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ABSTRACT 

This Ph.D. work is motivated by the possibility of monitoring the conditions of components of 

energy systems for their extended and safe use, under proper practice of operation and adequate 

policies of maintenance. The aim is to develop a Support Vector Regression (SVR)-based 

framework for predicting time series data under stationary/nonstationary environmental and 

operational conditions. Single SVR and SVR-based ensemble approaches are developed to 

tackle the prediction problem based on both small and large datasets. Strategies are proposed 

for adaptively updating the single SVR and SVR-based ensemble models in the existence of 

pattern drifts. Comparisons with other online learning approaches for kernel-based modelling 

are provided with reference to time series data from a critical component in Nuclear Power 

Plants (NPPs) provided by Electricité de France (EDF). The results show that the proposed 

approaches achieve comparable prediction results, considering the Mean Squared Error (MSE) 

and Mean Relative Error (MRE), in much less computation time.  

Furthermore, by analyzing the geometrical meaning of the Feature Vector Selection (FVS) 

method proposed in the literature, a novel geometrically interpretable kernel method, named 

Reduced Rank Kernel Ridge Regression-II (RRKRR-II), is proposed to describe the linear 

relations between a predicted value and the predicted values of the Feature Vectors (FVs) 

selected by FVS. Comparisons with several kernel methods on a number of public datasets 

prove the good prediction accuracy and the easy-of-tuning of the hyperparameters of RRKRR-

II.  

 

Key words: Feature selection, Model interpretability, Nuclear power plant, Online learning, 

Prediction, Ensemble, Support vector regression, Time series data  
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RESUME 

Ce travail de thèse est motivée par la possibilité de surveiller l'état des composants de systèmes 

d'énergie pour leur utilisation prolongée et sécuritaire, conformément à la pratique correcte de 

fonctionnement et des politiques adéquates de maintenance. La motivation est de développer 

des méthodes basées sur la régression à vecteurs de support pour la prédiction de données de 

séries chronologiques dans des conditions environnementales et opérationnelles stationnaire / 

non stationnaire. Les simples modèles et les ensembles de modèles à base de SVR sont 

développés pour attaquer la prédiction basée sur des petits et des grands ensembles de données. 

Des stratégies sont proposées pour la mise à jour de façon adaptative les simples modèles et les 

ensembles de modèles à base de SVR au cas du changement de la distribution générant les 

données. Les comparaisons avec d'autres méthodes d'apprentissage en ligne sont fournies en 

référence à des données de séries chronologiques d'un composant critique dans les centrales 

nucléaires fournis par Electricité de France (EDF). Les résultats montrent que les approches 

proposées permettent d'atteindre des résultats de prédiction comparables compte tenu de l'erreur 

quadratique moyenne et erreur relative, en beaucoup moins de temps de calcul. 

Par ailleurs, en analysant le sens géométrique de la méthode de la sélection de vecteurs 

caractéristiques (FVS) proposé dans la littérature, une nouvelle méthode géométriquement 

interprétable, nommé Reduced Rank Kernel Ridge Regression-II (RRKRR-II), est proposée 

pour décrire les relations linéaires entre un valeur prédite et les valeurs prédites des vecteurs 

caractéristiques sélectionné par FVS. Les comparaisons avec plusieurs méthodes sur un certain 

nombre de données publics prouvent la bonne précision de la prédiction et le réglage facile des 

hyperparamètres de RRKRR-II. 

 

Mots Clés: Apprentissage en ligne, Centrale nucléaire, Ensemble, Interprétation du modèle, 

Les données de séries chronologiques, Prédiction, Régression à vecteur de support, Sélection 

des vecteurs caractéristiques 
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PART I: GENERALITIES 

This part includes the first two Chapters of this thesis which presents the context, relevance 

and the selected base method for the research work.  
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1. INTRODUCTION 

The research presented in this thesis concerns the development of a Support Vector Machine 

(SVR)-based framework for failure prognostics of components in energy systems, in particular 

in Nuclear Power Plants (NPPs). The present introductory chapter of the thesis is structured as 

follows. Section 1.1 discusses failure prognostics and positions it within maintenance 

engineering. Section 1.2 reviews the methods for failure prognostics for components of NPPs. 

Section 1.3 presents the component object of the reference case study throughout the thesis: the 

first seal in the Reactor Coolant Pump (RCP) of a NPP. Section 1.4 motivates the choice of the 

basic method, i.e. SVR, for performing failure prognostics. Section 1.5 states the research 

motivations and objectives. Section 1.6 presents the structure of the thesis. 

1.1 Failure prognostics 

In modern industry, the demand for high reliability of systems, low environmental risks, and 

assurance of human safety during operating processes, has substantially increased in the last 

decades. The timely maintenance of a System, Structure or Component (SSC) is critical for the 

profitability and competitiveness of industrial companies. The economic loss of an unexpected 

shutdown may cost a company up to hundreds of thousands of Euros [53]. The economic loss 

of shutting down a NPP in USA is $1.25 million/day [96]. In the current competitive 

marketplace, maintenance management and machine health monitoring play a more and more 

important role in gaining market share by reducing equipment downtime, associated costs and 

scheduling disruptions. For all the above, the development of effective strategies for the 

maintenance of SSC is a strong motivation for companies and public works.  

Different strategies for SSC maintenance have been developed in the years, whereby the 

relatively recent Condition-Based Maintenance (CBM) aims at maintaining the SSC in 

operating conditions, monitoring its state based on sensors measurements, including event data 

and condition monitoring data [97]. Failure prognostics, based on failure time prediction and 

Remaining Useful Life (RUL) estimation, has become a major focus in the research and 

development of CBM in various technological fields, such as aerospace, automotive, nuclear, 

and national defense [117]. 

1.1.1 Failure prognostics 

Prognostic, originated from the Latin word prognosticus and from the Greek word prognōstikos, 
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is an adjective that relates to prediction or foretelling and a noun for a sign or symptom 

indicating the future course of a disease or sign or forecast of some future occurrence, as defined 

in the American Heritage Dictionary [33].  

Various technical definitions of prognostics have been given within the maintenance 

engineering discipline. According to ISO:13381-1, prognostics is defined as the “estimation of 

time to failure and risk for one or more existing and future failure modes”[58], [59], [164], 

[157]. In [118] and [163], prognostics is the process of predicting the future health of the SSC 

of interest, based on the current and historical health conditions.  

In this thesis, prognostics is intended as an overarching concept which includes the capability 

to provide early detection and isolation of precursor and/or incipient fault conditions to a SSC 

failure and to have the technology and means to manage and predict the progression of this fault 

condition to a SSC failure, as defined in [31], [83] and [165]. This definition of prognostics 

contains two objectives: short-term prediction and RUL prediction. 

Various classifications of the prognostic approaches have been proposed in the literature [71], 

[117], [134]. The most useful one attempts to distinguish the different approaches according to 

the type of information and data they use. Hence, prognostic approaches can be divided into 

four categories: Model-based or Physics of Failure-based approaches, Knowledge-based 

approaches, Data-driven approaches, and Combination approaches [117]. 

1.1.2 Characteristics of failure prognostic approaches 

The development of a prognostic approach may face quite different situations with respect to 

the information and data available on the past, present and future behavior of the SSC. There 

might be situations in which sufficient and relevant data on the SSC behavior are available, 

others in which the SSC behavior is known well enough to build a sufficiently accurate model, 

and yet others in which scarce data concerning the SSC are available (e.g. due to the fact that, 

being the equipment highly valued, it has very low degradation and failure rates), but in which 

process and functional data related to the SSC degradation and failure processes are measured 

by specific sensors. Correspondingly, a wide range of approaches, based on different sources 

of information, modeling schemes and data processing algorithms has been developed [178]. 

According to [178], any prognostic approach should have desirable characteristics of: 

▪ Robustness: the performance of the prognostic method does not degrade abruptly in the 

presence of noise, uncertainties or unexpected situations. 
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▪ Uncertainty quantification: estimates and predictions are accompanied by a measure 

of the associated error, accounting for the incomplete and imprecise information 

available on the process. 

▪ Adaptability: the prognostic approach is able to take into account the changes in the 

environment and in the SSC of interest, and to perform well in different operating 

conditions. 

▪ Generalization power: the prognostic approach can be used for prognostics of both 

complex and relatively simple systems, as well as for components of a system. 

In the next section, we will briefly review the different types of prognostic approaches and 

compare them according to the previous four characteristics. 

1.1.3 Types of failure prognostic approaches 

Model-based approaches usually employ physical-mathematical models to describe the 

physical processes having direct or indirect effects on the health of the SSC under study [50], 

[63], [65], [85], [89], [112]. Physical-mathematical models require specific theoretic and 

mechanistic knowledge relevant to the SSC of interest and are normally developed by domain 

experts. The parameters in the models are calibrated on data. Statistical techniques are used to 

define thresholds to detect and identify the presence of faults. 

Knowledge-based approaches are based on expert systems, which embed the expert knowledge 

and its reasoning manipulation for inference of the solution to the particular prognostic problem. 

It combines the power of computers with the laws of reasoning on expertise. Knowledge-based 

approaches store the domain knowledge extracted by human experts into computers in the form 

of rules, and then use these rules to generate solutions. Expert systems [10], [14], [82] and fuzzy 

logic [172] are two typical examples of knowledge-based approaches [117].   

Data-driven approaches statistically and probabilistically predict the future health of the SSC 

of interest, based on historical and current data related to the degradation state of the SSC [134], 

[45]. Data-driven approaches tackle the direct estimation and prediction of the degradation state 

without modeling the equipment physical behavior and operation. Such approaches include 

conventional statistical algorithms, like linear regression [106] and time series analysis [46], as 

well as machine learning and data mining algorithms, like Artificial Neural Networks (ANNs) 

[176], and Support Vector Machines (SVMs) [51]. 

Combination approaches (also called ensemble-based approaches) attempt to take advantage of 
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the strength of different data-driven approaches or both data-driven and model-based 

approaches, by fusing information from different approaches [6], [116], [121], [181]. Compared 

with single models, ensemble-based approaches achieve higher accuracy by aggregating results 

from different sub-models, higher adaptability by training diverse sub-models and higher 

robustness to noise [6]. 

Table I compares these four types of prognostic approaches with respect to the characteristics 

introduced in Section 1.1.2 (the more stars (*) are assigned to a prognostic approach for a 

specific characteristic, the better it performs in that specific characteristic). 

Table I. Comparisons of different prognostic approaches. 

Characteristic 

 

Approach 

Robustness 
Uncertainty 

quantification 
Adaptability 

Generalization 

power 
Others 

Model-based 

YES *** (with 

respect to the 

noise in the 

data) 

YES 

YES ** (by 

parameter re-

calibration) 

NO * (a model is 

built for a specific 

type of SSC) 

It is only applicable in 

situations where accurate 

mathematical models can be 

constructed from first 

principles. 

Knowledge-

based 

YES ** (with 

respect to the 

noise in the 

data, but not to 

the unknown 

situations) 

YES 

YES ** (by rule 

base 

modification) 

NO * (a model is 

built on the 

knowledge of a 

specific SSC.) 

In complex cases it is 

difficult to obtain domain 

knowledge and convert it to 

rules. 

When the number of rules 

increases dramatically, a 

combinatorial explosion 

problem related to 

conditions checking may 

cause dramatic 

computational burden. 

Data-driven 

YES ** 

(dependent on 

the training 

dataset) 

YES 
YES *** (by 

retraining) 
YES *** 

The performance of data-

driven approaches are 

highly-dependent on the 

quantity and quality of the 

data for training and 

validation. 

Combination YES *** YES 

YES *** (by 

retraining and/or 

addition in the 

ensemble) 

YES *** 

Ensemble methods have 

some disadvantages: the 

increased storage, the 

increased computational 

burden, the decreased 

comprehensibility, etc. 

 

1.2 Failure prognostics of NPP components 

The case study of reference in the thesis regards a critical component of a NPP, whose 



Introduction 

- 6 - 

monitoring is crucial to guarantee the NPP safe operation. 

There are currently more than 400 NPPs in the commercial global fleet around the world, and 

another 222 projects are in various stages of development [11]. The global demand for 

electricity continues to grow [11]. The problem of meeting the growing energy demand has to 

cope with the requirement, arising in most countries, to minimize carbon emissions through the 

use of carbon-free electricity generation. In this global scenario, nuclear power projects for 

electricity generation will play a crucial role in the long-term management of energy sources, 

and nuclear energy can be expected to remain a significant part of the global energy mix [88]. 

In existing NPPs, the most crucial tasks to be accomplished are improving safety, maintaining 

availability and reducing operation and maintenance costs. Moreover, extensions in power up 

rates and in the average component life duration increase the need for techniques for diagnosing 

and predicting the NPPs health, because the occurrence of component degradation and failure 

becomes more and more likely as load is increased or changed, and as age advances [88]. 

In the future, with more than 550 NPPs under construction or plan with new technology and 

design-for-inspectability concept, failure prognostics is also very critical to know the state of 

these new complex system [96]. 

Some works have already appeared in the relevant literature concerning prognostics of NPP 

components. In [179] and [180], a fuzzy similarity analysis is introduced to find a combination 

of the reference patterns, weighed by their similarity to the observed failure pattern, to 

determine the future evolution of the observed failure pattern and to derive the corresponding 

RUL. In [104] and [174], SVM is used to predict the collapse moment for wall-thinned pipe 

bends and elbows. In [78], a systematic approach is introduced for the prediction of pump 

performance characteristics, for situations in which the experimental data are not available. In 

[74], the authors present a framework for the control of the steam generator water level in the 

secondary circuit of a NPP, based on an extension of the standard linear model predictive control 

algorithm to linear parameter varying systems. A back propagation ANN is proposed for the 

prediction of thermal power in NPPs in [129]. In [105], a probabilistic neural network is applied 

for classifying accidents into groups of initiating events and a fuzzy neural network is used to 

identify the major severe accident scenarios after the initiating events. Back propagation 

networks are used in [155] to estimate one or more process variables by establishing the 

nonlinear relationship among a set of plant variables. In [69], an ANN is used to estimate the 

value of the undetected next-time-step signal of the steam generator water level in a NPP. In 

[144], data from plant operation experience are used in combination with in-service inspections 
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and degradation management programs to ensure that the degradation mechanisms do not 

adversely impact plant safety. 

A lot work in the literature use data-driven approaches for the prognostics of components of 

NPPs [105]. Model-based approaches are less suitable due to the complexity of NPP systems, 

because the physical relations among different variables are difficult to establish, especially for 

the reference case study in this thesis. Knowledge-based and ensemble approaches are also used 

for the prognostics of NPP components; however, since critical components rarely fail during 

operation, the related experience can be limited even for the experts in the field. Thus, in such 

cases, data-driven approaches are the best choice. 

1.3 The reference case study: leakage in the first seal of the reactor coolant pump 

Pumps play a major role in the safe operation of NPPs. Their operating characteristics play a 

significant role in determining the thermal and hydraulic behavior of nuclear reactors in 

following transients. The Reactor Coolant Pump (RCP) is a critical component of a NPP, since 

it guarantees enough cold water in the reactor vessel to protect the nuclear materials and to 

deliver the heat released from the nuclear fission to the steam generator. 

Figure 1 shows the position of RCP in a NPP and the structure of a RCP is shown in Figure 2. 

 

Fig. 1 Simplified NPP system (http://www.nucleartourist.com/images/rcs.gif). 
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Fig. 2 Structure of a RCP in NPP (http://www.nucleartourist.com/systems/rcs1.htm). 

The RCP is composed of three main parts: the pump part which includes pump casing, guide 

vanes, guide shaft, main flange, impeller, heat shield and so on; the sealing part which includes 

bearing seal system, electrical motivation support base, couplings; the motor part which 

includes upper and lower bearings, upper and lower machine frame, stator, rotor, flywheel, oil 

lifting systems, air coolers and oil coolers [187].  

The sealing system is composed of three seals, which are sequentially named the first seal, the 

second seal and the third seal. The sealing system prevents the boron water from leaking outside 

the primary circuit of a NPP. The leaked boron water may endanger the personnel working in 

the NPP and the equipment inside the nuclear island. Thus, the reliable control of the leak flow 

is very important. If the leak flow exceeds a predefined threshold, the NPP should be shut down 

to decrease the chance of severe disasters.  

The reference case study in this thesis concerns the failure prognostics of the leak flow of the 
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first seal. For this, 20 failure scenarios from 10 NPPs have been considered. For each NPP, the 

leak flow was monitored every four hours, but starting from different time instances and for 

different durations; hence, the number of measurements in the time series is different for each 

NPP. The fault has occurred at different times, and in some scenarios the operators managed to 

bring the pump back to a normal condition. Table II shows the number of transients in each 

scenario. 

Table II Number of transients in each scenario. 

Scenario 1 2 3 4-6 7-10 11 12-

14 

15 16-

17 

18-

19 

20 

# of  time series 

data points 

2277 385 385 2017 1391 3124 562 964 2767 1061 861 

 

 

Fig. 3 Normalized data of some available scenarios. 

1.4 Failure prognostics with data-driven approaches 

Considering the complexity of the component of interest and the scarce knowledge on the 

causes of failure, data-driven approaches have been chosen to tackle the failure prognostic 

problem in this thesis.  

A large number of data-driven approaches have been developed based on Artificial Intelligence 
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(AI) techniques, such as perceptron-based approaches, kernel-based approaches, Markov chain 

models, hazard rate approaches and other methods. In this Section, two popular and promising 

data-driven approaches are reviewed, i.e. perceptron-based approaches and kernel-based 

approaches. A kernel-based approach, Support Vector Machine (SVM) is chosen for the work 

of this thesis, and various approaches based on it are developed for failure prognostics under 

different situation requirements.  

1.4.1 Perceptron-based approaches: ANNs 

The perceptron-based approaches predict the output of a new input vector by calculating the 

weighted sum of the outputs from all the processing elements (modes) of the perceptron. The 

perceptron-based approaches are trained on the training data points by running the algorithm 

repeatedly until it finds the predictions which are (approximately) correct on all the training 

data points [76]. The method that best represents this kind of approaches is ANN. 

ANN is a data processing system which can be used to estimate the nonlinear regression 

function describing the relationship between a set of inputs and outputs, and this estimation is 

achieved through a network training procedure. The network structure is composed by three 

types of layers: input layer, hidden layer (sometimes more than one) and output layer. Each 

layer has a number of simple, neuron-like processing elements called “nodes” or “neurons” that 

interact with each other by using numerically weighted connections [153]. The structure of a 

classical ANN (feed-forward ANN) is shown in Figure 4. 

 

Fig. 4 Structure of a feed-forward ANN with two hidden layers 

(http://bulyaki.com/2012/11/04/feedforward-neural-networks/). 



Introduction 

- 11 - 

There are several types of neural networks, e.g., Dynamic Wavelet Neural Networks (DWNN) 

[166], Polynomial Neural Networks (PNN) [111], Weighted Probabilistic Neural Networks 

(WPNN) [143] and Self-Organization Maps Neural Networks (SOMNN) [81]. Some 

applications of ANN in prediction problems can be found in references [36], [56], [68], [90], 

[154] and [182]. 

Choosing the optimal number of hidden neurons is a big challenge for using ANN-based 

approaches, as an underestimate of the number of neurons can lead to poor approximation and 

generalization power, while an overestimate of the number of neurons can result in overfitting 

and eventually make the search for the global optimum more difficult [17], [73]. The 

computational burden for dealing with irrelevant features is also a big drawback of ANN-based 

approaches. 

1.4.2 Kernel-based approaches: SVMs  

In the last decades, benefiting from the computational simplicity and the good generalization 

performance in statistical machine learning problems, kernel-based machine learning methods 

have drawn much attention for regression [88], [98], [100], classification [30], [80], [130] and 

unsupervised learning [136], [137], [138]. Good and comprehensive reviews of these methods 

can be found in [52] and [99]. Support Vector Machine (SVM) [1], [18], [141], Kernel Gaussian 

Process (KGP) [44], [125], [169], Kernel Ridge Regression (KRR) [49], [57], [133], Kernel 

Logistic Regression (KLR) [77], [186], Kernel Principal Component Analysis (KPCA) [139], 

[173] are some of the most popular kernel methods. 

The nonparametric and semi-parametric representer theorems given in [135] show that for a 

large class of kernel algorithms with Structural Risk Minimization (SRM), i.e., minimizing a 

sum of a structural risk term and a regularization term, in a Reproducing Kernel Hilbert Space 

(RKHS), the optimal solutions can be written as a kernel expansion supported on training data 

points. The estimate function of the kernel methods, including SVM, KGP, KRR, KLR and 

KPCA, can all be formulated as  

𝑓(𝒙) =  ∑ 𝛼𝑖𝑘(𝒙𝑖, 𝒙)
𝑁
𝑖=1 + 𝑏,              (1) 

where 𝑓(𝒙)  is the estimate function describing the relation between the data points 

(𝒙𝑖, 𝑦𝑖), 𝑖 = 1,2, … ,𝑁; 𝑘(𝒙𝑖, 𝒙𝑗) is the inner product of the mapping of 𝒙𝑖, 𝒙𝑗 in RKHS; 𝛼𝑖 

are the weights to optimize and 𝑏 is a constant that can be zero or non-zero. Note that the 

unknowns in Equation (1) have no practical meanings. Note also that, normally, in kernel 
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methods there are three types of hyperparameters: the penalty factor 𝐶, which is a trade-off 

between the empirical risk term and the regularization term; the hyperparameters related to the 

definition of the empirical risk term (e.g. the parameter 𝜖 in the 𝜖-insensitive loss function of 

SVM); the hyperparameters related to the kernel function itself (e.g. the parameter 𝜎 in the 

Gaussian Radial Basis kernel Function (RBF) written as 𝑘(𝒙𝑖, 𝒙𝑗) = 𝑒
−‖𝒙𝑖−𝒙𝑗‖

2
/2𝜎2). SVM is 

a typical kernel-based approach and it is called Support Vector Regression (SVR) when used 

for regression and prediction problems.  

The training optimization problem of kernel methods necessarily reaches a global minimum, 

and avoids falling in a local minimum, which may happen for other methods, such as ANN. 

However, the main drawbacks of kernel methods are the unacceptable computational burden 

for training with large datasets, the difficulty in tuning the hyperparameters and the lack of 

interpretability of the mechanisms within the model.  

1.4.3 Comparison between ANN and SVM 

ANN and SVM are the two most popular data-driven approaches used for supervised learning, 

being respectively a perceptron-based approach and a kernel-based approach, and they can both 

be applied for the failure prognostics problem tackled in this thesis.  

There has been some comparisons reported in the literature between ANN and SVM on 

different case studies. In [62], the authors compare different machine learning methods, 

including ANN and SVM for chemical toxicity classification with/without filter-based feature 

selection. ANN and SVM give comparable prediction results and outperform the other machine 

learning methods in all the tests. In [158], the performances of feed-forward ANN and SVM 

are compared in the prediction of traffic speed based on real time data and historic data, 

collected by various systems in transportation networks. Considering the mean absolute 

percentage error on the test dataset, SVM performs better than ANN with less training data 

points and the performance of an ANN model is highly dependent on the size of the training 

dataset. It is also shown that the capability of a SVM model is less dependent on the training 

dataset. In [96], a comparison is carried out between ANN and SVM for ECG arrhythmias 

classification. The Kernel-Adatron (K-A) learning algorithm is integrated with SVR and the 

experiment proves that SVM is much faster than backpropagation ANN in training, while the 

Mean Squared Error (MSE) on the test dataset is higher than the one of ANN. In [84], an 

empirical comparison is carried out between ANN and SVM for face recognition with binary 
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and multi-class classification problems. The results show that they give comparable results in 

binary classification, while SVM greatly outperformed ANN for multi-class problems. The 

comparison results between ANN and SVM in [151] prove again the superiority of SVM in 

both training speed and results. Finally, SVM outperforms ANN in the work of [2], [4], [21], 

[22], [95] and [114].  

It is not possible to have a strong and conclusive statement about the superiority of either SVM 

or ANN in supervised machine learning. These two methods are comparable on robustness, 

adaptability and generalization power, and both may suffer the high computational burden and 

the demand for large enough dataset, problems that are shared by all data-driven approaches. 

The reasons that lead us to select SVM (SVR) in this thesis are listed below: 

1. SVM is a non-parametric method, which involves sound theory first, then implementation 

and experiments [145].  

2. The solution to an SVM is global and unique, i.e. less prone to overfitting, since SVM uses 

the SRM [156].  

3. SVM has a simple geometric interpretation, gives a sparse solution and its computational 

complexity is not dependent on the dimensionality of the input space [147]. 

4. SVM demands less training data points and is more efficient in the regression problem with 

small size of training datasets [128].  

1.5 Research objectives 

Prediction is the basic and most important part of prognostics for CBM. Accurate and timely 

prediction of the health conditions of the SSC of interest can provide useful information for 

rational maintenance planning, to gain high production, safety benefits, human, environment 

and asset protection. 

The reference case study in this thesis consists in predicting the leak flow of the first seal in the 

RCP, for which a physical model is hard to build but there are enough measurements available 

for regression and prediction. Following the discussion in previous sections, SVR is selected to 

predict the leak flow in the first seal. In the rest of this thesis, SVR is used in place of SVM, as 

the problem tackled in this thesis focuses on regression and prediction. 

Many efforts of the research on SVR have been devoted to studying situations in which a 

sufficiently large and representative dataset is available from a fixed, albeit unknown 
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distribution. Correspondingly, the first objective in this thesis is to develop SVR-based 

approaches for regression and prediction on the reference case study in a static environment. 

The model trained for these situations can function well for patterns within the representative 

training dataset [122].  

On the other hand, in real-world applications, the SSC of interest may be operated in 

nonstationary environments and evolving operational conditions, whereby patterns drifts. Then, 

in these situations, to be of practical use the constructed models must be capable of timely 

learning changes in the existing patterns and new patterns arising in the dynamic environment 

of SSC operation. In the reference case study, different NPPs may be operated in different 

environments and there maybe pattern drifts among different failure scenarios or even in 

different parts of the same scenario. Thus, the second objective of this thesis is to provide robust 

SVR-based approaches with a good generalization ability in nonstationary environments.  

The research context can be further divided into four different situations: single SVR model for 

small dataset without pattern drifts; SVR-based ensembles for large dataset without pattern 

drifts; adaptive single SVR model for small dataset with pattern drifts and online learning 

ensembles for large dataset with pattern drifts. 

The time horizon of prediction can be divided into long term (larger than 1 month) and short 

term (multiple time steps). Long-term prediction provides information for maintenance 

planning, while short-term prediction is for taking emergency actions, i.e. shutting down the 

NPP. In this thesis, the time horizon is fixed as one-day ahead prediction (6 steps ahead) after 

the discussion with experts in EDF. 

1.6 Structure of the thesis 

The thesis is composed of four main parts. Part I (Chapters 1-2) introduces the different types 

of prognostic approaches, the failure prognostics of components in NPP and the undertaken 

research objectives. It illustrates the specific data-driven approach chosen for these objectives, 

i.e. SVR, and the challenges for applying SVR for regression and prediction. Part II (Chapters 

3-9) illustrates the methods developed and applied in this Ph.D. work, discusses briefly the 

results obtained in the case studies, and provides general conclusions and some future works. 

Part III lists the references cited in Part I and Part II. Part IV is a collection of six selected 

papers, scientifically reporting the outcomes of the research work, which the readers are 

referred to for further details.  
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For what concerns Part I, the Introduction Chapter summarizes the different approaches for 

failure prognostics and presents the details of the reference case study, the objectives of this 

thesis and the organization of the thesis. According to the characteristics of the reference case 

study, after comparisons between SVM and ANN, SVM (SVR) is chosen as the basic approach 

for failure prognostics in this thesis. Chapter 2 reviews the challenges of the application of SVR 

and some solutions that have been proposed in the literature.  

Part II gives details of the approaches developed in this thesis under different situations 

introduced in Section 1.5, and it briefly reports application results on the case study of interest. 

Precisely, Chapter 3 (Paper I) describes the single Probabilistic Support Vector Regression 

(PSVR) model for prediction with small datasets and without pattern drifts, with an effective 

innovative strategy proposed for tuning hyperparameters. Experimental results show the 

efficiency and accuracy of the proposed strategy on the case study. A strategy for training a 

SVR model with selected FVs is also proposed in this Chapter. In order to guarantee the 

generalization ability, the model is built on the selected Feature Vectors (FVs) and aims at 

minimizing the Mean Squared Error (MSE) on the whole training dataset. Chapter 4 (Papers II 

& III) describes the proposed dynamic weighted ensemble approaches for prediction with large 

datasets and without pattern drifts. Instead of fixing the weights of the sub-models during 

training and testing, the weight of each sub-model for each data point is calculated on the basis 

of the fuzzy similarity presented in [179] and local fitness in Feature Vector Selection (FVS) 

[5]. The comparisons with the single PSVR model and the fixed-weighted ensemble show the 

superiority of the proposed dynamic weighting strategy on the case study. The computational 

burden brought by the dynamic weights calculations are acceptable considering the much better 

results. In Chapter 5 (Paper IV), online learning strategies are proposed for a single SVR model 

with a small dataset, and under nonstationary environmental and operational conditions, i.e. 

pattern drifts. Two types of pattern drifts are defined in this Chapter and a criterion is proposed 

for the online learning strategy to identify each type of pattern drifts. Different actions are 

undertaken to update the model according to the detected type of pattern drifts. An adaptive 

online learning ensemble is proposed in Chapter 6 (Paper V) to build an ensemble and update 

the weights of sub-models automatically, in the context of a large dataset prediction problem. 

Finally, by analyzing the geometrical properties of the data points in RKHS, a novel kernel 

method, named Reduced Rank Kernel Ridge Regression-II (RRKRR-II) is proposed in Chapter 

7 (Paper VI). RRKRR-II describes the linear relation between a predicted value and those of 

the selected FVs. Comparisons of the experimental results with various popular kernel methods 
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on five public datasets show that RRKRR-II gives always comparable prediction accuracy with 

the best results given by all the benchmark methods on the case study. In Chapter 8, some 

conclusions on the original contributions and perspectives are drawn. 

Figure 5 gives a pictorial view of the thesis structure, the research background, the objective of 

the thesis and the methodological approaches considered in the present work. 

Fig. 5 A pictorial view of the structure of this thesis.  
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2. CHALLENGES OF APPLYING SVR TO TIME SERIES DATA FOR 

FAILURE PROGNOSTICS 

The objective of this thesis is to develop SVR-based approaches for stationary and 

nonstationary environments for the leakage of first seal in RCP. SVR is a supervised learning 

technique from the field of machine learning applicable to regression. Rooted in the book 

“Statistical Learning Theory” and developed by Vladimir Vapnik and co-workers at AT&T Bell 

Laboratories in 1995, SVR is based on the principle of SRM [161].  

An important feature of SVR is that the solution is based only on those data points which are at 

the margin. These points are called Support Vectors (SVs). The linear SVR can be extended to 

handle nonlinear problems when the data is first transformed into a high dimensional feature 

space, i.e. RKHS, using a set of nonlinear basis functions. In RKHS, the data points can be 

expressed by a linear estimate function. An important advantage of SVR is that it is not 

necessary to implement this transformation and to determine the linear estimate function in 

RKHS: a kernel representation can be used instead, and then the solution is written as a 

weighted sum of the values of certain kernel functions evaluated at the SVs. According to the 

SRM principle [162], used in the construction of an SVR, the generalization error rate is upper 

bounded by a formula containing the training error and the Vapnik-Chervonenkis (VC) 

dimension, which describes the capacity of the model. 

2.1 Basics of SVR 

Suppose 𝑻 = {(𝒙𝑖, 𝑦𝑖): 𝑖 = 1, 2, … ,𝑁} is the training dataset. SVR finds a function 𝑓(𝒙) =

 𝝎𝒙 + 𝑏 that has at most 𝜀 deviation from the actually obtained targets 𝑦𝑖 for all the training 

data points, and at the same time is as flat as possible. In other words, we do not care about the 

errors as long as they are less than 𝜀, but will not accept any deviation larger than this. However, 

this may not always be the case, meaning that we also want to allow some error larger than 𝜀. 

Analogously to the soft margin loss function [8], which is adapted to SVR in [24], one can 

introduce slack variables 𝜉𝑖, 𝜉𝑖
∗ in the constraints of the optimization problem of SVR.  

For simplicity, we first introduce the linear SVR, whose associated optimization problem is  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  
1

2
‖𝝎‖2 + 𝐶∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑁
𝑖=1   



Challenges of applying SVR to time series data for failure prognostics 

- 18 - 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

{
 

 
𝑦𝑖 − 𝑓(𝒙) ≤ 𝜀 + 𝜉𝑖
𝑓(𝒙) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖, 𝜉𝑖
∗ ≥ 0

𝑓(𝒙) =  𝝎𝒙 + 𝑏

.             (2) 

The constant 𝐶 determines the trade-off between the flatness of 𝑓(𝒙) and the amount up to 

which deviations larger than 𝜀 are tolerated. This corresponds to dealing with an 𝜀-insensitive 

loss function which is shown in Figure 6 [87]. Only the data points outside the shaded region 

contribute to the cost. It turns out that in most cases the optimization problem in Equation (2) 

can be solved more easily in its dual formulation.  

Fig. 6 The soft margin loss setting for SVR [87]. 

The dual optimization problem of Equation (2) is  

𝐿 =
1

2
‖𝝎‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑁
𝑖=1 − ∑ (𝜂𝑖𝜉𝑖 + 𝜂𝑖

∗𝜉𝑖
∗)𝑁

𝑖=1 − ∑ 𝛼𝑖(𝜀 + 𝜉𝑖 − 𝑦𝑖 +𝝎𝒙𝒊 + 𝑏)
𝑁
𝑖=1 −

∑ 𝛼𝑖
∗(𝜀 + 𝜉𝑖

∗ + 𝑦𝑖 −𝝎𝒙𝒊 − 𝑏)
𝑁
𝑖=1 .              (3) 

Here 𝐿  is the Lagrangian and 𝜂𝑖 , 𝜂𝑖
∗ , 𝛼𝑖 , 𝛼𝑖

∗  are positive Lagrange multipliers. By 

substituting the partial derivatives of 𝐿 with respect to the primal variables, i.e. 𝝎, 𝑏, 𝜉𝑖, 𝜉𝑖
∗, 

into Equation (3), the dual optimization problem becomes 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 
1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝑁

𝑖,𝑗=1 𝒙𝑖𝒙𝑗 − 𝜀 ∑ (𝛼𝑖 + 𝛼𝑖
∗)𝑁

𝑖=1 + ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)𝑁

𝑖=1   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑁

𝑖=1 = 0 𝑎𝑛𝑑 𝛼𝑖, 𝛼𝑖
∗ ∈ [0, 𝐶].         (4) 

The partial derivative of 𝐿 with respect to the primal variable 𝝎 shows that 𝑓(𝒙) can be 

rewritten as 

𝑓(𝒙) =  ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝒙𝑖𝒙

𝑁
𝑖=1 + 𝑏.             (5) 
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Equation (5) is the so-called support vector expansion, i.e. 𝝎 can be described as a linear 

combination of the training data points. In such sense, the complexity of a function’s 

representation of SVR is independent of the dimensionality of the input space, and depends 

only on the number of SVs. 

The linear SVR predictor described in Equation (5) solves the linear regression problem. In the 

case of nonlinear regression, the training data inputs are mapped into a high-dimensional feature 

space, i.e. RKHS, by mapping 𝝋  as described in [109]. Then, the standard linear SVR 

predictor described above is applied to the data points in the feature space, where the mapping 

of the training data points allows describing their complex relationship as a linear one.  

In SVR, we do not need to know explicitly the mapping 𝝋. By introducing the kernel product 

describing the inner product of two inputs in the feature space, i.e. 𝑘(𝒙𝑖, 𝒙𝑗) = 𝝋(𝒙𝑖) 𝝋(𝒙𝑗), 

the optimization problem in Equation (4) can be rewritten as 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 
1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝑁

𝑖,𝑗=1 𝑘(𝒙𝑖, 𝒙𝑗) − 𝜀 ∑ (𝛼𝑖 + 𝛼𝑖
∗)𝑁

𝑖=1 + ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)𝑁

𝑖=1   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑁

𝑖=1 = 0 𝑎𝑛𝑑 𝛼𝑖, 𝛼𝑖
∗ ∈ [0, 𝐶],         (6) 

and the expansion of 𝑓(𝒙) can be rewritten as  

𝑓(𝒙) =  ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑘(𝒙𝑖, 𝒙)

𝑁
𝑖=1 + 𝑏.            (7) 

SVR has been widely used in different domains with promising results, such as inverse 

geosounding problem [43], seismic liquefaction potential [39], geo- and environmental sciences 

[37], [92], [123], protein fold and remote homology detection [124], image retrieval [148], 

facial expression classification [42], end-depth and discharge prediction in semi-circular and 

circular shaped channels [27], traffic speed and travel time prediction [26], breast cancer 

prognosis [91], underground cable temperature prediction [47], etc. But there are still some 

challenges for applying SVR approaches, including high computational complexity with large 

datasets, tuning of hyperparameters (e.g. 𝐶, 𝜀 and parameters related to the kernel function) 

and adaptive learning in nonstationary environments. 

2.2 Reducing computational complexity 

The computational complexity of training a SVR model increases exponentially with the size 

of the training dataset [48], [110]. For a large dataset, the computation time may become 

inacceptable. In the literature, there are three directions to reduce the computational complexity.  
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The first direction consists in dividing the training dataset into sub-datasets, and then training 

an ensemble of SVR models. The main advantage of the ensemble approach is to increase the 

generalization ability of the model, and thus to decrease the risk of overfitting [20], [55], [159], 

[160].  

The second direction consists in reducing the computational complexity related to the solving 

process of the optimization problem. In [34], the authors show that for a low-rank kernel matrix 

it is possible to design a better interior point method in terms of storage requirements as well 

as computational complexity. They, then, suggest an efficient use of a known factorization 

technique to approximate a given kernel matrix by a low rank matrix, which in turn will be used 

to feed the optimizer. Several approaches are proposed to build a solution by solving a sequence 

of small scale problems: popular examples are stochastic gradient ascent algorithms such as the 

Kernel-Adatron [75] and the Sequential Minimal Optimization (SMO) [119], and active set 

methods, such as Chunking [12], Decomposition [113] and Shrinking [60]. The chunking 

algorithm starts with an arbitrary subset (chunk of data, working set) which can fit in the 

memory and solves the optimization problem on it by the general optimizer. SVs remain in the 

chunk, while other points are discarded and replaced by a new working set with gross violations 

of Karush-Kuhn-Tucker (KKT) conditions. SMO takes the decomposition idea to an extreme 

and optimizes a subset of two points at each iteration. The power of SMO derives from the fact 

that no extra optimization package is required, since an analytical solution for a two-point 

optimization problem can always be given explicitly. Dong et al. [29] introduce a parallel 

optimization step to quickly remove most of the non-support vectors, where block diagonal 

matrices are used to approximate the original kernel matrix so that the original problem can be 

split into hundreds of sub-problems which can be solved more efficiently. In addition, some 

effective strategies such as kernel caching and efficient computation of kernel matrix are 

integrated to speed up the training process. SVMlight [61] is a general decomposition algorithm, 

where a good working set is selected by finding the steepest feasible direction of descent with 

q nonzero elements. The q variables that correspond to these elements compose the working 

set. 

The last direction for reducing the computational burden associated to SVR consists in reducing 

the size of the training dataset by preprocessing. Some approaches are based on the 

characteristics of the input vector in RKHS, e.g. KPCA [171], Feature Vector Selection (FVS) 

[5], convex Hull vertices selection [54], Orthogonal Least Squares (OLS) regression [23], 

Minimum Enclosing Ball (MEB) [152], Sparse Online Gaussian Process (SOGP) [16] etc. 
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Other methods are based on maximizing the prediction accuracy, e.g. orthogonal least squares 

learning algorithm [23], Fisher Discriminant Analysis [140], significant vector learning [35], 

kernel F-score feature selection [120], etc. 

2.3 Tuning of hyperparameters 

Hyperparameters play a critical role in the prediction performance of a SVR model. Many 

approaches have been proposed for tuning hyperparameters, but none of the proposed 

approaches is efficient and accurate in all applications. In [19], Analytic Parameter Selection 

(APS) is proposed to calculate the hyperparameters values directly from the training dataset. 

But it is shown that a combination of APS and Genetic Algorithm (GA) can give better 

prediction results [183]. In [86] and [185], a Particle Swarm Optimization (PSO)-based 

approach for parameter determination and feature selection for SVR is proposed, and the 

method has the advantage of no loss of the prediction accuracy. By maximizing the evidence in 

the Bayesian-based SVR, one can systematically tune hyperparameters and select input 

features, while the evidence gradients are expressed as the averages over the associated 

posterior and can be approximated using Hybrid Monte Carlo (HMC) sampling [41]. The novel 

method proposed in [184] uses Particle Filtering (PF) to estimate the hyperparameters according 

to the whole measurement sequence up to the last observation instance. By treating the SVR 

model as the observation equation of a particle filter, this method allows updating the 

hyperparameters dynamically when a new observation comes. 

2.4 SVR adaptive online learning 

Many efforts of research on machine learning have been devoted to studying situations in which 

a sufficiently large and representative dataset is available from a fixed, albeit unknown, 

distribution. In real-world applications, the SSC of interest is usually operated in nonstationary 

and evolving environmental and operational conditions. Then, to be of practical use, models 

must be capable of timely adapting to changes in the existing patterns, and of learning newly 

arising patterns in the dynamic environment of SSC operation. These approaches for 

nonstationay environment can be divided into adaptive single models and online learning 

ensembles. 

Some online learning approaches for single SVR models have been proposed in the literature, 

for SVR to adaptively learn new data patterns. In these approaches, the online learning of a 

trained SVR model is mostly based on the prediction accuracy and/or characteristics of the input 
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vectors of the data points. The strategy is to add data points as basis for the SVR model when 

they are not predicted well and/or contain new information on the input space. In [107], the 

authors propose a novel approach based on an adaptive KPCA and SVR for real-time fault 

diagnosis of High-Voltage Circuit Breakers (HVCBs). In [167], the authors propose an online 

core vector machine classifier with adaptive MEB adjustment. In [16], the authors combine a 

Bayesian online algorithm with a sequential construction of relevant subsets of the training 

dataset and they propose a Sparse On-line Gaussian Process (SOGP) approach to overcome the 

limitation of Gaussian processes on large datasets. The methods above consider only the 

characteristics of the inputs to update the model, not the prediction accuracy. In [15], the authors 

propose an online recursive algorithm to “adiabatically” add or remove one data point in the 

model while retaining the KKT conditions on all the other data points in the model. In [64], the 

authors propose a multiple incremental algorithm for SVR, based on the previous results. These 

incremental and decremental learning approaches feed to the model all new points, including 

noisy and useless ones, without selecting the most informative ones. In [25], the authors propose 

online passive-aggressive algorithms for classification and regression, but the method considers 

only the prediction accuracy as the update criterion. In [67], the authors use classical stochastic 

gradient descent within the feature space, and some straightforward manipulations, for online 

learning with kernels. The gradient descent method destroys completely the KKT conditions, 

which instead are necessary for building a SVR model.  

Online learning ensemble approaches are also effective strategies for tackling a nonstationary 

environment. There are different types of approaches for online learning ensembles, e.g. data-

chunk-based approaches, drift detector-based approaches, instance-based approaches, etc. 

