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Introduction générale

Cette thèse s'inscrit dans la thématique de recherche du groupe Automatique de l'IMS portant sur le diagnostic et la commande des systèmes pour l'aéronautique et le spatial. Cette étude vise à concevoir et développer des architectures et des algorithmes pour la commande et le diagnostic des systèmes aéronautiques critiques.

L'innovation porte sur une méthodologie de conception d'algorithmes de commande tolérante aux défauts et de diagnostic à base de modèle non linéaire prenant en compte les contraintes du processus de certification aéronautique. Au niveau applicatif, une rupture technologique a été réalisée pour systèmes critiques de vol tel que les calculateurs embarqués. Le projet SYRENA (Safran-Turboméca) a constitué le vecteur d'application et accentué la synergie entre le secteur de la recherche et du développement industriel ainsi que les laboratoires de recherche académique.

Rappel de la problématique industrielle:

Les produits THALES concernés par l'application de ces travaux de recherche sont essentiellement constitués par les calculateurs des systèmes de régulation moteur (principalement turbines d'hélicoptères), les EECU (Electronic Engine Control Unit) appelés parfois FADEC (Full Authority Digital Engine Control) et les actionneurs du circuit air-carburant. Ces produits ont en commun d'être à proximité du dispositif à piloter donc dans des environnements fortement contraints (EECU et actionneurs situés sur le bloc moteur) et font parties des chaines critiques du système avionique.

Un dysfonctionnement de l'un de ces produits ne doit pas conduire à un évènement catastrophique et doivent donc être tolérant aux défauts. Ces contraintes conduisent aujourd'hui à des architectures complexes incluant des dissimilarités de conception et comprenant des redondances matérielles. A ces contraintes s'ajoute une disparité des actionneurs à piloter (vérins hydrauliques, électriques, électrovanne) et des chaines de commande et d'acquisition principalement analogiques plus sensibles aux perturbations électromagnétiques. Cela conduit d'une part à un circuit de câblage important entre les capteurs/actionneurs et le calculateur, et à une chaine de conditionnement et de traitement du signal plus complexe. La simplification des interfaces entre capteurs/actionneurs et le calculateur doit permettre de réduire la complexité des calculateurs (pour une éventuelle intégration dans le système avionique), de diminuer la masse du harnais et d'améliorer la fiabilité globale du système (sous respect des exigences de safety). De ce point de vue, l'intégration des fonctions d'asservissement et de surveillance au sein même de l'actionneur et l'utilisation de bus numérique constituent une piste à explorer. Ces technologies bien que déjà présentes sur le marché industriel sont très peu appliquées au secteur aéronautique en raison de la complexité du processus de certification.

Contenu du premier chapitre: diagnostic à base de modèles des systèmes différentiels non-linéaires plats

Le chapitre 1 présente dans une première partie un rappel des propriétés des systèmes non-linéaires plats. Une application sur un modèle non-linéaire d'un moteur pas-à-pas a été réalisée. Une linéarisation par difféomorphisme et bouclage endogène est appliquée au système proposé dans le but d'utiliser son modèle linéaire équivalent au sein d'algorithmes de diagnostic à base d'observateurs tel que le filtre de Kalman linéaire.

Dans la deuxième sous-partie, un état de l'art des méthodes de diagnostic de défauts est présenté. Les générateurs de résidus tels que l'espace de parité et les observateurs présentent un intérêt particulier pour des applications embarquées au sein de systèmes critiques de vol tels que les calculateurs de commande moteur.

Contenu du deuxième chapitre: proposition d'une architecture de surveillance d'un système critique de vol

Dans le chapitre 2, une architecture de surveillance de système critique de vol est proposée et à fait l'objet d'un brevet. Un rappel sur la problématique de la criticité et de la sureté de fonctionnement aéronautique est proposé en première partie. Afin de prendre en compte la contrainte de sureté de fonctionnement dans la conception d'un système aéroporté, les méthodes, outils et normes imposés par les organismes d'aéronavigabilité, tels que la FAA, l'EASA et l'ICAO, sont présentés. Un exemple d'allocation du niveau de sureté d'un actionneur de commande moteur d'hélicoptère est réalisé. L'innovation de cette étude porte sur la proposition d'une architecture calculateur permettant de réduire l'encombrement lié aux redondances matérielles en remplaçant ces composants par des fonctions analytiques embarquées sur calculateur. La dualité: redondance matérielle et analytique est étudiée.

Contenu du troisième chapitre: réalisation du procédé expérimental

Figure 1: Schéma de principe du démonstrateur technique réalisé Le chapitre 3 est dédié à l'élaboration d'un démonstrateur technique dont le but est de détecter les défauts courts-circuit d'une phase statorique d'un moteur pas-à-pas hybride. Le moteur électrique similaire à celui de l'actionneur de vanne de dosage du circuit carburant de turbine d'hélicoptère, a été câblé de façon à pouvoir générer des courts-circuits sur différents pourcentages de spires statoriques.

Les algorithmes développés dans le chapitre 1 ont été réalisés en simulation puis embarqués sur une machine temps réel elle-même connectée aux capteurs du banc d'essai(figure 1). Dans la dernière partie du chapitre 3, les performances de deux méthodes de diagnostic à base d'observateurs de Kalman sont comparés. La première fait appel à une linéarisation par difféomorphisme et bouclage endogène. Les résidus sont obtenus avec un filtre de Kalman linéaire. La seconde méthode fait appel à un filtre de Kalman étendu (EKF) dont le procédé de linéarisation n'est pas exact générant des erreurs de linéarisation. 

Abstract:

In this chapter, it is shown that differential flat systems present useful properties for model-based fault diagnosis methods. At first, the principles of nonlinear and multivariable flat systems are recalled in section 1.2. Dynamical inversion properties are considered for the linearisation of flat systems, such as permanent magnet stepper motors (PMSM). Next, the state of the art in current analytical diagnosis methods is described in section 1.3, particularly addressing residual analysis methods. Observers and parity space methods are then detailed for linear and nonlinear systems.

Introduction

The occurrence of faults on physical systems may downgrade their performance or in the worst case lead to catastrophic events. Current control systems are designed to ensure their stability and robustness but in the case of high-integration complex aircraft systems e.g., engines, flight-control actuators or flight computer units (FCU), monitoring functions are also required. Among current monitoring solutions for engine and flight control computer units, material and analytic redundancy allow faults detection and isolation (FDI) to prevent from catastrophic events but also to optimise maintenance. Material redundancy impacts the number of sensors and physical components on board of an aircraft and require more space, weight and power (SWaP). Therefore the use of analytical models in monitoring systems has increased and may replace rows of redundant components in future aircraft systems. This chapter is devoted to the presentation of model-based techniques for FDI purposes [START_REF] Ding | Model-based fault diagnosis techniques[END_REF], where models are considered as a set of differential equations describing a physical system. Regarding FDI, fault-detection is based on the comparison of sensor measurements and the measurement estimation processed by the mathematical model.

In section (1.2), a special attention is dedicated to the properties of nonlinear and multidimensional flat systems. Two groups of nonlinear systems exist, namely:

• Strong nonlinear systems, for which specific analysis and processing tools are necessary,

• Pseudo-nonlinear systems [START_REF] Fossard | [END_REF], which are equivalent to linear systems by coordinate change and feedback, but in our case, the study will deal only with pseudo-nonlinear systems. A nonlinear system described by differential equations is differentially flat [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF] if its dynamical behaviour can be expressed by a set of nonlinear and smooth functions which are also differentially independent. These functions are the "flat outputs" of the system. They depend on the states of the system and a finite number of the inputs time derivatives. Therefore, each trajectory of a nonlinear system within the state space can be determined by knowing its flat outputs without processing integral functions on the dynamic of the system. The main objective of differential flatness is to determine a set of flat outputs which permits a nonlinear dynamic inversion (NLDI) [START_REF] Isidori | Nonlinear control systems[END_REF] without generating a non observable zeros dynamic of the system.

In order to be compliant with linear diagnosis models, linearisation properties of flat systems based on coordinate change and endogenous feedback are used to determine the linear equivalent system of a permanent magnet stepper motor (PMSM) model. In section (1.3), model-based monitoring models are recalled. Residual generation methods are shown, including parity space, linear and nonlinear observers such as the Standard Kalman Filter (SKF) and the Extended Kalman Filter(EKF).

Robustness and performances of NLDI and linearisation are discussed regarding the tangent linearisation of the EKF.

Differential flatness of nonlinear systems

The concept of differential flat systems was introduced in the middle of the 1990's where the first application studies were realised in [START_REF] Charlet | Sufficient conditions for dynamic state feedback linearization[END_REF] for aerospace projects. The development of the theory continued within the work of P.Martin [START_REF] Martin | Contribution à l'étude des systèmes différentiellement plats[END_REF] who contributed to the formal concept of flatness presented by M. Fliess et al in [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF]. Since then, this concept has known many applications such as: robust system control [START_REF] Jakubczyk | On linearization of control systems[END_REF][START_REF] Hunt | Design for multi-input nonlinear systems[END_REF][START_REF] Glumineau | The essential orders and the non-linear decoupling problem[END_REF][START_REF] Mahamoud | FDI using High Gain Observers for Cascade Systems: application to induction motors[END_REF][START_REF] Mahamoud | Methodology for nonlinear FDI Observer via Nonlinear Transformation: Application to a DC Serie Motor[END_REF], fault tolerant control [START_REF] Isermann | Fault-diagnosis systems : an introduction from fault detection to fault tolerance[END_REF][START_REF] Zhou | Robust and optimal control[END_REF], path planning [START_REF] Van Nieuwstadt | Real time trajectory generation for differentially flat systems[END_REF][START_REF] Milam | Receding horizon control of vectored thrust flight experiment[END_REF][START_REF] Faiz | Trajectory planning of differentially flat systems with dynamics and inequalities[END_REF][START_REF] Von Löwis | Real-time trajectory generation for flat systems with constraints[END_REF], fault detection and diagnosis (FDD & FDI) [START_REF] Martinez-Guerra | Fault detection and diagnosis in nonlinear systems[END_REF][START_REF] Fliess | An introduction to nonlinear fault diagnosis with an application to a congested internet router[END_REF] and estimation of nonlinear parameters [START_REF] Fliess | Non-linear estimation is easy[END_REF].

Preliminary notions

To begin with, usual definitions of flat systems initially introduced by Fliess et al.

in [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF] for nonlinear systems ruled by ordinary differential equations (ODE) are recalled. A nonlinear system is flat if there exist a set of differentially independent variables called flat outputs. Their number equals to the number of inputs where the states and the inputs can be expressed with the flat outputs and a finite number of their time derivatives. As a consequence, control inputs and states can be processed by planning only the trajectories of the flat outputs. Trajectory planning using flatness properties was applied in [START_REF] Milam | Receding horizon control of vectored thrust flight experiment[END_REF][START_REF] Von Löwis | Real-time trajectory generation for flat systems with constraints[END_REF] and in the design of robust controllers [START_REF] Hunt | Design for multi-input nonlinear systems[END_REF][START_REF] Glumineau | The essential orders and the non-linear decoupling problem[END_REF].

Definition 1.1. (Differential flatness)

Considering the following nonlinear multivariable system:

ẋ = f n (x n , u n ) (1.1) with x n = (x n 1 , . . . , x nn ), x n ∈ R n u n = (u n 1 , . . . , u nm ), u n ∈ R m (1.2)
and

f n = (f n 1 , . . . , f nm ) (1.3)
is a smooth function of x n and u n satisfying f n (0, 0) = 0 (1.4) where

rank df n du n (0, 0) = m (1.5)
System (1.1) is differentially flat if there exists an output vector z n named flat output, composed of m fictive outputs such as:

• State vector x n and control input vector u n can be expressed with the flat outputs:

z n = (z 1 , . . . , z m ) (1.6)
and a finite number of their derivatives, as shown in equations (1.7).

• Flat outputs z are expressed with the state vector x, the control vector u and a finite number of their time derivatives. These two conditions are given by:

x = B(z, ż, . . . , z (q) ) u = C(z, ż, . . . , z (r) )

z = A(x, u, u, . . . , u (p) ) (1.7)
where p, q and r are integers, z (q) is the q th time derivative of z and A = (A 1 , . . . , A n ), B = (B 1 , . . . , B m ), C = (C 1 , . . . , C m ) are smooth mappings.

Remark 1.1. Given a flat system, the number of components of a flat output is equal to the number of independent inputs.

Flatness necessary and sufficient conditions

In this section, flat outputs processing algorithms introduced in [START_REF] Lévine | Flat output characterization for linear systems using polynomial matrices[END_REF] are applied.

Another processing method based on modules was described in [START_REF] Quadrat | Computation of bases of free modules over the weyl algebras[END_REF]. The following flatness necessary and sufficient conditions were established by J.Lévine in [START_REF] Lévine | Analysis and control of nonlinear systems: A flatness-based approach[END_REF] regarding nonlinear systems.

In order to process flat outputs, external and local flatness properties were established. The external flatness formulation definitions is based on the Lie-Bäcklund equivalence of two implicit systems.

Assuming X a differentiable manifold of dimension n, T x X the corresponding tangent space at x ∈ X and T X = x∈X T x X its tangent bundle (see Appendix A.7).

The nonlinear implicit system1 (see Appendix A.3) is given by:

F (x, ẋ) = 0 (1.8)
where F is a C ∞ mapping from T X to R n-m in a given neighbourhood of T X with

rank ∂F ∂ ẋ = n -m. Also, X X × R n ∞ = X × R n × R n × . . . (1.9)
is considered as the manifold of infinite order jets [START_REF] Fliess | A lie-backlund approach to equivalence and flatness of nonlinear systems[END_REF], defined as the product of X with an infinite amount of R n and its general coordinates x such as:

x = (x 1 , . . . , x n , ẋ1 , . . . , ẋn , . . . , x

(k) 1 , . . . , x (k) n , . . .). (1.10)
The jets of infinite order allow expression of system (1.8) with its implicit equations given in definition 1.2.

Definition 1.2. (Implicit system) An implicit system is composed of a triplet (X, τ X , F ) with:

X = X × R n ∞ (1.11)
and

τ X = i≥0 n j=1 x (i+1) j ∂ ∂x (i) j (1.12)
its associated trivial Cartan field (see Appendix A.6), and

F ∈ C ∞ (T X; R n-m ),
satisfying:

rank ∂F ∂ ẋ = n -m (1.13)
for a given neighbourhood of T X.

Considering two implicit systems (X, τ X , F ) and (D,

τ D , G) with D = Y × R p ∞ , dimX = n, dimY = p and rank ∂G ∂ ẏ = p -q, their equivalence conditions is
given by the Lie-Bäcklund equivalence definition as follows.

Definition 1.3. (Lie-Bäcklund equivalence)

The two implicit controlled systems (X, τ X , F ) and (D, τ D , G) are Lie-Bäcklund equivalent (or L-B equivalent) at

(x 0 , ȳ0 ) ∈ X 0 × D 0 if

and only if:

• there exist neighbourhoods X 0 and Y 0 of x0 ∈ X 0 and ȳ0 ∈ D 0 respectively and a mapping

Φ = (ψ 0 , ψ 1 , . . .) ∈ C ∞ (X 0 ; Y 0 ) (1.14) such as Φ(ȳ 0 ) = x0 and 2 Φ * τ D = τ X ,
• there exist a mapping

Ψ = (ψ 0 , ψ 1 , . . .) ∈ C ∞ (X 0 ; Y 0 ) (1.15) such as Ψ(x 0 ) = ȳ0 and Ψ * τ X = τ D
Ψ and Φ are the Lie-Bäcklund isomorphisms and invertible at (x 0 , ȳ0 ). Both controlled systems (X, τ X , F ) and (D, τ D , G) are locally L-B equivalent if:

(x, Ψ(x)) = (Φ(ȳ), ȳ) (1.16)
The system

(X × U × R m ∞ , f ), resp.(X × R n ∞ , τ X , F ))
, where f = (f, ḟ , f ) with m inputs, is differently flat if and only if it is L-B equivalent to the trivial system

(R m ∞ , τ m ), resp.(R m ∞ , τ m , 0))
, where τ m is the Cartan field of R m ∞ such as:

τ m = j≥0 m i=1 y (j+1) ∂ ∂y (j) i (1.17)
y is called the flat output vector.

