Figure 4.15. Crystal B274, grown on a 15R-SiC Si-face 3o off-axis substrate (separated from 

the grown crystal by red dashed line).  The polytype of the grown crystal is of 6H-SiC and 

the free carrier concentration ~1x1018 cm-3. 

 

The increase of Si/C ratio in the gas phase is reported to enhance the growth of lower in 

hexagonality polytypes, like 3C-SiC and 6H-SiC [16]. The modification of the crucible 

(cavity at the back of the seed) increases the Si/C ratio in the gas phase, compared to the 

“standard case” (Figure 2.23). Thus, the growth of 6H-SiC (hexagonality 33%) is expected 

compared to 15R-SiC (hexagonality 40%). However, experimentally stable 15R-SiC growth 

was obtained for crystal B264.  

In the case of crystal B274, nitrogen was added in the growth ambient. The role of 

nitrogen on the variation of Si/C ratio of the gas phase is still not clarified by the existing 

studies. However, the two following assumptions can be made. First, a reaction of nitrogen 

with the graphite crucible can provide CN species in the gaseous phase, which act as an extra 

carbon source. Second, the lattice site competition of nitrogen with carbon will change the 

amount of carbon absorbed and as a result the carbon concentration in front of the grown 

surface will increase. By both mechanisms, the presence of nitrogen will lead to the decrease 

of Si/C ratio. Once the Si/C ratio is lower for crystal B274 compared to B264, the growth of 

a polytype with higher hexagonality is expected, e.x. 4H-SiC (haxagoanality 50%). Yet, the 

polytype of crystal B274 is 6H-SiC. 

Last, for crystal B264, 6H-SiC nucleates at the (0001) facet close to the surface of the 

crystal (Figure 4.14). Due to the non-congruent growth of SiC, the sublimation rate of the 

various SiC species (Si, SiC2
 and Si2C) changes and as a result, the Si/C ratio decreases with 
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time. The Si/C ratio after 20 hours of growth, when 6H-SiC nucleates, is lower compared to 

the beginning of growth. Thus, the nucleation of 4H-SiC (higher in hexagonality) is 

expected. 

From all the cases, it is evident that the polytype of the crystal is not in agreement with 

the expected polytype to nucleate based on the changes of Si/C ratio. The polytype of the 

crystal is the one defined by the surface polarity of the seed (6H-SiC nucleate on the Si-face 

and 4H-SiC on the C-face). It appears that the effect of surface polarity is stronger and it is 

the one to determine which polytype will nucleate.  

 

4.4 Conclusions of Chapter 4. 

 

Bulk growth of 15R-SiC was studied under the basis of different growth parameters. In 

most of the growth experiments, the grown crystals are a mixture of 15R-SiC with 4H-SiC 

or 6H-SiC. The occurrence of one of the hexagonal polytypes is related to the polarity of 

seed’s growth surface, as 4H-SiC was systematically obtained on C-face and 6H-SiC on Si-

face.  Polytype transitions occur on the {0001} facet. This implies that 2D nucleation on the 

15R-SiC facet occurs. Thus, off-axis growth can favor the stabilization of 15R-SiC, due to 

the existence of the polytype information in the step edge sites. Statistically it is observed 

that 15R-SiC was more stable when grown on the (0001) Si-face plane. Despite the optimum 

growth temperature range given in the literature, stable growth of 15R-SiC was obtained up 

to 2200oC. However, further studies are needed in order to indicate the preferable 

temperature for 15R-SiC growth.  

The role of Si/C ratio in the gas phase, for 15R-SiC stabilization was highlighted. Due to 

a modified crucible design, the Si/C in the gas phase was increased and stable 15R-SiC 

growth was obtained. Once the Si/C ratio was changed due to the presence of nitrogen and 

due to the non-congruent consumption of the SiC source material, polytype transitions were 

obtained. However, the polytype nucleated was defined by the surface polarity of the crystal 

and not the increase or decrease of Si/C ratio. Additional experiments and thermodynamic 

calculations are needed in this direction, in order to optimize the growth conditions for bulk 

15R-SiC growth. 
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Chapter 5  
 
 

Nitrogen doping in SiC bulk crystals 
 
 
 
 

 

 

 

In this chapter we study the problem of nitrogen incorporation during bulk crystal growth 

of 4H-SiC and 6H-SiC by seeded sublimation method. Nitrogen incorporation in bulk SiC 

crystals with respect to the partial pressure of nitrogen and growth temperature is examined. 

We will show that the incorporated nitrogen at the (000-1) C-face plane is independent of 

the polytype of the crystal. Higher desorption rate of nitrogen on Si-face compared to C-face 

is found, using a Langmuir adsorption equation, which is attributed to the difference in bond 

density between the two polar faces. The increased nitrogen desorption when growth 

temperature increases is believed to be the most contributing factor, based on the temperature 

dependent trends. 
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5.1 Introduction 

 

Nitrogen is the most commonly used n-type dopant in SiC and its incorporation via 

implantation or during crystal growth is an extensively studied topic. In sublimation growth 

nitrogen is the most abundant dopant, mainly because it is difficult to remove from the 

building materials of the growth crucible. Even if high purity graphite materials are used, 

the background level of nitrogen will hardly drop below 1017cm-3. For most of electronic 

applications highly conductive substrates are needed, so grown crystals are intentionally 

doped by adding nitrogen to the gaseous phase.  

Even if the incorporation of nitrogen with respect to the various growth parameters is 

described in the chemical vapor deposition system [1-3], no complete description of the 

phenomena exist for the seeded sublimation method. Many groups have studied the 

incorporation of nitrogen with dependence of various growth parameters like the orientation 

of growth, the partial pressure of nitrogen in the gas phase, the growth temperature and the 

growth rate. The polarity dependent nitrogen incorporation was one of the first phenomena 

studied. It was shown that (000-1)C plane grown crystals incorporate more nitrogen 

compared to (0001)Si face 6H-SiC crystals [4]. That work came as a result of the already 

described idea that nitrogen incorporates into carbon sites by Lely [5] using electrical and 

X-ray characterization and a few years later by electron spin resonance studies [6]. First, it 

was shown that any change in the growth rate (in the range of 0.4 – 1.1 mm/h) does not affect 

the amount of nitrogen to be incorporated [4]. Thus, nitrogen incorporation is not kinetically 

limited but an equilibrium surface coverage of absorbed nitrogen is always established 

during growth. Due to that, most of the studies focus on the dependence of incorporated 

nitrogen with the partial pressure of nitrogen in the gas phase [4, 7, 8]. Incorporated nitrogen 

increases with increasing nitrogen partial pressure, but a saturation limit arises while 

approaching 100% of nitrogen in the growth ambient. The obtained trends are best described 

using a non-dissociative Langmuir adsorption isotherm equation, see Figure 5.1a. 

Concerning the effect of polytype, during growth on the (1-100) and (11-20) planes, that 

reveal the stacking sequence of the SiC polytypes, no significant difference was observed 

between 6H-SiC and 4H-SiC (Figure 5.1b). This implies that the difference in stacking 
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sequence between the two polytypes does not affect the incorporation of nitrogen. However 

on the (000-1) C-face growth nitrogen incorporation varies and that was attributed to 

topological differences between the 6H-SiC and 4H-SiC (000-1) surfaces [7].  

The difficulty to differentiate the phenomena in the PVT process, complicates the 

description of nitrogen incorporation with respect to other growth parameters like growth 

temperature and Si/C ratio in the gas phase. Also, the role of the surface mechanisms during 

growth (spiral, step flow growth, 2D nucleation) is not clear. During bulk growth a basal 

plane facet and a step flow area are formed (see Chapter 3). It is reported that basal plane 

facet incorporates more nitrogen compared to the step flow area. The difference in 

incorporated nitrogen takes a maximum value for low doping and saturates for higher values 

(Figure 5.1c) [9, 10]. The lack of understanding the complete mechanism of nitrogen 

incorporation in SiC and difficulties that arise from the PVT process itself confine the 

progress towards a complete model of nitrogen incorporation in the PVT system.  

In this chapter, we will demonstrate that the incorporation of nitrogen at the {0001} plane 

is independent of the polytype of the crystal. Also the temperature dependence is described 

and the activation energy is reported. We will bring more insight into the nitrogen 

incorporation mechanism by considering the adsorption/desorption phenomena in the 

growth surface and different growth mechanisms. 

 

a)    b)  
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c)  

 

Figure 5.1. a) Nitrogen concentration in the crystal as a  function of the N2 partial pressure. 

A non-dissociative Langmuir adsorption isotherm equation (solid line) is used to best 

describe the data. b) Nitrogen incorporation as a function of the orientation of growth [7]. 

c) Ratio of nitrogen incorporated at the (000-1) facet and the step flow area of a 4H-SiC 

crystal as a function of nitrogen in the gas phase [9]. 

  

 

5.2 Experimental details  

 

 SiC crystals were grown in a top seeded sublimation graphite furnace. Temperature, 

pressure, argon and nitrogen flows were automatically controlled as already presented in 

Chapter 2. On-axis and off-axis 4H-SiC, 6H-SiC and 15R-SiC seeds of both silicon and 

carbon face were used. In a first set of experiments, the partial pressure dependence in 

nitrogen incorporation was examined. Growth temperature and total pressure were kept 

constant for all the experiments at 2200oC and at 13 mbar respectively. The ratio of nitrogen 

flow on the total flow of gases (argon and nitrogen) was in the range of 0.05 – 0.8. In a 

second set of experiments, the incorporation of nitrogen was examined with respect to the 

growth temperature. All the growth parameters were constant, pressure was 13 mbar and the 

partial pressure of nitrogen N2/(N2+Ar) was 0.15, while growth temperature was varying in 

the range of 2130oC to 2350oC. In all of these experiments, the different SiC crystals were 
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grown in the same growth experiment using a multi seed method, in order to ensure similar 

growth conditions.  

The free carrier concentration of the crystals was estimated using temperature-dependent 

Hall electrical measurements and room temperature Raman spectroscopy while the nitrogen 

concentration was measured by Secondary Ion Mass Spectrometry (SIMS). Hall 

measurements were performed in the temperature range of 30K up to 600 K by the Van de 

Pauw method. Ohmic contacts were created by alloying nickel onto the sample surface. The 

magnetic field was constant at 0.66 T during the measurements. A Jobin Yvon T64000 

Raman system has been used. A 40 mW mixed Argon/Krypton laser was used as excitation 

source (そ=660 nm) and a cooled CCD camera completed the set-up. The measurements were 

done at room temperature in the range 100-1100 cm-1. The uncertainties in the Raman 

frequencies were estimated to be less than 1 cm-1. Since the investigated material is highly 

nitrogen doped, to determine the carrier concentration we focused on the acoustic part of the 

spectra.  FTA lines are fitted using the Fano interference model. From the extracted 

asymmetry and broadening parameters (q and Γ, respectively), using the calibration curve 

from [11] we were able to evaluate the free carrier concentration. Secondary Ion Mass 

Spectrometry analyses were carried out in a CAMECA SC-Ultra instrument operating with 

a 5.5 keV energetic Cs+ beam. N ionization being extremely low, CN- intensities were 

recorded. The nitrogen relative sensitivity factor linking N intensity and N concentration 

was determined from an external standard sample (SiC implanted with 14N, 180 keV, 9.5 x 

1012cm-2) allowing to obtain quantitative data.  