Accuracy Weighted Ensemble (AWE) is proposed in [170] to train a new classifier on each new 

incoming data chunk and to update the sub-models’ weights according to their accuracy on the 

past and present data chunks. The Streaming Ensemble Algorithm [146] builds separate sub-

models on sequential data chunks, which are then combined into a fixed-size ensemble using a 

heuristic replacement strategy. Learning++.NSE [101] trains a new sub-model on the new data 

chunk if the prediction error exceeds a predefined threshold, and combines it with previous sub-

models through a dynamically modified weighted majority voting. The sub-models’ weights 

are calculated with their weighted-sum performance on different data chunks. All approaches 

mentioned so far train new sub-models on the new data chunk. Similar approaches are also used 

in [13], [32] and [175]. The problem with these data chunk-based approaches is the 

determination of the size of the data chunk: bigger chunks give more stable sub-model 
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estimation but different drifts may be contained in one sub-model. On the other hand, smaller 

chunks can better separate different drifts but lead to worse sub-model estimation. There is also 

a delay in the ensemble for following the ongoing patterns, as the ensemble is updated only 

when a new data chunk is available, and the patterns in the ensemble may no longer be the 

ongoing ones. 

In order to overcome these difficulties, various online learning ensemble approaches are 

proposed in the literature, which may combine a drift detector with online learning ensemble to 

alarm the need for a new sub-model, or update the ensemble with each single data point. 

Adaptive Classifier Ensemble (ACE) [108] slowly builds a new sub-model when the sub-

models’ error with the new data reaches a certain threshold. In [126], pattern drifts are detected 

by measuring the normalized weighted average output of the sub-models in the ensemble. 

Diversity analysis is used in [94] to divide different drifts. The most popular drift detector 

algorithm is the Drift Detection Method (DDM) [115], which models the prediction error on 

each data point according to a binominal distribution. A modified version of DDM, called 

EDDM, is proposed in [3], and it gives better results but is more sensitive to noise. A new 

approach for online learning ensemble, called Diversity for Dealing with Drift (DDD) is 

proposed in [93], and it manages to maintain ensembles with different diversity levels. The 

experimental results show that DDD gives robust and more accurate results.  

Although the drift detector-based approaches can solve the difficulty in deciding a good size of 

the data chunk, they, compared to instance-based updating approaches, still cannot update the 

ensemble once a pattern drift occurs, i.e. sufficient new data are needed before detecting and 

reacting to the pattern drifts. In [177], a theoretically supported framework for active learning 

of drifts in data streams is presented, and three active learning strategies are developed based 

respectively on uncertainty, dynamic allocation of labeling efforts over time and randomization 

of search space. AddExp in [72] adapts sub-models’ weights according to their actual losses in 

terms of prediction error, and a decreasing factor is integrated to reduce the weights of sub-

models which perform poorly. The Incremental Local Learning Soft Sensing Algorithm 

(ILLSA) [66] is also an instance-based approach which contains two parts: one is based on 

training different sub-models on data points from different patterns; the other part consists in 

updating the sub-models’ weights for each new data point, according to the posterior probability 

given by a Bayesian framework. Another instance-based approach, named Online Weighted 

Ensemble (OWE), is proposed in [142] to learn new data points incrementally in the presence 

of different types of pattern drifts and to retain old information in recurring patterns. The 
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instance-based updating approaches can learn the pattern drifts effectively and efficiently once 

they occur. But one main disadvantage is the computational complexity associated to updating 

the ensemble with every new data point. A dynamically weighted ensemble is proposed in [40] 

to store only the most relevant features to the learnt concept, an approach which in turn increases 

the memory efficiency. 

The previous three challenges are inevitable when developing SVR-based prognostic 

approaches. In this thesis, possible solutions for these three challenges are proposed for SVR-

based single model or ensemble approaches. 
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PART II: RESEARCH DEVELOPMENT 

This part is the main body of the thesis which includes 6 Chapters (from Chapter 3 to Chapter 

8) and presents the original contributions of the research work.  
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3. SINGLE SVR MODEL FOR FAILURE PROGNOSTICS 

In this Chapter, we consider the simplest situation with a small dataset, and without pattern 

drifts. Strategies for the preprocessing of the time series dataset and for tuning hyperparameters 

are proposed. The details of the experimental results on the reference case study of this thesis 

are reported in Paper I of Part IV. In this section, we first introduce the Bayesian version of 

SVR with error bar estimation presented in [87], followed by the proposed efficient strategy for 

tuning hyperparameters. Then, a modified version of the FVS introduced in [5] is presented 

and, then, the strategy for training a SVR model on the FVs selected from the training dataset 

is presented, aiming at reducing the computational complexity and at the same time, keeping 

the robustness of the model. 

3.1 Probabilistic Support Vector Regression (PSVR) for failure prognostics 

3.1.1 Basics of PSVR 

Bayesian probabilistic paradigm has been considered in combination with SVR [102], [103], 

[170]. Recently, it has been shown that SVRs can be interpreted as a Maximum A Posteriori 

(MAP) solution to a Bayesian inference problem with Gaussian priors and an appropriate 

likelihood function. The method using MAP for SVR estimation is called Probabilistic Support 

Vector Regression (PSVR). Bayesian approaches for SVR allow obtaining an error bar along 

with the prediction [87]. 

Let us assume that the input data is a 𝑛-dimensional set of vectors 𝑿 = {𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵}, 

independently drawn in 𝑹𝑝, and that we also have an independent sample from the target value 

𝒀 = {𝑦1, 𝑦2, … , 𝑦𝑁}, where 𝑦𝑖  ∈ 𝑹, 𝑖 = 1, 2, . . . , 𝑁.  

In regression methods, the final aim is to find an underlying function 𝑓(𝒙): 𝑹𝑝 → 𝑹 describing 

the relation between the input data and the target. We now briefly state the PSVR approach for 

the estimation of 𝑓(𝒙); further mathematical details on the derivation of the method can be 

found in the Appendix of Paper I, and in the references therein. 

We make the following assumptions: 

(1) Training data set 𝜞 = {𝑿, 𝒀}  follows an identical and independent distribution (i.i.d). 

(2) The a priori probability distribution is 𝑃[𝒇(𝑿)] ∝ exp (−
1

2
∥ 𝑃̂𝑓 ∥2), where ∥ 𝑃̂𝑓 ∥2 

is a positive semi-definite operator and 𝒇(𝑿) =  (𝑓(𝒙1), 𝑓(𝒙2),… , 𝑓(𝒙𝑁))
𝑇. 
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(3) The 𝜀-insensitive loss function is chosen as the loss function. 

(4) The covariance function is 𝐾(𝒙, 𝒙′), and 𝐾(𝒙𝑖, 𝒙𝑗) = exp (−
|𝒙𝑖−𝒙𝑗|

2

2𝛾2
), where 𝒙𝑖 , 𝒙𝑗 

are the input data points in 𝑿. 

The a posteriori probability of 𝒇(𝑿) can be written as 

𝑃[𝒇(𝑿)|𝚪] =  
[𝐺(𝐶,𝜀)]𝑁

√𝑑𝑒𝑡2𝜋𝐾𝑿,𝑿𝑃[𝚪]
exp{−𝐶 ∑ 𝐿𝜀(𝑦𝑖 − 𝑓(𝒙𝑖)) −

1

2
𝒇(𝑿)𝑇𝐾𝑿,𝑿

−1𝒇(𝑋)𝒙𝑖∈𝑿
},  (8) 

where 𝐺(𝐶, 𝜀) =  
1

2

𝐶

𝐶𝜀+1
, 𝐾𝑿,𝑿  = [𝐾(𝒙𝑖, 𝒙𝑗)] is the covariance matrix of the data points of 𝑿 

and 𝐿𝜀(𝑥) is the 𝜀-insensitive loss function. 

We find the maximum of Equation (8) using the so-called MAP. This requires finding the 

minimum of the following function 

𝑅𝐺𝑆𝑉𝑀(𝑎) =  𝐶 ∑ 𝐿𝜀(𝑦𝑖 − 𝑎(𝒙𝑖)) +
1

2
𝒂(𝑿)𝑇𝐾𝑿,𝑿

−1𝒂(𝑿)𝒙𝑖∈𝑿
       (9) 

We can see that the risk of Gaussian SVR is equivalent to the standard SVR in Section 2.1. 

Following the discussion in [9], [38] and [102], [149], we can write the solution of the 

minimization problem associated to Equation (9) in the form of Equation (7). 

3.1.2 Error bar estimation 

In a Bayesian treatment of the prediction problem, error bars arise naturally from the predictive 

distribution. They are made up of two terms, one due to the a posteriori uncertainty (the 

uncertainty of 𝑓(𝒙)), and the other due to the intrinsic noise in the data [87]. Suppose that 𝒙 

is a test input vector, and that the corresponding value of the target is the random variable 𝑦, 

obtained adding to 𝑓(𝒙) an unknown noise 𝛿 with zero mean; then 

𝑃[𝚪|𝒇(𝑿)] ∝ exp (−𝐶 ∑ 𝑙(𝛿𝑖)
𝑁
𝑖=1 ).            (10) 

We can also obtain the density of the noise 𝛿 

𝑃[𝛿] =  
𝐶

2(𝐶𝜀+1)
exp (−𝐶𝑙𝜀(𝛿)),             (11) 

and the noise variance 

𝜎𝛿
2 = 

2

𝐶2
+
𝜀2(𝐶𝜀+3)

3(𝐶𝜀+1)
.                (12) 

The conditional probability distribution of 𝑓(𝒙) given 𝚪 can instead be written as 
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𝑃[𝑓(𝒙)|𝚪] =  
1

√2𝜋𝜎𝑡
exp {−

(𝑓(𝒙) − 𝑓∗(𝒙))2

2𝜎𝑡
2 },           (13) 

with 

𝜎𝑡
2(𝒙) =  𝐾(𝒙, 𝒙) − 𝐾𝑿𝑀,𝒙

𝑇 𝐾𝑿𝑀,𝑿𝑀
−1 𝐾𝑿𝑀,𝒙 and 𝑿𝑀 is the set of all the SVs. 

Consequently, the error bar width of the prediction corresponding to the test input point 𝒙 is  

𝜎2(𝒙) =  𝜎𝛿
2 + 𝜎𝑡

2(𝒙) =  
2

𝐶2
+
𝜀2(𝐶𝜀+3)

3(𝐶𝜀+1)
+  𝐾(𝒙, 𝒙) − 𝐾𝑿𝑀,𝒙

𝑇 𝐾𝑿𝑀,𝑿𝑀
−1 𝐾𝑿𝑀,𝒙.    (14) 

3.1.3 Tuning of hyperparameters 

The challenge for applying PSVR is to find the best hyperparameters values, as they play a 

critical role in the performance of the PSVR model.  

A main advantage of PSVR is that it can provide an error bar estimation along with the predicted 

value. According to the special output of PSVR, a simple and effective strategy is proposed for 

the tuning of hyperparameters. 

The strategy proposed to determine the best values for the three hyperparameters is a simple 

but effective grid search based on interpolation. Each parameter is initially selected within a 

given interval. The best values are to be found by minimizing the following criterion 

𝐶1∑ 𝜎𝑖
𝑁
𝑖=1 + 𝐶2∑ |𝑦̂𝑖 − 𝑦𝑖|

𝑁
𝑖=1   (15) 

where 𝜎𝑖 is the error bar width, 𝑦̂𝑖 =  𝑓(𝒙𝑖) and 𝑦𝑖 are separately the predicted value and 

the target value of the 𝑖𝑡ℎ input data point. 𝐶1 and 𝐶2 are the two weights of the two parts 

of the objective function (Equation (15)), the error bar width and the bias of the prediction. If 

𝐶1 is smaller than 𝐶2, it means that we pay more attention to the variance of the prediction 

(error bar width) than to the accuracy in the prediction (distance between target and predicted 

values), and vice versa for 𝐶1 bigger than 𝐶2.  

Compared to the strategy of finding the best hyperparameters values by the minimization of the 

prediction errors, the proposed strategy avoids the case where the prediction accuracy is very 

high but the prediction interval are very large. The grid search method used in tuning 

hyperparameters is efficient and uses less time than GA, PSO, etc. Normally the GA and PSO 

can find better values for hyperparameters but compared to the improvement on the prediction 

accuracy, the time consumed is not necessary. The grid search method can already give good 

enough results.  
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3.1.4 Application in the reference case study 

One-day ahead prediction with PSVR for Scenario 1 in Table II is carried out as the case study. 

Partial autocorrelation calculates the correlation between the target and different time laps and 

three historical values are chosen as the inputs according to Figure 7. We fix 𝐶 ∈ [10, 105], 

𝛾 ∈ [10−7, 103] , 𝜀 ∈ [10−3, 10−1] , 𝐶1 = 4  and 𝐶2 = 5  by a trial-and-error process. For 

each parameter, a geometric sequence included in the corresponding interval is considered. In 

this applicative context, geometric sequences are better than arithmetic ones, since the 

parameter’s influence on the objective function (Equation (10)) is highly non-linear. For 𝐶, 𝜀 

and 𝛾, geometric sequences of size 4, 10 and 4 are formed respectively. Note that for different 

training data sets, the best values of the parameters can change: hence, the tuning of the 

parameters in a feasible computational time is a relevant issue. In this case, the optimization of 

the objective function (Equation (9)) leads to the following choice for 𝐶, 𝜀 and 𝛾: (6309.6, 

0.0032, 7).  

 

Fig. 7 Empirical partial autocorrelation function of the time series of the target values with respect to time 

laps. 

The prediction interval empirical coverage estimated on the whole test dataset is 91.50%. The 

MSE is 5.4332*10-5. The Mean Relative Error (MRE) is smaller than 4%. If the model is trained 

using a bigger training data set, the relative error and absolute error will decrease. Comparison 

with Auto-Associative Kernel Regression (AAKR) method proves the accuracy of PSVR on 

this case study.  
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3.2 Training a SVR model on Feature Vectors (FVs) 

3.2.1 Feature Vector Selection (FVS) 

In [5], the authors propose a FVS method to select a subset of the training data points (i.e. FVs), 

which can represent the dimension of the whole dataset in RKHS. The other data points can all 

be expressed as a linear combination of the selected FVs in RKHS. 

Suppose (𝒙𝑖, 𝑦𝑖), for 𝑖 = 1, 2, … ,𝑁 are the training data points and the mapping φ(𝒙) maps 

each input vector 𝒙𝑖 into RKHS with the mapping 𝝋𝑖, for 𝑖 = 1, 2, … , 𝑇. The kernel 𝑘𝑖,𝑗 =

𝑘(𝒙𝑖, 𝒙𝑗) is the inner product between 𝝋𝑖 and 𝝋𝑗. Suppose that the FVs selected from the 

training dataset are {𝒙1, 𝒙2, … , 𝒙𝐿} and the corresponding mapping is S = {𝝋1, 𝝋2, … , 𝝋𝐿}: 

the process for selecting the new next FV is to calculate {𝑎𝑛𝑒𝑤,1, 𝑎𝑛𝑒𝑤,2, … , 𝑎𝑛𝑒𝑤,𝐿} which 

gives the minimum of Equation (16), with  𝝋𝑛𝑒𝑤 being the mapping of the new input vector 

𝒙𝑛𝑒𝑤: 

𝛿𝑛𝑒𝑤 = 
‖𝝋𝑛𝑒𝑤−∑ 𝑎𝑛𝑒𝑤,𝑖𝝋𝑖

𝐿
𝑖=1 ‖

2

‖𝝋𝑛𝑒𝑤‖
2

.             (16) 

The minimum of 𝛿𝑛𝑒𝑤 can be expressed with an inner product, as shown in Equation (17): 

min𝛿𝑛𝑒𝑤 = 1 −
𝐾𝑆,𝑛𝑒𝑤
𝑡 𝐾𝑆,𝑆

−1𝐾𝑆,𝑛𝑒𝑤

𝑘𝑛𝑒𝑤,𝑛𝑒𝑤
,            (17) 

where 𝐾𝑆,𝑆 = (𝑘𝑖,𝑗), 𝑖, 𝑗 = 1,2, … , 𝐿  is the kernel matrix of S  and 𝐾𝑆,𝑛𝑒𝑤 = (𝑘𝑖,𝑛𝑒𝑤), 𝑖 =

1,2, … , 𝐿 is the vector of the inner product between 𝝋𝑛𝑒𝑤. The expression  

 𝐽𝑆,𝑛𝑒𝑤 =
𝐾𝑆,𝑛𝑒𝑤
𝑡 𝐾𝑆,𝑆

−1𝐾𝑆,𝑛𝑒𝑤

𝑘𝑛𝑒𝑤,𝑛𝑒𝑤
               (18) 

is the local fitness of 𝒙𝑛𝑒𝑤 with respect to the present feature space S. If 1 − 𝐽𝑆,𝑛𝑒𝑤 is zero, 

the new data point is not a new FV; otherwise, it is a new FV and is added to S. The multipliers 

𝒂𝑛𝑒𝑤 = {𝑎𝑛𝑒𝑤,1, 𝑎𝑛𝑒𝑤,2, … , 𝑎𝑛𝑒𝑤,𝐿} can be calculated by  

𝒂𝑛𝑒𝑤 = 𝐾𝑆,𝑛𝑒𝑤
𝑡 𝐾𝑆,𝑆

−1
.                (19) 

With the global fitness defined as in Equation (20), the FVS procedure proceeds to select a 

subset of training data points with minimal size, which gives zero global fitness. The details for 

FVS is shown in Figure 8. 

 𝐽𝑺 = ∑ 𝐽𝑺,𝑖
𝑇
𝑖=1                  (20) 
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In order to be more effective, a positive threshold 𝜌 is introduced to make the FVS procedure 

faster. Different from the original work, after the selection of a new FV, the training dataset is 

reduced as 𝑻𝑟 = 𝑻𝑟\𝐄 with 𝐄 = {(𝒙𝑘, 𝑦𝑘) 𝑎𝑛𝑑 (𝒙𝑖 , 𝑦𝑖): 1 − 𝐽𝑺,𝑖  ≤  ρ}. This can faster the 

selection process. 

 

Fig. 8 Pseudo-code for FVS. 

3.2.2 Train a SVR Model on FVs 

When training a SVR model on the selected FVs, in order to keep the generalization ability and 

avoid the overfitting problem, the model is trained with respect to minimize the MSE on the 

whole training dataset, i.e. 𝝎  in Equation (2) is a kernel expansion of the FVs, and the 

objective function in Equation (2) is still the minimization on the whole N training data points. 
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4. SVR-BASED ENSEMBLE FOR FAILURE PROGNOSTICS 

For the situation of a large dataset without pattern drifts, the implementation of a single SVR 

model is time-consuming, as the computational complexity of training a SVR model increases 

exponentially with the size of the dataset. An ensemble approach is a better choice for such a 

situation. In this Section, different strategies for building SVR-based ensembles are introduced 

and details are reported in Papers II and III of Part IV. One novelty of the proposed ensembles 

is the dynamic-weighting strategy that calculates dynamically the weights of sub-models for 

each new input vector, before knowing the true output value, while most of the dynamic-

weighted ensemble approaches in the literature update the weights according to prediction 

accuracy. 

4.1 Basics of ensemble models 

An ensemble-based approach is obtained by training diverse sub-models, and, then, combining 

their results with proper strategies. It can be proven that this can lead to superior performance 

with respect to a single model approach [7]. Ensemble-based approaches attempt to take 

advantage of each sub-model, by fusing results from all the sub-models. A simple paradigm of 

a typical ensemble-based approach is shown in Figure 9.  

For building an ensemble, we need to answer three questions: how to divide the whole training 

dataset into different sub-dataset for each sub-model and to maximize the diversity between 

different sub-datasets; how to calculate the weights of each sub-model in such a way that the 

correct decisions are amplified, while the incorrect ones are counteracted.; how to combine the 

results from different sub-models.  

 

Fig. 9 Paradigm of an ensemble approach. 
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4.2 Strategies for deciding the sub-dataset for each sub-model 

In the case of multiple scenarios, a natural strategy is to train a SVR model on each scenario. 

Then each sub-model is specified for a certain development of failure. 

The second strategy is to divide the whole training dataset into different groups according to 

their output value, i.e. divide the data points into different groups where the output values of 

each group are in a certain interval. This method is efficient for time series data without abrupt 

changes where the inputs are some historical values of the output. The input values and output 

value are not so different. The sub-model trained on a group of data points is an expert on data 

points whose output values are in the range of outputs values of this group. 

The third way is for the SVR model using Radial Basis kernel Function (RBF). The mapping 

related to RBF maps the data points into the high-dimensional RKHS where the norm of each 

data points is unit and the difference between different data points is only the angle. Thus, in 

the third strategy for deciding the training dataset for each sub-model, an angle-clustering 

algorithm, as shown in Figure 10, is used to divide all the training data points into a prefixed 

number (e.g. 𝑐) of clusters. Then, a SVR model can be trained on data points of each cluster. 

 

Fig. 10 Pseudo-code of angle-clustering algorithm. 
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In order to reduce the computational burden of training a SVR model with large dataset, FVS 

proposed in [5] is used to select a small part of the whole training data points to train the SVR 

model, whereas the other data points can all be represented by a linear combination of the 

selected data points (FVs). Then a SVR is trained on the FVs with strategy proposed in Section 

3.2.2. 

4.3 Combination of the outputs from different sub-models 

An ensemble-based approach is obtained by combining diverse models, to obtain superior 

performance with respect to that obtained with a single model. The strategy of combining 

different algorithms into an ensemble has been found attractive in a wide variety of research 

fields. There are two ways for obtaining a final result from those of different sub-models: one 

is to select the best sub-model in the ensemble, and to use it to give the prognostics, while the 

other one is to obtain the prediction as weighted sum of the sub-model results [28]. The latter 

one is most used in recent research. 

In this thesis, all ensemble approaches integrate a dynamic-weighting strategy. In the literature 

on ensemble methods, weights of sub-models are calculated during the training part by 

maximizing the prediction accuracy, and few of them change the weights during the prediction, 

where the weights are modified only when one or several sub-models are updated with new 

data points, or new sub-models are added to the ensemble. The dynamic-weighting strategy 

proposed in this thesis is to calculate the weight of each sub-model for each data point, i.e. for 

different data points the weights of sub-model are recalculated. The reason behind this is that 

sometimes the ensemble cannot give good prediction results because the sub-models giving 

good results are not given more important weights. During the prediction, one sub-model 

performs well only on certain data points considering its training data points, and bad on the 

others. Thus, dynamic-weighting strategy needs to be integrate in ensemble approach to adapt 

the weights to different data points. 

The output of the ensemble is a weighted sum of the outputs of all the outputs of sub-models, 

as shown in Equation (21). In the equation, the weights are a function of time 𝑡 and depend on 

the data points. 

𝑦̂(𝑡) =  ∑ 𝜔𝑗(𝑡)𝑦̂𝑗
𝑀
𝑗=1 (𝑡)               (21) 
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4.4 Calculating the weights for different sub-models 

Two strategies are proposed to calculate the weights of sub-models for each data point. One is 

based on the fuzzy similarity between the new data point and the training data points as 

proposed in [179]; the other one is based on local fitness calculated by Equation (18). The 

proposed approach can calculate dynamically the weights depending on different data points 

and the weights are assigned before knowing the true output of the data point. 

4.4.1 Weights calculation based on fuzzy similarity analysis 

Suppose there are totally 𝑁𝑖 training data points for the i-th sub-model and the new data point 

is (𝒙(𝑡), 𝑦(𝑡)). First we calculate the Euclidean distance between the new data point and all 

the training data points of the i-th sub-model and find the minimal Euclidean distance, suppose 

it is 𝑑𝑖(𝑡0). The second step is use Equations (22) and (23) to calculate the raw weight of the 

i-th sub-model for the new data point, as proposed in [179]. Suppose there are M sub-models, 

and the third step is to normalize the weights for all sub-models with Equation (24). 

𝜇 = exp (−(−ln (𝛼)/𝛽2)𝑑𝑖(𝑡0)
2)             (22) 

𝑤𝑖 = 𝜇exp (−
1−𝜇

𝛽
)                (23) 

𝑤𝑖 = 𝑤𝑖/∑ 𝑤𝑗
𝑀
𝑗=1                 (24) 

In Equation (22), the arbitrary parameters  and  can be set by the analyst to shape the desired 

interpretation of similarity into the fuzzy set: the larger the value of the ratio -ln() / 2, the 

narrower the fuzzy set and the stronger the definition of similarity. 

4.4.2 Weights calculation based on local fitness 

For a new data point, first we calculate the local fitness 𝐽𝑖,𝑛𝑒𝑤  of this point with respect to the 

selected FVs from the training data points of the i-th sub-model with Equation (18). Then 

Equation (25) is used to calculate the weights of each sub-model for this new data point. 

𝜔𝑖 =
1/(1−𝐽𝑖,𝑛𝑒𝑤+𝜏)

∑ 1/(1−𝐽𝑗,𝑛𝑒𝑤+𝜏)
𝑀
𝑗=1

               (25) 

In Equation (25), τ is a very small value so that it works in the case 𝐽𝑖,𝑛𝑒𝑤 = 1. 

Note that the weights calculated in Sections 5.3.1 and 5.3.2 are all functions of the new data 

point, i.e. they change with different data points. 
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4.5 Applications in reference case study 

In the case study, we consider all the scenarios in Table II available for training SVR-based 

ensemble with the methods proposed for building different sub-models, calculating the sub-

models’ weights and fusing the prediction results from sub-models.  

Three strategies for building an ensemble are proposed in the related papers, noted Ensemble 

1, 2 and 3. Ensembles 1 and 2 train sub-models with the first and second strategies proposed in 

Section 4.2 and the weights are calculated with fuzzy similarity analysis presented in Section 

4.4.1. Ensemble 3 integrate the third strategy in Section 4.2 for training diverse sub-models and 

their weights are calculated with local fitness in FVS presented in Section 4.4.2. For 

comparisons, a single SVR model and a fixed-weighted ensemble are applied for the case study 

as benchmark approaches. Figure 11 shows the boxplot of the MRE on different scenarios given 

by the proposed ensembles and the benchmark approaches. It is clear that the proposed 

ensembles give better results than the benchmarks. We can also note that the proposed 

ensembles give different prediction results as different strategies are used in the ensemble. 

Ensemble 3 gives the worst result as the FVS selects only a small part of the training dataset to 

train the model, and it is inevitable that some useful information are neglected by the two 

tolerance parameters as shown in Section 3.2.1. Ensemble 2 gives worse result than Ensemble 

1 because the training dataset for some sub-models are not large enough.  

Fig. 11 Boxplot of the MRE on different scenarios.  
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5. ADAPTIVE LEARNING OF SINGLE SVR MODEL FOR FAILURE 

PROGNOSTICS 

In the previous two Chapters, the training and test datasets are supposed to be generated in 

stationary environment, i.e. the data points follow an identical and independent distribution. In 

the case that the component is operated in nonstationary environment, the distribution 

generating the data points may change with time. In such case, we need to provide the model 

with adaptive learning ability. In this Chapter, we introduce the approach (named Online-SVR-

FID) proposed in this thesis for adaptive online learning of single SVR model based on FVS. 

Details on the experimental results are reported in Paper IV of Part IV. In the next section, an 

online learning ensemble for drifting time series datasets is proposed. 

5.1 Methodology 

Two types pattern drifts are defined in the thesis and the update strategies for a single SVR 

model according to these two types of pattern drifts are proposed. A new data point is a new 

pattern (or new FV) if the mapping of its input vector in RKHS cannot be represented by a 

linear combination of the mapping of existing patterns, while it is a changed pattern if the 

mapping can be represented by such a linear combination but the bias of the predicted value is 

bigger than a predefined threshold. Once a new data point is judged as a new pattern, it is 

immediately added to the present model no matter the bias of its prediction is small or big, thus 

keeping the richness of the patterns in the model. A changed pattern is used to replace a carefully 

selected existing pattern instead of adding it into the model, thus keeping the nonlinear 

independence in RKHS among all the data points in the model, which is critical for FVS 

calculation. When adding or removing a FV in the model, instead of retraining the model, 

Incremental & Decremental Learning can construct the solution iteratively. 

Fig. 12 Paradigm of Online-SVR-FID. 
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Figure 12 is the paradigm of Online-SVR-FID, and Figure 13 presents the pseudo-code of the 

proposed approach.  

 

Fig. 13 Pseudo-code of Online-SVR-FID. 

When a new data point is judged as a changed pattern, it is used to replace one data point in the 

Initialization: 

Training dataset: 𝑻𝑟 = {(𝒙𝑖 , 𝑦𝑖)}, for 𝑖 = 1, 2,… , 𝑇 

Testing dataset: 𝑻𝑒 = {(𝒙𝑖 , 𝑦𝑖)}, for 𝑖 = 𝑇 + 1, 𝑇 + 2,… , 𝑇 + 𝐻 

Feature space: S = [ ] 

Threshold of local fitness: ρ 

Threshold of bias: δ 

Offline Training: 

First FV in S: 

For i = 1 to T calculate 

𝐒 = {𝒙𝑖}, compute global fitness 𝐽𝑺.  

End for. 

Select the point which gives the maximum of the global fitness as the first FV and add it to S 

as the first FV. 

  𝑻𝑟 is reduced as the complement of S in 𝑻𝑟, i.e. 𝑻𝑟 = 𝑻𝑟\𝑺. 

Second and the other FVs: 

Calculate local fitness for data points in 𝑻𝑟 with the present feature space S; 

Select the data point k which gives the minimum of local fitness;  

If 1 − 𝐽𝑺,𝑘 > ρ, this point is a new FV and added to S; 𝐄 = {(𝒙𝑘 , 𝑦𝑘) 𝑎𝑛𝑑 (𝒙𝑖 , 𝑦𝑖): 1 − 𝐽𝑺,𝑖  ≤  ρ} 
and 𝑻𝑟 is reduced as the complement of 𝐄 in 𝑻𝑟, i.e. 𝑻𝑟 = 𝑻𝑟\𝐄; 

If 1 − 𝐽𝑺,𝑘 ≤ ρ, end the process of FVs selection; 

Train the SVR model on the FVs in S. 

Online Learning: 

When a new data point (𝒙𝑁 , 𝑦𝑁) is available DO   

Calculate the local fitness 𝐽𝑺,𝑁 of this new data point; 

If 1 − 𝐽𝑺,𝑁 > ρ 

ADDITION: this new data point is a new FV; add it to S and add this new data point in the 

model using the Incremental Learning. Go back to the beginning of Online learning and wait 

for the next new data point. 

If 1 − 𝐽𝑺,𝑁 ≤ ρ, verify the bias between the target of this new data point and the predicted value  

   If the bias is smaller than δ 

Keep the model unchanged. Go back to the beginning of Online learning and wait for 

the next new data point. 

Otherwise 

UPDATE: find the FV with least contribution for the SVR models and nonzero value in 

Eq. (4). Unlearn this FV found with decremental learning and add the new data point 

with incremental learning. Go back to the beginning of Online learning and wait for the 

next new data point. 
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present model. The process is as follow: 

1. A vector 𝒎 = (𝑚1,𝑚𝟐, … ,𝑚𝒍) is used to record the contribution of each FV to the SVR 

models. Each value in 𝒎 corresponds to a FV in the model.  

2. 𝒎 is set to be a zero vector before Offline Training. 

3. When the model M is trained during Offline Training with the selected FVs from the 

training dataset, 𝑚𝑖 is increased by 1 if the corresponding FV is a SV, i.e. its multiplier in 

Equation (5) is not zero. Otherwise, i.e. for a FV with zero multiplier, its contribution 𝑚𝑖 

is zero. 

4. Each time the model is added with one new data point, a new 𝑚𝒍+𝟏 is added to 𝒎 to 

record the contribution of the new FV in the model. After the model is updated with 

ADDITION, the contribution 𝑚𝑖 of each FV in the model is updated with the contribution 

update rules: if the data point is a SV in the new updated model, its new contribution is 

calculated as 𝑚𝑖
𝑛𝑒𝑤 ← 𝜏 ∗ 𝑚𝑖 + 1, with 𝜏  a positive constant smaller than 1, i.e. the 

contribution of a FV in the new model is more weighted than that in the old models; 

otherwise it is kept unchanged. 

5. When a change is detected with respect to the old patterns, the first step is to calculate the 

values 𝒂𝑁 in Equation (16) for the new data point with Equation (19) according to the 

FVS introduced in Section 4.2. Then, among all the FVs in the model with non-zero values 

in 𝒂𝑁 , the one with least contribution, say 𝑚𝐼 , is deleted from the model using 

Decremental Learning as in [15] and 𝑚𝐼 is reset to zero. If there are several FVs with the 

same contribution and the least contribution, the FV to be replaced is selected as the oldest 

one among them. 

6. The new data point is added to the model using Incremental Learning in [15] and it inherits 

the contribution 𝑚𝐼, which is zero for now. The vector 𝒎  and the feature space S are 

updated, and also the contribution of the FV is updated according to the rules in step 4 

above. 

Note that the FV in the model with least contribution to the SVR models among all those with 

non-zero values in the linear combination in Equation (16) is replaced by the new data point. 

This strategy for updating a changed pattern must and can keep the FVs in the model linearly 

independent, so that the Kernel matrix 𝐾𝑺,𝑺  in Equation (17) is invertible and the Online 

Learning can continue to be carried out. If a new pattern is added because of the noise, this 
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strategy can decrease the influence of the new data points and keep the capability of the model, 

as only one existing FV with least contribution is replaced. Note also that if a new data point is 

a new pattern, it is added instantly in the model, without consideration of the bias of its 

prediction, so that a maximal richness of the patterns are kept in the model. This is different 

from the online learning methods which consider only the prediction accuracy. The changed 

patterns are made of the points which can be expressed as a linear combination of existing 

patterns in RKHS, but with a bias of prediction larger than the preset threshold δ. This allows 

replacing a changed pattern instead of adding it in the model, in order to keep the FVs in the 

model linearly independent and up-to-date. 

Note that proper selection of the (positive) values for the tolerance parameters, ρ and δ, can 

efficiently decrease the influence of noise and avoid overfitting by selecting only informative 

parts of the dataset.  

5.2 Application in reference case study 

In this section, Scenario 1 in Table II is selected as the data for the case study. The model is 

trained on the stable part of the data and then the anomaly data points are fed to the model 

simulating the online learning process. Comparisons are carried out with several popular online 

learning approaches for kernel methods, i.e. Incremental Learning in [15], Naïve Online Rreg 

Minimization Algorithm (NORMA) in [67], SOGP in [16] and Kernel-based Recursive Least 

Square Tracker (KRLS-T) in [79]. The proposed Online-SVR-FID significantly reduces the 

online learning time and can learn timely and efficiently the new and changed patterns; it gives 

comparable or even better results than the benchmarks considered in the case study. 

Table III Comparisons of online prediction results with Online-SVR-FID, Incremental Learning, NORMA 

and SOGP. 

 Online-SVR-FID Incremental Learning NORMA SOGP KRLS 

MSE 0.0011 0.0013 1.7091 0.0019 0.0044 

MRE 0.0561 0.0548 2.9965 0.0763 0.0779 

NMSE 0.0056 0.0069 8.854 0.0098 0.0228 

Online Learning time (s) 9.2067 1354.6425 3191.8332 332.7395 9.5970 

Model size before Online Learning 11 300 300 25 200 

Model size after Online Learning 14 800 269 60 200 
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6. ADAPTIVE LEARNING OF SVR-BASED ENSEMBLE FOR 

FAILURE PROGNOSTICS 

A main disadvantage with Online-SVR-FID is that some past patterns may be deleted during 

the UPDATE process in Figure 13. When the deleted patterns reoccur, the updated SVR model 

needs to relearn them from scratch, which increase the computational burden and reduces the 

prediction accuracy these patterns. In the case of a large dataset with pattern drifts, applying 

Online-SVR-FID on single SVR model is also time-consuming. In this Chapter, an online 

learning ensemble approach is proposed based on FVS to store all the past patterns. The 

proposed approach is named OE-FV. OE-FV builds automatically an ensemble from a single 

SVR model trained on the training dataset. All the sub-models are expected to represent the 

characteristics of the data during a certain period and once the old patterns reoccur, the most 

relevant sub-models are selected to derive the prediction. Details on the experimental results 

are reported in Paper V of Part IV. 

6.1 Methodology 

The main procedure is shown in Figure 14. OE-FV builds an ensemble sequentially from the 

first model, named 𝑀1 that is trained on the preliminary training dataset. All the other sub-

models can be seen as a “copy” of 𝑀1 at one instance during the developing process. These 

sub-models are expected to be different from each other and represent the data at a certain 

period. Only the sub-model 𝑀1 is adaptively updated with new data points, while the other 

sub-models are fixed once created. 

 

1. Train a model 𝑀1 with kernel methods on the training dataset.  

2. Suppose there are n sub-models (M1, M2, …, Mn) in the ensemble when a new data point is coming: 

2.1 Calculate the predicted value for the new data by a weighted-sum strategy based on the prediction 

errors 𝐄𝐫 of selected sub-models; 

2.2 If the new data point is new FV, it is added to 𝑀1 and the model is retrained;  

2.3 Else 

2.3.1 If the new data is a changed FV, it will be used to replace the FV that makes least contribution 

in the recent models; 

2.2.1.1 If the existing FV to be replaced in M1 is unique in the ensemble, the model 𝑀1 before 

replacement is saved as a new sub-model, named Mn+1. The selected FV in 𝑀1 is then replaced 

by the new data point and 𝑀1 is up-to-date; 

2.2.1.2 If the existing FV to be replaced in 𝑀1 is not unique in the ensemble, no new sub-model 

is created and the replacement is carried out directly in 𝑀1; 

 2.4 Update the prediction error 𝐄𝐫 of each sub-model. 
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Fig. 14 The main procedure of OE-FV. 

6.1.1 Training of the first sub-model in Ensemble 

A single model 𝑀1 is trained on the training dataset which is also the first and basic sub-model 

in the ensemble (step 1 in Figure 14). In order to reduce the model complexity and 

computational burden, the training dataset are not directly used to train the first sub-model. 

Instead, FVS selects the representative data points, i.e. FVs, which are normally of a much 

smaller size than the training dataset, and 𝑀1  is trained on the selected FVs, through 

minimizing the MSE of the prediction on the whole training dataset. Such strategy can reduce 

the model complexity and keeps the generalization ability of the model at the same time. The 

process of FVS applied for selecting the FVs from the training dataset is shown in Appendix. 

6.1.2 Calculation of the predicted value of a new data point 

When a new data point is coming, in order to give a reasonable prediction using the ensemble 

approach (step 2.1 in Figure 14), we use a dynamic ensemble selection strategy. A dynamic 

ensemble selection is to select the sub-models that are most relevant to the new data point to 

calculate their separate prediction, and, then these predictions are fused by a weighted sum to 

give the final prediction of the ensemble for the new data point.  

The dynamic selection of sub-models can be based on the overall local accuracy, local sub-

model accuracy, a priori selection or a posteriori selection. In OE-FV, they are selected by the 

local fitness of the new data point, calculated by Equation (18), with respect to the FVs in each 

sub-model. Only the sub-models with a local fitness that satisfies 1 − 𝐽𝑆𝑖(𝒙) < 𝜌 are selected 

to form the ensemble predictor 𝐸𝑜𝐶 for the new data point. 

Suppose 𝐄𝐫 is the vector that contains the cumulated prediction errors of all the sub-models 

and 𝐄𝐫𝐸𝑜𝑐 which is a subset of 𝐄𝐫 contains the prediction errors of the sub-models in 𝐸𝑜𝐶, 

the weights of the selected sub-models are calculated as Equation (26). And the prediction of 

the ensemble is calculated as a weighted sum of the prediction results of all the selected sub-

models, as shown in Equation (27), with 𝑦̂𝑖 and 𝑦̂ separately the predicted value of selected 

sub-models and the ensemble. 

𝛚 =
1/𝑬𝒓𝐸𝑜𝑐

2

∑1/𝑬𝒓𝐸𝑜𝑐
2                 (26) 

𝑦̂ = ∑ 𝜔𝑖𝑦̂𝑖𝐸𝑜𝐶                  (27) 



Adaptive learning of SVR-based ensemble for failure prognostics 

- 43 - 

If none of the sub-models in the ensemble gives a local fitness that satisfies1 − 𝐽𝑆𝑖(𝒙) < 𝜌, all 

the sub-models are, then, used for calculating the prediction of the ensemble. In Equations (26), 

𝐄𝐫𝐸𝑜𝑐 is replaced by 𝐄𝐫 and in Equation (27), the weighed sum is carried out on all the sub-

models. 

6.1.3 Update of the ensemble with a new pattern 

If the local fitness of the new data point with respect to the FVs in each sub-model satisfies the 

relation 1 − 𝐽𝑆𝑖(𝒙) > 𝜌, it is judged as a new FV, and it is added to the first model 𝑀1 that is 

trained on the training dataset (step 2.2 in Figure 14). The other sub-models are not modified 

with the new FV, as they represent only the patterns in the data at certain historical period and 

the new FV represents the ongoing pattern of the data. A new sub-model is not created in the 

case of a new FV as it enriches the ensemble without decreasing its performance on the whole 

data. Thus, the number of sub-models are not changed and only the sub-model 𝑀1 is updated 

to follow the ongoing patterns. Once the FVs in 𝑀1 is increased by one, the model is retrained 

through minimizing the MSE on the recent data points (How to choose the recent data points is 

explained in details in Section 6.1.6). 

6.1.4 Update of the ensemble with a changed pattern 

Once the new data point is judged as not a new FV, the verification of a changed FV is carried 

out by calculating the prediction errors (absolute bias between the predicted value and the true 

output) of all the sub-models. If the prediction errors are all bigger than the preset threshold δ, 

the new data point is judged as a changed pattern. It is used to replace a FV in the sub-model 

𝑀1. 

Before the replacement, we need to solve two questions.  

The first one is how to choose the FV in 𝑀1 to be replaced by the new data point. The pseudo-

code for Online-SVR-FID in Appendix gives an idea for SVR which counts the times of being 

a support vector in the past SVR models during the adaptive learning process, and the 

contribution in the recent SVR models are more weighted than those in the older ones. 

Following the same strategy, a more general way is to cumulate its contribution through a 

weighted sum of its value calculated in Equation (19) for all the data points.  

Suppose the contribution of each FV in 𝑀1 is 𝑚𝑖, when a new data point is coming, Equation 

(19) can give its similarity with each FV in 𝑀1 . A bigger 𝑎𝑖  in 𝒂  represents a larger 
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similarity, thus, a bigger contribution to the prediction of the new data point. Its contribution is 

updated as 𝑚𝑖
𝑛𝑒𝑤 = 𝛾𝑚𝑖 + 𝑎𝑖, with 𝛾 a positive value smaller than one. 

Once the FV in 𝑀1 to be replaced by the new data point is selected, the second problem is how 

to assure that all the past patterns are stored in the ensemble. If the selected FV is unique in the 

ensemble, i.e. it exists only in 𝑀1, the replacement of this FV may cause a loss of a past pattern 

in the data. Thus, step 2.2.1.1 in Figure 14 proposes to “copy” the model 𝑀1 as a new sub-

model and before the replacement, then, the selected FV in 𝑀1 is replaced by the new data 

point. With such a strategy, the changed pattern is learned by 𝑀1 and the old pattern is not 

deleted from the ensemble by adding a new sub-model, which is a copy of M1 before the 

replacement. Note that all the sub-models except 𝑀1 are created this way and they can be seen 

as a copy of 𝑀1 for t different periods. As 𝑀1 can always follow the ongoing patterns in the 

data, the diversity among the sub-models represent different steps of the data stream. 