The flatness of the implicit system (X, τ X , F ) corresponds to the fact that it is Lie-Bäcklund equivalent to the trivial system (R m ∞ , τ m , 0).

Definition 1.4. (Flatness, External Formulation

[73]) The implicit sys- tem (X, τ X , F ) is flat at (x 0 , ȳ0 ) ∈ X 0 × R m ∞ if and only if it is L-B equivalent at (x 0 , ȳ0 ) ∈ X 0 × R m ∞ to the trivial implicit system (R m ∞ , τ m , 0).
In this case, the Lie-Bäcklund isomorphisms Φ and Ψ are called uniformization, as referred to Hilbert's

22 nd Problem [8]
The extension of the flatness external formulation to local flatness is given by the following definition.

Theorem 1.1. (Local flatness) The implicit system (X, τ X , F ) is flat at (x 0 , ȳ0 )

with x0 ∈ X 0 and ȳ0 ∈ R m ∞ if and only if a local invertible smooth mapping Φ of R m ∞
to X 0 exists, with a smooth inverse such as:

Φ(ȳ 0 ) = x0 (1.18)
and

Φ * dF = 0 , (1.19)
where Φ * denotes the set of invertible elements of Φ.

Considering the definition of the following polynomial matrices:

P (F ) = ∂F ∂x + ∂F ∂ ẋ d dt and P (ϕ 0 ) = j≥0 ∂ϕ 0 ∂y (j) d j dt j , (1.20) 
equation (1.19) becomes:

Φ * dF = P (F )P (ϕ 0 )dy = 0.

(1.21)

Linear algebraic methods for polynomial matrices such as the following Smith decomposition, allows description of a variational system P (F ) given by:

V P (F )U = (I n-m , 0 n-m,m ). (1.22)
where n is the rank of the system and m the dimension of the output vector.

Assuming K, the ring of meromorphic 

Θ = U     0 n-m,m I m     W, (1.24) 
where U ∈ R-Smith(P (F )) and W ∈ U m d dt .

Assuming:

Û = U     0 n-m,m I m     .
(1.25) Lemma 1.2. For a given matrix Q such as Q ∈ L-Smith( Û ), there exists a matrix

Z ∈ U m d dt such as: QΘ =     I m 0 n-m,m     Z.
(1.26)

A necessary and sufficient condition for the implicit system (1.8) to be flat at x0 ∈ X 0 is that the K d dt -ideal, generated by the 1-forms ω, . . . , ω m (see Appendix A.8) defined by:

ω(x) =         ω 1 (x) . . . ω m (x)         = (I m , 0 m,n-m ) Q(x)dx |x 0 = Q(x)dx |x 0 . (1.27)
is strongly closed in a neighbourhood of x0 ∈ X 0 . A flat output of the variational system is obtained if dω = 0 by integration of dy where: 

dy = ω. ( 1 
dω = µω, d(µ) = µ 2 , d(M ) = -M µ (1.29)
where L 1 ((Λ (X)) m ) is the space of linear operators mapping the p-forms of dimension m of X, in (p + 1)-forms of dimension m in X. d is the extension of the exterior derivative d, whith coefficients in K d dt .

As an example, the presented flat outputs processing method based on Smith decomposition and 1-forms calculation is applied in the next section to a nonlinear permanent magnet stepper motor (PMSM) model.

Flat outputs processing of a permanent magnet stepper motor

Before processing the flat outputs of the PMSM, some fundamentals regarding the different types of stepper motors are recalled. Stepper motors are electromechanical converters which aim is to transform an electrical power into a linear or angular motion (Figure 1.1).

From the electro-technical point of view, its structure is very similar to the syn-Figure 1.1: Electromechanical conversion scheme of a two-phased stepper motor [START_REF] Multon | Les machines synchrones autopilotées[END_REF] chronous motor. Windings encircle the stator poles (mostly made of salient poles)

and the rotor can be made of permanent magnets (also called polarised or active structure), or ferromagnetic parts (also called reluctant or passive structure). Three main types of stepper motors exist:

• the variable reluctance stepper motor (VRSM), as shown in figure 1.2,

• the permanent magnet stepper motor (PMSM), as shown in figure 1.3,

• the hybrid stepper motor (HSM), as shown in figure 1.4.

The power supply of each winding generates a current i which generates a magnetic field in a specific direction. Powering up each winding in a given sequence allows to move the magnetic field of the stator along an elementary resolution called step. The variation of the power sequence on each stator winding defines a rotating magnetic field corresponding to a full step, half step or microstep. The discrete motion of the magnetic field allows the rotor to rotate with a synchronising torque. For each type of stepper motor, the torque is generated:

• by the stator field (current)-rotor iron interaction, in the case of a passive rotor

(Figure 1.2),
• by the stator field (current)-rotor (magnetic) field interaction, in the case of a permanent magnet rotor (Figure 1.3),

• by the two previous magnetic field interactions at the same time in the case of a hybrid stepper motor (Figure 1.4).

Types of stepper motors

In the case of a passive rotor (Figure 1.2), when the current goes through winding 1, the established magnetic field places the iron of the rotor in a position corresponding to a maximum magnetic flow. The pole of the rotor is then aligned with the stator The difference of the three stepper motor types is related to the generation of the electromechanical torque T em which will next be described. The inductance L of each stator phase is related to the reluctance4 R and the number of coils n c by:

L = n 2 c R . (1.30)
In an unsaturated regime, the global magnetic flow is given by:

φ = φ f + L j i k + M kj i k , (1.31)
where φ f is the inductor flow related to the magnets, L j i k and M kj i k are respectively the flows related to self and mutual inductances L and M of phases j and k .

In the case of a 2-phased VRSM, the expression of the torque depends only on the inductance of the electromagnets [START_REF] Multon | Les machines synchrones autopilotées[END_REF]. The torque is pure reluctant in this case and is given by: When the rotor is made of a permanent magnets (Figure 1.3), each magnet has a constant permeability and the air gap is also constant (L and M are also constant).

T em = 1 2 i 2 1 dL 1 (α pm ) dα pm + 1 2 i 2 2 dL 2 (α pm ) dα pm (1.32)
Therefore the synchronising electromagnetic torque T em is only related to the flow φ f j variation of the j th phase, between the rotor magnet and the active electromagnet of the stator. It is also called hybrid torque and its expression, for a two-phased motor is given by:

T em = i 1 dφ f 1 dt + i 2 dφ f 2 dt , ( 1.33) 
The last polarised structure called hybrid (Figure 1.4), works mainly on the iron-iron interaction (variable reluctance) but with a permanent magnet (rotor) excitation.

The torque of this type of motor contains three fundamental torques: the hybrid torque (main torque in this case) as shown in equation (1.33), the reluctant torque given by equation (1.32) and the detent torque given by:

T d = -K d sin(4nα pm ) , (1.34)
where n is the number of rotor teeth and K d is the detent torque constant.

Stator based (a,b)-model

For the following case, the inductances L i are constant and the rotor speed ω is constant. The nonlinear PMSM bi-phased model can be expressed with electrical and mechanical equations in the stator base (a,b) as follows [START_REF] Bodson | High-performance nonlinear feedback control of a permanent magnet stepper motor[END_REF]:

         u a = Ri a + n c dφ a dt u b = Ri b + n c dφ b dt (1.35)
where (u a , u b ) and (i a , i b ), are respectively the voltages and currents. Subscripts a and b correspond respectively to A and B phases. The magnetic flows φ a and φ b depending on the cumulated coils of each phase are given by: [START_REF] Filippov | Differential equations with discontinuous right-hand side[END_REF] considering:

       φ a = φ aa + φ ab + φ am φ b = φ bb + φ ba + φ bm (1.
• φ aa and φ bb the flow of each phase,

• φ ab and φ ba the mutual flow between two phases,

• φ am and φ bm the mutual magnet-electromagnet flows.

Because A and B phases are in a ninety degree displacement (phase quadrature), their mutual flows are equal to zero implying φ ab = 0 and φ ba = 0. Therefore replacing the expression of the flow φ of system (1.36) 

L di a dt = n c dφ aa dt (1.41)
and therefore :

u a = L di a dt . (1.42)
Using equations 1.41 and 1.37 in the first equation of system 1.35 gives as a result:

u a = Ri a + L di a dt + n c dφ am dt (1.43)
The last term of equation 1.43 corresponds to the e.m.f e a of phase A given by: e a = n c dφ am dt .

(1.44)

According to the Boucherot law, in the case of sinusoidal input voltage u(t), the flow φ(t) has a sinusoidal wave form given by:

φ(t) = Φ max cos(nθ m ) (1.45)
Therefore, the e.m.f equations (1.44) is given by: e a = K e wsin(nθ m ) , (1.46) where K e is the e.m.f constant. Considering equations (1.46) and (1.41) and supposing the windings inductances constant, system (1.35) becomes:

             u a = Ri a + L di a dt -ωsin(nθ m )K t u b = Ri b + L di b dt + ωcos(nθ m )K t (1.47)
where K t is the torque constant, considered equal to the e.m.f constant, n the number of rotor teeth, ω the angular velocity of the rotor and θ m its angular position. The e.m.f e a and e b are given by:

       e a = -ωsin(nθ m )K t e b = ωcos(nθ m )K t .
(1.48)

According to the fundamental principle of dynamics, the efforts are only related to rotating motions implying:

T m -T r = J dω dt (1.49)
with T m the motorising torque and T r the resisting torque, considering

T m = T em + T d , (1.50)
where T d is the detent torque generated by the magnets. Without considering the mechanical losses, the electromechanical torque T em is given by:

T em = e a i a + e b i b ω . (1.51)
The detent torque is equal to 10% of the global torque and is therefore neglected implying T d = 0. According to equations (1.48) and (1.51), the electromechanical torque becomes:

T em = [-K t i a sin(nθ m ) + K t i b cos(nθ m )] (1.52) 
and the PMSM model satisfies:

                               u a = Ri a + L di a dt -ωsin(nθ m )K t u b = Ri b + L di b dt + ωcos(nθ m )K t J m dω dt = [-K t i a sin(nθ m ) + K t i b cos(nθ m )] -Bω dθ m dt = ω (1.53)
where B is the viscous friction coefficient and J m the motor inertia. (1.54)

Rotor-based (d,q)-model

The Park transform is applied to system (1.54) with the following equations:

P (θ m )     u a u b     = RP (θ m )     i a i b     + P (θ m )     L 0 0 L     d dt     i a i b     + K t ωP (θ m )     -sin(nθ m ) cos(nθ m )     (1.55)     u d u q     = R     i a i b     + P (θ m )     L 0 0 L     d dt     P (-θ m )     i a i b         + K t ωP (θ m )     -sin(nθ m ) cos(nθ m )     (1.56)     u d u q     = R     i a i b     +P (θ m )     L 0 0 L         dθ m dt d dθ m (P (-θ m ))     i d i q     + P (-θ m ) d dθ m     i d i q         + K t ω     0 1     (1.57)     u d u q     = R     i d i q     +     L 0 0 L     d dt     i d i q     + nω     0 -L L 0         i d i q     + K t ω     0 1     (1.58)
The electromechanical torque T m can also be expressed in the (dq)-base. Considering the park transformation matrix given by equation (1.54), the expression of i q is:

i q = -i a sin(nθ m ) + i b cos(nθ m ).
(1.59)

Replacing the expression of i q in the electromechanical torque equation (1.52) implies:

T em = K t i q (1.60)
The motor model in the (dq) base is then given by:

                               u d = Ri d + L di d dt -Lnωi q u q = Ri q + L di q dt + Lnωi d + K t ω J m dω dt = K t i q -Bω dθ m dt = ω (1.61)
Considering the state vector:

x =             i d i q ω θ             , ( 1.62) 
and the input vector defined by:

u =     u d u q     .
(1.63)

The nonlinear explicit state-space representation of the PMSM motor model is given by:

                               ẋ1 = nx 3 x 2 - R L x 1 + 1 L u 1 ẋ2 = nx 3 x 1 - R L x 2 + - K t L x 3 + 1 L u 2 ẋ3 = K t J m x 2 - B J m x 3 ẋ4 = x 3 (1.64) 
In this section, the PMSM model has first been expressed in the rotor base (dqbase) and has been expressed as a nonlinear explicit state-space system. In order to linearise this model by the differential flatness approach, the flat outputs of the model will be processed as presented in section 1.2.1.1.

Flat outputs processing

In order to process the flat outputs of (1.64), it is necessary to process its implicit form given by equation (1.8) such as:

F (x, ẋ) = 0. (1.65)
Assuming the nonlinear state-space expression of (1.64):

ẋ = f (x) + g(x)u, (1.66)
The implicit form is then given by:

F (x, ẋ) =             0 0 ẋ3 - K t J m x 2 + B J m x 3 ẋ4 -x 3             = 0 (1.67)
The variational system P (F ) expressed in (1.20) is then given by the following matrix:

P (F ) =     0 -K t J m B J m + d dt 0 0 0 -1 d dt     (1.68)
According to (1.22), the Smith decomposition of P (F ) is processed with :

S(P (F )) = (I 2 , 0 2,2 ), (1.69) 
the resulting U ∈ D -Smith matrix equals to:

U =                     0 0 1 0 1 B + J m d dt K t 0 d dt B + J m d dt K t 0 1 0 d dt 0 0 0 1                     (1.70)
According to equation (1.25), the corresponding Û matrix satisfies:

Û = U     0 2,2 I 2     =                     1 0 0 d dt B + J m d dt K t 0 d dt 0 1                     . (1.71)
As suggested in Lemma 1.2, Q ∈ L -Smith( Û ) is processed and is given by:

Q =                     1 0 0 0 0 0 0 1 0 0 1 - d dt 0 1 0 - d dt B + J m d dt K t                     , ( 1.72) 
and

R =     1 0 0 1     , (1.73) 
which satisfies:

Q Û R =     I 2 0 2,2     .
(1.74)

The following differential base ω is obtained with equations (1.28, 1.27) :

ω = I 2 0 2,2 Q             dx 1 dx 2 dx 3 dx 4             =     dx 1 dx 4     .
(1.75) Hence, x 1 = i d and x 4 = θ m are the flat outputs of the PMSM. According to the definition of flat outputs (1.7), the PMSM can be expressed with x 1 = z 1 and x 4 = z 2 and a finite number of their derivatives as shown below:

                                             x 1 = z 1 x 2 = J m K t z2 + B K t ż2 x 3 = ż2 x 4 = z 2 u 1 = Rz 1 + L ż1 - nLJ m K t ż2 z2 - nLB K t ( ż2 ) 2 u 2 = ... z 2 LJ m K t + z2 LB + RJ m K t + ż2 ( RB K t + K t ) -nL ż2 z 1 (1.76)
This subsection showed the flatness of the nonlinear stepper motor model (1.64).

Flat outputs (i d , θ m ) were identified by processing the Smith decomposition of the implicit form of the PMSM model.

In the next section, linearisation conditions of nonlinear flat systems will be discussed. Exact and pseudo-linearisation methods are presented.

Linearisation of flat systems

Linearisation methods have found many applications in the field of nonlinear system control. System linearisation is realised regarding underlying questions concerning:

• the type of linearisation: is it approximate or exact? Is the linearisation internal (input-state linearisation ) or external (input-output linearisation)?

• the goal: is there a local or aggregate linearisation required?

The approximate linearisation, around an equilibrium point, also known as quasilinearisation, is well suited for regulation issues with a running point near from the equilibrium point. The exact linearisation is well suited for transitions of the equilibrium point and trajectory tracking. Approximate and exact linearisation often requires transformations such as static or dynamic state feedback and internal or external decoupling.