 

 

5.3 Temperature dependence 

 

Four different seeds were placed in the growth chamber (positions I-IV) in order to ensure 

similar growth conditions and allow the direct comparison of the results. An example of 

crystals grown at 2280oC is shown in Figure 5.2. The seeds and the growth conditions used 

are listed in Table 5.1.  
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Table 5.1. Characteristics of the temperature dependent nitrogen doped SiC crystals. 

Growth 
experiment 

Growth 
temperature [oC] Pressure [mbar] Partial pressure 

of nitrogen  
B278 2350 

13 
0.15 

B281 2280 

B280 2200 

B282 2130 

B279 2050 

B283 2200 8 

Seeds 
Position I Position II Position III Position IV 
4H-SiC 4H-SiC 4H-SiC 6H-SiC 

4o off-axis on-axis 4o off-axis on-axis 

C-face C-face Si-face C-face 

Grown crystals  
4H-SiC 4H-SiC 6H-SiC 6H-SiC 

 

 

 

Figure 5.2. Photo of the grown SiC crystals (position I-IV) at 2280oC. Four seeds were 

placed in the reaction chamber and white dashed lines are used to mark the boundaries of 

the different crystals.  

 

5.3.1 Hall Electrical measurements.  

 

Crystals were cut perpendicular to the growth direction and polished optically from both 

sides. Continuously they were cut in square pieces 6x6 mm which is the appropriate size for 
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Hall measurements. It was not possible to perform Hall measurements in all the grown 

samples, due to limitations that arise because of small polytype inclusions and defects in the 

crystals. The samples that were measured are indicated in Table 5.2 with grey color.  

 

Table 5.2. In grey color the samples measured by Hall are indicated. 

sample Tgrowth [oC] 4H C-face 6H C-face 6H Si-face 

B278 2350 On-axis  On-axis 

B281 2280 
On-axis 

Off-axis  
On-axis On-axis 

B280 2200 On-axis    

 

The free carrier concentration, the Hall mobility and the resistivity of on-axis and off-axis 

C-face 4H-SiC and on-axis 6H-SiC of silicon and carbon face grown at 2280oC are given in 

Figure 5.3.  

o Free carriers concentration. The free carriers concentration of the on-axis C-face 

4H-SiC is higher by ~1x1019cm-3 compared to the off-axis crystal (Figure 5.3a). The constant 

values of free carriers concentration (1-2x1019cm-3) while changing the temperature of 4H-

SiC is an indication of a degenerated semiconductor. For the case of 6H-SiC the free carriers 

decrease when the temperature decreases, because less doping centers are activated. The 

“tail like” trend at low temperatures (red circle area in Figure 5.3a) is due to the high 

concentration of doping (hopping effect). Even if the free carrier concentration at room 

temperature (grey dashed line) of 4H-SiC and 6H-SiC are in the same range, free carriers 

concentration varies with temperature only for 6H-SiC.  This is attributed to the different 

ionization energies - higher for 6H-SiC - of the two polytypes [12].  

o Hall mobility. The carrier mobility is constant in the case of 4H-SiC (~40cm2/Vs) as 

the material has a semimetal behavior. 6H-SiC exhibits the characteristic temperature 

dependence of mobility for semiconductors. At high temperatures, mobility decreases due 

to the increased phonon scattering with a power law of 2-3 (μph ~T-3...2). For low 

temperatures, mobility decreases due to scattering from charged defects, like ionized donors 

or acceptors (μdef ~ T3…2).  
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o Hall Resistivity. Resistivity of 4H-SiC is constant at around 0.01 Ωcm, once the free 

carriers concentration is constant, Figure 5.3c. While the one of 6H-SiC increases as 

temperature decreases, because the free carrier concentration is decreasing (Figure 5.3c).  

 

a) b)  

c)  

Figure 5.3. a) Free carrier concentration, b) Hall mobility and c) Resistivity of on-axis and 

4o off-axis 4H-SiC and on-axis 6H-SiC of silicon and carbon faces grown at 2280oC. 

Measurements were performed in the temperature range 30K - 600K. The grey dashed line 

corresponds to the room temperature. 
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The electrical measurements performed for 4H-SiC crystals grown at different 

temperatures are shown in Figure 5.4. Free carriers concentration is in the range of 8x1018cm-

3 for 2350oC up to 2x1019cm-3 for 2200oC. The trends of resistivity are more clear compared 

to mobility were no actual comparison can be made. The resistivity at low temperatures is 

higher for the crystal grown at 2350oC (0.02Ωcm) compared to 0.01Ωcm of 2200oC. 

a)     b)  

c)  

 

Figure 5.4. a) Free carrier concentration, b) Hall mobility and c) Resistivity of on-axis and 

4o off-axis C-face 4H-SiC. Measurements were performed at the temperature range of 30K 

to 600K. The dashed grey line corresponds to the room temperature. 
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For the case of Si-face on-axis 6H-SiC there are no significant differences for all the 

measured crystals grown at different temperatures, as seen in the graphs of Figure 5.5. 

 

a)        b)  

c)  

 

Figure 5.5. a) Free carrier concentration, b) Hall mobility and c) Resistivity of on-axis Si-

face 6H-SiC. Measurements were performed at the temperature range of 30K to 600K. The 

dashed grey line corresponds to the room temperature. 
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The free carrier concentration data were fitted using a least-squares fit of the neutrality 

equation presented by Gotz et al. [13] using a homemade program, in order to extract the 

donor and acceptor concentrations. The fitting parameters are the ionization energy of cubic 

and hexagonal sites, the free carrier concentration on these sites and the compensating carrier 

concentration. However, due to the high doping of the crystals it was not possible to obtain 

a reliable fitting (Figure 5.6), since the fitting equations are best suited for SiC crystals doped 

in the range of 1016-1018cm-3. The acceptor and donor concentration could not be estimated, 

thus the values of free carrier concentration, Hall mobility and resistivity at room 

temperature will only be considered. The values are summarized in Table 5.3 and Figure 5.7. 

The free carrier concentration of C-face 4H-SiC is higher (difference is less than 1x1019cm-

3) compared to 6H-SiC (at 2280oC), while the increase of the growth temperature will 

decrease the free carriers for the case of 4H-SiC. In the case of Si-face 6H-SiC, no significant 

difference is observed for the measured crystals. The Hall mobility and resistivity increase 

as growth temperature is increasing for both C-face 4H-SiC and Si-face 6H-SiC, while the 

values are comparable to other studies [14]. 

 

 

 

Figure 5.6. Free carrier concentration by Hall measurement as a function of 1000/T. A 

least-squares fit of the neutrality equation [13] (solid line) was used to describe the obtained 

data. On the left the fitting parameters are indicated. 
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Table 5.3. Electrical characteristics at room temperature of crystals in Table 5.2 

T = 295 K 
Growth 

temperature 
[oC] 

SiC crystal  

4H-SiC C-face 6H-SiC C-face 6H-SiC Si-face 

Free carrier 
concentration  

[cm-3] 

2200 

2280 

2350 

2.02E+19 

1.52E+19 

1.02E+19 

- 

9.40E+18 

- 

- 

2.88E+18 

2.97E+18 

Hall mobility 
[cm2/Vs] 

2200 

2280 

2350 

38.8 
46.5 

48.77 

- 

38.8 

- 

- 

65.6 

70.87 

Resistivity  
[Ωcm] 

2200 

2280 

2350 

8.0 

8.41 

12.5 

- 

15.6 

- 

- 

28.13 

28.98 

 

 

a)    b)  

c)  

 

Figure 5.7. a) Free carrier concentration, b) Hall mobility and c) Resistivity of on-axis C-

face 4H-SiC and on-axis 6H-SiC of silicon and carbon face as a function of the growth 

temperature by Hall electrical measurements.  
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5.3.2 Raman spectroscopy measurements.  

 

The free carrier concentration of the same set of crystals was extracted using Raman 

spectroscopy. In the graph of Figure 5.8 the free carrier concentration as a function of the 

growth temperature is plotted, while the differences obtained from the Hall measurements 

are in the range of ~1x1019cm-3. The free carrier concentration for both C-face 4H-SiC and 

C-face 6H-SiC crystals decreases when the growth temperature increases. Si-face 6H-SiC 

follows the same trend in contrast to the results from Hall measurements. For the case of C-

face 4H-SiC an Arrhenius equation (equation 5.1) is used to fit the data. The activation 

energy is calculated at 152.4 kJmol-1. The data reported by Ohtani et al. are given for 

comparison [14]. The Arrhenius equation is given below.  

RTEaAek
/                                                       Eq. 5.1 

 

k represents the free carrier concentrations, A is a pre-exponential factor, Ea [kJmol-1] the 

activation energy and T [K] the temperature. 

 

a)    b)  

 

Figure 5.8. a) Free carrier concentration of on-axis C-face 4H-SiC and on-axis 6H-SiC of 

Si and C-face as a function of the growth temperature, as measured by Raman spectroscopy. 

b) An Arrhenius equation was used in order to fit the data. The activation energy is found to 

be 152.4 kJ/mol. Data from Ohtani et al. are used for comparison [14]. 
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5.3.3 Surface morphology. 

  

The surface of C-face 4H-SiC, 6H-SiC and Si-face 6H-SiC grown crystals was observed 

by a Nomarski optical microscope (Figure 5.10-5.12). Even if it is a qualitative observation, 

the width of the terraces on the {0001} facet is decreasing, once growth temperature is 

increasing. The phenomenon is more enhanced in the case of Si-face 6H-SiC (Figure 5.12). 

When the growth temperature is 2350oC, the growth rate is ~1mm per hour, which is 3 times 

higher compared to growth rate at 2200oC. If a growth spiral is schematically illustrated by 

a triangle (Figure 5.9), the slope or inclination of a spiral will be higher (angle v is bigger 

than u) when the growth rate is higher (Rg2 > Rg1). Thus, the width of the terraces will be 

smaller (W2 < W1) for the case of a fast growing spiral.  

 

 

Figure 5.9. Cross sectional schematic illustration of a growth spiral as a triangle shape 

object. The growth rate Rg, the inclination of the spiral (angle u and v) and the width of the 

terraces (W) are indicated.  

 

a) b) c)  
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d) e) f)  

Figure 5.10. Surface morphology of 4H-SiC C-face crystals grown at a)2130oC, b)2200 oC, 

c)2280oC observed by a Nomarski optical microscope. Figures d, e, and f are higher 

magnification images of a, b and c respectively.  

 

a) b) c)  

d) e) f)  

Figure 5.11. Surface morphology of 6H-SiC C-face crystals grown at a)2130oC, b)2200 oC, 

c)2280oC observed by a Nomarski optical microscope. Figures d, e, and f are higher 

magnification images of a,b and c respectively. 

 

a) b) c)  

Figure 5.12. Surface morphology of 6H-SiC Si-face crystals grown at a)2130oC, b)2200 oC, 

c)2280oC observed by a Nomarski optical microscope.  

 

50 μm 50 μm 
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5.4 Nitrogen incorporation as a function of nitrogen partial pressure. 

 

The grown crystals and the growth parameters used are listed in Table 5.4. The nitrogen 

doping was not constant during all the growth run but altering doped and undoped zones 

were created by controlling the flow of the input gasses as shown in Figure 5.13. That was 

made in order to reduce the total number of experiments and ensure similar growth 

conditions for the different nitrogen flow parameters. Only on-axis seeds were used.  