If the selected FV in 𝑀1 is not a unique in the ensemble, it is replaced directly by the new data 

point without adding a new sub-model (step 2.2.1.2 in Figure 14). 

6.1.5 Update of the prediction error of sub-models 

In Section 3.3, the sub-models’ weights are calculated according to their prediction errors 𝐄𝐫 

on the data points. After the training of the first sub-model 𝑀1 in step 1 in Figure 14, the 

prediction error for 𝑀1 is the root MSE on the whole training dataset.  

When a new data point is available, part of (if the new data point is not a new FV) or all (if the 

new data point is a new FV) the sub-models are selected to derive the prediction of the 

dynamically selected ensemble as introduced in Section 3.3. In any case, sub-model 𝑀1 is 

always selected, as the online learning process assures that 𝑀1 contains all the dimensions of 

the available data in RKHS while the other sub-models contain only part of it. Thus, 𝑀1 can 

give a local fitness for new data point which is smaller than or equal to those given by other 

sub-models. At the end of each iteration for a new data point, the strategy for updating the 

prediction error of the sub-models for different situations are given below: 

1) For the sub-models except 𝑀1 in the dynamically selected ensemble 𝑆𝑜𝐶 for the new 

data point (𝒙𝑖, 𝑦𝑖), their prediction errors are updated as 𝑬𝒓𝐸𝑜𝐶 = 𝛽𝑬𝒓𝐸𝑜𝐶 + |𝒚̂𝑖 − 𝑦𝑖|, 

with 𝑬𝒓𝐸𝑜𝑐 their prediction errors, 𝛽 a positive parameter smaller than one and 𝒚̂𝑖 is 

the predicted values of the sub-models in 𝐸𝑜𝐶. 
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2) For the sub-models that are not selected into 𝐸𝑜𝐶 their prediction errors are updated as 

𝑬𝒓 = 𝛽𝑬𝒓 + 𝜏𝐸𝑟, with 𝐸𝑟 the maximal prediction error given by the sub-models in 𝐸𝑜𝐶 

and 𝜏 a parameter bigger than one in order to decrease the weights of these sub-models in 

the next iteration. 

3) For 𝑀1, it is different from the above two types of the sub-models, as it may be adaptively 

updated with the new data point.  

3.1) If it is not updated during steps 2.2 and 2.3 in Figure 14, its prediction error is updated 

as step 1).  

3.2) Otherwise, it is updated with the prediction error after the update, i.e. after steps 2.2 

and 2.3 in Figure 14. 𝑀1 gives a new prediction for the new data point different from the 

one calculated in step 2.1 in Figure 14 during the calculation of the prediction of the 

ensemble for the new data point. The error of the new prediction is the true error for 𝑀1 

at the end of this iteration. Its prediction error is updated with the new prediction error 

according to 𝐸𝑟1 = 𝛽𝐸𝑟1 + |𝑦̂1,𝑛𝑒𝑤 − 𝑦𝑖|, with 𝑦̂1,𝑛𝑒𝑤 is the prediction for the new data 

point given by updated M1. 

4) If a new sub-model is created during the online learning of the new data point, the 

prediction error the new sub-model is calculated with 𝐸𝑟𝑛+1 = 𝛽𝐸𝑟1 + |𝑦̂1,𝑜𝑙𝑑 − 𝑦𝑖|, with 

𝑦̂1,𝑜𝑙𝑑 the prediction for the new data point given by 𝑀1 at step 2.1 in Figure 14 which is 

not updated yet with the new data point, and 𝐸𝑟1 is the prediction error of 𝑀1 at the 

beginning of this iteration in step 2.1 in Figure 14, i.e. before updating. 

6.1.6 Retraining of the sub-model M1 

Facing a new FV or a changed FV, the model 𝑀1 needs to be updated. However, it is not 

always possible to find a way to update the model, as shown in Online-SVR-FID without 

retraining it from scratch. In this paper, we suppose that 𝑀1 is updated by retraining.  

Training a classic kennel-based model takes the minimization of the MSE on the training dataset 

as the objective function. In this paper, 𝑀1 is trained on the FVs and minimizes the MSE on a 

number (much larger than the number of FVs in the model) of recent data points in order to 

guarantee the generalization ability of the model. Suppose the last sub-model was added at the 

i0-th data point, when the i-th data point is coming, the number of data points considered in the 

objective function is to minimize the MSE on the data points from i0 to i. In order to avoid the 
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overfitting and underfitting on the recent data points, a minimal (Nmin) and a maximal (Nmax) 

number of the recent data points in the objective function is fixed during the retraining of 𝑀1, 

i.e. the number of the recent data points for retraining 𝑀1  is min (max(𝑁𝑚𝑖𝑛, 𝑖 −

𝑖0) , 𝑁_𝑚𝑎𝑥).  

6.1.7 Advantages of OE-FV 

OE-FV has several advantages compared to other online learning ensemble approaches. It is an 

instance-based ensemble approach, which adaptively modifies the ensemble with each new data 

point, and, thus, OE-FV can timely learn the new patterns compared to data chunk-based and 

drift detector-based approaches for online learning ensemble. It can instantly follow the pattern 

drift in the data, and the online learning ensembles based on data chunk or sliding window can 

only react after a sufficient number of new data points is available. 

The aim of storing all the patterns in the data makes the ensemble capable of creating new sub-

models automatically when necessary, without the trouble of setting a fixed size of new data 

points as the data chunk-based approaches.  

When a new sub-model need to be created, there is no need to train this new sub-model, as it is 

a “copy” of the model 𝑀1 as presented in Section 3 and the new sub-model is fixed once 

created. Only 𝑀1 is updated with new data points to follow the ongoing patterns.  

The diversity of between the sub-models are guaranteed, as each sub-model represents the 

patterns in the data during a different period, with 𝑀1 representing the up-to-date patterns.  

The new data points are all used to update the sub-models’ weights, and only few of them are 

used to update the 𝑀1 and create new sub-models. For each new data points, instead of using 

all the sub-models to derive the prediction of the ensemble, only the most relevant ones are 

selected to form a dynamic ensemble. Such strategies can reduce the computational complexity 

of the online learning process. 

6.2 Application in reference case study 

OE-FV is applied to the case of drifting data stream. The first model 𝑀1 is trained on the first 

500 data points in the first scenario in Table II, and the other data point in scenario 1 and all the 

data points of the other scenarios are fed to the ensemble simulating the drifting data stream.  

Comparisons of experimental results are carried out among Online-SVR-FID, Learn++.NSE, 
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OWE and the proposed OE-FV, considering the prediction accuracy and the computation time. 

In the case of updating a SVR model with Online-SVR-FID, a SVR model is trained on the 

training dataset and updated with the new data points as introduced in Section 5. In the 

experiment, there are totally 1198 new data points judged as changed patterns and 13 new data 

points as new patterns. While the online learning ensemble with OE-FV, only 120 and 7 new 

data points are separately judged as changed and new patterns. OE-FV largely decreases the 

number of changed patterns, thus the computational complexity, as all the patterns are stored in 

the ensemble. Thus, OE-FV solves the problem of Online-SVR-FID with recurring patterns. 

Table IV presents the MSE and Mean Absolute Relative Error (MARE), the computation time 

with the same computer (Inter Duo i5, 2.3 GHz, and 4G RAM) and the number of sub-models. 

Table IV Comparisons of experimental results using Online-SVR-FID, Learn++.NSE, OWE and OE-FV. 

 Online-SVR-FID Learn++.NSE Learn++.NSE Pruned OWE OWE Pruned OE-FV 

MSE 13*10-4 16*10-4 16*10-4 12*10-4 12*10-4 8.6*10-4 

MARE 0.0977 0.1009 0.1009 0.0879 0.0882 0.0761 

Time (s) 460.117 8.3607 8.0682 30485 188.394 51.299 

# of sub-models 1 26 20 7513 20 13 

 

All these approaches give comparable results considering the prediction accuracy, while 

Learn++.NSE gives the worst and OE-FV gives the best. This is caused by the update strategy 

integrated in the online learning ensemble. The delay during the online learning process in 

Learn++.NSE is longer than that in OWE and OE-FV has the shortest delay. Thus, it is verified 

that the instance-based approach can timely follow the ongoing patterns and give better results 

than data chunk-based or sliding window-based ones in frequently changing environment. 

The computation burden bothering the instance-based online learning ensembles is not so 

obvious in OE-FV. Learn++.NSE uses least time as the ensemble is updated only when a new 

data chunk is available. The specific strategies proposed in OE-FV, e.g. verification of new FV 

and changed FV, generation of new sub-model and dynamic ensemble selection, reduce the 

computational complexity of the online learning process, and the results show that it uses much 

less time than OWE which is based on sliding window.  

The time of OE-FV is also much smaller than Online-SVR-FID, as Online-SVR-FID deletes 
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some old patterns during the updating process, and when these patterns reoccur, it has to relearn 

them before giving a good prediction result. This disadvantage increases the number of updating 

actions during online learning, thus the computational burden, and decreases the prediction 

accuracy. While OE-FV applies a dynamic ensemble selection strategy to select the most 

relevant sub-models for each new data point in order to reduce the influence of the irrelative 

ones. The sub-models’ weights are updated with each new data point, and the flexibility of the 

ensemble is increased. 

In this case study, the Learn++.NSE and OWE with and without pruning give similar prediction 

results. A larger maximal number of sub-models doesn’t always increases the accuracy. The 

accuracy is no longer improved when the number of sub-models is bigger than a certain value. 
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7. A NOVEL GEOMETRICALLY INTERPRETABLE KERNEL-BASED 

MODEL TRAINED WITH FVS: REDUCED RANK KERNEL RIDGE 

REGRESSION-II (RRKRR-II) 

The main drawbacks of standard kernel methods are the unacceptable computational burden for 

training with large infinite datasets, the difficulty in tuning the hyperparameters and the lack of 

interpretability of the model. by analyzing the distribution property of the inner product (the 

kernel function is an inner product of two vectors in RKHS) and the geometrical relation 

between a training data point and the FVs selected with FVS, a geometrically interpretable 

approach is proposed for regression and prediction, which describes the linear relation between 

the predicted values of FVs and that of any data point under static environment. FVS is used to 

select the FVs which can represent the dimensions of the training dataset in RKHS, and the 

linear relation between the predicted value of the FVs and those of the other data points are 

derived from the general form of the estimate function for kernel methods of Equation (1). In 

order to keep all the information contained in the selected FVs, an optimization problem with 

equal constraints (similar to a Least Square-Support Vector Machine (LS-SVM)) is formed to 

find the minimal MSE (without regularization term in Equation (2)) on the whole training 

dataset (not only on the selected FVs). Thus, the unknowns in the estimate function of the 

proposed approach are the predicted values of the FVs and a constant (zero or nonzero), which 

can be calculated analytically. Minimizing the MSE on the whole training dataset of the model 

built on the selected FVs can guarantee the generalization performance of the model, even 

without a regularization term. Equal constraints in the optimization problem keep all the 

information in the FVs (i.e. no FV is ignored through the loss function, as in SVR) and the 

optimal values for the unknowns can be calculated analytically. Experimental results are 

detailed in Paper VI of Part IV. 

7.1 Methodology 

Suppose 𝑺 = (𝒙𝑖, 𝑦𝑖), 𝑖 = 1,2, … ,𝑀 are the FVs selected with FVS from the training dataset 

𝑻 ; for any data point (𝒙, 𝑦) , its mapping 𝝋(𝒙)  in RKHS can be expressed as a linear 

combination of the mapping of the selected FVs, i.e. ∑ 𝑎𝑖𝝋(𝒙𝑖)
𝑀
𝑖=1  and 𝑎𝑗 , 𝑗 = 1,2, … ,𝑀 are 

multipliers calculated with Equation (19). Note that 𝑓(𝒙) in Equation (7) can also be written 

as 𝑓(𝒙) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)〈𝝋(𝒙𝑖),𝝋(𝒙)〉 + 𝑏

𝑁
𝑖=1 , and it can be rewritten as: 



A novel geometrically interpretable kernel-based model trained with FVs: Reduced Rank Kernel Ridge Regression-ii 

(RRKRR-II) 

- 50 - 

𝑓(𝒙) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)〈𝝋(𝒙𝑖), ∑ 𝛽𝑗𝝋(𝒙𝑗)

𝑀
𝑗=1 〉 + 𝑏𝑁

𝑖=1 .         (28) 

By the mathematical distribution property of the inner product, Equation (28) equals to 

𝑓(𝒙) = ∑ ∑ 𝑎𝑗
𝑀
𝑗=1 (𝛼𝑖 − 𝛼𝑖

∗)〈𝝋(𝒙𝑖),𝝋(𝒙𝑗)〉 + 𝑏
𝑁
𝑖=1   

= ∑ 𝑎𝑗(∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑁

𝑖=1 〈𝝋(𝒙𝑖),𝝋(𝒙𝑗)〉) + 𝑏
𝑀
𝑗=1 .          (29) 

Equation (29) can be further written as 

𝑓(𝒙) = ∑ 𝑎𝑗(𝑓(𝒙𝑗) − 𝑏) + 𝑏
𝑀
𝑗=1 ,             (30) 

where 𝑓(𝒙𝑗), 𝑗 = 1,2, … ,𝑀 are the predicted values of the FVs in 𝑺, 𝑏 is a constant variable 

and 𝑎𝑗 , 𝑗 = 1,2, … ,𝑀 are the multipliers calculated with Equation (19).  

Now, the new form of the estimate function of Equation (7) can be written as 

𝑔(𝒙) = ∑ 𝑎𝑗(𝒙)(𝑦̂𝑗 − 𝑏) + 𝑏
𝑀
𝑗=1 ,             (31) 

where 𝑦̂𝑗 , 𝑗 = 1,2, … ,𝑀 are the predicted values of the FVs selected from the training dataset 

𝑻, 𝑏 is a constant value, 𝑔(𝒙) is the prediction of any data point (𝒙, 𝑦) and 𝑎𝑗(𝒙) is the j-

th value of the vector 𝒂(𝒙) calculated with Equation (19), which is dependent only on the 

input 𝒙 once the FVs are selected. 

Equation (31) describes the linear relation between the predicted values of FVs, i.e. 𝑦̂𝑗 and 

that of any other data point, i.e. 𝑔(𝒙). This new prediction model is called RRKRR-II. Equation 

(31) shows that if we know the predicted values for the FVs and the constant 𝑏, we can give 

directly the predicted value for any data point. In the next sub-section, the analytic solutions for 

the unknowns in Equation (31), i.e. 𝑦̂𝑗 , 𝑗 = 1,2, … ,𝑀 and 𝑏 are given. 

The optimization problem for RRKRR-II is defined as  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦̂𝑗,𝑏        𝑊 =  
1

𝑁
∑ (𝑔(𝒙𝒊) − 𝑦𝑖)

2𝑁
𝑖=1   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜         𝑔(𝒙𝒊) = ∑ 𝑎𝑗(𝒙𝒊)(𝑦̂𝑗 − 𝑏) + 𝑏
𝑀
𝑗=1 ,         (32) 

with 𝑀  representing the number of FVs selected from the whole training dataset 𝑻 =

(𝒙𝑖, 𝑦𝑖), 𝑖 = 1,2, … ,𝑁. The optimization problem is trying to find the minimal MSE on the 

whole training dataset 𝑻. 

After replacing 𝑔(𝒙𝒊) in the objective function in Equation (30) with ∑ 𝑎𝑗(𝒙𝒊)(𝑦̂𝑗 − 𝑏) +
𝑀
𝑗=1

𝑏, the objective function becomes  
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𝑊 =
1

𝑁
∑ (∑ 𝑎𝑗(𝒙𝒊)𝑦̂𝑗 + 𝑏(1 −

𝑀
𝑗=1 ∑ 𝑎𝑗(𝒙𝒊)

𝑀
𝑗=1 ) − 𝑦𝑖)

2𝑁
𝑖=1 .       (33) 

Setting the partial derivatives of 𝑊 with respect to 𝑦̂𝑗 and b to zero yields: 

𝜕𝑊

𝜕𝑦̂𝑗0
= ∑ ∑ 𝑎𝑗0(𝒙𝒊)

𝑁
𝑖=1 ∗ 𝑎𝑗(𝒙𝒊) ∗ 𝑦̂𝑗

𝑀
𝑗=1 + 𝑏 ∗ ∑ 𝑎𝑗0(𝒙𝒊) ∗ (1 − ∑ 𝑎𝑗(𝒙𝒊)

𝑀
𝑗=1 )𝑁

𝑖=1 −

∑ 𝑎𝑗0(𝒙𝒊) ∗ 𝑦𝑖
𝑁
𝑖=1 = 0                (34) 

𝜕𝑊

𝜕𝑏
= ∑ ∑ 𝑎𝑗(𝒙𝑖) ∗ (1 − ∑ 𝑎𝑙(𝒙𝑖)

𝑀
𝑙=1 )𝑁

𝑖=1 ∗𝑀
𝑗=1 𝑦̂𝑗 + 𝑏 ∗ ∑ (1 − ∑ 𝑎𝑗(𝒙𝑖)

𝑀
𝑗=1 )

2𝑁
𝑖=1 − ∑ (1 −𝑁

𝑖=1

∑ 𝑎𝑗(𝒙𝑖)
𝑀
𝑗=1 ) ∗ 𝑦𝑖 = 0.               (35) 

These previous Equations (34) and (35) can be expressed as a system of equations as  

[
𝛀 𝚮
𝚪𝑇 𝑐

] [
𝒚̂
𝑏
] = [

𝚸
𝑙
],                 (36) 

where 𝛀 is a 𝑀 ×𝑀 matrix with 𝛀𝑚𝑛 = ∑ 𝑎𝑚(𝒙𝒊)
𝑁
𝑖=1 ∗ 𝑎𝑛(𝒙𝒊), 𝚮 is a 𝑀 × 1 vector with 

𝚮𝑚 = ∑ 𝑎𝑚(𝒙𝒊) ∗ (1 − ∑ 𝑎𝑗(𝒙𝒊)
𝑀
𝑗=1 )𝑁

𝑖=1 , 𝚪  is a 𝑀 × 1  vector with 𝚪𝑚 = ∑ 𝑎𝑚(𝒙𝑖) ∗
𝑁
𝑖=1

(1 − ∑ 𝑎𝑙(𝒙𝑖)
𝑀
𝑙=1 ) , 𝑐  is a constant and 𝑐 = ∑ (1 − ∑ 𝑎𝑗(𝒙𝑖)

𝑀
𝑗=1 )

2𝑁
𝑖=1 ; 𝒚̂ = (𝑦̂𝑗), 𝑗 =

1,2, … ,𝑀  and 𝑏  are the unknowns in Equation (29), 𝚸  is a 𝑀 × 1  vector with 𝚸𝑚 =

∑ 𝑎𝑚(𝒙𝒊) ∗ 𝑦𝑖
𝑁
𝑖=1 , 𝑙 = ∑ (1 − ∑ 𝑎𝑗(𝒙𝑖)

𝑀
𝑗=1 ) ∗ 𝑦𝑖

𝑁
𝑖=1 . 

The values of the unknowns in Equation (31) can be directly calculated by solving Equation 

(36). 

The adaptive online learning approaches proposed in Sections 5 and 6 can all be applied on 

RRKRR-II. 

7.2 Application in reference case study 

The experiment is carried out on Scenario 1, 300 (at time instances 500 - 800) data points are 

selected as training dataset and the following 800 (at time instances 801 - 1600) data points 

forms the test dataset. The benchmark methods are Kernel Gaussian Process (KGP) [127], 

Kernel Partial Least Square (KPLS) [131], KRR []132], RRKRR [5], Relevance Vector 

Machine (RVM) [150] and SVR [141]. Table V shows the prediction results on the test dataset 

with different kernel regression methods considering time for training and testing, MSE and 

MRE. 

We can see that RRKRR-II uses much less time than the other methods while giving comparable 
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results with the best results given by the benchmarks. 

Table V Comparison of prediction results of the case study given by different methods 

  RRKRR-II KGP KPLS KRR RRKRR RVM SVR 

Time_train 0.0558 5.0651 0.0688 0.3059 0.2657 0.4296 0.2336 

Time_test 0.0339 0.2205 0.0151 0.0053 0.0264 0.0015 0.0321 

MSE 0.0086 0.1254 0.0062 0.0013 0.0264 0.0031 0.0287 

MRE 0.1658 0.6824 0.1440 0.0548 0.3114 0.0554 0.3278 

Experiment results on some public datasets can be found in Paper VI of Part IV. 
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8. CONCLUSIONS AND PERSPECTIVES 

The aim of this Ph.D. research work is to develop SVR-based methods for failure prognostics, 

based on time series data. The object of analysis considered for the development of the models 

is a safety-critical component, the first seal in the RCP of a NPP: the importance of monitoring 

and prognostics for this component is extremely high. According to the amount of data and the 

underlying distribution generating the data, different approaches and strategies are proposed for 

tackling small/large datasets and stationary/nonstationary environments.  

8.1 Conclusions and original contributions 

Failure prognostics within maintenance engineering aims at predicting the future health of the 

SSC of interest on a short-term/long-term time horizon. The benefits of prognostic approaches 

include: warning of failures in advance; minimization of unscheduled maintenance; extended 

maintenance cycles; reduction of life-cycle cost of the SSC of interest by decreasing inspection 

cost and the SSC downtime; improved qualification of the SSC of interest, etc.  

There are yet some challenges for prognostic approaches, including improving the robustness, 

adaptability and generalization power and estimating the uncertainty associated with the 

prediction. For the prognostic approach embraced in this thesis, i.e. SVR, there are also 

challenges for reducing the computational complexity and tuning the hyperparameters. 

The original contributions of this thesis are summarized in Table VI, with respect to the 

challenges mentioned above for prognostic approaches and SVR. 
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Table VI Contributions of this thesis, with respect to the challenges for prognostic approaches and SVR. 

 Contributions 

Robustness 
In Papers III, IV, and VI, the SVR models are trained on a small part of the training dataset, 

with the objective of minimizing the MSE on the whole training dataset. 

Uncertainty 

quantification 
In Papers I and II, PSVR is integrated to derive the error bar associated to the predicted value. 

Adaptability 

In Papers II and III, dynamic weighted ensembles are proposed to effectively modify the sub-

models weights for each new input vector. 

In Papers IV and V, adaptive online learning approaches are proposed for single SVR and SVR-

based ensemble models to manage new patterns and changed patterns in the new data points. 

Generalization power 
SVR-based approaches can be used for different SSC in different environments, not only for 

the NPP component considered in this thesis. 

Reducing computational 

complexity 

In Papers II and III, ensemble approaches are proposed to reduce the computational burden 

with large datasets. 

In Papers III, IV, V and VI, only part of the training dataset is elected to train the model. 

In Paper VI, the solution of RRKRR-II can be calculated analytically, instead of solving 

iteratively the dual problem. 

Tuning hyperparameters 

In Paper I, the grid search method is integrated for tuning the hyperparameters, which is proved 

to be faster than GA. 

In Paper VI, the hyperparameters are tuned with respect to the change of the MSE on the 

training dataset. 

 

As the case study in this thesis considers different situations of the time series data available, 

i.e. small dataset without pattern drifts, large dataset without pattern drifts, small dataset with 

pattern drifts and large dataset with pattern drifts, different SVR-based approaches are proposed 

in this thesis to tackle the different situations. 

For small datasets without pattern drifts, a single SVR model is trained with the proposed 

strategies for tuning hyperparamters. In order to reduce the computational complexity, FVS is 

integrated for reducing the size of the training dataset.  

For large datasets without pattern drifts, training a single SVR becomes computationally 

burdensome, and strategies for building ensembles are proposed. Different approaches are 

proposed for building diverse sub-models and calculating their weights. The outputs of the sub-

models are combined with a weighted-sum strategy. The main novelty of the proposed 

ensembles is dynamically calculating the sub-models weights for each test data point. 

In the situations with pattern drifts, adaptive online learning approaches are proposed separately 

for single SVR model (Online-SVR-FID) and ensemble (OE-FV). Based on FVS, two types of 

pattern drifts are firstly defined: new patterns and changed patterns. Different actions are taken 
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to make sure that the single model/ensemble follow efficiently the current patterns. Online-

SVR-FID can follow timely and precisely the ongoing patterns, but some past patterns are 

deleted from the model during the update process. OE-FV aims at solving this problem by 

storing all the past patterns in the ensemble. Each sub-model represents a certain period of the 

data. Dynamic ensemble selection is integrated in OE-FV to dynamically select the sub-models 

most relevant to the new data point to generate its predicted value. Dynamic ensemble selection 

before the prediction can reduce the influence of the irrelevant sub-models on the prediction 

results.  

These previous approaches are all tested on the reference case study presented in Section 1.3. 

Comparisons with other approaches prove the efficiency and accuracy of the proposed 

approaches in the reference case study. 

Considering the interpretability and the computational burden of a SVR model, a geometrically 

interpretable kernel method, i.e. RRKRR-II, is proposed based on FVS. RRKRR-II describes 

the linear relation between the predicted value of a new input vector and those of the FVs 

selected form the training dataset. The applications on five public datasets show the robustness 

and accuracy of RRKRR-II, compared to the popular kernel methods.  

8.2 Future work 

Various research directions can be taken to extend the work developed in this thesis. Important 

ones include the following perspectives: 

 The long-term prediction, e.g. RUL prediction: different approaches can be integrated, 

e.g. combination of long-term and short-term predictions, combination of model-based and 

data-driven approaches, etc.  

 The application of prognostics for maintenance decision-making, e.g. maintenance 

planning: the automatic and dynamic maintenance scheduling can reduce investment in 

hardware and personnel, and based on the prediction of the future health of the SSC of 

interest, the scheduled maintenance can be replaced by a dynamic one where the 

maintenance is carried out only if the risk of failure exceeds a certain threshold. 

 The uncertainty quantification of the prediction given by SVR: in most of the work in 

this thesis, uncertainties in the prediction, which can be caused by measurement noise, 

model uncertainties and missing or unavailable training data, are not explicitly considered, 

while it is very important to know the confidence that can be put in the prediction results 
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for confident decision-making.  

 The propagation of uncertainty for decision making: once the uncertainty of the 

prediction of SVR can be quantified, a real problem is how to calculate the influence it has 

on the decision making process. 

 The interpretability of SVR: data-driven approaches are normally difficult to validate and 

verify before deployment, and how to reflect the case-specific physical characteristics is a 

main challenge for SVR. Although RRKRR-II tries to make the model easier to understand, 

it is far from enough. 

 A very interesting work considering RRKRR-II is to calculate the uncertainty of the 

predicted values of selected FVs. If a distribution can be calculated for the predicted value 

of each selected FV, the uncertainty in the prediction of other data points can be obtained 

by a proper uncertainty propagation method. The Bayesian update can, then, be used for 

updating the distribution of the prediction distribution of these selected FVs.  
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NUCLEAR POWER PLANT COMPONENTS  

CONDITION MONITORING BY  

PROBABILISTIC SUPPORT VECTOR MACHINE 

Jie Liu, Redouane Seraoui, Valeria Vitelli, Enrico Zio 

 

ABSTRACT 

In this paper, an approach for the prediction of the condition of Nuclear Power Plant (NPP) 

components is proposed, for the purposes of condition monitoring. It builds on a modified 

version of the Probabilistic Support Vector Regression (PSVR) method, which is based on the 

Bayesian probabilistic paradigm with a Gaussian prior. Specific techniques are introduced for 

the tuning of the PSVR hyerparameters, the model identification and the uncertainty analysis. 

A real case study is considered, regarding the prediction of a drifting process parameter of a 

NPP component. 

 

Key words: Probabilistic support vector machine, Condition monitoring, Nuclear power plant, 

Point prediction  
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1. INTRODUCTION 

Production systems are becoming increasingly complex and demand sophisticated methods to 

anticipate, diagnose and control abnormal events in a timely manner, as the consequences of 

unexpected faults can bring high economic losses for a company (Venkatasubramanian, 2005).  

For an optimized operation, the conditions of NPP components and systems are usually 

monitored at regular intervals (Condition Monitoring), and a warning is triggered when the 

monitored signals exceed predefined thresholds (Fault Detection) (Zio et al., 2010).The plant 

operators must identify the plant state and the components out of control (Diagnostics), and 

predict the future development of the scenarios (Prognostics) to decide the actions to take to 

regain safe control of the plant (Zio, 2012). Then, while diagnostics aims at identifying the 

cause of the deviation from normal behavior and at determining the state of the parameters 

critical for the plant operation and safety, prognostics aims at the prediction of the Residual 

Useful Life (RUL) of the components (Zio, 2012).  

In general, two strategies for condition monitoring, detection, diagnostics and prognostics are 

possible: either based on physical models, or based on data-driven approaches (Zio, 2012; Ma 

and Jiang, 2011). In the case of complex systems, physical models can be built only after 

simplification of the physical relations. Then, in most cases, they cannot timely provide the 

plant operators with a sufficiently precise diagnostics of the plant situation (Zio, 2012). On the 

contrary, data-driven approaches are attractive for NPPs, also considering that most components 

are monitored since the commissioning of plants, and, hence, a large amount of measured data 

is available to drive the tuning of the models (Ma and Jiang, 2011). 

A substantial amount of research has concerned the development of data-driven approaches for 

condition monitoring, detection, diagnostics and prognostics. Artificial Neural Network 

(ANN), Support Vector Machine (SVM), Genetic Algorithm (GA) and Auto-Associative 

Kernel Regression (AAKR) are among some of the most studied and applied (Chevalier et al., 

2009; Baraldi et al., 2010; Baradi et al., 2011; Santosh et al., 2009; Li et al., 2012; Yazikov et 

al., 2012; Rand et al., 2012a; Rand et al., 2012b; Muralidharan and Sugumaran, 2012; Ekici, 

2012; Zio and Gola, 2006; Lu and Upadhyaya, 2005; Jeong et al., 2003; Zio et al., 2009). These 

approaches are already mature, especially for detection and diagnostics. On the contrary, the 

amount of research dealing with prognostics is limited, especially in the context of NPP 

components. Some recent references, referring to prognostics for engineering systems, are Li 

and Nilkitsaranont (2009), Niu and Yang (2010) and Wang et al. (2004). Support Vector 
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Regression (SVR) is used in Trontl et al. (2007) and Bae et al. (2008) to fulfill the point 

estimation with satisfactory results. In Elnokity et al. (2012), a hybrid modeling combined with 

the Industrial Source Complex (ISC) model and an Adaptive Neuro-Fuzzy Inference System 

(ANFIS) has been used to improve the modeling ability of predicting tracer concentrations. 

SVR method is used in Cai (2012) to predict the critical heat flux, while Fuzzy Neural Networks 

are used in Na et al. (2006) to estimate the collapse moment due to the wall-thinned defects of 

bends and elbows in piping systems. However, uncertainty quantification is not included in the 

previously described data-driven models. In Zio et al. (2010) and Zio and Di Miao (2010), a 

fuzzy similarity analysis is introduced to compare the evolving failure scenario with a library 

of reference patterns describing the multidimensional evolution of monitored process variables. 

The aim is to find a combination of the reference patterns, weighed by their similarity to the 

observed failure pattern, to determine the future evolution of the scenario and to derive the 

corresponding RUL. However, failure patterns in NPP components are rare and thus a “solid” 

library of references cannot be easily formed. SVR has also been used in Kim et al. (2012) to 

build Prediction Intervals (PIs) for the same problem. However, since the method has been 

trained on a relatively small amount of data, its generalization power is not assured. 

It is well recognized that there exists no prognostic method that is ideal for every situation 

(Jardine et al., 2006; Y-C and Pepyne, 2001). A variety of methods have been developed for 

specific situations or specific classes of systems. In the present work, we propose a method for 

prediction with uncertainty quantification, in the context of NPP components condition 

monitoring and prognostics. We address the problem of predicting process variables under 

conditions of fault of a NPP component. A modified Probabilistic Support Vector Regression 

(PSVR) is developed and used to provide in output the PIs of a process variable. To the author’s 

knowledge, this is the first time that such technique is applied in the specific application context 

of interest. A real case study is considered, related to the condition monitoring of a component 

of a NPP of Électricité De France (EDF). A main challenge arises from the need of building a 

model based on only one scenario, which is a realistic situation given the rarity of faults in NPP 

components. 

The paper is structured as follows. Section 2 provides a description of the PSVR method for 

prognostics. Section 3 presents the characteristics of the data of the real case study, and the pre-

treatment techniques used to remove the outliers, to reconstruct the missing data points, and to 

identify the most proper model. In Section 4, the results of the application of PSVR for 

prognostics are presented, and comparisons with the standard SVR method and other empirical 
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apporaches are also given in this Section. Some conclusions are drawn in Section 5. 

2. PROBABILISTIC SUPPORT VECTOR REGRESSION (PSVR) 

Standard Support Vector Machines (SVMs) (Cortes and Vapnik, 1995; Vapnik et al.; 1996; 

Boser et al., 1992; Drucker et al., 1997; Cristianini and Taylor, 2000) are learning machines 

implementing the Structural Risk Minimization (SRM) inductive principle to obtain good 

generalization performance on a limited number of learning patterns (Gao et al., 2002; Jardine 

et al., 2006; Poggio and Girosi, 1998; Girosi, 1998). However, the parameters need to be 

specifically tuned for the problem at hand and this may be difficult. Another problem related to 

SVMs is that the classification and regression results are provided as point estimates only, while 

it would be more informative to obtain a Prediction Interval (PI) with an associated probability 

that the true value lies in the interval. Also, the distribution of the predicted value is a 

constructive indicator for practical purposes. 

To overcome these limitations, the Bayesian probabilistic paradigm has been considered in 

combination with SVM (Mackay, 1997; Neal, 1996; Williams, 1997). Recently, it has been 

shown that SVMs can be interpreted as a Maximum A Posteriori (MAP) solution to a Bayesian 

inference problem with Gaussian priors and an appropriate likelihood function. This 

probabilistic interpretation enables Bayesian methods to be employed to determine the 

regularization parameters in the SVM framework (Kim et al., 2012; Sollich, 1999). The method 

using MAP for SVM estimation is called Probabilistic Support Vector Regression (PSVR). 

Bayesian approaches for SVM can estimate the parameter and feature spaces simultaneously 

by maximizing the evidence function, and they allow obtaining an error bar for the prediction 

(Lin and Weng, 2004). 

2.1 PSVR Using Ɛ-Insensitive Loss Function 

Let us assume that the input data is a 𝑛-dimensional set of vectors 𝑿 = {𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏}, 

independently drawn in 𝑹𝑝, and that we also have an independent sample from the target value 

𝒀 = {𝑦1, 𝑦2, … , 𝑦𝑛}, where 𝑦𝑖  ∈ 𝑹, 𝑖 = 1, 2, . . . , 𝑛.  

In regression methods, the final aim is to find an underlying function 𝑎(𝒙): 𝑹𝑝 → 𝑹 describing 

the relation between the input data and the target. We will now briefly state the PSVR approach 

to the estimation of 𝑎(𝒙); further mathematical details on the derivation of the method can be 

found in the Appendix, and in the references therein. 

We make the following assumptions: 
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(5) Training data set 𝜞 = {𝑿, 𝒀}  follows an identical and independent distribution (i.i.d). 

(6) The a priori probability distribution is 𝑃[𝒂(𝑿)] ∝ exp (−
1

2
∥ 𝑃̂𝑎 ∥2), where ∥ 𝑃̂𝑎 ∥2 

is a positive semi-definite operator and 𝒂(𝑿) =  (𝑎(𝒙1), 𝑎(𝒙2),… , 𝑎(𝒙𝑛))
𝑇. 

(7) The Ɛ -insensitive loss function is chosen as the loss function. 

(8) The covariance function is 𝐾(𝒙, 𝒙′), and 𝐾(𝒙𝑖, 𝒙𝑗) = exp (−
|𝒙𝑖−𝒙𝑗|

2

2𝛾2
), where 𝒙𝑖 , 𝒙𝑗 

are the input data points in 𝑿. 

The a posteriori probability of 𝒂(𝑿) can be written as 

𝑃[𝒂(𝑿)|𝚪] =  
[𝐺(𝐶,𝜀)]𝑁

√𝑑𝑒𝑡2𝜋𝐾𝑿,𝑿𝑃[𝚪]
exp{−𝐶∑ 𝐿𝜀(𝑦𝑖 − 𝑎(𝒙𝑖)) −

1

2
𝒂(𝑿)𝑇𝐾𝑿,𝑿

−1𝒂(𝑋)𝒙𝑖∈𝑿
},  (1) 

where 𝐺(𝐶, 𝜀) =  
1

2

𝐶

𝐶𝜀+1
, and 𝐾𝑿,𝑿  = [𝐾(𝒙𝑖, 𝒙𝑗)] is the covariance matrix of the data points 

of 𝑿. 

 We find the maximum of Equation (1) using the so-called MAP. This requires finding the 

minimum of the following function 

𝑅𝐺𝑆𝑉𝑀(𝑎) =  𝐶 ∑ 𝐿𝜀(𝑦𝑖 − 𝑎(𝒙𝑖)) +
1

2
𝒂(𝑿)𝑇𝐾𝑿,𝑿

−1𝒂(𝑿)𝒙𝑖∈𝑿
.       (2) 

We can see that the risk of Gaussian SVMs is equivalent to the standard SVM. Following the 

discussion in Mackay (1997), Tikhonov and Arsenin (1997), Girosi (1998) and Burges (1998), 

we can write the solution of the minimization problem associated to Equation (2) in the 

following form 

𝑎∗(𝒙) =  ∑ 𝛽𝑖𝐾(𝒙𝑖, 𝒙)𝒙𝑖∈𝑿
              (3) 

where 𝛽𝑖 = 𝑎𝑖 − 𝑎𝑖
∗  is a combination of the Lagrange Multipliers associated to the 

optimization problem (Smola and Scholköpf, 2004). The 𝑎𝑖 and 𝑎𝑖
∗ can be determined by a 

Quadratic Programming approach. According to Smola and Scholköpf (2004), ∀ 𝑖 = 1, . . . , 𝑛, 

𝑎𝑖 and 𝑎𝑖
∗ lie in the interval [0, 𝐶], and 𝛽𝑖 consequently lies in the interval [−𝐶, 𝐶], which 

is the domain of the optimization problem. See Na et al. (2006) for more details on the 

implementation. 

2.2 Hyperparameters 

According to the description of the PSVR method given in the previous Section, we shall now 

detail a strategy to determine the three hyperparameters 𝐶, 𝜀, 𝛾 , before the optimization 
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algorithm is initialized. 

Parameter 𝐶  is the penalty factor. It controls the trade-off between complexity and the 

proportion of non-separable samples, and must be selected by the user (Vladimir et al., 1998). 

If it is too large, it will induce a high penalty for non-separable points, hence we may store too 

many support vectors and go towards over fitting. If it is too small, it may result in underfitting 

(Alpaydin, 2004). For what concerns the optimization process, 𝐶 influences the computational 

burden of the regression: the bigger 𝐶 is, the heavier the computational burden is.  

Parameter 𝜀 controls the sparsity of the data. It has an effect on the smoothness of the SVM 

response and it affects the number of support vectors, so both the complexity and the 

generalization power of the network depend on its value (Horváth, 2001). By inspecting the 𝜀-

insensitive loss function (see the details in the Appendix), we see that data points inside a tube 

of radius 𝜀 surrounding the predicted values, are not considered in training the regression 

model. This is graphically exemplified in Figure 1. 

 

Fig.1 A picture of the 𝜀-insensitive loss-function behavior. 

Finally, parameter 𝛾  influences the width of the kernel, and hence the accuracy of the 

prediction and its variability.  

There are already some methods in the literature to determine these hyperparameters, e.g. VC-

theory in Vapnik (1995), Bayesian method in Mackay (1991), AIC in Akaike (1974), NIC in 

Murata et al. (1994) and Maximizing Evidence Function in Kim et al. (2012). In this paper, an 

interpolation method based on an innovative criterion is used to obtain the best values of these 

three parameters. The details are illustrated in Section 4, directly in relation to the case study. 

2.3 Error Bar Estimation 

In a Bayesian treatment of the prediction problem, error bars arise naturally from the predictive 

distribution. They are made up of two terms, one due to the a posteriori uncertainty (the 

uncertainty of 𝑎(𝒙)), and the other due to the intrinsic noise in the data (Kim et al., 2012). 
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Suppose that 𝒙 is a test input vector, and that the corresponding value of the target is the 

random variable 𝑦, obtained adding to 𝑎(𝒙) an unknown noise 𝛿 with zero mean; then 

𝑃[𝚪|𝒂(𝑿)] ∝ exp (−𝐶∑ 𝑙(𝛿𝑖)
𝑛
𝑖=1 ).            (4) 

We can also obtain the density of the noise 𝛿 

𝑃[𝛿] =  
𝐶

2(𝐶𝜀+1)
exp (−𝐶𝑙𝜀(𝛿)),             (5) 

and the noise variance 

𝜎𝛿
2 = 

2

𝐶2
+
𝜀2(𝐶𝜀+3)

3(𝐶𝜀+1)
.                 (6) 

The conditional probability distribution of 𝑎(𝒙) given 𝚪 can instead be written as 

𝑃[𝑎(𝒙)|𝚪] =  
1

√2𝜋𝜎𝑡
exp {−

(𝑎(𝒙) − 𝑎∗(𝒙))2

2𝜎𝑡
2 },           (7) 

with 

𝜎𝑡
2(𝒙) =  𝐾(𝒙, 𝒙) − 𝐾𝑿𝑀,𝒙

𝑇 𝐾𝑿𝑀,𝑿𝑀
−1 𝐾𝑿𝑀,𝒙.           (8) 

Consequently, the error bar width of the prediction corresponding to the test input point 𝒙 is  

𝜎2(𝒙) =  𝜎𝛿
2 + 𝜎𝑡

2(𝒙) =  
2

𝐶2
+
𝜀2(𝐶𝜀+3)

3(𝐶𝜀+1)
+  𝐾(𝒙, 𝒙) − 𝐾𝑿𝑀,𝒙

𝑇 𝐾𝑿𝑀,𝑿𝑀
−1 𝐾𝑿𝑀,𝒙.    (9) 

The conditional probability distribution and the error bar are given in Equations (7) and (9). See 

Na et al. (2006) for more details on the calculations.  

3. CASE STUDY DESCRIPTION 

A set of data from the Reactor Coolant Pump (RCP) of one of EDF’s NPPs is used to test the 

efficiency and the accuracy of the PSVR modeling approach developed in our work. In the 

following, we describe the data and illustrate the pre-processing steps. 

3.1 Data Description 

The dataset includes the measurements of the RCP of a NPP, with increasing leak flow in the 

first seal (a variable denoted with IntVar 9). The dataset contains the values of seventeen 

different variables recorded by seventeen different sensors along a period of 406 days. The 

variables whose measurements concern sensors inside the RCP are hereafter called internal 

variables; the others are called external variables. The description of all the internal and external 

variables and their physical meanings are given in Table 1. 
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There are nine internal variables and eight external variables. Each of the variables is observed 

hourly for a period of more than 13 months, about 9200 observation points. The evolution of 

four of the variables is shown in Figure 2: from left to right, and from top to bottom, ExtVar 2, 

ExtVar 6, ExtVar 7 and IntVar 9. At the 5700th observation instance, we observe the fault, 

manifested by the variable IntVar 9 going out of control. We note that: all the variables are time-

dependent, and there are seventeen variables in total, hence leading to a multivariate problem; 

each variable is measured hourly, giving 9205 measurements for each variable, and hence 

making computations challenging; all the variables show a nonlinear behavior, hence requiring 

a nonlinear model; the data need pre-processing, because there are many outliers and missing 

observations. Missing data are due to the absence of sensors recording during some time 

instances, while outliers correspond to bad (extremely high or low) sensor recordings. 