Stable input-output decoupling by state feedback of linear systems was at first studied by P.L. Falb and W.A. Wolovitch [START_REF] Falb | Decoupling in the design and synthesis of multivariable control systems[END_REF] who expressed the necessary and sufficient conditions. Then, W.M. Wonham and A.S. Morse [START_REF] Wonham | Decoupling and pole assignment in linear multivariable systems: a geometric approach[END_REF] introduced a precompensator and a dynamic feedback in order to reduce the constraints affecting stability. A major drawback of this decoupling is, for certain cases, the observability loss of a part of the state vector when realising poles-zeros simplifications in the closed loop transfer. The study of the finite zero dynamic of the transfer matrix appears to be necessary in order to reach an internal stability. A method for the realisation of a stable linear input-output decoupling was developed by W.M.

Wonham [START_REF] Wonham | Linear multivariable control[END_REF] which consisted in replacing the static state feedback by a dynamic feedback.

Regarding nonlinear systems, A. Isidori et al [START_REF] Isidori | Nonlinear decoupling via feedback: a differential geometric approach[END_REF] and R.M. Hirshorn [START_REF] Hirschorn | a,b)-invariant distributions and disturbance decoupling of nonlinear systems[END_REF] defined the equivalent conditions concerning the decoupling matrix regularity. This method is based on a coordinate change for the state and a static state feedback which permits to decouple and linearise inputs-outputs transfers at the same time. In the case of a non-observable state occurrence, the zero dynamic of the system, developed by C. Byrnes and A. Isidori [START_REF] Byrnes | Asymptotic expansions, root-loci and the global stability of nonlinear feedback systems[END_REF] is studied. Stability criterion on the zero dynamic was then used such as exponential stability [START_REF] Byrnes | Asymptotic expansions, root-loci and the global stability of nonlinear feedback systems[END_REF] or K-stability [START_REF] Charlet | Sur quelques problemes de stabilisation robuste des systemes non linéaires[END_REF] to evaluate the internal stability of the looped nonlinear system. Dynamic feedback was also used for nonlinear input-output system inversion and decoupling by R.M. Hirshorn [START_REF] Hirschorn | Invertibility of multivariable nonlinear control systems[END_REF] and S.N. Singh [START_REF] Singh | Decoupling of invertible nonlinear systems with state feedback and precompensation[END_REF] and [START_REF] Singh | A modified algorithm for invertibility in nonlinear system[END_REF] . Also, J. Descusse and C.H.Moog [START_REF] Descusse | Decoupling with dynamic compensation for strong invertible affine non-linear systems[END_REF], M. Fliess [START_REF] Fliess | Some remarks on nonlinear invertibility and dynamic state feedback[END_REF] and H. Nijmeijer and W. Respondeck [START_REF] Nijmeijer | Dynamic input-output decoupling of nonlinear control systems[END_REF] defined nonlinear input-output systems which can be decoupled by dynamic state feedback.

Coordinate change and static feedback linearisation

The aim of static feedback linearisation is to determine whether a system is linear after applying a change of coordinates on the system's states and inputs. In the case of linear systems, a change of state coordinates x -→ x is given with the existence of a invertible M matrix where dim(M ) = n × n and such as:

x = M x (1.77)
The regular static feedback u -→ ū is defined by an invertible N matrix of order m and a second matrix K with dim(K) = m × n such as :

u = K x + N ū (1.78)
The global static feedback is given by the following system:

    x ū     -→     x u     =     M 0 K N         x ū     (1.79)
Assuming the following system:

ẋ = f (x, u), x ∈ R n , u ∈ R m (1.80)
Linearisation of system (1.80) by static feedback consists in finding a state vector z and an input vector v such that (1.80) is equivalent to the following linear system :

ż = Az + Bv (1.81)
The generalised form of (1.79) is given by the nonlinear transformations :

    x ū     -→     z = φ(x) v = k(x, u)     , (1.82)
where φ is a smooth mapping. It was shown by Charlet et al [START_REF] Charlet | Sufficient conditions for dynamic state feedback linearization[END_REF] that dynamic feedback is useful only in the case of multi-input systems linearisation. Single-inputs systems are therefore considered such as :

ẋ = f (x) + g(x)u , with x ∈ R n , u ∈ R m . (1.83)
In the case of single-inputs, system (1.83) is equivalent to a controllable linear system by static feedback and diffeomorphism if the two following conditions are satisfied :

• G n-2 has a constant rank and is involute on a neighbourhood V of the origin,

• the rank of G n-1 is n,
where the distribution of vectors fields G i is given by :

G i = sp{g, ad f g, . . . , ad i f g} (1.84)
with ad i f g the Lie bracket of f and g repeated i times and

ad i f = [f, ad i-1 f ].
When the system satisfies the two previous conditions, it can be linearised by the given feedback and diffeomorphism:

u = α(x) + β(x)v, (1.85) ξ = φ(x) (1.86)
Determining the feedback and diffeomorphism consists of processing in a neighbourhood of V the following partial derivatives system:

                       L g φ 1 = 0 L ad f g φ 1 = 0 . . . L ad n-2 f g φ 1 = 0 (1.87)
where β(x) is a square invertible matrix. α and β are given by:

           α = - L n f φ 1 L g L n f φ 1 β = 1 L g L n f φ 1 , φ i = L i-1 f φ 1 , ∀i = 2, . . . , n (1.88)
where L f g(x) is the lie derivative of the smooth function (g) along the vector field f . Its expression is given by

L f g(x) = n i=1 f i (x) ∂ ∂x i g(x) (1.89)
and u = k(z, v).

Remark 1.2. Only systems with linear inputs were considered in this case because it corresponds to the system hypothesis established by Jakubczyk-Respondek and Hunt-

Su-Meyer. This result was generalised for nonlinear inputs systems [START_REF] Jakubczyk | Automatique théorique. orbites de pseudo-groupes de difféomorphismes et commandabilité des systèmes non linéaires en temps discret[END_REF] by setting the distributions G i to:

G 0 = sp ∂f ∂u (1.90) G i = G i-1 + ad f G i-1 , for i 1.
(1.91) Definition 1.6. (Brunovsky form) A linear controllable system is equivalent after static feedback and a change of base of its coordinates, to its Brunovsky form:

               y (k 1 ) = v 1 . . . y (km) m = v m (1.92)
where k 1 , . . . , k m are the system controllability subscripts and v 1 , . . . , v m are the inputs of the equivalent linear system. Each input v equals to the k-derivative of its corresponding output.

After diffeomorphism (see Appendix A.2) and static feedback, system (1.80) is equivalent to a system containing a linear part and a nonlinear transformation given by:

       ż = Az + Bv ξ = a(z, ξ) + b(z, ξ)v (1.93)
When a nonlinear system is not compliant with the conditions of the Respondek and Hunt-Meyer theorem [START_REF] Jakubczyk | On linearization of control systems[END_REF], the system is not locally linearisable but several partial linearisations are possible. R. Marino [START_REF] Marino | On the largest feedback linearizable subsystem[END_REF] specified the size of the largest linearisable subsystem. Stabilisation is therefore only possible for the linearisable part. The behaviour of the non-linearisable part is moreover unknown and it is only possible to remark the stability or instability of the system after feedback. Considering this theorem, one might wonder if a partial static feedback linearisable system is differentially flat. In the case of partially static feedback linearisable single-input systems, B.Charlet et al showed that the extension to the dynamic feedback brings no benefits to the linearisation problem. Such systems are therefore not linearisable and constitute non flat systems. On the other hand, when multi-input systems are considered, it is possible to linearise the input-state behaviour with an endogenous dynamic extension realised by a dynamic state feedback as presented in the next section. The system is linearisable regarding the state and the linearisation can be processed on the equivalent system. If a multiple-input system is not dynamic feedback linearisable it is not flat.

Endogenous dynamic feedback linearisation

Consider system (1.80). Dynamic feedback is given by a differential equation also called dynamical compensator given by equation (1.94),

ż = β(x, z, v) (1.94)
and a feedback loop:

u = α(x, z, v). (1.95)
The dynamic feedback is now expressed with (1.80, 1.93 and 1.94) by the following system:

       ẋ = f (x, α(x, z, v)) ż = β(x, z, v).
(1.96)

System (1.80) is linearisable by dynamic feedback if system (1.96) is linearisable by static feedback. If the linearised system is also L-B equivalent [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF], it is an endogenous feedback linearisation, meaning a Lie-Bäcklund isomorphism φ and its inverse ψ exist such as:

(x, ū) = φ(x, z, v), ū = (u, u, ü, . . . , u (m) ) (1.97) and (x, z, v) = ψ(x, ū), v = (v, v, v, . . . , v (m) ), (1.98) 
which implies that z, v, v, . . . , may be expressed as a function of x, u and a finite amount of derivatives of u.

Remark 1.3. Every nonlinear flat system is endogenous dynamic feedback linearisable and every endogenous dynamic feedback linearisable system is flat [START_REF] Lévine | Analysis and control of nonlinear systems: A flatness-based approach[END_REF].

The previous linearisation methods are exact and allow, if linearisability conditions are satisfied, the expression of an equivalent system independently of any equilibrium point such as the tangent linearisation. The next section presents the case of pseudolinearisation, where not only the dynamic must be invariant along the equilibrium set but also the whole linear tangent model must be fixed, with respect to an appropriate coordinate frame. A pseudo-linearised system is still nonlinear but its non linearities are of the first-order around any equilibrium point.

Pseudo-linearisation

Current linearisation methods such as tangent linearisation, allow definition of an equivalent linear system in the neighbourhood of an equilibrium point of the system.

The resulting linear system is then controllable only around this point. P. Mouyon described [START_REF] Fossard | [END_REF] a linearisation method for multiple-input nonlinear systems, through approximate linearisation of the state equations. The aim is to obtain invariance along the equilibrium set of the whole linear tangent model independently of the system's poles. Therefore, considering the following coordinate change:

z = T (x) (1.99)
and the state feedback:

v = S(x, u) (1.100)
The linear tangent model of the closed loop system which shall be independent of the equilibrium point an is given by:

δ ż = Aδz + Bδv, (1.101) 
where A, B are constant matrices. The pseudo-linearised system is nonlinear but its non linearities are of the first-order around any equilibrium point. The pseudolinearised system is given by:

ż = Aδz + Bδv + ε(z, v), (1.102) 
such as ε(z 0 , v 0 ) = 0 and dε(z 0 , v 0 ) = 0. In the case of multi-inputs nonlinear systems, projections of the partial derivative equations have to be solved in the tangent space

V and its orthogonal. This is why integration on the tangent space requires an involution criterion regarding the projected fields. Considering the following tangent model at the equilibrium set (x 0 , u 0 ):

δ ẋ = F (x 0 )δx + G(x 0 )δu. (1.103)
It has been shown that a system is pseudo-linearisable if and only if the distribution of the following vector fields:

{G, F G, . . . , F k i -2 G} ∩ T V (1.104)
are involutive, where T V is the tangent space to V and k i are the controllability indices of (F, G) The rank of this distribution is given by :

rank {G, F G, . . . , F k i -2 G} ∩ T V = card{j/k j < k i }. (1.105)
A controllability canonical form is chosen such as :

                       δ ż1 = δz 2 . . . δ żn-1 = δz n δ żn = δv (1.106)
which implies according to (1.103, 1.99 and 1.100) :

                           ∂T 1 ∂x (F δx + Gδu) = ∂T 2 ∂x δx . . . ∂T n-1 ∂x (F δx + Gδu) = ∂T n ∂x δx ∂T n ∂x (F δx + Gδu) = ∂S ∂x δx + ∂S ∂u δu.
(1.107)

System (1.107) must be true independently of δx and δu, therefore:

                           ∂T 2 ∂x = ∂T 1 ∂x F . . . ∂T n ∂x = ∂T n-1 ∂x F ∂S ∂x = ∂T n ∂x F and                            ∂T 1 ∂x G = 0 . . . ∂T n-1 ∂x G = 0 ∂T n ∂x G = ∂S ∂u .
(1.108)

The previous set of n -1 first-order homogeneous equations satisfies for T 1 at the equilibrium point x 0 :

∂T 1 ∂x G(x 0 ), F (x 0 )G(x 0 ), . . . , F n-2 (x 0 )G(x 0 ) = 0. (1.109)
The other equations of the T i gradients are given at the equilibrium point by:

∂T i ∂x = ∂T 1 ∂x F n-1 (x 0 ), i = 2, . . . , n (1.110) 
and the gradient of S by:

∂S ∂x , ∂S ∂u = ∂T 1 ∂x F n-1 (x 0 ) (F (x 0 ), G(x 0 )) (1.111)
T and S are then found by integration of (1.110) and (1.111).

In this section static feedback and dynamic feedback linearisation methods were presented. Linearisability conditions must be satisfied and are not always easy to demonstrate, in particular for multiple-input nonlinear systems. If such systems are flat, it was previously shown that they are endgenous feedback linearisable and therefore an equivalent linear system can be determined by finding an appropiate feedback and a smooth mapping.

Endogenous feedback linearisation is applied in the next section to the flat HSM model given in equation (1.112). It is shown that the system is static feedback linearisable and can be expressed with an equivalent linear system given by the Brunovsky form.

Static feedback linearisation of a hybrid stepper motor

The flat PMSM model was given by the following equations where the states and the inputs are function of the flat outputs z 1 = i d and z 2 = θ m and their derivatives such as:

                                             x 1 = z 1 x 2 = J m K t z2 + B K t ż2 x 3 = ż2 x 4 = z 2 u 1 = Rz 1 + L ż1 - nLJ m K t ż2 z2 - nLB K t ( ż2 ) 2 u 2 = ... z 2 LJ m K t + z2 LB + RJ m K t + ż2 ( RB K t + K t ) -nL ż2 z 1 (1.112)
According to equation (1.85) and with β(x) invertible:

v = β -1 (x) [u -α(x)] . (1.113) Also, v = β -1 (x)u -β -1 (x)α(x). (1.114) By setting ∆(x) = β -1 (x) and ∆ 0 (x) = -β -1 (x)α(x), (1.114) becomes: ∆ 0 (x) + ∆(x)u = v. (1.115)
According to the Brunovsky form, equation (1.115) equals to:

∆ 0 (x) + ∆(x)     u 1 u 2     =     z (ρ 1 ) 1 z (ρ 2 ) 2     =     v 1 v 2     (1.116)
where

ρ 1 + ρ 2 = n. Equation (1.115) implies:     u 1 u 2     = ∆ -1 (x)         z (1) 1 z (3) 2     -∆ 0 (x)     (1.117) with: ∆ 0 (x) =        ∆ 01 (x) ∆ 02 (x)        (1.118)
where:

∆ 0 (x) =       - R L x 1 + nx 3 x 2 - K t (BL + RJ m ) LJ 2 m x 2 + B 2 L -J m K 2 t LJ 2 m x 3 + nK t J m x 3 x 1       (1.119) and ∆(x) =     1 L 0 0 K t LJ m     (1.120)
According to equation (1.116) the equivalent linear system is given by:

    z 1 z 2     =     1 s 0 0 1 s 3         v 1 v 2     (1.121)
The presented flat HSM model is given by a linear Brunovsky form. It may be observed that the dimensions of flat output z and input vector v are the same, as Indeed, model-based diagnosis approaches of nonlinear observers such as the extended Kalman Filter (EKF) use approximated linearisation and may not always meet the required stability and performance conditions. Linearising the model by exact linearisation before synthesising the observer might increase the performance level of the system and reduce processing costs of the computer unit.

In the next section, a state of the art in current analytical diagnosis methods is described, particularly addressing residual analysis methods for aircraft control systems such as actuators and sensors. Among fault detection and isolation (FDI) methods, linear and nonlinear observers will be detailed [START_REF] Martinez Torres | Flatness-based fault tolerant control[END_REF][START_REF] Lavigne | A modelbased technique for early and robust detection of oscillatory failure case in a380 actuators[END_REF].