 

Table 5.4. Characteristics of the partial pressure of nitrogen dependent doped SiC crystals.  

 

Growth 
experiment 

Grown 
on-axis 
crystal 

Polarity of 
growth 

Partial 
pressure of 

nitrogen 

Growth 
Temperature 

2200 oC 

 

Growth 
pressure 
13 mbar 

B275-6 4H-SiC C-face 0.05 – 0.8 

B284 6H-SiC C-face 0.05 – 0.8 

B284 6H-SiC Si-face 0.015 – 0.8 

B273 15R-SiC Si-face 0.035 – 0.1 

 

 

 

Figure 5.13. Cross section of a 6H-SiC crystals grown on a 4H-SiC Si-face on-axis seed. 

The dark and bright stripes correspond to doped and undoped zones, created through the 

control of the input argon and nitrogen gases in the reactor. The partial pressure of nitrogen 

N2/(Ar+N2) is indicated at each stripe.  

 

The nitrogen concentration of the different doped stripes was measured using secondary 

ion mass spectrometry. The results are plotted in Figure 5.14a as a function of the partial 
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pressure of nitrogen. The incorporated nitrogen in the grown SiC crystals increases by 

increasing the partial pressure of nitrogen into the gas phase and reaches a saturation state 

once the partial pressure of nitrogen is above 0.6. The C-face 4H-SiC and 6H-SiC crystals 

incorporate more nitrogen compared to the Si-face 6H-SiC and 15R-SiC.  

A Langmuir adsorption equation is used to fit the data. The Langmuir adsorption model 

is used to visualize the adsorption of gaseous molecules at a partial pressure p (at a given 

temperature) and the available free incorporation sites on a surface. The assumptions of the 

model are: i) there is a fixed amount of equally distributed incorporation sites on the solid 

surface where gas molecules can be incorporated. Each of these sites hold maximum of one 

gaseous molecule and the probability of adsorption on all sites is the same. ii) A dynamic 

equilibrium between adsorbed gaseous molecules and the free gaseous molecules is 

established. Molecules from the gas phase can be adsorbed at free sites at the solid 

(adsorption) and molecules move back to the gas phase from the solid surface (desorption). 

A two directions system is formed and the equilibrium equation is  

 

ABBA
Ka

KD
Sg                                                                                  Eq. 5.2 

 

where Ag is the gaseous molecules in the gas phase, BS the empty sites on the solid surface, 

AB the adsorbed gaseous molecules and Ka, KD represents the equilibrium constant for the 

reaction of adsorption and desorption. The equilibrium constant of the reaction (K) is the 

ratio of Ka and KD,  

K = Ka/KD                                                                                   Eq. 5.3 

and K is dependent on temperature.    

The Langmuir adsorption non-dissociative isotherm equation is given by Equation 5.4. 

  

Kp

Kp


1

                                                        Eq. 5.4 
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where “θ” is the number of incorporation sites on the surface which are covered by gaseous 

molecules and is also called “surface coverage”. Therefore, the free incorporation sites will 

be (1-θ). The rate of adsorption depends on the free sites available on the surface (1-θ) and 

the partial pressure of the gas p, while the rate of desorption depends on the number of 

occupied incorporation sites (θ). 

In case the gas is a diatomic molecule A2, the dissociative Langmuir equation can be used 

(Equation 5.5),  

2/1

2/1

)(1

)(

Kp

Kp

                                                   Eq. 5.5 

 

In this case, the A2 gas dissociates to two molecules of A upon adsorption. The adsorption 

process is proportional to the square of the available incorporation sites (1-θ)2 and the 

desorption rate proportional to the square of the surface coverage (θ2). 

Equations 5.4 and 5.5 stand out that for a small concentration of gaseous molecules or 

low partial pressure of gas, the adsorption on the surface is linear to partial pressure of gas, 

once there are plenty of free incorporation sites. When the partial pressure of the gas is high, 

the surface coverage is increasing up to a saturation point because no more free sites exist 

on the surface. The incorporation of nitrogen is not influenced by the growth rate [4], thus 

nitrogen incorporation is not kinetically limited. At each partial pressure of nitrogen, an 

equilibrium surface coverage is established. Thus, a Langmuir adsorption isotherm equation 

without and with dissociation (Equation 5.6 - 5.7 respectively) were used to describe the data 

[7].  

 

Kp

Kp
SC TN 

1
       Eq. 5.6                          

2

2

)(1

)(

Kp

Kp
SC TN      Eq. 5.7 

 

where CN is the incorporated nitrogen concentration, p the partial pressure of nitrogen and 

ST is the saturation limit for high values of the partial pressure [cm-3]. ST and K are the fitting 

parameters.    
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It was found that the non-dissociative Langmuir equation describes better the 

experimental data (Figure 5.14b). The difference in the fitting parameter K for the C-face 

6H-SiC and 4H-SiC is around 15%, with the one of 6H-SiC being higher. The saturation 

limit of C-face 4H-SiC appears to be also 15% higher compared to 6H-SiC. For Si-face 6H-

SiC both the parameter K and the saturation limit are found to be almost half value of those 

of C-face grown crystals. The lack of data for 15R-SiC did not allow a reliable fitting.  

   

a) b)  

Figure 5.14. a) Nitrogen concentration in SiC grown crystals as a  function of the partial 

pressure of nitrogen during growth. b) A non-dissociative Langmuir isotherm (solid line) 

was used to best describe the data.  

 

The parameters that best fit our experimental data were compared to those from the 

bibliography [7, 10] and the values are given in Table 5.5 and in Figure 5.15. Different 

growth parameters were used by each author and as a result the saturation limit, expressed 

by fitting parameter ST, differs. In all cases, nitrogen concentration in the crystals is 

increasing when partial pressure of nitrogen increases and a saturation limit appears as we 

approach at 100% nitrogen growth ambient. The small deviation between the different data 

implies that indeed the partial pressure of nitrogen is the most contributing parameter in 

nitrogen incorporation of the PVT process.  

Bigger variations in the K parameter are obtained when the different experimental data 

are compared (Table 5.5). Higher K value for the case of C-face 4H-SiC compared to 6H-

SiC are reported by Ohtani et al. This implies that higher surface coverage of nitrogen is 
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established during the growth of 4H-SiC. That was attributed by the author to morphological 

differences between the two polytypes. Schulz et al. reports that the main difference in K 

parameter arises between the 4H-SiC and 6H-SiC. For both Si and C-face grown 6H-SiC 

crystals the K parameter is three times higher compared to C-face 4H-SiC. In order to clarify 

the difference between the various polytypes and polarity of growth surface, the 

incorporation mechanism of nitrogen will be considered in the discussion part.  

 

 

Table 5.5. Best fitting parameters using a non-dissociative Langmuir isotherm 

 

 

 

 

 

 

 

 

 

 

a) b)  

 
Fitting parameter 

Polytype 
K ST [cm-3] 

This study  6.5 7.4x1019 
4H-SiC 

C-face 
Ohtani et al. [7] 7.5 4x1019 

Schulz et al. [10] 10.9 3.1x1019 

 

This study  7.9 6x1019 
6H-SiC 

C-face 
Ohtani et al. [7] 3.2 9.8x1019 

Schulz et al. [10] 36.2 - 

 

This study 4.1 3.2x1019 6H-SiC 

Si-face Schulz et al. [10] 46.7 - 
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c)  

Figure 5.15. Nitrogen concentration as a function of the nitrogen partial pressure for the 

case of a) C-face 4H-SiC and b) C-face 6H-SiC and c) Si-face 6H-SiC. 

 

 

 

5.5 Discussion   

 

In order to explain the experimentally obtained trends, the adsorption/desorption 

mechanisms at the silicon and carbon {0001} surfaces will be considered (Figure 5.16). The 

first assumption to be made is that nitrogen substitutes carbon atoms in the SiC lattice due 

to the comparable size of the two elements. The incorporation of nitrogen at each of the two 

polar planes will be as follows:  

o (000-1) C-face plane: The surface termination of the C-face plane consists of carbon 

atoms (position A). Adsorption and desorption processes of carbon atoms take place at 

the surface, thus possible positions for nitrogen atoms to incorporate are created, as 

nitrogen atoms compete the ones of carbon. In a second phase, silicon atoms will be 

incorporated, position B. At this point no nitrogen incorporation takes place. At the 

following step, nitrogen and carbon atoms compete for the available sites, position C.  

o (0001) Si-face plane: The surface termination consists of silicon atoms (position A). At 

this stage no nitrogen incorporation can take place. In the next step, nitrogen and carbon 

atoms will compete for the available sites, position B. Next, a silicon atomic layer will 

follow, position C.  
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Figure 5.16. Schematic illustration of nitrogen incorporation at the carbon and silicon face 

plane. Three steps of adatoms’ incorporation are considered named as A, B and C. 

  

The incorporation mechanism in the two planes is similar, as nitrogen and carbon atoms 

are competing when available sites exist on the surface and when silicon is incorporated, no 

nitrogen incorporation takes place. The difference between the two cases, is related to the 

dangling bond density of the planes when nitrogen atoms are incorporated. The difference 

in the bond density between the two planes (higher in the case of C-face) will result in 

different desorption rates. On (0001)C-face surface, desorption rate is lower compared to the 

Si-face, or differently said, the surface coverage on (000-1)C-face is higher compared to 

(0001)Si-face. The parameter that describes adsorption/desorption ratio is the equilibrium 

constant K, used in the Langmuir adsorption equation. In our study, it was found that the 

value of the K parameter in the case of Si-face grown 6H-SiC is almost half of the ones of 

carbon face 4H-SiC and 6H-SiC. This implies that the surface coverage on the C-face is 

higher compared to the Si-face and that is in agreement with the proposed mechanism above. 

Even though the kinetic parameter K and the saturation limit between the Si and C-face 

surface are different, it is not the case for different polytypes. The similar values of K and 

ST fitting parameters, for C-face 4H-SiC and 6H-SiC, indicate that the incorporation of 

nitrogen on the (000-1) plane is independent on the polytype of the crystal. That result is in 
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contradiction to previous reports, where a difference in the saturation limit and surface 

coverage was found at 4H-SiC and 6H-SiC crystals grown on the (000-1) plane [7].  

The incorporation of atoms through the surface as described in Figure 5.16 is a simplified 

idea, because it ignores the incorporation of dopants at steps. Incorporation of atoms on the 

growth surface will take place on kink sites at the edge of steps and vacancies or free 

incorporation sites formed on the terraces (Figure 5.17).  

 

 

 

Figure 5.17. Schematic illustration of the growth surface. Incorporation of nitrogen atoms 

will occur on kink sites on the steps and free incorporation sites or vacancies on the terraces. 

 

Here we will consider that nitrogen incorporation will take place on i) kink sites on the 

steps and ii) vacancies on the terraces. This statement is enhanced by the fact that nitrogen 

incorporation in sublimation process in not kinetically limited, but a dynamic equilibrium is 

established between the adsorbed and desorbed gaseous species. In order to promote growth, 

SiC species will diffuse on the surface and will be incorporated at kink sites at the step edge. 