Concerning internal variables, the total number of missing data is 377 in IntVar 1, 415 in IntVar 

2, 512 in IntVar 3, IntVar 4, IntVar 5 and IntVar 6, 493 in IntVar 7, 462 in IntVar 8 and 409 in 

IntVar 9. In the time series of external variables, there are 434 missing data in ExtVar 1, 409 in 

ExtVar 2, 422 in ExtVar 3, 428 in ExtVar 4, 372 in ExtVar 5, 453 in ExtVar 6, 512 in ExtVar 7, 

and 500 in ExtVar 8. 

Tab.1 Physical meaning of each internal and external variable. 

Internal variables External variables 

Name  Physical meaning Name  Physical meaning 

IntVar 1 T cold leg loop 1 [WR] ExtVar 1 T by-pass hot leg loop 3 

IntVar 2 T water seal #1 051PO ExtVar 2 T seal injection line 

IntVar 3 T stator winding motor 051PO ExtVar 3 P primary amount file B [GL] 

IntVar 4 T motor lower bearing 051PO ExtVar 4 Debit general file A 

IntVar 5 T lower thrust bearing 051PO ExtVar 5 Debit general file B 

IntVar 6 T motor upper bearing 051PO ExtVar 6 T aval exchanges file A 

IntVar 7 T motor upper thrust bearing 051PO ExtVar 7 T aval exchanges file B 

IntVar 8 Flow seal injection supply RCP051PO ExtVar 8 Debit refrigeration GMPP 051PO 

IntVar 9 Seal leak flow #1 RCP051PO   

 

3.2 Data Pre-processing 

Since the dataset we are going to analyze contains both missing data and outliers, we have to 

deal with both these issues. First of all, we will remove anomalous data, since their extreme 

values would affect the results of the analysis. Outliers can be easily detected by deciding some 

constraints, e.g. the limits 𝑥 ̅ ± 3 ∗ 𝜎𝑥 where 𝑥 ̅ is the mean of all the data points and 𝜎𝑥 is 
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their standard deviation. These limits are needed to detect the outliers, selected as those data 

points bigger than 𝑥 ̅ + 3 ∗ 𝜎𝑥 or smaller than𝑥 ̅ − 3 ∗ 𝜎𝑥, and subsequently removed. Note 

that we used such constraints, rather than the usual ones based on the median and the 

InterQuartile Range (IQR), to be more conservative in the outlier selection, due to the 

dependence among data. 

 

Fig.2 The evolution of four of the variables included in the dataset: from left to right, and from top to 

bottom, the measurements of ExtVar 2, ExtVar 6, ExtVar 7 and IntVar 9. On the   axis, time measured in 

hours. 

Secondly, we want to reconstruct missing data. Note that, after the outlier selection and 

elimination procedure, the number of missing data has increased. A possible way to deal with 

the reconstruction of missing data is the local polynomial regression fitting (Masry and 

Mielniczuk, 1999). This local least squares regression technique estimates effectively the values 

of the internal and external variables when there are missing data points. Moreover, it can also 

be used to perform the smoothing of the available observations, in order to reduce noise. We 

will thus use this technique both to reconstruct data where missing, and to obtain a smoother 

and less noisy time series in all remaining time instances. 

Precisely, if we denote by 𝑡0 a generic time instance, we execute the following steps to perform 

local polynomial regression: 

(1) Find the 𝑘 -nearest neighbors of 𝑡0 , which constitute a neighborhood 𝑁(𝑡0) : this 

means finding the 𝑘  time instances in the time series which are closest to  𝑡0 . The 

number 𝑘 is determined by setting it equal to a selected percentage (called span) of the 
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data; note that the span can be eventually different for each variable to allow flexibility. 

In the case of our application, three different values of the span have been selected, 

according to a trial-and-error procedure: 0.5% (high), 0.2% (medium) and 0.08% (low). 

For each of the variables, the most proper value of the span (high, medium or low) has 

been selected to be the most suited to the noise level of the variable. 

(2) Calculate 𝐷(𝑡0) = max𝑑(𝑡, 𝑡0) over 𝑡 ∈ 𝑁(𝑡0), where 𝑑 is the Euclidean distance 

between the data at time 𝑡 and 𝑡0. 

(3) For each point 𝑡 ∈ 𝑁(𝑡0), calculate its weight 𝑊(𝑡) =  (1 − |
𝑡− 𝑡0

𝐷(𝑡0)
|3)3 with a tri-cube 

weight function. 

(4) Calculate the weighted least square fit of 𝑡0 on the neighborhood 𝑁(𝑡0). 

By repeating these steps for all time instances, all the variables are smoothed and reconstructed. 

Some examples of the so obtained time series are shown in Figure 3: they are the smoothed and 

reconstructed data corresponding to the variables in Figure 2. For the variables shown in Figure 

3, the span parameter has been fixed to 0.5%. 

 

Fig.3 The smoothing and reconstruction of the evolution of the four variables whose raw observations are 

shown in Figure 2. 

3.3 Model Identification 

In order to select the most proper variables to be included as inputs in the PSVR model for 

improved prediction accuracy and reduction of the computational burden, a correlation analysis 
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is carried out between the target variable IntVar 9 and the other internal and external variables. 

The inputs are chosen to be the variables maximizing their correlations with the target IntVar 9. 

Correlations are measured by the classical Pearson correlation coefficient (Rodgers and 

Nicewander, 1988). Table 2 shows the results of the analysis. 

Tab.2 Correlations of the target variable with other internal and external variables. 

Correlations Internal variables 

IntVar 1 IntVar 2 IntVar 3 IntVar 4 IntVar 5 IntVar 6 IntVar 7 IntVar 8 

IntVar 9 0.03128 0.48797 0.55268 0.50926 0.50701 0.58884 0.48164 0.19193 

Correlations External variables 

ExtVar 1 ExtVar 2 ExtVar 3 ExtVar 4 ExtVar 5 ExtVar 6 ExtVar 7 ExtVar 8 

IntVar 9 -0.44992 0.50569 0.12352 -0.24375 0.24569 0.43695 0.37322 -0.03361 

Three external variables are the most related to the target: ExtVar 2, ExtVar 6 and ExtVar 7, 

corresponding to a correlation of 50.5%, 43.7% and 37.3%, respectively (see Table 2). Some of 

the internal variables have also a strong correlation with the target, with a correlation of more 

than 48%: IntVar 2, IntVar 3, IntVar 4, IntVar 5, IntVar 6 and IntVar 7. Hence, these six most 

related internal variables, and the three most related external variables, are included as inputs 

in the prediction model. IntVar 8 is also chosen as input, as suggested by expert judgment. The 

results are given in the next Section.  

Historical values of the target can also be exploited as inputs to improve the accuracy of the 

prediction. In order to determine the most proper temporal horizon of the target for prediction 

purposes, i.e. the number of previous values to be used in the model, an autocorrelation analysis 

is carried out on the time series of the target values. The results of this analysis are reported in 

Figure 4, where the empirical partial autocorrelation function is plotted against the 

corresponding temporal lag (a multiple of one hour). It is evident that the correlations decrease 

with lag, and after a lag of three time steps (i.e. three hours) they are no longer significantly 

different from zero. Indeed, the dashed horizontal lines in the plot are the limits of the region 

of acceptance for a statistical test with null hypothesis being zero partial autocorrelation. Hence, 

only the first three historical values of the target, i.e. three hours before, are added as inputs to 

the three most correlated external variables. 
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Fig.4 Empirical partial autocorrelation function of the time series of the target values (IntVar 9) with 

respect to time laps (multiples of hours) 

4. CASE STUDY RESULTS 

In this Section, we describe the results obtained using the PSVR method to give the prediction 

intervals for the target of interest in the context of condition monitoring of NPP components. 

The target is the variable IntVar 9, observed in its “out-of-control” regime after a fault occurred, 

and we focus on short-term (1-hour ahead) prediction. Assuming that we are at time 𝑡 and we 

want to predict the target value at time 𝑡 + 1, we use as inputs the historical values of the target 

itself till three time steps before 𝑡, the values of the three most correlated external variables at 

time 𝑡 and the values of the six most correlated internal variables at time 𝑡. We select a portion 

of the scenario under fault to apply PSVR for prediction: from the 5600th to the 8000th observed 

data. In this Section, 200 data points (5600th-5800th observations) are used for training and the 

rest for testing. 

4.1 Tuning of the Hyperparameters 

In order to achieve good prediction performance, we need to select the values of the 

hyperparameters 𝐶 , 𝜀  and 𝛾 . The values of the hyperparameters influence the results of 

PSVR but a unifying method to determine their values has not yet been established. We propose 

a novel method which gives promising results. A comparison with two alternative methods is 

also conducted. 

The method proposed in the present paper to determine the best values for the three 

hyperparameters is a simple but effective iterative search based on interpolation. Each 
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parameter is initially selected within a given interval. The best values are to be found by 

minimizing the following criterion 

𝐶1∑ 𝜎𝑖
𝑛
𝑖=1 + 𝐶2∑ |𝑦𝑖

∗ − 𝑦𝑖|
𝑛
𝑖=1              (10) 

where 𝜎𝑖 is the error bar width, 𝑦𝑖
∗ = 𝑎∗(𝒙𝑖) the predicted value and 𝑦𝑖 the target value of 

the 𝑖𝑡ℎ  input data point. 𝐶1 and 𝐶2 are the two weights of the two parts of the objective 

function (Equation (10)), the error bar width and the bias of the prediction. If 𝐶1 is smaller 

than 𝐶2, it means that we pay more attention to the variance of the prediction (error bar width) 

than to the accuracy in the prediction (distance between target and predicted values), and vice 

versa for 𝐶1  bigger than 𝐶2 . We fix 𝐶 ∈ [10, 105] , 𝛾 ∈ [10−7, 103] , 𝜀 ∈ [10−3, 10−1] , 

𝐶1 = 4 and 𝐶2 = 5 by a trial-and-error process. For each parameter, a geometric sequence 

included in the corresponding interval is considered. In this applicative context, geometric 

sequences are better than arithmetic ones, since the parameter’s influence on the objective 

function (Equation (10)) is highly non-linear. For 𝐶, 𝜀 and 𝛾, geometric sequences of size 4, 

10 and 4 are formed respectively. Note that for different training data sets, the best values of 

the parameters can change: hence, the tuning of the parameters in a feasible computational time 

is a relevant issue. In this case, the optimization of the objective function (Equation (10)) leads 

to the following choice for 𝐶, 𝜀 and 𝛾: (6309.6, 0.0032, 7). 

The results obtained via PSVR where the tuning of the hyperparameters is conducted according 

to the method proposed by the authors are compared with two alternative methods based on, 

respectively: the minimization of the objective function of the PSVR (Equation (2)) and the 

widely used minimization of the Mean Square Error (MSE) between the predicted value and 

the target of the training data set. The best combinations of 𝐶, 𝜀 and 𝛾 determined by these 

last two approaches are (398.1072, 0.3162, 2.5119) and (6309.6, 0.001, 3), respectively. A 

comparison of the results obtained with each of these strategies will be shown in the next 

Section. 

4.2 PI for the Target and Conditional Predictive Distribution 

The results of the application of PSVR are shown below. Figure 5 depicts the prediction of the 

target, with the corresponding Prediction Interval (PI) with a confidence level of 95%, obtained 

by tuning the hyperparmeters according to the novel strategy proposed by the authors. The solid 

line is the target, the dash-dot line is the point prediction, while the two dashed lines are the 

upper and lower bounds of the 95% PI computed according to the predictive distribution. 
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Hence, for each test point 𝒙, the PI bounds are the values 𝐿(𝒙) and 𝑈(𝒙) corresponding to a 

95% confidence that 𝑦(𝒙) lies in the interval [𝐿(𝒙), 𝑈(𝒙)]. In particular, the PI corresponding 

to the test point 𝒙 is [𝑎∗(𝒙) − 2𝜎(𝒙), 𝑎∗(𝒙) + 2𝜎(𝒙)], where 𝑎∗(𝒙) is the predicted value 

according to Equation (3) and 𝜎(𝒙) is the variance associated to the prediction (error bar) and 

given by Equation (9). We remark that the predictive distribution in 𝒙 is a Gaussian with mean 

𝑎∗(𝒙) and variance 𝜎(𝒙). Figure 6 shows the predictive distribution associated to the 7500th 

target data point according to Equation (7). The circle in Figure 6 is drawn in correspondence 

to the target value. 

 

Fig.5 Point prediction and associated PIs for the target of interest (both the training and testing data points) 

using PSVR with hyperparameters tuning according to the proposed method. 
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Fig.6 Predictive distribution associated to the 7500th target data point (circle), and obtained by using the 

PSVR with hyperparameters tuning according to the proposed method. 

The prediction interval empirical coverage estimated on the whole testing set is 91.50%. The 

MSE is 5.4332*10-5. The relative error is smaller than 4%. If the model is trained using a bigger 

training data set, the relative error and absolute error will decrease.  

The results of the application of PSVR (prediction of the target and 95% confidence PIs) with 

tuning of the hyperparameters according to the objective function (Equation (2)) and the MSE 

are shown in Figure 7 and Figure 8, respectively. Moreover a comparison of the three methods 

used for determining the values of the hyperparameters in terms of average width of PIs, mean 

relative error and mean absolute error is offered in Table 3. It is obvious that the proposed 

method is the best both in terms of prediction accuracy and precision. It is reasonable that the 

objective function of PSVR gives the worst results, because the objective function (Equation 

(2)) is used as a criterion to determine the weights of the support vectors in PSVR, and thus it 

is not expected to be suited also for determining the values of the hyperparameters. The results 

obtained via MSE are a little worse than the ones obtained by using the method proposed by 

the authors. This is mainly caused by the fact that MSE looks only to prediction accuracy and 

not at PIs width. 
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Fig.7 Point prediction and associated PIs for the target of interest (both the training and testing data points) 

using PSVR with hyperparameters tuning according to the objective function. 

 

Fig.8 Point prediction and associated PIs for the target of interest (both the training and testing data points) 

using PSVR with hyperparameters tuning according to MSE. 
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Tab.3 Comparison of the results of different methods for determining the values of hyperparameters 

Methods Average Weights of PIs Mean Relative Error Mean Absolute Error 

Proposed Method 0.0099 0.0093 0.0059 

Objective Function of PSVR 0.1903 0.5613 0.3318 

Mean Square Error 0.0671 0.0183 0.0114 

 

4.3 Comparisons with other empirical approaches 

In this Section, a comparison of the results obtained by PSVR and by other standard empirical 

approaches to short term prediction is illustrated. The empirical approaches we are going to 

consider are Auto-Associative Kernel Regression (AAKR) method, a well-established 

benchmark empirical approach to condition monitoring and prognostics, and Standard SVR, 

which corresponds to PSVR in a non-Bayesian framework.  

AAKR is a well-known and established method suited both for reconstruction and for prediction 

purposes. It is an empirical modeling technique in which the prediction is found as a weighted 

sum of the previous values of the target variable. In order to determine the weights, AAKR 

makes use of historical observations of all signals to compute a global similarity measure, 

typically based on a Gaussian kernel, at each time. Further details on the method can be found 

in Baraldi et al. (2010). The main difference of this approach from both PSVR and SVR is the 

lack of a model for prediction: internal and external variables are used by AAKR just to 

compute the weights, but their patterns are not further exploited in the prediction process. On 

the contrary, both PSVR and SVR aim at finding the best non-linear empirical model relating 

the input variables (internal and external variables, and historical values of the target) to the 

future value of the target. 

The comparison with AAKR has been carried out for three different training datasets, which 

correspond to the measurements intervals [6800th, 6950th], [6900th, 7050th] and [7000th, 7150th]. 

The bandwidth of the Gaussian kernel used in AAKR has been tuned for each dataset by a trial-

and-error process, and the resulting best values are 2, 2 and 1, respectively. We show in Figure 

9 the results obtained by AAKR on the second training dataset, [6900th, 7050th], where we 

trained AAKR on the same signals (internal and external variables) used as inputs in both PSVR 
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and SVR models: the solid line in the Figure is the target and the dashed line is the prediction 

given by AAKR. Note that the data normalization strategy used in the AAKR procedure is 

different from the one used in PSVR and SVR: in the former case, data have been normalized 

to have zero mean and standard deviation equal to 1, while in the latter case they have been 

forced to lie in the interval [0,1]. 

It is evident from Figure 9 that AAKR method does not give satisfactory results. Actually these  

poor results should be expected, since AAKR is in general proficiently used for condition 

monitoring and fault detection, but it is not a proper method for prognostics: it is capable of 

effectively reconstructing the operational behavior of a signal, but since it computes only a 

weighted average of the signals in the training set, its generalization power is low in the case of 

out-of-control signals.  

For what concerns the comparison of PSVR with SVR, the SVM-Toolbox of Matlab is used. 

The comparison is carried out for the same three training datasets considered for the comparison 

with AAKR. Using the same values for the hyperparameters selected for PSVR, the result of 

SVR on the training dataset [6900th, 7050th] is shown in Figure 10, where the solid line is the 

target and the dashed line is the predicted value. 

 

Fig.9 Point prediction for the target of interest (for both the training and testing data points) using AAKR 

(the bandwidth of the Gaussian kernel is set equal to 2). 
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Fig.10 Point prediction for the target of interest (for both the training and testing data points) using standard 

SVR (with Matlab Toolbox). 

Differently from the case of AAKR, the prediction obtained with SVR is quite accurate. Hence, 

to obtain a more precise comparison, in Table 4 the values of the Mean Square Errors obtained 

for the three training data sets with SVR and PSVR are reported. From inspection of the Table, 

it can be noticed that PSVR and standard SVR give comparable results, since the result of PSVR 

is slightly better for the first and third training data sets, but it is slightly worst for the second 

one. This is probably due to the empirical nature of the nonlinear regression methods we are 

using. On the other hand, standard SVR can only give a point estimate, while PSVR can also 

provide the uncertainty quantification, e.g. the PIs for the target and the predictive distribution.  

Tab.4 Comparison of the results of PSVR and standard SVR 

 SVR PSVR 

[6800th, 6950th] 3.3353*10-4 2.2267*10-5 

[6900th, 7050th] 1.4105*10-5 5.3534*10-5 

[7000th, 7150th] 1.9787*10-4 2.8867*10-5 

5. CONCLUSION 

In this paper, an approach is proposed for prediction of parameters of NPP components under 

fault conditions. It includes pre-processing for data reconstruction and model selection, and 
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PSVR for estimation of the prediction interval and conditional predictive distribution of the 

target of interest. The results of the application to a real case study of leak flow in the first seal 

of a RCP are satisfactory. The coverage of the prediction interval is 91.50% with a confidence 

level of 95%. The conditional predictive distribution provides the probability distribution of the 

values of the target. These two indicators, the PI and the predictive distribution, are very 

informative for the NPP operators in case of accident.  

The future work will focus on the development of a method to extend condition monitoring to 

prognostics, by computing the NPP components RUL on the basis of the prediction of its 

evolving parameters. This entails propagating the uncertainties in the prediction, due to both 

the observed data and the model itself. 
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APPENDIX A 

Let us assume that the input data is a 𝑛 -dimensional set of vectors  𝑿 = {𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏} , 

independently drawn in𝑹𝑝, and that we also have an independent sample from the target value 

𝒀 = {𝑦1, 𝑦2, … , 𝑦𝑛}, where 𝑦𝑖  ∈ 𝑹, 𝑖 = 1, 2, . . . , 𝑛.  

In regression methods, the final aim is to find an underlying function describing the relation 

between the input data and the target. Here, this function will be indicated as an element of the 

generic space 

𝐹 = {𝑎(𝒙): 𝑹𝑝 → 𝑹}.                (1) 

Moreover, we assume that the training set 𝜞 = {𝑿, 𝒀}  has been drawn from the probability 

distribution 𝑃(𝒙, 𝒚): 𝑹𝑝+1 → 𝑹 , which is not known. The Maximum A Posteriori (MAP) 

method consists in finding the 𝑎(𝒙) which minimizes the risk 

𝑅𝐸𝑅𝑀(𝒙) =  ∫ 𝑙(𝑎(𝒙)  −  𝑦)𝑑𝑃(𝒙, 𝑦),            (2) 

where 𝑙(𝒙, 𝑦) is the loss function. There are many possible choices for the loss functions, e.g. 

square loss function, 1-norm loss function, Huber’s loss function, etc. In this paper, we adopt 

one of the most common choices, the 𝜀-insensitive loss function 
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𝑙(𝑥) =  {
0                   𝑖𝑓 |𝒙| < 𝜀
|𝑥| − 𝜀       𝑖𝑓|𝑥| ≥ 𝜀

.             (3) 

The 𝜀-insensitive loss function has a good sparseness property, because all the data points 

whose margin between the predicted and target values is smaller than 𝜀, are not used in the 

estimation process. 

In SVM, the Empirical Risk Minimization (ERM) is used to solve the optimization problem in 

Equation (2), where 𝑑𝑃(𝒙, 𝑦) is replaced by 
1

𝑛
, recalling that 𝑛 is the number of input data 

points. This means assuming that all the data points follow an identical and independent 

distribution (i.i.d), and using their empirical sample distribution. However, according to 

Tikhonov and Arsenin (1977), this is an ill-posed approach, whose generalization property is 

not good.  

The Structural Risk Minimization (SRM) is formulated to solve the problem. A positive semi-

definite operator ∥ 𝑃̂𝑎 ∥2 is added to the ERM, and the so obtained new risk functional, called 

SRM, is given by 

𝑅𝑆𝑅𝑀(𝒙) = 𝐶 ∑ 𝑙(𝑎(𝒙𝒊) − 𝑦𝑖) + 
1

2
∥ 𝑃̂𝑎 ∥2𝒙𝑖

.          (4) 

The operator P̂  maps the space F  into a dot-product space, and the kernel kernel 𝐾 =

 (𝑃̂ 𝑇𝑃̂ )−1   is derived after the Gaussian Process (GP) is introduced as a prior into the 

regression problem. 

Indicating with 𝒂(𝑿) =  (𝑎(𝒙1), 𝑎(𝒙2),… , 𝑎(𝒙𝑛))
𝑇 the vector of function values, 𝑃[𝒂(𝑿)|𝚪] 

is the conditional probability of 𝒂(𝒙) given the training set 𝚪. 𝑃[𝚪|𝒂(𝑿)] is the likelihood 

of 𝑿 having been originated by the corresponding target 𝒀 given the underlying function 

𝑎(𝒙) . 𝑃[𝒂(𝑿)]  is the a priori probability of the underlying function 𝑎(𝒙) . 𝑃[𝚪]  is the 

evidence. 

Applying the Bayesian Rule, we can derive the relation 

𝑃[𝒂(𝑿)|𝚪] =  
𝑃[𝚪|𝒂(𝑿)]𝑃[𝒂(𝑿)]

𝑃[𝚪] 
              (5) 

We make the following assumptions: 

(1) Training data are i.i.d. 

(2) The a priori probability distribution is 𝑃[𝒂(𝑿)] ∝ exp (−
1

2
∥ 𝑃̂𝑎 ∥2). 
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(3) The ε-insensitive loss function is chosen as the loss function. 

(4) The covariance function is 𝐾(𝒙, 𝒙′), and 𝐾(𝒙𝑖, 𝒙𝑗) = exp (−
|𝒙𝑖−𝒙𝑗|

2

2𝛾2
), where 𝒙𝑖, 𝒙𝑗 are 

the input data points in 𝑿. 

Following Equation (6), the a posteriori probability of 𝒂(𝑿) can be written as 

𝑃[𝒂(𝑿)|𝚪] =  
[𝐺(𝐶,𝜀)]𝑁

√𝑑𝑒𝑡2𝜋𝐾𝑿,𝑿𝑃[𝚪]
exp{−𝐶∑ 𝐿𝜀(𝑦𝑖 − 𝑎(𝒙𝑖)) −

1

2
𝒂(𝑿)𝑇𝐾𝑿,𝑿

−1𝒂(𝑋)𝒙𝑖∈𝑿
}  (6) 

where 𝐺(𝐶, 𝜀) =  
1

2

𝐶

𝐶𝜀+1
, and 𝐾𝑿,𝑿  = [𝐾(𝒙𝑖, 𝒙𝑗)]  is the covariance matrix of the data points 

of 𝑿. 

We find the maximum of Equation (7) using the so-called MAP. This requires finding the 

minimum of the following function 

𝑅𝐺𝑆𝑉𝑀(𝑎) =  𝐶 ∑ 𝐿𝜀(𝑦𝑖 − 𝑎(𝒙𝑖)) +
1

2
𝒂(𝑿)𝑇𝐾𝑿,𝑿

−1𝒂(𝑋)𝒙𝑖∈𝑿
       (7) 

We can see that the risk of Gaussian SVMs is equivalent to the standard SVM. Following the 

discussion in Mackay (1997), Tikhonov and Arsenin (1997), Girosi (1998) and Burges (1998), 

we can write the solution of the minimization problem associated to Equation (8) in the 

following form 

𝑎∗(𝒙) =  ∑ 𝛽𝑖𝐾(𝒙𝑖, 𝒙)𝒙𝑖∈𝑿
              (8) 

where 𝛽𝑖 = 𝑎𝑖 − 𝑎𝑖
∗  is a combination of the Lagrange Multipliers associated to the 

optimization problem (Smola and Scholköpf, 2004). The 𝑎𝑖 and 𝑎𝑖
∗ can be determined by a 

Quadratic Programming approach. According to Smola and Scholköpf (2004), ∀ 𝑖 = 1, . . . , 𝑛, 

𝑎𝑖  and 𝑎𝑖
∗ lie in the interval [0, 𝐶], and 𝛽𝑖 consequently lies in the interval [−𝐶, 𝐶], which 

is the domain of the optimization problem. 

There are different medium-scale and large-scale algorithms that can be used for optimizing 

under constraints the objective function in Equation (8). An active set algorithm which focuses 

on the solution of the Karush-Kuhn-Tucker (KKT) equations is used in this paper. The KKT 

equations are both necessary and sufficient conditions for obtaining a global solution point 

when the problem is a convex programming problem. Sequential Quadratic Programming 

(SQP) method is used to compute directly the Lagrange multipliers which balance the 

deviations in magnitude of the objective function and constraint gradients.  
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A NOVEL DYNAMIC-WEIGHTED  

PROBABILISTIC SUPPORT VECTOR REGRESSION-BASED 

ENSEMBLE FOR PROGNOSTICS OF TIME SERIES DATA 

Jie Liu, Valeria Vitelli, Enrico Zio, Senior Member, IEEE, and Redouane Seraoui 

  

ABSTRACT 

-Weighted Probabilistic Support Vector Regression-based 

Ensemble (DW-PSVR-ensemble) approach is proposed for prognostics of time series data 

monitored on components of complex power systems. The novelty of the proposed approach 

consists of i) the introduction of a signal reconstruction and grouping technique suited for time 

series data, ii) the use of a modified Radial Basis Function (RBF) kernel for multiple time series 

data sets, iii) a dynamic calculation of sub-models weights for the ensemble, and iv) an 

aggregation method for uncertainty estimation. The dynamic weighting is introduced in the 

calculation of the sub-models weights for each input vector, based on Fuzzy Similarity Analysis 

(FSA). We consider a real case study involving 20 failure scenarios of a component of the 

Reactor Coolant Pump (RCP) of a typical nuclear Pressurized Water Reactor (PWR). Prediction 

results are given with the associated uncertainty quantification, under the assumption of a 

Gaussian distribution for the predicted value. 

 

Key words: Prognostics, time series, Probabilistic support vector regression, Ensemble, 

Uncertainty quantification, Nuclear pressurized water reactor, Reactor coolant pump 

  



Paper II: Jie LIU, Valeria VITELLI, Enrico ZIO & Redouane SERAOUI “A novel dynamic-weighted probabilistic support 

vector regression-based ensemble for prognostics of time series data,” Special Issue of IEEE Transactions on Reliability, 

2014. (Under review) 

- 94 - 

1. INTRODUCTION 

The field of research and application which aims at making use of the past and present 

information on the environmental, operational, and usage conditions of a component or a 

system in order to detect its degradation, diagnose its faults, predict, and proactively manage 

its failures, is called prognostics and health management [1]. This field of research articulates 

in various directions: fault detection and isolation, i.e. the identification and characterization of 

the component or system failure state, and prognostics, i.e. the prediction of the future evolution 

of the failure scenario. While the former is often difficult in realistic situations, the latter is even 

more challenging. 

Various taxonomies have been proposed to categorize the different approaches for prognostics. 

According to [1], they can be classified into first-principle model-based approaches, reliability 

model-based approaches, process sensor data-driven approaches and combined approaches. It 

is difficult to apply first-principle model-based approaches on complex component or systems, 

because they are based on structural and physical assumptions, which lead in many cases to 

high computational costs or to excessive simplifications. Performance of reliability model-

based approaches also highly depends on the underlying modeling framework which is used to 

derive reliable estimates. On the other hand, data-driven approaches do not make use of any 

physical model, relying exclusively on monitored process data from sensors related to the 

degradation and failure state of the component or system. Empirical techniques like Artificial 

Neural Networks (ANN), Support Vector Machine (SVM), Local Gaussian Regression (LGR), 

pattern similarity, are typical examples [1]. The advantage of data-driven approaches lies in the 

direct use of the measured process data for empirical learning and non-parametric estimation of 

component degradation and failure. Quick prediction, robustness, confidence estimation, 

adaptability are some desirable characteristics of these prognostic methods for practical 

applications. 

However, data-driven approaches have some disadvantages which limit their applications. 

Individual models cannot always estimate the true underlying relation between heterogeneous 

data with the required level of accuracy, and the use of an individual model may cause over-

fitting on the data set at hand. In addition, many machine learning algorithms are based on some 

form of local optimizer that typically shows the tendency to converge to local optima. 

Combining various data-driven approaches into an ensemble is a relatively recent direction of 
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research, traced to improve the robustness and accuracy of the final prediction strategy. The 

models which compose the ensemble are called sub-models. In the original ensemble approach 

some strategies are proposed for building sub-models, e.g. Bayesian averaging, but more recent 

proposals have also been elaborated, including error-correcting output coding, Bagging, 

Adaboost, and boosting [2], [3], [4]. Several methods for aggregating the prediction results of 

sub-models have also been proposed in the literature, such as majority vote, weighted vote, 

Borda count, Bayes and probabilistic schemes, etc [5].  

Ensemble models find application in a wide range of research fields, such as meta-modeling for 

the design of modern engineering systems [6], [7], discovery of regulatory motifs in 

bioinformatics [8], detection of traffic incidents [9], transient identification in Nuclear Power 

Plant (NPP) [10]. Moreover, ensembles are so flexible that they can be built using a variety of 

techniques (e.g., committees of neural networks [11], [12], Kalman filters [13]). 

In this paper, we focus on the combination of data-driven approaches for prognostics, and more 

specifically on the combination of multiple Probabilistic Support Vector Regression (PSVR) 

sub-models [14], [15]. The case study addressed in this paper concerns the monitoring of a 

component in the Reactor Coolant Pump (RCP) of a NPP, with real data collected from one 

sensor. The time horizon for the prediction is one day and it has been fixed according to the 

requirements of the engineering application at hand: decisions depending on the state of the 

component are to be taken within this time horizon.  

PSVR derives from Support Vector Regression (SVR), also called Support Vector Machine 

(SVM), which is one of the most popular and promising data-driven methods for prognostics. 

The foundations of SVM have been developed by Vapnik [16] and the method is now gaining 

popularity due to its remarkable generalization performance, especially when few data are 

available. SVM can be applied to both classification and regression problems, in the latter case 

being mostly called SVR. SVR and SVM have been successfully applied in many fields such 

as face detection, hand-writing digital character recognition, residual useful life estimation, 

interval forecasting of electricity price, biophysical variables estimation, and others. Some 

research on SVM-based ensemble models has already been carried out. Chen et al. [9] use 

ensemble of SVMs to detect traffic incidents. The sub-models (i.e. the models composing the 

ensemble) use different kernel functions and parameters to improve the classification 

performance. Acar and Rais-Rohami [7] treat the general weighted-sum formulation of an 

ensemble as an optimization problem, and then minimize an error metric to select the best 
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weights for the sub-models of SVM. Kurram and Kwon [17] try to achieve an optimal sparse 

combination of the sub-model results by jointly optimizing the separating hyperplane obtained 

by each SVM classifier and the corresponding weights of sub-decisions. Huang and Zhang [18] 

propose a new multi-feature model to construct a SVM ensemble combining multiple spectral 

and spatial features at both pixel and object levels. Chiang and Lee [19] propose a hybrid 

machine learning system by merging fuzzy multiset-based classifiers and SVM into fuzzy-SVM 

mixture models, which achieve consistent prediction accuracy on human protein-protein 

interactions. Valentini and Dietterich [20] prove that an ensemble of SVMs employing bagging 

of low-bias algorithms improves the generalization power of the procedure with respect to 

single SVM. They also present an extended experimental analysis of bias-variance 

decomposition in SVMs [21]. The ensemble of SVMs built with bagging and boosting greatly 

outperforms a single SVM in terms of classification accuracy [3]. 

Recently, it has been shown how to treat the SVR method as a Bayesian inference problem with 

Gaussian priors. The Maximum A Posteriori (MAP) solution to this problem can contextually 

give an estimate of the model parameters and also of the underlying function [22], [23]. Within 

the Bayesian treatment of SVR, an error bar for the prediction, i.e. the variance of the predicted 

outcome, can also be obtained [14], [15]. This Bayesian interpretation of SVR is called 

Probabilistic Support Vector Regression (PSVR). 

An ensemble model of PSVRs is proposed in this paper with a dynamic weighting strategy. The 

elements of novelty of the method here proposed are various. In the previously mentioned 

ensembles of SVMs, all the weights were calculated during the training part and fixed for 

testing. However, a sub-model may perform well only on a part of the data set. Hence, the 

weights need to be updated considering the different data sets involved in the case study, and 

even different input vectors. A dynamic weighting strategy, based on Fuzzy Similarity Analysis 

(FSA) [24], is proposed in this paper. A dynamic weighting method is used in [25], [26], [27], 

to add a new classifier to the ensemble model, but weights are not adjusted to different input 

vectors. Moreover, in order to build an ensemble of PSVRs on different failure scenarios, a 

modified Radial Basis Function (RBF) is also proposed and used in this paper. In addition, a 

simple but efficient aggregating method is proposed to combine the outputs of the sub-models, 

including predicted values and associated error bars. Finally, two different strategies are 

proposed to form the training data sets of each sub-model on the basis of the characteristics of 

the data. All the novel strategies are tested in the case study concerning a component of the 
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RCP in a NPP. 

The rest of the paper is organized as follows. Section II gives details about the proposed 

ensemble approach and a brief introduction to PSVR with modified RBF. Section III illustrates 

the case study, the available data, some necessary data pre-processing steps and how the two 

proposed ensemble models are constructed. Section IV presents the experimental results from 

the PSVR ensemble models and describes the comparison with a single PSVR model. Finally, 

conclusions with some considerations are drawn in Section V. 

2. DYNAMIC-WEIGHTED PSVR-BASED ENSEMBLE 

The strategy underlying the use of ensemble-based methods in prediction problems is to benefit 

from the strength of different sub-models by combining their outputs to improve the global 

prediction performance if compared to the result of a single sub-model. The reason why 

ensembles are more accurate and robust is that sub-models perform well for different data sets 

and/or exploration regions, and their imprecisions and one-sidedness are balanced out during 

the combination. Moreover, since SVM has been implemented using approximated algorithms 

to reduce the computational complexity, a single SVM may not always converge to the global 

optimum. Sometimes, the support vectors obtained from the learning are not sufficient to give 

good prediction performance for all unknown test examples.  

One of the main advantages of PSVR is that the output is not only a point estimate, but an 

uncertainty estimation related to the predicted value can also be derived. The point estimation 

for a real application needs to be supported by a proper prediction interval, which is more 

informative to the NPP operator on the reliability of the estimation upon which he/she must 

take decisions of operation. The peculiarity of the PSVR method is exactly that it can give an 

error bar associated to the predicted value. After the sub-models are trained with PSVR, a 

simple but efficient strategy is proposed to combine their outputs. As different failure scenarios 

are available in the case study, the ensemble takes also advantage of the diverse information in 

the different scenarios for the 1-day ahead prediction output that it delivers. 

In this section, we give details about the proposed Dynamic-Weighted PSVR-based Ensemble 

(named DW-PSVR-Ensemble in short). 

2.1 Probabilistic Support Vector Regression 

Depending on the choice of the loss function, we can define different Gaussian versions of 
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PSVR [28]. The PSVR approach proposed in the previous work [15] and used in the ongoing 

research makes use of the ɛ-insensitive Loss Function, which enables a sparse set of support 

vectors to be obtained [29].  

2.1.1 PSVR with ɛ-Insensitive Loss Function 

Suppose to have a time series data set 𝑎(𝑡). Partial autocorrelation analysis can help finding a 

time horizon 𝐻 defining the best number of historical values related to the output. Hence, the 

input vector will be 𝒙(𝑡) = (𝑎(𝑡 − 𝐻 + 1),… , 𝑎(𝑡)). In regression methods, the final aim is 

to find a function 𝑓∗(𝒙) which estimates the function 𝑓(𝒙): RH → R describing the relation 

between the input data and the target: 𝑦(𝑡) = 𝑓(𝒙(𝑡)) + 𝛿(𝑡), (𝛿(𝑡) is intrinsic noise in the 

data). 

We briefly recall some points of the PSVR approach with -insensitive loss function which are 

critical for the clarity and consistency of DW-PSVR-Ensemble in this paper; further 

mathematical details on the derivation of the method can be found in [14], [15]. 

Let: 

1) The training data 𝚪 = {𝑿, 𝒀}  be composed by independent samples (𝒙(𝑡), 𝑦(𝑡)) , 

which, given 𝒇∗(𝑿) = (𝑓∗(𝒙(1)), 𝑓∗(𝒙(2)), … , 𝑓∗(𝒙(𝑀))) , with 𝑀  the size of 

training data set, are drawn from the same probability distribution. We recall that 𝑀 is 

not equal to the size of the time series data set 𝑎(𝑡). 

2) The loss function be described as follows (see [6]): 

𝑙(𝒙, 𝜀) =  {
|𝒙| −  𝜀, |𝒙| ≥ 𝜀

0, |𝒙| < 𝜀
.              (1) 

3) The covariance function be indicated with 𝐊𝑿,𝑿, where the element 𝐊i,j of the i-th row 

and j-th column is K(𝒙(𝑖), 𝒙(𝑗)) i.e. a modified Radial Basis Function (RBF), with 

𝒙(𝑖), 𝒙(𝑗) being elements of 𝐗, and i, j = 1, … ,M. 

By minimizing the following function: 

RGSVM(𝑓) = 

    C ∑ 𝑙(𝑦(𝑖) − 𝑓(𝒙(𝑖)), ε) +
1

2
𝒇(𝐗)T𝐊𝐗,𝐗

−1𝒇(𝐗)𝒙(𝑖)∈𝐗 ,        (2) 

we can derive the estimator of 𝑓(𝒙) as 
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𝑓∗(𝒙) =  ∑ βiK(𝒙(𝑖), 𝒙)𝒙(𝑖)∈X ,              (3) 

where βi is a combination of the Lagrange Multipliers associated to the optimization problem 

[29] which lies in the interval [−𝐶, 𝐶]. The vector x is a new input vector.  

Thanks to the Bayesian approach, the estimation process leads naturally to compute the 

prediction variance from the predictive distribution [14]. Suppose that x is a test input vector 

and that 𝑿𝑀  is the subset of all the support vectors; then, the error bar of the prediction 

corresponding to the test input point x is  

𝜎2(𝒙) =  𝜎𝛿
2 + 𝜎𝑡

2(𝒙) =  
2

𝐶2
+
𝜀2(𝐶𝜀 + 3)

3(𝐶𝜀 + 1)
 

+ 𝐾(𝒙, 𝒙) − 𝑲𝑿𝑀,𝒙
𝑇 𝑲𝑿𝑀,𝑿𝑀

−1 𝑲𝑿𝑀,𝒙.             (4) 

2.1.2 Kernel Function and Hyperparameters 

2.1.2.1 Modified Radial Basis Function Kernel 

The kernel function enables to map an input vector into a higher-dimensional Hilbert space. By 

calculating pairwise inner products between mapped samples, kernel functions return the 

similarity between different samples. In fact, only kernels that fulfill Mercer’s Theorem (the 

kernel matrix must be positive semi-definite) are valid ones and, thus, can be used in SVM [31], 

[32]. The most common kernel functions include the linear kernel fucntion, the polynomial 

kernel function and the Radial Basis Function. 

In all these popular kernel functions, different inputs, i.e. different elements of x(t), are treated 

equally in computing the inner product involved in RBF. As previously discussed, H historical 

values of the time series are chosen as inputs according to the partial autocorrelation analysis 

results. These values have, of course, different correlation structures with respect to the output. 

In order to reflect this difference, a modified RBF is proposed in this paper.  

The traditional RBF is 𝐾(𝒙(𝑖), 𝒙(𝑗)) = exp (−
‖𝒙(𝑖)−𝒙(𝑗)‖2

2𝛾2
), and the proposed modified RBF is 

𝐾(𝒙(𝑖), 𝒙(𝑗)) = exp (−
〈𝑪𝑎

𝟐,(𝒙(𝑖)−𝒙(𝑗))𝟐〉

2𝛾2
). 𝑪𝑎 = (𝐶1, … , 𝐶𝐻)  is the correlation between each 

input and the output, in our case between different temporal lags and the output of time series 

data. Note that being the inputs historical values of the target, the correlation is in fact the time 

series autocorrelation. Suppose 𝑨𝒊 = [𝑥𝑖(𝑡)], 𝑩 = [𝑦(𝑡)], with 𝑥𝑖(𝑡) the i-th input of 𝒙(𝑡) 

and 𝑡 = 1,… ,𝑀. Then,  𝐶𝑖   is the correlation between 𝑨𝒊  and 𝑩, and so the correlation 
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between 𝑥𝑖(𝑡) and 𝑦(𝑡). As 𝑪𝑎 is fixed vector for each sub-model, it is easy to prove that 

the modified RBF satisfies Mercer’s Theorem. Thus, the modification of the RBF does not 

change the theoretical results on which the PSVR method is based.  

By giving different weights to different inputs in the input vector, we can reduce the influence 

of the inputs less correlated with the output and make the more correlated ones more significant 

in the relation between the inputs and the output. Another advantage of the modified RBF is 

introduced in Section III, when dealing with multiple time series data. 

2.1.2.2 Tuning of Hyperparameters 

There are three parameters that need to be tuned (called hyperparameters hereafter), related to 

PSVR with -insensitive loss function and the modified RBF. The three hyperparameters are 

the penalty factor 𝐶, the sparsity control parameter  and the width of the kernel .  

Some methods have already been proposed in the literature to determine these hyperparameters 

[3], [16], [33], [34], [35]. In this paper, the interpolation method based on an innovative criterion 

introduced in our previous work [15] is used to obtain the best values of these three 

hyperparameters. Readers who are interested can refer to [15] for more details. A comparison 

between the proposed tuning method and a Genetic Algorithm (GA) [36] shows that the 

proposed method has much less computational complexity, while it gives results comparable to 

GA. 