Model-based monitoring

The development of aircraft control systems such as electric engine computer units (EECU), flight computer units (FCU) or actuators and sensors are designed regarding high performance requirements.

Figure 1.6: Flight control actuator redundancies

Reaching these goals led to an increase of complexity qualifying such systems as high-integrity systems (HIS). HIS need to be as much fail-safe and fault-tolerant as possible, implying on one hand physical redundancies which allow to ensure the availability and integrity of a given system through the multiplication of rows of actuators, sensors or computer units. Therefore, critical functions such as: the motion of flaps or the velocity and altitude measurement are secured. The depicted hydraulic actuators in figure 1.6 are controlled by redundant remote electronic units (REU). On the other hand, embedded monitoring systems must be able to detect, isolate and identify any fault occurrence [START_REF] Gustafsson | Adaptive filtering and change detection[END_REF] where:

• detection, consist in making a binary decision: a fault occurred on the system or not,

• localisation, is the ability to determine the defect component,

• identification, is the ability of the system to process the fault behaviour in order to reconfigure the system after the fault occurred. In this case, a faultmodel is required.

In most current monitoring systems, only the two first steps are designed. These 

Residual generation

Among FDI methodologies, one of the most attractive is known as the Fundamental Problem of Residual Generation (FPRG). Each residual is then made sensitive only to a single fault thus ensuring fault isolation in the case of multiple faults.

The Fundamental Problem of Residual Generation (FPRG)

The following nonlinear control-affine system is considered in this case [START_REF] Massoumnia | A geometric approach to the synthesis of failure detection filters. Automatic Control[END_REF] with:

       ẋ = f (x) + m i=1 g i (x)u i + m ψ i=1 l i (x)ψ i + m d i=1 p i (x)v i y = h(x) (1.122)
where ψ i is the faults vector and v i the disturbances vector and he l and p functions are smooth manifolds. The FPRG consists in finding a filter such that the following system:

                       ẋ ζ     =     f (x) f (y, ζ)     + m i=1     g i (x) ḡi (y, ζ)     u i + m ψ i=1     l i (x) 0     ψ i + m d i=1     p i (x) 0     v i e = h(y, ξ) = h e (x e ) (1.123)
exists in the neighbourhood of the origin x e , then the following properties are satisfied:

1. if ψ = 0, then the residual e is not affected by u i and v j ,

2. e is affected by ψ, [START_REF] Basseville | Subspace-based fault detection algorithms for vibration monitoring[END_REF]. lim e(t, x 0 , ζ 0 , u, ψ = 0, v) = 0, if there is no faults, the residual e converges to zero for any initial set (x 0 , ζ 0 ) chosen in a mapping containing the origin (x, ζ) T = (0, 0) T and for all acceptable inputs, where,

ζ ∈ R q , 1 ≤ q ≤ n and e ∈ R s , 1 ≤ s ≤ p.

Definition 1.7. (Fault sensitivity of the residual [22]) A residual r(t, u, y, v)

is not affected by v ∈ V if for any input u and output y, r(t, u, y, v 1 ) = r(t, u, y, v 2 ),

∀t ≥ 0, ∀{v 1 ; v 2 } ∈ V 2 . Else, if this condition is not satisfied, r is affected by v.
Three main approaches to residual generation have been identified :

• Parameter estimation, where the residual quantifies the difference between the real parameter value and the model reconstructed parameter.

• State estimation, in which observers dedicated to linear and nonlinear systems are used for state estimation. The error between estimate and the output measure is the residual signal. The Kalman filters are used with stochastic signals.

• Static parity space [START_REF] Hagenblad | A comparison of two methods for stochastic fault detection: the parity space approach and principal component analysis[END_REF], in which only the output equation of a state space model is considered. The parity matrix W is processed such as r = W Cx = W y. W is chosen for compliance with the robustness and performance goals required of the residual.

In order to improve the fault sensitivity of the residual, faults can be generated and become part of the plant model as described in the next paragraph.

Fault modelling

There exist several ways to model faults, among them the following system extension such as:

       ẋ = Ax + Bu + E d d + E f f y = Cx + Du + F d d + F f f (1.124)
where d is the disturbance vector and the E d matrix indicates which input is affected by the disturbancy. The f vector is an unknown vector that represents all possible faults and will be zero in the fault-free case. The E f matrix indicates where the fault occurs. Faults are divided into three categories:

• sensor faults: these are faults that directly act on the process measurement

• actuator faults: these faults cause changes in the actuator

• process faults: they are used to indicate malfunctions within the process. 

Fault detection

After generating the residual signals carrying the fault information, a decision concerning the system's health level has to be made. This boolean output is generated (1.12). Statistical methods, such as normal distributions N (µ, E), are used in order to process the signals average µ and its covariance matrix E. A simple way to detect a fault is to generate an alarm when the residual exceeds a threshold, defined within the systems specifications. As an example, let µ 0 and µ 1 correspond respectively to the residual average without faults and with fault. Hypotheses H 0 and H 1 are such as:

       H 0 : µ = µ 0 H 1 : µ = µ 1 (1.125)
If H 1 is chosen while H 0 is true, the decision is a false alarm.

If H 0 is chosen while H 1 is true, the decision is a non-detection.

It is important to note that the residual r may not always have a Gaussian distribution [START_REF] Lavigne | New sequential probability ratio test: Validation on A380 flight data[END_REF].

H 0 decision H 1 decision H 0 true (no fault) right decision false alarm H 1 true (fault)
no detection right decision Table 1.1: False alarm and non-detection hypothesis A local representation of the residual can be given by: 

r loc = 1 √ N N t=1 r(t) (1.

Fault isolation

The final step of residual evaluation involves isolation of the faulty residual. Considering that several residuals are generated and each residual is processed to be Two main methods are described here:

• Residual structures

• Directional residuals

In the case of residual structures [START_REF] Martinez Torres | Flatness-based fault tolerant control[END_REF], a binary table is used to reflect the fault affected to each of three residuals as shown in Table (1.2). When the i th residual is sensitive to the j th fault, then the value "1" is placed to the corresponding cell.

Placing "0" means that the residual is not sensitive to the corresponding fault. Table 

f 1 f 2 f 3 r 1 1 0 0 r 2 0 1 0 r 3 0 0 1 a) f 1 f 2 f 3 r 1 1 1 0 r 2 1 0 1 r 3 0 1 1 b)

Parity space

In the case of directional residuals, the residual vector r is collinear to the fault vector

W [i]
rf . The parity matrix W is processed such as r = W Cx = W y. W is chosen for compliance with the robustness and performance goals required of the residual. For static parity space, the residual is generated with the given model: 

y(t) = Cx(t) + D d d(t) + D f f (t).
(1.127)

Hence the residual r(t) given by:

r(t) = W y(t) = W Cx(t) + W D d d(t) + W D f f (t), r(t) ∈ R p-n (1.128) with, f (t) =         f 1 . . . f mf (t)         , f ∈ R m f . (1.129)
The parity matrix W ∈ R (p-n)×n is chosen such as the residual is insensitive to disturbances d(t) and to the state which implies W C = 0, W D d d(t) = 0 and

W rf = W D f ∈ R (p-n)×m f
. The parity vectors sensitive to faults are then given by:

W rf = W [1] rf . . . W [m f ] rf (1.130)
In figure (1.14), the isolated fault is f 2 because the residual is collinear to W [2] rf .

The next subsection deals with the application of residual generation methods to linear and non-linear observers. System controllability and observability fundamentals are recalled in order to understand observers processing.

Linear observers

System monitoring using state-space representations consists in studying the coherency of the model behaviour regarding the real system. One of these approaches is based on the comparison of measured variables and the on-line processed variables from the model, while the physical system and the model are have the same inputs.

To process the outputs, it is necessary to know certain state-variables. A first step in the computing model outputs is dedicated to the estimation of these unknown states. The system which permits this processing is called observer. An observer is defined as a dynamical system which takes as an input the known signals of the physical system and which outputs converge to an estimation of the state variables, or a subset of the state variables if certain states are not observable. Observability definitions are recalled in the next subsection.

Observability

The following definitions are based on the work of Gauthier and Bornard as well as

Hermann and Krener [START_REF] Gauthier | Observability for any u(t) of a class of nonlinear systems[END_REF][START_REF] Hermann | Nonlinear controllability and observability[END_REF].

Definition 1.12. (Observability) The observability of a system is realised on its fault-free model given by:

       ẋ = f (x, u) y = h(x, u).
( Observability is not affected by the inputs variations, therefore an observable LTI system is globally observable. In the case of nonlinear systems, local observability is considered.

Observability rank conditions :

As defined for controllability in the case of LTI systems, observability can be tested by determining the rank of the observability matrix. The observability space O is generated by the constant matrix :

O = C CA CA 2 . . . CA n-1 (1.132)
the Kalman condition is then given by :

rank(O) = n. (1.133)
This condition was generalised to Multiple-Input and Multiple-Output (MIMO)

systems [START_REF] Diop | Nonlinear observability, identifiability, and persistent trajectories[END_REF]. The extension to nonlinear systems was studied.

Observability of nonlinear affine systems : Considering the following system,

       ẋ = f (x) + g(x)u y = h(x, u).
(1.134)

The Lie derivative expression is given by:

L f h(x, u) = n i=1 f i (x) ∂h ∂x i + ∂h i ∂u u.
(1.135)

The observability rank property allows to define the local observability of (1.134) if the following conditions are satisfied:

Rank                             L f h 1 (x, u) L 1 f h 1 (x, u) . . . L k 1 -1 f h 1 (x, u) . . . L f h p (x, u) . . . L kp-1 f h p (x, u)                             = n, (1.136)
where L 1 f h = dL f h is the co-vector given by the general form:

dL j f h =   ∂L j f h ∂x 1 , ∂L j f h ∂x 2 , . . . , ∂L j f h ∂x n   ,
(1.137) k i are the output derivative levels and also called the observability index. For every system, the corresponding k i indexes need to be compliant with the following statement [START_REF] Krener | Nonlinear observers with linearizable error dynamics[END_REF].

Definition 1.15. (Observability indexes) The naturals (k 1 . . . k p ) are the observability indexes if they are compliant with the following properties:

• k 1 ≥ k 2 ≥ . . . ≥ k p , • p i=1 k i = n,
• the Kalman criterion is satisfied.

The Luenberger Observer

The Luenberger observer is one of the most famous linear state estimators used in model-based fault detection [START_REF] Beard | Failure accomodation in linear systems through selfreorganization[END_REF][START_REF] Jones | Failure detection in linear systems[END_REF]. It allows reconstruction of the state variables based on a linear model of the system. Consider the following linear system:

       ẋ = Ax + Bu y = Cx.
(1.138)

The corresponding state observer is then given by:

       ẋ = Ax + Bu + L(y -C x) ŷ = C x, (1.139)
where L is the observer gain. The state estimation error e x = x -x satisfies: ėx = (A -LC)e x .

(1.140)

If the matrix (A -LC) is stable, then the state estimation error tends to zero. This is true if (C, A) is observable. Considering a fault vector w f , impacting the state.

System (1.138) becomes then: The state estimation error has become fault-sensitive and the output estimation error e y = y -ŷ can be used as a residual for fault detection.

       ẋ = Ax + Bu + Ew f y = Cx, ( 1 
Remark 1.4. The use of observers for diagnosis does not necessarily require every state to be observable from the state vector. If a measurement exists for an observable state, a residual can be generated and fault detection can be processed for this state.

An observer which includes all the inputs and outputs of a system is called a Simplified Observer Scheme (SOS). This kind of observer does not allow fault localization, since the states are sensitive to every type of faults. Therefore several rows of observers need to be synthesised in order to be sensitive to one particular fault, which are known under the Generalized Observer Scheme (GOS) (Figure 1.17 case of the (GOS), all the system's inputs (or outputs), except one, are required and if a fault occurs, the observer that doesn't take into account the fault sensitive output (or input) will not be affected. This is how the fault is then detected and localised or identified.

The Standard Kalman Filter (SKF)

The Kalman filter [START_REF] Evensen | The ensemble kalman filter: Theoretical formulation and practical implementation[END_REF] is used for estimating states when stochastic signals are considered. This linear states estimator takes into account state and measurements disturbances and integrates a linear state-space model. The Kalman filter's correction and update steps allow generation of a predicted state vector, which permits to process the residual. This residual can then be used for the diagnosis of system faults. When discrete models are considered for System (1.141), the prediction step is given by:

       x- k = A k xk-1 + B k u k P - k = A k P k-1 A T k + Q k , (1.143)
where Q k and R k are respectively the state and measurement noise covariance matrix given by:

               Q k δ(l) = E[w(k)w(k + l) T ] R k δ(l) = E[v(k)v(k + l) T ] E[w(k)v(k + l) T ] = 0, (with δ(l)=1 if l = 0; 0 otherwise ).
(1.144)

Here, w(k) and v(k) are the Gaussian white noises corresponding to matrices Q k and R k respectively. The correction step is given by equation (1.145)

               K k = P - k C T k (C k P - k C T k + R k ) -1 xk = x- k + K k (y k -C k x- k ) P k = (I -K k C k )P - k .
(1.145) Kalman filters can be processed for synchronous motors described in [START_REF] Bendjedia | Synthèse d'algorithmes de commande sans capteurs de moteurs pas à pas et implantation sur architecture programmable[END_REF], but also for asynchronous motors. For nonlinear systems, the Extended Kalman Filter is also a very good solution and has many applications in industry [START_REF] Simon | Détection de pannes oscillatoires dans une chaîne d'asservissement en position d'une gouverne de l'A380[END_REF].

Unknown Input Observers (UIO)

Another very powerful state estimator is the UIO because it fits well with deterministic and stochastic models. The aim of the UIO is to estimate the state vector while minimizing the influence of unknown inputs such as noise, which are decoupled. The structure of an UIO is given by :

       ẋ = F x + T Bu + (K 1 + K 2 y) r y = (1 -CH)y -C x (1.146)
where the decoupling matrices F ,T ,K 1 ,K 2 ,H must be chosen in order to respect asymptotic convergence such as :

                       (HC -1)E d = 0 T = 1 -HC F = A -HCA -K 1 C is stable K 2 = F H.
(1.147)

Regarding nonlinear systems, the Extended UIO is also widely used such as the EKF. For strongly nonlinear systems, extensions were developed for Lipschitz-nonlinearities [START_REF] Martinez-Guerra | Fault detection and diagnosis in nonlinear systems[END_REF]2].

Observers for nonlinear control-affine systems

The case of nonlinear control affine systems has been studied the past 50 years [START_REF] Isidori | Nonlinear decoupling via feedback: a differential geometric approach[END_REF][START_REF] Fliess | Non-linear estimation is easy[END_REF][START_REF] De Persis | A geometric approach to nonlinear fault detection and isolation[END_REF] in order to design nonlinear observers.

High Gain Observers

High gain observers [START_REF] Gauthier | Observability for any u(t) of a class of nonlinear systems[END_REF][START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF] are designed to minimize the nonlinearities of the corresponding system by applying a high gain on the linear terms of the system. Single output systems are considered for this example with:

       ẋ = f (x) + g(x)u y = h(x).
(1.148) System (1.148) is supposed to be uniformly observable, implying the manifold ψ(x) such as:

ζ = ψ(x) =         h(x) . . . L n-1 f h(x)        
.

(1.149)

The nonlinear system [START_REF] Berdjag | Nonlinear model decomposition for robust fault detection and isolation using algebraic tools[END_REF] is then expressed with ζ and x by:

       ζ = Aζ + Γ(ζ) + G(ζ)u y = Cx (1.150) where, A =             0 1 . . . 0 . . . . . . . . . 0 . . . . . . 1 0 . . . . . . 0             , Γ(ζ) =             0 . . . 0 γ(ζ)             , G(ζ) =             ḡ1 (ζ 1 ) ḡ2 (ζ 1 , ζ 2 ) . . . ḡn (ζ 1 , . . . , ζ n )            
and C = 1 0 . . . 0 .