The concentration of SiC species along the width step is described by the BCF and Ehrlich-

Schwoebel theory. However, nitrogen is abundant in the gaseous phase compared to the SiC 

species. No diffusion of nitrogen atoms is needed at the step edge and incorporation of 

nitrogen can occur at any free incorporation site.  
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During PVT growth it is systematically reported that nitrogen incorporation is higher at 

the {0001} facet compared to the step flow area, for a given growth ambient. The ratio of 

the incorporated nitrogen at the facet and the step flow area as a function of the nitrogen 

concentration is the gas phase, was plotted by Schulz et al. for C-face 4H-SiC growth [9]. It 

was shown that the incorporated nitrogen in the facet is 1.5 times higher compared to the 

step flow area for low partial pressure of nitrogen and saturates at 1.2 for higher values of 

doping, Figure 5.1c. If nitrogen incorporation takes place only on the kink sites of steps, then 

nitrogen concentration on the step flow area should have been always higher, once kink sites 

density is higher there compared to the {0001} facet. However, exactly the opposite is 

occurring. This indicates that incorporation of nitrogen occurs also in vacancies formed on 

terraces of the {0001} facet.  

Last, possible parameters that reduce the incorporation of nitrogen when the growth 

temperature increases are the increased desorption of nitrogen, the decrease of Si/C ratio, 

the increase of the growth rate and the change on the terraces width on the {0001} facet. 

However, it is reported that the growth rate hardly affects the incorporated nitrogen in the 

PVT process [4]. Also the change of Si/C ratio is found not to affect the incorporated 

nitrogen on the C-face but only at the Si-face growth [2, 3].  

Thus, the temperature dependent incorporation of nitrogen can be attributed to two 

factors, i) the equilibrium constant of the Langmuir adsorption equation “K” is dependent 

on the temperature of the system. Once the temperature of the system is decreasing, the 

adsorption/desorption ratio is increasing (KTlow > KThigh). The surface coverage “θ” will 

increase as well as the nitrogen concentration in the crystal (Figure 5.18). The increase of 

surface coverage with temperature, arises due to decrease of the kinetic energy of the atoms. 

ii) The increase of the growth rate reduces the width of the terraces on the {0001} facet, as 

presented in Figures 5.10-5.12. Considering that nitrogen incorporation occurs on vacancies 

on the terraces along with kink sites on steps, nitrogen incorporation is decreased, once the 

width of the terraces and thus the free incorporation sites is reduced.  
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Figure 5.18. Surface coverage as a funtion of the partial pressure of the gas, described by 

a Langmuir adsorption equation. The effect of a lower and higher temperature at saturation 

limit is shown.  

 

Even if the nature of the polytype does not introduce any difference in the incorporation 

of nitrogen, it is not the case for different crystallographic planes. It is already reported that 

nitrogen concentration is different among (1-100), (11-20) and (0001) planes for both PVT 

and CVD processes (Figure 5.19). During the growth of bulk crystals, naturally formed 

facets can be created. A cross section of a C-face 4H-SiC crystal (B257) is shown in Figure 

5.20. The color variations of the crystal is due to the presence of nitrogen. The formation of 

facets (A-D) at the periphery of the crystal are more obvious in the cross section sample due 

to the differences in color contrast. It is possible to see the “path or footprint” of the facets 

as they propagate during growth. It was not possible to determine the free carrier 

concentration of each facet by Raman due to combined effect of orientation and doping in 

the shift of the Raman modes. At those facets (crystallographic planes), no terraces are 

formed, but only the step density and bond density at the kink sites is expected to be different. 

So, the characteristics of the edge step can affect the incorporation of nitrogen. However, 

further analysis is needed towards this direction. 
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Figure 5.19. Nitrogen concentration of 4H-SiC and 6H-SiC as a function of the 

orientation of growth [7]. 

 

a) b)  

 

Figure 5.20. a) Cross section image of a 4H-SiC crystal grown on a 3o off-axis 15R-SiC C-

face seed. b) Variations of contrast reveal the “footprint” of the various facet during growth, 

once nitrogen incorporation is different at each plane.  
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Conclusions of Chapter 5. 

 

The incorporation of nitrogen in 4H-SiC and 6H-SiC was studied as a function of the 

partial pressure of nitrogen and the growth temperature. The nitrogen concentration of the 

grown crystals was in the range of 1019-1020 cm-3.  

The incorporated nitrogen as a function of the nitrogen partial pressure dependence 

reveals that the concentration of nitrogen in the grown crystals increases once the partial 

pressure of nitrogen increases and reaches a saturation limit for higher values. A non-

dissociative Langmuir adsorption isotherm equation was used to fit the experimental data. 

The fitting parameter “K” takes a similar value for the C-face 4H-SiC and 6H-SiC crystals, 

while in the case of Si-face grown crystals it is almost half value. Similar, the saturation limit 

of the C-face grown crystals is double compared to the Si-face. This indicates i) that the 

incorporation of nitrogen on the (000-1) surface is independent of the polytype of the crystal 

and ii) that a higher surface coverage of nitrogen is established on the C-face surface 

compared to the Si-face.  

The difference in dangling bond density for C atoms between the two polar planes, 

indicate that a higher desorption rate is expected in the silicon (0001) plane. During the PVT 

process a dynamic equilibrium condition is established between the adsorption and 

desorption rate of the gaseous species. Thus, it is reasonable to assume that nitrogen 

incorporation takes place on both kink sites of the steps edges and free incorporation sites 

on the terraces formed on the {0001} facet. The higher incorporation of nitrogen on the 

{0001} facet compared to the step flow area, can thus be explained. 

The free carrier concentration in C-face 4H-SiC crystals decreases once the growth 

temperature is increasing. Two plausible mechanisms are proposed for the obtained trend, i) 

the increase of nitrogen adsorption/desorption ratio due to the increase of temperature. The 

nitrogen surface coverage is decreased and thus, the nitrogen incorporated in the grown 

crystal. ii) Due to the increase of the growth rate the width of the terraces on the {0001} 

facet decreases. So, the number of free incorporation sites is decreasing and less nitrogen is 

incorporated in the grown crystal. The lack of data does not allow a comparison with the 

6H-SiC crystals grown on the Si and C-face.  
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Additional analysis is needed in order to explain the different incorporation of nitrogen at 

the various crystallographic planes and propose a complete model for nitrogen incorporation 

for the PVT process.  
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General Conclusions and future studies 

 

In the present thesis, the growth process was developed in an effort to allow the growth 

of SiC crystals of sufficient size and shape based on the needs of the experiments. 

Continuously, the problem of foreign polytype occurrence during bulk growth was 

addressed, with respect to the evolution of the system with time. The parameters that can 

affect the stabilization of 15R-SiC were examined. Last, the incorporation of nitrogen as a 

function of different growth parameters was studied.  

In more details, we have shown that contactless growth of SiC in the PVT system can be 

achieved, while maintaining the control of the growth. The shape of the crystal or the growth 

rate along the crystal radius and the Si/C ratio of the gas phase can be well governed by the 

control of temperature distribution and crucible design. A remaining issue is the 

improvement of the process yield, using the contactless growth configuration.  Also, SiC 

crystals were grown using the “necking technique”. That technique can lead to grown 

crystals of sufficient size and quality when small diameter seeds are used, however further 

development is needed. 

The occurrence of foreign polytype inclusions is found to be directly related to the 

presence of the {0001} facet of SiC. The probability to nucleate a foreign polytype is 

increasing once the presence of the {0001} facet and the minimum of Gibbs free energy for 

2D nucleation occur at the same place and time. Thus 2D nucleation appears as a plausible 

mechanism for polytype transitions in PVT growth. Once a foreign polytype is formed, its 

propagation is related to the interaction with the global growth interface and the competition 

between different growth mechanisms. A foreign polytype will propagate at the basal and 

along the c-axis at the facet to all the directions but not in the one that an advanced growth 

center is located. In a blocking situation, a thin lamella or an inclusion is formed while in 

the opposite case, a total polytype conversion will take place. Out of the facet area, the 

propagating velocity of the foreign polytype inclusion is linked to the curvature of the 

crystal. If both the propagation of the inclusion at the basal plane and that of the growth front 

are in the same direction, the inclusion can cross all the crystals length. The evolution of 
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crystal shape and the competition of the various growth mechanism will define the 

overlapping or not of a foreign polytype and the shape of the interface between the two 

polytypes. The last point should be examined in more details in the future.  

Continuously the growth of 15R-SiC crystals was addressed and various parameters that 

can affect its stability were examined. Nucleation of 4H-SiC at the (000-1) C-face and 6H-

SiC at the (0001) Si-face 15R-SiC facet is obtained. Grown crystals appear as a mixture of 

15R-SiC with only one of the hexagonal polytypes. In contradiction to the case of 4H-SiC 

growth, nitrogen is found not to directly affect the stabilization of 15R-SiC. Thus, the 

stabilization of 15R-SiC is found to be dependent on the Si/C ratio in the gas phase. It was 

shown that a disturbance of the Si/C that favors 15R-SiC, led to the nucleation of hexagonal 

polytypes. Further development of the thermodynamic calculations is needed in order to 

specify the range of Si/C ratio values for the growth of 15R-SiC. Also, additional 

experiments using a multi-seeded method are needed in order to highlight the effect of 

various growth parameters on both silicon and carbon face grown crystals.  

Last, the incorporation of nitrogen during the growth of 4H-SiC and 6H-SiC was studied 

as a function of the nitrogen partial pressure and growth temperature. The free carrier 

concentration is found to be decreased when the growth temperature is increasing for the 

case of C-face 4H-SiC and the activation energy is calculated at 152.4 kJ/mol. The 

experimentally obtained trend is believed to be due to the increased desorption of nitrogen, 

when temperature is increasing. Further studies are needed for the case of 6H-SiC of both 

Si- and C-face, in order to provide additional information. The partial pressure of nitrogen 

reveals that C-face grown crystals incorporate more nitrogen compared to Si-face, while for 

both polarities a saturation limit will arise for partial pressure of nitrogen values higher than 

0.6-0.7. A non-dissociative Langmuir adsorption isotherm equation was used to fit the 

experimental trends. Using this equation, it was shown that the surface coverage of nitrogen 

at the C-face is similar for 4H-SiC and 6H-SiC while the saturation limit for the two 

polytypes appears to be the same. The difference will arise in the case of Si-face growth, 

where the saturation limit and the nitrogen surface coverage is found to be almost half value, 

compared to C-face growth.  The adsorption and desorption mechanisms on both kink sites 
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on steps and incorporation sites on terraces should be considered in order to describe the 

problem of nitrogen incorporation. Thus, the higher incorporation of nitrogen at the {0001} 

facet compared to the step flow areas can be explained.  

In the present work, crucial issues related to the bulk growth of SiC were tackled. Further 

advancement of theoretical calculations is needed in order to provide additional information 

for the problems of polytype nucleation and nitrogen doping. Also, additional experimental 

data at the nitrogen doped crystals could help to develop a complete model of nitrogen 

incorporation in SiC in the PVT process. 
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Résumé de la thèse en français 
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A. Introduction 

L’électronique est l'un des domaines technologiques les plus dynamiques, en raison 

de son importance croissante dans la vie économique, industrielle et sociale de l’homme. 