In this paper, all sub-models are trained using the same method; in order to keep the diversity 

and specificity of each sub-model, hyperparameters are tuned with respect to the performance 

of the individual model, instead of the global performance of the ensemble.  

2.2 Ensemble-Based Approach 

An ensemble-based approach is obtained by training diverse sub-models, and, then, combining 

their results with proper strategies. It can be proven that this can lead to superior performance 

with respect to a single model approach [37]. Ensemble-based approaches attempt to take 

advantage of each sub-model, by fusing results from all the sub-models. A simple paradigm of 

a typical ensemble-based approach is shown in Figure 1. Ensemble models are built on three 

key components: a strategy to build diverse models; a strategy to construct accurate sub-models; 

a strategy to combine the outputs of the sub-models in a way such that the correct decisions are 

amplified, while the incorrect ones are counteracted. We focus here on the latter. Proper 
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strategies to build diverse and accurate sub-models are described in relation to the case study. 

Fig. 1.  Paradigm of a typical ensemble method. 

In the DW-PSVR-Ensemble that we are proposing, the sub-models are built using the PSVR 

model presented in the previous section. The reason for not using other data-driven approaches, 

including other SVMs, lies on the special output structure of PSVR. The output of each sub-

model built with PSVR contains a predicted value and the associated variance, assuming that 

the predicted value follows a Gaussian distribution.  

A dynamic weighted-sum strategy is proposed to combine the outputs of the sub-models. As 

mentioned in Section I, different methods can be applied to calculate the weights for the sub-

models. In the methods that can be found in the literature, the weights are normally fixed after 

the ensemble model is built. They are only updated when new sub-models are added to the 

ensemble or when some sub-models are changed. In some real applications with fast changing 

environmental and operational conditions, the performance of the ensemble model may degrade 

rapidly. This degradation does not always depend on the low robustness or capability to adapt 

of the ensemble model, but can be due to the fact that the best sub-models are not given proper 

weights. In this paper, a dynamic weighting strategy is thus proposed. The weights are no longer 

constant during the prediction, but dependent on the input vector. They are recalculated each 

time a new input vector arrives. Inspired by the work of [24] and considering the characteristics 

of PSVR, a Fuzzy Similarity Analysis (FSA) is implemented in this paper to calculate weights 

of different sub-models for each input vector. 

2.2.1 Fuzzy Similarity Analysis 

The weights of each sub-model are calculated by FSA [24].  

Indeed, the performance of the models built by PSVR is highly dependent on the training data 

set, and more precisely on the support vectors that are derived from it. The performance of the 

model with respect to new incoming data is, then, highly dependent on the similarity between 
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the new input and the training data set. This claim is confirmed by the results in the case study. 

Thus, it is critical to adapt the weight assigned to the PSVR sub-model according to the 

similarity between the new input and the training data. 

Suppose that a sub-model 𝑗 out of all the 𝑁 sub-models is built on the training data set 𝑿 =

(𝒙1, 𝒙2, … , 𝒙𝑀) and the new input vector is 𝒙; then, the weight of this sub-model for the new 

input vector can be calculated by the following steps: 

1) The first step consists in calculating the Euclidean distance between 𝒙 and 𝒙𝑖for 𝑖 =

1, … ,𝑀, denoted with 𝜙𝑖 = ‖𝒙 − 𝒙𝑖‖2. 

2) The second step is to compute the point-wise similarity of 𝒙 and the corresponding 

distance score. The distance between 𝒙  and 𝒙𝑖  is evaluated with reference to an 

“approximately zero” fuzzy set (FS), specified by a function that maps the Euclidean 

distance 𝜙𝑖 into the corresponding similarity value 𝜇𝑖 [38]. For the definition of the 

FS, triangular, trapezoidal, and bell-shaped are among the most popular functions. In 

the application illustrated in this work, the following bell-shaped function is used: 

𝜇𝑖 = exp (−(−ln (𝛼)/𝛽
2)𝜙𝑖

2).              (5) 

The arbitrary parameters  and   in (5) can be fixed by the analyst: the larger the value of the 

ratio -ln()/2, the narrower the fuzzy set and the stronger the definition of similarity [24].Then, 

the distance score 𝑑𝑖 = 1 − 𝜇𝑖 is computed. 

3) The third step is to find the minimum 𝑑𝑗, associated to the j-th sub-model, of the 𝑑𝑖s, 

for 𝑖 = 1,… ,𝑀. Then, 𝜔̃𝑗 = (1 − 𝑑𝑗)exp (−
𝑑𝑗

𝛽
), is the strategy to obtain the weight of 

sub-model 𝑗. 

By repeating the previous steps for all sub-models 𝑗, 𝑗 = 1,… ,𝑁, we obtain all the weights 

𝜔̃𝑗. The final weight of each sub-model for the new input vector 𝒙 can be calculated as 𝜔𝑗 =

𝜔̃𝑗/∑ 𝜔̃𝑘
𝑁
𝑘=1 . These final weights can be applied in the ensemble paradigm to derive the output 

of the ensemble model for 𝒙, as explained in the next step below. 

2.2.2 Combining sub-models outputs 

Figure 2 shows the paradigm of DW-PSVR-Ensemble, where 𝑁 is the number of sub-models, 

𝒙(𝑡) is a new input vector arriving at time 𝑡, 𝑤𝑗(𝑡) is the weight assigned to the j-th sub-
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model for the new input vector, 𝑦̂𝑗(𝑡) and 𝜎𝑗
2(𝑡)  are the predicted value and corresponding 

variance for the j-th sub-model given by (3) and (4), and 𝑦̂(𝑡) and 𝜎2(𝑡) are the final outputs 

of the ensemble model. 

 

The output of each PSVR-based sub-model is a Gaussian distribution. The proposed simple but 

efficient strategy for combining sub-models results is by taking a weighted-sum of Gaussian 

distributions, which means that 𝑁(𝑦̂(𝑡), 𝜎2(𝑡)) =  ∑ 𝜔𝑗(𝑡)𝑁(𝑦̂𝑗(𝑡), 𝜎𝑗
2(𝑡))𝑁

𝑗=1 , with 

𝑁(𝑦̂(𝑡), 𝜎2(𝑡)) denoting a Gaussian distribution with mean value 𝑦̂(𝑡) and variance 𝜎2(𝑡). 

TABLE I 

Characteristics of Raw and Reconstructed Scenarios 

Scenario Size of Raw 

Data 

Best Number of Historical values 

H 

Size of Reconstructed 

Data 

1 2277 7 2265 

2 385 3 373 

3 385 3 373 

4 2027 14 2015 

5 2027 8 2015 

6 2027 8 2015 

7 1391 13 1379 

8 1391 4 1379 

9 1391 4 1379 

10 1391 4 1379 

11 3124 12 3112 

12 562 7 550 

13 562 9 550 

14 562 9 550 

15 964 2 952 

16 2767 8 2755 

17 2767 7 2755 

18 1061 7 1049 

19 1061 12 1049 

20 861 9 849 
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From this, we can derive the fact that 𝑦̂(𝑡) =  ∑ 𝜔𝑗(𝑡)𝑦̂𝑗
𝑁
𝑗=1 (𝑡)  and 𝜎(𝑡) =

 √∑ 𝜔𝑗2(𝑡)𝜎𝑗2(𝑡)
𝑁
𝑗=1 , if we assume sub-models results to be uncorrelated. 

 

Fig. 2.  Paradigm of the proposed DW-PSVR-Ensemble. 

Note that all the sub-models weights and outputs are a function of 𝑡, which means that they are 

all dependent on the input vector of the ensemble model. 

3. CASE STUDY DESCRIPTION 

The real case study considered in this paper concerns the 1-day ahead prediction of leak flow 

of the first seal of the RCP of a NPP. It is important to predict the leak flow of the component 

in a near coming future, as the RCP is a critical system to maintain the safety of NPP. According 

to the company needs, the purpose is 1-day ahead prediction.  

In this section we describe the time series data and briefly recall the data pre-processing steps. 

We detail the strategies to build accurate and diverse sub-models. 

3.1 Data Description and Pre-processing 

In the data provided by EDF, there are totally 20 failure scenarios concerning the leak flow from 

10 different NPPs.   They are named Scenario 1, Scenario 2, …, Scenario 20 in the following 

sections of the paper. These data are monitored every four hours. As these data are time 

dependent and recorded within different time windows, only failure scenarios coming from the 

same NPP have the same size. From the second column of Table I, we can see that the size of 

the failure scenarios can vary from 385 to 3124 data points. In some of the scenarios, there are 

missing data points and outliers.  
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The first step is to delete the outliers and reconstruct the missing data points. This latter task 

has been accomplished using a local polynomial regression fitting. All details can be found in 

[15].  

Figure 3 shows the data of Scenario 1 before and after the pre-processing performed in this step 

of the analysis. 

 

Fig. 3 Data of Scenarios 1 before and after pre-processing.(the upper one is the raw data and the lower one 

is the data after pre-processing) 

All the data points of all failure scenarios are, then, normalized from 0 to 1. 

3.2 Strategies to build Sub-models 

Since we have a time series data set and since there is no other information available related to 

the target except for a set of monitored data directly related to the condition of the component 

of interest, the inputs of the model can only be a set of historical values. Before building the 

sub-models of the ensemble, we, thus, need to decide the best number of historical values to be 

used as inputs.  

3.2.1 Sub-Model Identification 

Suppose 𝑎(𝑡) represents an instance of the time series data of one failure scenario. For 1-day 

ahead prediction, the output 𝑦(𝑡) is 𝑎(𝑡 + 6), because the signals are monitored every four 

hours. In order to decide the best 𝐻  for selecting the input vector 𝒙(𝑡) = (𝑎(𝑡 − 𝐻 +
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1), … , 𝑎(𝑡)) most related to the output, a partial autocorrelation analysis is carried out on each 

failure scenario, i.e. correlation between the output and different temporal lags is computed. 

Figure 4 shows the results of this analysis on Scenario 1, where the x and y axis represent, 

respectively, the temporal lag (a multiple of four hours) and the corresponding empirical partial 

autocorrelation. The bounds of a 95% confidence interval are also shown with the dashed lines 

in the figure. The correlation decreases with the lag (although not linearly), and after a lag of 

seven time steps, for Scenario 1 it is no longer comparable with the values observed for lags 

smaller than 7, i.e. the best choice is  𝐻1 = 7.  

A best value 𝐻𝑖 is, thus, found for Scenario 𝑖, for 𝑖 = 1, 2, … , 20; but this value is not the 

same for all scenarios, as shown in the third column of Table I. When building an ensemble 

model, however, a unified size of input vector would simplify the model, since a single value 

of 𝐻 is applied for all scenarios to reconstruct the data. If we choose a small 𝐻, some useful 

information would be ignored for those scenarios with larger best 𝐻; in contrast, choosing a 

large 𝐻 would bring some perturbations to scenarios with smaller best 𝐻. In order to solve 

this problem, we propose the modified RBF, where 𝑪𝑎, calculated by partial autocorrelation 

analysis, controls the contribution of each variable of the input vector, when 𝐻 is chosen as 

the largest of all the failure scenarios. For one scenario with smaller best 𝐻𝑖 , the values for 

the last 𝐻 − 𝐻𝑖  elements of the vector 𝑪𝑎 are very small compared to the first 𝐻𝑖 elements, 

because their correlations with the output are very weak. In this case study, we choose the 

biggest time step of all the scenarios, i.e. 𝐻 = 14. 

 

Fig. 4 Partial autocorrelation function of Scenario 1 with respect to time lags (multiples of four hours). 

Dotted lines are bounds of a 95% confidence interval. 
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The two parameters in FSA,  and  are set to 0.005 and 0.5 by trial and error. 

3.2.2 Two Strategies to Build Sub-Models 

Bagging and boosting are two of the most popular strategies to build diverse sub-models of an 

ensemble. However these methods are more suitable with scarce data. In our case, there are 

enough data (20 failure scenarios), so that two simple but efficient and reasonable strategies 

can be proposed. 

Thanks to the sub-model identification process described before, the data for each failure 

scenario has been reconstructed with same structure, where the input vector is 𝒙(𝑡) =

(𝑎(𝑡 − 13), … , 𝑎(𝑡)), and the corresponding output is 𝑦(𝑡) = 𝑎(𝑡 + 6), and 𝑡 takes every 

possible values in each scenario. The size of each failure scenario after reconstruction is listed 

in the fourth column of Table I.  

With multiple failure scenarios available, the simplest and most immediate strategy is to build 

a sub-model on each failure scenario, so that the number of sub-models equals the number of 

failure scenarios. Because of the frequently changing operational and environmental conditions 

in NPP, each scenario can represent a specific process, and thus sub-models built in such a way 

show enough diversity between each other. Another simple but effective strategy is to mix all 

the data points from all failure scenarios, and then divide them into different groups according 

to their target values 𝑦(𝑡). A sub-model is then trained on each group. This strategy is inspired 

by the intrinsic structure of SVM/PSVR. Performance of SVM depends highly, although not 

only, on the training data set (or support vectors). Sub-models built on training data set 

considering different ranges of output values can strengthen the specialty of each sub-model on 

particular characteristics of the input vectors. This strategy can make the sub-models perform 

well on different text examples but worse on others. The proposed weighted-sum strategy to 

combine the outputs of sub-models will be shown to outperform the individual model. These 

two strategies are named Ensemble 1 and Ensemble 2, for convenience. 

3.2.3 Comparison of DW-PSVR-Ensemble with Single PSVR 

The ensemble model is expected to give better results than a single PSVR model. To verify this 

claim, a comparison between a single PSVR model and the proposed DW-PSVR-Ensemble is 

carried out on the considered case study.  

Each time one out of 20 failure scenarios is chosen as the test data set (named Observed 
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Scenario), the other 19 failure scenarios (named Reference Scenarios) are used to construct the 

ensemble model with the two previously proposed strategies. A PSVR model is also trained on 

the Observed Scenario for comparison (it is named Single PSVR to be distinguished from the 

two ensemble models). The size of the training data set for all PSVR models is fixed at 200 for 

the fairness of comparison.  The choice of the size is decided by trial and error in order not to 

increase too much the computational complexity in time and storage, which increases 

exponentially with the size of the training data set, and in order to guarantee the accuracy of the 

model.  

The steps of comparison are the following: 

1) Choose the training data set for Ensemble 1: 200 data points equidistantly distributed 

for each Reference Scenario are selected. Totally, 19 sub-models can be trained with 

PSVR, each trained on 200 data points from each scenario. 

2) Choose the training data set for Ensemble 2: the normalized data of 19 Reference 

Scenarios are sorted according to the output value of each data point and then divided 

into 10 groups, with the output value in the intervals of [0, 0.1], [0.1, 0.2], …, [0.9, 1]. 

For each group, if the size is bigger than 200, 200 data points equidistantly distributed 

in the group are chosen, if not, all the points in the group are used in the training data 

set. For the first eight groups, the size of training data set is 200, while for the last 2, the 

training data sets contain only 90 and 33 data points. Ten sub-models are built with 

PSVR on these training data sets.  

3) Choose the training data set for the single PSVR: the first 200 data points of the 

Observed Scenario are chosen to train one single PSVR model for regression on it.  

4) Calculation of Mean Absolute Error (MAE), Mean Relative Error (MRE), width of 

prediction intervals  with  95% confidence level (PI_Width), and Coverage 

percentage of prediction intervals with 95% confidence level (PI_Coverage) of the 

outputs of Ensemble 1, Ensemble 2 and Single PSVR. 

5) Comparison of Ensemble 1, Ensemble 2 and Single PSVR considering prediction 

accuracy, uncertainty of estimation, robustness, speed of the prediction, and 

adaptability. 

The results and comparisons between these three models are presented in the next section. 
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4. RESULTS 

In this section, the results from Ensemble 1, Ensemble 2 and Single PSVR are compared with 

respect to different aspects. 

4.1 Prediction Accuracy and Uncertainty Estimation 

Figures 5, 6, and 7 are the prediction results (including prediction values 𝑦̂ and prediction 

interval with 95% confidence level, i.e. [𝑦̂ − 1.97𝜎, 𝑦̂ + 1.97𝜎], where σ is the variance of the 

assumed Gaussian distribution of the predicted value) of Scenario18,  respectively from 

Ensemble 1, Ensemble 2 and Single PSVR. It is clear that Single PSVR cannot follow the 

development of Scenario 18. There is no such problem with Ensemble 1 and Ensemble 2, 

because the training data set contains more information than that of Single PSVR. Moreover, if 

the target values are higher than 0.8, Ensemble 1 gives better results than Ensemble 2, with 

more stable prediction intervals. This is caused by the scarceness of the training data set for the 

last two sub-models of Ensemble 2, which are supposed to be experts on the prediction of the 

data points with output values in the intervals of [0.8, 0.9] and [0.9, 1.0]. 

We cannot prove the superiority of the ensemble compared to Single PSVR model only by 

inspection of the prediction results of Scenario 18. Table II shows the prediction results for all 

the failure scenarios, considering MAE, MRE, PI_Width, and PI_Coverage. Figures 8, 9, 10 

and 11 are the boxplots of these results to illustrate the differences between these three models. 

We notice that Single PSVR can give comparable prediction accuracy to ensemble models for 

some failure scenarios, but not for all of them. The bad results of Single PSVR are caused by 

the fact that the prediction results are highly dependent on the training data set. Moreover, the 

hyperparameters optimization is also critical to the performance of PSVR. Well-chosen 

hyperparameters values can improve the performance of PSVR. However, the optimization 

method can easily converge to a local extreme, which results into a good performance at the 

beginning but very bad at the end of the scenario. 

These unstable results from Single PSVR prove the necessity of the ensemble approach for 

avoiding the limits of Single PSVR in attaining the desired accuracy and robustness of the 

model. The prediction results from Ensemble 1 and Ensemble 2 confirm the practicability and 

efficiency of the DW-PSVR-Ensemble approach. We should note that the performance of the 

DW-PSVR-Ensemble is influenced by the grouping strategy for deciding the training data set 

for each sub-model. 
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The calculation of the dynamic weights of each sub-model for each data point brings additional 

computational burden to the prediction with ensemble, but it is acceptable in real applications 

with large data set. Support the size of the whole training dataset is 𝑁 and the number of input 

vector is 𝑀 , the computation complexity for a fixed-weighted PSVR-based ensemble and 

Single-PSVR is both 𝑂(𝑁𝑀), and that for DW-PSVR-Ensemble is 𝑂(2𝑁𝑀). 

 

Fig. 5 Prediction results of Ensemble 1 for Scenario 18. 

 

Fig. 6 Prediction results of Ensemble 2 for Scenario 18. 
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Fig. 7 Prediction results of Single PSVR for Scenario 18. 

 

Fig. 8 MAE of prediction results of Ensemble 1, Ensemble 2 and Single PSVR, for all 20 failure scenarios. 
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Fig. 9 MRE of prediction results of Ensemble 1, Ensemble 2 and Single PSVR, for all 20 failure scenarios. 

 

Fig. 10 Width of Prediction intervals with 95% confidence level of prediction results of Ensemble 1, 

Ensemble 2 and Single PSVR, for all 20 failure scenarios. 
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Fig. 11 Coverage of Prediction intervals with 95% confidence level of prediction results of Ensemble 1, 

Ensemble 2 and Single PSVR, for all 20 failure scenarios. 

4.1 Robustness 

From Figures 8, 9, 10, and 11, it is seen that ensemble models give more stable prediction results 

compared to Single PSVR model. Single PSVR model cannot properly handle the noise in the 

data and it is difficult to find the global optimal values of hyperparmeters, even with the 

modified RBF proposed in this paper. The weighted-sum ensemble models can decrease the 

influence of the noise by combining the prediction outputs of the sub-models; this is one reason 

for which ensemble models can give stable results, i.e. the ensemble models are more robust 
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compared to Single PSVR. 

TABLE II 

Comparison of Prediction Results of Ensemble 1, Ensemble 2 and Single PSVR, for all 20 Scenarios 

 MAE MRE PI_Width PI _Coverage 

Scenario Ensemble 

1 

Ensemble 

2 

Single 

PSVR 

Ensemble 

1 

Ensemble 

2 

Single 

PSVR 

Ensemble 

1 

Ensemble 

2 

Single 

PSVR 

Ensemble 

1 

Ensemble 

2 

Single 

PSVR 

1 0.0172 0.0239 0.0633 0.0864 0.1128 0.3704 0.0708 0.0675 0.0131 0.8962 0.7660 0.0318 

2 0.0125 0.0165 0.0124 0.0355 0.0468 0.0360 0.0725 0.0601 0.0422 0.9491 0.8606 0.8740 

3 0.0229 0.0243 0.0249 0.0442 0.0476 0.0474 0.0864 0.0853 0.0431 0.8767 0.8686 0.6595 

4 0.0232 0.0301 0.0687 0.0622 0.0806 0.1527 0.0730 0.0786 0.0414 0.8314 0.7382 0.4356 

5 0.0193 0.0238 0.0207 0.0580 0.0730 0.0616 0.0697 0.0678 0.0452 0.8437 0.7843 0.7126 

6 0.0218 0.0228 0.0314 0.0643 0.0701 0.0909 0.0727 0.0681 0.0688 0.8418 0.8109 0.6518 

7 0.0141 0.0196 0.0245 0.0594 0.0867 0.0932 0.0722 0.0649 0.0482 0.9369 0.8347 0.5946 

8 0.0136 0.0199 0.0227 0.0845 0.1228 0.1261 0.0695 0.0623 0.0731 0.9398 0.7962 0.8209 

9 0.0156 0.0237 0.0706 0.0682 0.1067 0.3179 0.0694 0.0635 0.0731 0.9101 0.7252 0.3416 

10 0.0121 0.0178 0.0405 0.0734 0.1062 0.1756 0.0694 0.0615 0.0412 0.9565 0.8419 0.4336 

11 0.0231 0.0350 0.0229 0.0893 0.1507 0.0910 0.0695 0.0706 0.0783 0.8143 0.5964 0.8515 

12 0.0235 0.0273 0.0828 0.0664 0.0915 0.2343 0.0783 0.0755 0.0014 0.8491 0.7291 0.0036 

13 0.0141 0.0139 0.0210 0.1139 0.1109 0.1245 0.0682 0.0611 0.0411 0.9364 0.9055 0.7945 

14 0.0234 0.0178 0.0661 0.0562 0.0525 0.2025 0.0818 0.0714 0.0411 0.8636 0.8800 0.1964 

15 0.0222 0.0222 0.0556 0.0680 0.0684 0.1796 0.0687 0.0667 0.0011 0.8298 0.8193 0.0032 

16 0.0216 0.0254 0.0352 0.0649 0.0650 0.2115 0.0693 0.0674 0.0731 0.8316 0.7514 0.6744 

17 0.0203 0.0287 0.0223 0.1024 0.1452 0.1094 0.0692 0.0707 0.0855 0.8334 0.6958 0.8868 

18 0.0249 0.0309 0.0634 0.0892 0.1048 0.2520 0.0717 0.0807 0.0086 0.7617 0.7283 0.0391 

19 0.0208 0.0272 0.0536 0.0869 0.1085 0.2566 0.0733 0.0760 0.0412 0.8532 0.7731 0.2593 

20 0.0225 0.0250 0.0421 0.0559 0.0624 0.0986 0.0736 0.0731 0.0732 0.8481 0.8080 0.5324 

Average 0.0194 0.0238 0.0422 0.0715 0.0907 0.01616 0.0725 0.0696 0.0467 0.08702 0.7857 0.4899 
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4.3 Adaptability 

Once a model is trained with PSVR, the hyperparameters values are specified for the training 

data set. The capability of the model is limited by the values of the hyperparmameters and the 

training data set, so the model adaptability is reduced. In general, the parameters and training 

data set need to be updated before the model can adapt to a new scenario [39]. With ensemble 

models, even if the new scenario is not similar to the training data sets of all the sub-models, 

the ensemble model can still give satisfactory results. This is a benefit of the ensemble-based 

approach. When the ensemble model cannot deal with the new data points or new scenario, 

there is no need to re-train the whole ensemble: simply one can add a sub-model or update some 

of the sub-models for adapting to the context changing, dynamic environment [40], [41, [42]. 

To update the Ensemble 1 with new data points, we can only add new sub-models, because the 

sub-models are trained on different plant scenarios. By updating the existing sub-models, we 

risk losing their integrity and completeness on the specified scenarios. For Ensemble 2, we can 

add new sub-models or update some of the existing sub-models without losing the capacity of 

the “old” ensemble. For example, when new data points are available at the range of [0.8, 0.9] 

or [0.9, 1], they can be used to update the corresponding sub-models, as for now there are not 

enough training data set for the last two sub-models of Ensemble 2. When there are new data 

which exceed the current range [0, 1], a new sub-model trained on these data can be added to 

the ensemble models. 

In conclusion, the trained ensemble model adaptability is much stronger than the one of a single 

PSVR model. 

5. CONCLUSIONS 

In this paper, we propose an innovative dynamic-weighted PSVR-based ensemble approach for 

short-term prediction (1-day ahead prediction). Fuzzy similarity analysis is integrated to 

calculate the specific weights of the sub-models of the ensemble for each new input vector 

without bringing too much computational burden. A modified RBF kernel is used to 

discriminate the different correlation of the different inputs with the output.  

According to the characteristics of the available time series data in the case study, two strategies 

are proposed to form an ensemble model: one considering different scenarios and the other 

selecting different ranges of output values. In both cases, the proposed ensemble approach 

performs well in the real case study of signals recorded on a NPP component. Compared to 
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single model PSVR, the proposed ensemble models outperform on prediction accuracy, 

robustness and adaptability.  

Further research needs to be carried out, for optimizing the numbers of sub-models and for 

obtaining a more careful tuning of hyperparameters.  
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A DYNAMIC WEIGHTED RBF-BASED ENSEMBLE FOR 

PROGNOSTICS OF NUCLEAR COMPONENTS 

Jie Liu, Valeria Vitelli, Enrico Zio and Redouane Seraoui 

ABSTRACT 

In this paper, an ensemble approach is proposed for prediction of time series data based on a 

Support Vector Regression (SVR) algorithm with RBF loss function. We propose a strategy to 

build diverse sub-models of the ensemble based on the Feature Vector Selection (FVS) method 

of Baudat & Anouar (2003), which decreases the computational burden and keeps the 

generalization performance of the model. A simple but effective strategy is used to calculate the 

weights of each data point for different sub-models built with RBF-SVR. A real case study on 

a power production component is presented. Comparisons with results given by the best single 

SVR model and a fixed-weights ensemble prove the robustness and accuracy of the proposed 

ensemble approach. 

 

Key words: Ensemble, Dynamic weighting, Feature Vector Selection, RBF kernel function, 

Nuclear power plant 
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1. INTRODUCTION 

Combining various data-driven approaches into an ensemble is a relatively recent direction of 

research, aimed at improving the robustness and accuracy of the final prediction. The models 

which compose the ensemble are called sub-models. Various strategies have been proposed for 

building sub-models, including error-correcting output coding, Bagging, Adaboost, and 

Boosting (Kim, Pang, Je, Kim & Bang, 2003; Hu, Youn, Wang & Yoon, 2012). Similarly, 

several methods for aggregating the prediction results of the sub-models have been proposed, 

such as majority vote, weighted vote, Borda count, Bayes and probabilistic schemes, etc 

(Polikar, 2006).  

Support Vector Machine (SVM) is a popular and promising data-driven method for prognostics. 

SVM-based ensemble models have been proposed for classification. Chen, Wang and Zuylen 

(2009) use ensemble of SVMs to detect traffic incidents. The sub-models use different kernel 

functions and parameters, and their outputs are combined to improve the classification 

performance. Acar and Rais-Rohami (2009) treat the general weighted-sum formulation of an 

ensemble as an optimization problem and, then, minimize an error metric to select the best 

weights for the sub-models of SVM. Kurram and Kwon (2013) try to achieve an optimal sparse 

combination of the sub-model results by jointly optimizing the separating hyperplane obtained 

by each SVM classifier and the corresponding weights of the sub-decisions. Valentini and 

Dietterich (2003) prove that an ensemble of SVMs employing bagging of low-bias algorithms 

improves the generalization power of the procedure with respect to single SVM. The ensemble 

of SVMs built with bagging and boosting can greatly outperform a single SVM in terms of 

classification accuracy (Kim et al., 2003). 

In this paper, we focus on the combination of multiple SVR sub-models (Liu, Seraoui, Vitelli 

& Zio, 2012) with Radial Basis loss Function (RBF). The case study considered to present the 

application of the method concerns the monitoring of the leak flow in the first seal of the Reactor 

Coolant Pump (RCP) of a Nuclear Power Plant (NPP), using real data collected from sensors.  

An ensemble of SVRs with RBF and dynamic weighting strategy is proposed in this paper. The 

elements of novelty of the method here proposed are various.  

In the previously mentioned literature that works on ensembles of SVMs, the weights of the 

sub-models in the ensemble are calculated during training and kept fixed for testing. However, 

a sub-model may perform well only on a part of the dataset. Hence, the weights need to be 

updated considering the different datasets involved in the case study, and even different input 
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vectors. A dynamic weighting strategy, based on local fitness calculation (Baudat & Anouar, 

2003) is proposed in this paper. A dynamic weighting method is also used in Muhlbaier, Topalis 

and Polikar (2009), Yang, Yuan and Liu (2009) and Razavi-Far, Baraldi and Zio (2012), for 

adding new classifiers to the ensemble model, but the weights are not adjusted to the different 

input vectors.  

Moreover, in order to build an ensemble of SVRs on very large datasets, FVS is used to select 

a smaller subset of the training data points of each sub-model to decrease the computational 

burden.  

In addition, a weighted-sum strategy is used to combine the outputs of the sub-models.  

Finally, a strategy is proposed to form the training dataset of each sub-model based on the angle 

between different data points in the Reproducing Kernel Hilbert Space (RKHS).  

All the novel strategies are tested in the case study concerning the monitoring of leak flow of 

the RCP in a NPP. 

The rest of the paper is organized as follows. Section 2 gives details about the proposed 

ensemble approach. Section 3 illustrates the case study, the available data and how the proposed 

ensemble model is constructed. Section 4 presents the experimental results from the SVR 

ensemble models and describes the comparison with a single SVR model and a fixed weighted 

ensemble. Finally, conclusions with some considerations are drawn in Section 5. 

2. DYNAMIC-WEIGHTED RBF-BASED ENSEMBLE 

The underlying strategy motivating the use of ensemble-based methods in prediction problems 

is to benefit from the strength of different sub-models by combining their outputs to improve 

the global prediction performance, if compared to the results of a single sub-model.  

In this section, we give details about the proposed Dynamic-Weighted RBF-based Ensemble 

(named DW-RBF-Ensemble, in short). 

2.1 Standard Support Vector Regression with RBF andε-sensitive loss function 

Suppose a set of training data points (𝒙𝑖, 𝑦𝑖), for 𝑖 = 1, 2, … , 𝑇 is available. The construction 

of an SVR model amounts to finding the best estimate function 𝑓(𝒙) = 𝝎𝒙 + 𝑏 of the real 

underlying function. To this aim, the primal quadratic optimization problem is  

Minimize 
1

2
‖𝝎‖2 + 𝐶∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑇
𝑖=1   
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Subject to {

𝑦𝑖 −𝝎𝒙𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖
𝝎𝒙𝒊 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖, 𝜉𝑖
∗ ≥ 0

,             ⑴ 

where 𝜉𝑖 and 𝜉𝑖
∗ are slack variables. The dual formulation of Eq. (1) is  

𝐿 =
1

2
‖𝝎‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑇
𝑖=1 − ∑ 𝛼𝑖(𝜀 + 𝜉𝑖 − 𝑦𝑖 +𝝎𝒙𝒊 + 𝑏)

𝑇
𝑖=1 −∑ 𝛼𝑖

∗(𝜀 + 𝜉𝑖
∗ + 𝑦𝑖 −

𝑇
𝑖=1

𝝎𝒙𝒊 − 𝑏) − ∑ (𝜂𝑖𝜉𝑖 + 𝜂𝑖
∗𝜉𝑖
∗)𝑇

𝑖=1 ,              ⑵ 

where 𝛼𝑖, 𝛼𝑖
∗, 𝜂𝑖, 𝜂𝑖

∗ ≥ 0 are the Lagrange multipliers. By calculating the partial derivative 

of 𝐿 with respect to the primal variable 𝝎, the best estimate function can be written as  

𝑓(𝒙) = ∑ (𝛼𝑖 − 𝛼𝑖
∗) ∗ 𝑘(𝒙𝑖, 𝒙)

𝑇
𝑖=1 + 𝑏.             ⑶ 

The values of 𝛼𝑖 and 𝛼𝑖
∗ can be calculated by solving the Kuhn-Tucker conditions related to 

Eq. (2) 

The kernel function 𝑘(𝒙𝑖 , 𝒙) in Eq. (3) enables the mapping of an input vector in a higher-

dimensional RKHS. By calculating pairwise inner products between mapped samples, the 

kernel functions return the similarity between different samples. In fact, only kernels that fulfill 

Mercer’s Theorem (i.e. the kernel matrix must be positive semi-definite) are valid ones and, 

thus, can be used in SVM (Minh, Niyogi and Yang, 2006). The most common kernel functions 

include the linear kernel function, the polynomial kernel function and the RBF. In this paper, 

the ensemble approach is proposed to be built based on SVR with RBF. 

For RBF, 𝑘(𝒙𝑖, 𝒙) = 𝑒
−
‖𝒙𝑖−𝒙‖

2

2𝜎2  and a good property for RBF is that for each data point 𝒙, 

𝑘(𝒙, 𝒙) = 1, i.e., the data point in RKHS is a unit vector. The difference between different data 

points in RKHS is only the angle between them.  

2.2 Feature Vector Selection 

In Baudat and Anouar (2003), the authors propose a Feature Vector Selection (FVS) method to 

select a subset of the training data points (i.e. Feature Vectors (FVs)), which can represent the 

dimension of the whole dataset in RKHS. The other data points can all be expressed as a linear 

combination of the selected FVs. 
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Fig. 1.  Pseudo-code for FVS. 

Suppose (𝒙𝑖, 𝑦𝑖), for 𝑖 = 1, 2, … , 𝑇 are the training data points and the mapping φ(𝒙) maps 

each input vector 𝒙𝑖 into RKHS with the mapping 𝝋𝑖, for 𝑖 = 1, 2, … , 𝑇. The kernel 𝑘𝑖,𝑗 =

𝑘(𝒙𝑖, 𝒙𝑗) is the inner product between 𝝋𝑖 and 𝝋𝑗. Suppose that the FVs selected from the 

training dataset are {𝒙1, 𝒙2, … , 𝒙𝑁} and the corresponding mapping is S = {𝝋1, 𝝋2, … , 𝝋𝑁}: 

the process for selecting the new next FV is to calculate {𝑎𝑛𝑒𝑤,1, 𝑎𝑛𝑒𝑤,2, … , 𝑎𝑛𝑒𝑤,𝑇} which 

gives the minimum of Eq. (4), with  𝝋𝑛𝑒𝑤 being the mapping of the new input vector 𝒙𝑛𝑒𝑤: 

𝛿𝑛𝑒𝑤 = 
‖𝝋𝑛𝑒𝑤−∑ 𝑎𝑛𝑒𝑤,𝑖𝝋𝑖

𝐿
𝑖=1 ‖

2

‖𝝋𝑛𝑒𝑤‖2
.               ⑷ 

The minimum of 𝛿𝑛𝑒𝑤 can be expressed with an inner product, as shown in Eq. (5): 

min𝛿𝑛𝑒𝑤 = 1 −
𝐾𝑆,𝑛𝑒𝑤
𝑡 𝐾𝑆,𝑆

−1𝐾𝑆,𝑛𝑒𝑤

𝑘𝑛𝑒𝑤,𝑛𝑒𝑤
,              ⑸ 

where 𝐾𝑆,𝑆 = (𝑘𝑖,𝑗), 𝑖, 𝑗 = 1,2, … , 𝑁  is the kernel matrix of S  and 𝐾𝑆,𝑛𝑒𝑤 = (𝑘𝑖,𝑁), 𝑖 =
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1,2, … ,𝑁  is the vector of the inner product between 𝝋𝑛𝑒𝑤 . The expression  𝐽𝑆,𝑛𝑒𝑤 =

𝐾𝑆,𝑛𝑒𝑤
𝑡 𝐾𝑆,𝑆

−1𝐾𝑆,𝑛𝑒𝑤

𝑘𝑛𝑒𝑤,𝑛𝑒𝑤
 is the local fitness of 𝒙𝑛𝑒𝑤  with respect to the present feature space S. If 

1 − 𝐽𝑆,𝑛𝑒𝑤 is zero, the new data point is not a new FV; otherwise, it is a new FV and is added 

to S. With the global fitness defined as in Eq. (6), the FVS procedure proceeds to select a subset 

of training data points with minimal size, which gives zero global fitness. The details for FVS 

is shown in Figure 1. 

𝐽𝑺 = ∑ 𝐽𝑺,𝑖
𝑇
𝑖=1                   ⑹ 

2.3 Ensemble-Based Approach 

An ensemble-based approach is obtained by training diverse sub-models and, then, combining 

their results following given strategies. It can be proven that this can lead to superior 

performance with respect to a single model approach (Bauer & Kohavi, 1999). A simple 

paradigm of a typical ensemble-based approach with N sub-models is shown in Figure 2. 

Ensemble models are built on three key components: a strategy to build diverse models; a 

strategy to construct accurate sub-models; a strategy to combine the outputs of the sub-models 

in a way such that the correct predictions are weighted more than the incorrect ones.  

In the DW-RBF-Ensemble that we are proposing, the sub-models are built using a modified 

SVR model with RBF.  

 

Fig. 2.  Paradigm of a typical ensemble method. 

A dynamic weighted-sum strategy is proposed to combine the outputs of the sub-models. As 

mentioned in the Introduction, different methods can be applied to calculate the weights for the 

sub-models. In the methods that can be found in the literature, the weights are normally fixed 

after the ensemble model is built. They are only updated when new sub-models are added to 

the ensemble or when some sub-models are changed. In some real applications with fast 
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changing environmental and operational conditions, the performance of the ensemble model 

may degrade rapidly. This degradation is not always caused by the low robustness or capability 

to adapt of the ensemble model, but can be due to the fact that the best sub-models are not given 

proper weights.  

In this paper, a dynamic weighting strategy is thus proposed. The weights are no longer constant 

during the prediction, but dependent on the input vector. They are recalculated each time a new 

input vector arrives. Inspired by the work of Baudat and Anouar (2003) and considering the 

characteristics of SVR, a local fitness calculation is implemented in this paper to calculate the 

weights of the different sub-models for each input vector. 

2.3.1 Sub-datasets determination 

Clustering methods are widely used in ensemble approaches for determining the sub-datasets 

for different sub-models. 

In this paper, SVR models are trained with RBF. The difference between different data points 

in RKHS is only the angle between them, as the norm of all data points in RKHS is one. Thus, 

we can use the angular-clustering algorithm to divide the whole training dataset into several 

sub-datasets. The pseudo-code is shown in Figure 3. As kernel function, RBF is the inner 

product of two vectors in RKHS and the angle between them can be expressed as Eq. (7) in the 

pseudo-code of Figure 3. 
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Fig. 3 Pseudo-code of angle-clustering algorithm. 

2.3.2 Train a RBF-SVR sub-model 

With the angle-clustering method, the training dataset is divided into several clusters. But in the 

DW-RBF-Ensemble method, the data points in each cluster are not used directly to train a RBF-

SVR. FVS is firstly used to select the FVs in each cluster and, then, the SVR model is trained 

on these selected FVs, in order to decrease the computational burden. The procedures for 

training a SVR model with FVs are not the same as shown in Sub-Section 2.1, as the estimate 

function in Eq. (2) is no longer a kernel expansion on all the training data points in one cluster, 

but only on the selected FVs.  

Suppose that for the j-th cluster, the training data points are (𝒙𝑖, 𝑦𝑖), for 𝑖 = 1, 2, … , 𝑇𝑗 and 

the FVs selected by FVS are (𝒙𝑖, 𝑦𝑖), for 𝑖 = 1, 2, … ,  𝑁𝑗; the estimate function of SVR for the 

i-th cluster is given in Eq. (8): 

𝑓(𝒙) = ∑ (𝛼𝑖 − 𝛼𝑖
∗) ∗ 𝑘(𝒙𝑖, 𝒙)

𝑁𝑗
𝑖=1

+ 𝑏.             ⑻ 

In order to avoid the overfitting problem, the optimization still aims at finding the minimum of 
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the objective function in Eq. (1) on all the training data points in the cluster. Thus, by replacing 

𝝎𝒙𝒊 + 𝑏  in Eq. (2) with ∑ (𝛼𝑘 − 𝛼𝑘
∗) ∗ 𝑘(𝒙𝑘, 𝒙𝒊)

𝑁𝑗
𝑘=1 + 𝑏 , we can have the new, dual 

formulation of SVR. Classical methods can be used to estimate the unknowns in Eq. (8). 

Such a process can efficiently decrease the risk of overfitting and guarantee the generalization 

performance of the sub-models. 

2.3.3 Weights Calculation 

In Section 2.2, FVS defines global and local criteria to characterize the feature space. The 

proposed local fitness can describe the linearity between the mapping of a new input vector and 

the mapping of all the Feature Vectors (FVs) of the model: if a linear combination of the 

mapping of the FVs can better approach the mapping of the new input vector, i.e. 1 − 𝐽𝑆,𝑛𝑒𝑤 ≈

0 the model gives better approximation of the output of the new data point; otherwise, i.e. 

1 − 𝐽𝑆,𝑛𝑒𝑤 ≈ 1 , the model performs worse for this data point. Thus local fitness can be 

implemented to derive the weight of each sub-model for each input vector.  

With Eq. (5), for a new coming data point at time t, we can calculate the local fitness 𝐽𝑖(𝑡) 

with respect to the FVs of the i-th sub-model. And the weight of the i-th sub-model for this data 

point is calculated as  

𝜔𝑖(𝑡) =
1/(1−𝐽𝑖(𝑡)+𝜏)

∑ 1/(1−𝐽𝑗(𝑡)+𝜏)
𝑁
𝑗=1

,                ⑼ 

where τ is a very small value so that Eq. (9) works in the case 𝐽𝑖(𝑡) = 1. 

2.3.4 Combining Sub-Models Outputs 

Figure 4 shows the paradigm of DW-RBF-Ensemble, where 𝑁 is the number of sub-models, 

𝒙(𝑡) is a new input vector arriving at time 𝑡, 𝑤𝑗(𝑡) is the weight assigned to the j-th sub-

model for the new input vector, 𝑦̂𝑗(𝑡) is the predicted value for the j-th sub-model given by 

RBF-SVR and 𝑦̂(𝑡) is the final output of the ensemble model. 
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Fig. 4.  Paradigm of the proposed DW-PSVR-Ensemble. 

We can derive the fact that 𝑦̂(𝑡) =  ∑ 𝜔𝑗(𝑡)𝑦̂𝑗
𝑁
𝑗=1 (𝑡), if we assume sub-models results to be 

uncorrelated. 

Note that all the sub-models weights and outputs are a function of 𝑡, which means that they are 

all dependent on the input vector of the ensemble model. 

3. CASE STUDY DESCRIPTION 

The real case study considered in this paper concerns the 1-day ahead prediction of leak flow 

from the first seal of the RCP of a NPP.  

In this section we describe the time series data and briefly recall the data pre-processing steps. 

We also detail the strategies to build the diverse sub-models of the ensemble. 