It was shown by Gauthier et al that the following system :

ẋ = f (x) + m i=1 g i (x)u i - ∂ψ ∂x (x) -1 S -1 θ C T (h(x) -y) (1.151)
is a high gain observer for (1.148), where S θ is the solution of :

C T C = θS θ + A T S θ + S θ A.
(1.152)

Sliding-mode observers

Sliding-mode observers [START_REF] Filippov | Differential equations with discontinuous right-hand side[END_REF][START_REF] Utkin | Sliding modes in multidimensional systems with variable structure[END_REF][START_REF] Slotine | Nonlinear state estimation using sliding observers[END_REF][START_REF] Drakunov | Sliding mode observers. tutorial. In Decision and Control[END_REF] are observers given by :

       ẋ = f (x, u) + ΛSgn(y -ŷ) ŷ = hx (1.153)
where the correcting part is not continuous, denoted by :

sgn(x) =                x if x > 0 -x if x < 0 not defined for x = 0 (1.154)
Λ is a n × p matrix and

Sgn(y -ŷ)             sgn(y 1 -ŷ1 ) sgn(y 2 -ŷ2 ) . . . sgn(y p -ŷ)            
.

(1.155)

The Extended Kalman Filter (EKF)

As shown in the linear observer section, the Kalman filter is used to estimate the states of a system when disturbances occur on the measurements and the input signals if the system is observable. The Extended Kalman Filter [START_REF] Laroche | Erreurs de modélisation d'une machine asynchrone-application au réglage d'un filtre de Kalman[END_REF][START_REF] Laroche | Methodological insights for online estimation of induction motor parameters[END_REF] is an extension of the standard Kalman filter to nonlinear systems. The non-linearities are linearised locally with tangent derivatives with Jacobian matrices. Consider the following discrete nonlinear system:

       x k+1 = x k + T s f (x k , u k ) + w k y k = h(x k ) + v k (1.156)
where:

• xk/k is the state estimated at t k ,

• xk+1/k is the state estimated at t k+1 without correction,

• xk+1/k+1 is the state estimated at t k+1 with correction.

Time update (prediction) :

During the time update step, the state vector is estimated at time (k + 1) regarding the state and the measurements realised at time (k) such as:

xk+1/k = xk/k + T s f (x k/k , u k ).
(1.157)

The prediction error covariance matrix P is also processed in this step with :

P k+1/k = Aj k P k/k Aj T k + Q k (1.158)
with Aj k and Hj k the Jacobians of f and h given by :

Aj k = ∂ xk/k + T s f (x k/k , u k ) ∂x x k =x k/k ; Hj k = ∂ (h(x k )) ∂x x k =x k/k . (1.159)
Measurements update (correction) : In this step, the Klaman gain is processed where :

K k+1 = P k+1/k Hj T k (Hj k P k+1/k Hj T k + R k ) -1 . (1.160)
The correction of the state vector is then given by the next equation :

xk+1/k+1 = xk+1/k + K k+1 (y k+1 -Hj k xk+1/k ). (1.161)
The last equation of the correction step consists in updating the prediction error covariance matrix, P such as :

P k+1/k+1 = P k+1/k -K k+1 Hj k P k+1/k .
(1.162)

Robustness and performances evaluation

In order to demonstrate the robustness of the model-based diagnosis approach, the linearisation process has to be stable at each state value (including at the system equilibrium). The equivalent linear model obtained by endogenous feedback in subsection (1.2.3.4) is not affected by any non-linearity. For this study, the diagnosis is realised with a cumulative sum and threshold comparison. If the residual exceeds the defined threshold, then an alarm is generated. The threshold levels are compared with two approaches. First, a linearisation of the stepper motor model is realised with an endogenous feedback. The equivalent system is then used with a standard Kalman filter for fault detection by residuals generation of the flat outputs. The second approach uses an EKF with the nonlinear model of the stepper motor. The two linearisation approaches are then compared in Chapter 3.

Conclusion

In this chapter, fundamentals of differential flatness were presented and an example was given with the processing of a hybrid stepper motor's flat outputs. Different linearisation approaches were given such as endogenous feedback, pseudo-linearisation and tangent linearisation. The problem of local linearisation around an equilibrium point is solved for certain nonlinear systems with cancellation of their non-linearities by diffeomorphism and endogenous feedback. An example of linearisation of a stepper motor was shown in the first section. In the second section, model-based diagnosis tools such as residual generators, state estimators and observers for linear and nonlinear systems were shown.

In the next chapter, an aeronautical case study is described. The case of an electromechanical actuator used in a fuel circuit of a turboshaft engine will be presented.

A new actuator monitoring architecture then suggested. The safety assessment of this new architecture will be discussed. 

Abstract

Introduction

The rapid growth in the volume of air traffic over the past decades, coupled with the ever-present mandatory objective to reduce the number of fatal aircraft accidents has led to a significant increase in aircraft safety requirements and regulations. In addition, compliance with the safety regulations must be demonstrated through a complex certification process, and significantly impacting system engineering methodologies for modern avionic equipment. The design and development of Safety Critical Systems (SCS), such as avionic equipment, Engine Computer Units (ECU), Flight Computer Units (FCU), actuators, direct-drives, servo-valves or electronic components (Figure 2.1) is today challenged by the severe environmental constraints, high performance standards and rugged safety requirements on software, hardware and system architectures [START_REF]Environmental Conditions and Test Procedures for Airborne Equipment[END_REF][START_REF]Software considerations in airborne systems and equipment certification[END_REF][START_REF]SAE ARP 4754/ED79. Certification considerations for highly-integrated or complex aircraft systems[END_REF]. Since any failure occurring on a safety-critical system can lead an aircraft to a catastrophic event (failure causes a crash) due to non-availability and/or non-integrity causes, FCS equipment must be designed to fully comply with all safety requirements starting from the inception phase.

The aim of this chapter is to describe the realisation of a possible flight-critical actuator architecture based on a combination between analytic and material redundancy. Terms and definitions related to flight critical systems are first recalled in section 2.2. Leading FCS design methodologies and tools are also presented in order to explain how safety standards are taken into account in the design of complex FCS. A case study is realised in section 2.3 on a fuel valve actuator of a biturbine helicopter. The actuator safety analysis shows the impact of a possible fault occurrence on the biturbine which explains the criticality levels of such actuators. Finally, a new safety compliant actuator monitoring architecture is proposed in section 2.4.

This architecture has also been subject to a patent [START_REF] Bobrinskoy | Système critique et procédé de surveillance[END_REF] developed with THALES Systèmes Aéroportés and the IMS and ESTIA-Recherche Laboratories.

Flight critical systems overview

As an introduction to this study, relevant safety related definitions regarding FCS are recalled in this section. These terms are defined by SAE standards [START_REF]Environmental Conditions and Test Procedures for Airborne Equipment[END_REF][START_REF]Software considerations in airborne systems and equipment certification[END_REF] regarding environment, hardware and software considerations. Other terms are also described in [START_REF] Kritzinger | Aircraft system safety: Military and civil aeronautical applications[END_REF][START_REF] Bozzano | Design and safety assessment of critical systems[END_REF].

Definitions

Safety and flight-critical systems : [START_REF] Bozzano | Design and safety assessment of critical systems[END_REF] In the event of their failure, these are the systems that may either directly or indirectly lead to situations in which human life is put at risk, damage to the natural environment occurs, or large economical loss is suffered. Complex safety or flight-critical systems are defined as those that cannot be shown only by test or where the logic is difficult to comprehend without the aid of analytical tools. Availability : The availability of a system can be evaluated by the probability of its working correctly over a certain time frame.

Security : A secure system does not permit the occurrence of unauthorized access to information. Regarding security, the feared occurrence is a malicious attack but regarding safety the feared event is a failure.

Integrity : Integrity issues appear if there is an occurrence of inappropriate information alterations. As an example, data integrity refers to the possibility that a system will detect faults and recover by correcting the resulted errors. If a computer unit processes erroneous data, the system's integrity is not satisfied.

Reliability : Reliability is the ability for a given system to operate correctly over a given period of time. Reliability depends on time and can also be defined as a failure rate, where the failure rate corresponds at the time when the systems encounters a failure. For example, safe systems are not necessarily reliable. If a system is fail-safe, there is no failure occurrence possible, therefore the reliability is null. In a series of system blocks, the reliability function R is given by :

R(t) = N i=1 r i (t). (2.1)
For parallel blocks, reliability becomes:

R(t) = 1 - N i=1 (1 -r i (t)), (2.2)
where r i is the number of failures in the i th data group or subsystem block. Many First, components show high failure rates related to possible defects that remain from the manufacturing phase, also called infant mortality. The end phase is called the wear-out and is related to ageing. The failure occurrence probability P follows an exponential law given by:

P (t) = 1 -e -λt (2.3)
where λ is the failure rate (the amount of failures during operating time). If λt ≤ 10 -2 then P (t) ≈ λt. For a given system, failure rates and the severity levels are related and allow to define an acceptability area (Figure 2.3-b). Let's assume that a failure occurrence leads the system into the unacceptable domain. Generally, it is only possible to get back to the acceptable area by reducing the failure rate which implies to reduce the severity level. Dependability : [START_REF] Bozzano | Design and safety assessment of critical systems[END_REF] A dependable system can be defined as a system for which reliance can justifiably be placed on the service it delivers. Dependability is also defined by its attributes which are safety, reliability, availability and security.

Airworthiness : This term is used to regroup aircraft related regulations (FAA and EASA), standards, safety design rules and certification processes.

Fail-Safe : Fail-safe systems are systems able to recover in a fail-safe state after a single or multiple failure occurrence.

Fault avoidance : In the system design phase, formal methodologies are used to ensure that a system is fault free.

Fault removal: Aims to remove faults from a system once they have been entered

as a consequence of improper design or wrong implementation.

Fault detection: In this case, faults are detected while the system is active.

Fault prediction : Fault prediction consists in evaluating the likelihood that a given system will fail at a certain time. Fault prediction can be used for evaluating the probability of a failure occurrence or to realise a system verification test after an estimated time period (Figure 2.5). Fault coverage : It is related to fault -detection, -avoidance,-removal,-tolerance or prediction and is a measure of the degree of success of each of these functions.

Active failures : It is a failure which is detected during the system's activity. 

Development Assurance level (DAL) :

In the safety assessment process, the probability of a failure occurrence regarding the severity is allocated to grades denoted as development assurance levels. Figure 2.7 shows a severity allocation table

comparing multiple variables such as the failure rate and the probability range. 

Aviation safety standards and airworthiness

Regulation authorities

International airworthiness organisations exist in order to establish system design safety and environmental standards and certification requirements as depicted in figure 2.8. The international civil aviation is governed by the convention of The International Civil Aviation Organisation (ICAO) has six strategic goals: safety, security, environmental protection, efficiency, continuity and rule of law. These objectives must then also be ruled by the organisations which depend on it such as the EASA and FAA. Other countries such as Canada publish their own airworthiness codes.

Sources of specifications and recommended practices

As defined in the main ICAO objectives, a system must be, among other criterion, safety compliant. Safety is not a certification but one mean of compliance (MOC) for Summarising, aviation standards and guidelines are established by international regulation authorities (ICAO, FAA and EASA) in order to give mandatory objectives regarding environment [START_REF]Environmental Conditions and Test Procedures for Airborne Equipment[END_REF], software [START_REF]Software considerations in airborne systems and equipment certification[END_REF], hardware [93], design [START_REF]SAE ARP 4754/ED79. Certification considerations for highly-integrated or complex aircraft systems[END_REF] and safety [START_REF]Guidelines and methods for conducting the safety assessment process on civil airborne systems ans equipment[END_REF] constraints. Systems integrating these constrains in their design are denoted as high integrity systems [START_REF] Kritzinger | Aircraft system safety: Military and civil aeronautical applications[END_REF], implying the use of system engineering (SE) methodologies in industry.

The next section is dedicated to recall main SE methodologies including methods, tools and processes used in aerospace industry. The patented [START_REF] Bobrinskoy | Système critique et procédé de surveillance[END_REF] architecture proposed in section 2.4 emerged from the next presented SE methodologies.

System engineering methodologies

During the 60's, system engineering (SE) approaches have been set up in order to manage the complexity of great industrial projects (e.g. architecting NASA space transportation systems, flight control systems or engine control systems According to the Association Française de l'Ingénierie Système (AFIS) standard, System engineering is defined as the relationship between processes, methods and tools (Figure 2.11) [START_REF] Estefan | Survey of model-based systems engineering (mbse) methodologies[END_REF] where:

• Processes (Figure 2.12), are logical sequences of tasks answering to «what task is realised?» (e.g. conceptualizing, develop, operate and maintain, replace or dismantle), and must be compliant with the ANSI/EIA 632, ISO/IEC 15288 and IEEE 1220 standards where ISO/IEC 15288 [START_REF]Systems engineering-system life cycle processes[END_REF] is the standard for the description of life-cycle of systems, ANSI/EIA 632 [START_REF]Processes for engineering a system[END_REF] is a set of processes for engineering or re-engineering a System and IEEE 1220 [START_REF]IEEE Std[END_REF] is the standard for system management, Figure 2.12: Leading process standards for system management

• Methods and support processes are also supported by tools; they enable the realization of systems by integrating tasks of processes, following one or several models (Royce's waterfall [START_REF] Royce | Managing the development of large software systems[END_REF], Forsberg and Moog's Vee [START_REF] Forsberg | The relationship of system engineering to the project cycle[END_REF][START_REF] Forsberg | Application of the ?vee? to incremental and evolutionary development[END_REF], Bohem's spiral [START_REF] Boehm | A spiral model of software development and enhancement[END_REF]). Methods answers to «How shall tasks be done?»,

• Tools, enable tasks to be processed according to a particular method. Most System Engineering Tools (SET) are software designed to assist engineers in the modelling and simulation stages of the product, known as «Con- According to [START_REF] Estefan | Survey of model-based systems engineering (mbse) methodologies[END_REF], these terms are often erroneously considered with methodologies, which should be understood as a «collection of related processes, methods and tools».

cept

Leading System Engineering Methodologies

SE Methodologies cover up a large scale of system conception and management methods, tools and processes in order to solve the problem of system complexity regarding the size of industrial projects and their heterogeneity, such as multi-physical domains, project costs or safety constraints. SE Methodologies also involve system integration, which implies a multitude of sub-systems constituting a global system working homogeneously within its environment. [START_REF] Chong | Model driven system engineering for vehicle system utilizing model driven architecture approach and hardware-in-the-loop simulation[END_REF]. MDA's goals are basically to enable system portability, interoperability and re-usability through its architectural design approach. MBSE also enable to elevate the engineering process to the association of design, specification, integration, validation and operation of systems [START_REF] Estefan | Survey of model-based systems engineering (mbse) methodologies[END_REF]. OPM is defined as a system development approach and a life cycle support, based on Object-Process Diagrams (OPD) and Object-Processed Language (OPL) 

MBSE Methodologies Description

IBM Technologic Harmony

Leading system engineering tools

The achievement of such methodologies could not arise without dedicated tools and software. We have seen that tools support methods and that tools are part of methodologies. In many industrial domains, tools are used for various applications such as:

• Analysis and environment identification,

• Requirement Management,

• Functional & Physical Architecture,

• Component Design,

• System Performances Estimation,

• Prototyping,

• HIL (Hardware In the Loop) Simulation. industry consist in elaborating a functional need analysis followed by a functional architecture, which is then submitted, to experts who are affected to one specific non-functional viewpoint (e.g. availability, fault tolerance, system integrity).

Category SE Tools Developer

The use of SE methodologies is a valuable asset in the design of complex and highintegrity systems. It was shown in this section that leading SE tools and methods allow to realise multilayer aircraft systems designs. These systems must also integrate requirements and constrains defined by aviation regulation standards. The respect of safety requirements in the design of flight-critical systems is a major task in aerospace industry and is realised with the presented SE tools and methods.