Les matériaux semi-conducteurs tels que le silicium (Si), le germanium (Ge), l'arséniure 

de gallium (GaAs) et le carbure de silicium (SiC) y jouent un rôle particulier car ils sont 

à la base des technologies de l’électronique. Le silicium est le semi-conducteur le plus 

largement utilisé car il peut être obtenu sous forme de  cristaux de grande taille et former 

facilement un oxyde (dioxyde de silicium). Toutefois, en raison des besoins croissant en 

performances, et notamment dans un contexte d'amélioration de l'efficacité énergétique, 

la technologie silicium atteint ses limites pour les applications de puissance. Le carbure 

de silicium est l'un des compétiteurs les plus prometteurs et des dispositifs de SiC ont 

déjà remplacé le silicium dans certains systèmes électroniques spécifiques.  

Un effort considérable a été mené ces dernières décennies, afin d'augmenter la taille 

et la qualité des cristaux de SiC, d’améliorer les caractéristiques des couches épitaxiées, 

d’étudier les interfaces de SiC-oxyde ainsi que l'incorporation de divers dopants. 

L’objectif étant de développer des diodes (e.g. Schottky) et des transistors (e.g.)  

MOSFET) et de les intégrer dans des  circuits électroniques.  

 

A.1 Objet et principale contribution de la thèse. 

Cette thèse a pour objectif d’approfondir les connaissances actuelles sur les 

mécanismes de croissance de cristaux de SiC à partir de la phase vapeur. Pour cela,  nous 

étudierons successivement les quatre points suivants: i) développer le procédé PVT: 

l'objectif est de proposer et d'évaluer des stratégies afin d’obtenir des cristaux de SiC 

centimétriques, sans gangue polycristalline. Cela nécessite une étude approfondie des 

transferts de chaleur et de masse dans le creuset réactionnel, ii) étudier la stabilité des 

polytypes: le but est de mettre en évidence les paramètres régissant l’apparition et la 

propagation de  polytypes parasites pendant la croissance, iii) étudier la croissance 

cristalline du polytype 15R-SiC, candidat à fort potentiel pour les applications de type  

MOSFET, iv) étudier l'incorporation d'azote: l'azote étant le dopant de type n classique 

dans les technologies SiC. Cependant, son incorporation est mal connue dans le procédé 

de croissance de cristaux massifs en phase vapeur (PVT).  
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1. Carbure de silicium: Propriétés et croissance 

1.1.1 Polytypisme du SiC. 

Le carbure de silicium (SiC) présente naturellement un polytypisme, qui est un cas 

particulier de polymorphisme à une dimension. La structure est formée de tétraèdres 

élémentaires SiC4 ou CSi4 (Figure 1.1). La structure est construite par l’empilement de 

plans compacts de tétraèdres. Pour cela, on distingue deux orientations possibles des 

plans de tétraèdres (Figure 1.2). Ainsi, la séquence d’empilement de ces deux types de 

plans de tétraèdres va déterminer le polytype (Figure 1.3). Si tous les plans sont de même 

orientation, la structure cubique appelée 3C-SiC est obtenue. Si les plans sont alternés le 

long de l’axe c, des structures hexagonales ou rhomboédriques seront obtenues. Dans la 

notation de Ramsdell, utilisée pour référencer les polytypes, le nombre désigne le nombre 

de plans de tétraèdres nécessaires pour décrire la séquence unitaire et les lettres 

correspondent au type de réseau de Bravais (H, C et R pour  hexagonal, cubique et 

rhomboédrique). Près de 200 polytypes ont été référencés [1, 2]. Toutefois, seuls quatre 

polytypes (3C-SiC, 15R-SiC, 4H-SiC et 6H-SiC) sont essentiellement étudiés, avec un 

seul d'entre eux (4H-SiC) qui est un produit industriel. 

 

Figure 1.1. Tétraèdre de base de la structure de SiC.  

 

 

 

Figure 1.2. Dans les polytypes, les tétraèdres peuvent avoir deux orientations 

particulières. Projection dans le plan (11-20) 
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Figure 1.3. Structure cristallographique des principaux polytypes de SiC ; projection 

dans le plan (11-20). 

 

1.1.2 La polarité du SiC 

Lorsque la structure est clivée dans le plan basal, deux surfaces énergétiquement 

différentes sont crées. Une aura une terminaison Si (0001) et l’autre une terminaison C 

(000-1). On parlera de polarité Si ou C. Ces deux surfaces ont des propriétés physico-

chimiques très différences, ce qui aura des conséquences sur leur réactivité lors de la 

croissance, l’incorporation des dopants, l’oxydation etc. Les énergies de surfaces 

proposées par Pearson sont de 2.2 J/m2, et 0.3 J/m2 pour les faces Si et C respectivement 

[3]. 
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Figure 1.4. Polarités Silicium et Carbone du SiC. 

 

1.1.3 Dopage du SiC 

 

 

Figure 1.5. Les principaux dopants du SiC  

 

Les propriétés semi-conductrices des matériaux sont généralement ajustées par un 

dopage fin et contrôlé. Pour le SiC, le dopage de type n ou p est assuré par les éléments 

du groupe VA ou IIIA du tableau périodique, respectivement. Aluminium et le Bore sont 

les dopants de type p plus couramment utilisés, tandis que Azote et Phosphore constituent 

les dopants de type n les plus fréquents. D’une manière générale, Al et P se placent sur 

les sites Si alors que N se place sur les sites C. B est un peu plus compliqué car il peut 

s’incorporer sur les deux sites à la fois. Ce point est toujours controversé [4].  
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1.2. Croissance du SiC 

SiC est le seul composé solide du diagramme Si-C (Figure 1.6). Contrairement à la 

plupart des matériaux semi-conducteurs, la croissance à partir de l’état fondu ne peut pas 

être appliquée dans des conditions raisonnables de température et de pression car il est à 

fusion non congruente [5]. Comme le SiC commence à se sublimer à partir de 1800  oC 

sous basse pression, c’est le procédé de croissance en phase vapeur qui s’est 

principalement développé.  

 

Figure 1.6. Diagramme de phase de Si-C. [6]. 

 

Les cristaux issus de la méthode de Lely (sublimation d’une poudre de SiC à très haute 

température) se forment par nucléation spontanée. Par conséquence, la taille et la forme 

des cristaux sont aléatoires. Une extension de cette technique Lely sur germe appelée 

PVT pour Physical Vapor Transport permet la croissance de gros monocristaux de SiC. 

C’est la technique industrielle actuelle. Le schéma de principe est représenté sur la Figure 

1.7. Un creuset en graphite est utilisé pour la croissance, car il est thermiquement et 

chimiquement compatible avec le systeme Si-C à plus de 2000°C. Le matériau source est 

une poudre de SiC, qui est placée au fond du creuset. De l’autre coté de la cavité, un 

monocristal de SiC sert de germe. Le creuset est isolé thermiquement par du feutre en 

graphite  

 

Les trois étapes élémentaires du procédé sont :  

1. La sublimation dissociative de la source de SiC.  

2. Le transfert de matière entre la source et le germe par voie gazeuse.  
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3. La cristallisation des espèces gazeuses sur le germe de SiC.  

Pour une température supérieure à 1800 oC, la source de SiC se sublime en espèces Si, 

Si2C, SiC2. Cette vapeur est riche en Si. La force motrice du procédé est le gradient de 

température le long de l’axe de symétrie du creuset (typiquement de 5-15K/cm).  

 

 

Figure 1.7. Représentation schématique du procédé de sublimation (PVT). Le profil de 

température est représenté au côté gauche.  

 

2. Développement de procédé 

2.1. Dispositif expérimental  

 

L’appareillage expérimental est composé des éléments suivants : le générateur, le 

boitier de condensateurs, la baie de contrôle/commande, les organes de sécurité, les 

dispositifs de mesure de température et de pression, et le réacteur (Figure 2.1). 

 

a)   b)  

Figure 2.1. (a) Illustration des différents éléments du réacteur de croissance PVT. (b) 

Photo du réacteur utilisé dans ce travail.  
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2.2. Croissance sans contact  

Sans aucune précaution, une gangue polycristalline de SiC se forme autour du cristal 

lors de la croissance PVT de SiC. Ceci est à l’origine de nombreux défauts, de joints de 

grains à faibles angles, d’inclusions de polytypes étrangers [7-8]. Des études ont été faites 

pour contrôler la formation de ce polycristal parasite, notamment par un meilleur contrôle 

de la sursaturation [9], l’utilisation d’écrans thermiques [10] ou des modifications de la 

géométrie du creuset en graphite [11].  

Une géométrie qui permet la croissance de cristaux sans contact a été développée. La 

croissance a été réalisée en formant une cavité latérale dans la partie haute du creuset de 

graphite (Figure 2.2), dont la température est inférieure à celle du germe. Ceci génère un 

flux « de fuite » JP dont le contrôle permet d’éviter la nucléation de polycristal. Des 

exemples de cristaux élaborés « sans contact » sont donnés dans la Figure 2.3.  

 

 

 

Figure 2.2. Représentation schématique des principaux flux d’espèces de SiC dans le 

creuset. JS est le flux qui vient de la sublimation de la poudre SiC, J D : le flux de dépôt 

dans la zone de cristallisation et le flux total JP.  
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a) b) 

 

c) 

Figure 2.3. SiC monocristallin de (a) 15mm et (b) 30mm de diamètre dans le creuset en 

graphite. (c) Cristal de SiC dans son écran thermique en graphite. 

 

3. La nucléation et la propagation des inclusions de polytypes.  

3.1 Introduction 

Pendant la croissance de SiC massif par PVT, les inclusions de polytypes étrangers 

sont très couramment obtenues et sont généralement accompagnées par un amas de 

défauts (dislocations) générées aux joints entre les différents polytypes [12-15]. Une 

avancée dans la compréhension et la stabilisation d’un seul polytype de SiC a été le 

développement de « la step controlled epitaxy » [16]. L’idée consiste à diminuer la 

probabilité de nucléation 2D (à l’origine des transitions de polytype) en favorisant la 

réplication du substrat par un mécanisme d’avancée de marches. Cette approche est 

systématiquement utilisée pour la croissance épitaxiale de couches minces par CVD [17]. 

Elle a été aussi tentée pour la croissance massive de SiC par PVT. Cependant, dans ce 

cas, l’angle de désorientation n’aide à la stabilisation du polytype que pendant les 



162 
 

premiers stades de croissance car la forme de l’interface de croissance évolue 

considérablement avec l’épaisseur du cristal. 

La PVT est par nature un procédé non-stationnaire et la plupart des paramètres de 

croissance évoluent au cours du temps [18,19]. Les paramètres physiques, tels que le 

rapport Si/C, la distribution de température et de la sursaturation varient spatialement et 

temporellement. Dans ces conditions, il est très difficile de comprendre et d’étudier 

l’apparition et la propagation des inclusions de polytype. Même si au niveau industriel, 

la croissance de lingots de 4H-SiC de 6 pouces de diamètre est empiriquement maitrisée, 

les mécanismes liés à la formation d’inclusions de polytypes restent encore obscures. 

Une approche intéressante vers la clarification de ce problème a été proposée par 

l’introduction de la théorie classique de la germination, proposée par Fissel et al. [20] 

dans la simulation complète du procédé PVT [21]. 