3.1 Data Description and Pre-Processing 

The data provided correspond to 9 scenarios of leak flow from different NPPs. Each scenario 

contains a time series data of the leak flow.  They are named Scenario 1, Scenario 2, …, 

Scenario 9 in the following sections of the paper. These data are monitored every four hours. 

As these data are time-dependent and recorded within different time windows, only scenarios 

coming from the same NPP have the same size. In some of the scenarios, there are missing data 

points and outliers.  

Since the dataset we are going to analyze contains both missing data and outliers, we have to 

deal with both these issues. First of all, we must remove anomalous data, since their extreme 

values would affect the results of the analysis. Outliers can be detected with reference to some 

constraints, e.g. the limits 𝑥 ̅ ± 3 ∗ 𝜎𝑥 where 𝑥 ̅ is the mean of the data points values and 𝜎𝑥 
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is the standard deviation. These limits allow detect the outliers, selected as those data points 

whose values are larger than 𝑥 ̅ + 3 ∗ 𝜎𝑥  or smaller than 𝑥 ̅ − 3 ∗ 𝜎𝑥 , and subsequently 

removed. Note that we use such constraints, rather than the usual ones based on the median and 

the InterQuartile Range (IQR), to be more conservative in the outlier selection, due to the 

dependence among data (Brodsky, Lemmens, Brock-Utne, Vierra & Saidman, 2002).  

Secondly, we want to reconstruct missing data. A possible way to deal with the reconstruction 

of missing data is local polynomial regression fitting (Masry, 1996). This local least squares 

regression technique estimates effectively the values of missing data points. Moreover, it can 

also be used to perform the smoothing of the available observations, in order to reduce noise. 

We will, thus, use this technique both to reconstruct data where missing, and to obtain a 

smoother and less noisy time series in all remaining time instances. All the time series data of 

all scenarios are, then, normalized from 0 to 1. All details on this pre-processing task can be 

found in Liu et al. (2012). 

3.2 Strategies to Build Sub-Models 

We have a time series dataset and we need to decide the best number of historical values to be 

used as inputs. 

Suppose 𝑎(𝑡) represents an instance of the time series data of one scenario. For 1-day ahead 

prediction, the output 𝑦(𝑡) is 𝑎(𝑡 + 6), because the signals are monitored every four hours. 

In order to decide the best 𝐻 for selecting the input vector 𝒙(𝑡) = (𝑎(𝑡 − 𝐻 + 1),… , 𝑎(𝑡)) 

most related to the output, a partial autocorrelation analysis is carried out, i.e. the correlation 

between the output values at current time and different temporal lags is computed. Figure 3 

shows the results of this analysis on all the scenarios, where the x and y axis represent the 

temporal lag (a multiple of four hours) and the corresponding empirical partial autocorrelation, 

respectively. The bounds of a 95% confidence interval are also shown with dashed lines in the 

Figure. The correlation decreases with the lag (although not linearly) and after a lag of 17 time 

steps it is no longer comparable with the values observed for lags smaller than 17, i.e. the best 

choice is 𝐻 = 17.  
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Figure 3. Partial autocorrelation function with respect to time lags (multiples of four hours). Dotted lines 

are the bounds of the 95% confidence interval. 

Then, the training dataset is divided into several sub-datasets for different sub-models using the 

angle-clustering algorithm described in sub-section 2.3.1. 

3.3 Comparison of DW-RBF-Ensemble with Single SVR and Fixed Weights Ensemble 

The ensemble model is expected to give better results than a single SVR model. To verify this 

claim, a comparison between a single SVR model and the proposed DW-RBF-Ensemble is 

carried out on the considered case study. A fixed weights ensemble (Kurram and Kwon, 2013) 

is also taken as a benchmark method to prove the benefit of using a dynamic weighting strategy.  

Each time one out of 9 scenarios is chosen as the test dataset (named Observed Scenario) and 

the other 8 scenarios (named Reference Scenarios) from the training dataset which is used to 

construct the DW-RBF-Ensemble and the Fixed Weights Ensemble (FW-Ensemble). A SVR 

model is also trained on the training dataset for comparison (it is named Single SVR to be 

distinguished from the two ensemble models).  

The steps for the comparison are the following: 

1. Train a Single SVR model with all the training dataset. 

2. The training dataset is divided into 6 clusters by the angle-clustering algorithm. 

3. Train DW-RBF-Ensemble: FVS select the FVs in each cluster and a sub-model is trained 

on the selected FVs. Weights of different sub-models for each data point are calculated with 

Eq. (9). 
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4. Train a FW-Ensemble: train a sub-model with all the data points in each cluster. The weight 

for each sub-model is decided by minimizing the MAE on the training dataset. 

5. Calculation of Mean Absolute Error (MAE), Mean Relative Error (MRE) of the outputs of 

DW-RBF-Ensemble, FW-Ensemble and Single PSVR. 

6. Compare prediction accuracy, computational burden and model robustness. 

The results and comparisons among these models are presented in the next section. 

4. RESULTS 

In this section, the results from DW-RBF-Ensemble, FW-Ensemble and Single SVR are 

compared with respect to different aspects. 

 

Figure 4. MAE of prediction results of ensembles and Single SVR, for all 9 scenarios. 
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Figure 5. MRE of prediction results of ensembles and Single SVR, for all 9 scenarios. 

4.1 Prediction Accuracy  

Figures 4 and 5 report the prediction results of MAE and MRE obtained, respectively, by DW-

RBF-Ensemble, FW-Ensemble and Single SVR. It is clear that DW-RBF-Ensemble gives best 

results in this case study, i.e. on average, the MAE and MAE values are smaller than for Single 

SVR and FW-Ensemble. 

The bad results of the Single SVR are caused by the fact that the predictions are highly 

dependent on the training dataset. Moreover, the hyperparameters optimization is also critical 

to the performance of SVR. Well-chosen hyperparameters values can improve the performance 

of the SVR. However, the optimization method may converge to a local extreme, which results 

into a good performance at the beginning but bad at the end of the scenario. The ensemble 

approach can avoid such problem by combining the results from different sub-models. 
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Figure 6. Weights of different sub-models of DW-RBF-Ensemble for test data points of the ninth scenario. 

These unstable results from the Single SVR prove the necessity of the ensemble approach for 

avoiding the limits of Single SVR in attaining the desired accuracy and robustness of the model.  

In this case study, FW-Ensemble gives the worst results as the weights are fixed after training. 

For some data points, the best model is not given the most important weight. Figure 6 above 

shows the weights for different sub-models of DW-RBF-Ensemble in the case of selecting the 

ninth scenario as the Observed Scenario. It is clear that the weights of the sub-models change 

frequently to adapt to the ongoing data points.  

The prediction results from DW-RBF-Ensemble confirm the practicability and efficiency of the 

proposed approach. 

4.2 Robustness 

From Figures 4 and 5, it is seen that the DW-RBF-Ensemble gives more stable prediction results 

compared to the Single SVR model and FW Ensemble. The Single SVR model cannot properly 

handle the noise in the data and it is difficult to find the global optimal values of the 

hyperparmeters. The weighted-sum ensemble models can decrease the influence of the noise 

by combining the prediction outputs of the sub-models. But the fixed weighting strategy cannot 

adapt to the changing environment and the weights of the sub-models are not changed 

adaptively. This is one reason for which DW-RBF-Ensemble model can give stable results, i.e. 

the DW-RBF-Ensemble model is more robust compared to the Single SVR and FW-Ensemble. 

4.3 Computational complexity 
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Suppose the size of the training dataset is 𝑇; then, the computational complexities of the Single 

SVR for training and testing are 𝑇3  and 𝑇 , respectively. For very large datasets, the 

computational burden of the Single SVR model is very high and sometimes unacceptable. By 

dividing the training dataset into different sub-datasets, the total computational burden is 

decreased as 𝑇3 > 𝑇1
3 +⋯+ 𝑇𝑁

3, with 𝑇1 +⋯+ 𝑇𝑁 = 𝑇. With FVS, the size of the training 

dataset is further decreased for training and testing. Thus, the computational complexity of the 

DW-RBF-Ensemble approach is much smaller than the Single SVR trained on all the training 

dataset and the FW-Ensemble. 

5. CONCLUSIONS 

In this paper, we have proposed an innovative dynamic-weighted RBF-based ensemble 

approach for short-term prediction (1-day ahead prediction) with time series data. An angular-

clustering algorithm is used to divide the training dataset into sub-datasets and FVS is used to 

decrease the size of the training data points by selecting only the representative data points in 

RKHS. Local fitness calculation is integrated to calculate the specific weights of the sub-models 

of the ensemble for each new input vector, without bringing too much computational burden.  

The proposed ensemble approach has been shown to perform well in a real case study of signals 

recorded on a NPP component. Compared to the single SVR model and FW Ensemble, the 

proposed ensemble model outperforms them on prediction accuracy, computational burden, 

robustness and adaptability. 

Further research needs to be carried out for optimizing the numbers of sub-models and for 

obtaining a more careful tuning of the hyperparameters. 
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AN ADAPTIVE ONLINE LEARNING APPROACH  

FOR SUPPORT VECTOR REGRESSION 

Jie Liu, and Enrico Zio, Senior Member, IEEE 

ABSTRACT 

Support Vector Regression (SVR) is a popular supervised data-driven approach for building 

empirical models from available data. Like all data-driven methods, under nonstationary 

environmental and operational conditions it needs to be provided with adaptive learning 

capabilities, which might become computationally burdensome with large datasets cumulating 

dynamically. In this paper, a cost-efficient online adaptive learning approach is proposed for 

SVR by combining Feature Vector Selection (FVS) and Incremental & Decremental Learning. 

The proposed approach adaptively modifies the model only when different pattern drifts are 

detected according to proposed criteria. Two tolerance parameters are introduced in the 

approach to control the computational complexity, reduce the influence of the intrinsic noise in 

the data and avoid the overfitting problem of SVR. Comparisons of the prediction results is 

made with other online learning approaches e.g. NORMA, SOGA, KRLS, Incremental 

Learning, on a real case study concerning time series prediction based on data recorded on a 

component of a nuclear power generation system. The performance indicators MSE, MRE and 

NMSE computed on the test dataset demonstrate the efficiency of the proposed online learning 

method. 

 

Key words: Online learning, Support vector regression, Time series data, Pattern drift, Feature 

vector selection, Incremental & Decremental learning 
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1. INTRODUCTION 

Many efforts of research on machine learning have been devoted to studying situations in which 

a sufficiently large and representative dataset is available from a fixed, albeit unknown 

distribution. The model trained for these situations can function well only for patterns within 

the representative training dataset [20].  

In real-world applications, systems/components are usually operated in nonstationary 

environments and evolving operational conditions, whereby patterns drift. Then, to be of 

practical use the models built must be capable of timely learning changes in the existing patterns 

and new patterns arising in the dynamic environment of system/component operation. The 

recent special issue of the journal IEEE Transactions on Neural Networks and Learning Systems 

provides an interesting up-to-date snapshot of the ongoing research in this area (see for 

examples from that special issue, the papers in [20], [7], [20], [13], [6], [22]). 

Support Vector Regression (SVR) is one of the most popular data-driven approaches. However, 

it also faces the problem of changing environments, due to computational complexity with large 

datasets, and adaptation to pattern drifts. Some approaches have been proposed in the literature 

for SVR to adaptively learn new data points. In these approaches, the online learning of a trained 

SVR model is mostly based on prediction accuracy and/or characteristics of the inputs of the 

data points. The rationale is to add data points as basis for the SVR model when they are not 

predicted well and/or contain new information on the input space. Reference [18] proposes a 

novel approach based on an adaptive Kernel Principal Component Analysis (KPCA) and 

Support Vector Machine (SVM) for real-time fault diagnosis of High-Voltage Circuit Breakers 

(HVCBs). Bordes et al. [2] propose a novel online algorithm which converges to the SVM 

solution by using the τ-violating pair paradigm. Wang et al. [23] propose an online core vector 

machine classifier with adaptive minimum-enclosing-ball adjustment. Reference [10] uses a 

small subset of basis vectors to approximate the full kernel on arbitrary points. Engel et al. [8] 

present a nonlinear kernel-based recursive least squares algorithm which performs linear 

regression in the feature space and can be used to recursively construct the minimum mean 

squared-error regressor. Csato and Opper [3] combine a Bayesian online algorithm with a 

sequential construction of relevant subsets of the training dataset and propose Sparse On-line 

Gaussian Process (SOGP) to overcome the limitation of Gaussian process on large datasets.  

The methods above consider only the characteristics of the inputs to update the model, not the 

prediction accuracy. Reference [4] propose an online recursive algorithm to “adiabatically” add 
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or remove one data point in the model while retaining the Kuhn-Tucker conditions on all the 

other data points in the model. Martin [17] further develops this method for the incremental 

addition of new data points, removal of existing points and update of target values for existing 

data points. But the authors provide only the “how” for model update, while the “when” and 

“where” to make such update are not presented, as adding each new point available is time-

consuming. Karasuyama and Takeuchi [11] propose a multiple incremental algorithm of SVM, 

based on the previous results. These incremental and decremental learning approaches feed to 

the model all new points including noisy and useless ones, without bothering of selecting the 

most informative ones. Crammer et al. [5] propose online passive-aggressive algorithms for 

classification and regression, but the methods consider only the prediction accuracy as the 

update criterion. Reference [12] considers using classical stochastic gradient descent within a 

feature space and some straightforward manipulations for online learning with kernels. The 

gradient descent method destroys completely the Kuhn-Tucker conditions, which instead are 

necessary for building a SVR model.  

In this paper, an adaptive online learning approach is proposed for SVR, to adaptively modify 

the model when different types of pattern drifts are detected, providing a solution for “when” 

and “where” to modify the trained model. The proposed online learning approach combines a 

simplified version of the Feature Vector Selection (FVS) method introduced in [1] with 

Incremental & Decremental Learning presented in [4], considering the characteristics of the 

inputs and the bias of the prediction for the new data points. The method is hereafter called 

Online learning approach for SVR using FVS and Incremental & Decremental Learning, 

Online-SVR-FID for short. FVS aims at reducing the size of the training dataset: instead of 

training the SVR model with the whole training dataset, only part of it (the set of Feature Vectors 

(FVs) which are nonlinearly independent in the Reproduced Kernel Hilbert Space (RKHS)) is 

used and the mapping of the other training data points in RKHS can be expressed by a linear 

combination of the selected FVs. In this paper, FVS is simplified and used for the proposed 

adaptive online learning approach. According to the geometric meaning of FVS in RKHS, in 

this paper, each data point (input-output) is defined as a pattern and two types of pattern drifts 

are given: new pattern and changed pattern. A new data point is a new pattern (or new FV) if 

the mapping of its inputs in RKHS cannot be represented by a linear combination of the 

mapping of existing patterns (this is integrated in some papers), while it is a changed pattern if 

its mapping can be represented by such a linear combination but the bias of its predicted value 

is bigger than a predefined threshold. Once a new data point is judged as a new pattern, it is 
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immediately added to the present model no matter the bias of its prediction is small or big, thus 

keeping the richness of the patterns in the model. A changed pattern is used to replace a carefully 

selected existing pattern instead of adding it into the model, thus keeping the nonlinear 

independence in RKHS among all the data points in the model, which is critical for FVS 

calculation. When adding or removing a FV in the model, instead of retraining the model, 

Incremental & Decremental Learning can construct the solution iteratively. Two criteria are 

proposed to detect new and changed patterns, considering respectively the characteristics of the 

inputs and bias of the prediction. The proposed approach can efficiently add new patterns and 

change existing patterns in the model, to follow the incoming patterns and at the same time 

reduce the computational burden by selecting only informative data points. The two criteria 

proposed for verification of new patterns and changed patterns can also help avoiding the 

overfitting problem bothering SVR and reducing the influence of the intrinsic noise in the data.  

The proposed Online-SVR-FID is similar to the method proposed in [23]. But the method 

proposed in [23] adds both the new patterns and changed patterns in the model, while the 

addition of changed patterns can destroy the nonlinear independence of the FVs in the model 

and, thus, ruin the FVS calculation in the following online learning procedure. In Online-SVR-

FID, the changed patterns are used to replace one existing FV to keep the nonlinear 

independence, which is critical during online learning. A real case study is worked out 

concerning the leak flow from a seal of a pump in a Nuclear Power Plant (NPP). Comparisons 

with several other online learning methods proves the accuracy and efficiency of the proposed 

method. 

The rest of the paper is organized as follows. Section 2 gives some basics of SVR, the modified 

FVS and Incremental & Decremental Learning; the proposed Online-SVR-FID is also detailed 

in this section. Section 3 describes the real case study with the experimental results and 

comparisons with other online learning methods. Some conclusions and perspectives are drawn 

in Section 4. 

2. ONLINE-SVR-FID 

Pattern drift is a challenging problem for supervised data-driven approaches. The Online-SVR-

FID approach proposed in this paper is a cost-efficient online learning approach for SVR, 

capable of handling new patterns and changed patterns as defined in the Introduction. It can 

effectively and timely detect and add a new pattern or update a changed pattern in the model, 

while retaining the Kuhn-Tucker conditions, which are necessary and sufficient conditions for 
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the optimization of the quadratic function associated to SVR. Two criteria considering the 

characteristics of the input and the bias of the prediction, are proposed for verification of the 

two types of pattern drifts.  

In order to fully explore the Online-SVR-FID, we briefly recall SVR, FVS [1] and Incremental 

& Decremental Learning [4]. The proposed approach is, then, detailed, a pseudo-code is given 

and two tolerance parameters are introduced for computational control. 

2.1 Support Vector Regression with 𝜺-Insensitive Loss Function 

SVR seeks to find the best estimate function 𝑓(𝒙) = 𝝎𝒙 + 𝑏 of the real underlying function 

for a set of training data points (𝒙𝑖, 𝑦𝑖) , for 𝑖 = 1, 2, … , 𝑇 . By solving the Kuhn-Tucker 

conditions of the following quadratic optimization problem 

Minimize 
1

2
‖𝝎‖2 + 𝐶∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑇
𝑖=1   

Subject to {

𝑦𝑖 −𝝎𝒙𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖
𝝎𝒙𝒊 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖, 𝜉𝑖
∗ ≥ 0

,             ⑴ 

the best estimate function 𝑓(𝒙) can be expressed as a support vector expansion 

𝑓(𝒙) =  ∑ 𝛽𝑖𝑘(𝒙, 𝒙𝑖)
𝑇
𝑖=1 + 𝑏,                ⑵ 

where 𝑘(𝒙, 𝒙𝑖) =  𝑒
−‖𝒙−𝒙𝑖‖

2/2𝜎2 in the case of Radial Basis Function (RBF); the multipliers 

(also called influences in some literature) 𝛽𝑖 ∈ [−𝐶, 𝐶], for 𝑖 = 1,… , 𝑇 are the solutions of 

the dual optimization problem in SVR and satisfy the corresponding Kuhn-Tucker conditions. 

Details can be found in [9]. The points 𝒙𝑖 with non-zero multipliers 𝛽𝑖 are called Support 

Vectors (SVs). 

There are three hyperparameters in the SVR model using RBF kernel function and the ε-

insensitive loss function: the penalty factor C, the sparsity of the data ε and the width of the 

kernel σ. 

2.2 Feature Vector Selection 

Baudat and Anouar [1] define two parameters (local fitness and global fitness) to characterize 

the feature space of training dataset. A number of FVs are selected from the mapping of all 

training data points to represent the useful dimension of RKHS in the training dataset. Mapping 

of any other data points in RKHS can be projected on these FVs and, then, classical algorithms 

for training and prediction can be applied based on the selected FVs. 
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The aim of FVS is to represent the mapping of all the training data points in RKHS with a linear 

combination of selected FVs. Suppose (𝒙𝑖, 𝑦𝑖), for 𝑖 = 1, 2, … , 𝑇, are the training data points 

and the mapping φ(𝒙)  maps each input 𝒙𝑖  into RKHS with the mapping 𝝋𝑖 , for 𝑖 =

1, 2, … , 𝑇; 𝑘(𝒙𝑖, 𝒙𝑗) = 〈𝜑(𝒙𝑖), 𝜑(𝒙𝑗)〉 is the inner product between 𝝋𝑖 and 𝝋𝑗.  

In order to find a new FV, we just need to verify if the mapping 𝝋𝑁 of a new data point 

(𝒙𝑁, 𝑦𝑁) can be represented by a linear combination of the existing FVs. Suppose the existing 

FVs are included in the feature space 𝐒 = {𝝋1, 𝝋2, … , 𝝋𝐿} and the corresponding original data 

points are {𝒙1, 𝒙2, … , 𝒙𝐿}. The verification of the new FV amounts to finding the vector 𝒂𝑁 =

{𝑎𝑁,1, 𝑎𝑁,2, … , 𝑎𝑁,𝐿} which gives the minimum of (3) below: 

𝜇𝑁 = 
‖𝝋𝑁−∑ 𝑎𝑖𝝋𝑖

𝐿
𝑖=1 ‖

‖𝝋𝑁‖
                  ⑶ 

It is difficult to give the mapping function φ(𝒙) and make the previous calculation in RKHS. 

On the other hand, the kernel function gives the inner product of two data points in RKHS 

without having to know the exact mapping function. Thus, the minimum of 𝜇𝑁  can be 

expressed by an inner product of the kernel functions 

min𝜇𝑁 = 1 −
𝐾𝑺,𝑁
𝑡 𝐾𝑺,𝑺

−1𝐾𝑺,𝑁

𝑘𝑁,𝑁
,                ⑷ 

where 𝐾𝑺,𝑺  is the kernel matrix of 𝐒 and 𝐾𝑺,𝑁 = (𝑘𝑖,𝑁), 𝑖 = 1,2, … , 𝐿 is the vector of the 

inner product between 𝝋𝑁 and S; 𝐽𝑺,𝑁 =
𝐾𝑺,𝑁
𝑡 𝐾𝑺,𝑺

−1𝐾𝑺,𝑁

𝑘𝑁,𝑁
 is called the local fitness of data point 

𝒙𝑁 with respect to feature space 𝐒. If 1 − 𝐽𝑺,𝑁 is smaller than the pre-set positive threshold 

𝜌 (the first tolerance parameter here introduced) for local fitness, the new point is not a new 

FV, otherwise, it is added to S as a new FV.  

 

Fig. 2.  Paradigm of Online-SVR-FID. 
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The linear independence between all FVs is necessary and sufficient to make sure that 𝐾𝑺,𝑺 is 

revertible. There is no need to further check if the 𝐾𝑺,𝑺 with the newly added FV is invertible 

as the original work of [1]. Tolerance parameter 𝜌 controls the number of selected FVs and 

can decrease the influence of the noise in the data. Its best value is dependent on the 

hyperparameter in the kernel function, e.g. for RBF, the best 𝜌 for a bigger σ is normally 

smaller. Large values of 𝜌 lead to less FVs, and vice versa. A good choice of the value of 𝜌 

can decrease the noise in the model, while keeping enough FVs to guarantee good performance 

of the SVR model. 

From (4), it is clear that the best values 𝒂𝑁 are: 

𝒂𝑁 = 𝐾𝑺,𝑁
𝑡 𝐾𝑺,𝑺

−1.                  ⑸ 

We introduce also the global fitness 𝐽𝑺 on the dataset: 

𝐽𝑺 = ∑ 𝐽𝑺,𝑖
𝑀
𝑖=1 .                  ⑹ 

Geometrically, FVS is to select the coordinate vectors in RKHS. Fig. 1 is an example of a bi-

dimensional feature space. Any pair of two linearly independent vector, e.g. 𝝋1 and 𝝋2 can 

be seen as coordinate vectors which form an oblique coordinates system and any other vectors, 

e.g. 𝝋3 can be represented in this space as 𝑎31𝝋1 + 𝑎32𝝋2, with [𝑎31, 𝑎32] calculated by (5) 

and 𝑎31𝝋1, 𝑎32𝝋2 its oblique projections on 𝝋1 and 𝝋2. For a vector, e.g. 𝝋4 outside the 

bi-dimensional feature space, the closest vector to this vector in the feature space is 𝝋5 which 

is its projection on this space of; then, 𝑎41𝝋1, 𝑎42𝝋2 are the oblique projections of 𝝋5 on 

𝝋1 and 𝝋2, with 𝑎41, 𝑎42 calculated with (5). Thus, for any vector 𝝋 in RKHS, its local 

fitness is cos2𝜃, with 𝜃 the angle between this vector and the feature space. If 𝝋 is in this 

feature space, 𝜃 is 0, otherwise 𝜃 is in the interval (0, 𝜋/2]. The threshold 𝜌 assures that 

 

Fig. 1.  Geometric explanation of FVS and local fitness in RKHS. 
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only the vector whose 𝜃 is bigger than arcsin√1 − 𝜌 is selected as the next new feature 

vector. The function of 𝜌 is like the 𝜀 in the 𝜀-insensitive loss function of SVR. 

2.3 Incremental & Decremental Learning  

Incremental & Decremental Learning as proposed in [4], provides a good “tool” for SVR to 

adaptively modify the SVR model with new data points. The idea is to find the Kuhn-Tucker 

conditions for a new data point by iteratively modifying its influence in the regression function 

while keeping the Kuhn-Tucker conditions satisfied by the other data points in the model.  

This method can “adiabatically” add a new point and remove an existing point in the SVR 

model, instead of retraining it from the beginning. Although it has been proposed for 

classification problems in the original work, the method has been applied also for regression 

problems [16].  

In this paper, Incremental & Decremental Learning is used for the tasks of ADDITION (add a 

new FV) and UPDATE (update the output of an existing FV) in the model, after some necessary 

verifications. 

2.4 Online-SVR-FID 

The Online-SVR-FID method can be divided into two parts: one is Offline Training, i.e. 

selecting FVs in the available offline data and training the SVR model; the other is Online 

Learning, i.e. for each new data point, verifying if it is a new pattern, a changed pattern or just 

an existing pattern and taking the corresponding action. Figure 2 shows the paradigm of Online-

SVR-FID. The pseudo-code is given in Fig. 3. 

2.4.1 Offline Training of Online-SVR-FID 

Offline Training includes two steps. The first step is to select the FVs in the training dataset 

with FVS. The aim is to find the feature space S formed by part of the training dataset, which 

gives the minimum of the global fitness 𝐽𝑺 calculated with (6) on the whole training dataset 

𝑻𝑟. As shown in Fig. 3, the procedure is an iterative process of sequential forward selection. 

For the first iteration, the data point which gives the minimum of the global fitness 𝐽𝑺 on 𝑻𝑟 

is selected as the first FV in the feature space S. The following iterations are the same: the next 

possible FV is the point in the reduced training dataset 𝑻𝑟, which gives the maximum of the 

local fitness with the current feature space S; if 1 − 𝐽𝑺,𝑘  for this point is bigger than the 

predefined threshold ρ, the data point is added to S as FV and the training dataset is reduced as 

𝑻𝑟 = 𝑻𝑟\𝐄 with 𝐄 = {(𝒙𝑘, 𝑦𝑘) 𝑎𝑛𝑑 (𝒙𝑖, 𝑦𝑖): 1 − 𝐽𝑺,𝑖  ≤  ρ}; otherwise, the FV selection in the 
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training dataset is finished. In the FVs selection process, the calculation of the local fitness of 

each data point in 𝑻𝑟  is most time-consuming, and, thus, at the end of each iteration, the 

training dataset 𝑻𝑟 is reduced by deleting the data points that can not be new FVs in the next 

iteration. The deleted data points are the one which is selected as new FV in the current iteration 

and those whose local fitness satisfies 1 − 𝐽𝑺,𝑖  ≤  ρ, because the feature space S in the next 

iteration contains one more FV and, then, their local fitness in the next iteration is smaller or at 

least equal to their local fitness in this iteration. Compared to searching the next possible FV in 

the whole training dataset, as proposed in [11], the FV selection process proposed in this paper 

takes less computation time. The second step is to train a SVR model with FVs in S using a 

classical algorithm. The data points used to form the final function in (2) are only the selected 

FVs, but the objective function in (1) is still to be minimized on the whole training dataset. Such 

quadratic optimization setting can in a sense avoid the overfitting problem bothering SVR. 

In [2], each time a new data point is selected as FV, it is added to the model only if the matrix 

𝐾𝑺,𝑺 in (5) is invertible after adding the new data point into S. In fact, this is not necessary: if 

1 − 𝐽𝑺,𝑁 > 𝜌, the FVs, including the new data points, are linearly independent, which ensure 

that  𝐾𝑺,𝑺  is invertible; thus, in this paper, 1 − 𝐽𝑺,𝑁 > 𝜌  is the only condition for the 

verification of new FVs during Offline Training and for the addition into the present model 

during Online Learning. 

2.4.2 Online Learning of Online-SVR-FID 

Online Learning consists of detecting new or changed patterns considering, respectively, the 

characteristics of the inputs and the bias of the prediction of the new data points and, then, 

carrying out the ADDITION and UPDATE tasks, as illustrated in Fig. 3. In general, verification 

of the linear independence between the mapping of the new input and the existing FVs in the 

feature space S is used to verify if the new point is a new FV (pattern). The difference (bias) 

between the predicted value and the real output of the new data point is used to decide the 

change of the existing patterns.  

Suppose a new data point is (𝒙𝑁, 𝑦𝑁) and the prediction model for this instance is M trained 

on feature space S. The first step is to verify if (𝒙𝑁 , 𝑦𝑁) is a new pattern by calculating its 

local fitness 𝐽𝑺,𝑁 with (4), i.e. to verify if the mapping 𝝋𝑁 of (𝒙𝑁 , 𝑦𝑁) can be expressed by 

a linear combination of all FVs in S. If 1 − 𝐽𝑺,𝑁 is bigger than the predefined threshold ρ, i.e. 

the linear combination of FVs in S cannot sufficiently approximate 𝝋𝑁, (𝒙𝑁, 𝑦𝑁) is taken as 
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a new pattern and added directly to the model using Incremental Learning as in [4]; the model 

M and the feature space S are updated at the same time and await for the next new data point 

without going to the second step of checking the bias of the predicted values compared to the 

true output. Otherwise i.e. 1 − 𝐽𝑺,𝑁 ≤ ρ, it is not a new pattern and we proceed to the second 

step to verify if there is any change in the existing patterns.  

The second step of online learning feeds the new data point to the model and calculates the 

difference between the predicted value using M and the real output 𝑦𝑁 of the new data point, 

i.e. bias =  |𝑦𝑁̂ − 𝑦𝑁|, with 𝑦𝑁̂ the predicted value of the new data point. If the bias is smaller 

than the predefined threshold δ (the second tolerance parameter here introduced), there is no 

change in the existing patterns and the model M is kept unchanged and awaits for the next new 

data point; otherwise, one or several existing patterns in M have changed and it or they need to 

 

Fig. 3.  Pseudo-code of offline training & online learning using Online-SVR-FID. 
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be updated.  

In practice, it is not always easy to identify the changed patterns, as the pattern related to the 

new data point can be expressed as a linear combination of all the existing patterns and it is 

hard to find out which is (are) changed. The idea proposed in this paper is using the new data 

point to replace one specifically selected data point in M. The procedure is as follows: 

1. A vector 𝒎 = (𝑚1,𝑚𝟐, … ,𝑚𝒍) is used to record the contribution of each FV to the SVR 

models. Each value in 𝒎 corresponds to a FV in the model.  

2. 𝒎 is set to be a zero vector before Offline Training. 

3. When the model M is trained during Offline Training with the selected FVs from the 

training dataset, 𝑚𝑖 is increased by 1 if the corresponding FV is a SV, i.e. its multiplier in 

(2) is not zero. Otherwise, i.e. for a FV with zero multiplier, its contribution 𝑚𝑖 is zero. 

4. Each time the model is added with one new data point, a new 𝑚𝒍+𝟏 is added to 𝒎 to 

record the contribution of the new FV in the model. After the model is updated with 

ADDITION, the contribution 𝑚𝑖 of each FV in the model is updated with the contribution 

update rules: if the data point is a SV in the new updated model, its new contribution is 

calculated as 𝑚𝑖
𝑛𝑒𝑤 ← 𝜏 ∗ 𝑚𝑖 + 1, with 𝜏  a positive constant smaller than 1, i.e. the 

contribution of a FV in the new model is more weighted than that in the old models; 

otherwise it is kept unchanged. 

5. When a change is detected with respect to the old patterns, the first step is to calculate the 

values 𝒂𝑁 for the new data point according to (5). Then, among all the FVs in the model 

with non-zero values in 𝒂𝑁, the one with least contribution, say 𝑚𝐼, is deleted from the 

model using Decremental Learning as in [4] and 𝑚𝐼 is reset to zero. If there are several 

FVs with the same contribution and the least contribution, the FV to be replaced is selected 

as the oldest one among them. 

6. The new data point is added to the model using Incremental Learning in [4] and it inherits 

the contribution 𝑚𝐼, which is zero for now. The vector 𝒎  and the feature space S are 

updated, and also the contribution of the FV is updated according to the rules in step 4 

above. 
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Note that the FV in the model with least contribution to the SVR models among all those with 

non-zero values in the linear combination (according to (5)) is replaced by the new data point. 

This strategy for updating a changed pattern must and can keep the FVs in the model linearly 

independent, so that the Kernel matrix 𝐾𝑺,𝑺 in (4) is invertible and the Online Learning can 

continue to be carried out. If a new pattern is added because of the noise, this strategy can 

decrease the influence of the new data points and keep the capability of the model, as only one 

existing FV with least contribution is replaced. Note also that if a new data point is a new 

pattern, it is added instantly in the model, without consideration of the bias of its prediction, so 

that a maximal richness of the patterns are kept in the model. This is different from the online 

learning methods which consider only the prediction accuracy. The changed patterns are made 

of the points which can be expressed as a linear combination of existing patterns in RKHS, but 

with a bias of prediction larger than the preset threshold δ. This allows replacing a changed 

pattern instead of adding it in the model, in order to keep the FVs in the model linearly 

independent and up-to-date. 

Note that proper selection of the (positive) values for the tolerance parameters, ρ and δ, can 

efficiently decrease the influence of noise and avoid overfitting by selecting only informative 

parts of the dataset.  

3. REAL CASE STUDY 

In this section, time series data collected by a sensor for measuring the leak flow in the first seal 

of the Reactor Coolant Pump (RCP) in a NPP are used to test the performance of the proposed 

Online-SVR-FID approach. The RCP is a fundamental component for safe operation of a NPP. 

Its function is to provide cooling water into the reactor, to extract the heat produced by nuclear 

 

Fig. 4.  Outputs of training (1-300) and testing (301-700) datasets. 
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fission. Thus, it is critical to monitor and predict the leak flow of RCP.   

The specific objective considered in this paper is to predict the future evolution of the leak flow, 

so as to anticipate when its value will reach certain thresholds of alarm which demand 

interventions, such as shut-down and maintenance: in short, it is a prognostics problem and the 

approach taken is that of data-driven modelling for prediction [24].  

The ε-insensitive loss function and RBF kernel function are used to build the SVR model for 

the prediction. There are five unknown parameters to be set: three hyperparameters in SVR 

σ,ε,C and two tolerance parameters ρ, δ. the parameter σ is calculated with (7) as proposed in 

Cherkassky and Ma (2004); the parameter μ is a value between 0 and 1; the parameter δ=0.05 

is given by the expert in EDF according to the operation manual:   

𝜎2 = 𝜇 ∗ 𝑚𝑎𝑥‖𝒙𝑖 − 𝒙𝑗‖
2
, 𝑖, 𝑗 = 1,… , 𝑇.            ⑺ 

With the determined 𝜎 and δ, the values of 𝜀 and 𝐶 are set using a grid search method 

proposed in [15], which minimizes the Mean Square Error (MSE) on the whole training dataset 

instead of only on the selected FVs. 

 

Fig. 5.  Number of FVs selected from training dataset using different 𝜇 in (7) and ρ. 
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After the reconstruction of the raw data (ten historical target values chosen by way of a partial 

autocorrelation analysis are used as inputs and the target value one day ahead is the output [15], 

300 data points are selected as original offline training dataset and the following 500 data points 

form the test data, which are fed to the model one by one emulating the online learning process. 

The outputs of the training and testing datasets are shown in Fig. 4 with the first 300 values of 

the training dataset and the last 500 values belonging to the test dataset. It is clear that the 

training dataset represents the normal (stable) process, while the testing dataset is the abnormal 

(increasing) process. This experiment is to verify how fast and accurate Online-SVR-FID can 

follow the changing trend in the time series data. The experimental results of the proposed 

online learning approach are here presented. Comparisons with other online learning 

approaches for kernel-based regression methods proposed in [4], [12], [3] and [14] are carried 

 

Fig. 6.  MSE on the testing dataset using different 𝜇 in (7) and ρ. 

  

 

Fig. 7.  Prediction results of the test dataset using Online-SVR-FID. 
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out and presented in the next Section. 

In supervised learning, the performance of SVR is highly dependent on the size of the training 

dataset. In Online-SVR-FID, the number of FVs in the training dataset is selected by FVS, 

where parameters 𝜎 (or 𝜇) and ρ are critical, as shown in the pseudo-code in Fig. 3 and Fig. 

5. Fig. 6 shows the change of MSE on the whole test dataset with different values for 𝜇 and ρ 

in Online-SVR-FID. For the same value of 𝜇, smaller values of ρ select more training data 

points as FVs, which leads generally to more accurate prediction results. From Fig. 6, we can 

also see that when the value of 𝜇 is small (i.e. small 𝜎), e.g. 𝜇 = 0.001, different values of 

ρ give very different prediction performances, as the number of selected FVs can be only 1 for 

bigger values of ρ. But when 𝜇  is big enough, e.g. 𝜇 = 1.3, different values of ρ give 

similar prediction results, better than for smaller 𝜇: thus, the value of 𝜇 is critical.  

Note that in this real case study of online learning, it can be seen that more FVs selected from 

the training dataset with bigger 𝜇  and smaller ρ  do not always improve the prediction 

significantly: in this case study, when the number of FVs is larger than 10, the prediction results 

are comparable. This proves that the dimensionality of the training dataset in RKHS is fixed 

and the few selected FVs can represent the whole training dataset.  

The time for Online Learning of the test dataset is dependent on the number of FVs. The more 

FVs are selected from the training dataset, the more time is needed for training a SVR model 

and Online Learning. Thus considering the prediction accuracy and the computational burden, 

the best values for 𝜇 and ρ are taken as 10-3 and 2.2*10-8 for the case study. The MSE and 

computational time are 0.0011 and 8.8944s. The values of 𝜀  and 𝐶  are 0.0152 and 

1.5199*104. A total of 11 data points from the original training dataset are selected as FVs and 

used to train a SVR model. The prediction results on the test dataset using Online-SVR-FID are 

shown in Fig. 7 with the positions of new patterns (ADDITION, marked by ◇ in the Figure) 

and changed patterns (UPDATE, marked by □ in the Figure) indicated by symbols. The 

online-SVR-FID treats the data points from the test dataset one by one, simulating the online 

learning procedure. 

After the online learning process with Online-SVR-FID, 3 and 53 data points in the test dataset 

are selected respectively for ADDITION and UPDATE. Note that only ADDITION changes 

the size of the model, so the number of data points in the final model is 14, which is far smaller 

than the total number of training and test data points, which is 800.  
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Note that based on the previous analysis of the impact of 𝜇 and ρ, the tuning of ρ can be 

simplified, since for a fixed value of 𝜇 we can calculate the change of MSE on the training 

dataset for decreasing  values of ρ; the best value for ρ is the one for which the decrease of 

MSE is smaller than a given threshold. 

4. COMPARISON WITH OTHER ONLINE LEARNING APPROACHES 

In this section, Online-SVR-FID is compared with four other online learning methods: original 

Incremental Learning in [4], Naïve Online Rreg Minimization Algorithm (NORMA) in [12], 

SOGP in [3] and Kernel-based Recursive Least Square Tracker (KRLS-T) in [14].  

4.1 Brief Introduction to the Online Learning Methods Considered 

Incremental Learning is specifically developed for online learning of SVR [4]. It is designed so 

as to satisfy always the Kuhn-Tucker conditions, which are sufficient and necessary conditions 

for the solution of the quadratic programming problem in SVR. Such specific method is also 

integrated in the proposed Online-SVR-FID. In the experiment, Incremental Learning adds each 

new data point in the model instead of the selected ones. 

NORMA considers classical stochastic gradient descent within the RKHS. NORMA performs 

gradient descent with respect to the instantaneous regularized risk on a single point, defined as 

the sum of the empirical risk and the complexity of the underlying function [12]. A learning 

rate η, which is usually kept constant during the learning iterations, is introduced to guarantee 

a bound on the number of operations required per iteration and the size of the model. NORMA 

can be used for regression, classification and novelty detection [12]. In this paper, it is applied 

to the nonlinear regression problem of interest for the case study of Section 3. When a new data 

(𝒙𝑁, 𝑦𝑁)  is available, NORMA adds this point to the model and updates its multipliers 

following (8), supposing 𝛽𝑁  is the multiplier for the new data point in the support vector 

expansion of (2): 

(𝛽𝑖, 𝛽𝑁 , 𝜀) = {
((1 − 𝐶𝜂)𝛽𝑖, 𝜂|𝑓(𝒙𝑁) − 𝑦𝑁|, 𝜀 + (1 − 𝜐)𝜂),

((1 − 𝐶𝜂)𝛽𝑖, 0, 𝜀 − 𝜐𝜂),

𝑖𝑓 |𝑓(𝒙𝑁) − 𝑦𝑁| > 𝜀
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.  ⑻ 

SOGP in [3] trains a model with a Bayesian online algorithm and, then, uses a FVs selection 

procedure to reduce the dimension of the Gaussian process by considering the geometrical 

relations in RKHS as FVS. SOGP tries to randomly delete the training data points that can be 

represented as a linear combination of the other training data points in RKHS. As it considers 

only the geometric relation between different input vectors in RKHS during the dimension 
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reduction, SOGP might ignore some data points with informative outputs in the case that 

different outputs exist for the same input vectors.  

KRLS-T in [14] is a Bayesian perspective of the standard KRLS equations, which can perform 

tracking in nonstationary scenarios by forgetting in a consistent way under a fixed budget. 

Details for these online learning approaches can be found in the related literature. 

4.2 Comparison Results 

The offline SVR model with RBF kernel function and 𝜀-insensitive loss function trained on 

the 300 data points of the training dataset using the method proposed in [15] serves as the initial 

model before online learning for Incremental Learning and NORMA. The values for 

hyperparameters (𝐶, 𝜀, 𝜎)  in SVR are (10000, 0.0025, 0.100). The learning rate η  in 

NORMA is set to be 5*10-6, as 𝐶𝜂 in (8) should be smaller than 1. Truncation is proposed in 

[12] to control the size of the model and the truncation threshold is 0.01, i.e. the training data 

points with multipliers in (2) smaller than 0.01 are deleted from the model.  

A model is trained on the 300 training data points by SOGP and, then, each time a new data 

point is available, it is added to the training dataset and the model is updated as proposed in [3]. 

In SOGP, the threshold for new basis vector is 10-8, and 𝜎 in RBF is 0.01 while the maximal 

number of basis vectors is 100. 

In the algorithm of KRLS-T, the width of the RBF kernel function is set to be 0.1. The forgetting 

rate is 0.999, and the budget (maximal number of data points in the model) is fixed at 200. 

The comparisons of prediction results (MSE, Mean Relative Error (MRE), Normalized Mean 

Squared Error (NMSE)) and computation complexity (time for online learning, model size 

before Online Learning, model size after Online Learning) using the same computer (Interl 

Core i5 @ 2.5 GHz CPU and 4G RAM) are reported in Table. I. 