The next section presents the application of safety assessment of a flight-critical actuator used in a helicopter engine based on a SE method. The severity is evaluated regarding aviation regulation standard ARP4761 [START_REF]Guidelines and methods for conducting the safety assessment process on civil airborne systems ans equipment[END_REF].

Safety assessment of a turboshaft fuel valve actuator

The aim of this analysis is to confirm that a fault occurrence on the fuel system actuator might lead to a catastrophic event, characterizing therefore the actuator as flight-critical. Failure modes and rates of the actuator will be determined in this study regarding the NSWC [START_REF]Handbook of reliability prediction procedures for mechanical equipment[END_REF] standard. The fault tree analysis (FTA) of the fuel system permits then to process the failure rate at each subsystem level. This section also shows the required redundancy level of a safe fuel system actuator.

Current system description

In order to meter the fuel flow in helicopter engines, also called turbo shaft en- • Sensors (e.g. Hall-Effect Sensors) are used for phase commutation with brushless motors and also position monitoring. This architecture reveals different types of constraints due to its multi-physical nature and the multidisciplinarity related to each block unit, regarding:

• Safety, which implies system availability and integrity;

• Equipment and software certification: the DO-178B [START_REF]Software considerations in airborne systems and equipment certification[END_REF] standard implies software equipment certification, while the electronic and mechanic components have to be validated by testing them directly (heat, pressure, EMC, EMI);

• System performances, consisting of various kinds: temporal, where the aim is to ensure the stability, precision and response time (e.g. actuators are timecritical airborne systems therefore their response time must be less than 10ms).

Also the frequency domain is concerned regarding signal bandwidth, noise and disturbances. Other important performance criteria relays on the mechanical part regarding mass and energy optimization;

• Fault tolerant control, fault diagnosis, fault detection and isolation due to many causes (mechanical, electrical, vibrations). For avionics, failure rates are about 10 -9 to 10 -5 per flight hour depending on the equipment criticality level; Each of the presented components is likely subject to failures. In order to integrate and assess failures probability in the system design, failure modes and analysis (FMEA) are realised. The next section presents the FMEA of the fuel system of a helicopter engine.

Failure Modes and Effects Analysis

The hybrid stepper motor (HSM) can be affected by multiple failures which might be related to electrical or mechanical components. The presented failure (Table 2.3) modes be based on an AC-motor, although it will be general enough to be applied to most electric motors. Therefore, regarding the stepper motor which is built in the actuator, the proposed failure modes of the NSWC standard is not to be considered for certain cases. As an example the stepper motor does not have any brushes and collector so a failure mode related to this component is not considered. Failure modes of electric motors and shown in table 2.3 are given by the Naval Surface Warfare Center (NSWC) standard [START_REF]Handbook of reliability prediction procedures for mechanical equipment[END_REF]. Knowing the stepper motor FMEA, the Functional Hazard Assessment (FHA) starting from the stepper motor to the turboshaft engine will be presented in figure 2 In order do determine the failure rate at each level of the system, the fault propagation is realised by a tree analysis starting from a single components of the HSM.

The next section shows how the fault propagation affects the helicopter engine 1 .

A second FTA related to the actuator is now detailed. The failure effects of the fuel system FTA become the final events of the stepper motor FTA (Figure 2.18).

Fault Tree Analysis (FTA)

In this section, the FTA of the fuel system and the actuator based on the FMEA was realised within the SYRENA (Turboméca) project which yields the following Fault Tree Analysis.

In the FTA, each event has a failure rate which is processed at each AND and OR gates with elementary probabilities given by the following equations :

P (A ∩ B) = P (

A|B).P (B)

P (A ∪ B) = P (A) + P (B) -P (A ∩ B).

(2.4) P (A ∩ B) = P (A).P (B) if the events are independent (P (A|B) = P (A)), P (A ∪ B) = P (A) + P (B) if the events are mutually exclusive (P (A ∩ B) = 0). 1 The acronyms of the turboshaft effects are given by: IFSD: In Flight Shut-Down LOPC: Loss Of Power Control OSP-UAC: Spurious activation of two engine overspeed protections. LRU: Line Replaceable Unit 

Failure rate processing

According to the NSWC standard [START_REF]Handbook of reliability prediction procedures for mechanical equipment[END_REF], failure rates λ of electrical motors are processed with the following equations:

λ M = λ BE + λ W I + λ AS + λ ST + λ GR (2.5)
where:

λ M stands for the total failure rate for the motor system, failures/million hours;

λ BE is the failure rate of bearings and equals to 1 failures/million hours;

λ W I represents the failure rate of electric motor windings, 6 failures/million hours;

λ AS is the failure rate of the armature shaft, 2 failures/million hours;

λ ST is the Failure rate of the stator housing, 0.001 failures/million hours.

The FTA and failure rates of the system is known which allows to realise the full functional hazard analysis (FHA) by evaluating severity and DAL levels of the system. The next section shows this evaluation for the fuel system.

Development Assurance Level assessment

Once the FTA was updated by identifying the possible effects from actuator faults to the engine failures, the severity allocation to the encountered events must be established. In this study, we were responsible of the safety analysis of the hybrid actuators, the impact of high integrity and availability levels leads to an increase of the number of redundancies. A significant number of actuator redundancies have been realised for flight control and as an example, redundancies of flight-control actuators are compared in the next section.

Current actuator redundancies in flight control

An important number of accidents are related to loss of control in flight (LOC-I), where a technical malfunction is the initial event and responsible for loss of control. History of flight control systems [START_REF] Edwards | Fault tolerant flight control: a benchmark challenge[END_REF] has shown significant improvements on flight control, especially with the emergence of fly-by-wire where flight surfaces are partially electrically supplied, reducing the number of mechanical components.

Actuators monitoring is also improving due to more electrical measurements and physical and analytic redundancies. • primary flight control surfaces, allowing to control the aircraft trajectory by rotating along pitch, yaw and roll axis,

Flight control surfaces

• secondary flight control surfaces, allowing the aircraft to change its velocity during flight and landing.

These surfaces are controlled by redundant actuators and dedicated computer units shown in the next paragraph.

Remark :

In a healthy flight situation, the horizontal stabilizer is considered as a secondary flight control surface. When a fault occurs on the elevators, it can be used as a primary flight control surface. This was built in the Airbus A380.

Flight control actuator redundancies

Actuators dedicated to the two types of flight control surfaces can also be distinguished. Figure 2.22 shows actuator redundancies for primary and secondary flight controls of the Airbus A340 [START_REF] Edwards | Fault tolerant flight control: a benchmark challenge[END_REF]. These actuators are supplied by three independent Figure 2.22: Fly-by-wire system architecture including redundancy components and reconfiguration scheme (A340), source: [START_REF] Edwards | Fault tolerant flight control: a benchmark challenge[END_REF] hydraulic circuits (blue, green and yellow) for dissimilarity and availability reasons.

According to the ARP4754 standard, it is shown that several redundancy combinations are possible. The main idea of the developed patent in section 2.4 is based on this property. A safe architecture is not unique but has to be compliant with safety requirements. In this section, two existing redundancy architectures which are currently used for flight control actuators are presented, the triplex-AND voter and the Dual Active/Passive architecture. According to the ARP4754 standard, it is shown that several redundancy combinations are possible. When the output signal overtakes the threshold, the fault is detected. For system integrity reasons, the fault still needs to be localised. Therefore, a third actuation channel is required at least. The outputs are compared two by two allowing the identification of the faulty channel. Other voting systems including more than three channels exist such as the two out of five voters (2 oo 5). The next solution proposes a flight control design based on two redundant actuators.

Triple Modular Redundancy: the Triplex-AND voter

Quadriplex-dual redundant actuator architecture

The presented configuration is based on a AIRBUS Common(COM)/Monitoring (MON) (Figure 2.25). Four control channels are controlling two physical actuators (Quadriplex-dual) which are driving the same surface. Each actuator is independent and monitored by algorithms located either in the ECU or FCU, or directly in the Actuator housing. For the same dissimilarity reasons as the triplex-AND voter, no common modes are tolerated, hardware and software parts are developed with different technologies. Also, a multiple state control switch permits, for a determined threshold value, the monitoring unit to disable the main drive unit and switching Most of these algorithms are based on linear dynamical systems and can not be rid of model uncertainties due to the real nonlinearity of the actuator. Dissimilarity in this type of architecture is necessary in order to be compliant with integrity and availability requirements.

The next proposed monitoring architecture is based on the previous material and physical redundancies and the ARP4754 standard.

Proposal of a safe and robust architecture

The previous seen quadruplex-dual redundant actuator architecture presents major drawbacks such as:

• a significant increase of weight, size, power and cost due to the redundancy of physical components,

• an increase of system complexity, • Availability preservation : Correcting the actuator input by the decision of the analytic model allows to maintain the system availability if a fault occur instead of inhibiting the main actuation channel.

• Sise, Weight and Power (SWaP) and cost decrease : The proposed monitoring functions can be embedded directly on the FCU, the ECU or on a local computer unit. Instead of using physical components for system redundancy, software functions are used in this case. On current quadriplex-dual redundant architectures there would be a win of two physical monitoring channels. Instead of correcting by switching the faulty actuator "OFF", the motor control voltage is adjusted by a correction signal sent by the analytic embedded model.

• Servicing and maintenance decrease : By correcting the control input signal on a fault occurrence, the maintenance frequency on the actuator channels could decrease, allowing to shorten aircraft ground time, which also implies an important cost reduction for airline companies. This solution also allows to improve predictive maintenance and reduce corrective maintenance by its capability of recording corrected faults events. The system awareness is thereby more reliable and efficient.

• Integrity improvement : The dissimilarity of the proposed architecture reduces the presence of common modes reducing therefore the probability of faults occurrences. Regarding the computer unit, the software must be designed by two separate teams. Each actuator has its own dedicated monitoring unit which is embedded directly with the actuator and also different for each actuator (they are therefore called smart actuators). All software and hardware components must be of different technologies to maintain integrity.

• Monitoring robustness : Monitoring algorithms are based on input reconstruction by endogenous feedback developed in Chapter 1. As explained in the previous chapter, the actuator model is linearised with an exact linearisation method which was proven to be stable.

Also, the use of linear equations in the algorithm allows to ease measuring noise attenuation which implies a more accurate fault diagnosis. The resulting equivalent linear model is then used in the monitoring function of each actuator.

This architecture proposal has led to a patent deposition with THALES Systèmes Aéroportés, the IMS Laboratoy (Université de Bordeaux) and the ESTIA Recherche Laboratory (Bidart) [START_REF] Bobrinskoy | Système critique et procédé de surveillance[END_REF].

To conclude on this innovation, the proposed architecture allows to reduce the number of physical redundancies without downgrading the safety of the architecture. This is possible because of the monitoring models used in analytic redundancies. The term "analytic sensor" also designate the developed models. Originally, this architecture was designed regarding aviation regulation standards ARP4754 but it was also patented for each industrial domain dealing with critical systems. As perspectives for analytic embedded models (AEM), several functions related to fault tolerant control could be developed such as fault recovery, mechanism reconfiguration, health monitoring and prognostic. In order to reduce the complexity of aircraft certification processes, AEM could be able to record the correction information before looping it with the actuator control input.

Conclusion

In this chapter the design of a monitoring system for critical systems was described.

First, safety critical systems were presented in the case of fuel systems and flight system control of different air planes and helicopters. In the first section, definitions and safety assessment methods provided by international airworthiness organisations were given. Also, a review on current system engineering tools and methods used in industry was developed in the second subsection of this chapter. In the second section, the case study of the safety assessment of a flight critical stepper motor was realized. The analytical models developed in Chapter 1 were proposed for a safe architecture based on analytical redundancy. The Development Assurance

Level of the Architecture was also discussed. To conclude, analytic redundancy is a major advantage for safety critical architectures because analytic monitoring might lead to a decrease of the number of material redundancies actually present in current flight critical architectures. On the other hand, difficulty of analytic redundancy designs relies in the exactitude of the model of the monitored system.

As described in Chapter 1, the proposed architecture was designed with a safe and robust linearisation method reducing disturbances and fault-detection thresholds.

As a result of this architecture, a patent dedicated to critical systems has been submitted .

In 

Introduction

The experimental setup was realised to demonstrate on a test bench the efficiency of analytic redundancy for a faulty HSM of a flight critical actuator. The stator windings were uncoiled in order to test the behaviour of the motor when short-circuits occur. This fault type represents 40% of electric motor faults and is not negligible.

An endogenous feedback linearisation of the motor model is realised in order to compare the diagnosis performances of linear and nonlinear observers such as the standard and extended Kalman filters (SKF and EKF). The linearised model will be used with the SKF and the resulting measurements estimates will be compared to the estimates of the nonlinear EKF. Diagnosis performances will be evaluated regarding the amplitudes of the detection thresholds.

In section 3.2, the chosen control method of the stepper motor based on path planning is described. The control inputs are generated by a model on a host PC which is connected to a real-time machine. Sensors calibration and faults generation is also detailed. The integration and validation steps are realised with a healthy stepper motor. In section 3.3 fault-detection based on endogenous feedback linearisation and a standard Kalman filter is presented. The measurement estimations are compared in healthy and faulty cases. Next, in order to realise a comparative analysis, the above filter is replaced by an EKF without dynamic inversion. Both filters are thus compared regarding the efficiency of residual generation.

Actuator model validation and integration on test bench

In order to validate the presented diagnosis algorithms with measured values, I designed and assembled the following test bench. The related specifications are given in Appendix C. ω max . These particular jerk equations were chosen in order to be compliant with continuous differentiations. The angular jerk equation is given by:

Test bench design

j(t) =                    j max 1 -cos 2πt T 2 , if t T - j max 1 -cos 2πt T 2 , if T < t 2T. (3.1)
The integration of j(t) gives the angular acceleration, shown in the following equation :

a(t) =                                    j max     t - T sin 2πt T 2π     2 , if t T - j max     t - T sin 2πt T 2π     2 + j max T , if T < t 2T. (3.2) 
The motor is supposed to start at null speed, implying : ω(0) = a(0) = j(0) = 0.

The angular velocity is then given by :

ω(t) =                                    j max     t 2 2 - T 2 cos 2πt T 4π 2     2 , if t T - j max     t 2 2 - T 2 cos 2πt T 4π 2     2 + T j max t - T 2 j max 2 , if T < t 2T. (3.3)
In order to express the trajectories j(t), a(t) and ω(t) as a function of a max and ω max , the maximum acceleration a max is first expressed as a function of j max and T according to equation (3.2) at t = T such as :

a max = T j max 2 (3.4)
Also, according to equation (3.3), ω max is processed at t = 2T and is given as a function of j max and T by :

ω max = 4π 2 T 2 j max + T 2 j max 8π 2 . (3.5)
The expression of j max and T can be processed as a function of a max and ω max by solving equations (3.4 and 3.5). Hence : 

             T = 4ω max π 2 a max (1 + 4π 2 ) j max = a 2 max (1 + 4π 2 ) 2ω max π 2 . ( 3 

PWM signals processing for power board inputs

The normalised voltage signal corresponds to the duty cycle variation of the Pulse Width Modulation (PWM) generator. To generate the PWM signal with the real The next section describes the realisation of sensing functions, the required filters for noise cancellation and the set-up allowing to generate a certain percent of short circuits in a stator coil.

Sensors measurements validation

Hall effect sensors: To realise current measurement, Hall-effect sensors were used generating a voltage signal which is proportional to the current. The voltage to current ratio is realised within the simulation model after signal acquisition.

Torque sensor: The torque constant K t of the stepper motor model had to be confirmed by measurement. A two-shaft torque sensor was used were one shaft is connected to the load and the other to the motor shaft with flexible joints as shown in figure 3.9. To measure the torque constant, the load side is intentionally jammed Figure 3.9: Mechanical test bench and the motor is powered. The equation:

T max = K t × I max (3.8)
is used for different values of the maximum torque T max and maximum current I max .

As a result, the mean value of K t was found to be K t = 0.0137 N m/A.