 

3.2 Expérimentation et calculs théoriques  

 Détails expérimentaux : Les paramètres contrôlés pendant les expériences sont  la 

pression (P), la température (T) et la pression partielle d'azote (PN2). La température de 

croissance est constante sur l'ensemble de l'étude, fixée à 2200°C. La pression totale varie 

dans la gamme 6-12 mbar. Les croissances sont réalisée sous atmosphère d'argon ;  

l’injection périodique d'azote permet le marquage de l’interface, de façon à suivre son 

évolution. Pour la présente étude, des cristaux d'environ 5 mm de longueur et 15 mm de 

diamètre ont été produits. Différents substrats ont été utilisés, en faisant varier le polytype 

(4H-SiC et 15R-SiC), l’orientation (on-axis ou 4° off-axis) et la polarité (face silicium 

ou face carbone). Les cristaux formés ont ensuite été découpés en sections transverses et 

observés sous par microscope optique en lumière polarisée, après polissage des deux 

faces. L'identification des polytypes a été faite par spectroscopie Raman et 

cathodoluminescence (CL). 

 

Simulation numérique. La simulation du procédé a été effectuée en utilisant la méthode 

des éléments finis (FEM). Tout d'abord, la simulation complète du procédé a été réalisée 

en incluant le chauffage par induction, les transferts de chaleur et de matière dans une 

géométrie axisymétrique [22]. La température et les pressions partielles des espèces 
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gazeuses Si, Si2C et SiC2 sont calculées le long du rayon du cristal, au niveau de la surface 

de croissance. Les calculs ont été éffectués en suivant l’approche proposée par Kakimoto 

et al. [23]., La sursaturation (équation 3.1) et la différence de potentiel chimique 

correspondant (Δμ, équation 3.2) ont été calculés à partir des pressions partielles des 

espèces gazeuses et de la température. Enfin, l'énergie libre de nucléation 2D a été 

calculée à partir de l'équation 3.3.  
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p et p° sont respectivement les pressions partielles et à l'équilibre , ΔG2 est l'énergie libre 

de nucléation 2D, b est la distance aux premiers voisins (ici, le paramètre de maille dans 

le plan), Δμ est la différence de potentiel chimique entre le gaz et le solide, σl, σi, σs sont 

respectivement l’ énergie de surface de la couche épitaxiale, l’énergie interfaciale 

couche/substrat et l’énergie de surface du substrat. 

 

3.3 Observation de la formation et de la propagation des inclusions 

 

    Une coupe transversale d’un cristal obtenu sur un germe de 4H-SiC C-face 4° off-axis 

observée sous un microscope en polarisation croisée est présentée Figure 3.1a (cristal 

B254). Pour aider à visualiser, le secteur de croissance (000-1) est indiqué par les lignes 

pointillées orange. Cette zone correspond à la trajectoire de la facette (000-1) pendant la 

croissance. Ce secteur de croissance apparait légèrement plus sombre à l’intérieur des 

bandes dopées, ce qui est attribué à une plus grande incorporation de l’azote sur la facette 

de polarité C qu’ailleurs [24.25]. Dans ce cas, de légères modifications de la cavité de 

croissance ont induit une surface de cristal concave plus prononcée, en particulier au 



164 
 

début de la croissance. Une conséquence est l’apparition de deux facettes (000-1) de 

chaque côté de la coupe. Sur la facette de droite, trois fines lamelles de 6H-SiC ont 

germées – signalées par les cercles N°#1, 2 et 3 (Figure 3.1a) – et se sont étendus dans 

la direction [11-20]. Une image à plus fort grossissement des inclusions #1, 2 et 3 dans 

la zone de la facette et du milieu du cristal est montrée Figure 3.1b-c. Sur la facette de 

gauche, une épaisse inclusion de 15R-SiC a germée (partie gauche de la Figure 3.1). 

a)  

b)   c)  

 

Figure 3.1. a) Coupe transversale d’un cristal de SiC (cristal B254), observée en 

microscopie à polarisation croisée. Le germe utilisé est du 4H-SiC C-face 4° off-axis 

séparé du cristal par la ligne pointillée noire. Les bandes sombres et claires 

correspondent respectivement aux zones dopées à l’azote et non dopées. Les cercles 

rouges indiquent les points de nucléation des lamelles de 6H-SiC (#1, 2,3) et de l’épaisse 

inclusion de 15-SiC (#4). b-c) Observation des inclusions #1, 2 et 3 à plus fort 

grossissement. Chaque bande dopée et non dopée correspond à 3 heures de croissance.  

 

Pour quantifier  l’évolution géométrique du cristal, les vitesses de croissance normale 

(selon la direction [000-1]) et latérale (selon la direction [11-20]) sont mesurées. De plus, 

la propagation latérale des inclusions de polytypes (A1-A3 et B1-B3 pour les inclusions 

#1-3 des cristaux B256 et B254, respectivement) a été systématiquement évaluée (pour 

le cristal B256, voire le Chapitre 3 de la thèse). Pour cela, la vitesse de croissance latérale 

a été calculée à partir de la longueur des inclusions mesurée selon la direction [11-20] 
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dans chaque bande dopée et non dopée. Pour les mêmes positions, l’épaisseur de chaque 

bande dopée et non dopée a été mesurée selon la direction [000-1] afin de déterminer la 

vitesse de croissance normale. Les mesures obtenues par le marquage à l’azote sont 

rassemblées en Figure 3.2. Le rapport des vitesses de croissance selon la direction [000-

1] prise au centre (axe de symétrie) et au bord (localisation de la facette) est tracé en 

fonction de la durée de croissance en Figure 3.2a. Pour le cristal B256, le rapport est 

toujours légèrement supérieur à 1, excepté au tout début. La surface du cristal est par 

conséquent légèrement convexe. Pour le cristal B254, le rapport des vitesses est proche 

de 0,5 au début et augmente progressivement pour atteindre 1,4 après 15 heures. 

L’interface de croissance est par conséquent concave au début, puis s’aplatit 

progressivement jusqu’à devenir légèrement convexe à la toute fin de la croissance. La 

vitesse de croissance latérale selon la direction [11-20] est supérieure d’environ un ordre 

de grandeur à la vitesse de croissance axiale dans la direction [000-1] (Figure 3.2b). De 

plus, la vitesse de croissance latérale montre des variations beaucoup plus importantes 

que l’axiale. La vitesse de croissance selon [11-20] augmente au centre du front de 

croissance et se minimise à la périphérie, bien qu’aucune différence significative ne soit 

observée pour les différents polytypes. Le fait que le maximum ne soit pas exactement 

au centre du front de croissance est dû à l’angle de désorientation de 4°. Pour compléter 

cette série de mesures, le même rapport de vitesse est tracé en fonction de l’angle entre 

la tangente à la surface du cristal et le plan basal (Figure 3.2c). Alors que la vitesse de 

croissance normale (selon la direction [000-1]) ne montre que de petites variations, la 

vitesse de croissance latérale (selon [11-20]) varie de façon significative. Cette vitesse 

de croissance latérale présente une décroissance exponentielle par rapport à l'angle entre 

la surface locale du cristal et le plan de basal. 

 

(a) (b)  
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(c)  

Figure 3.2. a) Rapport entre les vitesses de croissance selon la direction [000-1] prises 

au centre du cristal et sur le côté (facette), en respectant la durée de croissance, pour les 

cristaux montrés en Figure 3.1 et Figure 3.2 de la thèse. Rapport entre les vitesses de 

croissance selon [11-20] et [000-1] en fonction de b) le diamètre normalisé (D/Do) et c) 

l’angle entre la tangente à l’interface du cristal et la plan basal des cristaux B256 et 

B254 

 

Pour provoquer des inclusions et/ou transitions d’autres polytypes, différents germes 

ont aussi été utilisés. La Figure 3.3 montre une coupe transversale d’un cristal développé 

sur un germe de 15R-SiC on-axis Si-face (cristal B258). Par spectroscopie Raman, il a 

été constaté que le cristal est un mélange de 15R-SiC et 6H-SiC. La mauvaise qualité du 

germe utilisé est reproduite dans le cristal comme en témoigne le nombre important de 

micropipes provenat du germe.  De plus, de nombreuses micropipes sont formées aux 

joints entre les différents polytypes. Dans ce cas précis, la courbure de la surface du 

cristal a été considérablement augmentée, passant rapidement de concave à fortement 

convexe lors des premières heures de croissance. De même que pour le cristal B254, 

deux facettes (0001) se sont formées sur les côtés du cristal. Précisément à l’emplacement 

des facettes, une transition du 15R-SiC au 6H-SiC se produit générant les deux inclusions 

latérales de 6H-SiC. Tout en devenant convexe, l’interface de croissance a développé 

une autre facette (0001) au centre du cristal. Au bout de quelques millimètres d’épaisseur, 

une inclusion de 6H-SiC apparaît au centre du cristal et se propage latéralement.  
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Figure 3.3. Section transversale d’un cristal de SiC (cristal B258), observée sous 

microscope optique à lumière polarisée. Le germe utilisé (15R-SiC Si-face on-axis) est 

indiqué par la ligne pointillée jaune. Le marquage périodique à l’azote a été utilisé pour 

observer l’évolution de la forme du cristal. Le cristal est un mélange de 15R-SiC et 6H-

SiC, avec les zones de 6H-SiC indiquées par les régions ombrées en rouge. 

  

3.4 Mécanisme de nucléation d’inclusions 

 

L’enthalpie libre G pour la formation de germes 2D a été calculée pour le 4H-SiC, 

6H-SiC et 15R-SiC sur un substrat de 15R-SiC Si-face en fonction du rayon du cristal, à 

deux épaisseurs différentes sur le cristal B258 (Figure 3.4). Pour toutes les conditions 

étudiées, l’enthalpie libre de nucléation du 6H-SiC est plus faible comparée aux autres 

polytypes. Le plus intéressant est la position des minima de l’énergie de nucléation 2D 

sur le rayon du cristal. Au début de la croissance, le minimum de l’énergie de nucléation 

2D est localisé à la périphérie du front de croissance (Figure 3.4a). Après quelques 

millimètres de croissance (ici 3 mm), la situation change complètement et le minimum 

de l’énergie de nucléation 2D apparaît sur l’axe de symétrie du creuset, i.e. au centre du 

cristal (Figure 3.4b). 
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a) b)  

 

Figure 3.4. a) énergie de nucléation 2D du 4H, 6H et 15R-SiC sur un substrat de 15R-

SiC Si-face en début de croissance de B258. Le minimum est localisé près de la  

périphérie du front de croissance. b) énergie de nucléation 2D du 4H, 6H et 15R-SiC sur 

un substrat de 15R-SiC Si-face après 3 mm de croissance de B258. Le minimum est 

localisé au centre du front de croissance. 

 

3.5 Discussion 

 

Les calculs de l’enthalpie libre G de nucléation ont montré que les minima, 

correspondants à la plus haute probabilité de nucléation 2D, pouvaient être localisés, 

Figures 3.4, leurs positions étant dépendantes de la forme de l’interface de croissance et 

du temps de croissance. Par exemple, nous avons montré qu’au début de la croissance, 

une interface légèrement concave crée un minimum sur la courbe de l’énergie de 

nucléation au bord du cristal. Après quelques millimètres de croissance, le minimum se 

déplace au centre du cristal, après que la forme du cristal est devenue légèrement 

convexe. 

En combinant à la fois les observations expérimentales et les calculs numériques, il 

est possible de définir un modèle macroscopique pour l’apparition de polytype étranger. 

Les différentes situations sont rassemblées en Figure 3.5. 