4.2.1 Computational Complexity 

As a way to evaluate the computational complexity, we compare the times of Online Learning. 
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The time for Offline Training is not considered, because there are different methods for 

parameter tuning for the different approaches, which influence the Offline Training time. What 

is more, since we consider Offline Training & Online Learning with a focus on the latter, the 

time for Offline Training is not critical for Online Learning: the relevant part in the present 

work is that the approach can learn the new patterns efficiently during Online Learning. 

In the real case study considered, the proposed Online-SVR-FID is seen (Table. I) to use 

significantly less time, due to a much reduced model size, while achieving comparable accuracy 

in the prediction. 

Indeed, the computation time of these four methods during Online Learning depends highly on 

the model size: thus, reducing the number of data points in the model means reducing the 

computational complexity during online learning. In Online-SVR-FID, the ADDITION process 

for new patterns increases the model size whereas the UPDATE process for changed patterns 

just changes data points in the model while keeping the model size (number of FVs) unchanged. 

Such an Online Learning mechanism makes the size of model much smaller than those of the 

other four benchmark methods. NORMA uses only the recent data points (a maximal number 

of 269), like a sliding time window approach. Incremental Learning adds each new data point 

in the model. SOGP adds all data points in the model and, then, uses a sparseness strategy to 

TABLE I 

Comparisons of online prediction results with Online-SVR-FID, Incremental Learning, NORMA and 

SOGP 

 Online-SVR-

FID 

Incremental 

Learning 

NORMA SOGP KRLS 

MSE 0.0011 0.0013 1.7091 0.0019 0.0044 

MRE 0.0561 0.0548 2.9965 0.0763 0.0779 

NMSE 0.0056 0.0069 8.854 0.0098 0.0228 

Online Learning time (s) 9.2067 1354.6425 3191.8332 332.7395 9.5970 

Model size before Online 

Learning 

11 300 300 25 200 

Model size after Online 

Learning 

14 800 269 60 200 
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delete some randomly selected data points, which can be expressed as a linear combination of 

the rest of the data points in RKHS; thus, it decreases greatly the size of the model, but still 

consumes much more time than Online-SVR-FID, as this latter modifies the model only with 

previously selected data points. Although the number of data points in the KRLS-T model 

before and after Online Learning is both 200, which is bounded by the budget and is much 

larger than those of Online-SVR-FID and SOGP, the time used for Online Learning of 500 data 

points is much less than SOGP and comparable with Online-SVR-FID. This is because the 

Incremental & Decremental Learning in Online-SVR-FID is an iterative process while the 

adaptation of a KRLS-T is directly calculated analytically. 

One advantage of SOGP, NORMA and KRLS-T is that they can give an upper bound of the size 

of the model in the case of infinite new data points, while Online-SVR-FID is not able to give 

such a bound. But the following theorem states that the number of FVs for Online-SVR-FID is 

finite. 

Theorem 1 Let 𝑘: 𝑋 × 𝑋 → 𝑅 be a countinous Mercer kernel, with 𝑋 a compact subset of a 

Branch space. Then, for any training sequence Γ = {(𝒙𝑖, 𝑦𝑖)}, 𝑖 = 1,2, … , 𝑇  and for any 

tolerance parameter 𝜌 > 0 , the size of the FVs of Online-SVR-FID is finite, even if the number 

of new data points grows to infinite with time. 

Proof The proof of this theorem can be easily derived with from proof of Theorem 3.1 in [8] 

and Theorem 1 in [18]. With the Mercer theorem, there exists a mapping 𝝋:𝑋 → Η, where Η 

is a RKHS. 𝑘(𝒙, 𝒙∗) and 𝝋(𝒙) is continuous. Given that 𝑋 is compact, it is natural that 

𝝋(𝑋) is compact too. Each time a new FV (𝒙, 𝑦) is added to the feature space 𝑆 with L FVs, 

we have 

𝜌2 ≤ 𝑚𝑖𝑛𝒂
‖𝝋𝑁−∑ 𝑎𝑖𝝋𝑖

𝐿
𝑖=1 ‖

2

‖𝝋𝑁‖2
≤

‖𝝋𝑁−𝝋𝑖‖
2

‖𝝋𝑁‖2
, 

for any 𝑖 = 1,2, … , 𝐿. The definition of packing numbers in [25] shows that the maximum 

number of FVs in Online-SVR-FID is bounded by the packing number at scale 𝜌 of 𝝋(𝑋), 

while this number is smaller than the covering number at scale 𝜌/2 which is finite with a 

compact set. 

4.2.2 Prediction accuracy 

With respect to the prediction accuracy, NORMA gives the worst results in the case study 

considered. The performance of NORMA decreases with the online learning process. The 
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update strategy of NORMA for the multipliers in (2) destroys the properties of SVR, i.e. the 

multipliers do not satisfy the Kuhn-Tucker conditions after the update procedure. The 

multipliers for the new data points are set to be the positive or negative values of the learning 

rate, which can be too small compared to the non-zero multipliers derived by the Kuhn-Tucker 

conditions, which are comparable to the penalty factor C in SVR, as the optimal value of C is 

very large in this case study. Such setting makes the contribution of the new data points 

negligible compared to the other data points in the model. Thus, the model does not catch 

effectively the new patterns and cannot perform well on the new data points, nor on the previous 

data points.  

With the fastest Online Learning speed, KRLS-T gives slightly worse results than Online-SVR-

FID, Incremental Learning and SOGP, while the latter three methods are giving comparable 

results. The post-processing for sparseness in SOGP is carried out in a random way, i.e. a 

randomly selected data point is deleted if it can be expressed by a linear combination of the 

rest; otherwise, it is kept. This randomness leads to unstable prediction results for SOGP in this 

case study. For example, in the case of changed patterns, any of them can be expressed as a 

linear combination of the rest; if the sparseness process deletes the ones more informative to 

the future patterns, the model can no longer perform well on the selected pattern. 

In conclusion, the proposed Online-SVR-FID significantly reduces the online learning time and 

can learn timely and efficiently the new and changed patterns; it gives comparable or even better 

results than the benchmarks considered. 

5. CONCLUSIONS 

In this paper, we have proposed an online learning approach for SVR, named Online-SVR-FID, 

to efficiently address by online learning the pattern drifts problem.  

A real case study has been considered, concerning the prediction of the dynamic evolution of 

the leak flow from the first seal of a pump in a nuclear power plant for prognostic purposes. 

The approach is shown to be capable of significantly reducing the number of data points in the 

model, and timely learning the incoming patterns by ADDITION (new patterns) and UPDATE 

(changed patterns), when necessary. Two tolerance parameters ρ and δ are introduced to reduce 

the influence of the noise and to control the number of actions of ADDITION and UPDATE in 

the learning process. Compared with other online learning approaches i.e. NORMA, SOGA, 

KRLS and Incremental Learning, considering MSE, MRE and NMSE on the test dataset, 

Online-SVR-FID has been shown to be effective on the case study considered, using less 



Paper IV: Jie LIU & Enrico ZIO “An adaptive online learning approach for support vector regression,” IEEE Transactions on 

Neural Networks and Learning Systems, 2014. (Under review) 

- 157 - 

computational time while giving results with accuracy comparable to that of the best approach 

(Incremental Learning).  

While it is true that a number of papers have already presented solutions for the reduction of 

the training dataset by forward or backward selection of a smaller number of feature vectors, in 

this paper the main novelty lies in the proposed cost-effective update based on the special 

method of feature vector selection, i.e. FVS under a nonstationary environment. The proposed 

update strategy considers both the geometrical relations between different data points in the 

Reproduced Kernel Hilbert Space (RKHS) and the prediction accuracy. Special strategies are 

proposed for two different kinds of patterns drifts (as defined in the Introduction of the paper, 

new patterns and changed patterns). Comparing to SOGP, the online approach proposed in this 

paper cannot bound the data points in the model, but the novel Theorem 1 introduced in the 

paper proves that the number is finite in the case of infinite data points.  

Future work will be devoted to further testing on other real datasets that will become available. 
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AN ONLINE LEARNING APPROACH FOR KERNEL-BASED 

ENSEMBLES WITH DRIFTING DATA STREAM 

Jie LIU and Enrico ZIO 

ABSTRACT 

Pattern drift is a common issue for machine learning in real applications, as the distribution 

generating the data may change under nonstationary environmental/operational conditions. 

Online learning ensemble is an effective way to tackle this problem and several approaches 

have already been proposed, including data chunk-based, drift detector-based and instance-

based approaches. Data chunk-based and drift detector-based approaches build adaptively new 

sub-models with a sufficient number of new data points. These approaches can reduce the 

computational complexity but suffer a delay of updating, compared to instance-based 

approaches, while updating the ensemble with each new data point in instance-based 

approaches is time-consuming. In this paper, an instance-based online learning approach is 

proposed for kernel-based ensembles, which reduces the computational complexity during 

updating and can follow timely the ongoing patterns by resorting to Feature Vector Selection 

(FVS). The proposed approach can also create new sub-models directly from a basic model and 

the sub-models represent separately the data stream at different periods. A dynamic ensemble 

selection strategy is integrated in the approach to select the sub-models most relevant to the 

new data point for deriving the prediction, while reducing the influence of the irrelevant ones. 

An experiment is carried out on a real case study concerning a component of a Nuclear Power 

Plant (NPP). Comparisons with several benchmark approaches prove the efficiency and 

accuracy of the online learning ensemble approach proposed. 

Key words: Online learning ensemble, Feature selection, Dynamic ensemble selection, Pattern 

drifts, Kernel methods, Dynamic weighted ensemble 
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1. INTRODUCTION 

Building an efficient and accurate predictor from available data is one of the main objectives in 

machine learning. Most of the current approaches are applied only in static environments, i.e. 

the data are generated from a distribution which does not change with time. On the other hand, 

in practical applications, the underlying, normally unknown distribution generating the data can 

vary with time, causing pattern drifts. Pattern drifts can be due to a natural evolution of the 

environment, changes in the operational conditions or faults affecting the physical system [1]. 

In such cases, the data are generated from nonstationary environments and models trained for 

static environments can no longer give accurate predictions for the new data.  

Pattern drifts can be divided into sudden pattern drifts, gradual pattern drifts and recurring 

patterns. Different approaches have been developed for tackling the different pattern drifts 

problem, which can be categorized into adaptive single model [2], [3], [4] and online learning 

ensembles [5], [6], [7]. The former approach is based on an adaptive model that learns 

incrementally the new patterns and/or forgets the old inefficient ones; in practice, the 

computational burden for incremental learning is unacceptable for large datasets, and the 

recurring patterns are not efficiently handled if they have already been deleted from the model. 

The online learning ensemble approach aims at updating an ensemble by adapting the sub-

models weights and/or adding/deleting a sub-model in the ensemble. The work reported in this 

paper focuses on this approach of online learning ensembles. 

There are different types of approaches for online learning ensembles, e.g. data-chunk-based 

approaches, drift detector-based approaches, instance-based approaches, etc. Accuracy 

Weighted Ensemble (AWE) is proposed in [8] to train a new classifier on each incoming data 

chunk and to update the ensemble sub-models weights according to their accuracy on the past 

and present data chunks. Streaming Ensemble Algorithm [9] builds separate sub-models on 

sequential data chunks and combines them into a fixed-size ensemble using a heuristic 

replacement strategy. Learning++.NSE [10] trains a new sub-model on the new data chunk if 

the prediction error exceeds a predefined threshold, and combines the sub-models built through 

a dynamically modified weighted majority voting. The sub-models weights are calculated based 

on their weighted-sum performance on different data chunks and added to the ensemble. These 

previous approaches train new sub-models on the new data chunks. Similar approaches are also 

used in [11], [12] and [13]. The problem with these data chunk-based approaches is the 
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determination of the size of the data chunks, as bigger chunks give more stable sub-models but 

different drifts may be contained in a single sub-model, whereas smaller chunks can better 

separate different drifts but lead to worse sub-models. There is also a delay in the ensemble for 

following the ongoing patterns, as the ensemble is updated only when a new data chunk is 

available and the patterns in the ensemble at this time may no longer be the ongoing patterns. 

In order to overcome these difficulties, various approaches have been proposed in the literature, 

which may combine a drift detector with online learning ensemble to alarm the need for a new 

sub-model or update the ensemble with each single data point. Adaptive Classifier Ensemble 

(ACE) [14] slowly builds a new sub-model when the sub-models error on the new data reaches 

a certain threshold. In [15], pattern drifts are detected by measuring the normalized weighted 

average output of the sub-models in the ensemble. Diversity analysis is used in [16] to divide 

different drifts. The most popular drift detector algorithm is the Drift Detection Method (DDM) 

[17], which models the prediction error on each data point according to a binominal distribution. 

A modified version of DDM, called EDDM is proposed in [18], which gives better results but 

is more sensitive to noise. A new approach for online learning ensembles, called Diversity for 

Dealing with Drift (DDD) is proposed in [7], which maintains ensembles with different 

diversity levels. The experimental results show that DDD gives robust and accurate results. 

Although the drift detector-based approaches can solve the difficulty in deciding a good size of 

the data chunk, they, compared to instance-based updating approaches, still cannot update the 

ensemble once a pattern drift occurs, i.e. sufficient new data are needed before detecting and 

reacting to the pattern drifts. In [19], a theoretically supported framework for active learning of 

drifts in data streams is presented and three active learning strategies are developed based on 

separate uncertainty, dynamic allocation of labeling efforts over time and randomization of 

search space. AddExp in [20] adapts models’ weights according to their actual losses and a 

decreasing factor is integrated to reduce the weights of the sub-models which perform poorly. 

The Incremental Local Learning Soft Sensing Algorithm (ILLSA) [21] is also an instance-based 

approach, which contains two parts: one is training different sub-models on data points from 

different patterns; the other part is updating the sub-models weights for each new data point, 

according to the posterior probability given by a Bayesian framework. Another instance-based 

approach, named Online Weighted Ensemble (OWE) is proposed in [22] to learn new data 

points incrementally in the presence of different types of pattern drifts and to retain old 

information in recurring patterns. The instance-based updating approaches can learn the pattern 

drifts effectively and efficiently once they occur. But one main disadvantage is the 
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computational complexity of updating the ensemble with every new data point. Furthermore, a 

dynamically weighted ensemble is proposed in [23] to store only the features most relevant to 

the learnt concept, which in turn increases the memory efficiency. 

Thus, a good approach for online learning ensemble demands for timely updating the ensemble 

including weights and sub-models, decreasing the computational burden brought by frequent 

updating operations and dealing with different types of drifts. 

In this paper, an instance-based online learning approach for kernel-based ensembles, named 

Online Ensemble based on Feature Vectors (noted OE-FV, for short), is proposed based on the 

Feature Vector Selection (FVS) approach presented in [24]. Kernel-based ensembles are made 

of sub-models trained with kernel methods. FVS calculates the geometrical linear relation 

among different input vectors of the data points in the Reproduced Kernel Hilbert Space 

(RKHS) and selects a small part of them as Feature Vectors (FVs), while the other input vectors 

can be represented by a linear combination of the FVs selected in RKHS. In our previous work 

[25], an adaptive online learning approach, named Online-SVR-FID has been proposed for a 

single Support Vector Regression (SVR) model to effectively follow the ongoing patterns by 

adjusting two types of drifts (new pattern if the new input vector cannot be represented by a 

linear combination of the FVs in the model and changed pattern if the new input vector can be 

represented by a linear combination of the selected FVs but the prediction error is larger than a 

predefined threshold) and taking the correspondent action. If a new data point is judged as new 

pattern, it is added directly into the model, while if it is judged as a changed pattern, it is used 

to replace a selected pattern that makes least contribution to the recent updated models. 

Compared to several benchmark approaches, Online-SVR-FID has been shown to give 

comparable results while using much less time. One drawback of Online-SVR-FID is that the 

old patterns are deleted from the model and one needs to relearn the recurring patterns from 

scratch.  

Based on this previous work, an online learning ensemble is grown from a single kernel-based 

model 𝑀1 to store all the past patterns detected in the data, and each sub-model covers patterns 

in a certain period of the data stream. The ensemble is created sequentially by applying an 

online learning approach similar to Online-SVR-FID on 𝑀1. The online learning approach 

assures that the single model 𝑀1 follows always the ongoing patterns. If each single models 

𝑀1 for different periods of the data stream are separately saved as sub-models and used in an 

ensemble, each of them is like an adjusted “copy” of 𝑀1 tailored to different instances of the 
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online learning process. Every new sub-model is saved by copying the current 𝑀1 at the time 

when an old pattern risks of being deleted from the ensemble, as the process for updating 𝑀1 

may use new data points to replace an existing pattern in 𝑀1 when the new data point is judged 

as a changed pattern. If the pattern to be replaced is unique in the ensemble and there is no more 

such pattern once deleted, the model before the replacement is copied and stored as a new sub-

model to guarantee that all the occurred patterns appear at least once in the sub-models of the 

ensemble, and, then, the updated 𝑀1 is still the up-to-date sub-model that continues to be 

updated with future new data points. Note that the sub-models are created sequentially and 

automatically from 𝑀1 and are not updated with the new data points. Through the FVS, only 

data points that are judged as new and changed patterns are used to update 𝑀1 and create new 

sub-models when the criterion is reached. Thus, the computational burden bothering the 

instance-based approaches for online learning ensemble is reduced. The sub-models weights 

are updated with each new data point according to the weighted sum of the prediction errors on 

all the data points, where the prediction errors on the new data points are more weighted than 

the old ones. Thus, the ensemble can follow efficiently the ongoing patterns. 

Inspired by the work in [26], [27] and [28], a dynamic ensemble selection strategy is also 

integrated in the proposed OE-FV. For each new data point, only the most relevant sub-models 

are used to form an ensemble and derive the weighted-sum prediction result, in order to avoid 

the influence of the poor ones. The dynamic selection of the sub-models are based on the 

geometric relation between the input vector of the new data point and the data points in each 

sub-model. Only the sub-models which can well represent the new input vector are selected. 

In order to test the efficiency and accuracy of OE-FV, an experiment on a real case study 

concerning the condition of a component of a Nuclear Power Plant (NPP) is carried out. 

Comparisons with Learn++.NSE and OWE show that the proposed approach gives better results 

than those of OWE and Learn++.NSE and the computation time of OE-FV is shorter than that 

of OWE. 

The rest of the paper is structured as follows. FVS and Online-SVR-FID are briefly reviewed 

in Section 2. Section 3 explains the approach proposed to build the ensemble automatically and 

the process of weights updating. The experiments on a real case study concerning a large dataset 

for a component of NPP are illustrated in Section 4. Comparisons with Learn++.NSE and OWE 

are also reported in this section. Some conclusions are drawn in Section 5. 

2. BRIEF INTRODUCTION OF FVS AND ONLINE-SVR-FID 
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The proposed online learning approach for kernel-based ensemble is based on the work in [24] 

and [25]. In order to thoroughly explain the process of building and updating an ensemble with 

OE-FV, FVS [24] and Online-SVR-FID [25] are firstly and briefly reviewed in this section. 

2.1 FVS 

Suppose 𝑻 =  {(𝒙𝑖, 𝑦𝑖): 𝑖 = 1, 2, … ,𝑀} is the dataset at hand, FVS analyzes the geometric 

relation among the input vectors of different data points in a high-dimensional space, i.e. RKHS, 

and selects the ones which represent the dimensions of the RKHS related to the dataset as FVs, 

in order to decrease the complexity of the dataset. The other input vectors in the dataset can be 

represented by a linear combination of the selected FVs in RKHS. A model can be trained on 

the selected FVs with classical machine learning methods, e.g. SVR.  

In this paper, 𝝋(𝒙) is the mapping that maps an input vector from the original space to the 

RKHS and 𝑘(𝒙𝑖, 𝒙𝑗) is the kernel function that represent the inner product 〈𝝋(𝒙𝑖), 𝝋(𝒙𝑗)〉 

in RKHS. Once a new data point (𝒙𝒏, 𝑦𝑛) with mapping 𝝋𝒏 is available, we need to judge if 

this new data point is a new FV. Suppose the existing FVs selected form the dataset are 

{𝒙1, 𝒙2, … , 𝒙𝐿} and their mapping are included in the feature space 𝐒 = {𝝋1, 𝝋2, … , 𝝋𝐿}, the 

verification of a new FV amounts to finding the vector 𝒂 = {𝑎1, 𝑎2, … , 𝑎𝐿} which gives the 

minimum of Equation (1) below:  

𝜇𝑛 = 
‖𝝋𝒏−∑ 𝑎𝑖𝝋𝑖

𝐿
𝑖=1 ‖

‖𝝋𝒏‖
.                (1) 

Normally in kernel methods, it is difficult to know the exact expression of the mapping function 

𝝋(𝒙). But kernel function which represent the inner product between two mappings in RKHS 

can give a solution to the minimum of Equation (1). The minimum of 𝜇𝑛 can be written as 

below: 

min𝜇𝑛 = 1 −
𝐾𝑺,𝒏
𝑡 𝐾𝑺,𝑺

−1𝐾𝑺,𝒏

𝑘(𝒙𝒏,𝒙𝒏)
,               (2) 

where 𝐾𝑺,𝑺 is the kernel matrix (gram matrix) of 𝐒 and 𝐾𝑺,𝒏 = (𝑘(𝒙𝑖, 𝒙𝒏)), 𝑖 = 1,2, … , 𝐿 is 

the vector of the inner product between 𝝋𝒏  and S. The derivation of Equation (2) from 

Equation (1) can be found in [24]. 

The value calculate with Equation (3) is called local fitness. The definition of global fitness is 

given in Equation (4). The vector 𝒂 can be calculated by Equation (5). 

𝐽𝑆(𝒙𝒏) =
𝐾𝑺,𝒏
𝑡 𝐾𝑺,𝑺

−1𝐾𝑺,𝒏

𝑘(𝒙𝒏,𝒙𝒏)
                (3) 
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𝐽𝑺 = ∑ 𝐽𝑺(𝒙𝑖)
𝑀
𝑖=1                  (4) 

𝒂 = 𝐾𝑺,𝒏
𝑡 𝐾𝑺,𝑺

−1                 (5) 

According to the definition of local fitness, each data point is called a pattern and the pattern 

drifts in this paper are divided into two types: new pattern if the new data point cannot be well 

represented by the existing FVs in any sub-model, i.e. 1 − 𝐽𝑆(𝒙𝒏) > 𝜌 , with 𝜌  a small 

positive value; changed pattern if the new data point can be represented by the existing FVs in 

some sub-models, but the predicted value given by all the sub-models are not accurate enough, 

i.e. 1 − 𝐽𝑆(𝒙𝒏) < 𝜌 & |𝑦̂𝑛 − 𝑦𝑛| > 𝜃 for all sub-models, with 𝑦̂𝑛 the predicted value given by 

one current sub-model and 𝜃 is a positive value representing the tolerance on the prediction 

error. 

2.2 Online-SVR-FID 

Online-SVR-FID proposed in [25] aims at providing an efficient online learning approach for 

single SVR model based on FVS. This approach can be divided into two parts: offline training 

and online learning. 

The offline training is aimed at selecting FVs from the training dataset and training a model on 

the selected FVs, with the objective of minimizing the Mean Squared Error (MSE) on the whole 

training dataset. 

The online learning is aimed at detecting the pattern drifts and taking corresponding reactions 

to update the model. If a new data point is a new FV, it is added to the model and the model is 

updated. If it is not a new FV and its prediction error is larger than the threshold 𝜃, it replaces 

the FV which makes least contribution to the recent models.  

Constrained by the length of the paper, the pseudo-code of Online-SVR-FID and the calculation 

of the contribution of each FV to the recent models are shown in Appendix. Note that Online-

SVR-FID can make the model efficiently follow the ongoing patterns in the data. A main 

drawback of Online-SVR-FID is that some useful FVs are replaced during the UPDATE process 

shown in Appendix. Once these replaced patterns recur in the new data, the model needs to 

relearn them, i.e. the information in the past data are not fully stored in the single model. Thus, 

in this paper, an ensemble approach is proposed to store all the past patterns in the data and 

make a reasonable choice of sub-models facing recurring patterns. 

3. THE PROPOSED APPROACH FOR ONLINE LEARNING 
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ENSEMBLE: OE-FV 

As mentioned in previous sections, the main objective of this ensemble is to store all the past 

patterns in the data, propose strategies to build automatically new sub-models, update their 

weights and to decrease the computational burden for instance-based approaches for online 

learning ensemble. The whole idea is based on the FVS in [24] and Online-SVR-FID in [25]. 

OE-FV builds automatically an ensemble from a single model trained on the training dataset. 

All the sub-models are expected to represent the characteristics of the data during a certain 

period and once the old patterns reoccur, the most relevant sub-models are selected by FVS to 

derive the prediction. As FVS is developed for the kernel methods, OE-FV can be applied for 

all kernel-based ensembles, e.g. sbu-models trained with kernel ridge regression, SVR, 

Gaussian process etc. 

The main procedure is shown in Figure 1. OE-FV builds an ensemble sequentially from the first 

model, named 𝑀1 that is trained on the preliminary training dataset. All the other sub-models 

can be seen as a “copy” of 𝑀1 at one instance during the developing process. These sub-

models are expected to be different from each other and represent the data at a certain period. 

Only the sub-model 𝑀1  is adaptively updated with new data points, while the other sub-

models are fixed once created. 

Fig. 1 The main procedure of OE-FV. 

3.1 Training of the first sub-model in Ensemble 

A single model 𝑀1 is trained on the training dataset which is also the first and basic sub-model 

in the ensemble (step 1 in Figure 1). In order to reduce the model complexity and computational 

burden, the training dataset are not directly used to train the first sub-model. Instead, FVS 

1. Train a model 𝑀1 with kernel methods on the training dataset.  

2. Suppose there are n sub-models (M1, M2, …, Mn) in the ensemble when a new data point is coming: 

2.1 Calculate the predicted value for the new data by a weighted-sum strategy based on the prediction 

errors 𝐄𝐫 of selected sub-models; 

2.2 If the new data point is new FV, it is added to 𝑀1 and the model is retrained;  

2.3 Else 

2.3.1 If the new data is a changed FV, it will be used to replace the FV that makes least contribution 

in the recent models; 

2.3.1.1 If the existing FV to be replaced in M1 is unique in the ensemble, the model 𝑀1 before 

replacement is saved as a new sub-model, named Mn+1. The selected FV in 𝑀1 is then replaced 

by the new data point and 𝑀1 is up-to-date; 

2.3.1.2 If the existing FV to be replaced in 𝑀1 is not unique in the ensemble, no new sub-model 

is created and the replacement is carried out directly in 𝑀1; 

 2.4 Update the prediction error 𝐄𝐫 of each sub-model. 
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selects the representative data points, i.e. FVs, which are normally of a much smaller size than 

the training dataset, and 𝑀1 is trained on the selected FVs, through minimizing the MSE of 

the prediction on the whole training dataset. Such strategy can reduce the model complexity 

and keeps the generalization ability of the model at the same time. The process of FVS applied 

for selecting the FVs from the training dataset is shown in Appendix. 

3.2 Calculation of the predicted value of a new data point 

When a new data point is coming, in order to give a reasonable prediction using the ensemble 

approach (step 2.1 in Figure 1), we use a dynamic ensemble selection strategy. A dynamic 

ensemble selection, as presented in [26], [27] and [28], is to select the sub-models that are most 

relevant to the new data point to calculate their separate prediction, and, then these predictions 

are fused by a weighted sum to give the final prediction of the ensemble for the new data point.  

The dynamic selection of sub-models can be based on the overall local accuracy, local sub-

model accuracy, a priori selection or a posteriori selection [26]. In OE-FV, they are selected by 

the local fitness of the new data point, calculated by Equation (3), with respect to the FVs in 

each sub-model. Only the sub-models with a local fitness that satisfies 1 − 𝐽𝑆𝑖(𝒙) < 𝜌 are 

selected to form the ensemble predictor 𝐸𝑜𝐶 for the new data point. 

Suppose 𝐄𝐫 is the vector that contains the cumulated prediction errors of all the sub-models 

and 𝐄𝐫𝐸𝑜𝑐 which is a subset of 𝐄𝐫 contains the prediction errors of the sub-models in 𝐸𝑜𝐶, 

the weights of the selected sub-models are calculated as Equation (6). And the prediction of the 

ensemble is calculated as a weighted sum of the prediction results of all the selected sub-models, 

as shown in Equation (7), with 𝑦̂𝑖 and 𝑦̂ separately the predicted value of selected sub-models 

and the ensemble. 

𝛚 =
1/𝑬𝒓𝐸𝑜𝑐

2

∑1/𝑬𝒓𝐸𝑜𝑐
2                 (6) 

𝑦̂ = ∑ 𝜔𝑖𝑦̂𝑖𝐸𝑜𝐶                  (7) 

If none of the sub-models in the ensemble gives a local fitness that satisfies1 − 𝐽𝑆𝑖(𝒙) < 𝜌, all 

the sub-models are, then, used for calculating the prediction of the ensemble. In Equations (6), 

𝐄𝐫𝐸𝑜𝑐 is replaced by 𝐄𝐫 and in Equation (7), the weighed sum is carried out on all the sub-

models. 

3.3 Update of the ensemble with a new pattern 

If the local fitness of the new data point with respect to the FVs in each sub-model satisfies the 
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relation 1 − 𝐽𝑆𝑖(𝒙) > 𝜌, it is judged as a new FV, and it is added to the first model 𝑀1 that is 

trained on the training dataset (step 2.2 in Figure 1). The other sub-models are not modified 

with the new FV, as they represent only the patterns in the data at certain historical period and 

the new FV represents the ongoing pattern of the data. A new sub-model is not created in the 

case of a new FV as it enriches the ensemble without decreasing its performance on the whole 

data. Thus, the number of sub-models are not changed and only the sub-model 𝑀1 is updated 

to follow the ongoing patterns. Once the FVs in 𝑀1 is increased by one, the model is retrained 

through minimizing the MSE on the recent data points (How to choose the recent data points is 

explained in details in Section 3.6). 

3.4 Update of the ensemble with a changed pattern 

Once the new data point is judged as not a new FV, the verification of a changed FV is carried 

out by calculating the prediction errors (absolute bias between the predicted value and the true 

output) of all the sub-models. If the prediction errors are all bigger than the preset threshold θ, 

the new data point is judged as a changed pattern. It is used to replace a FV in the sub-model 

𝑀1. 

Before the replacement, we need to solve two questions.  

The first one is how to choose the FV in 𝑀1 to be replaced by the new data point. The pseudo-

code for Online-SVR-FID in Appendix gives an idea for SVR which counts the times of being 

a support vector in the past SVR models during the adaptive learning process, and the 

contribution in the recent SVR models are more weighted than those in the older ones. 

Following the same strategy, a more general way is to cumulate its contribution through a 

weighted sum of its value calculated in Equation (5) for all the data points.  

Suppose the contribution of each FV in 𝑀1 is 𝑚𝑖, when a new data point is coming, Equation 

(5) can give its similarity with each FV in 𝑀1. A bigger 𝑎𝑖 in 𝒂 represents a larger similarity, 

thus, a bigger contribution to the prediction of the new data point. Its contribution is updated as 

𝑚𝑖
𝑛𝑒𝑤 = 𝛾𝑚𝑖 + 𝑎𝑖, with 𝛾 a positive value smaller than one. 

Once the FV in 𝑀1 to be replaced by the new data point is selected, the second problem is how 

to assure that all the past patterns are stored in the ensemble. If the selected FV is unique in the 

ensemble, i.e. it exists only in 𝑀1, the replacement of this FV may cause a loss of a past pattern 

in the data. Thus, step 2.2.1.1 in Figure 1 proposes to “copy” the model 𝑀1 as a new sub-

model and before the replacement, then, the selected FV in 𝑀1 is replaced by the new data 
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point. With such a strategy, the changed pattern is learned by 𝑀1 and the old pattern is not 

deleted from the ensemble by adding a new sub-model, which is a copy of M1 before the 

replacement. Note that all the sub-models except 𝑀1 are created this way and they can be seen 

as a copy of 𝑀1 for t different periods. As 𝑀1 can always follow the ongoing patterns in the 

data, the diversity among the sub-models represent different steps of the data stream. 

If the selected FV in 𝑀1 is not a unique in the ensemble, it is replaced directly by the new data 

point without adding a new sub-model (step 2.2.1.2). 

3.5 Update of the prediction error of sub-models 

In Section 3.3, the sub-models’ weights are calculated according to their prediction errors 𝐄𝐫 

on the data points. After the training of the first sub-model 𝑀1  in step 1 in Figure 1, the 

prediction error for 𝑀1 is the root MSE on the whole training dataset.  

When a new data point is available, part of (if the new data point is not a new FV) or all (if the 

new data point is a new FV) the sub-models are selected to derive the prediction of the 

dynamically selected ensemble as introduced in Section 3.3. In any case, sub-model 𝑀1 is 

always selected, as the online learning process assures that 𝑀1 contains all the dimensions of 

the available data in RKHS while the other sub-models contain only part of it. Thus, 𝑀1 can 

give a local fitness for new data point which is smaller than or equal to those given by other 

sub-models. At the end of each iteration for a new data point, the strategy for updating the 

prediction error of the sub-models for different situations are given below: 

1) For the sub-models except 𝑀1 in the dynamically selected ensemble 𝑆𝑜𝐶 for the new 

data point (𝒙𝑖, 𝑦𝑖), their prediction errors are updated as 𝑬𝒓𝐸𝑜𝐶 = 𝛽𝑬𝒓𝐸𝑜𝐶 + |𝒚̂𝑖 − 𝑦𝑖|, 

with 𝑬𝒓𝐸𝑜𝑐 their prediction errors, 𝛽 a positive parameter smaller than one and 𝒚̂𝑖 is 

the predicted values of the sub-models in 𝐸𝑜𝐶. 

2) For the sub-models that are not selected into 𝐸𝑜𝐶 their prediction errors are updated as 

𝑬𝒓 = 𝛽𝑬𝒓 + 𝜏𝐸𝑟, with 𝐸𝑟 the maximal prediction error given by the sub-models in 𝐸𝑜𝐶 

and 𝜏 a parameter bigger than one in order to decrease the weights of these sub-models in 

the next iteration. 

3) For 𝑀1, it is different from the above two types of the sub-models, as it may be adaptively 

updated with the new data point.  

3.1) If it is not updated during steps 2.2 and 2.3 in Figure 1, its prediction error is updated 

as step 1).  
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3.2) Otherwise, it is updated with the prediction error after the update, i.e. after steps 2.2 

and 2.3 in Figure 1. 𝑀1 gives a new prediction for the new data point different from the one 

calculated in step 2.1 in Figure 1 during the calculation of the prediction of the ensemble for 

the new data point. The error of the new prediction is the true error for 𝑀1 at the end of this 

iteration. Its prediction error is updated with the new prediction error according to 𝐸𝑟1 =

𝛽𝐸𝑟1 + |𝑦̂1,𝑛𝑒𝑤 − 𝑦𝑖|, with 𝑦̂1,𝑛𝑒𝑤 is the prediction for the new data point given by updated 

M1. 

4) If a new sub-model is created during the online learning of the new data point, the 

prediction error the new sub-model is calculated with 𝐸𝑟𝑛+1 = 𝛽𝐸𝑟1 + |𝑦̂1,𝑜𝑙𝑑 − 𝑦𝑖|, with 

𝑦̂1,𝑜𝑙𝑑 the prediction for the new data point given by 𝑀1 at step 2.1 in Figure 1 which is 

not updated yet with the new data point, and 𝐸𝑟1 is the prediction error of 𝑀1 at the 

beginning of this iteration in step 2.1 in Figure 1, i.e. before updating. 

3.6 Retraining of the sub-model M1 

Facing a new FV or a changed FV, the model 𝑀1 needs to be updated. However, it is not 

always possible to find a way to update the model, as shown in Online-SVR-FID without 

retraining it from scratch. In this paper, we suppose that 𝑀1 is updated by retraining.  

Training a classic kennel-based model takes the minimization of the MSE on the training dataset 

as the objective function. In this paper, 𝑀1 is trained on the FVs and minimizes the MSE on a 

number (much larger than the number of FVs in the model) of recent data points in order to 

guarantee the generalization ability of the model. Suppose the last sub-model was added at the 

i0-th data point, when the i-th data point is coming, the number of data points considered in the 

objective function is to minimize the MSE on the data points from i0 to i. In order to avoid the 

overfitting and underfitting on the recent data points, a minimal (Nmin) and a maximal (Nmax) 

number of the recent data points in the objective function is fixed during the retraining of 𝑀1, 

i.e. the number of the recent data points for retraining 𝑀1  is min (max(𝑁𝑚𝑖𝑛, 𝑖 −

𝑖0) , 𝑁_𝑚𝑎𝑥).  

3.7 Advantages of OE-FV 

OE-FV has several advantages compared to other online learning ensemble approaches. It is an 

instance-based ensemble approach, which adaptively modifies the ensemble with each new data 

point, and, thus, OE-FV can timely learn the new patterns compared to data chunk-based and 

drift detector-based approaches for online learning ensemble. It can instantly follow the pattern 
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drift in the data, and the online learning ensembles based on data chunk or sliding window can 

only react after a sufficient number of new data points is available. 

The aim of storing all the patterns in the data makes the ensemble capable of creating new sub-

models automatically when necessary, without the trouble of setting a fixed size of new data 

points as the data chunk-based approaches.  

When a new sub-model need to be created, there is no need to train this new sub-model, as it is 

a “copy” of the model 𝑀1 as presented in Section 3 and the new sub-model is fixed once 

created. Only 𝑀1 is updated with new data points to follow the ongoing patterns.  

The diversity of between the sub-models are guaranteed, as each sub-model represents the 

patterns in the data during a different period, with 𝑀1 representing the up-to-date patterns.  

The new data points are all used to update the sub-models’ weights, and only few of them are 

used to update the 𝑀1 and create new sub-models. For each new data points, instead of using 

all the sub-models to derive the prediction of the ensemble, only the most relevant ones are 

selected to form a dynamic ensemble. Such strategies can reduce the computational complexity 

of the online learning process. 

4. REAL CASE STUDY 

In this paper, the real case study concerns a time series training dataset from a sensor monitoring 

the leak flow from the first seal of Reactor Coolant Pump (RCP) in NPP. The normal function 

of RCP is critical for the control and safe operation of a NPP, as it pumps cold water into the 

reactor to evacuate the heat produced by nuclear fission. If RCP fails, the reactor has the risk of 

melting down, e.g. the disaster in Fukushima after the tsunami. The leaked water is radioactive 

and may endangers the personal working in the NPP. Thus, the accurate prediction of the leak 

flow is a very important indicator for the operators. 

Figure 2 is the normalized time series dataset which contains 13124 values and are measured 

every four hours. It is clear that it contains gradual, sudden and recurring data. Suppose the data 

is 𝑙(𝑡), the target of the work is to predict the leak flow in the next day, i.e. 𝑦(𝑡) = 𝑙(𝑡 + 6). 

The partial autocorrelation analysis between different time lags and the target shows that the 

first ten historical values are highly correlated with the target, and thus the input vector 𝒙(𝑡) =

[𝑙(𝑡 − 9), 𝑙(𝑡 − 8), … , 𝑙(𝑡)].  

After the reconstruction of the original dataset, the first 500 data points form the training dataset 

and the rest simulate the online learning process which feed to the ensemble one by one. The 
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basic models are all built with SVR in this experiment. 

 

Fig. 2 Data of the leak flow in RCP. 

4.1 Prediction results of the proposed ensemble approach 

For the real case study, the different parameters in Section 3 are set as follows: ρ = 10−6;  θ =

0.05;  γ = 0.8;  β = 0.6;  τ = 4; N_min = 150;  and N_max = 500.  
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The online learning of a single model in [25] and OE-FV, are firstly compared in this 

experiment. 

Fig. 3.  Prediction results of OE-FV and the positions of changed and new patterns. 

In the case of updating a SVR model with Online-SVR-FID, a SVR model is trained on the 

training dataset and updated with the new data points as proposed in [25]. In the experiment, 

there are totally 1198 new data points judged as changed patterns and 13 new data points as 

new patterns.  

While the online learning ensemble with OE-FV, only 120 and 7 new data points are separately 

judged as changed and new patterns. OE-FV largely decreases the number of changed patterns, 

thus the computational complexity, as all the patterns are stored in the ensemble. Thus, OE-FV 

solves the problem of Online-SVR-FID with recurring patterns. Figure 3 shows the prediction 

results of the test data points from 4600 to 6000 given by OE-FV and the positions of the 

changed and new patterns. 

4.2 Results comparisons 

In this section, comparisons of experimental results are carried out among Online-SVR-FID 

[25], Learn++.NSE [10], OWE [22] and the proposed OE-FV, considering the prediction 

accuracy and the computation time.  
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Learn++.NSE is a typical data chunk-based approach for online learning ensemble. When a 

new data chunk of a fixed size 𝑁 is available, a new sub-model is added if the prediction error 

on the new data chunk exceeds a predefined threshold ε. The sub-models’ weights are updated 

according to their prediction error on all the data chunks, while the prediction error on the new 

data chunks are more weighted than those of the older ones. Learn++.NSE cannot adapt to the 

new patterns until a number of 𝑁 new data points are available. When the ensemble is updated 

with the new chunk, it may not follow the ongoing patterns. There is a delay of the patterns in 

the ensemble compared to the pattern in the new data. And it is very difficult to decide the best 

size of the data chunk. 

In order to solve these problems with Learn++.NSE, OWE updates the sub-models’ weights 

with the prediction error when a new data point is available. The strategy for adding a new sub-

model is also different from Learng++.NSE: instead of waiting for a new data chunk, sliding 

window is integrated. When a new data point is available, the window of a fixed size 𝑁 moves 

one step ahead. When the prediction error on the data points in the window exceed a predefined 

threshold ε, a new model on these data points is trained. Thus, there is no need of waiting for 

𝑁 new data points before adding a new sub-model. It is more flexible than Learn++.NSE. But 

there is also a delay compared to the instance-based approaches for online learning ensemble.  

Table I Comparisons of experimental results using Online-SVR-FID, Learn++.NSE, OWE and OE-FV. 

 
Online-

SVR-FID 
Learn++.NSE 

Learn++.NSE 

Pruned 
OWE 

OWE 

Pruned 
OE-FV 

MSE 13*10-4 16*10-4 16*10-4 12*10-4 12*10-4 8.6*10-4 

MARE 0.0977 0.1009 0.1009 0.0879 0.0882 0.0761 

Time (s) 460.117 8.3607 8.0682 30485 188.394 51.299 

# of sub-

models 
1 26 20 7513 20 13 

 

There is a pruned version of Learn++.NSE and OWE which fix a maximal number of sub-

models. After the maximal number is reached, an old sub-model which gives worst prediction 

results on the new data points is deleted each time a new sub-model is added. 

In this case study, by trial-and-error, the size 𝑁 of the data chunk in Learn++.NSE and of time 
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window in OWE is fixed at 500. The threshold ε  for adding a new sub-model and the 

discounting rate in calculating prediction error in Learn++.NSE and OWE are separately (0.04, 

0.2) and (0.05, 0.3). In the pruned case, the maximal number of sub-models are both 20. 

Table I presents the MSE and Mean Absolute Relative Error (MARE), the computation time 

with the same computer (Inter Duo i5, 2.3 GHz, and 4G RAM) and the number of sub-models. 