Sensor noise filtering

To measure the voltages in each phase of the stepper motor, instrumentation amplifiers are used as shown in figure 3.10. The main drawback of motor control by PWM is the resulting noise on the measured signal.

The voltage signal frequency is :

f v = ω 2π , ( 3.9) 
and equals f v = 1.59 Hz, with an angular speed ω of 10 rad/s. In order to remove the PWM noise on the voltage measurement, two analog low-pass filters were realised, one for each phase. The cut-off frequency f c has to be far bellow the PWM signal frequency (f P W M = 30 kHz) and is given by :

f c = 1 4πR 1 (C 3 + C 1 2 ) , ( 3.10) 
with: 

C 1 = C 2 C 3 = 10C 1 R 1 = R 2 . ( 3 

Initial position settings

An absolute encoder (Figure 3.9) was used to measure the position of the rotorshaft.

Next are given the features of the encoder :

• Supply voltage DC 7 -30 V 

Stator fault generation

The generated faults are shortened windings events. The stator coils of the stepper motor was undone and rebuilt to allow controllable switches (see Appendix C) to shorten a certain percentage of wires in one phase. As a result, a current increase is expected.

Realisation of a shorted stator winding

To realise the new stator windings for short-circuits tests, a hybrid stepper motor was uncoiled and rebuilt with unconnected wires (figure 3.13). The stator coils are connected with switches which will be turned on and off depending on the expected shorted coil percentage as shown in figure 3.14.

Fault scenarios

Each shortened coil correspond to 8 % of the global phase coils. The test is realised according to the following table :   The state "0" of a switch correspond to the "OFF" state where the circuit is open.

Logically, "1" correspond to the "ON" state and the circuit is closed. In the proposed Also, the switches were selected in order to be:

• able to let the current flows in both ways because the stepper motor is bipolar,

• able to support about 2.5A peak (defined by the motor power board specifications),

• controllable with logical voltage states (0/5V). residual generation method is proposed, based on a standard Kalman Filter and the endogenous feedback linearised stepper motor model. Residuals and detection responses are then compared to a nonlinear Extended Kalman Filter (EKF) regarding diagnosis performance indicators.

Diagnosis algorithms integration and validation on bench

The proposed diagnosis method is realised regarding the direct current estimate îd . According to observer-based residual generation (Chapter 1, Section 1.3), the residual results from the comparison between the measurement and the measurement estimate.

Residuals generation based on dynamic inversion and a standard Kalman filter

The linear equivalent model of the stepper motor was determined in Chapter 1 by considering the nonlinear flat system :

                                             x 1 = z 1 x 2 = J m K t z2 + B K t ż2 x 3 = ż2 x 4 = z 2 u 1 = Rz 1 + L ż1 - nLJ m K t ż2 z2 - nLB K t ( ż2 ) 2 u 2 = ... z 2 LJ m K t + z2 LB + RJ m K t + ż2 ( RB K t + K t ) -nL ż2 z 1 (3.15)
where the flat outputs are (z 1 , z 2 ) = (i d , θ m ). It was shown that there exist an invertible function β(x) and a matrix α(x) such as the linear equivalent model of system (3.15) is given by:

v = β -1 (x) [u -α(x)] , (3.16) implying v = β -1 (x)u -β -1 (x)α(x).
(3.17) Equation (3.17) can then be expressed as:

∆ 0 (x) + ∆(x)u = v. (3.18)
The Brunovsky form of equation (3.18) is given by:

∆ 0 (x) + ∆(x)     u 1 u 2     =     z (ρ 1 ) 1 z (ρ 2 ) 2     =     v 1 v 2     (3.19)
where

ρ 1 + ρ 2 = n.
Replacing ρ 1 and ρ 2 by their values implies the following linear system:

    z 1 z 2     =     1 s 0 0 1 s 3         v 1 v 2     .
(3.20)

The linearisation was applied to the test bench motor as depicted in figure 3.16.

Inputs (v 1 , v 2 ) were processed with the measurements outputs of the sensors in order to realise a linear Kalman filter based on the linearised stepper motor model.

Validation of linear system inputs reconstruction

The reconstructed inputs (v 1 , v 2 ) corresponding respectively to the time derivative 

C =     1 0 0 0 0 1 0 0     . ( 3.22) 
The state and measurement covariance matrices (Q, R) were tuned in order to optimise the time response of the measurement estimation and the noise amplitude with the following matrices:

Q =             0.05 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1             R =     1 0 0 1     .
(3.23)

The resulting measurement estimate of the direct current i d is shown in figure 3.18-a.

The residuals of i d shown in figure 3.18-b, reveal a mean change at t = 6 seconds, corresponding to the fault occurrence. It is observable that the higher the percentage of shorted coils, the greater the amplitude of the current. Indeed, when a short circuit occurs, the resistance of the phase winding decreases suddenly which generates a current increase. These results will be compared with an extended Kalman filter (EKF) in the next section where the inputs are the quadratic and direct voltages (v d , v q ) obtained with a Park transform of the measurements of (u a , u b ), and 

                               ẋ1 = - R L x 1 + nx 3 x 2 + 1 L u 1 ẋ2 = - R L x 2 + nx 3 x 1 - K t L x 3 + 1 L u 2 ẋ3 = K t J m x 2 - B J m x 3 ẋ4 = x 3 , ( 3.24) 
the Jacobian matrices (A j ) and (Hj) are given by:

A j =             -R L nω ni q 0 -nω -R L -ni d + K t L 0 0 Kt Jm -B Jm 0 0 0 1 0             H j =     1 0 0 0 0 0 0 1     , ( 3.25) 
and the state and measurement covariance matrices (Q 2 , R 2 ) are given by:

Q 2 =             100 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1             R 2 =     0.0001 0 0 0.0001     (3.26) 
Performance of threshold-crossing based detection will be discussed regarding falsealarms and detection speed trade-offs in the next section.

Diagnosis models comparison

The residuals generated by the SKF (after dynamic inversion) and EKF are compared for different percentages of shorted stator windings.

Residual thresholds crossing

In this case, a fault is generated at t = 6 seconds. To detect fault occurrences, alarms are generated by threshold-crossing. Thresholds were determined by observation in order to have the shortest time response and a minimum of false alarms. It is For all cases, the shortest time response of fault detection is obtained with the SKF with dynamic inversion and linearisation of the model. Regarding non-detection, the lower the amplitude of the residual on fault occurrence, the greater the risk of non-detection. Indeed, if a greater threshold is selected, and the amplitude of the residual is below the threshold, no alarm will be generated. For all fault cases, the residual obtained by dynamic inversion and SKF has the greatest amplitude on a fault event allowing a better adaptability regarding time response and nondetection trade-offs as shown in the figure 3.22. The coloured cells correspond to the best result. 

Conclusion

In this chapter the validation and integration of fault diagnosis algorithms on a test bench were realised where faults are shorted stator windings of a hybrid stepper motor (HSM).

In the first section, the control of the deteriorated (but functional ) HSM was accomplished by path planning on a simulation model embedded on a real-time machine.

The wiring scheme of the bench was also presented.

In the second section, the validation and integration of diagnosis algorithms where • There are no false alarms,

• The residual is fault sensitive,

• Low thresholds can be used,

• Input and states reconstruction is possible. In the case of system control purposes, only three sensors are required (currents and position sensors),

• There are no linearisation errors due to the linear equivalent model.

Regarding the EKF:

• False alarms occurred at low fault amplitudes,

• Fault-detection response time is slower than in the SKF based algorithm,

• Comparing to the SKF, the residual has a lower amplitude on a fault occurrence. Non-detection might result as a consequence

As described in Chapter 1, the linear model is equivalent at every value of the states paths, and not only at its equilibrium status. The linearisation process of the EKF is approximated and generates estimation errors [START_REF] Gustafsson | Adaptive filtering and change detection[END_REF] which might impact the robustness of the diagnosis. The inputs of the equivalent linear model were reconstructed with two methods, one based on endogenous feedback linearisation and the second one based on successive time derivatives of the flat outputs of the system. The last method is not suited for observer based diagnosis because the inputs are reconstructed with outputs measurements which are acquired after the fault event. As a result, the residual is not fault sensitive and no mean change is observable.

Conclusion and perspectives

In the presented study, endogenous feedback linearisation was applied to a stepper In the second chapter, the design of a monitoring system for critical systems was described. First, safety critical systems were presented in the case of fuel systems and flight system control of different air planes and helicopters. In the first section, definitions and safety assessment methods provided by international airworthiness organisations were given. Also, a review on current system engineering tools and methods used in industry was developed in the second subsection of this chapter. In the second section , the case study of the safety assessment of a flight critical stepper motor was realized. The analytical models developed in Chapter 1 were proposed for a safe architecture based on analytical redundancy. The Development Assurance

Level of the Architecture was also discussed. To conclude, analytic redundancy is a major advantage for safety critical architectures because analytic monitoring might lead to a decrease of the number of material redundancies actually present in current flight critical architectures. On the other hand, difficulty of analytic redundancy designs relies in the exactitude of the model of the monitored system. The proposed architecture was designed with a safe and robust linearisation method reducing disturbances and fault-detection thresholds. As a result of this architecture, a patent dedicated to critical systems has been submitted.

In the third chapter, fault diagnosis algorithms were validated on a test bench where faults are shorted stator windings of a hybrid stepper motor (HSM).

In the first section, the control of the deteriorated (but functional ) HSM was accomplished by path planning on a simulation model embedded on a real-time machine.

In the second section, the validation and integration of diagnosis algorithms where • the first one was based on endogenous feedback linearisation,

• and the second one was based on successive time derivatives of the flat outputs.

The second input reconstruction method is not suitable for diagnosis aims. Indeed, the reconstructed inputs are also affected by faults which does not allow the generation of a fault sensitive residual.

There are numerous perspectives resulting from this study. Indeed, health monitoring functions of critical systems need to be improved.

• The proposed algorithms can be extended with prognostic and ageing functions [START_REF] Vinson | A generic diagnosis and prognosis framework: application to permanent magnets synchronous machines[END_REF] in order to increase the systems health awareness,

• components lifetime can be optimised in order to reduce system maintenance operations,

• mechanism reconfiguration and recovery after fault detection can be coupled to the developed diagnosis algorithms for fault tolerance,

• the designed test bench could be improved by developing an electrical board, reducing the amount of wires generating measurement noise and voltage offsets,

• the developed diagnosis algorithms could be evaluated on a flight critical processor or FPGA regarding processing costs.

Also, a patent and international communications resulted from this work [START_REF] Bobrinskoy | Model-based fault detection and isolation design for flightcritical actuators in a harsh environment[END_REF][START_REF] Bobrinskoy | Système critique et procédé de surveillance[END_REF][START_REF] Bobrinskoy | Dynamic inversion of a flight critical actuator for fault diagnosis[END_REF][START_REF] Bobrinskoy | Model-based fault diagnosis for an electromechanical actuator of a helicopter turboshaft engine[END_REF][START_REF] Bobrinskoy | Model-based fault diagnosis of a flight-critical actuator[END_REF]. The patent is currently extending from Europe to an international application.

A.3 Implicit Function Theorem [73]

Let Φ be a k-times continuously differentiable mapping, with k 1, from an open set U ⊂ R n to R n-p with 0 p < n.

It is considered that there exists at least an x 0 ∈ U such that Φ(x 0 ) = 0. If for every x in U the tangent linear mapping DΦ(x) has full rank (equal to n -p), there

exists a neighbourhood V = V 1 × V 2 ⊂ U of x 0 in R n = R p × R n-p , with V 1 ∈ R p
and V 2 ∈ R n-p , and a k-times continuously differentiable mapping Ψ from V 1 to V 2 such that the two sets {x ∈

V 1 × V 2 |Φ(x) = 0} and {(x 1 , x 2 ) ∈ V 1 × V 2 |x 2 = Ψ(x1)} are equal.
The function locally satisfies Φ(x 1 , Ψ(x 1 )) = 0 and the "dependent variable" x 2 = Ψ(x 1 ) is described by the p (locally) independent variables x 1 .

A.4 Module on a commutative ring

The notion of module is the natural generalisation of a vector space. hyper-regular if and only if its Smith decomposition leads to (I p , 0 p,q-p ) if p < q, to I p if p = q, and to

    I q 0 p-q,q     if p > q.
Definition A.3. (Unimodular matrices) A unimodular matrix M is a square integer matrix which determinant is equal to -1 or 1.

A.6 Trivial Cartan field [73]

The trivial vector field on X × R n ∞ is defined by:

τ X = i≥0 n j=1 x (i+1) j ∂ ∂x (i) j (A.2)
Regarding the trivial vector field τ X corresponds the trivial system ẋ(j) = x (j+1) for all j, for which any infinitely differentiable function t -→ x(t) on X is an integral curve. Moreover, h being an arbitrary function, its Lie derivative along τ X is given by: 

L τ X h =

A.7 Tangent space and tangent bundle

Considering a given differentiable mapping Φ from R n to R n-p (0 p < n), with at least an x 0 satisfying Φ(x 0 ) = 0. The tangent linear mapping DΦ(x) of Φ at x, expressed in the local coordinate system (x 1 , . . . , x n ), is thus the matrix ∂Φ j ∂x i (x) a neighbourhood V of x 0 , so that the implicit equation Φ(x) = 0 defines a pdimensional manifold denoted by X. It is verified that a normal vector at the point x to the manifold X is a linear combination of the rows of DΦ(x). Indeed, let y(t) be a differentiable curve contained in X for all t ∈ [0, τ [, with τ > 0 sufficiently small, such that y(0) = x. The following features of the power board are required to control the bipolar hybrid stepper motor of the test bench:

• Dual H-Bridge Power Stage,

• 52 VDC maximum input voltage,

• 6A peak with a 3.5 A maximum continuous output current,

• Maximum of 500 KHz driver switching frequency,

• 12V control voltage can be supplied externally or regulated from the DC bus,

• Over current protection on the inverter stage.

C.4 Real time machine specifications

In order to be able to interface the models on the host PC and the physical components of the test bench, the following specifications were required:

• an interface with the Matlab Simulink xPC Target environment. Speedgoat toolboxes and I/O modules are selectable from the xPC Target environment.

• an Intel Core i7 3.5 GHz CPU.

The inputs and outputs (I/O) connectivity were determined regarding the sensors and motor board connectivities and performances. The Solution proposal of the Speedgoat real time machine contained analog and digital I/O given by:

• 16 analog inputs, differential, 16-bit, ±10V , ±5V , ±2.5V (software selectable)

• 4 analog outputs, single-ended, 16-bit, ±10V , ±5V , ±2.5V (software selectable)

• 8 digital input, TTL

• 8 digital output, TTL

• 6 PWM generation, TTL. A PWM channel contains a 32-bit deep counter and the PWM control logic. The input clock for the counter and PWM control logic is 33MHz, which is sufficient compared to the 500 KHz PWM frequency limit of the stepper motor power board,

• 3 SSI Master, TTL. A differential to single ended adapter was required in order to connect the RS422 Absolute encoder, delivering a differential signal. The number of bits is software-tunable and limited to 32. A minimum of 13 bits is required by the absolute encoder.

• 34 digital input/output TTL.

The connexion between the host PC and the target machine is established with an Ethernet cable.