● Si la facette {0001} et le minimum de l’énergie de nucléation 2D sont localisés 

au même endroit, alors la probabilité de former un polytype étranger est plus 

élevée sur la facette. 
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● Si la facette {0001} et le minimum de l’énergie de nucléation 2D ne sont pas 

localisés au même endroit, alors la probabilité de former un polytype étranger sur 

la facette est beaucoup plus faible. 

● En dehors de la facette, la probabilité de nucléation 2D est extrêmement faible 

étant donné que la densité de crans pour l’incorporation d’adatomes est assez 

forte, ce qui signifie que la réplication du polytype du substrat est favorable. 

 

 

 

Figure 3.5. Représentation schématique de la corrélation entre la forme du cristal, la  

formation des facettes et la position des minima d’énergie de nucléation 2D. Les lignes 

pointillées rouges décrivent approximativement l’évolution des facettes pendant la 

croissance. Les lignes pointillées verticales bleues indiquent la position de l’énergie de 

nucléation 2D minimale sur les cristaux. 

 

Autrement dit, la présence d’une facette est un prérequis pour l’apparition de polytype 

étranger mais n’est pas suffisante. L’enthalpie libre de nucléation doit également être à 

son minimum sur la facette.  

4. Dopage azote de cristaux de SiC 

4.1 Introduction 

L’azote est l’un des dopants de type-n les plus couramment utilisés dans le SiC et son 

incorporation par implantation ou pendant la croissance des couches épitaxiales a été très 
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étudiés. Dans la croissance par PVT,  l’azote est l’impureté la plus abondante car  il est 

très difficile de l’éliminer du matériau source (poudre de SiC) et du creuset (graphite). 

Même lorsque du graphite extrêmement pur est utilisé, les niveaux résiduels d’azote ne 

descendent que rarement en dessous de 1017cm-3. La plupart des applications 

électroniques ont besoin de substrats fortement conducteurs, c’est pourquoi les cristaux 

formés sont dopés intentionnellement en rajoutant de l’azote à la phase gazeuse.  

Bien que l’incorporation d’azote soit assez bien décrite en CVD [25-27], aucune 

description détaillée du phénomène n’existe concernant la méthode PVT. Il est connu 

que les cristaux orientés (000-1) C-face pendant la croissance incorporent plus d’azote 

que la face (0001)Si [28]. De plus, il semble que l’incorporation d’azote ne soit pas 

limitée par la cinétique et qu’un équilibre de couverture de la surface par les adatomes 

d’azote soit atteint. C’est pour cela que la plupart des études se focalisent sur l’effet de 

la pression partielle d’azote sur son incorporation [28, 29, 30]. Les tendances obtenues 

sont décrites en utilisant une isotherme de Langmuir pour une adsorption non-

dissociative, voir Figure 4.1a. Concernant les effets du polytype, aucune différence 

significative n’a été observée entre le 6H-SiC et le 4H-SiC (Figure 4.1b) lors de la 

croissance sur les faces (1-100) and (11-20) qui révèlent la séquence d’empilage du 

polytype SiC. Ceci implique que la différence de séquence d’empilement entre les deux 

polytypes n’affecte pas l’incorporation d’azote. Cependant, sur la face (000-1)C, 

l’incorporation d’azote varie et cela a été attribué aux différences topologiques entre les 

surfaces 6H-SiC and 4H-SiC (000-1) [29]. 

La difficulté de séparer les différents paramètres dans le procédé PVT,  comme la 

température et le ratio Si/C dans la phase gazeuse, complique la description de 

l’incorporation d’azote. De plus, le rôle des mécanismes de surface (spirale, step-flow, 

nucleation 2D) n’est pas clair. Il a par exemple été rapporté que la facette du plan basal 

incorpore plus d’azote que les zones de step flow. La différence dans l’incorporation 

d’azote est maximale pour un faible dopage et sature pour des valeurs plus grandes 

(Figure 4.1c) [31,32]. Aucune explication n’a été donnée sur ce phénomène.  
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a)    b)  

c)  

 

Figure 4.1. a) Concentration d’azote dans le cristal en fonction de la  pression partielle 

de N2. Une isotherme de Langmuir est utilisée pour décrire les données. b) Incorporation 

d’azote en fonction de l’orientation de la croissance [29]. c) Rapport entre l’azote 

incorporé sur la facette (000-1) et dans la zone de step-fow (hors-facette) d’un cristal 

4H-SiC en fonction de l’azote dans la phase gazeuse [31].  

 

4.2 Détails expérimentaux   

 

 Des germes de différents polytypes (4H-SiC, 6H-SiC and 15R-SiC) ayant différentes 

orientations (On-axis, 4°off-axis, polarités C et Si) ont été utilisés. Dans un premier 

groupe d’expériences, l’effet de la pression partielle d’azote a été étudié en maintenant 

la température de croissance et la pression totale constantes, soit  2200°C et 13 mbar 

respectivement. Le ratio du flux d’azote sur le flux total de gaz (argon et azote) varie 

dans l’intervalle 0.05-0.8. Des bandes de dopages différents ont été créées en modifiant 

les flux de gaz périodiquement (Figure 4.2).  



172 
 

Dans un second groupe d’expériences, l’incorporation d’azote a été examinée par 

rapport à la température de croissance dans la gamme 2130°C à 2350°C, tous les autres 

paramètres étant constants (pression de 13mbar, fraction d’azote N2/(N2+Ar) de 0.15). 

Pour chaque condition expérimentale, les différents germes sont placés dans une et une 

seule expérience de façon à appliquer exactement les mêmes conditions de croissance. 

Un exemple de cristal formé à 2280°C est montré en Figure 4.3. 

La concentration en « porteurs libres » des cristaux a été étudiée par des mesures 

d’effet Hall en température et par spectroscopie Raman à température ambiante. La 

concentration en azote a été mesurée par SIMS ( Secondary Ion Mass Spectrometry). 

 

Figure 4.2. Coupe transversale d’un cristal 6H-SiC formé sur un germe 4H-SiC Si-face 

on-axis. Les bandes noires et blanches correspondent aux zones dopées et non-dopées, 

créées par le contrôle des gaz d’entrée (argon et azote) du réacteur. La fraction d’azote 

N2/(Ar+N2) est indiquées pour chaque bande.   

 

 
 

Figure 4.3. Photo d’un cristal SiC (position I-IV)  formé à 2280°C. Les lignes pointillées 

blanches délimitent les 4 germes différents utilisés.  
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4.3.2 Effet de la température.  

Dans le graphe de la Figure 4.4 les concentrations en porteurs libres sont représentées 

en fonction de la température de croissance. Les concentrations diminuent quand la 

température de croissance augmente. Pour 4H-SiC face C, une équation d’Arrhenius 

(Equation 4.1) est utilisée pour représenter les données. L’énergie d’activation est de 

152.4 kJ.mol-1.  

RTEaAek
/                                                       Eq. 4.1 

k représente la concentration en porteurs libres, A est un facteur pré-exponentiel, Ea 

[kJmol-1] l’énergie d’activation et T [K] la température. 

 

a)    b)  

 

Figure 4.4. a) Concentration de porteurs libres dans les cristaux on-axis C-face 4H-SiC 

et on-axis 6H-SiC faces Si et C en fonction de la température de croissance, tel que 

mesurée par une spectroscopie de Raman. b) Une équation d’Arrhenius a été utilisée 

pour ajuster les données. L’énergie d’activation a été trouvée à 152.4 kJ/mol. Les 

données de Ohtani et al. sont utilisées pour comparaison [33].   

 

4.3.3 Effet de la pression partielle d’azote. 

  

La concentration d’azote des différentes bandes de dopage en fonction de la pression 

partielle d’azote a été mesurée par SIMS (Figure 4.5.a). En augmentant la pression partiel 

d’azote, l’azote incorporée dans le réseau cristallin du SiC augmente. Une fois que la 

pression partielle d’azote dépasse les 0.6, l’état de saturation est atteint. En comparaison 
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avec la face silicium du 6H-SiC et du 15R-SiC, plus d’azote a été incorporé dans la face 

carbone des polytypes 4H-SiC et 6H-SiC 

Une isotherme d’absorption de Langmuir a été utilisée pour décrire les données. Une 

des hypothèses faite sur ce modèle réside sur le fait qu’il s’établit un équilibre dynamique 

entre les molécules adsorbées en surface et les particules gazeuses libres. Cet équilibre 

d’adsorption-désorption peut être décrit par  :  

ABBA
Ka

KD
Sg                                                                                  Eq. 4.2 

 

Avec Ag une molécule de gaz en phase gazeuse, BS un site libre à la surface du solide, 

AB les molécules de gaz adsorbées. Ka et KD sont les constantes d’adsorption et de 

désorption, respectivement. La constante d’équilibre de la réaction (K) est le rapport 

entre Ka et KD : 

K = Ka/KD                                                                                   Eq. 4.3 

L’isotherme de Langmuir pour une adsorption non-dissociative est donné par : 

Kp

Kp


1

                                                        Eq. 4.4 

Où « θ » est le taux de couverture de la surface. Pour une une faible pression partielle 

de gaz et lorsqu’il qu’il y a beaucoup de sites d’incorporation vacants, l’adsorption à la 

surface est linéaire et fonction de la pression partielle de gaz. Quand la pression partielle 

de gaz est forte, la couverture de surface augmente jusqu’au point de saturation. 

L’incorporation d’azote n’est pas influencée par la vitesse de croissance [28], ainsi, 

l’incorporation d’azote n’est pas cinétiquement limitée. Les données ont été représentées 

sous la forme suivante :  

Kp

Kp
SC TN 

1
                                                   Eq. 4.6                           

Avec CN la concentration d’azote incorporé dans le cristal, p la pression partielle 

d’azote et ST la limite de saturation pour de grande valeur de pression partielle [cm-3]. ST 

et K sont des paramètres d’ajustement.  

Le modèle non-dissociatif est le plus adapté à la description des données 

expérimentales de cette étude (Figure 4.5b.). Le paramètre d’ajustement K associé aux 

faces carbone 6H-SiC et 4H-SiC est 15% plus élevé dans le cas du 4H-SiC. La limite de 
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saturation de la face carbone 4H-SiC semble également être 15% plus élevée par rapport 

à celle du 6H-SiC. Pour la face silicium 6H-SiC, K ainsi que  ST s’avèrent être presque 

moitié moins élevés que pour la face carbone. Le manque de données pour le 15R-SiC 

ne permet pas un ajustement fiable. 

a) b)  

Figure 4.5. a) Concentration d’azote dans les cristaux de SiC représenté en fonction de 

la pression partielle d’azote durant la croissance. b) Ajustement des données par une 

isotherme de Langmuir (ligne continue).  

 

4.5 Discussion   

 

Dans le but d’expliquer les courbes expérimentales obtenues, les mécanismes 

d’absorptions/désorption sur des surfaces Si et C {0001} sont considérés (Figure 4.6). 

Sachant que l’atome d’azote substitue le carbone dans le réseau cristallin, l’incorporation 

d’azote pour les deux polarités C et Si s’effectue comme décrit ci-dessous :  

 Plan (000-1) face carbone : La terminaison de surface est constituée d’atomes de 

carbone (position A). L’adsorption et la désorption des atomes de carbone a lieu 

à la surface, ainsi, des positions vacantes sont créées, offrant la possibilité à 

l’azote de s’y incorporer. Dans un second temps, les atomes de silicium sont 

incorporés en position B. A ce moment là, aucune incorporation d’azote ne peut 

avoir lieu. Lors de l’étape suivante, les atomes d’azote et de carbone se 

répartissent les sites disponibles, c’est la position C.  