All these approaches give comparable results considering the prediction accuracy, while 

Learn++.NSE gives the worst and OE-FV gives the best. This is caused by the update strategy 

integrated in the online learning ensemble. The delay during the online learning process in 

Learn++.NSE is longer than that in OWE and OE-FV has the shortest delay. Thus, it is verified 

that the instance-based approach can timely follow the ongoing patterns and give better results 

than data chunk-based or sliding window-based ones in frequently changing environment. 

The computation burden bothering the instance-based online learning ensembles is not so 

obvious in OE-FV. Learn++.NSE uses least time as the ensemble is updated only when a new 

data chunk is available. The specific strategies proposed in OE-FV, e.g. verification of new FV 

and changed FV, generation of new sub-model and dynamic ensemble selection, reduce the 

computational complexity of the online learning process, and the results show that it uses much 

less time than OWE which is based on sliding window.  

The time of OE-FV is also much smaller than Online-SVR-FID, as Online-SVR-FID deletes 

some old patterns during the updating process, and when these patterns reoccur, it has to relearn 

them before giving a good prediction result. This disadvantage increases the number of updating 

actions during online learning, thus the computational burden, and decreases the prediction 

accuracy. While OE-FV applies a dynamic ensemble selection strategy to select the most 

relevant sub-models for each new data point in order to reduce the influence of the irrelative 

ones. The sub-models’ weights are updated with each new data point, and the flexibility of the 

ensemble is increased. 

In this case study, the Learn++.NSE and OWE with and without pruning give similar prediction 

results. As shown in [22], a larger maximal number of sub-models doesn’t always increases the 

accuracy. The accuracy is no longer improved when the number of sub-models is bigger than a 

certain value. 

Figure 4 shows the prediction results of the test data points from 5300 to 5400 given by Online-

SVR-FID, Learn++.NSE, OWE and OE-FV. It is observed that OE-FV can adapt to the target 
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faster than the others. Learn++.NSE and OWE are updated with the longest delay, as explained 

in the Introduction. 

 

Fig. 4.  Comparisons of the prediction results of the test data points from 5300 to 5400. 

5. CONCLUSIONS 

Based on FVS and Online-SVR-FID, an online learning ensemble approach is proposed for 

kernel-based models. OE-FV can create an ensemble automatically from a single model. The 

new sub-models represents separately a certain stage of the first sub-model, whereby the 

diversity among them is guaranteed. This paradigm is used in online learning ensemble for the 

first time as the authors know. The dynamic ensemble selection strategy eliminates the 

irrelevant sub-models to the new data point, and, thus, reduces their influences on the prediction 

results of the ensemble. The computational burden with instance-based online learning 

ensemble is reduced by taking different strategies for pattern verification, dynamic ensemble 

selection.  

Comparisons on a real case study concerning the leak flow in RCP shows that OE-FV 

outperforms Online-SVR-FID and OWE in both prediction accuracy and computation time. 

Learn++.NSE uses least time but gives worst prediction results. A drawback of OE-FV is that 

it is only suitable for kernel-based ensembles. 
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APPENDIX 

The pseudo-code of Online-SVR-FID is shown as below. 

 

Initialization: 

Training dataset: 𝑻𝑟 = {(𝒙𝑖, 𝑦𝑖)}, for 𝑖 = 1, 2, … ,𝑀 

Testing dataset: 𝑻𝑒 = {(𝒙𝑖, 𝑦𝑖)}, for 𝑖 = 𝑀 + 1,𝑀 + 2,… ,𝑀 + 𝐻 

Feature space: S = [ ] 

Threshold of local fitness: ρ 

Threshold of prediction error: θ 

 

Offline Training: 

First FV in S: 

For i = 1 to M calculate 

𝐒 = {𝒙𝑖}, compute global fitness 𝐽𝑺.  

End for. 

Select the point which gives the maximum of the global fitness as the first FV and add it to S 

as the first FV. 

𝑻𝑟 is reduced as the complement of S in 𝑻𝑟, i.e. 𝑻𝑟 = 𝑻𝑟\𝑺. 

Second and the other FVs: 
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Calculate local fitness for data points in 𝑻𝑟 with the present feature space S; 

Select the data point k which gives the minimum of local fitness;  

If 1 − 𝐽𝑺,𝑘 > ρ, this point is a new FV and added to S; 

𝐄 = {(𝒙𝑘, 𝑦𝑘) 𝑎𝑛𝑑 (𝒙𝑖, 𝑦𝑖): 1 − 𝐽𝑺(𝒙𝑖)  ≤  ρ} and 𝑻𝑟 is reduced as the complement of 𝐄 in 

𝑻𝑟, i.e. 𝑻𝑟 = 𝑻𝑟\𝐄; 

If 1 − 𝐽𝑺,𝑘 ≤ ρ, end the process of FVs selection; 

Train the SVR model on the FVs in S. 

 

Online Learning: 

When a new data point (𝒙𝑁, 𝑦𝑁) is available  

DO   

Calculate the local fitness 𝐽𝑺,𝑁 of this new data point; 

If 1 − 𝐽𝑺,𝑁 > ρ 

ADDITION: this new data point is a new FV; add it to S and add this new data point in the 

model using the Incremental Learning. Go back to the beginning of Online learning and wait 

for the next new data point. 

If 1 − 𝐽𝑺,𝑁 ≤ ρ, verify the bias between the target of this new data point and the predicted value  

  If the bias is smaller than θ 

Keep the model unchanged. Go back to the beginning of Online learning and wait for the next 

new data point. 

Otherwise 

UPDATE: find the FV with least contribution for the SVR models and nonzero value in Eq. 

(5). Unlearn this FV found with decremental learning and add the new data point with 

incremental learning. Go back to the beginning of Online learning and wait for the next new 

data point. 

 

Selection of the least contribution FV in UPDATE. 
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1. A vector 𝒎 = (𝑚1,𝑚𝟐, … ,𝑚𝒍) is used to record the contribution of each FV to the SVR 

models. Each value in 𝒎 corresponds to a FV in the model.  

2. 𝒎 is set to be a zero vector before Offline Training. 

3. When the model M is trained during Offline Training with the selected FVs from the 

training dataset, 𝑚𝑖  is increased by 1 if the corresponding FV is a SV. Otherwise, its 

contribution 𝑚𝑖 is zero. 

4. Each time the model is added with one new data point, a new 𝑚𝒍+𝟏 is added to 𝒎 to 

record the contribution of the new FV in the model. After the model is updated with 

ADDITION, the contribution 𝑚𝑖 of each FV in the model is updated with the contribution 

update rules: if the data point is a SV in the new updated model, its new contribution is 

calculated as 𝑚𝑖
𝑛𝑒𝑤 ← 𝜏 ∗ 𝑚𝑖 + 1, with 𝜏  a positive constant smaller than 1, i.e. the 

contribution of a FV in the new model is more weighted than that in the old models; 

otherwise it is kept unchanged. 

5. When a change is detected with respect to the old patterns, the first step is to calculate the 

values 𝒂 for the new data point according to Equation (5). Then, among all the FVs in the 

model with non-zero values in 𝒂, the one with least contribution, say 𝑚𝐼, is deleted from 

the model using Decremental Learning as in [29] and 𝑚𝐼  is reset to zero. If there are 

several FVs with the same contribution and the least contribution, the FV to be replaced is 

selected as the oldest one among them. 

6. The new data point is added to the model using Incremental Learning in [29] and it inherits 

the contribution 𝑚𝐼, which is zero for now. The vector 𝒎 and the feature space S are 

updated, and also the contribution of the FV is updated according to the rules in step 4 

above. 
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REDUCED RANK KERNEL RIDGE REGRESSION-II: 

A GEOMETRICALLY INTERPRETABLE KERNEL MODEL  

FOR REGRESSION 

Jie Liu, and Enrico Zio, Senior Member, IEEE 

ABSTRACT 

Machine learning methods employing positive kernels have been developed and widely used 

for classification, regression and unsupervised learning applications, whereby the estimate 

functions take the form of a weighted sum of kernel expansions. Unacceptable computational 

burden with large dataset and difficulty in tuning hyperparameters are usually the main 

drawbacks of kernel methods for large-scale applications. Based on a modified version of the 

Feature Vector Selection (FVS) method, this paper expresses the estimate function as a 

weighted sum of the predicted values of the Feature Vectors (FVs), whereby the unknowns in 

the function are only the predicted values of the FVs. By defining a least square error 

optimization problem with equal constraints, the analytic solution for these unknowns can be 

given directly. As an extension of the work of Reduced Rank Kernel Ridge Regression 

(RRKRR), which applies FVS in Kernel Ridge Regression (KRR), the method here proposed 

is named RRKRR-II. The tuning of parameters in RRKRR-II is also explained in this paper and 

shown to be much less complicated than for other kernel methods. Comparisons with some 

other popular kernel methods for regression on several public datasets show that RRKRR-II 

gives results comparable with those of the methods which give best results in the experiments 

in terms of the prediction accuracy with a small subset of the training dataset. 

 

Key words: Computational complexity, Feature vector selection, Kernel method, RRKRR-II, 

Tuning hyperparameter. 
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1. INTRODUCTION 

In the last decades, benefiting from computational simplicity and good generalization 

performance in statistical machine learning problems, kernel-based machine learning methods 

have drawn much attention for regression [25], [26], [23], classification [20], [10], [31] and 

unsupervised learning [33], [35], [37]. Good and comprehensive reviews of these methods can 

be found in [27] and [16]. Support Vector Machine (SVM) [1], [34], [6], Kernel Gaussian 

Process (KGP) [15], [29], [45], Kernel Ridged Regression (KRR) [40], [12], [11], Kernel 

Logistic Regression (KLR) [51], [19], Kernel Principal Component Analysis (KPCA) [32], [47] 

are some of the most popular kernel methods for regression. 

The nonparametric and semi-parametric representer theorems proposed by Schölkopf et al. [36] 

show that for a large class of kernel algorithms minimizing a sum of an empirical risk term and 

a regularization term in a Reproducing Kernel Hilbert Space (RKHS), the optimal solutions can 

be written as a kernel expansions supported on training data points. The estimate function of 

the kernel methods, including SVM, KGP, KRR, KLR and KPCA, can all be formulated as 

𝑓(𝒙) =  ∑ 𝛼𝑖𝑘(𝒙𝑖, 𝒙)
𝑁
𝑖=1 + 𝑏,               ⑴ 

where 𝑓(𝒙)  is the estimate function describing the relation between the data points 

(𝒙𝑖, 𝑦𝑖), 𝑖 = 1,2, … ,𝑁; 𝑘(𝒙𝑖, 𝒙𝑗) is the inwei ner product of the mapping of 𝒙𝑖, 𝒙𝑗 in RKHS; 

𝛼𝑖 are the weights to optimize and 𝑏 is a constant that can be zero or non-zero. Note that the 

unknowns in (1) have no practical meanings and that, normally, in kernel methods there are 

three types of hyperparameters: the penalty factor 𝐶 which is a trade-off between the empirical 

risk term and the regularization term, hyperparameters related to the definition of the empirical 

risk term (e.g. the parameter 𝜖 in the 𝜖-insensitive loss function) and hyperparameters related 

to the kernel function itself (e.g. the parameter 𝜎 in the Gaussian Radial Basis kernel Function 

(RBF) written as 𝑘(𝒙𝑖, 𝒙𝑗) = 𝑒
−‖𝒙_𝑖−𝒙_𝑗 ‖^2/(2𝜎^2 )).  

The main drawbacks of standard kernel methods are the unacceptable computational burden for 

training with large infinite datasets, the difficulty in tuning the hyperparameters and the lack of 

interpretability of the model.  

Many works addressing these drawbacks have been presented in the literature. We focus on 

SVM for regression and prediction. In order to reduce the computational burden during SVM 

training, various approaches are proposed to reduce the number of training data points in (1). 

Some are based on the characteristics of the inputs in RKHS, e.g. KPCA, Feature Vector 
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Selection (FVS) [2], convex Hull vertices selection [17], Orthogonal Least Squares (OLS) 

regression [7], Minimum Enclosing Ball (MEB) [42], Sparse Online Gaussian Process (SOGP) 

[4] etc. Others are based on the prediction accuracy, e.g. orthogonal least squares learning 

algorithm [8], Fisher Discriminant Analysis [34], significant vector learning [17], kernel F-

score feature selection [28], etc. However, these methods all use the same form of the estimate 

function as in (1), where the weights are just some optimized values without any practical 

meaning. In [9], Analytic Parameter Selection (APS) is proposed to calculate the 

hyperparameters values directly from the training dataset. But it is shown that a combination of 

APS and Genetic Algorithm (GA) can give better prediction results [48]. Many optimization 

approaches, e.g. Particle Swarm Optimization (PSO) [22], [50], Monte Carlo method (MC) 

[14], Particle Filtering (PF) [49], Competitive Agglomeration (CA) clustering [18], 

asymptotically optimal selection [39], are also proposed to find the optimal hyperparameters 

values. But computational complexity is the main obstacle for these latter approaches for tuning 

hyperparameters, while APS is easy to realize but it cannot give good results for all 

hyperparameters, especially the penalty parameter. Finally, so far as the authors know, there 

have not been any new approaches proposed to tackle the interpretability of an SVM model. 

In this paper, by analyzing the distribution property of the inner product (the kernel function is 

an inner product of two vectors in RKHS) and the geometrical relation between a training data 

point and the FVs selected with FVS [2], a geometrically interpretable approach is proposed for 

regression and prediction, which describes the linear relation between the predicted values of 

FVs and that of any other data point. FVS is used to select the FVs which can represent the 

dimensions of the training dataset in RKHS, and the linear relation between the predicted value 

of the FVs and those of the other data points are derived from the general form of the estimate 

function for kernel methods of (1). In order to keep all the information contained in the selected 

FVs, an optimization problem with equal constraints (similar to a Least Square-Support Vector 

Machine (LS-SVM)) is formed to find the minimal Mean Squared Error (MSE) (without 

regularization term) on the whole training dataset (not only on the selected FVs). Thus, the 

unknowns in the estimate function of the proposed approach are the predicted values of the FVs 

and a constant (zero or nonzero), which can be calculated analytically. Minimizing the MSE on 

the whole training dataset of the model built on the selected FVs can guarantee the 

generalization performance of the model, even without a regularization term. Equal constraints 

in the optimization problem keep all the information in the FVs (i.e. no FV is ignored through 

the loss function, as in SVM) and the optimal values for the unknowns can be calculated 
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analytically.  

The Reduce Rank Kernel Ridge Regression (RRKRR) proposed in [5] integrates FVS in LS-

SVM to decrease the size of the training dataset and, thus, the computational complexity. With 

respect to such work, the proposed approach is named RRKRR-II: the differences between 

RRKRR and RRKRR-II lie in the objective function used in the optimization and in the estimate 

function that describes the relation between inputs and outputs. Comparisons on several public 

datasets show that RRKRR-II always gives better results than RRKRR. 

Experiments on several public datasets are carried out. The comparisons with various popular 

kernel methods considering prediction accuracy and computational burden show that RRKRR-

II gives comparable results with the best prediction results of benchmark. According to the 

experimental results, an efficient method for tuning hyperparameters is given. 

The structure of the paper is as follows. Section 2 gives a brief introduction to FVS and the 

derivation of RRKRR-II is also given in this section, with analytic solutions for the unknowns. 

Prediction results and comparisons with several popular kernel methods are illustrated in 

Section 3. Some conclusions and perspectives are drawn in Section 4. 

2. RRKRR-II 

In this Section, a brief introduction of FVS, proposed in [2], is given with its geometrical 

interpretation, and RRKRR-II is derived from (1) for kernel methods. An optimization problem 

is defined to calculate the unknowns in RRKRR-II analytically. Considerations for the 

optimization problem are also detailed in this Section. 

2.1 Feature Vector Selection 

FVS, proposed in [2], aims at selecting a number of data points (Feature Vectors (FVs)) 𝑺 =

(𝒙𝑖, 𝑦𝑖), 𝑖 = 1,2, … ,𝑀  from the training dataset 𝑻 = (𝒙𝑖, 𝑦𝑖), 𝑖 = 1,2, … ,𝑁 , with 𝑀 ≤ 𝑁 , 

such that the other data points can be expressed as a linear combination of the selected FVs. 

Suppose 𝝋(𝒙)  is the mapping which maps 𝒙𝑖  of each training data point into high 

dimensional RKHS, and kernel function 𝑘(𝒙𝑖, 𝒙𝑗) is the inner product between two mappings 

in RKHS, i.e. 〈𝝋(𝒙𝑖), 𝝋(𝒙𝑗)〉. For each data point (𝒙, 𝑦), its Local Fitness (LF) with respect 

to feature space 𝑺 is calculated as: 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝛽𝑖
  𝛿(𝒙) =

‖𝝋(𝒙)−∑ 𝛽𝑖𝝋(𝒙𝑖)
𝑀
𝑖=1 ‖

2

‖𝝋(𝒙)‖2
.            ⑵ 
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The minimum of 𝛿(𝒙), i.e. LF of 𝒙, is 

𝐿𝐹(𝒙) = |1 −
𝐾𝑺,𝑥
𝑡 𝐾𝑺,𝑺

−1𝐾𝑺,𝑥

𝑘(𝒙,𝒙)
|,               ⑶ 

where 𝐾𝒔,𝒔 is the kernel matrix of 𝑺, and 𝐾𝑺,𝑥 = {𝑘(𝒙𝑖, 𝒙)}, 𝑖 = 1,2, … ,𝑀. The details of the 

calculations can be found in the Appendix of [2]. 

 

Fig. 2.  Pseudo-code of FVS for training dataset 𝑻 

 

Fig. 1.  Geometrical explanation of FVS and 𝜷. 
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Assuming 𝑺  is a feature space constructed by only two unit vectors which are linearly 

independent, but not necessarily orthogonal, i.e. 𝝋1, 𝝋2 in Fig. 1, any vector 𝝋3 in the bi-

dimension space of 𝝋1, 𝝋2, can be expressed as a linear combination of the form 𝛽1𝝋1 +

𝛽2𝝋2, with 𝛽1𝝋1, 𝛽2𝝋2 being the oblique projections of 𝝋3 on 𝝋1, 𝝋2, respectively, as the 

dashed lines shown in Fig. 1. For any vector 𝝋4 outside the bi-dimension space of 𝝋1, 𝝋2, 

the closest vector in the feature space is the projection of 𝝋4 on the feature space, i.e. 𝝋5 in 

Fig. 1, and 𝛽1𝝋1, 𝛽2𝝋2 are the oblique projections of 𝝋5 on 𝝋1, 𝝋2, with 𝛽1, 𝛽2 calculated 

by (4). In this case, 𝝋4 is a new FV, which extends 𝑺 to a tri-dimensional feature space. 

Thus, geometrically, 𝐿𝐹(𝒙) = sin2 (𝜃), with 𝜃 the angle between 𝒙 and feature space 𝑺. 

If 𝐿𝐹(𝒙) = 0, 𝝋(𝒙) can be expressed as linear combination of the mapping of FVs, i.e. 

∑ 𝛽𝑖𝝋(𝒙𝑖)
𝑀
𝑖=1 , with 𝜷 = {𝛽𝑖}, 𝑖 = 1,2, … ,𝑀 calculated with the following equation: 

𝜷 = 𝐾𝑺,𝑥
𝑡 𝐾𝑺,𝑺

−1.                  ⑷ 

If 𝐿𝐹(𝒙) > 0, ∑ 𝛽𝑖𝝋(𝒙𝑖)
𝑀
𝑖=1  with 𝜷 calculated with (4) cannot fully represent 𝝋(𝒙), i.e. 

(𝒙, 𝑦) is a new FV (pattern). 

The pseudo-code of using FVS for selecting FVs in the training dataset 𝑻 is given in Fig. 2. 

The process is different from the former works using FVS which is less time-consuming. The 

most time-consuming part of FVS is the calculation of the local fitness of each data points with 

respect to the current feature space. In order to reduce the computational complexity of FVS, 

in this paper, at the end of each iteration for selection of a new FV, the data points in the dataset 

𝑻 which can not be new FV are eliminated and the dataset 𝑻 is reduced. The local fitness of 

one data point is smaller with respect to a larger feature space, i.e. its local fitness at the next 

iteration is smaller than or at least equal to that in the previous iteration. Thus, the data points 

with the local fitness that satisfies 𝐿𝐹(𝒙𝑘) ≤ 𝜏 can not be FVs in the following iteration, as 

the new FV selected at the next iteration should satisfies 𝐿𝐹(𝒙𝑘) > 𝜏. 

In the pseudo-code, a sparsity parameter 𝜏 is added as the criterion for new FV selection. After 

the first FV is selected, the LFs for all data points in 𝑻 are calculated and the one which gives 

the maximal LF, e.g. 𝒙𝑘 is selected as next possible FV. If 𝐿𝐹(𝒙𝑘) > 𝜏, it is judged as a new 

FV and added to the present feature space 𝑺. This process is repeated until the maximal LF 

with respect to the present feature space 𝑺 is smaller than or equal to 𝜏. The parameter 𝜏 

introduced in FVS is to control the sparsity of selected FVs and plays a similar role to 𝜖 of the 

𝜖-insensitive loss function in SVR. Geometrically, if a new vector in the feature space is not 
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contained in the space formed by the present FVs, it is a new FV only if the angle 𝜃 between 

this new vector and the present feature space is bigger than arcsin (√𝜏). 

2.2 RRKRR-II 

Suppose 𝑺 = (𝒙𝑖, 𝑦𝑖), 𝑖 = 1,2, … ,𝑀 are the FVs selected with FVS from the training dataset 

𝑻 ; for any data point (𝒙, 𝑦) , its mapping 𝝋(𝒙)  in RKHS can be expressed as a linear 

combination of the mapping of the selected FVs, i.e. ∑ 𝛽𝑖𝝋(𝒙𝑖)
𝑀
𝑖=1  and 𝛽𝑗, 𝑗 = 1,2, … ,𝑀 are 

multipliers calculated with (4). Note that 𝑓(𝒙)  in (1) can also be written as 𝑓(𝒙) =

∑ 𝛼𝑖〈𝝋(𝒙𝑖),𝝋(𝒙)〉 + 𝑏
𝑁
𝑖=1 , and it can be rewritten as: 

𝑓(𝒙) = ∑ 𝛼𝑖〈𝝋(𝒙𝑖), ∑ 𝛽𝑗𝝋(𝒙𝑗)
𝑀
𝑗=1 〉 + 𝑏𝑁

𝑖=1 .            ⑸ 

By the mathematical distribution property of the inner product, Equation (5) equals to 

𝑓(𝒙) = ∑ ∑ 𝛼𝑖𝛽𝑗
𝑀
𝑗=1 〈𝝋(𝒙𝑖),𝝋(𝒙𝑗)〉 + 𝑏

𝑁
𝑖=1   

= ∑ 𝛽𝑗(∑ 𝛼𝑖
𝑁
𝑖=1 〈𝝋(𝒙𝑖),𝝋(𝒙𝑗)〉) + 𝑏

𝑀
𝑗=1 .             ⑹ 

Equation (6) can be further written as 

𝑓(𝒙) = ∑ 𝛽𝑗(𝑓(𝒙𝑗) − 𝑏) + 𝑏
𝑀
𝑗=1 ,              ⑺ 

where 𝑓(𝒙𝑗), 𝑗 = 1,2, … ,𝑀 are the predicted values of the FVs in 𝑺, 𝑏 is a constant variable 

and 𝛽𝑗 , 𝑗 = 1,2, … ,𝑀 are the multipliers calculated with (4).  

Now, the new form of the estimate function of (1) can be written as 

𝑔(𝒙) = ∑ 𝛽𝑗(𝒙)(𝑦̂𝑗 − 𝑏) + 𝑏
𝑀
𝑗=1 ,              ⑻ 

where 𝑦̂𝑗 , 𝑗 = 1,2, … ,𝑀 are the predicted values of the FVs selected from the training dataset 

𝑻, 𝑏 is a constant value, 𝑔(𝒙) is the prediction of any data point (𝒙, 𝑦) and 𝛽𝑗(𝒙) is the j-

th value of the vector 𝜷 calculated by (4), which is dependent only on the input 𝒙 once the 

FVs are selected. 

Equation (8) describes the linear relation between the predicted values of FVs, i.e. 𝑦̂𝑗 and that 

of any other data point, i.e. 𝑔(𝒙). This new prediction model is called RRKRR-II. Equation (8) 

shows that if we know the predicted values for the FVs and the constant 𝑏, we can give directly 

the predicted value for any data point. In the next sub-section, the analytic solutions for the 

unknowns in (8), i.e. 𝑦̂𝑗 , 𝑗 = 1,2, … ,𝑀 and 𝑏 are given. 



Paper VI: Jie LIU & Enrico ZIO “Reduced Rank Kernel Ridge Regression-II （RRKRR-II）: a geometrically interpretable 

kernel model for regression,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014. (Under review) 

- 190 - 

2.3 Optimization Problem Associated to RRKRR-II  

In order to calculate the unknowns in (8), an optimization problem is posed, as in all kernel 

methods. The optimization problem for RRKRR-II is defined as 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦̂𝑗,𝑏        𝑊 =  
1

𝑁
∑ (𝑔(𝒙𝒊) − 𝑦𝑖)

2𝑁
𝑖=1   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜         𝑔(𝒙𝒊) = ∑ 𝛽𝑗(𝒙𝒊)(𝑦̂𝑗 − 𝑏) + 𝑏
𝑀
𝑗=1 ,          ⑼ 

with 𝑀  representing the number of FVs selected from the whole training dataset 𝑻 =

(𝒙𝑖, 𝑦𝑖), 𝑖 = 1,2, … ,𝑁. The optimization problem is trying to find the minimal MSE on the 

whole training dataset 𝑻. 

Two main challenges of the optimization problem associated to kernel methods are to keep the 

generalization ability of the model and reduce the computational complexity without losing in 

prediction accuracy. In RRKRR-II, the FVS procedure selects a small part of the whole training 

dataset as FVs which are used to build the model, so that the computational complexity is 

reduced during training and prediction. The objective function in RRKRR-II is the minimal 

MSE on the whole training dataset, which assures the accuracy of the model on the training 

dataset and reduces the risk of over-fitting at the same time, as the RRKRR-II model uses only 

the selected FVs and minimizes the MSE on a much larger dataset.  

The regularization term, which is popular in SVM, RRKRR, etc., is not used in RRKRR-II, and 

experimental results show that the prediction accuracy and generalization ability of RRKRR-II 

are not decreased compared to other kernel methods. In order not to lose any information 

contained in the selected FVs, equal constraints are used as in LS-SVM. Thus, two of the three 

types of hyperparameters in standard kernel methods introduced in the Introduction disappear, 

i.e. only the hyperparameters related to the kernel function remain in RRKRR-II. On the other 

hand, an additional parameter, the threshold for new FV selection, i.e. 𝜏, needs to be determined 

before the training. 

After replacing 𝑔(𝒙𝒊)  in the objective function in (9) with ∑ 𝛽𝑗(𝒙𝒊)(𝑦̂𝑗 − 𝑏) + 𝑏
𝑀
𝑗=1 , the 

objective function becomes 

𝑊 =
1

𝑁
∑ (∑ 𝛽𝑗(𝒙𝒊)𝑦̂𝑗 + 𝑏(1 −

𝑀
𝑗=1 ∑ 𝛽𝑗(𝒙𝒊)

𝑀
𝑗=1 ) − 𝑦𝑖)

2𝑁
𝑖=1 .        ⑽ 

Setting the partial derivatives of 𝑊 with respect to 𝑦̂𝑗 and b to zero yields: 
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𝜕𝑊

𝜕𝑦̂𝑗0
= ∑ ∑ 𝛽𝑗0(𝒙𝒊)

𝑁
𝑖=1 ∗ 𝛽𝑗(𝒙𝒊) ∗ 𝑦̂𝑗

𝑀
𝑗=1 + 𝑏 ∗ ∑ 𝛽𝑗0(𝒙𝒊) ∗ (1 − ∑ 𝛽𝑗(𝒙𝒊)

𝑀
𝑗=1 )𝑁

𝑖=1 −

∑ 𝛽𝑗0(𝒙𝒊) ∗ 𝑦𝑖
𝑁
𝑖=1 = 0                 ⑾ 

𝜕𝑊

𝜕𝑏
= ∑ ∑ 𝛽𝑗(𝒙𝑖) ∗ (1 − ∑ 𝛽𝑙(𝒙𝑖)

𝑀
𝑙=1 )𝑁

𝑖=1 ∗𝑀
𝑗=1 𝑦̂𝑗 + 𝑏 ∗ ∑ (1 − ∑ 𝛽𝑗(𝒙𝑖)

𝑀
𝑗=1 )

2𝑁
𝑖=1 −  

∑ (1 − ∑ 𝛽𝑗(𝒙𝑖)
𝑀
𝑗=1 ) ∗ 𝑦𝑖

𝑁
𝑖=1 = 0.              ⑿ 

These previous Equations (11) and (12) can be expressed as a system of equations as  

[
𝛀 𝚮
𝚪𝑇 𝑐

] [
𝒚̂
𝑏
] = [

𝚸
𝑙
],                  ⒀ 

where 𝛀 is a 𝑀 ×𝑀 matrix with 𝛀𝑚𝑛 = ∑ 𝛽𝑚(𝒙𝒊)
𝑁
𝑖=1 ∗ 𝛽𝑛(𝒙𝒊), 𝚮 is a 𝑀 × 1 vector with 

𝚮𝑚 = ∑ 𝛽𝑚(𝒙𝒊) ∗ (1 − ∑ 𝛽𝑗(𝒙𝒊)
𝑀
𝑗=1 )𝑁

𝑖=1 , 𝚪  is a 𝑀 × 1  vector with 𝚪𝑚 = ∑ 𝛽𝑚(𝒙𝑖) ∗
𝑁
𝑖=1

(1 − ∑ 𝛽𝑙(𝒙𝑖)
𝑀
𝑙=1 ) , 𝑐  is a constant and 𝑐 = ∑ (1 − ∑ 𝛽𝑗(𝒙𝑖)

𝑀
𝑗=1 )

2𝑁
𝑖=1 ; 𝒚̂ = (𝑦̂𝑗), 𝑗 =

1,2, … ,𝑀 and 𝑏 are the unknowns in (8), 𝚸 is a 𝑀 × 1 vector with 𝚸𝑚 = ∑ 𝛽𝑚(𝒙𝒊) ∗
𝑁
𝑖=1

𝑦𝑖, 𝑙 = ∑ (1 − ∑ 𝛽𝑗(𝒙𝑖)
𝑀
𝑗=1 ) ∗ 𝑦𝑖

𝑁
𝑖=1 . 

The values of the unknowns in (8) can be directly calculated by solving (13). 

3. EXPERIMENTAL RESULTS 

In this Section, experiments on five public datasets and comparisons with several popular kernel 

methods are presented to show the performance (prediction accuracy and computational 

burden) of RRKRR-II. The five public datasets are Airfoil-self-noise dataset (Airfoil) [3], [24] 

TABLE III 

MRE on the test dataset 

 RRKRR-

II 

KGP KPLS KRR RRKRR RVM SVR 

Airfoil 0.06632 0.55447 0.29574 0.03018 0.04133 0.16687 0.02817 

CCPP 0.15892 0.57247 0.29736 0.03113 0.02480 0.22001 0.02523 

EMC 0.49079 3.00406 0.31123 0.02434 0.45196 0.16248 0.15392 

Protein 0.05790 0.81310 0.42075 0.09544 0.06584 NAN 0.00738 

SARCOS 0.47710 1.08675 0.34493 0.03877 0.03911 0.25101 0.02284 
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(http://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise), Combined Cycle Power Plant 

dataset (CCPP) [43] (http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant/), 

the dataset for environmental modelling challenge (EMC) [46] 

(http://theoval.cmp.uea.ac.uk/~gcc/competition/), Physicochemical Properties of Protein 

Tertiary Structure Dataset (Protein) provided by Prashant Singh Rana 

(http://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Stru

cture) and the SARCOS dataset (SARCOS) [44] (http://www.gaussianprocess.org/gpml/data/). 

In the experiments of this paper, all the values of the datasets are normalized between 0.1 and 

0.9 at the beginning, and, then, the first 1000 data points of each dataset are chosen as the 

TABLE I 

MSE on the test dataset 

 RRKRR-

II 

KGP KPLS KRR RRKRR RVM SVR 

Airfoil 0.01456 0.01349 0.01568 0.01986 0.02525 0.06169 0.01566 

CCPP 0.00189 0.00189 0.00218 0.00187 0.033117 0.01112 0.00183 

EMC 0.00648 0.00654 0.00701 0.00631 0.00962 0.00696 0.00883 

Protein 3.46e-07 10370.88 3.29e-07 2.31e-07 0.01382 NAN 4.08e-06 

SARCOS 6.06e-05 0.00174 0.00218 0.00013 0.01641 0.00124 6.13e-05 

 
TABLE II 

MRE on the test dataset 

 RRKRR-

II 

KGP KPLS KRR RRKRR RVM SVR 

Airfoil 0.17867 0.15322 0.18545 0.19628 0.25110 0.37256 0.17897 

CCPP 0.09215 0.09222 0.09887 0.09109 0.38820 0.19976 0.08830 

EMC 0.24227 0.24210 0.28391 0.27928 0.37602 0.27952 0.34527 

Protein 0.00090 224.68 0.00102 0.00061 0.23927 NAN 0.00210 

SARCOS 0.01191 0.04985 0.07599 0.01559 0.25747 0.06597 0.01161 
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training dataset and the test dataset is made of the following 500 data points. 

The benchmark methods are Kernel Gaussian Process (KGP) [29], Kernel Partial Least Square 

(KPLS) [30], KRR [40], RRKRR [2], Relevance Vector Machine (RVM) [41] and SVR [38]. 

In the experiments, KMBOX-0.9 Matlab toolbox (http://sourceforge.net/projects/kmbox/files/) 

is used to realize the simulation with KRR, Spider Matlab toolbox 

(http://people.kyb.tuebingen.mpg.de/spider/main.html) is used for simulations with KGP, 

KPLS, RVM and SVR. The hyperparameters of the different methods are all tuned by grid 

search method [21], which finds the best combination of the hyperparameters values among a 

number of given possible values for each hyperparameter. 

3.1 Prediction Accuracy 

Table. I and Table. II show separately the MSE and Mean Relative Error (MRE) on the test 

datasets with different kernel regression approaches; the bold values are the best results given 

by all the regression approaches. All the methods are working well on all datasets, except for 

the dataset of Protein where RVM does not work well and KGP gives very bad results. 

In all these experiments, RRKRR and RRKRR-II use the same FVs selected from the training 

datasets. According to the two tables above, the proposed method RRKRR-II always gives 

better results than RRKRR considering the MSE and MRE on the test datasets. It is also shown 

that the prediction accuracy of RRKRR-II is always comparable with the best prediction results 

of all benchmark methods for all public datasets. The prediction results show that RRKRR-II is 

more stable than other kernel methods. The experiments also prove that when we train a 

RRKRR-II model with selected FVs through minimizing the MSE on the whole training dataset, 

there is no need to add a regularization term in the objective function in (9), with no loss of 

prediction accuracy on the test dataset, i.e. the generalization ability of the model is not 

decreased. Thus, we might draw a more general conclusion on the training of a kernel regression 

model: in the optimization problem, if the verification dataset (the whole training dataset in 

RRKRR-II) is much bigger than the training dataset (selected FVs in RRKRR-II), the 
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regularization term does not play an important role for guaranteeing the generalization ability 

of the model on the test dataset. 

3.2 Computational Burden 

Table. III shows the computation time for the prediction of 500 data points in the test datasets 

TABLE IV 

Sparsity of the RRKRR-II model on different datasets 

 Airfoil CCPP EMC Protein SARCOS 

# of FVs 11 39 151 9 71 

 

 

Fig. 3.  Boxplot of MSE on the whole training dataset of SARCOS for different values of 𝜎 and 

the same 𝜏. 
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Fig. 4.  Boxplot of MSE on the test dataset of SARCOS for different values of 𝜎 and the same 𝜏. 
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obtained with the same computer (Intel Core i5 CPU 2.5 GHz; RAM 4G); the bold values are 

the best results given by all the regression approaches. It is shown that RRKRR-II does not take 

the longest time among all the kernel methods but it still takes much more time than the ones 

which are the fastest. This is caused by the proposed form of the estimate function. Note that 

the inverse of 𝐾𝑺,𝑺 in (4) is not calculated each time for a test data point, and it is stored for 

use once calculated. Suppose that 𝑀 data points out of 𝑁 training points are selected as FVs: 

the computation complexity of (8) is 𝑀2 and that of the standard one in (1) is 𝑁. Thus, the 

less FVs are selected from the training dataset, e.g. for Airfoil and Protein as shown in Table 

IV, the faster is the RRKRR-II model for prediction. 

As various approaches are proposed for tuning the hyperparameters of the different kernel 

methods, it is difficult to find a reasonable way to compare the computational burden of the 

training process (including hyperparameters tuning and solving of the corresponding 

optimization problem) of the different approaches. However, we still want to point out the 

advantages of the proposed RRKRR-II approach, although somewhat qualitative. With the FVS 

process, only a small proportion of training data points are selected, as shown in Table. IV, and 

thus, the complexity of the model and the computational burden for tuning and optimization is 

decreased. An upper bound of the number of FVs can be added to the FV selection procedure 

in Fig. 2 to control the maximal number of FVs. In Fig. 2, the pseudo-code tries to select a 

subset of FVs which can represent the other data points in RKHS with a maximal difference of 

𝜏. In practical applications, in order to decrease the harshness on the tuning of hyperparameters 

𝜏 and 𝜎, the FV selection can also be stopped when the number of selected FVs reaches the 

preset upper bound even if the present feature space cannot well represent all the training data 

points with the tuned values of 𝜏 and 𝜎. Compared to classical kernel methods, e.g. KRR, 

SVR, KGP, the FVS process brings additional computational burden to the training of RRKRR-

II, although the FVS process is already simplified compared to the original work of [2]. The 

added upper bound for the number of FVs can also bound this additional computational burden, 

as the more FVs are selected, the longer time the FVS process takes. 

The tuning of hyperparameters is a big challenge for kernel methods as mentioned in the 

Introduction. For RRKRR-II, with the disappearance of the regularization term, there are only 

two parameters that need to be tuned, i.e. 𝜏 and 𝜎. Fig. 3 and 4 show separately the boxplot 

of MSE on the SARCOS training dataset and test dataset for different values of 𝜎 (i.e. 𝜎2 =

0.0013, 0.0029, 0.0084, 0.0211, 0.0529, 0.1330, 0.2685) and the same 𝜏. From Fig. 3, we 
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can observe that the prediction accuracy on the training dataset is improved when the value of 

𝜏 decreases, because more training data points are selected as FVs. When 𝜏 is small enough, 

e.g. smaller than 1.3×10-5, for different values of 𝜎 RRKRR-II gives comparable result, and 

the prediction accuracy on the training data are no longer significantly improved with an even 

smaller value of 𝜏. Fig. 4 shows that the prediction accuracy for the test dataset is improved at 

the beginning when the value of 𝜏  starts to decrease and different values of 𝜎  give 

comparable results after a certain value for 𝜏, i.e. 1.3×10-5; but when 𝜏 is too small, e.g. 

smaller than 6.2×10-6, the prediction accuracy for the test dataset becomes worse than the case 

where 𝜏  equals 1.3×10-5. This is because the RRKRR-II model has a higher chance of 

overfitting on the training dataset as more FVs are selected from the training dataset with a 

smaller 𝜏 and the overfitting limits the generalization ability of the model. 

In the experiments, the values of 𝜎 can be calculated by APS proposed by [9] with (14) below, 

whereas the value for 𝜇 is chosen between 0 and 1. For the experimental results of RRKRR-

II shown in Section 3, the value of 𝜎 are all calculated with (14) and the values of 𝜇 is 0.02 

for all public datasets; 

𝜎2 = 𝜇 ∗ 𝑚𝑎𝑥‖𝒙𝑖 − 𝒙𝑗‖
2
, 𝑖, 𝑗 = 1,… ,𝑁.            ⒁ 

Once the value for 𝜎 is given, we just need to decide the value of 𝜏 for FVS. Fig. 5 and 6 

show separately the change of MSE on the training and test datasets for different values of 𝜏 

(i.e.𝜏 = 3 × 10−7, 7 × 10−7, 1.4 × 10−6, 3 × 10−6, 6.2 × 10−6, 1.3 × 10−5, 2.6 × 10−5, 5.5 ×

10−5, 1.1 × 10−4, 2.3 × 10−4) whereas 𝜎 is fixed. For a smaller 𝜏, more FVs are selected and 

 

Fig. 5.  MSE on the whole training dataset for different values of 𝜏 and the same 𝜎2. 
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the prediction accuracy on the training dataset is better, as shown in Fig. 5. But this is not the 

case for test dataset, as shown in Fig. 6. When the value for 𝜏 is smaller than some value (this 

value is different for different 𝜎 and normally it is smaller for a bigger 𝜎), the prediction 

accuracy on the test dataset becomes worse. The best prediction results for the test dataset are 

reached when the number of FVs selected from the training dataset is around 70. More selected 

FVs would cause the overfitting on the training dataset and decrease the generalization ability 

of the RRKRR-II model. This is why a very small 𝜏 increases the prediction accuracy on the 

training dataset but decreases that on the test dataset. Thus, the value of 𝜏 should not be too 

small. 

We propose the following process for tuning the value of 𝜏: the value of 𝜏 is decreased at a 

fixed step and when the MSE values on the training dataset between two consequent steps are 

close enough, the tuning process ends and the value retained is chosen as the best value for 𝜏. 

The detailed procedure for tuning hyperparameters is shown in Fig. 7. 

In addition, RRKRR-II can directly give an analytic solution to the optimization problem like 

 

Fig. 6.  MSE on the test dataset for different values of 𝜏 and the same 𝜎2. 
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Fig. 7.  Procedure for tuning hyperparameters of RRKRR-II. 

 

  

 

Fix the value of 𝜇 and calculate the value of 𝜎  

Initialize the value of 𝜏 and the step width ∆𝜏 
Stop criterion for tuning hyperparameters, π 

 

Calculate MSE on Training dataset with the present values of 𝜎 and 𝜏 
Repeat 

Decrease the value of 𝜏 by ∆𝜏 and calculate the MSE on the training dataset 

 Calculate the difference of MSE, i.e. ∆MSE 

Until ∆MSE < π 
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KRR and RRKRR, which makes the optimization process faster than the searching methods. 

Thus, although RRKRR-II may increase the computational burden of the test process, the 

prediction accuracy and computational complexity associated to the tuning of the 

hyperparameters and to the model training are better than or comparable with other kernel 

methods. 

4. CONCLUSION 

In this paper, a geometrically interpretable kernel approach is proposed through analyzing the 

geometrical relation between the FVs selected by FVS and the other points in RKHS. The 

proposed approach is name RRKRR-II, with respect to the former work of Cawley and Talbot 

(2002). RRKRR-II describes the predicted value of any data point as a weighted sum of the 

predicted values of the selected FVs. The number of FVs can be bounded by a manually preset 

upper bound. A simple and efficient strategy is proposed for tuning the two parameters 

associated to RRKRR-II. Experiments on several public datasets prove that RRKRR-II gives 

comparable prediction accuracy with the best results given by the benchmark kernel methods. 

The drawback with RRKRR-II is the additional computational burden brought by the FVS 

process before training.  

Future work will focus on the estimation of the uncertainties associated with the predicted 

values and on the efficient and adaptive updating of the RRKRR-II model for predictions in 

dynamic changing environments, considering its geometrical interpretation. 
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