Algorithmes et architectures pour la commande et le diagnostic des systèmes critiques de vol Résumé :

Les systèmes critiques de vol tels que les actionneurs électromécaniques ainsi que les calculateurs de commande moteur (ECU) et de vol (FCU), sont conçus en tenant compte des contraintes aéronautiques sévères de sureté de fonctionnement. Dans le cadre de cette étude, une architecture calculateur pour la commande et la surveillance d'actionneurs moteur et de surfaces de vol est proposée et à fait l'objet d'un brevet [START_REF] Bobrinskoy | Système critique et procédé de surveillance[END_REF]. Pour garantir ces mesure de sureté, les ECU et FCU présentent des redondances matérielles multiples, mais engendrent une augmentation de l'encombrement, du poids et de l'énergie consommée. Pour ces raisons, les redondances à base de modèles dynamiques, présentent un atout majeur pour les calculateurs car elles permettent dans certains cas de maintenir les exigences d'intégrité et de disponibilité tout en réduisant le nombre de capteurs ou d'actionneurs. Un rappel sur les méthodes de diagnostic par générateurs de résidus et estimateurs d'états [START_REF] Isermann | Fault-diagnosis systems : an introduction from fault detection to fault tolerance[END_REF][START_REF] Ding | Model-based fault diagnosis techniques[END_REF][START_REF] Gaeid | Diagnosis and fault tolerant control of the induction motors techniques a review[END_REF] est effectué dans cette étude. Les propriétés de platitude différentielle et la linéarisation par difféomorphisme et bouclage endogène [START_REF] Martin | Contribution à l'étude des systèmes différentiellement plats[END_REF][START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF][START_REF] Lévine | Analysis and control of nonlinear systems: A flatness-based approach[END_REF] permettent d'utiliser des modèles linéaires équivalents avec les générateurs de résidus. Un banc d'essai a été conçu afin de valider les performances des algorithmes de diagnostic.

Mots-clés : diagnostic, inversion dynamique, platitude différentielle, systèmes critiques de vol.

Algorithms and Architectures for Control and Diagnosis of

Flight Critical Systems Abstract : Flight-Critical Systems such as Electromechanical Actuators driven by Engine Control Units (ECU) or Flight Control Units (FCU) are designed and developed regarding drastic safety requirements. In this study, an actuator control and monitoring ECU architecture based on analytic redundancy is proposed. In case of fault occurrences, material redundancies in avionic equipment allow certain critical systems to reconfigure or to switch into a safe mode. However, material redundancies increase aircraft equipment size, weight and power (SWaP). Monitoring based on dynamical models is an interesting way to further enhance safety and availability without increasing the number of redundant items. Model-based fault detection and isolation (FDI) methods [START_REF] Isermann | Fault-diagnosis systems : an introduction from fault detection to fault tolerance[END_REF][START_REF] Ding | Model-based fault diagnosis techniques[END_REF][START_REF] Gaeid | Diagnosis and fault tolerant control of the induction motors techniques a review[END_REF] such as observers and parity space are recalled in this study. The properties of differential flatness for nonlinear systems [START_REF] Martin | Contribution à l'étude des systèmes différentiellement plats[END_REF][START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF][START_REF] Lévine | Analysis and control of nonlinear systems: A flatness-based approach[END_REF] and endogenous feedback linearisation are used with nonlinear diagnosis models. Linear and nonlinear observers are then compared with an application on hybrid stepper motor (HSM). A testing bench was specially designed to observe in real-time the behaviour of the diagnosis models when faults occur on the stator windings of a HSM.
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 123 Figure 1.2: 3-phased variable reluctance stepper motor (VRSM), reference: support de cours, Haute École Spécialisée de Suisse Occidentale (HESSO), M. Correvon.
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 143 Figure 1.4: 3-phased hybrid stepper motor, reference: support de cours, Haute École Spécialisée de Suisse Occidentale (HESSO), M. Correvon.
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 15 Figure 1.5: (d,q)-transform of a PMSM model

  explained for static feedback linearisation in the previous paragraph. It is shown in the next section that endogenous feedback linearisation properties have interesting applications in model-based fault detection and diagnosis (FDD & FDI).
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  .141) and equation (1.140) becomes: ėx = (A -LC)e x + Ew f .(1.142)
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 117 Figure 1.16: Dedicated Observer Scheme (DOS)
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 118 Figure 1.18: Time and measurement updates of the Kalman filter

:

  In Chapter 1, it was recalled that monitoring systems designs of flight control systems are in certain cases based on nonlinear analytical diagnosis methods. To reduce complexity and processing costs, different linearisation methodologies (pseudo and exact linearisation) were presented. Among them, linearisation by endogenous feedback of flat systems allow to determine an equivalent linear and stable system. In this chapter, flight-critical systems are introduced. It is shown that analytical monitoring allows to reduce the number of redundancies according to specific guidelines of aeronautical safety standards such as ARP-4754. This innovation has been applied to a flight-critical actuator of a turbo-shaft engine.
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Hidden, dormant or latent failures :

  For flight critical systems, dormant failures are not detected during the flight. As an example, the loss of monitoring including passivation means or the loss of redundant paths are considered as dormant failures. Human error : Systematic faults generated by human activity (i.e. a mistake in specifications, design, manufacturing, a mistake in operating or during maintenance actions). System error : It is the consequence of a fault occurrence (Figure 2.6). As an example, a fault caused an inability for a system to open a valve on command, which is considered as an error.
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 29210 Figure 2.9: Safety integration in flight systems design

  Stage», «Development Stage», «Production Stage», «Utilization and Support phases»and the «retirement phase». Tools enable to answer to previous «what?», and, «how?», and enhance tasks efficiency.
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Figure 2 . 19 :Figure 2 . 20 :

 219220 Figure 2.19: Hazard assessment on events affecting one or two engines
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 2 Figure 2.23 shows an example of a two out of three (2 oo 3) triplex-AND voting architecture. In this case, two actuator outputs are compared to a failure threshold.
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 226 Figure 2.26: Suggested actuator redundancy architecture
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 31 Figure 3.1: Hardware In the Loop (HIL) integration in the test bench design
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 633 Figure 3.3: Normalised reference trajectories
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 35 Figure 3.5: Processed and measured voltages (a,b) and currents (c,d); Measured direct and quadratic voltages (e) and currents (f)
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 36 Figure 3.6: PWM signal generation with duty cycle variation
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 37 Figure 3.7: Double H-bridge of a bipolar stepper motor
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 38 Figure 3.8: Normalised U a signal generation at w max = 10 rad/s and a max = 20 rad/s 2 (a) and a max = 100 rad/s 2 (b)
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 11 Best results on the measured output voltage V o were obtained with a cut-off frequency of f c = 203.94 Hz with C 1 = 22 nF, C 3 = 220 nF and R 1 = 1.69 KΩ.
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 310 Figure 3.10: Input Low-Pass filter
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 312 Figure 3.12: Measured and processed angular position, without (a) and with (b) position initialisation
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 313 Figure 3.13: On the left-hand side a two phased stator with 8 plots (4 per phase). On the right hand side the uncoiled stepper motor for short circuits testing.
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 3315 Figure 3.14: Short-circuit wiring scheme of one stator phase
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 3163 Figure 3.16: Input reconstruction of the linearised model
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 318 Figure 3.18: Estimated and measured i d current in healthy mode (a); Residuals of i d at different percentages of shorted stator coils (b)

Figure 3 . 19 :

 319 Figure 3.19: Residual generation based on the EKF

Figure 3 . 20 :

 320 Figure 3.20: Residual (a) and alarms (b) generation for 8% of shorted windings in one stator phase

Figure 3 . 21 :Figure 3 . 22 :

 321322 Figure 3.21: Residuals (a, c, e) and alarms (b, d, f) generation for 16%, 24%, 32% of shorted windings in one stator phase

  realised. The linearisation of the HSM model by endogenous feedback presented in Chapter 1 was validated on the test bench. The inputs reconstruction of the equivalent linear system by dynamic inversion was also successfully completed. Next, a linear Kalman filter was used for residual generation. Fault detection was then realised by threshold crossing of the residual mean on a fault event. The same diagnosis approach was then realised with an extended Kalman filter (EKF), based on the nonlinear model of the HSM. False alarms, response time and residual amplitude change were compared for the two model based diagnosis methods. According to the test bench results of figure 3.22, the performances of dynamic inversion coupled to the SKF based diagnosis showed the following observations:

  motor of a flight critical actuator in order to improve model-based diagnosis algorithms. The proposed models were developed and tested on a test bench which was also designed and assembled. In the first Chapter, the fundamentals of differential flatness were presented and an example was given with the processing of a hybrid stepper motor's flat outputs. Different linearisation approaches were given such as endogenous feedback, pseudo-linearisation and tangent linearisation. The problem of local linearisation around an equilibrium point is solved for certain nonlinear systems with cancellation of their non-linearities by diffeomorphism and endogenous feedback. An example of linearisation of a stepper motor was shown in the first section. In the second section, model-based diagnosis tools such as residual generators, state estimators and observers for linear and nonlinear systems were shown.

  realised. The linearisation of the HSM model by endogenous feedback presented in chapter 1 was validated on the test bench. The inputs reconstruction of the equivalent linear system by dynamic inversion was also successfully completed. Next, a linear Kalman filter was used for residual generation. Fault detection was then realised by threshold crossing of the residual mean on a fault event. The same diagnosis approach was then realised with an extended Kalman filter (EKF), based on the nonlinear model of the HSM. False alarms, response time and residual amplitude change were compared for the two model-based diagnosis methods. As described in chapter 1, the linear model is equivalent at every value of the states paths, and not only at its equilibrium status. The linearisation process of the EKF is approximated and generates estimation which might impact the robustness of the diagnosis. The inputs of the equivalent linear model were reconstructed with two methods:

Definition A. 1 .A. 5

 15 Considering A, a commutative ring. The A-module (M, +, .) is a set defined by an internal law + and an external law A × M -→ M , (α, m) -→ αm satisfying: • (M, +) is an Abelian group. • α(m + m )= αm + αm • (αβ)m = α(βm) • 1.m = m for all α, β ∈ A and all m, m ∈ M Particular matrices Definition A.2. (Hyper-regular matrices) A matrix M ∈ M p,q d dt is said

  τ X can thus be identified as the differential operator d dt . The associated implicit system is empty, i.e. given by F ≡ 0.

  Figure A.1: Tangent and normal spaces to a manifold at a point

C. 2

 2 Figure C.2: Wiring diagram

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Table 1 .

 1 2: Fault signatures on residual structures (1.2) shows an isolability rank of two because two digits need to be changed to go from one fault vector to another. Both tables have the same isolability rank but table a) contains more "0". Therefore, its configuration is preferred.

	Definition 1.11. (Fault localisation) A fault is structurally localisable if all the
	columns of the fault table are different.

Table 2 .

 2 

1: MBSE methodologies used in Industry

Table 2 . 3

 23 .16. 

	FAILURE MODE	FAILURE CAUSE	FAILURE EFFECT
	-Worn bearing	-Poor lubrication	-Noisy
	-spalling	-Contamination	-Heat build-up
	-creeping or spin	-Overloading or high	-Armature rubbing stator
		temperature	-Seized
	-Open winding	-Excessively high	-Motor is not running
	-Shorted winding	temperature	
	-Cracked housing	-Fatigue	-Leakage of dust into
		-External shock	motor
		-Vibration	-Shorted or seized
	-Sheared armature shaft	-Fatigue	-Seized
	-Cracked rotor	-Misalignment	-Armature rubbing
	-laminations	-Bearing failure	stator
	-Worn sleeve bearing	-Excessive load (belt	-Seized
		tension)	-Noisy
		-Frequent starts and	-Heat build-up
		stops under heavy	-Armature rubbing
		loads	stator
		-Poor lubrication	

: Electric motor failure modes Figure 2.16: Failure rate processing and engine effect analysis

Actuator model validation and integration on test bench . .

  the next Chapter, I realised a testing bench in order to be able to generate faults on a hybrid stepper motor windings of a flight critical actuator. The proposed diagnosis algorithms presented in Chapter 1 were embedded on a real-time machine, representing a Flight-critical Engine Computer Unit, as depicted in Chapter 2. The aim of this experience is to demonstrate the improvement of diagnosis results by reducing dedicated algorithms complexity. Test bench design . . . . . . . . . . . . . . . . . . . . . .
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The inputs u do not appear in the implicit system.

Φ * τ D is the image of the Cartan field τ D by the mapping Φ

A meromorphic function on an open subset D of the complex plane is a function that is infinitely differentiable and equal to its own Taylor series on all D except a set of isolated points, which are poles for the function.

The reluctance R is related to the length of the material in which the magnetic flow runs, the section of the material and the material permeability.

FAR designs the rate of alarm generations by the FDI system when no fault occurred

i n, 1 j n-p. It is also assumed that DΦ(x) has full rank (n -p) in
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Path planning of control inputs by dynamic inversion

The trajectories of angular position, speed, acceleration are obtained by integration of the angular jerk equation where the jerk must be a continuous and differentiable function. The jerk is considered as a piecewise cosine function. The maximum amplitude of the angular jerk is processed regarding maximum acceleration (a max ) and

Dynamic inversion based model linearisation

In this approach, no motor-load was considered. According to figure 3.4, the algorithm allowing to process the u a and u b voltage trajectories is described by the following steps:

• processing the inputs v 1 and v 2 of the linear equivalent model of the HSM,

• the direct current i d is set to 0 and the quadratic current i q is expressed by an equation containing ω. It was shown in chapter 1 that the motor model was flat with flat outputs z 1 = i d and z 2 = θ,

• the linearisation functions ∆(x) and ∆ 0 defined in Chapter 1 allow the processing of the v d and v q voltages which are then changed into u a and u b by Park transform,

• a PWM signal generation algorithm allows to generate the pulse trains of the generated u a and u b voltages,

• finally, the PWM pulse trains are generated by the real time machine and used directly with the power board of the stepper motor. The gray code to angle conversion is realised in the simulation model by dividing the output signal by 2 13 and then multiplying by 2π.

The encoder does not count turns and restarts from zero when a turn is completed.

In order to fit the measure signal with the processed reference signal, an unwrapping function is realised after acquiring the measurement as shown in figure 3.11. The generation of faults on the stepper motor is described in the next section.

Controllable Reed relays were therefore chosen to realise this task and are controlled by the real-time machine, where the logical ON/OFF sequence is defined in the embedded simulation model.

A coil is model as an RL circuit. When a short circuit occurs, the number of coil turns is reduced. The resulting winding has its resistance R w multiplied by the percentage of shortened turns and the resulting inductance L is multiplied by the square of the same percentage. The wire resistance R w is given by:

where R 0 is the resistivity of the material (Copper for example) in (Ohm.m), l is the length of the wire in meters and S is the section of the wire in square meters.

If the number of wires is reduced by its half, the resistance is divided by two because the length l is divided by two.

The inductance L is given as a function of the number of turns n L and the reluctance R of the material in which the magnetic flow ψ evolves (equation 3.13) Given a differentiable mapping Φ from R n to R n-p (0 p < n), we assume that there exists at least an x 0 satisfying Φ(x 0 ) = 0 and that the tangent linear mapping DΦ(x) has full rank (n -p) in a neighbourhood V of x 0 . The set X defined by the implicit equation Φ(x) = 0, is called differentiable manifold of dimension p.

Otherwise stated:

If in addition Φ is k-times differentiable (respectively analytic), X is considered as a C k differentiable manifold, k = 1, . . . , ∞.

Example A.1. The sphere of R 3 centred at C, of coordinates (x C , y C , z C ), and of radius R, given by {(x, y, z

A.2 Diffeomorphism

Given two manifolds M and N, a differentiable mapping

Remark A.1. As a consequence to the invertibility property of a diffeomorphism, the Jacobian matrix of a diffeomorphism can not have its determinant equal to zero.

Appendices

The tangent space to X at the point x ∈ X is the vector space T x X = kerDΦ(x) and the tangent bundle T X is the set

.

Taking into account the fact that DΦ(x) has rank n -p in V ,

.

A.8 Differential form[73]

A differential form of degree 1, or 1-form is defined by a C ∞ -section ω of the cotangent bundle T * X, i.e. a mapping for which, to each point x ∈ X, there corresponds an element ω(x) ∈ T * X, ω(x) being a linear combination of the local basis co-vectors of T * X with C ∞ coefficients on X. The set of C ∞ -sections of T * X is a vector space noted Λ 1 (X). The duality pairing between a 1-form

and a vector field

A 1-form is not generally the differential of a function, as we now show, and consequently, Λ 1 (X) contains more than the differentials of functions.

Appendix B

Stepper motor data-sheets