 Plan (0001) face silicium : La terminaison de surface est constituée d’atome de 

silicium (position A). A ce stade, l’azote ne peut pas s’incorporer. En position B, 
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l’azote et le carbone se répartissent les sites disponibles puis sont recouverts par 

une couche atomique de silicium (position C).  

 

  

 

Figure 4.6. Schéma illustrant l’incorporation d’azote sur les différentes faces (carbone 

et silicium). Trois étapes d’incorporation d’atomes additionnels sont considérées et 

nommé respectivement A, B et C.   

  

Le mécanisme d’incorporation dans les deux plans est similaire, puisque l’azote et le 

carbone entre en jeux lorsqu’il y a existence de site disponibles à la surface et que lorsque 

le silicium est incorporé, l’incorporation d’azote ne peut pas avoir lieu. La différence 

entre les deux cas est liée à la densité de liaisons pendantes sur les plans lorsque l’azote 

est introduit.  De la différence de densité de liaisons entre les deux plans (plus grande 

dans le cas de la face carbone) résultera différents taux de désorption. Sur la face C, la 

désorption est plus faible que sur la face silicium. Autrement dit, la couverture de surface 

sur la face carbone (000-1) est plus élevée que celle de la face silicium (0001). La 

constante d’équilibre K utilisée dans l’équation d’adsorption est le paramètre qui décrit 

de taux d’adsorption/désorption. Dans notre étude, il a été trouvé que la valeur du 

paramètre K dans le cas de la face Si 6H-SiC est la moitié de celui de la face carbone 

4H-SiC et 6H-SiC. Cela implique que la couverture de surface de la face carbone est plus 

grande que celle de la face silicium, étant ainsi en accord avec le mécanisme proposé ci-

dessus.  

Bien que le paramètre K et la limite de saturation entre les faces silicium et carbone 

soient différents, cela n’est pas le cas pour les différents polytypes. Les valeurs similaires 

des paramètres  K et ST, pour la face carbone 4H-SiC et 6H-SiC, indiquent que 
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l’incorporation de l’azote dans le plan (000-1) est indépendant du polytype. Ce résultat 

est en contradiction avec ce qui a été rapporté précédemment où une différence de limite 

de saturation et de couverture de surface  a été trouvé sur le plan (000-1) des cristaux 4H-

SiC et 6H-SiC [29].   

L’incorporation des atomes décrite en Figure 4.8 est en fait très simplifiée, car elle 

n’intègre pas l’incorporation des dopants en bord de marche, au niveau des crans (Figure 

4.9). 

 

Figure 4.7. Schéma illustrant la surface de croissance. L’incorporation des atomes 

d’azote sur des sites vacants, soit en bord de marche (crans), soit sur les terrasses 

(lacunes de surface). 

Durant la croissance, les atomes de Si et C diffusent sur la surface et sont incorporés 

au niveau des crans en bord de marche. La concentration des espèces Si et C sur une 

terrasse est décrite par la théorie BCF. L’azote quant à lui est très abondant dans la phase 

gazeuse. Il est donc peu probable que son incorporation soit régit par les gradients de 

concentration de surface et l’incorporation en bord de marche. Si cela était le cas, 

comment expliquer que la concentration en azote dans le cristal puisse être 1,5 fois plus 

élevée au niveau de la facette qu’en dehors de la facette (c’est-à-dire, là où la densité de 

marche est plus élevée) [31]. En fait, l'incorporation d'azote doit également (et peut-être 

majoritairement) se faire sur les terrasses, par le biais de lacunes de surface {0001} 

générées par les températures très élevées de la PVT.  

Ainsi, la variation de l'incorporation de l’azote en fonction de la température peut être 

attribuée à deux effets: i) la variation de la constante d’équilibre K avec la température. 
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Quand celle-ci diminue, le rapport adsorption/désorption augmente (KTlow> KThigh). Le 

taux de couverture de la surface "θ" augmente ainsi que la concentration en azote dans le 

cristal (Figure 4.8). L'augmentation du taux de couverture avec la température découle 

du fait de la diminution de l'énergie cinétique des atomes. ii) L'augmentation de la vitesse 

de croissance réduit la largeur des « terrasses » sur la facette {0001}. Considérant que 

l'incorporation d'azote se produit majoritairement sur les lacunes de surface, 

l'incorporation d'azote diminue quand la largeur des « terrasses » et donc le nombre de 

sites d’incorporation libres diminue. 

 

Figure 4.8. Taux de couverture de la surface en fonction de la pression partielle de gaz, 

décrit par une isotherme d'adsorption de Langmuir. Les effets de températures inférieure 

et supérieure à la limite de saturation sont indiqués. 

 

Conclusions générales 

 

    Le le présent travail visait à apporter des mémoire, une méthode de croissance a été 

développé dans le but de fabriquer des cristaux de SiC de taille et de forme suffisantes 

pour les besoins des expériences. Le problème de l'apparition de « polytype » étranger a 

été continuellement étudié pendant la croissance. Aussi, l'incorporation d'azote en 

fonction de différents paramètres de croissance a-t-elle été étudiée. 

Dans un premier temps, nous avons montré la possibilité d’une croissance de cristaux 

de SiC sans contact avec le creuset dans un système de PVT. Cette configuration permet 

la croissance de monocristaux de SiC sans gangue de SiC polycristallin parasite.Ceci a 

été possible par une compréhension et une optimisation des transferts de matière dans la 
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cavité de croissance en s’appuyant sur une approche couplée entre expérience et 

simulation numérique.   

Dans un deuxième temps, une étude approfondie de la nucléation et de la propagation 

d’inclusions de polytypes a été menée. L'apparition d'inclusions est directement liée à la 

présence de  facettes {0001}. La nucléation de polytypes étrangers est plus probable 

lorsque l’apparition d'une facette {0001} et la minimisation de l'énergie de nucléation 

2D se produisent au même endroit et en même temps. En fonction de la direction de 

croissance (on-axis ou off-axis) et de la forme du cristal (convexe ou concave), on 

observe des zones où la probabilité de nucléation de polytypes étrangers est plus grande. 

Une fois formée, le développement ou la disparition d’une inclusion est directement liée 

à son interaction avec l’interface de croissance. 

Enfin, l'incorporation d'azote pendant la croissance de 4H-SiC et de 6H-SiC a été 

étudiée en fonction de la pression partielle d'azote et de la température de croissance. La 

concentration de porteurs libres diminue quand la température de croissance augmente 

dans le cas d’une croissance face C de 4H-SiC et l'énergie d'activation calculée est 152,4 

kJ/mol. Ceci est due à la désorption accrue d'azote lorsque la température augmente. De 

plus, la face C incorpore plus d'azote que la face Si, alors que pour les deux polarités, la 

limite de saturation se produit à des valeurs de pression partielle d'azote supérieures à 

0,6-0,7. Une isotherme d’adsorption de Langmuir (cas non-dissociatif) a été utilisée pour 

ajuster les tendances expérimentales. Nous avons ainsi pu montrer que la couverture de 

surface en azote sur C-face est semblable pour le 4H-SiC et le 6H-SiC ainsi que leur 

limite de saturation. La différence principale provient de la polarité. Dans le cas de la 

croissance face Si, la limite de saturation et la couverture de surface en azote sont presque 

deux fois plus faibles que sur la face C. Enfin, nous avons proposé le rôle déterminant de 

l’incorporation d’azote sur des lacunes de surface de terrasses. Ce mécanisme permet 

d’expliquer l’incorporation préférentielle au niveau de la facette de croissance.  
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Summary of the thesis  
Silicon Carbide is one of the most important and widely used semiconductors for power electronic 

devices. Due to the increasing demand for high efficiency, low cost and energy saving electronics, 

further improvement of the properties of single crystal semiconductors is needed. That requires a 

better understanding of the phenomena involved in the growth process of these materials. This 

thesis will bring some new insight into two main topics at the field of SiC bulk growth from the 

vapor phase.  

Initially, the growth process used in our laboratory was developed in order to improve the quality 

and the size of the grown SiC crystal. A geometry that allows the contactless and reproducible 

growth of SiC single crystals was obtained. Continuously, we investigated the nucleation and 

propagation of structural instabilities (foreign polytype inclusions) that appear during growth. Two 

specific criteria must be fulfilled for a foreign polytype to be nucleated. Once the nucleation point 

is located, the propagation of the foreign polytype in the volume of the grown crystal can be 

comprehended. Once the stabilization or destabilization of the SiC polytypes was better perceived, 

an attempt was made to stabilize the growth of the 15R-SiC polytype. As a final objective, the 

growth parameters that could preferentially enhance the growth of the 15R-SiC are highlighted.  

Last, nitrogen incorporation during bulk growth from the vapor phase was studied. Indeed as the 

most commonly used dopant, no full description exists for the incorporation of nitrogen in SiC.  

We contribute to this effort by exploring the nitrogen concentration in the grown crystals as a 

function of various growth parameters. Considering the adsorption/desorption mechanisms at the 

growing surface, effort was given to explain the experimentally obtained trends. 

 

Résumé de la thèse en français 
Le carbure de silicium est l’un des semi-conducteurs les plus importants et les plus répandus dans 

les appareils électroniques de puissance. Du fait de la demande croissante d’électronique à haut 
rendement, bas coût et économe en énergie, il est nécessaire d’améliorer les propriétés des semi-
conducteurs monocristallins. Cela demande une meilleure compréhension des phénomènes 

impliqués dans le procédé de croissance de ces matériaux. Cette thèse présentera de nouvelles 

perspectives sur deux sujets majeurs dans le domaine de la croissance en phase gazeuse de 

monocristaux de SiC. 

Dans un premier temps, le procédé de croissance utilisé dans notre laboratoire a été développé 

dans le but d’améliorer la qualité et la taille des cristaux de SiC obtenus. Une géométrie permettant 
la croissance sans contact et reproductible de monocristaux de SiC a été obtenue. La nucléation et 

la propagation des instabilités structurelles (inclusions de polytype étranger) apparaissant lors de 

la croissance ont été étudiés de façon continue. Deux critères spécifiques doivent être réunis pour 

qu’un polytype étranger puisse nucléer. Une fois le point de nucléation localisé, la propagation du 
polytype étranger dans le volume du cristal peut être appréhendée. Lorsque la stabilisation et 

déstabilisation des polytypes de SiC ont été mieux comprises, une tentative a été faite pour 

stabiliser la croissance du polytype 15R-SiC. L’objectif final, les paramètres de croissance 
susceptibles de renforcer la croissance préférentielle de 15R-SiC, a été mis en évidence. 

Enfin, l’incorporation d’azote pendant la croissance en phase gazeuse de monocristaux a été 

étudiée. En effet, aucune description détaillée n’existe pour l’incorporation d’azote dans le SiC, 
bien que ce soit le dopant le plus couramment utilisé. Notre contribution à cet effort porte sur 

l’étude de la concentration d'azote dans les cristaux obtenus en fonction de différents paramètres 
de croissance. Compte tenu des mécanismes d’adsorption/désorption à la surface de croissance, un 
effort a été fait pour expliquer les tendances obtenues expérimentalement.  
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